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Abstract

Motion planning has become an increasingly important task as autonomy in mechanical
systems has gained in popularity. Such systems must be able to plan new trajectories
and controls reliably and rapidly in response to inputs. The challenges in creating such
planners are decidedly non-trivial, including issues such as algorithm convergence, its cor-
respondence to system controllability, optimality of solution, computational complexity,
and dynamic environments. In response to these challenges, a hierarchical algorithm will
be introduced that provides a) decreased computational complexity though symmetry
and a hybrid systems representation of the dynamics, b) utilization of local controlla-
bility through a local planning algorithm, c) minimization of a cost functional, d) a
randomized planner for obstacle avoidance, and e) convergence guarantees. Applications
include autonomous vehicles, sensor-based planning, and multiple vehicle coordination

in ground-based, underwater, atmospheric, and orbital environments.
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Chapter 1
Introduction

Motion planning can be described as the act of planning a trajectory and its corresponding
controls to guide a system from one state to another without violating given constraints
on the system. Motion planning is one of the oldest problems known to mankind, dating
back to the navigation of early hunters and explorers. As we have developed new and
more complicated tools and vehicles, these challenges have become far more complicated.
Today, most of the machines we rely upon have at least some degree of autonomy, as
it has become inefficient if not impossible to control them manually. Due to recent
advances in technology, vehicles that are entirely unmanned are gaining prevalence, and
the development of such vehicles and robots has become a priority in many industries.
Once again, motion planning is a key problem to be addressed, as a truly autonomous
mechanical system must be able to plan new trajectories and controls quickly in response
to changing inputs.

1.1 Motivating Applications

These vehicular and robotic systems under development provide a plethora of new oppor-
tunities and challenges for dynamics and control engineers. Listed below are just some
of the growing areas of work.



1.1.1 Autonomous vehicles

Autonomous vehicles are gradually becoming more common, with numerous new pro-
grams in development. With the advances in microelectronics and the success of vehicles
such as the Predator, the government has focused on unmanned aerial vehicles (UAVs) as
a key part of its future plans and has actively encouraged control development for such
platforms. In space, a plethora of current activities in interplanetary exploration [116, 6]
have accentuated the need for effective online motion planning, notably in the NEAR,
Mars rover, and Mars sample return programs. These, together with Earth orbiting mis-
sions such as those involving the international space station (ISS), highlight the need for
global motion planning algorithms to handle issues from orbital transfers [113, 80, 35, 67]
to obstacle avoidance [107] to rendezvous and docking [60, 109, 45|. Here, a global mo-
tion planning algorithm is one in which motion planning is not restricted to a local
neighborhood, but possible between points spanning the state space. Current trajectory
optimization techniques have difficulty addressing obstacles, while algorithms providing
maneuvering relative to another object are often local in scope, not allowing for large
scale trajectories.

1.1.2 Multiple Vehicle Coordination

The coordination of multiple agents jointly performing a specific task is a classic problem
in robotics, but current algorithms fall short of addressing differential constraints, obsta-
cles, and optimality. Air traffic management systems and collision avoidance [57, 61, 124]
are important examples of this, requiring the capability for fast replanning of feasible and
efficient maneuvers. This is a capability that can be provided by a global planner. Other
relevant problems include clusters of spacecraft, aircraft, watercraft, and/or land-based
vehicles performing activities such as inferometry [76], surveillance, communication ser-

vices, and exploration.

1.1.3 Sensor-Based Planning

Along with these other topics, sensor-based planning is not to be neglected. As robotic
craft are sent into difficult environments, they are being asked to navigate based upon



their sensory inputs. The personal satellite assistant (PSA) [132] and Aercam [34] have
been designed to navigate and inspect the inside and outside of the ISS, respectively.
Other applications in development requiring rapid planning to incorporate sensor data
include submersibles inspecting wrecks and caves, robotics in search and rescue opera-
tions, and microscopic robots in medical applications. While research in this area has
focused heavily on BUG algorithms [86, 123, 49, 73, 98] and kinematic systems [10], a
general obstacle avoiding planner for dynamical systems with the ability to replan quickly
carries the potential to be a more powerful tool.

1.2 Background

To be able to address the aforementioned applications effectively, motion planning algo-
rithms must meet the following challenges:

Completeness and Controllability This speaks directly to the reliability of the algo-
rithm. Completeness can be roughly described as the property that, if a solution to
the algorithm exists, a solution will always be found. Controllability is an issue in
that one would like an algorithm to be able to take advantage of the controllability
properties of a system, i.e., being able to provide local control when the system is
locally controllable.

Optimality As limited resources (time, energy, fuel, etc.) are available to systems, one
does not want to waste them unnecessarily. Thus, providing some measure of cost

reduction, if not optimality, is desired.

Computational Complexity and Speed Although computational resources have grown
exponentially in recent years, our demands on systems have also been growing.
Thus, the need to decrease computational complexity of algorithms and increase
the speed has not declined, especially as systems are being asked to develop controls
online.

Dynamic Environment Last is the issue of operating in a dynamic environment, where
constraints and obstacles may exist and change with time. These factors and others
might be understood, but could also be relatively unanticipated and unknown.

3



Many different approaches have been developed to try to address the motion planning
problem, each addressing a subset of these challenges. The following is an overview of
the major tools currently in use.

Differential flatness, as presented in [40], uses analytic understanding of the system
to reduce it to an algebraic problem. While a catalog of flat systems has been described
by [96], there is no algorithmic procedure to cast systems into the nonlinear form required,
limiting its generality. Furthermore, limited attention [8] has gone towards characterizing
approximately flat systems.

Lie brackets based planners are another set of algorithms for open loop control
design; see [16, 17]. The typical planner relies on oscillations in order to move, in a way
similar to how one parks a car or how an animal changes its shape to locomote. These
methods have been applied to chained form systems by [97], driftless systems in [122, 81],
locomotion systems in [103, 133], and addressed by the author’s earlier work in [29]. The
classic limitation of Lie bracket methods is their local nature, as only small amplitude
motions can be planned satisfactorily.

In numerical optimal control, [18], trajectories are obtained through a numerical
optimization. Because the problem is infinite dimensional, various forms of transcription
(discretization /parameterization) are used to cast the variational problem into a nonlin-
ear program. Collocation [53] uses base functions to parameterize both the states and
the controls, while differential inclusion [115] avoids using the discretized controls by
explicitly solving for the controls in terms of the states and their derivatives. Shoot-
ing methods [106, 39] to solve the optimal two-point boundary value problem have also
been used, but the repeated numerical integration required has made this less attractive
than transcription-based methods. Although useful and powerful, the high dimension,
complexity, and lack of convergence guarantees limit the speed and reliability of these
algorithms.

Although non-optimal, other techniques based on heuristics and randomization
have been developed that promise fast execution in complex environments. These algo-
rithms focus more on obstacle avoidance than on the nonlinear dynamics of the system,
thus falling in the realm of “path planning” rather than “trajectory design.” Popular
among these are solutions based upon roadmaps [65] and incremental searches [79]. In
roadmap methods, path planning is accomplished in two steps: a collection of sample con-



figurations is selected, and then trajectories connecting all sample points are computed.
The second step, however, is a local controllability problem in itself.

Recently, efforts have been made to combine aspects of numerical optimization and
randomized incremental searches. Karatas and Bullo [64] developed a version of the
Rapidly Exploring Random Tree [79] using collocation as a local planner. Frazzoli [41]
also used dynamic programming in his local planner, but used motion primitives to dis-
cretize the systems in question. In his methodology, he was able to reduce the continuous
system into a finite set of possible trim trajectories that could be connected by a finite
set of precomputed maneuvers. Both methods have been shown to find fast and attrac-
tive solutions. The latter even provides a controllability criteria for its hybrid system
and a guaranteed solution for the local planning problem when that criteria is satisfied.
However, its complete reliance on a precomputed finite set of maneuvers do not allow for
small-time local controllability (STLC).

While often overlooked in motion planning, power series are another important tool
in nonlinear control. They have been used widely, notably in the nonlinear regulator
problem. Al’brekht [5] used power series to solve the Hamilton-Jacobi-Bellman (HJB)
partial differential equations to obtain an optimal stabilizing control. For the same
problem, Halme and coworkers [50, 51, 102, 52] developed a polynomial power series and
a local inverse to generalized power series. Krener and coworkers [70, 99] took Al’brekht’s
method and used it to solve for the nonlinear regulator corresponding to the Francis-
Byrnes-Isidori equations and, using level set methods and power series about extremal
trajectories, proposed a method to extend Al’brekht’s solutions to the HJB equations well
beyond the neighborhood of the origin. Of course, power series methods are invariably
local, but that does not make them any less relevant or useful. As mentioned beforehand,
the randomized method requires a local motion planner. Likewise, the maneuvers of
Frazzoli [41] also require computation.

Lastly, there is the field of hybrid systems, which, although not directly related to
solving the motion planning problem, has been shown to provide an efficient modeling
framework within which motion planning can take place. These frameworks are often
referred to as hybrid automatons, in which the system is modeled via predefined classes
of motion and discrete transitions between them [59]. This approach has been used
by several researchers to reduce the computational complexity of the control problem.



Manikonda and coauthors [87] defined a motion description language, MDLe, that pro-
vides a general way to cast robotic motion planning problems into a suitable hybrid
architecture. Similar hybrid system approaches have been used on the air traffic control
problem [23] and autonomous helicopters [41].

1.3 Approach and Contribution

This research builds on the aforementioned areas of research to develop an efficient global
motion planning algorithm for linearly controllable dynamical systems. This algorithm
is structured in a hierarchical methodology combining, at the lowest level, online local
planning about a trajectory using a novel power series-based approach. It then uses a
hybrid system representation of the full continuous dynamics to simplify computation of
controls to provide global motion planning. The local complete constructive trajectory
generation and optimization algorithms are utilized to provide online maneuver plan-
ning for a trajectory primitive-based global planning algorithm reminiscent of Frazzoli’s
maneuver automaton [41]. This provides not only a dynamic set of motions available
to the vehicle, but also allows for open loop control to a goal position regardless of
the discretization mesh. In addition, this research proposes to introduce new trajectory
primitives developed around symmetries on the state space and time. This provides a
means to decrease the number of trajectory primitives needed while also representing
a greater range of motions. Among other byproducts, this will extend the capability
of the primitive-based algorithm beyond vehicles with dynamics invariant in translation
and yaw. Because these components provide reliable solutions in an obstacle-free space,
another layer, that of a randomized planning algorithm provides for avoidance of obsta-
cles and constraints in the state space, both static and time-varying. In addition to the
qualities already mentioned, this approach also provides cost reduction and convergence
guarantees.
More specifically, the following contributions are outlined in the following chapters:

(i) Creation of a flexible local planner with convergence guarantees.

(ii) Construction of a global planner able to take advantage of local controllability
properties in addition to time-varying final conditions.



(iii) Expansion of the Maneuver Automaton to include new symmetries and convergence
proofs.

(iv) Application of a primitive-based planner with randomization to an orbital problem.

1.4 Overview

This dissertation is organized to follow the hierarchical structure defined above. Chapter
2 discusses the mechanical system dynamics on which much of the rest of this research
is based. Chapter 3 develops the power series based local planning algorithms. The
expanded maneuver automaton is introduced in Chapter 4 along with a dynamic pro-
gramming solution method. The randomized planner providing time-varying obstacle
avoidance in then addressed in Chapter 5. Chapter 6 summarizes the results of this
research and comments on future research directions. The appendix provides supporting
material for Chapter 3.



Chapter 2

Mechanical System Dynamics

2.1 Mechanical Control Systems

The mathematics describing the dynamics of a mechanical control system can be derived
in several ways, of which the Lagrangian and Hamiltonian formulations are well-known
examples. For our development, we have chosen the Lagrangian method, of which [47,
48, 2, 89| are but a few references on the subject.

Definition 2.1.1 (Mechanical Control System) A mechanical control system ¥ is
defined by the following objects:

(1) An n-dimensional C*® manifold @Q, the configuration manifold, with local co-
ordinates ¢ = (¢1,¢2,---,4n)- This manifold describes the space of all possible
inertial positions of each particle of the mechanical system.

(1) A Riemannian metric M : TQ x TQ — R on Q, describing kinetic energy
(%M(q)(q',tj)), where TQ 1s the tangent bundle to Q.

(1i2) A function V : Q — R, describing the potential energy.

(w) A map F,.: TQ — T*Q, describing the action of non-conservative forces on
the mechanical system, where T*Q 1s the cotangent bundle to Q, the dual of

TQ.



(v) An (n,)-dimensional distribution g = span{g*(q,t), g%(q,t),...,9™)(q,t)}, defin-
ing the input directions.

(vi) A compact input set U C R*. The control input are partitioned into a set of

control inputs u € U.

Representing M(q) as a positive definite matrix in R**", the Lagrangian can thus be

written as

1(4,9) = Hd™M()d - V(o) (2.)

Lagrange’s equations of motion are then described by

d oL BL
— e~ o = Fre i 2.2
dt 8¢ (g, Q)‘l‘ZQ(Q)u (2.2)
which, in coordinates, simplify to
.. i - ov
G + T% 454 = M;;' ~5g; + Fre,(q,9) + Z gru |, (2.3)
k=1

where T'%didk = Yjo1.n, ko1.n Dixdide = I'4q and the Christoffel symbols T, are
defined as

M), +
Z( )k< g; 8g¢;  Ogm

Defining v, in terms of g, one can recast this second order differential equation as a
first order system £ = [g, Ug|" = f(&,t). For example, when ¢ = v,,

OMps | OMim;  OM, ) . (2.4)

_ Uq

¢ Lq] - l—qu'uq +M? <_%—Z + Fnc(q, 'Uq) +3m, g’“uk)] = f(f; t) (2.5)

The solution, or state flow of the equation of motion can be written as £ = ¢(&,t,u) =
@.(€o,t). Note that £ is defined on the state space = = T'Q.



2.2 Symmetry

One key property used in the analysis and control of mechanical systems is that of
symmetry. To understand this, the concept of an action must first be introduced [129].

Definition 2.2.1 (Action) Let M be a differential manifold and H be a Lie Group.
AC® map ¢y : M x H— M taking a pair (z,h) € M x H to y(z,h) = Yu(z) and
satisfying the following conditions

(i) Ye(z) =z, Vo € M and e is the identity element of H

(7‘7‘) Yn, ("phz(m)) = Yhihy (l?)
15 called an action of H on M.

In the context of mechanical systems, the action is most commonly on the configura-
tion manifold Q. A group action on @ induces corresponding maps on scalar functions
over @, tangent vectors, and one-forms (examples include include the system’s potential
energy, velocity, and external forces respectively) [101].

Given the definition of an action, the notion of symmetry can be defined.

Definition 2.2.2 (Symmetry) Let z be a point in M. The group action ¥, : M — M
1s then a symmetry of the differential equations of the system = = f(z,t) if, given
the state flow ¢(zo,t), the action and the state flow commute, i.e.,

Yn(@(0,t)) = ¢ (¥n(z0), 1), (2.6)

Definition 2.2.3 (Symmetry Group) The group H consisting of all h for which the

action Y, 1s a symmetry 1s called a symmetry group.

Frazzoli [41] used the symmetry group SE(2) x R in his work, where the manifold
M is defined as configuration manifold @ (or its tangent bundle T'Q). However, more
general symmetries exist when one is not limited to the configuration manifold. Consider
the mechanical control system in equation (2.5). Let us add another variable n € R to
account for a scaling in the progression of time (R* denotes all real numbers greater than
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Figure 2.1: Symmetry

zero). The variable ¢* can then be defined such that t* = nt and the function f*(¢,t*) is
defined such that nf*(&,t*) = f(&,1).

When the scaling is taken into account with the derivative, the system of equa-
tion (2.5) can be rewritten as

%~ rem) () = & (27)
d
d—z =0 1(to) = Mo,

In this case, the manifold M is defined as T'Q x R instead of @ (or TQ). Thus, the
symmetry group H of this system may allow for action on the time scaling factor as well
as on the configuration manifold. It should be noted that distance scaling symmetries *
can be incorporated in a similar fashion by adding another variable x € R*.

2.3 Trajectory Primitives

Let us define a trajectory as the state flow for a given control history such that £ : [¢o, tf] —
TQ. The symmetry property provides an equivalence relation between trajectories.

Definition 2.3.1 (Trajectory Equivalence) Consider two trajectories, &1,&> : [to, 5] —
TQ. These trajectories are said to be equivalent on the interval [to,ts] if there exists

1This same statement could be said for scaling with respect to mass, although such a symmetry is not
specifically used in this thesis.

11



an element h € H such that & (t) = ¥n(&()).

Definition 2.3.2 (Trajectory Primitive) We define a trajectory primitive as an
equivalence class of trajectories, under the trajectory equivalence definition.

Each trajectory in this class can then be uniquely identified by a point on the sym-
metry group. One class of a trajectory primitive occurring commonly in the setting
of mechanical systems is known as relative equilibria and has been the focus of recent
research [41, 20, 19].

Definition 2.3.3 (Relative Equilibrium) Mechanical system motion evolving along
a symmetry group where an initial condition &, coordinate frame, and a constant
control input u can be set such that the velocity is constant.

Frazzoli [41] noted that, for aerospace vehicles, these are commonly described as trim
trajectories.

Relative equilibria have been popular because of their useful properties, particularly
their ease of manipulation and the intuitive correlation to vehicle motion, but other
primitive types also exist which provide useful theoretical properties. In this work, we
are interested in a broader class of primitives defined as follows:

Definition 2.3.4 (Reference Trajectory) A trajectory satisfying the equations of

motion of the system % for which

(i) The state flow (@u,.;(£0,t)) is known and is unique for a given initial state
& € E.

(1) The control u,.s(t) is a continuous function of time only

(1i2) The dynamical system ¥ can be approrimated as a perturbation about the

trajectory primitive with the form

& = A(t)z + f?(z,z) + Bu

S0 =0, (2.8)

12



where z(t) and A(t) are defined as continuous functions on the interval I, and the

Li-norm of the corresponding linear state transition matriz ||[¥(t,0)||z, s bounded 2.

This property will play an important role when motion off of this class is considered.
We will refer to these as reference trajectories. Each can be uniquely defined by its
control history and symmetry. Many vehicle systems can be cast into this form, either
naturally through transformation or through series expansion. The reference trajectories
of such systems include relative equilibria but are not necessarily restricted to them. In
addition, Kang and Krener [63] showed that any nonlinear system of the form f = f(&)+
g9(&)u can be represented in a time-invariant version of the aforementioned quadratic

form (plus higher order terms) by a change of coordinates and state feedback.

2.4 Vehicle Models

2.4.1 Generalized Vehicle Model

As this thesis is focused primarily around the dynamics and control of vehicles, we
will restrict our mechanical control system to such a case. Here, (g1,...¢9,) = (2, R)
correspond to the inertial translational and rotational coordinates of the vehicle and
(Vgy» - - -Vg,) = (v,w) correspond to its body-fixed velocities. For full dynamics in three
dimensions, z,v,w € R® and R € SO(3). In two dimensions, z,v € R?, w € R
and R € SO(2). The Riemannian metric M : TQ x TQ — R describing the kinetic
energy is then defined as the inertia matrix I. If the vehicle is rigid and the fuel usage
is negligible in comparison to the overall mass distribution, the inertia matrix can be
assumed to be constant. The potential energy of interest is the gravity potential, which
can be modelled as a constant (for neutrally buoyant vehicles such as water vehicles,
airships, and hovercraft), proportional to height (for aerial vehicles such as helicopters
and airplanes), and inverse proportional to radius (for spacecraft). Damping terms such

*Here, [ ¥(t,0)|z, = maXi=1,.n > ;—y [;|(¥(t,0)ij|dt. This statement implies that the system & =
A(t)z is stable in the sense of Lyapunov (for the time-invariant system, it is sufficient the matrix A is
Hurwitz) or that the interval I over which A(¢) is defined is finite and the escape time of £ = A(t)z (if it
exists) is not in the interval.

13



as lift and drag provide nonconservative forces and can be modelled as linear and/or
quadratic in velocity. For simplicity, we will consider only vehicles for which the control
input directions are fixed with respect to the body frame. The dynamical equations of
such vehicles can then be written as:

Rv
R

—I"'@lw + Gr(R,z) + D,(v,w) + Byu

€ < o8

where G and Gr are acceleration due to gravity and the torque acceleration due to
gravity, D, and D, are the damping terms, B, and B, are constant matrices, and 7 is

the skew-symmetric matrix operator.

Driflessly Decoupled System

Before proceeding further, let us introduce the concept of a decoupled system with re-
gards to inputs and states. Let = be the state space of a dynamical system and =, =, be
defined such that =; x =, = =. Likewise, let U be the input space and U;, U, be defined
such that U; x U, = U. It can then be said that the system is input-state decoupled
between {Z;,U;} and {Z,, U,} if the state flow along =; is invariant for all inputs in U,
and the state flow along =, is invariant for all inputs in U;. Otherwise, {Z;,U;} and
{E,, U} are input-state coupled. Note that, for system (2.5), E = TQ.

For linear time-invariant systems (§é = A¢ + Bu), this property can be related to
the transfer function. Let & = (§1,€2) € E; X Ep and u = (ug,us) € U; x U, where
dim(U;) = m;, dim(E;) = n;, my + mo = dim(U) = m and n; + ny = dim(E) = nypu.
The transfer function T'F is defined as follows:

TFy TFyp
TFy TFy

z1 = TFy1uy + TFouy
_>

TF = [sI — A]"'B
zy = TFyuy + T Fyu,

Then the system is input-state decoupled between {=Z;,U;} and {=,, Us} if and only
if TFy, and T'F5; are zero matrices.
From this background, let us introduce the concept of a driftlessly decoupled system.

14



Let us use the same nomenclature of ¢, =, u, and U as given previously. We will also define
the system such that B = [BT BI|T where B; is an n; x m matrix and rank(B) = m.

Definition 2.4.1 (Driftlessly Decoupled) Given the system (2.9) Let T, be a non-
singular orthogonal square matrix of dimension m by m, where m is the dimension
of u. The system (2.9) is driftlessly decoupled between {Z:,U:} and {Z,,U>} by the
control u = T, 4 1f the matriz BT, evaluates to the form:

B,
B,

Tii Onyxmg
BT, = T,=| " x (2.10)

Onz Xm1 T22

Note that this is analogous to the condition for input-state decoupling of the linear
system if the drift term (A¢) is zero for all £. We can find the transformation T, from
the following lemma:

Lemma 2.4.2 If B; and B, have mutually orthogonal bases, there exists a drift-
lessly decoupling transformation T, = [(B7°)T (B3®)T], where BTb is a matriz of the
orthonormal basis of B; with dimension m; by m.

Proof: The calculation is straightforward:
_ | Bu(Bib)" Bi(Bjb)”
| By(BIb)T By(Bgb)T

Tll O'n,1 Xma

u

O‘ng Xmi T22

For driftless decoupling of rotation and translation, B; = B, and B, = B,. Physi-
cally, this decoupling of rotation and translation means that the inputs can be linearly
combined into m torque-only and force-only inputs. Thus, a transformation that allows
for driftless decoupling of rotation and translation also allows for incorporation of both
time and distance scaling symmetries. Provided such a transformation can be calculated
by Lemma 2.4.2, the substitution u = K,% can be defined where K, is an invertible m
by m matrix defined as follows:

K, =T, | *mxm 1xma | T (2.11)

2 U
Omgxm1 77 K'Imgxmg
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This substitution allows for the quantities 7 and « to be factored out of the control
vector, as

_ Bl(BIb)T 0n1><m2
N 0n2><m1 BQ(ng)T

(Bib)
(Bsb)

n*kB
77232

BK,

2
[n K'Im1><‘rn1 0m1 Xmo

2
O'm.2><‘m1 n K'Im2><‘m2

A system driftlessly coupled between rotation and translation does not allow for « to
be factored out of the control vector and thus does not allow a distance scaling symmetry.
For the sake of brevity, systems driftlessly coupled between rotation and translation
will be referred to as coupled and systems driftlessly decoupled between rotation and
translation will be referred to as decoupled.

Equations of Relative Motion

Let £7(t) = [z"(¢), R™(¢), v"(t),w"(t)]T denote a known trajectory due to a given control.
Dropping the (¢) suffix for brevity, let us then define a perturbation to the system via
the coordinates £ = [Z, R, 7,@]” such that

— — T
¢ = 2"+ R(R+ L)%, R'(R+ L),v + 7,0 + @] (2.12)
u= K,(u" + 1a), (2.13)

yielding the equations of relative motion

—RTv +7— (& +8)z

T
R R(@"+d)+@R+d
EL: v _ —WT — (w U+ Wy ) + (G(R,z) - G(R",z")) ’ (2.19)
+ (Dy(v) — Dy(v")) + kB, 4
@ —1"'%l@ — I7'0l(w™ + @) + (Gr(R, z) — Gr(R",z"))
. + (Du(v,w) = Du(v",w")) + 1°%

where 77 = 0 and kK = 0 represent the augmented states of the system. K,, in the case
of a coupled system, is defined as in (2.11), otherwise, it is assumed to be defined as
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K, = n*I,,. 1t should be noted that, in the three dimensional case, while Z,7,w € R3
lie on the manifold of their general counterparts, R + I, € SO(3) where R € SO(3).
As this allows for the boundary condition £(0) = 0 if the equations of relative motion
are of the quadratic form of (2.8), any trajectory satisfying the equations of motion
could be defined as a reference trajectory. This quadratic property is inherent in many
mechanical systems, and many others can be approximated by a quadratic system when
motion about a trajectory is assumed to be sufficiently local. Several representative
systems are addressed in the following sections.

2.4.2 Systems with a negligible gravity term

For a system to have a negligible gravity term does not mean that gravity does not
act on the vehicle, rather it means that gravity is countered by another force or its
effect is simply small enough to be ignored for the problem at hand. Examples of this
include hovercraft, airships, neutrally buoyant underwater vehicles, self-propelled boats,
and small spacecraft operating within a limited time frame, where the time frame and
smallness of the spacecraft are dependent upon the mass and relative location of the

dominating gravity source.

No damping, decoupled controls

In this case, equation (2.14) is reduced to

z ~RT7 +7- (8" +&) %

R R(G+&)+&R+&

= ="M :—:=( _:7':) +:—:,. - (2.15)
0] —Wv — (w v+ w'u’) + B,u

@ —17'@0l& — 17 '@l(&" + @) + B,a

when z = KZ, and v = k17, and w = nw. Here, Z, ¥, and & represent nondi-
mensionalized quantities. From the above derivation, it can thus be seen that the
system in (2.14), under a zero drag and damping, with decoupled controls, admits
the symmetry action:
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P (R‘” x SO(3) x R® x R® x Rt x ]R+) X <R3 x SO(3) x Rt x R+)
— (R® x SO(3) x R®* x R®* x R* x R")
(z,R,v,w,n, k) x (0z, Rs, px, Pn)
— (pRs(z + 0z), Rs R, pupnV, Py, Pn, PxK) -

When the controls are coupled, « is unitary and no longer arbitrary, breaking the
distance scaling symmetry and limiting the symmetry action to

Y (:E: R,v,w,n, K’) X (5$1 Rg, p’r]) = (R5($ + 63:)7 R;R, PV, Py, Py, Ii) . (216)

Linear damping

In certain problems, it is appropriate to represent the damping forces as a linear
function of the system velocities such that D,(v) = —K,,v and D, (v,w) = —K,,U—
K,,w, where K,,, K,,, and K, are constant matrices, resulting in the following
damping contribution to the equations of relative motion:

(Dy(v) — Dy(v")) = — K,y 0
(D,(v,w) — D,(v",w")) = =K, ¥ — K@

When the controls are decoupled and K, = 0, this term can be directly inserted
into (2.15), provided 7 is fixed. Thus, linear damping breaks the time scaling
symmetry of the system, yielding the symmetry action:

1/J : (xi R: v,w,n, K) X ((5$, R51 p.‘c) = (R5pl<.(x + 51:): RéR’ P, W, 1, pKK')
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When the assumption on the controls or K, is not true, x must be unity to
be substituted directly into (2.15), breaking the distance scaling symmetry of the
system as well. Thus, the symmetry action is further reduced to

"p : (xi R) v,w,n, K) X (53:7 Ré) — (Rg((l? + 51:): RéR’ v,w,n, K’) (217)

It should be noted that this symmetry action applies for all forms of damping
dependent only on the system velocities.

Second-order damping

Second-order damping terms are also quite common, particularly in aerodynamic
problems, often taking the form D, (v) = —K,||v||2v and D, (v, w) = —K,||Kuyv +
Kuow|2(Kywv + K,w), where K,, K,,, K,,, and K, are constant matrices. The
damping force in the equations of relative motion then appears as

(Dy(v) = Dy(v")) = =Koy [([[v" + Tll2 — [[v"[|2)v"] + [Jv" + 7]|2(7)]
(D,(v,w) — D,(v",w")) = —K,(|| KooV + K" + Ku¥ + Kpu@||2
— | Kwp¥" + Ko ||2)(Kuwy?" + Kpuw")
+ [| Ko™ + Kpww” + KuyoU + Kupo®||2( Ko + K@)

When the K,, = 0, this term can be directly inserted into (2.15), provided x is
fixed. Thus, quadratic damping breaks the distance scaling symmetry of the system,
yielding the symmetry action of (2.16). Such a condition might occur when the
center of pressure and center of mass of the vehicle are collocated.

When K, is nonzero, the time scaling symmetry is also broken, resulting in the
symmetry action of (2.17).

Unlike the previous formulations, systems with a second-order drag such as that
mentioned above do not directly satisfy the quadratic form of (2.8), as the drag

term is nonsmooth at zero angular and linear velocity. Simplifying assumptions
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such as a linear drag or, for reference velocities well away from zero, a quadratic

drag approximation would have to be used.

All of these systems can thus be cast or approximated by the quadratic form of (2.8).
The time varying nature of the linear term is due to the reference vectors v" and w”.
When these are constant, the linear term is constant. The reference trajectories resulting
in the time invariant system thus correspond to helices and are relative equilibria of the
system.

2.4.3 Systems with a constant gravity term

Almost all non-buoyant aircraft, assuming non-drastic altitude changes, fit this descrip-
tion. It also includes non-neutrally buoyant underwater vehicles, also assuming non-
drastic depth changes. The acceleration of gravity can be written as G(R,z) = RTg,
where g is the inertial constant gravity acceleration vector. The torque due to gravity is
zero, because the center of gravity and the center of mass are collocated under constant
gravity. The gravity component of the equations of relative motion then evaluates to

G(R,z) — G(R",z") = RTR™"g

This term fits the framework of (2.15) only when 7 and k are defined such that
7%k = ||g||2, thus coupling the time scaling and distance scaling symmetries. In addition,
the rotational symmetry R; € SO(3) is limited such that g € ker Rs. Thus, without
damping, the symmetry group H is R* x Rt x (SO(3) Nker g) and the symmetry action

18

1/1 : (.’B, R;'U;wﬂ?; K’) X (6$, RS) = <R5Pn($ + 5$)) RﬁR) PEU:W;PKEW;PKK> )

With damping, the scaling symmetries are broken, so the symmetry group H reduces
to R® x (SO(3) Nker g) and the symmetry action is

Y : (z,R,v,w,n, k) x (6z, Rs) — (Rs(z + dz), RsR,v,w,n, K),
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which is equivalent to (2.17), except that Rs; € (SO(3) Nker g). Like the case of negligible
gravity, this class of systems is of the quadratic form of (2.8). The time-invariant case
(when v" and w" are constant) once again corresponds to motion about helices, but the
rotation of the helix is constrained to be about the gravity vector, i.e., w” is parallel to

g.

2.4.4 Systems with an inverse square gravity term

The inverse square relationship corresponds to Newton’s law of gravity for point masses,
where one body is substantially more massive than the other. Thus, this category includes
every vehicle for which gravity can be regarded as emanating from a single point source at
the origin. It encompasses all spacecraft for which planetary (or solar) mass distribution
and third body effects are negligible 3. The acceleration due to gravity can then be written
as G(z) = —u/ (||z||3) RTz, where u = GM, the gravitational constant G, multiplied by
the mass of the attracting body M. When cast into the relative frame,

(G(R,z) — G(R",z")) = —p [(R L) RT SR ELLE o @ ]

lzm + R (R+ L)z l’[3

Once again, let us use the substitution z = KZ.

%n
K

G(R,z) — G(R",z")) = — — - p
(G(R,z) = G( ) (R + )" RrT% + %3 12713

(2.18)

(R+I,)"RT% + % o E ]

In order to fit this term to (2.15), the time and distance scaling factors must be
constrained such that 72 = u/(k®). In addition, the translational symmetry is broken, as
the position relative to the point source is not invariant with arbitrary translation.

Because the gravity is not constant, the gravitational torque felt by the spacecraft is
dependent on its mass distribution. The ensuing acceleration due to the gravitational
torque is expressed by the function

3For more information on rigid-body dynamics in an orbital environment, see [47, 108].
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3 =
Gr(R,z) = ||x||g]I '[R7z]1 [RTz].

Assuming that £ = kZ, the gravity angular acceleration component of the equations
of relative motion reduces to

C3u | (R Y R7E AR+ L)' RTE +5 [R/TT}]H (RT3

Gr(R,z)—Gr(R",z" - - =
rB2) =G =) =4 (R + L) R'&" + 33 12713

This term is thus also compatible with (2.15) when 7? = u/x2 and preserves a scaling
symmetry. Therefore, when the controls are decoupled, the symmetry group H is SO(3) x
R*™ and the action is

_1 _3 _3
¢ : (:E) R: v,w,n, K’) X (R51 pK.) = (Répnx: RéR: Px 2,U’ Pr 2LU, Px 2771 pK.K) .

In all other cases, the symmetry group is reduced to H = SO(3) and the action is
P (z,R,v,w,n, k) X (Rs) = (Rsz, Rs R, v,w,n, K).

Physically, this means that the orbital behavior of a spacecraft with a given radius
and control history is equivalent to its behavior at any other point where the radius is
the same and the orientation and velocity vectors do not change in relation to the radius
vector. When the scaling symmetry is intact, it is also equivalent to motion at other
radii and velocity magnitudes provided the quantity vTv+/zTz is invariant.

For an elliptical reference orbit, when the scaling symmetry exists, x can be considered
its semimajor axis and 7 then corresponds to its mean motion. Regardless, while position
on the ellipse does not deviate with a symmetry action, the orientation of the ellipse can
be arbitrarily changed, i.e., the unit normal vector can be reoriented and the periapse
can be rotated about that vector. The scaling symmetry equates any two ellipses with
the same eccentricity.

Unfortunately, although drag can be modelled effectively as a linear function at orbital
altitudes due to rarefied gas flow, the equations of motion using the inverse-square model
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of gravity do not follow the quadratic form of (2.8). Thus, a series expansion is necessary.
Let R"T%" = ||Z"||,e” and % = ||7"||»2. Substituting into (2.18), we get

u 1
G(R,z) - G(R",z")) = ——K—
(G(R,2) =~ G(R,a) = ~ mr=rs

m+kf€+z_f1

— (2.19)
(R + L) e + 2|3

It can be seen that ||(R + Is) e +2lls = /1 + 2e"T(R + I5)z + 272. Let b be defined
as 2e"T(R + I3)z + zTz. The Taylor series expansion for (1 + b)%? is then

3. 15 35 315
14+0)%2=1—p4+ 0 — 0+ p*+ O(° 2.20
(1+9) 2° T g 160 T128° T (%) (2.20)

_ 3 PT 5 T 15 rT _\2 z 3
_1—5(2e (R+ L)z +z Z)+§(2e z)°+ O ||l B I

So,

(R+ L) e + 2
I(R+Is)"e + 2|3

- g (2¢"(R+ L)z + 272) (R+ I) e + 2)

||‘°’>

— (RTe’ + z) — g (2e’TRz + sz) (RTe’ +e" + z)

6

— [RT — g (2eTTRz + sz) —3e""z (RT + I3) + %(e’Tz)z] e’

Rnﬁ

= [(RT - 3e’Tz) e + z} + <—

%

—e' = -+ ((}_2 + Ig)Te’ + z)

z

15 2T _\2 ', T »
+ 5 (2e772) (R+1)"e +z)+0<|| 4

_ 15
— 3"z (RTe’ +e + z) + ?(e’Tz)ze’ +0 (||

+ <13 - 3e’Tz) z+0 <|| z

N W

_ _ 15
(2e’TRz + sz) —3e"T2RT + 7(e’Tz)2) e’

_3(e’T2)z 4+ 0 (||
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Substituting into (2.19),

G(R,z) - G(R",z") = —%nm([(}? — 3e’Tz> e’ + z]

3 _ - 15
+ [<—§ (2e’TRz + sz) —3e""zR" + ?(GTTZ)2> " —3(e""2)z

+0 (H |I3>)

1 1 - _ _
2 T rT= r =~
= —1°k(— —— R —3e""Z|e"+ 7%

7 (||$’||z KHw’Hz ) ]

z

R

oo [-3eTRE - 3e7TFRT] e

1Z7 ]2
3 15 1 |z ?
=T= T =\2 7 rT =\~
+[<——m$+—ex)e—3e :z::v]—i—O — _
3 (B18) = ()¢ —3DE + O [5pg | )

While this gravity approximation is quadratic, it does not (in general) fit the form
of (2.8) due to the presence of ||Z"||; in the quadratic terms containing R. This leaves
two options to make the equations of relative motion compliant, either assuming ||Z"||»
is constant or reducing the problem to translation only. It can be seen from this force
approximation and the torque formulation that the variables causing the time variance
of the linear term are z7, v", and w”. When these are constant, the resultant reference
trajectory is a circular orbit, about which both the rotation and translation dynamics
can be addressed.

Note that reduction of the problem to a translation only case results in a much simpler
form of the equations of relative motion:

8I.

Fo || = TR
3| |—@"5+ (G(R,z) — G(R", 7)) — KT + N?6B, G|’
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where

G(R,z) — G(R",z") = —n*k(

— | -3e"TZe" + %
1272 | |

3 15 1 ’
+ (=5 (F73) + (€787 ) & - 3("B)E| + 0

12713

2

T
R

Note that, as mentioned earlier, drag at orbital altitudes is linear.
If we restrict ourselves to motion about a circular trajectory, assume no drag, and let
e" =10,1,0]T and w™ = [0, 0, 7n]7, we get a form of London’s equations [82]:

_ffl_ [ U + I ]
;2 ;2 - ;1
ry ;3 '53
= | .| = _ _ A 2.21
=g T T, — & + 35,5, (2.21)
= = = =2 3 /(<2 = 2 _
Vs -V + 225 — 325 + 3 (.'131 + T3 ) -+ Bv'u,
AR B+ 358 |

The acceleration due to gravitational torque term can be cast into the necessary form
in a similar way by using the expansion in (2.20).
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Chapter 3

Series-based Local Planning

3.1 Introduction

This chapter! develops local complete constructive trajectory generation and optimiza-
tion algorithms for a class of low order polynomial systems which is representative of a
large array of dynamical systems. These algorithms are complete in that they guarantee
a solution and are “constructive” in the sense that they rely directly on the controllability
properties of the system.

This chapter presents two algorithms to generate a feasible path using base functions
and a minimum energy path parameterized by the initial values of the costates of the
system. For a linearly controllable system, we can show that there exists a neighborhood
about the origin in which the algorithms are guaranteed to find a solution. To find these
parameterized controls, we develop iterative as well as series inversion methods, both of
which have convergence guarantees. We provide proofs to this along with computation
of explicit neighborhoods that, even if conservative, provide a lower bound on region of
validity, or the region over which these algorithms are guaranteed to converge. Addition-
ally, we investigate the behavior of the algorithms for a one dimensional system and for
a planar vertical takeoff and landing vehicle (PVTOL) with damping. This includes an

1This chapter and the appendices are an extension of the paper [28]. Portions of this chapter and the
appendices are taken directly from the paper and are () 2003 IEEE, reprinted with permission, from W. T.
Cerven and F. Bullo. Constructive controllability algorithms for motion planning and optimization. IFEE
Transactions on Automatic Control, 48(4):575-589, 2003.
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illustration of the level of conservativeness of the lower bounds on the neighborhoods of
convergence for the example systems.

This chapter is organized as follows. In Section 3.2, we introduce the polynomial sys-
tems of interest and define the norms and series expansions upon which these algorithms
are based. We discuss the accessibility and the nilpotency of the polynomial system as
well as the formulation required to apply the series expansion about a trajectory. Next,
in Section 3.3, we present trajectory generation and optimization problems and we cast
both of them into the form of a function inversion problem. In Section 3.4, we proceed
to show how a unique solution to the inversion problem exists locally, and define two
numerical approaches to compute it. A lower bound to the radius of convergence is pro-
vided for both methods. Lastly, in Section 3.5, we apply these algorithms to a simple
one dimensional example and the PVTOL with damping. Appendices A.2, A.3, and A.4
contain various proofs.

3.2 A class of polynomial control systems

Throughout the chapter we shall concern ourselves with n-dimensional second order
polynomial systems of the form

i = At)z + f%(z,z) + Bu
z(0) = z,,

(3.1)

where f? : R* x R* — R" is a symmetric tensor,? A is an n x n matrix, and B is an n xm
matrix. While the approach advocated in this work can be extended to address more
general systems, we focus on this class of polynomial systems for simplicity of exposition.
This class is representative of a large array of dynamical systems, as any smooth system
linear in controls not fitting this form naturally can be approximated as such by a Taylor
expansion. Classical dynamical systems such as the Lorentz, Lotka-Volterra, and Euler
equations are characterized by second order polynomial vector fields. In addition, Kang
and Krener [63] showed that any nonlinear system of the form ¢ = f(£) + g(¢)u can

2Any vector field with components homogeneous polynomials of degree 2 can be written in terms of a
symmetric tensor f2/.
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be represented as such (plus higher order terms) by a change of coordinates and state
feedback. Note that this class of polynomial systems is not contained in the class of
systems in chained form, driftless systems, and feedback linearizable systems.

3.2.1 Operator and function norms

In defining mapping and norms we follow the notation in [68, Chapter 6].

Let N be the set of strictly positive integers. Over the linear space R* we will use the
norms ||z, = vz'z, and ||z||e = maxic1, .3 [2:]. Consider the normed linear space L7,
of piecewise continuous, uniformly bounded functions over the interval I

z:ICR; - R*
t— z(t),

with norm

Izl = sup||z(£)lleo = sup  max  [2:(t)] < +o0.

Assume the system & = A(t)z is stable in the sense of Lyapunov ® or that the interval
I is finite and the escape time of £ = A(t)z (if it exists) is not in the interval, and let
H, be the mapping

A [’Zo — LZ'O
t
z(t) / W(t, 7)z()dT.
0

where ¥(¢,7) is the linear state transition matrix of the system ¢ = A(t)z. The L7

induced norm for H, is

3For the time-invariant system, it is sufficient the matrix A is Hurwitz.
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Next, we consider 2-tensor f[? : L x L% — L7 defined via

(z(t),y(®) = f2(2(2), y()),

and define its induced norm || ||, via

120w = 17l = max 1723, 32)l |

loo=1

llyz]
lly2|leo=1
3.2.2 Evolution as series expansion

We present a series expansion for the solution of the initial value problem in equa-
tion (3.1). The result is an extension of the results in [21] and is proven in Appendix A.2.
Before proceeding, it is useful to introduce a few preliminary concepts. The Catalan num-
bers are an infinite sequence of integers discovered by Euler as the solution to the question
“How many ways can a convex polygon be divided into triangles via non-intersecting
diagonals?”. The result is a sequence of numbers corresponding to polygons with in-
creasing numbers of vertices, starting with a triangle. We define the Catalan numbers
{cx € R,k € N} as in [130, Section 2.3|; our definition differs from Euler’s more standard
sequence by a scaling factor. Define C : [0,1] — [0,1] as C(n) = 1 — /1 — 7, and let
Remainderg(C)(n) be its Taylor remainder of order K. If we develop C in power series

—+ oo
C("?) = Z Cknk’
k=1
then the following equivalent conditions hold

1 2k — 2 1
Ck:W , and 61:5’ Cr =

k-1
Z CiCr_;- (3.2)
k—1 =1

N[ —

We are now able to characterize the flow of the differential equation (3.1).

Lemma 3.2.1 The solution of the system in equation (3.1) is written as a series
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z(t) = 3325 zx(t) where

2 (t) = W(t, 0)zo + | “W(t, ) Bu(r)dr
k=1 4 i (3.3)
5(®)= 5 [ U el B, V> 1,

U(t, 7) is the linear system state transition matriz and satisfies the relation ¥(t, ) =
A(t)¥(¢t,7), ¥(1,7) = I,, and I, is the n x n dentity matric.

Let d = 2 (|[¥(t,0)zo| o + [[¥(2,0)l| || Bullcor) and dz = 2[[ (2, 0)|., || f?]| - Pro-
vided didy < 1, a solution exists over the interval I and the series converges abso-
lutely and uniformly int € I, and the following upper bounds hold:

|Zel|co < crdids™t,

K
1
lz = > zellee, < A Remainderg (C)(dds).

k=1 2

3.2.3 Accessibility and nilpotency

Consider the polynomial control system in equation (3.1) and described by the tensors
A(t), B, and f?. Let the subspace B C R* be the image of the matrix B. Given two
linear subspaces V and W of R", let

AV, W) = {fP(v,w) eR*| v € V,w € W} CR".
Let LinReach4(B) be the subspace generated by the reachability Grammian

t
/ ¥(t, s)BBU(t, s)ds,
0
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where ¥ is the linear system state transition matrix, and define the accessibility sub-
spaces {Rr C R", k € N} as follows

t

R, = LinReach,(B) = range( / U(t,s)BB'¥(t,s)ds)R, = LinReach,(fIZ(R,R:))
0

Ri = LinReach o (U¥_H{ (R4, Ri_a)}).

The subspaces {Rx C R*,k € N} play a key role in studying controllability and
nilpotency of the time-invariant form of system (3.1). In particular, we state the following
facts:

(i) the kth order component z(t) is in Ry for all ¢ € I and for all inputs v : I — R™,
(ii) the system is linearly controllable if and only if R; is full rank,

(iii) the accessibility subspace R; of the time-invariant system is generated by all the
Lie brackets evaluated at the origin — between an arbitrary number of the vector
field Az + f?(z, z) and k vector fields of the form B;,

(iv) the system is locally accessible if 1% Ry = R™, and

(v) the system is nilpotent if there exists an integer k£ such that R; = 0 for all = > k.

Note that R, is full rank if and only if the controllability grammian [; (0, s)BB'¥(0, s)'ds
is also full rank.

3.2.4 Series expansion about a trajectory

As described in Lemma 3.2.1 the series expansion in equation (3.3) converges under
the assumption of small initial condition z(0). There is a second setting in which a
similar expansion can be easily written. Assume that a reference trajectory satisfying
& = A(t)z + f@(z, ) + Buce(t), (0) = zo is known analytically as z(t) = ® (2o, Ures(t)).
Define a relative variation variable e

€E=T— ‘I’{(wo, uref(t))1
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and compute the differential equation regulating its evolution

é = & — ] (o, Ures(t))
= (A(t)z + f?(z, z) + Bu)
— (A®)®] (@0, uret(t)) + (@] (z0, tres(t)), B (T0, Uret(t))) + Bures(?))
= A(t)e + fP(z + ®f (20, wes(t)), T — B (T0, Uret(?))) + B — uret(?))
= A(t)e + fP(28] (o, Ure(t)) + €, €) + Bt — Urer(t))
= (A(t) + 2fP(®] (z0, urt(t)))) € + FP)(e, €) + B(u — urer(t)),

where we define the matrix f?/(z) according to ( f[z](m)) y = fl%(z,y) for all z,y € R".
In the new variable e, the system is again in second order polynomial form and the
initial condition is e(0) = 0.

3.3 Formulation of motion planning and minimum en-

ergy planning problems

This section describes two interesting planning problems %. We transform these problems
into inverse function problems exploiting the series expansion described above.

Consider the control system in equation (3.1), let the initial condition be the origin
z(0) = 0, and let Tiugt € R™ be the desired target location. We shall require that
did> < 1, i.e., we restrict our investigation to the convergence radius of the series in
equation (3.3).

3.3.1 Base functions for the control inputs

It is often useful to introduce a collection of bounded piecewise continuous base functions
{¥*(t): [0,T] —» R™,% € {1,...,n,}} to parametrize the input functions u. This is the

case for example when magnitude and rate constraints or binary actuators are present.

4A third approach is presented in Appendix A
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We write .
u(t) = > ¥ (p: = Y(t)p.

A wide variety of base functions are possible including splines, Hermite polynomials,
sinusoidal functions, piecewise constant functions, and wavelets. Define the tensors {®; :
RF>m» — R™, k € N} as:

&i(t) = /0 "9(t, 1) Byi(r)dr
oy(t) = [ w(t, ) (3(r), #2(r)) dr,

#5(t) = [ 9t )(£O(8() 85°(n) + FA(@5(), 82(0) )T (3.4)

o L I o o
k) = X [ WA (), 80 (1)
a=1 0
Assuming z(0) = 0, the kth term of the series in equation (3.3) can now be rewritten as

Tk (t) = 2x(t)(p, - - -, D)

k times

In what follows, we will only need $4(¢) evaluated at final time T', therefore we introduce
the abbreviation &, = &,(T).

3.3.2 Motion planning with base functions

Consider the following design problem: find a control input u : [0,T] — R™ such that

& = A(t)z + f?(z,z) + Bu
(E(O) = 0, l'(T) = wtarget-
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Using the series expansion characterization in Section 3.2.2, the problem becomes finding
a control input u : [0, T'] — R™ that solves

+o0
Ttarget — Z mIc(T')
k=1

This equation is a constraint on the input functions u since all the terms z; depend on
it. This constraint can be discretized into a finite dimensional equation via a collection
of bounded piecewise continuous base functions {¢*(t) : [0,T] — R™,z € {1,...,n,}}.
Using the notation in Section 3.3.1, the design problem is to find a vector p € R™ such
that

+oo
Ttarget — @1p + Z @k(p) cee ’p) (35)
k=2

3.3.3 Minimum energy planning (without base functions)

Consider the following design problem: find a control input u : [0, 7] — R™ that solves

T
min [ lu(t)l3dt
0
subject to & = A(t)z + f?(z,z) + Bu (3.6)
$(0) = 0, .'17(T) = a:target-

Thus, the Hamiltonian associated with the optimal control problem in equation (3.6)
is: .
H(z, ), u) = Slull; + N (A(®)z + fP(z,2) + Bu).
As known from optimal control theory, we let u extremize H, that is, we let u(t) =
—B'\(t), where B’ denotes the transpose of B and we write necessary conditions

i = A(t)z + f¥(z,z) — BB')
A= —A@)A - 2fF(z)' A (3.7)
$(0) = 0, ZB(T) = ZTtarget-
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The design problem is to find the initial value A(0) = Ag compatible with problem (3.7)
that uniquely determines the optimal control law.

The two point boundary value problem has the same polynomial structure of the
initial value problem in equation (3.1). We let z = (z, ) € R?", and

2, | [z, z)
] f (ZE,ZB) - [—2f[2]($)l)\] )

0
Aol

where U(t,7) is the state transition matrix of the system z = AZ and ®; now maps
R*® — R?". The higher order terms {®; : R**?" — R*" k > 1} can be recursively defined
following equation (3.4) in Section 3.3.1. Using the series expansion characterization in

where we drop the T' argument as usual. This expression can be rewritten as

A(t) —BB

A=\ _A(t)

so that the first order term in the solution to (3.7) is

() = [’El(t)] — T(t,0) [f = 3, (1)

Au(t)

Section 3.2.2, we have

0
Ao

z(T)

~3,
A(T)

too
+ > %
k=2

+oo
mtarget = él,m)\)\o + Z @k,z)\ ()\0; T AO) H (38)

k=2

where we project the image and restrict the domain of the tensor {®;, k € N} as

* ()] =

In summary, the design problem is to find a vector Ay € R* solution to equation (3.8).

6k,)\)\ (}‘0; UK )‘0)

Bror oy - - )\0)] >

Once an appropriate value of A is found, the optimal control law can be computed as a
series expansion.
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3.4 Solving the planning problems via inversion

In this section, we treat both motion planning and minimum energy planning as a func-
tion inversion problem for an appropriate function f characterized via a power series.
We study conditions that guarantee that the function f and its Jacobian are invertible.
Finally, we describe two approaches to inverting f and to bound the neighborhood over
which the function is invertible.

Equations (3.5) and (3.8) are equivalent to the solution of an equation of the form

“+oo
m‘I:arget :f(y) = f1y+ ka(yiiy)i (39)
k=2

where y = p € R" for motion planning and y = Ay € R" for minimum energy
planning. Additionally, Ziarget € R", and the tensors fj live in linear spaces of appropriate
dimensions. Next, we transcribe the bounds known from Lemma 3.2.1 into the new
setting. Let the sequence {ck, ¥ € N} and the function C be defined as in Section 3.2.2.

Lemma 3.4.1 Define

2| (¢, 0 By (t 2||¥(¢, 0 [2]
1_{ OBy Bl Dz:{ 12 Ollel|2le..
2||¥(t,0)|| 2|[T(t,0)||. ][ 2oo

Provided D;Ds||y|l < 1, the series converges absolutely, and the following upper
bounds hold:

1£e(¥; - - ¥)lloo < e DY D3 |yll56,

K
@) = 3 ful@s s 9)lloo < Di Remaindery(C) (D Dal[y]o0)
k=1
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Proof: We relate the coefficients {d;, d»} for each settings to {D,, D>} via

dy = 2([[¥ (¢, 0)oll 2o + [[¥ (2, 0)llz, || Bull o)
2[[% (2, 0|l 1 BY (t)cl| 2o

2|z, 0) [AO

0

< Di|lylleo

Loo

dy =

From Lemma 3.2.1 we transcribe the first of the two bounds

$ oo oo
i )l < 2Ol o FliEllee o grgiet < o, DEDE 1
B0 Aol | ol

The second bound can be proven using the definition of remainder:

1 .
1f(y) — Z fe(¥y - Y)]|oo < 4 Remainderg (C)(d;d>)
1 Ix ) 1 +oo .
d_ Z ce(did2)" < Do Z ¢t (D1Ds|yl|o0)
=K+ 2 k=K+1

< F Remaindery(C) (D1 Ds||Y|oo) -
2

Theorem 3.4.2 (A generalized inverse function theorem) Assume the power se-
ries in equation (3.9) converges absolutely over V, = {y € R"| D;Ds||y|le < 1},
and let f : R"» — R", n, > n be the function defined by the series. Furthermore,
assume that the tensor fi s full rank. Then there exists a neighborhood V, C V,

such that, for all Tiage € f(V3), there ezists a smooth right inverse f~1: f(V,) — V.
Furthermore, if n, =n, f~' is unique.

Proof: 1t can be seen that f; = g—i(o) is the Jacobian of f evaluated at y = 0. Since
fi1 is full rank, we can compute its pseudo-inverse f7. Let x € R and let y = ffx
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Then equation (3.9) becomes

+oo
xtarget =X + Z fk(f]z.,XJ | f]I.JX) = h(X)
k=2
The Jacobian of the function A : R* — R™ evaluated at the origin is
oh
—(0) = I,.
5.

Therefore, the function A has a unique inverse in a neighborhood of the origin
because of Theorem 2.5.2 in [2]. This implies that f~! exists in a neighborhood of
the origin. Furthermore, when n, = n, the inverse function f ' is unique since

the pseudo-inverse f7 equals f; . [

3.4.1 Existence of solution for linearly controllable systems

Motivated by the previous theorem, we investigate necessary and sufficient conditions in
order for the tensor f; to be full rank. It turns out that in both settings the property of
linear controllability plays a central role.

Lemma 3.4.3 There exist smooth base functions {¢'(t) : 1 € {1,...,n,}} such that
the tensor ®; s invertible if and only if the system in equation (3.1) is linearly
controllable.

Proof: If the tensor &, is full rank, then the linear systems obtained by setting f%
to zero is controllable, and therefore the system in equation (3.1) is linearly
controllable. Vice-versa, let n, = n and define the functions

Yi(t) = B'(0,t) Wy te; (3.10)
T
Wi = / (0, 5)BB"Y(0, s)'ds = W > 0,
0

where {e;,...,e,} is the standard base for R* and Wr is the controllability
Grammian. As this system is linearly controllable by assumption, Wr is full rank.
Given these input base functions, it is easy to see that ®, = I,,. [ ]
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The base functions in equation (3.10) are selected according to the classic minimum
energy design for point to point planning of linear control systems; see [31, page 557].

Lemma 3.4.4 The tensor ®,,, is invertible if and only if the system in equa-

tion (3.1) s linearly controllable.
Proof: The tensor ®; ., can be found by solving the differential equation

A(t) —-BB
0 —A(t)

q)l,:z::z: <§1,::)\

D1 P10

él,zz él,:z:)\

= = ) 6'L(O) — In;
D13 D10

which simplifies to
&1 00 = A(t)B140 — BB'U(0,£), &1,(0) = 0,.

The solution to the last equation is the convolution integral
_ T
@1@)\ = —\I’(T, 0) </ ‘I’(O, S)BBI\I’(O, S)Id5> .
0

Since & ., is the negative of the product of an invertible matrix ¥(T,0) and the
controllability Grammian of the system (A(t), B), ®1.» is full rank and invertible
if and only if the system (A(t), B) is controllable. u

3.4.2 Existence of solution for linearly uncontrollable systems

Now let us consider time-invariant systems that are not linearly controllable.

Theorem 3.4.5 Given the n-dimensional time invariant dynamical equation (3.1),
if its linear controllability matriz has rank n. < n, then there erists a transformation
Z = Pz, where P is a constant nonsingular matriz, which transforms (3.1) into

A~c A~12 Bc

= i+ fPN%, %)+ u 3.11
i o f4(z,%) (3.11)
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with the controllable n.-dimensional subsystem
7. = AZ. + B.u. (3.12)

This transformation is called the system’s canonical decomposition; see [31]. The
matrix P can be defined such that P! is composed of first n. independent columns
of the controllability matrix [B AB...A™ 'B] augmented by arbitrary vectors that
make the matrix nonsingular. The linear controllability Grammian W, for the canonical

{ﬁzc 0 ], (3.13)

0 Opon,

decomposition (3.11) reduces to

where W,, = [t eA(t=%) B_B!eA:(t=*)ds is the controllability Grammian for the system (3.12).
Using the canonical decomposition, the inversion problem (3.9) can be recast as

ictarget f €1
[anﬂyt] &) = [fnq

€ R™ and Z,,__, € R*™". Let us then ignore motion on the linearly

get

4—2:

;2;] @, ..., 9), (3.14)

where :’Ecmget

uncontrollable space and reduce our planning problem to that on the linearly controllable
space R

cta,rget fC(yC) = fqyc + Z ka (Tes -1 Te), (3.15)
where § = [§. 7.. € R* and 7. € R™.
This problem is now in a form where the inverse function theorem can be applied, so

we again investigate necessary and sufficient conditions in order for the tensor f., to be
full rank.

Lemma 3.4.6 There exist smooth base functions {¢'(t) : 1 € {1,...,n,}} such that
the tensor fcl = 3361 1s tnvertible if and only if the system in equation (3.1) is linearly
controllable on the space R™.

Proof: This proof follows that of Lemma 3.4.3, where n, = n and the base functions
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are defined as

- r7—1
Yi(t) = BeF T [WOT . ]

where {e,...,e,} is the standard base for R". It is then straightforward to find

that
- I, 0
7o [0 0]

and f,, = I, is invertible. ]

Lemma 3.4.7 The tensor fcl = Ecl,m 18 full rank and s invertible if and only if the
system in equation (3.1) s linearly controllable on the space R™.

Proof: This proof follows that of Lemma 3.4.4. The linear term f; is then defined as

~ = It T As = = Al W 0
A P—— </ e—AsBB/e—Ast> _ [ T,
0 | 0 Onn

It can then be seen that § = A €R* and fcl = WTC has inverse (WQTC 1) if and only
if the system (3.11) is linearly controllable. n

Remark 3.4.8 The treatment of linearly uncontrollable systems is particularly im-
portant when considering nonminimum or redundant coordinate representations.
Here, a nonminimum coordinate representation s a coordinate parametrization of a
configuration space for which the number of coordinates exceeds the dimension of
the space. Such representations are often important to avoid singularities and write
certain dynamical system in quadratic form (3.1). For example, unit quaternions
or rotation matrices are very common to model planar and 3D orientations. Fur-
thermore, they are naturally associated to quadratic vector fields; see the discussion
on the model in equation (2.9) and the PVTOL with damping exzample below.

Remark 3.4.9 It should be possible to extend this method to the time-varying case
as a transformation can be based on a time-varying controllability matriz. Thas
approach s alluded to by Loukianov and Utkin [83] in their reference to [118].
However, as this approach is nontrivial and its investigation would require signifi-
cant effort beyond the scope of this work, it 1s not included here.
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3.4.3 Computational approaches

This section presents two methodologies to solve the inverse function problem under the
linear controllability assumption. First, we note that equation (3.9) can be solved numer-
ically by a root-finding method such as the classic Newton’s method. This type of routine
is well-documented in books such as [106] and its implementation is relatively straightfor-
ward. Along these lines, we present here a provably convergent iterative method based
upon the contraction mapping. We provide an explicit lower bound on the region of
convergence of the algorithm. Second, we provide an explicit inverse function written in
power series expansion. The closed form expressions here are taken from [51, 102, 52].
Again, we provide an explicit lower bound on the region of convergence of the algorithm.

Iterative contraction algorithm

Define the pseudo-inverse fI and let y = ffx, where X is the new free variable living in
R™. We rewrite equation (3.9) into the equivalent expression:

+oo
mtarget :X+ ka(ffX;;ffX) (316)

k=2

Define the map M : R* - R

+oo
M(X) = Ttarget — Z fk(ffx: R ffX))
k=2
and set up the iteration

X1 = Ztarget

+oo
Xn+1 = Ttarget — Z fk(fana sy ffX‘n) = M(Xn)
k=2
We shall prove convergence of this iteration starting from any initial condition inside the

set
S = {X : ||X - mtarget”oo S ||$target||oo}-
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Theorem 3.4.10 If

L Oy )
Trarget||oo < Al = ——5———mind ————— 1 — ’
sl < 4= g5 | B G

there exists a unique x* belonging to the set S and satisfying x* = M(x*). Further-
more, the unique solution can be computed by iterating the map M starting from
any watial condition in S.

The proof to this theorem can be found in Appendix A.3. By this theorem, the set
V, in Theorem 3.4.2 contains a ball of radius A; about the origin.

Power series inversion algorithm

Next, we present an explicit inverse to the function. We borrow the result from [102, 52].
Consider the power series in equation (3.9)

+0o
Ttarget — f(y) == f1y+ Z fk(y) .- )y)
k=2

Let m = n, and assume that f; is invertible. Define the function g : R® — R” via the

power series
“+o0

9(z) =gz + > g(z,...,z), (3.17)

k=2

where we let

g = fit, gk(m,...,m):—glzk: > fl(gil(-’r,---,-’ﬂ),---,gil(m,---,x)).

m=211+---+11=k
il:"' 1il<k

Theorem 3.4.11 The function g 1s the inverse of f, and it converges provided

1
<
4(D1[ ff o + )| ||oo D1 D2

||$target||<x> S A2 = Al-

The proof to this theorem can be found in Appendix A.4. By this theorem, V, in
Theorem 3.4.2 contains a ball of radius A, about the origin.
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3.5 Simulation

Two models were used to illustrate the algorithms. First, a one dimensional nonlin-
ear system £ = —z2 + u was used to study the convergence properties of these algo-
rithms. Second, a planar vertical takeoff and landing aircraft model was chosen to test

the minimum-energy planning algorithm performance on a more complicated system.

3.5.1 PVTOL with Damping Example

Figure 3.1: Diagram of the PVTOL model.

We consider the model of a simple planar vertical takeoff and landing aircraft model
based upon that of [54, 90], but with added viscous damping forces; see Figure 3.1. In
other words, we consider the classic PVTOL model subject to a linear drag force. We pa-
rameterize its configuration and velocity space via the state variables (s, ¢, z, 2, w, Uz, V).
We let z and 2z be the inertial coordinates of the aircraft and s and c represent its roll
angle 6 such that s = sinf and ¢ = cos8 — 1. The angular velocity is w and the linear
velocities in the body-fixed z (respectively z) axis are v, (respectively v,). Explicitly
separating the linear from the homogeneous polynomial component, the equations are
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written as

S w cw 0 0
c 0 —Sw 0 0
T Vg cv, — SU, 0 0
U

z|= U, +|svy+cv,|+| O 0 [ ]
w =k1y 0 0o kg, | ¥

J J M
Uy k29, — gs VW 0 Lk,
U, =kay, — gc — VW Lk, O

As stated in Section 3.2, the quadratic term can be represented via a symmetric tensor
f2. In components, let us write the ith component of f(z, z) as (f2)?*z;z,. All compo-
nents of f[2! vanish except for (f12)7* = (F12)% = 1/2 at indices (1, 2,5), (3,2, 6), (4, 1, 6),
(4,2,7), (6,5,7) and (f2)?* = (f2)¥ = —1/2 at indices (2,1,5), (3,1,7), (7,5,6). The
control u; corresponds to the body vertical force minus gravity, while u, corresponds to
coupled forces on the wingtips with a net horizontal component. The other forces de-
pend upon the constants k;, which parameterize some damping force, and g, the gravity
constant. The constant A is the distance from the center of mass to the wingtip, while M
and J are mass and moment of inertia, respectively. The constant &, is a control gain.

Remark 3.5.1 Although motion planning for the classic PVTOL example has been
done effectively using flatness [90], the PVTOL with damping model appears not to
be flat. A system with state x and control u is differentially flat if there exists an
output function %(z,u,u,u,...) such that the states and controls can be expressed
solely as a function of the output and its deriwatives. The PVTOL equations with
damping can be rewritten as follows:

w M |—sin® cosé z 0
u . i (3.18)
Us ku | cosf siné z 9

. lﬁe +5sin®0 (5 - 5)sinbcos 0] H) (3.19)

k2 k3Y k2 gin2g 1 ks pog? ;
(B — 2)sinfcosf F2sin“f+ 2cos’d| |z

B J . kq -
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Equating the second and third equations, we obtain

% (5-!— k—;H) -M <a’§cos0+2sin0+%(a’:cos&-l—z’sin&)-l—gsinﬁ) = 0. (3.20)

For the classical PVTOL (when the damping coefficients are zero), the flat output

J {— sin 9}
+ :

18

-

z hM | cos@

Thas 1s also known as the Huygens center of oscillation. Inserting the flat output into
(3.20), the angle 0 is found [96, 90] to be related to the flat output via J; cosf +
(95 4+ g)sin@ = 0. Once 6 is derived, the states and controls can then be calculated
by using the output relation and equations of motion, respectively. However, when
the damping coefficients are nonzero,

. Ky . ko T [k ko

(191 —+ M’ﬁl) cos @ —+ (192 —+ M192 + g) sin 8 = h—M (7 + M) 6.
Thus, 8 can no longer be written in terms of ¥ and its deriwatives, so that the
classical PVTOL flat output 1s no longer a flat output of the system with damping.

It 1s unclear whether a flat output still exists.

3.5.2 Implementation

The two algorithms were divided into two implementation steps: preprocessing and con-
trol derivation. Preprocessing includes the system definition and the calculation of the
corresponding tensors in the series expansion. The resulting expansion can be saved to
memory for use by the control derivation. The control derivation includes solution of the
inverse problem using the contraction method and the calculation of the controls with
respect to that solution. The contraction method was chosen because it both has a larger
lower bound on its radius of convergence as well as a more straightforward implementa-
tion. The simulation was carried out by numerical solution of the ordinary differential
equations. Each of these tasks was implemented in Maple 5.4, primarily due to the non-
trivial nature of the calculation of the required tensors. As this involves computation of
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a series of tensors of increasing dimension, each defined by lower order tensors, it necessi-
tates a data type with expandable structure. This is not straightforward in programming
languages such as C, nor in numerical software such as Matlab. Another disadvantage of
Matlab is that its tensor manipulation routines are not as comprehensive as its matrix
routines, thus requiring nested loops to carry out tensor calculations. While Maple is
less computationally efficient than either of the aforementioned methods (documenta-
tion [30] suggests floating point computations in Maple can be 50 to 500 times slower
than in equivalent Fortran programs), its tensor package accommodates tensor products
as well as calculation of the tensors using the recursive functions, avoiding data structure
issues.® Another computational challenge was posed by the PVTOL system itself. Its
controllability Grammian is ill-conditioned (using the parameters described below, its
condition number [55, page 56| is in the order of 1e +5), thus requiring careful treatment
and high accuracy. Fortunately, these issues take place in the preprocessing stage and
can be tackled offline. These tensor calculations dominate the preprocessing and require,

at most, O(ng}

%) multiplications and integration of O(n2%*) terms, where n,.; and k are
the total dimension® of the system and the order of the series expansion, respectively
(assuming n > k > 1). The integration then proves to be the primary factor in run time.
The control derivation is far less computationally intensive, as it involves primarily float-
ing point computations. Yet, because the number of recursions needed to find a solution
for a given accuracy is variable, the number of online calculations is less predictable.
This, too, was implemented in Maple, although any programming language would work
as well. For the PVTOL example, using a second order series approximation, on an 800
Mhz Windows ME PC using 128 megabytes of RAM, the algorithm took 98.5 seconds
in preprocessing and 2.8 seconds (7 iterations) in solving for the control. Third order
series calculations took 13,173 seconds in preprocessing and 20.9 seconds (23 iterations)
in solving for the control online, corresponding to the computational estimate above. All
of the necessary series data stored for the control derivation stage amounted to 27 and

168 kilobytes for the second and third order expansions, respectively.

5An implementation in Mathematica was found to encounter similar features as in Maple.
6For the base function algorithm, nio: = n, while nio: = 2n for the minimum energy algorithm
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3.5.3 Results

Convergence Study
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Figure 3.2: Final position error for motion planning algorithm (left), minimum energy
planning algorithm (right).

The one dimensional system was used to show the solution convergence properties of
both algorithms. For the motion planning algorithm, the inverse problem simplifies to
the following root finding problem and control definition:

o gl 25 16, 58 o 1262
gt — P3P T 7p P T 3ig P T ogss P T 1ppgs Y T

U= p.

The lower bound of the neighborhood of convergence of the algorithm, as defined in
Theorem 3.4.10, is ||z,,,,..||cc < .0625. As the control is a constant, the solution to the
differential equation, for a positive coefficient p, can be written as z = ,/p tanh(,/pt).
Truncating the series at orders one through six, the corresponding coefficients and con-
trols were found. Figure 3.2 shows the comparative error among the levels of truncation

for a range of This shows a general decrease in error as the order of the truncation

target *

increases. The z at which the even truncated series cease to have a solution corre-

target

sponds to the maximums of the truncated polynomials. It can therefore be seen that
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the actual convergence radius of the algorithm is orders of magnitude greater than the
minimum described in Theorem 3.4.10.

For the minimum energy planning algorithm, the inverse problem simplifies to the
following root finding problem and control definition:

1 1
— X+ 02— — AP+ 0N = — AP0+
target 0+ 0 10 0 + 0 180 0 + 0 +

1 1 1 7
= X FPA2 — SN+ — Ot — — BN+ — O+
v 0P A" — b A gt A T ogtiAe g P

z

The lower bound of the neighborhood of convergence of the algorithm, as defined in
Theorem 3.4.10, is ||z
sion on the initial value of the costate A\y. Figure 3.2 shows the comparative error among

oo < .0023. The control input is computed via a series expan-

target

the levels of truncation for a range of z This shows a general decrease in error as

target *
the order of the truncation increases, although this is not true uniformly. This is not
unexpected, as the error reflects the accuracy of the solution of z only, ignoring A. For
example, the second order expansion solves the differential equation and constraints on
z exactly, but does not solve as accurately for A. Thus, a feasible trajectory is gener-
ated that is suboptimal. Despite this apparent non-uniformity, the algorithm behaves
very well at z,___,,
Theorem 3.4.10.

Figure 3.3 provides a cost comparison between the two techniques for series truncated

orders of magnitude beyond the conservative minimum provided by

at order 6. Understandably, as the target distance increases, the control is active longer
and the cost differential is more apparent, with a difference of 18% of the optimal cost
at z, ... = 1.

Figure 3.4 compares the state histories of the linear case as well as the motion and
minimum energy planning algorithms of order six. As in the previous figures, the optimal

algorithm consistently reaches z with greater accuracy. Both methods significantly

target

outperform their linear counterpart.

PVTOL

The minimum energy planning algorithm, having showed good performance for the one
dimensional case, was applied to that of the PVTOL. For this case, the aforementioned
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Figure 3.3: Cost comparison between motion planning with base functions and minimum
energy planning algorithms for series truncated at order 6.
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Figure 3.4: Trajectory comparison of the motion planning with base functions and min-
imum energy planning algorithms for series truncated at order 6 with their linear coun-
terpart.
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Figure 3.5: Resulting motions from minimum energy planning algorithm for PVTOL
series truncated at orders 1 (top) and 2 (bottom), starting at rest at the origin with
desired final condition of a small negative velocity at the circled location.

model was chosen with the constants chosen such that k,/M, hk,/J, k1/J, k2/M, and
k3/M are all normalized to 1, g = 10, and T = 1. Note that these numbers follow the
convention of meters-kilograms-seconds. As defined in Theorem 3.4.10, the lower bound
of the neighborhood of convergence of the algorithm is ||z,,....[|c < 1.6 X 1073, As with
the one dimensional case, this was over-conservative, as solutions could be found over
10'° times greater than the bound. One such example is shown in Figure 3.5, where
a positive z displacement of 0.005 was requested with an z component of velocity of
—0.0005. Using the series truncated at second order shows a clear improvement over the
linear solution, as the error in the final second order state is negligible in comparison to
the 3 percent error in the final position of the linear case.

Remark 3.5.2 Preliminary numerical investigations shows that the convergence ra-
dius has bounds near .01 meters, which, although much larger than the lower bound
analytical estimate, s still quite small (even over a one second time interval). This
small value appears to be due in part to the ill-conditioning of the controllability

Grammian, as the Grammian must be inverted to find the solution. This small
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convergence radius makes the PVTOL an unattractive application for practical im-
plementation of this algorithm. It should be noted, however, that the convergence
radius varies with choice of the unit systems and corresponding scaling of the con-
stants 1n such a way that the effective region of convergence (when mapped back
to the original units) also changes. Thus, it may be possible to find unit transfor-
mation that significantly increases the effective convergence region of the PVTOL.
Also note that this convergence limitation on the PVTOL s not necessarily typical
of other systems, as the next chapter will demonstrate that the effective convergence
region of orbital motions 1s many kilometers in size.

Remark 3.5.3 The assumptions on the mass and dimensional constants correspond
to estimates of these values for the British harrier FRS-1 jet. As for the damping
constants, these have been artificially inflated to increase the non-flat effect. In
practice, these numbers would be negligible, but the region of convergence is rela-

tiwvely invariant to this difference.

3.6 Conclusions

We have presented a variety of constructive controllability and minimum energy control
algorithms. The results are local in nature but constructive: existence, uniqueness and
optimality are guaranteed for a class of polynomial systems. Lower bounds on the region
of validity of these algorithms are presented, and evaluated with respect to algorithm
performance in specific examples.
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Chapter 4
Maneuver Automaton

While the behavior of a modern mechanical system is complicated with many degrees
of freedom, the full range of motions available is often not necessary for control. In
fact, given a finite subset of motions having certain symmetry properties and the ability
to transition between them, the system’s motion can be controlled from one point or
trajectory to another easily. Reducing the full class of motions available to the mechanical
system to a finite subset reduces the dimension of the problem while also enabling it to
be converted to a hybrid system. This provides a means of decreasing computation time
and complexity. This approach was pioneered by Frazzoli [41], who used trim trajectories
of aircraft connected by predetermined maneuvers on a symmetry group of R® x S?, or
3-D translation and yaw rotation. While this symmetry is located on the configuration
manifold, other symmetries also exist and provide other options for trajectory planning.
It is this framework that the development of this chapter is based.

This chapter addresses the problem of global motion planning in obstacle free environ-
ment for a nonlinear time-invariant dynamical system. Rather than attack the nonlinear
high-dimensional system outright, evolution on the full dynamical system is limited to
a set of trajectory primaitives, as defined in Chapter 2. The reduced dynamical system
of all possible interconnections of trajectory primitives is called a maneuver automaton
and it forms the basis for rapid obstacle-free motion planning. The concept of maneuver
automaton was first introduced by Frazzoli [41] where the trajectory primitives used are
relative equilibria or “trim trajectories” and precomputed transitions in between them.
Much of the strength of this approach comes from the existence of symmetries in the
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dynamics of the system that allows a single trajectory primitive to represent numerous
vehicle motions. The maneuver automaton defined in this chapter expands this structure
to include

(i) a larger set of primitives than the aforementioned relative equilibria,
(ii) transitions with an infinite set of possible final conditions,
(iii) incorporation of time-dependent final conditions, and

(iv) use of scaling symmetries.

as well as an online local planner such as in Chapter 3 which provides
(i) Overall solution convergence guarantees.
(ii) Controllability with fewer trajectory primitives.

(iii) Feasible solutions with a coarser grid.

This chapter begins with an explanation of the structure of the maneuver automa-
ton and background material on continuous and discrete systems before discussing the
properties of the maneuver automaton itself. From this, the basis for optimal control
of the maneuver automaton is developed. Dynamic programming is then presented as a
solution method and convergence criteria with proofs are given. The rest of the chapter
is devoted to a brief algorithm description and an Earth to Mars orbital transfer example
to which this methodology is applied.

4.1 Preliminaries

4.1.1 Graphs and Automata

The development in this chapter has a strong basis in computer science and data struc-
tures. A key concept is that of the automaton, defined as follows [74]:
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Definition 4.1.1 (Automaton) An automaton is an abstract computational model
which consists of a set of states, a set of input symbols (an alphabet), stored start
states, and state transition that maps input symbols and the current state to the

next state.

An automaton with a finite number of states is known as a finite state machine or
finite state automaton [15]. Well known variants of these include Turing machines and
Moore machines. The automaton itself can be represented as a directed graph® [37].

Definition 4.1.2 (Directed Graph) A directed graph is defined as a set of vertices,

a set of edges, and a mapping that maps every edge onto an ordered pair or vertices.

Note that, when represented as a graph, the vertices correspond to the states and
the edges correspond to the inputs. The sequence of input symbols used to traverse the
automaton graph is called a word.

4.1.2 Trajectory Primitives

The trajectory primitive, as defined in Chapter 2, provides a way of describing a set of
motions as a one equivalent motion, where equivalence is dependent upon the symmetry
properties of the system. As any motion satisfying the differential equations could be
described as belonging to a trajectory primitive, describing the dynamics of a system
with a full set of primitives (where any evolution on the system could be described as a
sequence of primitives) does nothing to reduce the generality of the method. Furthermore,
vehicles (and other systems) tend to be controlled primarily in a subset of these primitives
for various reasons such as simplicity and/or efficiency. Thus, a much smaller set of
primitives can be used to represent most motions of a system. Classes of primitives
that have been used to represent common vehicle motions include the quantized-input
results of Marigo [88, 13, 14], sinusoids [97], relative equilibria [41], and decoupling vector
fields [22]. Another such class is the reference trajectory, defined in Chapter 2 as

Definition 4.1.3 (Reference Trajectory) A trajectory satisfying the equations of

motion of the system ¥ for which

LA directed graph is also known as an oriented graph, although the latter term is also sometimes used
to denote a subset of directed graphs for which there is, at most, one edge between vertices.
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(i) The state flow (@u,.;(£o,t)) is known and is unique for a given initial state
fo € =.

(1) The control u,.s(t) is a continuous function of time only

(1i2) The dynamical system ¥ can be approrimated as a perturbation about the

trajectory primitive with the form

&= Alt)z + f?(z,z) + Bu

20) - (4.1)

where z(t) and A(t) are defined as continuous functions on the interval I, and the

L1-norm of the corresponding linear state transition matriz ||¥(t,0)||z, is bounded 2.

A reference trajectory on X can then be identified by the sextuple {¢.,.;, Ures, 4, B, f 2l 1%,

4.2 Maneuver Automaton Framework
For our application, we are concerned with two classes of trajectory primitives, namely

(i) Reference trajectories

(ii) Maneuvers

The framework under consideration would include a finite number of reference tra-
jectories connected by a finite number of maneuvers, creating a maneuver library.

This system is thus a hybrid system, where the discrete dynamics of the finite refer-
ence trajectories and their maneuvers connecting them correspond to a directed graph.
The continuous component of this structure is the time-dependent evolution of the con-

tinuous states along the reference trajectory. This framework is called a maneuver

*Here, ||¥(t,0)||z, = maXi—1,.n 2?21 J; 1(¥(¢,0)i5]dt. This statement implies that the system z =
A(t)z is stable in the sense of Lyapunov (for the time-invariant system, it is sufficient the matrix A is
Hurwitz) or that the interval I over which A(¢) is defined is finite and the escape time of £ = A(t)z (if it
exists) is not in the interval.
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automaton. This maneuver automaton can be described as a finite state machine for
which words can be mapped to motion on the state space of the system [43] or as an
extension of the finite state machine to include a continuous state [41, 42], analogous to
the hybrid automata of literature [58, 59]. The latter is given below.

Definition 4.2.1 (Maneuver Automaton) A maneuver automaton M A over a me-
chanical control system X, with symmetry group H, is described by the following
objects:

(1) Hybrid state: Let y be the state of the system on the hybrid state, or maneuver,
space of the system H. This maneuver space s divided into discrete (H;) and
continuous (H,) subspaces where v = (v%,7°) € Hy x H, = H.

(i) Input alphabet: Let v be an input symbol (or control input) in the alphabet (or
control space) U(7y).

(vi2) Initial states: Let vy, be the initial state of the system,

(1v) State transition map: Let ¢ : H x U(y) — H map the transition from one state
to the next.

Hybrid State

As the hybrid system is composed of discrete and continuous parts, so too is the hybrid
state v.

(i) A discrete state £ = y? € {1,... Ny} = Hy C N, indexing the Ny reference trajec-
tories {*@u,.,," Urer,t A, B, f2,L T} and a base state %,
(ii) A continuous state h € H, defined as a position on the symmetry group;

For problems in which time plays a part in the definition of the terminal condition of the
system, it is beneficial to add the following state

(iii) The time state t € {z € Rz > 0} = Z, C R, evolving with { = 1 along each
trajectory and jumping with each maneuver.

Thus, the continuous subspace of the maneuver space H, is defined as either H or
H x Io .
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Input Alphabet
The input symbols, or control variables, are defined as v = (7, £pezt, Ah), where

(i) 7% is the coasting time on the reference trajectory, or time on the reference tra-
jectory before a maneuver is initiated, defined in the closed and bounded interval
Z,(7) C R. Note that Z,(y) assumed to be Lipschitz continuous (with respect to
7¢) in a Hausdorff metric sense [38], i.e.,

Z(v*,7%) € Zo(v", 7 ) + {7 ll7ll < Bllvs = v lIvre, 7" €
where § is a positive constant and A is a compact subset of H..,

(ii) £nest is the next reference trajectory index, defined in Ns(y) C Hy, and

(iii) Ah is the starting state of reference trajectory £,..: relative to the original, defined
in the set U(y). Note that ¢(y) may be characterized as a) a finite set of inputs as
in [41] 3, or b) an infinite compact set on Euclidean space for which U(y¢,.) : v¢ —
U(v4,7¢) is Lipschitz continuous in a Hausdorff metric sense [38].

Thus, the input alphabet, or control space, of the maneuver automaton is defined as
Uly) = Ns(7) x U(y) x Z-(7).

Initial States

The initial state of the system v, can be represented, in the nominal case, by the couple
(Lo, ho), and, in the time-varying final condition case, by the triple (£, ho, to)-

State Transition Map

Evolution of the hybrid state can then be broken down into that due to “coasting” on a
reference trajectory and that due to maneuvers.

We can then indicate this evolution using the state transition map ¢ : HxU — H, with
the notation ¢(7v,v) = ¢,(7). The stepwise evolution of the maneuver automaton thus

3Frazzoli used the controls v = (7, Maneuverpext ), for which Maneuvernext was in a finite set of precom-
puted maneuvers, each identifiable by the original trajectory £ and the pair £nezt, Ah
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follows v¥x11 = @(7&, ¥x) and can be described by the following discrete time transition
equations:

ek—|—1 = enea:t (42)
Pii1 = hneat = Oes(hiy T + Tt ) - Dby
{tes1 = (1 + Ty (ARe)) /m(he) }

where ¢ is the projection of @, onto H, n(h) is the time scaling factor as defined in
Chapter 2 and T} is the maneuver time corresponding to reference trajectory £.

Because of the assumptions on the controls, the system (4.2) can be described as
stationary. This means that the control policy and the state evolution equations only
have state dependence and are invariant to the discrete “time”.

The evolution on the maneuver automaton from initial to final states is then composed
of motion along reference trajectories and the maneuvers connecting them and can be
mathematically described as:

Yrr = Pu(V0)s  Pu = Pvnp © P, 10 0Py (4.3)

where v,11 = ¢, (V%) is defined as in (4.2), p is the automaton word, i.e., the sequence
of control inputs {¥,,., Y, 1,-..V1}, and ny is the total number of discrete time steps in
the final motion.

As seen in Figure 4.1, the projection of motion along the automaton corresponds to
movement on a directed graph when projected upon the discrete space Hj.

Mapping from MA to %

While on a reference trajectory, the state of the full system on = is completely determined
by the hybrid state v and the coasting time 7. Let F : H x Z,(y) — E then be this
mapping of the hybrid state to the space of the full system, where (v, 7) = (¢, h, {t},7) —

Yr(*Buset (&, T/n(R))).-
Let 75 : H x U(y) — E then map the hybrid state and controls to the perturbed

state about the reference trajectory. When the maneuver is defined using a planner such
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Figure 4.1: The Maneuver Automaton: On left, evolution in the discrete space is in the
horizontal plane and evolution along the symmetry group is shown on the vertical axis.
At right is a projection of the evolution onto the discrete space.

as in Chapter 3, transitions on the maneuver automaton occur between two reference
trajectories and positions on the symmetry group that are local to one another, i.e.,
transitions whose relative difference when mapped to = fall within the open set of points
for which the planner is valid Fs(vy,v) € Bs(0) V(v,v) € H x U. Here, Bs(0) C Eis a
ball of radius § about the origin. Note that using this type of planner also allows U(vy)
to be defined such that its interior is nonempty. This type of maneuver is represented in
Figure 4.2.

4.3 Well-posedness and Controllability

In addressing motion planning on the Maneuver Automaton, we rely on two key dy-
namical system properties, well-posedness and controllability. A system is said to be
well-posed [127] if trajectories both exist and are unique for any given control and initial
conditions. A system defined on a space S is controllable from an initial state so € S
and time ty € R to a final state sy € S [119] if there exists an input such that the evo-
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Figure 4.2: Local Planner-based Maneuver

lution of the system following the input from the initial condition results in the system
having the final state at some time t5,.;. Alternatively, it can be said that s; is reachable
from sy at ¢5. A system defined on a space S is (completely) controllable, if, for all
S0, S5 € S and £y € R, the system is controllable from s, at £, to sy.

As the Maneuver Automaton is a combination of discrete and continuous systems, we

will examine the properties of each before returning to the hybrid system.

4.3.1 Discrete System Properties

As previously noted, the projection of the automaton on the discrete space forms a
directed graph.

Here, the vertices correspond to motion along the reference trajectories and the edges
correspond to maneuvers among them. The concept of controllability is closely related
to the concept of accessibility. For a directed graph, a vertex b is accessible from vertex
a if there is a directed path (a series of contiguous consistently directed edges) from a
to b. Another important concept is that of connectedness. A directed graph is strongly
connected if there exists a directed path between every pair of vertices in the graph. It
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is weakly connected if a directed path does not exist, but an undirected path (a series of
contiguous but not necessarily consistently directed edges) does. By definition, a directed
graph is strongly connected if and only if every vertex in the graph is accessible from
every other vertex. Also by definition, a discrete graph is controllable if and only if it is
strongly connected.

4.3.2 Continuous System Properties

Before we address the properties of continuous systems,i.e., systems for which the state
variables are defined on an open set, several key mathematical concepts must be defined.
For more detail one should refer to [119]. A subset S of R” is said to have zero measure
if, for each € > 0, there exists a countable union of balls (Bj, B, . ..) of volume €; such
that >°°,€; < e and S C URX,B;. A property is said to hold almost everywhere if it
fails only in a set of zero measure. A function mapping an interval Z to a metric space
U is piecewrse constant if it is constant over each element of a finite partition of the
interval. A function f : X C R® — U is measurable if there exists some sequence of
piecewise constant functions f;,%7 € N such that f; converges to f almost everywhere. The
function f is then locally integrable if the integral [°||f(7)||dT < oo for each a < b where
a,b € Z. The function f is locally Lipschitz if, there are, for each zo € X, a real number
p > 0 and a locally integrable function o : Z — R* such that a ball (B,(z°)) of radius p
centered at z, is contained in X and ||f(¢,z) — f(¢,v)|| < a(t)||lz — y|| for all ¢ € Z and
z,y € B,(z°). The well-posedness of a continuous system is equivalent to the existence
and uniqueness of a solution to the initial value problem of the system equations of
motion. For continuous-time systems, these correspond to ordinary differential equations,
for which the following theorem holds [119]:

Theorem 4.3.1 (Existence and Uniqueness of solutions to ODEs) Given a system
z = f(t,z), wherez € X CR*, t € Z C R and X s open, for every (to,zo) € T X X,
there exists a unique solution to the initial value problem if f 1s measurable and
locally integrable on t € T as well as continuous and locally Lipschitz on ¢ € X.

For the rest of this section, unless otherwise noted, we will assume “system” implies
a well-posed system.
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For nonlinear continuous-time systems, accessibility [119] is the property that, from
any given state z € X, the reachable set R»(z) is of full dimension, i.e., non-empty. This
is sometimes also called weak controllability. A system is (small time) locally accessible
from z if, for every tasn,. > 0, the reachable set is non-empty. Discrete time systems are
called forward accesstible if the reachable set from a given state is non-empty. [62]

When considering nonlinear systems, complete controllability is difficult to establish.
Thus, one must define the concept of local controllability.

Definition 4.3.2 (Local Controllability) Given a (well-posed) system & = f(t,z)
or (tes1) = f(te, ) with z € X and letting z7(t) be any path on the interval [to, ],
the system 1s locally controllable about z"(t) if, Ve > 0, there exists a § > 0 such that
for every zo, x5 € X with d(zo, 27 (%)) < 9, d(zy,2"(t5)) < 0, there is a path z*(t) with
t € [to, ts] for which z*(ty) = o, =*(t5) = 25 and d(z*(t),z"(t)) < € for all t € [to, ;]

Time Invariant Systems

Let us now address time invariant systems of the form:

¢ =X(q)+>_Y;(Qu;, (4.4)

j=1
where ¢ is in the n-dimensional manifold @, u is bounded and measurable, and ¢(0) = g
is an equilibrium point, i.e., X (go) = 0. While controllability and accessibility are difficult
to quantify for general nonlinear systems, tests for certain controllability and accessibility
properties have been developed for systems of this form. First, however, let us define
some necessary mathematical constructs (A more rigorous definition is given in [2, 119]):

Lie derivative:

Let ¢y be an arbitrary function mapping @ to a Banach space and let dy(g) be the
differential of ¢ at point ¢ € Q. Furthermore, let X be an arbitrary vector field on Q.
The directional or Lie derivative of ¢ along X is

Lx - ¢5(q) = X[ps](q) = dps(q) - X(q)- (4.5)
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Lie bracket:

Let Y also be an arbitrary vector field on Q). The Lie derivative of Y with respect to
X, also known as the Lie bracket of X and Y, written as LxY = [X,Y] = adxY is the
unique vector field satisfying the relation

Lixy) = [Lx, Ly] (4.6)

This quantity is also uniquely defined by the relation

(X, Ylps] = X[Y]ps]] = X[Yorll. (4.7)

Geometrically, the Lie bracket’s meaning can be expressed in terms of the flow of the
system along vector fields X and Y. Let ¢% and ¢3 be the flows along vector fields X
and Y for (small) times ¢ and s, respectively. Furthermore, as in Figure 4.3, let us
define gf = ¢° o @* 5 o ¢§ o % (g0), where the resulting displacement
@°y o ¢ 5 0 ¢% o ¢ is approximately s-¢-[X,Y]. It can be shown that, if [X,Y] =0,
the flows commute. This property is important because non-commutative vector fields
can allow for motion independent of the basis formed by the vector fields themselves.
Such properties impact the dimension of the accessible region of a system.

[X.Y]
af'y

=,

Yy

Figure 4.3: Lie bracket

Distribution:
A distribution on the open subset O C @ is a map D which assigns, to each g € O, a
subspace D(q) C TQ.
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The following development is derived from Kawski [66]. Define the involutive closure
Lie({Y:...Y,,}) as the distribution generated by all iterated Lie brackets of the vector
fields {Y7...Y,.}. A necessary and sufficient condition for local accessibility can then be
stated as:

Theorem 4.3.3 (Chow) The system (4.4) is locally accessible from g if and only if
1t satisfies the Lie Algebra Rank Condition (LARC):

rank(Lie({X,Y1...Yn})(q) = n (4.8)

Jakubcyk and Sontag [62] provided a generalization of this to time invariant discrete
time systems of the form

z(ter1) = flz, u(te)), (4.9)

where f, = f(,u(tx)) : X — X is a global diffeomorphism and z € X, where X is a
manifold of class C*, Hausdorff, and second countable?.
Let us define the vector fields

— 0 -1
v 8’U'£ 'u:Ofu © fu—}—'u(m)
0 _ _
Aduku1Y1($) - ov? ‘U:O(fuk 00 ful) o uil © fui—|—u($) © fuk ©---0 fuu

for which we can then state the theorem
Theorem 4.3.4 The discrete-time system (4.9) is forward accessible from equilib-
rium state zo if and only if

rank(Lie({Ad,,. ., Y:(z)|k > 0,1 <i<m, ug,...ur € U})(q) = n, (4.10)

where U C clos int U (the closure of the interior of U) is a subset of R™ and any
two points in the same connected component of U can be joined by a smooth curve
lying entirely in the interior of U (exzcepting, possibly, the endpoints).

While local controllability is not as easy to establish, there is a way to check small-
time local controllability, where any state close to the equilibrium point g, is reachable

4 A topological space is second countable if it has a countable basis
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from qq. Alternatively, it can be defined as:

Definition 4.3.5 (small-time local controllability) A system (4.4) is small-time lo-
cally controllable (STLC) from go if it is locally accessible from qo and gy is in the
interior of the reachable set Rg(qo) from go.

Only sufficiency conditions for STLC are known and require the following definitions:

(i) Given the (m-+1)-tuple of non-negative integers (k, 1) = (k, 11, ...1,), let Tie " ({ X, Y ... Y, })
be the distribution generated by all iterated Lie brackets containing the vector X
k times and the vector Y; [; times.

(ii) Given a weight 8 € [0, 1] and two (m+1)-tuples (k,!) and (k’,!’), define the ordering
(k,1) <o (K',1') as whenever 8k + 32 1; = 0k' + 32, 1.

Theorem 4.3.6 (Sussmann [121], Kawski [66]) Suppose the system (4.4) is locally
accessible from qo. The system is STLC from g, if there exists 6 € [0, 1] such that,
whenever k 1s odd and lq,...l, are all even,

———(k,l ——(k',I!
Lie ™ ({X, Vs ... Y })(20) C Uppy<oieran Tt ({X, Y . .. Y ) (g0). (4.11)

This is known as the “good/bad bracket condition.” For driftless control systems
(X = 0), local accessibility is equivalent to STLC, as k = 0. Accessibility and con-
trollability are likewise equivalent for linear systems, where the LARC reduces to the

controllability matrix rank condition.

4.3.3 Maneuver Automaton Properties

The maneuver automaton is a hybrid system, but can be viewed as a consistent hier-
archical abstraction [46] of the underlying system’s continuous dynamics, as a sequence
of primitives and maneuvers on the automaton corresponds to a trajectory on the full

continuous system.
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Well-posedness

To ensure that the automaton is hierarchically consistent with respect to the existence and
uniqueness of the initial value problem, we must define well-posedness of the automaton
such that the well-posedness of the underlying system is enforced. As motion along
the reference trajectories follows the continuous dynamics of the underlying system, such
motion is well-posed iff the underlying system is well-posed. When addressing maneuvers,
assuming a maneuver is unique ° for a given discrete-time control input v, the same is
true, as they are also defined as finite-time trajectories on the continuous system. With
this in mind, a given initial condition and discrete-time control history on the maneuver
automaton ensures that a solution exists and is unique for the corresponding initial value
problem on the underlying continuous-time system, provided that the transitions cannot
form an accumulation point (i.e., no Zeno executions). This is not possible because there
is a nonzero minimum time for all maneuvers, insured by the fact that a finite set of
fixed-time maneuvers exist and that the time scaling factor (if applicable) is assumed to
be bounded away from zero. Thus, because the well-posedness of the underlying system
is enforced, the maneuver automaton is well-posed by definition.

Accessibility

As the automaton is a hybrid of continuous and discrete systems, accessibility of the
automaton requires accessibility of the system projected on both the continuous and dis-
crete systems. The accessibility of the states on the discrete space H; depends solely
on the connectedness of the automaton. To characterize accessibility on the continu-
ous state, we must examine the evolution on the symmetry group H, paralleling the
development in [41].

Let us consider a fixed maneuver sequence j, for which the evolution of the system

is written as

Ynr = Qa(Y0), @i = Yo, O Popy 1 O 0 Yoy

As we are interested in motion on the continuous part of the maneuver space H,, let
us analyze the effects of perturbing the coasting times 7; and, in the case of Ah in an

5For a finite set of precomputed maneuvers, this can be easily enforced. In addition, maneuvers based
on the local planner of Chapter 3 also are guaranteed to be unique.
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infinite closed set, the symmetry group offset Ah. As this will not affect the discrete
state, we will describe the resulting change as follows:

Yng = Pa(75, 07, {0AR}, (4.12)

where ¢ is the projection of v onto H, and d7 as well as § Ak correspond to the sequence

of perturbations on the coasting times and symmetry group offsets. The parentheses
about 0 Ah denotes that this term is only applicable when Ah is in a set which is open lo-
cally about the origin in at least one dimension. Note that 7 € Zs,(7) = {07|V(7+dT) €
Z,} and 0Ah € Us(Ah, ¢, h) = {0AR|V(Ah+6AR) € U(L, h)}. The mapping P; is contin-
uous in each of its arguments because evolution on the trajectory primitives is continuous
with respect to time and the symmetry group. Additionally, P;(.,0,0) is a diffeomor-
phism, as it is simply a translation on H,. The relation (4.12) can thus be considered a
discrete time system. Note that, if P, is a fixed-point map, i.e., Pz(7¢,0,0) = ¢, then
the system is driftless. The reachable set on H. for this system under perturbations on
the maneuver sequence [z is then defined as:

Rl;lc(’)/(():; S tﬁnal) - {’)’C S ]H[c . ,yc — Pﬁ(fyg; 57—; {5Ah}); Z(ﬂ + T; + 67-1,) S tﬁnal} (413)

A first order test to see if R‘_‘HC has a non-empty interior would be to check if the rank
of the Jacobian of the system (4.12) is full:

0Py
o(0T,{0Ah})
where Ny, = dimH..

Note that, when A#h is in the closure of an open set (but not on the boundary) {and 7
is in the closure of an open interval (but not on the boundary)} 6, the Jacobian is always
full rank because the open set must be of full dimension. However, if this is not the case,
one could define a new sequence " by iterating the control sequence [ a sufficiently
large number of times N. Thus, one can get a version of the LARC for the maneuver

6This condition is only necessary when time is included as a state
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automaton (where perturbations on Ah are not possible or neglected):

Theorem 4.3.7 (Reachability-Frazzoli) The system (4.12) is (forward) accessible
(the reachable set has a non-empty interior) from all v¢ € H, f, for all > ;(T; + T +
07;) < tfna and some N >0, if ;, € intZ,;Ve=1...nr and

— (| OPa~ .
Lie ({ 65:’1 Vi = 1nT}> = NH-

Proof: As Py(.,0T,0Ah): H — H is a diffeomorphism, P; is a fixed-point map, i.e.,

is in equilibrium, AdunT...ulyi(m) = %Vi =1...np,and 071 € Zs,Vi = 1...nq,

the conditions for theorem 4.3.4 are satisfied and the system is (forward)
accessible. |

Controllability

Maneuver Automaton controllability is defined as follows:

Definition 4.3.8 (Controllability) A maneuver automaton is controllable if, given
any tnitial condition (1;, h;), and any compact setY C H, there ezists a time Tr such
that it is possible to find an admissible sequence of primitives steering the system
to any desired goal configuration (I5,hs), with hy € Y, in time t; < Tr.

From what we understand of the automaton projected onto the continuous and dis-
crete states, we can state necessary and sufficient conditions for automaton controllability:

Theorem 4.3.9 (Controllability-Frazzoli) The maneuver automaton is controllable
if and only if

(1) The directed graph of discrete states is strongly connected.

(1i) There exists a fized point maneuver sequence i such that
7¢ € intRE (76, < tnal)-

Proof: Proof follows from definition of controllability on discrete and continuous
systems as well as use of symmetry. For a complete proof, see [41]. ]
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Frazzoli [41] applied this to planar vehicles with no gravity and vehicles in three
dimensions with constant gravity, constraining Ah to a finite discrete set. For such
systems, he showed controllability on the maneuver automaton required no more or less
than two reference trajectories and two maneuvers (total) connecting them back and forth
from one another, provided that they can be combined to form a fixed point maneuver.
There is more flexibility when dealing with AA in an set with a nonempty interior.

Lemma 4.3.10 When a Ah; of a control sequence u s in the interior of its input
set and maneuvers can connect to equivalent reference trajectories, the maneuver
automaton 1s controllable on H with a single reference trajectory primitive if and
only if there exists a fized point maneuver (with respect to H) (775’ (7¢,0,0) = h,) that
can be created from 1it.

Proof: By assumption, a reference trajectory can always connect to an equivalent
trajectory through a single maneuver. If there exists a fixed point maneuver,
then, as any (pf is a simple group action and A#h; is in an open set by definition,
so the original point must also be within an open set. If the system is controllable
with a single reference trajectory primitive, then a fixed point maneuver must
exist by 4.3.9. [ ]

It then follows that other reference trajectories and maneuvers can be added without
altering the controllability of the automaton provided that the discrete graph represen-
tation of the system remains strongly connected. In the most trivial case, an equilibrium
point reference trajectory could provide controllability.

4.4 Optimal Control on the Maneuver Space

While the hybrid system lends itself to more computationally efficient solutions than the
corresponding continuous system, the cost of the maneuver automaton system lies in
the fact that a subset of motions are used to approximate the set of all feasible motions
admitted by the dynamical system. As a result, any optimal control on the maneuver
space is only an approximation of the true optimal control. This difference is bound by
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the maneuver library’s coverage of the space of all possible motions of the continuous
system.

To impose an optimal control on this hybrid system, one must first define the cost
functional to be minimized (maximized). This cost functional can be defined as

t
J= / "L (E(t), u(t), t) dt. (4.14)
to
For the maneuver automaton, this reduces to
np—1
J = z <JT[1'] + JMM) , (4..15)
=1

where the subscripts 7" and M denote reference trajectory and maneuver, respectively.
We have:

Ir = [ L(@u(6a(8), 1), u(t), ) - do

D= [T LOu&o®) 0 u(O) + wreps ) o

For L = 1, or a minimum time problem,

1 1
J%::-—T JM3: —72
n n

np—1

minJ =min Y (Jrp + Jugs)
2=1

np—1

= min > (%(T[i] +T[i])) .

This cost is invariant to all motion on the vehicle symmetry group excepting a time-
scaling symmetry, if it exists. In such a case, the symmetry action on the cost would be
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described as:
Y7 : (4 pn) = (p71J) -

Let us now address L = 4™ (t)Tu*(t), or minimum “energy” (control effort) problem,
where u* = K, (4(t) + wref(t)):

T 1
Jr :/ u,ef(a)TKfKuu,ef(a)Eda
0
T+T _ 7T _ 1
T = [ (@0) + tres (@) KTK(5(0) + Ures(0)) do
T+T T T 1 T+T . _ 1
_ / trey (0)" K Ktres (0) o +2 / tres (0) K K(0), do
T+T 1
+ min l / ﬁ(cr)TKfKuﬁ(cr)Eda] .

Assuming the maneuvers are defined as the minimum energy controls from Chapter 3,
4(t) = —BTA = =BT 52,51 ®x,(t) (o), thus

T+T T+T +oo
Ju = / Uref ()T Ky Kulres(t)dt + 2 / Ures ()T K Koy (—BT > <I>k,M(t)(Ao)> dt

k=1

+ min [ /T " (—BT Z:: @kixx(t)()\o)>T KTK, (—BT io <I>k,M(t)()\0)> dt] .

k=1

From (2.11), we know that

2
_ 7’ K'Im1 Xm1 Om1 xXm2 T
K,=T, 2 1 T,
mao Xmi 77 K mo Xmo
where T, is an orthogonal matrix. Thus,
KTK, = o1, |© T O | g
u U u 0 Im2 u
[ m 0
=n'T, | ™ TT + n*?T, | ™ TT
O ma Omz
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Thus, the cost can be divided such that

: 1
J= / " u(t)TKT K u(t)-dt
to 77

t 0 0 0
— 7’4/ ! u(t)TTu !
t

0

1 iy I 1
TTu(t)=dt + n*k? | w(@)T |T™ u(t)=dt
Tu(e) d+ o' [ ()| ®),

mao m2

:J1+J2

The “energy” cost is invariant to all motion on the vehicle symmetry group excepting
scaling symmetries, if they exist. In such a case, the symmetry action on the cost would
be described as:

Yy :(J =T+ Ja,0m00) = (01 + 030202) -

4.5 Computational Search Methodology

4.5.1 Obstacle-Free Dynamic Programming
The object of the computation is to minimize the cost functional for the Maneuver

Automaton, subject to specified initial and final conditions

MmN, npJng where Jy =0 (4.16)
Jet1 = Ja (Ve Vi) + Jr = (JT[i} + JM[i]) (Ye> V&) + Ji (4.17)

subject to

£k+1, hk—|—1
Vi1 = = 0V, Vx)
" {ekﬂ, Pt tett

eo, hO Zn’r: h’n'r'
Yo = Ynr =
£y, ho, to enrm hnT (tnT): tnT € I.f

Romin < hg < hpaxVk € {1...n7},
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where nr is unknown, Z; is a closed and bounded interval in Zg and ||Amin|| < 00, ||Amax <
oo||. The state transition relation ¢ is defined as in (4.2). Because of the bounds on A
and, when included as a state, ¢ (¢ > 0 by definition and ¢ < sup(Iy)), the projection
of the hybrid state onto the continuous space ¢ is limited to the compact set H C H..
Furthermore, let R, C H be the reachable set after k steps. Let R; then be the set
defined as U¥_,R; C H, the set of all reachable points in k or less steps. Note that, for a
finite number of steps, Rx can be shown to be compact by induction, as each set from a
given point has a compact reachable set and the initial condition is a single given point.
If the system is controllable over all H, then, when time is not a state, limy_,oo R = H.
Because each maneuver has a finite time with a lower bound € > 0, there exists a finite
integer km. for which R, = NULL Vk > kgpay and limg e Re = Ri,.,, Where Kpyay is
defined as the smallest integer for which Amax < tmax/€. Thus, Ry is compact for all
k €N, as is Rg.

Let J*(7y) be the optimal cost to reach the final condition (the cost-to-go) for the
initial condition v, i.e., the cost due to the optimal choice of reference trajectories and
maneuvers. It should be noted that, due to symmetry, transformation on H can allow this
function to be used for any final condition with the same final reference trajectory. By
Bellman'’s optimality principle, given an initial control v = (7, £next, Anezt), the following
relation must be satisfied:

J*(v) = man, (Jr + Ju + T (0.(7))) (4.18)

This is called Bellman’s equation. Thus, once the optimal cost function is known, the
optimal control v* can be computed by solving

vt = (T*) e:eztl h:.e:ct) = a‘lrgminll (JT + ‘]M + J*(SOV(’Y))) (419)

The full set of discrete controls can be found by simply iterating this procedure from
the initial conditions through each (£nezt, Anes:) to the final conditions without any prior
knowledge of the required number of maneuvers. We also can derive the optimal cost-
to-go through an iterative procedure, which can be seen to be monotonically decreasing
with J* and Bellman’s equation defining the final stationary point. As the number of

steps nr is unknown, we will set up the problem as an infinite horizon optimization:
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Jrpa(l k) = man, (Jr + Ju + Ji(0.(7))) (4.20)
Jim J; = J%,

where Jo(7) is an upper bound on J*(y) possibly derived from initial feasible trajectories
or J*(¢,h) = oo except at (y;) where J*(yf) = 0. Where the final condition is time-
dependent (i.e., a fixed final time or a condition changing with time), the cost-to-go can
be defined as a function of y and time ¢, where J*(y(¢s),t;) =0 for all t; € Z; C R and
I is the interval over which the final condition acts (Z; is a single point for fixed final
time problems).

To implement this dynamic programming routine, the continuous state space H, and
the continuous control space Z,{xU}" must be discretized, where U = Uyyeexh(7°).
For this purpose, we propose to represent H as a Ny -dimensional uniform grid and
T as a sequence of equally spaced points. For this development, we will focus on H
discretization, as the process for 7 is the same when Ny, = 1. Let there be N; nodes per
dimension {¢ = 1...Np_} resulting in Nyoy = Hfﬁi‘f N; nodes in the discretized space.
This space is then divided into HfV:]HIf(Ni — 1) Ny, -dimensional cells with 2V% nodes per
cell and the vector dy° defining the length of each “side” of the cell. Thus, the discretized
version of H, is expressed as

c 1 c Niot
Y1 71
a4 e Moo Vs V3
(717727""71\’ ): : 1 : ) (4'21)
e Ye

where the location within the cell can be described with respect to the nodes of the cell
11, %2, .. . .ovy, Dy the function

"Only applies when Ah is in a closed set which is open locally about the origin in at least one dimension.
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,)/C ZNHC
c 2 c cij
=17 =2 Sira)r™ (4.22)
: =1
Vi
’Y'rc'el = ,.yc - ’YZCbou'n,d - dfyc/2 (423)

The location within the cell is defined relative to the center of the cell and is denoted
by 7%,.;, while the lower bound on the coordinates of the cell are described by the vector
Yhouna- Lhe interpolation, or shape, functions S; are defined as

k .
Si(r) = [T (Veer = Yrad)ws (4.24)
p=1

where 'yffjl are the relative positions of each cell node and p is the index of the vector.
Based upon (4.22), the cost can be approximated by

oNHe .
F=Y 8i(0a) T
j=1

The optimal cost approximation is then found by setting the cost at all N,y x maz(H,)
points in H x H; to an upper bound and iterating (4.20), where, at every step, all
discretized controls in U(vy) are tried at every discretized point v € H x Hy. These
iterations are then carried out n7* times until the cost is sufficiently converged (j,*bgax).
Thus, we are now faced with an n7** stage problem, where the number of stages nr
required to reach the terminal condition are less than or equal to n7®*. The control
policy is then found as discussed previously.

4.5.2 Convergence of the Dynamic Program

Let J* be the linear interpolated approximation of J* on the continuous state space,
where [i* is the “optimal” control history (policy) on J* and p* is the optimal control
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history on J*. Let n,.q4.s is the number of nodes used to discretize the continuous state
space (in a uniformly distributed pattern). The property that lim, . . J* = J* and
lim, .., " = p* is referred to as consistency. Consistency is typically guaranteed if
there is a “sufficient amount of continuity” in the problem [12]. As this is a non-trivial
problem, let us restrict ourselves to the case where only a single reference trajectory
is used, i.e., £, = 1 Vk € 1...np. In this case, the discrete state can be ignored and
H = H,. (v = 7°). Extension of these results to multiple reference trajectories is left for
future publication. For the following development, let R, denote the reachable set of the

automaton at stage k.

Theorem 4.5.1 Given the system (4.16) restricted to only one reference trajectory
and defining an arbitrary mesh over the state space H and the continuous control
space I,{xU}®, where dy and dy are equal to the mazimum distances between any
two grid element nodes over all the grid elements in the discretized state and control
spaces, respectively. Furthermore, let J (7¢) be defined as a linear cost interpolation
on each grid element. Then, if the “energy” cost is used (minimum of the integral
of the dot product of the controls) and the control u = K,(urs + @) ts defined such
that u,.s 1s a continuous function of time only and

(1) U(7) is a finite set
or

(11) U(y) s Lipschitz continuous in a Hausdorff metric sense and compact for every

v € H and 4 is continuous in t and Lipschitz continuous Vv € U(7y), 7 € Re
for any np** € N, there ezists a constant a,z=x such that

('L) ‘J;:gax - j,n?ax
or

< Qpmaxdy

(i4) | Timox — Jupes

< an,_zn;‘ax(d’;‘-{, + dU) ;

respectiwvely, for all h € ’ﬁngax. Thus, as dy{and dy} — 0, fnqrgax('yc) — J,;:gax(’yc) and
fingax(7) = phnmax(7°).

80nly applies when Ah is in a closed set which is open locally about the origin in at least one dimension.
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Proof: The proof for this theorem is based upon the proof of convergence of the

truncation of the infinite horizon problem in [11]. For the sake of brevity, it will be
cited in this proof rather than reiterated. Once again, the system is stationary. In
this case, however, the discount factor of the cost functional is assumed to be one
and the stepwise interpolation scheme is replaced by a linear interpolation scheme
as described in previous sections. Following the reasoning in [11], the discount
factor in the cost functional is irrelevant to the results stated in the theorem.
Additionally, the linear interpolation scheme can be accommodated as follows:
Proposition 1 of [11] is mesh-independent and thus automatically applies. To
address Proposition 2 of [11] and the development in Section IV of [11], we need
to look at certain properties of the cost approximation. For every grid element, let
Jnmax(7°""") denote the maximal cost of each grid element and A" denote the
vertex at which it occurs. Likewise, let Jomex(7""") denote the minimal cost of
each grid element and ™" denote the vertex at which it occurs. Thus, at any
point h on the grid element:

) < jn%“(fyc) < jn%“(fydmax) (425)

and, providing assumptions A’ or B’ of [11] are satisfied, the following is also true:

Trmwe(¥) = Tog(v9)| € max [ Trea(7°) = T (1) (4.26)
’yc"' E{’YClmln ”YClmaX}

< Qpmedy (4.27)

T (1) = g ()| < max [T y(r9) — Tugena(r)| (4:28)
Yoyt Y

< (Angex_1 + Qpmex) dag (4.29)

‘j‘ngaxil(’)/c) — jn;laxil(’yc) S ' IE%X e jn‘ll'r_'laxil(’)/Ci) — jngaxil(’yc) (4.30)
ere{ye T e}

< Qpmex_1dy (4.31)

Note that the notations J and J are reversely defined in [11]. These relations
extend the corresponding development in Proposition 2 and Section IV of [11] to
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fit our system. The first equation replaces (40) in [11], while the second allows for
the equation following (41) to be satisfied. The third accommodates for the
relation in the equation preceding (43) of [11].

Thus, it only remains to show that assumptions A’ or B’ are satisfied. This is
relatively simple, as the compactness and continuity conditions on the input
spaces and reachable sets are satisfied by definition. Furthermore, (7, v) is
Lipschitz continuous for all v € Ry, v € U(y) by equation (4.2) and the reference
trajectory definition. Furthermore, Ja, is lipschitz continuous for all

v € Ry, v € U(7y) because the cost is defined as the time integral of the dot
product of the controls, where reference controls are continuous in time (by
definition) and independent of v and v, whereas the maneuver control is Lipschitz
continuous for all v € Ry, v € U(y) by assumption. Thus, by Proposition 2 and
Section IV of [11], conditions i) and ii) are satisfied respective to assumptions i)
and ii).

Note that this theorem does not prove convergence to the infinite stage problem.
Rather, it shows convergence to a truncation of the infinite stage problem. However,
if, for a given € > 0, one can choose n7** such that |J,’:¥ax — J%| < €, one can ensure
convergence to the optimal solution of the infinite stage problem.

Lemma 4.5.2 Given the same system and assumptions as in 4.5.1 with an upper
time bound of th.x- Then there exists a lower bound T, > 0 on the maneuver time

max

and a finite n7** = round,y(tmax/Te) for which J,’:;mx = J% over all points in Re.

Proof: As each maneuver has a fixed time length by definition and the time scaling
factor must be bounded away from zero because the available states on the
symmetry group are closed and bounded, the lower bound 7, > 0 on the
maneuver time must exist. Furthermore, any state requiring > round,p(tmax/7e)
stages would exceed %,., and thus be inadmissible. Thus,

Ry = NULL Vk > roundp(¢max/7Te) and J,*L;lax = JX over all points in

7?‘roundup(tmax/Te) = Roo [ |
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Corollary 4.5.3 Given that Fs 1s Lipschitz continuous in the continuous compo-
nents of v and v, base functions (if used) are continuous functions of time, and
a compact set of inputs U(y) (Lipschitz continuous in a Hausdorff metric sense)
15 defined such that Fs(y,v) € Bs(0)Vv € U(y),y € H, then the local planner in
Chapter 3 can be used to satisfy Theorem 4.5.1.

Proof: Only need to prove assumption ii) of the theorem is satisfied. The conditions
on the input set are satisfied by definition and also meet the convergence criterion
of the local planner. As u is a function of Zi.t by nested polynomial series, it is
a smooth function of Zyarget. AS Ttarget = Fs(v,v), & must be Lipschitz continuous
in the continuous components of y and v. Also, because A(t) is continuous in
time and the base functions (if used) are continuous in time, the control must be
continuous in time also. Thus, the assumptions of the theorem are satisfied. [ ]

4.5.3 Optimality of the Dynamic Program

As noted in the previous section, under certain assumptions, the solution to the dynamic
programming routine on the maneuver automaton converges to the optimal control pol-
icy on the maneuver automaton. This, however, leaves the question of how the optimal
control of the maneuver automaton approaches the true optimal for the full continuous
system. While a theoretical comparison between the two is beyond the scope of this dis-
sertation, there are good reasons to believe that the solution to the maneuver automaton
will converge to the true optimal under an increase in the density of reference trajectory
primitives. A study of a simple double integrator system was carried out by Frazzoli [41]
in which he showed this to be true.

4.6 Algorithm Description

The algorithm solving the overall motion planning problem using the aforementioned
approaches must be broken into two segments: preprocessing and online computation,
with the most time-consuming aspects addressed in the preprocessing.
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4.6.1 Preprocessing

Finding the Maneuver Data The maneuvers can be precomputed and stored into
memory and/or the necessary precalculations completed for an online planner. For
the local planner in Chapter 3, one must find the local planner equations (3.3) for

every reference trajectory and store them into memory.

Discretizing H Second, the symmetry set must be discretized (4.21) for calculation of
the optimal cost-to-go distribution.

Generate set of discrete inputs, v = (7, £yezt, AR) Third, a discrete set of inputs is
also needed to compute the dynamic programming routine. For precomputed tra-
jectories, this corresponds to a finite set of £,,..: and Ah for each reference trajectory.
When the set of possible inputs ¢(7) is an infinite compact set, one can discretize
the continuous portion in the fashion mentioned earlier. If the maneuvers can be
calculated online, one can also define an input v; controlling the system to the final
state when such an input falls within the set of possible inputs. This allows for
control precisely to a final condition even with a coarse grid. It is important to
note that the final state on the symmetry group can be defined arbitrarily in the
preprocessing, as the preprocessed inputs and cost distribution can be transformed
to meet the actual final states using the symmetry property.

Calculate J* distribution Fourth, calculate the optimal cost-to-go distribution as in
equation (4.20).

4.6.2 Online computation

Solve for discrete controls Given the final state, the set of inputs, and the optimal
cost-to-go distribution, Bellman’s optimality principle can once again be used to
find the set of optimal discrete inputs (4.19).

Solve for Continuous Controls Once the discrete controls have been found, the con-
tinuous controls are derived from the maneuver data compiled in preprocessing,
either through precomputed maneuver control profiles or an online planner’s re-
sult. For the local planner in Chapter 3, the transformation F; can be used to find
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the zg,. for each maneuver. This yields the information needed to calculate the
continuous controls from the local planner equations (3.3).

Simulation The discrete control segments can then be joined into a full control history,
whose performance can be shown using a simple ordinary differential equation in-

tegration routine.

4.7 Earth to Mars Transfer Example

The object of this exercise is to find a variable very low thrust transfer from Earth
to Mars. This is a translation-only problem with roational dynamics of the spacecraft
neglected. It should be noted that, as this is an orbital transfer problem, the final
condition is time dependent and time must be considered in the maneuver space. For
simplicity, we will assume that all motion will occur in the orbital plane.

Only a single reference trajectory primitive will be used, that of a circular orbit, and
the local planner from Chapter 3 is used to plan the maneuvers online. This structure
is significant in that this problem would only be solvable by Frazzoli’s automaton if
multiple circular orbits of fixed radius were defined and transfers between them had been
precalculated.

4.7.1 Mathematical Model

In this example we choose a mechanical control system modeling motion in a Newtonian
gravity field. The configuration manifold is defined as @ = R®, where we choose the
coordinate system g = [g1, 92, g3]” to have an origin at the point source of the three-
dimensional gravity well. The kinetic and potential energy are M(v,,v,) = mv]v,/2 and
V(q) = —mu/||q||2, where m is the mass of the vehicle and 4 = GM, the gravitational
constant G, multiplied by the mass of the attracting body M. Nonconservative forces such
as drag are neglected. The controls u = [uy, us, u3|” are defined to be nondimensionalized
control accelerations with the units (1/s?), where the matrix g(g,t) both defines the
control directions as well as the dimensionalizing factor. The equations of motion can
then be written as:
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;e Uq
- H - [—mq+g(q,t)u(t)} (4.32)

For the augmented system, n = \ﬂ,u,/a?’) corresponds to the mean motion of a Kep-
lerian elliptical orbit with semimajor axis a. The distance scaling factor k is equivalent
to the semimajor axis.

The symmetry group H is defined as SO(3) x R™ with an action that can be expressed

as
pRs 0O 1
¢h : (f,"?) = ( 1 f) _377> ) (4'33)
0 \/ERs|"V 02
where p, = == ¢ R is the ratio of the new radius 7ney = ||gnewl|2 to the old radius
Told = ||Qoidl|2 and Rs = RpewRE, € SO(3) is the rotation from one circular orbit and

orbital position to another (of equal radius).

This group can be represented using the coordinates [hy, ho, hs, ha]* where (hy, b, h3) =
(v,0,¢+ 3) are defined in terms of the 3 — 1 — 3 Euler angles (9,0, ¢ = ¢, + ¢;) and h4
is the semimajor axis of the orbit. It should be noted that these quantities correspond
to orbital elements (see Figure 4.4, ), as ¢, is the argument of periapsis, ¢; is the true
anomaly, 6 is the inclination, and 9 is the longitude of the ascending node.

Each conical reference trajectory can then be defined by a unique eccentricity. For
this example, the only class of reference trajectories are the set of all circular orbits (e
= 0), which happen to also be relative equilibria, thus £ = 0 for all time. The relation
between a position on the symmetry group for this reference trajectory and the vehicle’s
position in = is then:

_ 0 -
K,(h)R(hl, hg, h3) 1
emefr | W,
K(h)?](h)R(hl, hQ, hg) 0
0
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Figure 4.4: Orbital Elements
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where R(hi, hs, h3) is the rotation matrix corresponding to the Euler angles, x(h) = hq
and n(h) = \/% . With regards to the Euler angle representation of SO(3), it should be
noted that the only mappings required in the code were S! x S! x St — SO(3), and not
the inverse, thus avoiding singularity issues.

Rewriting the equations of motion relative to a circular orbit and using a series ex-
pansion as in Section 2.4.4, one gets a form of London’s equations [82],

T U1
) ()
dz.  d |z3| U3
5 B ﬂ U B 2y + 3T1Z5 + Uy
Uy —2v; + 3z, — 323 + 3(2? + 23) + u,
Vs I —Z3 + 3T2T3 + U3 |

which satisfies the linear controllability and quadratic expression required by the local
planner. Here, the z; direction is opposite of the orbital velocity vector, z, corresponds to
the radial vector, and z3 corresponds to the orbit normal direction. After some investiga-
tion, the convergence radius d of the local planner was found to be .2. The coasting time
7 and the maneuver time T' are implemented as nondimensionalized times, corresponding
to the mean angular anomaly.

The transformation £ = (z,v) = Fs(v,v) then can map the maneuver automaton
states and controls into these relative equations, where

Fs:(v,v) (”(h)ilRT(hpwp)(}-Z(hnezt) — Fa(hprop))s
K(h) BT (hprop) [(n(R) 7 Fu(Pneat) — Folhprop)) — Eag(Fallinest) — FolPiprop))] )

where e, is the unit vector in the z; direction, €,, represents the skew-symmetric op-
erator on the unit vector, Ay, = h + €, - (T + T') is the propagation on the symmetry
group due to motion on the reference trajectory, and hnept = hprop + Ah.
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4.7.2 Implementation

The algorithm was implemented in C++ on a 850 Mhz Pentium 3 computer running
Redhat Linux 7.2.° As previously mentioned, the continuous portion of H and U(vy)
must be discretized. As shown in Figure 4.5 and in Table 4.1, the continuous ”state”
space is approximated by 1800 nodes and the continuous input space is approximated by
130 possible nodes. Note that K,y = hy, /1.5 in Table 4.1.
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Figure 4.5: Grid representation of H.

H: U(y) :
NT - {0} enezt =0
hi =0 1 node Ah; =0 1 node
hy =0 1 node Ahy, =0 1 node

0< h3 <27 9 nodes | —.1- th < Ahg <.l- th 3 nodes
9<h, <16 8 nodes | —.1- Kpy < Ahy <.1-Kpy 3 nodes
+Ahs (when applicable) 1 node

0d<t<1374d 25 nodes 0<7<1.32 13 nodes

Table 4.1: Discretized Space

Note that one modification was made to the dynamic programming routine to com-
pensate for coarse grids. This modification involved using the final state input when

9This is excepting the derivation of the local planner equations, which are derived through a Maple
code and imported into the C++ implementation.
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available if the alternative is to get stuck at a point within a grid element’s spacing of
the final condition. When implemented correctly, this does not affect the convergence of
the dynamic program, but allows for feasible solutions (solutions with little final error)
to be found with a coarse grid.

4.7.3 Results

Preprocessing

The series calculation was completed to second order and took 210 seconds using Maple
5.4 under Windows ME on the aforementioned computer. The cost distribution was
calculated using the nominal final state hy = [0,0,7/2,1.5] at t = 0 and propagating
with time. The result is seen in Figure 4.6, which took 24 iterations in 9 hours to

compute.
2 2 2
8y
1 /ﬁ) 1 1
0 0 ) 0 j
1 \\/ 4 D) 1
_2 -2 -2
2 0 2 -2 0 2 -2 0 2
0*FinalTime 0.125*FinalTime 0.25*FinalTime
2 2 2

17 I

-1 1 K -1
ANT NN

-2 0 2 -2 0 2 -2 0 2
0.375*FinalTime 0.5*FinalTime 0.625*FinalTime
2 2 2
1 1 1
o 2 0 0
-1 -1 < -1
-2 -2 -2
-2 0 2 -2 0 2 -2 0 2
0.75*FinalTime 0.875*FinalTime 1*FinalTime

Figure 4.6: Optimal cost distribution.
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Online Calculations

The actual problem was set up as in Figure 4.7a, where Earth and Mars are in circular
coplanar orbits of radii 1 au and 1.5237 au, respectively. In this example, Mars leads
Earth initially by 7/2 and an upper bound of 626 days was put on the transfer. The
algorithm took 3.52 seconds to find a 5 step (5 circle-to-circle maneuver) solution, with
the coast times and final maneuver locations defined by the discrete controls in Table 4.2.
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Figure 4.7: Earth-to-Mars Setup and Final Trajectory

Step (k) Tk ek hneztkl hneztkz hneztks hne:ctM tk
0 n/a 0 0 0 0.918 1 n/a
1 0 0 0 0 1.818 1.10 0d
2 033 O 0 0 3.048 1.20 58 d
3 022 O 0 0 4.268 1.30 148d
4 0 0 0 0 5.368 1.41 241d
5 055 O 0 0 0.577 1.562 327d

Table 4.2: Discrete Steps

From a start point on the symmetry group of A = [0, 0,.918, 1|7, the discrete controls
direct a series of coasts and transitions to traverse 5.94 radians in 478 days to rendezvous
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with Mars. The solid line in Figure 4.7b shows the final trajectory with the position at
each step marked by a circle. The final error in position and velocity was only 0.9%.
As it can be seen that the discrete controls directly target the final position, the error
is entirely due to the truncation error in the local planner series expansion. If the series
were extended beyond second order, the error would be lessened. The total control
profile can be seen in Figure 4.8, where the coasting and maneuvering segments can be
clearly seen. These controls, corresponding to the acceleration due to thrust in the orbital
frame, are clearly very low thrust, as the acceleration of gravity at the Earth’s surface is
9.8 x 1073 km/s?, orders of magnitude higher than the actual control acceleration.

x107° Orbital-Referenced Controls : Cost/OptCost = 44.9693/5.6042 (km/s)

o

uorbit[1] (km/s?)
°

. . . . . . . . . )
0 50 100 150 200 250 300 350 400 450 500
x107° time (days)

uorbit[2] (km/s?)

I I I I I I I I I )
0 50 100 150 200 250 300 350 400 450 500
time (days)

0.5F

uorbit[3] (km/s?)
°

I I I I I I I I I )
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Figure 4.8: Earth-to-Mars control history in orbit-referenced frame// wu;: tangential
thrust, u,: radial thrust, u;: normal thrust

Comparison to Optimal Control

In Figure 4.7b another transfer can be seen as a dashed line. This transfer corresponds to a
locally optimal trajectory found by the optimization software Varitop [131, 93], developed
by the Jet Propulsion Laboratory. It can be seen, that, even when limited to circular
trajectories only and a rough input discretization, our algorithm provides a rough shape
approximation of the optimal route. Unfortunately, the same discretization and use of
circular orbits alone results in a suboptimal control cost of 45.0 km/s in comparison to 5.6
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km/s °. The Varitop control history, seen as the dashed line in Figure 4.8, attests to this,
showing a much smaller control magnitude. The discrepancy is due to two factors. First,
the input set in the dynamic programming routine used a very coarse mesh, limiting
the maneuvering options of the vehicle on the M A and impairing optimality as a result.
Second, the M A only used circular reference trajectories. Inclusion of other reference
trajectories could enable the M A to model a larger range of motions and thus allow for
an M A-optimal trajectory to better approximate an optimal solution on ¥. While the
computation time of the given Varitop solution was of the same order as that of our
algorithm, such run times are attainable only with a good guess of the initial values of
the costates. When this guess is poor, it is unlikely any solution will be found.

4.8 Conclusions

This chapter has greatly expanded on the framework of the maneuver automaton first
introduced by Frazzoli through use of reference trajectories rather than relative equilibria,
scaling symmetries, and time dependent final conditions. This new structure allows for
maneuvers with an infinite set of possible final conditions. When implementing this
new type of maneuver in the form of the online local planner of Chapter 3, we have
been able to, for the first time, provide an overall solution with convergence guarantees,
controllability with a single trajectory primitive, and feasible solutions with a coarser
grid. While applied to an orbital example, this technique has been generally formulated
to be applicable to a wide variety of systems, whether vehicular in nature or otherwise.

10The cost given corresponds to [ vuTudt
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chapterPlanning with Obstacles

4.9 Introduction

Planning a trajectory in an environment with obstacles has long been an interesting
research problem to roboticists and computer scientists, with a primary focus on kine-
matic motion problems [75]. These methods fall into two main categories, incremental
searching methods and roadmap methods, both of which find collision-free paths on the
configuration space (the configuration manifold modulo all points for which collisions
exist). Incremental searching methods perform an iterative search to try to connect the
initial configuration to the goal configuration. Examples of these include dynamic pro-
gramming, such as that introduced in Chapter 4 and potential field methods. Potential
field methods are based on an artificial potential field that provides and attraction to
the goal and repulsion from obstacles. The solution is then found by a gradient descent
through the field. This is a feedback control in the sense that the control is recomputed
in light of the state at every step in time, as compared to the open-loop formulations
most common in motion planning problems. The difficulty in this method lies in the
possible existence of local minima. One method for addressing this is to generate a
“random walk” to escape from such cases [9]. Another method is specifically defined a
potential function without local minima called a “navigation function,” but computing
such a function in the general case is as difficult as solving the motion planning prob-
lem for all initial conditions [111]. On the other hand, roadmap methods solve the path
planning problem by generating a graph of collision-free connecting paths spanning the
configuration space. These “roadmaps” can be created through cell decomposition [26],
Voronoi graphs [32], visibility graphs [84], and probabilistic methods [65]. The online
problem then reduces to a graph traversal along with planning on and off the roadmap.
These motion planning algorithms are evaluated in terms of completeness and computa-
tional complexity. An algorithm is said to be complete if it returns a valid solution to
the motion planning problem if and only if a feasible solution exists. Complexity is also
a major issue in path and motion planning. The “generalized mover’s problem” involv-
ing path planning for a 3-D linkage of polyhedral parts among polyhedral obstacles was
shown by Reif [110] to be PSPACE-hard, where PSPACE is the complexity class includ-
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ing decision problems for which answers can be found with resources, such as memory,
which are polynomial in the size of the input. His analysis provides evidence that any
complete planner will run in exponential time in the number of degrees of freedom. Since
then, Schwartz and Sharir [114] as well as Canny [26] have developed general purpose
path planning algorithms with execution time doubly and singly exponential in degrees
of freedom, respectively [75].

The high computational cost of these deterministic complete path planners has moti-
vated the development of randomized path planning algorithms that are probabilistically
complete, i.e., that the probability of finding a path from the initial to final conditions
converges to one if a feasible path exists. One successful example of this is the probabilis-
tic roadmap (PRM), which generates a graph based on random points in the configuration
space in an offline phase and plans motions locally to, from, and traversing the roadmap
online. Some disadvantages to this approach lay in the reliance of the method based upon
precalculation of the roadmap and the lack of ability of the basic roadmap to incorporate
system dynamics. These issues were addressed by the introduction of the rapidly explor-
ing random trees (RRTs) of LaValle and Kuffner [78, 79, 71]. The RRT grows a tree of
feasible trajectories from the initial condition, or root node. Each node, or waypoint, on
the tree has possible trajectories branching from it. The tree incrementally builds itself
in random directions, node by node, until the final condition is met (within accuracy
bounds).

Frazzoli [41, 44] demonstrated that the Maneuver Automation structure could be
used with randomized planners as well. By using the cost as a metric, modifying the
method of node choice in the expansion, and using a dynamic programming algorithm
for his base planner, he provided a means to address planning in the presence of both
static and dynamic obstacles. The structure of the planner developed in this dissertation
also has a great potential for use in a randomized scheme. This scheme is based on the
aforementioned RRTs and is the focus of this chapter. This chapter is organized such
that Section 2 discusses the RRT and its variations relating to the maneuver automaton
in detail as well as its convergence properties. Here, a new variation of the RRT utilizing
the maneuver automaton and addressing time dependent final conditions is presented.
Section 3 discusses error correction in the RRT and a novel way for dealing with errors
passed on from the lower-level obstacle-free planner on the maneuver automaton. The
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next two sections then provide an algorithm description detailing the way the code is
organized and an example solving for a spacecraft landing on the asteroid Ida.

4.10 Rapidly Exploring Random Trees

4.10.1 Background

The idea of this method is to incrementally build a tree of feasible trajectories to effi-
ciently explore a reachable space, where a tree is defined as follows:

Definition 4.10.1 (Tree) A tree is a directed graph with no cycles in which all nodes
have one incoming edge (excluding the root), originating from the parent, and an
arbitrary number of outgoing edges leading to child nodes.

The basic RRT algorithm [78] acts as described below, where Cz is the (obstacle-free)
configuration space of =.

(i) INITIALIZE tree root at the initial state £ € Cg
(ii) CHOOSE a random point &, in Cz toward which the tree will be expanded.

(iii) EXTEND the tree from the closest node (relative to a given metric) toward the
random point. The node added at the end of this step, if one is added at all, is a
mailestone.

(iv) REPEAT 1) and 41¢) until the final condition is met.
In its basic incarnation, EXTEND takes the following steps
(i) Pick the closest node Node, by a standard Euclidean distance metric.

(ii) Pick a constant input among several that takes the system closest to &, after a given

time (5t.

(iii) Propagate the system equations of motion by J; using the chosen input. If no
collision is found at the new point, add a new child node to the Node, with the
propagated state.
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This method is shown to be probabilistically complete as the number of milestones
goes to infinity. Figure 4.9 demonstrates how a single RRT for a simple holonomic 2-D
system can efficiently explore a space.
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Figure 4.9: RRT Exploration

A slight twist on the basic RRT [71] is the RRT-Connect algorithm, which is more
“greedy” by two modifications. First, it puts a bias on the random point generator
such that, for a given percentage of the time, it targets the final condition. Second, it
iterates step 412) of EXTEND, letting the child be the new Node,, until either a collision
occurs or the new child is further away from &, than Node,. This also is shown to be
probabilistically complete in the same manner.

We can now take this concept and apply it to motion planning using the maneuver
automaton structure defined in Chapter 4. Remember, from every point v € H, there
exists a reachable set ’an@az for which a control profile u exists that can control the
system from the state  to any state in R,me=(7y). Thus, for every { = F(vy) € F(H), the
p-reachable set is F(R,me=). Thus, given a set S C H x R, the u-reachable set of S is
R¥(S) = Uiety=F(1)esF (Rnpa=(7))- As the maneuver automaton represents a subset of

1 Figure courtesy of The RRT Page, http://msl.cs.uiuc.edu/rrt
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the feasible motions of the system, R#(S) C RFULL(S), where RFULL(S) is the reachable
set under the full set of feasible motions of the system. Thus, unless it can be established
that R#(S) = RFVLE(S), the RRT, when applied using x4 over the maneuver automaton
structure, can only be complete over R#(S).

Frazzoli’s approach [41, 44] addressed only time-independent final states. He replaced
the Euclidean metric with the cost-to-go to the random point &, and restricted &, &5, & €
R#(S) C F(H). The only other changes were to the EXTEND routine, which is given
below:

(i) Pick the closest node Node, by cost-to-go metric.

(ii) Get the appropriate x from the obstacle-free planner to control the system from
Node, to &,

(iii) Propagate the system equations of motion according to u, checking for collisions
along the way. If no collisions are found, add a new child node to the Node, with
the new final state.

(iv) If collision found, let Node, be the next closest node and repeat (Unless no nodes
left in tree). If no collision found and final condition not met, let Node, be the last
node added to the tree and &, = ; and repeat 4z) through 7v).

The process of cycling through the nodes is necessary to accommodate for obstacles
evolving with time when time is not part of the state. A completeness proof of this
approach is in [41]. Note that this method is “greedy” in that the original £, chosen
is forced to be ¢; and, from every successfully connected random point, the EXTEND
routine will automatically try to connect to &;.

4.10.2 A New Approach

In order to accommodate a time-dependent final condition, time must also be considered
a state in the RRT implementation. One advantage in doing this is that it alleviates the
need for cycling through the nodes in the tree to address time-varying obstacles. With
slight modification of the “greedy” steps, the proposed algorithm is as follows:
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(i) INITIALIZE tree root at the initial state &, € Czg
(ii) CHOOSE:

o 1st iteration - Let &, = &y, the goal state, propagating with time.

e After 1st iteration - a random (with a small Goal Bias) point &, in Cz toward
which the tree will be expanded.

(ili) EXTEND the tree from the closest node (relative to a given metric) toward the
random point. The node added at the end of this step, if one is added at all, is a

mazlestone.

(iv) REPEAT 1) and 41¢) until the final condition is met.

with the EXTEND routine
(i) Pick the closest node Node, by cost-to-go metric. Let Nodey = Nodey,.

(ii) Get the appropriate p from the obstacle-free planner to control the system from
Node, to &,

(iii) Propagate the system equations of motion according to x. Add a new child nodes
successively at given intervals along the path (provided they are on a reference
trajectory) until u complete or a collision found.

(iv) If no collision found and the final condition is not met:

(a) Let & = &y, propagating with time.

(b) Let Node, be the last descendant of Node 4 that has not been used for replan-
ning, if it exists, and repeat #2) through 7v). If it does not exist, end EXTEND

routine.

This procedure is reflected in steps a through f of Figure 4.10, where &, is the left
point, &; is the point at the right, and the rectangle is an obstacle. In the first step, the
algorithm tries to use the obstacle-free planner to connect to the final point. The tree is
then extended along this path as it is collision-checked. A collision is found, so a random
point is generated. The obstacle-free routine is then called again to connect the closest
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Figure 4.10: New RRT Variation

node to the random point. New nodes are added along this path as collision checking is
done. No obstacles were encountered, so EXTEND tried to connect to the final state.
No obstacles are in this path, so after the tree is extended along this path (step #:¢) of
EXTEND), the algorithm would terminate.

4.10.3 RRT Convergence

All of the aforementioned methods are probabilistically complete over the reachable space
of the embedded planner. The key differences in establishing this completeness lay in
the assumptions on the obstacles and the definition of the state. In the nominal RRT,
obstacles are assumed fixed in the state space, where the state space may or may not
include time. In both the variants incorporating the maneuver automaton, time-varying
obstacles are addressed, but Frazzoli’s version did not include time as a state whereas
the proposed variant does. This distinction is important, as , when time is included as
a state, the time-varying obstacles become fixed in the state space and the basic RRT
analysis applies. That analysis is the focus of this section. The lack of time as a state in
the Frazzoli planner [41, 44| necessitated cycling through all of the nodes in the tree as
well as a different analysis.

To show the proposed method’s convergence properties, we follow the analysis of the
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RRT in [78], where the proofs of Theorems 4.10.2 and 4.10.3 can be found. Assume no
two RRT milestones lie within a specified € > 0 of one another for the given metric (i.e.,
the cost-to-go) and the time between nodes is bounded away from zero. Suppose further
that (§o,%) and (5,t5) lie in the same connected component of a bounded, open, p-
dimensional connected component of a p-dimensional state space. In addition, stipulate
that there exists a sequence of obstacle-free controls w1, uo, - . . 4z, that, when applied to
(&0, t0), yield a sequence of states (&o,%0), (€1,t1), - - - (€ks1, ter1) = (€5, 5), all of which lie
in the same open connected component of the space. Under these assumptions, we can
state the following theorem regarding probabilistic completeness of the algorithm:

Theorem 4.10.2 The probability that the RRT initialized at (&,t0) and will con-
tain (&7,t7) as a node approaches one as the number of random point milestones'?

approaches infinity.

Let A = {Ao, 4y,..., A} be a sequence of subsets of F(#), referred to as an at-
traction sequence. Let Ay = {(£o,%)}. The remaining sets must be chosen with the
following rules. For each A; in A, there exists a basin B, C F(H) such that the following
hold:

(i) Forallz € A; 1,y € A;, and 2z € F(H)/B;, the metric, p, yields p(z,y) < p(z, 2).

(ii) For all z € B;, there exists an m such that the sequence of controls {u;, o, - .., te}
selected by the EXTEND routine will bring the state into A; C B;

(iif) Ax = {(&s,t5)}
Furthermore, let p be defined such that

_ min measure(A4;)
p=m measure(F(H) free))

where F(H)see is F(H) modulo any obstacles. This corresponds to a lower bound on the
probability that any particular state will fall in a particular A;. Given these definitions,
a criterion for exponential convergence in the number of random point milestones can be
established.

12Random point milestones are milestones for which ¢, was generated using a random point generator.
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Theorem 4.10.3 If an attraction sequence of length k exists, for a constant § €
(0,1], the probability that the RRT finds a path after n random point milestones is
at least 1 — e P%/2 in which § = 1 — k/(np).

4.11 Error Correction and the RRT

The framework of the RRT also allows for correction of errors from the underlying plan-
ning algorithm. For the initial incarnation of the RRT, a constant input was chosen from
a finite set and was highly unlikely to control the system to the intended final state. As
a result, the actual final state (as found by integrating the system under the input) is
that which is stored as the new node state rather than the targeted state. Thus, re-
planning from that node takes into account the error correction. For implementation
on the maneuver automaton, the characteristics of these errors become important, as
replanning can only occur from nodes on a reference trajectory. Thus, when integrating
along the trajectory, nodes would only be added to the tree where the state matched
the reference trajectory within an acceptable error. Figure 4.11 demonstrates how this
correction would work. In this figure, horizontal lines represent reference trajectories,
the dashed lines and x’s represent the planned trajectory and node locations, while the
solid lines and circles represent the actual trajectory and node locations. In the figure,
a trajectory is planned from node 0, with a new trajectory planned at node 1. There
is an error correction e between the planned trajectory and node 1. This error correc-
tion, when coupled with the last step of EXTEND, has an effect similar to a receding
horizon planner, causing that step to iterate until the final condition is reached or no
untried nodes are left. While this methodology is useful in practice (it was consistently
effective for the example in this chapter), it is not a complete error correction, as e is
only the projection of the total error onto the reference trajectory. Thus, there exists
an uncorrected component of the error that is propagated further. Further analysis is
needed to better understand the overall effectiveness of this method. Of course, other
methods of error mitigation exist as well. Frazzoli [44] addressed the issue by assuming
use of a feedback controller that forces the system to a reference trajectory, while error
due to the local planner as in Chapters 3 and 4 can be reduced by simply increasing the
terms in the series expansion.
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Figure 4.11: Error Correction

4.12 Algorithm description

The algorithm is implemented in a C++ object-oriented fashion using the motion strategy
library [77]. The overall structure is depicted in Figure 4.12, where the functionality is
broken into three major objects: the RRT-based planner, the underlying obstacle-free
planning algorithm, and the model class. Their descriptions are given below:

RRT-based planner

This is the highest level object and acts as the user interface. Given constraint geometry
as well as initial and final conditions, it outputs feasible trajectories and control profiles.
Using model information such as state transformations and constraints, it sends initial
and final conditions to the obstacle-free planning algorithm for solutions. Collision-
checking is done using the Proximity Query Package [125].

Obstacle-free planning algorithm

This object contains two algorithms, the dynamic programming routine for finding the
discrete-time controls and the root-finding method used to define the continuous-time
control inputs. The only portion of this object devoted to preprocessing calculates the
cost distribution.

Model class

Contains all information relating to the dynamics of the system as well as the state
transformations and symmetry actions. The local planner series, calculated in Maple
analytically, is stored here, as are the incremental cost functionals.
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Figure 4.12: Coding Structure

4.13 Asteroid Landing Example

4.13.1 Problem Set-up

The example chosen here is that of a spacecraft landing on the asteroid Ida. This example
is inspired by the February 12, 2001 landing of the NEAR-Shoemaker spacecraft on the
asteroid Eros and the Rosetta mission expected to land a craft on the comet Wirtanen in
2012. Ida is an S-class (stony or stony-iron) asteroid in the asteroid belt orbiting at 2.86
au from the sun. Discovered in 1884, it falls within the class of large asteroids, having a
mass of approximately 5 x 10'® kilograms, having dimensions of 60 x 25 x 19 kilometers
(comparable to the size of Cape Cod) and a rotational period of 4 hours, 38 minutes.
Ida is unique in that it is the only known asteroid to have a natural satellite (Dactyl,
discovered by the Galileo spacecraft in 1993). For the purpose of this example, we made
simplifying assumptions by geometrically modeling the asteroid as a 60 km long cylinder
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with radius 12 km and modeling the gravity as a Newtonian point source ** The setup
of the problem is seen in Figure 4.13, where the initial position of the spacecraft is 18
km above the surface of the asteroid with the final condition of “landing” at a point
just off the surface on the other side of the asteroid. Additionally, artificial constraints
are imposed to limit motion to between 19.1 and 38.3 km of the center of mass. The
goal is once again a minimum energy transfer, limiting the motion to Ida’s plane of
rotation and circular reference trajectories. Thus, the setup of the dynamics and the
transformations are equivalent to that in Section 4.7, modulo a different central body
mass. The discretization of the automaton space follows Table 4.3.

24 lam

pmmm——

-

Figure 4.13: Ida Landing Setup

Note that, rather than sample the reachable set R¥(S), which is computationally
impractical to define, sampling was done over F(H), where F(H)/R*(S) is comprised of
obstacles and unreachable space.

4.13.2 Results

The preprocessing was carried out as in Section 4.7, with the cost distribution (see
Figure 4.14 calculated in 24 iterations as before but in roughly twice the time due to

13This is not an accurate model of such an irregularly shaped object. Rather, it is a simplification
mirroring the example in Chapter 4. A more accurate model, once developed, could also be incorporated
by this chapter’s framework, albeit with a smaller symmetry group.
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Table 4.3: Ida Discretized Space
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Figure 4.14: Precalculated Approximate Cost

the larger grid. For the online calculation, an upper bound of 46 hours was placed on
the transfer time. From a start point at ¢ = [0,1.5,0, —0.8165, 0,0]”, where the units
are referenced to a circular orbit at 20 km, the randomized algorithm grows a tree as
seen in Figure 4.15, the result of 11 randomized planner iterations. The results of these

iterations are given in Tables 4.4 and 4.5 .

Not surprisingly, iteration 0 (the collision-free planner result) had a collision. While
6 of the random samples fell in the unreachable space, the others expanded the tree,
with the final state reached at iteration 11. The “Greedy Loops” column in the table
refers to the fact that the error correction mentioned in section 4.11 can cause a loop
in the EXTEND routine. This occurred in step 11, where the EXTEND algorithm
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Figure 4.15: Ida Random Tree and Final Path, static relative frame (left), inertial frame
with time variation (right)

looped an extra time to reach the final state. The overall solution was computed in 64.2
seconds, with the final path composed of 12 circle-to-circle maneuvers and a final state of
[—1.31,-0.60,0,0.34, —0.76] at 12.3 hours. This is an error of .03 percent in position and
.2 percent in velocity from the final condition. Snapshots of the trajectory are shown
in Figure 4.16. It can be seen that the spacecraft starts on an inner trajectory and
then switches to an outer trajectory and to let the asteroid rotate underneath it before
returning to an inner trajectory to reach its final destination.

The control history is shown in Figure 4.17. Note that this trajectory once again
corresponds to a very low thrust mission as the acceleration of gravity at the Earth’s
surface is 9.8 X 1073 km/s?.

Of course, this is a planner based on randomized methods, and, as such, every solution
to this algorithm will be slightly different with different run times. A batch of 50 runs of
the aforementioned example were completed and histograms of the randomized planner
iterations and run times are seen in Figure 4.18. The median run time was 95.9 s with
78% of the cases taking less than 200 s. The median number of randomized planner
iterations was 11, with 90% taking less than 40 iterations. Interestingly, the execution
time does not directly correspond to the number of iterations. This discrepancy is due
to the number of “greedy loops” executed. The case with the maximum run time took
79 iterations with a total of 74 greedy loops in 1484 seconds, while the next longest case
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Figure 4.16: Ida Results: Snapshots of Trajectory
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Figure 4.17: Ida Control History in Orbit-referenced Frame
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Iteration Start Start Final Point Upper time

point time (t=0) bound
0 [0,1.5,0,—0.82,0, 0] 0h [1.25, —0.72,0, 0.42, 0.72, 0] 14.8 h
1 [0,1.5,0,—0.82, 0, 0] Oh [0.94, —0.75, 00.57, 0.71, 0] 5.3h
2 [—1.60,—0.53,0,0.24, —0.73,0] 1.7h [—1.46,0.31,0,—0.17, —0.80, 0] 8.7h
3 [1.68,0.13,0,—0.06,0.77,0] 45h  [1.25,—0.72,0,0.42,0.72, 0] 148 h
4 [—1.34,0.86,0,—0.43, —0.67,0] .9h [-1.13,0.78,0,—0.48, —0.70,0] 43h
5 [0,1.5,0, —0.82,0, 0] Oh [0.76,0.77,0, —0.68, 0.68, 0] 3.8h
6 [—1.34,0.86,0,—0.43,—0.67,0] .9h [—1.78,0.45,0, —0.18, —0.72, 0] 114 h
7 [0,1.5,0,—0.82, 0, 0] Oh [-0.54,1.64,0,—0.72,—0.24,0] 8h
8 [—1.27,-0.74,0,0.42,—0.71,0] 1.7h [-1.19,0.51,0,—0.34, —0.81,0] 9.8 h
9 [—1.27,—0.74,0,0.42, —0.71,0] 1.7h [—0.49,—1.04,0,0.84, —0.40,0] 41h
10 [-1.01,-1.40,0,0.62,—0.45,0] 2.1h [—1.11,—1.48,0,0.594, —0.44, 0] 11.2 h
11 [—0.24,1.48,0,—0.81,—-0.13,0] .1h [-0.17,1.35,0,—0.85, —0.11,0] 10.8 h

Table 4.4: Randomized Planner Iterations: Initial and Target points

took 67 iterations in only 853 seconds because only 16 greedy loops were necessary. These
times should be viewed in the context that a single call to the obstacle-free planner took
roughly 3 seconds. In every case tested, the algorithm successfully found a solution.

4.14 Conclusion

This chapter presented a new variant of the RRT for use with a maneuver automaton-
based planner. By including time as a state it is able to accommodate time-varying
obstacles and final conditions. This method is shown to be probabilistically complete,
finding a solution with a probability of one as the number of iterations goes to infinity.
This method was then applied to the example of a spacecraft landing on the asteroid Ida,
for which analysis of a large batch or runs was completed. This method showed itself to
be reliable with typical run times of less than 3 minutes. While the randomized method
shown is not optimal, there exist methods to refine the tree to increase optimality [41].
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Collision
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Table 4.5: Randomized Planner Iterations: EXTEND Results
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Figure 4.18: Ida Histogram of 50 Cases
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Chapter 5
Conclusions

This thesis has presented a hierarchical global motion planning algorithm applicable to a
large class of systems that addresses some of the key challenges in motion planning. The
algorithm is complete in environments both cluttered and uncluttered with fixed and
moving obstacles. It also provides for local control of systems when linearly controllable
as well as global control. Gains in speed and computational efficiency are obtained
through the hybrid system representation of the dynamics and the use of power series in
local planning. Efficiency with regards to cost was obtained through optimization on the
maneuver automaton. Finally, a dynamic environment was addressed by incorporating

moving targets and obstacles.

5.1 Summary

Chapter 2 introduced the framework of mechanical control systems and some of the key
properties enabling this motion planning framework to operate effectively. In particular,
the concepts of symmetry, trajectory primitives, and reference trajectories were intro-
duced. We then showed how the dynamics of various vehicle systems could be cast into
these concepts.

Chapter 3 provided one of the key developments of this dissertation, presenting novel
local complete planning algorithms based on power series. These algorithms provide
guaranteed solutions for motion locally about reference trajectories. Variants included
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series-based solutions to the minimum energy problem as well as feasible solutions using
base functions. Convergence and performance of this method are presented using an
academic one dimensional example and a PVTOL (Planar Vertical Takeoff and Landing)
aircraft example.

Chapter 4 introduces a method for providing obstacle-free global motion planning,
which included the other primary developments of this thesis. The computational com-
plexity of the full dynamical system is avoided by limiting system evolution to motion
along trajectory primitives. This framework, the Maneuver Automaton, is extended from
its original incarnation [41] to include new scaling symmetries in time and time-dependent
final conditions. In addition, the primitives used in the automaton have also been gener-
alized, as motion now is allowed along reference trajectories (solutions to the differential
equations of motion with certain other properties) and transitions which may or may not
be predefined. When these transitions are defined using the local planner in Chapter 3,
other useful properties of the planner can be shown. This includes controllability with
a single reference trajectory, proof of convergence for that case, and the opportunity
to obtain feasible solutions with a coarse grid by targeting the final condition. These
properties were shown in an Earth to Mars orbital transfer example.

Chapter 5 introduces a randomized algorithm to address time-varying obstacles and
time-dependent final conditions. As in [41] a variant of the Rapidly-Exploring Random
Tree is proposed. This variant differs from that version, however, in its accommodation
of time-dependent final conditions. This capability is included by adding time as a
state, resulting in a simpler overall algorithm. Other elements introduced in this chapter
are some greedy steps in the routine as well as an error correction scheme. The entire
algorithm is then applied to the problem of landing a spacecraft on the asteroid Ida.

5.2 Future Directions

5.2.1 Addressing safety and real-time issues

In order for this work to be extended for use in an online vehicle guidance and con-
trol system, the issues of real-time computation [128] and safety [24, 25, 95] must be
addressed. Frazzoli [41] has laid down groundwork in which the maneuver automaton

110



can be implemented to address safety and real-time issues. Speeding the computation of
solutions without losing reliability is another challenge for which approaches other than
dynamic programming must be investigated.

5.2.2 Expansion of Series-Based Planning

Other opportunities are available through further development of the series-based plan-
ning of Chapter 3. One way the usefulness of this method can be extended is by allowing
for nonzero initial conditions. Another is in the investigation of the higher order terms
in the series expansions. If a “nilpotency”-type condition can be established in which
the higher order terms disappear, this planning method would become globally valid.

5.2.3 Optimal Primitive Choice

As mentioned in [41], choice of the best primitives to use in motion planning via the
Maneuver Automaton is an open question. In our expanded version of the Automaton
the number of these choices is drastically increased. This is through the use of reference
trajectories over relative equilibria and the ability to use preprocessed maneuvers, those
computed through an online local planner, or some combination of the two. The overall
goal is to maximize the speed and flexibility of the planner while minimizing cost.

5.2.4 Optimal Trajectory Generation

Rather than sacrificing the benefits in complexity of using an automaton with few prim-
itives, one could simply be content to find a “satisfactory” feasible solution. A method
could then be developed to turn this feasible solution into an initial guess for an opti-
mization routine. For instance, the feasible solution could be segmented and cast via

collocation [53] into a nonlinear programming problem.

5.2.5 Incorporation of Sensors into Open Loop Control

One drawback to this development is that it is entirely open loop. The system dynamics
are assumed to be completely known as are the geometry and motions of all obstacles
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as well as other bounds on the state and velocity. While even under these assumptions
the problem has not been simple, the motivating applications of this effort do not meet
those assumptions. Therefore, sensor feedback is critical, and incorporating sensors in a
more effective way than trajectory tracking feedback is an area of particular interest.

Replanning with new state estimates This is an extension of the error correction in
Section 4.11 in which the updated state estimates are derived from sensor data
rather than a forward integration of an accurate model. This approach is then akin
to that of receding horizon control, also known as model predictive control. One key
aspect of this problem is to provide stability and convergence guarantees [91, 94].
This approach has been applied to hybrid systems previously in [1] and also has been
applied to the obstacle avoidance problem in a potential field-based method [100].
These developments provide some of the groundwork necessary to include receding
horizon control into the control framework presented in this thesis.

Sensor-Based Motion Planning This is the problem of motion planning in unknown
or only partially known environments. Thus, as sensor data updates the model of
the environment, the motion planning algorithm must adapt. Attempts to solve
this problem have included potential field methods [112, 69, 120], wall-following
BUG algorithms [86, 85, 117], or roadmap methods [33, 34]. Unfortunately, these
algorithms have difficulties addressing dynamics, 3-D environments, and conver-
gence guarantees. As the random tree method presented in this thesis inherently
addresses dynamic and 3-D environments, it provides an attractive alternative to
aforementioned approaches. In using the random tree, choices must be made about
which branches to explore without knowing if the environment beyond the sensor
range will allow for a feasible motion [126]. The issue then expands to not only
including sensor updates into the motion planning problem, but also providing
guarantees of completeness of the algorithm.

Sensor-Dependent Goals/Final Conditions This algorithm was able to address time-
dependent final conditions. However, the objective of many systems may not be
time-dependent, but, rather, sensor dependent. The role of autonomous vehicles
is, more often than not, as a sensor platform. In these cases, the final condition or
goal of the motion planning algorithm should correspond to the goal of the sensing
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mission. This goal may change depending upon the sensor data, which may reveal
new priorities and targets as the algorithm is executed. Examples of this include
exploration [4, 3], pursuit [72, 36], data-gathering [7], and changing priorities to
follow “targets of opportunity.”

5.2.6 Multiple Vehicle Coordination and Cooperation

As mentioned in the introduction, this is one of the motivating applications of this work.
The structure presented in this thesis provides the basis for investigation of multiple
vehicle collaborations as well. The Maneuver Automaton is constructed around symme-
tries, and there exist discrete symmetries [92, 105] among multiple vehicles that can be
utilized. Reference trajectories can then be defined about individual vehicle motions in
formations or periodically evolving swarming motion, that, when combined via discrete
symmetries, allows for group formations and swarming to be defined and maintained.
Developing decentralized online maneuvers to transition into and out of these formations
or swarms would allow for decentralized multiple vehicle coordination and cooperation
as well as changes to the number and configuration of vehicles. A key challenge in this
is in efficient collaboration, where individual vehicles may act in a non-optimal way to
obtain an optimal result for the entire group [56, 104, 27].

113



Bibliography

1]

W. P. M. H. Heemels A. Bemporad and B. DeSchutter. On hybrid systems and
closed-loop mpc systems. IEEE Transactions on Automatic Control, 47(5):863—
869, 2002.

R. Abraham, J. E. Marsden, and T. S. Ratiu. Manifolds, Tensor Analysis, and
Applications, volume 75 of AMS. Springer Verlag, New York, NY, second edition,
1988.

S. Albers and M. Henzinger. Exploring unknown environments. SIAM Journal of
Computing, 29(4):1164-1188, 2000.

S. Albers, K. Kursawe, and S. Schuierer. Exploring unknown environments with
obstacles. Algorithmica, 32:123-143, 2002.

E. G. Al'brekht. On the optimal stabilization of nonlinear systems. PMM - Journal
of Applied Mathematics and Mechanics, 25:1254-1266, 1961.

M. Hofbaur J. How J. Kennell J. Loy R. Ragno J. Stedl B. Williams, P. Kim
and A. Walcott. Model-based reactive programming of cooperative vehicles for
Mars exploration. In Proceedings of the International Symposium on Artificial

Intelligence, Robotics, and Automation in Space, St-Hubert, Canada, June 2001.

R. Bachmayer and N. E. Leonard. Vehicle networks for gradient descent in a
sampled environment. In JEEE Conf. on Decision and Control, pages 112-117,
Las Vegas, NV, December 2002.

114



[8] A. Banaszuk and J. Hauser. Approximate feedback linearization: A homotopy
operator approach. SIAM Journal on Control and Optimization, 34(5):15633-
1554, 1996.

[9] J. Barraquand and J-C. Latombe. Robot motion planning: A distributed repre-
sentation approach. International Journal of Robotics Research, 10(6):628—649,
1991.

[10] P. Berman. Online Algorithms: the State of the Art, chapter On-line searching
and navigation, pages 232-241. Springer-Verlag, 1998.

[11] D. Bertsekas. Convergence of discretization procedures in dynamic programming.
IEEE Transactions on Automatic Control, 20(6):415-419, June 1975.

[12] D. Bertsekas. Dynamic Programming and Optimal Control, volume 1. Athena
Scientific, Belmont, Massachusetts, 1995.

[13] A. Bicchi, A. Marigo, and B. Piccoli. Quantized control systems and discrete
nonholonomy. In IFAC Workshop on Lagrangian and Hamailtonian Methods
for Nonlinear Control, pages 19-26, March 2000.

[14] A. Bicchi, A. Marigo, and B. Piccoli. On the reachability of quantized control
systems. IEEE Transactions on Automatic Control, 47(4):546—63, 2002.

[15] P. E. Black. www.nist.gov/dads, 2003.

[16] R. W. Brockett. Control theory and singular Riemannian geometry. In P. Hilton
and G. Young, editors, New Directions in Applied Mathematics, pages 11-27,
New York, NY, 1982. Springer Verlag.

[17] R. W. Brockett. Asymptotic stability and feedback stabilization. In R. W. Brockett,
R. S. Millman, and H. J. Sussmann, editors, Geometric Control Theory, pages
181-191, Boston, MA, 1983. Birkhauser.

(18] A. E. Bryson and Y.-C. Ho. Applied Optimal Control: Optimization, Estima-
tion, and Control. Taylor & Francis, Bristol, PA, 1981.

115



[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

F. Bullo. Exponential stabilization of relative equilibria for mechanical systems
with symmetries. In Mathematical Theory of Networks and Systems, pages
987-990, Padova, Italy, July 1998.

F'. Bullo. Stabilization of relative equilibria for underactuated systems on Rieman-
nian manifolds. JFAC Automatica, 36(12):1819-1834, 2000.

F. Bullo. Series expansions for analytic systems linear in controls. IFAC Auto-
matica, 38(9):1425-1432, 2002.

F. Bullo and K. M. Lynch. Kinematic controllability and decoupled trajectory
planning for underactuated mechanical systems. In JEEE Int. Conf. on Robotics
and Automation, pages 3300-3307, Seoul, Korea, April 2001.

G. J. Pappas C. Tomlin and S. Sastry. Conflict resolution in air traffic manage-
ment: A study in multi-agent hybrid systems. IJEEE Transactions on Automatic
Control, 43(4):509-521, April 1998.

I. Mitchell C. Tomlin and R. Ghosh. Safety verification of conflict resolution maneu-
vers. IEEE Transactions on Intelligent Transportation Systems, 2(2):110-120,
June 2001.

J. Lygeros C. Tomlin and S. Sastry. Synthesizing controllers for nonlinear hybrid
systems. In T. Henzinger and S. Sastry, editors, Hybrid Systems: Computation
and Control I, Lecture Notes in Computer Science, pages 360—-373. Springer Verlag,
1998.

J. F. Canny. The Complezity of Robot Motion Planning. MIT Press, Cambridge,
MA, 1988.

C. G. Cassandras and W. Li. A receding horizon approach for solving some cooper-
ative control problems. In Proceedings of the 41st IEEE Conference on Decision
and Control, pages 3760-3765, Las Vegas, Nevada, December 2002.

W. T. Cerven and F. Bullo. Constructive controllability algorithms for motion plan-
ning and optimization. IEEE Transactions on Automatic Control, 48(4):575—
589, 2003.

116



[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

W. T. Cerven and V. L. Coverstone-Carroll. Optimal reorientation of multibody
spacecraft through joint motion using averaging theory. AIAA Journal of Guid-
ance, Control, and Dynamaics, 24(4):788-795, 2001.

B. Char et al. Maple V Library Reference Manual. Springer Verlag, 1991.

C.-T. Chen. Linear System Theory and Design. Holt, Rinehart, and Winston,
New York, NY, 1984.

H. Choset and J. Burdick. Sensor-based exploration: the hierarchical generalized
voronoi graph. International Journal of Robotics Research, 19(2):96-126, 2000.

H. Choset and J. Burdick. Sensor based motion planning: The hierarchical gener-
alized voronoi graph. International Journal of Robotics Research, 19(2):96-125,
2000.

H. Choset and D. Kortkenkamp. Path planning and control for aercam, a free-flying
inspection robot in space. ASCE Journal of Aerospace Engineering, 12:74-81,
1999.

V. Coverstone-Carroll. Near-optimal low-thrust trajectories via micro-genetic al-
gorithms. AIAA Journal of Guidance, Control, and Dynamics, 20(1):196-198,
1996.

I. Suzuki D. Crass and M. Yamashita. Searching for a mobile intruder in a cor-
ridor - the open edge variant of the polygon search problem. Int’l Journal of
Computational Geometry and Applications, 5(4):397-412, 1995.

Narsingh Deo. Graph Theory with Applications to Engineering and Computer
Science. Prentice Hall, Inc., 1974.

J. Dugundji. Topology. Allyn and Bacon, Boston, Massachusetts, 1966.

C. Fernandes, L. Gurvits, and Z. Li. Near optimal nonholonomic motion planning
for a system of coupled rigid bodies. IEEE Transactions on Automatic Control,
39(3):450-463, 1994.

117



[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]
48]

[49]

M. Fliess, J. Lévine, P. Martin, and P. Rouchon. Flatness and defect of non-linear
systems: Introductory theory and examples. International Journal of Control,
61(6):1327-1361, 1995.

E. Frazzoli. Robust Hybrid Control for Autonomous Vehicle Motion Planning.
PhD thesis, MIT, Cambridge, MA, June 2001.

E. Frazzoli, M. A. Dahleh, and E. Feron. Robust hybrid control for autonomous
vehicle motion planning. In JEEE Conf. on Decision and Control, pages 821-826,
Sydney, Australia, December 2000.

E. Frazzoli, M. A. Dahleh, and E. Feron. Maneuver-based motion planning for
nonlinear systems with symmetries. JEEE Transactions on Automatic Control,
2003. To be submitted.

E. Frazzoli, M. A. Daleh, and E. Feron. Real-time motion planning for agile
autonomous vehicles. AIAA Journal of Guidance, Control, and Dynamics,
25(1):116—129, 2002.

V. Prudkoglyad V. Semenchenko K. Yolkin G. Uspensky, V. Lukiashchenko and
V. Kozlov. The unmanned multi-functional free-flying spacecraft for microgravity
researches, serviced during periodic docking with the international space station.
In Proceedings of the 52nd International Astronautical Congress, Toulouse,
France, October 2001.

Gerardo Laferriere George Pappas and Shankar Sastry. Hierarchically consistent
control systems. IEEE Transactions on Automatic Control, 45(6):1144-1160,
June 2000.

D. T. Greenwood. Principles of Dynamaics. Prentice Hall, 1988.
D. T. Greenwood. Classical Dynamaics. Dover, 1997.

T. Komaki H. Noborio, I. Yamamoto. Sensor-based path-planning algorithms for
a nonholonomic mobile robot. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 917-924, 2000.

118



[60] A.Halme. Polynomial operators for nonlinear systems analysis. Acta Polytechnica
Scandinavica, Ma24:7-63, 1972.

[61] A. Halme and J. Orava. Generalized polynomial operators for nonlinear systems
analysis. IEEE Transactions on Automatic Control, 17(2):226-8, 1972.

[62] R. P. Hamalainen and A. Halme. A solution of nonlinear TPBVP’s occurring in
optimal control. JFAC Automatica, 12(5):403-15, 1976.

[63] C. R. Hargraves and S. W. Paris. Direct trajectory optimization using nonlinear
programming and collocation. AIAA Journal of Guidance, Control, and Dy-
namaics, 10(4):338-342, 1987.

[64] J. E. Hauser, S. S. Sastry, and G. Meyer. Nonlinear control design for slightly
nonminimum phase systems: application to V/STOL aircraft. JFAC Automatica,
28(4):665-679, 1992.

[65] Michael T. Heath. Scientific Computing: an Introductory Survey. McGraw-Hill,
New York, 2 edition, 2002.

[66] Y. Ho and K. Chu. Team decision theory and information structures in optimal con-
trol problems - part 1. IEEE Transactions on Automatic Control, AC-17(1):15—
22, 1972.

[67] J. Hu, M. Prandini, and S. S. Sastry. Optimal maneuver for multiple aircraft conflict
resolution: A braid point of view. In JEEE Conf. on Decision and Control, pages
4164-4170, Sydney, Australia, December 2000.

[68] C. Tomlin J. Lygeros and S. Sastry. Controllers for reachability specifications for
hybrid systems. Automatica, 35(3):349-370, 1999.

[69] S. Sastry J. Lygeros, K. H. Johansson and M. Egerstedt. On the existence of
executions of hybrid automata. In Proceedings of the 38th IEEE Conference on
Decision and Control, volume 3, pages 2249-2254, Phoenix, Arizona, December
1999.

119



[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

D. King L. Gregoris J. Middleton, H. Jones and J-C Piedboeuf. Innovative space
servicing concepts. In Proceedings of the 52nd International Astronautical
Congress, Toulouse, France, October 2001.

O. Jae-Hyuk and E. Feron. Safety certification of air traffic conflict resolution algo-
rithms involving more than two aircraft. In JEEE American Control Conference,
pages 2807-11, Philadelphia, PA, June 1998.

B. Jakubczyk and E. D. Sontag. Controllability of nonlinear discrete-time systems:
A lie algebraic approach. SIAM J. Control and Optimization, 28(1):1-33, 1990.

W. Kang and A. J. Krener. Extended quadratic controller form and dynamic
state feedback linearization of nonlinear systems. SIAM Journal on Control and
Optimization, 30(6):1319-1337, 1992.

T. Karatas and F. Bullo. Randomized searches and nonlinear programming in
trajectory planning. In IEEE Conf. on Decision and Control, pages 5032-5037,
Orlando, FL, December 2001.

L. E. Kavraki, P. Svestka, J. C. Latombe, and M. H. Overmars. Probabilistic
roadmaps for path planning in high-dimensional space. IEEE Transactions on
Robotics and Automation, 12(4):566-580, 1996.

M. Kawski. Nonlinear control and combinatorics of words. In B. Jakubczyk and
W. Respondek, editors, Geometry of Feedback and Optimal Control, pages 305—
346. Dekker, New York, NY, 1998.

J. A. Kechichian. Optimal low-thrust transfer using variable bounded thrust. Acta
Astronautica, 36(7):357-365, 1995.

H. K. Khalil. Nonlinear Systems. Prentice Hall, Englewood Cliffs, NJ, second
edition, 1995.

K. Konolige. A gradient method for realtime robot control. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems.

120



[70]

[71]

[72]

73]

[74]

[75]

[76]

[77]

78]

[79]

A. J. Krener. The construction of optimal linear and nonlinear regulators. In
A. Isidori and T. J. Tarn, editors, Systems, Models and Feedback: Theory and
Applications, pages 301-322. Birkhauser, Boston, MA, 1992.

J. J. Kuffner and S. M. LaValle. RRT-Connect: An efficient approach to single-
query path planning. In JEEE Int. Conf. on Robotics and Automation, pages
995-1001, San Francisco, CA, April 2000.

S.M. LaValle D. Lin L. J. Guibas, J.-C. Latombe and R. Motwani. Visibility-
based pursuit-evasion in a polygonal environment. Int’l Journal of Computational
Geometry and Applications, 9(5):471-494, 1999.

E. Morales L. Rommero and E. Sucar. An exploration and navigation approach for
indoor mobile robotics. In Proceedings of the IEEE International Conference
on Robotics and Automation, pages 3092-3806, 2001.

P. A. Laplante, editor. D:ictionary of Computer Science, Engineering, and
Technology. CRC Press, 2001.

J.-C. Latombe. Motion planning: A journey of robots, molecules, digital actors, and
other artifacts. International Journal of Robotics Research, 18(11):1119-1128,
1999.

K. Lau, M. Colavita, G. Blackwood, R. Linfield, M. Shao, and D. Gallagher. The
new millennium formation flying optical interferometer. In ATAA Conf. on Guid-
ance, Navigation and Control, pages 650-656, 1997.

S. M. Lavalle. Motion strategy library. http://msl.cs.uiuc.edu/msl/, 1 2003.

S. M. LaValle and J. J. Kuffner. Rapidly-exploring random trees: Progress and
prospects. In Workshop on Algorithmic Foundations of Robotics, pages 293—
308, Dartmouth, NH, March 2000.

S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning. International
Journal of Robotics Research, 20(5):378-400, 2001.

121



[80]

[81]

82]

[83]

[84]

[85]

[86]

[87]

88]

[89]

D. Lawden. Optimal transfers between coplanar elliptical orbits. ATAA Journal
of Guidance, Control, and Dynamaics, 15(3):788-791, 1991.

N. E. Leonard and P. S. Krishnaprasad. Motion control of drift-free, left-invariant
systems on Lie groups. IEEE Transactions on Automatic Control, 40(9):15639-
1554, 1995.

H. S. London. Second approximation to the solution of the rendezvous equation.
AIAA Journal, pages 1691-1693, July 1963.

A. Loukianov and Vadim Utkin. Time-varying linear system decompozed control.
In Proceedings of the American Control Conference, pages 2884—2888, Philadel-
phia, Pennsylvania, June 1998. IEEE.

T. Lozano-Perez and M. Wesley. An algorithm for planning collision-free paths
among polyhedral obstacles. Communications of the ACM, 22(10):560-570, 1979.

V. J. Lumelsky and T. Skewis. Incorporating range sensing in the robot navigation
function. JEEE Transactions on Systems, Man, and Cybernetics, 20(5):1058-
1069, 1990.

Vladimir J. Lumelsky and Alexander A. Stepanov. Path-planning strategies for
a point mobile automaton moving amidst unknown obstacles of arbitrary shape.
Algorithmaca, 2:403-430, 1987.

V. Manikonda, P. S. Krishnaprasad, and J. Hendler. Languages, behaviors, hy-
brid architectures and motion control. In J. Baillieul and J. C. Willems, editors,
Mathematical Control Theory. Springer Verlag, New York, NY, 1998.

A. Marigo and A. Bicchi. Steering driftless nonholonomic systems by control
quanta. In IEEE Conf. on Decision and Control, pages 4164-9, Tampa, FL,
December 1998.

J. BE. Marsden, R. Montgomery, and T. S. Ratiu. Reduction, symmetry and phases
in mechanics. Mem. Amer. Math. Soc., 436, 1990.

122



[90]

[91]

[92]

(93]

[94]

[95]

[96]

[97]

(98]

[99]

P. Martin, S. Devasia, and B. Paden. A different look at output tracking: Control
of a VTOL aircraft. IFAC Automatica, 32(1):101-107, 1996.

D. Q. Mayne and H. Michalska. Receding horizon control of nonlinear systems.
IEEFE Transactions on Automatic Control, 35(7):814-824, 1990.

M. Brett McMickell and B. Goodwine. Reduction and nonlinear controllability
of symmetric distributed robotic systems with drift. In Proceedings of the 2002
IEEE Int’l Conference on Robotics and Automation, pages 3454-3460, Wash-
ington, DC, May 2002.

W. Melbourne and C. Sauer. Optimum thrust programs for power-limited propul-
sion systems. Technical Report 32-118, Jet Propulsion Laboratory, Pasadena, CA,
1961.

H. Michalska and D. Q. Mayne. Robust receding horizon control of constrained
nonlinear systems. IEEE Transactions on Automatic Control, 38(11):1623-1633,
1993.

I. Mitchell and C. Tomlin. Level set methods for computation in hybrid systems.
In B. Krogh and N. Lynch, editors, Hybrid Systems: Computation and Control
IIT, Lecture Notes in Computer Science, pages 310-323. Springer Verlag, 2000.

R. M. Murray, M. Rathinam, and W. Sluis. Differential flatness of mechanical con-
trol systems: A catalog of prototype systems. In ASME International Mechanical
Engineering Congress and Ezposition, San Francisco, CA, November 1995.

R. M. Murray and S. S. Sastry. Nonholonomic motion planning: Steering using
sinusoids. IEEE Transactions on Automatic Control, 38(5):700-726, 1993.

W. Xunzhang G. Seet M. Lau N. Ying, L. Eicher. Real-time 3d path planning
for sensor-based underwater robotics vehicles in unknown environment. Oceans
Conference Record (IEEE), 3:2051-2058, 2000.

C. L. Navasca and A. J. Krener. Solution of Hamilton-Jacobi-Bellman equations.
In IEEE Conf. on Decision and Control, pages 570-574, Sydney, Australia, De-
cember 2000.

123



[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

P. Ogren and N. E. Leonard. A convergent dynamic window approach to obstacle
avoidance. IEEE Transactions on Robotics and Automation, 2003. Submitted.

P. Olver. Equivalence, Invariants, and Symmetry. Cambridge University Press,
1995.

J. Orava and A. Halme. Inversion of generalized power series representations. Jour-
nal of Mathematical Analysis and Applications, 45:136-141, 1974.

J. P. Ostrowski. Steering for a class of dynamic nonholonomic systems. IEEE
Transactions on Automatic Control, 45(8):1492-1497, 2000.

M. Pachter P. Chandler and S. Rasmussen. Uav cooperative control. In Proceedings
of American Control Conference, pages 50-55, Arlington, VA, 2001.

E. Fiorelli P. Ogren and N. Leonard. Formations with a mission: Stable coordina-
tion of vehicle group maneuvers. In Proceedings of the Symposium on Mathe-
matical Theory of Networks and Systems, August 2002.

W.H. Press, W.T. Vetterling, S.A. Teukolsky, and B.P. Flannery. Numerical
Recipes in C. Cambridge University Press, New York, NY, 1992.

J. E. Prussing and R. S. Clifton. Optimal multiple-impulse satellite evasive ma-
neuvers. AIAA Journal of Guidance, Control, and Dynamics, 17(3):599-606,
1994.

J. E. Prussing and B. A. Conway. Orbital Mechanics. Oxford University Press,
Inc., New York, 1993.

Q. P. Chu R. Bennis and J. A. Mulder. Adaptive fuzzy control by reinforcement
learning for rendezvoux and docking. In Proceedings of the 52nd International
Astronautical Congress, Toulouse, France, October 2001.

J. H. Reif. Complexity of the mover’s problem and generalizations. In IEEE
Symposium on Foundations of Computer Science (FOCS), pages 421-427, 1979.

E. Rimon and D. E. Koditschek. Exact robot navigation using artificial potential
functions. IJEEE Transactions on Robotics and Automation, 8(5):501-518, 1992.

124



[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

E. Rimon and D. E. Koditschek. Exact robot navigation using artificial potential
functions. IEEE Transactions on Robotics and Automation, 8(5):501-518, 1992.

W. A. Scheel and B. A. Conway. Optimization of very-low-thrust, many-revolution
spacecraft trajectories. AIAA Journal of Guidance, Control, and Dynamics,
17(6):1185-1192, November-December 1994.

J. T. Schwartz and M. Sharir. On the 'piano movers’ problem: Ii. general techniques
for computing topological properties of real algebraic manifolds. Advances in
Applied Mathematics, 4:298-351, 1983.

H. Seywald. Trajectory optimization based on differential inclusion. AIAA Journal
of Guidance, Control, and Dynamics, 17(3):480-487, 1994.

Z. Shiller. Motion planning for mars rover. In Proc. First Workshop on Robot
Motion and Control, Kiekrz, Poland, June 1999.

A. Shkel and V. Lumelsky. The jogger’s problem : Control of dynamics in real-time
motion planning. Automatica, 33(7):1219-1233, July 1997.

Ye. Ya. Smirnov. Some mathematical theory control problems. Leningrad Uni-
versity Press, 1982. in Russian.

E. D. Sontag. Mathematical Control Theory: Deterministic Finite Dimensional
Systems, volume 6 of TTAM. Springer Verlag, New York, NY, second edition, 1998.

S. Sundar and Z. Shiller. Optimal obstacle avoidance based on the hamilton-jacobi-
bellman equation. IEEE Transactions on Automatic Control, 13(2):305-310,
April 1997.

H. J. Sussmann. A general theorem on local controllability. SIAM Journal on
Control and Optimization, 25(1):158-194, 1987.

H. J. Sussmann. New differential geometric methods in nonholonomic path finding.
In A. Isidori and T. J. Tarn, editors, Systems, Models, and Feedback: Theory
and Applications, pages 365—-384. Birkhauser, Boston, MA, 1992.

125



[123] C. Taylor and D. Kriegman. Algorithmic Foundations of Robotics, chapter Vison-
Based Motion Planning and Exploration Algorithms for Mobile Robots, pages 69—
83. A. K. Peters Ltd., 1995.

[124] C. Tomlin, G. J. Pappas, and S. S. Sastry. Conflict resolution for air traffic manage-
ment: a study in multiagent hybrid systems. IEEE Transactions on Automatic
Control, 43(4):509-21, 1998.

[125] Physically-Based Simulation UNC Research Group on Modeling and Applications.
Proximity query package. http://www.cs.unc.edu/ geom/SSV/, 1 2003.

[126] C. Urmson. Locally randomized kinodynamic motion planning
for robots in extreme terrain. http://www-2.cs.cmu.edu/ curm-
son/Research/ThesisProposalUrmson.pdf, May 2002.

[127] A. J. van der Schaft and B. M. Maschke. On the Hamiltonian formulation of
nonholonomic mechanical systems. Reports in Mathematical Physics, 34(2):225—
233, 1994.

[128] M. J. van Nieuwstadt and R. M. Murray. Real time trajectory generation for
differentially flat systems. In JFAC World Congress, June 1996.

[129] F. W. Warner. Foundations of Differential Manifolds and Lie Groups. Springer-
Verlag, 1983.

[130] H. S. Wilf. Generatingfunctionology. Academic Press, New York, NY, second
edition, 1994.

[131] S. Williams. An introduction to the use of varitop, a general purpose low-
thrust trajectory optimaization program. Jet Propulsion Laboratory, Pasadena,
CA, January 1994.

[132] B. Williams Y. Gawdiak, J. Bradshaw and H. Thomas. R2d2 in a softball: the
portable satellite assistant. In Proceedings of the International Conference on

Intelligent User Interfaces, pages 125—-128, New Orleans, Louisiana, 2000.

126



[133] H. Zhang and J. P. Ostrowski. Control algorithms using affine connections on
principal fiber bundles. In IFAC Workshop on Lagrangian and Hamiltonian
Methods for Nonlinear Control, pages 129-34, Princeton, NJ, March 2000.

127



Appendix A

Local planner supplementary

development and proofs

A.1 Minimum energy planning with base functions

Section 3.3 presents a motion planning algorithm using base functions and a minimum
energy planning algorithm that requires no base functions. This appendix presents a
third algorithm that solves the minimum energy planning problem using base functions.

Consider the following design problem: find a control input « : [0,T] — R™ that

solves

T
min [ flu(t)|Bdt
0
subject to & = A(t)z + f%(z,z) + Bu
:12(0) = O, :IZ(T) = :I:target.

Using the series expansion characterization in Section 3.2.2, the problem becomes finding
a control input u : [0, T'] — R™ that solves

T
minimize / [u(t)||2dt
0

“+oo
subject t0  Tiarget = » . Zk(T).
k=1

128



Using the base functions {¢;(¢) : © € {1,...,m}} introduced in Section 3.3.1, the design
problem is to find a vector ¢ € R™ that solves

minimize ||c||} = ¢Qc
+oo

subject 10 Tiarget = Y Pi(c, ..., ),
k=1

where we define the symmetric positive definite matrix @) according to

Qi = /0 i) () dt.

Next, we introduce the Lagrange multiplier A € R™ and write the Hamiltonian as

1 T
H(c,A) = Ec’Qc + X (—:z:target + Z ®i(c, ..., c)) .

k=1

Since the tensors {®;, k € N} are symmetric, the necessary conditions for optimality are

“+o00
Tiarget — Z ék (C, ceey C)
k=1

“+o00
0=Qc+ > k®i(c,...,c)A
k—1 S——

k—1 times

In the second equation the tensor &, is contracted with (k — 1) arguments and it is
therefore an (n x m) matrix. The first equation has n components, while the second
equation has m components. Rewriting the previous conditions in vector format, the
design problem is to find a vector (¢, A) € R™*™ such that

@k(C, ceey C)
Ttarget — él 0 c + éz(C, C) + +Z°° k times . (Al)
0 Q % | 28,(c)A| =5 |k®k(c,...,c)'A
———

k—1 times

As in Section 3.3, this trajectory optimization setting is cast as an inverse function
problem.
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A.2 Solution of polynomial system as series expansion

We prove here Lemma 3.2.1.

Proof: The proof is a direct extension of the treatment in [21]. We present here
only the convergence proof as the derivation of the formal expansion is
straightforward. We start with the bounds

171|200 < ([ (2, 0)2o| 2o + |1 (2, 0)||2,|| Bull o, = (1/2)d1
k—1 k—1

Tkl o < I1ZE Ol 1 F PNl Do 1Zill ool Trmillce = (1/2)d2 D 11%ill oo l|Toill oo -

Provided d;d, < 1, and assuming ||z||z., < crd*d5 ™,

k
1Zet1ll2o < (1/2)d2 D 11%4]] £ool | Tt 13| £oo
=1

k
<(1/2)d2 Y cickrai—ids M ds Tt = cpadi NS

i=1
d = = ko1 10X k gk
[z = hllew < D0 lzallee < 30 adidy™ = a > cedids
k=1 k=K+1 k=K+1 2 k=K+1
1
S d_ RemainderK(C)(dldQ).
2
Thus, Lemma 3.2.1 is true by induction. ]

A.3 Convergence of iterative algorithm

We start with some preliminary results. Let Symm(-) be the symmetrization operator [50]
defined as

1 ok - k k
Symm(F)(ys, 92, 9) = 77 > (-D)" Lz ®)F (Zaiyi,---,zaiyi)-
Y ai,.,ar€{0,1} =1 =1
(A.2)
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Lemma A.3.1 Let F' be a tensor, i.e., a multi-linear map, from k copies of R*
to R*. For all y1,y> € R* we have

k—1

F(y21" '7y2) - F(yh .- 'Jyl) = Zsymm(F)(yQ — Y, y21" 'Jyziyli .- -;yl)- (A3)

7=0 s

k—1—j times j times

Proof: Consider the following chain of equalities

k—1
Zsymm(F)(yZ — Y, y27"'7y27y11-"1y1) —

7=0

k—1—j times 7 times

k—1
Z Symm(F)(y2) ey Y2, Y1, - -:yl) - Symm(F)(y2) ey Y2,Y1, .. -:yl)
j=0 ~

k—7 times 7 t‘i'mes kflff times j+1 times
k—1 k
= z Symm(F)(y2’ e Y2, Yty yl) - Z Symm(F)(y2’ e Y2, Y1y yl)
3=0 i=1 .

k—7 times 7 times k—1 times 1 times

= Symm(F)(yZJ"wyZJle'"Jyl) 0 - Symm(F)(y27'"7y2;y11"'1y1) .
j= ~ -

k—j times 7 times k—1 times 1 times =k
:Symm(F)(y217y2)_Symm(F)(y1:)yl) :F(y2x---;y2)—F(yl;---;%)-
S——— S———— S———— S————
k times k times k times k times
|

Lemma A.3.2 For n € [0,1], the remainder of the Catalan function C(n) = 1 —

/1 —n satisfies

2
Remainder; (1 —4/1 —77) =(1—-4/1=-7m)— g < %

Proof: Let n € [0,1]. The following chain of inequalities holds

3.1 1, 3, 1, 1,
— 4+ In+- -+ InP+ - 1-n)<(1-
Tt <0 = —waonm+on+(1-n)<(1-n)

1 1 .,\? 1 1
= (1—577—5"72> <(1-7n) = (1—577—5772>§\/1—77
1
= 1—4/1-9-2n<
n 277_

.

N =
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We are finally ready to prove Theorem 3.4.10, that we restate for convenience.

Theorem A.3.3 Let z = 2||fT||ooD1D2||Ztarget||oo- If

(Dl }
DI’ (4 Dl ]

z<min{

there exists a unique x* belonging to the set S and satisfying x* = M(x*). Further-
more, the unique solution can be computed by iterating the map M starting from
any watial condition in S.

Proof: We prove the theorem in three steps. We show first that the series converges
for any input in S, then that S is invariant under the map M, and finally that M
is a contraction over S.

First, note that y = fx implies |[Y||oo < |/ ||col|X]loo> @and x € S implies

|X||oo < 2||Ttarget||o- Hence we compose the bounds to obtain D;Ds||y||e <

D1D2||f{’||°°||X||oo S D1D2||ff||oo2||mtarget||oo =z < 1-— 7(1(_?311]?{'77;2)2 S 1, which
guarantees series convergence according to Lemma 3.4.1 and establishes that the

contraction bounds are more conservative than the series bounds.

Second, we show that if x € S, then M(x) also belongs to S, i.e.,
[|M(X) — Trarget||oo < ||Ttarget||co- We compute

+oo
IM(X) — Trargetl|oo = || D FlFEx0 -5 FEX)loo = IF(FTX) = F1(FTX)|]oo
k=2
_ Di Remainder, (C)(D: Dy | f2x]l).

2

From the bound in Lemma A.3.2

(D1.Da|| f£xlo)”
2D,

1 .
= oo Remainder; (C)(D;1Ds|| fx||oo) <
2

_ DDyl _
- 2D, 2D2
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From the second bound on z we have

2

z
[M(X) = Zrarget[loo <

< 2—Dz = Z(DlefHoonxtargeth) < ||$target||oo-

Finally, we show that [[M(x2) — M(X1)|l < pl[X2 — X1l/co, Where 0 < p < 1.
Applying the equality (A.3) from Lemma A.3.1:

||M(X2) - M(Xl)Hoo (A-4)
+oo k—1
k=2 7=0 k—l—;( times 7 tTmes
Ry k k—1—7 /
<303 (i symm(f)lleoll 2115 locall o lle = Xalloo)
k=2 3j=0
g, k ak—1 k—1
< x2 = xalloo Y 2= (I Symm(fic) ool | £]15 25~ | easget 15
k:2j:0
—+oo
< lxz = xalloo > (k25| Symm( fi) ool 1[5 || Bracgetl ) - (A.5)
k=2

We now upper bound || Symm(fi)||e for & > 1

1 Symm(fi)lleo < (61)712%(| felloo < 277%2%| filloo = 2| filloo-

Plugging the bound on f; from Lemma 3.4.1 into equation (A.5), we obtain

“+o00
[M(x2) = M(x1)lloo < llx2 = Xilloo Y (k2 ci DEDE M| FFII%, || Zrarget 155
k=2
k = k—1
< lIx2 = x1lloo 2D1 I 7115 S (Kexz" ™).
k=2

The power series (Z,j;"l’ kakz’“_l) is the derivative of the generating function C
(note the initial index), and can be shown to be convergent for z < 1. Using these
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facts, we can write

1
IM0c) = M0 < e = e Dl 21 (s =1 = s =

where we set p = D, || fF||%, ( \/11: - 1). A few algebraic equalities based on last
bound on z prove the bound p < 1. In summary, the map M is well-defined and
is a contraction over the set S. The statement in the theorem follows from an
application of the contraction mapping theorem. [ ]

A.4 Convergence of power series inversion

We start with some useful facts about a series.

Lemma A.4.1 Let B € R,, consider the series of positive numbers

k
a, =1, ax=08> >  ay---a,, (A.6)
Mm=2 i1+ tim=k
11, im <k
and define its generating function h(n) = X125 axn®. The following results hold:

(1) h(n) = (1 +n—/1-2(1+28)n+n?)/(28+2),

(ii) the function h is defined real, or in other words, the series Y125 arn® converges
absolutely, provided 0 <n < (4(8+ 1))}, and

(#1) the series ¢; = 0, ¢ = BYF o Y uttim—k @™ i, - -+ Ci,., can be bounded as
’il ) ,im<k
cr < 6Faklay.
We refer to [21] for the proof of most results in the lemma. Next, we prove Theorem 3.4.11.

Proof: We start by showing A, < A;. First, we have

1 1 1
> 4(Dy[| fflloo + DI FllooD1Dz 2| fF]loe D1D2 \ (D]l Flloo + 1)

1 1
<
= 2[[ffllee D1 D> <D1||ff||oo>
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and furthermore

1 1
Ay <
’ 2||ff||ooD1Dz<(D1||ff||oo+1)>

i e Y
2 lwD:D: \Dil| o + D) \' " il oo + 1)

< 1 <1+2D1||ff||oo)< 1 (1_ (Du[If7 ] e0)? >
2/ lleeD1D2 \ (1 + D1l lle0)? )~ 201 T llec D1 D2 (14 Dl ff]le0)?

As seen in the proof of Theorem 3.4.10, when ||z

rarget |00 < A1, f is analytic (i.e.,
its series converges). Knowing this, we prove that the series defining the inverse
function g in equation (3.17) converges uniformly in a neighborhood of Zarget.

From the Theorem 3.4.11, one can see that

k
191lleo0 = 17 Moo, Ngrlloo <llgilleo D= D [Ifmllooligislloo - [1in loo-

i1, im <k

Plugging in the bound on || f;,||« from Lemma 3.4.1, we have

k
198l < 191l > D> (cmDTDF™) llgislloo -« 1ire oo

m=2 i1._|_..._|_.1jm:k
11y 1""m.<k

k
<(Dillfitlleo) o >0 (D1D2)™ H Igislloo -+ [1illoo

M=2 41 +-+im=k
21, 17'm<k

where we used the bound c; < 1, for all k > 1. Let 8 = D1||f; *||c0, define the
series {ax € R, k € N} as in equation (A.6), and following induction from the last
statement above:

1981l < [ £ 56 (D1D2)* " as.
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In summary, we have

+oo

||g($target)||oo S || Z gk(mtarget; R} m1:arge1;)||o<>
k=1

+o00 .
-1
< m k;lak (”fl ||°°D1D2||$target||oo) ,

and, by Lemma A.4.1, convergence is ensured provided

4(D:| f1 Yoo 4+ V|| 1 |looD1Dal|Tsarget || o < 1.

Next, we prove that g is the inverse of f. The following proof is borrowed
from [51] and we report it here for completeness. Evaluating the following

expression,

7 (0@)) — 9(@) = £ (F - £) (0(@)) = £ S i (f TS g>

k=2 i1=1 ie—=1
foo  too T
=0 > @ 9) =0 f10 D> fm (G Gin)
k=241, ip=1 k—2 i1t im—k
21, ,2m <k
+oo
=Y g = fi'(z) — g(x).
k=2
Therefore, f;* (f (4(z))) = f*(z), and (f (4())) = z. .

A.5 Local Planner Control Bounds

The control generated by the local planner in chapter 3 (in conjunction with the iterative
contraction algorithm) has an inherent upper bound dependent upon the desired state

of the system z Mathematically, this derives from the series definition and the

target -
nature of the contraction algorithm itself. The contraction method works when the
Property |[X|loo < 2[|Tyuee oo i satisfied, where the variable x is related to the parameter
Yo by ¥o = fi'x. Let % be the control history of the local planner, which is then, in
turn, related to the parameter by the function (%) : yo — 4. Let us now define (%)

such that, for the motion planning problem with control inputs, y(t) = %(¢), whereas
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v(t) = —BT®,,(t) for the minimum energy planning problem. Note that &, (t) is defined
such that ®,(t)(¥) = Zre & aa(t)(¥, - -,y). When the overall control is defined as
in (2.12), the control vector component relating to the local planner is expressed as
(BU)1ocal planner = BK,@. In that context, the bound on the control vector’s local planner

component evaluates to

|(BU)10cal planner|| £ < 2||BKu7(t)(ffl)||£w||$target||oo- (A.7)
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