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Abstract

Markov Chain-Based Stochastic Strategies for Robotic Surveillance

by

Xiaoming Duan

This thesis contains two parts. In the first part, we discuss the robotic surveillance

problems, with a focus on the Markov chain-based stochastic approaches. In chapter 2,

we study the problem of maximizing the return time entropy of a Markov chain, subject

to graph and stationary distribution constraints. We first obtain complete characteriza-

tions for the return time distribution and show its convergence. We then establish upper

and lower bounds for the return time entropy. We also provide gradients of the trun-

cated entropy function for computational purposes. Finally, we present the numerical

comparisons between the proposed and existing Markov strategies.

In chapter 3, we analyze the meeting time between a pursuer and an evader. First,

by analyzing multiple random walks on a common graph as a single random walk on the

Kronecker product graph, we provide a closed-form expression for the expected meeting

time. This novel expression leads to necessary and sufficient graph-theoretic conditions

for the meeting time to be finite. Second, we study the minimization problem for the

expected capture time for the pursuer. We finally report theoretical and numerical results

on basic case studies.

In chapter 4, we study the problem where the mobile robot tries to capture a strategic

intruder who knows the current location and the surveillance strategy of the mobile

agent. We model the scenario by a Stackelberg game and study optimal and suboptimal

surveillance strategies in star, complete and line graphs. We first derive a universal upper

bound on the capture probability, which is shown to be tight in the complete graph

x



and provides suboptimality guarantees. For the star and line graphs, we characterize

dominant strategies and rigorously prove the optimal surveillance plan.

In the second part, chapter 5, we study the graph-theoretic conditions for stability

of positive monotone systems. We first establish necessary and sufficient conditions for

the stability of linear positive systems described by Metzler matrices. Specifically, we

derive two sets of stability conditions based on two forms of input-to-state stability gains,

namely max-interconnection gains and sum-interconnection gains. We then extend our

results to nonlinear monotone systems.
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Part I

Stochastic Strategies for Robotic

Surveillance

1



Chapter 1

Introduction

The first part of this thesis presents a stochastic approach for the design of robotic

surveillance algorithms. We adopt Markov chains as the main algorithmic building block

and discuss various properties relevant in surveillance applications. This approach leads

to easily implementable and intrinsically unpredictable surveillance algorithms in which

robots’ visit frequency at different locations can be conveniently specified in a proba-

bilistic fashion. In particular, the unpredictability of a random walk over a graph is a

highly desirable characteristic for surveillance strategies in adversarial settings, because

it makes it hard for potential intruders to take advantage of surveillance robots’ motion

patterns.

In persistent surveillance tasks, mobile robots patrol and visit sites of interest in the

environment to collect sensing data, detect anomalies or intercept intrusions. Persis-

tent surveillance is a key component in numerous applications such as environmental

monitoring [1, 2], infrastructure inspection [3, 4] and urban security [5]. Different from

traditional coverage or search and exploration problems, surveillance tasks require robots

to repeatedly visit different locations and achieve continuous monitoring. Surveillance

strategies specify in which order and how often the mobile robots should visit different
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Introduction Chapter 1

locations so that desirable performance is maintained. In this survey, we adopt a model

where the physical environment is discretized and modeled by a connected graph: each

node of the graph represents a location of interest in the environment and the edges in

the graph represent the paths between locations. Scenarios where mobile robots move

in continuous space are studied for example in [6, 7, 8, 9]. There are also works that

consider (stochastic) dynamics at the locations of interest such as [10, 11, 12, 13].

1.1 Deterministic strategy

In the design of deterministic surveillance strategies, the performance criterion of typ-

ical interest is idleness, also known as refresh time or latency. At any given time instant,

the idleness of a location is the time elapsed since the last time the location was visited

by any surveillance robots. The worst idleness (respectively, average idleness) at that

time instant is the largest (respectively, average) value of idleness for all locations. Then,

one seeks a strategy that minimizes the largest worst (average) idleness over the entire

(possibly infinite) surveillance period [14]. In the early work [15], the author shows that

the cyclic strategy where a robot travels with the maximum speed on a shortest closed

route through all locations is optimal in the sense that it minimizes the maximum worst

idleness. The author also proposes a partition-based approach for the multi-robot case

where the environment is partitioned into disjoint regions so that each robot patrols a

single region. In [16], a multi-robot system composed of homogeneous robots is placed

on a cyclic route in the environment, and a uniform visit frequency to all locations is

achieved by carefully designing the displacements between robots. The authors of [17]

study team strategies with minimum refresh time for the line, tree and cyclic graphs

over a finite surveillance period; optimal and constant factor suboptimal strategies are

obtained. When locations have different priorities, one can define the natural notion

3



Introduction Chapter 1

of weighted worst idleness, whereby idleness is penalized proportionally to the location

priority. Single-robot surveillance strategies that minimize the maximum weighted idle-

ness are studied in [18]. The authors design two approximate algorithms to compute

strategies whose costs are within factors of the optimal cost; these factors depend on the

distribution of weights or the dimension of the graph. Given constraints on the weighted

idleness at all locations, the authors in [19] propose an approximate algorithm to compute

the minimum number of robots required to satisfy the idleness requirements. The recent

work [20] proposes surveillance plans for a fixed number of robots that minimize the

maximum weighted idleness. In summary, optimization problems concerning the idleness

metrics and deterministic surveillance strategies are usually of combinatorial nature and,

in most cases, approximation algorithms and suboptimal solutions are sought.

While clearly leaving any location of interest in the environment unattended for an

extended period of time should be avoided, there are two main challenges for deterministic

surveillance strategies: (i) as pointed out in [21], it is not always possible to assign an

arbitrary visit frequency to different locations in the graph (see recent related work

in [22]); (ii) deterministic strategies are fully predictable and can be easily exploited

by potential intruders in adversarial settings. In this case, stochastic strategies become

particularly appealing.

1.2 Stochastic strategy

In adversarial settings, potential intruders may be able to observe and learn the

strategies of the surveillance robot and devise intrusion plans accordingly. For example,

when surveillance robot adopts a deterministic strategy, the intruder can confidently

attack a location immediately after the surveillance robot leaves that location, because it

knows for certain that the robot will not return to that location for a deterministic known
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Introduction Chapter 1

duration of time. In such scenarios, robotic surveillance problems have to be tackled by

resorting to randomized approaches. One popular technique in such approaches is to

describe the surveillance strategy as a Markov chain. There are several advantages to

using Markov chains as stochastic strategies, including: 1) the intrinsic stochasticity of

Markov chains leads to more effective strategies against rational intruders; 2) the visit

frequency to different locations can be easily assigned through the stationary distribution;

and 3) Markov chains as routing algorithms are lightweight and require minimal amount

of resources to implement and execute. Although high-order Markov chains are more

versatile, their state space grows exponentially fast with the order (memory length),

which results in high computational complexity or intractability. Therefore, first-order

Markov chains are the default choices in the design. Depending on whether an intruder

model is explicitly specified or not, there are two different common formulations in the

literature. When no intruder model is assumed, stochastic strategies are designed based

on performance metrics such as speed and unpredictability ; when a specific intruder model

is adopted, tailored strategies to the intruder behaviors are carefully constructed.

1.2.1 Metric-based design

Commonly-used design metrics for stochastic strategies in robotic surveillance in-

clude visit frequency, speed and unpredictability. In [23], the authors propose a Markov

chain-based algorithm for a team of robots to achieve continuous coverage of an envi-

ronment with a desirable visit frequency. Smart nodes deployed at different locations

are responsible for recording the visits by robots and directing robots to the next site

to be visited. To obtain fast strategies for the surveillance agent, the authors of [24]

study Markov chains with the minimum weighted mean hitting time. Here, travel times

between different locations are given as edge weights on the graph. The minimization
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Introduction Chapter 1

of the weighted mean hitting time is transcribed into a convex optimization problem for

the special case where candidate Markov chains are assumed reversible. The problem

also has a semidefinite reformulation and can be solved efficiently. A similar notion of

mean hitting time for a multi-robot system is proposed and studied in [25]. To obtain

maximally unpredictable surveillance strategies, the authors in [26] design Markov chains

with maximum entropy rate: numerous properties of the maxentropic Markov chain are

established and a fast algorithm to compute the optimal strategy is proposed. A new

notion that quantifies unpredictability of surveillance strategies through the entropy in

return time distributions has been recently introduced and characterized in [27]. This

new concept is particularly relevant and useful in cases when only local observations are

available to potential intruders. Similar studies on introducing randomness in return

times also appeared in [28, 29], where the authors propose to insert random delays into

the return times.

1.2.2 Intruder model-based design

In contrast to the metric-based designs where no explicit intruder behaviors are as-

sumed, intruder model-based designs leverage available information on the intruder to

achieve improved/guaranteed performance. In [30], a multi-robot perimeter patrol prob-

lem is proposed where a randomized strategy is used to defend against a strategic ad-

versary. The adversary knows the surveillance strategy as well as the robots’ locations

on the perimeter, and it aims to maximize its probability of success by attacking the

weakest spot along the perimeter. Coordinated sequential attacks in the multi-robot

perimeter patrol problem are considered in [31]. The authors in [32] define a patrolling

security game where a Markovian surveillance robot tries to capture an intruder that

knows perfectly the location and the strategy of the surveillance agent. The intruder has
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the freedom to choose where and when to attack so that the probability of being captured

is minimized. Various intruder models that characterize different manners in which the

intruders attack the locations are discussed in [33]. The authors design pattern search

algorithms to solve for a Markov chain that minimizes the expected reward for the in-

truders. Variations of intruder models where intruders have limited observation time and

varying attack duration are studied in [34] and [35], respectively. Many of the aforemen-

tioned models can be formalized as Stackelberg games. The Stackelberg game framework

has been successfully applied in practical security domain applications [36]. However,

only limited progress on efficient computational methods with optimality guarantees has

been made.

1.3 Notation and Preliminaries

1.3.1 Notation

Let R, Rn and Rm×n be the set of real numbers, real vectors of dimension n and real

matrices of dimension m by n, respectively. The set of elementwise positive vectors and

nonegative matrices are denoted by Rn>0 and Rm×n≥0 . We denote the set of nonnegative

and positive integers by Z≥0, and Z>0. Let 1n and 0n be column vectors in Rn with

all entries being 1 and 0, and ei be the i-th standard unit vector, whose dimension will

be clear from the context. For a vector v ∈ Rn, diag(v) ∈ Rn×n is a diagonal matrix

with diagonal elements being v; for a matrix S ∈ Rn×n, diag(S) ∈ Rn×n is a diagonal

matrix with diagonal elements being the same as that of S. For a matrix S ∈ Rm×n,

the vectorization vec(S) ∈ Rmn is constructed by stacking the columns of S on top of

one another. The identity matrix is denoted by In ∈ Rn×n, and the indicator function is

denoted by 1{·}.

7
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1.3.2 Markov chains

A first-order discrete-time homogeneous Markov chain defined over the state space

{1, · · · , n} is a sequence of random variables Xk for k ≥ 0 that satisfies the Markov

property: P(Xk+1 = ik+1 |Xk = ik, . . . , X0 = i0) = P(Xk+1 = ik+1 |Xk = ik) for all

k ≥ 0 and i0, . . . , ik+1 ∈ {1, · · · , n}. The Markov chain {Xk}k≥0 has an associated row-

stochastic transition matrix P ∈ Rn×n such that the (i, j)-th element pij = P(Xk+1 =

j |Xk = i) for i, j ∈ {1, · · · , n}. The transition diagram of a Markov chain is a directed

graph G = (V, E), where V = {1, · · · , n} is the set of nodes and E ⊂ V × V is the

set of edges, and (i, j) ∈ E if and only if pij > 0. A Markov chain is irreducible if

its transition diagram is strongly connected. A walk of length ` exists from node i1 to

node i`+1 for G if there exists a sequence of nodes i1, i2, . . . , i`+1 such that pikik+1
> 0

for 1 ≤ k ≤ `. The period of a state i is defined as the greatest common divisor of all

k in {k ≥ 1 |P(Xk = i |X0 = i) 6= 0}. A state whose period is one is referred to as an

aperiodic state, and a Markov chain is aperiodic if the greatest common divisor of all

states’ periods is one. The states in a communicating class (defined below) share the

same period. For two states i and j of a Markov chain, state i communicates with j

if P(Xk = j |X0 = i) 6= 0 for some k > 0. A subset of states X ⊂ {1, . . . , n} forms a

communicating class if for every state i, j ∈ X the states communicate with each other,

i.e., P(Xk = j |X0 = i) 6= 0 and P(Xk′ = i |X0 = j) 6= 0 for some k, k′ > 0. An

absorbing class C ⊂ {1, . . . , n} of a Markov chain is a communicating class such that

the probability of escaping the set is zero, i.e., P(Xk = j |X0 = i) = 0 for all k > 0

and i ∈ C, j /∈ C. A communicating class that is not absorbing is a transient class.

A discrete-time Markov chain is said to be ergodic if it is irreducible and aperiodic. A

finite-state irreducible Markov chain P has a unique stationary distribution π ∈ Rn that

satisfies π>P = π> and πi > 0 for i ∈ {1, . . . , n}. Moreover, the stationary distribution

8



Introduction Chapter 1

π has the interpretation that regardless of the initial condition [37, Theorem 2.1],

1

t+ 1

t∑
k=0

1{Xk=i}
as t→∞−−−−→ πi almost surely. (1.1)

We refer the readers to [38, 39] for more about Markov chains.

1.3.3 Hitting times of Markov chains

For a finite-state discrete-time Markov chain, the first hitting time from state i to

state j is a random variable defined by

Tij = min{k |X0 = i,Xk = j, k ≥ 1}. (1.2)

This notion can be extended to Markov chains defined over a weighted graph G =

(V, E ,W ), in which case the hitting time Tij satisfies

Tij = min{
k−1∑
`=0

wX`,X`+1
|X0 = i,Xk = j, k ≥ 1}. (1.3)

The computation of the hitting time distributions will be made clear when they are used

in respective chapters.
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1.3.4 Kronecker product and Kronecker graph

For two matrices A ∈ Rn×m and B ∈ Rq×r, the Kronecker product A⊗B is an nq×mr

matrix given by

A⊗B =


a1,1B . . . a1,mB

...
. . .

...

an,1B
. . . an,mB

 .

A few properties of the Kronecker product and vectorization of matrices are summarized

in the following lemma.

Lemma 1.3.4.1 (Kronecker product and vectorization identities) Given matri-

ces A,B,C and D of appropriate dimensions, the following identities hold:

1. (A⊗B)(C ⊗D) = (AC)⊗(BD),

2. (B>⊗A) vec(C) = vec(ACB).

Given two graphs G1 = (V1, E1) and G2 = (V2, E2), where Vi and Ei are the set of

vertices and edges for i ∈ {1, 2}, the Kronecker graph of G1 and G2 is a graph G =

(V1 × V2, E) such that for any i1, j1 ∈ V1 and i2, j2 ∈ V2, the edge ((i1, i2), (j1, j2)) ∈ E if

(i1, j1) ∈ E1 and (i2, j2) ∈ E2.

1.3.5 Useful Lemmas

We collect a few lemmas that shall be used in the rest of the thesis.

Lemma 1.3.5.1 (Convergence of row-substochastic matrices [25, Lemma 2.2])

Any row-substochastic matrix A ∈ Rn×n has spectral radius less than 1 if and only if for

every node with row-sum 1 there exists a walk to a node with row-sum less than 1.

10
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Lemma 1.3.5.2 (A uniform bound for stable matrices [40, Proposition D.3.1]) Assume

the matrix subset A ⊂ Rn×n is compact and satisfies

ρA := max
A∈A

ρ(A) < 1,

where ρ(A) is the spectral radius of the matrix A. Then for any λ ∈ (ρA, 1) and for any

induced matrix norm ‖ · ‖, there exists c > 0 such that

‖Ak‖ ≤ cλk, for all A ∈ A and k ∈ Z≥0.

Lemma 1.3.5.3 (Weierstrass M-test [41, Theorem 7.10]) Given a set X , consider the

sequence of functions {fk : X → R}k∈Z>0. If there exists a sequence of scalars {Mk ∈

R}k∈Z>0 satisfying
∑∞

k=1 Mk <∞ and

|fk(x)| ≤Mk, for all x ∈ X , k ∈ Z>0,

then
∑∞

k=1 fk converges uniformly on X .

Lemma 1.3.5.4 (Geometric distribution generates maximum entropy [42]) Among all

discrete random variables Y ∈ Z>0 with E[Y ] = µ ≥ 1, the probability distribution with

maximum entropy is

P(Y = k) =
(

1− 1

µ

)k−1 1

µ
, k ∈ Z>0,

with entropy

H(Y ) = µ log µ− (µ− 1) log(µ− 1). (1.4)

11



Chapter 2

Markov Chains with Maximum

Return Time Entropy

2.1 Introduction

2.1.1 Problem description and motivation

Given a Markov chain, the first return time of a given node is the first time that

the random walker returns to the starting node; this is a discrete random variable with

infinite support, whose randomness is measured by its entropy. In this chapter, given

a strongly connected directed graph with integer-valued travel times (weights) and a

prescribed stationary distribution, we study Markov chains with maximum return time

entropy. Here the return time entropy of a Markov chain is a weighted average of the

entropy of different states’ return times with weights equal to the stationary distribution.

This optimization problem is motivated by robotic applications. We design stochas-

tic surveillance strategies with an entropy maximization objective in order to thwart

intruders who plan their attacks based on observations of the surveillance agent. The

12
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randomness in the first return time is desirable because an intelligent intruder observing

the inter-visit times of the surveillance agent is confronted with a maximally unpre-

dictable return pattern by the surveillance agent. The advantages of formulating an

entropy maximization problem are fourfold: a) entropy is a well-established fundamental

concept that characterizes the randomness of a probability distribution (unpredictability

in the surveillance strategy in our case); b) if the surveillance agent is highly entropic, it

is hard for the intruders to learn the patterns in the behavior of the agent; c) since the

behaviors of the intruders may not be exactly known/modelled in any case, optimizing

the surveillance strategies against certain intruder behaviors may not be generally wise;

d) as we demonstrate in the simulation section, the Markov chain with maximum return

time entropy works well under a rational intruder model.

2.1.2 Literature review

Ekroot et al. studied the entropy of Markov trajectories in [43], i.e., the entropy

of paths with specified initial and final states. The authors establish an equivalence

relationship between the entropy of return Markov trajectories (paths with the same

initial and final states) and the entropy rate of the Markov chains. Compared with [43],

we study here the return time random variable, by lumping return trajectories with the

same length. Importantly, our formulation incorporates travel times, as motivated by

robotic applications.

The problem of designing robotic surveillance strategies has been widely studied [44,

18, 45, 11]. Stochastic surveillance strategies, which emphasize the unpredictability of

the movement of the patroller, are desirable since they are capable of defending against

intelligent intruders who aim to avoid detection/capture. One of the main approaches

to the design of robotic stochastic surveillance strategies is to adopt Markov chains; e.g.,

13
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see the early reference [46] and the more recent references [47, 48, 23, 49]. Srivastava et

al. [21] justified the Markov chain-based stochastic surveillance strategy by showing that

for the deterministic strategies, in addition to predictability, it is also hard to specify

the visit frequency. However, for the finite state irreducible Markov chains, the visit

frequency is embedded naturally in the stationary distribution. Patel et al. [24] studied

the Markov chains with minimum weighted mean hitting time where weights are travel

times on edges. For the class of reversible Markov chains, they formulated the problem

as a convex optimization problem. An extension of the mean hitting time to the multi-

agent case was studied in [25]. Asghar et al. [33] introduced different intruder models and

designed a pattern search-based algorithm to solve for a Markov chain that minimizes

the expected reward of the intruders. Recently, George et al. [26] studied and quantified

the unpredictability of the Markov chains and designed the maximal entropy surveillance

strategies by maximizing the entropy rate of Markov chains [50, 51]. Compared with [26],

our problem formulation features a new notion of entropy, a directed graph topology, and

travel times; these three features render the results potentially more widely applicable

and more relevant (see also the performance comparison among multiple Markov chains

later in the chapter).

2.1.3 Statement of Contributions

In this chapter, we propose a new metric that measures the unpredictability of the

Markov chains over a directed graph with travel times. This novel formulation is of

interest in the general study of Markov chains as well as for its applications to the

robotic surveillance. Specifically, the notion of return time entropy is extremely relevant

in the natural setting where the intruder hides near a location, collects inter-visit data

of the surveillance agent, learns the return statistics/patterns and plans an attack with

14
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the lowest chance of being detected. The main contributions of this chapter are sixfold.

First, we introduce and analyze a discrete-time delayed linear system for the return

time probabilities of the Markov chains. This system incorporates integer-valued travel

times on the directed graph. Second, we propose to characterize the unpredictability

of a Markov chain by the return time entropy and formulate an entropy maximization

problem. Third, we prove the well-posedness of the return time entropy maximization

problem, i.e., the objective function is continuous over a compact set and thus admits

a global maximum. For the case of unitary travel times, we derive an upper bound

for the return time entropy and solve the problem analytically for the complete graph.

Fourth, we compare the return time entropy with the entropy rate of Markov chains;

specifically, we prove that the return time entropy is lower bounded by the entropy rate

and upper bounded by the number of nodes times of the entropy rate. Fifth, in order to

compute Markov chains with maximum return time entropy numerically, we truncate the

return time entropy and show that the truncated entropy is asymptotically equivalent

to both the original objective and the practically useful conditional return time entropy.

We also characterize the gradient of the truncated return time entropy and use it to

implement a gradient projection algorithm. Sixth, we apply our solution to different

prototypical robotic surveillance scenarios and test cases and show that, for a model

of rational intruder, the Markov chain with maximum return time entropy outperforms

several existing Markov chains.

The main content of this chapter lead to one conference publication [52] and one

journal publication [27].

2.1.4 Organization

This chapter is organized as follows. We formulate the return time entropy maxi-

15



Markov Chains with Maximum Return Time Entropy Chapter 2

mization problem in Section 2.2. We establish the properties of the return time entropy

in Section 2.3. The approximation analysis and the gradient formulas are provided in

Section 2.4. We present the simulation results regarding the robotic surveillance problem

in Section 2.5. Section 2.6 concludes the chapter.

2.2 Problem formulation

2.2.1 Return time of random walks

In this chapter, we consider a strongly connected directed weighted graph G =

(V, E ,W ), where V denotes the set of n nodes {1, . . . , n}, E ⊂ V × V denotes the set of

edges, and W ∈ Zn×n
≥0 is the integer-valued weight (travel time) matrix with wij being

the one-hop travel time from node i to node j. If (i, j) /∈ E , then wij = 0; if (i, j) ∈ E ,

then wij ≥ 1. Let wmax = maxi,j{wij} be the maximum travel time. The return time Tii

of node i is the first time the random walk returns to node i starting from node i. Let

the (i, j)-th element of the first hitting time probability matrix Fk denote the probability

that the random walk reaches node j for the first time in exactly k time units starting

from node i, i.e., Fk(i, j) = P(Tij = k).

2.2.2 Return time entropy of random walks

For an irreducible Markov chain, the return time Tii of each state i is a well-defined

random variable over Z>0. We define the return time entropy of state i by

H(Tii) = −
∞∑
k=1

P(Tii = k) log P(Tii = k) = −
∞∑
k=1

Fk(i, i) logFk(i, i),

where the logarithm is the natural logarithm and 0 log 0 = 0.
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We define the set of Markov chains we will be optimizing over in the following.

Definition 2.2.2.1 (The set of Markov chains ε-conforming to a graph) Given a strongly

connected directed weighted graph G = (V, E ,W ) with n nodes and the stationary distri-

bution π > 0, pick a minimum transition probability ε > 0, the set of Markov chains

ε-conforming to G is defined by

PεG,π = {P ∈ Rn×n | pij ≥ ε if (i, j) ∈ E ,

pij = 0 if (i, j) /∈ E ,

P1n = 1n,π
>P = π>}.

Given the definition of PεG,π, we are now ready to define the return time entropy

function J(P ) over the set PεG,π.

Definition 2.2.2.2 (Return time entropy) Given a set PεG,π, define the return time en-

tropy function J : PεG,π 7→ R≥0 by

J(P ) =
n∑
i=1

πiH(Tii). (2.1)

Remark 2.2.2.3 (The expectation of the first return time) For an irreducible Markov

chain defined over a weighted graph with travel times, [24, Theorem 6] states

E[Tii] =
π>(P ◦W )1n

πi
, (2.2)

where ◦ is the Hadamard element-wise product. For unitary travel times, this formula

reduces to the usual E[Tii] = 1/πi. In both cases, the first return times expectations are

inversely proportional to the entries of π.
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In general, it is difficult to obtain the closed-form expression for the return time

entropy function.

Examples 2.2.2.4 (Two special cases with unitary travel times) The elementary proofs

of the following results are omitted in the interest of brevity.

1. (Two-node complete graph case) Given a two-node complete graph G with unit

weights, if the transition matrix P ∈ PεG,π has the following form

P =

p11 p12

p21 p22

 ,
then the return time entropy function is

J(P ) = −2π1p11 log(p11)− 2π2p22 log(p22)− 2π1p12 log(p12)− 2π2p21 log(p21).

2. (Complete graph case with special structure) Given an n ≥ 2-node complete graph G

with unit weights and the stationary distribution π = 1
n
1n, if the transition matrix

P ∈ PεG,π has the form

P = (a− b)In + b1n1>n ,

for any a ≥ 0 and b > 0 satisfying a + (n − 1)b = 1, then the return time entropy

function is

J(P ) = −a log(a)− (n− 1)b log
(
(n− 1)b2

)
− (n− 1)(1− b) log(1− b).

In this chapter, we are interested in the following problem.

18
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Problem 1 (Maximization of the return time entropy) Given a strongly connected di-

rected weighted graph G = (V, E ,W ) and the stationary distribution π > 0, pick a min-

imum transition probability ε > 0. Find P ∈ PεG,π which maximizes the return time

entropy J(P ), i.e., solve the following optimization problem:

maximize J(P )

subject to P ∈ PεG,π

2.3 Properties of the return time entropy

2.3.1 Dynamical model for hitting time probabilities

In this subsection, we characterize a dynamical model for the first hitting time prob-

abilities and establish several important properties of the model. This dynamical model

will be used to prove the well-posedness of Problem 1, and it is also used to compute the

hitting time probabilities and their gradients in later sections.

Theorem 2.3.1.1 (Linear dynamics for the first hitting time probabilities) Consider a

transition matrix P ∈ Rn×n that is nonnegative, row-stochastic and irreducible. Then

1. the hitting time probabilities Fk, k ∈ Z>0, satisfy the discrete-time delayed linear

system with a finite number of impulse inputs:

vec(Fk) = vec(P ◦ 1{k1n1>n=W}) +
n∑
i=1

n∑
j=1

pij(Ej ⊗ eie
>
j ) vec(Fk−wij), (2.3)

where Ei = diag(1n − ei) ∈ Rn×n, 1{·} is the indicator function, and the initial

conditions are vec(Fk) = 0n2×1 for all k ≤ 0;

2. if the weights are unitary, i.e., wij ∈ {0, 1}, then the hitting time probabilities
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satisfy

vec(Fk) = (In ⊗ P )(In2 − diag(vec(In))) vec(Fk−1), (2.4)

where the initial condition is F1 = P .

Proof: By the definition in (1.3), Fk(i, j) satisfies the following recursive formula

for k ∈ Z>0

Fk(i, j) = pij1{k=wij} +
n∑

h=1,h 6=j

pihFk−wih(h, j), (2.5)

where Fk(i, j) = 0 for all k ≤ 0 and i, j ∈ V .

Let Dk(i) ∈ Rn×n be a matrix associated with node i at time k that has the form

Dk(i) =
∑
h∈Ni

ehe
>
hFk−wih ,

where Ni is the set of out-going neighbors of node i. The matrix Dk(i), serving as an

intermediate variable, selects the rows from the matrices Fk−wih used in (2.5), and the

summation in (2.5) can be written as

n∑
h=1,h6=j

pihFk−wih(h, j) = e>i P (Dk(i)− diag(Dk(i)))ej.

Then, (2.5) can be written in the following matrix form

Fk = P ◦ 1{k1n1>n=W} +
n∑
i=1

eie
>
i P (Dk(i)− diag(Dk(i))). (2.6)

Vectorizing both sides of (2.6), we have

vec(Fk) = vec(P ◦ 1{k1n1>n=W}) +
n∑
i=1

(In⊗ eie
>
i P )(In2 − diag(vec(In))) vec(Dk(i)). (2.7)
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Note that in (2.7), by the definition of Dk(i), we have

vec(Dk(i)) =
∑
j∈Ni

(In ⊗ eje
>
j ) vec(Fk−wij),

and

(In2 − diag(vec(In)))(In ⊗ eje
>
j ) = Ej ⊗ eje

>
j .

Therefore, the summation in (2.7) can be written as

n∑
i=1

(In ⊗ eie
>
i P )(In2 − diag(vec(In))) vec(Dk(i))

=
n∑
i=1

(In ⊗ eie
>
i P )

∑
j∈Ni

(Ej ⊗ eje
>
j ) vec(Fk−wij)

=
n∑
i=1

∑
j∈Ni

(Ej ⊗ eie
>
i Peje

>
j ) vec(Fk−wij)

=
n∑
i=1

n∑
j=1

pij(Ej ⊗ eie
>
j ) vec(Fk−wij).

Thus, we have (2.3).

Moreover, if the travel times are unitary, then F1 = P and

n∑
i=1

n∑
j=1

pij(Ej ⊗ eie
>
j ) = (In ⊗ P )(In2 − diag(vec(In))). (2.8)

Thus, equation (2.4) follows.

The dynamical system (2.3) can be transformed to an equivalent homogeneous linear

system by restarting the system at k = wmax with same system matrices and appropriate

initial conditions. Moreover, we can augment the system and obtain a discrete-time

linear system without delays. This equivalent augmented system is useful for example in
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studying stability properties. For k ≥ 1, we have



vec(Fk+wmax)

vec(Fk+wmax−1)

...

vec(Fk+1)


= Ψ



vec(Fk+wmax−1)

vec(Fk+wmax−2)

...

vec(Fk)


, (2.9)

where

Ψ =



Φ1 Φ2 · · · · · · Φwmax

In2 0n2×n2 · · · · · · 0n2×n2

0n2×n2 In2 · · · · · · 0n2×n2

...
...

. . . · · · 0n2×n2

0n2×n2 · · · · · · In2 0n2×n2


, (2.10)

and for h ∈ {1, . . . , wmax},

Φh =
n∑
i=1

n∑
j=1

pij(Ej ⊗ eie
>
j )1{wij=h}. (2.11)

The initial conditions for (2.9) can be computed using (2.3). For brevity, we denote[
vec(Fk+wmax−1)> · · · vec(Fk)

>

]>
by vec(F̃k).

Lemma 2.3.1.2 (Properties of the linear dynamics for the first hitting time probabilities)

If P ∈ Rn×n is nonnegative, row-stochastic and irreducible, then

1. the matrix (In⊗P )(In2−diag(vec(In))) is row-substochastic with the spectral radius

ρ
(
(In ⊗ P )(In2 − diag(vec(In)))

)
< 1.

2. the delayed discrete-time linear system with a finite number of impulse inputs (2.3)

is asymptotically stable;

3. vec(Fk) ≥ 0 for k ∈ Z>0 and
∑∞

k=1 vec(Fk) = 1n2×1.
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Proof: Regarding (i), note that the matrix (In⊗P )(In2−diag(vec(In))) is block diag-

onal with the i-th block being PEi. Since P is irreducible, PEi’s are row-substochastic

and so is (In ⊗ P )(In2 − diag(vec(In))). By Lemma 1.3.5.1, ρ(PEi) < 1 for all i ∈

{1, . . . , n} and ρ((In ⊗ P )(In2 − diag(vec(In)))) = maxi ρ(PEi) < 1.

Regarding (ii), since we can rewrite (2.3) as (2.9) with appropriate initial conditions

and Φi’s are nonnegative, by the stability criterion for delayed linear systems [53, Theo-

rem 1], (2.3) is asymptotically stable if

ρ
( wmax∑

i=1

Φi

)
= ρ
(
(In ⊗ P )(In2 − diag(vec(In)))

)
< 1,

which is true by (i).

Regarding (iii), first note that all the system matrices are nonnegative, thus vec(Fk) ≥

0 for all k ∈ Z>0. Moreover, due to (ii), the delayed linear system (2.3) is asymptotically

stable. Summing both sides of (2.3) over k, we have

∞∑
k=1

vec(Fk) = vec(P ) +
n∑
i=1

n∑
j=1

pij(Ej ⊗ eie
>
j )

∞∑
k=1

vec(Fk)

= vec(P ) + (In ⊗ P )(In2 − diag(vec(In)))
∞∑
k=1

vec(Fk).

Note that
∑∞

k=1 vec(Fk) = 1n2×1 is a solution, and by the proof of (ii), we have ρ
(
(In ⊗

P )(In2 − diag(vec(In)))
)
< 1. Therefore, In2 − (In⊗P )(In2 − diag(vec(In))) is invertible,

which implies that 1n2×1 is the unique solution.

2.3.2 Well-posedness of the optimization problem

We here show that the function J is continuous over the compact set PεG,π. Then, by

the extreme value theorem, J has a (possibly non-unique) maximum point in the set and
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thus Problem 1 is well-posed.

Lemma 2.3.2.1 (Continuity of the return time entropy function) Given the compact set

PεG,π, the following statements hold:

1. there exist constants λmax ∈ (0, 1) and c > 0 such that

Fk(i, i) ≤ cλkmax, for all k ∈ Z>0, i ∈ {1, . . . , n};

2. the return time entropy functions H(Tii), i ∈ {1, . . . , n}, and J(P ) are continuous

on the compact set PεG,π; and

3. Problem 1 is well-posed in the sense that a global optimum exists.

Proof: Regarding (i), for k ≥ wmax+1, since the spectral radius ρ(Ψ) is a continuous

function of Ψ [54, Example 7.1.3], where Ψ is given in (2.10), and Ψ is a continuous

function of P , ρ(Ψ) is a continuous function of P . Hence, by Lemma 2.3.1.2(ii) and the

extreme value theorem, there exists a ρmax < 1 such that

ρmax = max
P∈PεG,π

ρ(Ψ) < 1.

Therefore, for k ≥ wmax + 1 and i ∈ {1, . . . , n}, by Lemma 1.3.5.2, there exist c1 > 0 and

ρmax < λmax < 1 such that

Fk(i, i) ≤ ‖ vec (F̃k−wmax+1)‖∞

= ‖(Ψ)k−wmax vec(F̃1)‖∞

≤ ‖(Ψ)k−wmax‖∞‖ vec(F̃1)‖∞

≤ c1λ
k−wmax
max =

c1

λwmax
max

λkmax.
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Let c = max{ c1
λwmax
max

, 1
λwmax
max
}, then we have for k ≥ wmax + 1,

Fk(i, i) ≤
c1

λwmax
max

λkmax ≤ cλkmax.

For k ≤ wmax,

cλkmax ≥ cλwmax
max ≥ 1 ≥ Fk(i, i).

Therefore, we have (i).

Regarding (ii), due to (i), there exists a positive integer K that does not depend on

the elements of PεG,π such that when k ≥ K, cλkmax ≤ e−1. Since x 7→ −x log x is an

increasing function for x ∈ [0, e−1], when k ≥ K,

−Fk(i, i) logFk(i, i) ≤ −cλkmax log(cλkmax) := Mk.

For k < K, −Fk(i, i) logFk(i, i) ≤ e−1 := Mk. Then

K−1∑
k=1

Mk =
K − 1

e
,

and

∞∑
k=K

Mk = −
∞∑
k=K

cλkmax log(cλkmax)

= −c log c
∞∑
k=K

λkmax − c log(λmax)
∞∑
k=K

kλkmax

= −c
( λKmax

1− λmax

log(cλKmax) +
λK+1

max

(1− λmax)2
log(λmax)

)
.

(2.12)
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Hence,

∞∑
k=1

Mk =
K−1∑
k=1

Mk +
∞∑
k=K

Mk <∞,

which holds for any i and any transition matrix in the compact set PεG,π. By Lemma 1.3.5.3,

the series −∑∞k=1 Fk(i, i) logFk(i, i) converges uniformly. Since the the limit of a uni-

formly convergent series of continuous function is continuous [41, Theorem 7.12], H(Tii)

is a continuous function on PεG,π. Finally, J(P ) is a finite weighted sum of continuous

functions H(Tii), thus J(P ) is a continuous function.

Regarding (iii), because J is a continuous function over the compact set PεG,π, the ex-

treme value theorem ensures that Problem 1 admits a global optimum solution (possibly

non-unique) and is therefore well-posed.

2.3.3 Optimal solution for complete graphs with unitary travel

times

We here provide: 1) an upper bound for the return time entropy with unitary travel

times based on the principle of maximum entropy and 2) the optimal solution to Prob-

lem 1 for the complete graph case with unitary travel times.

Lemma 2.3.3.1 (Maximum achieved return time entropy in a complete graph with uni-

tary weights) Given a strongly connected graph G with unitary weights and the compact

set PεG,π,

1. the return time entropy function is upper bounded by

J(P ) ≤ −
n∑
i=1

(πi log πi + (1− πi) log(1− πi));
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2. when the graph G is complete, the upper bound is achieved and the transition matrix

that maximizes the return time entropy J(P ) is given by P = 1nπ>.

Proof: Regarding (i), by Remark 2.2.2.3, in the case of unitary travel times, we

have E[Tii] = 1/πi. Thus, Tii is a discrete random variable over the set of positive integers

with fixed expectation 1/πi, whose entropy is bounded as shown in Lemma 1.3.5.4. For

any transition matrix P ∈ PεG,π, the return time entropy function J(P ) satisfies

J(P ) =
n∑
i=1

πiH(Tii) ≤
n∑
i=1

πi max
Tii
{H(Tii)}

=
n∑
i=1

πi
( 1

πi
log

1

πi
− (

1

πi
− 1) log(

1

πi
− 1)

)
= −

n∑
i=1

(
πi log πi + (1− πi) log(1− πi)

)
,

where the second line uses (1.4).

Regarding (ii), when the graph is complete and P = 1nπ>, the return time Tii follows

the geometric distribution:

P(Tii = k) = πi(1− πi)k−1.

Then by Lemma 1.3.5.4, we obtain the results.

2.3.4 Relations with the entropy rate of Markov chains

Given an irreducible Markov chain P with n nodes and stationary distribution π, the

entropy rate of P is given by

Hrate(P ) = −
n∑
i=1

πi

n∑
j=1

pij log pij.
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We next study the relationship between the return time entropy J with unitary travel

times and the entropy rate Hrate.

Theorem 2.3.4.1 (Relations between the return time entropy with unitary travel times

and the entropy rate) For all P in the compact set PεG,π where G has unitary travel times,

the return time entropy J(P ) and the entropy rate Hrate(P ) satisfy

Hrate(P ) ≤ J(P ) ≤ nHrate(P ), (2.13)

where n is the number of nodes in the graph G.

Remark 2.3.4.2 Theorem 2.3.4.1 establishes a large gap, possibly of size O(n), between

Hrate(P ) and J(P ) and, thereby, optimizing Hrate and J are two different matters alto-

gether.

The proof of Theorem 2.3.4.1 follows from Lemmas 2.3.4.4 and Lemma 2.3.4.6 below.

First, we show that the return time entropy is upper bounded by n times of the

entropy rate. As in [43], we define a Markov trajectory from state i to state j to be a

path with initial state i, final state j, and no intervening state equal to j. Let Tij be the

set of all Markov trajectories from state i to state j. Let P(`) denote the probability of

a Markov trajectory ` ∈ Tij; clearly
∑

`∈Tij P(`) = 1. Let Lij be the Markov trajectory

random variable that takes value ` in Tij with probability P(`). Finally, we define the

entropy of Lij by

H(Lij) = −
∑
`∈Tij

P(Lij = `) log P(Lij = `).

Lemma 2.3.4.3 (Entropy of Markov trajectories [43, Theorem 1]) For an irreducible

Markov chain with transition matrix P , the entropy H(Lii) of the random Markov trajec-
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tory from state i back to state i is given by

H(Lii) =
Hrate(P )

πi
.

Through the entropy of the Markov trajectories, we are able to establish the upper

bound of the return time entropy in (2.13).

Lemma 2.3.4.4 (Upper bound of the return time entropy by n times of the entropy rate)

Given the compact set PεG,π,

1. the return time entropy is upper bounded by

J(P ) ≤ nHrate(P ), for all P ∈ PεG,π; (2.14)

2. the equality in (2.14) holds if and only if any node of the graph G has the property

that all distinct first return paths have different length, i.e., the return paths are

distinguishable by their lengths, and in this case,

argmax
P∈PεG,π

J(P ) = argmax
P∈PεG,π

Hrate(P ).

Proof: Regarding (i), the return time random variable Tii is defined by lumping the

trajectories in Tii with the same length,

P(Tii = k) =
∑

`∈Tii,|`|=k

P(Lii = `), (2.15)
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where |`| denotes the length of the path `. Note that

−P(Tii = k) log P(Tii = k)

= −
( ∑
`∈Tii,|`|=k

P(Lii = `)
)

log
( ∑
`∈Tii,|`|=k

P(Lii = `)
)

≤ −
∑

`∈Tii,|`|=k

P(Lii = `) log P(Lii = `), (2.16)

where we used that (x + y) log(x + y) ≥ x log x + y log y for x, y ≥ 0. Since both the

return time entropy and the entropy of Markov trajectories are absolutely convergent,

we have

H(Tii) = −
∞∑
k=1

P(Tii = k) log P(Tii = k)

≤ −
∞∑
k=1

∑
`∈Tii,|`|=k

(
P(Lii = `) log P(Lii = `)

)
= H(Lii),

which along with Lemma 2.3.4.3 imply

J(P ) ≤ nHrate(P ).

Regarding (ii), the inequality in (2.14) comes from the inequality (2.16). If any node

of the graph G has the property that all distinct first return paths have different length,

then the summation on the right hand side of (2.15) only has one term and the inequality

in (2.16) becomes an equality. On the other hand, if for some node of G, there are distinct

return paths that have the same length, then one needs to lump the paths with the same

length and the inequality in (2.16) becomes strict. Moreover, if the equality holds, then

J(P ) is a constant n times of Hrate(P ) and thus they have the same maximizer.
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1 2

3 4

Figure 2.1: An example graph that satisfies the property in Lemma 2.3.4.4(ii)

Example 2.3.4.5 For the two-node case in Examples 2.2.2.4(i), the return time entropy

is twice the entropy rate. This is not a coincidence since the 2-node complete graph

satisfies the property in Lemma 2.3.4.4(ii). Figure 2.1 illustrates a graph with 4 nodes

that also satisfies the property in Lemma 2.3.4.4(ii).

In the rest of this subsection, we show that the return time entropy is lower bounded

by the entropy rate as shown in (2.13).

Lemma 2.3.4.6 (Lower bound of the return time entropy by the entropy rate) Given the

compact set PεG,π,

1. the return time entropy is lower bounded by

J(P ) ≥ Hrate(P ), for all P ∈ PεG,π; (2.17)

2. the equality in (2.17) holds if and only if P is a permutation matrix.

Proof: Regarding (i), note that the first hitting time Tij from state i to state j as

defined in (1.3) is a random variable , whose entropy is H(Tij). Then by definition, we
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have in the case of unitary travel times,

H(Tij) = −
∞∑
k=1

P(Tij = k) log P(Tij = k)

= −pij log pij − (
∑
k1 6=j

pik1pk1j) log(
∑
k1 6=j

pik1pk1j)

− (
∑

k1,k2 6=j

pik1pk1k2pk2j) log(
∑

k1,k2 6=j

pik1pk1k2pk2j)

− · · · − (
∑

k1···km 6=j

pik1 · · · pkmj) log(
∑

k1···km 6=j

pik1 · · · pkmj)− · · · .

Since x 7→ −x log x is a concave function, for xi ≥ 0 and for coefficients αi ≥ 0 satisfying∑n
i=1 αi = 1, we have

−(
n∑
i=1

αixi) log(
n∑
i=1

αixi) ≥ −
n∑
i=1

αi(xi log xi). (2.18)

Thus, for m ≥ 1,

− P(Tij = m+ 1) log P(Tij = m+ 1)

= −(
∑

k1···km 6=j

pik1 · · · pkmj) log(
∑

k1···km 6=j

pik1 · · · pkmj)

= −(
∑
k1 6=j

pik1
∑

k2···km 6=j

pk1k2 · · · pkmj + pij · 0) · log(
∑
k1 6=j

pik1
∑

k2···km 6=j

pk1k2 · · · pkmj + pij · 0)

≥ −
∑
k1 6=j

pik1(
∑

k2···km 6=j

pk1k2 · · · pkmj · log(
∑

k2···km 6=j

pk1k2 · · · pkmj))

= −
∑
k1 6=j

pik1P(Tk1j = m) log P(Tk1j = m),

(2.19)

where the inequality is due to equation (2.18). Summing both sides of (2.19) over m for
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m ≥ 1, we have

H(Tij) ≥ −pij log pij +
∑

k1 6=j
pik1H(Tk1j)

= −pij log pij +
∑n

k1=1
pik1H(Tk1j)− pijH(Tjj).

(2.20)

Let H(T ) be a matrix whose (i, j)-th element is H(Tij). Then equation (2.20) can be

written in the matrix form

H(T ) ≥ −P ◦ logP + PH(T )− Pdiag(H(T )), (2.21)

where the inequality and the log function are entry-wise. Multiplying π> from the left

and 1n from the right on both sides of (2.21), we have

π>diag(H(T ))1n ≥ −π>(P ◦ logP )1n,

which is J(P ) ≥ Hrate(P ).

Regarding (ii), if P is a permutation matrix, then J(P ) = Hrate(P ) = 0. On the other

hand, if P is not a permutation matrix, then there exist 2 or more nonzero elements on

at least one row of P . In this case, the inequality in (2.19) is strict for that row for some

m, which carries over to (2.20). Thus, J(P ) > Hrate(P ).

2.4 Truncated return time entropy and its optimiza-

tion via gradient descent

We now introduce the truncated and conditional return time entropy and setup a

gradient descent algorithm.
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2.4.1 The truncated and conditional return time entropy

In practical applications, we may discard events occurring with extremely low proba-

bility. In what follows, we study the return time distribution and its entropy conditioned

upon the event that the return time is upper bounded. We first introduce a truncation

accuracy parameter 0 < η � 1 that upper bounds the cumulative probabilities of very

large return times and we define a duration Nη ∈ Z>0 by

Nη =
⌈ wmax

ηπmin

⌉
− 1, (2.22)

where πmin = mini∈{1,...,n}{πi} and d·e is the ceiling function. It is an immediate conse-

quence of the Markov’s inequality that, given the fixed stationary distribution π, for all

i ∈ {1, . . . , n},

P(Tii ≥ Nη + 1) ≤ E[Tii]

Nη + 1
≤ wmax

πi(Nη + 1)
≤ η,

where we used (2.2)

E[Tii] =
π>(P ◦W )1n

πi
≤ wmax

πi
.

We now define the conditional return time and its entropy.

Definition 2.4.1.1 (Conditional return time and its entropy) Given P ∈ PεG,π and a

duration Nη, the conditional return time Tii |Tii ≤ Nη of state i is defined by

Tii |Tii ≤ Nη = min
{ k−1∑
k′=0

wXk′Xk′+1
|
k−1∑
k′=0

wXk′Xk′+1
≤ Nη, X0 = i,Xk = i, k ≥ 1

}
.

with probability mass function

P(Tii = k |Tii ≤ Nη) =
Fk(i, i)∑Nη
k=1 Fk(i, i)

.
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Moreover, the conditional return time entropy function Jcond,η : PεG,π 7→ R≥0 is

Jcond,η(P ) =
n∑
i=1

πiH(Tii |Tii ≤ Nη) = −
n∑
i=1

πi

Nη∑
k=1

Fk(i, i)
Nη∑
l=1

Fl(i, i)

log
Fk(i, i)

Nη∑
l=1

Fl(i, i)

.

Given the duration Nη, Jcond,η(P ) is a finite sum of continuously differentiable func-

tions and thus more tractable than the original return time entropy function J(P ). Next,

we introduce a truncated entropy that is even simpler to evaluate.

Definition 2.4.1.2 (Truncated return time entropy function) Given a compact set PεG,π
and the duration Nη, define the truncated return time entropy function Jtrunc,η : PεG,π 7→

R≥0 by

Jtrunc,η(P ) = −
n∑
i=1

πi

Nη∑
k=1

Fk(i, i) logFk(i, i).

The following lemma shows that, for small η, the truncated return time entropy

Jtrunc,η(P ) is a good approximation for the conditional return time entropy Jcond,η(P ).

Furthermore, when η is sufficiently small, the truncated return time entropy Jtrunc,η(P )

is also a good approximation for the original return time entropy function J(P ).

Lemma 2.4.1.3 (Approximation bounds) Given P ∈ PεG,π and the truncation accuracy

η, we have

1. the conditional return time entropy is related to the truncated return time entropy

by

Jtrunc,η(P ) + log(1− η) < Jcond,η(P ) <
Jtrunc,η(P )

1− η ; (2.23)

2. J(P ) ≥ Jtrunc,η(P ) holds trivially and if

η ≤ wmax log λmax

πmin(log λmax − log c− 1)
, (2.24)
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then

J(P )− Jtrunc,η(P ) ≤ c log(λ−1
max)

(1− λmax)2
(1 +Nη)λ

Nη
max, (2.25)

where c and λmax are given as in Lemma 2.3.2.1(i);

3. J(P ) = lim
η→0+

Jcond,η(P ) = lim
η→0+

Jtrunc,η(P ).

Proof: Regarding (i), for Jcond,η(P ), we have

Jcond,η(P ) = −
n∑
i=1

πi

Nη∑
k=1

Fk(i, i)
Nη∑
l=1

Fl(i, i)

log
Fk(i, i)

Nη∑
l=1

Fl(i, i)

= −
n∑
i=1

πi
( Nη∑k=1

Fk(i, i) logFk(i, i)

Nη∑
k=1

Fk(i, i)

− log

Nη∑
k=1

Fk(i, i)
)
.

On one hand,

Jcond,η(P ) > −
n∑
i=1

πi
( Nη∑
k=1

Fk(i, i) logFk(i, i)− log

Nη∑
k=1

Fk(i, i)
)

≥ −
n∑
i=1

πi

Nη∑
k=1

Fk(i, i) logFk(i, i) + log(1− η). (2.26)

On the other hand,

Jcond,η(P ) < −
n∑
i=1

πi
1

Nη∑
l=1

Fl(i, i)

Nη∑
k=1

Fk(i, i) logFk(i, i)

≤ − 1

1− η
n∑
i=1

πi

Nη∑
k=1

Fk(i, i) logFk(i, i).

(2.27)

Combining (2.26) and (2.27), we have (2.23).

Regarding (ii), if η satisfies (2.24), we have cλ
Nη
max ≤ e−1. Then, following the same
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arguments as in the proof of Lemma 2.3.2.1(ii) and replacing K in (2.12) with Nη, we

have

J(P )− Jtrunc,η(P ) ≤ −c
(

λ
Nη
max

1− λmax

log(cλNηmax) +
λ
Nη+1
max

(1− λmax)2
log(λmax)

)

≤ − cλ
Nη
max

(1− λmax)2
((Nη + λmax) log(λmax) + log(c))

≤ − cλ
Nη
max

(1− λmax)2
(Nη log(λmax) + log(λmax))

=
c log(λ−1

max)

(1− λmax)2
(1 +Nη)λ

Nη
max.

(2.28)

Regarding (iii), the results follow from (2.23) and (2.28), respectively. Specifically, in

(2.28), since 0 < λmax < 1, the error J(P )− Jtrunc,η(P ) goes to 0 exponentially fast as η

goes to 0 (Nη →∞).

2.4.2 The gradient of the truncated return time entropy

Lemma 2.4.1.3 establishes how Jtrunc,η(P ) is a good approximation to both of J(P )

and Jcond,η(P ). Since it is also easier to compute Jtrunc,η(P ) than the other two quantities,

we focus on optimizing Jtrunc,η(P ) by computing its gradient.

For k ∈ Z>0, define Gk = ∂ vec(Fk)
∂ vec(P )

∈ Rn
2×n2

and note

Gk =

[
∂ vec(Fk)
∂p11

∂ vec(Fk)
∂p21

· · · ∂ vec(Fk)
∂p(n−1)n

∂ vec(Fk)
∂pnn

]
. (2.29)

Lemma 2.4.2.1 (Gradient of the truncated return time entropy function) Given P ∈

37



Markov Chains with Maximum Return Time Entropy Chapter 2

PεG,π, the matrix sequence Gk in (2.29) satisfies the iteration for k ∈ Z>0,

Gk = diag(vec(1{k1n1>n=W})) +
wmax∑
i=1

ΦiGk−i

+
n∑
i=1

n∑
j=1

(EjF
>
k−wij ⊗ In)diag(vec(eie

>
j ))1{wij>0},

(2.30)

where the initial conditions are Gk = 0n2×n2 for k ≤ 0. Moreover, the vectorization of

the gradient of Jtrunc,η satisfies

vec
(∂Jtrunc,η(P )

∂P

)
= −

n∑
i=1

πi

Nη∑
k=1

∂
(
Fk(i, i) logFk(i, i)

)
∂Fk(i, i)

G>k e(i−1)n+i, (2.31)

where e(i−1)n+i ∈ Rn
2

and

∂Fk(i, i) logFk(i, i)

∂Fk(i, i)
=


1 + log(Fk(i, i)), if Fk(i, i) > 0,

0, if Fk(i, i) = 0.

Proof: For k ∈ Z>0, according to (2.3), we have for puv > 0,

∂ vec(Fk)

∂puv
= vec(eue

>
v )1{k=wuv} + (Ev ⊗ eue

>
v ) vec(Fk−wuv)

+
n∑
i=1

n∑
j=1

pij(Ej ⊗ eie
>
j )
∂ vec(Fk−wij)

∂puv
,

where the second term on the right hand side satisfies

(Ev ⊗ eue
>
v ) vec(Fk−wuv) = vec(eue

>
v Fk−wuvEv) = (EvF

>
k−wuv ⊗ In) vec(eue

>
v ).

Stacking ∂ vec(Fk)
∂puv

’s in a matrix as (2.29), we obtain (2.30).

Since Jtrunc,η(P ) only involves Fk(i, i) for i = {1, . . . , n}, we only need the corre-
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sponding columns in G>k to compute the gradient, which is realized by multiplying the

standard unit vector as in (2.31).

Remark 2.4.2.2 Iteration (2.30) is an exponentially stable discrete-time delayed linear

system subject to a finite number of impulse inputs and an exponentially vanishing input.

Hence, the state Gk → 0 exponentially fast as k →∞.

2.4.3 Optimizing the truncated entropy via gradient projection

Motivated by the previous analysis, we consider the following problem.

Problem 2 (Maximization of the truncated return time entropy) Given a strongly con-

nected directed graph G and the stationary distribution π, pick a minimum transition

probability ε > 0 and a truncation accurate parameter η > 0. Find P ∈ PεG,π which maxi-

mizes the truncated return time entropy Jtrunc,η(P ), i.e., solve the following optimization

problem:

maximize Jtrunc,η(P )

subject to P ∈ PεG,π

To solve numerically this nonlinear program, we exploit the results in Lemma 2.4.2.1

and adopt the gradient projection method as presented in [55, Chapter 2.3]:

1: select: minimum transition probability ε� 1, truncation accuracy η � 1, and initial

condition P0 in PεG,π
2: for iteration parameter s = 0 : (number-of-steps) do

3: {Gk}k∈{1,...,Nη} := solution to iteration (2.30) at Ps

4: ∆s := gradient of Jtrunc,η(Ps) via equation (2.31)

5: Ps+1 := projectionPεG,π(Ps + (step size) ·∆s)

6: end for
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We analyze the computational complexity of this algorithm. To compute step 3:, we

need to evaluate the right-hand side of equation (2.30) by computing three terms. For

the first term, we need to do m comparisons, where m is the number of edges in the graph

(i.e., the number of variables in the transition matrix), and it takes O(m) elementary

operations. For the second term, note that the matrices Φi ∈ Rn
2×n2

introduced in equa-

tion (2.11) can be precomputed and is block diagonal with n blocks of size n × n. Also

note that Gk ∈ Rn
2×n2

has only m nonzero columns. Thus, we need O(wmaxmn
3) opera-

tions. For the third term, Fk is updated by equation (2.9), which requires O(wmaxn
3) and

is the main computational cost. Therefore, it takes O(wmaxmn
3) to compute one update

of iteration (2.30). Thus, it takes O(Nηwmaxmn
3) elementary operations to complete

step 3:. In step 5:, we need to solve a least square problem with linear equalities and

inequalities constraints, which requires O(m3) [56].

Remark 2.4.3.1 (Coprime travel times) The return time entropy of states does not

change when we scale the travel times on all edges simultaneously by the same factor.

Therefore, we could preprocess the travel times on the graph to make them coprime, and

this helps reduce the computational cost.

2.5 Numerical results

In this section, we provide numerical results on the computation of the maximum

return time entropy chain (Subsection 2.5.1) and its application to robotic surveillance

problems (Subsection 2.5.2). We compute and compare three chains:

1. the Markov chain that maximizes the return time entropy (solution of Problem 1),

abbreviated as the MaxReturnEntropy chain. This chain may be computed for a

directed graph with arbitrary integer-valued travel times. Since we do not have a
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way to solve Problem 1 directly, the MaxReturnEntropy chain is approximated by

the solution of Problem 2, which is obtained via the gradient projection algorithm.

Unless otherwise stated, we choose the truncation accuracy η = 0.1. Note that

(2.22) is quite conservative and the actual probabilities being discarded are much

less than 0.1. In fact, the actual truncation error of all the MaxReturnEntropy

chains computed in this section is less than 10−4;

2. the Markov chain that maximizes the entropy rate, abbreviated as the MaxEn-

tropyRate chain. This chain can be computed for a directed graph with unitary

weights via solving a convex program. Further, if the graph is undirected, the

MaxEntropyRate chain can be computed efficiently using the method in [26];

3. the Markov chain that minimizes the (weighted) Kemeny constant, abbreviated

as the MinKemeny chain [24]. The MinKemeny chain is obtained by solving the

following optimization problem.

Problem 3 (Minimization of the Kemeny constant) Given a strongly connected

directed weighted graph G = (V, E ,W ) and the stationary distribution π > 0, the

minimization of the Kemeny constant is as follows.

minimize
n∑
i=1

n∑
j=1

πiπjE[Tij]

subject to pij ≥ 0 if (i, j) ∈ E ,

pij = 0 if (i, j) /∈ E ,

P1n = 1n,π
>P = π>.

The MinKemeny chain has the minimum mean first passage time and travels on

the graph quickly. This chain may be computed for a directed graph with arbitrary
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(a) MaxReturnEntropy chain on
ring graph
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(b) MaxEntropyRate chain on
ring graph
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(c) MinKemeny chain on ring
graph

Figure 2.2: Return time distributions of node 1 (i.e., top node) on an 8-node ring
graph with stationary distribution π = [1/12, 1/6, . . . , 1/12, 1/6]>. Although the ex-
pectations of the first return time distributions in the figure are the same, the his-
togram is remarkably different for different chains. Specifically, for the nonreversible
MaxRetrunEntropy chain, the distribution is bimodal and generates more entropy.
The node size is proportional to the stationary distribution.

travel times via solving a nonconvex program. We compute this chain using the

solver implemented in the KNITRO/TOMLAB package.

2.5.1 Computation, comparison and intuitions

We divide this subsection into two parts. In the first part, we first compare 3 chains

on graphs that have unitary travel times. We then summarize several observations in

computing the MaxReturnEntropy chain. Finally, we visualize and plot the chains as well

as the return time distributions. In the second part, we compare the MaxReturnEntropy

chain with the MinKemeny chain on a realistic map taken from [18, Section 6.2] with

travel times.

Chains on graphs with unitary travel times

Comparison: We consider 2 simple undirected graphs and solve for the MaxRetur-

nEntropy chain, the MaxEntropyRate chain and the MinKemeny chain for each case.

We compare the return time entropy, the entropy rate, and the Kemeny constant of
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4× 4 grid
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(c) MinKemeny chain on 4 × 4
grid

Figure 2.3: Return time distributions of node 6 (i.e., second node on the second row)
on a 4 × 4 grid with stationary distribution π proportional to the node degree and
unitary travel times. The node size is proportional to the stationary distribution.

these chains in Table 2.1. The stationary distribution of the ring graph is set to be

π = [1/12, 1/6, . . . , 1/12, 1/6]>, and the stationary distribution of grid is proportional to

the degree of nodes. To evaluate the value of J(P ), we set η = 10−2. From the table, we

notice that the MaxReturnEntropy chain has the highest value of the return time entropy

in both cases. It also has relatively good performance in terms of the entropy rate and

the Kemeny constant, which indicates that the MaxReturnEntropy chain is potentially a

good combination of speed (expected traversal time) and unpredictability. Furthermore,

it is clear that (2.13), which characterizes the relationship between the entropy rate and

the return time entropy, holds.

Table 2.1: Comparison between different chains on different graphs

Graph Markov chains J(P ) Hrate(P )
Kemeny
constant

8-node ring
MaxReturnEntropy 2.4927 0.8698 10.0479
MaxEntropyRate 2.3510 0.9883 19.5339

MinKemeny 1.9641 0.4621 6.1667

4-by-4 grid
MaxReturnEntropy 3.6539 0.9491 16.3547
MaxEntropyRate 3.2844 1.4021 30.8661

MinKemeny 2.0990 0.2188 10.0938

Observations : In computing the MaxReturnEntropy chain, we observe some interest-
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ing properties of our problem. First, when solving Problem 2 by the gradient projection

method with different initial conditions, we find different optimal solutions, and they

have slightly different optimal values. This suggests that Problem 1 is unlikely to be

a convex problem. Secondly, the global optimal solution to Problem 1 is possibly not

unique in general. For instance, for an undirected ring graph with even number of nodes

and certain stationary distribution, exchanging the probability of going right and that of

going left for all nodes does not change the return time entropy. Thirdly, the optimal so-

lution to Problem 1 is likely to be nonreversible because none of the approximate optimal

solutions we have encountered are reversible. This again indicates that the MaxRetur-

nEntropy chain is a good combination of unpredictability and speed. Fourth, even if we

set the minimum transition probability ε = 0, the MaxReturnEntropy chain is always

irreducible.

Intuitions : In order to provide intuitions for the maximization of the return time

entropy, we compare and plot the chains as well as the return time distribution of a

same node on the 8-node ring graph and the 4 × 4 grid graph in Fig. 2.2 and Fig. 2.3,

respectively. Since the stationary distribution is fixed and identical for all chains in each

case, the expectations of the probability mass functions in each figure are the same. From

the figures, we note that for the MaxReturnEntropy chain, the return time distribution is

reshaped so that the distribution spreads out and it is more difficult to predict the return

time. In contrast, the return time distribution for the MinKemeny chain has a predictable

pattern and the return time probability is constantly 0 for some time intervals. Moreover,

from the visualization of the chains, we notice that the MaxReturnEntropy chain has a

net flow on the graph, which again indicates its nonreversibility.

MaxReturnEntropy and MinKemeny on a realistic map

In this part, we compare the MaxReturnEntropy chain with the MinKemeny chain
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on a realistic map with travel times. The problem data is taken from [18, Section 6.2]:

a small area in San Francisco (SF) is modeled by a fully connected directed graph with

12 nodes and by-car travel times on edges measured in seconds. The map is shown in

Fig. 2.4. The importance of the a location (node) is characterized by the the number of

crimes recorded at that place during a specific period, and the surveillance agent should

visit the places with higher crime rate more often. The visit frequency is set to be
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For simplicity, we quantize the travel times by treating a minute as one unit of time,

i.e., dividing the travel times by 60 and round the result to the smallest integer that is

larger than it, and by doing so, we have wmax = 9. The pairwise travel times are recorded

in Table 2.2. 12/22/2018 SF map - Google My Maps

https://www.google.com/maps/d/u/0/embed?hl=en&mid=1CFwUUzfzFuvtY4pjp-lJD-_5_adCTzT4&ll=37.796732220505966%2C-122.41072835667319… 1/1

A

B

C

D

E

F

G

H

I

J

K

L

SF map

Map data ©2018 Google Terms 500 ft

Figure 2.4: San Francisco (SF) crime map from [18, Section 6.2].

First, we compare three key metrics of the MaxReturnEntropy chain and MinKemeny

chain. The results are reported in Table 2.3. It can be observed that the MaxRetur-

nEntropy chain is much better than the MinKemeny chain regarding the return time

entropy and the entropy rate. This better performance in terms of the unpredictability is
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Table 2.2: The quantized pairwise by-car travel times on SF crime map

Location A B C D E F G H I J K L

A 1 3 3 5 4 6 3 5 7 4 6 6
B 3 1 5 4 2 4 4 5 5 3 5 5
C 3 5 1 7 6 8 3 4 9 4 8 7
D 6 4 7 1 5 6 4 7 5 6 6 7
E 4 3 6 5 1 3 5 5 6 3 4 4
F 6 4 8 5 3 1 6 7 3 6 2 3
G 2 5 3 5 6 7 1 5 7 5 7 8
H 3 5 2 7 6 7 3 1 9 3 7 5
I 8 6 9 4 6 4 6 9 1 8 5 7
J 4 3 4 6 3 5 5 3 7 1 5 3
K 6 4 8 6 4 2 6 6 4 5 1 3
L 6 4 6 6 3 3 6 4 5 3 2 1

obtained at the cost of being slower as indicated by the larger weighted Kemeny constant.

Table 2.3: Comparison between different chains on SF crime map

Markov chains J(P ) Hrate(P )
Weighted Kemeny

constant
MaxReturnEntropy 5.0078 1.7810 63.6007

MinKemeny 2.4678 0.6408 24.2824

We also plot the return time distribution of location A in Fig. 2.5. Apparently, the

MaxReturnEntropy chain spreads the return time probabilities over the possible return

times and it is hard to predict the exact time the surveillance agent comes back to the

location. In contrast, the MinKemeny chain tries to achieve fast traversal on the graph

and the return times distribute over a few intervals.

2.5.2 Application to the Robotic Surveillance Problem

In this subsection, we provide simulation results in the application of the robotic

surveillance.

Setup: Consider the scenario where a single agent performs the surveillance task by
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(a) MaxReturnEntropy chain on SF crime map
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(b) MinKemeny chain on SF crime map

Figure 2.5: Return time distributions of location A on SF crime map. Note that the
scales of the vertical axes are different in the two figures.

moving randomly according to a Markov chain on the road map. The intruder is able to

observe the local behaviors of the surveillance agent, e.g., presence/absence and duration

between visits, and he/she plans and decides the time of attack so as to avoid being

captured. It takes a certain amount of time for the intruder to complete an attack, which

is called the attack duration of the intruder. A successful detection/capture happens

when the surveillance agent and the intruder are at the same location and the intruder

is attacking.

Intruder model (success probability maximizer with bounded patience): Consider a

rational intruder that exploits the return time statistics of the Markov chains and chooses

an optimal attack time so as to minimize the probability of being captured. The intruder

picks a node i to attack randomly according to the stationary distribution, and it collects

and learns the probability distribution of node i’s first return time. Suppose the intruder

and the surveillance agent are at the same node i at the beginning and the attack duration

of the intruder is τ . If the intruder observes that the surveillance agent leaves the node

and does not come back for s periods, he/she can attack with the probability of being
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captured given by
τ∑
k=1

P(Tii = s+ k |Tii > s). (2.32)

Mathematically speaking, (2.32) is the conditional cumulative return probability for the

surveillance agent. Specifically for s = 0, (2.32) is the capture probability when the

intruder attacks immediately after the agent leaves the node. Then, the optimal time of

attack si for the intruder is given by

si = argmin
0≤s≤Si

{
τ∑
k=1

P(Tii = s+ k |Tii > s)}. (2.33)

The reason there is an upper bound Si on s is that the event Tii > s happens with very

low probability when s is large, and the intruder may be unwilling to wait for such an

event to happen. Let δ ∈ (0, 1) be the degree of impatience of the intruder, then Si can

be chosen as the minimal positive integer such that the following holds,

P(Tii ≥ Si) ≤ δ,

where a smaller δ implies a larger Si and a more patient intruder. In other words, when

δ is small, the intruder is willing to wait for a rare event to happen. Note that the value

of Si is also dependent on the node i that the intruder chooses to attack, and thus the

argmin in (2.33) is over different ranges when the intruder attacks different nodes. In

summary, the intruder is dictated by two parameters: the attack duration τ and the

degree of impatience δ, and the strategy for the intruder is as follows: waits until the

event that the surveillance agent leaves and does not come back for the first si steps

happens, then attacks immediately.

From the surveillance point of view, the probability of capturing the rational intruder
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when he/she attacks node i is

Pi(Capture) =
τ∑
k=1

P(Tii = si + k |Tii > si),

and the performance of the Markov chains can be evaluated by the total probability of

capture as follows

P(Capture) =
n∑
i=1

πiPi(Capture). (2.34)

Simulation results : Designing an optimal defense mechanism for the rational intruder

is an interesting yet challenging problem in its own. Instead, we use the MaxReturnEn-

tropy chain as a heuristic solution and compare its performance with other chains. In

the following, we consider two types of graphs: the grid graph and the SF crime map.

The degree of impatience of the intruder is set to be δ = 0.1 in this part.

We first consider a 4 × 4 grid and plot the probability of capture defined by (2.34)

for the chains in comparison in Fig. 2.6. It can be observed that, when defending

against the rational intruder described above, the MaxReturnEntropy chain outperforms

all other chains when the attack duration of the intruder is small or moderate. The un-

predictability in the return time prevents the rational intruder from taking advantage of

the visit statistics learned from the observations. The MinKemeny chain, which empha-

sizes a faster traversal, has a hard time capturing the intruder when the attack duration

of the intruder is small. This is because the agent moves in a relatively more predictable

way, and the return time statistics may have a pattern that could be exploited. The

MaxEntropyRate chain has the in-between performance.

For the SF crime map, we use the same problem data as described in Subsection 2.5.1.

Since the MaxEntropyRate chain does not generalize to the case when there are travel

times, we compare the performance of the MaxReturnEntropy chain and the MinKemny
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Figure 2.6: Performance of different chains on a 4× 4 grid.

chain. Again, from Fig. 2.7, the MaxReturnEntropy chain outperforms the MinKemeny

chain when the attack duration of the intruder is relatively small.
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Figure 2.7: Performance of different chains on the SF crime map.

Summary : The simulation results presented in this subsection demonstrate that the

MaxReturnEntropy chain is an effective strategy against the intruder with reasonable

amount of knowledge and level of intelligence, particularly when the attack duration of

the intruder is small or moderate. With the property of both unpredictability and speed,

the MaxReturnEntropy chain should also work well in a much more broader range of
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scenarios.

2.6 Conclusion

In this chapter, we proposed and optimized a new metric that quantifies the unpre-

dictability of Markov chains over a directed strongly connected graph with travel times,

i.e., the return time entropy. We characterized the return time probabilities and showed

that optimizing the return time entropy is a well-posed problem. For the case of unitary

travel times, we established an upper bound for the return time entropy by using the

maximum entropy principle and obtained an analytic solution for the complete graph.

We connected the return time entropy with the well-known entropy rate of Markov chains

and showed that the return time entropy is lower bounded by the entropy rate and upper

bounded by n times the entropy rate. In order to solve the optimization problem numeri-

cally, we approximated the return time entropy as well as a practically useful conditional

return time entropy by the truncated return time entropy. We derived the gradient of

the truncated return time entropy and proposed to solve the problem by the gradient

projection method. We applied our results to the robotic surveillance problem and found

that the chain with maximum return time entropy is a good trade-off between speed and

unpredictability, and it performs better than several existing chains against a rational

intruder.

A number of problems are still open. First of all, a simple closed-form expression

for the return time entropy would enable us to establish more properties of the objective

function and thus make the optimization problem more tractable. Second, it is interesting

to design a best Markov chain directly that defends against the intruder model proposed

in this chapter. Third, how to generalize the results to the case of multiple robots remains

to be investigated. Fourth, we believe there are more application scenarios for Markov
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chains where the return time entropy is an appropriate quantity to optimize.
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Chapter 3

The Meeting Time of Random

Walks

3.1 Introduction

3.1.1 Problem description and motivation

In this chapter, we examine the meeting time between two moving agents modeled by

discrete-time Markov chains. This problem is motivated by a pursuer trying to intercept

a moving evader. The meeting time, in the context of this chapter, describes the average

time till a first encounter occurs between the pursuer and the evader given initial posi-

tions of the pursuer and the evader. This notion of two adversarial mobile agents wherein

one of the agents is trying to intercept the other appears under several names: pursuit-

evasion games [57], predator-prey interactions [58], cops and robbers games [59, 60] and

princess-monster games [61]. Our primary motivation is the design of stochastic surveil-

lance strategies for quickest detection of the mobile intruder. Single and multi-agent

surveillance strategies appear in environmental monitoring [62], minimizing emergency
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vehicle response times [63], traffic routing and border patrol [64]. More broadly, random

walks on networks appear in many areas of research: they are used to describe effective

resistance in electrical networks [65], for link-prediction and information propagation in

social networks [66], and in designing search algorithms on networks [67]. Aside from

our proposed application to stochastic surveillance, the meeting time has direct applica-

tions to information flow in distributed networks [68], self-stabilization of tokens [69] and

measuring similarity of objects [70].

3.1.2 Literature review

Early interest in meeting times was motivated by applications to self-stabilizing to-

ken management schemes [71]. In a token management scheme, only one of the many

processors on a distributed network is enabled to change state or perform a particu-

lar task, and this processor is said to possess the token. If two tokens meet then they

collapse into a single token. Israeli and Jalfon suggest a scheme in which the token is

passed randomly to a neighbor [69]. In a general connected undirected graph they were

able to obtain an exponential bound for the meeting time of two tokens in terms of the

maximum degree and the diameter of the graph. Coppersmith et al. [72] improved the

bound to be polynomial in the number of nodes by bounding the meeting time in terms

of the pairwise hitting time from the starting nodes of the tokens to hidden vertices.

Bshouty et al. [73] obtain a bound on the meeting time of several such tokens in terms of

the meeting time of two tokens. Bounds for meeting times of two identical independent

continuous-time reversible Markov chains in terms of the pairwise hitting times of the

chains are mentioned in [74].

Several metrics have been used to describe single and multiple random walks on

graphs. One closely related metric is the hitting time which is the time taken by a single
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random walker to travel between nodes of a graph. The hitting time of a finite irreducible

Markov chain appeared in [75] and [38]. Several bounds have been obtained and many

closed-form formulas exist to compute the hitting time for various graph topologies [76].

The authors in [25] obtain a closed-form solution for the hitting time of multiple random

walkers. Another related notion is the coalescence time of multiple random walkers widely

studied in the context of voter models [77]. Two random walks coalesce into one when

they share the same node. Bounds for the coalescence time in terms of the worst case

pairwise hitting times are discussed in [37]. More recently, Cooper et al. bounded the

coalescence time using the second largest eigenvalue of the transition matrix [77].

Stochastic vehicle routing strategies have the desirable property that an intruder

cannot predictably plan a path to avoid surveillance agents. The authors in [24, 26, 27] use

Markov chains to design surveillance strategies. A novel convex optimization formulation

is used to design strategies with minimum mean hitting time in [24]. In [78] the mean

hitting time in conjunction with multiple parallel CUSUM algorithms at various nodes

of interest in the graph are used to describe a policy which ensures quickest average

time to the detection of anomalies. In the strategies mentioned in these works the

intruder/anomaly is assumed to be stationary. The policies for surveillance derived in

this chapter are for mobile intruders modeled by Markov chains.

3.1.3 Statement of Contributions

Given the above, there are several contributions in this chapter. First, we provide a set

of necessary and sufficient conditions which characterize when the meeting times between

a single pursuer and a single evader is finite for arbitrary Markov chains. The bounds

on meeting times in the literature were usually obtained for meeting times between

ergodic Markov chains where they are guaranteed to be finite. We extend the notion to
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generic transition matrices as opposed to equal-neighbor models, and we discuss when

the meeting times are finite based on the existence of walks of equal length to common

nodes. Second, we provide a closed-form solution to the meeting times of two independent

Markov chains by utilizing the Kronecker product of the transition matrices. Third,

we use this closed-form expression to perform theoretical and simulation studies and

design fast Markov chain strategies for the pursuer to capture, in minimum expected

time, different moving evaders in different prototypical graphs. In particular, in ring

and complete graphs, we rigorously show a few qualitative features of the design. For

example, being fast for the pursuer is not always necessary and the mean capture time

may be indifferent to the pursuer’s strategy for certain evaders.

This chapter provides the first closed-form solutions for the computation of the meet-

ing times between two agents moving on a graph according to discrete-time Markov

chains. Two closely related references are as follows: first, a system of equations for com-

puting meeting times for independent identical random walks on graphs with irreducible

transition matrices, where the transition matrices are limited to equal-neighbor weights,

were obtained using Laplace transform techniques in [79]. Second, Kronecker products

and vectorization techniques have been used to compute the Simrank of information net-

works which has interpretations in terms of meeting times [80]. In contrast, we consider

absolutely generic transition matrices which need not be identical.

3.1.4 Organization

This chapter is organized as follows. In Section 3.2, we derive formulas for the meeting

times of pairs of Markov chains and obtain conditions on the finiteness of meeting times.

In Section 3.3, we present simulation results on optimal Markov chain strategies for the

mobile pursuer. Finally, we conclude the chapter in Section 3.4.
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3.2 Meeting times of two randomly moving agents

In this section, we formulate the meeting time between a pursuer and an evader

moving according to discrete-time Markov chains. We provide necessary and sufficient

conditions for the finiteness of the meeting times given initial starting positions of the

agents on the graph.

3.2.1 The meeting time of two Markov chains

Consider the pursuer and evader performing random walks on a strongly connected

graph G = (V, E). The transition matrices Pp of the pursuer and Pe of the evader satisfy

p
(p)
i,j , p

(e)
i,j ≥ 0 if (i, j) ∈ E and p

(p)
i,j , p

(e)
i,j = 0 if (i, j) /∈ E .

Let X
(p)
t , X

(e)
t ∈ {1, . . . , n} be the locations of the two agents at time t ∈ {0, 1, 2, . . . },

respectively. For any two starting nodes i and j, the first meeting time from i and j,

denoted by Ti,j, is the first time that two random walkers meet at a common node when

starting from nodes i and j. Formally,

Ti,j = min{t ≥ 1 | X(p)
t = X

(e)
t , X

(p)
0 = i and X

(e)
0 = j}.

Note that the first meeting time can be infinite and it is easy to construct examples

in which the two agents never meet. Moreover, by definition, if the two agents are at

the same location initially, i.e., i = j, then Ti,j is the first time they meet again. Let

mi,j = E[Ti,j] be the expected first meeting time starting from nodes i and j. For brevity,

we shall refer to the expected first meeting time as just the meeting time.

Theorem 3.2.1.1 (The meeting time of two Markov chains) Consider two Markov

chains with transition matrices Pp and Pe defined on a digraph G = (V, E) with the node

set V = {1, . . . , n}. The following statements are equivalent:
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1. for each pair of nodes i, j, the meeting time mi,j from nodes i and j is finite;

2. for each pair of nodes i, j, there exists a node k ∈ {1, . . . , n} and a length ` ≥ 0

such that a walk of length ` exists from i to k for Pp and a walk of length ` exists

from j to k for Pe;

3. for each pair of nodes i, j, there exists a walk for the stochastic matrix Pe⊗Pp from

node (j, i) to a node (k, k) in the Kronecker graph, for some k ∈ {1, . . . , n};

4. the row-substochastic matrix (Pe⊗Pp)E with E = In2 − diag(vec(In)) has spectral

radius less than 1 and the vector of meeting times is given by

vec(M) = (In2 − (Pe⊗Pp)E)−11n2 , (3.1)

where M = [mi,j].

Proof: For the nodes i and j, the first meeting time satisfies the recursive formula

Ti,j =


1, w.p.

∑
k p

(p)
i,k p

(e)
j,k,

Tk1,h1 + 1, w.p. p
(p)
i,k1
p

(e)
j,h1

, k1 6= h1.

Taking the expectation we have

mi,j =
∑
k

p
(p)
i,k p

(e)
j,k +

∑
k1 6=h1

p
(p)
i,k1
p

(e)
j,h1

(mk1,h1 + 1),

=
∑
k1

∑
h1

p
(p)
i,k1
p

(e)
j,h1

+
∑
k1 6=h1

p
(p)
i,k1
p

(e)
j,h1

mk1,h1 ,

= 1 +
∑
k1 6=h1

p
(p)
i,k1
p

(e)
j,h1

mk1,h1

= 1 +
∑
k1,h1

p
(p)
i,k1
mk1,h1p

(e)
j,h1
−

n∑
k=1

p
(p)
i,kmk,kp

(e)
j,k.

(3.2)
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We write (3.2) in matrix form as

M = 1n1>n + Pp(M − diag(M))P>e , (3.3)

where diag(M) ∈ Rn×n is a diagonal matrix with only the diagonal elements of M .

Rewriting (3.3) in vector form and using properties in Lemma 1.3.4.1 lead to

vec(M) = 1n2 + (Pe⊗Pp)(vec(M)− vec(diag(M))),

= 1n2 + (Pe⊗Pp)(In2 − diag(vec(In))) vec(M),

= 1n2 + (Pe⊗Pp)E vec(M).

If the matrix In2−(Pe⊗Pp)E is invertible, then we have a unique solution to the meeting

times.

We shall now show that the finiteness of meeting times as in 1 is equivalent to the

existence of walks of equal length to common nodes as mentioned in 2 and in 3, which

guarantees invertibility of In2 − (Pe⊗Pp)E in 4.

We first prove that 1 =⇒ 2 by contrapositive. Suppose there exists a pair of nodes

i and j such that there exists no walk of equal length to any node in V , then the agents

never meet and thus the meeting time cannot be finite. Therefore, we have 1 =⇒ 2.

Next, we show that 2 ⇐⇒ 3. The Kronecker product of the transition matrices

gives a joint transition matrix for the agents over the set of nodes V × V . The entry in

the matrix Pe⊗Pp corresponding to the node (j, i) represents the states X(p) = i and

X(e) = j [81]. The statement 2 ensures the existence of a node k for every pair (j, i)

which is reachable by a walk of equal length from i in Pp and j in Pe. This condition

is equivalent to the node (k, k) being reachable from the pair (j, i) on the Kronecker

product of the two Markov chains [82, Proposition 1].
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Next, we show that 3 =⇒ 4. The stochastic matrix Pe⊗Pp has a walk from any

node (j, i) to some node (h1, k1) where P(X
(e)
1 = k,X

(p)
1 = k |X(e)

0 = h1, X
(p)
0 = k1) 6= 0

as there exists a walk from (j, i) to (k, k) for some k. Note that (Pe⊗Pp)E is obtained by

setting the columns of Pe⊗Pp corresponding to nodes of the form (k, k) to 0. Therefore,

the row corresponding to (h1, k1) has row-sum strictly less than 1. As a result, every

node (j, i) has a walk to a node whose corresponding row-sum of the transition matrix

is less than 1, which implies that the matrix (Pe⊗Pp)E has spectral radius less than 1

by virtue of Lemma 1.3.5.1. From this we obtain equation (3.1) since 3 guarantees the

existence of (In2 − (Pe⊗Pp)E)−1.

Note that the existence of vec(M) in 4 gives 4 =⇒ 1. Thus we have shown that

1 =⇒ 2 ⇐⇒ 3 =⇒ 4 =⇒ 1. Hence the four statements are equivalent.

Remark 3.2.1.2 The finiteness of meeting times is not guaranteed even if both Pp and

Pe are irreducible, and a simple example is given in Fig. 3.1.

1 2

1 2
Pe

Pp

(i)

(ii)

1

Pe

2

Pp

1 2

1,1 2,2

1,2 2,1

Pe ⌦ Pp

Pe ⌦ Pp

1,1 2,2

1,2 2,1

Figure 3.1: The pursuer-evader pair in (i) has finite meeting times as every node has
a walk to the common nodes (1, 1) and (2, 2) in the Kronecker graph. However, in (ii)
there exists no walks to common nodes from (1, 2) and (2, 1).

The necessary and sufficient conditions in Theorem 3.2.1.1 give the most general

set of pairs of matrices for which finite meeting times exist. Moreover, the closed-form

expression (3.1) for pairwise meeting times enables one to design the optimal strategy for
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the surveillance agent to minimize the mean meeting time given the strategy of a moving

evader.

3.2.2 Mean meeting time and relation to hitting times

In this subsection, we introduce the mean meeting time of two random walkers. We

then show that the mean hitting time can be treated as a special case of mean meeting

time where a mobile pursuer is faced with a stationary intruder.

Definition 3.2.2.1 (Mean meeting time) Consider two transition matrices Pp and

Pe with stationary distributions πp and πe, the mean meeting time M(Pp, Pe) is defined

by

M(Pp, Pe) = π>p Mπe = (πe⊗πp)> vec(M), (3.4)

where M is meeting time matrix of Pp and Pe.

The mean meeting time M(Pp, Pe) in (3.4) can also be written in element-wise form

as follows,

M(Pp, Pe) =
∑
i

∑
j

π(i)
p π(j)

e mi,j,

where it is clear that the mean meeting time is the weighted sum of the pairwise meeting

times with weights being the stationary distributions.

Remark 3.2.2.2 In Definition 3.2.2.1, the uniqueness of the stationary distributions for

Pp and Pe is not required. However, in order to compute the mean meeting time, one

has to specify a stationary distribution consistent with the Markov chain for Pe and Pp,

respectively.

Our next result shows that the hitting times of a Markov chain are equal to the

meeting times of the Markov chain and a stationary evader.
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Corollary 3.2.2.3 (Connections with hitting times) Consider a stationary evader

with distribution πe and a pursuer with an irreducible transition matrix Pp and stationary

distribution πp, then the following properties hold:

1. the meeting times between the stationary evader and the mobile pursuer are equal

to the pairwise hitting times of Pp and are given by

hi,j = mi,j = (ej ⊗ ei)
>(In2 − (In⊗Pp)E)−11n2 ,

where hi,j is the expected time to travel from node i to node j for Pp and

2. the mean meeting time between the stationary evader and the pursuer is given by

Mstationary(πe, Pp) = (πe⊗πp)>(In2 − (In⊗Pp)E)−11n2 . (3.5)

Proof: The conclusion follows by observing that a stationary evader can be described

by the identity transition matrix In.

Remark 3.2.2.4 When the stationary distribution of the evader πe is equal to that of

the pursuer πp, the expression (3.5) for the meeting time is also identical to the mean

first hitting time, also called Kemeny constant, of the Markov chain Pp [25, Theorem

2.3(i)].

3.3 Applications to Robotic Surveillance

In this section, we numerically minimize the mean meeting time for the mobile pursuer

given various strategies of the intruder in various prototypical graphs. The optimization

problem we are interested in is as follows.
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Problem 4 (Minimization of the mean meeting time) Given a strongly connected di-

rected graph G = (V, E), an irreducible Markov chain Pe and the stationary distributions

πe and πp. Find Pp which minimizes the mean meeting time M(Pp, Pe), i.e., solve the

following optimization problem:

minimize
Pp∈Rn×n

(πe⊗πp)> vec(M)

subject to π>p Pp = π>p ,

Pp1n = 1n,

p
(p)
i,j ≥ 0, ∀(i, j) ∈ E ,

p
(p)
i,j = 0, ∀(i, j) /∈ E .

The mean meeting time measures in expectation how fast the pursuer is able to

capture the evader when they start from different initial positions. By minimizing the

mean meeting time, we obtain a fast pursuer given the strategy of the evader. Problem 4

is a nonconvex optimization problem with the Kemeny constant minimization problem

as a special case. We conduct the numerical optimization using the KNITRO/TOMLAB

package (with an implementation of the sequential quadratic programming algorithm),

where the stationary distribution of Pp is set to be the same as that of Pe, i.e., πp = πe.

3.3.1 Evader models

We consider three different evaders, i.e., the random walk (RW) evader, the unpre-

dictable evader using a Markov chain with maximum entropy rate, and the fast evader

using a Markov chain with minimum Kemeny constant.

In the random walk model, the evader transitions from her current location to the

neighboring locations (including the current location) with the same probability that
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is equal to the reciprocal of the out-degree. The random walk has the maximum local

uncertainty for the movement of the evader.

For the unpredictable evader, given the stationary distribution πe, the evader solves

the following convex programming.

maximize
Pe∈Rn×n

−
n∑
i=1

n∑
j=1

π(i)
e p

(e)
i,j log p

(e)
i,j

subject to π>e Pe = π>e ,

Pe1n = 1n,

p
(e)
i,j ≥ 0, ∀(i, j) ∈ E ,

p
(e)
i,j = 0, ∀(i, j) /∈ E .

The unpredictable evader uses a Markov chain that has the maximum entropy rate with

a given stationary distribution. The evader is unpredictable in terms of the sequence of

locations that she visits [26].

For the fast evader, given the stationary distribution πe, the evader solves the follow-

ing nonconvex optimization problem.

minimize
Pe∈Rn×n

Mstationary(πe, Pe)

subject to π>e Pe = π>e ,

Pe1n = 1n,

p
(e)
i,j ≥ 0, ∀(i, j) ∈ E ,

p
(e)
i,j = 0, ∀(i, j) /∈ E ,

where Mstationary(πe, Pe) is given in (3.5) with πp = πe. The fast evader uses a Markov

chain that has minimum Kemeny constant. The evader is fast because the expected

hitting time between pairs of locations on the graph is minimized [24].
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3.3.2 Analysis and numerical results for different graphs

In this subsection, we consider different graph topology, i.e., ring, complete and grid,

and solve for the best pursuer strategy Pp numerically. Since Problem 4 is in general

a nonconvex optimization problem, we consider relatively small graph sizes n = 5 and

n = 6 for the ring and complete, and n = 9 for the grid. In all the computations where

a stationary distribution needs to be specified, we set the stationary distribution of the

agents to be uniform, i.e., πp = πe = 1
n
1n.

Results for ring graphs : Note that ring graphs possess Hamiltonian tours (cycles in

the graph that visit each vertex exactly once), which can be parameterized by Markov

chains as permutation matrices with a uniform stationary distribution. Therefore, the

fast evader on ring graphs follow Hamiltonian tours. However, depending on the number

of nodes in the graph, the optimal strategies for the pursuer against the fast evader

are different. When n = 5, the optimal strategy for the pursuer given by the solver is

a Hamiltonian tour in the opposite direction from that of the evader. This coincides

with our intuition because walking in a different direction for the pursuer should make it

faster to catch the evader. However, it turns out that staying stationary for the pursuer is

equally good as walking in the opposite direction. This happens because the pursuer may

miss the evader when walking in an opposite direction. We formalize this observation as

follows.

Lemma 3.3.2.1 (Strategies with same performance ring graphs) In a ring graph

with an odd number of nodes, if the evader adopts a Hamiltonian tour, then staying

stationary and the Hamiltonian tour in the opposite direction have the same performance

for a pursuer with a uniform stationary distribution.

Proof: If the pursuer stays stationary with the distribution 1
n
1n, then the mean

meeting time is the same as the Kemeny constant of the chain used by the fast evader,
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which is n+1
2

.

On the other hand, suppose the pursuer walks in the opposite direction from the

evader. By symmetry, we can fix the initial condition of the evader to be X
(e)
0 = 1 and

vary the initial condition of the pursuer X
(p)
0 . If X

(p)
0 = 1, then the mean meeting time

is n; If X
(p)
0 > 1 is odd, then the mean meeting time is

X
(p)
0 −1

2
; If X

(p)
0 is even, then the

mean meeting time is
n+X

(p)
0 −1

2
. Therefore, the mean meeting time can be calculated as

M(Pp, Pe) =
1

n

( n−1
2∑
i=1

n+ 2i− 1

2
+

n−1
2∑
i=1

i+ n
)

=
n+ 1

2
,

which is the same as in the case of staying stationary.

When n = 6, the optimal strategy given by the solver is to stay stationary. Different

from the case when the number of nodes is odd, walking in a different direction from the

evader is bad because there are certain pairs of initial positions starting from which the

pursuer and the evader never meet, i.e., the mean meeting time is infinite.

In the ring graph, the RW and unpredictable evader use the same chain where the

evader moves to the neighbor nodes of her current position with equal probabilities. The

optimal strategy for the pursuer given by the solver in these cases is a Hamiltonian tour

regardless of the number of nodes in the graph. We summarize the results for ring graphs

in Table 3.1.

Results for the complete graphs : Since complete graphs also possess Hamiltonian

tours, the fast evader on complete graphs follow a Hamiltonian tour on the graph and

the results for the fast evader in ring graphs carry over.

On the other hand, in complete graphs, the RW and unpredictable strategies are the

same and equal to 1
n
1n1>n . The following result shows that if the evader adopts RW or

unpredictable strategy in the complete graph, then the mean meeting time is n regardless

of pursuer’s strategy.
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Table 3.1: Best Response for Pursuer in Ring Graphs

Number
of nodes

Evader strategy
Fast RW/Unpredictable

n=5 stationary or P>e Hamiltonian tour
n=6 stationary

When the number of nodes is odd, the best strategy for the pursuer
against a fast evader is to either stay stationary or move fast in the
opposite direction; when the number of nodes is even, staying sta-
tionary is the best. When the evader is unpredictable/slow, being
fast is always good.

Lemma 3.3.2.2 (Strategy insensitivity in a complete graph) If the evader’s strat-

egy on a complete graph is 1
n
1n1>n , then the mean meeting time between the evader and

the pursuer is always n regardless of pursuer’s strategy.

Proof: If Pe = 1
n
1n1>n , then by (3.2) we have

mi,j = 1 +
1

n

n∑
k1=1

p
(p)
i,k1

∑
h1 6=k1

mk1,h1 .

Therefore, the meeting time mi,j does not depend on j. Let m̃i = mi,j, then we further

have

m̃i = 1 +
n− 1

n

n∑
k1=1

p
(p)
i,k1
m̃k1 .

Since the mean meeting time satisfiesM(Pp, Pe) = π>p Mπe = π>p m̃ in this case, we have

M = 1 +
n− 1

n
M,

and thus M = n.

We summarize the results for complete graphs in Table 3.2.

Results for the grid : We plot the optimal strategies for the pursuer against an RW

evader, an unpredictable evader, and a fast evader in Fig. 3.2, Fig. 3.3, and Fig. 3.4,
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Table 3.2: Best Response for Pursuer in Complete Graphs

Number
of nodes

Evader strategy
Fast RW/Unpredictable

n=5 stationary or P>e Arbitrary
n=6 stationary

When the evader is fast, similar results as in ring graphs carry over.
When the evader is unpredictable/slow, any strategy for the purser
is optimal.

respectively. In all these figures, the size of the nodes indicates the magnitude of the

stationary distribution, and the transparency of the edges indicates the magnitude of the

transition probability.

From Fig. 3.2 and Fig. 3.3, we observe that when faced with an unpredictable and

slow evader, the pursuer tends to travel fast in the graph. Note that the stationary

distributions of the evaders and thus of the pursuers in these two cases are different

(determined by the equal-neighbor model for RW and 1
n
1n for the unpredictable chain).

Specifically, the center node in Fig. 3.2 has a higher value in the stationary distribution

than that in Fig. 3.3. Qualitatively, this difference forces the neighbor nodes of the center

node to have positive transition probabilities to the center in the solution of the optimal

pursuer in Fig. 3.2, whereas it is not the case in Fig. 3.3.

(a) RW evader chain (b) Optimal pursuer chain

Figure 3.2: Random walk evader and optimal pursuer in grid

In contrast, when the evader moves fast enough, the optimal pursuer almost stays
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(a) Unpredictable evader
chain

(b) Optimal pursuer chain

Figure 3.3: Unpredictable evader and optimal pursuer in grid

stationary and waits to be hit by the evader as shown in Fig. 3.4. The above observations

in the grid graph are qualitatively consistent with those in the ring and complete graphs.

(a) Fast evader chain (b) Optimal pursuer chain

Figure 3.4: Fast evader and optimal pursuer in grid

3.3.3 Sensitivity analysis

In this subsection, we consider the case where the pursuer does not have a perfect

estimate for the evader’s strategy and investigate how sensitive Problem 4 is to this

uncertainty. We consider two graph topologies: the 5-node ring graph and the 3× 3 grid

graph. The nominal evader’s strategy P 0
e that the pursuer optimizes against in these two

cases is a random walk, i.e., the pursuer believes the evader walks randomly on the graph

and runs the nonconvex programming in Problem 4 to solve for a best strategy P 0
p for
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herself (P 0
p is a Hamiltonian tour in the ring graph and a strategy shown in Fig. 3.2(b)

in the grid graph). However, in practice, the evader’s strategy is not a standard random

walk but a perturbed chain P 1
e obtained by adding uniformly distributed perturbations

over [0, δ] to each element of P 0
e (we perform a normalization so that P 1

e is a valid

Markov chain). For the actual evader’s strategy P 1
e , there exists an optimal strategy P 1

p

against it, and the meeting time M(P 1
p , P

1
e ) should be smaller than the meeting time

M(P 0
p , P

1
e ). We measure the relative performance degradation of P 0

p with respect to P 1
p

by the following criterion

Performance Degradation =
M(P 0

p , P
1
e )−M(P 1

p , P
1
e )

M(P 0
p , P

1
e )

.

In our simulation, we pick δ = 0.01, 0.05, and 0.1, and run the nonconvex programming

for the ring and grid graph for 5000 and 1000 times, respectively. We report the empirical

CDFs of the performance degradation in Fig. 3.5.
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(a) Ring graph
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(b) Grid graph

Figure 3.5: Performance degradation with uncertainty in evader strategy

From Fig. 3.5, we have the following two key observations. First, in most cases, the

performance degradation is acceptable if not negligible. In particular, in the ring graph,
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since P 0
p is a fast Hamiltonian tour, it still performs very well when the evader’s chain

deviates slightly from the nominal random walk. Second, as the size of the perturbation

increases, there are more cases with larger performance degradation, which is consistent

with the intuition. A rigorous mathematical sensitivity analysis would be valuable but

challenging; we leave it as our future work.

3.4 Conclusions

In this chapter, we studied the expected meeting time of a single pursuer and a single

evader moving on a graph according to discrete-time Markov chains. We presented novel

closed-form expressions for the meeting times and necessary and sufficient conditions for

their finiteness. Then, we also discussed the connections with the hitting times of Markov

chains. We finally formulated an optimization problem to obtain the optimal strategy for

the pursuer faced with a mobile evader. Numerical examples were provided to explain

the concepts and illustrate the results.

An interesting extension of the work discussed here would be to consider walkers

moving with travel times similar to the cases studied in [27] and [24].

71



Chapter 4

Robotic Surveillance as Stackelberg

Games

4.1 Introduction

Problem description and motivation

In a prototypical robotic surveillance scenario, mobiles robots patrol and move among

locations in an environment (usually modeled by a graph) with the goal of capturing

potential intruders; see Fig. 4.1 for an illustration. Here, we consider a similar setup,

where the patrolling robot is, in addition, facing an omniscient intruder. We model the

strategic interactions between the mobile robot and the intruder as a Stackelberg game,

where the optimal strategy for the surveillance agent is constructed under the assumption

that the intruder acts optimally against her. This formulation captures the worst-case

scenario for the surveillance agent when playing against the strongest possible opponent.

The corresponding Stackelberg solution is meaningful and practical when little or no

information is known about the intruder. Similar models have appeared in [32] and [33],
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where heuristic algorithms without performance guarantees are provided. Instead, we

analyze the problem from a mathematical perspective and obtain provably optimal or

suboptimal solutions by considering three topologies: star, line and complete graph.

Intrusion 

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

Figure 4.1: A surveillance scenario where a mobile robot patrols a graph with the goal
of capturing potential intruders that attack certain locations.

Literature review

There have been continuing efforts to study robotic surveillance problems under var-

ious settings, formulations, and assumptions. The early work on designing deterministic

surveillance strategies started in [15]. Recent deterministic extensions to cases where lo-

cations might have different importance, or to the coordination of multiple robots can be

found in [16, 17, 6, 18, 19]. Unfortunately, deterministic strategies can be easily learned,

and thus exploited in adversarial settings. In this respect, stochastic surveillance strate-

gies are more appealing in that they are mostly unpredictable. One common approach to

derive stochastic surveillance strategies is to model the motion of the surveillance agent

as a first-order Markov chain [46, 23, 49]. Within this line of work, Patel et al. [24]

studied minimum mean hitting time Markov chains for robotic surveillance with travel

times on edges. They formulated a convex optimization problem by restricting atten-

tions to the class of reversible Markov chains. More recently, George et al. [26] and

Duan et al. [27] studied and quantified unpredictability of Markov chains and designed

maxentropic surveillance strategies.

The aforementioned works do not explicitly describe the behavior of the malicious
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intruders. On the other hand, when these models are available, they can be leveraged

to design improved surveillance strategies. In order to model the interplay between the

surveillance agent and the intruder, surveillance problems have also been studied under

a game-theoretic lens. Stackelberg security games, where the defenders and intruders

are modeled as strategic players with sequential plays, have been successfully applied in

various real-world scenarios [36] such as checkpoints placement and patrolling at airports

[83], coast guard surveillance [84] and wild life protection [85]. In these works, defenders

allocate limited resources to a set of targets so as to optimize their objectives. The

problems are formulated as matrix games and the topology of the environments are not

explicitly taken into account. In [32], the authors introduce a patrolling game where

a mobile robot moves on a graph to capture potential intruders who choose when and

where to attack. Different intruder models were proposed and analyzed in [33], where

the optimal Markov chain based stochastic strategy is computed via a pattern search

algorithm. The authors in [34] consider an intruder with limited observation time and

design a strategy that is both hard to learn and hard to attack. An intruder model

where the intruder decides where, when and for how long it attacks is studied in [35],

and it is found that increasing the randomness of the strategy helps reduce the intruder’s

reward. The authors in [86] study the impact of the graph topology on the maximization

of the minimum expected hitting times. Finally, a sophisticated non-Markovian model

was studied in [87] for the case of complete graphs.

While most of the existing works are concerned with the design of heuristics to com-

pute suboptimal strategies without performance guarantees, in this chapter, we derive

provably optimal/suboptimal strategies. Towards this goal, we adopt the model of [33]

and focus on graphs that correspond to prototypical robotic roadmaps.
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Statement of Contributions

In this chapter, we derive provably optimal and suboptimal strategies for surveillance

agents in a Stackelberg game setting. We consider three prototypical robotic roadmaps

are considered: star, complete and line graphs. Our problem formulation captures the

worst-case scenario for the surveillance agent and thus the solution provides performance

guarantees also in less pessimistic scenarios. Our main contributions are as follows.

1. We derive a universal upper bound for the capture probability, i.e., the maximum

achievable performance for the surveillance agent facing an omniscient intruder;

2. We show that this upper bound is tight in the case of the complete graph, and

further provide suboptimality guarantees for a natural strategy often referred to as

a random walk;

3. We study dominant strategies for both the intruder and the surveillance agent.

Leveraging these insights, we obtain optimal strategies in the star and line graphs.

Organization

We provide preliminaries on Markov chains and formulate the Stackelberg game prob-

lem in Section 4.2 and Section 4.3, respectively. An upper bound on the capture proba-

bility and a suboptimal solution in the case of complete graph are obtained in Section 4.4.

We study dominant strategies for the players in Section 4.5, and optimal strategies for star

and line graphs are given in the same section. The chapter is concluded in Section 4.6.

4.2 Preliminaries

In this chapter, we consider a strongly connected digraph G = (V, E), where V denotes

the set of n nodes {1, . . . , n} and E ⊂ V × V denotes the set of edges. Given the graph
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G = {V, E}, let Xk ∈ {1, . . . , n} be the value of a Markov chain with transition diagram

G and transition matrix P at time k ∈ Z≥0. Let the (i, j)-th element of the first hitting

time probability matrix Fk denote the probability that the Markov chain hits node j for

the first time in exactly k time units starting from node i, i.e., Fk(i, j) = P(Tij = k).

It can be shown that the hitting time probabilities Fk for k ≥ 1 satisfy the following

recursive matrix equation [88, Chapter 5, Eq. (2.4)]

Fk+1 = P (Fk − diag(Fk)), (4.1)

where F1 = P . The vectorized form of (4.1) can be written as

vec(Fk+1) = (In ⊗ P )(In2 − E) vec(Fk), (4.2)

where E = diag(vec(In)). Note that (4.1) can be generalized to the case where there are

times on the graph G [27].

4.3 Problem formulation

We consider a robotic surveillance problem where a mobile robot moves randomly

between locations in a graph to perform surveillance tasks. Specifically, given a Markov

chain strategy, the surveillance robot moves from the current node to a neighboring

location according to the corresponding Markov chain transition matrix. An intruder

attacks an unknown node in the graph by stationing at the given node for a certain

period of time. The intruder is captured if the surveillance agent visits that node within

the duration of the attack; see Fig. 4.1 for a pictorial representation. In this work,

we study how the mobile robot should move on the graph in order to maximize the

probability of capturing the intruder.
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We model the strategic interactions between the surveillance robot and the intruder

as a two-player Stackelberg game with a leader and a follower. The game proceeds

as follows: the leader commits to a strategy first, and then the follower, based on the

knowledge of the leader’s strategy, selects a strategy that optimizes her rewards. Having

prior knowledge of the follower’s best-response, the leader commits to a strategy that

ultimately maximizes her own objective. In our problem setting, the surveillance agent is

the leader who chooses a Markov chain as surveillance strategy. This strategy is observed

and learned by the intruder (follower) who then chooses the best time and location to

attack so as to minimize the probability of being captured. We describe the intruder and

surveillance models in the following subsections.

4.3.1 Intruder Model

An intruder aims to attack a location in the graph while the surveillance agent moves

around with the goal of capturing her. The intruder requires τ units of time to complete

the attack at any location in the graph. Once it commits to attacking a location, it

stations at the location for that given period of time. We assume that the intruder is

omniscient [32, 33], i.e., it knows or can learn the strategy (intended as a description

of the Markov chain) as well as the current location of the surveillance agent perfectly.

Given this information, the intruder decides when and where to attack so that it is least

likely to be captured.

Given a Markov chain strategy for the surveillance agent, the intruder picks a pair of

locations i and j so that the probability that the surveillance agent goes from location i

to location j within the attack duration is minimized. Then, the intruder attacks location

j whenever the surveillance agent is at location i. Formally, for a surveillance strategy

parameterized by a Markov transition matrix P , an optimal strategy for the intruder
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(i∗, j∗) is given by

(i∗, j∗) ∈ argmin
i,j
{P(Tij(P ) ≤ τ)}. (4.3)

Note that optimal strategies in (4.3) are not unique in general, and the intruder is free

to pick any one of them.

4.3.2 Surveillance model and problem formulation

The surveillance agent, knowing that the intruder selects an optimal strategy accord-

ing to (4.3), adopts a Markov chain P ∗ that maximizes the probability of capturing the

intruder, i.e.,

P ∗ = argmax
P

min
i,j
{P(Tij(P ) ≤ τ)}.

In this chapter, we are interested in finding an optimal strategy for the surveillance

agent when playing against the omniscient intruder just described. That is, we are

interested in solving the following optimization problem.

Problem 5 Given a strongly connected digraph G = (V, E) and the attack duration τ ∈

Z>0, find a Markov chain that conforms to the graph topology and maximizes the capture

probability, i.e., solves the following optimization problem:

maximize
P∈Rn×n

min
i,j
{P(Tij(P ) ≤ τ)}

subject to P1n = 1n,

pij ≥ 0, for all (i, j) ∈ E ,

pij = 0, for all (i, j) /∈ E .

(4.4)

We let V ∈ [0, 1] denote the optimal value of Problem 5 and refer to it as the value of

the game. Note that V represents the capture probability obtained when the surveillance

agent utilizes an optimal strategy against the omniscent intruder. As a consequence, V
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lower bounds the capture probability also in less pessimistic circumstances, e.g., in the

case of a nonstrategic intruder.

Remark 4.3.2.1 (Impact of the attack duration) Problem 5 is interesting only when

the attack duration τ is in an appropriate range for a given graph topology. Specifically,

1. the attack duration should be greater than or equal to the diameter D of graph G,

i.e., τ ≥ D. Otherwise, the omniscient intruder always succeeds by attacking one

end of the graph diameter when the surveillance agent is visiting the other. In this

case, V = 0 no matter what strategy the surveillance agent uses;

2. the attack duration should be smaller than the length of any closed path on the

graph G that has the same initial and final vertices and visits all locations at least

once (e.g., a Hamiltonian tour of size n if it exists). Otherwise, the surveillance

agent does not benefit from using a Markov chain as a randomized strategy, and the

capture is guaranteed by following the deterministic closed path.

We assume hereafter that the attack duration τ takes a nontrivial value as described in

Remark 4.3.2.1.

Remark 4.3.2.2 (Irreducibility of optimal solutions) No irreducibility constraint

is imposed on the Markov chain in Problem 5. However, if τ takes nontrivial values,

an optimal Markov chain is necessarily irreducible. As the transition diagrams of any

reducible Markov chains is not strongly connected, there must exist a pair of locations i

and j such that P(Tij ≤ τ) = 0, so that also V = 0.

Remark 4.3.2.3 (Graph dimension) Without loss of generality, we consider graphs

with more than 2 nodes in the rest of this chapter, i.e., n ≥ 3. When n = 2, the only

meaningful case is a complete graph, and the optimal solution to Problem 5 is P = 1
2
121>2
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with V = 1
2

if τ = 1, and an irreducible permutation matrix (a Hamiltonian tour) with

V = 1 if τ ≥ 2.

4.4 Value of the game and suboptimal solution in

complete graphs

In this section, we first derive a universal upper bound for the value of the game, which

does not depend the graph topology. We then consider the case of complete graph and

show that the upper bound can be tight. Further, we provide suboptimality guarantees

for a a Markov chain whose corresponding transition matrix has identical entries.

4.4.1 Upper bound of the value of the game

We introduce an auxiliary variable µ ∈ R and exploit the iteration (4.1) to rewrite

the optimization problem (4.4) as follows

maximize
µ∈R,P∈Rn×n

µ

subject to µ1n1>n ≤
τ∑
k=1

Fk,

F1 = P

Fk+1 = P (Fk − diag(Fk)), 1 ≤ k ≤ τ − 1

P1n = 1n,

pij ≥ 0, for all (i, j) ∈ E ,

pij = 0, for all (i, j) /∈ E ,

(4.5)
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where the inequality in the first constraint is element-wise. Clearly, problem (4.5) is

equivalent to (4.4), and the optimal value µ∗ is the value of the game. The following

theorem shows how to obtain a universal upper bound on µ∗.

Theorem 4.4.1.1 (Upper bound for the value of the game) Given a strongly

connected digraph G = (V, E) with n nodes and an attack duration τ that takes nontrivial

values as in Remark 4.3.2.1, the value of the game satisfies V ≤ τ
n

.

Proof: By Remark 4.3.2.2, an optimal solution P ∗ to problem (4.5) is irreducible

and thus has a unique stationary distribution π. We multiply π> from the left on both

sides of (4.1) and obtain for k ≥ 1,

π>Fk+1 = π>(Fk − diag(Fk)) ≤ π>Fk. (4.6)

By using (4.6) recursively, we have that for k ≥ 1,

π>Fk ≤ π>F1 = π>P ∗ = π>. (4.7)

Since (µ∗, P ∗) is an optimal solution to problem (4.5), it satisfies the first constraint and

thus

µ∗1n1>n ≤
τ∑
k=1

Fk. (4.8)

Multiplying π> from the left on both sides of (4.8) and using (4.7), we obtain

µ∗1>n ≤
τ∑
k=1

π> = τπ>.

Since π>1n = 1, we must have min
1≤i≤n

πi ≤ 1
n
. Therefore,

V = µ∗ ≤ τ min
1≤i≤n

πi =
τ

n
.
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4.4.2 Suboptimal solution in complete digraphs

Next, we show that for complete digraphs the upper bound V ≤ τ
n

can be achieved

for certain combinations of n and τ .

Lemma 4.4.2.1 (Optimal solution in special complete digraph) Given a complete

digraph G = (V, E) with n nodes and the attack duration τ ≤ n, if τ divides n, then an

optimal solution P ∗ is given by

P ∗ = Π0⊗
τ

n
1n
τ
1>n
τ
,

where Π0 ∈ Rτ×τ is any irreducible permutation matrix that represents a Hamiltonian

tour in G. Moreover, the optimal strategy P ∗ achieves the upper bound of the value of

the game.

Proof: By construction, the probability that a surveillance agent with P ∗ starting

from any location i arrives at any location j within τ time steps is τ
n
.

The previous result holds only when the combination of n and τ is such that τ

divides n. Nevertheless, leveraging Theorem 4.4.1.1 we are able to provide suboptimality

guarantees for the natural choice of P = 1
n
1n1>n .

Lemma 4.4.2.2 (Constant factor optimality of random walk) Given a complete

digraph G = (V, E) with n ≥ 3 nodes and the attack duration τ , the random walk strategy

P = 1
n
1n1>n achieves performance within

nτ − (n− 1)τ

τnτ−1
≥ 1− 1

e
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of optimality, where e is Euler’s number.

Proof: First, note that the capture probability for the random walk surveillance

policy P = 1
n
1n1>n is 1 − (1 − 1

n
)τ . Therefore, the random walk achieves performance

within

f(n, τ) =
nτ − (n− 1)τ

τnτ−1

of optimality. Let n be fixed, and g(τ) = nτ−(n−1)τ

τnτ−1 . We relax τ to be a continuous

variable and take derivative of g(τ) as

dg(τ)

dτ
= − n

τ 2
+
n

τ 2

(
1− 1

n

)τ − n

τ

(
1− 1

n

)τ
log
(
1− 1

n

)
=

n

τ 2

(
(1− τ log(1− 1

n
))(1− 1

n
)τ − 1

)
≤ n

τ 2

(
(1− τ(1− 1

1− 1
n

))(1− 1

n
)τ − 1

)
=

n

τ 2

(
(1 +

τ

n− 1
)(1− 1

n
)τ − 1

)
≤ 0,

where we used the upper bound log x ≥ 1 − 1
x

in the first inequality, and τ ≤ n − 1

and (1− 1
n
)τ ≤ 1

2
in the second inequality. Therefore, for fixed n, f(n, τ) is a decreasing

function in τ and

f(n, τ) ≥ f(n, n− 1) =
n

n− 1
− (1− 1

n
)n−2 , h(n).

We relax n to be a continuous variable in this case and compute the derivative of h(n)
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as

dh(n)

dn
= − 1

(n− 1)2
+ (1− 1

n
)n−2

(
log

n

n− 1
− n− 2

n2 − n
)

≤ − 1

(n− 1)2
+ (1− 1

n
)n−2(

1

n− 1
− n− 2

n2 − n)

= − 1

(n− 1)2
+ (1− 1

n
)n−1 2

(n− 1)2

≤ − 1

(n− 1)2
+ (1− 1

3
)2 2

(n− 1)2
≤ 0,

where we used the upper bound log(1+x) ≤ x and the proved that (1− 1
n
)n−1 is decreasing

as n increases. Therefore, we have that h(n) is a decreasing function. In summary, we

have

f(n, τ) ≥ f(n, n− 1) ≥ lim
n→∞

h(n) = lim
n→∞

( n

n− 1
− (1− 1

n
)n−2

)
= 1− 1

e
.

4.5 Strategy dominance and optimal strategies in

star and line graphs

In this section, we first obtain dominated strategies for the intruder as well as the

dominant strategies for the surveillance agent. Leveraging these result, we derive optimal

strategies for the surveillance agent in star and line graphs.

4.5.1 Dominated strategies for the omniscient intruder

In this subsection, we present two lemmas characterizing dominated strategies for

the omniscient intruder, i.e., strategies that intruder will never choose as they lead to a

84



Robotic Surveillance as Stackelberg Games Chapter 4

higher probability of being captured.

Lemma 4.5.1.1 (Dominated strategy for the intruder) Given a strongly connected

digraph G = (V, E) and an irreducible Markov chain strategy P for the surveillance agent,

attacking node j ∈ V when the surveillance agent is at node i ∈ V , i 6= j, is not optimal

for the omniscient intruder if:

1. there exists a node k such that any path from node k to node j contains node i; or

2. there exists a node k such that any path from node i to node k contains node j.

Moreover, in case 1 (resp. in case 2) , attacking node j when the surveillance agent is at

node k (resp. node i) is a better strategy for the omniscient intruder.

Proof: The probability that the surveillance agent visiting node i captures the

intruder attacking node j is

P(Tij ≤ τ) =
τ∑
t=1

P(Tij = t).

Regarding 1, we need to show that

P(Tkj ≤ τ) ≤ P(Tij ≤ τ).

Since any path from node k to node j contains node i, by definition of probability, and
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the memoryless property of Markov chains, we have

P(Tkj ≤ τ) =
τ−1∑
t=1

P(Tki = t)P(Tij ≤ τ − t)

≤ max
1≤t≤τ−1

P(Tij ≤ τ − t)

= P(Tij ≤ τ − 1)

≤ P(Tij ≤ τ),

where we used that P(Tij ≤ τ − t) is decreasing with t.

The proof for 2 follows a similar argument as in 1.

Lemma 4.5.1.2 (Dominated strategy on leaf nodes) Given a strongly connected

digraph G = (V, E) with n ≥ 3 nodes and an irreducible Markov chain strategy P for

the surveillance agent, if node i ∈ V is a leaf node in G, then attacking node i when the

surveillance agent just leaves node i is not optimal for the omniscient intruder.

Proof: The case of τ = 1 is uninteresting here because the surveillance agent fails

with probability 1 if the intruder attacks the leaf node i when the surveillance agent visits

other nodes than node i and its neighbor. Therefore, we consider τ ≥ 2 in the following.

Let node j be the neighbor node of the leaf node i, then

P(Tii ≤ τ) = pii + (1− pii)P(Tji ≤ τ − 1). (4.9)
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Moreover, for k ∈ V , k 6= i and k 6= j,

P(Tki ≤ τ) =
τ−1∑
t=1

P(Tkj = t)P(Tji ≤ τ − t)

≤ max
1≤t≤τ−1

P(Tji ≤ τ − t)

= P(Tji ≤ τ − 1).

(4.10)

Therefore, by (4.9) and (4.10) we have

P(Tii ≤ τ) ≥ pii + (1− pii)P(Tki ≤ τ)

≥ piiP(Tki ≤ τ) + (1− pii)P(Tki ≤ τ)

= P(Tki ≤ τ),

which implies that attacking node i when the surveillance agent is at node k is a better

strategy.

4.5.2 Dominant strategies for the surveillance agent

In this subsection, we show that part of the optimal surveillance strategy can be

determined readily when leaf nodes are present, where leaf nodes are nodes that have

only one neighboring node.

Lemma 4.5.2.1 (Dominant strategy on leaf nodes) Given a strongly connected

digraph G = (V, E) with n ≥ 3 nodes, if node i ∈ V is a leaf node in G with node j ∈ V

as its only neighbor, then the optimal strategy P ∗ satisfies

P ∗(i, i) = 0, and P ∗(i, j) = 1.
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Proof: Without loss of generality, suppose that node 1 is a leaf node in G and node

2 is its neighbor. Let P be a strategy that is the same as P ∗ except that P (1, 1) = p > 0

and P (1, 2) = 1 − p < 1. We prove that for all i, j ∈ V , the capture probability

P(T ∗ij ≤ τ) for P ∗ is greater than or equal to min{i,j∈V } P(Tij ≤ τ) for P , which leads to

min{i,j∈V } P(T ∗ij ≤ τ) ≥ min{i,j∈V } P(Tij ≤ τ).

Since P and P ∗ differ by only the first row and node 1 is a leaf node, we must

have P(T ∗i1 ≤ τ) = P(Ti1 ≤ τ) for all i ∈ {2, . . . , n}. Moreover, by Lemma 4.5.1.2, the

strategy (1, 1) is a dominated strategy for the intruder, thus min{i,j∈V } P(T ∗ij ≤ τ) and

min{i,j∈V } P(Tij ≤ τ) do not attain minimum at (1, 1).

We next prove that P(T ∗1j ≤ τ) ≥ P(T1j ≤ τ) for all j ∈ {2, . . . , n} by induction. Let

d1j be the length of the shortest paths from node 1 to node j. The probabilities of these

shortest paths are equal to the products of the edge probabilities along the paths, and for

P and P ∗ they differ by a factor of 1−p. Thus, we have that P(T ∗1j ≤ d1j) > P(T1j ≤ d1j).

Suppose when τ ≤ t for t ≥ d1j, we have P(T ∗1j ≤ τ) > P(T1j ≤ τ) and let `tij be the set

of paths from node i to node j that do not contain node 1 and have length less than or

equal to t for i ∈ {2, . . . , n}, then for τ = t+ 1,

P(T ∗1j ≤ t+ 1) = P(T ∗2j ≤ t)

=
t∑

t1=1

P(T ∗21 = t1)P(T ∗1j ≤ t− t1) + P(`t2j)

≥
t∑

t1=1

P(T21 = t1)P(T1j ≤ t− t1) + P(`t2j)

= P(T2j ≤ t)

≥ pP(T1j ≤ t) + (1− p)P(T2j ≤ t)

= P(T1j ≤ t+ 1),
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where the first inequality follows from the induction hypothesis and the second inequality

follows from Lemma 4.5.1.1.

Finally, for i, j ∈ {2, . . . , n}, we have

P(T ∗ij ≤ τ) =
τ∑
t=1

P(T ∗i1 = t)P(T ∗1j ≤ τ − t) + P(`τij)

≥
τ∑
t=1

P(Ti1 = t)P(T1j ≤ τ − t) + P(`τij)

= P(Tij ≤ τ).

In summary, we have that min{i,j∈V } P(T ∗ij ≤ τ) ≥ min{i,j∈V } P(Tij ≤ τ), which

completes the proof.

4.5.3 Optimal solution for star graphs

In this subsection, we consider the star topology, which represents the abstraction

of an environment where there is a corridor connecting multiple rooms. The optimal

strategy for the surveillance agent is given in the following theorem.

Theorem 4.5.3.1 (Optimal solution in star graph) Given a directed star graph

G = (V, E) with n ≥ 3 nodes and node 1 being the center, the optimal strategy P ∗ for the

surveillance agent is given by

P ∗ =



0 1
n−1

1
n−1

· · · 1
n−1

1 0 0 · · · 0

1 0 0 · · · 0

...
...

... · · · ...

1 0 0 · · · 0


. (4.11)
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Moreover, the value of the game V satisfies

V =


1− (1− 1

n−1
)
τ−1
2 , if τ ≥ 2 is odd,

1− (1− 1
n−1

)
τ
2 , if τ ≥ 2 is even.

Proof: For the directed star graph G, the Markov chain P corresponding to G has

the following general structure,

P =



p11 p12 p13 · · · p1n

p21 p22 0 · · · 0

p31 0 p33 · · · 0

...
...

... · · · ...

pn1 0 0 · · · pnn


.

Since node 2 to node n are leaf nodes, by Lemma 4.5.2.1, the optimal Markov chain does

not have self loops at these nodes and we can reduce P to

P =



p11 p12 p13 · · · p1n

1 0 0 · · · 0

1 0 0 · · · 0

...
...

... · · · ...

1 0 0 · · · 0


. (4.12)

Note that the strategies (1, j) are dominated for the intruder for all j ∈ {2, . . . , n} by

Lemma 4.5.1.1, and the capture probabilities P(Ti1 ≤ τ) = 1 for all i ∈ {1, . . . , n} and

τ ≥ 2. Therefore, we only need to find a P in (4.12) that maximizes mini,j∈{2,...,n} P(Tij ≤

τ). We divide the rest of the proof into two parts. In the first part, we show that there

is no self loop at the center node for the optimal solution, i.e., p11 = 0 in (4.12), and
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further reduce P ; in the second part, we obtain the optimal solution.

No self loop at center We construct P1 to be the same as P in (4.12) except for the

first row where

P1(1, 1) = 0, P1(1, j) =
p1j

1− p11

for j ∈ {2, . . . , n}.

We show that P1 is a better strategy than P in (4.12) by induction on τ , i.e., for all

i, j ∈ {2, . . . , n}, the capture probabilities P(T 1
ij ≤ τ) for P1 is greater than P(Tij ≤ τ) of

P . When τ = 2, we have P(T 1
ij ≤ 2) =

p1j
1−p11 > p1j = P(Tij ≤ 2). Suppose when τ ≤ t,

we have P(T 1
ij ≤ τ) > P(Tij ≤ τ), then for τ = t+ 1,

P(T 1
ij ≤ t+ 1) = P(T 1

1j ≤ t)

=
p1j

1− p11

+
∑

k/∈{1,j}

p1k

1− p11

P(T 1
kj ≤ t− 1)

>
p1j

1− p11

+
∑

k/∈{1,j}

p1k

1− p11

P(Tkj ≤ t− 1)

=
1

1− p11

(p1j +
∑

k/∈{1,j}

p1kP(T1j ≤ t− 1))

=
1

1− p11

(P(T1j ≤ t)− p11P(T1j ≤ t− 1))

≥ 1

1− p11

(P(T1j ≤ t)− p11P(T1j ≤ t))

= P(T1j ≤ t)

= P(Tij ≤ t+ 1),

where the first inequality follows from the induction hypothesis and the second inequality

follows from the fact that P(T1j ≤ t− 1) ≤ P(T1j ≤ t). Therefore, we conclude that the

optimal strategy does not have a self loop at the center node.
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Optimal solution Note that for any τ ≥ 1 and j ∈ {2, . . . , n}, we have that

P(T1j ≤ τ) = p1j +
∑

k/∈{1,j}

p1kP(Tkj ≤ τ − 1)

= p1j +
∑

k/∈{1,j}

p1kP(T1j ≤ τ − 2)

= p1j + (1− p1j)P(T1j ≤ τ − 2),

with the initial condition P(T1j ≤ 1) = P(T1j ≤ 2) = p1j. Therefore, the capture

probability P(T1j ≤ τ) satisfies

P(T1j ≤ τ) =


1− (1− p1j)

τ−1
2 , if τ ≥ 2 is odd,

1− (1− p1j)
τ
2 , if τ ≥ 2 is even.

(4.13)

By (4.13), we have for odd τ ≥ 2,

min
i,j∈{2,...,n}

P(Tij ≤ τ) = min
j∈{2,...,n}

P(T1j ≤ τ − 1)

= min
j∈{2,...,n}

1− (1− p1j)
τ−1
2

= 1− max
j∈{2,...,n}

(1− p1j)
τ−1
2

= 1− (1− min
j∈{2,...,n}

p1j)
τ−1
2 ,

which along with the fact that
∑n

j=2 p1j = 1 implies that (4.11) is the optimal solution

for the directed star graph.
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4.5.4 Optimal solution for line graphs

In this subsection, we derive the optimal surveillance strategy for directed line graphs.

In an n-node line graph, Problem 5 is interesting only when the attack duration τ satisfies

n−1 ≤ τ ≤ 2n−3. If τ < n−1, the omniscient intruder always succeeds by attacking an

end node when the surveillance agent is at the other end; if τ > 2n− 3, the surveillance

agent who walks back and forth between two ends of the line graph (a deterministic

sweeping) captures the omniscient intruder no matter how it attacks. Therefore, we

consider only cases when n − 1 ≤ τ ≤ 2n − 3. Note that a sweeping strategy fails as

long as τ < 2n− 3, because the intruder could attack an end node immediately after the

surveillance agent just leaves that node and it succeeds with probability 1. We label the

nodes in an n-node line graph successively from left to right by (1, . . . , n). We need the

following conjecture to establish our main result.

Conjecture 1 (Uniqueness of the optimal strategy) Given a directed line graph

G = (V, E) with n ≥ 3 nodes, the optimal solution to Problem 5 is unique.

We provide evidence for Conjecture 1 in Remark 4.5.4.2.

Theorem 4.5.4.1 (Optimal solution in line graph) Given a directed line graph G =

(V, E) with n ≥ 3 nodes, if Conjecture 1 holds true, then the optimal strategy P ∗ is given

by

P ∗ =



0 1 0 · · · 0

0.5 0 0.5 · · · 0

...
. . . . . . . . .

...

0 · · · 0.5 0 0.5

0 · · · 0 1 0


. (4.14)

Proof: We divide the proof into three parts. In the first part, we show that in the

line graph, the optimal strategy for the intruder is to attack one end of the graph when
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the surveillance agent is at the other, in which case the objective function in Problem 5

becomes min{P(T1n ≤ τ),P(Tn1 ≤ τ)}. In the second part, we show that there are no

self loops at any locations in the optimal surveillance strategy. In the last part, we obtain

the optimal strategy by using Conjecture 1 and a symmetry argument.

Attack the end nodes For i, j ∈ V and i < j, by Lemma 4.5.1.1, we know that

P(Tij ≤ τ) ≥ P(T1j ≤ τ) ≥ P(T1n ≤ τ); on the other hand, for i > j, we have P(Tij ≤

τ) ≥ P(Tnj ≤ τ) ≥ P(Tn1 ≤ τ). Therefore, attacking any location in the middle while

the surveillance agent is at another location in the middle is not optimal for the intruder.

Since node 1 and n are leaf nodes, by Lemma 4.5.1.2, it is not optimal for the intruder

to attack node 1 or n immediately after the surveillance agent leaves that node. Next,

we show that attacking any node i ∈ {2, . . . , n − 1} immediately when the surveillance

agent leaves node i is dominated by attacking an end node when the surveillance agent

is visiting the other. For i ∈ {2, . . . , n− 1},

P(Tii ≤ τ) = pii + pi,i+1P(Ti+1,i ≤ τ − 1) + pi,i−1P(Ti−1,i ≤ τ − 1)

≥ pii + pi,i+1P(Tn1 ≤ τ) + pi,i−1P(T1n ≤ τ)

≥ min{1,P(Tn1 ≤ τ),P(T1n ≤ τ)}

= min{P(Tn1 ≤ τ),P(T1n ≤ τ)},

where the first inequality follows from the facts that

P(Tn1 ≤ τ) =
∑
t1,t2

P(Tn,i+1 = t1)P(Ti+1,i ≤ τ − t1 − t2)P(Ti1 = t2) ≤ P(Ti+1,i ≤ τ − 1),
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and

P(T1n ≤ τ) =
∑
t1,t2

P(T1,i = t1)P(Ti,i+1 ≤ τ − t1 − t2)P(Ti+1,n = t2) ≤ P(Ti,i+1 ≤ τ − 1).

Therefore, the best strategy for the omniscient intruder is to attack an end node when

the surveillance agent is at the other. Problem 5 becomes maxP min{P(T1n ≤ τ),P(Tn1 ≤

τ)}.

No self loop at any location Fist, by Lemma 4.5.2.1, since nodes 1 and n are leaf

nodes, the optimal strategy P ∗ for the surveillance agent must satisfy P ∗(1, 1) = 0,

P ∗(1, 2) = 1, P ∗(n, n) = 0 and P ∗(n, n − 1) = 1. Next, we focus on i ∈ {2, . . . , n − 1}.

Let P be any Markov chain strategy corresponding to the line graph with pii > 0, and

P1 is the same as P except for the i-th row where

P1(i, i) = 0, P1(i, i+ 1) =
pi,i+1

1− pii
, P1(i, i− 1) =

pi,i−1

1− pii
.

Note that

P(T1n ≤ τ) =
τ∑

t1=i−1

P(T1i = t1)P(Tin ≤ τ − t1),

P(Tn1 ≤ τ) =
τ∑

t1=n−i

P(Tni = t1)P(Ti1 ≤ τ − t1).

(4.15)

Since P and P1 differ only by row i, their first hitting time probabilities satisfy P(T1i =

t1) = P(T 1
1i = t1) and P(Tni = t1) = P(T 1

ni = t1) for all t1 ≥ 1. We first prove that P(Tin ≤

τ) ≤ P(T 1
in ≤ τ) for all τ by induction. When τ = n−i, since P1(i, i+1) > pi,i+1, we have

P(Tin ≤ n− i) ≤ P(T 1
in ≤ n− i). Suppose for all τ ≤ t, we have P(Tin ≤ t) ≤ P(T 1

in ≤ t).

Then, when τ = t+ 1,
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P(T 1
in ≤ t+ 1) =

pi,i−1

1− pii
P(T 1

i−1,n ≤ t) +
pi,i+1

1− pii
P(T 1

i+1,n ≤ t),

≥ pi,i−1

1− pii
P(Ti−1,n ≤ t) +

pi,i+1

1− pii
P(Ti+1,n ≤ t)

=
1

1− pii
(P(Tin ≤ t+ 1)− piiP(Tin ≤ t))

≥ 1

1− pii
(P(Tin ≤ t+ 1)− piiP(Tin ≤ t+ 1))

= P(Tin ≤ t+ 1),

where the first inequality follows from the hypothesis induction. A similar proof by

induction shows that P(Tni ≤ τ) ≤ P(T 1
ni ≤ τ) for all τ . Then, by (4.15), we have that

P(Tn1 ≤ τ) ≤ P(T 1
n1 ≤ τ) and P(T1n ≤ τ) ≤ P(T 1

1n ≤ τ) and therefore P1 is a better

strategy than P . In summary, we have that the optimal surveillance strategy does not

have self loop at any location.

Optimal solution By the first two parts, we conclude that the optimal strategy for

the surveillance agent has the following general structure,

P =



0 1 0 · · · 0

1− x1 0 x1 · · · 0

...
. . . . . . . . .

...

0 · · · 1− xn−2 0 xn−2

0 · · · 0 1 0


, (4.16)
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and thus the objective function in Problem 5 can be parameterized by 0 < x1 < 1, . . . , 0 <

xn−2 < 1. Let

f(x1, . . . , xn−2) = min
x1,...,xn−2

{P(T1n ≤ τ),P(Tn1 ≤ τ)}.

For the function f , following the proof in Appendix 4.7.1, we have

f(x1, . . . , xn−2) = f(1− x1, . . . , 1− xn−2).

If Conjecture 1 holds, then at the optimal solution, we must have x∗i = 1 − x∗i for all

i ∈ {1, . . . , n − 2}, which implies x∗i = 1
2
. Therefore, the optimal solution is given

by (4.14).

We prove a necessary condition for a strategy to be optimal in line graphs in Lemma 4.7.2.1

in Appendix 4.7.2, which says that the optimal strategy must satisfy P(T ∗1n ≤ τ) =

P(T ∗1n ≤ τ). We provide evidence for Conjecture 1 in the following remark.

Remark 4.5.4.2 (Evidence for conjecture 1) We first consider two tractable cases:

n = 3 and τ = n − 1 or τ = n. When n = 3, the line graph is also a star graph, and

by Theorem 4.5.3.1, we have that the optimal solution in unique. The case τ = n is the

same as that of τ = n− 1 since the optimal Markov chain in the form (4.16) is periodic.

For τ = n− 1, we have

P(T1n ≤ n− 1) = p23p34 · · · pn−1,n,

P(Tn1 ≤ n− 1) = pn−1,n−2pn−2,n−3 · · · p21,
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and note that

P(T1n ≤ n− 1)P(Tn1 ≤ n− 1) = (p21p23) · · · (pn−1,n−2pn−1,n)

≤
(p21 + p23

2

)2 · · ·
(pn−1,n−2 + pn−1,n

2

)2
=

1

22n−4
.

(4.17)

There is a unique strategy that achieves the upper bound in (4.17): pi,i+1 = pi,i−1 = 1
2

for all i ∈ {2, . . . , n − 1}. Moreover, this strategy satisfies the necessary condition in

Lemma 4.7.2.1. Therefore, the optimal solution is unique.

As a second justification, following the Monte Carlo probability estimation method

in [89, Remark V.1], we randomly pick 27000 different Markov chains with the struc-

ture (4.16) for n = 5, τ = 8 and n = 6, τ = 8. In all these cases, no chain has been

found to have a better or same value as that of (4.14). Therefore, we have 99% confidence

that the probability of (4.14) being optimal is at least 0.99 for these cases.

4.6 Conclusion

In this chapter, we studied a Stackelberg game formulation for the robotic surveillance

problem, where the surveillance agent defends against an omniscient intruder who decides

where and when to attack. We derived an upper bound on the performance of the

surveillance agent and provided provably suboptimal solution in the complete graph. We

derived dominant strategies and leveraged them to obtain optimal strategies for the star

and the line topology. For future works, we will consider arbitrary graph topology and

heterogeneous attack duration.
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4.7 Appendix

4.7.1 Proof of a symmetry property

Let P1 be a Markov chain of the form (4.16) and P2 be



0 1 0 · · · 0

x1 0 1− x1 · · · 0

...
. . . . . . . . .

...

0 · · · xn−2 0 1− xn−2

0 · · · 0 1 0


,

which is, in terms of the objective function, equivalent to

P2 =



0 1 0 · · · 0

1− xn−2 0 xn−2 · · · 0

...
. . . . . . . . .

...

0 · · · 1− x1 0 x1

0 · · · 0 1 0


. (4.18)

We work with P2 in (4.18) for the rest of the proof. Let P(T 1
1n ≤ τ) and P(T 2

1n ≤ τ) be the

capture probabilities for P1 and P2, respectively. We show that P(T 1
1n ≤ τ) = P(T 2

1n ≤ τ),

and a similar proof strategy works for the claim P(T 1
n1 ≤ τ) = P(T 2

n1 ≤ τ). From (4.2),
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we have that

P(T 1
1n ≤ τ) = e>1

τ∑
t=1

(P1 − P1ene>n )t−1Pen

= e>1 (In − (P1 − P1ene>n )τ ) · (In − (P1 − P1ene>n ))−1Pen

= e>1 (In−1 − Aτ )(In−1 − A)−1b,

where b = xn−2en−1 and

A =



0 1 0 · · · 0

1− x1 0 x1 · · · 0

...
. . . . . . . . .

...

0 · · · 1− xn−3 0 xn−3

0 · · · 0 1− xn−2 0


.

Note that (In−1 − A)1n−1 = b. Therefore, we have

P(T 1
1n ≤ τ) = e>1 (In−1 − Aτ )1n−1. (4.19)

Similarly, for P2, we have

P(T 2
1n ≤ τ) = e>1 (In−1 −Bτ )1n−1, (4.20)
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where

B =



0 1 0 · · · 0

1− xn−2 0 xn−2 · · · 0

...
. . . . . . . . .

...

0 · · · 1− x2 0 x2

0 · · · 0 1− x1 0


.

In order to show P(T 1
1n ≤ τ) = P(T 2

1n ≤ τ), by (4.19) and (4.20), we only need to prove

that for all τ ≥ 1,

e>1 A
τ1n−1 = e>1 B

τ1n−1. (4.21)

First, note that for all τ ≤ n− 2, we have

e>1 A
τ1n−1 = e>1 B

τ1n−1 = 1. (4.22)

We next show that A and B have the same characteristic polynomials, and then by the

Cayley-Hamilton and (4.22), we will have (4.21). Since both A and B are tridiagonal

matrices, the characteristic polynomials of A and B can be generated as follows [90,

equation (2.3)]. Note that A and B are of order n − 1. Let gn−1
0 (λ) = hn−1

0 (λ) = 1,

gn−1
1 (λ) = hn−1

1 (λ) = λ, where the superscript indicates the order of the matrices, and

for k = 2, . . . , n− 1,

gn−1
k (λ) = λgn−1

k−1 (λ)− xk−2(1− xk−1)gn−1
k−2 (λ),

hn−1
k (λ) = λhn−1

k−1(λ)− xk(1− xk−1)hn−1
k−2(λ),

(4.23)

where x0 = xn−1 = 1 and we obtain the recurrence hn−1
k for B starting from the bottom

right of B matrix. Then gn−1
n−1(λ) and hn−1

n−1(λ) are the characteristic polynomials for A
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and B, respectively. Moreover, notice that

gnn =

∣∣∣∣∣∣∣
λIn−1 − A −xn−2en−1

−(1− xn−1)e>n−1 λ

∣∣∣∣∣∣∣ = λgn−1
n−1 − xn−2(1− xn−1)gn−1

n−2,

and gnn−1 = gn−1
n−1. Thus,

 gnn(λ)

gnn−1(λ)

 =

λ −xn−2(1− xn−1)

1 0


gn−1

n−1(λ)

gn−1
n−2(λ)

. (4.24)

At the same time, note that

hnn−1 = |λIn−1 −B + (1− xn−1)e1e
>
2 |

= λhn−1
n−2 − (1− xn−2)xn−1h

n−1
n−3,

hnn−2 = hn−1
n−2.

(4.25)
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Thus,

 hnn(λ)

hnn−1(λ)

 =

λ −(1− xn−1)

1 0


hnn−1(λ)

hnn−2(λ)


=

λ −(1− xn−1)

1 0

 ·
λ −xn−1(1− xn−2)

1 0


hn−1

n−2(λ)

hn−1
n−3(λ)


=

λ −(1− xn−1)

1 0


λ −xn−1(1− xn−2)

1 0


·

λ −(1− xn−2)

1 0


−1 hn−1

n−1(λ)

hn−2
n−1(λ)


=

λxn−1 (λ2 − 1)(1− xn−1)

xn−1 λ(1− xn−1)


hn−1

n−1(λ)

hn−1
n−2(λ)

 ,

(4.26)

where the second and third equalities follow from (4.25) and (4.23), respectively.

In the following, we prove that

gn−1
n−1(λ) = hn−1

n−1(λ),

λgn−1
n−1(λ) = xn−2g

n−1
n−2(λ) + (λ2 − 1)hn−1

n−2,

(4.27)

by induction on n. When n = 3, by (4.23), we have

g2
2(λ) = λg2

1(λ)− x0(1− x1)g2
0(λ) = λ2 − (1− x1),

h2
2(λ) = λh2

1(λ)− x2(1− x1)h2
0(λ) = λ2 − (1− x1),
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and

λg2
2(λ) = λ3 − λ(1− x1) = x1g

2
1(λ) + (λ2 − 1)h2

1.

Suppose (4.27) holds for n = k, then when n = k + 1,

gkk(λ)− hkk(λ) = λgk−1
k−1(λ)− xk−2(1− xk−1)gk−1

k−2(λ)

− λxk−1h
k−1
k−1(λ)− (λ2 − 1)(1− xk−1)hk−1

k−2(λ)

= xk−2xk−1g
k−1
k−2(λ)− λxk−1h

k−1
k−1(λ) + (λ2 − 1)xk−1h

k−1
k−2(λ)

= λxk−1g
k−1
k−1(λ)− λxk−1h

k−1
k−1(λ) = 0,

where the first equality follows from (4.24) and (4.26), the second and third follow from

induction hypothesis. Moreover,

λgkk(λ)− xk−1g
k
k−1(λ)− (λ2 − 1)hkk−1 = (λ2 − xk−1)gk−1

k−1(λ)− λxk−2(1− xk−1)gk−1
k−2(λ)

− (λ2 − 1)(xk−1h
k−1
k−1(λ) + λ(1− xk−1)hk−1

k−2(λ))

= (1− xk−1)λ2gk−1
k−1(λ)− λ2(1− xk−1)gk−1

k−1(λ) = 0,

where the first equality follows from (4.24) and (4.26), and the second follows from the

induction hypothesis. The proof is completed.

4.7.2 Necessary optimality condition in line graphs

Lemma 4.7.2.1 (Necessary optimality condition in line graph) Given a line

graph G = (V, E) with n ≥ 3 nodes, if the Markov chain strategy P ∗ is optimal for

the surveillance agent, then it must satisfy P(T ∗1n ≤ τ) = P(T ∗n1 ≤ τ).

Proof: We divide the proof into two parts. In the first part, we show a monotonicity
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property of the hitting times P(T1n ≤ τ) and P(Tn1 ≤ τ). In the second part, we obtain

the necessary condition.

Monotonicity of hitting times We claim that P(T1n ≤ τ) is monotonically increasing

(decreasing) with pi,i+1 (pi,i−1), and P(Tn1 ≤ τ) is monotonically decreasing (increasing)

with pi,i+1 (pi,i−1). We prove that P(T1n ≤ τ) is monotonically increasing with pi,i+1,

and a similar proof works for the other cases. For any i ∈ {2, . . . , n − 1}, let P ε be

a Markov chain that is the same as P except that P ε(i, i + 1) = P (i, i + 1) + ε and

P ε(i, i−1) = P (i, i−1)−ε, where ε > 0 is small enough such that P ε remains irreducible.

We first show that for i ∈ {2, . . . , n− 1}, we have P(T εin ≤ τ) ≥ P(Tin ≤ τ) by induction.

When τ = n− i,

P(T εin ≤ n− i) = (ε+ pi,i+1)pi+1,i+2 · · · pn−1,n

> pi,i+1pi+1,i+2 · · · pn−1,n

= P(Tin ≤ n− i).

Suppose P(T εin ≤ τ) ≥ P(T εin ≤ τ) holds for τ ≤ t. For i ∈ {2, . . . , n − 2}, let `ti+1,n be

the set of paths from node i + 1 to node n that do not contain node i and have length
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less than or equal to t. Then, when τ = t+ 1, for i ∈ {2, . . . , n− 2},

P(T εin ≤ t+ 1) = (pi,i−1 − ε)P(T εi−1,n ≤ t) + pi,iP(T εin ≤ t) + (pi,i+1 + ε)P(T εi+1,n ≤ t)

= (pi,i−1 − ε)
t∑

t1=1

P(T εi−1,i = t1)P(T εin ≤ t− t1)

+ pi,iP(T εin ≤ t) + (pi,i+1 + ε)P(`ti+1,n)

+ (pi,i+1 + ε)
t∑

t1=1

P(T εi+1,i = t1)P(T εin ≤ t− t1)

≥ (pi,i−1 − ε)P(Ti−1,n ≤ t) + pi,iP(Tin ≤ t) + (pi,i+1 + ε)P(Ti+1,n ≤ t)

≥ P(Tin ≤ t+ 1),

(4.28)

where the first inequality follows from the induction hypothesis and the second inequality

follows from the fact that P(Ti+1,n ≤ t) ≥ P(Ti−1,n ≤ t) by Lemma 4.5.1.1. Moreover,

when i = n − 1, we equate P(T εi+1,n ≤ t) = 1 in the third line of (4.28), and a similar

argument follows. Finally, we have

P(T ε1n ≤ τ) =
τ∑

t1=1

P(T ε1i = t1)P(T εin ≤ τ − t1)

≥
τ∑

t1=1

P(T1i = t1)P(Tin ≤ τ − t1)

= P(T1n ≤ τ),

which completes the proof.

Necessary condition for optimality We prove by contradiction. Without loss of

generality, suppose P ∗ is optimal and P(T ∗1n ≤ τ) < P(T ∗n1 ≤ τ). By the monotonicity

properties in the first part, for i ∈ {2, n−1}, if we increase p∗i,i+1 and decrease p∗i,i−1, then
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P(T ∗1n ≤ τ) increases and P(T ∗n1 ≤ τ) decreases continuously, which leads to an increase

in the objective function min{P(T ∗1n ≤ τ),P(T ∗n1 ≤ τ)}. Therefore, the strategy P ∗ is not

the optimal, which is a contradiction.
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Metzler Matrices and Monotone

Systems
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Chapter 5

Graph-Theoretic Stability

Conditions for Metzler Matrices and

Monotone Systems

5.1 Introduction

Problem description and motivation Much attention in recent years has been fo-

cused on multi-agent systems, but the majority of efforts has been devoted to averaging

dynamics and consensus behavior. Much less attention has been drawn to dynamical

flow systems, modeled as monotone or cooperative systems [91, 92]. Notable exceptions

are a collection of recent papers motivated by applications to traffic and biological sys-

tems [93, 94] as well as the long-standing interest in positive systems [95, 96]. Despite

these remarkable recent works, many open questions remain.

This chapter focuses on a key foundational question for linear monotone systems, i.e.,

positive systems modeled by Metzler matrices, and on its application to the study of

nonlinear monotone systems: what are graph-theoretical conditions for the Hurwitzness
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of a Metzler matrix? While a graph theoretical treatment is available for a subclass

of Metzler matrices known as “compartmental matrices” [97], a general treatment is

lacking. This is in stark contrast with the comprehensive understanding of the graph

theoretical conditions guaranteeing convergence to consensus for row-stochastic matrices

in averaging systems. Related to this open question is the work in [98]. The graph-

theoretic conditions are particularly useful because they allow us to analyze stability

based on the structural properties of the interconnection network given the existence of

perturbations or uncertainties on the parameters.

For nonlinear monotone systems, much recent progress is documented in [99, 100],

where a basic fundamental connection is built between monotone systems and contractive

systems. A notable gap, however, remains, in explaining the relationship between the

treatment of monotone contractive systems and the stability theory of network small gain

developed in [101, 102].

In summary, we aim to develop an algebraic graph theory for monotone dynami-

cal systems, starting with the linear case of Metzler matrices and continuing with the

nonlinear setting and its connections with network small-gain theorems.

Literature review Monotone dynamical systems appear naturally in numerous ap-

plications and have many appealing properties. The mathematical theory of nonlinear

monotone systems has been vastly studied in dynamical system literature [103, 91, 92].

In control community, the notion of monotonicity has been extended to systems with

inputs and outputs, and properties of the interconnected monotone systems have been

studied [93]. It is well known that linear monotone systems (also referred to as linear

positive systems) are described by Metzler matrices. Conditions for stability of Metzler

matrices have been studied extensively in the literature. Narendra and Shorten, et al.

established an iterative method based on the Schur complement to check the Hurwitzness
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of Metzler matrices in [104, 105]. A graph-theoretic characterization for diagonal stabil-

ity of matrices whose underlying digraph is a cactus graph was proposed in [98]. Briat

studied the sign stability of Metzler matrices and block Metzler matrices in [106]. Blan-

chini et al. studied switched Metzler systems and Hurwitz convex combinations in [107].

Stability of switched Metzler systems has also been studied in [108], where the authors

provided guarantees for robustness with respect to delays. In [96], scalable methods

for analysis and control of large-scale linear monotone systems have been studied. The

admissibility, stability, and persistence of interconnected positive heterogeneous systems

have been studied in [109]. For nonlinear monotone systems, using novel connections

to the contraction theory, Coogan established sufficient conditions for global stability of

monotone systems [99, 100]. The stability and properties of equilibria for homogeneous

and subhomogeneous positive systems were investigated in [110, 111]. We refer the in-

terested readers to [95] for a detailed study of linear positive systems and to the survey

paper [112] for theoretical results and applications of interconnected monotone systems.

Small-gain theorems are arguably one of the fundamental results for stability of inter-

connected systems. Started with the works by Zames [113], the early classical studies on

small-gain theorems mostly focused on stability analysis using linear gains [114]. Intro-

duction of the notion of input-to-state stability (ISS) in the seminal paper [115] triggered

a paradigm shift in the study of small-gain theorems. More recent works on small-gain

theorems focused on the input-to-state framework and they provided results in terms of

nonlinear notions of input-to-state gains [116, 101].

Statement of Contributions In this chapter, we study the graph-theoretic stabil-

ity conditions for Metzler matrices. By using concepts from the small-gain theorems

for interconnected systems, we obtain necessary and sufficient conditions for Hurwitz-

ness of Metzler matrices in terms of the input-to-state gains, and we also extend our
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results to the nonlinear monotone systems. Our main contributions are as follows. First,

we characterize two types of input-to-state stability gains for linear Metzler systems,

namely max-interconnection gains and sum-interconnection gains. Second, using the

max-interconnection and the sum-interconnection gains, we obtain two main theorems

on graph-theoretic characterizations for Hurwitzness of Metzler matrices. Our conditions

highlight the role of cycles and cycle gains and provide valuable insights for connections

between the network structure and network functions. In particular, our characteriza-

tions for Hurwitzness of Metzler matrices using the max-interconnection gains coincide

with the well-known cyclic small gain theorem [102, Theorem 3.1], which becomes nec-

essary and sufficient in our case; based on the sum-interconnection gains, in addition to

necessary and sufficient cycle gain conditions that depend on the cycle structure of the

interconnection graph, we also show that all cycle gains being less than 1 is a necessary

condition and the sum of cycle gains being less than 1 is a sufficient condition. Finally, we

extend our stability analysis using max-interconnection and sum-interconnection gains to

nonlinear monotone systems. As a result, we provide two equivalent sufficient conditions

for global stability of monotone nonlinear systems. The results in this chapter have the

potential to be applied to the (local) stability analysis of epidemic propagation models

[117], synchronization of diffusively coupled positive systems [118], and interconnection

of large scale ISS systems [101].

Organization We review the known stability results for Metzler matrices in Sec-

tion 5.2. The input-to-state stability and two forms of ISS gains are introduced in

Section 5.3, where we also characterize different ISS gains for Metzler systems. The main

results on graph-theoretic conditions for Hurwitzness of Metzler matrices are presented in

Section 5.4. We extend the conditions to nonlinear monotone systems in Section 5.5. A

few additional concepts and proofs are included in Section 5.6. We conclude the chapter
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in Section 5.7.

5.2 Review of Metzler matrices

5.2.1 Notation and preliminaries

Let R and R≥0 be the set of real and nonnegative real numbers, respectively. For a

vector v ∈ Rn, its Euclidean norm is denoted by |v|. In particular, if v ∈ R, then |v| is the

absolute value of v. For a finite set S, |S| is the cardinality. For t ≥ 0 and a time-varying

vector signal x : [0, t]→ Rn, we define the norm

‖x‖[0,t] = ess sup
s∈[0,t]

|x(s)|.

Moreover, for x : R≥0 7→ Rn, ‖x‖∞ = ess sups≥0|x(s)|. A continuous function α : R≥0 →

R≥0 is a class K function if it is strictly increasing and α(0) = 0; it is a class K∞ function if

it is a class K function and lims→∞ α(s) =∞. A continuous function β : R≥0×R≥0 → R≥0

is a class KL function if β(s, t) is a class K function of s for fixed t, and a decreasing

function of t with limt→∞ β(s, t) = 0 for fixed s.

For a matrix A ∈ Rn×n, its associated graph G(A) = (V, E , A) is a weighted digraph

defined as follows: V = {1, . . . , n} is the set of nodes, E = {(j, i) | i, j ∈ V, aij 6= 0} is

the set of edges, and A = {aij} is the weight matrix with aij being the weight on edge

(j, i) ∈ E . For i ∈ V , the neighbor set of node i is defined by Ni = {j ∈ V | (j, i) ∈ E}.

A matrix A ∈ Rn×n is irreducible if its associated digraph G(A) is strongly connected.

A strongly connected component of a digraph G is a strongly connected subgraph such

that it is not strictly contained in any other strongly connected subgraph of G.

In a digraph G = (V, E), a simple cycle c in G is a directed path that starts and

ends at the same node and has no repetitions other than the starting and ending nodes.
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Two simple cycles c1 and c2 in G intersect if they share at least one common node, i.e.,

c1 ∩ c2 6= ∅; c1 is a subset of c2 if all the nodes on c1 are also on c2. Self loops are not

considered as simple cycles in this chapter.

For a matrix A ∈ Rn×n, the leading principal submatrices of A are given by AI ,

where I = {1, . . . , i} is the set of indices for all i ∈ {1, . . . , n}. In particular, when

I = {1, . . . , n}, we have AI = A. A matrix M ∈ Rn×n is Metzler if all its off-diagonal

elements are nonnegative.

The following lemma will be useful later in the chapter.

Lemma 5.2.1.1 (Bounding sum by maximum) Let {x1, . . . , xn} and {α1, . . . , αn}

be a set of nonnegative and positive real numbers respectively. If
∑n

i=1
1
αi
≤ 1, then

n∑
i=1

xi ≤ max
i∈{1,...,n}

{αixi}.

Proof: Let s ∈ {1, . . . , n} satisfy αixi ≤ αsxs for all i ∈ {1, . . . , n}. Then

n∑
i=1

xi ≤
n∑
i=1

αsxs
αi
≤ αsxs = max

i∈{1,...,n}
{αixi}.

5.2.2 Algebraic conditions for Hurwitzness of Metzler matrices

We collect a few well-known equivalent conditions for the Hurwitzness of Metzler

matrices in the following lemma.

Lemma 5.2.2.1 (Properties of Hurwitz Metzler matrices [119, Theorem 15.17],

[95, Theorem 13]) Let M ∈ Rn×n be a Metzler matrix, then the following statements

are equivalent:
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(i) M is Hurwitz;

(ii) M is invertible and −M−1 ≥ 0;

(iii) all leading principal minors of −M are positive;

(iv) there exists ξ ∈ Rn such that ξ > 0n and Mξ < 0n;

(v) there exists η ∈ Rn such that η > 0n and η>M < 0>n ;

(vi) there exists a diagonal matrix P � 0 such that M>P + PM ≺ 0.

The inequalities in (ii), (iv) and (v) of Lemma 5.2.2.1 are componentwise. The matrix

inequalities in (vi) indicate positive/negative definiteness.

Remark 5.2.2.2 (Related stability notions)

1. Condition (iii) is also known as the Hicksian stability condition for general ma-

trices in the classic economics literature [120]. To the best of our knowledge, the

equivalence of parts (i) and (iii) in Lemma 5.2.2.1 for Hurwitz Metzler matrices

has not been fully exploited in the literature, and we build one of our main results

based on this equivalence.

2. Conditions (iv) and (v) are also referred to as quasi diagonal dominance condition

in the literature [121].

3. If the Metzler matrices are symmetric, then the necessary and sufficient condition

in Lemma 5.2.2.1(iii) is exactly the Sylvester’s criterion for negative definiteness

of general symmetric matrices.

4. The equivalence of parts (i) and (vi) in Lemma 5.2.2.1 implies that for Metzler

matrices, the Hurwitzness and diagonal stability are equivalent. 4
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Based on the Schur complement, Narendra et al. propose an iterative method to

verify the Hurwitzness of a Metzler matrix [104]. Partition a Metzler matrix M ∈ Rn×n

as follows

M =

Mn−1 bn−1

c>n−1 dn−1


where dn−1 is a scalar. The Schur complement of M with respect to dn−1 is given by

M [n − 1] = Mn−1 − bn−1c>n−1

dn−1
. For k ∈ {1, . . . , n − 1}, define M [k] iteratively as the

Schur complement of M [k + 1] with respect to dk, where M [n] = M , then the following

statement holds.

Lemma 5.2.2.3 (Necessary and sufficient condition based on the Schur com-

plement [104]) A Metzler matrix M ∈ Rn×n is Hurwitz if and only if for all k ∈

{1, . . . , n}, all the diagonal elements of M [k] are negative.

By Lemma 5.2.2.3, we have the following necessary condition.

Corollary 5.2.2.4 (Negativity of diagonal elements [104]) If a Metzler matrix

M ∈ Rn×n is Hurwitz, then all the diagonal elements of M are negative.

5.3 Review of ISS, interconnected systems and ISS

gains

We review the concepts of input-to-state stability and introduce the gain functions

in two different forms for interconnected input-to-state stable systems [102, 101].

5.3.1 Input-to-state stability

Consider the system

ẋ = f(x, u), (5.1)
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where x ∈ RN is the state, u ∈ Rm is the input, and f : RN × Rm 7→ RN is a locally

Lipschitz function and satisfies f(0N , 0m) = 0N . Then, we have the following definition

for input-to-state stability.

Definition 5.3.1.1 (Input-to-state stability [115, Definition 2.1]) System (5.1)

is input-to-state stable if there exist β ∈ KL and γ ∈ K such that for any initial state

x(0) = x0 and any measurable and locally essentially bounded input u, the solution x(t)

satisfies, for all t ≥ 0,

|x(t)| ≤ max{β(|x0|, t), γ(‖u‖∞)}. (5.2)

The class K function γ in (5.2) is the ISS gain of the system.

Remark 5.3.1.2 (ISS Lyapunov function) To verify ISS using Definition 5.3.1.1,

we need to find an estimate for the trajectory of the system. In general this task is

computationally hard, if not impossible. However, one can show that ISS is equivalent to

the existence of an appropriate ISS Lyapunov function. We refer the interested readers

to [122, Theorem 1]. 4

5.3.2 Interconnection, ISS gains, and cyclic small-gain theorem

In this subsection, we study input-to-state stability for networked interconnected

systems. Suppose the interaction between subsystems is described by a directed graph

G = (V, E), where V = {1, . . . , n} is the set of nodes and for all i, j ∈ V and i 6= j,

(j, i) ∈ E if xj is an input to subsystem i. We consider a network of n interconnected

dynamical systems with the interconnection graph G:

ẋi = fi(xi, xNi , ui), for all i ∈ {1, . . . , n}, (5.3)
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where xi ∈ Rni and xNi =

[
xi1 , . . . , xiki

]>
∈ RnNi with Ni = {i1, . . . , iki} and nNi =∑ki

j=1 nij . For every i ∈ V , the function fi : Rni+nNi+mi → Rni is locally Lipschitz

satisfying fi(0ni , 0nNi , 0mi) = 0ni . For the interconnected system (5.3), it is desirable to

study ISS of the interconnection using the ISS of each subsystem. We first introduce

componentwise ISS for network systems.

Definition 5.3.2.1 (Componentwise ISS) An interconnected system (5.3) is compo-

nentwise ISS if every subsystem i is ISS for the input

[
xNi ui

]>
∈ RnNi+mi.

In other words, an interconnected network system is componentwise ISS if each sub-

system, separated from the whole system, is ISS. In general, componentwise ISS does not

guarantee ISS of the whole interconnected system, and conditions on the interconnec-

tion structure and composition of suitable gains are required to ensure ISS of the whole

system. In the following, we introduce two notions of gains.

Definition 5.3.2.2 (Max-interconnection ISS gains) Consider the interconnected

system (5.3). The family of functions {Ψij} ∈ K ∪ {0} is a max-interconnection gain if,

for every i ∈ {1, . . . , n}, there exists βi ∈ KL and Ψi ∈ K such that for any initial state

x(0) = x0, and any measurable and locally essentially bounded inputs ui, the solution

xi(t) satisfies, for all t ≥ 0,

|xi(t)| ≤ max
j∈Ni
{βi(|xi(0)|, t),Ψij(‖xj‖[0,t]),Ψi(‖ui‖∞)}.

Definition 5.3.2.3 (Sum-interconnection ISS gains) Consider the interconnected

system (5.3). The family of functions {Γij} ∈ K ∪ {0} is a sum-interconnection gain if,

for every i ∈ {1, . . . , n}, there exists βi ∈ KL and Γi ∈ K such that for any initial state

x(0) = x0, and any measurable and locally essentially bounded inputs ui, the solution
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xi(t) satisfies, for all t ≥ 0,

|xi(t)| ≤ βi(|xi(0)|, t) +
∑
j∈Ni

Γij(‖xj‖[0,t]) + Γi(‖ui‖∞).

The following lemma provides conditions on a set of max-interconnection ISS gains

which guarantee ISS of the interconnected system (5.3).

Lemma 5.3.2.4 (Cyclic small-gain theorem [102, Theorem 3.2]) Consider an

interconnected system (5.3) where each subsystem i is componentwise ISS and has a

family of max-interconnected gains {Ψij}. The interconnected system (5.3) is ISS with

x as the state and u as the input if, for every simple cycle c = (i1, i2, . . . , ik, i1) in the

interconnection graph G and every s > 0,

Ψi2i1 ◦Ψi3i2 ◦ · · · ◦Ψi1ik(s) < s, (5.4)

where ◦ is the function composition.

In the rest of this chapter, we consider the interconnection of scalar systems.

5.3.3 ISS gains for Metzler systems

In this subsection, we characterize the ISS gains for Metzler systems. Consider the

continuous-time linear system

ẋ = Mx+ u, (5.5)

where M ∈ Rn×n is a Metzler matrix and u ∈ Rn≥0 is the control input. The Metzler

system (5.5) can be viewed as a network of n interconnected scalar systems, where the
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interconnection is characterized by the digraph G(M). More specifically, one can write

the Metzler system (5.5) in the interconnection form (5.3) as,

ẋi = miixi +
∑
j∈Ni

mijxj + ui, for all i ∈ {1, . . . , n}. (5.6)

We characterize the sum-interconnection and max-interconnection ISS gains for the

Metzler system (5.5) in the following lemma. Some parts of Lemma 5.3.3.1 may be known

in the literature, and we hereby provide self-contained proofs.

Lemma 5.3.3.1 (ISS Metzler systems) The Metzler system (5.5) with interconnec-

tion digraph G(M) = (V, E ,M)

1. is componentwise ISS if and only if

mii < 0, for all i ∈ {1, . . . , n};

2. has sum-interconnection gains {s 7→ Γij(s) = γijs}, if it is componentwise ISS and

the set of scalars {γij} satisfies γij = 0 for all j /∈ Ni and

mij

−mii

≤ γij, for all i ∈ {1, . . . , n}, j ∈ Ni; (5.7)

3. has max-interconnection gains {s 7→ Ψij(s) = ψijs}, if it is componentwise ISS and

the set of scalars {ψij} satisfies ψij = 0 for all j /∈ Ni and

∑
j∈Ni

(
mij

−mii

)
ψ−1
ij < 1, for all i ∈ {1, . . . , n}; (5.8)

4. is ISS if and only if M is Hurwitz.
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Proof: Regarding part 1, since the dynamics of the ith subsystem given by (5.6)

is linear, it is ISS if and only if mii < 0 [102, Theorem 1.3]. Therefore, the Metzler

system (5.5) is componentwise ISS if and only if, for every i ∈ {1, . . . , n}, we have

mii < 0.

Regarding part 2, the state trajectory xi(t) satisfies

xi(t) = emiitxi(0) +
∑
j∈Ni

mij

∫ t

0

emii(t−τ)xj(τ)dτ +

∫ t

0

emii(t−τ)ui(τ)dτ,

which implies

|xi(t)| ≤ emiit|xi(0)|+
∑
j∈Ni

mij

∫ t

0

|emii(t−τ)xj(τ)|dτ +

∫ t

0

|emii(t−τ)ui(τ)|dτ

≤ emiit|xi(0)|+
∑
j∈Ni

mij‖xj‖[0,t]

∫ t

0

emii(t−τ)dτ + ‖ui‖∞
∫ t

0

emii(t−τ)dτ

≤ emiit|xi(0)|+
∑
j∈Ni

mij

−mii

‖xj‖[0,t] +
1

−mii

‖ui‖∞.

(5.9)

Therefore, the Metzler system (5.5) has sum-interconnection ISS gains {s 7→ Γij(s) =

γij(s)} if we have
mij
−mii ≤ γij.

Regarding part 3, by Lemma 5.2.1.1 and (5.9), we have

|xi(t)| ≤ max{α1e
miit|xi(0)|, α2

∑
j∈Ni

mij

−mii

‖xj‖[0,t], α3
1

−mii

‖ui‖∞}, (5.10)

where α1, α2, α3 > 0 and
∑3

i=1
1
αi
≤ 1. If (5.8) holds, then by Lemma 5.2.1.1, we have

∑
j∈Ni

mij

−mii

‖xj‖[0,t] < max
j
{ψij‖xj‖[0,t]}.
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Therefore, we can pick α2 > 1 properly such that

∑
j∈Ni

mij

−mii

‖xj‖[0,t] ≤
1

α2

max
j
{ψij‖xj‖[0,t]},

which combined with (5.10) imply that {ψij} are max-interconnection gains.

Regarding part 4, this is a straightforward application of [102, Theorem 1.3].

5.4 Graph-theoretic conditions for Hurwitzness of

Metzler matrices

In this section, we first show that we only need to consider irreducible Metzler matri-

ces. Then, we show that different ISS gains result in different graph-theoretic conditions

for the stability of Metzler systems. In particular, if we use the max-interconnection

ISS gains, then the cycle condition (5.4) in Lemma 5.3.2.4 is a necessary and suffi-

cient condition for the stability of Metzler systems. On the other hand, if we use the

sum-interconnection ISS gains, then we can obtain new necessary and sufficient graph-

theoretic conditions.

5.4.1 Metzler matrices with reducible graphs

The following lemma allows us to restrict our attention to irreducible Metzler matri-

ces.

Lemma 5.4.1.1 (Hurwitzness and strongly connected components) For a Met-

zler matrix M ∈ Rn×n, M is Hurwitz if and only if all the submatrices corresponding to

the strongly connected components of G(M) are Hurwitz.
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Proof: If M is irreducible, then the statement holds true since there is only one

strongly connected component in G(M), which is G(M) itself.

If M is reducible, then there exists a permutation matrix such that M can be brought

into block upper triangular form where each block on the diagonal corresponds to a

strongly connected component of G(M). Therefore, M is Hurwitz if and only if all the

submatrices corresponding to the strongly connected components of G(M) are Hurwitz.

If G(M) is acyclic, then we have the following corollary.

Corollary 5.4.1.2 (Necessary and sufficient condition for acyclic graphs [106,

Theorem 3.4]) Consider a Metzler matrix M ∈ Rn×n whose associated digraph is acyclic.

The matrix M is Hurwitz if and only if all the diagonal elements of M are negative.

Hereafter, we focus on irreducible Metzler matrices with negative diagonal elements.

5.4.2 Cycle gains and the case of a simple cycle

In this subsection, we define the sum-cycle gains and max-cycle gains for Metzler

matrices, and we emphasize the importance of cycles through the case of a simple cycle.

Note that self loops are not considered as simple cycles in this chapter.

Definition 5.4.2.1 (Cycle gains for Metzler matrices) Let M ∈ Rn×n be an irre-

ducible Metzler matrix with negative diagonal elements and c = (i1, i2, . . . , ik, i1) be a

simple cycle in G(M). Then

1. a max-cycle gain of c is

ψc = (ψi2i1) (ψi3i2) . . . (ψi1ik) , (5.11)

where the scalars {ψij} satisfy (5.8); and
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2. the sum-cycle gain of c is

γc =

(
mi2i1

−mi2i2

)(
mi3i2

−mi3i3

)
. . .

(
mi1ik

−mi1i1

)
. (5.12)

Remark 5.4.2.2 (Uniqueness of cycle gains) The max-interconnection gains and

sum-interconnection gains as characterized in Lemma 5.3.3.1 are not unique. In Defi-

nition 5.4.2.1, the max-cycle gains as in (5.11) are not unique, and for every solution

of (5.8), one can compute a set of max-cycle gains for simple cycles. However, the sum-

cycle gains in (5.12) are uniquely defined for simple cycles in G(M) since we pick the

natural lower bound for the sum-interconnection gains in (5.7). 4

For an irreducible Metzler matrix M ∈ Rn×n with negative diagonal elements, if the

associated digraph G(M) is a simple cycle, i,e, M has the following structure,

M =



m11 m12 0 · · · 0

0 m22 m23 · · · 0

...
...

. . . . . .
...

0 0 · · · mn−1,n−1 mn−1,n

mn1 0 · · · 0 mnn


,

then we have the following lemma.

Lemma 5.4.2.3 (Necessary and sufficient condition for simple cycles) Let M ∈

Rn×n be an irreducible Metzler matrix with negative diagonal elements whose associated

digraph G(M) is a simple cycle c = (1, n, . . . , 2, 1). Then the following statements are

equivalent:

1. M is Hurwitz;
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2. γc < 1;

3. there exists a solution to (5.8) such that ψc < 1.

Proof: Regarding the equivalence between 1 and 2: by Lemma 5.2.2.1(iii), M is

Hurwitz if and only if all the leading principal minors of −M are positive. If i < n and

I = {1, . . . , i}, then the leading principal submatrices (−M)I of −M are upper triangular

with positive diagonal elements and thus det((−M)I) > 0. When I = {1, . . . , n}, we have

det(−M) =
n∏
i=1

(−mii)−mn1

n−1∏
i=1

mi,i+1.

Then, det(−M) > 0 if and only if

n∏
i=1

(−mii) > mn1

n−1∏
i=1

mi,i+1,

which is equivalent to γc < 1.

Regarding the equivalence between 2 and 3: notice that if we pick ψij =
mij
−mii + ε for

sufficiently small ε > 0, then (5.8) is satisfied and ψc < 1 is equivalent to γc < 1.

It is worth mentioning that the necessary and sufficient condition in Lemma 5.4.2.3 is

a special case of a more general result in [98, Proposition 2] regarding diagonal stability.

Example 5.4.2.4 (A two by two Metzler matrix describing a flow system [119,

Exercise 10.10]) We apply Lemma 5.4.2.3 to a simple two by two case where the Metzler

matrix describes a symmetric flow system ẋ = Mx. Suppose the Metzler matrix M has

the following form

M =

g − f f

f −d− f

 ,
where f > 0 is the flow rate between two nodes, g > 0 is the growth rate at node 1
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and d > 0 is the decay rate at node 2. By Lemma 5.4.2.3, the flow system ẋ = Mx is

asymptotically stable if and only if

g − f < 0, − d− f < 0, and
f 2

(f − g)(d+ f)
< 1.

Equivalently, we have

d > g and f >
dg

d− g .

This condition has a clear physical interpretation that in order for the two-node flow

system ẋ = Mx to be asymptotically stable, i.e., the flow does not accumulate in the

system, the decay rate at one node must be larger than the growth rate at the other node

and the flow rate between the nodes should be sufficiently large.

Lemma 5.4.2.3 states that a Metzler matrix whose associated digraph is a simple cycle

is Hurwitz if and only if the cycle gain is less than 1. It turns out that, for irreducible

Metzler matrices with general digraphs, the gains of the simple cycles play a central role

in determining the Hurwitzness. Moreover, cycle gains in different forms (sum or max)

lead to different graph-theoretic conditions.

5.4.3 Max-cycle gains and Hurwitz Metzler matrices

In this subsection, we use the max-cycle gains of the Metzler system (5.5) to char-

acterize the Hurwitzness of a Metzler matrix, and the cyclic small gain theorem in

Lemma 5.3.2.4 becomes necessary and sufficient in this case.

Theorem 5.4.3.1 (Max-interconnection characterization) Let M ∈ Rn×n be an

irreducible Metzler matrix with negative diagonal elements, G(M) = (V, E ,M) be the as-

sociated digraph, and Φ be the set of simple cycles of G(M). Then the following conditions

are equivalent:
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1. M is Hurwitz;

2. for every i ∈ V and j ∈ Ni, there exists ψij > 0 such that

∑
j∈Ni

(
mij

−mii

)
ψ−1
ij < 1, for all i ∈ {1, . . . , n}, (5.13)

ψc < 1, for all c ∈ Φ. (5.14)

Proof: (i) =⇒ (ii): Suppose that M is Hurwitz, then by Lemma 5.2.2.1(iv) there

exists ξ > 0n such that Mξ < 0n. Therefore, diag(ξ−1)Mdiag(ξ) is a Metzler matrix

with negative row sums, which implies

∑
j∈Ni

(
mij

−mii

)
ξj
ξi
< 1, for all i ∈ {1, . . . , n}.

Note that, for every (i1, . . . , ik, i1) ∈ Φ, we have

ξi2
ξi1

. . .
ξi1
ξik

= 1.

Thus, we have

∑
j∈Ni

(
mij

−mii

)
ξj
ξi
< 1, for all i ∈ {1, . . . , n},

ξi2
ξi1

. . .
ξi1
ξik

= 1, for all (i1, . . . , ik, i1) ∈ Φ.
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By a straightforward continuity argument, one can show that, for every i ∈ V and j ∈ Ni,

there exists ψij > 0 such that

∑
j∈Ni

(
mij

−mii

)
ψ−1
ij < 1, for all i ∈ {1, . . . , n},

ψc < 1, for all c ∈ Φ.

(ii) =⇒ (i): Since the diagonal entries of M are negative, the Metzler system (5.5) is

componentwise ISS by Lemma 5.3.3.11. By Lemma 5.3.3.13, there exist max-interconnection

gains {ψij} such that

∑
j∈Ni

(
mij

−mii

)
ψ−1
ij < 1, for all i ∈ {1, . . . , n}.

Thus, the sufficient condition in Lemma 5.3.2.4 is equivalent to the existence of ψij > 0,

for i ∈ V and j ∈ Ni such that

∑
j∈Ni

(
mij

−mii

)
ψ−1
ij < 1, for all i ∈ {1, . . . , n},

ψc < 1, for all c ∈ Φ.

Therefore, by Lemma 5.3.2.4, the Metzler system (5.5) is ISS and asymptotically stable,

which implies that M is Hurwitz. This completes the proof.

By using Theorem 5.4.3.1, we can prove the following corollary.

Corollary 5.4.3.2 (Diagonal Stability and Hurwitzness of Metzler matrices)

Let M ∈ Rn×n be an irreducible Metzler matrix with negative diagonal elements, G(M) =

(V, E ,M) be the associated digraph, and Φ be the set of simple cycles of G(M). Assume

that any two simple cycles of G(M) have at most one vertex in common, i.e., G(M) is
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cactus. Then the following conditions are equivalent:

1. M is Hurwitz;

2. for every c ∈ Φ and every node i ∈ c, there exists positive constant θci > 0 such that

∏
i∈c

θci > γc, for all c ∈ Φ,

∑
c∈Φ

θci = 1, for all i ∈ c,
(5.15)

where γc is defined in equation (5.12).

Proof: We postpone the proof to Appendix 5.8.2.

Remark 5.4.3.3 1. The condition in Corollary 5.4.3.22 for Metzler matrices is the

same as conditions (11) and (12) in [98, Theorem 1] for the diagonal stability of

arbitrary matrices with cactus graphs. Therefore, in the context of Metzler matrices,

Theorem 5.4.3.1 is a generalization of [98, Theorem 1] to arbitrary topologies.

2. One can compute the positive constants ψij in Theorem 5.4.3.12 by solving the

following feasibility problem

Find ξ

subject to ξ > 0n,

Mξ < 0n.

(5.16)

Then, for i ∈ V and j ∈ Ni, we can compute ψij as

ψij = δ
ξi
ξj
,
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where 0 < δ < 1 is given by

δ = max
i

{∑
j∈Ni

mij

−mii

ξj
ξi

}
.

The problem (5.16) is not a linear programming due to the strict inequalities. How-

ever, one can easily transform it to the following linear programming.

Find ξ

subject to ξ ≥ 1n,

Mξ ≤ −1n.

4

In order to check conditions (5.13) and (5.14), we need to compute the max-interconnection

ISS gains using the method in Remark 5.4.3.32. This computation is essentially equiva-

lent to the well-known condition in Lemma 5.2.2.1(iv).

5.4.4 Sum-cycle gains and Hurwitz Metzler matrices

In this subsection, we use sum-cycle gains to characterize the Hurwitzness of Metzler

matrices. We first introduce the concept of disjoint cycle sets.

Definition 5.4.4.1 (Disjoint cycle sets) Let M ∈ Rn×n be a Metzler matrix with the

associated digraph G(M) and Φ = {c1, . . . , cr} be the set of simple cycles in G(M), the

disjoint cycle sets KM
` for ` ∈ {1, . . . , r} are defined by

KM
` = {{ci1 , . . . , ci`} ⊂ Φ | cik ∩ cik′ = ∅, k 6= k′ and k, k′ ∈ {1, . . . , `}}.

Intuitively, the disjoint cycle sets KM
` are sets where each element is a set of ` cycles
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that are mutually disjoint. We collect the graph-theoretic interpretations for the disjoint

cycle sets in Section 5.6.1. With the disjoint cycle sets, we are ready to define the notion

of total cycle gain of a Metzler matrix and its leading principal submatrices.

Definition 5.4.4.2 (Total cycle gain) Let M ∈ Rn×n be an irreducible Metzler matrix

with negative diagonal elements. For i = {1, . . . , n} and I = {1, . . . , i}, the leading

principal submatrix MI has the associated digraph G(MI), set of simple cycles ΦMI
=

{c1, . . . , crMI } and disjoint cycle sets KMI
` , ` ∈ {1, . . . , rMI

}, then the total cycle gain of

MI is defined by

γMI
=


rMI∑̀
=1

∑
{ci1 ,...,ci`}∈K

MI
`

(−1)`−1γci1 . . . γci` , if ΦMI
6= ∅,

0, if ΦMI
= ∅.

(5.17)

Example 5.4.4.3 (Disjoint cycle sets and total cycle gain) We illustrate the defi-

nitions of the disjoint cycle sets and the total cycle gain in this example. Let M ∈ R6×6

be an irreducible Metzler matrix with negative diagonal elements as follows

M =



m11 m12 0 0 0 m16

m21 m22 m23 0 0 0

0 m32 m33 0 0 0

0 0 m43 m44 m45 0

0 0 0 m54 m55 0

m61 0 0 0 m65 m66


.

The associated weighted digraph G(M) is shown in Fig. 5.1. There are five cycles in

G(M), i.e., c1 = (1, 2, 1), c2 = (2, 3, 2), c3 = (4, 5, 4), c4 = (6, 1, 6), c5 = (1, 2, 3, 4, 5, 6, 1),
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Figure 5.1: The associated weighted digraph G(M)

and the disjoint cycle sets of M are:

KM
1 = {{c1}, {c2}, {c3}, {c4}, {c5}},

KM
2 = {{c1, c3}, {c2, c3}, {c2, c4}, {c3, c4}},

KM
3 = {{c2, c3, c4}},

KM
4 = KM

5 = ∅.

(5.18)

According to (5.17), the total cycle gains of the leading principal submatrices are given

by:

γM{1} = 0, γM{1,2} = γc1 ,

γM{1,2,3} = γc1 + γc2 , γM{1,2,3,4} = γc1 + γc2 ,

γM{1,2,3,4,5} = γc1 + γc2 + γc3 − γc1γc3 − γc2γc3 ,

γM{1,2,3,4,5,6} = γM = γc1 + γc2 + γc3 + γc4 + γc5 − γc1γc3 − γc2γc3 − γc2γc4

− γc3γc4 + γc2γc3γc4 .

(5.19)

With the above definitions, we now present a useful lemma.

Lemma 5.4.4.4 (Determinant and total cycle gain) Let M ∈ Rn×n be an irreducible

Metzler matrix with negative diagonal elements and let γMI
be the total cycle gain of MI

132



Graph-Theoretic Stability Conditions for Metzler Matrices and Monotone Systems Chapter 5

for i ∈ {1, . . . , n} and I = {1, . . . , i}. Then

det(MI) = (1− γMI
)

i∏
j=1

mjj. (5.20)

Proof: We postpone the proof to Appendix 5.8.1.

We are now ready to write the leading principal minor condition in Lemma 5.2.2.1(iii)

in the graph-theoretic language.

Theorem 5.4.4.5 (Sum-interconnection characterization) Let M ∈ Rn×n be an

irreducible Metzler matrix with negative diagonal elements, G(M) = (V, E ,M) be the

associated digraph, and Φ be the set of simple cycles of G(M). Then the following state-

ments hold:

1. (necessary and sufficient condition) M is Hurwitz if and only if, for all i ∈ {1, . . . , n}

γMI
< 1, I = {1, . . . , i};

2. (sufficient condition) if ∑
c∈Φ

γc < 1,

then M is Hurwitz;

3. (necessary condition) if M is Hurwitz then

γc < 1, for all c ∈ Φ.

Proof: Regarding part 1, by Lemma 5.4.4.4, we have that for i ∈ {1, . . . , n} and
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I = {1, . . . , i},

det((−M)I) = (
i∏

j=1

(−mjj))(1− γMI
).

By Lemma 5.2.2.1(iii), M is Hurwitz if and only if for all i ∈ {1, . . . , n} and I = {1, . . . , i},

det((−M)I) > 0 , i.e.,

(
i∏

j=1

(−mjj))(1− γMI
) > 0,

which is equivalent to γMI
< 1.

Regarding part 2, we prove the result by showing that part 1 holds. For all i ∈

{1, . . . , n} and I = {1, . . . , i}, the leading submatrix MI only involves a subset of Φ. If

ΦMI
is empty, then γMI

= 0 < 1. Otherwise, from (5.17), we know that γMI
has the

following form:

γMI
=

∑
{ci1}∈K

MI
1

γci1 −
∑

{ci1 ,ci2}∈K
MI
2

γci1γci2 +
∑

{ci1 ,ci2 ,ci3}∈K
MI
3

γci1γci2γci3

+

rMI∑
`=3

∑
{ci1 ,...,ci`}∈K

MI
`

(−1)`−1γci1 . . . γci` .

Since for all c ∈ Φ, we have γc > 0 and
∑

c∈Φ γc < 1 by assumption, then we have that

γc < 1 for all c ∈ Φ and
∑
{ci1}∈K

MI
1
γci1 < 1. Note that by the definition of KMI

` , for

any {ci1 , . . . , ci`} ∈ KMI
` , we must have that all the subsets of {ci1 , . . . , ci`} with ` − 1

elements are contained in KMI
`−1. Thus, we have that, for all k ≥ 1,

2k+1∑
`=2k

∑
{ci1 ,...,ci`}∈K

MI
`

(−1)`−1γci1 . . . γci` < 0.

Hence, we have for all i ∈ {1, . . . , n} and I = {1, . . . , i}, γMI
< 1, and by Theo-
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rem 5.4.4.51, M is Hurwitz.

Regarding part 3, we postpone the proof to Section 5.6.2, where an expansion algo-

rithm for G(M) is given so that all the simple cycles can be identified by the leading

principal submatrices and a simple proof is constructed.

Remark 5.4.4.6 (Necessary and sufficient condition in special graphs) The suf-

ficient condition for Hurwitzness in Theorem 5.4.4.52 becomes necessary and sufficient

when any two cycles share at least one common node in the digraph associated with the

Metzler matrix. 4

We give two simple examples illustrating that the condition in Theorem 5.4.4.53 is

not sufficient and the condition in Theorem 5.4.4.52 is not necessary.

Example 5.4.4.7 (Insufficiency of condition 3 in Theorem 5.4.4.5) Consider an

irreducible Metzler matrix M ∈ R3×3 as follows

M =


−1 1 0

1 −2 1

0 1 −1

 .

The associated weighted digraph G(M) is shown in Fig. 5.2. There are two cycles in

G(M), i.e., c1 = (1, 2, 1) and c2 = (2, 3, 2), and the cycle gains are γc1 = γc2 = 1
2
. The

cycle gains satisfy the condition in Theorem 5.4.4.53, but M is not Hurwitz since it has

a zero eigenvalue.

1 2 3
1

1

1
−1

1

−1

−1

Figure 5.2: The associated weighted digraph of M
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Example 5.4.4.8 (Lack of necessity of condition 2 in Theorem 5.4.4.5) Consider

an irreducible Metzler matrix M ∈ R4×4 as follows

M =



−5 1 0 0

3 −1 1 0

0 1 −5 1

0 0 1 −1


.

The associated weighted digraph G(M) is shown in Fig. 5.3. There are three cycles

in G(M), i.e., c1 = (1, 2, 1), c2 = (2, 3, 2) and c3 = (3, 4, 3), and the cycle gains are

γc1 = 3
5
, γc2 = 1

5
and γc3 = 1

5
. The cycle gains do not satisfy the sufficient condition in

Theorem 5.4.4.52, but one can check that M is Hurwitz.

1 2 3 4
1

3

1

1 1

1
−5 −1

−1 −5

Figure 5.3: The associated weighted digraph of M

We give the Hurwitzness conditions for Example 5.4.4.3.

Example 5.4.4.9 (continues=exam:concepts) By Theorem 5.4.4.51 and (5.19), the

necessary and sufficient conditions for M to be Hurwitz are given by

γc1 < 1, γc1 + γc2 < 1,

γc1 + γc2 + γc3 − γc1γc3 − γc2γc3 < 1, γM < 1,
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which are equivalent to

γc1 + γc2 < 1, (5.21)

γc1 + γc2 + γc3 − γc1γc3 − γc2γc3 < 1, (5.22)

γM < 1. (5.23)

It is not obvious whether the necessary conditions in Theorem 5.4.4.53 hold in this exam-

ple. We show that (5.21)-(5.23) imply those necessary conditions in the following. From

(5.21), since the cycle gains are positive, we know that γc1 < 1 and γc2 < 1. We can

rewrite (5.22) as follows

γc3(1− γc1 − γc2) < 1− γc1 − γc2 ,

which along with (5.21) imply that γc3 < 1. By using (5.19), we can rearrange (5.23) as

follows

γc1(1− γc3) + γc2 + γc3 − γc2γc3 + γc5 + γc4(1− γc2)(1− γc3) < 1,

which is equivalent to

γc1(1− γc3) + γc5 < (1− γc4)(1− γc2)(1− γc3). (5.24)

Since all the terms on the left hand side of (5.24) are positive, and on the right hand side

we have γc2 < 1 and γc3 < 1, thus we must have that γc4 < 1. At the same time, since

the term on the right hand side of (5.24) is less than 1, we must have that γc5 < 1.
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5.5 Graph-theoretic conditions for stability of non-

linear monotone systems

In this section, we extend our stability results to monotone nonlinear systems. We

consider a network of n interconnected scalar dynamical systems with the interconnection

graph G:

ẋi = fi(xi, xNi), for all i ∈ {1, . . . , n}, (5.25)

where xi ∈ R and xNi =

[
xi1 , . . . , xiki

]>
∈ R|Ni| with Ni = {i1, . . . , ik}. For every

i ∈ {1, . . . , n}, the function fi : R|Ni|+1 → R is continuously differentiable. We assume

that the interconnected system (5.25) is monotone, i.e., for every x ∈ Rn≥0, the Jacobian

matrix J(x) is Metzler. Moreover, we assume that f(0n) = 0n. We show that our

characterizations of stability for linear Metzler systems can be generalized to sufficient

conditions for global stability of nonlinear monotone systems. In particular, we prove

two global results for asymptotic stability of monotone interconnected networks based

on the max-interconnection gains and the sum-interconnection gains.

Theorem 5.5.0.1 (Max-interconnection stability) Consider an interconnected non-

linear system (5.25) evolving on the positive orthant Rn≥0 with the interconnection graph

G = (V, E). Assume that f(0n) = 0n, and for every x ∈ Rn≥0, the matrix J(x) is Met-

zler with negative diagonal entries. Moreover, assume there exists a family of positive

numbers {ψij} for i ∈ V and j ∈ Ni such that:

1. for every i ∈ {1, . . . , n},

∑
j∈Ni

Jij(x)

−Jii(x)
ψ−1
ij < 1, for all x ∈ Rn≥0, (5.26)
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2. for every c = (i1, . . . , ik, i1) ∈ Φ,

ψi2i1 . . . ψi1ik < 1.

Then 0n is globally asymptotically stable for system (5.25).

Proof: Let κ = max
{

max(i,j)∈E ψ
−1
ij , 1

}
. Then, we always have κ ≥ 1. Given c > 0,

we define the set Bi(c), for every i ∈ {1, . . . , n}, and the real number δ(c) as follows:

Bi(c) = {x ∈ Rn≥0 | xj ≤ κc, for any j ∈ Ni ∪ {i}},

δ(c) = min
i

min
x∈Bi(c)

(
−Jii(x)−

∑
j∈Ni

Jij(x)ψ−1
ij

)
.

Note that Jii(x)+
∑

j∈Ni Jij(x)ψ−1
ij only depends on xk such that k ∈ Ni∪{i}. Therefore,

using (5.26), we get δ(c) > 0. Let β : R≥0 × R≥0 7→ R be a class KL function given by

β(s, t) = se−δ(s)t, where δ(s) > 0 is a nonincreasing function with respect to s (for s1 ≤ s2,

we have that Bi(s1) ⊆ Bi(s2) and thus δ(s1) ≥ δ(s2)). Consider the control system

ẋ = f(x) + 0n×nu, (5.27)

where u ∈ Rn≥0. We first show that, for every t ≥ 0 and every i ∈ {1, . . . , n},

xi(t) ≤ max
j∈Ni
{β(xi(0), t), ψij‖xj‖[0,t], ‖ui‖∞}. (5.28)

We prove (5.28) by contradiction. Suppose that the statement (5.28) is not true. Since

t 7→ x(t) is a continuous map, there exist t∗ ≥ 0, a set of indices I ⊆ {1, . . . , n}, and a
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positive number ε > 0 such that, for every i ∈ I,

xi(t
∗) = max

j∈Ni
{β(xi(0), t∗), ψij‖xj‖[0,t∗], ‖ui‖∞}, (5.29)

and for every i ∈ I and every t ∈ (t∗, t∗ + ε),

xi(t) > max
j∈Ni
{β(xi(0), t), ψij‖xj‖[0,t], ‖ui‖∞}. (5.30)

Let i be any index such that i ∈ I. Since Rn≥0 is convex, by the Mean Value Theorem [123,

Proposition 2.4.7],

f(x)− f(0n) =

(∫ 1

0

J(τx)dτ

)
(x− 0n). (5.31)

By (5.29) and (5.30), we have ‖xj‖[0,t] ≤ ψ−1
ij xi(t) for any j ∈ Ni and every t ∈

[t∗, t∗ + ε). This inequality implies that for any j ∈ Ni and every t ∈ [t∗, t∗ + ε),

xj(t) ≤ ψ−1
ij xi(t) ≤ κxi(t). (5.32)

Since J(x) is Metzler for every x ∈ Rn≥0, by (5.31) and inequality (5.32), we have

ẋi(t) = fi(x) ≤
(∫ 1

0

(Jii(τx) +
∑
j∈Ni

Jij(τx)ψ−1
ij )dτ

)
xi(t). (5.33)

We consider two cases in the following.

1. xi(t
∗) = β(xi(0), t∗): In this case, for every t ∈ [t∗, t∗ + ε) and every τ ∈ [0, 1], we

have τx(t) ∈ Bi(xi(t)) and

Bi(xi(t)) ⊆ Bi(xi(t
∗)) ⊆ Bi(xi(0)).
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Thus, by (5.33), we have

ẋi(t) ≤ −δ(xi(0))xi(t),

which implies that xi(t) ≤ e−δ(xi(0))(t−t∗)xi(t
∗). Thus, along with (5.29), we have,

for every t ∈ [t∗, t∗ + ε),

xi(t) ≤ e−δ(xi(0))(t−t∗)xi(t
∗) = e−δ(xi(0))txi(0)

≤ max
j
{β(xi(0), t), ψij‖xj‖[0,t], ‖ui‖∞},

which is contradictory to (5.30).

2. xi(t
∗) > β(xi(0), t∗): In this case, we have

xi(t
∗) = max

j
{ψij‖xj‖[0,t∗], ‖ui‖∞}.

By (5.33), we have ẋi(t) ≤ 0 for every t ∈ [t∗, t∗+ε). Since ‖xj‖[0,t] is nondecreasing

with respect to t, for every t ∈ [t∗, t∗ + ε),

xi(t) ≤ max
j
{ψij‖xj‖[0,t], ‖ui‖∞} ≤ max

j
{β(xi(0), t), ψij‖xj‖[0,t], ‖ui‖∞},

which is contradictory to (5.30).

In both cases, we have a contradiction. Therefore, for every t ≥ 0 and every i ∈

{1, . . . , n}, xi(t) satisfies (5.28). Moreover, Theorem 5.5.0.12 ensures that {ψij}(i,j)∈E

satisfies ψc < 1, for every c ∈ Φ. Therefore, by cyclic small-gain theorem 5.3.2.4, the

control system (5.27) is ISS, which implies that 0n is globally asymptotically stable for

nonlinear dynamical system (5.25).
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Theorem 5.5.0.2 (Sum-interconnection stability) Consider an interconnected non-

linear system (5.25) evolving on the positive orthant Rn≥0 with the interconnection graph

G = (V, E). Assume that f(0n) = 0n, and for every x ∈ Rn≥0, the matrix J(x) is Met-

zler with negative diagonal entries. Moreover, assume there exists a family of positive

numbers {γij} for i ∈ V and j ∈ Ni such that:

1. for every i ∈ {1, . . . , n},

Jij(x)

−Jii(x)
≤ γij, for all x ∈ Rn≥0,

2. for every i ∈ {1, . . . , n} and I = {1, . . . , i},

γMI
< 1,

where the Metzler matrix M is defined as, for i′, j′ ∈ V

mi′j′ =


γi′j′ , if (j′, i′) ∈ E ,

−1, if i′ = j′,

0, otherwise.

Then 0n is globally asymptotically stable for system (5.25).

Proof: By 2 and Theorem 5.4.4.51, M is Hurwitz. Thus, by Theorem 5.4.3.1, there

exists a family of positive numbers {ψij}(i,j)∈E such that, for every i ∈ {1, 2, . . . , n},

∑
j∈Ni

mij

−mii

ψ−1
ij ≤ 1,
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and ψc < 1 for every c ∈ Φ. This implies that, for every x ∈ Rn≥0, we have

∑
j 6=i

Jij(x)

−Jii(x)
ψ−1
ij ≤

∑
j 6=i

γijψ
−1
ij =

∑
i 6=j

mij

−mii

ψ−1
ij ≤ 1.

Therefore, for the family of positive numbers {ψij}(i,j)∈E ,

∑
j 6=i

Jij(x)

−Jii(x)
ψ−1
ij ≤ 1, for all i ∈ {1, . . . , n},

and ψc < 1 for every c ∈ Φ. Therefore, by Theorem 5.5.0.1, 0n is globally asymptotically

stable for the dynamical system (5.25).

5.6 Additional Concepts and proofs

5.6.1 Cycle graphs, complementary cycle graphs and disjoint

cycle sets

Let M ∈ Rn×n be an irreducible Metzler matrix with negative diagonal elements and

Φ = {c1, . . . , cr} be the set of simple cycles in G(M). Then the associated cycle graph of

G(M) is the graph GΦ(M) = (VΦ, EΦ) with the node set VΦ = {1, . . . , r} and the edge set

EΦ given by

EΦ = {(i, j) | ci ∈ Φ, cj ∈ Φ, ci ∩ cj 6= ∅}.

We define the complementary cycle graph of G(M) by Gc
Φ(M) = (VΦ, Ec

Φ). Note that while

the graph G(M) is a weighted digraph, the graphs GΦ(M) and Gc
Φ(M) are unweighted

undirected graphs. Moreover, since M is irreducible, the cycle graph GΦ(M) is always

connected. The disjoint cycle set KM
` is a set in which each element is a nonempty set
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of ` ≥ 1 cycles in Φ that form a complete graph in Gc
Φ(M).

Example 5.6.1.1 (Cycle graphs, complementary cycle graphs and KM
` ) We il-

lustrate the a few definitions using the Metzler matrix in Example 5.4.4.3, whose associ-

ated weighted digraph G(M) is shown in Fig. 5.1.

The cycle graph GΦ(M) is given in Fig. 5.4a and the complementary cycle graph

Gc
Φ(M) is given in Fig. 5.4b. From Fig. 5.4b, one can check that the disjoint cycle sets

are clearly given by (5.18).

1

2

3

4

5

(a) GΦ(M)

1

2

3

4

5

(b) Gc
Φ(M)

Figure 5.4: Cycle graph and complementary cycle graph

5.6.2 Graph expansion and proof of Theorem 5.4.4.53

In this subsection, we reverse the Schur complement process and propose a graph

expansion algorithm for the associated graph of a Metzler matrix. The purpose of the

expansion is to separate cycles so that no cycle is strictly contained in any other cycle.

Once we complete this construction, a simple proof of Theorem 5.4.4.53 follows.

For a Metzler matrix M ∈ Rn×n associated with G(M) = (V, E ,M), we construct the

expansion digraph Gexp(M) = (Vexp, Eexp,Mexp) and the expanded Metzler matrix Mexp

using Algorithm 1.

In words, for a Metzler matrix M ∈ Rn×n, Algorithm 1 inserts a node on each directed

edge in G(M) and assigns proper weights to the added nodes and edges.
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Algorithm 1 Graph expansion for Metzler matrices

1: Input: A Metzler matrix M ∈ Rn×n and G(M) = (V, E ,M)
2: Initialize: Vexp = V , Eexp = ∅, Mexp = M , k = 0
3: for every edge (i, j) ∈ E do
4: k = k + 1
5: Vexp = Vexp ∪ {n+ k}
6: Eexp = Eexp ∪ {(i, n+ k), (n+ k, j)}
7: Mexp =

[
Mexp 0(n+k−1)×1

01×(n+k−1) −1

]
8: Mexp(n+ k, i) = Mexp(j, n+ k) =

√
mji

9: end for
10: return Gexp(M) = (Vexp, Eexp,Mexp)

Lemma 5.6.2.1 For a Metzler matrix M ∈ Rn×n and its expansion Mexp, M is Hurwitz

if and only if Mexp is Hurwitz.

Proof: The Metzler matrix M can be recovered from Mexp by removing all the

added nodes using the Schur complement, and the diagonal elements of the remaining

nodes do not change during the elimination. Therefore, by Lemma 5.2.2.3, M is Hurwitz

if and only if Mexp is Hurwitz.

Now we are ready to give a proof to Theorem 5.4.4.53. Proof: [Proof of Theo-

rem 5.4.4.53] By construction, any cycle in Gexp(M) can show up as a leading principal

submatrix after a permutation on Mexp. Since M is Hurwitz, Mexp is also Hurwitz and

by Lemma 5.2.2.1(iii), the determinant of the negative leading principal submatrix must

be positive, i.e., the cycle gain must be less than 1.

5.7 Conclusion

In this chapter, we obtained and characterized the graph-theoretic necessary and

sufficient conditions for the Hurwitzness of Metzler matrices. By establishing connections

with the well-known input-to-state stability theory and small-gain theorems, we were able
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to derive stability conditions for linear Metzler systems based on two different forms of

ISS gains. Our conditions are also related to the classic Hicksian stability condition.

These conditions give insights on how the cycles and cycle structures in the associated

digraph of the Metzler matrices play a role in determining system stability. We also

extended our results to the case of nonlinear monotone systems and obtained sufficient

conditions for stability.

5.8 Appendix

5.8.1 Proof of Lemma 5.4.4.4

In order to prove Lemma 5.4.4.4, we need a few results regarding the graph-theoretic

interpretations of determinants. For a weighted digraph G = (V, E ,W ), a factor F =

{c1, . . . , cr} of G satisfies

1. each ci ∈ F is either a self loop or a simple cycle;

2. ci ∩ cj = ∅, for all i 6= j;

3. ∪ri=1ci = V .

Note that the set of factors may be empty and in this case the determinant of the matrix

corresponding to the digraph is 0.

For a matrix A ∈ Rn×n, the determinant of A can be computed based on the factors

of G(A). For a simple cycle or a self loop c in G(A), we define A(c) to be the product of

the edge weights along the cycle or the self loop. Then, we have the following lemma.

Lemma 5.8.1.1 (Graph-theoretic interpretation of determinants [124, Theo-

rem 1]) Let A ∈ Rn×n be a matrix with digraph G(A) = (V, E , A). Suppose G(A) has
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factors Fk = {ck1 , ck2 , . . . , ckrk}, k = 1, . . . , q, then

det(A) = (−1)n
q∑

k=1

(−1)rkA(ck1)A(ck2) · · ·A(ckrk ). (5.34)

In the case of irreducible Metzler matrices with negative diagonal elements, we can

rewrite (5.34) in terms of the cycle gains. Let M ∈ Rn×n be an irreducible Metzler matrix

with negative diagonal elements and Φ = {c1, . . . , cr} be the set of simple cycles of G(M),

then a cycle factor F c = {c1, . . . , ct} of G(M) satisfies

1. F c ⊂ Φ and F c 6= ∅;

2. ci ∩ cj = ∅, for all ci, cj ∈ F c and i 6= j.

Suppose G(M) has cycle factors F c
k = {ck1 , ck2 , . . . , cktk}, k = 1, . . . , q, then each cycle

factor F c
k can be expanded to a factor of G(M) by adding the self loops at the nodes

that are not on any simple cycles in F c
k and by doing this, all the factors except the one

that consists of purely self loops can be recovered. Since the diagonal elements of M

are negative, we can factor out
∏n

i=1(−mii) in the general formula (5.34) and rewrite the

equation for M as follows,

det(M) =
n∏
i=1

mii +
n∏
i=1

mii

q∑
k=1

(−1)tkγck1γck2 · · · γcktk . (5.35)

By definition, the disjoint cycle sets are related to the cycle factors as KM
` = {F c

k | tk =

`}, thus we can group the cycle factors with the same cardinality in (5.35) and obtain

(5.20) for I = {1, . . . , n}. For i = {1, . . . , n− 1} and I = {1, . . . , i}, the same procedure

works for the leading principal submatrices MI and (5.20) follows except for the case when

ΦMI
is empty. If ΦMI

is empty, i.e., G(MI) is acyclic, then the determinant det(MI) is

equal to the product of the diagonal elements. By (5.17), we have γMI
= 0 in this case
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and thus (5.20) holds.

5.8.2 Proof of Corollary 5.4.3.2

(i) =⇒ (ii): Since M is Hurwitz, by Theorem 5.4.3.1, for every (j, i) ∈ E , there

exists ψij > 0 such that

∑
j∈Ni

(
mij

−mii

)
ψ−1
ij < 1, ∀i ∈ {1, . . . , n}, (5.36)

ψc < 1, ∀c ∈ Φ. (5.37)

Let c ∈ Φ and assume that c = (1, . . . , k, 1). Then, for every k′ ∈ {1, . . . , k}, we define

θ̂ck′ =


(

mk′+1,k′

−mk′+1,k′+1

)
ψ−1
k′+1,k′ , k′ ≤ k − 1,(

m1,k

−m11

)
ψ−1

1,k, k′ = k.

First note that (5.37) can be written as

∏
i∈c

θ̂ci > γc, ∀c ∈ Φ.

Since G(M) is connected and cactus, no two simple cycles share an edge. Therefore, one

can write (5.36) as follows:

∑
c∈Φ

θ̂ci < 1, ∀i ∈ c.
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By a straightforward continuity argument, one can show that, for every c ∈ Φ and i ∈ c,

there exists θci > 0 such that

∏
i∈c

θci > γc, ∀c ∈ Φ,

∑
c∈Φ

θci = 1, ∀i ∈ c.

(ii) =⇒ (i): Now suppose that, for every c ∈ Φ and every i ∈ c, there exists θci > 0

which satisfies (5.15). Let c = (1, . . . , k, 1), and for every k′ ∈ {1, . . . , k − 1}

ψk′+1,k′ =

(
mk′+1,k′

−mk′+1,k′+1

)
(θck′)

−1 ,

and

ψ1,k =

(
m1,k

−m11

)
(θck)

−1 .

By a continuity argument, (5.15) can be written as (5.36) and (5.37). Thus, by Theo-

rem 5.4.3.1, the matrix M is Hurwitz.
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[5] T. D. Räty, Survey on contemporary remote surveillance systems for public safety,
IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and
Reviews 40 (2010), no. 5 493–515.

[6] F. Pasqualetti, J. W. Durham, and F. Bullo, Cooperative patrolling via weighted
tours: Performance analysis and distributed algorithms, IEEE Transactions on
Robotics 28 (2012), no. 5 1181–1188.

[7] C. G. Cassandras, X. Lin, and X. Ding, An optimal control approach to the
multi-agent persistent monitoring problem, IEEE Transactions on Automatic
Control 58 (2013), no. 4 947–961.

[8] N. Zhou, X. Yu, S. B. Anderson, and C. G. Cassandras, Optimal event-driven
multiagent persistent monitoring of a finite set of data sources, IEEE
Transactions on Automatic Control 63 (2018), no. 12 4204–4217.

[9] Y. Wang, Y. Wei, X. Liu, N. Zhou, and C. G. Cassandras, Optimal persistent
monitoring using second-order agents with physical constraints, IEEE
Transactions on Automatic Control 64 (2019), no. 8 3239–3252.

150



[10] S. L. Smith, M. Schwager, and D. Rus, Persistent robotic tasks: Monitoring and
sweeping in changing environments, IEEE Transactions on Robotics 28 (2012),
no. 2 410–426.

[11] J. Yu, S. Karaman, and D. Rus, Persistent monitoring of events with stochastic
arrivals at multiple stations, IEEE Transactions on Robotics 31 (2015), no. 3
521–535.

[12] N. Rezazadeh and S. S. Kia, A sub-modular receding horizon approach to
persistent monitoring for a group of mobile agents over an urban area, in IFAC
Workshop on Distributed Estimation and Control in Networked Systems,
(Chicago, USA), pp. 217–222, 2019.

[13] X. Yu, S. B. Andersson, N. Zhou, and C. G. Cassandras, Scheduling multiple
agents in a persistent monitoring task using reachability analysis, IEEE
Transactions on Automatic Control 65 (2020), no. 4 1499–1513.

[14] A. Machado, G. Ramalho, J. D. Zucker, and A. Drogoul, Multi-agent patrolling:
An empirical analysis of alternative architectures, in Multi-Agent-Based
Simulation II, Lecture Notes in Computer Science, pp. 155–170. Springer, 2003.

[15] Y. Chevaleyre, Theoretical analysis of the multi-agent patrolling problem, in
IEEE/WIC/ACM Int. Conf. on Intelligent Agent Technology, (Beijing, China),
pp. 302–308, Sept., 2004.

[16] Y. Elmaliach, N. Agmon, and G. A. Kaminka, Multi-robot area patrol under
frequency constraints, Annals of Mathematics and Artificial Intelligence 57
(2009), no. 3-4 293–320.

[17] F. Pasqualetti, A. Franchi, and F. Bullo, On cooperative patrolling: Optimal
trajectories, complexity analysis and approximation algorithms, IEEE
Transactions on Robotics 28 (2012), no. 3 592–606.

[18] S. Alamdari, E. Fata, and S. L. Smith, Persistent monitoring in discrete
environments: Minimizing the maximum weighted latency between observations,
International Journal of Robotics Research 33 (2014), no. 1 138–154.

[19] A. B. Asghar, S. L. Smith, and S. Sundaram, Multi-robot routing for persistent
monitoring with latency constraints, in American Control Conference,
(Philadelphia, USA), July, 2019.

[20] P. Afshani, M. D. Berg, K. Buchin, J. Gao, M. Loffler, A. Nayyeri, B. Raichel,
R. Sarkar, H. Wang, and H. Yang, Approximation algorithms for multi-robot
patrol-scheduling with min-max latency, 2020. Arxiv e-print.

151



[21] K. Srivastava, D. M. Stipanovic̀, and M. W. Spong, On a stochastic robotic
surveillance problem, in IEEE Conf. on Decision and Control, (Shanghai, China),
pp. 8567–8574, Dec., 2009.

[22] D. Kempe, L. J. Schulman, and O. Tamuz, Quasi-regular sequences and optimal
schedules for security games, in ACM-SIAM Symposium on Discrete Algorithms,
(Philadelphia, USA), pp. 1625–1644, Jan., 2018.

[23] G. Cannata and A. Sgorbissa, A minimalist algorithm for multirobot continuous
coverage, IEEE Transactions on Robotics 27 (2011), no. 2 297–312.

[24] R. Patel, P. Agharkar, and F. Bullo, Robotic surveillance and Markov chains with
minimal weighted Kemeny constant, IEEE Transactions on Automatic Control 60
(2015), no. 12 3156–3167.

[25] R. Patel, A. Carron, and F. Bullo, The hitting time of multiple random walks,
SIAM Journal on Matrix Analysis and Applications 37 (2016), no. 3 933–954.

[26] M. George, S. Jafarpour, and F. Bullo, Markov chains with maximum entropy for
robotic surveillance, IEEE Transactions on Automatic Control 64 (2019), no. 4
1566–1580.

[27] X. Duan, M. George, and F. Bullo, Markov chains with maximum return time
entropy for robotic surveillance, IEEE Transactions on Automatic Control 65
(2020), no. 1 72–86.

[28] C. D. Alvarenga, N. Basilico, and S. Carpin, Time-varying graph patrolling
against attackers with locally limited and imperfect observation models, in
IEEE/RSJ Int. Conf. on Intelligent Robots & Systems, (Macau, China),
pp. 4869–4876, Nov., 2019.

[29] N. Basilico and S. Carpin, Balancing unpredictability and coverage in adversarial
patrolling settings, in Algorithmic Foundations of Robotics XIII, vol. 14,
pp. 762–777. Springer, 2020.

[30] N. Agmon, G. Kaminka, and S. Kraus, Multi-robot adversarial patrolling: Facing
a full-knowledge opponent, Journal of Artificial Intelligence Research 42 (2011)
887–916.

[31] E. Sless Lin, N. Agmon, and S. Kraus, Multi-robot adversarial patrolling:
Handling sequential attacks, Artificial Intelligence 274 (2019) 1–25.

[32] N. Basilico, N. Gatti, and F. Amigoni, Patrolling security games: Definition and
algorithms for solving large instances with single patroller and single intruder,
Artificial Intelligence 184-185 (2012) 78–123.

152



[33] A. B. Asghar and S. L. Smith, Stochastic patrolling in adversarial settings, in
American Control Conference, (Boston, USA), pp. 6435–6440, July, 2016.

[34] A. B. Asghar and S. L. Smith, A patrolling game for adversaries with limited
observation time, in IEEE Conf. on Decision and Control, (Miami, USA),
pp. 3305–3310, Dec., 2018.

[35] H. Yang, S. Tsai, K. S. Liu, S. Lin, and J. Gao, Patrol scheduling against
adversaries with varying attack durations, in Int. Joint Conf. on Artificial
Intelligence, (Montreal QC, Canada), pp. 1179–1188, May, 2019.

[36] A. Sinha, F. Fang, B. An, C. Kiekintveld, and M. Tambe, Stackelberg security
games: Looking beyond a decade of success, in Int. Joint Conf. on Artificial
Intelligence, (Stockholm, Sweden), pp. 5494–5501, July, 2018.

[37] D. Aldous and J. A. Fill, Reversible Markov Chains and Random Walks on
Graphs, 2002. Unfinished monograph, recompiled 2014, available at
https://www.stat.berkeley.edu/~aldous/RWG/book.html.

[38] J. G. Kemeny and J. L. Snell, Finite Markov Chains. Springer, 1976.

[39] J. R. Norris, Markov Chains. Cambridge University Press, 1997.

[40] M. H. A. Davis and R. B. Vinter, Stochastic Modelling and Control. Springer,
1985.

[41] W. Rudin, Principles of Mathematical Analysis. International Series in Pure and
Applied Mathematics. McGraw-Hill, 3 ed., 1976.

[42] S. Guiasu and A. Shenitzer, The principle of maximum entropy, The
Mathematical Intelligencer 7 (1985), no. 1 42–48.

[43] L. Ekroot and T. M. Cover, The entropy of Markov trajectories, IEEE
Transactions on Information Theory 39 (1993) 1418–1421.

[44] N. Agmon, S. Kraus, and G. A. Kaminka, Multi-robot perimeter patrol in
adversarial settings, in IEEE Int. Conf. on Robotics and Automation, (Pasadena,
USA), pp. 2339–2345, May, 2008.

[45] H. Xu, B. Ford, F. Fang, B. Dilkina, A. Plumptre, M. Tambe, M. Driciru,
F. Wanyama, A. Rwetsiba, M. Nsubaga, and J. Mabonga, Optimal patrol planning
for green security games with black-box attackers, in International Conference on
Decision and Game Theory for Security, pp. 458–477, Springer, 2017.

[46] J. Grace and J. Baillieul, Stochastic strategies for autonomous robotic
surveillance, in IEEE Conf. on Decision and Control and European Control
Conference, (Seville, Spain), pp. 2200–2205, Dec., 2005.

153

https://www.stat.berkeley.edu/~aldous/RWG/book.html
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[117] A. Khanafer, T. Başar, and B. Gharesifard, Stability of epidemic models over
directed graphs: A positive systems approach, Automatica 74 (2016) 126–134.

[118] J. R. Liu, J. Lam, and Z. Shu, Positivity-preserving consensus of homogeneous
multiagent systems, IEEE Transactions on Automatic Control 65 (2020), no. 6
2724–2729.

[119] F. Bullo, Lectures on Network Systems. Kindle Direct Publishing, 1.4 ed., July,
2020. With contributions by J. Cortés, F. Dörfler, and S. Mart́ınez.

[120] H. Habibagahi and J. Quirk, Hicksian stability and Walras’ law, Review of
Economic Studies 40 (1973), no. 2 249–258.

[121] R. Lewis and B. D. O. Anderson, Necessary and sufficient conditions for
delay-independent stability of linear autonomous systems, IEEE Transactions on
Automatic Control 25 (1980), no. 4 735–739.

[122] E. D. Sontag and Y. Wang, On characterizations of the input-to-state stability
property, Systems & Control Letters 24 (1995), no. 5 351–359.

[123] R. Abraham, J. E. Marsden, and T. S. Ratiu, Manifolds, Tensor Analysis, and
Applications, vol. 75 of Applied Mathematical Sciences. Springer, 2 ed., 1988.

[124] J. S. Maybee, D. D. Olesky, P. Van den Driessche, and G. Wiener, Matrices,
digraphs, and determinants, SIAM Journal on Matrix Analysis and Applications
10 (1989), no. 4 500–519.

159


	Curriculum Vitae
	Abstract
	Part I Stochastic Strategies for Robotic Surveillance
	Introduction
	Deterministic strategy
	Stochastic strategy
	Notation and Preliminaries

	Markov Chains with Maximum Return Time Entropy
	Introduction
	Problem formulation
	Properties of the return time entropy
	Truncated return time entropy and its optimization via gradient descent
	Numerical results
	Conclusion

	The Meeting Time of Random Walks
	Introduction
	Meeting times of two randomly moving agents
	Applications to Robotic Surveillance
	Conclusions

	Robotic Surveillance as Stackelberg Games
	Introduction
	Preliminaries
	Problem formulation
	Value of the game and suboptimal solution in complete graphs
	Strategy dominance and optimal strategies in star and line graphs
	Conclusion
	Appendix


	Part II Metzler Matrices and Monotone Systems
	Graph-Theoretic Stability Conditions for Metzler Matrices and Monotone Systems
	Introduction
	Review of Metzler matrices
	Review of ISS, interconnected systems and ISS gains
	Graph-theoretic conditions for Hurwitzness of Metzler matrices
	Graph-theoretic conditions for stability of nonlinear monotone systems
	Additional Concepts and proofs
	Conclusion
	Appendix

	Bibliography


