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Group decision making based on aggregation of independent decisions is

considered; the most rapid group decision tends to agree with the first

one made; majority rule decisions are best.
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ABSTRACT | This paper studies prototypical strategies to

sequentially aggregate independent decisions. We consider a

collection of agents, each performing binary hypothesis testing

and each obtaining a decision over time. We assume the agents

are identical and receive independent information. Individual

decisions are sequentially aggregated via a threshold-based

rule. In other words, a collective decision is taken as soon as a

specified number of agents report a concordant decision (sim-

ultaneous discordant decisions and no-decision outcomes are

also handled). We obtain the following results. First, we char-

acterize the probabilities of correct and wrong decisions as a

function of time, group size, and decision threshold. The com-

putational requirements of our approach are linear in the

group size. Second, we consider the so-called fastest and ma-

jority rules, corresponding to specific decision thresholds. For

these rules, we provide a comprehensive scalability analysis of

both accuracy and decision time. In the limit of large group

sizes, we show that the decision time for the fastest rule

converges to the earliest possible individual time, and that the

decision accuracy for the majority rule shows an exponential

improvement over the individual accuracy. Additionally, via a

theoretical and numerical analysis, we characterize various

speed/accuracy tradeoffs. Finally, we relate our results to some

recent observations reported in the cognitive information

processing (CIP) literature.

KEYWORDS | Asynchronous data fusion; cognitive information

processing; fastest decision; majority rule; minimal decision

time; optimal network rule; sequential decision making;

threshold rules; voting rule

I . INTRODUCTION

A. Problem Setup
Interest in group decision making spans a wide variety

of domains. Be it in electoral votes in politics, detection in

robotic and sensor networks, or cognitive data processing

in the human brain, establishing the best strategy or

understanding the motivation behind an observed strategy,

has been of interest for many researchers. This work aims

to understand how grouping individual sequential decision
makers (SDMs) affects the speed and accuracy with which

these individuals reach a collective decision. This class of

problems has a rich history and some of its variations are

studied in the context of distributed detection in sensor

networks and Bayesian learning in social networks.

In our problem, a group of individuals independently

decide between two alternative hypothesis, and each indi-

vidual sends its local decision to a fusion center. The fusion
center decides for the whole group as soon as one hypo-

thesis gets a number of votes that crosses a predetermined

threshold. We are interested in relating the accuracy and

decision time of the whole population, to the accuracy and

decision time of a single individual. We assume that all

individuals are independent and identical. That is, we

assume that they gather information corrupted by inde-

pendent identically distributed (i.i.d.) noise and that the
same statistical test is used by each individual in the pop-

ulation. The setup of similar problems studied in the liter-

ature usually assumes that all individual decisions need to
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be available to the fusion center, before the latter can
reach a final decision. The work presented here relaxes

this assumption and the fusion center might provide the

global decision much earlier than all the individuals in the

group. Researchers in behavioral studies refer to decision

making schemes where everyone is given an equal amount

of time to respond as the Bfree response paradigm.[ Since

the speed of the group’s decision is one of our main

concerns, we adjust the analysis in a way that makes it
possible to compute the joint probabilities of each decision

at each instant. Such a paradigm is referred to as the

Binterrogation paradigm.[

B. Literature Review
The framework we analyze in this paper is related to

the one considered in many papers in the literature; see,

for instance, [1]–[9] and references therein. The focus of
these works is mainly twofold. First, researchers in the

fields aim to determine which type of information the

decision makers should send to the fusion center. Second,

many of the studies concentrate on computing optimal

decision rules, both for the individual decision makers and

the fusion center where optimality refers to maximizing

accuracy. One key implicit assumption made in numerous

works is that the aggregation rule is applied by the fusion
center only after all the decision makers have provided

their local decisions.

Tsitsiklis [1] studied the Bayesian decision problem

with a fusion center and showed that for large groups

identical local decision rules are asymptotically optimal.

Varshney [2] proved that when the fusion rules at the

individuals level are nonidentical, threshold rules are the

optimal rules at the individual level. Additionally,
Varshney proved that setting optimal thresholds for a

class of fusion rules, where a decision is made as soon as a

certain number q-out-of-N group members decide, requires

solving a number of equations that grows exponentially

with the group size. The fusion rules that we study in this

work fall under the q-out-of-N class of decision rules.

Finally, Varshney proved that this class of decision rules is

optimal for identical local decisions.

C. Contributions
The contributions of this paper are threefold. First, we

introduce a recursive approach to characterize the probabi-

lities of correct and wrong decisions for a group of SDMs.

These probabilities are computed as a function of time,

group size, and decision threshold. The key idea is to relate

the decision probability for a group of size N at each time t,
to the decision probability of an individual SDM up to that

time t, in a recursive manner. Our proposed method has

many advantages. First, our method has a numerical com-

plexity that grows only linearly with the number of deci-

sion makers. Second, our method is independent of the

specific decision making test adopted by the SDMs and

requires knowledge of only the decision probabilities of

the SDMs as a function of time. Third, our method allows
for asynchronous decision times among SDMs. To the best

of our knowledge, the performance of sequential aggrega-

tion schemes for asynchronous decisions has not been

previously studied.

Second, we consider the so-called fastest and majority
rules corresponding, respectively, to the decision thresh-

olds q ¼ 1 and q ¼ dN=2e. For these rules, we provide a

comprehensive scalability analysis of both accuracy and
decision time. Specifically, in the limit of large group sizes,

we provide exact expressions for the expected decision

time and the probability of wrong decision for both rules,

as a function of the decision probabilities of each SDM. For

the fastest rule, we show that the group decision time

converges to the earliest possible decision time of an indi-

vidual SDM, i.e., the earliest time for which the individual

SDM has a nonzero decision probability. Additionally, the
fastest rule asymptotically obtains the correct answer

almost surely, provided the individual SDM is more likely

to make the correct decision, rather than the wrong deci-

sion, at the earliest possible decision time. For the majority
rule, we show that the probability of wrong decision con-

verges exponentially to zero if the individual SDM has a

sufficiently small probability of wrong decision. Addition-

ally, the decision time for the majority rule is related to the
earliest time at which the individual SDM is more likely to

give a decision than to not give a decision. This scalability

analysis relies upon novel asymptotic and monotonicity

results of certain binomial expansions.

As third main contribution, using our recursive

method, we present a comprehensive numerical analysis

of sequential decision aggregation (SDA) based on the

q-out-of-N rules. As a model for the individual SDMs, we
adopt the sequential probability ratio test (SPRT), which

we characterize as an absorbing Markov chain. First, for

the fastest and majority rules, we report how accuracy and

decision time vary as a function of the group size and of the

SPRT decision probabilities. Second, in the most general

setup, we report how accuracy and decision time vary

monotonically as a function of group size and decision

threshold. Additionally, we compare the performance of
fastest versus majority rules, at fixed group accuracy. We

show that the best choice between the fastest rule and the

majority rule is a function of group size and group accu-

racy. Our numerical results illustrate why the design of

optimal aggregation rules is a complex task [10]. Finally,

we discuss possible relationships between our analysis of

SDA and mental behavior documented in the cognitive

psychology and neuroscience literature [11]–[14].
Finally, we draw some qualitative lessons about SDA

from our mathematical analysis. Surprisingly, our results

show that the accuracy of a group is not necessarily im-

proved over the accuracy of an individual. In aggregation

based on the majority rule, it is true that group accuracy is

(exponentially) better than individual accuracy; decision

time, however, converges to a constant value for large
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group sizes. Instead, if a quick decision time is desired, then
the fastest rule leads, for large group sizes, to decisions

being made at the earliest possible time. However, the ac-

curacy of fastest aggregation is not determined by the

individual accuracy (i.e., the time integral of the probability

of correct decision over time), but is rather determined by

the individual accuracy at a specific instant, i.e., the

probability of correct decision at the earliest decision time.

Accuracy at this special time might be arbitrarily bad
especially for Basymmetric[ decision makers (e.g., SPRT

with asymmetric thresholds). Arguably, these detailed

results for fastest and majority rules, q ¼ 1 and q ¼ bN=2c,
respectively, are indicative of the accuracy and decision

time performance of aggregation rules for small and large

thresholds, respectively.

D. Decision Making in Cognitive Psychology
An additional motivation to study SDA is our interest in

sensory information processing systems in the brain. There

is a growing belief among neuroscientists [12]–[14] that

the brain normally engages in an ongoing synthesis of

streams of information (stimuli) from multiple sensory

modalities. Example modalities include vision, auditory,

gustatory, olfactory, and somatosensory. While many areas
of the brain (e.g., the primary projection pathways) pro-

cess information from a single sensory modality, many

nuclei (e.g., in the Superior Colliculus) are known to re-

ceive and integrate stimuli from multiple sensory modal-

ities. Even in these multimodal sites, a specific stimulus

might be dominant. Multimodal integration is indeed re-

levant when the response elicited by stimuli from different

sensory modalities is statistically different from the
response elicited by the most effective of those stimuli

presented individually. (Here, the response is quantified in

the number of impulses from neurons.) Moreover, regard-

ing data processing in these multimodal sites, the proce-

dure with which stimuli are processed changes depending

upon the intensity of each modality-specific stimulus.

In [12], Werner et al. study a human decision making

problem with multiple sensory modalities. They present
examples where accuracy and decision time depend upon

the strength of the audio and visual components in audio–

visual stimuli. They find that, for intact stimuli (i.e., noise-

less signals), the decision time improves in multimodal

integration (that is, when both stimuli are simultaneously

presented) as compared with unisensory integration.

Instead, when both stimuli are degraded with noise,

multimodal integration leads to an improvement in both
accuracy and decision time. Interestingly, they also identify

circumstances for which multimodal integration leads to

performance degradation: performance with an intact

stimulus together with a degraded stimulus is sometimes

worse than performance with only the intact stimulus.

Another point of debate among cognitive neuroscien-

tists is how to characterize unisensory versus multimodal

integration sites. Neurophysiological studies have tradi-
tionally been classified as multimodal sites where stimuli

are enhanced, that is, the response to combined stimuli is

larger than the sum of the responses to individual stimuli.

Recent observations of suppressive responses in multi-

modal sites have put this theory to doubt; see [13], [14],

and references therein. More specifically, studies have

shown that by manipulating the presence and informa-

tiveness of stimuli, one can affect the performance (accu-
racy and decision time) of the subjects in interesting, yet

not well-understood, ways. We envision that a more

thorough theoretical understanding of SDA will help

bridge the gap between these seemingly contradicting

characterizations of multimodal integration sites.

As a final remark about unisensory integration sites, it

is well known [15] that the cortex in the brain integrates

information in neural groups by implementing a drift-
diffusion model. This model is the continuous-time version

of the so-called SPRT for binary hypothesis testing. We will

adopt the SPRT model for our numerical results.

E. Organization
We start in Section II by introducing the problem set-

up. In Section III, we present the numerical method that

allows us to analyze the decentralized SDA problem. We
analyze the two proposed rules in Section IV. We also

present the numerical results in Section V. Our conclu-

sions are stated in Section VI. The Appendix contains some

results on binomial expansions and on the SPRT.

II . MODELS OF SEQUENTIAL
AGGREGATION AND
PROBLEM STATEMENT

In this section, we introduce the model of sequential

aggregation and the analysis problem we want to address.

Specifically, in Section II-A, we review the classical se-

quential binary hypothesis testing problem and the notion

of SDM; in Section II-B, we define the q-out-of-N SDA

setting; and, finally, in Section II-C, we state the problem

we aim to solve.

A. Sequential Decision Maker
The classical binary sequential decision problem is

posed as follows.

Let H denote a hypothesis which takes on values H0 and

H1. Assume we are given an individual (called SDM here-

after) who repeatedly observes at time t ¼ 1; 2; . . . a

random variable X taking values in some set X with the
purpose of deciding between H0 and H1. Specifically, the

SDM takes the observations xð1Þ; xð2Þ; xð3Þ; . . ., until it

provides its final decision at time � , which is assumed to be

a stopping time for the sigma field sequence generated by

the observations, and makes a final decision � based on the

observations up to time � . The stopping rule together with

the final decision rule represent the decision policy of the

Dandach et al. : Accuracy and Decision Time for Sequential Decision Aggregation

Vol. 100, No. 3, March 2012 | Proceedings of the IEEE 689



SDM. The standing assumption is that the conditional joint
distributions of the individual observations under each

hypothesis are known to the SDM.

In our treatment, we do not specify the type of decision

policy adopted by the SDM. A natural way to keep our

presentation as general as possible is to refer to a proba-

bilistic framework that conveniently describes the sequen-

tial decision process generated by any decision policy.

Specifically, given the decision policy �, let �
ð�Þ
0 and �

ð�Þ
1

be two random variables defined on the sample space

N � f0; 1g [ f?g such that, for i; j 2 f0; 1g:
• f�ð�Þj ¼ ðt; iÞg represents the event that the

individual decides in favor of Hi at time t given

that the true hypothesis is Hj;

• f�ð�Þj ¼ ?g represents the event that the individual

never reaches a decision given that Hj is the correct

hypothesis.
Accordingly, define p

ð�Þ
ijj ðtÞ and p

ð�Þ
ndjj to be the proba-

bilities that, respectively, the events f�ð�Þj ¼ ðt; iÞg and

f�ð�Þ0 ¼ ?g occur, i.e.,

p
ð�Þ
ijj ðtÞ¼P �

ð�Þ
j ¼ðt; iÞ

h i
and p

ð�Þ
ndjj¼P �

ð�Þ
j ¼ ?

h i
:

Then, the sequential decision process induced by the
decision policy � is completely characterized by the fol-

lowing two sets of probabilities:

p
ð�Þ
ndjz

n o
[ p

ð�Þ
0j0ðtÞ; p

ð�Þ
1j0 ðtÞ

n o
t2N

and

p
ð�Þ
ndj1

n o
[ p

ð�Þ
0j1 ðtÞ; p

ð�Þ
1j1 ðtÞ

n o
t2N

(1)

where, clearly, p
ð�Þ
ndj0 þ

P1
t¼1ðp

ð�Þ
0j0ðtÞ þ p

ð�Þ
1j0 ðtÞÞ ¼ 1 and

p
ð�Þ
ndj1 þ

P1
t¼1ðp

ð�Þ
0j1 ðtÞ þ p

ð�Þ
1j1 ðtÞÞ ¼ 1. In what follows, while

referring to an SDM running a sequential distributed hy-

pothesis test with a preassigned decision policy, we will

assume that the above two probabilities sets are known.

From now on, for simplicity, we will drop the super-

script ð�Þ.
Together with the probability of no-decision, for

j 2 f0; 1g, we introduce also the probability of correct
decision pcjj :¼ P½sayHjjHj� and the probability of wrong

decision pwjj :¼ P½sayHi; i 6¼ jjHj�, that is

pcjj ¼
X1
t¼1

pjjjðtÞ and pwjj ¼
X1
t¼1

pijjðtÞ; i 6¼ j:

It is worth remarking that in most of the binary sequential
decision making literature, pwj1 and pwj0 are referred to as,

respectively, the misdetection and false-alarm probabilities

of error.

Below, we provide a formal definition of two properties

that the SDM might or might not satisfy.

Definition II.1: For an SDM with decision probabilities

as in (1), the following properties may be defined.
i) The SDM has almost-sure decisions if, for

j 2 f0; 1g

X1
t¼1

p0jjðtÞ þ p1jjðtÞ
� �

¼ 1:

ii) The SDM has finite expected decision time if, for

j 2 f0; 1g

X1
t¼1

t p0jjðtÞ þ p1jjðtÞ
� �

G1:

One can show that the finite expected decision time

implies almost-sure decisions.

We conclude this section by briefly discussing exam-

ples of SDMs. The classic model is the SPRT model, which

we discuss in some detail in the example below and in

Section V. Our analysis, however, allows for arbitrary

sequential binary hypothesis tests, such as the SPRT with
time-varying thresholds [16], constant false alarm rate

tests [17], and generalized likelihood ratio tests. Response

profiles arise also in neurophysiology, e.g., Okamoto et al.
[18] present neuron models with a response that varies

from unimodal to bimodal depending on the strength of

the received stimulus.

Example II.2 (SPRT): In the case the observations taken
are independent, conditioned on each hypothesis, a well-

known solution to the above binary decision problem is

the so-called SPRT that we review in Section V. An SDM

implementing the SPRT test has both the almost-sure
decisions and finite expected decision time properties.

Moreover, the SPRT test satisfies the following optimal-

ity property: among all the sequential tests having

preassigned values of misdetection and false-alarm prob-
abilities of error, the SPRT is the test that requires the

smallest expected number of iterations for providing a

solution.

In parts B1 and B2 of the Appendix, we review the

methods proposed for computing the probabilities

fpijjðtÞgt2N when the SPRT test is applied, both in the

case X is a discrete random variable and in the case X is a
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continuous random variable. For illustration purposes, we

provide in Fig. 1 the probabilities pijjðtÞ when j ¼ 1 for the

case when X is a continuous random variable with a

continuous distribution (Gaussian). We also note that

pijjðtÞ might have various interesting distributions.

B. The q-out-of-N Decentralized Hypothesis Testing
The basic framework for the binary hypothesis testing

problem we analyze in this paper is the one in which there

are N SDMs and one fusion center. The binary hypothesis

is denoted by H and it is assumed to take on values H0 and

H1. Each SDM is assumed to perform individually a binary
sequential test; specifically, for i 2 1; . . . ;N, at time

t 2 N, SDM i takes the observation xiðtÞ on a random

variable Xi, defined on some set X i, and it keeps observing

Xi until it provides its decision according to some decision

policy �i. We assume that:

i) the random variables fXigN
i¼1 are identical and

independent;

ii) the SDMs adopt the same decision policy �, that
is, �i ffi � for all i 2 1; . . . ;N;

iii) the observations taken, conditioned on either

hypothesis, are independent from one SDM to

another;

iv) the conditional joint distributions of the individ-

ual observations under each hypothesis are known

to the SDMS.

In particular, assumptions i) and ii) imply that the N
decision processes induced by the N SDMs are all

described by the same two sets of probabilities

fpndj0g [ p0j0ðtÞ; p1j0ðtÞ
� �

t2N

and

fpndj1g [ p0j1ðtÞ; p1j1ðtÞ
� �

t2N: (2)

We refer to the above property as homogeneity among the

SDMs.

Once an SDM arrives to a final local decision, it

communicates it to the fusion center. The fusion center

collects the messages it receives keeping track of the
number of decisions in favor of H0 and in favor of H1. A

global decision is provided according to a q-out-of-N
counting rule: roughly speaking, as soon as the hypoth-

esis Hi receives q local decisions in its favor, the fusion

center globally decides in favor of Hi. In what follows, we

refer to the above framework as q-out-of-N SDA with

homogeneous SDMs (denoted as q-out-of-N SDA, for

simplicity).
We describe our setup in more formal terms. Let N

denote the size of the group of SDMs and let q be a positive

integer such that 1 � q � N, then the q-out-of-N SDA with

homogeneous SDMs is defined as follows.

SDMs Iteration: For each i 2 1; . . . ;N, the ith SDM

keeps observing Xi, taking the observations xið1Þ;
xið2Þ; . . . ; until time �i where it provides its local decision

di 2 f0; 1g; specifically, di ¼ 0 if it decides in favor of H0

and di ¼ 1 if it decides in favor of H1. The decision di is

instantaneously communicated (i.e., at time �i) to the

fusion center.

Fusion Center State: The fusion center stores in

memory the variables Count0 and Count1, which are

initialized to 0, i.e., Count0ð0Þ ¼ Count1ð0Þ ¼ 0. If at

time t 2 N the fusion center has not yet provided a global

Fig. 1. A typical unimodal set of decision probabilities fp1j1ðtÞgt2N and fp0j1ðtÞgt2N . Here the SDM implements the SPRT with three different

accuracy levels (see Section V for more details).
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decision, then it performs two actions in the following
order.

1) It updates the variables Count0 and Count1,

according to Count0ðtÞ ¼ Count0ðt� 1Þ þ n0ðtÞ
and Count1ðtÞ ¼ Count1ðt� 1Þ þ n1ðtÞ, where

n0ðtÞ and n1ðtÞ denote, respectively, the number

of decisions equal to 0 and 1 received by the fusion

center at time t.
2) It checks if one of the following two situations is

verified:

i)
Count1ðtÞ > Count0ðtÞ

Count1ðtÞ � q

(

ii)
Count1ðtÞ G Count0ðtÞ

Count0ðtÞ � q:

(
(3)

If i) is verified, the fusion center globally decides

in favor H1, while if ii) is verified, the fusion

center globally decides in favor of H0. Once the

fusion center has provided a global decision, the

q-out-of-N SDA algorithm stops.

Remark II.3 Notes About SDA:
i) Each SDM has in general a nonzero probability of

not giving a decision. In this case, the SDM might

keep sampling infinitely without providing any

decision to the fusion center.

ii) The fusion center does not need to wait until all

the SDMs have provided a decision before a

decision is reached on the group level, as one of
the two conditions i) or ii) in (3) might be

satisfied much before the N SDMs provide their

decisions.

iii) While we study in this paper the case when a

fusion center receives the information from all

SDMs, we note that a distributed implementa-

tion of the SDA algorithm is possible. Analysis

similar to the one presented here is possible in
that case.

h

C. Problem Formulation
We introduce now some definitions that will be useful

throughout this paper. Given a group of N SDMs running

the q-out-of-N SDA algorithm, 1 � q � N, we denote the

following.

i) By T the random variable accounting for the

number of iterations required to provide a

decision

T ¼ min tjeither case i) or case ii) in (3) is satisfiedf g:

ii) By pijjðt; N; qÞ the probability of deciding, at time
t, in favor of Hi given that Hj is correct, i.e.,

pijjðt;N;qÞ :¼P½Group of N SDMs says HijHj;q;T¼ t�: (4)

iii) By pcjjðN; qÞ and pwjjðN; qÞ the probabilities of

correct decision and wrong decision, respectively,

given that Hj is the correct hypothesis, i.e.,

pcjjðN; qÞ ¼
X1
t¼1

pjjjðt; N; qÞ

and

pwjjðN; qÞ ¼
X1
t¼1

pijjðt; N; qÞ; i 6¼ j: (5)

iv) By pndjjðN; qÞ, j 2 f0; 1g, the probability of no-

decision given that Hj is the correct hypothesis,

i.e.,

pndjjðN; qÞ :¼ 1�
X1
t¼1

p0jjðt; N; qÞ þ p1jjðt; N; qÞ
� �

¼ 1� pwjjðN; qÞ � pcjjðN; qÞ: (6)

v) By E½TjHj;N; q� the average number of iterations

required by the algorithm to provide a decision,

given that Hj is the correct hypothesis, i.e.,

E½TjHj;N; q� ¼

P1
t¼1 t p0jjðt; N; qÞ þ p1jjðt; N; qÞ
� �

;

if pndjjðN; qÞ ¼ 0

þ1; if pndjjðN; qÞ > 0:

8><
>:

(7)

Observe that pijjðt; 1; 1Þ coincides with the probability pijjðtÞ
introduced in (1). For ease of notation, we will continue

using pijjðtÞ instead of pijjðt; 1; 1Þ.

We are now ready to formulate the problem we aim to

solve in this paper.

Problem II.4 (SDA): Consider a group of N homo-

geneous SDMs with decision probabilities fpndj0g[
fp0j0ðtÞ; p1j0ðtÞgt2N and fpndj1g [ fp0j1ðtÞ; p1j1ðtÞgt2N . As-

sume the N SDMs run the q-out-of-N SDA algorithm

with the purpose of deciding between hypotheses

H0 and H1. For j 2 f0; 1g, compute the distributions
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fpijjðt; N; qÞg
t2N as well as the probabilities of correct

and wrong decisions, i.e., pcjjðN; qÞ and pwjjðN; qÞ, the

probability of no-decision pndjjðN; qÞ, and the average

number of iterations required to provide a decision, i.e.,

E½TjHj;N; q�.
We will focus on the above problem in the next two

sections, both through theoretical and numerical results.

Moreover, in Section IV, we will concentrate on two

particular values of q, specifically for q ¼ 1 and
q ¼ bN=2c þ 1, characterizing the tradeoff between the

expected decision time, the probabilities of correct and

wrong decisions, and the size of the group of SDMs. When

q ¼ 1 and q ¼ dN=2e, we will refer to the q-out-of-N rule as

the fastest rule and the majority rule, respectively. In this

case, we will use the following notations:

p
ðfÞ
cjj ðNÞ :¼ pcjjðN; q ¼ 1Þ; p

ðfÞ
wjjðNÞ :¼ pwjjðN; q ¼ 1Þ

and

p
ðmÞ
cjj ðNÞ :¼ pcjj N; q ¼ bN=2c þ 1ð Þ

p
ðmÞ
wjj ðNÞ :¼ pwjj N; q ¼ bN=2c þ 1ð Þ:

We end this section by stating two propositions

characterizing the almost-sure decisions and finite expected
decision time properties for the group of SDMs.

Proposition II.5: Consider a group of N SDMs running

the q-out-of-N SDA algorithm. Let the decision probabil-

ities of each SDM be as in (2). For j 2 f0; 1g, assume there

exists at least one instant tj 2 N such that both probabil-

ities p0jjðtjÞ and p1jjðtjÞ are different from zero. Then, the

group of SDMs has the almost-sure decision property if and

only if:

i) the single SDM has the almost-sure decision
property;

ii) N is odd;

iii) q is such that 1 � q � dN=2e.
Proof: First, we prove that if the group of SDMs has

the almost-sure decision property, then properties i)–iii) are

satisfied. To do so, we show that if one between the

properties i)–iii) fails, then there exists an event of

probability nonzero that leads the group to not providing a
decision. First, assume that the single SDM does not have

the almost-sure decision property, i.e., pndjj > 0, j 2 f0; 1g.
Clearly this implies that the event Ball the SDMs of the
group do not provide a decision[ has probability of occurring

equal to pN
ndjj, which is strictly greater than zero. Second

assume that N is even and consider the event Bat time tj,

N=2 SDMs decide in favor of H0 and N=2 SDMs decide in

favor of H1.[ Simple combinatoric and probabilistic
arguments show that the probability of this event

is N
N=2

� �
p

N=2

0jj p
N=2

1jj , which is strictly greater than zero

because of the assumption p0jjðtjÞ 6¼ 0 and p1jjðtjÞ 6¼ 0.
Third, assume that q > bN=2c þ 1. In this case, we

consider the event Bat time tj, dN=2e SDMs decide in favor
of H0 and bN=2c SDMs decide in favor of H1[ that, clearly,

leads the group of SDMs to not providing a global deci-

sion for any q > bN=2c þ 1. Similarly to the previous

case, we have that the probability of this event is
N
dN=2e

� �
p
dN=2e
0jj p

bN=2c
1jj > 0.

We prove now that if properties i)–iii) are satisfied,

then the group of SDMs has the almost-sure decision
property. Observe that, since each SDM has the almost-sure
decision property, there exists almost surely an N-tuple

ðt1; . . . ; tNÞ 2 NN such that the ith SDM provides its
decision at time ti. Let �t :¼ maxftiji 2 1; . . . ;Ng. Since N
is odd, then Count1ð�tÞ 6¼ Count0ð�tÞ. Moreover, since

q � bN=2c þ 1 and Count1ð�tÞ þ Count0ð�tÞ ¼ N, either

Count1ð�tÞ � q or Count0ð�tÞ � q holds true. Hence, the

fusion center will provide a global decision not later

than time �t. h

Proposition II.6: Consider a group of N SDMs running
the q-out-of-N SDA algorithm. Let the decision probabil-

ities of each SDM be as in (2). For j 2 f0; 1g, assume there

exists at least one instant tj 2 N such that both probabil-

ities p1jjðtjÞ and p1jjðtjÞ are different from zero. Then, the

group of SDMs has the finite expected decision time property

if and only if:

i) the single SDM has the finite expected decision
time property;

ii) N is odd;

iii) q is such that 1 � q � dN=2e.
Proof: The proof follows the lines of the proof of the

previous proposition. h

Remark II.7: The existence, for j 2 f0; 1g, of a time tj

such that p0jjðtjÞ 6¼ 0 and p1jjðtjÞ 6¼ 0, is necessary only for

proving the Bif[ side of the previous propositions. In other
words, the validity of properties i)–iii) in Proposition II.5

(resp., in Prop. II.6) guarantees that the group of SDMs

possesses the almost-sure decision property (resp., the finite
expected decision time property).

III . RECURSIVE ANALYSIS OF THE
q-OUT-OF-N SEQUENTIAL
AGGREGATION RULE

The goal of this section is to provide an efficient method to

compute the probabilities pijjðt; N; qÞ, i; j 2 f0; 1g. These

probabilities, using (5)–(7) will allow us to estimate the

probabilities of correct decision, wrong decision, and no-

decision, as well as the expected number of iterations

required to provide the final decision.
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We first consider in Section III-A the case where
1 � q � bN=2c; in Section III-B, we consider the case

where bN=2c þ 1 � q � N.

A. Case 1 � q � bN=2c
To present our analysis method, we begin with an

informal description of the decision events characterizing

the q-out-of-N SDA algorithm. Assume that the fusion

center provides its decision at time t. This fact implies that
neither case i) nor case ii) in (3) has happened at any time

before t. Moreover, two distinct sets of events may precede

time t, depending upon whether the values of the counters

Count0 and Count1 at time t� 1 are smaller than q. In the

first possible set of events, say the Bsimple situation,[ the

counters 1 satisfy 0�Count0ðt�1Þ;Count1ðt�1Þ�q�1

and, hence, the time t is the first time that at least one

of the two counters crosses the threshold q. In a second
possible set of events, say the Bcanceling situation,[ the

counters Count0ðt� 1Þ and Count1ðt� 1Þ are greater

than q and, therefore, equal. In the canceling situation,

there must exist an instant �� � t� 1 such that

Count0ð�� � 1Þ G q, Count1ð�� � 1Þ G q, and Count0ð�Þ ¼
Count1ð�Þ � q, for all � 2 f�� þ 1; . . . ; t� 1g. In other

words, both counters cross the threshold q at the same

instant �� reaching the same value, that is, Count0ð��Þ ¼
Count1ð��Þ, and, for time � 2 f�� þ 1; . . . ; t� 1g, the

number n0ð�Þ of SDMs deciding in favor of H0 at time

� and the number n1ð�Þ of SDMs deciding in favor of

H1 at time � cancel each other out, that is,

n0ð�Þ ¼ n1ð�Þ.
In what follows we study the probability of the simple

and canceling situations. To keep track of both possible

sets of events, we introduce four probability functions:
�, �, ��, and ��. Functions � and � characterize the

simple situation, while �� and �� characterize the can-

celing situation. First, for the simple situation, define the

probability function � : N� f0; . . . ; q� 1g � f0; . . . ; q�
1g ! ½0; 1� as follows: given a group of s0 þ s1 SDMs,

�ðt; s0; s1Þ is the probability that:

i) all the s0 þ s1 SDMs have provided a decision up to

time t;
ii) considering the variables Count0 and Count1

restricted to this group of s0 þ s1 SDMs,

Count0ðtÞ ¼ s0 and Count1ðtÞ ¼ s1.

Also, define the probability function �1jj : N � f0; . . . ;
q� 1g � f0; . . . ; q� 1g ! ½0; 1�, j 2 f0; 1g, as follows:

given a group of N � ðs0 þ s1Þ SDMs, �1jjðt; s0; s1Þ is the

probability that:

i) no SDMs have provided a decision up to time
t� 1;

ii) considering the variables Count0 and Count1

restricted to this group of N � ðs0 þ s1Þ SDMs,

Count0ðtÞþ s0 G Count1ðtÞ þ s1 a n d

Count1ðtÞ þ s1 � q.

Similarly, it is straightforward to define the probabilities

�0jj, j 2 f0; 1g.

Second, for the canceling situation, define the proba-
bility function �� : N � fq; . . . ; bN=2cg ! ½0; 1� as fol-

lows: given a group of 2s SDMs, ��ðt; sÞ is the probability

that:

i) all the 2s SDMs have provided a decision up to

time t;
ii) there exists �� � t such that, considering the

variables Count0 and Count1 restricted to this

group of 2s SDMs:
• Count0ð�� � 1Þ G q and Count1ð�� � 1Þ G q;

• Count0ð�Þ ¼ Count1ð�Þ � q for all � � �� .

Also, define the probability function ��1jj :N � fq; . . .
bN=2cg½0; 1�, j 2 f0; 1g, as follows: given a group of

N � 2s SDMs, ��1jjðt; sÞ is the probability that:

i) no SDMs have provided a decision up to time
t� 1;

ii) at time t, the number of SDMs providing a decision

in favor of H1 is strictly greater than the number of

SDMs providing a decision in favor of H0.

Similarly, it is straightforward to define the probabilities
��0jj, j 2 f0; 1g.

Note that, for simplicity, we do not explicitly keep track
of the dependence of the probabilities � and �� upon the

numbers N and q. The following proposition shows how to

compute the probabilities fpijjðt; N; qÞg1
t¼1

, i; j 2 f0; 1g,
starting from the above definitions.

Proposition III.1 (q-out-of-N: A Recursive Formula): Con-

sider a group of N SDMs, running the q-out-of-N SDA

algorithm. Without loss of generality, assume H1 is the
correct hypothesis. Then, for i 2 f0; 1g, we have, for

t ¼ 1

pij1ð1; N; qÞ ¼ �ij1ð1; 0; 0Þ (8)

and, for t � 2

pij1ðt; N; qÞ ¼
Xq�1

s0¼0

Xq�1

s1¼0

N

s1þs0

� 	
�ðt�1; s0; s1Þ�ij1ðt; s0; s1Þ

þ
XbN=2c

s¼q

N

2s

� 	
��ðt� 1; sÞ ��ij1ðt; sÞ: (9)

Proof: The proof that formulas in (8) hold true

follows trivially from the definition of the quantities

�1j1ð1; 0; 0Þ and �0j1ð1; 0; 0Þ. We start by providing three
useful definitions.

First, let Et denote the event that the SDA with the

q-out-of-N rule provides its decision at time t in favor of H1.

Second, for s0 and s1 such that 0 � s0; s1 � q� 1, let

Es0;s1;t denote the event such that:

i) there are s0 SDMs that have decided in favor of H0

up to time t� 1;

Dandach et al.: Accuracy and Decision Time for Sequential Decision Aggregation

694 Proceedings of the IEEE | Vol. 100, No. 3, March 2012



ii) there are s1 SDMs that have decided in favor of H1

up to time t� 1;

iii) there exist two positive integer numbers r0 and r1

such that:

• s0 þ r0 G s1 þ r1 and s1 þ r1 � q;

• at time t, r0 SDMs decide in favor of H0 while

r1 SDMs decide in favor of H1.

Third, for q � s � bN=2c, let Es;t denote the following

events.
i) 2s SDMs have provided their decision up to time

t� 1 balancing their decision, i.e., there exists

�� � t� 1 with the properties that, considering the

variables Count� and Countþ restricted to these 2s
SDMs:

• Count0ð�ÞG q, Count1ð�Þ G q, for 1 � � �
�� � 1;

• Count0ð�Þ ¼ Count1ð�Þ for �� � � � t� 1;
• Count0ðt� 1Þ ¼ Count1ðt� 1Þ ¼ s.

ii) At time t, the number of SDMs providing their

decision in favor of H1 is strictly greater than the

number of SDMs deciding in favor of H0.

Observe that

Et ¼ [
0�s0;s1�q�1

Es0;s1;t

� 	[
[

q�s�bN=2c
Es;t

� 	
:

Since Es0;s1;t, 0 � s0; s1 � q� 1, and Es;t, q � s � bN=2c,
are disjoint sets, we can write

P½Et� ¼
X

0�s0;s1�q�1

P½Es0;s1;t� þ
X

q�s�bN=2c
P½Es;t�: (10)

Observe that, according to the definitions of �ðt� 1; s0; s1Þ,
��ðt� 1; sÞ, �1j1ðt; s0; s1Þ, and ��1j1ðt; sÞ, provided above

P½Es0;s1;t� ¼
N

s1 þ s0

� 	
�ðt� 1; s0; s1Þ�1j1ðt; s0; s1Þ (11)

and that

P½Es;t� ¼
N

2s

� 	
��ðt� 1; sÞ ��1j1ðt; sÞ: (12)

Plugging (11) and (12) into (10) concludes the proof of the

theorem. h
Formulas, similar to the ones in (8) and (9), can

be provided for computing also the probabilities

fpij0ðt; N; qÞg1
t¼1

, i 2 f0; 1g.

As far as the probabilities �ðt; s0; s1Þ, ��ðt; sÞ,
�ijjðt; s0; s1Þ, ��ijjðt; sÞ, i; j 2 f0; 1g, are concerned, we now

provide expressions to calculate them.

Proposition III.2: Consider a group of N SDMs, running

the q-out-of-N SDA algorithm for 1 � q � bN=2c. With-

out loss of generality, assume H1 is the correct hy-

pothesis. For i 2 f0; 1g, let �ij1 : N½0; 1� denote the

cumulative probability up to time t that a single SDM
provides the decision Hi, given that H1 is the correct

hypothesis, i.e.,

�ij1ðtÞ ¼
Xt

s¼1

pij1ðtÞ: (13)

For t 2 N, s0; s1 2 f1; . . . ; q� 1g, s 2 fq; . . . ; bN=2cg, the

probabilities �ðt; s0; s1Þ, ��ðt; sÞ, �1j1ðt; s0; s1Þ, and ��1j1ðt; sÞ
satisfy the following relationships (explicit for �, �, ��, and
recursive for ��):

�ðt; s0; s1Þ

¼ s0 þ s1

s0

� 	
�s0

0j1ðtÞ�
s1

1j1ðtÞ

��ðt; sÞ

¼
Xq�1

s0¼0

Xq�1

s1¼0

2s

s0 þ s1

� 	
2s�s0�s1

s�s0

� 	

� �ðt�1; s0; s1Þps�s0

0j1 ðtÞp
s�s1

1j1 ðtÞ

þ
Xs

h¼q

2s

2h

� 	
2s�2h

s�h

� 	
��ðt�1; hÞps�h

0j1 ðtÞps�h
1j1 ðtÞ

�1j1ðt; s0; s1Þ

¼
XN��s

h1¼q�s1

N��s

h1

� 	
ph1

1j1ðtÞ

�
Xm

h0¼0

N��s�h1

h0

� 	
ph0

0j1ðtÞ
"

� 1��1j1ðtÞ��0j1ðtÞ
� �N��s�h0�h1

#

��1j1ðt; sÞ

¼
XN�2s

h1¼1

N�2s

h1

� 	
ph1

1j1ðtÞ

�
X�m

h0¼0

N�2s�h1

h0

� 	
ph0

0j1ðtÞ
"

� 1��1j1ðtÞ��0j1ðtÞ
� �N�2s�h0�h1

#
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where �s ¼ s0 þ s1, m ¼ minfh1 þ s1 � s0 � 1;N � ðs0 þ
s1Þ � h1g, and �m ¼ minfh1 � 1;N � 2s� h1g. Moreover,

corresponding relationships for �0j1ðt; s0; s1Þ and ��0j1ðt; sÞ
are obtained by exchanging the roles of p1j1ðtÞ with p0j1ðtÞ
in the relationships for �1j1ðt; s0; s1Þ and ��1j1ðt; sÞ.

Proof: The evaluation of �ðt; s0; s1Þ follows from

standard probabilistic arguments. Indeed, observe that,

given the first group of s0 SDMs and the second group of

s1 SDMs, the probability that all the SDMs of the first
group have decided in favor of H0 up to time t and all

the SDMs of the second group have decided in favor of

H1 up to time t is given by �s0

0j1ðtÞ�
s1

1j1ðtÞ. The desired

result follows from the fact that there are s1þs0

s0

� �
ways of

dividing a group of s0 þ s1 SDMs into two subgroups of

s0 and s1 SDMs.

Consider now ��ðt; sÞ. Let E��ðt;sÞ denote the event of

which ��ðt; sÞ is the probability of occurring, that is, the

event that, given a group of 2s SDMs:

i) all the 2s SDMs have provided a decision up to

time t;
ii) there exists �� � t such that, considering the va-

riables Count0 and Count1 restricted to this group

of 2s SDMs:

• Count0ð�� � 1Þ G q and Count1ð�� � 1Þ G q;

• Count0ð�Þ ¼ Count1ð�Þ � q for all � � �� .

Now, for a group of 2s SDMs, for 0 � s0; s1 � q� 1, let

Et�1;s0;s1
denote the event that:

i) s0 (resp., s1) SDMs have decided in favor of H0

(resp., H1) up to time t� 1;

ii) s� s0 (resp., s� s1) SDMs decide in favor of H0

(resp., H1) at time t.
Observing that for s0 þ s1 assigned SDMs the probability

that fact i) is verified is given by �ðt� 1; s0; s1Þ, we can

write that

P½Et�1;s0;s1
� ¼ 2s

s0 þ s1

� 	
2s� s0 � s1

s� s0

� 	
� �ðt� 1; s0; s1Þps�s0

0j1 ðtÞp
s�s1

1j1 ðtÞ:

Consider again a group of 2s SDMs and for q � h � s let
�Et�1;h denote the event that:

i) 2h SDMs have provided a decision up to time

t� 1;

ii) there exists �� � t� 1 such that, considering the

variables Count0 and Count1 restricted to the

group of 2h SDMs that have already provided a

decision:
• Count0ð�� � 1Þ G q and Count1ð�� � 1Þ G q;

• Count0ð�Þ ¼ Count1ð�Þ � q for all � � �� ;

• Count0ðt� 1Þ ¼ Count1ðt� 1Þ ¼ h;

iii) at instant t, s� h SDMs decide in favor of H0 and

s� h SDMs decide in favor of H1.

Observing that for 2h assigned SDMs the probability that

facts i) and ii) are verified is given by ��ðt� 1; hÞ, we can

write that

P½�Et�1;h� ¼ 2s
2h

� �
2s� 2h

s� h

� �
��ðt� 1; hÞps�h

0j1 ðtÞps�h
1j1 ðtÞ:

Observe that

E��ðt;sÞ ¼
[q

s0¼0

[q

s1¼0

Et�1;s0;s1

 ![ [bN=2c

h¼q

�Et�1;h

 !
:

Since the events Et�1;s0;s1
, 0 � s0; s1 G q, and �Et�1;h,

q � h � bN=2c, are all disjoint, we have that

P E��ðt;sÞ

 �

¼
Xq�1

s0¼0

Xq�1

s1¼0

P Et�1;s0;s1


 �
þ
Xs

h¼q

P½�Et�1;h�:

Plugging the expressions of P½Et�1;s0;s1
� and P½�Et�1;h� in the

above equality gives the recursive relationship for com-

puting ��ðt; sÞ.
Consider now the probability �1j1ðt; s0; s1Þ. Recall that

this probability refers to a group of N � ðs0 þ s1Þ SDMs.

Let us introduce some notations. Let E�1j1ðt;s0;s1Þ denote the

event of which �1j1ðt; s0; s1Þ represents the probability of

occurring and let Et;h1;s1;h0;s0
denote the event that, at time t:

• h1 SDMs decide in favor of H1;
• h0 SDMs decide in favor of H0;

• the remaining N � ðs0 þ s1Þ � ðh0 þ h1Þ do not

provide a decision up to time t.
Observe that the above event is well defined if and only if

h0 þ h1 � N � ðs0 þ s1Þ. Moreover, Et;h1;s1;h0;s0
contributes

to �1j1ðt; s0; s1Þ, i.e., Et;h1;s1;h0;s0
� E�1j1ðt;s0;s1Þ if and only if

h1 � q� s1 and h0Gh1 þ s1 � s0 (the necessity of these

two inequalities follows directly from the definition of
�1j1ðt; s0; s1Þ). Considering the three inequalities h0 þ h1 �
N�ðs0þs1Þ, h1�q� s1, and h0 G h1 þ s1 � s0, it follows that

E�1j1ðt;s0;s1Þ ¼
[

Et;h1;s1;h0;s0
jq� s1 � h1

�
� N � ðs0 þ s1Þ and h0 � mg

where m ¼ minfh1 þ s1 � s0 � 1;N � ðs0 þ s1Þ � h1g. To

conclude, it suffices to observe that the events Et;h1;s1;h0;s0

for q� s1 � h1 � N � ðs0 þ s1Þ and h0 � m are disjoint

events and that

P Et;h1;s1;h0;s0


 �
¼ N � �s

j

� 	
ph1

1j1ðtÞ
N � �s� h1

h0

� 	

� ph0

0j1ðtÞ 1� �1j1ðtÞ � �0j1ðtÞ
� �N��s�h0�h1

where �s ¼ s0 þ s1.
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The probability ��1j1ðt; sÞ can be a computed reasoning
similarly to �1j1ðt; s0; s1Þ.

Now we describe some properties of the above ex-

pressions to assess the computational complexity required

by the formulas introduced in Proposition III.1 in order to

compute fpijjðt; N; qÞg1
t¼1

, i; j 2 f0; 1g. From the expres-

sions in Proposition III.2, we observe that:

• �ðt; s0; s1Þ is a function of �0j1ðtÞ and �1j1ðtÞ;
• ��ðt; sÞ is a function of �ðt� 1; s0; s1Þ, 0 � s0; s1 �

q� 1, p0j1ðtÞ, p1j1ðtÞ, and ��ðt� 1; hÞ, q � h � s;
• �ij1ðt; s0; s1Þ, ��ij1, i 2 f0; 1g, are functions of p0j1ðtÞ,

p1j1ðtÞ, �0j1ðtÞ, and �1j1ðtÞ.
Moreover, from (13), we have that �ijjðtÞ is a function of

�ijjðt� 1Þ and pijjðtÞ.
Based on the above observations, we deduce that

p0j1ðt; N; qÞ and p1j1ðt; N; qÞ can be seen as the output of a

dynamical system having the ðbN=2c � qþ 3Þth dimen-

sional vector with components �0j1ðt� 1Þ, �1j1ðt� 1Þ,
��ðt� 1; sÞ, q � h � bN=2c as states and the 2-D vector

with components p0j1ðtÞ, p1j1ðtÞ, as inputs. As a conse-

quence, it follows that the iterative method we propose to

compute fpijjðt; N; qÞg1
t¼1

, i; j 2 f0; 1g, requires keeping in
memory a number of variables, which grows linearly with

the number of SDMs.

B. Case bN=2c þ 1 � q � N
The probabilities pijjðt; N; qÞ, i; j 2 f0; 1g, in the case

where bN=2c þ 1 � q � N, can be computed according to

the expressions reported in the following Proposition.

Proposition III.3: Consider a group of N SDMs, running

the q-out-of-N SDA algorithm for bN=2c þ 1 � q � N.

Without loss of generality, assume H1 is the correct
hypothesis. For i 2 f0; 1g, let �ij1 : N ! ½0; 1� be defined

as (13). Then, for i 2 f0; 1g, we have for t ¼ 1

pij1ð1; N; qÞ ¼
XN

h¼q

N

h

� 	
ph

ij1ð1Þ 1� pij1ð1Þ
� �N�h

(14)

and for t � 2

pij1ðt; N; qÞ ¼
Xq�1

k¼0

N

k

� 	
�k

ij1ðt� 1Þ
XN�k

h¼q�k

N � k

h

� 	

� ph
ij1ðtÞ 1� �ij1ðtÞ

� �N�ðhþkÞ
: (15)

Proof: Let t ¼ 1. Since q > N=2, the probability that

the fusion center decides in favor of Hi at time t ¼ 1 is

given by the probability that at least q SDMs decide in

favor of Hi at time 1. From standard combinatoric

arguments this probability is given by (14).

If t > 1, the probability that the fusion center decides
in favor of Hi at time t is given by the probability that h
SDMs, 0 � h G q, have decided in favor of Hi up to time

t� 1, and that at least q� h SDMs decide in favor of Hi

at time t. Formally, let E
ðiÞ
t denote the event that the

fusion center provides its decision in favor of Hi at time t,
and let E

ðiÞ
h;t;k;t�1 denote the event that k SDMs have decided

in favor of Hi up to time t� 1 and h SDMs decide in favor

of Hi at time t. Observe that

E
ðiÞ
t ¼

[q�1

k¼0

[N�k

h¼q�k

E
ðiÞ
h;t;k;t�1:

Since E
ðiÞ
h;t;k;t�1 are disjoint sets, it follows that

P E
ðiÞ
t

h i
¼
Xq�1

k¼0

XN�k

h¼q�k

P E
ðiÞ
h;t;k;t�1

h i
:

The proof is concluded by observing that

P E
ðiÞ
h;t;k;t�1

h i
¼ N

k

� 	
�k

ij1ðt� 1Þ N � k

h

� 	
ph

ij1ðtÞ 1� �ij1ðtÞ
� �N�ðhþkÞ

:

h
Regarding the complexity of the expressions in (15) it

is easy to see that the probabilities pijjðt; N; qÞ, i; j 2 f0; 1g,
can be computed as the output of a dynamical system

having the 2-D vector with components �0j1ðt� 1Þ;
�1j1ðt� 1Þ as a state and the 2-D vector with components

p0j1ðtÞ; p1j1ðtÞ as an input. In this case, the dimension of

the system describing the evolution of the desired

probabilities is independent of N.

IV. SCALABILITY ANALYSIS OF THE
FASTEST AND MAJORITY SEQUENTIAL
AGGREGATION RULES

The goal of this section is to provide some theoretical re-

sults characterizing the probabilities of being correct and

wrong for a group implementing the q-out-of-N SDA rule.
We also aim to characterize the probability with which

such a group fails to reach a decision in addition to the

time it takes for this group to stop running any test. In

Sections VI-A and VI-B, we consider the fastest and

majority rules, namely the thresholds q ¼ 1 and q ¼ dN=2e,
respectively; we analyze how these two counting rules

behave for increasing values of N. In Section VI-C, we study
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how these quantities vary with arbitrary values q and fixed
values of N.

A. The Fastest Rule for Varying Values of N
In this section, we provide interesting characteriza-

tions of accuracy and expected time under the fastest rule,

i.e., the counting rules with threshold q ¼ 1. For

simplicity, we restrict to the case where the group has

the almost-sure decision property. In particular, we assume

the following two properties.

Assumption IV.1: The number N of SDMs is odd and the

SDMs satisfy the almost-sure decision property.

Here is the main result of this subsection. Recall that

p
ðfÞ
wj1ðNÞ is the probability of wrong decision by a group of N

SDMs implementing the fastest rule (assuming H1 is the

correct hypothesis).

Proposition IV.1 (Accuracy and Expected Time Under the
Fastest Rule): Consider the q-out-of-N SDA algorithm

under Assumption IV.1. Assume q ¼ 1, that is, adopt the

fastest SDA rule. Without loss of generality, assume H1 is

the correct hypothesis. Define the earliest possible decision
time

�t :¼ min t 2 Njeither p1j1ðtÞ 6¼ 0 or p0j1ðtÞ 6¼ 0
� �

: (16)

Then, the probability of error satisfies

lim
N!1

p
ðfÞ
wj1ðNÞ ¼

0; if p1j1ð�tÞ > p0j1ð�tÞ
1; if p1j1ð�tÞ G p0j1ð�tÞ
1
2
; if p1j1ð�tÞ ¼ p0j1ð�tÞ

8<
: (17)

and the expected decision time satisfies

lim
N!1

E½TjH1;N; q ¼ 1� ¼ �t: (18)

Proof: We start by observing that in the case where

the fastest rule is applied, formulas in (9) simplify to

p1j1ðt; N; q ¼ 1Þ ¼ �1j1ðt; 0; 0Þ; for all t 2 N:

Now, since p1j1ðtÞ ¼ p0j1ðtÞ ¼ 0 for t G �t, it follows that

p1j1ðt; N; q ¼ 1Þ ¼ �1j1ðt; 0; 0Þ ¼ 0; t G �t:

Moreover, we have �1j1ð�tÞ ¼ p1j1ð�tÞ and �0j1ð�tÞ ¼ p0j1ð�tÞ.
According to the definition of the probability �1j1ð�t; 0; 0Þ,

we write

�1j1ð�t; 0; 0Þ ¼
XN

j¼1

N

j

� 	
p

j

1j1ð�tÞ

�
Xm

i¼0

N�j

i

� 	
pi

0j1ð�tÞ 1�p1j1ð�tÞ�p0j1ð�tÞ
� �N�i�j

( )

where m ¼ minfj� 1;N � jg, or equivalently

�1j1ð�t; 0; 0Þ ¼
XbN=2c

j¼1

N

j

� 	
p

j

1j1ð�tÞ

�
Xj�1

i¼0

N � j

i

� 	
pi

0j1ð�tÞ
(

� 1� p1j1ð�tÞ � p0j1ð�tÞ
� �N�i�j

)

þ
XN

j¼dN=2e

N

j

� 	
p

j

1j1ð�tÞ

�
XN�j

i¼0

N � j

i

� 	
pi

0j1ð�tÞ
(

� 1� p1j1ð�tÞ � p0j1ð�tÞ
� �N�i�j

)

¼
XbN=2c

j¼1

N

j

� 	
p

j
1j1ð�tÞ

�
Xj�1

i¼0

N � j

i

� 	
pi

0j1ð�tÞ
(

� 1� p1j1ð�tÞ � p0j1ð�tÞ
� �N�i�j

)

þ
XN

j¼dN=2e

N

j

� 	
p

j
1j1ð�tÞ 1� p1j1ð�tÞ

� �N�j
: (19)

An analogous expression for �0j1ð�t; 0; 0Þ can be obtained

by exchanging the roles of p0j1ð�tÞ and p0j1ð�tÞ in (19). The

rest of the proof is articulated as follows. First, we prove

that

lim
N!1

p1j1ð�t; N; q ¼ 1Þ þ p0j1ð�t; N; q ¼ 1Þ
� �

¼ lim
N!1

�1j1ð�t; 0; 0Þ þ �0j1ð�t; 0; 0Þ
� �

¼ 1: (20)
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This fact implies that (18) holds and that, if p1j1ð�tÞ ¼ p0j1ð�tÞ,
then limN!1 p

ðfÞ
wj1ðNÞ ¼ 1=2. Indeed

lim
N!1

E½TjHj;N; q ¼ 1�

¼ lim
N!1

X1
t¼1

t p0jjðt; N; q ¼ 1Þ þ pijjðt; N; q ¼ 1Þ
� �

¼ �t:

Moreover, if p1j1ð�tÞ ¼ p0j1ð�tÞ, then also ð�1j1ð�t; 0; 0Þ ¼
�0j1ð�t; 0; 0Þ.

Second, we prove that p1j1ð�tÞ > p0j1ð�tÞ implies

limN!1 �0j1ð�t; 0; 0Þ ¼ 0. As a consequence, we have that

limN!1 �1j1ð�t; 0; 0Þ ¼ 1, or equivalently, that limN!1
p
ðfÞ
wj1ðNÞ ¼ 0.

To show (20), we consider the event the group is not
giving the decision at time �t. We aim to show that the

probability of this event goes to zero as N !1. Indeed,

we have that

P½T 6¼ �t� ¼ P½T > �t� ¼ 1� p1j1ð�t;NÞ þ p0j1ð�t;NÞ
� �

and, hence, P½T > �t� ¼ 0 implies p1j1ð�t;NÞ þ p0j1ð�t;NÞ ¼
1. Observe that

P½T > �t� ¼
XbN

2c

j¼0

N

2j

� 	
2j

j

� 	
p1jið�tÞjp0jið�tÞj

� 1� p1jið�tÞ � p0jið�tÞ
� �N�2j

:

For simplicity of notation, let us denote x :¼ p1j1ð�tÞ
and y :¼ p0j1ð�tÞ. We distinguish two cases: i) x 6¼ y and

ii) x ¼ y.

Case x 6¼ y: We show that in this case there exists �	 > 0,

depending only on x and y, such that

2j

j

� 	
x jy j G ðxþ y� �	Þ2j; for all j � 1: (21)

First, observe that, since 2j
j

� �
xjyj is just one term of the

Newton binomial expansion of ðxþ yÞ2j, we know that
2j
j

� �
x jy j G ðxþ yÞ2j for all j 2 N. Define 	ðjÞ :¼ xþ y �

2j
j

� �1=2j ffiffiffiffi
xy
p

and observe that proving (21) is equivalent to

proving limj!1 	ðjÞ > 0. This also makes it possible to

def ine �	 :¼ inf j2N 	ðjÞ. To prove the inequal i ty

limj!1 	ðjÞ > 0, let us compute limj!1
2j
j

� �1=ð2jÞ
. By

applying Stirling’s formula, we can write

lim
j!1

2j

j

� 	1=ð2jÞ
¼ lim

j!1

ffiffiffiffiffiffiffiffiffi
2�2j
p 2j

e

� �2j

2�j j
e

� �2j

 !1=ð2jÞ

¼
ffiffiffiffiffiffi
1

�j2

s
22j

 !1=ð2jÞ

¼ 2

and, in turn, limj!1 	ðjÞ ¼ xþ y� 2
ffiffiffiffi
xy
p

. Clearly, if

x 6¼ y, then xþ y� 2
ffiffiffiffi
xy
p

> 0. Defining �	 :¼ inf j2N 	ðjÞ,
we can write

lim
N!1

XN
2b c

j¼0

N

2j

� 	
2j

j

� 	
x jy jð1� x� yÞN�2j

� lim
N!1

XN
2b c

j¼0

N

2j

� 	
ðxþ y� �	Þ2jð1� x� yÞN�2j

� lim
N!1

XN

j¼0

N

j

� 	
ðxþ y� �	Þjð1� x� yÞN�j

¼ lim
N!1
ð1� �	ÞN ¼ 0

which implies also limN!1 P½T > �t� ¼ 0.

Case x ¼ y: To study this case, let y ¼ xþ 
 and let


! 0. In this case, the probability of the decision time

exceeding �t becomes

fðx;N; 
Þ ¼P½T > �t�

¼
XN

2b c

j¼0

N

2j

� 	
2j

j

� 	
xjðxþ 
Þjð1� 2x� 
ÞN�2j:

Consider lim
!0 fðx;N; 
Þ. We have that

lim

!0

fðx;N; 
Þ ¼
XN

2b c

j¼0

N

2j

� 	
2j

j

� 	
x2jð1� 2xÞN�2j

G
XN

2b c

j¼0

N

2j

� 	
22jx2jð1� 2xÞN�2j G 1

where the first inequality follows from 2j
j

� �
G
P2j

l¼0
2j
l

� �
¼

22j, and the second inequality follows from
PbN=2c

j¼0
N
2j

� �
ð2xÞ2jð1� 2xÞN�2j G

PN
2j¼0

N
2j

� �
ð2xÞ2j ð1� 2xÞN�2j ¼ 1.

So lim
!0 fðx;N; 
Þ exists, and since we know that also
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limN!1 fðx;N; 
Þ exists, the limits are exchangeable in
limN!1 lim
!0 fðx;N; 
Þ and

lim
N!1

lim

!0

fðx;N; 	Þ ¼ lim

!0

lim
N!1

fðx;N; 
Þ ¼ 0:

This concludes the proof of (20). h
Assume now that p1j1ð�tÞ > p0j1ð�tÞ. We distinguish

between the case where p1j1ð�tÞ > 1=2 and the case where

p0j1ð�tÞ G p1j1ð�tÞ � ð1=2Þ.
If p1j1ð�tÞ > ð1=2Þ, then Lemma A.1 implies

lim
N!1

XN

j¼dN=2e

N

j

� 	
p

j

1j1ð�tÞ 1� p1j1ð�tÞ
� �N�j¼ 1

and, since limN!1 �1j1ð�t; 0; 0Þ > limN!1
PN

j¼dN=2e
N
j

� �
�

p
j

1j1ð�tÞð1� p1j1ð�tÞÞN�j
, we have also that limN!1 �1j1�

ð�t; 0; 0Þ¼1.

The case p0j1ð�tÞ G p1j1ð�tÞGð1=2Þ is more involved. We

will see that in this case limN!1 �0j1ð�t; 0; 0Þ ¼ 0. We start
by observing that, from Lemma A.1

lim
N!1

XN

j¼dN2e

N

j

� 	
p

j
1j1ð�tÞ ½1� p1j1ð�tÞ

� �N�j¼ 0

and in turn

lim
N!1

�1j1ð�t; 0; 0Þ ¼ lim
N!1

XN
2b c

j¼1

N

j

� 	
p

j

1j1ð�tÞ

�
Xj�1

i¼0

N � j

i

� 	
pi

0j1ð�tÞ 1� p1j1ð�tÞ � p0j1ð�tÞ

 �N�j�i

 !
:

The above expression can be written as follows:

lim
N!1

�1j1ð�t; 0; 0Þ

¼ lim
N!1

XN�2

h¼1

Xh

j¼ h
2b cþ1

N

j

� 	
N�j

h�j

� 	
p

h�j

0j1 ð�tÞp
j

1j1ð�tÞ

0
B@

1
CA

� 1� p0j1ð�tÞp1j1ð�tÞ
� �� �N�h

¼ lim
N!1

XN�2

h¼1

N

h

� 	 Xh

j¼ h
2b cþ1

h

j

� 	
p

h�j
1j1 ð�tÞp

j
0j1ð�tÞ

� 1�p1j1ð�tÞ�p0j1ð�tÞ
� �N�h

where, for obtaining the second equality, we used the fact
N
j

� �
N�j
h�j

� �
¼ N

h

� �
h
j

� �
. Similarly

lim
N!1

�0j1ð�t; 0; 0Þ¼ lim
N!1

XN�2

h¼1

N

h

� 	

�
Xh

j¼ h
2b cþ1

h

j

� 	
p

h�j

0j1 ð�tÞp
j

1j1ð�tÞ 1�p1j1ð�tÞ�p0j1ð�tÞ
� �N�h

:

We prove now that limN!1 �0j1ð�t; 0; 0Þ ¼ 0. To do so, we

will show that there exists �	 depending only on p0j1ð�tÞ and

p1j1ð�tÞ such that

Xh

j¼ h
2b cþ1

h

j

� 	
p

h�j

0j1 ð�tÞp
j

1j1ð�tÞ G p0j1ð�tÞ þ p1j1ð�tÞ � �	
� �h

:

To do so, let

	ðhÞ ¼ p0j1ð�tÞ þ p1j1ð�tÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXh

j¼ h
2b cþ1

h

j

� 	
p

h�j
0j1 ð�tÞp

j
1j1ð�tÞ:

h

vuuut

Because h is bounded, one can see that 	ðhÞ > 0 as the sum

inside the root is always smaller than ðp0j1ð�tÞ þ p1j1ð�tÞÞh.

We show below that Lemma A.1 implies that

lim infh!1 	ðhÞ > 0. In fact, with the notation in
Lemma A.1 and with x ¼ p0j1ð�tÞ and c ¼ p0j1ð�tÞ þ p1j1ð�tÞ

Xh

j¼ h
2b cþ1

h

j

� 	
p

h�j

0j1 ð�tÞp
j

1j1ð�tÞ ¼
Xh

j¼ h
2b cþ1

h

j

� 	
xh�jðc� xÞj

¼ Sðh; c; xÞ

and, using Lemma A.1

Sðh; c; xÞ
cN

G
dh=2e h

dh=2e

� �
xdh=2eðc� xÞbh=2c

ch
:

From the above, we know that

	ðhÞ > c�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dh=2e h

dh=2e

� 	
xdh=2eðc� xÞbh=2ch

s
:
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We now take lim infh!1 	ðhÞ and obtain

lim inf
h!1

	ðhÞ � c� lim
h!1
dh=2e1=h h

dh=2e

� 	1=h

xdh=2e
� �1=h

� ðc� xÞbh=2c=h ¼ c� 2x1=2ðc� xÞ1=2:

The last equality is true because limh!1dh=2e1=h

h
dh=2e

� �1=h

¼ 2. In order to complete the proof, we need to

show that c�2x1=2ðc�xÞ1=2>0; indeed c� 2x1=2ðc� xÞ1=2

has the same sign as c2 � 4xðc� xÞ ¼ ðc� 2xÞ2. Since we

are studying the case where p0j1ð�t ÞG p1j1ð�t Þ; it follows that

0 � x G ðc=2Þ making the term of interest always strictly

positive. This fact implies that lim infh!1 	ðhÞ is strictly

positive and that, along with the fact that 	ðhÞ > 0 for all

finite h by definition, infh2N 	ðhÞ > 0.
By letting �	 :¼ infh2N 	ðhÞ, we conclude that

lim
N!1

�0j1ð�t; 0; 0Þ

�
XN�2

h¼1

N

h

� 	
p1j1ð�tÞ þ p0j1ð�tÞ � �	
� �

� 1� p1j1ð�tÞ � p0j1ð�tÞ
� �N�h

�
XN

h¼0

N

h

� 	
p1j1ð�tÞ þ p0j1ð�tÞ � �	
� �

� 1� p1j1ð�tÞ � p0j1ð�tÞ
� �N�h¼ ð1� �	ÞN ¼ 0:

This concludes the proof. h

Remark IV.2: The earliest possible decision time �t
defined in (16) is the best performance that the fastest rule

can achieve in terms of number of iterations required to

provide the final decision.

B. The Majority Rule for Varying Values of N
We consider now the majority rule, i.e., the counting

rule with threshold q ¼ bN=2c þ 1. We start with the

following result about the accuracy. Recall that pwj1 is the

probability of wrong decision by a single SDM and that

p
ðmÞ
wj1 ðNÞ is the probability of wrong decision by a group of N

SDMs implementing the majority rule (assuming H1 is the

correct hypothesis).

Proposition IV.3 (Accuracy Under the Majority Rule):
Consider the q-out-of-N SDA algorithm under Assump-

tion IV.I. Assume q ¼ bN=2c þ 1, i.e., the majority rule is

adopted. Without loss of generality, assume H1 is the

correct hypothesis. Then, the probability of error satisfies

p
ðmÞ
wj1 ðNÞ ¼

XN

j¼bN=2cþ1

N

j

� 	
p

j

wj1ð1� pwj1ÞN�j: (22)

According to (22), the following characterization

follows.

i) If 0 � pwj1 G 1=2, then p
ðmÞ
wj1 ðNÞ is a monotonic

decreasing function of N that approaches 0

asymptotically, that is

p
ðmÞ
wj1 ðNÞ > p

ðmÞ
wj1 ðN þ 2Þ and lim

N!1
p
ðmÞ
wj1 ðNÞ ¼ 0:

ii) If 1=2 G pwj1 � 1, then p
ðmÞ
wj1 ðNÞ is a monotonic

increasing function of N that approaches 1

asymptotically, that is

p
ðmÞ
wj1 ðNÞ G p

ðmÞ
wj1 ðN þ 2Þ and lim

N!1
p
ðmÞ
wj1 ðNÞ ¼ 1:

iii) If pwj1 ¼ 1=2, then p
ðmÞ
wj1 ðNÞ ¼ 1=2.

iv) If pwj1 G 1=4, then

p
ðmÞ
wj1 ðNÞ ¼

N
N
2


 �� 	
p

N
2d e

wj1 þo p
N
2d e

wj1

� 	

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N=ð2�Þ

p
ð4pwj1Þ

N
2d eþo ð4pwj1Þ

N
2d e

� �
: (23)

Proof: We start by observing that

Xt

s¼1

p0j1 s; N; q ¼ N=2b c þ 1ð Þ

¼
XN

j¼bN=2cþ1

N

j

� 	
�0j1ðtÞj 1� �0j1ðtÞ

� �N�j
:

Since p
ðmÞ
wj1 ðNÞ ¼

P1
s¼1 p0j1ðs; N; q ¼ bN=2c þ 1Þ, taking

the limit for t!1 in the above expression leads to

p
ðmÞ
wj1 ðNÞ ¼

XN

j¼ N
2d e

N

j

� 	
p

j

wj1ð1� pwj1ÞN�j:

Facts i)–iii) follow directly from Lemma A.1 in part A

of the Appendix applied to (22). Equation (23) is a

consequence of the Taylor expansion of (22)
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XN

j¼ N
2d e

N

j

� 	
p

j
wj1ð1� pwj1ÞN�j

¼
XN

j¼ N
2d e

N

j

� 	
p

j
wj1 1� ðN � jÞpwj1 þ oðpwj1Þ
� �

¼ N
N
2


 �� 	
p

N
2d e

wj1 þ o p
N
2d eþ1

wj1

� 	
:

Finally, Stirling’s formula implies limN!1
N
dN=2e

� �
¼ffiffiffiffiffiffiffiffiffiffiffi

2N=�
p

2N and, in turn, the final expansion follows from

2N ¼ 4dN=2e=2.

We discuss now the expected time required by the
collective SDA algorithm to provide a decision when the

majority rule is adopted. Our analysis is based again on

Assumption IV.1 and on the assumption that H1 is the

correct hypothesis. We distinguish four cases based on

different properties that the probabilities of wrong and

correct decision of the single SDM might have.

1) The probability of correct decision is greater than

the probability of wrong decision, i.e., pcj1 > pwj1.
2) The probability of correct decision is equal to

the probability of wrong decision, i.e., pcj1 ¼
pwj1 ¼ 1=2 and there exist t0 and t1 such that

�0j1ðt0Þ ¼ 1=2 and �1j1ðt1Þ ¼ 1=2.

3) The probability of correct decision is equal to the

probability of wrong decision, i.e., pcj1 ¼ pwj1 ¼
1=2 and there exists t1 such that �1j1ðt1Þ ¼ 1=2,

while �0j1ðtÞ G 1=2 for all t 2 N and limt!1 �0j1
ðtÞ ¼ 1=2.

4) The probability of correct decision is equal to the

probability of wrong decision, i.e., pcj1 ¼ pwj1 ¼
1=2, and �0j1ðtÞ G 1=2, �1j1ðtÞ G 1=2 for all t 2 N
and limt!1 �0j1 ¼ limt!1 �1j1ðtÞ ¼ 1=2.

Note that , s ince Assumption IV.1 impl ies

pcj1 þ pwj1 ¼ 1, the probability of correct decision in

case A1) satisfies pcj1 > 1=2. Hence, in case A1) and under
Assumption IV.1, we define t G 1=2 :¼maxft 2 Nj�1j1ðtÞ G
1=2g and t > 1=2 :¼ minft 2 Nj�1j1ðtÞ > 1=2g.

Proposition IV.4 (Expected Time Under the Majority Rule):
Consider the q-out-of-N SDA algorithm under Assump-

tion IV.1. Assume q ¼ bN=2c þ 1, that is, adopt the

majority rule. Without loss of generality, assume H1 is

the correct hypothesis. Define the SDM properties A1)–

A4) and the decision times t0, t1, t G 1=2, and t > 1=2 as
above. Then, the expected decision time satisfies the

equation shown at bottom of the page.

Proof: We start by proving the equality for case A1).

Since, in this case, we are assuming pcj1 > pwj1, the de-

finitions of t G 1=2 and t > 1=2 imply that �1j1ðtÞ ¼ 1=2 for all

t G 1=2 G t G t > 1=2. Observe that

Xt

s¼1

p1j1 s; N; q ¼ N=2b c þ 1ð Þ

¼
XN

h¼ N
2b c

N

h

� 	
�h

1j1ðtÞ 1� �1j1ðtÞ
� �N�h

:

Hence, Lemma A.1 implies

lim
N!1

Xt

s¼1

p1j1 s; N; q ¼ bN=2c þ 1ð Þ

¼
0; if t � t G 1

2

1; if t � t>1
2

1=2; if t G 1
2
G t G t>1

2

8><
>:

and, in turn, that

lim
N!1

p1j1 t; N; q ¼ bN=2c þ 1ð Þ ¼
1=2; if t ¼ t G 1

2
þ 1

and t ¼ t > 1
2

0; otherwise.

8<
:

It follows

lim
N!1

E TjH1;N; q ¼ bN=2c þ 1½ �

¼ lim
N!1

X1
t¼0

t p0j1 t; N; q ¼ bN=2c þ 1ð Þ
�
þ p1j1 t; N; q ¼ bN=2c þ 1ð Þ

�
¼ 1

2
t G 1

2
þ 1þ t > 1

2

� �
:

lim
N!1

E TjH1;N; q ¼ N=2d e½ � ¼

t< 1
2
þ t > 1

2
þ 1

2
; if the SDM has the property A1)

t1 þ t0
2

; if the SDM has the property A2)

þ1; if the SDM has the property A3) or A4)

8>>><
>>>:
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This concludes the proof of the equality for case A1). h
We consider now case A2). Reasoning similarly to the

previous case, we have that

lim
N!1

p1j1 t1; N; q ¼ bN=2c þ 1ð Þ ¼ 1=2

and

lim
N!1

p0j1 t0; N; q ¼ bN=2c þ 1ð Þ ¼ 1=2

from which it easily follows that limN!1 E½TjH1;N;
q ¼ bN=2c þ 1� ¼ 1=2ðt0 þ t1Þ.

For case A3), it suffices to note the following
implication of Lemma A.1: if, for a given i 2 f0; 1g, we

have �ij1ðtÞ G 1=2 for all t 2 N, then limN!1 pij1ðt; N; q ¼
bN=2c þ 1Þ ¼ 0 for all t 2 N. The analysis of case A4) is

analogous to that of case A3).

Remark IV.5: The cases where pwj1 > pcj1 and where

there ex is t s t0 such that �0j1ðt0Þ ¼ 1=2 whi le

�1j1ðtÞ G 1=2 for all t 2 N and limt!1 �1j1ðtÞ ¼ 1=2,
can be analyzed similarly to cases A1) and A3). More-

over, the most recurrent situation in applications is

the one where there exists an instant t such that

�1j1ðtÞ G 1=2 and �1j1ðtþ 1Þ > 1=2, which is equivalent

to the above case A1) with t > 1=2 ¼ t G 1=2 þ 1. In this

situation, we trivially have limN!1 E½TjH1;N; q ¼
dN=2e� ¼ t > 1=2.

C. Fixed N and Varying q
We start with a simple result characterizing the

expected decision time.

Proposition IV.6: Given a group of N SDMs running the

q-out-of-N SDA, for j 2 f0; 1g

E½TjHj;N; q ¼ 1� �E½TjHj;N; q ¼ 2� � 	 	 	

�E½TjHj;N; q ¼ N�:

The above proposition states that the expected

number of iterations required to provide a decision con-

stitutes a nondecreasing sequence for increasing value of

q. Similar monotonicity results hold true also for

pcjjðN; qÞ, pwjjðN; qÞ, pndjjðN; qÞ, even though restricted

only to bN=2c þ 1 � q � N.

Proposition IV.7: Given a group of N SDMs running the
q-out-of-N SDA, for j 2 f0; 1g

pcjj N; q ¼ bN=2c þ 1ð Þ � pcjj N; q ¼ bN=2c þ 2ð Þ � 	 	 	
� pcjjðN; q ¼ NÞ

pwjj N; q ¼ bN=2c þ 1ð Þ � pwjj N; q ¼ bN=2c þ 2ð Þ � 	 	 	
� pwjjðN; q ¼ NÞ

pndjj N; q ¼ bN=2c þ 1ð Þ � pndjj N; q ¼ bN=2c þ 2ð Þ � 	 	 	
� pndjjðN; q ¼ NÞ:

We believe that similar monotonic results hold true

also for 1 � q � bN=2c. In particular, here is our

conjecture: if N is odd, the single SDM has the almost-
sure decision and the single SDM is more likely to provide
the correct decision than the wrong decision, that is,

pcjj þ pwjj ¼ 1 and pcjj > pwjj, then

pcjjðN; q ¼ 1Þ � pcjjðN; q ¼ 2Þ � 	 	 	
� pcjj N; q ¼ bN=2c þ 1ð Þ

pwjjðN; q ¼ 1Þ � pwjjðN; q ¼ 2Þ � 	 	 	
� pwjj N; q ¼ bN=2c þ 1ð Þ:

These chains of inequalities are numerically verified in

some examples in Section V.

V. NUMERICAL ANALYSIS

The goal of this section is to numerically analyze the
models and methods described in previous sections. In all

the examples, we assume that the sequential binary test

run by each SDMs is the classical SPRT developed in 1943

by Abraham Wald. To fix some notation, we start by briefly

reviewing the SPRT. Let X be a random variable with

distribution fðx; �Þ and assume the goal is to test the null

hypothesis H0 : � ¼ �0 against the alternative hypothesis

H1 : � ¼ �1. For i 2 1; . . . ;N, the ith SDM takes the
observations xið1Þ; xið2Þ; xð3Þ; . . . ; which are assumed to

be independent of each other and from the observations

taken by all the other SDMs. The log-likelihood ratio

associated to the observation xiðtÞ is

�iðtÞ ¼ log
f xiðtÞ; �1ð Þ
f xiðtÞ; �0ð Þ : (24)

Accordingly, let �iðtÞ ¼
Pt

h¼1 �iðhÞ denote the sum of the

log-likelihoods up to instant t. The ith SDM continues to

sample as long as 
0 G �iðtÞ G 
1, where 
0 and 
1 are two

preassigned thresholds; instead sampling is stopped the

first time this inequality is violated. If �iðtÞ G 
0, then the
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ith SDM decides for � ¼ �0. If �iðtÞ > 
1, then the ith
SDM decides for � ¼ �1.

To guarantee the homogeneity property we assume that

all the SDMs have the same thresholds 
0 and 
1. The

threshold values are related to the accuracy of the SPRT as

described in the classic Wald’s method [19]. We shortly

review this method next. Assume that, for the single SDM,

we want to set the thresholds 
0 and 
1 in such a way that

the probabilities of misdetection (saying H0 when H1 is
correct, i.e., P½say H0jH1�) and of false alarm (saying H1

when H0 is correct, i.e., P½say H1jH0�) are equal to some

preassigned values pmisdetection and pfalse alarm. Wald proved

that the inequalities P½say H0jH1� � pmisdetection and

P½say H1jH0� � pfalse alarm are achieved when 
0 and 
1

s a t i s f y 
0 � logðpmisdetection=1� pfalse alarmÞ a n d


1 � logð1� pmisdetection=pfalse alarmÞ. As customary, we

adopt the equality sign in these inequalities for the design
of 
0 and 
1. Specifically, in all our examples, we assume

that pmisdetection ¼ pfalse alarm ¼ 0:1 and, in turn, that


1 ¼ �
0 ¼ log 9.

We provide numerical results for observations de-

scribed by both discrete and continuous random variables.

In the case X is a discrete random variable, we assume that

fðx; �Þ is a binomial distribution

fðx; �Þ¼
n
x

� �
� xð1� �Þn�x; if x 2 f0; 1; . . . ; ng

0; otherwise

�
(25)

where n is a positive integer number. In the case X is a

continuous random variable, we assume that fðx; �Þ is a

Gaussian distribution with mean � and variance �2

fðx; �Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2��2
p e�ðx��Þ

2=2�2

: (26)

The key ingredient required for the applicability of

Propositions III.1 and III.2 is the knowledge of the
probabilities fp0j0ðtÞ; p1j0ðtÞgt2N and fp0j1ðtÞ; p1j1ðtÞgt2N .

Given thresholds 
0 and 
1, their probabilities can be

computed according to the method described in the

part B1 of the Appendix (respectively, part B2 of the

Appendix) for X discrete (respectively, X continuous)

random variable.

We provide three sets of numerical results. Specifi-

cally, in Example V.1, we emphasize the tradeoff between
accuracy and expected decision time as a function of the

number of SDMs. In Example V.2, we concentrate on the

monotonic behaviors that the q-out-of-N SDA algorithm

exhibits both when N is fixed and q varies and when q is

fixed and N varies. In Example V.3, we compare the

fastest rule and the majority rule. Finally, Section V-A

discusses drawing connections between the observations

in Example V.3 and the cognitive psychology presentation
introduced in Section I-D.

Example V.1 (Tradeoff Between Accuracy and Expected
Decision Time): This example emphasizes the tradeoff

between accuracy and expected decision time as a function

of the number of SDMs. We do that for the fastest rule and

the majority rule. We obtain our numerical results for odd

sizes of a group of SDMs ranging from 1 to 61. In all our
numerical examples, we compute the values of the

thresholds 
0 and 
1 according to Wald’s method by posing

pmisdetection ¼ pfalse alarm ¼ 0:1 and, therefore, 
1 ¼ log 9

and 
0 ¼ � log 9.

For a binomial distribution fðx; �Þ as in (25), we

provide our numerical results under the following

conditions: we set n ¼ 5; we run our computations for

three different pairs ð�0; �1Þ; precisely, we assume that
�0 ¼ 0:5� 	 and �1 ¼ 0:5þ 	 where 	 2 f0:03; 0:05;
0:07g; and H1 : � ¼ �1 is always the correct hypothesis.

For any pair ð�0; �1Þ, we perform the following three

actions in order.

i) We compute the probabilities fp0j1ðtÞ; p1j1ðtÞgt2N
according to the method described in part B1 of

the Appendix.

ii) We compute the probabilities fp0j1ðt; N; qÞ;
p1j1ðt; N; qÞgt2N for q¼1 and q¼bN=2cþ1 accord-

ing to the formulas reported in Proposition III.1.

iii) We compute the probability of wrong decision

and expected time for the group of SDMs

exploiting

pwj1ðN; qÞ ¼
X1
t¼1

p0j1ðt; N; qÞ

and

E½TjH1;N; q� ¼
X1
t¼1

p0j1ðt; N; qÞ þ p1j1ðt; N; qÞ
� �

t:

According to Remark II.7, since we consider only odd

numbers N of SDMs, since q � dN=2e, and since each

SDM running the SPRT has the almost-sure decisions
property, then pwj1ðN; qÞ þ pcj1ðN; qÞ ¼ 1. In other words,

the probability of no-decision is equal to 0 and, hence, the

accuracy of the SDA algorithms is characterized only by
the probability of wrong decision and the probability of

correct decision. In our analysis, we select to compute the

probability of wrong decision.

For a Gaussian distribution fðx; �; �Þ, we obtain our

numerical results under the following conditions: the two

hypotheses are H0 : � ¼ 0 and H1 : � ¼ 1; we run our

computations for three different values of �; precisely
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� 2 f0:5; 1; 2g; and H1 : � ¼ 1 is always the correct

hypothesis.

To obtain pwj1ðN; qÞ and E½TjH1;N; q� for a given value

of �, we proceed similarly to the previous case with the only

difference that fp0j1ðtÞ; p1j1ðtÞgt2N are computed according

to the procedure described in part B2 of the Appendix.

The results obtained for the fastest rule are depicted in

Figure 2, while the results obtained for the majority rule
are reported in Fig. 3.

Some remarks are now in order. We start with the

fastest rule. A better understanding of the plots in Fig. 2

can be gained by specifying the values of the earliest

possible decision time �t defined in (16) and of the

probabilities p1j1ð�tÞ and p0j1ð�tÞ. In our numerical analysis,

for each pair ð�0; �1Þ considered and for both discrete and

continuous measurements X, we had �t ¼ 1 and
p1j1ð�tÞ > p0j1ð�tÞ. As expected from Proposition IV.1, we

can see that the fastest rule significantly reduces the

expected number of iterations required to provide a

decision. Indeed, as N increases, the expected decision

time E½TjH1;N; q ¼ 1� tends to 1. Moreover, notice that

p
ðfÞ
wj1ðNÞ approaches 0; this is in accordance with (17).

As far as the majority rule is concerned, the results

established in Proposition IV.3 and in Proposition IV.4 are

confirmed by the plots in Fig. 3. Indeed, since for all the

pairs ð�0; �1Þ we have considered we had pwj1 G 1=2, we

can see that, as expected from Proposition IV.3, the

probability of wrong decision goes to 0 exponentially fast

and monotonically as a function of the size of the group of

the SDMs. Regarding the expected time, in all the cases,
the expected decision time E½TjH1;N; q ¼ bN=2c þ 1�
quickly reaches a constant value. We numerically verified

that these constant values corresponded to the values

predicted by the results reported in Proposition IV.4.

Example V.2 (Monotonic Behavior): In this example, we

analyze the performance of the general q-out-of-N aggre-

gation rule, as the number of SDMs N is varied, and as the
aggregation rule itself is varied. We obtained our

numerical results for odd values of N ranging from 1 to

35 and for values of q comprised between 1 and bN=2c þ 1.

Again we set the thresholds 
0 and 
1 equal to logð�9Þ and

log 9, respectively. In this example, we consider only the

Gaussian distribution with � ¼ 1. The results obtained are

Fig. 3. Behavior of the probability of wrong decision and of the expected number of iterations required to provide a decision as the

number of SDMs increases when the majority rule is adopted. In (a), we consider the binomial distribution; in (b), we consider

the Gaussian distribution.

Fig. 2. Behavior of the probability of wrong decision and of the expected number of iterations required to provide a decision as the

number of SDMs increases when the fastest rule is adopted. In (a), we consider the binomial distribution; in (b), we consider the

Gaussian distribution.
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depicted in Fig. 4, where the following monotonic

behaviors appear evident.

i) For fixed N and increasing q, both the probability

of correct decision and the decision time increases.

ii) For fixed q and increasing N, the probability of

correct decision increases while the decision time

decreases.
The fact that the decision time increases for fixed N and

increasing q has been established in Proposition IV.6. The

fact that the probability of correct decision increases for

fixed N and increasing q validates the conjecture formu-

lated at the end of Section VI-C.

Example V.3 (Fastest Versus Majority, at Fixed Group
Accuracy): As we noted earlier, Figs. 2 and 3 show that
the majority rule increases remarkably the accuracy of the

group, while the fastest rule decreases remarkably the

expected number of iterations for the SDA to reach a

decision. It is therefore reasonable to pose the following

question: If the local accuracies of the SDMs were set so

that the accuracy of the group is the same for both the

fastest rule and the majority fusion rule, which of the two

rules requires a smaller number of observations to give a
decision? That is, at equal accuracy, which of the two rules

is optimal as far as decision time is concerned?

In order to answer this question, we use a bisection on

the local SDM accuracies. We apply the numerical

methods presented in Proposition III.1 to find the proper

local thresholds that set the accuracy of the group to the

desired value pwj1. Different local accuracies are obtained

for different fusion rules and this evaluation needs to be

repeated for each group size N.

In these simulations, we assume the random variable X
is Gaussian with variance � ¼ 2. The two hypotheses are

H0 : � ¼ 0 and H1 : � ¼ 1. The numerical results are
shown in Fig. 5 and discussed below. As is clear by the

plots, the strategy that gives the fastest decision with the

same accuracy varies with group size and desired accuracy.

The left plot in Fig. 5 illustrates that, for very high desired

group accuracy, the majority rule is always optimal. As the

accuracy requirement is relaxed, the fastest rule becomes

optimal for small groups. Moreover, the group size, at

which the switch between optimal rules happens, varies
for different accuracies. For example, the middle and right

plots in Fig. 5 illustrate that while the switch happens at

N ¼ 5 for a group accuracy p
ðmÞ
wj1 ¼ p

ðfÞ
wj1 ¼ 0:05 and at

N ¼ 9 for p
ðmÞ
wj1 ¼ p

ðfÞ
wj1 ¼ 0:1.

We summarize our observations about which rule is

optimal (i.e., which rule requires the least number of

observations) as follows:

i) the optimal rule varies with the desired network
accuracy, at fixed network size;

ii) the optimal rule varies with the desired network

size, at fixed network accuracy; and

iii) the change in optimality occurs at different

network sizes for different accuracies.

Fig. 5. Expected decision time for the fastest rule and the majority rule versus group size N, for various network accuracy levels.

Fig. 4. Probability of correct detection (left figure) and expected decision time (right figure) for the q-out-of-N rule, plotted as a function of

network size N and accuracy threshold q.
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A. Decision Making in Cognitive Psychology Revisited
In this section, we point out possible relationships

between our results in SDA and some recent observa-

tions about mental behavior from the cognitive psychol-

ogy literature. Starting with the literature review in

Section I-D, our discussion here is based upon the

following assumptions:

i) SDA models multimodal integration in cognitive

information processing (CIP);
ii) the number of SDMs corresponds to the number

of sensory modalities in CIP;

iii) the expected decision time in the SDA setup is

analogous to the reaction time in CIP;

iv) the decision probability in the SDA setup is

analogous to the firing rate of neurons in CIP.

Under these assumptions, we point out similarities be-

tween our SDA analysis and some recent observations
reported in the CIP literature. In short, the fastest and

majority rules appear to emulate behaviors that are similar

to the ones manifested by the brain under various con-

ditions. We briefly mention below an example in cognitive

psychology, where a parallelism might be drawn.

It is observed in CIP that, even under the same type of

stimuli, the stimuli strength affects the additivity of the

neuron firing, which might end up adding up to more, less,
much less, and sometimes to much more than the sum of

the stimuli. These behaviors of the firing rates are called in

CIP literature additive, suppressive, subadditive, or super

additive. Additionally, scientists have observed that

depending on the intensity of the stimuli, various areas

of the brain are activated when processing the same type of

stimuli [11]–[15]. A possible explanation for these two

observed behaviors is that the brain processes information
in a way that maintains optimality. Indeed, our comparison

in the middle and right parts of Fig. 5 shows how the

fastest rule is optimal when individual SDMs are highly

accurate (strong and intact stimuli) and, vice versa, the

majority rule is optimal when individual SDMs are

relatively inaccurate (weak and degraded stimuli).

We observed in the middle and right parts of Fig. 5

that, for high individual accuracies, the fastest rule is more
efficient than the majority rule. We reach this conclusion

by noting two observations: first, smaller group sizes

require higher local accuracies than larger group sizes in

order to maintain the same group accuracy; second, the

fastest rule is optimal for small groups while the majority
rule is always optimal for larger groups. We believe that

these similarities between SDA and CIP propose the

possibility of better explaining other observed behaviors in
cognitive data processing if stronger links can be made

between the models.

VI. CONCLUSION

In this work, we presented a complete analysis of how a

group of SDMs can collectively reach a decision about the

correctness of a hypothesis. We presented a numerical
method that made it possible to completely analyze and

understand interesting fusion rules of the individuals

decisions. The analysis we presented concentrated on two

aggregation rules, but a similar analysis can be made to

understand other rules of interest. An important ques-

tion we were able to answer, was the one relating the

size of the group and the overall desired accuracy to the

optimal decision rules. We were able to show that no
single rule is optimal for all group sizes or for various

desired group accuracy. We are currently extending this

work to cases where the individual decision makers are

not identical. h

APPENDIX I

A. Asymptotic and Monotonicity Results on
Combinatorial Sums

Some of the results provided for the fastest rule and for

the majority rule are based on the following properties of

the binomial expansion ðxþ yÞN ¼
PN

j¼0
N
j

� �
xjyN�j.

Lemma A.1 (Properties of Half Binomial Expansions):
For an odd number N 2 N, and for real numbers

c 2 R and x 2 R satisfying 0 G c � 1 and 0 � x � c=2,

define

SðN; c; xÞ ¼
XbN=2c

j¼0

N

j

� 	
xjðc� xÞN�j

and

SðN; c; xÞ ¼
XN

j¼dN=2e

N

j

� 	
xjðc� xÞN�j:

The following statements hold true.

i) If 0 � x G c=2, then, taking limits over odd values

of N

lim
N!1

SðN; c; xÞ
cN

¼ 1 and lim
N!1

SðN; c; xÞ
cN

¼ 0:

ii) If x ¼ c=2, then

SðN; c; xÞ ¼ SðN; c; xÞ ¼ cN

2
:
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iii) If c ¼ 1 and 0 � x G 1=2, then

SðN þ 2; 1; xÞ G SðN; 1; xÞ

and

SðN þ 2; 1; xÞ > SðN; 1; xÞ:

Proof: To prove statement i), we start with the ob-

vious equality cN ¼ ðc� xþ xÞN ¼ SðN; c; xÞþ SðN; c; xÞ.
Therefore, it suffices to show that limN!1ðSðN; c; xÞ=
cNÞ ¼ 0. Define the shorthand hðjÞ :¼ N

j

� �
xjðc� xÞN�j

and observe

hðjÞ
hðjþ 1Þ ¼

N!
j!ðN�jÞ! xjðc� xÞN�j

N!
ðjþ1Þ!ðN�j�1Þ! xjþ1ðc� xÞN�j�1 ¼

jþ 1

N � j

c� x

x
:

It is straightforward to see that ðhðjÞ=hðjþ 1ÞÞ >
1�() cj� xNþ c� x > 0() j>ðxN=cÞ�ððc� xÞ=cÞ.
Moreover , i f j > ðN=2Þ and 0 � x G ðc=2Þ, then

j� ðxN=cÞ þ ðc� x=cÞ > ðN=2Þ � ðxN=cÞ þ ðc� x=cÞ �
ðN=2Þ � ðN=2Þ þ ðc� x=cÞ > 0. Here, the second in-

equality follows from the fact that �ðxN=cÞ � �ðN=2Þ if
0 � x G ðc=2Þ. In other words, if j > ðN=2Þ and 0 � x G
ðc=2Þ, then ðhðjÞ=hðjþ 1ÞÞ > 1. This result implies the

following chain of inequalities fðdN=2eÞ > fðdN=2e þ
1Þ > . . . > hðNÞ providing the following bound on

SðN; c; xÞ:

SðN; c; xÞ
cN

¼
PN

j¼dN=2e
N
j

� �
xjðc� xÞN�j

cN

G
dN=2e N

dN=2e

� �
xdN=2eðc� xÞbN=2c

cN
:

Since N
dN=2e

� �
G 2N, we can write

SðN; c; xÞ
cN

G dN=2e 2NxdN=2eðc� xÞbN=2c

cN

¼dN=2e 2x

c

� 	dN=2e
2ðc� xÞ

c

� 	bN=2c

¼ dN=2e 2x

c

� 	
2x

c

� 	bN=2c
2ðc� xÞ

c

� 	bN=2c
:

Let � ¼ 2x=c and � ¼ 2ðc� x=cÞ and consider

� 	 � ¼ 4xðc� xÞ=c2. One can easily show that � 	 � G 1

since 4cx� 4x2 � c2 ¼ �ðc� 2xÞ2 G 0. The proof of
statement i) is completed by noting

lim
N!1

SðN; c; xÞ
cN

G lim
N!1
dN=2e 2x

c

� 	
ð� 	 �ÞbN=2c ¼ 0:

The proof of statement ii) is straightforward. In fact, it

follows from the symmetry of the expressions when

x ¼ c=2 and from the obvious equality
PN

j¼0
N
j

� �
xj

ðc� xÞN�j ¼ cN.

Regarding statement iii), we prove here only that

SðN þ 2; 1; xÞ G SðN; 1; xÞ for 0 � x G 1=2. The proof of

SðN þ 2; 1; xÞ > SðN; 1; xÞ is analogous. Adopting the

shorthand

fðN; xÞ :¼
XN

i¼ N
2d e

N

i

� 	
xið1� xÞN�i

we claim that assumption 0 G x G 1=2 implies

�ðN; xÞ :¼ fðN þ 2; xÞ � fðN; xÞ G 0:

To establish this claim, it is useful to analyze the derivative

of � with respect to x. We compute

@f

@x
ðN; xÞ ¼

XN�1

i¼dN=2e
i

N

i

� 	
xi�1ð1� xÞN�i

�
XN�1

i¼dN=2e
ðN � iÞ N

i

� 	
xið1� xÞN�i�1

þ NxN�1: (27)

The first sum
PN�1

i¼dN=2e i N
i

� �
xi�1ð1� xÞN�i on the right-

hand side of (27) is equal to

N

dN=2e

� 	
N

2

� �
xdN=2e�1ð1� xÞN�dN=2e

þ
XN�1

i¼dN=2eþ1

i
N

i

� 	
xi�1ð1� xÞN�i:
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Moreover, exploiting the identity ðiþ 1Þ N
iþ1

� �
¼

ðN � iÞ N
i

� �

XN�1

i¼dN=2eþ1

i
N

i

� 	
xi�1ð1� xÞN�i

¼
XN�2

i¼dN=2e
ðiþ 1Þ N

iþ 1

� 	
xið1� xÞN�i�1

¼
XN�2

i¼dN=2e
ðN � iÞ N

i

� 	
xið1� xÞN�i�1:

The second sum on the right-hand side of (27) can be

rewritten

XN�1

i¼dN=2e
ðN � iÞ N

i

� 	
xið1� xÞN�i�1

¼
XN�2

i¼dN=2e
ðN � iÞ N

i

� 	
xið1� xÞN�i�1 þ NxN�1:

Now, many terms of the two sums cancel each other out

and one can easily see that

@f

@x
ðN; xÞ ¼ N

dN=2e

� 	
dN=2exdN=2e�1ð1� xÞN�dN=2e

¼ N

dN=2e

� 	
dN=2e xð1� xÞð ÞdN=2e�1

where the last equality relies upon the identity

N � dN=2e ¼ bN=2c ¼ dN=2e � 1. Similarly, we have

@f

@x
ðN þ 2; xÞ¼ N þ 2

dN=2e þ 1

� 	
dN=2e þ 1ð Þ xð1� xÞð ÞdN=2e:

Hence

@�

@x
ðN; xÞ ¼ xð1� xÞð ÞdN=2e�1

� N þ 2

dN=2e þ 1

� 	
dN=2e þ 1ð Þxð1� xÞ

�

� N

dN=2e

� 	
dN=2e

	
:

Straightforward manipulations show that

N þ 2

dN=2e þ 1

� 	
dN=2e þ 1ð Þ ¼ 4

N þ 2

N þ 1
dN=2e N

dN=2e

� 	

and, in turn

@�

@x
ðN; xÞ ¼ N

dN=2e

� 	
dN

2
e xð1� xÞð ÞdN=2e�1

� 4
N þ 2

N þ 1
xð1� xÞ � 1

� �

¼: gðN; xÞ 4
N þ 2

N þ 1
xð1� xÞ � 1

� �

where the last equality defines function gðN; xÞ. Observe

that x > 0 implies gðN; xÞ > 0 and, otherwise, x ¼ 0

implies gðN; xÞ ¼ 0. Moreover, for all N, we have that

fðN; 1=2Þ ¼ 1=2 and fðN; 0Þ ¼ 0, and in turn, that

�ðN; 1=2Þ ¼ �ðN; 0Þ ¼ 0. Additionally

@�

@x
ðN; 1=2Þ ¼ gðN; 1=2Þ N þ 2

N þ 1
� 1

� 	
> 0

and

@�

@x
N; 0Þ¼0 and

@�

@x
ðN; 0þÞ¼gðN; 0þÞð0þ � 1Þ G 0:

The roots of the polynomial x7!4ðN þ 2=N þ 1Þxð1� xÞ
�1 are 1=2ð1


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=N þ 2

p
Þ, which means that the poly-

nomial has one root inside the interval (0, 1/2) and one

inside the interval (1/2, 1). Considering all these facts

together, we conclude that function x7!�ðN; xÞ is strictly
negative in (0, 1/2) and hence that fðN þ 2; xÞ�
fðN; xÞ G 0.

B. Computation of the Decision Probabilities for a
Single SDM Applying the SPRT Test

In this part of the Appendix, we discuss how to

compute the probabilities

fpndj0g [ p0j0ðtÞ; p1j0ðtÞ
� �

t2N

and

fpndj1g [ p0j1ðtÞ; p1j1ðtÞ
� �

t2N (28)
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for a single SDM applying the classical SPRT. For a short
description of the SPRT test and for the relevant notation,

we refer the reader to Section V. We consider here ob-

servations drawn from both discrete and continuous

distributions.

1) Discrete Distributions of the Koopman–Darmois–Pitman
Form: This subsection reviews the procedure proposed in

[5] for a certain class of discrete distributions. Specifi-
cally, Young [5] provides a recursive method to compute

the exact values of the probabilities (28); the method can

be applied to a broad class of discrete distributions, pre-

cisely whenever the observations are modeled as a dis-

crete random variable of the Koopman–Darmois–Pitman

form.

With the same notation as in Section V, let X be a

discrete random variable of the Koopman–Darmois–
Pitman form; that is

fðx; �Þ ¼
hðxÞ exp Bð�ÞZðxÞ � Að�Þð Þ; if x 2 Z

0; if x 62 Z

(

where hðxÞ, ZðxÞ, and Að�Þ are known functions and where

Z is a subset of the integer numbers Z. In this section, we

will assume that ZðxÞ ¼ x. Bernoulli, binomial, geometric,

negative binomial, and Poisson distributions are some
widely used distributions of the Koopman–Darmois–

Pitman form satisfying the condition ZðxÞ ¼ x. For

distributions of this form, the likelihood associated with

the tth observation xðtÞ is given by

�ðtÞ ¼ Bð�1Þ � Bð�0Þð ÞxðtÞ � Að�1Þ � Að�0Þð Þ:

Let 
0; 
1 be the preassigned thresholds. Then, one can see

that sampling will continue as long as


0 þ t Að�1Þ � Að�0Þð Þ
Bð�1Þ � Bð�0ÞÞ

G
Xt

i¼1

xðiÞ G 
1 þ t Að�1Þ � Að�0Þð Þ
Bð�1Þ � Bð�0ÞÞ

(29)

for Bð�1Þ � Bð�0Þ > 0; if Bð�1Þ � Bð�0Þ G 0, the inequal-

ities would be reversed. Observe that
PT

i¼1 xðiÞ is an

integer number. Now let �

ðtÞ
0 be the smallest integer

greater than f
0 þ tðAð�1Þ � Að�0ÞÞg=ðBð�1Þ � Bð�0ÞÞ and

let �

ðtÞ
1 be the largest integer smaller than f
1 þ tðAð�1Þ�

Að�0ÞÞg=ðBð�1Þ � Bð�0ÞÞ. Sampling will continue as long

as �

ðtÞ
0 � XðtÞ � �


ðtÞ
1 where XðtÞ ¼

Pt
i¼1 xðiÞ. Now

suppose that, for any ‘ 2 ½�
ðtÞ0 ; �

ðtÞ
1 �, the probability

P½XðtÞ ¼ ‘� is known. Then, we have

P Xðtþ1Þ¼‘jHi½ �¼
X�
ðtÞ1

j¼�

ðtÞ
0

fð‘�j; �iÞP XðtÞ¼ jjHi½ �

and

pij1ðtþ 1Þ ¼
X�
ðtÞ1

j¼�

ðtÞ
0

X1
r¼�


ðtÞ
1 �jþ1

P XðtÞ ¼ jjHi½ �fðr; �iÞ

p0jiðtþ 1Þ ¼
X�
ðtÞ1

j¼�

ðtÞ
0

X�

ðtÞ
0 �j�1

r¼�1
P XðtÞ ¼ jjHi½ �fðr; �iÞ:

Starting with P½Xð0Þ ¼ 1�, it is possible to compute
recursively all the quantities fpijjðtÞg1t¼1

and P½XðtÞ ¼ ‘�,
for any t 2 N, ‘ 2 ½�
ðtÞ0 ; �


ðtÞ
1 �, and fpijjðtÞg1t¼1

. Moreover, if

the set Z is finite, then the number of required compu-

tations is finite.

2) Computation of Accuracy and Decision Time for
Preassigned Thresholds 
0 and 
1: Continuous Distributions:
In this section, we assume that X is a continuous random
variable with density function given by fðx; �Þ. As in the

previous subsection, given two preassigned thresholds 
0

and 
1, the goal is to compute the probabilities

pijjðtÞ ¼ P½sayHij Hj; T ¼ t�, for i; j 2 f1; 2g and t 2 N.

We start with two definitions. Let f�;�i
and f�ðtÞ;�i

denote, respectively, the density function of the log-

likelihood function � and of the random variable �ðtÞ,
under the assumption that Hi is the correct hypothesis.
Assume that, for a given t 2 N, the density function f�ðtÞ;�i

is known. Then, we have

f�ðtÞ;�i
ðsÞ ¼

Z
1


0

f�;�i
ðs� xÞf�ðtÞ;�i

ðxÞ dx; s 2 ð
0; 
1Þ

and

pij1ðtÞ ¼
Z
1


0

Z1

1�x

f�;�i
ðzÞ dz

0
B@

1
CAf�ðtÞ;�i

ðxÞ dx
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and

p0jiðtÞ ¼
Z
1


0

Z 
0�x

�1
f�;�i
ðzÞ dz

� 	
f�ðtÞ;�i

ðxÞ dx:

In what follows we propose a method to compute these

quantities based on a uniform discretization of functions �
and �. Interestingly, we will see how the classic SPRT

algorithm can be conveniently approximated by a suitable

absorbing Markov chain and how, through this approxi-

mation, the probabilities fpijjðtÞg1t¼1
, i; j 2 f1; 2g, can be

efficiently computed. Next, we describe our discretization

approach.
First, let � 2 R>;0 �
0 ¼ b
0=�c� and �
1 ¼ d
1=�e�.

Second, for n ¼ d
1=�e � b
0=�c þ 1, introduce the sets

S ¼ fs1; . . . ; sng

and

� ¼ f��nþ2; ��nþ3; . . . ; ��1; �0; �1; . . . ; �n�3; �n�2g

where si ¼ �
0 þ ði� 1Þ�, for i 2 1; . . . ; n, and �i ¼ i�, for

i 2 f�nþ 2;�nþ 3; . . . ; n� 3; n� 2g. Third , let ��
(resp., ��) denote a discrete random variable (resp., a

stochastic process) taking values in � (resp., in S).

Basically, �� and �� represent the discretization of � and �,

respectively. To characterize ��, we assume that

P½ �� ¼ i�� ¼ P i� � �
2
� � � i� þ �

2

� �
;

i 2 f�nþ 3; . . . ; n� 3g

and

P½ �� ¼ ð�nþ 2Þ�� ¼ P � � ð�nþ 2Þ� þ �
2

� �

and

P �� ¼ ðn� 2Þ�

 �

¼ P � � ðn� 2Þ� � �
2

� �
:

From now on, for the sake of simplicity, we will denote
P½�� ¼ i�� by pi. Moreover, we adopt the convention that,

given si 2 S and �j 2 �, we have that si þ �j :¼ �
0

whenever either i ¼ 1 or iþ j� 1 � 1, and si þ �j :¼ �
1

whenever either i ¼ n or iþ j� 1 � n. In this way, si þ �j

is always an element of S. Next, we set ��ðtÞ :¼
Pt

h¼1
��ðhÞ.

To describe the evolution of the stochastic process ��,

define the row vector �ðtÞ ¼ ½�1ðtÞ; . . . ; �nðtÞ�T 2 R1�n

whose ith component �iðtÞ is the probability that �� equals
si at time t, that is, �iðtÞ ¼ P½��ðtÞ ¼ si�. The evolution of

�ðtÞ is described by the absorbing Markov chain

ðS; A; �ð0ÞÞ where:

• S is the set of states with s1 and sn as absorbing

states;

• A ¼ ½aij� is the transition matrix: aij denotes the

probability to move from state si to state sj and

satisfy, according to our previous definitions and
conventions:

/ a11 ¼ ann ¼ 1; a1i ¼ anj ¼ 0, for i 2 f2; . . . ; ng
and j 2 1; . . . ; n� 1;

/ ai1 ¼
P�hþ1

s¼�nþ2 ps a n d ain ¼
Pn�2

s¼1 ps,

h 2 f2; . . . ; n� 1g;
/ aij ¼ pj�ii; j 2 f2; . . . ; n� 1g

• �ð0Þ is the initial condition and has the property

that P½��ð0Þ ¼ 0� ¼ 1.

In compact form we write �ðtÞ ¼ �ð0ÞAT .

The benefits of approximating the classic SPRT

algorithm with an absorbing Markov chain ðS; A; �ð0ÞÞ
are summarized in Proposition A.2. Before stating it,

we provide some useful definitions. First, let Q 2
Rðn�2Þ�ðn�2Þ be the matrix obtained by deleting the first

and last rows and columns of A. Observe that I� Q is

an invertible matrix and that its inverse F :¼ ðI� QÞ�1

is typically known in the literature as the fundamental
matrix of the absorbing matrix A. Second, let A

ð1Þ
2:n�1

and A
ðnÞ
2:n�1 denote, respectively, the first and last

columns of matrix A without the first and last com-

ponents, i.e., A
ð1Þ
2:n�1 :¼ ½a2;1; . . . ; an�1;1�T and A

ðnÞ
2:n�1 :¼

½a2;n; . . . ; an�1;n�T .

Finally, let eb
0=�cþ1 and 1n�2 denote, respectively,

the vector of the canonical basis of Rn�2 having 1
in the ðb
0=�c þ 1Þth position and the ðn� 2Þ-
dimensional vector having all the components equal to 1,

respectively.

Proposition A.2 (SPRT as a Markov Chain): Consider the

classic SPRT test. Assume that we model it through the

absorbing Markov chain ðS; A; �ð0ÞÞ described above.

Then, the following statements hold:

i) p0jjðtÞ ¼ �1ðtÞ � �1ðt� 1Þ and p1jjðtÞ ¼ �nðtÞ�
�nðt� 1Þ, for t 2 N;

ii) P½sayH0jHj� ¼ eT
b
0=�cþ1N�a1 and P½sayH0jHj� ¼

eT
b
0=�cþ1N�an;

iii) E½TjHj� ¼ eT
b
0=�cþ1F1n�2.
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