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a b s t r a c t

We study the problem of source localization as a multiple hypothesis testing problem, where each
hypothesis corresponds to the event that the source belongs to a particular region. We use sequential
hypothesis tests based on posterior computations to solve for the correct hypothesis. Measurements
corrupted with noise are used to calculate conditional posteriors. We prove that the regional localization
problem has asymptotic properties that allow correct detection almost surely in the limit of a large
number of measurements. We present the Sense, Transmit & Test distributed algorithm that allows
sequential sensing, communication and testing and we analyze the accuracy of this distributed algorithm
and show that the test ends in a finite time. We also present numerical results illustrating properties of
the suggested algorithm.

© 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Problem description and motivation. Applications where source
localization is of great concern, vary between finding the source
of oil spills in the ocean, determining cellular locations, detecting
an earthquake’s epicenter, locating an acoustic source, or simply
finding an intruder in a protected environment. For most of these
applications, it is sufficient to find a region that contains the source
rather than pinpointing the exact source position, which relies
most of the time on approximations.

In this work we consider the following problem: A source at an
unknown location in a bounded region Q transmits a power signal.
N sensors receive noisy anddecayed versions of the signal, they can
communicate and exchange measurements. The environment Q is
divided into M regions Wα , where α ∈ {1, . . . ,M}. The objective
of the sensors is to find which region contains the source.
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We pose the problem as a multiple hypothesis testing problem,
where hypothesis Hα is true if the source lies in the region Wα .
We assume no prior knowledge about the location of the source
and therefore model the source location as a uniformly distributed
random variable over the environment Q , any prior information
about the source location can be incorporated in the location
density function. We adopt the log-normal fading model for the
propagation of the received signal power. The noise added to
the log of the power is Gaussian with zero mean and a known
variance σ 2.
Literature review. In the classical source localization problem, a
number of sensors collaborate to locate the exact position of a
source. The relation between the position of a source and the
received signal strength (RSS) is described in Chen, Yao, and
Hudson (2002), Proakis and Salehi (2001), Rappoport (1996) and
Sayed, Tarighat, and Khajehnouri (2005). Several authors treat lo-
calization as a nonconvex optimization problem (Hero & Blatt,
2005; Rabbat & Nowak, 2004a). Gradient descent algorithms and
weighted least squares approximations can be used to solve the
maximum likelihood estimation problems but such algorithms
tend to get stuck at local optima (Mao, Fidan, & Anderson, 2007;
Rabbat & Nowak, 2004b). Authors in Meng, Ding, and Dasgupta
(2008) approximate the nonlinear nonconvex optimization prob-
lem by a linear and convex problem. Hero and Blatt (2005) use a
method of projection onto convex sets. A necessary and sufficient
condition for the convergence of this algorithm is that the source
lies inside the convex hull of the sensors. Properly placing the sen-
sors assumes knowledge of the position of the source.

Designing distributed algorithms is in general a problem
specific task, and many researchers from various communities
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have looked at this problem. We refer the reader to Boyd, Ghosh,
Prabhakar, and Shah (2006), Lynch (1997), Nedic and Ozdaglar
(2009) and references therein for more details.

The multiple hypothesis problems are considerably more
difficult than the binary problem and optimality of the proposed
algorithms is usually hard to prove. Some tests that have some
asymptotic optimality properties were developed in the literature,
but these tests tend to be very complex (Armitage, 1950; Baum &
Veeravalli, 1994; Savin, 1984). Alternatively ad hoc tests based on
repeated pairwise applications of optimal sequential hypothesis
tests (Wald, 1945) were developed but these tests have little
optimality results, e.g., see Eisenberg (1991). Some work in the
literature look at locating a source inside a region in different
contexts, such as triangulation and fingerprinting, than the one
studied in this paper (You, Yoo, & Cha, 2007; Zhang, Cao, Chen, &
Chen, 2009). For a survey on localization algorithms, see Srinivasan
and Wu (2007).
Contributions. The contributions of this paper are three-fold.

First, we formulate the source localization problem in a
novel multi-hypothesis testing setting. We analyze properties
of the Maximum A Posteriori (MAP) algorithm that requires
the computation of a finite number of integrals which is to be
compared to the need to solve a nonlinear, nonconvex problem
in the classical source localization problem. We provide a proof
of almost sure convergence of the MAP solution asymptotically in
the limit of a large number of measurements, a step that tends
to be missing in all of the work presented earlier in the source
localization literature.

Second, inspired by the proof of convergence of the MAP
solution, we propose and implement a distributed sequential
regional localization algorithm: Sense, Transmit & Test. This
algorithm allows for sequential sensing, transmission and testing
at each processor.We allow each processor to have one ormultiple
regions of responsibility and relate the probability of error for each
processor in the case of multiple regions to the probability of error
in the case of a single region. We also show that the test ends in a
finite time under mild conditions on the sensor locations.

Third, we illustrate the results of the Sense, Transmit & Test and
show how the expected decision time for a network increases with
the required accuracy and noise.We also provide numerical results
illustrating how it is possible to increase the level of localization
accuracy at the expense of the expected decision time for the
network for a fixed decision accuracy.
Paper organization. The paper proceeds as follows: we formulate
the problem as a multi-hypotheses testing problem in Section 2.
We present a distributed algorithm for the problem in Section 3.
We present in Section 4 numerical results showing the perfor-
mance of the algorithm as various parameters are changed. We
conclude in Section 5.

2. Source localization as multi-hypothesis testing

We start this section by introducing themodel and the problem
definition.

2.1. Model and problem definition

Consider a compact connected environment Q ⊂ R2. Suppose
that there are N sensors placed at positions qi ∈ Q with i ∈

{1, . . . ,N}, and that the source located at an unknown location
s ∈ Q transmits a signal whose power undergoes log-normal
shadowing summarized as follows. The average power loss for
an arbitrary Transmitter–Receiver separation is expressed as a
function of distance by using a path loss exponent ρ > 2. Recall
that the standard ideal model of log-normal fading states that the
received power at a sensor i is Pi =

P
∥qi−s∥ρ , where ρ is the rate at
which the power loss increases with distance and where ∥qi − s∥
is measured in appropriate units. In this paper, we adopt a more
realistic version of this ideal model. Specifically, we assume the
received power is

ln Pi = ln(P) − ln(1 + ∥qi − s∥ρ) + ni, (1)

where (1) the unit additive term in the fading term is introduced so
that the receivedpower iswell definednear the source and equal to
the transmitted power P at the source, and (2) the variable ni is the
noise associated with sensor i. We assume all ni are independent
and identically distributed (i.i.d) Gaussian random variables with
zero mean and known variance σ 2. The joint probability density
function of the received power Pr = [P1, . . . , PN ]

T , conditioned on
the source location y ∈ Q is

p(P1, . . . , PN |y) =
1

(2πσ 2)N/2

× exp

−

N
i=1


ln Pi − ln


P

1+∥qi−y∥ρ

2
2σ 2

 . (2)

Problem 2.1 (MAP Point Localization Problem). Compute the posi-
tion that maximizes the posterior of the joint observations, that is
compute

y∗
= argmax

y∈Q
p(P1, . . . , PN |y)P(y).

Here p(P1, . . . , PN |y) is the joint conditional probability and P(y)
is the prior probability.

Problem 2.1 is a nonlinear nonconvex optimization problem.
Attempts to solve this problem, usually revert to relaxing
the problem or approximating its solution without providing
a convergence analysis. In this paper we look for a regional
localization, so the conditioning on the exact position y in (2)
is replaced by a conditioning on the source being in a region
Wi. The environment Q with area A is divided into M regions
{W1, . . . ,WM} with positive areas {A1, . . . , AM}. Each Wα has a
positive measure, each intersection Wα ∩ Wβ has zero measure,
and ∪

M
α=1 Wα = Q . The hypothesis Hα is true if and only if s ∈ Wα .

Problem 2.2 (MAPRegional Localization Problem).Compute thehy-
pothesisHα that maximizes the posterior of the joint observations,
that is, compute

α∗
= argmax

α∈{1,...,M}

p(P1, . . . , PN |Hα)P(Hα). (3)

2.2. Regional posterior density

Assuming no prior knowledge about the location of the source,
the density describing s ∈ Q is

p(s) =


1/A, if s ∈ Q ,
0, otherwise.

Definition 2.3 (Repeated Measurements). The ith sensor takes k
repeated i.i.d. noisy measurements and computes the average of
the logarithms of the measurements

ln Pi(k) =

k
t=1

ln Pi(l)
k

. (4)
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In the infinite measurement case, we write

ln Pi = lim
k→∞

k
t=1

ln Pi(t)
k

and the variance limk→∞ σ 2(k) = 0.

Proposition 2.4 (Expressions for Posteriors). In the case of k
repeated measurements, the regional posterior for sensor i about
region Wα is

p(Pi(k)|Hα)P(Hα) =
1
A


Wα

1
(2πσ 2(k))1/2

× exp

−


ln Pi(k) − ln


P

1+∥qi−y∥ρ

2
2σ 2(k)

 dy,

and the joint regional posterior for sensors {1, . . . ,N} about region
Wα is

p(P1(k), . . . , PN(k)|Hα)P(Hα) =
1
A


Wα

dy

×

N
l=1

1
(2πσ 2(k))1/2

exp

−


ln Pl(k) − ln


P

1+∥ql−y∥ρ

2
2σ 2(k)

 .

Proof. Call z = ln Pi(k). We compute

p(z|Hα) =
d
dz

P(Z ≤ z,Hα)

P(Hα)
= A

d
dz

 z
−∞


Wα
p(z|y)p(y)dydz

Aα

= A
d
dz

 z
−∞


Wα


p(z|y)/A)dydz

Aα

=


Wα
p(z|y)dy

Aα

.

Since z = ln Pi(k) =
k

t=1
ln Pi(t)

k , the conditional probability is

p(z|y) =
1

(2πσ 2(k))1/2

× exp

−


ln Pi(k) − ln


P

1+∥qi−y∥ρ

2
2σ 2(k)

 dy.

The regional posterior is

p(Pi(k)|Hα)P(Hα) =


Wα

1
(2πσ 2(k))1/2

Aα

× exp

−


ln Pi(k) − ln


P

1+∥qi−y∥ρ

2
2σ 2(k)

 dy ×
Aα

A

=


Wα

1
(2πσ 2(k))1/2

· exp


−


ln Pi(k)−ln


P

1+∥qi−y∥ρ

2
2σ 2(k)


dy

A
.

Equations for the joint regional posterior follow by independence
of measurements. �

2.3. Asymptotic properties of regional source localization

We show here some properties of the MAP algorithm when
applied to regional source localization for a general number
of sensors and regions. We start by presenting a property of
non-collinear sensors when applied to source localization using
measurements undergoing log-normal shadowing.
Lemma 2.5 (Three Non-collinear Sensors). For ρ > 0, given a source
s ∈ R2 and three non-collinear sensors q1, q2 and q3 ∈ R2, the only

solution for the equation
3

i=1


ln 1+∥z−qi∥ρ

1+∥s−qi∥ρ

2
= 0 is z = s.

Proof. In fact, it is easy to check that the sum is zero at z = s.
The uniqueness of this solution is verified by noting that the sum
of the square terms is zero only if all the summands are zero. Let
q = (x, y) and qi = (qi1, qi2). The solution z = s is unique if and
only if the following system has a unique solution:

−2(q11 − q21) −2(q12 − q22)
−2(q11 − q31) −2(q12 − q32)

 
x
y


=


k1
k2


, (5)

where k1 and k2 are known values determined by the measure-
ments and the positions of the sensors. The system presented in
Eq. (5) has a unique solution if and only if the system is consistent
and the determinant of the matrix is nonzero, i.e., the three points
are non-collinear. �

As usual, assume that N sensors are at positions qi, i ∈ {1, . . . ,N}

and that the environment is partitioned into closed regions. For a
region Wα , define the two scalar quantities

Uα = max
y∈Wα

i∈{1,...,N}

ln 1 + ∥y − qi∥ρ

1 + ∥s − qi∥ρ

 , (6)

Lα = min
y∈Wα

N
i=1


ln

1 + ∥y − qi∥ρ

1 + ∥s − qi∥ρ

2

. (7)

Both quantities are well posed because they are the maximum and
minimum value of a continuous function over a compact domain.
Additionally, Uα is strictly positive for all source locations s ∈ Q
and Lα is strictly positive for all source locations s ∈ Q \ Wα . The
latter statement follows from Lemma 2.5 and from the fact that
s ∉ Wα . Define

ηα =


U2

α +
Lα

2N
− Uα > 0, (8)

for all s ∉ Wα . We state the following result on the magnitude of
sums of powers.

Lemma 2.6 (On the Posterior of a Wrong Hypothesis). Consider
Lα,Uα and ηα as defined in (6)–(8). Assume the source s is outside
Wα and the noise ni satisfies |ni| ≤ ηα for all i ∈ {1, . . . ,N} and
α ∈ {1, . . . ,M}. The following statements hold:

(1) the joint measurement is lower bounded as

min
y∈Wα

N
i=1


ln

1 + ∥y − qi∥ρ

1 + ∥s − qi∥ρ
+ ni

2

≥
1
2
Lα, and

(2) the posterior probability for the wrong hypothesis α is upper
bounded as

p(P1, . . . , PN |Hα)P(Hα) ≤
Aα exp


−Lα/4σ 2


A(2πσ 2)N/2

.

Proof. To prove the first statement, consider the expansion
ln

1 + ∥y − qi∥ρ

1 + ∥s − qi∥ρ
+ ni

2

=


ln

1 + ∥y − qi∥ρ

1 + ∥s − qi∥ρ

2

+ 2

ln

1 + ∥y − qi∥ρ

1 + ∥s − qi∥ρ


ni

+

N
i=1

n2
i .
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By computing lower bounds for each term and substituting the
definition of ηα , obtain

min
y∈Wα

N
i=1


ln

1 + ∥y − qi∥ρ

1 + ∥s − qi∥ρ
+ ni

2

≥ Lα − 2NUαηα − Nη2
α

= Lα + 2NU2
α − 2NUα


U2

α +
Lα

2N
− N


U2

α +
Lα

2N


−NU2

α + 2NUα


U2

α +
Lα

2N
=

1
2
Lα.

The second statement follows directly from the first statement
because of the equality

ln Pi − ln
P

1 + ∥y − qi∥ρ
= ln

1 + ∥y − qi∥ρ

1 + ∥s − qi∥ρ
+ ni,

and because of the fact that the surface integral of a function f
is upper bounded by the surface integral of the maximum value
of f . �

We are now ready for the convergence theorem. We introduce the
standard function Q : R → R>0 by

Q (x) =
1

√
2π


+∞

x
exp(−y2/2)dy.

Theorem 2.7 (Elimination ofWrongHypothesis). Consider sensors at
positions q1, . . . , qN subject to noise with variance σ 2. If the source
s ∉ Wα and the noise ni satisfies |ni| ≤ ηα for all i ∈ {1, . . . ,N} and
α ∈ {1, . . . ,M}, then

P

p(P1, . . . , PN |Hα)P(Hα) ≤ ϵα(σ )


≥ µα(σ ),

where

ϵα(σ ) =
Aα exp(−Lα/4σ 2)

A(2πσ 2)N/2
, µα(σ ) = (1 − 2Q (ηα/σ))N .

Furthermore, in the k repeated measurement case, if at least 3
sensors are non-collinear, then limk→∞ ϵα(σk) = 0+ and limk→∞

µα(σk) = 1−.

Proof. From Lemma 2.6, we compute

P

p(P1, . . . , PN |Hα)P(Hα) ≤ ϵα(σ )


≥ P


[n1, . . . , nN ]

T
∈ [−ηα, ηα]

N
=

N
i=1


1
2

− P[ni > ηα] +
1
2

− P[ni < −ηα]


=

1 − 2Q (ηα/σ)

N
.

The first inequality follows from the fact that Lemma 2.6 holds
whenever all |ni| ≤ ηα . The proofs of the two limits of limk→∞

ϵα(σk) and limk→∞ µα(σk) are immediate when there are at least
3 non-collinear sensors. Indeed, if there are at least 3 non-collinear
sensors and if s ∉ Wα , then Lemma 2.5 applies and one can show
Lα > 0 and ηα > 0. �

This theorem states that, as σ → 0+, the joint regional poste-
rior p(P1, . . . , PN |Hα)P(Hα) takes an arbitrarily small value with
a probability that goes arbitrarily close to 1 whenHα is not the cor-
rect hypothesis. This is so as Q (x) → 0 as x → ∞. To complement
the Theorem 2.7, we prove below that for the correct hypothesis,
the probability density is lower bounded by a positive term w.p.1.

Theorem 2.8 (Strict Positivity of Correct Hypothesis). Consider
sensors at positions q1, . . . , qN subject to noise with variance σ 2.
If the source s ∉ Wα and the noise ni satisfies |ni| ≤ ηα for all
i ∈ {1, . . . ,N} and α ∈ {1, . . . ,M}, then

P [p(P1, . . . , PN |Hα)P(Hα) ≥ Ψ (σ )] ≥ Ω(σ ),

where

Ψ (σ ) = p(P1, . . . , PN) −


α=1,...,M

α≠α

Aα exp(−Lα/4σ 2)

A(2πσ 2)N/2
,

Ω(σ ) =


α=1,...,M

α≠α

µα(σ ) =


α=1,...,M

α≠α

(1 − 2Q (ηα/σ))N .

Furthermore, in the k repeated measurement case, if at least 3 sensors
are non-collinear, then limk→∞ Ψ (σk) = p(P1, . . . , PN) > 0 and
limk→∞ Ω(σk) = 1−.

Proof. Theproof of this theorem followsdirectly fromTheorem2.7
and from the total probability theorem. Call z = [P1, . . . , PN ]

T . We
know from the total probability theorem that

p(z) =

M
α=1

p(z|Hα)P(Hα) = p(z|Hα)P(Hα)

+


α=1,...,M

α≠α

p(z|Hα)P(Hα)

and, in turn, that

p(z|Hα)P(Hα) = p(z) −


α=1,...,M

α≠α

p(z|Hα)P(Hα).

From Theorem 2.7

P

p(z|Hα)P(Hα) ≥ p(z) −


α=1,...,M

α≠α

ϵα(σ )


≥


α=1,...,M

α≠α

P

p(z|Hα)P(Hα) ≤ ϵα(σ )


≥


α=1,...,M

α≠α

µα(σ ).

As limk→∞ σk = 0+, limk→∞ Ψ (σk) = p(z) and limk→∞ Ω(σk)
= 1−. �

Theorem 2.8 complements Theorem 2.7 in that is shows that
as limk→∞ σk = 0+, the largest regional posterior is the one
associated with the correct hypothesis.

Remark 2.9 (Almost Sure Convergence of MAP). Using a MAP
algorithm to solve the problem of regional localization, is assured
to provide a correct answer, almost surely, in the limit of a large
number of measurements. This follows directly from Theorems 2.8
and 2.7.

3. Distributed sequential regional localization

In this section we assume that each sensor is a processor that
can perform computational tasks as well as communicate with
other processors according to a specified communication graph.
Each processor takes measurements and computes a conditional
posterior that it communicates to all its neighbors and thenmakes
a decision if a desired accuracy is reached. A group of regions is
associated with each processor. The processor will need to provide
a decision about which of these regions if any contains the source.
We call such a group, the regions of responsibility of the processor.
We do not assume any constraints on the assignment of regions
of responsibilities. We present the algorithm in Section 3.1 and
describe its properties in Section 3.2.
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3.1. Distributed algorithm based on sequential sensing, communica-
tion and hypothesis testing

We present below a distributed algorithm where each proces-
sor decides whether or not its region of responsibility contains the
source. The algorithmas presented, dictates until when a processor
needs to continue to take measurements, as well as the informa-
tion that needs to be communicated.

For each processor i ∈ {1, . . . ,N}, the set of neighbors Ni
consists of the processor itself along with the processors that can
communicate with it. The ith processor is responsible for a set Ri
of Mi regions. We denote these Mi regions by Wα for α ∈ Ri.
The processor collects the measurements from its neighboring
processors, and calculates two posteriors for all regions Wα, α ∈

Ri. The first posterior corresponds to the hypothesis that the
source is inWα , the second posterior corresponds to the hypothesis
that the source is outside Wα . Once the processor reaches a pre-
defined level of confidence, it provides a decision about whether
or not Wα contains the source. The ith processor stops running
its test when it reaches a decision about all Wα, α ∈ Ri. The
processor then sets its decision to either yes, the source is in
Wα , or no, no source is in ∪α∈Ri Wα . Each processor continues to
sense and transmit its measurements until all its neighbors j ∈ Ni
have reached a decision. We give here a formal description of the
algorithm.

We start by introducing the algorithm variables:
inputs: number of nodes: N , decision accuracy ϵ, and number of
regions:M .
outputs: decision of agent i: a − dcsni, flag indicating agent i
has to stop: a − stopi, decision of region α: r − dcsnα , and flag
indicating region α has to stop: r − stopα .

Algorithm : Sense, Transmit & Test
algorithm tolerance: 0 < ϵ ≪

1
2

network processors: i ∈ {1, . . . ,N}

regions:Wα, α ∈ {1, . . . ,M}

state of processor i contains:
a-dcsni ∈ {yes source ∈ Wα, no source ∈ ∪αWα, unknown},
for all j ∈ Ni : qj, a-stopj ∈ {false, true},
for all α ∈ Ri : Wα, r-stopα ∈ {false, true},

r-dcsnα ∈ {yes, no, unknown}

Processor iwith set of neighborsNi executes:
1: transmit qi to j ∈ Ni
2: set k := 0 , a-stopi := false and a-dcsni := unknown
3: set r-stopα := false and r-dcsnα := unknown forα ∈ Ri

4: While ∃ j ∈ Ni with a-stopj == false do
5: update k := k + 1 and take measurement Pi(k)
6: compute ln Pi(k) =

k
t=1

ln Pi(t)
k

7: transmit ln Pi(k) to j ∈ Ni
8: store ln PNi(k) = {ln Pi(k)} ∪ {ln Pj(k) for all j ∈ Ni}

9: For all α ∈ Ri with r-stopα == false do
10: If p(PNi(k)|s ∈ Wα)P(s ∈ Wα) > (1 − ϵ) p(PNi(k))
11: dcsnα := yes, r-stopα := true, a-dcsni := true
12: If p(PNi(k)|s /∈ Wα)P(s /∈ Wα) > (1 − ϵ) p(PNi(k))
13: r-dcsnα := no and r-stopα := true
14: End For
15: If r-stopα == true for all α ∈ Ri
16: a-stopi := true
17: If a-dcsni == unknown
18: a-dcsni := no
19: transmit a-stopi to all j ∈ Ni
20: return a-dcsni
21: End While
3.2. Properties of Sense, Transmit & Test

We present below properties involving the accuracy and
decision time of the Sense, Transmit & Test algorithm.

Theorem 3.1 (Accuracy and Decision Time for Sense, Transmit & Test
Algorithm). Assume that only one source exists in the environment Q ,
that each processor has at least 2 neighboring processors with which
it forms a non-collinear triplet, and that each processor is assigned
Mi regions. Given a tolerance ϵ ∈


0, 1

2


, the Sense, Transmit & Test

algorithm enjoys the following two properties:

(1) the algorithm ends in a finite time, and
(2) each processor i has a probability of error no larger than 2Miϵ if

2 ≤ Mi ≤ 1 +
1
ϵ
, and no larger than ϵ if Mi = 1.

Proof. It is well known (Varshney, 1996; Wald, 1945) that given
two hypothesisH1 andH0 with known posteriors, P(H1) and P(H0),
a hypothesis test that ensures that the decision under hypotheses
H0 and H1 is correct with a probability greater than τ0 and τ1
respectively is the following:

(1) Calculate p(PNi(k)|H1)P(H1),p(PNi(k)|H0)P(H0)

(2) if
p(PNi (k)|H1)P(H1)

p(PNi (k)|H0)P(H0)
≥

τ1
1−τ1

decide in favor of H1,

(3) if
p(PNi (k)|H1)P(H1)

p(PNi (k)|H0)P(H0)
≤

1−τ0
τ0

, decide in favor of H1,

(4) otherwise repeat measurements and go to 1.

We show below that the Sense, Transmit & Test algorithm satisfies
the description above. Applying the total probability theorem we
get

p(PNi |s ∉ Wα)P(s ∉ Wα)

= p(PNi |y ∈ Q )P(s ∈ Q ) − p(PNi |s ∈ Wα)P(s ∈ Wα)

= p(PNi) − p(PNi |s ∈ Wα)P(s ∈ Wα). (9)

Call (H1 := s ∈ Wα) and (H0 := s ∉ Wα). If we set τ0 = τ1 =

(1 − ϵ), and the thresholds to accept a hypothesis H1, to be

p(PNi(k)|H1)P(H1) ≥ τ1p(PNi),

and the thresholds to reject a hypothesis to be

p(PNi(k)|H0)P(H0) ≥ τ0p(PNi),

then using Eq. (9), one can show that

p(PNi(k)|H1)P(H1) ≥ τ1p(PNi)

⇒ p(PNi(k)|H0)P(H0) ≤ (1 − τ1)p(PNi)

⇒
p(PNi(k)|H1)P(H1)

p(PNi(k)|H0)P(H0)
≥

τ1

1 − τ1
. (10)

Similarly, assuming H0 is correct, one can show that

p(PNi(k)|H0)P(H0) ≥ τ0p(PNi)

⇒
p(PNi(k)|H1)P(H1)

p(PNi(k)|H0)P(H0)
≤

1 − τ0

τ0
. (11)

Assuming H1 is correct, the probability of a correct decision for
the ith processor is no smaller than τ1, for each of the regions
Wα, α ∈ Ni. Similar results hold assuming H0 is correct.

The maximum numbers of errors that a processor can make in
a decision is two: a mis-detection and a false-alarm for Wα where
α ∈ Ri. Alternatively all the other combinations of choices result
in atmost one error, since the ith processor can declare atmost one
hypothesis Hα to be correct for all α ∈ Ri.
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The scenarios where the decision of the processor is erroneous
are presented below:

(1) If one of the regions Wα satisfies p(PNi(k)|H1)P(H1) ≥

τ1p(PNi), then for all β ∈ Ri \ α, the following holds (from
the complete probability theorem)

p(PNi(k)|s ∈ Wβ)P(s ∈ Wβ) < (1 − τ1)p(PNi)

⇒ p(PNi(k)|s ∉ Wβ)P(s ∉ Wβ) ≥ τ1p(PNi)

= τ0p(PNi). (12)

From Eqs. (11) and (12) it follows that the source can be
detected in at most one region Wα . It follows that at most
one false alarm can happen, which might or might not be
accompanied with one mis-detection.

(2) If none of the regions of responsibilities of the processor
contain the source, then the processor can make at most one
mistake by having at most one false alarm.

To be formal, we let pf and pm denote the probability of false
alarm and mis-detection, respectively. Here, pf corresponds to
choosing yes while the correct decision is no, and mis-detection
corresponds to choosing no when the correct decision is yes for
any regionWα . Note that pf = pm = ϵ. A processor makes an error
if it wrongly decides yes/no on Wα for any α ∈ Ri. Following the
analysis above, the probability of error for the ith processor is:

Pe <


Mi

1


pmP(s ∉ ∪α∈Ri Wα)

+


pf +


Mi − 1

1


pf pm


P(s ∈ ∪α∈Ri Wα)


≤ 2Miϵ,

if ϵ(Mi−1) ≤ 1. If the processor has only one region of responsibil-
ity, it is straightforward to see that the processor has a probability
of error no larger than ϵ.

We show now that the test ends after a finite number of mea-
surements. For a regionWα , the processor needs to decidewhether
the source is inWα (H1) or outside it (H0).

Without loss of generality, assume thatH1 is correct for a region
Wα . We know from Theorem 2.7 that

lim
k→∞

p(PNi(k)|H0)P(H0) = 0+,

almost surely. We also know from Theorem 2.8 that

lim
k→∞

p(PNi(k)|H1)P(H1) = p(PNi(k)) > 0,

almost surely. This has the following implication

lim
k→∞

p(PNi(k)|H1)P(H1)

p(PNi(k))
= 1,

which implies that for all ϵ > 0, there exists 0 < K < ∞, s.t.p(PNi(K)|H1)P(H1) − p(PNi(K))

p(PNi(K))

 < ϵ

⇐⇒ −p(PNi(K)|H1)P(H1) + p(PNi(K)) < ϵ p(PNi(K))

⇐⇒ p(PNi(K)|H1)P(H1) > (1 − ϵ) p(PNi(K)).

So for any 1
2 < τ < 1, there exists, almost surely, K < ∞, s.t.

p(PNi(k)|H1)P(H1) > τ p(PNi(k)),

here τ = 1 − ϵ, where 0 < ϵ < 1
2 .

Similarly, one can prove that if H0 is correct, then there exists,
almost surely, K < ∞ such that

p(PNi(k)|H0)P(H0) > τ p(PNi(k)).
Fig. 1. This picture illustrates an evolution of the output of the Sense, Transmit &
Test algorithm. At each instant a region is colored in white, light gray or dark gray,
indicating unknown, yes or no respectively. The output of the distributed algorithm
is shown at times 0, 1, 3, 4, 6, 8, 11, 113 respectively. In this run we set ϵ = 0.01
and σ = 0.5 with N = M = 10.

Fig. 2. This plot shows the expected time it takes a network of 10 processors
implementing the Sense, Transmit & Test algorithm to reach a decision for a noise
standard of deviation σ = 0.5 when the probability of error ϵ varies. We show the
logarithm of the decision time. Note that the network decision time seems to grow
exponentially with the desired accuracy as is standard in sequential hypothesis
testing. The network is assumed to have reached a decision when all processors
have decided. The expected decision time is calculated over 1000 runs.

Next, we discuss the cases where the algorithmmakes a wrong de-
cision. This is possible if the thresholds corresponding to a wrong
decision are crossed at a time K1 < K < ∞. This observation com-
pletes the proof that the Sense, Transmit & Test algorithm has a fi-
nite decision time. �

4. Numerical results

We present in this section three sets of simulations. The first
two sets illustrate some properties of the Sense, Transmit & Test
algorithm, while the third presents amodification of the algorithm
that introduces an interesting extension of the work. In the first
simulations, there are as many regions as there are sensors,
i.e., N = M = 10. We start by presenting in Fig. 1 a sample of the
results obtained by the Sense, Transmit & Test algorithm. The figure
shows the positions of the processors (equipped with sensors) as
well as the partition of Q . As a partition we adopt for simplicity
the Voronoi partition generated by the processors positions; each
processor is responsible for its corresponding Voronoi region. As
stated in the caption, after 113 observations all decisions have been
made and the source has been correctly localized.

We then present in Fig. 2 a plot that shows how the expected
number of observations needed to reach a decision varies with
the accuracy ϵ in the algorithm. Clearly, the probability of correct
detection increases for decreasing values of ϵ.

In Fig. 3 we show how the expected number of observations
needed to reach a decision increases with the standard deviation
of the noise.

Next, we report the second sets of simulations, where we have
differing numbers of regions and sensors. Specifically,wehaveN =

4 sensors andM = 16 regions. Fig. 4 illustrates the evolution of the
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Fig. 3. This plot shows the expected time it takes a network of 10 processors
implementing the Sense, Transmit & Test algorithm to reach a decision with a
probability of error no larger than ϵ = 0.1 as the noise standard of deviation σ

varies. The network is assumed to have reached a decisionwhen all processors have
decided. The expected decision time is calculated over 100 runs.

Fig. 4. This picture illustrates an evolution of the Sense, Transmit & Test algorithm.
At each instant a region is colored in white, light gray or dark gray, indicating
unknown, yes or no respectively. The output of the distributed algorithm is shown
at times 1, 4, 6, 7, 13, 131, 142, 202 respectively. In this run we set ϵ = 0.1/8 and
σ = 0.5 and N = 4 andM = 16.

Fig. 5. This picture illustrates an evolution of the modified version of the Sense,
Transmit & Test algorithm. The output is shown at times 7, 11, 71, 72 respectively.
The rejected regions are shown in dark gray and the ones accepted at each stage are
shown in light gray. In this run we set ϵ = 0.1 and σ = 0.5 and N = 4 and M = 2
at each set of tests.

Sense, Transmit & Test algorithm in this case. The overall accuracy
for each processor is 0.9. This is achieved by setting ϵ = 0.1/8.

In this third set of simulations, we show the output of a
modified, multi-resolution version of the Sense, Transmit & Test
algorithm. This multi-resolution version runs over multiple stages,
at each stage the environment under consideration is divided in
two regions. Observations are taken at each stage until one of the
two regions is rejected with an accuracy of 1 − ϵ. The rejected
region is removed from the environment, and the remaining region
is again divided into two regions. Observations are transferred
fromone stage to another and re-used to reach a decision about the
more fine environment division. A sample output of the modified
algorithm is shown in Fig. 5. In order to reach the same precision in
localization as that shown in Fig. 4, we divide the regions 4 times.
Note that the original Sense, Transmit & Test algorithm reached its
decision after an average of 290 observations whereas the multi-
resolution algorithm did so after an average of 100 observations.
We calculated these values from 1000 Monte-Carlo runs, that is
with an error of±3% to show a similar probability of error with the
same level of fineness. We leave a rigorous analysis of the multi-
resolution algorithm to future work.
We conclude with a general remark. The Sense, Transmit &
Test algorithm presented in this work might at first glance look
similar to sequential multiple hypothesis testing algorithms by
elimination such as the one presented in Bauer (1989). A closer
comparison of the two algorithms shows that while in this work
at most 2M tests are run at each sample, the hypothesis test by
sequential elimination requires a number of tests of the order
2M as it proceeds by a pairwise comparison over all hypothesis.
Nonetheless, it is worth mentioning that while the sequential
elimination algorithm leads to a decision as soon as all but one
hypothesis is eliminated, we wait here until the last hypothesis
reaches the required certainty level. This can be seen in Fig. 1where
all but one hypothesis were canceled at the 11th observation, yet
the algorithmdid not enduntil the 113th observationwhen the last
processor reached its required accuracy. The geometric aspects and
the properties associated with the regional localization problem,
made it possible to propose the simpler, yet less general, Sense,
Transmit & Test algorithm.

5. Conclusion

In this work, we looked at the problem of source localization
in a multiple hypothesis testing setting. We based our formulation
on the geometric properties of the MAP algorithm when applied
to regional localization. We proved that when measurements are
available from three or more non-collinear sensors, MAP based
algorithms choose the correct region almost surely in the limit of a
large number of measurements. We then presented a sequential
distributed algorithm where each processor senses, transmits
and tests to provide a decision. We analyzed the algorithm and
provided a measure of its accuracy and showed that it ends in a
finite time.We concluded the paper by numerically illustrating the
algorithm’s performance.

There are three direct extensions for this work that we
are considering. The first is using an adaptive hierarchical
methods based on quadtrees (de Berg, van Kreveld, Overmars, &
Schwarzkopf, 2000) to increase the level of details in the choice
of regions. The regions could be finely divided as fewer candidate
regions are left, an example of such adaptation is shown at the end
of the manuscript. It would be interesting to study the trade off
between the accuracy and the decision time as a function of the
fine-gridding of the regions.

The second is studying numerical complexity of the distributed
algorithm. This analysis is important for the implementation of
the algorithm, yet is beyond the scope of this work, where the
concentration is on formulating the localization problem as a
multiple hypothesis testing problem and solving the problemwith
a provably convergent algorithm.

The third is allowing the algorithm to stop as soon as a processor
decides that its region contains the source. As presented in this
manuscript, the algorithm has a proven accuracy performance
based on the assumption that all processors reach their decisions
independently of each other, and although we assume only one
source, a processor will continue applying the Sense, Transmit &
Test algorithm until it decides that its region does not contain
the source even if the source was detected by one of the other
processors. It will be interesting to see what happens to the
accuracy if an individual can broadcast a yes to everyone in the
group, allowing them to stop. Alternatively, as we showed in Fig. 1,
it is possible that only one hypothesis is left by elimination. It
will also be interesting to analyze, if possible, the accuracy of an
algorithm that makes use of such scenarios when they occur.
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