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Abstract

Competence is a transiently differentiated state that certain bacterial cells reach when faced with a stressful environment.
Entrance into competence can be attributed to the excitability of the dynamics governing the genetic circuit that regulates
this cellular behavior. Like many biological behaviors, entrance into competence is a stochastic event. In this case cellular
noise is responsible for driving the cell from a vegetative state into competence and back. In this work we present a novel
numerical method for the analysis of stochastic biochemical events and use it to study the excitable dynamics responsible
for competence in Bacillus subtilis. Starting with a Finite State Projection (FSP) solution of the chemical master equation
(CME), we develop efficient numerical tools for accurately computing competence probability. Additionally, we propose a
new approach for the sensitivity analysis of stochastic events and utilize it to elucidate the robustness properties of the
competence regulatory genetic circuit. We also propose and implement a numerical method to calculate the expected time
it takes a cell to return from competence. Although this study is focused on an example of cell-differentiation in Bacillus
subtilis, our approach can be applied to a wide range of stochastic phenomena in biological systems.
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Introduction

Competence is the ability of a cell, usually a bacterium, to bind

and internalize transforming exogenous DNA. Under stressful

environments, such as nutrient limitations, some cells enter

competence while other cells commit irreversibly to sporulation.

Entry in competence is a transient probabilistic event that

facilitates copying of the exogenous DNA [1,2]. It has been

shown that among a group of cells only a randomly chosen

fraction enters in competence [3,4]. Proper modeling and

correctly accounting for noise in the model of this phenomenon

is crucial to understanding the underlying biological explanation.

The few cells that enter competence express a high concentration

of the key regulator ComK, which activates hundreds of genes,

including the genes encoding the DNA-uptake and recombination

systems [5–7]. Competence is understood as a bistability pattern

[4,8] and the nonlinear system describing the competence

regulatory circuit is an excitable dynamical system.

Auto-activation of the regulator ComK is responsible for the

bistable response in competence development. Auto-activation of

ComK, is essential and can be sufficient to generate a bistable

expression pattern [9–11]. Specifically, the concentration of an

inducer must cross a certain threshold to start the positive

feedback. Different experimental studies concluded that an auto

activation of ComK is the only needed factor for bistability to

occur in the expression of this protein [9,11,12]. In [9], Smits et. al

discuss the factors that determine the required threshold for the

activation of ComK and deduce that other transcription factors

can raise or lower the threshold. Although many proteins are

involved in the regulation of competence, there are two main

proteins that play a major role. Süel et al. [13] propose a

deterministic model driven by an additive noise to describe the

dynamics of competence regulation. We use the reduced order

Stochastic Differential Equation model (SDE) presented in [13] to

develop a discrete stochastic model for competence. Calculating

the probability and the expected time for entering and returning

from competence, requires solving for the splitting probabilities

and the first moment passage time. The problem of calculating the

first passage time has been studied heavily in the literature for the

stochastic difference equations, Fokker Planck equations and some

special cases of the CME (separable kernels or single specie). For a

detailed treatment of this topic see [14–17] and references therein.

Researchers usually use Monte-Carlo simulations to calculate the

distribution of the first passage time when working with he CME

(e.g. see [18] and references therein). We propose in this work, an

alternative approach that makes it possible to calculate the states in

which the system will be as time evolves. The main idea here is to

aggregate regions of the state space over which specie evolve into

absorbing states. This technique is useful in analytically computing

the distribution of the first passage time, by providing a way to deal

with the infinite dimension of the state space over which the

system evolves.

The contributions of this paper are threefold. First, it provides a

new method to calculate exact probabilities of biological phenom-

ena where transient behaviors such as competence, which is the

topic we chose to study here, occur. Second, it shows how to

calculate sensitivities of the probabilities of passing to the transient

state with respect to the system’s parameters. Third, it gives a
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methodology to calculate the expected time that it takes a cell to

return from its transient state. All these methods can be used to

analyze any biological system that has the characteristic of switching

between two states, while staying for a while in the unstable state.

In this paper we start by describing the chemical reactions and

the deterministic model. We then generate the Chemical Master

Equation (CME) of our proposed discrete stochastic model. The

CME characterizes the evolution of the probability density of the

different discrete states. We simulate it using the Stochastic

Simulation Algorithm (SSA) and show how the solution can be

approximated using the Finite State Projection method (FSP). We

then conduct a sensitivity analysis studying the effect that the

various system parameters have on the probability with which a

cell enters in competence. This analysis shows the usefulness of our

proposed numerical method in analyzing the roles of the different

affinity, transcription and degradation rates, etc., in driving the

cellular switching (between competence and vegetative states in

this case). Finally, we analyze the roles of these parameters in

determining the expected time a cell stays in competence.

Materials and Methods

We introduce at the beginning the modeling techniques used to

propose a set of equations that capture the behavior of interest. We

then present our discrete stochastic Chemical Master Equation

(CME) model, followed by the Stochastic Simulation Algorithm

(SSA) used to approximate the solution of the CME. We proceed

to present our Finite State Projection based method that makes it

possible to analyze the CME exactly. We show how such a method

can be tailored to answer many questions of biological interest.

Deterministic model and chemical reactions
Competence is a physiological state that enables cells to bind

and internalize transforming DNA. This state is accompanied by

blockage of the essential cell’s functions, and since this state is

driven by the transcriptional factor ComK, it is no surprise that

ComK synthesis is subject to a number of finely tuned regulatory

circuits [19]. The gene regulatory model for competence has been

presented and described in [13]. Entrance of a cell in competence

is controlled by a set of molecular interactions. Initially ComK and

ComS are present in the cell at basal levels. The transcriptional

factor ComK activates its own expression through positive

feedback. The MecA complex is a multiprotein assembly that

includes the ClpP-ClpC proteases. Bound to MecA, ComK is

degraded under the action of the ClpP-ClpC proteases. In stressful

environments, the level of ComS is high and that favors entrance

into competence since ComS competes with ComK to bind to

MecA. Inhibition of the binding of ComK to MecA by competitive

binding with MecA-ComS allows a higher number of free ComK

molecules to be present, which finally triggers the positive feedback

that further raises the number of ComK molecules driving the cell

in competence. This rise in the number of ComK is specific to

competence. Once the number of ComK molecules reaches a

certain level, it acts as an inhibitor for ComS through repression.

The increase in the level of ComK will also favor the binding of

MecA-ComK complex which degrades ComK through the ClpP-

ClpC proteases, starting the return from competence. At this point

ComS is below its basal level because of the aforementioned

repression from ComK. The level of ComK starts to decrease by

degradation. The degradation has two effects: (1) the decrease in

the level of ComK will affect the transcriptional auto regulatory

positive feedback loop of ComK, and (2) the absence of ComK in

high levels, favors the synthesis of ComS by releasing the ComK-

mediated ComS repression. This continues until the cell eventually

exits the state of competence. The above mentioned molecular

interactions are described [13] by the following chemical reactions:

MecAzComK
c+a

MecA{ComK{?
c1

MecA

MecAzComS
c+b

MecA{ComS {?
c2

MecA:

The rate equations describing the dynamics of the molecular

reactions between the 5 species model are the following:

dK

dt
~akz

bkKn

kn
kzKn

{caMf Kzc{aMK , ð1Þ

dS

dt
~

bs

1z
K

ks

� �p {cbMf Szc{bMS, ð2Þ

dMK

dt
~{(c{azc1)MKzcaMf K , ð3Þ

dMS

dt
~{(c{bzc2)MSzcbMf S, ð4Þ

where K, S, Mf , MK and MS are the concentrations of

ComK,ComS, MecA, MecA-ComK and MecA-ComS respective-

ly. We give in Table 1 the values and the description of each of the

parameters in Eq. 1–4.

If one further assumes that the reactions of degradation of MK

and MS are much faster than the other reactions, MK and MS can

then be eliminated through time scale separation [13,20] and the

conservation law:

Author Summary

When exposed to stress, organisms react by taking actions
that help them protect their DNA. ComK protein is a key
regulator which activates hundreds of genes, including the
genes encoding the DNA-uptake and recombination
systems. In Bacillus subtilis, stress in the environment
activates a sequence of chemical reactions that, driven by
cellular noise, stochastically increases the level of ComK in
some bacterial cells driving them from their original
vegetative state into a competent state. Entrance into
and exit from competence are stochastic switching events
that the cell undergoes. In this work, we present a novel
numerical method that allows the analysis of stochastic
events in biological systems. We illustrate our method by
computing the probability with which Bacillus subtilis
enters in competence. We also present a method to
analyze the sensitivity of stochastic events. We use this
method to study the sensitivity of the probability of
entrance in competence with respect to various gene
expressions and degradation rates. We finally present a
numerical method to calculate the expected time it takes a
cell to return from competence. Although we studied the
competence regulatory genetic circuit, our approach can
be applied to a variety of stochastic events in biological
systems.

Analysis of Stochastic Strategies in Bacteria
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Mf zMKzMS~Constant,

giving the following reduced model for the dynamics of

competence:

dK

dt
~akz

bkKn

kn
kzKn {

dkK

1z
K

Ck

z
S

Cs

ð5Þ

dS

dt
~

bs

1z
K

ks

� �p {
dsS

1z
K

Cs

z
S

Cs

, ð6Þ

where

Ck~
c{azc1

ca

, Cs~
c{bzc2

cb

,

and

dk~
c1Mtotal

Ck

, ds~
c2Mtotal

Cs

:

In their paper Süel et al. [13] analyze the excitable dynamical

system described above. They present a phase diagram where they

study the nullclines and the vector field of the dynamical system.

Their analysis gives insight about the vegetative and competent

states analyzed in this work. As we already stated, under the same

conditions some cells enter into competence while other cells do

not. Entry in competence is a random event, and in order to

properly model the cell’s behavior, we need to include the effect of

noise on the dynamics of competence. In their analysis Süel et al.

[13] account for stochasticity by adding white gaussian noise terms

in Eq. 6. This drives the excitable dynamical system presented in

Eq. 5–6 into long excursions when the noise magnitude is large

enough. These long excursions correspond to a high level of

ComK indicating entry into a state of competence. The problem

with this approach is that reaching a competent state is highly

dependent on the magnitude of the additive noise. The dynamics

of the system in Eq. 5–6 are such that if the initial number of

molecules of ComK and ComS is in the neighborhood of the fixed

point of the dynamical system described in Eq. 5–6, the number of

molecules for both species will stay in the vicinity of that point

without taking long excursions. If on the other hand, the number

of molecules is driven beyond a threshold, the dynamical system in

Eq. 5–6 will have a totally different behavior. The number of

molecules of ComK will increase significantly because of ComK

auto-activation through positive feedback; In other words, the cells

will enter in competence. Here we would like to analyze the

stochastic behavior of the dynamics of the competence regulatory

circuit taking into account the internal noise in the environment of

the cell without having a direct control on the magnitude of the

noise driving the regulatory circuit. To do so, we model the

stochasticity in the chemical reactions using the CME. We look at

the problem at the molecular level and propose four reactions to

model the system in Eq. 5–6. The four reactions are:

w
k1

k2

K , w
k3

k4

S, ð7Þ

with the following reaction rates:

k1~akz
bkKn

kn
kzKn

, k2~
dk

1z
K

Ck

z
S

Cs

,

k3~
bs

1z
K

ks

� �p , k4~
ds

1z
K

Cs

z
S

Cs

:

These reactions will serve as the starting point for developing and

simulating a discrete stochastic model for competence in the next

section.

Discrete stochastic model and analysis methods
In order to compute the probability of entering into competence

we use the CME to describe the stochastic chemical kinetics. Once

we derive the CME, we simulate it using the Monte-Carlo based

SSA. We then use the FSP method to obtain a finite dimensional

solution to the infinite dimensional CME. In the CME, the state

vectors indicate the number of molecules of each of the two species

of interest: ComK and ComS. The CME describes the evolution of

the probability that the number of molecules of each of the species

has a given value. The dynamics of the evolution of the probability

density vector are directly related to the chemical reactions. Starting

from a number of molecules (x0,y0), the probability of being at

(x,y) molecules at time t has the following dynamics:

_pp(x; t)~{p(x; t)
X4

m~1

am(x)z
X4

m~1

p(x{nm; t)am(x{nm), ð8Þ

where nm is the propensity vector and it represents the change that

reaction m will have on the number of molecules of each of the

species. For example reaction 1 increases ComK by one molecule

and leaves the number of molecules of ComS unchanged so the

Table 1. Parameter values as given in the literature.

Parameter values

Parameter Description Value

ak Basal expression rate of ComK 0.0028 nM/s

bk Saturating expression rate of ComK positive
feedback

0.049 nM/s

bs Unrepressed expression rate of ComS 0.057 nM/s

kk ComK concentration for half-maximal ComK
activation

100 nM

ks ComK concentration for half-maximal ComS
repression

110 nM

dk Unrepressed degradation rate of ComK 0.0014 s{1

ds Unrepressed degradation rate of ComS 0.0014 s{1

Ck ComK concentration for half-maximal degradation 500 nM

Cs ComS concentration for half-maximal degradation 50 nM

n Hill coefficient of ComK positive feedback 2

p Hill coefficient of ComS repression by ComK 5

doi:10.1371/journal.pcbi.1000985.t001

Analysis of Stochastic Strategies in Bacteria
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propensity vector m1 is (1,0)T , am(x)dt denotes the probability that

the reaction Rm will occur in the next infinitesimal time interval

½t,tzdt�. Written in vector form, the CME becomes

_pp(x; t)~ {
X4

m~1

am(x) a1(x{n1) a2(x{n2) a3(x{n3) a4(x{n4)

" #

p(x; t)

p(x{n1; t)

p(x{n2; t)

p(x{n3; t)

p(x{n4; t)

2
666666664

3
777777775

,

ð9Þ

where 4 corresponds to the number of reactions that the species

would go through. Let X~(x1,x2, . . . )T be a vector of the possible

states of the system. Let P(X,t) be the corresponding vector of

probabilities of the states in X computed at time t. P(X,t) evolves

according to the equation

_PP(X; t)~A:P(X; t): ð10Þ

In general, X may be infinite, resulting in an infinite dimensional

system.

Stochastic Simulation Algorithm
Getting the exact value for the solution to the CME is not

generally an easy task. In this part we introduce the SSA that is

normally used to simulate Eq. 9. The SSA is a Monte-Carlo based

algorithm that generates sample paths for the underlying stochastic

process. Gillespie introduced this algorithm in 1977 [21].

Reactions are modeled as a random event whose occurrence

depends in a non linear manner on the number of molecules

through the reaction rates. The algorithm can be summarized as

follows:

1.Initialization: Initialize the number of molecules in the

system as well as the reaction rates.

2.Reaction: Generate random numbers that will correspond to

a choice of a reaction. The probability of a reaction being

chosen is proportional to the number of molecules involved in

it.

3.Number of molecules: Update the number of molecules

that were involved in the reaction.

4.Time: Update the time by the reaction time and repeat.

What we described above is a a basic summary of the algorithm,

interested readers are referred to [21] for more details.

Finite State Projection
The CME derived in Eq. 9 describes the evolution of the

probability density vector of the number of molecules. Using SSA

to get an estimate of the probability of entering into competence is

easy to implement. However, a large number of simulations is

required for a reasonably accurate estimate to be obtained. Aside

from being time consuming, the algorithm has the drawback of

lacking an accurate bound on the estimation error. In addition,

analyzing the effect that different parameters have on the

probability with which a cell enters in competence, requires the

repetition of a large number of SSA simulations while changing

those parameters of interest. This is numerically very costly. An

alternative method in dealing with the CME is to compute an

analytical expression for the probability of being in each state. The

FSP method introduced in [22] provides a way to compute these

probabilities. The probability density vector described in Eq. 9

allows molecules to evolve on an infinite lattice (Fig. 1) and

therefore gives an infinite dimensional system. The idea behind

FSP is to choose a suitable subset of the lattice in which one retains

all the states and chemical reactions (transitions) found in the

original system, while aggregating the remaining states in the

lattice into one absorbing state. Transitions that drive the states

outside the region are retained, while those that allow return to the

selected finite region are deleted (see Fig. 1 for illustration). The

finite state projection method gives the probability of being at any

of the states inside the specified region at any point in time [22]. In

this problem we are interested in finding the probability with

which the pair (ComK,ComS) enters a region Rcompetence

corresponding to the cell entering a state of competence. The

sum of the probabilities of a cell being in Rcompetence and of the

probability of being anywhere else in the state space has to equal

one at all times. Moreover, if we divide the state space of the two

proteins ComK and ComS in two regions, then the probability of

the cell being inside the first region without ever leaving it, and the

probability of leaving the first region once within a time T should

sum to one. These properties make FSP a very well suited

numerical method to solve our problem.

In the finite model all the states outside the projection region are

aggregated into one absorbing state: Xexit (see Fig. 1 for an

illustration). The probability vector at time T is given as in Eq. 10 by

P(X,T)~ exp (Ainf T)P(X,0), ð11Þ

where Ainf is an infinite matrix and P(X,0) is the initial distribution

of the probabilities, that is a vector with infinite entries, where each

entry corresponds to a probability with which the system starts with

a given number of molecules. Using FSP we can project the infinite

system in Eq. 11 into the following finite system:

Figure 1. Projection of infinite lattice into a finite subspace. The
probability density vector evolves on an infinite integer lattice as shown
by the arrows. A boundary region of interest is chosen (shown as a box
in the figure). In this region all the reactions are maintained. Outside the
region all the states are aggregated into one absorbing state, and the
reactions leaving the region are maintained, while return from the
outside to the inside of the region is prohibited by deletion of the
reactions. We chose the maximum value of ComK~80, so that we
detect the probability of leaving this boundary region within the
reactions run time we are interested in.
doi:10.1371/journal.pcbi.1000985.g001
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P(XJ ,T)~ exp (AT)P(XJ ,0): ð12Þ

In this case, A becomes a finite matrix, and XJ is the finite vector of

projected states. We build the finite matrix A as follows

Aji~

{
P4

m~1 am(Xi), for i~j

am(Xi), for all j such that xj~xiznm

0, otherwise,

8><
>:

where m,nm and am are the terms appearing in Eq. 8. If x(t) denotes

the underlying stochastic process, P(XJ ,T) gives the probability of

x(t) being in any of the states listed in XJ during the time ½0,T �,
conditioned on the event of never leaving the inside region for any

time t [ ½0,T �. We can rewrite the probability as the conditional

probability

P(XJ ,T Dx(tƒT)=Xexit)~ exp (AT)P(XJ ,0), ð13Þ

where Xexit is the state to which the outside region Rexit is

aggregated. Remember that Xexit is an absorbing state. The

probability of being inside the region XJ without ever leaving it

during the interval ½0,T � and the probability of visiting Xexit once

should sum to one. Therefore

P(x(tƒT)~Xexit)~1{1T exp (AT)P(XJ ,0): ð14Þ

Eq. 14 gives the probability of entering the regionRexit at least once

within a time T . The boundary of the region that is aggregated into

the absorbing state Xexit, is chosen to include the states with a high

number of ComK molecules. This indicates that the systems

reaching the absorbing state corresponds to the cell being in a state

of competence. Denoting P(XJ ,t) by P(t) and P(Xexit,t) by pexit(t)
it can be seen that the probability of competence at time t, pexit(t), is

given by

_PP

_ppexit

" #
~

A 0

b 0

� �
P

pexit

� �
, ð15Þ

where b is chosen so that the columns of the state transition matrix

add up exactly to zero.

FSP for competence sensitivity
One advantage of having an analytical solution of the

probability of competence is that we can use the solution to run

a sensitivity analysis with respect to different model parameters.

This makes it possible to shed light on the importance and roles

that the different parts of the regulatory circuit play in reaching

competence.

We start this section by introducing the equations we used to

compute the sensitivity for the probability with respect to all the

parameters. We then compare answers obtained by this method to

estimates of sensitivities that we obtained using a finite difference

method.

Recall that _PP~AP and suppose that we are interested in

looking at the sensitivity of P with respect to a parameter l, which

could be any of the parameters presented in Table 1. The jth entry

in P is given by p~ejP, where ej , is an 1|n vector with 1 in the

jth entry and zero everywhere else. We have from Eq. 9 that

_pp~ej
_PP~ejAP. Letting l take values in the set of parameters

fak,bk,bs,dk,dsg, and using the fact that
d

dp

dt
dl

~
d

dp

dl
dt

, we get that

_ppl~ejAlPzejAPl where Pl is defined to be
dP

dl
. Similar

equations hold for pexit. The sensitivity of the probability with

which a cell enters in competence evolves according to the

following dynamical system:

_PP

_ppexit

_PPl

_ppexitl

2
66664

3
77775~

A 0 0 0

b 0 0 0

Al 0 A 0

bl 0 b 0

2
6664

3
7775

P

pexit

Pl

pexitl

2
66664

3
77775: ð16Þ

Solving the above linear system, we obtain the sensitivity of the

exit probability to all the parameters. We evaluate the solution at

the nominal values given in Table 1. The results are reported in

Table 2.

For comparison, we calculated the same terms computed above

by using a finite difference method. The sensitivity of the probability

of entering competence with respect to the various parameters is

calculated according to the formula S~
P(l0zdl){P(l0)

d
, where

S denotes the normalized sensitivity and l0 denotes the nominal

value of the parameter of interest. In order to change study the

sensitivity to each parameter, we update the value with small steps

using the equation below

l~l0zdl,dl~0:001|
l0

2l
l~0,:::,10: ð17Þ

In summary, the sensitivity results presented in Table 2 are

calculated using two different methods:

Method #1: We solve the double order system in Eq. 16. This

results in more accurate answers but is more computationally

expensive.

Method #2: We use the solutions for the original system

describing the evolution of the probabilities of the states presented

in Eq. 15 in addition to the numerical approximation method

presented in Eq. 17 with l~10. This method is less accurate than

the first but is considerably faster to implement.

Table 2. Sensitivity of the probability of entering in
competence.

System sensitivity

Sens ak Sens bk Sens bs Sens dk Sens ds

Method
# 1

4.9931 8.4417 43.0166 211.9632 243.1321

Method
# 2

4.9844 8.2370 42.3560 211.9632 243.0821

This table shows the sensitivity of the probability of entering in competence, as
each of the indicated parameter varies, when the remaining parameters are set
to their nominal values given in Table 1.
Using method 1, we solve the higher order system earlier introduced in the text.
Using method 2, we used the solutions of the probability of entering in
competence to numerically estimate the sensitivity of the system to various
parameters.
doi:10.1371/journal.pcbi.1000985.t002

Analysis of Stochastic Strategies in Bacteria
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FSP for expected duration of competence
We study here the time it takes for a cell to return from a state of

competence to its original vegetative state. We use once again the

analytical solution of the CME to conduct this analysis. We use a

similar concept to the one explained earlier, with the difference

that in this case, we aggregate into an absorbing state the region of

the state space that corresponds to the vegetative state, indicating

that the cell returned from competence. We also assume that the

cell starts from a state of competence and that it is allowed to

return from that state, i.e., competent states are no longer

absorbing in this case. Starting from competence corresponds to

starting from a pair (ComK,ComS) that falls anywhere in the

region Rcompetence. We assume that the cell can be at any state in

Rcompetence equally likely. This assumption translates to setting the

initial probability vector P0 in a way that gives equal probability to

all the states in Rcompetence. Return from competence is mapped to

the region defined by Rreturn. We set the initial probability vector

to take the value
1

DRcompetenceD
at the entries corresponding to the

states in Rcompetence and zero everywhere else. Here DRcompetenceD is

the cardinality of the competence region in R2. Having defined a

region Rreturn to be the region in the state space corresponding to

return from competence, we aggregate all the states of return from

competence into one absorbing state xreturn. Hence, for the

purpose of this calculation, once a trajectory ‘returns’ from

competence, it cannot go back to it.

Having described the dynamics of the probability for return from

competence in a similar manner to the description we had presented

for the probability of entering in competence, we find the probability of

returning from competence as a function of time by solving a set of

differential equation just like we did earlier. We still need to deal

with the infinite dimensions of the original model. For this purpose

we add another absorbing state. This state is an aggregation of

the region outside the finite state space that we consider,

Rout : ~f(ComK,ComS), s:t: ComK§400 and ComS§400g,
into a single state xout. The finite state space is chosen so that the

probability of reaching xout in the time interval of interest remains

small. This small probability gives an upper bound on the

approximation error due to the reduction of the infinite system into

a finite one, as can be seen in the FSP algorithm [22]. Define

P(xreturn,T) to be the probability of returning from competence within

½0,T �. Denote by preturn(t), the probability P(xreturn,t) of returning

from competence at time t, and by pout(t), the probability P(xout,t) of

exiting to the outside region at time t.
The system becomes:

_PP

_ppreturn

_ppout

2
64

3
75~

A 0 0

b1 0 0

b2 0 0

2
64

3
75

P

preturn

pout

2
64

3
75: ð18Þ

Now consider a partition of the interval ½0,T � as follows:

0~T0vT1v . . . vTN~T :

We can approximate the expected value of return time as follows:

E½treturn�&
XN

i~1

preturn(Ti){preturn(Ti{1)½ �:Ti: ð19Þ

Results/Discussion

We applied SSA to both the full model presented in Eq. 1–4, as

well as to the reduced model presented in Eq. 7. We say that a cell

entered in competence when the pair (ComK,ComS) enter in the

region Rcompetence : ~f(ComK , ComS) [ N2, s:t: ComK§80 and
100ƒComSƒ225g. SSA simulations start from a number of

molecules for (ComK, ComS)~(25,225) and all runs simulate

40 hours of molecular reactions. The initial number of molecules for

ComK and ComS corresponds roughly to the mean steady state

values of the reduced model. We are interested in studying the

probability with which a cell enters in competence. For the return

from competence analysis, we defined the region Rreturn :

~f(ComK, ComS) [ N2, s:t: ComKƒ40 and ComS§180g. A

cell return trajectory is the one it takes when going from Rcompetence

to Rreturn (see Fig. 2 for illustration). We should point out that the

boundaries of the region may be selected regardless of their

shape.

In Fig. 3 we show seven different SSA runs, for 40 hours each.

It can be seen that two of the runs behave differently from the

remaining five runs. The long excursions seen in Fig. 3 correspond

to a high number of ComK molecules, i.e., the state of

competence. In Fig. 4 we show one SSA run where both ComK

and ComS concentrations were plotted. Competence is clear in

this case, and it is detected by both the high level of ComK and the

negative correlation between ComK and ComS corresponding to

the negative feedback from ComK to ComS when the number of

molecules of ComK is high. In 10000 SSA runs, we found that the

cell entered in competence 3410 times, corresponding to an

approximate probability 0:341. Using the Chernoff inequality,

Figure 2. Return time for a sample trajectory. This figure shows
how the regions were divided to compute the expected value of the
time for which the cell remains in competence. The cross on the red
rectangle is the start of the return trajectory of the cell from
competence. The cross on the green rectangle is the end of the return
trajectory to the vegetative state. We wish to calculate the expected
time it takes for a cell to traverse such a trajectory.
doi:10.1371/journal.pcbi.1000985.g002

Analysis of Stochastic Strategies in Bacteria

PLoS Computational Biology | www.ploscompbiol.org 6 November 2010 | Volume 6 | Issue 11 | e1000985



the accuracy in this case is described as P½DerrorDƒd�§(1{d’),
where d~2:5% and d’~0:001 [23]. Using the bound on d and

Equation 19, we find an upper bound on the error in the

calculation of E½Treturn�.
Using the FSP based method as described in Eq. 15, we find

that the probability of entering in competence at least once in

40 hours is 0:3339, this probability is calculated with an error of

no more than 10{3.

Sensitivity of entrance in competence
Now that we presented the SSA, and FSP method, we first use

the SSA algorithm to compare the reduced model in Eq. 5–6 to

Figure 3. Seven SSA runs. This figure shows seven different SSA simulation runs of the competence regulatory genetic circuit. Each run is shown
by a different color. Long trajectories correspond to high levels of ComK indicating that the cell has entered in a state of competence. This figure
illustrates the stochastic nature of competence, by showing that starting from the same initial conditions, only two out out of seven cells enter in
competence.
doi:10.1371/journal.pcbi.1000985.g003

Figure 4. Single SSA run for 40 hours. This figure shows a single SSA run. The high level of ComK (shown in blue), as well as the negative
correlations between ComK and ComS (shown in red) is a characteristic of competence.
doi:10.1371/journal.pcbi.1000985.g004

Analysis of Stochastic Strategies in Bacteria

PLoS Computational Biology | www.ploscompbiol.org 7 November 2010 | Volume 6 | Issue 11 | e1000985



the full model in Eq. 1–4 both presented in [13]. In order to do

this, we simulate both models using SSA and compare the

probability of entering in competence as the parameters presented

in Table 1 were changed. We show the results for the parameters

bk, and bs for demonstration purposes, but we note that the

behavior of the full and reduced model were very close for all the

parameters. We then compare the results given by the SSA and

the FSP method, when applied to the reduced model. We show in

Figs. 5 and 6, these results.

Expected duration of competence
We show next the insights our numerical methods allowed us to

have about how the molecules involved in competence, affect the

time a cell spends in this state. In Fig. 7 we show how changing the

parameter bk affects the time a cell stays in competence. This

parameter corresponds to the saturation expression rate of the

ComK positive feedback. The plot shows results obtained by both

FSP and SSA. We can see that the plots exhibit similar behaviors,

keeping in mind that such a calculation requires a lot more SSA

simulations. In addition to giving more accurate results, the FSP

approach allows us to combine multiple points from which we

consider the cell as being in competence, while a different set of

SSA simulations should be run for each different initial condition

(starting number of molecules). Combining initial conditions is

extremely useful in this case, since we care more about regions that

the states go through than about specific points. It is not crucial to

know the specific number of molecules of ComK or ComS when

the cell is entering and returning from competence.

We saw earlier that increasing bk will increase the probability of

cells entering competence. We now know that it will also keep the

cell in competence for a longer time. Competence is an exhausting

but occasionally necessary state for the cell. In this work we

develop the CME accounting properly for the internal noise

driving the competence switching dynamical system. The

stochastic behavior of cell switching to competence has been

studied in the literature. For example in their work, Süel et al. [13]

account for the stochasticity by introducing an additive noise term

to their model. The intensity of the noise and its distribution were

parameters that are determined by the authors. In this work, we

accounted for noise in its natural intrinsic form, eliminating

therefore any controlled excitation of the excitable system.

We applied FSP to come up with an analytical solution, whereas

other researchers always reverted to Monte-Carlo simulations, in

their analysis. Finding an analytical solution made it possible for us

to describe to a great extent the role of each of the molecules in

driving cells into and out of competence. We discuss our results

below.

We start by addressing the roles of the different expression and

degradation rates in a cell entering competence. Fig. 5 shows that

an increase in the saturating expression rate of ComK positive

feedback (bk) increases the probability of entering in competence.

Fig. 7 also shows that it makes returning from competence slower.

Although Figs. 5 and 6 show that ComK and ComS have similar

roles in driving a cell into and back from competence, Table 2

suggests that changes in ComS affected by the values of the

expression and degradation rates of ComS (bs and ds) affect the

probability of entering and staying in competence more than

changes in ComK affected by the values of (bk and dk). This leads

to the expectation that the genetic circuits controlling ComS levels

need to be much more sophisticated and complex than those

regulating ComK in order to keep ComS concentration at specific

values. Our normalized sensitivity analysis showed that increasing

the basal expression rate (ak) and the saturating expression rate of

ComK (bk) has an almost canceling effect to increasing the

degradation rate of Comk (dk) as far as the probability of entering

in competence is concerned. It also showed that the expression

and degradation rates of ComS (bs and ds), had a similar

canceling effect. This means that each of these molecules plays

a dual role. As it turned out, while the expression rate of Comk

drives the cell in competence, its degradation rate brings it back to

its vegetative state. Similarly, a high concentration of ComS

Figure 5. Probability of competence vs. bk. This figure shows the probability of entering in competence when bk is varied. The three plots show
simulations from the full model using SSA (black), the reduced model using FSP (blue) and the reduced model using SSA (red). SSA results were
generated by averaging over 10,000 runs. For each data point, the error indicated by the errorbar is no larger than +0:025 with a certainty no smaller
than 0:999. This is to be compared to an upper bound of 10{3 when using FSP.
doi:10.1371/journal.pcbi.1000985.g005
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drives the cell in competence by competing over free MecA with

ComK molecules, leaving more ComK molecules free. On the

other hand, a decrease in ComS is necessary to return from

competence as we will see next. This is true because low levels of

ComS allow free MecA molecules to bind to ComK decreasing

therefore the level of ComK molecules. We saw as well that high

levels of ComK and ComS drive the cell into competence with

probability 1. This is in agreement with experimental results

reported in [24], where Leisner et al use an approximate SDE

model in which they account for noise by introducing an additive

gaussian noise term, in contrast to our approach which uses CME

directly.

Figure 6. Probability of competence vs. bs. This figure shows the probability of entering in competence when bs is varied. The three plots show
simulations from the full model using SSA (black), the reduced model using FSP (blue) and the reduced model using SSA (red). SSA results were
generated by averaging over 10,000 runs. For each data point, the error indicated by the errorbar is no larger than +0:025 with a certainty no smaller
than 0:999. This is to be compared to an upper bound of 10{3 when using FSP.
doi:10.1371/journal.pcbi.1000985.g006

Figure 7. Expected time to return from competence vs. bk. This figure shows the expected value it takes for a cell that started from
competence to return to its vegetative state as bk varies. The results are obtained using FSP (blue line) and SSA (red line). SSA results were generated
by averaging over 10,000 runs. For each data point, the error indicated by the errorbar is no larger than +0:548 with a certainty no smaller than
0:999. These results should be compared with the results obtained using FSP whose error has an upper bound of 0:0219.
doi:10.1371/journal.pcbi.1000985.g007
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We now study the roles of the different molecules in the return

from competence. Figs. 7 and 8 suggest that the degradation rate

dk has a larger effect than bk when it comes to the expected time

for which a cell stays in competence. We found similar results for

bs and ds. This implies that once a cell is in a state of competence,

the degradation rate acts fast bringing it back to its vegetative state.

The degradation rate is faster than the rate at which the free

molecules try to keep the cell in competence. Fig. 8 suggests that

increasing the value of dk will decrease the time for which a cell

stays in competence. We also know from Table 2 that an increase

in dk diminishes the probability with which Bacillus subtilis enters in

competence. Our calculations also show that an increase in ds has

a similar effect to an increase in dk in the sense that they both

decrease the probability with which a cell enters in competence

and the expected time it takes for a cell to return form

competence. Recall that dk is the degradation rate of ComK,

and ds is the degradation rate of ComS. Also recall that whenever

the number of ComS molecules is sufficiently small, more MecA

molecules will be free to bind with ComK decreasing therefore the

number of ComK molecules. Similarly, a higher ComK

degradation rate, will lead to a decrease in the number of ComK

molecules. A lower number of ComK molecules drive the cell back

to its vegetative state and/or decreases its probability of entering in

competence. This explains the similarity in the effect of dk and ds

on the probability of entering competence and the expected return

time.

Conclusion
In this paper we developed a discrete stochastic model for

competence in Bacillus subtilis. We performed simulations of the

model using Monte Carlo based SSA and verified that the reduced

order model gave a valid approximation of the full model. We then

applied the recently developed FSP method to the reduced model

and computed the probability of competence, where competence

was defined in terms of a trajectory leaving a pre-defined region of

the state space. Having the analytical solution, we were able to

conduct a sensitivity analysis of the probability with which a cell

enters in competence as the model parameters vary. We were also

able to compute interesting terms such as the expected time it

takes for a cell to return from competence.

This paper presented numerical methods that are applicable

to many biological systems that exhibit a transient switching

behavior. These methods were shown to be very useful in

studying the genetic circuit regulating competence in a bacteria,

and in answering questions about exact probabilities of

stochastic events in this bistable biological behavior. They were

also useful in studying sensitivities of these probabilities when

expression rates, degradation rates, repression rates or activa-

tion rates of proteins were changed. Finally, the methods

introduced in this paper showed how to calculate the expected

time for return from transient states. Many other terms

characterizing different transient physiological behaviors, such

as the number of molecules that are most likely to enter in the

transient states, and the return trajectories that are most likely

to be taken can be computed using similar approaches to the

one discussed here. Our approach should be easily extendible to

analyze many biological system exhibiting a bistable switching

behavior.
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Figure 8. Expected time to return from competence vs. dk. This figure shows the expected value it takes for a cell that started from
competence to return to its vegetative state as dk varies. The results are obtained using FSP (blue line) and SSA (red line). SSA results were generated
by averaging over 10,000 runs. For each data point, the error indicated by the errorbar is no larger than +0:8960 with a certainty no smaller than
0:999. These results should be compared with the results obtained using FSP whose error has an upper bound of 0:0358.
doi:10.1371/journal.pcbi.1000985.g008
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