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Abstract

Modeling and Analysis of Social Network Dynamics:

Propagation, Learning and Structural Balance
by

Wenjun Mei

Network is a natural physical model of social systems and an important tool to under-
stand various dynamical phenomena in human groups and societies. Network dynamics
is a powerful theoretical approach to study how local interactions among individuals lead
to certain macroscopic phenomena, and the role of network structure in such dynamical
processes. In this thesis, we model and analyze the following two aspects of social net-
work dynamics: dynamics on networks and dynamics of networks. The former means
the evolution of individual states via social interactions, while the latter refers to the
evolution of the social relations themselves.

Regarding the dynamics on social networks, we focus on the modeling and analysis
of network propagation processes. Firstly, we review a class of deterministic nonlinear
models for the propagation of infectious diseases over contact networks. For each model
setting, we provide a comprehensive nonlinear analysis including both known and novel
results. Secondly, we propose a class of stochastic propagation models for multiple com-
peting products over a social network, and study their mean-field approximations. Two
types of games based on the mean-field competitive propagation models are proposed and
the quality-seeding trade-off is investigated. Finally, we apply the general idea of social
influence to an engineering sensors system and study the sequential decision aggregation
with social pressure.

For the dynamics of social networks, we study the evolution of the interpersonal

x1



appraisal networks and its emergent collective behavior. Firstly, we proposes models
of learning processes in teams of individuals collectively executing a sequence of tasks.
The closely-related proposed models have increasing complexity, starting with a central-
ized assignment and learning model, and finishing with a social model of interpersonal
appraisal, assignment, learning and influence. Theoretical analysis shows how rational
optimal behavior arises along the task sequence, while conditions of suboptimality are
investigated numerically. Secondly, we propose two discrete-time dynamical systems that
explain how an appraisal network evolves towards social balance from an initially unbal-

anced configuration via homophily and influence mechanisms respectively.

xii
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General Introduction

Overview of research on social networks

Network is a natural model of the inner structure and mutual interactions in social
systems, and a powerful tool to characterizes and understand various dynamical phe-
nomena in human groups and societies. A network is a structure made up of a set of
nodes and their mutual connections. There are three basic elements in a network: nodes,
nodal states, and network links. Individuals or social entities (collectively referred to as
individuals in the rest of this thesis unless specified) are modeled as nodes on the social
networks, while the nodal states characterize certain individual states or attributes of
interest. Individuals on social networks are connected via social links, which define the
type and strength of certain social relations or interactions. In social networks, local in-
teractions among individuals via various types of mutual connections often result in rich
and complicated global phenomena, such as the consensus of opinions, the propagation
of diseases or innovations, the formation of fractions, and the evolution of individuals
social powers. Network dynamics is a powerful theoretical framework to study how the
microscopic and local interactions among individuals lead to the emergence of certain
macroscopic behavior, and to investigate the role of network structure in such dynamical
processes.

On account of the recent progress in multi-agent systems, network science, and data
mining, the last decades have witnessed a rapid development of the research on social

networks, spanning the following topics:

(i. static theory: the global structures, statistical properties and nodal attributes of
social networks, e.g., the network diameter, the clustering feature, the degree dis-

tribution, the nodal centrality measure, and the detection of communities;

XV



ii. dynamics on social networks: dynamical processes occurring on social networks,
ii. dy i ial networks: dy ical p ing ial network
which can be equivalently interpreted as the evolution of individual states, e.g.,

propagation and information aggregation, averaging systems, network flows;

(iii. dynamics of social networks: the evolution of social network themselves, i.e., the
dynamics of the nodes interconnections. Examples are the co-evolution of inter-
personal influence and appraisals, the emergence of structural balance in social

networks, and the network formation games.

Preliminaries: algebraic graph theory

This thesis focuses on the modeling and analysis of dynamical processes both on and
of social networks, collectively referred to as social network dynamics. In this subsection,
we briefly introduce the algebraic graph theory as the mathematical formalization of
social networks. Notations frequently used in this thesis are listed in Table [0.1}

In algebraic graph theory, networks are modeled as graphs. In the rest of this thesis,
we consider these two terms as interchangeable. A graph is a triple G(V, E, A). Here
set V' denotes the set of nodes and V' = {1,...,n} for any network of n nodes. Let
E € V x V be the set of links defined as follows: (i,7) € E if and only if there exists a
link in the network from node i to node j. A link from node i to itself is referred to as a
self loop. Graphs in which the links are all undirected can be considered as the graphs in
which all the links are directed but bilateral. Therefore, in this thesis, we assume all the
network links to be directed, unless specified. The third element of the triple (V, E, A) is
a matrix A = (aij)nxn, referred to as the adjacency matriz associated with the graph G.
Usually A is assumed to be entry-wise nonnegative. For any i,j € V, a;; > 0if (4, j) € E,
and a;; = 0 if (i,7) ¢ E. In the meanwhile, the magnitude of a;; represents the weight
of the directed link (3, j).

A path from node iy to node 4; with length [ is an ordered sequence of distinct nodes

xXvi



Table 0.1: Notations frequently used in this thesis

> (< resp.

)
(< resp.)
)
1n><m ( nxm resp)

R’n
R

entry-wise greater than (less than resp.)

entry-wise no less than (no greater than resp.)

n-dimension column vector with all entries equal to 1 (0 resp.)

n x m matrix with all entries equal to 1 (0 resp.)

set of natural numbers, i.e., {0,1,2,3,...}

n-dimension Euclidean space

the magnitude of complex number A

the n-simplex {y e R"|y'1, = 1,y = 0,,}

the relative interior of the n-simplex, ie., int(A,) = {y €
R*| "1, =1,y = 0,}

the spectral radius of matrix A, ie, p(A) =
max{|A|| A is an eigenvalue of A}

the left dominant eigenvector of the non-negative and irreducible
matrix A, i.e., the entry-wise positive left eigenvector associated
with the eigenvalue equal to As spectral radius and satisfying
Vleft (A)Tln

the directed and weighted graph associated with the adjacency ma-
trix A € R™*".

xvil



{ig, i1, ...,4} in which (ix,igy1) € E for any k € {0,...,1 — 1}. A graph has a globally
reachable node if there exists a node 7 such that, for any 7 € V', there exists a path from
7 to i. That is, every node in the graph can reach node i via at least one path in the
graph. A path from node i to itself, with no repeating node except node 17, is referred to
as a cycle and the number of nodes involved is called the length of the cycle. A self loop
is a cycle with length 1. The greatest common divisor of the lengths of all the cycles in
a graph is defined as the period of the graph. A graph with period equal to 1 is called
aperiodic. Apparently, a graph with self loops is aperiodic. Actually, the associated
adjacency matrix A contains all the information of a graph. For simplicity, we adopt the
notation G(A) to represent the graph with A as its adjacency matrix. There are some
interesting equivalence relations between the connectivity properties of the graph G(A)

and the algebraic properties of the adjacency matrix A, stated in the following lemma.

Lemma 0.0.1 (Equivalence relations between graphs and adjacency matrices)
Consider a graph G(A) associated with the adjacency matriz A € R™ ™. The following

statements hold:

(i. graph G(A) is strongly connected if and only if matriz A is irreducible, that is,
matriz A can not be transformed into a block upper-triangular form by any simulta-

- - - : ~1
neous row and column permutation, or, equivalently, matriz A satisfies > ;_, Ak~

OTLX’VL;

(7. graph G(A) is strongly connected and aperiodic if and only if matriz A is primitive,

which means that there exists some k € N such that A* = 0,xn.

One can easily deduce from the lemma above that, for a strongly connected graph with
at least one self loop, its associated adjacency matrix is primitive. Now we present the
Perron-Frobenius theorem, which has been widely used in the study of network dynamics.

We refer to Section 2.3 of the textbook by Bullo [I] for more detailed discussion.
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Theorem 0.0.2 (Perron-Frobenius theorem) Consider an entry-wise nonnegative

matriz A € R™™ with n > 2. The following statements hold:

(i. there exists a real eigenvalue X\ > |u| > 0 for all other eigenvalues y;

(1. the right and left eigenvectors v and w of A can be selected non-negative.
If, additionally, A is irreducible, then

(iii. the eigenvalue X is strictly positive and simple;

(1v. the right and left eigenvectors v and w of A are unique and positive, up to scaling.
If, additionally, A is primitive, then

(v. the eigenvalue A satisfies X > || for all other eigenvalues .

The following theorem states the limit property of the powers of primitive matrices.

Theorem 0.0.3 (Powers of primitive matrices) Consider a primitive matriz A €
R™ ™. Let v and w be respectively the entry-wise positive left and right eigenvalues asso-
ciated with the largest eigenvalues of A in magnitude, i.e., p(A). Suppose v and w are

normalized such that v'w = 1. Then we have

LAk .
Ay T

Any entry-wise non-negative matrix A € R™" satisfying A1, =1, (1A =17 resp.)
is referred to as a row-stochastic (column-stochastic resp.) matrix. A matrix that is both
row-stochastic and column-stochastic is called doubly-stochastic. For any row-stochastic
matrix A, p(A) = 1 is the eigenvalue of A with the largest magnitude, and is associated

with an right eigenvector of the form al,,, where « is a scalar.
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Contributions and Organizations

This thesis consists of three parts. Part I is on the modeling and analysis of dynamics
on social networks, to be specific, the propagation dynamics on social networks. Part II
discusses dynamics of social networks, particularly, the interpersonal appraisal networks.
Part III is a brief discussion of some potentially interesting future research directions in
social network dynamics. We state the main contents and contributions of each chapter
in Part I and part II as follows.

Chapter 1: We review a class of deterministic nonlinear models for the propagation
of infectious diseases over contact networks with strongly-connected topologies. We con-
sider network models for susceptible-infected (SI), susceptible-infected-susceptible (SIS),
and susceptible-infected-recovered (SIR) settings. In each setting, we provide a compre-
hensive nonlinear analysis of equilibria, stability properties, convergence, monotonicity,
positivity, and threshold conditions, including both known and novel results.

Chapter 2: We propose a class of propagation models for multiple competing prod-
ucts over a social network. We consider two propagation mechanisms: social conver-
sion and self conversion, corresponding, respectively, to endogenous and exogenous fac-
tors. According to the chronological order of social and self conversions, we develop two
Markov-chain models and, based on the independence approximation, we approximate
them with two corresponding difference equations systems. Both theoretical and numer-
ical study are conducted for both mean-field systems. Finally, we propose two classes
of games based on the mean-field competitive propagation models and characterize their
Nash equilibria.

Chapter 3: We apply the idea of social influence to an engineering system, in which
local sensors perform binary sequential hypothesis testing and a fusion center collects the
local decisions and reaches a global decision according to some threshold rule. The local

sensors decisions are influenced by those who have already made their decisions, which

XX



characterizes the role of social pressure. We establish the accuracy and expected decision
time of the fusion center in systems with finite local sensors. In systems with infinitely
many local sensors, we analyze the limit accuracy and expected decision time of some
specific threshold rules by means of a mean-field analysis.

Chapter 4: We propose models of learning processes in teams of individuals who
collectively execute a sequence of tasks and whose actions are determined by individual
skill levels and networks of interpersonal appraisals and influence. The closely-related
proposed models have increasing complexity, starting with a centralized manager-based
assignment and learning model, and finishing with a social model of interpersonal ap-
praisal, assignments, learning, and influences. We show how rational optimal behavior
arises along the task sequence for each model, and discuss conditions of suboptimality.
Our models are grounded in replicator dynamics from evolutionary games, influence net-
works from mathematical sociology, and transactive memory systems from organization
science.

Chapter 5: We propose two discrete-time dynamical systems that explain how an
appraisal network evolves towards social balance from an initially unbalanced configu-
ration. These two models are based on two different socio-psychological mechanisms
respectively: the homophily mechanism and the influence mechanism. Our main theo-
retical contribution is a comprehensive analysis for both models in three steps. First,
we establish the well-posedness and bounded evolution of the interpersonal appraisals.
Second, we characterize the set of equilibrium points as follows: for both models, each
equilibrium network is composed by an arbitrary number of complete subgraphs satis-
fying structural balance. Third, under a technical condition, we establish convergence
of the appraisal network to a final equilibrium network satisfying structural balance. In
addition to our theoretical analysis, we provide numerical evidence that our technical

condition for convergence holds for generic initial conditions in both models. Finally,

xx1



adopting the homophily-based model, we present numerical results on the mediation and
globalization of local conflicts, the competition for allies, and the asymptotic formation
of a single versus two factions.

In addition, at the beginning of each part, a general and brief overview is provided.

xxil



Part 1

Propagation Dynamics on Social Networks



Overview: dynamics on social networks

The two most widely studied classes of dynamics on social networks are the opinion
dynamics and the network propagation dynamics. Part I of this thesis focuses on the
latter but the opinion dynamics has some connections with what to be discussed in Part
I1. Therefore we provide brief overviews for both classes of dynamics.

Opinion dynamics studies the evolution of individuals’ opinions driven by the social
influence of other individuals in the network. There are mainly two types of opinion
dynamics models: the averaging-based models and the voter models. In the averaging-
based models, individuals’ opinions are denoted by real numbers and change continuously.
Individuals update their opinions by computing certain convex combination of their own
opinions, the opinions of their social neighbors, and, potentially, their initial opinions or
some external inputs. Widely-studied models include the classic DeGroot model [2], the
Friedkin-Johnsen model [3], and the bounded-confidence model [4]. The voter models
assume that individual opinions take their values from a discrete (usually binary) set.
The switching of opinions is driven by the social pressure from individuals’ neighbors
via some stochastic processes, see [5l, [0, [7]. We refer to the surveys [8] and [9] for more
detailed literature review.

There are also two main approaches to study the network propagation processes. The
first approach is to build the dynamical models on random graphs. This approach is based
on the following observation: although it is almost impossible to obtain the detailed and
well-quantified information of every local connection in the large-scale social networks,
social network as an entirety does exhibit some prominent global characteristics, such as
the small-world feature, the scale-free degree distribution, and the clustering property.
Therefore, dynamical models based only on those estimable global network characteris-

tics should lead to some theoretical predictions that are also data-verifiable. Examples



of network propagation models following this approach include the graph percolation
model [10, 11] and the degree-based model [12, Chapter 17]. The second approach is to
first assume that the network has an arbitrary topology with all the connections well-
quantified and known, and then try to derive the theoretical results that do not depend
on all the local details of the network. The advantage of such approach is that, more
sophisticated and realistic dynamical processes can be modeled and understood based on
the well-established mathematical tools in dynamical systems, control theory, algebraic
graph theory, and matrix analysis. Examples include the network epidemic spreading
models [I3], 14] and the linear threshold model [15] [16]. Regarding the network propaga-

tion models, this thesis focuses on the second approach.



Chapter 1

Deterministic Epidemic Propagation

over Networks

1.1 Introduction

Problem motivation and description

Propagation phenomena appear in numerous disciplines. Examples include the spread
of infectious diseases in contact networks, the transmission of information in communica-
tion networks, the diffusion of innovations in competitive economic networks, cascading
failures in power grids, and the spreading of wild-fires in forests.

One important class of models of propagation phenomena are scalar deterministic
models. These models have been widely studied, e.g., see the survey [I7]. These models
qualitatively capture some dynamic features, including phase transitions and asymptotic
states. However, shortcomings of scalar models are also prominent: for example, scalar
models are typically based on the assumption that individuals in the population have

the same chances of interacting with each other. This assumption overlooks the internal
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structure of the network over which the propagation occurs, as well as the heterogeneity of
individuals in the network. Both these aspects play critical roles in shaping the dynamical
behavior of the propagation processes.

In a general formulation, propagation is a dynamical process on a complex network.
Each network node has a state taking value in a discrete set and state changes are
influenced by the nodes’ neighbors in the network. Many relevant research questions
arise naturally, including: how to model the local dynamics at each node, how to identify
model parameters, how to estimate the state of such a dynamical system, and how to
analyze the system transient and asymptotic properties.

Various types of models have been proposed to describe propagation processes over
complex networks; one key distinguishing feature of these models is whether the prop-
agation dynamics is assumed to be stochastic or deterministic. Deterministic network
epidemic models were originally proposed in the late 1970’s in the seminal works [13], [I§].
These models are of great research value, as attested by the large literature focusing
on them (see below). Moreover, they can be considered as approximations of certain
Markov-chain models, e.g., see [19)].

In this chapter, we review three key continuous-time deterministic models for epi-
demic propagation over networks. Depending upon the nodal dynamics, i.e., the disease
propagation behavior, deterministic epidemic propagation models are classified as: the
Susceptible-Infected (SI) model, the Susceptible-Infected-Susceptible (SIS) model and the
Susceptible-Infected- Recovered (SIR) model; basic representations of these models are il-
lustrated in Figure In this work we focus on transient and asymptotic behavior of
these three continuous-time dynamical models over networks. It is our key objective to
relate the structure of the network to the function of the network (i.e., the transient and

asymptotic behavior of the propagation phenomenon).
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A

Susceptible >  Infected Susceptible

Infected

Susceptible > Infected > Recovered

Figure 1.1: Three basic models of infectious diseases: SI, SIS and SIR.

Literature review on deterministic network epidemic models

The literature on epidemic propagation is exceedingly vast. This chapter focuses on
deterministic models over networks and on their dynamical behavior. Accordingly, this
subsection reviews the literature on deterministic epidemic models. Unless specified, the
works and results reviewed in what follows are all for the deterministic models. For
readers interested in Markov-chain models and in the mean-field approximation method,
we refer to [19, 20, 21} 14] and [I, Chapter 17]. (Note that Markov-chain network epi-
demic models and their deterministic approximating models are different in some of the
dynamical properties, such as the epidemic threshold and the asymptotic behavior.)

The dynamics of several classic scalar epidemic models, i.e., the population models
without network structure, are surveyed in detail by Hethcote [I7]. Among the different
metrics discussed, identifying the effective reproduction number R is of particular interest
to researchers; R is the expected number of individuals that a randomly infected individ-
ual can infect during its infection period. In these scalar models, whether an epidemic
outbreak occurs or the disease dies down depends upon whether R > 1 or R < 1, i.e.,
upon whether the system is above or below the so-called epidemic threshold. Here by
epidemic outbreak we mean an exponential growth of the fraction of the infected pop-
ulation for small time. The basic reproduction number Ry is the effective reproduction
number in a fully-healthy susceptible population. In what follows we focus our review
on deterministic network models.

The earliest work on the (continuous-time heterogeneous) SIS model on networks

6
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is [13]. This work proposes an n-dimensional model on a contact network and analyzes the
system’s asymptotic behavior. This article proposes a rigorous analysis of the threshold
for the epidemic outbreak, which depends on both the disease parameters and the spectral
radius of the contact network. For the case when the basic reproduction number is above
the epidemic threshold, this paper establishes the existence and uniqueness of a nonzero
steady-state infection probability, called the endemic state. In what follows we refer to
the model by Lajmanovich et al. [I3] as the network SIS model; it is also known as the
multi-group or multi-population SIS model.

Allen [22] proposes and analyzes a discrete-time network SIS model. This work ap-
pears to be the first to revisit and formally reproduce, for the discrete-time case, the
earlier results proposed in [I3]; see also the later work [23]. This work confirms the
existence of an epidemic threshold, as a function of the spectral radius of the contact
network. Further recent results on the discrete-time model are obtained by Ahn et al. [24]
and Azizan Ruhi et al. [20].

Van Mieghem et al. [25] argue that the (continuous-time) network SIS model is in
fact the mean-field approximation of the original Markov-chain SIS model of exponential
dimension; this claim is rigorously proven in [19]. Van Mieghem et al. [25] refer to this
model as the intertwined SIS model and write the endemic state as a continued fraction.

The works [26] and [27] discuss the continuous-time network SIS model in a more
modern language. Fall et al. [26] refer to this model as the n-group SIS model and apply
Lyapunov techniques and Metzler matrix theory to establish existence, uniqueness, and
stability of the equilibrium points below and above the epidemic threshold. Khanafer et
al. [27] use positive system theory in their analysis and extend the existence, uniqueness,
and stability results to the setting of weakly connected digraphs.

Numerous extensions of these basic results on the network SIS model and other re-

lated works have appeared over the years. For example, the estimation of the epidemic

7
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threshold in contact networks with power-law degree distributions has been studied both
by mathematically rigorous analysis, see [28], and by numerical simulation, see [29]. The
deterministic network SIS models without mean-field approximation and with second-
order mean-field approximation have been analyzed in [30] and [31], respectively.

An early work by Hethcote [I8] proposes a general multi-group SIR model with
birth, death, immunization, and de-immunization. The epidemic threshold and the equi-
libria below/above the threshold are characterized. For the simplified model without
birth/death and de-immunization, Hethcote [I§] proves that the system converges asymp-
totically to an all-healthy state. Guo et al. [32] consider a generalized network SIR model
with vital dynamics, that is, with birth and death. They characterize the basic repro-
duction number and, through a careful Lyapunov analysis, show the existence and global
asymptotic stability of an endemic state above the threshold. Youssef et al. [33] study
a special case of the network SIR model under the name of individual-based SIR model
over undirected networks. Through a simulation-based analysis, the epidemic threshold
is given as a function of the spectral radius of the network.

There are also some extensions and related studies regarding the network SIR model.
Sharkey [34] investigates the deterministic network SIR model without mean-field ap-
proximation. Castellano et al. [29] point out that the (mean-field) network SIR predicts
a vanishing threshold for a certain class of power-law distributed networks, which is in-
consistent with the corresponding stochastic SIR model. Sharkey et al. [35] show that,
different from the network SIR model with mean-field approximation, the so-called pair-
based approach gives an exact description of the stochastic SIR process for the tree
topology.

To the best of our knowledge, no works have comprehensively characterized the prop-
erties of the network SI model.

We conclude by mentioning other surveys and textbook treatments. In [36], the

8
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stability of equilibria for the SEIR model is reviewed through Lyapunov and graph theory.
The additional state E represents the exposed population, i.e., the individuals who are
infected but not infectious. Various heterogeneous epidemic models are reviewed in [12]
Chapter 17], [37, Chapter 21|, and [38, Chapter 9]. The recent survey by Nowzari et
al. [14] presents various epidemic models and addresses many solved and open problems

in the control of epidemic spreading.

Statement of Contribution

This chapter reviews, in a comprehensive and coherent manner, deterministic models
and dynamical behavior of SI, SIS and SIR epidemic phenomena over networks. This
review includes known results from the literature as well as several novel results. We
discuss SI, SIS and SIR models in three subsequent corresponding sections. Each section
starts by reviewing the well-known results for the corresponding scalar models; these are
the models in which variables represent an entire ?well-mixed? population or nodes of an
all-to-all unweighted graph. The core of each section is a discussion about multi-group
network models. We provide a tutorial treatment with comprehensive statements and
proofs for the deterministic network SI, SIS and SIR models.

We first analyze the network SI model. We analyze its asymptotic convergence, pos-
itivity of infection probabilities, initial and asymptotic growth rates, and the stability of
equilibria. We show that in the network SI model, the system does not display a thresh-
old and, with the exception of the trivial no-epidemics equilibrium, all the trajectories
converge to the full contagion state. While these results are not technically difficult,
they are novel here in the sense that, to the best of our knowledge, the properties of the
network SI model have never before been formally characterized.

Next we focus on the network SIS model. Our presentation includes known results



Deterministic Epidemic Propagation over Networks Chapter 1

from [13] (see also [20, 27]) regarding the epidemic threshold, the system’s behavior
below the epidemic threshold, the existence and uniqueness of the endemic state for
systems above the epidemic threshold, and the asymptotic stability of the endemic state.
Moreover, we provide a novel provably-correct iterative algorithm for computing the
fraction of infected individuals converging to the endemic state. This algorithm also
provides an alternative proof for the existence and uniqueness of the endemic state for
systems above the epidemic threshold. We argue that this alternative proof is more
concise that the those proposed in the previous works [13, 26, 27]. In addition, we
present novel Taylor expansions for the endemic state near the epidemic threshold and
in the limit of high infection rates. These novel Taylor expansions shed light on these
previously poorly-understood regimes. Finally, we show that the spread of infection takes
place instantaneously upon infecting at least one node in the network.

Finally, for the network SIR model, we review some known results on the monotonic-
ity of the individuals’ susceptible probabilities and the system’s asymptotic behavior
from [18]. More importantly, we provide the several novel results: We present novel tran-
sient behavior and system properties. First, we propose new threshold conditions above
which the epidemic grows initially, and below which it exponentially dies down. The ini-
tial rate of growth above the threshold is given in terms of network characteristics, initial
conditions, and infection parameters. Moreover, we show that our proposed weighted
average of the infected population, obtained by the entries of dominant eigenvector of an
irreducible quasi-positive matrix, captures information regarding the distribution of infec-
tion in the system. We also establish positivity of the infection probabilities. Finally, we
provide a novel iterative algorithm to compute the asymptotic state of the network SIR
model, with any arbitrary initial condition. For the iterative algorithm, the existence
and uniqueness of the fixed point, and the convergence of the iteration are rigorously

proved. Our results are analogous to the scalar SIR model properties and are valid for

10
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any arbitrary network topologies. In comparison with [33], our treatment builds on their
numerical results but our result is more general in that it does not depend upon specific
initial conditions and graph topologies, and establishes numerous properties, including

the novel characterization of epidemic threshold.

Organization

Section [1.2]introduces our model set-up and some preliminary notations. The SI, SIS
and SIR models are presented, respectively, in Sections [1.4] and[1.5] Section 6 is the

conclusion.

1.2 Model Set-Up and Notations

For the scalar models, we use the notation z(t) (s(t) and r(t) resp.) for the fraction
of infected (susceptible and recovered resp.) individuals in the population at time ¢.
The rest of this section is about the notations and basic model set-up for the network
epidemic model.

a) Contact Network: The epidemics are assumed to propagate over a weighted digraph
G = (V,E), where V = {1,...,n} and E is the set of directed links. Nodes of G can
be interpreted as either single individuals in the contact network or as homogeneous
populations of individuals at each location/node in the contact network. A = (aij)nxn
denotes the adjacency matrix associated with G. For any 4, j € V, a;; characterizes the
contact strength from node j to node 7. For (4, ) € E, a;; > 0 and for (¢,7) ¢ E, a;; = 0.
In this chapter, G is assumed to be strongly connected.

b) Node States and Probabilities: For different epidemic propagation models, the set
of possible node states are distinct. For network SI or SIS models, each node can be in

either the “susceptible” or “infected” state, while in the network SIR model, there is an
11
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additional possible node state: “recovered.” For a graph in which the nodes are single
individuals, let s;(¢) (x;(t) and 7;(t) resp.) be the probability that individual 7 is in the
susceptible (infected and recovered resp.) state at time t. Alternatively, if the nodes
are considered to be the populations, then s;(¢) (x;(¢t) and r;(t) resp.) is interpreted as
the fraction of susceptible (infected and recovered resp.) individuals in population . In
this chapter, without loss of generality, we adopt the interpretation of nodes as single
individuals.

¢) Frequently Used Notations: The symbol R denotes the set of real numbers, while
R>( denotes the set of non-negative real numbers. The symbol ¢ denotes the empty set.

For any two vectors x,y € R", we write

x <y, if x; <y; foralli e {1,...,n},
x =, if x; <wy; foralli € {1,...,n}, and

x <y, ifx <yandax#y.

Let I,, denote the n x n identity matrix. Given z = [z1,...,2,]" € R", let diag(z) denote
the diagonal matrix whose diagonal entries are x4, ..., x,. For an irreducible nonnegative
matrix A, let Apax(A) denote the dominant eigenvalue of A that is equal to the spectral
radius p(A). Moreover, we let vpax(A) (umax(A) resp.) denote the corresponding entry-
wise strictly positive left (right resp.) eigenvector associated with Apa.x(A), normalized
to satisfy 1) vpa(A) = 1 (resp. 1] umax(A) = 1). The Perron-Frobenius Theorem for
irreducible matrices guarantees that Apax(A), Vmax(A) and upmax are well defined and
unique. Where not ambiguous, we will drop the (A) argument and, for example, write

T T
() A= )\maxvmax and Aumax = Amaxumaxa

max

12
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with vpax = 0, and 1Ivmax = 1; Umax = 0, and llumaLX = 1.

1.3 Susceptible-Infected Model

In this section, we first review the classic scalar susceptible-infected (SI) model, and

then present and characterize the network SI model.

1.3.1 Scalar SI model

The scalar SI model assumes that the growth rate of the fraction of the infected
individuals is proportional to the fraction of the susceptible individuals, multiplied by a

so-called infection rate 5 > 0. The model is given by

i(t) = Bs(t)x(t) = B(1 — x(t))x(t). (1.1)

This is the well-established logistic equation. The following results can be found for

example in the textbook [39].

Lemma 1.3.1 (Dynamical behavior of the SI model) Consider the scalar ST model (1.1)

with 8 > 0. The solution from initial condition x(0) = zq € [0,1] is

_ xoelt
11—z + zpeft

(t) (1.2)

All initial conditions 0 < x¢ < 1 result in the solution x(t) being monotonically increasing

and converging to the unique equilibrium 1 as t — oo.

Solutions to equation (|1.1)) with different initial conditions are plotted in Figure .
The ST model ((1.1]) results in an evolution akin to a logistic curve, and is also called the

logistic equation for population growth.
13
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Figure 1.2: Evolution of the (lumped deterministic) SI model (8 = 1) from small
initial fraction of infected individuals.

1.3.2 Network SI model

nxn :

The network SI model on a weighted digraph with the adjacency matrix A € RY5" is

given by
(1) = B(L—xi(t) Y aga;(t), (1.3)
j=1
or, in equivalent vector form,
() = B(In - diag(a:(t)))Ax(t), (1.4)

where § > 0 is the infection rate. Alternatively, in terms of the fractions of susceptible

individuals s(t) = 1, — x(¢), the network SI model is

s(t) = —p diag(s(t))A(L, — s(t)). (1.5)

The network SI model is a particular case of the widely-studied network SIS model,
which is to be discussed in the next section. The dynamical properties of the network
SI model are not difficult to analyze, but, to the best of our knowledge, have not been

formally presented in any previous literature. We present the results on the transient

14
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and asymptotic behavior of the network SI model, as well as the proof, in the following

theorem.

Theorem 1.3.2 (Dynamical behavior of network SI model) Consider the network
SI model (1.4)) with 8 > 0. For strongly connected graph with adjacency matriz A, the

following statements hold:
(i. if x(0),s(0) € [0,1]", then x(t),s(t) € [0,1]" for all t > 0. Moreover, x(t)
is monotonically non-decreasing (here by monotonically non-decreasing we mean

x(t1) = z(ty) for all ty <ty). Finally, if x(0) > 0, then x(t) = 0, for allt > 0;

(i. the model (1.4) has two equilibrium points: 0, (no epidemic), and 1, (full conta-
gion);

(a) the linearization of model (1.4) about the equilibrium point 0,, is & = fAx and

it 1s exponentially unstable;

(b) let D = diag(AL,) be the degree matriz. The linearization of model (1.5)) about

the equilibrium 0, is $ = —BDs and it is exponentially stable;

(#1i. each trajectory with initial condition x(0) # 0,, converges asymptotically to 1, that

18, the epidemic spreads monotonically to the entire network.

Proof:
(i) The fact that, if 2(0),s(0) € [0,1]™, then x(t),s(t) € [0,1]™ for all £ > 0 means that
[0,1]™ is an invariant set for the differential equation ([1.4). This is the consequence of
Nagumo’s Theorem (see [40, Theorem 4.7]), since for any z belonging on the boundary
of the set [0, 1], the vector <[n —diag (x))A:I: is either tangent, or points inside the set
[0, 1]™.

Observe that the invariance of the set [0, 1] implies that &(¢) > 0,, and so x(t;) =<

x(to) for all t; < t.
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We want to prove now that,if (0) > 0, then z(¢) > 0, for all £ > 0. If by contra-
diction there is ¢ € {1,...,n} and 7" > 0 such that z;(T") = 0, then the monotonicity of
x;(t) = 0 would imply that z;(t) = 0 for all ¢ € [0, T, which would yield #;(t) = 0 for all
t €[0,7]. By this would imply that x;(¢) = 0 for all ¢ € [0, 7] for all j such that
a;; > 0. We could iterate this argument and using the irreducibility of A we would get
the contradiction that x(t) = 0 for all ¢ € [0, 7] concluding in this way the proof of [(il
(ii) Regarding statement [(i] note that 0, and 1, are clearly equilibrium points. Let
Z € [0,1]™ be an equilibrium and assume that z # 1,. Then there is i such that z; # 1.
Since 8(1 — z;) > j—1 aiT; =0, then 377 | a;;7; = 0 which implies that 7; = 0 for all j
such that a;; > 0. By iterating this argument and using the irreducibility of A we get
that £ = 0 concluding only 0,, and 1,, are equilibrium points. Statements and are
obvious. Exponential stability of the linearization $ = —3Ds is obvious, and the Perron-
Frobenius Theorem implies the existence of the unstable positive eigenvalue p(A) > 0 for
the linearization ¢ = SAx.

(iii) Consider the function V(z) = 1] (1, — x); this is a smooth function defined over
the compact and forward invariant set [0, 1]" (see statement . Since V = —41] (I, —
diag(z)) Az, we know that V < 0 for all z and V(z) = 0 if and only if z € {0,,1,}. The
LaSalle Invariance Principle implies that all trajectories with z(0) converge asymptoti-
cally to either 1, or 0,. Additionally, note that 0 < V(z) < n for all z € [0,1]", that
V(z) = 0 if and only if x = 1,, and that V(z) = n if and only if © = 0,,. Therefore, all
trajectories with z(0) # 0,, converge asymptotically to 1,,. [

In the next two paragraphs we present the “initial-time” (“final-time” resp.) ap-
proximation of the solution to the network SI model, i.e., the approximated solution to
equation (|1.4]), or equation (1.5 equivalently, when ¢ is sufficiently small (large resp.).
These results are novel.

For the adjacency matrix A, there exists a non-singular matrix 7" such that A =
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TJT~', where J is the Jordan normal form of A. Since A is non-negative and irreducible,
according to Perron-Frobenius theorem, the first Jordan block J; = (Apax)1x1 and Apax >
Re()\;) for any other eigenvalue \; of A. Consider now the onset of an epidemic in a large
population characterized by a small initial infection z(0) = xy much smaller than 1,.
The system evolution is approximated by & = SAx. This “initial-times” linear evolution

satisfies
z(t) = Mz (0) = TP/ T 11 (0) = fAmaxt (TelelTT‘lx(O) + 0(1)),

where e; is the first standard basis vector in R™ and o(1) denotes a time-varying vector
that vanishes as t — +00. Let u; denote the first column of 7" and let v{ denote the first
row of 77!, Since AT = TJ and T~'A = JT~!, one can check that u; (v; resp.) is the
right (left resp.) eigenvector of A associated with the eigenvalue Apay. Since T71T = I,,,

we have v] u; = 1. therefore,

-
x(t) = B Amaxt (ulvlTx(O) + 0(1)) — eﬁ)\maxt<vmax—m(0>

T
Umaxumax

U + 0(1)>. (1.6)

That is, the epidemic initially experiences exponential growth with rate S\, and with
distribution among the nodes given by the eigenvector .

Now suppose that at some time 7', for all 7 we have that z;(T") = 1 —¢;, where each ¢;
is much smaller than 1. Then, for time ¢t > T, the approximated system for s(¢) is given

by:

Si(t) = —Bdisi(t) =  si(t) = e PEET),

n

where, for any i € {1,...,n}, di = > 7, a;; denotes the out-degree of node i in the

network. From the discussion above, we conclude that the initial infection rate is pro-
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portional to the eigenvector centrality, and the final infection rate is proportional to the

degree centrality.

1.4 Susceptible-Infected-Susceptible model

In this section we review the Susceptible-Infected-Susceptible (SIS) epidemic model.
In addition to the existence of an infection process with rate 8 > 0, this model assumes
that the infected individuals recover to the susceptible state at so-called recovery rate

v > 0.

1.4.1 Scalar SIS model

In the scalar SIS model, the population is divided into two fractions: the infected

x(t) and the susceptible s(t), with x(t) + s(t) = 1, obeying the following dynamics:

2(t) = Bs(t)x(t) —yx(t) = (B — v = Pa(t))x(t). (1.7)

The dynamical behavior of system (1.7)) given below can be found in [I7].

Lemma 1.4.1 (Dynamical behavior of the SIS model) For the SIS model (1.7)) with

£ >0 and vy > 0:

(i. the closed-form solution to equation (1.7) from initial condition x(0) = x¢ € [0, 1],

for B# 1, is
_ (ﬁ - 7)370 )
By — ey — B(1 — xp))’

() (1.8)

(i. if B <7, all trajectories converge to the unique equilibrium x = 0 (i.e., the epidemic

disappears);
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Figure 1.3: Evolution of the scalar SIS model with varying initial fraction of infected
individuals. Top figure: = 0.5 < = 1. Bottom figure: 3 =0.8 >y = 4.

(ii. if B > =, then each trajectory from an initial condition x(0) > 0 converges to the

exponentially stable equilibrium z* = (8 — ) /8, which is called the endemic state.

Case|(iiil corresponds to the case in which epidemic outbreaks take place and a steady-

state epidemic contagion persists. The basic reproduction number in this deterministic

scalar SIS model is given by Ry = /3/v. Simulations regarding to Lemma and

are shown in Figure [1.3]

1.4.2 Network SIS Model

In this section we study the network SIS model which is closely related to the original
“multi-group SIS model” proposed by [13]; see also the intertwined SIS model in [25].

The network SIS model with infection rate 5 and recovery rate «y is given by:

n

;(t) = B(1 — z4(t)) Zaz’jxj(t) — (1), (1.9)

J=1

or, in equivalent vector form,
i(t) = B(1, — diag(z(t))) Az(t) — yx(t). (1.10)
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In the rest of this section we study the dynamical properties of this model. We start

by defining the monotonically-increasing functions

frly) =y/(I+y), and f(2)=2/(1-2),

for y € Rsg and z € [0,1][. Note that f,(f_(z)) = z for all z € [0,1). For vector

variables y € R%; and z € [0,1)", we write F(y) = (f+(y1), ..., f+(yn)), and F_(z) =
(f=(z1), s f=(z0))-

Behavior of System Below the Threshold In this subsection, we characterize the
behavior of the network SIS model in a regime we describe as “below the threshold.”
The results presented in the theorem below can be found in [I3] 26, 27]. Historically, it
is meaningful to attribute this theorem to [13], even if the language adopted here is more

modern.

Theorem 1.4.2 (Dynamical behavior of the network SIS model: Below the threshold)
Consider the network SIS model (1.9), with § > 0 and v > 0, over a strongly connected
digraph with adjacency matriz A. Let Apax and vmax be the dominant eigenvalue of A

and the corresponding normalized left eigenvector respectively. If BAmax/y < 1, then

(i. if x(0),s(0) € [0, 1], then x(t),s(t) € [0,1]" for all t > 0. Moreover, if z(0) > 0,,

then x(t) = 0, for all t > 0;

(ii. there exists a unique equilibrium point 0,, the linearization of (1.9) about O, is

&= (BA —~I,)x and it is exponentially stable;

T

max

(iii. from any x(0) # 0,, the weighted average t — v, x(t) is monotonically and

exponentially decreasing, and all the trajectories converge to O,.
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Proof: As in Theorem the first part is the consequence of Nagumo’s

Theorem. Then define y(t) := ez(t). Notice that this variable satisfies the differential
equation y(t) = Bdiag(s(t))Ay(t). From the same arguments used in the proof of the
point |(il of Theorem we argue that y(t) = 0, for all £ > 0. From this it follows that
also x(t) > 0,, for all ¢ > 0.
Assume that z* is an equilibrium point. It is easy to see that z* < 1,. Let A=
BA/7y. Observe moreover that z* is an equilibrium point if and only if Az* = F " (z*) or,
equivalently, if and only if F, (Aa:*) = z*. This means that z* is an equilibrium if and
only if it is a fixed point of F, where F(z) := F} (Ax) For z € [0,1]", note F (Az) < Az
because f,(z) = z. Moreover, 0,, < x =< y implies that 0, < F(x) =< Ay Therefore, if
0, =< x, then F*(x) < AFg, for all k. Since A is Schur stable, then limy_, Fr(x) = 0.
This shows that the only fixed point of F is zero.

Next, the linearization of equation is verified by dropping the second-order
terms. The linearized system is exponentially stable at 0, for SA,.x — v < 0 because
Amax 18 larger, in real part, than any other eigenvalue of A by the Perron-Frobenius
Theorem for irreducible matrices.

Finally, regarding statement , define y(t) = v, ,,(t) and note that (I, —diag(z)) Umax <

max

Umax for any z € [0, 1]™. Therefore,

Y1) < Bl AT(t) = Vo @(t) = (BAmax — 7)y(t) <0.

By the Gronwall-Bellman Comparison Lemma, y(t) is monotonically decreasing and
satisfies y(t) < y(0)ePrmax="! from all initial conditions y(0). This concludes our proof

of statement . [ |
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Behavior of System Above the Threshold We present the dynamical behavior of
the network SIS model above the threshold as follows. Statement |(if of the theorem below
is a straightforward result from equation (1.10)). Historically, the existence of a unique

endemic state and its global attractivity properties, i.e., statements , and
in the theorem below, are due to [13], and can be found in [26] 27]. To the best our

knowledge, the Taylor expansions in parts and and the algorithm in part
are novel. In addition, compared with the previous works [13], 26, 27], construction of the
algorithm in part provides an alternative and more concise proof for the existence
and uniqueness of the endemic state, and the convergence of any solution starting with

x(0) € (0,1)™ to this endemic state.

Theorem 1.4.3 (Dynamical behavior of the network SIS model: Above the threshold)
Consider the network SIS model (1.9), with § > 0 and v > 0, over a strongly connected
digraph with adjacency matriz A. Let Apax be the dominant eigenvalue of A and let Vpay

and Umax be the corresponding normalized left and right eigenvectors respectively. Let

d=A1,. If PAnax/7y > 1, then

(i. if ©(0),s(0) € [0,1]™, then z(t),s(t) € [0,1]™ for all t > 0. Moreover, if z(0) > 0,

then x(t) = 0, for all t > 0;

(7. 0, is an equilibrium point, the linearization of system (1.10|) at 0, is unstable due

to the unstable eigenvalue BAyax — 7 (i-€., there will be an epidemic outbreak);

(71i. besides the equilibrium 0, there exists a unique equilibrium point x*, called the

endemic state, such that

(a) x* = 0,,
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(b) x* = daumay + O(6%) as & — 0T, where 6 := BApax/y — 1 and

T
Umax umax

B UT diag(umax)uma)(7

max

(c) z* = 1, — (v/B)diag(d)~'1,, + O(v*/B?), at fized A, as v/B — 0T, where
d=Al,

(d) define a sequence {y(k)}ren C R™ by

y(k+1):=F, (g%ﬁ;(k)) . (1.11)

If y(0) > 0 is a scalar multiple of umax and satisfies either 0 < max; y;(0) <

1 —v/(BAmax) or min; 4;(0) > 1 — v/(BAmax), then

lim y(k) = z™.

k—o00

IN

Moreover, if max; y;(0) < 1 — v/(BAmax), then y(k) is monotonically non-
decreasing; if min; y;(0) > 1 — v/(BAmax), then y(k) is monotonically non-

INCreasing.

(iv. the endemic state x* is locally exponentially stable and its domain of attraction is

[0,1]™\ 0,,.

Note: statement (i means that, near the onset of an epidemic outbreak, the expo-
nential growth rate is SAn.x — 7 and the outbreak tends to align with the dominant
eigenvector Una.y; for more details see the discussion leading up to the approximate evo-
lution ([1.6). The basic reproduction number for this deterministic network SIS model
is given by Ry = BAmax/7- The network SI model discussed in Section 3 describes the

limit behavior of the network SIS model as v/ — 01. Statement in Theorem m
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indicates that * — 1, as v/ — 07, which is consistent with statement in Theo-
rem [[L3.2
Proof: [Proof of selected statements in Theorem

This point can be proved as done in point |(if of Theorem m
This follows from the same analysis of the linearized system as in the proof of Theo-
rem [1.4.9(ii
We begin by establishing two properties of the map z — F, (Az), for A = A/~.
First, we claim that, y = 2z = 0,, implies F+(f1y) — F+(flz) Indeed, note that G being
connected implies that the adjacency matrix A has at least one strictly positive entry
in each row. Hence, y — z > 0,, implies A(y — z) = 0,, and, since f; is monotonically
increasing, Ay > Az implies F(Ay) = F,(Az).

Second, we observe that, for any 0 < o < 1 and z > 0, we have f,(az) > z if and
only if 2z < 1 — 1/a. Suppose y(0) is a scalar multiple of uya, and 0 < max; y;(0) <

1 —v/(BAmax). We have

ﬂAmaX

Fi(Ay(0)s = £ (“22i(0)) = i(0).

Therefore, the sequence {y(k)}ren defined by equation ([1.11)) satisfies y(1) > y(0), which
in turn leads to y(2) = Fy(Ay(1)) = Fy(Ay(0)) = y(1), and by induction, y(k + 1) =
F(Ay(k)) = y(k) for any k € N. Such sequence {y(¢)} is monotonically non-decreasing
and entry-wise upper bounded by 1,. Therefore, as k diverges, y(k) converges to some
x* > 0, such that F, (flx*) = x*. This proves the existence of an equilibrium z* =
limg o y(k) > 0, as claimed in statements and

Similarly, for any 0 < @ < 1 and z > 0, fy(az) < z if and only if z > 1 — 1/a.
Following the same line of argument in the previous paragraph, one can check that the

{y(k)}ren defined by equation (1.11)) is monotonically non-increasing and converges to
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some x* | if y(0) is a scalar multiple of Uy, and satisfies min; 1;(0) > 1 — v/(5Amax)-
Now we establish the uniqueness of the equilibrium z* € [0,1]" \ {0,,}. First, we
claim that an equilibrium point with an entry equal to 0 must be 0,,. Indeed, assume y*
is an equilibrium point and assume y; = 0 for some ¢ € {1,...,n}. The equality y; =
f+(E;L:1 aijy;) implies that also any node j with a;; > 0 must satisfy y; = 0. Because GG
is connected, all entries of y* must be zero. Second, by contradiction, we assume there
exists another equilibrium point y* = 0, distinct from z*. Let a := min;{y;/z}} and let
i such that o = yf/zf. Then y* = az* > 0,, and y; = ax}. Notice that we can assume

with no loss of generality that o < 1 otherwise we exchange x* and y*. Observe now that

(Fr(Ay") —v7), = [+ ((Ay")) — o}
> fi(a(Az*);) — ax} (A = Opxn)
> ozf+((flm*),) —ax] (0<a<1landz>0)

= a(FJr(fl:v*) — "), =0. (z* is an equilibrium)

Therefore, (F+(fly*) — y*)l > 0, which contradicts the fact that y* is an equilibrium.
Now we prove Observe first that, since taking

y(o) — (1 . /B ,y ) umax 5 umax

Amax / Max; {Umax ; } T max;{ Umax ; }

then y(k) is monotonically non-decreasing and converges to z*, and since taking instead

y(O):(l— gl ) Umax 4 Umax

5)\max mini {umax,i} - 5 + 1 mini {umax,i}
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then y(k) is monotonically non-increasing and converges to z*, we can argue that

5 Umax < F < 5 Umax
T
5 + 1 maXi{umaX,i} - - 5 + 1 mini{umax,i}

This implies that z* is infinitesimal as a function of . Consider the expansion z*(§) =

710 + 190% + O(6%). Since the equilibrium z* satisfies the equation
(6 + 1)(I, — diag(z")) Az* — Apaxz* =0

by substituting the expansion and equating to zero the coefficient of the term § we obtain
the equation

Awl - )\maxl'l =0

which proves that z; is a multiple of .y, namely 1 = aty., for some constant a. By

equating to zero the coefficient of the term 62 we obtain instead the equation
Azy + Axy — diag(z1)Azy — Apax®2 =0
Using the fact that x1 = auyna, we argue that

2 .
6L>‘max“rnax + Ax? —a >\max dlag(umax)umax - )\maxe - 0

T

max

By multiplying on the left by v_ __ we obtain

T 2 T :
AAmaxVUmaxUmax — @~ AmaxVUpax 4188 (Umax ) Umax = 0

which proves that

Umax Ymax

- vl diag(Umax ) Umax
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Point can be proved in a similar way. Indeed, define € := /3. Since

(1 N € ) Umax S ZL‘* S (1 i € ) : Umax
)\max max; {umax,i } Amax min; {umax K }

we can argue that the expansion x*(€) = zg + z1€ + O(€?) as € tends to zero is such that

xo > 0,. Since the equilibrium x* satisfies the equation

(1, — diag(z*)) Az* — ex* = 0

0

by substituting the expansion and equating to zero the coefficient of the term €” we obtain

the equation

Az — diag(zg)Axzg =0

which proves that zq = vectorones[n]. By equating to zero the coefficient of the term €

we obtain instead the equation
Az, — diag(xy) Az — diag(zg)Azry — 20 =0
Using the fact that xqg = 1,, we argue that
diag(Al,)z1 +1, =0

which yieds the thesis.
For this point we refer to [13], 26] or [27, Theorems 1 and 2] in the interest of brevity.

Remark 1.4.4 The network SI model can be regarded as the limit case of the network

SIS model with vanishing curing rate v — 0%. According to Theorem|1.4.9 and|1.4.5, for
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any strongly connected digraph and any fized infection rate B > 0, the quantity BAmax/?y
is always above the threshold in the limit v — 07. Moreover, statement (iii)(c) indicates
that, as v — 0T, the endemic state x* satisfies x* — 1,,. Therefore, the behavior of the

network SI model is the same as that for the network SIS model in the limit v — 0.

1.5 Network Susceptible-Infected-Recovered Model

In this section we review the Susceptible-Infected-Susceptible (SIR) epidemic model.

1.5.1 Scalar SIR model

In this model individuals who recover from infection are assumed not susceptible
to the epidemic any more. In this case, the population is divided into three distinct
groups: s(t), z(t), and r(t), denoting the fraction of susceptible, infected, and recovered
individuals, respectively, with s(¢) +x(t) +r(t) = 1. We write the (Susceptible-Infected—
Recovered) SIR model as:

$(t) = —Ps(t)z(t),
#(t) = Ps(t)x(t) — vy (t), (1.12)
7(t) = ya(t).

The following results on the dynamical behavior of the scalar SIR model can be found

in [17).

Lemma 1.5.1 (Dynamical behavior of the SIR model) Consider the SIR model (1.12)).
From each initial condition s(0) + x(0) +r(0) = 1 with s(0) > 0, 2(0) > 0 and r(0) > 0,
the resulting trajectory t w— (s(t),z(t),r(t)) has the following properties:

(i. s(t) >0, z(t) >0, r(t) >0, and s(t) + z(t) +r(t) =1 for allt > 0;
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Figure 1.4: Left figure: evolution of the scalar SIR model from small initial fraction
of infected individuals (and zero recovered); parameters § = 2, v = 1/4 (case in
Lemma . Right figure: intersection between the two curves in equation
with s(0) = 0.95, 7(0) = 0 and /v € {1/4,4}. If /v = 1/4, then .05 < roo < .1. If
B/v =4, then .95 < ru.

(ii. t — s(t) is monotonically decreasing and t — r(t) is monotonically increasing;

(iii.

(1v.

limy oo (8(2), 2(t),7(t)) = (S00s 0, Too ), Where 1o 18 the unique solution to the equality

l—re = s(O)e_g (“"’_T(O)); (1.13)

if Bs(0)/vy < 1, then t — x(t) monotonically and exponentially decreases to zero as

t — 00;

. if Bs(0)/y > 1, then t — x(t) first monotonically increases to a mazimum value

and then monotonically decreases to 0 ast — co; the mazimum fraction of infected

individuals is given by:

Tmax = 2(0) + s(0) — %(log(s(O)) +1—log <%>)

As mentioned before, we describe the behavior in statement |[(v| as an epidemic out-

break, an exponential growth of ¢t — z(t) for small times.) The effective reproduction

number in the deterministic scalar SIR model is R = fs(t)/y. Note that the basic

reproduction number Ry = /v does not have predict power in this model.
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1.5.2 Network SIR model

The network SIR model on a graph with adjacency matrix A is given by

n

$i(t) = —Psi(t) ZFI aijz;(t),
Bi(t) = Bsu(t) 3 gy (1) = ylt),

ri(t) = yai(t),

where $ > 0 is the infection rate and + > 0 is the recovery rate. Note that the third
equation is redundant because of the constraint s;(t) 4+ 2;(t) + r;(t) = 1. Therefore, we

regard the dynamical system in vector form as:

5(t) = —pB diag(s(t))Ax(t), (1.14a)

x(t) = Bdiag(s(t))Azx(t) — yx(t). (1.14Db)

We state our main results of this section below. Weaker versions of statements |(iaj

and are due to [I8]. To the best of our knowledge, statements (i, [(iid] and

are novel.

Theorem 1.5.2 (Dynamical behavior of the network SIR model) Consider the net-

work SIR model (L.14)), with 8 > 0 and v > 0, over a strongly connected digraph with
adjacency matriz A. For t > 0, let Apax(t) and vmax(t) be the dominant eigenvalue of
the non-negative matriz diag(s(t))A and the corresponding normalized left eigenvector,

respectively. The following statements hold:
(i. if x(0) > 0,, and s(0) > 0, then

(a) t— s(t) and t — x(t) are strictly positive for all t > 0,
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(b) t — s(t) is monotonically decreasing, and

(c) t = Amax(t) is monotonically decreasing;
(1. the set of equilibrium points is the set of pairs (s*,0,), for any s* € [0,1]", and the
linearization of model (1.14) about (s*,0,) is

5(t) = —fB diag (s") Az
(1) = —fdiog (") Az (1.15)

i(t) = Bdiag (s*) Az — ya;

(1. (behavior below the threshold) let the time T > 0 satisfy fAmax(T) < 7. Then the
weighted average t — vmax (T) 2(t) , for t > 7, is monotonically and exponentially

decreasing to zero;
(. (behavior above the threshold) if fAmax(0) > v and x(0) > 0, then,

(a) (epidemic outbreak) for small time, the weighted average t +— vma(0)"2(t)

grows exponentially fast with rate BAnax(0) — v, and

(b) there exists T > 0 such that BAnax(T) < 7;

(v. each trajectory converges asymptotically to an equilibrium point, that is, limy, ., x(t) =

0,, so that the epidemic asymptotically disappears.

The effective reproduction number in the deterministic network SIR model is R(t) =
BAmax(t)/y. When R(0) > 1, we have an epidemic outbreak, i.e., an exponential growth
of infected individual for short time. In any case, the theorem guarantees that, after at
most finite time, R(¢) < 1 and the infected population decreases exponentially fast to
Z€ro.

Proof: Regarding statement [(ia], s(¢) = 0, is due to the fact that Az is bounded

and s(t) is continuously differentiable to t. The statement that x(t) > 0,, for all ¢ > 0 is
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proved in the same way as Theorem . Statement is the immediate consequence
of §;(t) being strictly negative. From statement [(ia] we know that each s;(t) is positive, and
from A being irreducible and x(0) # 0,, we know that » 7 | a;;z; is positive. Therefore,
$i(t) = —Bsi(t) D25, aijr;(t) < O for alli € V and ¢ > 0.

For statement , we start by recalling the following property from [41, Exam-
ple 7.10.2]: for B and C nonnegative square matrices, if B < C, then p(B) < p(C).
Now, pick two time instances t; and ¢y with 0 < ¢t; < to. Let a = max; s;(t2)/s;(t1) and
note 0 < a < 1 because s(t) is strictly positive and monotonically decreasing. Now note
that,

diag(s(t1))A > adiag(s(t;))A = diag(s(t2))A,

so that, using the property above, we know

plding(s(t1))A) > ap(diag(s(t1))A) > p(diag(s(t2)) A).

This concludes the proof of statement .

Regarding statement [(ii, note that a point (s*,2*) is an equilibrium if and only if:

0, = —pdiag (3*)A:c*, and

0, = fdiag (5*)Am* — ~yx*.

Therefore, each point of the form (s*,0,,) is an equilibrium. On the other hand, summing
the last two equalities we obtain 0,, = yz* and thus x* must be 0,,. As a straightforward
result, the linearization of model about any equilibrium point (s*,0,,1, — s*) is
given by equation (|1.15]).

Regarding statement , multiplying vmay(7)" from the left on both sides of equa-
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tion (|1.14b)) we obtain:

() 2(0)) = i (7) (B it (s(0)) Ax(t) — 72(1)

it
< U (7)T (5 diag (s(r)) Ax(t) — fyx(t)> = (Bhmax(T) = 7)Vman(7) T2 (1),

Therefore, we obtain
Vinas(7) () < (Vina(7) T2(0) ) Pmx(D =)

The right-hand side exponentially decays to zero when BApmax(7) < 7. Therefore, vmay(7) " 2 (t)
also decreases monotonically and exponentially to zero for all t > 7.

Regarding statement , note that based on the argument in , we only need to
consider the case when x(0) = 0,. Left-multiplying v,..(0)" on both sides of equa-

tion (|{1.14b)), we obtain:

d

— (UmaX(O)Tx(t))

dt = (ﬁ)‘max((D_’y)vmax(o)—rl‘(o)-

t=0

= e (0)T (B ling (5(1)) Az(t)—2(t))

t=0

Since BAmax(0) — 7 > 0, the initial time derivative of vyax(0)"2(t) is positive. Since
t > Umax(0) T2(#) is a continuously differentiable function, there exists 7/ > 0 such that
2 (Unax(0) Tz(t)) > 0 for any ¢ € [0, 7).

Regarding statement since §(t) = 0,, and is lower bounded by 0,,, we conclude
that the limit lim s(¢) exists. Moreover, since s(t) is monotonically non-increasing, we

t——+o0
have lim s(¢f) = 0, which implies either lim s(t) = 0, or lim z(t) = 0,. If s(¢)
t——+oo t——+o00 t—+o00
converges to 0, then @(¢) converges to —yx(t). Therefore, there exists 7' > 0 such that
BAmax(T) < 7y, which leads to x(t) — 0,, as t — +o0; If s(t) converges to some s* > 0,

then z(t) still converges to 0,,. Therefore, for any (s(0),z(0)), the trajectory (s(t),z(t))
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converges to some equilibria with the form (s*,0,), where s* > 0,,. Let

s(t) = s" +05(t), and x(t) =0, + 6,(t).

We know that d45(t) > 0 and 0,(¢t) > 0 for all ¢t > 0. Moreover, d5(¢) is monotonically
non-increasing and converges to 0, and there exists 7 > 0 such that, for any ¢ > T,
() is monotonically non-increasing and converges to 0,.

Let A* and v* denote the dominant eigenvalue and the corresponding normalized left
eigenvector of matrix diag(s*)A, respectively, that is, v*' diag(s*)A = A*v*". First let

us suppose SA* —v > 0, then the linearized system of (|1.12)) around (s*,0,,) is written as

by =—p3 diag(s*)Ad,,

b, = [ diag(s*)Ad, — 70,

Since SA* —~ > 0, the linearized system is exponentially unstable, which contradicts the
fact that (6,(¢),0.(t)) — (0,,0,) as t — +oo. Alternatively, suppose SA* — v = 0. By

left multiplying v*" on both sides of the equation for @(¢) in (1.12)), we obtain

v T, = (BN — ) (0T 8,) + Bu* T diag(d,)Ad, = Bu* T diag(d,)Ad, = O,

which contradicts 0,(t) — 0, as t — 4oo0. Therefore, we conclude that SA* — v <

0. Since Apmax(t) is continuous on t, we conclude that there exists 7 < 400 such that

BAmax(t) — v < 0.
[ |

Remark 1.5.3 Consider the network SIR model as a parameterized dynamical system,

with the curing rate v as the parameter. The network SI model can be regarded the network
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SIR dynamics with v = 0 and zero initial fraction of recovered individuals. However, due
to the specific bifurcation behavior of the network SIR model at v = 0, the dynamical
properties of the network SIR model with v = 0 are qualitatively different from the case
when v > 0. When v = 0, the set given by statement of Theorem 15 only a
subset of the equilibirum set. Points in the set of pairs (0,,x*) are also the equilibria of
the network SIR with v = 0. In addition, while statement of Theorem on the
matial epidemic outbreak is still true, statements and @ on the eventual decay no

longer hold for v = 0.

In what follows, we present a novel result on an iterative algorithm that computes
the limit state lim_,o (s(¢),0,7(¢)) of the network SIR model (1.14) as a function of an
arbitrary initial condition (s(0),z(0),7(0)).

Note that, for the scalar SIR model (1.12]), if we define

B

V(s(t), 2(t)) = s(t)e’ (1-a0-50)

Simple calculations result in dV (s(t),z(t))/dt = 0, which implies that the trajectories
are on the level sets of V and in the set {(s,z) € R* | s > 0,2 > 0,s + = < 1}. Here, we

apply a similar approach to the network SIR system ([1.14]). Let

Vi(s,r) :== sieg 25193 for any i € {1,...,n}.

One can check that, along any trajectory of dynamics , dV;/dt = 0 for any i €
{1,...,n}. Therefore, the trajectories (s(t),r(t)) lie on the level curves of the functions
Vi(s,r) for i € {1,...,n}.

Let s(00) := limy_ 1o $(t), x(00) := limy_, o (t), and 7(c0) := limy_, o 7(t). Notice
that x(c0) = 0,, and so r(c0) = 1,, — s(00). Since dV;/dt = 0 for any i € {1,...,n}, we
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have

5:(00) = si(0)e 5 Tie10is (1-140) o Ty aiges (o0) (1.16)

Given any initial condition (s(0),7(0)), the right-hand side of equation (L.16) defines a
map

H(s) = e das(AG-1tro0) gy, (1.17)

and s(co) is a fixed point of H, that is, s(co) = H(s(c0)). The following theorem is

novel.

Theorem 1.5.4 (Existence, uniqueness, and algorithm for the asymptotic point)
Consider the network SIR model , with positive rates B and v and with initial condi-
tion (s(0),z(0),r(0)) satisfying s(0) = 0, z(0) > 0,,, 7(0) = 0,, and 5(0) +z(0) +7(0) =
1,. Let (s(oo), 0,, r(oo)) be the asymptotic state of system . The map H : R — R"

defined by equation (1.17) has the following properties:

(i. there exists a unique fized point s* of the map H in the set {s € R" | 0, = s =<

1, —r(0)}. Moreover, s* = s(00) and r(c0) =1, — s*; and

(7. any sequence {y(k)}ren defined by y(k + 1) = H(y(k)) and initial condition 0, <

y(0) =1, —r(0) converges to the unique fixed point s*.

Proof: Since A is a non-negative matrix, and s(0) < 1—r(0), one can easily observe
that, if 0, < p < ¢ =1, —r(0), then 0, < H(0,) < H(p) X H(q) = H(1, —r(0)) =<
1, — r(0). According to the Brower Fixed Point Theorem, the map H has at least one
fixed point.

Define the sequence {p(k)}ren by p(k + 1) = H(p(k)) and p(0) = 0,,. Since

1, — (0) = p(1) = H(0,) = ¢ W(-Abt @) 0 = p0),
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we have 1, —r(0) = p(2) = H(p(1)) = H(p(0)) = p(1) and, by induction, 1,, — r(0) >
p(k 4+ 1) = p(k) for any &k € N. Since p(k) is non-decreasing and upper bounded by
1, — r(0), we conclude that the limit p* = limy_,, p(k) exists, and p* is a fixed point of
the map H.

Similarly, define a sequence {q(k)}ren by q(k + 1) = H(q(k)) and ¢(0) = 1,, — r(0).
One can check that ¢(k) is non-increasing and that ¢* = limy_,, (k) is a fixed point of
map H. Moreover, since p(0) = ¢(0), we have p(k) = ¢(k) for any k € N and thereby
pr2q

If p* = ¢*, then, for any 0, < y(0) < 1, — r(0), the sequence {y(k)}ren defined
by y(k + 1) = H(y(k)) satisfies p(k) =< y(k) = q(k) for any k € N. Therefore, y* =
limy o, y(k) exists and y* = p* = ¢*, which implies that the fixed point of map H is
unique. According to equation , s(00) is the unique fixed point. This concludes
the proof for statement (i) and (ii).

Now we eliminate the case p* < ¢* by contradiction. First of all we prove that
¢ < 1, —r(0). Let N; = {j|a;; > 0} and Z(k) = {i|q:(7) < 1 —r;(0) for any 7 > k}.
We have Z(0) = ¢. Since z(0) > 0,, we have ¢(1) = s(0) < 1 — r(0), that is, there
exists ¢ such that ¢;(1) < 1 — r;(0). Moreover, since ¢(k) is non-increasing, we have
q(k) < ¢q(1) for any k > 1. Therefore, for any i such that ¢;(1) < 1 — r;(0), it satisfies
¢i(k) < ¢(1) <1—1;0) for any k > 1. Since j ¢ Z(1) if ¢;(1) = s;(0) = 1 — r;(0), we
conclude that Z(1) = {i | s;(0) < 1 —r;(0)}. Moreover, for any given k& > 1, since, for

any 7 such that N; NZ(k) # ¢,

a(k+1) = H(q(k)); = e% i1 aij (qj(k)*lﬂﬂj(())) si(0) < 5;(0) <1 —r;(0);
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and for any i such that N; NZ(k) = ¢ and i ¢ Z(k),
gk + 1) = H(g(k)); = 5 T (1410 g (0) — 5,(0) = 1 = ry(0),

we have Z(k+1) = {i | N;NIZ(k) # ¢}UZL(k) for any k > 1. Because the graph associated
with A is strongly connected, we can argue that Z(k) contains all the indices when k is
large enough. Therefore, ¢* < 1,, — r(0).

Now suppose p* < ¢*. Let

. 1 —7;(0) —p;
o =min ————=

——, and w=(l-a)p"+ag".
g 4G —P;

We have « > 1, 0, 2 w < 1, —r(0), and w; = 1 — r;(0) for any i such that «; =
(1—ri(0) —p})/(q; — ;). Let = 1/a. Thereby ¢* = pw + (1 — p)p*, where 0 < pn < 1.
This means that ¢* is a convex combination of p* and w. Since H(s); is a strictly convex

function of s, we obtain that

¢ = H(pw + (1 = p)p*), < pH(w); + (1 = w)p; < p(1—ri(0)) + (1 = p)pi = g;"

In the last inequality, we used the fact that H(w); < 1—7,(0) for any 0, < w < 1, —7(0).
The previous inequality yields a contradiction. |

In the rest of this section, we present some numerical results for the network SIR
model for the famous Krackhardt?s advice network illustrated in Figure This net-
work reflects the data collected by [42] on the cognitive social structure of the manage-
ment personnel in a high-tech machine manufacturing firm. In the network, each node
represents an individual, and each directed link (4, ) means that individual ¢ seeks advice
from individual j. We refer the interested readers to [42] for more details.

Consider the epidemic spreading process on the Krackhardt?s advice network. The
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associated adjacency matrix A is binary. Unless otherwise stated, the system parameters
are set as § = 0.5 and v = 0.4. As for initial condition, we select one node fully infected
(the dark-gray node in Figure say, with index 1), 16 fully healthy individuals, and
zero recovered fraction — corresponding to z(0) = ey, 7(0) = 0, and s(0) = 1,, — z(0).

These parameters lead to an initial effective reproduction number R(0) = 3.57.

@)
@ OO @)

O O
® @)

@) O @) ©

Figure 1.5: Main strongly-connected component of the Krackhardt digraph with 17 nodes

Figure [1.6|illustrates the time evolution of (8/7)Amax(t) with varying network param-
eters. Note that each evolution starts above the threshold, reaches the threshold value 1

in finite time, and converges to a final value below 1.

A 5
30 _)\max t
S (t)

10 15 20

Figure 1.6: Evolution of the spectral radius of (8/v) diag(s(t))A) over the strongly
connected digraph in Figure The parameter ~ takes value in .1,.2,...,.9, corre-
sponding respectively to the curves from up to down in the time interval [0, 5].

Figure illustrates the behavior of the average susceptible, average infected and
average recovered quantities in populations starting from a small initial infection fraction

and with an effective reproduction number above 1 at time 0. Note that the evolution of
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the infected fraction of the population displays a unimodal dependence on time, like in

the scalar model.

1 Vmax(0) "7 (t)
038
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04 Vma(0) T (1)
02 ¢
Vmax(0) " 5(t)
0 5 10 15 20

Figure 1.7: Evolution of the network SIR model from initial condition consisting of
one node fully infected individual (the dark-gray node in Figure , 16 fully healthy
individuals, and zero recovered fraction. The effective reproduction number satisfies
R(0) = 3.57.

1.6 Conclusion

This chapter provides a comprehensive and consistent treatment of deterministic non-
linear continuous-time SI, SIS, and SIR propagation models over contact networks. We
investigated the asymptotic behaviors (vanishing infection, steady-state epidemic, and
full contagion). We studied the transient propagation of an epidemic starting from small
initial fractions of infected nodes. We presented conditions under which a possible epi-
demic outbreak occurs or the infection monotonically vanishes for arbitrary fixed topol-
ogy graphs. We introduced a network SI model and analyzed its behavior. Network SIS
model sections includes improved properties over previously proposed works. New tran-
sient behavior, threshold condition, and system properties for the network SIR model
were proposed. In addition, for the network SIR model, we provide a novel iterative
algorithm to compute the asymptotic state of the system. In all cases, we show the re-

sults for network models are appropriate generalizations of those for the respective scalar
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models.

There are numerous potential future research directions regarding the deterministic
network epidemic processes and the literature is still growing rapidly. Recent progress in
this area includes but is not limited to the modeling and analysis of epidemic spreading
on time-varying networks, e.g., see [43] [44], the optimal immunization strategies, e.g.,
see [45] [46], and the competitive propagation of multiple virus/memes, e.g., see [47, 48]
49].

Finally, we point out that, although the network SI, SIS, and SIR models have at-
tracted enormous attention by researchers working on network epidemics, they are not
the only deterministic models of epidemic spreading processes on networks. For example,
there is another class of deterministic network models, referred to as the multi-city model
or the epidemic model in a patchy environment. This class of models considers each node
in the network as a city obeying the scalar SIS or SIR dynamics. The disease is spread
via the traffic flows between those cities. We refer the interested reader to [50] 51} 52]

for detailed treatments.
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Chapter 2

Competitive Propagation and

Quality-Seeding Games

2.1 Introduction

a) Motivation and problem description:

It is of great scientific interest to model some sociological phenomenon as dynamics
on networks, such as consensus, polarization, synchronization and propagation. Indeed,
the past fifteen years have witnessed a flourishing of research on propagation of dis-
eases, opinions, commercial products etc, collectively referred to as memes, on social
networks. Much progress has been made both on obtaining and analyzing empirical
data [53, 54} (55, 56], and mathematical modeling [17, 57, 58, 59]. In a more recent set
of extensions, scientists have begun studying the simultaneous propagation of multiple
memes, in which not only the interaction between nodes (or equivalently referred to as
individuals) in the network, but also the interplay of multiple memes, plays an important
role in determining the system’s dynamical behaviors. These two forms of interactions
together add complexity and research value to the multi-meme propagation models.
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This chapter proposed a series of mathematical models on the propagation of com-
peting products. Three key elements: the interpersonal network, the individuals and the
competing products, are modeled respectively as a graph with fixed topology, the nodes
on the graph, and the states of nodes. Our models are based on the characterization
of individuals’ decision making behavior under social pressure. Two factors determine
individuals’ choices on which product to adopt: the endogenous factor and the exogenous
factor. The endogenous factor is the social contact between nodes via social links, which
forms a tendency of imitation, referred to as social pressure in this paper. The exogenous
factor is what is unrelated to the network, e.g., the products’ quality.

In the microscopic level, we model the endogenous and exogenous factors respectively
as two types of product-adoption processes: the social conversion and the self conver-
sion. In social conversion, any node randomly picks one of its neighbors and follows
that neighbor’s state with some given probability characterizing how open-minded the
node is. In the self conversion, each node independently converts from one product to
another with some given probability depending on the two products involved. Although
individuals exhibit subjective preferences when they are choosing the products, statistics
on a large scale of different individuals’ actions often reveal that the relative qualities
of the competing products are objective. For example, although some people may have
special affections on feature phones, the fact that more people have converted from fea-
ture phones to smart phones, rather than the other way around, indicates that the latter
is relatively better. We assume that the transit probabilities between the competing
products are determined by their relative qualities and thus homogeneous among the
individuals.

b) Literature review: Various models have been proposed to describe the propagation
phenomena on networks, such as the percolation model on random graphs [10, 1], the

independent cascade model [60} 61], [62], the linear threshold model [15, 63], [16] and the
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epidemic-like mean-field model [23, 25| 33].

As extensions to the propagation of a single meme, some recent papers have discussed
the propagation of multiple memes, e.g., see [64] 65 66], 67, 68, [69] 70l [71], [72] [73] 147,
74]. Some of these papers adopt a Susceptible-Infected-Susceptible (SIS) epidemic-like
model and discuss the long-term coexistence of multiple memes in single/multiple-layer
networks, e.g., see [68, 69, [70]. Some papers focus instead on the strategy of initial
seeding to maximize or prevent the propagation of one specific meme in the presence of
adversaries [72, [73, 47, [74]. Among all these papers mentioned in this paragraph, our
model is most closely related to the work by Stanoev et. al. [71] but the social contagion
process in [71] is different from our model and theoretical analysis on the general model
is not included.

c¢) Contribution: Firstly we propose a generalized and novel model for the compet-
itive propagation on social networks. By taking into account both the endogenous and
exogenous factors and by considering the individual variance as well as the interplay of
the competing products, our model is general enough to describe a large class of multi-
meme propagation processes. Moreover, many existing models have difficulty in dealing
with the simultaneous contagions of multiple memes, and have to avoid this problem by
adding an additional assumption of the infinitesimal step length that only allows the oc-
currence of a single contagion at every step. Different from these models, the problem of
multiple contagions does not occur in our model since we model the contagion process as
the individual’s initiative choice under the social pressure, which is more suitable for the
product-adoption process. In addition, compared with the independent cascade model, in
which individuals’ choices are irreversible, our models adopt a more realistic assumption
that conversions from one product to another are reversible and occur persistently.

Secondly, we propose a new concept, the product-conversion graph, to characterize the

interplay between the products. There are two graphs in our model: the social network
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describing the interpersonal connections, and the product-conversion graph defining the
transitions between the products in self conversion, which in turn reflect the products’
relative quality.

Thirdly, starting from the description of individuals’ behavior, we develop two Markov-
chain competitive propagation models different in the chronological order of the social
conversion and the self conversion processes. Applying the independence approxima-
tion, we propose two corresponding network competitive propagation models, which are
difference equations systems, such that the dimension of our problem is reduced and
some theorems in the area of dynamical systems can be applied to the analysis of the
approximation models.

Fourthly, both theoretical analysis and simulation results are presented on the dy-
namical properties of the network competitive propagation models. We discuss the exis-
tence, uniqueness and stability of the fixed point, as well as how the systems’ asymptotic
state probability distribution is determined by the social network structure, the individ-
uals’ open-mindedness, the initial condition and, most importantly, the structure of the
product-conversion graph. We find that, if the product-conversion graph contains only
one absorbing strongly connected component, then the self conversion dominates the
system’s asymptotic behavior; With multiple absorbing strongly connected components
in the product-conversion graph, the system’s asymptotic state probability distribution
also depends on the initial condition, the network topology and the individual open-
mindedness. In addition, simulation results are presented to show the high accuracy of
the independence approximation and reveal that the original Markov-chain model also
exhibits the same asymptotic behavior.

At last, based on the network competitive propagation model, we propose two classes
of non-cooperative games. In both games the players are the competing companies

with bounded investment budgets on seeding, e.g., advertisement and promotion, and
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improving their products’ quality. The first model is a one-shot game, in which at each
step the players myopically maximize their next-step pay-off. We investigate the unique
Nash equilibrium at each stage. Theoretical analysis also reveals some strategic and
realistic insights on the seeding-quality trade-off and the allocation of seeding resources
among the individuals. The second model is a dynamic game with infinite horizon, in
which the players aim to maximize their discounted accumulated pay-offs. The existence
of Nash equilibrium for the two-player case is proved and numerical analysis is given on
the comparison with the one-shot game.

d) Organization: The rest of this chapter is organized as follows. Section II give the
assumptions for two Markov-chain propagation models. Section III and IV discuss the
approximation of these two models respectively. In Section V, we discuss the two classes

of games. Section VI is the conclusion.

2.2 Model Description and Notations

a) Social network as a graph: In this model, a social network is considered as an
undirected, unweighted, fixed-topology graph G = (V, E') with n nodes. The nodes are
indexed by i € V' ={1,2,...,n}. The adjacency matrix is denoted by A = (a;;)nx, with
a;; =11if (i,j) € E and a;; = 01if (1,5) ¢ E.

The row-normalized adjacency matrix is denoted by A = (@ij)nxn, where a;; = N%aij
with N; = Z?Zl a;j. The graph G = (V, E) is always assumed connected and there is no
self loop, i.e., a;; = 0 for any ¢ € V.

b) Competing products and the states of nodes: Suppose there are R competing prod-
ucts, denoted by Hy, Hs, ..., Hg, propagating in the network. We consider a discrete-time

model, i.e., t € N, and assume the products are mutually exclusive. We do not specify the

state of adopting no product and collectively refer to all the states as “products”. Denote
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by D;(t) the state of node i after time step ¢. For any ¢t € N, D;(t) € {H;, Ha, ..., Hr}.
For simplicity let © = {1,2,..., R}, i.e., the set of the product indexes.

¢) Nodes’ production adoption behavior: Two mechanisms define the individuals’
behavior: the social conversion and the self conversion. The following two assumptions
propose respectively two models different in the chronological order of the social and self

conversions.

Assumption 2.1 (Social-self conversion model) Consider the competitive propaga-
tion of R products in the network G = (V, E). At time step t + 1 for any t € N, suppose
the previous state of any node i is D;(t) = H,. Node i first randomly picks one of its
neighbor j and follows j’s previous state, i.e., D;(t + 1) = D;(t), with probability ;. If
node i does not follow j’s state in the social conversion, with probability 1 — «;, then node
1 converts to product Hg with probability 0,5 for any s # r, or stay in H, with probability
O

Assumption 2.2 (Self-social conversion model) At any time step t + 1, any node i
with D;(t) = H, converts to Hg with probability d,s for any s # r, or stay in the state
H,. with probability d,,.. If node i stays in H, in the process above, then node i randomly
picks a neighbor j and follows D;(t) with probability o, or still stay in H, with probability

1—(%'.

Assumptions and are illustrated by Figure and Figure respec-

tively. By introducing the parameters d,; we define a directed and weighted graph with
the adjacency matrix 2 = (0,s)rxr, referred to as the product-conversion graph. Fig-
ure gives an example of the product-conversion graph for different smart phone opera-
tion systems. Based on either of the two assumptions, & is row-stochastic. In this chapter

we discuss several types of structures of the product-conversion graph, e.g., the case when
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Dit+1)=Hy |+

Ve Dt 1) = H _
: (- - g L b+ 1) = pugo
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Di(t+1) = Hy B o - + [ randomly pick
D) — H randomly pick [ Dit) = H, [n (1) = Hr o cighbor
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T AR E i :
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(a) social-self conversion (b) self-social conversion

Figure 2.1: Diagram illustrations for the social-self conversion model and the self-social
conversion model.

No smart
phone

3
Blackberry

Figure 2.2: An example of the product-conversion graph for different smart phone
operation systems. The self loops exist but are not displayed in this graph.

it is strongly connected, or consists of a transient subgraph and some isolated absorb-
ing subgraphs. The parameter «; characterizes node ¢’s inclination to be influenced by
social pressure. Define a = (v, o, .., )" as the individual open-mindedness vector.
Assume 0 < o; < 1 for any i € V.

d) Problem description: According to either Assumption or Assumption , at
any time step t + 1, the probability distribution of any node’s states depends on its own
state as well as the states of all its neighbors at time ¢. Therefore, the collective evolution
of nodes’ states is a R"-state discrete-time Markov chain. Define p;.(t) as the probability

that node 7 is in state H, after time step ¢, i.e., p;.(t) = P[D;(t) = H,]. We aim to
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understand the dynamics of p;.(t). Since the Markov chain models have exponential
dimensions, we approximate it with lower-dimension difference equations systems and
analyze instead the dynamical properties of the approximation systems.

e) Notations: Before proceeding to the next section, we introduce some frequently
used notations in Table[2.1] In order to distinguish vectors from matrices, in this chapter,

we use symbols in bold to denote vectors.

Table 2.1: Notations frequently used in this chapter

© set of products. © ={1,..., R}
) theset {X € R™™| X = 0pxm, X1, = a} for any a € R"”
wm(a@)  the set {X € R"™™| X > 0,%m, X1, < a} for any a € R”
x” the r-th column vector of the matrix X € R*»*™
) the i-th row vector of the matrix X € R™*™
() the i-th row vector of the matrix AX € R™™ je., () =

n -
(i1, T2y, T i) Where x_; = Zj:1 i Ty

2.3 Network Competitive Propagation Model with
Social-self conversion

This section is based on Assumption We first derive an approximation model for
the time evolution of p;.(t), referred to as the social-self conversion network competitive
propagation model (social-self NCPM), and then analyze the asymptotic behavior of
the approximation model and its relation to the social network topology, the product-
conversion graph, the initial condition and the individuals open-mindedness. Further

simulation work is presented in the end of this section.
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2.3.1 Derivation of the social-self NCPM

Some notations are used in this section.

Notation 2.3.1 For the competitive propagation of products {Hy, Ha, ..., Hg} on the
network G = (V, E),

(1) define the random wvariable X! (t) by XI(t) = 1 if Di(t) = H,; X[ (t) = 0 if
D;(t) # H,. Due to the mutual exclusiveness of the products, for anyi € V, if X[(t) =1,
then X3 (t) =0 for any s # r;

(2) Define the n — 1 tuple D_;(t) = (D1(t), ..., Di—1(t), Diz1(t), ..., Dyn(t)), i.e., the
states of all the nodes except node i after time step t;

(8) Define the following notations for simplicity:

B (t) = PIX7(t) = 1] X5(t) = 1],
B (t;—1) = PIX{ (1) = 1| Di(1)],

Il(ts, i) = PIX](t + 1) = 1| X3(t) = 1, D_y(1)]

In the derivation of the network competitive propagation model, the following ap-

proximation is adopted:

Approximation 2.3.2 (Independence Approximation) For the competitive propa-
gation of R products on the network G = (V| E), approzimate the conditional probability

Pie(t) by its corresponding total probability pi,(t) for any m,s € © and any i,j € V.

With the independence approzimation, the social-self NCPM is presented in the the-

orem below.

Theorem 2.3.3 (Social-self NCPM) Consider the competitive propagation based on

Assumption|2.1], with the social network and the product-conversion graph represented by
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their adjacency matrices A = (@ij)nxn and D = (0,s)rxr respectively. The probability

pir(t) satisfies

pirlt +1) — pir(t) = Zal as; (P (0)pse (1) — P (8)p;s(t))
e =t (2.1)
+ Z(l - ai)(dsrpis(t> - 6rspir(t))a

S#Er

foranyi €V and r € ©. Applying the independence approximation, the approximation

model for equation (2.1), i.e., the social-self NCPM, is

Pir(t +1) = i Y aippe(t) + (1= ) Y Sorpis(t). (2.2)

j=1

Proof: By definition,

pir(t+1) = pir(t) = E[E[X](t + 1) — X[ (t) | D_,(t)]],
where the conditional expectation is given by
E[X](t+1) = X[ (t) | D_i(t)] = Y (T5(t;s, —i) P (t; —i) — Tj(t;r, —i) P (t; —i)).

S#T

According to Assumption [2.1}]

ity s, —i) P (t; —i) = oy Z i X5 ()P (t; —1) + (1 — ;)05 B (t; —1).

J

Therefore,

E[T} (t; s, —i) Py (6 —i)] = i Y aBIX ()P} (8 —i)] + (1 — ;)0 BB} (£ —1)].

J

o1
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One the right-hand side of the equation above, E[P?(t; —i)] = p;s(t). Moreover,

ELG ()P -] = 30 PIXZ(0) = 1,X7(0) = 1, Do (1) = d_i_j] = Py (0)p; (1),

Apply the same computation to E[T§(¢; r, —i) Py (t; —i)] and then we obtain equation ([2.1)).
Replace P (t) and PJ;*(t) by pis(t) and p;,(t) respectively and according to the equations
ZS# pis(t) =1 — p;(t) and ZS# drs = 1 — 0, we obtain equation ([2.2)). [ |

The derivation of Theorem is equivalent to the widely adopted mean-field ap-
proximation in the modeling of the network epidemic spreading [25], [75], 19]. Notice that
the independence approximation neither neglects the correlation between any two nodes’

states, nor destroys the network topology, since p;,(t), p;s(t) and a;; all appear in the

dynamics of p;,.(t).

2.3.2 Asymptotic behavior of the social-self NCPM

Define the map f : R"*f — R™* % by
f(X) = diag(a)AX + (I — diag(a)) X 2. (2.3)
According to equation , the matrix form of the social-self NCPM is written as
P(t+1) = f(P(t)), (2.4)

where P(t) = (pir(t))nxr. We analyze how the asymptotic behavior of system (2.4), i.e.,
the existence, uniqueness and stability of the fixed point of the map f, is determined by
the two graphs introduced in our model: the social network with the adjacency matrix

A, and the product-conversion graph with the adjacency matrix 2.
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Structures of the social network and the product-conversion graph

Assume that the social network G(A) has a globally reachable node. As for the
product-conversion graph, we consider the more general case. Suppose that the product-
conversion graph G(2) has m absorbing strongly connected components (absorbing
SCCs) and a transient subgraph. Re-index the products such that the product index

set for any [-th absorbing SCCs is given by ©, = {1,2,...,k;}, and

-1 -1 l
O = {3kt LY k2, Y
u=1 u=1 u=1

for any [ € {2,3,...,m}, and the index set for the transient subgraph is A = {> )" k; +
L...,)> 0 ki+2,..., R}. then the adjacency matrix Z of the product-conversion graph

takes the following form:

‘@ 0—0><0
9 — (R—ko) xk 7 (2.5)

BkoX(Rfko) -@0

where 9 = diag[Z1, s, ..., D) and B = [By, By,..., By], with B, € RF*k for any
Il €{1,2,...,m}, is non-zero and entry-wise non-negative. Matrix &, = (5?;)klxkl, with
691 = §,, and 69 = O5~i-1 gy i1 4 fOT any [ € {2,3,...,m}, is the adjacency matrix

of the [-th absorbing SCC, and is thus irreducible and row-stochastic. The following

definition classifies four types of structures of G(2).

Definition 2.3.4 (Four sets of product-conversion graphs) Based on whether the
product-conversion graph G(2) has a transient subgraph and a single or multiple absorb-

ing SCCs, we classify the adjacency matriz & into the following four cases:

(i. Case 1 (single SCC): The graph G(2) is strongly connected, i.e., D = Py, with

]{51 = R,’
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(7. Case 2 (single SCC + transient subgraph): The graph G(2) contains one absorbing

SCC and a transient subgraph, i.e., 2 = Py and ky > 1;

(iti. Case 3 (multi-SCC): The graph G(Z) contains m absorbing SCCs, i.e., I =
dia‘g[gla 927 ey @m], wlth Z;il l{}l = R;

(v. Case 4 (multi-SCC + transient subgraph): The graph G(Z) contains m absorbing
SCCs and a transient subgraph, with 9 given by equation (2.5)).

Stability analysis of the social-self NCPM

The following theorem states the distinct asymptotic behaviors of the social-self

NCPM, with different structures of the product-conversion graph.

Theorem 2.3.5 (Asymptotic behavior for social-self NCPM) Consider the social-
self NCPM on a strongly connected social network G(fl), with the product-conversion
graph G(2). Assume that

(i. Each absorbing SCC G(2),) of G(2) is aperiodic;

(ii. For any 2, 1 € {1,2,...,m}, as least one column of P, is entry-wise strictly

positive;

(iii. For anyr € A, Y 0rs <1, de., Dolyy, < 1y,

Then, for any P(0) € S,r(1,), the solution P(t) to equation (2.4)) has the following

properties, depending upon the structure of 9 :

(i. in Case 1, P(t) converges to P* = 1,vi4(2)" exponentially fast, where P* is the
unique fized point in S,r(1,) for the map f defined by equation (2.3)). Moreover,
the convergence rate is €(9D) = max + (1 — max)((Z), where qupax = max; a; and

((2)=1-" min,d,,;
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(ii.

(iii.

(1.

in Case 2, for any 1 €V,

0, for any r € A,
t—o0
w, (%), for any r € Oy;

in Case 3, for anyl € {1,2,...,m} and i € V,

lim p® @ () = (vl (M) PO (0) 1y, ) vie (D),

t—o00

where M = diag(a)A + I — diaga and P®i(t) = (pgl(t))nxkl, with pot(t) =

o,(i : - O1(4) -
Pyt joir(t) and p (D (t) being the i-th row of PO (t);

in Case 4, for anyl € {1,2,...,m} and i € V,

0, for any r € A,
lim p;,(t) =
t—o0

Yw(Z), for any r € 6y,

where y, depends on A, By, P®1(0), P*(0) and satisfies 31", v = 1.

Before proving the theorem above, a useful and well-known lemma is stated without

the proof.

Lemma 2.3.6 (Row-stochastic matrices after pairwise-difference similarity transform)

Let M € R™ ™ be row-stochastic. Suppose the graph G(M) is aperiodic and has a globally
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reachable node. Then the nonsingular matriz

-1 1
Q =
-1 1
1/n 1/n 1/n
satisfies
QMQ_l _ Mred On—l
c’ 1

for some ¢ € R"! and M,eq € R(=1x(n=1) Moreover, M,oq 1s discrete-time exponen-

tially stable.

Proof of Theorem (1) Case 1:

Since matrix & is row-stochastic, irreducible and aperiodic, according to the Perron-
Frobenius theorem, vy (2) € R is well-defined. By substituting P*, defined by p*(® =
Vet (Z) " for any i € V, into equation (2.3)), we verify that P* is a fixed point of f.

For any X and Y € R™ % define the distance d(-,-) by d(X,Y) = || X — Y||. Then
(Snr(1,),d) is a complete metric space. For any X € S,r(1,), it is easy to check that
f(X) > 0,xr and

f(X)1g = diag(a) AX1g + (I — diag(a))X1g = 1,,.

Therefore, f maps S,r(1,) to S,r(1,).

For any X € S,r(1,), according to equation ({2.3),

Hf(X)(i) _ f(P*)(i)H1 < ai”m(ﬂ‘) —p*H)H1 +(1— &i)H(w(i) _ p*(i))-@!h- (2.6)
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The first term of the right-hand side of (2.6 satisfies

R n
20 = p O < 303" gl —wn (D) < |X ~ P

r=1 j=1

The second term of the right-hand side of (2.6]) satisfies

r=1 s=1

If 2 = p*@ then ||f(X)D — f(P*)D|; < ]| X — P*||oo. If 29 # p*® | since 21y =
p*@1; = 1, both the set 6, = {s|z;s > ws(Z)} and the set 0y = {s| x5 < ws(Z)} are

nonempty and

R
1
> (zi—wil(2) = (wi(2) = 335) = 5 >z — wi(2)].
s€b s€by s=1
Therefore,
' ' R R
||(m(z) - p*(z))@Hl = ZZW%S —wy(2)|0
r=1 s=1 (27)
—2 Z mln{z Lis — ws 557’7 Z(ws(-@) - xis)(gsr})
s€01 s5€02

where

1 . .
min{Z(:pis —ws(D2))osr, Y (Ws(D) — x45)05,} > 5 min g, |2 — p*@||,.

s€01 B

Substituting the inequality above into ([2.7)), we obtain

(@ ~p) faul_(l—zmmasr)uwv e
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Since Zil 0sr = 1 for any s, Zle ming d, is no larger than 1. In addition, since at
least one column of 2 is strictly positive, .7  min, s > 0. Therefore, 0 < ((2) =

1— Zle min, d,, < 1, and
1F(X)® = p Oy < (@i + (1 = a:)¢(2))1X = Pl

This leads to
1£(X) = f(P)]loc < e(D)|X = P7||so,

for any X € S,r(1,) and 0 < €(Z) < 1. This concludes the proof for Case 1.

(2) Case 2:

For the transient subset A, define P*(t) = (pi(t)) with p2(t) = pirix, (1), for

n><k;()7

any i € V and r € {1,2,...,ko}. Then,
PA(t+1) = diag(a) AP (t) + (I — diag(c)) P (t) .
According to Assumption (iii) of Theorem

ko
c= max Z(S,{\S <1, and Yli, < cly,.

re{1.2,..ko} <=

Therefore,

PMt+ 1)1, < (diag(a)A +e(l - diag(a)))PA(t)lko.

Since p(diag(a)fl +c(I - diag(a))> < 1, for any PM0) € Sppy(1,), PA(t) — Opu,

exponentially fast.
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Define P®1(t) = (pir(t))nxk,- then we have

PO (t + 1) = diag(a) AP®*(t) + (I — diag(ex)) P (t) 21 + (I — diag(e)) P*(t)B.

Since PA(t) converges to 0,x, exponentially fast, we have: 1) there exists C' > 0 and
0 < & < 1 such that
(1 - diag(@) P*()B) | < C€"

2) ||P® ()1, — 1y ]lc — O exponentially fast, which implies d(P®(t), Sur, (1,)) — 0
exponentially fast.

For any X € S’nkl(ln), define map f by

f(X) = diag(a)AX + (I — diag(ax)) X 2.

According to the proof for Case 1, there exists a unique fixed point P* for the map f
in Spk, (1), given by pf. = w,(Z2:1). Moreover, there exists 0 < € < 1 such that, for any
X € Suk, (1),

1F(X) = P*lloc < €| X = P7||c-

Since the function % is continuous in Sy, (1,)\ P* and d(PO(t), Sk, (1)) — 0,

there exists 7' > 0 and 0 < n < 1 such that, for any ¢ > T,
1F(POL(#)) = P*lloo < nll PO () = P¥loc

For t € N much larger than T,

gt _ 77t—TST '

PO(t) — P*||oe < 71| POUT) — P¥||oo + C
1P (t) I 1P=H(T) I -
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Since 0 < <1,0< &< 1,ast— oo, [P (t) — P*||c — 0. This concludes the proof

for Case 2.

(3) Case 3:

For any [ € {1,2,...,m},

POt + 1) = (PO (1)) = (I — diag(x)) PO (t)Z; + diag(a) AP®(t),
where 7,1, = 1, since O, is absorbing and strongly connected. Therefore,
POt + 1)1, = MP® (1)1,

where M = I — diag(a) 4 diag(a)A is row-stochastic and aperiodic. Moreover, the
graph G(M) has a globally reachable node and therefore the matrix M has a normalized
dominant left eigenvector vieg (M ). Applying the Perron-Frobenius theorem,

lim P! (t)1y, = (v (M)P®(0)1,)1,.

t—o0

Let ¢, = vl (M)P®1(0)1;,. Following the same line of argument in the proof for
Case 2, f maps Sy, (cil,) to Spg, (¢l,), and maps Snkl(clln) to Snkl(clln). Moreover,
P* € R0 with p*@) = Ve (2)) ", for any i € V, is the unique fixed point of the map

~

fin Su, (¢l,). In addition, there exists 0 < € < 1 such that for any X € S, (¢;1,),
[f(X) = Ploc < €| X = Pl

The function iL(X) = % is continuous in S’nkl (¢1,) \ P*. Since for any

PO1(0) € Spi, (¢1,)\P*, we have PO (t)1,, — ¢4, which implies d(P®!(t), Snr (aily,)) —
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0 as t — 0. Therefore, there exists 0 < n < 1 and T" > 0 such that for any ¢ > T,
1F (P () = Plloo < 0l PO(t) = P|loc-

Therefore, P! (t) — P* as t — oc.
(4) Case 4:

POt + 1) = diag(a) AP () + (I — diag(c)) P® (1) 2 + (I — diag(c)) P (t) B,
for any [ € {1,2,...,m}. Therefore,
POt + 1)1, = MP® (1)1, + ¢(1), (2.8)

where M = diag(a)A + I — diag(c) is row-stochastic and primitive. The vector ¢(t) is
a vanishing perturbation according to the proof for Case 2.

Let z(t) = P9 (t)1), and y(t) = Qz(t) with @ defined in Lemma[2.3.6] Let yen () =
(1 (1), 12(t), ..., Yn_1(t)) T, where y;(t) = x;41(t) — 2;(t) for any i = 1,2,...,n — 1. Then
we have

y(t+1) = QMQ™'y(t) + Qo(t)

Let @(t) = (¢1(t), pa(t), . .. ,gpn,l(t))T with ¢;(t) = >, Qid;(t). (1) is also a vanishing

perturbation and

yerr(t + 1) = Mredyerr<t) + 90(t>-

The equation above is an exponentially stable linear system with a vanishing perturba-
tion. Since p(Mieq) < 1, Yerr — 0,1 as t — oo, which implies that P®!(t)1;, — 71,

and v, depends on M, B;, P®(0) and P*(0). Moreover, Y_,v = 1 since P(t)1z = 1,.
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Following the same argument in the proof for Case 3, we obtain

lim p®'(t) = v, (2).

t—o0

Interpretations of Theorem

Analysis on Case 1 to 4 leads to the following conclusions: 1) The probability of
adopting any product in the transient subgraph eventually decays to zero; 2) For the
product-conversion graph with only one absorbing SCC G(%), the system’s asymptotic
product-adoption probability distribution only depends on v (Z;). In this case, the self
conversion dominates the competitive propagation process; 3) With multiple absorbing
SCCs in the product-conversion graph, the initial condition P(t) and the structure of
the social network G (fl) together determine the fraction each absorbing SCC eventually
takes in the total probability 1; 4) In each absorbing SCC G(Z), the asymptotic adoption

probability for each product is proportional to its corresponding entry of Z.

2.3.3 Further simulation work

a) Accuracy of the social-self NCPM solution: Simulation results have been presented
to compare the solution to the social-self NCPM with the solution to the original Markov

chain model defined by Assumption [2.1] Let the matrix & take the following form

06 04 0 0
2. 0 0
03 07 0 0
2=10 2 0= : (2.9)
0 0 1 0
By By %
0 08 0 0.2
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P12(t)

t 0.25

(a) n=5

Figure 2.3: Difference between the solutions to the social-self NCPM (blue dash) and
the original Markov-chain model (red) in complete graphs or Erdés-Rényi graphs.

P1

,p=1 (b) n=10,p=0.5

2(t)

0.5

0.4r

031

0.2

Figure 2.4: Difference between the solutions to the social-self NCPM (blue dash) and
the original Markov-chain model (red) in the power-law graph and the star graph.
The power-law graph has 100 nodes, with the degree distribution p(k) = 1010k=2%7,

10 20 30 40

(a) power-law graph

(¢c) n=>50,p=0.1

p12(t)
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(b) star graph

The star graph consists of 10 nodes with node 1 as the center.

30

40

30

(d)yn=50,p=1

40

The Markov-chin solution is computed by the Monte Carlo method. In each sampling,

A, v and P(0) are randomly generated and set identical for the Markov chain and the

NCPM. The probability pis(t) is plotted for both models on different types of social

networks, such as the complete graph, the Erdés-Rényi graph, the power-law graph and

the star graph. As shown in Figure 2.3] and Figure the solution to the social-self

NCPM nearly overlaps with the Markov-chain solution in every plot, due to the i.i.d self

conversion process.

b) Asymptotic behavior of the Markov chain model In Figure and Figure ,
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all the trajectories p;.(t), for the Markov-chain model on an Erdés-Rényi graph with
n =5, p = 0.4 and randomly generated a, are computed by the Monte Carlo method.
Figure corresponds to the structure of the product-conversion graph defined by
Case 4 in Definition 2.3.4] with

0.6 04

D = Do =1,%920=0.2,B=1[00.80].

0.3 0.7
The transient subgraph is only connected to SCC ©; and the intial adoption probability
for Hs is 0. Figure [2.5(b)| corresponds to the structure of the product-conversion graph

defined by Case 3 in Defintion with

21 0 0.6 0.4 0.5 0.5
@ - ) -@1 = ) 92 =
0 2% 0.3 0.7 0.1 0.9
The simulation results shows that, in these two cases the Markov-chain solutions converge
exactly to the values indicated by the social-self NCPM, regardless of the initial condition.
The matrix 2 used in Figure 2.6]is given by equation (2.9)). As illustrated by Figure [2.6]

the asymptotic adoption probabilities vary with the initial condition in the Markov-chain

model, in consistence with the results of Theorem [2.3.5]

2.4 Analysis of the Self-social Network Competitive
Propagation Model

In this section we discuss the network competitive propagation model based on As-
sumption [2.2] i.e, the case in which self conversion occurs before social conversion at each

time step. Firstly we propose an approximation model, referred to as the self-social net-
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pir(t), 1€V, re®
0.8r

(a) multi-SCC + transient subgraph (b) multi-SCC
Figure 2.5: Asymptotic behavior of the Markov chain model with the production-con-

version graphs defined by Case 3 or Case 4 in Defintion [2.3.4] Every curve in this plot
is a trajectory p;-(t) for i € V and r € ©. Here x;, = vgﬁ(M)P@l(O)lkle(.@l).

pir(t), i€V, r€0O pir(t), i€V, r€0O

0 20 40 60 80 100 0 20 40 60 80 100

(a) initial condition 1 (b) initial condition 2
Figure 2.6: Asymptotic behavior of the Markov chain model with the production-con-

version graph consisting of multiple SCCs and a transient subgraph. Every curve in
this plot is a trajectory p;(t) for i € V and r € ©.
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work competitive propagation model (self-social NCPM), and then analyze the dynamical

properties of this approximation model.

Theorem 2.4.1 (Self-social NCPM) Consider the competitive propagation model based
on Assumption 2.3, with the social network and the product-conversion graph represented

by their adjacency matrices A and 9 respectively. The probability pir(t) satisfies

pzr‘(t + 1) — Dir (t) = Z (5srpis (t) - Tsp'n“ + Z 5ssa1 Z azgpls Prs

S#T S#ET
n
- Z Orr ¥ Z QijPir (t)P;z‘T (t),
sF#r 7=1

foranyi €V and r € ©. Applying the independence assumption, the matrixz form of the
self-social NCPM is

P(t+1) = P(t)2 + diag(ax) diag (P(t)8) AP(t) — diag(c) P(t) diag(d), (2.10)

with P(t) = (pir(t))an and & = ((511, 522, e ,5RR)T.

It is straightforward to check that, for any P(t) € S,r(1,), P(t+1) is still in S, z(1,).
According to the Brower fixed point theorem, there exists at least one fixed point for the

system (2.10)) in S,r(1,). Since the nonlinearity of equation (2.10) add much difficulty

to the analysis of it, in the remaining part of this section we discuss the special case when
R=2.
For simplicity, in this section, let p(t) = pa(t) = (p12(t), p2o(t), . . . ,png(t))T. Without

loss of generality, assume do5 > 611. Define the map h : R® — R" by

h(w) = 6151, + (1 = 619 — 01z + 611 diag () Aw — 0y, diag(ax)a 2.11)
2.11

+ (695 — 011) diag(a) diag(x) Ax.
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Then the self-social NCPM for R = 2 is written as

p(t+1) = h(p(1)), (2.12)

and p;(t) is computed by p;(t) = 1,, — p(t).

We present below the main theorem of this section.

Theorem 2.4.2 (Dynamical behavior of self-social NCPM with R = 2) Consider
the two-product self-social NCPM, given by equations (2.11)) and (2.12)), with the param-
eters 011,012,021, 022, 01, . ..,y all in the interval (0,1), and dye > 011. We conclude

that,

(i. system (2.12)) has a unique fized point p* € [0, 1]";

(ii. the unique fixed point p* satisfies

1 012

1, <p* < —2_1.  and 2.13

2 =P = 012 + 091 ( )
1— lOéi d22 — 011

PPN S (2.14)

(71i. if doo = O11, the unique fixed point p* for system (2.12) is globally exponentially

stable; (By “globally” we mean “for any p(0) € [0,1]™.”)
(Z"U. Zf 522 > 511, and

8011022
(022 — 611)2 + 8611022

oy <

for any i €V, (2.15)

then p* is locally asymptotically stable;
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(’U. Zf 522 > 511, and
022 + 011

o < —— forany i1 €V, 2.16
35,0 — 5.1 10T O (2.16)

then p* is globally exponentially stable. Moreover, the convergence rate is upper
bounded by max; (max{ei,Kiei + K; — 1}), where ¢; and K; are defined as ¢; =

(2522 — 511)0[1‘/K2‘ and Kz = 512 -+ 521 + 5220@', respectively.

Proof: We start the proof by establishing that h is a continuous map from [0, 1]"

to [0, 1]™ itself. Firstly, since
h(x) = 615(1, — &) + 61y diag(a) Az + (1 — 6@ — 0y diag(a)x
+ (622 — 011) diag(x) diag(z) Aw,

and

(1 — (521)11 — 522 dlag(a)a: t (]. — (521 — (522)13 = On,

the right-hand side of the expression of h is non-negative. Therefore, for any x € [0, 1]",
h(x) = 0,. Secondly, recall that z_; = (Ax); = > @ijzj. That is, x_; is the weighted
average of all the x;’s except z; and the value of x_; does not depend on z; since a; = 0.
Moreover, since >, a;; = 1 for any i € V, z_; is also in the interval [0, 1]. According to

equation ([2.11)), rewrite the i-th entry of h(x) as
h(zx); = 612 + o1y + 1374,

where n;, = 1-— 512 — 521 — 5220@ + ((522 — (511)0@'33‘,7;. The maximum value of Un is1— 512 —

091 — 0110y, obtained when x_; = 1. Therefore,
nix; < max(l — 012 — 021 — 0110, 0).
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Then we have

h(fB)Z S 512 + 5110&1‘ =+ max(l — (512 — (521 — 511051‘, O) = maX(dgg, 512 + 5110&1‘) < 1.

The inequality above leads to h(x) < 1,, for any @ € [0, 1]™. Since h maps [0, 1]" to [0, 1]"
itself, according to the Brower fixed point theorem, there exists p* such that h(p*) = p*.
This concludes the proof of the existence of a fixed point.

Any fixed point of h should satisfy h(p*) = p*, i.e.,

0, = d121, + &y diag(a) Ap* + (522 — 611) diag(cx) diag(p*) Ap* (2.17)

— (512 + 521)1?* — (522 dlag(a)p*

Therefore,

p* =0, K 7, + 6 K71 diag(a)flp* + (692 — 611) Kt diag(a) diag(p*) Ap*,

where K = (012 + 091)] + d29 diag(ax) is a positive diagonal matrix. Define a map T :
R" — R" by

T(x) = 615K 11, + 011 K~ diag(a) Az + (032 — 611) K " diag(a) diag(z)Az.  (2.18)

We have that map h has a unique fixed point if and only if map 7T has a unique fixed
point. For any « and y € [0, 1], define the distance d(x,y) = || —y||s- Then ([0, 1]*, d)
is a complete metric space. According to equation (2.18), since K, diag(ar), A, 69— 011
and diag(x) are all nonnegative, for any @, y € [0,1]" and = < y, we have T'(x) < T'(y).
Moreover,

T(On) = 512K711n b On, and
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T(ln) = (Sng_lln + 511K_1a + (522 - 511)K_1a = 512K_11n + 522K_1a.

Since
012 + 0200v;
T 1n i = < ].,
(1) 012 + 021 + doov;

we have T'(1,) < 1,.. Therefore, T" maps [0, 1]" to [0, 1]". For any x, y € [0, 1]",

5 i (5 - 6 )
Ty = Tl = Ao =y )+ 2Ny
Moreover,
s =yl <O ay) max|z; — y;| = |2 = Yl
j=1
and

fee_; — yy—i| < max (maxy? —mina?, maxa? —ming?) < 2e — yll.

Therefore,
T (x); — T(y)i| < €l — yll,

(2622—011) 0y

F I e One can check that ¢; < 1 for any ¢ € V' and ¢; does not depend

where ¢, =

on the « and y. Let € = max; ¢;. Then for any x, y € [0, 1]",
1T(x) = T(Y)||o < €l|l® — yYllow with e <1,

Applying the Banach fixed point theorem, we know that the map T possesses a unique
fixed point p* in [0,1]". In addition, for any p(0), the sequence {p(t)}ien defined by

p(t+1) = T(p(t)) satisfies lim,_, p(t) = p*. This concludes the proof of statement (i).
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For statement (ii), one can check that 7 maps S = {& € R"[11, < @ < 51263521 1,} to

S itself. Since T is a contraction map, the unique fixed point p* is in .S. The concludes
the proof for equation (2.13). According to equation (2.17)), we have C;pf — C_;p*, =
d12 — 012pF, where C; = o1 + doocy; and C_; = 11 + (9o — 011)up;. Firstly we point

out that C; > C_;, since C; — C_; = 091 + (092 — 011)(1 — p;) > 0. Moreover,

o = 012 — (512 + 021 + (922 — 011)(1 — pf))pf
! - d110; + (022 — O11)up '

The right-hand side of the equation above with % <p; < 512‘53521 achieves its maximum

_1la,
value %% at p; = 3. This concludes the proof for equation ([2.14).

Now we prove statement (iii). With d1; = 099,
h(z) = + 0121, — 26122 + 61 diag(e) (Ax — ).

One can check that p* = %1n is a fixed point. According to statement (i), the fixed
point is unique. Let p(t) = y(t) + 31,. Then the two-product self-social NCPM becomes
y(t +1) = My(t), where M = (1 — 2615)] + 61, diag(a) A — 6y diag(e). For any i € V,

if 1— 2512 — (511041' Z 0, then
Z‘MZ]’ =1- 2512 — 5116% + 5116% =1- 2512 < 1;
j=1

and, if 1 — 2512 — (5110&2‘ < O, then

Z|Mzg| = 2512 + 5110(1' + 511051' —1<1.
j=1
Since p(M) < ||M||oo = max; Y7 _,|M;;], the spectral radius of M is strictly less than 1.

Therefore, the fixed point p* = %ln is globally exponentially stable.
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Now consider the case when 699 > 617. Let p(t) = y(t) + p*. Then system ([2.12)

becomes

y(t+ 1) = My + (632 — 011) diag(ax) diag(y (1)) Ay(t).

The right-hand side of the equation above is a linear term My(t) with a constant matrix
M, plus a quadratic term. The matrix M can be decomposed as M = M — 8,51 and

M = MDY 4+ M® is further decomposed as a diagonal matrix M® plus a matrix M?

in which all the diagonal entries are 0. Since

MO = (1 = 912)I — oo diag(a) + (099 — 017) diag(x) diag(flp*)

is a positive diagonal matrix, and

M(2) = 511 dlag(a)fl + ((522 — 511) dlag(a) dlag(p*)A

is a matrix with all the diagonal entries being zero and all the off-diagonal entries being
nonnegative. The matrix M = M + M® is nonnegative.

Since A = diag(NLl, NLQ, e N%L)A, the matrix M can be written in the form DA + E,
where A is symmetric and D, E are positive diagonal matrix. One can easily prove that
all the eigenvalues of any matrix in the form M = DA+ E are real since M is similar to
the symmetric matrix Dz (A + D™ E)Dx.

The local stability of p* is equivalent to the inequality p(M) < 1, which is in turn
equivalent to the intersection of the following two conditions: )\max(M ) < 14 612 and
/\min(M) > —1+4019. First we prove /\maX(M) < 146192. Since A is irreducible and ¢ = 0,,,
p* = 0,, we have Mij > 0 if and only if a;; > 0 for any ¢ # j. In addition, M; >0
for any i € V. Therefore, M is irreducible, aperiodic and thus primitive. According to

the Perron-Frobenius theorem, Ayax (M) = p(M). We have p(M) < ||M||s and for any
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eV,

Z|Ml]| =1 — 091 + (022 — 011) (i(p™; + 1) — ;).

J

According to equation (2.13)), for any i € V,

~ (612 — 021)?
1—-6 <E M| <1-6 ——; < 1+ dpo.
21 S j| il < 21 + 512+521Oé + 012
Therefore,
~ (612 — 021)?
)\mang]-_é —Z<1 (S
(M) 21 + 312 + Ou1 o + 012

Now we prove )\min(M ) > —1+ d12. According to the Gershgorin circle theorem,

Amin(M) > min(My; — > | Mj;)).
i

For any i € V,

Mii - Z|MW| =1—1091 — Oéi(522 + 511) - Oéi(522 - 511)(]?? - p*_i).

J#
According to equation ([2.14]),

1-— %Oéz' 0292 — 011
a; Oy +011

P;‘k —P*_i <

Moreover, inequality (2.15) is necessary and sufficient to

11— %Oéz' 020 — 011 1 — ;09 + 011
a; O + 011 a; 092 — 011
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Therefore,

M;; — Z|MW| > 1 — 691 — @i(G22 + 611) — (1 — ;) (a2 + 611) = —1 + duz,
JF

for any ¢ € V. That is to say, the inequality (2.15)) is sufficient for p(M) < 1, i.e., the
local stability of p*. This concludes the proof for statement (iv).

For statement (v), observe that the maps h and T satisfy the following relation:
h(x) = KT(z) + ({ — K)=,

for any « € [0, 1]", where K = (12 + d21)] + 092 diag(ex). For any x, y € [0, 1]",

h(@)i — h(y)i| = [Ki(T(x); — T(y)i) + (1 — Ki) (2 — ).

We estimate the upper bound of |h(x); — h(y);| in terms of ||z — y||» in two cases.

Case 1: 019 + 021 + 0900y; < 1 for any i. Firstly,

011 1 < 011 + 022
092 022 3022 — 011

always holds as long as 017 < dg2. Then recall that, for any x, y € [0, 1]",
T(x); — T(y)i| < el -yl

(2622—011)a;
K;

where ¢; = < 1. Therefore,

|h(x)i — h(y)i| < (Kiei + 1 — K[| — Yl[oo,
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for any ¢ € V. The coeflicient Kje; + 1 — K; is always strictly less than 1 because it is a
convex combination of ¢; < 1 and 1. Therefore, h is a contraction map.

Case 2: There exists some ¢ such that 15 + d91 + dooa; > 1. In this case, for any such

|h(x)i — h(y)i| < (Kiei + K — 1)[|2 — yl[oo-

If o < 21$%22  then we have
3022—011"

Kie; + K; —1=(3022 — 011)0; + 612+ 921 — 1 < 611 + o + d12 + 091 — 1 = 1.

Therefore, h is also a contraction map.

Combining Case 1 and Case 2 we conclude that if o; < % for any ¢ € V, then
h is a contraction map. According to the proof for statement (i), A maps [0, 1]" to
[0, 1]™. Therefore, according to the Banach fixed point theorem, for any initial condition
p(0) € [0,1]", the solution p(t) converges to p* exponentially fast and the convergence
rate is upper bounded by max; (max(ei, Kie; + K; — 1)) [ ]

The rest of this section are some remarks of Theorem m Firstly, equation ([2.13))
has a meaningful interpretation: The condition d9s > d1; implies that product Hy is
advantageous to Hi, in the sense that the nodes in state H; have a higher or equal
tendency of converting to Hy than the other way around. As the result, the fixed point
is in favor of Hs, i.e., p* > %1n.

From the proof of statement (iv), we know that, around the unique fixed point, the
linearized system is y(t + 1) = My(t), where M is a Metzler matrix and is Hurwitz
stable. Usually the Metzler matrices are presented in continuous-time network dynamics

models, e.g., the epidemic spreading model [26, 27]. In the proof of Theorem [2.4.2) (iv),

we provide an example of the Metzler matrix in a stable discrete-time system.
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Figure 2.7: This figure illustrates how the conditions for the local stability and global
stability Change with the ratio 511/522. Curve (1) is 8511522/((522)*511)2+8(511522), i.e,
corresponding to the condition for local stability. Curve (2) is (d22 + d11)/(3d22 — 011),
corresponding to the condition for global stability. Curve (3) is d11/d22.

Figure plots the right-hand sides of inequalities and , respectively,
as functions of the ratio %, for the case when 0 < % < 1. One can observe that, for
a large range of %;, the sufficient condition we propose for the global stability is more
conservative than the sufficient condition for the local stability.

One major difference between the self-social and the social-self NCPM in the asymp-
totic property is that, in the self-social NCPM, every individual’s state probability dis-
tribution is not necessarily identical. Moreover, distinct from the social-self NCPM, for
any of the four cases of G(¥) defined in Definition , the asymptotic behavior of the
self-social NCPM depends on not only the structure of G(Z), but also the structure of

the social network G(A) and the individual open-mindedness o

2.5 Non-cooperative Quality-Seeding Games

Based on the social-self NCPM given by equation ([2.4)), we propose two non-cooperative
multi-player games distinct in the pay-off functions, and analyze their Nash equilibria.

These two games share the common idea that, companies benefit from the adoption of
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their products, and thereby invest on both improving their products’ quality, and seeding,
e.g., advertisement and promotion, to maximize their products’ adoption probabilities.
All the notations in Table 2. and the previous sections still apply, and, in Table 2.2 we

introduce some additional notations and functions exclusively for this section.

Table 2.2: Notations and functions used in Section V

X(t) seeding matrix at time t. X (t) = (xiT(t))an, where x;,.(t) > 0 is
company r’s investment on seeding for individual i. @,(t) is the
r-th column of X (¢) and x®(t) is the i-th column of X (¢)

w(t) the quality investment vector at time t. w(t) € R and each
entry w,(t) > 0 is company r’s investment at time ¢ on product
H.,’s quality

Y(t) action matrix at time ¢. Y(t) = (X(t)T,w(t))T, in which any
y,(t) = (z.(t)",w,.(t))" is Player r’s action at .

c the budget vector. ¢ € R¥*! and ¢ = Oy. entry c, is the budget
limit for company r
Q. player r’s action set. Q, = {y e R&' |11, 1y <¢}
Ur(@D;7) b RET — Rog defined by ¢ (2®;7) = 2/ (€15 + 7), with
model parameter v > 0
g(w;s) g, REXY — Ry defined by g,(w;s) = (w, +¢,)/15(w +¢), where
s € RE,

Be(t) Brt) = (Bur0)... Bur(D) " = Apy(1)

u,(P) single-stage reward for player r with system state P. u,(P) = 1] p,

2.5.1 Omne-shot quality-seeding game
Game set-up and analysis

In this subsection we consider the scenario in which the companies allocate their
investments aiming to maximize their instant pay-offs. The set-up is grounded in the
natural assumption that the managers of the competing companies’ are motivated to
make investment decisions aimed at maximizing their companies’ profits during their

terms of service.
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The game is referred to as the one-shot quality-seeding game, and is formalized as
follows.

(a) Players: The players are the R companies. Each company r has a product H,
competing on the network.

(b) Players’ actions: At each stage (or time step equivalently) ¢, each company r has
two types of investments. The investment on seeding, i.e., x,.(t), and the investment on
quality, i.e., w,(t). The total investment is bounded by a fixed budget c,, i.e., 1 z,.(t) +
wy(t) < ¢

(¢) Rules: The investment on seeding changes the individuals’ product-adoption prob-
ability in the social conversion process. For any individual ¢ € V, each company r’s
investment z;.(t) creates a "virtual node” in the network, who is always adopting the
product H,. In the social conversion process, the probability that individual ¢ picks
company 7’s virtual node is 1), (w(i) (t);’y) for any ¢ € V and r € ©. The probability
that individual ¢ picks individual j in the social conversion process is then given by
<1 — Zle P (az(i); fy))&ij. The investment on quality, i.e., w,(t), influences the product-
conversion graph. We assume that the product-conversion graph is associated with a
rank-one adjacency matrix [011,,021,,...,0r1,] and §, = g.(w(t);s) is determined by
all the companies’ investments on product quality and the products’ preset qualities
¢ =(s1,...,sr)" > Or. With each company r’s action y,(t) = (x.(t)", wr(t))T at time

t, the dynamics of the product-adoption probabilities P(t) € R%R is given by

P(t+1)=H(P®),yi(t),...,yr(t)), (2.19)
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where the map H is defined by

n

Y -
H(P.y (1), ... .ye®) =a——t S ipr
( yl( ) yR( ))Zr m(z)(t)lR _|_,y kZ:; EPk

+ ot (29(1);7) + (1= ai)gr (w(t); <),

for any P € S,r(1,),i € V,and r € O©.

(d) Pay-offs and goals: At each stage t, each player r chooses its action y,(t), in order
to maximize the pay-off u,(P(t+ 1)) = 1 p,(t + 1), i.e., the total adoption probability
of product H, at the next stage.

The following theorem gives a closed-form expression of the Nash equilibrium at each
stage and the system’s asymptotic behavior when every player is adopting the policy at

the Nash equilibrium.

Theorem 2.5.1 (One-shot quality-seeding game) Consider the R-player quality-seeding
game described in this subsection. Further assume that the budget limit ¢, for any com-

pany r satisfies

Lo } (2.20)

¢r 2> max {( -1y —g, mcr

HliIli (0%}

Then we have the following conclusions:

i) for each t, there exists a unique pure-strateqy Nash equilibrium Y™*(t) = (X*(t)T, w*(t))T,
given by
* Q; QY T 2%
()= Do+ 2978 (1) + Lo — B (), 2.21
vy (1) = 2o+ 776, (1) + Y - Bl (221)
. 1 1
wit) = (1- . )(cr + 1, B, (t)y) — == (2.22)

and z%.(t) > 0, wi(t) >0 for any i € V,r € ©;

it) if (X(¢),w(t)) = (X*(t),w*(t)) for any t € N and P(0) € Syr(1,), then P(t)
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obeys the following iteration equations:

¢+ + 17TLApr(t)”y
e+ 156 +ny

p(t+1) = 1., (2.23)

for anyr € ©, t € N. As the result, p,(t) converges to (¢, +s.)/(1;(c+<)) exponentially

fast with the rate ny/(1}(c + <) + ny).

Proof:  Since we only discuss the actions at stage ¢ in this proof, for simplicity of
notations and without causing any confusion, we use z;. (w,, .,
(wr(t), 27, (t), wy(t) resp.).

If company r knows the actions of all the other companies at time step ¢, i.e., ys,

wk resp.) for ;. (t)

for any s # r, the optimal response for company r is the solution to the following

optimization problem:
ngi%géée — 1 p(t+1) .
subject to 1! +w — ¢, <0.
Let &y = @i + Bin(t)y, @ = wy + 6, and Ly(2,, w0, ) = =1, pp(t + 1) + 1,1, 0 +
W, — e, for any ¢ € V and r € ©. The solution to the optimization problem

satisfies

Lr SF£T ‘%iS
0 = — ;- Z};é + Hr = Oa (225)
Oz (Do is)?
oL D str Ws

L= —17(1, — sgr 8 . =0 2.26
e = L~ @) TS e =0 (2:26)

L

g,u: =1z, +w —c =0. (2.27)

According to the definition of Nash equilibrium, (x*, w}) solves the optimization

problem (2.24) with (xs,ws) = (2, w}) for any s # r. One immediate result is that
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1)z + w — ¢, = 0 for any r € ©. Moreover, equation (2.25) leads to:

R

and therefore,

= | . (2.28)

The right-hand side of the equation above does not depend on the product index r.
Therefore,

2
Zs#r .i';ks ZZ:I \/ Ak Zs;ﬁr Q:}:5
== = ,
Zs;&T Tig Y ori A/ ZS#T T,

for any r,7 € ©. Since the right-hand side of the equation above does not depend on 1,

we have
~ s ~ R ~4 ~
Zg;ér $is - ZS#T xis _ ZS:l xis :CZ'T‘
P i R ozx g
Zs;zé?“ Ljs ZS;AT Ljs Zs:l Ljs Ljr

for any r,7 € ©. Combine the equation above with equation ([2.28)) and then we obtain

R ~ ok ¥ v
Zs:l Lis _ & 25767" Lis = Ly _ %

R oax , i P ;
25:1 C(Ijs Qi Zs;ﬁr x]s ‘T]r Q;

Y

for any r € ©. Therefore,

7 = 17 (e — w) + 1B (07). (2.29)
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Combining equation ([2.29) and ([2.26]), we obtain
G- wl By e — w1180

* *
w; wk

=1,

for any r, 7 € © and some constant 1. Substitute the equation above into equation ([2.26)),
we solve that n = 1] a/1] (1,, — ). Therefore, we obtain equation ([2.22)), and by substi-
tuting equation (2.22)) into equation (2.29) we obtain equation (2.21)). The uniqueness of

T

the pure-strategy Nash equilibrium (X *T w) ' is implied from the computation. More-

over, equation (2.20|) guarantees ;. > 0 and w} > 0 for any ¢ € V and r € ©.

Substituting equation (2.21]) and (2.22)) into the dynamical system ([2.19)), after sim-
plification, we obtain equation ([2.23)) and thereby all the results in Conclusion ii). [ |

Interpretations and Remarks:

The basic idea of seeding-quality trade-off in the competitive seeding-quality game is
similar to the work by Fazeli et. al. [74], but, in our model, players take actions at every
step, instead of only at the beginning of the game. Moreover, our model is based on a
different propagation model.

Theorem [2.5.1] reveals the behavior of the competitive propagation dynamics under
the players’ rational but myopic actions, and provides some strategic insights on the in-
vestment decisions and the seeding-quality trade-off for short-term reward maximization.

(a) Interpretation of 5. (t): By definition, §;.(t) is the average probability, among
all the neighbors of individual i, of adopting product H, at time step t. The larger
Bir(t), the more individual 7 is inclined to adopt H, via social conversion. Therefore,
Bir(t) characterizes the current “social attraction” of H, for individual ¢, and 1) 3,.(¢)/n
characterizes the current overall social attraction of product H, in the network.

(b) Seeding-quality trade-off: According to equation ([2.22)), at the Nash equilibrium,
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the investment on H,’s product quality monotonically decreases with 1 a/n, and in-
creases with 173,. This observation implies that: 1) in a society with relatively low
open-mindedness, the competing companies should relatively emphasize more on improv-
ing their products’ quality, rather than seeding, and vice versa; 2) for products which do
not have much social attraction, seeding is more efficient than improving the product’s
quality.

(¢) Allocation of seeding resources among the individuals: According to equation ([2.21]),
for any company 7, at the Nash equilibrium at each time step ¢, the investment on seed-
ing for any individual ¢, i.e., ;.(t), increases with individual i’s open-mindedness, since
it is easier for a more open-minded individual to be influence by seeding. Moreover, by
rewriting equation (2.21)), one would observe that z.(¢) monotonically decreases with
Bir(t). A possible interpretation is that, seeding is relatively not efficient for products
with strong social attraction. Moreover, one can also observe that z7 (f) increases with
> ey @pir(t), in which > | @, is individual ¢’s in-degree, reflecting ¢’s potential of influ-
encing the others, and Z?:l a;pir(t) characterizes individual i’s potential of converting
other individuals to product H,.

(d) Nash equilibrium on the boundary: Without equation (2.20)), the right-hand sides
of equation and could be non-positive. In this case, the Nash equilibrium
would be on the boundary of the feasible action set, i.e., some of the z.(t) or w}(t) might

be 0.

2.5.2 Dynamic quality-seeding game with infinite-horizon

In this subsection we introduce a game among more farsighted players than in the
previous subsection. The players aim to maximize the accumulated pay-offs of all the

stages. We refer to this game as the dynamic quality-seeding game. The model set-up is
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the same with the game defined in the previous subsection, except for the following two
modifications:

(a) Players’ policies: Denote by ). the set of functions mapping S,r(1,) to .. Each
player r’s policy is a sequence of maps, denoted by %, = {%; ;}ien, where %, € Y, for
any t. Player r’s action at each stage t is thus given by y, = %, (P(t)) We refer to
%, = {%,.+}+en as stationary policy if %, = %, for any ¢ # 7, and simply use %, for the
map at each stage.

(b) Pay-offs and goals: Denote by v.(P;%,...,%g) the pay-off of Player r, with
initial condition P(0) = P and each Player s adopting the policy %;. The pay-off

v (P; 24, ..., %R) is given by the accumulated step pay-offs with discount, that is,
v(Pi %, k) = > elun(P(1)),
t=0

where P(0) = P and P(t + 1) = H(P(t); Z4(P(t)),...,%(P(t))) for any t € N.

This model set-up defines a non-cooperative dynamic game with infinite horizon.
One interpretation of the discounted accumulated pay-off is that, people tend to value
the immediate profit more than the future profit. An alternative explanation is that, the
discount factor e characterizes the bank interest rate 1/ — 1.

The R-tuple (%%, ..., %) is a Nash equilibrium if, for any P € S,z(1,) and r € ©,
(P B ) > o (Pt B A Y, forany % € V0 = Vo x Y, X
.... In this subsection, we limit our discussion to the case of two players. The following
theorem presents some results on the stationary Nash equilibrium and the equilibrium

pay-off function for this dynamic quality-seeding game.

Theorem 2.5.2 (Two-player infinite-horizon game) Consider the dynamic quality-

seeding game defined in this subsection, with R = 2. Define the subset of continuously
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differentiable functions V = {v 2[0,1]" - R | v satisfies properties Py and 732}, where

P1:p =X p=v(p) <v(p) for any p,p € [0, 1]",

Py v(p) is convez in p.

We conclude that:

(i. There exists a Nash equilibrium (#4*, %5"), where %7 and %5* are both stationary

policies;

(7. The total pay-off for Player 2 at this Nash equilibrium is given by vo(P; %", 45) =
v*(Pey), where €, is the second standard basis vector of R?, and v* is the unique

fized point of the map T :V — V), defined by

Tv(p) = 1Zp + e sup inf U(H(P;y1,y2)92)7
y2€Q Y1€N

where P = [1, — p,p| € R™2.  As a result, vi(P; %, %) = n/(1 —¢) —
UZ(P; @1*7%*);

(iii. The stationary Nash policies %", %" are given by

2 (P) = argmin sup o* (H(P; y1, ya)ez).

Y1€Q Y2602
%" (P) = argmax inf v* (H(P;yl,yg)eg).
y2€Qy V1€
Before proving the theorem above, we summarize Theorem 4.4 and Property 4.1

in [76], on the two-player zero-sum continuous games, into the following lemma.

Lemma 2.5.3 (Pure-strategy Nash equilibrium) Consider the two-player zero-sum

continuous game with Player 1 as the minimizer and Player 2 as the maximizer. Sup-
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pose the action sets of Player 1 and 2, denoted by 0y and )y respectively, are both
compact and convexr subsets of finite-dimension Fuclidean spaces. If the cost function
v(Yy1,Y2) : Q1 X Qo — R is continuously differentiable, convex in y,, and concave in ys,
then: (1) the game admits at least one saddle-point Nash equilibrium in pure strategies;
(2) if there are multiple saddle points, the saddle points satisfy the ordered interchange-

ability property. That is, if (y],ys) and (Y1,Ys) are saddle points, so are (yi,y2) and

(’gby;)

Proof of Theorem [2.5.2} In this proof, for simplicity, denote by p the second
column of the matrix P, i.e., P = [1, — p, p|, and correspondingly, P= [1, —p,p|. Since
Q; and Qy are compact subsets of R"*1, for any v € V, there exists (y;,ys) such that
Tu(p) =1'p+ cv (H(P; Y1, y2)62). Moreover, from the expression of map H, one can

deduce that H(P,y;,y,) satisfies

p2Xp= H(P;y1,y)es =< H(p;ylayZ)e%

for any (y1,y2) € O x Q9 and p,p € [0,1]". This leads to the conclusion that T v also
satisfies property P;. Moreover, by definition, H(P;y;,y.) is linear in P. Since v(p)
is convex in p, one can check that Tv(p) is also convex in p. Therefore, T satisfies

property P, and maps V to V itself. Now we prove that 7 is a contraction map. Define

the function norm ||-|| for any v € V as [|v|| = suppep y»|[v(p)|. For any v, 0 € V, we have

|Tv—Tiol|=¢ sup |Tv(p)—Ti(p)|<e sup sup sup |[v(p)—d(p)| < ellv—17].
pe(0,1]™ pe(0,1]™ y2€Q2 y1€Q

According to the Banach fixed-point theorem, there exists a unique v* € V satisfying

v*(Pey) =1, Pey +esup inf v*(H(P;y1,ys)er).

Y2EQ02 Y1
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According to the expression of the map H(P;y;,ys), one can check that, for any n € [0, 1],
P € Sur(1,), and y1, 91 € O,

H(Pynyr + (1= n)g1,y2)€2 2 nH(Pyy1,y2) + (1 — ) H(P; g1, 92).

Since v*(p) satisfies properties P; and Ps,
U (H(P;mys + (1= 081, y2)€2) < v (H(P;y1,y2)€2) + (1 —n)o* (H(P; 91,9s)es).

That is, v* (H(P;y1,y2)e2) is convex in ;. Similarly, we have v* (H(P;yl,y2)eg) is
concave in ys.

According to Lemma , for any P € S,gr(1,) and the two-player zeros-sum
game with cost function v* (H (P; y1,y2)e2), there exists a saddle-point Nash equilib-

rium (y5,y5) € 5 x Qy such that

v (H(P;yi,ys)e) = sup inf v*(H(P;yj,y5)ez) = inf sup v*(H(P;y1,¥ys2)€2).
(H(P;y},y5)e2) sup inf (H(P;y;,y3)e:) i, sup. (H(P;y1,y0)€2)

Therefore, there exists functions %, % such that y; = #{*(P) and y; = %,*(P) satisfy

the equation above, for any P € S, r(1,). Moreover, since

v (Pea) — oo 2", 85) = (v (H(P; 2 (P), % (P) ea)

—w(H(P, 5 (P), 25 (P): 5 %) ),

for any P € S,r(1,), and functions v and vy are bounded, we conclude that v*(Pes) =
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vo(P; %, 25%). Therefore, for any 7 € N, we have

—_

P 50) 2 30l P0) + <o (H (P9 (PO)), 2 500, 95)

t

Il
o

for any ys € €9, and, due to the fact that vy (P; %1, %) = n/(1 — ) — vo(P; %, %) for
any (%1, %), we have

[y

(P %) 2 3 Sua(P(O) + <o (H(P(r):wn, 95 (P()): 97, 95)).

t

Il
o

for any y; € ;. Since both vi(P; %, %) and vo(P; %1, %) satisfy the property of
continuity at infinity, according to the one-stage deviation principle, (#/*, %4*) is a Nash
equilibrium of the dynamics game. This concludes the proof. [ |

Theorem provides an iteration algorithm to compute the stationary Nash policy
(277, %5F), and the players’ respective pay-offs at the Nash equilibrium. A comparison
by simulation is given in Figure [2.8] between the Nash policies for the dynamic game
discussed in this subsection, and the one-shot game in the previous subsection. The
model parameters are set as n = 3, a = (0.51,0.87,0.77)", vy =5, ¢ = & = 1, ¢; = 30,
co = 60, ¢ = 0.8, and A such that (13 = Qg3 = 1, a31 = aze = 0.5, and a;; = 0 otherwise.
Simulation results show that, with the same initial condition, for the two types of games,
the players’ total pay-offs at the corresponding Nash equilibria are very close to each
other. Moreover, from Figure [2.8] we can observe that, for each of the two games, the

players’ pay-offs are almost linear to the initial average probability of adopting Hs.
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v2(P(0),97,y3)

0.1 013 015 017 019
17 P(0)es

Figure 2.8: Comparison between the Nash policies for the dynamic game discussed
in Subsection V.B (blue triangles), and the one-shot game in Subsection V.A (red
crosses).

2.6 Conclusion

This chapter discusses a class of competitive propagation models based on two product-
adoption mechanisms: the social conversion and the self conversion. Applying the in-
dependence approximation we propose two difference equations systems, referred to as
the social-self NCPM and the self-social NCPM respectively. Theoretical analysis reveals
that the structure of the product-conversion graph plays an important role in determin-
ing the nodes’ asymptotic state probability distributions. Simulation results reveal the
high accuracy of the independence approximation and the asymptotic behavior of the
original social-self Markov chain model. Based on the social-self NCPM, we propose
two-types of competitive propagation games and discuss their Nash equilibria, as well
as the trade-off between seeding and quality for the one-shot game. One possible future
work is the deliberative investigation on the Nash equilibrium on the boundary. It is
also of research value to explore the extension of the analysis in Section V.B to the case

of multiple-player dynamic games. Another open problem is the stability analysis of the
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self-social NCPM with R > 2. Simulation results support the claim that, for the case
when R > 2, there also exists a unique fixed point P* and, for any initial condition
P(0) € S,r(1,), the solution P(t) to equation (2.10) converges to P*. We leave this

statement as a conjecture.
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Chapter 3

Sequential Decision Aggregation

with Social Pressure

3.1 Introduction

3.1.1 Motivation and problem set-up

Decision making has been a classic research topic in the areas of industrial engineering
as well as social science. In a centralized decision making model, all the signals are avail-
able to one decision maker, based on which the decision maker makes a choice among some
candidate hypotheses according to some prescribed decision making policy. Numerous
centralized decision making policies have been proposed. However, an isolated decision
maker is always limited in decision accuracy and reliability. Moreover, in the context of
sociological psychology, if we consider the decision maker as an individual in a social net-
work, the individual is not likely to have access to all the disseminated information and
make decisions independently. Instead, individuals have their private information sets

and their decision making behaviors are influenced by others in the network. Therefore,
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it is of great research interest to study the group decision making problem. Recent years
have seen much research on this topic with a focus on two objectives. The first is to
establish the optimal group decision making policy. The second aspect is to build models
to describe and understand the observed sociological phenomena. This chapter aims to
understand how grouping individual decision makers and their mutual interactions affect
the accuracy and speed with which these individuals reach a collective decision.

In this chapter, we consider a system consisting of a group of sequential decision
makers (SDMs) and a fusion center. The SDMs are doing the sequential hypothesis test
between two candidate hypotheses. The fusion center collects individual decisions and
makes the global final decision. In our model, the individual SDMs make individual
decisions based on both their private observations and the decisions of other SDMs. The
latter amounts to a form of social pressure. We aim to relate the fusion center’s global
accuracy and expected decision time to the individuals’ accuracy and expected decision

time.

3.1.2 Literature Review

Group decision making has been extensively studied by numerous literature in both
the engineering community [77, [78, [79, 80, 8T, 82, B3], [84] 85 [86], and the area of soci-
ological psychology [87, [88] 89, 00, O], ©92]. In engineering areas, such as control system
and signal processing, two problems on group decision making are emphasized: 1) the
communication between the individual decision makers and the fusion center; 2) the
optimal decision making policy either in the individual level, or in the global level, to
maximize the system’s performance. In sociological psychology, researchers aim to inves-
tigate individuals’ cognitive behavior in presence of social pressure and interactions, and

the factors which influence individual or group decision making performance. Our model
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is closest to the work by Dandach et al. [84], of which the key feature is that, different
from models in [77, [78] [79, R0, 81, 82], the fusion center in [84] does not need to wait
for all the SDMs’ decisions. Our model generalizes [84] by allowing mutual interactions
among SDMs.

The process, with which a decision maker updates its posterior belief, or likelihood
function, according to the Bayesian formula and based on its private information set,
is sometimes collectively referred to as Bayesian learning, e.g. [03, 94]. Bayesian learn-
ing has been used to model the individuals’ rational behavior. As long as the signal-
generation mechanism and the decision policy are given, the individual’s decision making
probabilities at any given time can be predicted. In this chapter, we do not specify the
signal structure and decision policy for an individual SDM, but assume that, when iso-
lated, the SDM is adopting some Bayesian learning policy and its decision probabilities
at each time step are given. On the other hand, non-Bayesian learning is a wording
usually adopted to denote irrational decisions due to influence of other individuals in
the system, or any other rule of thumb [95]. In our model, the non-Bayesian learning
is characterized by the influence of social pressure. Therefore, our model can be con-
sidered as the combination of Bayesian learning [96], 83, 8] and non-Bayesian learning
processes. Examples of the combination of Bayesian and non-Bayesian learning, either
discrete-time or continuous-time, can be seen in [97, 86, O8], whereby individuals do not
make any final decision but just update their posterior belief based on accumulated pri-
vate information set (Bayesian), and combine it with the belief of their neighbors in the
network (non-Bayesian).

In our model, the way that the decisions on either hypothesis propagates in the group
through social pressure is similar to the independent cascade model [60], 99, [62] [72] [73],
A7) used in the computer science community to model the network contagion process.

However, in the independent cascade model, the individuals are infected passively via
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the activated edges while in our model the decision makers proactively pick the other

decision makers and follow the picked individuals’” decisions with some probability.

3.1.3 Contribution

As the first contribution of this chapter, we propose an algorithm to compute the
fusion center’s decision probabilities at each time step, based on the individual SDMs’
decision probabilities. By introducing the concept of system state, we simplify our model,
which is an exponential-dimension Markov chain, to a lumped polynomial-dimension
Markov chain. The computation complexity of the iterative algorithm to compute the
fusion center’s decision probabilities is also polynomial. In addition, the algorithm does
not rely on the specific decision making policies of the individual SDMs.

As the second contribution, we analyze the asymptotic accuracy and expected decision
time of the fusion center as the system size n tends to infinity. We focus on two specific
group decision making rules: the fastest rule and the majority rule. We give the exact
expressions for the asymptotic accuracy and expected decision time in these two cases.
Our model under the fastest rule has the same asymptotic performance as the model
under the fastest rule in [84]. The analysis of the majority rule is based on the result on
the mean-field convergence analysis proposed by Le Boudec et al. [I00]. The asymptotic
performance of the majority rule in our model is distinct from the model in [84] in that
our model achieves faster decision speed, while at the cost of less accuracy, with the same
individual SDMs. In addition, in our model under the majority rule, the decision speed
and the global accuracy can simultaneously be better than the isolated SDM, which is
not achieved by the model [84] without social pressure. Besides, leading order of a model
parameter, which characterizes the individual SDMs’ tendency of being influenced by the

social pressure, is analyzed for the mean-field approximation of our system.
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In addition, we present simulation work to validate the theoretical results and show
how the accuracy and decision speed of our system vary with the system size, the group
decision policies and the inclination of the decision makers to be influenced by the social
pressure. We discuss how to adjust the model parameters to trade off between the

system’s accuracy and expected decision time.

3.1.4 Organization

The rest of this chapter is organized as follows. Section 2 is the model description and
problem statement. Section 3 provides the algorithm of computing the fusion center’s
decision probabilities for finite system sizes. Section 4 is the discussion of the asymptotic
behavior as the system size tends to infinity. Some further simulation is provided in

Section 5. Section 6 is the conclusion and discussion.

3.2 Notations, Model Description, and
Problem Statement

The group decision making system discussed in this chapter consists of a fusion center
and n identical individual decision makers indexed by i € V' = {1,2,...,n}. The individ-
ual decision makers are taking sequential hypothesis test between two hypotheses, H; and
Hy, and are thus referred to as the sequential decision makers (SDMs). The SDMs make
individual decisions based on both their private signals and communication with other
SDMs in the system. The fusion center collects individual decisions and reach a global
decision according to the g-out-of-n aggregation rule. Before the model description, we

present in Table [3.2] all the notations frequently used in this chapter.
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Table 3.1: Notations frequently used in this chapter

fua(t| N1, No)

Ni(t) (No(t) resp.)

pr(t;n, q)

pe(n, q)

E[ch ‘ n, Q]

decision of SDM i after time step t. D;(t) € {Hy, Hy.Hya}

isolated SDM’s probability of deciding H,, for r € {1,0}, at time
step t, on condition that it has not decided H; or H, before time ¢
isolated SDM’s probability of not deciding H; or Hy at time step
t, on condition that it has not decided H; or Hy before time ¢
SDM’s probability of deciding H,, r € {1,0}, after time step ¢, on
condition that it has not decide Hy or Hy, and Ny (Ny resp.) SDMs
have already decided H; (Hy resp.) before time ¢

SDM’s probability of not deciding H; or Hj after time step ¢, on
condition that it has not decide H; or Hy, and N; (Ny resp.) SDMs
have already decided H; (Hj resp.) before time ¢

the number of SDMs who have decided H; (Hp resp.) up to time
step ¢

the probability that the fusion center, running the g-out-of-n rule,
decides H,, r € {1,0}, right at time step ¢

decision time of the fusion center, which is a random variable

the probability that the fusion center, running the g-out-of-n rule,
makes the correct global decision, i.e., the accuracy of the fusion
center

the expected decision time for the fusion center running the g-out-
of-n rule
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3.2.1 Behavior of an isolated SDM

Our model of the isolated SDM is the same as that studied by Dandach et al. [84].
Suppose H; and Hj are the candidate hypotheses and H,q4(t) corresponds to the state of
“not deciding either H; or Hy”. Without loss of generality, we always assume H; to be the
correct hypothesis. Denote by D;(t) the decision state of SDM i at any time ¢, thereby
D;(t) € {Hy,Hy, Hna}, and assume that the decision on H; or Hy is irreversible. We
assume that, when isolated from other SDMs, an SDM adopts some prescribed Bayesian
learning and decision policy. We do not specify what the policy is, but just assume that
the decision probabilities at each time, which can be predicted by the signal structure and

the learning and decision policy, are given as the individual decision probability sequence

(IDPS) {p1(t), po(t), pna(t) }ren, where

pr(t) =P[D;(t) = H, | D;(t — 1) = Hya] for any r € {1,0}, and 51)

Pud(t) = P[D;(t) = Hua|Di(t — 1) = Hya).
Ezample: The Sequential Probability Ratio Test (SPRT) is a type of discrete-time
Bayesian learning and decision policy, which achieves the minimum expected decision
time for any prescribed error rate [93]. For an SDM running the SPRT, a signal S;

is received at each time step ¢, and, based on the accumulated information set I, =

{s1,82,..., 8}, the SDM calculate the log-likelihood function

_ P[Sl:31752:527---7575:St|6:Hl]
A(t)—log (P[SI:31752:327‘-'aSt:3t|0:H0] 7

according to the Bayesian formula, where 6 denotes the underlying hypothesis. Prescribed
thresholds n; > 0 and 79 < 0 are used to manipulate the trade-off between decision
accuracy and speed. Whenever A(t) > n; (A(t) < no resp.), the SDM decides Hy (Hy

resp.) at time step ¢. Given the signal structure, i.e., fgo—pm,(s) and fsj9=n,(s), and

97



Sequential Decision Aggregation with Social Pressure Chapter 3

0 10 20 30

(a) p1(t) and po(t) (b) Fi(t) and Fy(t)

Figure 3.1: IDPS for an SDM implementing an SPRT. In Figure the blue
solid curve represents p; (t) while the red dash curve represent po(t). In Figure
the blue solid curve represent Fi(t) = P[D;(t) = Hi, D;(t — 1) = Hygl, i.e., the
probability of deciding H; right at time step t. The red dash curve represents
Fy(t) =P[Di(t) = Ho, Di(t —1) = Hpql-

the thresholds n; and 79, the IDPS, i.e., the probabilities of deciding H; or Hy at each
time step, can be predicted before the SPRT process occurs. We refer the computation
algorithm to Appendix B in [84]. Figure is an example of the IDPS for an SDM
running the SPRT with n; = 2.94 and 19 = —2.94. In this case the false-alarm and

mis-detection probabilities are both 0.05.

In our model the IDPS of an isolated SDM are assumed to have the following property.

Assumption 3.1 (Isolated SDMs’ almost-sure decision and decision speed) The
isolated SDM, with the IDPS {p1(t), po(t), pua(t) }ren, makes the final individual decision

almost surely, that is, ], pna(t) = 0. Moreover, the isolated SDM has finite expected

decision time, i.e.,

pa(1) +o() + 3 11 + o) [T puar)) < o0

t=2
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3.2.2 The n-SDM system

By n-SDM system we mean the system consisting of one fusion center and n identical
and interacting SDMs. The behavior of the individual SDMs is described by the following

assumption.

Assumption 3.2 (Individual decision making behavior in a n-SDM system) In
the n-SDM system, at each time step t, the following process occurs independently for

any SDM i+ € V who has not made the final decision between Hy and Hy:

(i. SDM i first runs the sequential hypothesis test as an isolated SDM, i.e., SDM i

decides Hy (resp. Hy) with the probability pi(t) (resp. po(t));

(i. If no final decision is made in Step (i, SDM i will randomly pick one SDM j (can
be SDM i itself) in the system and follow SDM j’s previous decision state, i.e.,

D;(t — 1), with some probability .

In our model the more SDMs who have already made the decision H; (resp. Hy),
the higher probability that the remaining SDMs decide H; (resp. Hy) at the current
time step, that is, those SDMs who have made the final decision form the social pressure,
which pushes other SDMs towards the final decisions. The probability S characterizes
the inclination of the SDMs to be influenced by the social pressure. The model proposed
by Dandach et. al. [84] is a special case when = 0. Denote by f,.(t| Ny, Ny), r € {1,0},
the probability that an SDM in the n-SDM system decides H,. at time step ¢, on condition
that it has not made the final decision up to time ¢t — 1 and N; (resp. Ny) numbers of
SDMs have decided H; (resp. Hp) before time t. Denote by fna(t | N1, No) the probability
that an SDM does not make the final decision at time step ¢, on condition that it has

not made the final decision up to time ¢t — 1 and N; (resp. Ny) numbers of SDMs have
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Di(t+1)=Dy(t)

social | N
<
pressure | s\

|
ys
(=)

(a) The n-SDM system (b) Individual SDM’s behavior at step t+1

randomly

| fusion pick SDM j

center

Figure 3.2: The first diagram shows the structure of the n-SDM system. The con-
nections between the SDMs are bilateral with self loops. Therefore any SDM can be
picked by any other SDM or itself. Once an individual final decision is made, the
decision is sent to the fusion center. The second diagram describes how an SDM in
the n-SDM system makes the individual decision at time step ¢ + 1.

decided H; (resp. Hy) before time t. According to Assumption

N,
fr(t|N1, No) = p,(t) + ﬁpnd(t)W for r € {1,0}, and

N, =N N+ N
um_mg),
n n

(3.2)
FaatIN1, No) = pra(t) (

One can easily check that fi ([N, No) + fo(t|N1, No) + fua(t[N1, No) = 1 for any ¢, Ny
and Nj.

Denote by Nj(t) (resp. No(t)) the numbers of SDMs who have decided H; (resp.
Hy) up to time step t. The fusion center receives each final individual decision from the
SDMs and records Nj(t) and Ny(t). The global decision is made based on N;(t) and

No(t), according to the g-out-of-n rule defined below.

Definition 3.2.1 (The g-out-of-n rule) In an n-SDM sequential decision aggregation
system, the fusion center running a g-out-of-n rule decides Hy at time step t whenever
Ni(t) > No(t) and Ny(t) > q, where q is a prescribed threshold. The global decision H
is made if No(t) > Ny(t) and Ny(t) > q.
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Figure gives a visual depiction of the n-SDM system structure and the individual
SDMs’ behavior.

3.2.3 Problem Statement

With the n-SDM system described in Section 2.1 and 2.2, we aim to solve the following

problems.

Problem 1 (Finite-system behavior) For the fusion center running the g-out-of-n
rule in a system with finite SDMs, given the IDPS {pi(t),po(t), pna(t) }ten, compute the
probabilities pi(t;n, q), po(t;n,q), pe(n,q), and the expected decision time E[Ti.|n,q], as
defined in Table 1.

Problem 2 (Asymptotic behavior) For the fusion center running the g-out-of-n rule
mn a n-SDM system, given the IDPS, compute the limit of the fusion center’s accuracy

and expected decision time as n tends to infinity, especially in the cases when q =1 or

q=[n/2].

3.3 The Behavior of the Fusion Center in a Finite

n-SDM System

In this section we solve Problem 1, i.e., the fusion center’s behavior in a system
with finite SDMs. Firstly, we state a proposition on the almost-sure decision and finite

expected decision time for the fusion center.

Proposition 3.3.1 (Almost-sure decision and finite expected decision time) Consider

an n-SDM system, assume that for the isolated SDM, there exists some t € N such that
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pi(t) # 0, po(t) # 0 and Hi_:11 Pna(T) # 0, then the fusion center has the almost-sure

decision property if and only if
(i. the isolated SDMs have almost-sure decision property;
(ii. the system size n is an odd number;

(#1i. the threshold q satisfies 1 < g < [n/2].

Moreover, in addition to the conditions (ii and (iii, if the isolated SDMs have finite

expected decision time, then the fusion center also has finite expected decision time.

Proof: We first prove the contrapositive of the statement that the almost-sure decision
of the fusion center leads to the conditions [(i} [(il, and [(iil

(1) If the individual SDMs do not have the almost-sure decision property, i.e., pyq =
[1;—; Pna(t) # O, then the probability that none of the SDMs makes any final decision in
the n-SDM system is equal to pl;. Therefore, the probability that the fusion center does
not make any global decision at all is no less than pJ; > 0.

(2) If n is even, the event “no SDM has made any final decision after time ¢ — 1, at

time £, n/2 SDMs decide H; while n/2 SDMs decide H," has probability

- n
t—1

n - .
n )" 2po(£)"* > 0.
gp a(7) (n/z)pl( )"*po )
If this event occurs, then the fusion center will never make a global decision.

(3) If ¢ > [n/2], then consider the following event: “No SDM has decided up to
t—1. At ¢, [n/2] SDMs decide H; while |n/2] SDMs decide Hy.” This event has the

probability

[T (0t =
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In this case, neither N7 nor Ny has a chance to exceed the threshold, therefore the fusion
center has a non-zero probability of making no global decision. Combining (1), (2) and
(3) we conclude that the fusion center having the almost-sure decision property implies
conditions , , and

Next, we prove that conditions , and lead to the almost-sure decision of
the fusion center. Before the argument, we introduce some notations used in this
proof. Define the random variable T; as the decision time of SDM ¢ when it is iso-
lated, and define Ti(n) as the decision time of SDM ¢ in an n-SDM system. Define T,
as max; Ti(n), i.e., the time instant when the last SDM makes the final individual de-
cision. By definition, the fusion center’s decision time must be prior or equal to e
Let Tg) = (Tl("), - ,T( n) ﬂ(ﬂ, - ,TT(Ln)), i.e., the (n — 1)-tuple of the decision time
instants of all the SDMs except SDM i. Denote by w one possible “trajectory” of the n-
SDM system, i.e., a sequence of 2-tuples {(nl(t), no(t)) }teN, where n4(t), no(t) € N and
n1(t) + no(t) < n for any ¢ € N. For simplicity, let f,(t|w) = fo(¢t|n1(t — 1), n(t — 1))
with the right-hand side of the equation defined by equations for « =1, or 0, or
“nd”. Denote by €2 the set of all the possible trajectories, i.e., w € 2.

Due to equations (3.2), fi(t|w) > pi(t), fo(t|w) > po(t) and fua(t|w) < pa(t) for

any w € (). Since

PT" < 00| T < o0] = Y PIT" < 00w, T < oo]Plw | T < 0]
weN
_Z 1—andt]w w\T(n < o9
weN
>3 1—Hpnd Plw|T™ < o0] = P[T} < o0] = 1,
weN
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we have

P[T), < o0] = P[T{" < 00, T} < 00,..., T < o0] >

max

P[T; < o0] = 1.

—.

=1

Therefore, ]P’[T max < 00| = 1. Due to conditions |(ii| and , the g-out-of-n rule must have
been triggered no later than .. Therefore, the fusion center makes the global decision
almost surely.

We now prove the finite expected decision time for the fusion center. Conditions

and lead to the inequality Tre < Tk < T\ + T8 + o + T for any w € Q.
Moreover,

E[T™)] ZIP T > ¢ = ZZPT(">t|w —1+ZZandt|w

t=1 we t=2 weQ =1

<1+ ZZHpnd(t)P[w] =1+ iﬂ)m > 1] = E[T}].

t=2 weQ =1 t=2

Therefore, E[T}. | n, q] < nE[T;] < oo for any 1 < g < [n/2]. This concludes the proof. B

In the rest of this section, we quantitatively analyze the behavior of the fusion center
in an n-SDM system, given the IDPS of the isolated SDM. We compute the probabilities
of deciding either H; or H, at each time step, the accuracy, and the expected decision
time of the fusion center.

1) The n-SDM system as a lumped Markov chain: The n-SDM sequential decision
aggregation system is a 3"-state Markov chain, since D;(t) € {Hy, Hy, Hyq} for any i € V
and at any time step the decision of any SDM only depends on the states of all the SDMs
after the previous time step as well as the IDPS. Instead of focusing on any individual
SDM’s decision state, we discuss the time evolution of N;(t) and Ny(t). Then the system

-state Markov chain.

is reduced to to w
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Definition 3.3.2 Consider the n-SDM sequential aggregation system. Define the system
state after time step t by N (t) = (Ny(t), No(t))T and define p(t, N1, Ny) as the probabil-
ity distribution of the system state after time t. Define T'(t, ANy, ANy | Ny, No) as the
state transition function, which correspond to the probability of the following event: “on
condition that Ny SDMs have decided Hy and Ny SDMs have decided Hy after time step
t—1, ANy SDMs decide Hy and ANy SDMs decide Hy at time t.”

The computation algorithm of the system’s state probability distribution at any time
t is given by the following proposition. The proof is a straightforward application of

probability theory and thus omitted.

Proposition 3.3.3 (System state probability distribution) The probability distri-

bution of the n-SDM system state is given by the formulas below:
(Z Fort = 1, p(l, Nl, N()) = F(l, Nl,NO | 0,0),’

(ii. For t > 2, the probability distribution of the system state is computed from the

distribution at last time step as

N1 No

p(t7N1aN0) = Zzp(t - 1al7k:)r(t>Nl - l>N0 —k | lak)

=0 k=0

Here, the state transition function I'(t, ANy, ANy | N1, No) is computed by

— Ny — N, — N1 — Ny — AN
F(t, ANl,ANO ‘ Nl, Ng) :<n ! O> (n ! 0 1)

AN, AN,
x fENU N, No) £ (4] Ny, Np) frg Vi NomAN=aNo (| Ny NG ),

where t € N and 0 < AN; + ANy + Ny + Ny < n.

Figure illustrates the evolution of the probability distribution of the system state

for a group of 9 SDMs in which all the SDMs are running the SPRT as shown in Fig-
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Figure 3.3: The time-evolution of the state probability distribution of a 9-SDM system
with social pressure. The IDPS for individual SDMs are as shown in Figure [3.1

ure 3.1 Initially, (N1, No) = (0,0) is the only state with non-zero probability and then
the states with non-zero probability spread out and finally aggregate on the diagonal line

N1+N0:9.

2) Computation of p1(t;n,q) and po(t;,n,q): With the n-SDM system’s state proba-
bility distribution at any time ¢, i..e, p(t, N1, Ny), we can compute Py (t;n, q) and po(t;n, q)
defined in Problem [T}, that is, the probabilities that the fusion center running the g-out-
of-n rule makes the global decision H; and Hj respectively right at time step t. Notice
that, in the sequential decision aggregation process for 1 < ¢ < [n/2], the cancel-out case
may occur. The cancel-out case in which the fusion center finally decides H; corresponds

to the intersection of the following three events:
(i. Ni(7* —1) < q and Ny(7*) > ¢ for some 7* < t;
(ii. For 7 € {7*, 7%+ 1,...,t — 1}, N1(7) = No(1) > ¢;
(iii. After time step t, Ny(t) > Ny(t) > q.

If the notations Ny (t) and Ny(t) are exchanged, the intersection of events (i), (ii) and (iii)
corresponds to the cancel-out case in which the fusion center decides Hy. An example

of the cancel-out case is illustrated by Figure [3.4. Based on whether the cancel-out case
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(R CHE THE THE

yr=t—1 (d)r=t

T=7"-1

Figure 3.4: The cancel-out case in which the number of votes for H; and Hy both
exceed the threshold ¢ at time 7" and remain equal till t — 1. At time ¢, the vote for
H; outnumbers Hy and the fusion center decides H7 at time ¢.

may occur, we discuss the computation of p;(¢;n,q) and po(t;n,q) in two cases, Case 1:

1 <q<[n/2] and Case 2: [n/2] < g <n.

Proposition 3.3.4 (Computation of p;(t;n,q) in Case 1) Consider the n-SDM se-
quential decision aggregation system with the fusion center running the g-out-of-n rule
and the individual SDMs with the IDPS {pi(t), po(t), Pna(t) }ten. For 1 < q < [n/2], the

probability pi(t;n,q) defined in Problem 18 computed by the following formulas:

(i. Fort=1,
pi(lin,q) = > p(1, Ny, No); (3.3)
Ni=q No=0
(ii. Fort > 2,
qg—1 g—1 n—Il—k m
m(t:n,q) = plt—1,0Lk) > > T(t, AN, ANy |1 k)
1=0 k=0 AN;=q—1 ANy=0
[n/2] n—2s m* (34)
+ ) Peven(t — 1,5) T(t, ANy, ANy | s, s)
s=q AN1=1 ANy=0

where m = min{N; — 1,n — N1}, m = min{AN; +1 —k —1,n—1 —k — AN} and

m* = min{AN; — 1,n — 2s — ANy}. The probability p(t — 1,1, k) for any t € N and

0 <Il+k <n is computed by Proposz'tz'on and the function peyen(t,s) for any t € N
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and q < s < |n/2] is given by the following iteration formulas:
(Z.' FO’r’t = 1? pEVen(t7 8) :p(17s7 8)7‘

(ii. Fort > 2,

H
5
L

q— s
Deven(t, 5) = p(t—1,1,k)I(t, s—1, s—k |1, k)—i—z Peven(t—1, R)['(t, s—h,s—h| h,h).

l 0 h:q

I
o
e
Il

(3.5)

Proof: First we define peven(t, s) as the probability of the intersection of the following

tree events:
(i. N1(7) < g and Ny(7) < ¢ for some 7 < t;
(ii. For 7 € {7, 7+ 1,...,t}, Ni(1) = No(7);
(iii. After time step t, Ni(t) = No(t) = s > q.

Then equation is a straightforward application of the total probability formula. For
t =1, Peven(l, s) is equal to p(1,s,s) by definition. For the case ¢ > 2, the first term of
the right-hand side of equation (3.5]) corresponds to the probability that both Ny(t — 1)
and Ny(t — 1) are under the threshold ¢ and Ny (t) = Ny(t) = s > ¢q. The second term is
the probability that, for any 7 < ¢ — 1, Ny(7) and Ny(7) remain equal if either of them
exceeds the threshold ¢, and Ny (t) = No(t) = s > q.

With the computation algorithm of peyen (£, s), now we derive the formula for p; (¢;, n, q).
If the fusion center decides H; at ¢t = 1, then Ny(1) > ¢ and N;(1) > Ny(1). Since all
the system states (N1(1), No(1)) are mutually exclusive, the probability that the fusion
center decides H; at t = 1 is the sum of all the p(1, Ny, Ny) satisfying N; > Ny and
N; > q. This concludes the proof of equation (3.3]).

For t > 2, first we consider the case when the cancel-out case does not occur. The

probability of the intersection of the following two events:
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(i. At time t—1, both Ny(t—1) and Ny(t —1) are below the threshold. The probability

of this event is >0 S°9 1 p(t — 1,1, k);

(ii. On condition that after time ¢ — 1, the system is in some state (I,k) below the
threshold, i.e., [ < q and k < ¢, the votes for H; outnumbers the votes for Hy and

exceeds the threshold at time step t,

is equal to
n—l—k

> Zm: I(t, ANy, ANy | 1, k).

AN =q—1 ANg=0
Applying the total probability formula we obtain the probability that the fusion center
decides H; at t when the cancel-out case does not occur, which is the first term of the
right-hand side of equation (j3.4)).

In the cancel-out case, the g-out-of-n condition is not triggered before ¢. After time
step t — 1, both Ny(t — 1) and Ny(¢t — 1) must have exceeded the threshold g and they are
equal to s with probability peven(t — 1, ) for any s € {¢,¢+1,...,|n/2]}. On condition
that Ni(t — 1) = Nyo(t — 1) = s > ¢, the probability that Ny(t) > Ny(t) > ¢ is equal
to 22}21821 ZZL;\,O:O ['(t, ANy, ANy |s,s). According to the total probability formula, we
obtain the second term of the right hand side of equation . This concludes the
proof l

The computation of p;(¢;n,q) in the case [n/2], in which there is no cancel-out case,
is given by the proposition below. The proof is a straightforward application of the total

probability formula.

Proposition 3.3.5 (Computation of p,(t;n,q) in Case 2) Consider the n-SDM se-
quential decision aggregation process with the fusion center running the g-out-of-n rule.

For [n/2] < q <mn, the probability p,(t;n,q) is computed by the following formulas:
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(i. Fort=1,
n n—N;
(tng) = Z 1, Ny, No); (3.6)
Ni1=g No=
(ii. Fort > 2,
q—1 n—q n—Il—k m
p(t:n,q) = p(t—1,1,k) > T(t ANy, ANy |1, k), (3.7)
=0 k=0 ANg=q—l ANg=0

where m=n—1—k — ANj.

To compute po(t;n, q) we just need to switch all the indexes corresponding to H; and

Hy in equations , , , and .

3) Accuracy and expected decision time of the fusion center and the overall compu-
tation complezity: With the algorithm of computing p;(t;n, q) and po(t;n, q), the fusion

center’s accuracy and expected decision time is given by the following equations:

— ipl(t;n7Q)7 (38)

and

BT |n,q) = > t(pi(t;n, @) + po(t; n, q)). (3.9)
t=1

The state transition function I'(t, ANy, ANy | N1, Ny) is given by a closed form with
the computation complexity O(1). According to Proposition , the computation com-
plxity for p(t, N)1, Ny) is O(1) for ¢ = 1 and O(n?) for t > 2. Knowing p(t—, Ny, Np)
for any 0 < Ny < n, 0 < Ny <nand 0 < Ny + Ny < n, the algorithm of comput-
iNg Peven(t, s) has the complexity O(n?). Therefore, according to Proposition and

Proposition we know that the computation complexity for p;(¢;n, ) is O(n°) when

110



Sequential Decision Aggregation with Social Pressure Chapter 3

1< ¢ < |n/2] and is O(n*) when [n/2] < ¢ <n.

3.4 Asymptotic Behaviors of the g-out-of-n Decision
Aggregation System

By asymptotic behavior we mean the behavior of the fusion center in the n-SDM
system as n tends to infinity. In this section, firstly we relate the accuracy and the
expected decision time of the fusion center to the IDPS of the isolated SDMs, particularly
for two special g-out-of-n rules: the fastest rule with ¢ = 1 and the majority rule with
q = [n/2]. Then we discuss the influence of the parameter S on the sequential decision

aggregation system as n — oo.

3.4.1 The fastest rule

According to Proposition IV.1 in the paper by Dandach et. al. [84], which is a n-
SDM system with § = 0, the asymptotic accuracy and expected decision time of the
fusion center running the fastest rule only depends on the first time instance when either
p1(t) # 0 or po(t) # 0. The following theorem states that the n-SDM system under the

fastest rule leads to the same result for any 0 < g < 1.

Theorem 3.4.1 (Asymptotic behavior for the fastest rule) Consider the sequen-
tial decision aggregation system in which the fusion center is running the fastest rule.

Define the earliest possible decision time t as

t =min{t € N|pi(t) # 0 or po(t) # 0}.
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Then the asymptotic accuracy of the fusion center satisfies

.

17 prl(f) >p0(ﬂa

lim pe(n, 1) =40, if pa(B) < po(?). (3.10)

n—oo

\1/2, ifpl(z) :po@,

and the asymptotic expected decision time satisfies

lim E[Tg|n, 1] = t. (3.11)

n—00

Proof: In this proof it is convenient to modify our notation as follows: several systems
with different IDPS are indexed by subscripts. Denote by 5™ the n-SDM system with
index r and the IDPS {p}(¢), pi(t), phy(t) }ten. Notice that here r is the system index
rather than the power. The accuracy and expected decision time for the fusion center
are denoted by pc(Sﬁn), q) and E[T; fC|S£n), q] respectively.

We introduce three different n-SDM systems. Define

(i. S™™ as the n-SDM system with IDPS {pl(t), ps(t), pL4(t) e, for which the earliest

possible decision time { is defined by ¢ = min{t € N|pi(t) # 0 or p}(t) # 0};

(ii. Sén) as the n-SDM system with 5 = 0, i.e., no social pressure, and the corresponding

IDPS satisfying

pi(t) = pi(t) and p§(t) = py(t), for Vt < ¢,

pit+1)=1and pi(t+1) =0,

pi(t) =pi(t) =0 for Vt >t + 1;

\
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(iii. Sén) as the n-SDM system with 5 = 0 and the IDPS satisfying

pi(t) = pi(t) and p(t) = py(t), for vt <1,

pit+1)=0and pi(t+1) =1,

p3(t) = pd(t) = 0 for V¢ > T+ 1.

First we compare the accuracy of S&n) and the accuracy of Sé") when both are running
the fastest rule. The systems S\™ and S{" are identical for ¢ <  since the social pressure
terms Bpna(t)N1(t)/n and Spna(t) No(t)/n remain zero. For system Sé"), at time step t+1,
all the SDMs who have not made final individual decisions will decide H;. Therefore,
p(S™ 1) < p.(S7.1). Applying the same argument we have p.(S{"”,1) < p.(5™, 1).

Moreover, according to Proposition IV.1 in [84], as n tends to infinity,

. ™) 1y 1 (n)
Tim pe(S57,1) = lim pe(557,1)
(

1, if pi(t) > py(t),
if pi(t) < py(t),

if p1(t) = py(?).

(3.12)

0,
1
(2’

This leads to equation ([3.10]).

Now we discuss the asymptotic expected decision time. If p}(t) +pi(f) = 1, obviously
the fusion center’s expected decision time would be ¢ for any n. Suppose 0 < pi(t) +

pb(f) < 1. Define another system S\ with the IDPS {p4(t), pA(t), piy(t) }ien satisfies

pzll(f) :pg<t_> = 07 pﬁd(a = 17 and

pi(t) = pi(t), p(t) = po(t), paa(t) = pha(t) for any t #1,
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and the fusion center in system Sin) makes the global decision after the SDMs have
decided H; or Hy. As long as pi(f) + pj(f) < 1, the isolated SDMs with the IDPS
{p1(t), pa(t), p4(t) e still have almost-sure decision and finite expected decision time.

For system S\,
BTt | S, q = 1] = tP[Tre = 1] SV, q = 1|+ B[Tr | S\, g = 1, Ty > {P[Tr. > £ S™, ¢ = 1.
By definition and according to the proof of Proposition [3.3.1]

E[Tk | S\, q=1,T. > § < E[T™ | S] < nE[T;|S{")].

max

Moreover, according to the proof of Proposition IV.1 in [84], the term P[Ty | S\™, ¢ = 1]
is in order O(e) for some 0 < € < 1 and lim,, o P[Tt. = 1| S%n), q = 1] = 1. Therefore,

lim E[T} | S™, g =1,T;c > P[T > | S, ¢ =1 =0, and lim E[T}|S™,q=1] =%
1 1

n—oo n—o0

3.4.2 The majority rule

Before analyzing the accuracy and expected decision time of the fusion center un-
der the majority rule, we introduce a main result in the paper [100] on the mean-field
convergence for systems with interacting objects, which can be applied to our model.

Consider a discrete-time Markov chain with n individuals. Denote by X;(t) the state
of individual 7 after time step ¢t. The individual states set is identical for all the individuals
and is denoted by © = {1,2,...,5}, i.e., X;(t) € © for any i € {1,2,...,n} and t € N.

Define the occupancy measure M™(t) € RS by MI(t) = L3, 1ix, ()=} for

T on
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any r € ©. Define the memory R™(t) as some d-dimension row vector, which is
updated according to some continuous function g : R'¢ x RS — R4 that is,
RM™(t +1) = g(R™(t), M™(t)). Denote the individual state transition matrix by

KM (t) = (KW(t)) g, o that is,

SxS?

K1) =PIX" (t4+1) = m| X[ (1) = ],

rm

and K2 is an explicit function of RM(t), ie., KM(t) = (KT(ZL)(R(")(IS)))SXs. We

rewrite [I00, Theorem 4.1] as follows.

Lemma 3.4.2 (Mean-field convergence) Consider the discrete-time Markov chain

described above. Assume that,

(i. For any r,m € O, as n — oo, K,gfrz(r) converges uniformly in r € R to some

K, (7), which is a continuous function of r;

(5. The vectors M™(0) and R™(0) converge almost surely to some deterministic

limits p(t) and p(0).

Then for any fized t, almost surely,

lim M®™(t) = u(t), and lim R™(t) = p(t),

n—oo n—oo

where p(t) and p(t) are defined by the following iteration formulas:

pt+1) = pt)K(pt), and p(t+1)=g(p(t),u(t+1)).

In the lemma above, the deterministic vector p(t) is referred to as the mean-field limit

of M™(t) as n — co. Now we apply this lemma to our model. Define the occupancy
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measure M ™ (t) by

M(”)(t) — (N;(t)’Nl;ft)’”—Nl(iz—No(t)> 7 (3.13)
and define the vector sequence {(t)}sen by
p(0) = (0,0,1),
pa(t 4 1) = pa(t) + pa(t) (p2(t + 1) + Bpualt + (1)),
(3.14)

pa(t + 1) = pa(t) + ps(t) (po(t + 1) 4 Bpna(t + 1)pa(t)),

p3(t+1) =1 —p(t+1) — po(t +1).

The following proposition states that, as n tends to infinity, the occupancy measure

M ™ (t) in our model converges almost surely to the mean-field limit ().

Proposition 3.4.3 (Mean-field convergence in the n-SDM system) Consider the
n-SDM sequential decision aggregation system. For anyt € N, as the system size n tends

to infinity, the occupancy measure M™(t), defined by equation (3.13)), satisfies

lim M®™(t) = u(t) almost surely, (3.15)

n—oo

where p(t) is defined by equation (3.14)).

Proof: Define the memory vector by

ROV(t) = (t, M (£), M (1)) = (t, M) No_(t)) .

n n
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Therefore the function g = (g1, g2, g3) becomes:

g (R (1), M™(t+1)) = R™(t) + 1=t + 1,

g2 (R™ (1), M™(t + 1)) = M{"(t +1) = —Nl(t; 2
g3 (R™ (1), MM (t + 1)) = M{”(t +1) = —NO(’:F 2

Let the individual states set be © = {1, 2,3}, where the indexes 1, 2 and 3 correspond

to Hy, Hy and H,q respectively. Define the matrix K (r) by

Kn(r) =1, Kp(r)=0, Ky(r)=0; Kx(r)=0, Ksp(r)=1 Ky(r)=0;
K31(r) =pi(r1 + 1) + Bpua(ry + D)ra,  Kso(r) = po(r1 + 1) + Bpna(r1 + 1)73,

Ks3(r) =1 — Ks(r) — Ksa(7).

Based on Assumption and equations and , in our model, the individual
state transition matrix with any memory 7 satisfies K™ (r) = K(r), for any n € Z,.
Moreover, initially M ™ (0) = p(0) and R™ (0) = p(0). According to Lemma , we
obtain equation (3.15)). W

Having completed all preparations, we now present the theorem on the asymptotic

accuracy and expected decision time of the fusion center running the majority rule.

Theorem 3.4.4 (Asymptotic behavior for the majority rule) Consider the n-SDM
sequential decision aggregation system with the IDPS {p1(t), po(t), pna(t) }ten known. De-

fine the vector sequence {p(t)hen by equation (3.14). As the system size n tends to
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infinity, the accuracy of the fusion center satisfies:

p

1, if limy oo pa () > 1/2,

lim pe(n, [n/2]) = 10, if Hmy oo p1a(t) > 1/2, (3.16)

1/2, if AT € N, s.t. pi(T) = po(T) = 1/2.
\
As for the asymptotic expected decision time,

(i. if imy_yo 1 (t) > 1/2 or limy_yoo pa(t) > 1/2, then
tey 1< lim BlTic|n,[o/2]] < 1.,

wheret, 1 = min{t € N| max (1 (), po(t)) > 1/2} and ter = max{t € N| max (p1(t), p2(t)) <
1/2}. Particularly, if there does not ezists any T € N such that uy(T) = 1/2 or
w2(T) = 1/2, then lim,, o E[Tt. | n, [n/2]] = to1s

(ii. if there exists T € N such that uy(T) = pue(T) = 1/2, then
lim E[T |n, [n/2]] = t.1,
n—o0 2

where t1 = min{t € N|p;(t) = po(t) = 1/2};

(ii. if for anyt € N, ui(t) < 1/2 and po(t) < 1/2, while limy_, o0 p11(t) = limy_ o0 pio(t) =
1/2, then the fusion center’s expected decision time tends to infinity as n — oo

almost surely.

Proof: First we discuss the asymptotic accuracy. If lim; o p1(¢) > 1/2, there exists

t € N such that p(f) > 1/2. Since M™(t) converges to p(t) almost surely, Ml(") (t) =
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Ny (t)

> 1/2 almost surely as n — oo. According to the majority rule,

lim P[The fusion center decides H; no later than |n, [n/2]] =1,

n—oo

that is, p.(n, [n/2]) — 1 asn — oco. Following the same argument we have p.(n, [n/2]) —
0 when limy o po(t) > 1/2.

Now consider the case when there exists 7" € N such that ui(T) = (7)) = 1/2.
Define ¢ = min{t |y (t) = pa(t) = 1/2}. According to equation (3.14), for any ¢ < ¢,
pi(t) < 1/2 and ps(t) < 1/2, which implies Ny(t)/n < 1/2 and Ny(t)/n < 1/2 almost
surely as n — oo. Therefore, no global decision is made before ¢ and after time step ¢
the fusion center decides H; with probability 1/2 due to the symmetry.

Now we prove the results on the asymptotic expected decision time. First, we discuss
the case when limy o p9(t) > % The case limy_,o pa(t) > % follows the same line of

argument. For any ¢ <t_1, /i (t) < %, po(t) < 3, and therefore

. Ni(t) 1
Pl == = () < 5] =1
The fusion center makes no decision before ¢_ 1+ 1, almost surely. For t =t 1 pi(t) > %,
p2(t) < 3. We have

1
dm — == =mllsy) > 5] =1

P [ Ni(ts1) 1
Therefore, almost surely, ¢_ 1+ 1 <Ti <t 1. Particularly, if there does not exist any T’
such that py (7)) = 1/2, then ter+1=t.1. This concludes the proof for Case (i.
In Case (ii, when ,ul(t%) = ,ug(t%) = Lforanyt < t1, we have pi(t) < 5 and po(t) < 3.
Therefore, as n tends to infinity, the fusion center makes the global decision at t% almost
surely. The asymptotic expected decision time is ¢ 1.

In Case (iii, since Plim, oo N1(t)/n = p(t) < 1/2] = Plim,—00 No(t)/n = pa(t) <
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1/2] =1 for any t € N, the fusion center almost surely makes no global decision at any

time. Therefore, lim,, o E[T | n,q] = co. W

3.4.3 Analysis of the influence of parameter [

According to Proposition [3.4.3] gy () (u2(t), ps(t) resp.) is a mean-field approxima-
tion of Ny(t)/n (No(t)/n, (n—Nyi(t)—No(t))/n resp.) for large n. The parameter /3 plays
an important role in the iteration of p(¢). In this subsection we discuss the dynamical
behavior of u(t) as a function of the parameter f.

1) 8=0: The case 5 = 0 corresponds to the system without social pressure. In this
scenario the n-SDM system is degenerated to the model discussed in [84]. Denote by

v(t) = (1(t), v2(t), v5(t)) the solution to equation (B.14) with 3 = 0. Then we have

1 0 0
v(it+1)=v)At+1), with A(t+1)= 0 1 0 ., (3.17)

p(t+1) po(t+1) pualt+1)

and v(0) = (0,0,1). It is straightforward to check that the closed form of v(t) is given

by
pi(1), for t =1,
vi(t) = t—1 s
p()+Y pils+ D) ][ paalr),  fort>2,
\ s=1 =1
po(1), for t =1, (3.18)
va(t) = t—1 s
po(1) + ZP@(S +1) Hpnd(T), for t > 2,
s=1 =1

v3(t) = Hpnd(T).

According to Assumption 3.1} lim; . v5(t) = 0. According to the iteration equa-
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tions (3.17)), v1(t) and vo(t) is non-decreasing with ¢ and are both upper bounded by
1. Therefore, lim; , v (t) and lim_,, v5(t) both exist. Moreover, with the closed-form
of v(t), one can check that Theorem for the case 8 = 0 coincide with Proposition
IV.3 and IV.4 in [84].

2) B=1: Denote by ©(t) the solution to equation in the other extreme case

when § = 1. The iteration equation for (t) is nonlinear and written as

Dt + 1) = D1 (t) + D5(t) (pr(t + 1) + Bpalt + Din(t)),

Do(t+1) = a(t) + D5(t) (po(t + 1) 4 Bpna(t + 1)a(1)), (3.19)

D3(t + 1) = pua(t + 1)05(t)>.

One can deduce, from the third equation above, the closed form of 25(t):

D3(t) = [ [ pua(m)* .

Similar to the case when g = 0, we conclude that the limit of ©(t) exists, as ¢ tends to
infinity. Moreover, with the same IDPS, 03(t) decays to zero faster than v5(t), that is, in
the system with large n and g = 1, the expected decision time for the individual SDMs
is no larger than in the case when 5 = 0.

3) Small B: We conduct the leading order analysis in 3, for the expression of u(t),

when [ is very small. The following proposition is stated without proof.

Proposition 3.4.5 (Leading order analysis for small ) Consider the iteration equa-

tion (3.14) for p(t) with 8 positive but close to 0. Let p,.(t) = v.(t) + ¢.(t)3 + O(5?)
for any r € {1,2,3}, where g,(t) is the coefficient of the leading order in B and v(t) =

(n(t), va(t), v5(t)) is given by equation (3.18). Then,
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(i. for any r € {1,2,3}, g.(t) satisfies the following iteration formula:

Gt+1)=gi(t) +pi(t+1)gs(t) + v1(t)vs(t)pna(t + 1),
G2t +1) = go(t) + po(t + 1)g3(t) + v2(t)vs(t)pua(t + 1),

g3(t +1) = prat + 1)gs(t) — paa(t + 1)ws(t) (1 — 15(2)),

and g1(t) + go(t) + g3(t) = 0 for any t € N;

(1. the closed form of g,(t) is given by g1(1) = go(1) = g3(1) =0,
91(2) = p1<1)pnd<1)pnd(2)7 92<2) = p0<1)pnd(1)pnd(2>7 g3<2) = _pnd(1>pnd(2) (p1(1)+

po(l)), and, for anyt > 3,

g1(t) = g1(2) + > pra()n(l = Dws(l - 1)

= lz_t;pl(l)lz;lzljpnd T)vs(s — 1) (1 — v3(s — 1)),
92(t) = 92(2) + ;pnd(l)w(l — Dws(l—1)
- Zpo lz;ipnd T)vs(s = 1)(1 = ws(s — 1)),
ZHpnd mvs(s = 1) (1 = vs(s = 1));

s=2 T=s
(7ii. for anyt € N, g3(t) <0, and therefore us(t) is non-increasing with B;

(iv. for anyt € N, g1(t) (g2(t) resp.) is non-decreasing with pnq(t) and non-increasing

with p1(t) (po(t) resp.), and |gs(t)| is non-decreasing with pna(t).

4) B close to 1: We present the following proposition on the leading order in § = 1—4

for small 9.
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Proposition 3.4.6 (Leading order analysis for 5 close to 1) Consider equation ((3.14))
for u(t) with B close to but less than 1. Let § = 1 — 3 and u,.(t) = 0,(t) + 5h,.(t) + O(6?)
forr € {1,2,3}, where H,(t) is the coefficient of the leading order in § and v(t) is given

by equation (3.19)). Then we have:
(i. forr e {1,2,3}, h.(t) satisfies the following iteration formula:
hai(t+1) = (14 05(t)pua(t + 1)) ha(t) + pi(t + 1)hs(t)
+ pua(t + )21 (t) (hs(t) — 25(1)),
ho(t+1) = (14 D5(t)pna(t + 1)) ha(t) + po(t + 1)hs(t)

+pualt + 1)in(t) (hs(t) — D3(1)),

ha(t +1) = paa(t + 1)s(t) (2hs(t) + 01 (t) + (1)),
and hy(t) + ha(t) + hs(t) =0 for any t € N;
(ii. for anyt € N, h3(t) > 0, and therefore us(t) is non-decreasing with (3;

(iii. for any t € N, hy(t) (ha(t) resp.) are non-decreasing with pi(t) (po(t) resp.), and

hs(t) is non-decreasing with puq(t).

3.5 Further Simulation

1) Validation of the asymptotic performance: Simulation work has been conducted to

validate the results of Theorems|3.4.1land [3.4.4] In Figure[3.5(a) and [3.5(b)} the IDPS has

t =2 and p;(f) > po(t). The simulation result indicates that, as n increases, the fusion

center’s accuracy, i.e., 1 —p,(n, 1) gets close to 1 and the expected decision time converges

to ¢. In Figure 3-5(c){and [3.5(d)} the IDPS satisfies pi(o0) > 1/2 > ps(co) and to1 =2

for § = 1; pu(00) > 1/2 > pa(00) and ¢4 =5 for § = 0. The simulation result indicates
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Figure 3.5: The probability of making wrong global decision, and the expected decision
time, for the fusion center in n-SDM systems with the fastest rule and the majority
rule. The blue curves correspond to the n-SDM systems with 8 = 1. The red dash-dot

curves represent the n-SDM systems with 8 = 0 and the black dotted lines correspond
to the isolated SDM.

that, as n tends to infinity, the probability of making wrong global decision under the
majority rule, i.e., the probability p,(n, [n/2]), converges to 0 and the expected decision
time converges to t>%, as indicated by Theorem W Moreover, Figure shows
that, with the presence of social pressure, the expected decision time of the fusion center
running the majority rule can be even less than the expected decision time of a single
isolated SDM, while the expected decision time of the model without social pressure,
as the red dash line in Figure indicates, is much larger than the single isolated
SDM’s.

2) Comparison among different values of 5: Simulation work has been conducted to
compare the performances of systems with different values of the model parameter f3.

The IDPS shown in Figure [3.1] are used in the simulation work illustrated by Figure [3.6]

Figure |3.6(a){ and [3.6(b)| are comparisons between the fastest rule and the majority rule

with varying values of 5. We can see that, for any fixed n and (, the fastest rule has
less accuracy while faster decision speed than the majority. Moreover, the performance
of the fastest rule is not sensitive to the value of 5 while, for the majority rule with fixed

system size n, the probability of wrong global decision gets larger as 3 increases but the
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Figure 3.6: The probability of making wrong global decision and the expected decision
time, as functions of the system size n respectively, for different values of the parameter
B and different g-out-of-n rules. In Figure (a) and (b), the solid lines correspond to
the fastest rules while the dash lines correspond to the majority rules. In Figure (c)
and (d), the solid lines correspond to the systems with 5 = 0.3 while the dash lines
correspond to the system with 5 = 0.

expected decision time decreases as [ increases.
3) Comparison among different g-out-of-n rules: Refer to the n-total rule as the [nn]-

out-of-n rule. The case n = 0 corresponds to the fastest rule while n = 0.5 is the majority

rule. Figure|3.6(c) and |3.6(d)| reveal that the system performance gets more sensitive to

B as 7 increases. Moreover, for fixed n and 3, the system’s accuracy increases with the

increase of 7, at the cost of the higher expected decision time.

3.6 Conclusion and Discussion

This chapter proposes a sequential decision aggregation model that does not rely on
the specific individual decision making policy and incorporates social pressure. Indi-
viduals in our model are sequential decision makers (SDMs) influenced by the decisions
of other individuals. We present an algorithm to compute the system’s decision prob-
abilities, accuracy and expected decision time. Two specific group decision rules, the
fastest rule and the majority rule, are analyzed in detail. We then focus on the case

when the system size tends to infinity and, via a mean-field analysis, provide the exact
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expression of the asymptotic accuracy and expected decision time for both the fastest
rule and the majority rule. These results relate the group’s decision making behavior to
the isolated SDM’s. In addition to the theoretical analysis, we provide some simulation
work to present the performance of our group decision making model and compare it to
the sequential decision aggregation model without social pressure, first proposed in [84].
Within our model, we also compared the performance of different g-out-of-n aggregation
rules.

This model could be extended to a generalized problem, in which the SDMs’ IDPS
are heterogeneous. Moreover, the connections between the SDMs might not necessar-
ily be all-to-all. If both the heterogeneous SDMs and the network structure are taken
into consideration, the group decision making policy becomes more complicated. The
generalized model would help to explain how a group of decision makers with different
information sources and confidence levels collaborate together and the optimization of

the group decision making performance will be related to the network topology.
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Part 11

Dynamics of Interpersonal Appraisal Networks
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Overview: dynamics of social networks

One of the main challenges in the research on social network dynamics is that, there
are not only dynamical processes occurring over the networks, but the social networks
themselves are also evolving with time. Models of dynamics of social networks aim to
explain the evolution of the interconnections in social networks and the emergent global
network structure. Examples of such models include the network formation games [101],
102], evolution of interpersonal influence along issue sequence [103], [104], and dynamics
social balance [105], [106], [107].

In Part IT of this thesis, we focus on the dynamics of interpersonal appraisal networks.
Depending on the specific content of the “appraisal” and the underlying microscopic inter-
action mechanism, different models of dynamics of appraisal networks explains different
social phenomena. In Chapter [4] the appraisal network represents individuals’ mutual
evaluations of their certain skill levels and the evolution of such appraisal dynamics lead
to collective learning under some conditions; In Chapter 5] appraisal network refers to
the sentiments network among a group of individuals and the evolution of such appraisal
network via homophily or influence mechanism leads to a special network configuration

called structural balance.
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Chapter 4

Collective Learning via

Assign/appraise/influence Dynamics

4.1 Introduction

4.1.1 Transactive memory system in applied psychology

Researchers in sociology, psychology, and organization science have long studied the
inner functioning and performance of teams with multiple individuals engaged in tasks.
Extensive qualitative studies, conceptual models and empirical studies in the laboratory
and field reveal some statistical features and various phenomena of teams [108] 109, 110,
111], but only a few quantitative and mathematical models are available [112] [113].

Transactive memory system (TMS) is a conceptual model of team learning and perfor-
mance well-established in organization science, see the seminal work by Wegner et al. [114]
and other highly cited works [IT5], 108, 109, 116]. A TMS is a collective “memory” sys-
tem that emerges in teams engaged in tasks, as the team members develop the collective

knowledge on who possesses what expertise. TMS facilitates coordination and division
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of labor. Empirical research across a range of team types and settings [108] 117, [118], as
well as some early simulation-based computational models [119, 120} 1T3], demonstrates
a strong positive relationship between the development of a TMS and team performance.
However, the mechanisms through which team members come to share an understanding
of the distribution of expertise is typically treated as “black box” processes in TMS re-
search. It remains an open problem how to mathematically characterize the TMS-related
social and cognitive processes, such as the division of labor and the evolution of collective

knowledge.

4.1.2 Problem description

In this chapter we propose a class of multi-agent dynamical systems as mathematical
formalizations of some important aspects of the TMS theory. We consider a natural
social process, in which a team of individuals, with unknown skill levels, is complet-
ing a sequence of tasks. Each task is completed by subdividing it into subtasks with
different workloads and assigning one subtask to each team member. The team perfor-
mance is maximized when the workload assignments are proportional to the individuals’
underlying skill levels. We adopt the concept of appraisal network, or equivalently its
corresponding row-stochastic appraisal matrix, to model the TMS of the team. The ap-
praisal network represents how the team members evaluate each other’s underlying skill
level. The dynamics of the appraisal matrix is as follows: First, after completing the
task, each individual receives a feedback signal equal to the deviation of her/his own
performance from the weighted average performance of a subset of observed individuals.
Second, based on the feedback signal, each individual adjusts her /his own appraisal and
the appraisals of other team members. Third, the appraisal network may or may not be

updated via an interpersonal influence process. Fourth, the workload division for the next
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tasks is computed as a function of the appraisal matrix. The evolution of the appraisal
network corresponds to the development of a team’s TMS. This chapter aims to mathe-
matically formalize this four-step process and investigate the conditions under which (i)
the team as an whole achieves asymptotically the optimal workload assignment; (ii) each
individual learns asymptotically the true relative skill levels of all the team members;

and (iii) the learning fails to occur. We refer to property (ii) as collective learning.

4.1.3 Literature review

To the best of our knowledge, this chapter is the first attempt to model the devel-
opment of TMS as a multi-agent system and provide rigorous conditions for collective
learning. To the best of our knowledge, the only related previous works are the computa-
tional models proposed by Palazzolo et al [119], Ren et al [120], and Anderson et al [113].
The model in [I13] is a 2-dimension ODE and treats the collective knowledge as a scalar
variable, while the models in [I19] and [120] are multi-agent. Palazzolo et al [119] con-
sider time-varying skill levels. Ren et al [120] consider multi-dimension skills and task
requirements. Both models take into account numerous complicated and realistic indi-
vidual /group actions, and the analysis of both models is based on simulation.

In our models, collective learning arises as the result of the co-evolution of interper-
sonal appraisals and influence networks. Related previous work includes social compar-
ison theory [121], averaging-based social learning [122], opinion dynamics [2, 123], 124],
reflected appraisal mechanisms [125, [103], and the combined evolution of interpersonal
appraisals and influence networks [L07].

In the modeling and analysis of the evolution of appraisal and influence networks, we
build an insightful connection between our model and the well-known replicator dynamics

in evolutionary game theory; see the textbook [126], some control and optimization
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applications [127, [128], and the recent contributions [129] [130].

Our models are also marginally related to distributed optimization, e.g. [I31} [132].
But in this chapter we focus on modeling the natural social behavior of individuals.
Moreover, the evolution of the decision variable, i.e., the workload assignment, is not

directly modeled, but a byproduct of the dynamics for the appraisal network.

4.1.4 Contribution

Firstly, based on a few natural assumptions, we propose three novel models with in-
creasing complexity for the dynamics of teams: the manager dynamics, the assign/appraise
dynamics, and the assign/appraise/influence dynamics. Without loosing mathematical
tractability and intuitive insights, our work integrates several natural processes in a single
model: the division of workload, the update of interpersonal appraisals via observation,
and the opinion dynamics over the influence network. To the best of our knowledge, this
is the first time that such an integration has been proposed and leads to rigorous and intu-
itive results. For the baseline manager dynamics, the workload assignment is adjusted in
a centralized manner: the increase rate of workload assigned to an individual is equal to
the deviation of his/her performance from the average. Under this intuitive assumption,
the evolution of the workload assignment obeys the well-established replicator dynamics
with novel fitness functions as the individual performances. The assign/appraise dy-
namics provides an insightful perspective on the connection between team performance
and the appraisal network, by assuming that, instead of by the manager, the workload
assignment is determined by the appraisal network in a social and distributed manner.
The update of the appraisals is driven by the individuals’ heterogeneous performance
feedback. In the assign/appraise/influence dynamics model, we further incorporate the

co-evolution of appraisal and influence networks.
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Secondly, we present comprehensive theoretical analysis on the dynamical properties
of our models. For the assign/appraise dynamics and the assign/appraise/influence dy-
namics, we relate the models’ asymptotic behavior with the connectivity property of the
observation network, which defines the heterogeneous feedback signals each individual
observes. Our theoretical results on the asymptotic behavior can be interpreted as the
exploration of the most relaxed conditions for the emergence of asymptotic optimal work-
load assignment. Moreover, some theoretical results also reveal insightful interpretations
that are consistent with the TMS theory studied in organization science. According to Lee
et al. [133], in teams with well-developed TMS, members’ agreements on the distribution
of expertise facilitate high levels of coordination and division of labor, which a centralized
manager might otherwise provide. In our paper, we prove that, along the assign/appraise
dynamics and the assign/appraise/influence dynamics, the evolution of the workload as-
signment determined by the appraisal network does indeed satisfy the manager (a.k.a.,
replicator) dynamics in a generalized form. In addition, the assign/appraise/influence
dynamics describes an emergence process by which team members’ perception of “who
knows what” become more similar over time, a fundamental feature of TMS [134! [133].

Thirdly, besides the models in which the team eventually learns the individuals’
true relative skill levels, we propose one variation in each of the three phases of the
assign/appraise/influence dynamics: the assignment rule, the update of appraisal network
based on feedback signal, and the opinion dynamics for the interpersonal appraisals. The
variations reflect some sociological and psychological mechanisms known to prevent the
team from learning. We investigate by simulation numerous possible causes of failure to

learn.
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4.1.5 Organization

The rest of this chapter is organized as follows: In the next subsection, we present
some preliminaries on evolutionary games and replicator dynamics. Section II pro-
poses our problem set-up and centralized manager model; Section IIl introduces the
assign/appraise dynamics; Section IV is the assign/appraise/influence model; Section V
discusses some causes of failure to learn; Section VI provides some further discussions

and conclusion.

4.1.6 Preliminaries

Evolutionary games apply game theory to evolving populations adopting different
strategies. Consider a game with n pure strategies, denoted by the unit vectors ey, ..., e,
respectively. A mixed strategy w is thereby a vector in the n-dimension simplex denoted
by A,. Denote by 7(v,w) the expected payoff for any mixed strategy v against mixed
strategy w. A strategy w* is a locally evolutionarily stable strategy (ESS) if there ex-
ists a deleted neighborhood U(w*) in int(A,) such that 7(w* w) > 7(w,w) for any
w € U(w*), which implies that, in a population adopting strategy w, a sufficiently
small mutated subpopulation adopting strategy w* gets more payoff than the majority
population.

Replicator dynamics models the evolution of sub-populations adopting different strate-
gies. The total population is divided into n sub-populations. Individuals in each sub-
population i adopt the pure strategy e;. Denote by w;(t) the fraction of sub-population
7 in the total population at time t. The fitness of sub-population ¢, denoted by ; (w(t)),
depends on the sub-population distribution w(t) = (wi(%),. .. ,wn(t))T and is defined
as the expected payoff 7T<€i, w(t)) The growth rate of sub-population ¢ is equal to the

deviation of its fitness from the population average. The replicator dynamics is given by:
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w; = w; <7Tz-(w) — Zn: wkﬂk(w)>. (4.1)

There is a simple connection between the locally ESS and the replicator dynamics [129)]:
Generally, a locally ESS in int(A,,) is a locally asymptotic equilibrium of the replicator
dynamics; Specifically, if there exists a matrix A such that 7(v,w) = v’ Aw for any
v,w € A,, then a locally ESS in int(A,) is a globally asymptotic stable equilibrium
of the replicator dynamics. In addition, the replicator dynamics is also a mean-field
approximation of some stochastic population process, which is out of the scope of this

chapter.

4.2 Problem Set-up and Manager Dynamics

In this section, we first mathematically formalize some concepts related to the social
processes we aim to model, and illustrate them by a concrete example. Then we introduce
a baseline centralized model for team learning dynamics. In this chapter, in order to

distinguish between vectors and matrices, we let symbols in bold represent vectors.

4.2.1 Model assumptions and notations

a) Team, tasks and assignments: The basic assumption on the individuals and the

tasks are given below.

Assumption 4.1 (Team, task type and assignment) Consider a team of n individ-
uals characterized by a fized but unknown vector € = (x1,...,x,)" satisfying © = 0,, and
x'1, = 1, where each x; denotes the skill level of individual i. The tasks being completed

by the team are assumed to have the following properties:
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(i. The total workload of each task is characterized by a positive scalar and is fived as

1 in this chapter;

(ii. The task can be arbitrarily decomposed into n sub-tasks according to the workload
assignment w = (wy,...,w,)", where each w; is the sub-task workload assigned
to individual i. The workload assignment satisfies w = 0, and w'1l, = 1. The

sub-tasks are executed simultaneously.

The scalar skill levels can be interpreted in an abstract way as the individuals’ overall
abilities of contributing to the tasks, while the workload assignment corresponds to the
individuals’ relative responsibilities.

b) Individual performance: The measure of individual performance is defined below.

Assumption 4.2 (Individual performance) Given fized skill levels, each individual
i’s performance, with the assignment w, is measured by p;(w) = f(z;/w;), where f :
[0,400) — [0, +00) is strictly concave, continuously differentiable and monotonically

INCTeasing.

The function f is assumed concave since it is widely adopted that the relation between
the performance and individual ability obeys the power law, i.e., f(z) ~ z7, with v €
(0,1) [1I3]. The specific form f(:*) could be generalized by adopting different measures
of x; and w;.

c) Optimal assignment: 1t is reasonable to claim that, in a well-functioning team,
individuals’ relative responsibilities, characterized by the workload assignment, should
be proportional to their true relative abilities. We thereby refer to w* = x as the
optimal assignment. There are various team performance models for which w* is the

unique optimal solution in A,,. For example, define the measure of the mismatch between

workload assignment and individual’s true skill levels as Hi(w) = >°7 ; [% — 1|. This
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mismatch is minimized at w*. Alternatively, if we define the team performance as the
weighted average individual performance, i.e., Ho(w) = >, w; (), then the strict
concavity of f implies that Hs(w) is maximized at w* = .

We introduce a simple and concrete example to illustrate the mathematical formal-
ization introduced above.

Ezxample (intruder detection task): Consider a group of n individuals monitoring an
environment. The environment is divided into numerous non-overlapping regions with
equal areas. Each region is monitored by a CCTV camera connected to its respective
screen. The aim of the group is to detect the locations of randomly-appearing intruders
via monitoring the screens. The appearance of the intruders is uniformly random in
space and is a homogeneous Poisson process. An intruder is successfully detected if it
is observed on a screen by one of the individuals within a certain time period since its
appearance. The team performance over a given task period is the fraction of successfully
detected intruders. The task is conducted in the follows way: each individual ¢ monitors
w; number of screens and each screen is monitored by one and only one individual. Here
w; is normalized such that ), w; = 1. Each individual ¢ has an intrinsic but unknown
normalized skill level ;. Denote by p;(w) the probability that an intruder is successfully
detected by individual 7, given the division of cameras w € A,,. This probability p;(w)
increases with individual ¢’s intrinsic skill level x; and decreases with the number of
screens monitored by i, i.e., w;. A natural assumption is that p;(w) = f (Z—), where [ is
a concave and monotonically increasing function, with f(0) = 0 and f(co) = 1. One can
check that the expected team performance is given by > w;f (%), which is maximized

at w* = x.
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4.2.2 Centralized manager dynamics

In this subsection we introduce a continuous-time centralized model on the evolution
of workload assignment, referred to as the manager dynamics. The diagram illustration is
given by Figure . Suppose that, at each time ¢, a team is completing a task based on
the assignment w(t). An outside manager observes the individuals’ performance p(w(t)).
We adopt the intuitive assumption that the manager increases the workload assigned to
individual 4 if her /his performance is above the weighted team average and vice versa. In
addition, the sum of all the individuals’ workloads remains 1. The manager is assumed
to adjust the workload assignment according to the replicator dynamics below, which is

arguably the simplest model for the process described above.

Wy = w; (Pi(w) - i wkpk('w))» (4.2)

for any ¢« € {1,...,n}. Equation (4.2]) takes the same form as the classic replicator
dynamics from evolutionary game theory [126], 129], with the nonlinear fitness function
f(z;/w;). We refer to Section