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Abstract

Modeling and Analysis of Social Network Dynamics:

Propagation, Learning and Structural Balance

by

Wenjun Mei

Network is a natural physical model of social systems and an important tool to under-

stand various dynamical phenomena in human groups and societies. Network dynamics

is a powerful theoretical approach to study how local interactions among individuals lead

to certain macroscopic phenomena, and the role of network structure in such dynamical

processes. In this thesis, we model and analyze the following two aspects of social net-

work dynamics: dynamics on networks and dynamics of networks. The former means

the evolution of individual states via social interactions, while the latter refers to the

evolution of the social relations themselves.

Regarding the dynamics on social networks, we focus on the modeling and analysis

of network propagation processes. Firstly, we review a class of deterministic nonlinear

models for the propagation of infectious diseases over contact networks. For each model

setting, we provide a comprehensive nonlinear analysis including both known and novel

results. Secondly, we propose a class of stochastic propagation models for multiple com-

peting products over a social network, and study their mean-field approximations. Two

types of games based on the mean-field competitive propagation models are proposed and

the quality-seeding trade-off is investigated. Finally, we apply the general idea of social

influence to an engineering sensors system and study the sequential decision aggregation

with social pressure.

For the dynamics of social networks, we study the evolution of the interpersonal

xi



appraisal networks and its emergent collective behavior. Firstly, we proposes models

of learning processes in teams of individuals collectively executing a sequence of tasks.

The closely-related proposed models have increasing complexity, starting with a central-

ized assignment and learning model, and finishing with a social model of interpersonal

appraisal, assignment, learning and influence. Theoretical analysis shows how rational

optimal behavior arises along the task sequence, while conditions of suboptimality are

investigated numerically. Secondly, we propose two discrete-time dynamical systems that

explain how an appraisal network evolves towards social balance from an initially unbal-

anced configuration via homophily and influence mechanisms respectively.

xii
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General Introduction

Overview of research on social networks

Network is a natural model of the inner structure and mutual interactions in social

systems, and a powerful tool to characterizes and understand various dynamical phe-

nomena in human groups and societies. A network is a structure made up of a set of

nodes and their mutual connections. There are three basic elements in a network: nodes,

nodal states, and network links. Individuals or social entities (collectively referred to as

individuals in the rest of this thesis unless specified) are modeled as nodes on the social

networks, while the nodal states characterize certain individual states or attributes of

interest. Individuals on social networks are connected via social links, which define the

type and strength of certain social relations or interactions. In social networks, local in-

teractions among individuals via various types of mutual connections often result in rich

and complicated global phenomena, such as the consensus of opinions, the propagation

of diseases or innovations, the formation of fractions, and the evolution of individuals

social powers. Network dynamics is a powerful theoretical framework to study how the

microscopic and local interactions among individuals lead to the emergence of certain

macroscopic behavior, and to investigate the role of network structure in such dynamical

processes.

On account of the recent progress in multi-agent systems, network science, and data

mining, the last decades have witnessed a rapid development of the research on social

networks, spanning the following topics:

(i. static theory: the global structures, statistical properties and nodal attributes of

social networks, e.g., the network diameter, the clustering feature, the degree dis-

tribution, the nodal centrality measure, and the detection of communities;
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(ii. dynamics on social networks: dynamical processes occurring on social networks,

which can be equivalently interpreted as the evolution of individual states, e.g.,

propagation and information aggregation, averaging systems, network flows;

(iii. dynamics of social networks: the evolution of social network themselves, i.e., the

dynamics of the nodes interconnections. Examples are the co-evolution of inter-

personal influence and appraisals, the emergence of structural balance in social

networks, and the network formation games.

Preliminaries: algebraic graph theory

This thesis focuses on the modeling and analysis of dynamical processes both on and

of social networks, collectively referred to as social network dynamics. In this subsection,

we briefly introduce the algebraic graph theory as the mathematical formalization of

social networks. Notations frequently used in this thesis are listed in Table 0.1.

In algebraic graph theory, networks are modeled as graphs. In the rest of this thesis,

we consider these two terms as interchangeable. A graph is a triple G(V,E,A). Here

set V denotes the set of nodes and V = {1, . . . , n} for any network of n nodes. Let

E ∈ V × V be the set of links defined as follows: (i, j) ∈ E if and only if there exists a

link in the network from node i to node j. A link from node i to itself is referred to as a

self loop. Graphs in which the links are all undirected can be considered as the graphs in

which all the links are directed but bilateral. Therefore, in this thesis, we assume all the

network links to be directed, unless specified. The third element of the triple (V,E,A) is

a matrix A = (aij)n×n, referred to as the adjacency matrix associated with the graph G.

Usually A is assumed to be entry-wise nonnegative. For any i, j ∈ V , aij > 0 if (i, j) ∈ E,

and aij = 0 if (i, j) /∈ E. In the meanwhile, the magnitude of aij represents the weight

of the directed link (i, j).

A path from node i0 to node il with length l is an ordered sequence of distinct nodes

xvi



Table 0.1: Notations frequently used in this thesis

� (≺ resp.) entry-wise greater than (less than resp.)
� (� resp.) entry-wise no less than (no greater than resp.)

1n (0n resp.) n-dimension column vector with all entries equal to 1 (0 resp.)
1n×m (0n×m resp.) n×m matrix with all entries equal to 1 (0 resp.)

N set of natural numbers, i.e., {0, 1, 2, 3, . . . }
Rn n-dimension Euclidean space
|λ| the magnitude of complex number λ
∆n the n-simplex {y ∈ Rn | y>1n = 1, y � 0n}

int(∆n) the relative interior of the n-simplex, i.e., int(∆n) = {y ∈
Rn | >1n = 1, y � 0n}

ρ(A) the spectral radius of matrix A, i.e., ρ(A) =
max{|λ| |λ is an eigenvalue of A}

vleft(A) the left dominant eigenvector of the non-negative and irreducible
matrix A, i.e., the entry-wise positive left eigenvector associated
with the eigenvalue equal to As spectral radius and satisfying
vleft(A)>1n

G(A) the directed and weighted graph associated with the adjacency ma-
trix A ∈ Rn×n.

xvii



{i0, i1, . . . , il} in which (ik, ik+1) ∈ E for any k ∈ {0, . . . , l − 1}. A graph has a globally

reachable node if there exists a node i such that, for any j ∈ V , there exists a path from

j to i. That is, every node in the graph can reach node i via at least one path in the

graph. A path from node i to itself, with no repeating node except node i, is referred to

as a cycle and the number of nodes involved is called the length of the cycle. A self loop

is a cycle with length 1. The greatest common divisor of the lengths of all the cycles in

a graph is defined as the period of the graph. A graph with period equal to 1 is called

aperiodic. Apparently, a graph with self loops is aperiodic. Actually, the associated

adjacency matrix A contains all the information of a graph. For simplicity, we adopt the

notation G(A) to represent the graph with A as its adjacency matrix. There are some

interesting equivalence relations between the connectivity properties of the graph G(A)

and the algebraic properties of the adjacency matrix A, stated in the following lemma.

Lemma 0.0.1 (Equivalence relations between graphs and adjacency matrices)

Consider a graph G(A) associated with the adjacency matrix A ∈ Rn×n. The following

statements hold:

(i. graph G(A) is strongly connected if and only if matrix A is irreducible, that is,

matrix A can not be transformed into a block upper-triangular form by any simulta-

neous row and column permutation, or, equivalently, matrix A satisfies
∑n−1

k=0 A
k �

0n×n;

(ii. graph G(A) is strongly connected and aperiodic if and only if matrix A is primitive,

which means that there exists some k ∈ N such that Ak � 0n×n.

One can easily deduce from the lemma above that, for a strongly connected graph with

at least one self loop, its associated adjacency matrix is primitive. Now we present the

Perron-Frobenius theorem, which has been widely used in the study of network dynamics.

We refer to Section 2.3 of the textbook by Bullo [1] for more detailed discussion.
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Theorem 0.0.2 (Perron-Frobenius theorem) Consider an entry-wise nonnegative

matrix A ∈ Rn×n with n ≥ 2. The following statements hold:

(i. there exists a real eigenvalue λ ≥ |µ| ≥ 0 for all other eigenvalues µ;

(ii. the right and left eigenvectors v and w of λ can be selected non-negative.

If, additionally, A is irreducible, then

(iii. the eigenvalue λ is strictly positive and simple;

(iv. the right and left eigenvectors v and w of λ are unique and positive, up to scaling.

If, additionally, A is primitive, then

(v. the eigenvalue λ satisfies λ > |µ| for all other eigenvalues µ.

The following theorem states the limit property of the powers of primitive matrices.

Theorem 0.0.3 (Powers of primitive matrices) Consider a primitive matrix A ∈

Rn×n. Let v and w be respectively the entry-wise positive left and right eigenvalues asso-

ciated with the largest eigenvalues of A in magnitude, i.e., ρ(A). Suppose v and w are

normalized such that v>w = 1. Then we have

lim
k→∞

Ak

ρ(A)k
= vw>.

Any entry-wise non-negative matrix A ∈ Rn×n satisfying A1n = 1n (1>A = 1> resp.)

is referred to as a row-stochastic (column-stochastic resp.) matrix. A matrix that is both

row-stochastic and column-stochastic is called doubly-stochastic. For any row-stochastic

matrix A, ρ(A) = 1 is the eigenvalue of A with the largest magnitude, and is associated

with an right eigenvector of the form α1n, where α is a scalar.
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Contributions and Organizations

This thesis consists of three parts. Part I is on the modeling and analysis of dynamics

on social networks, to be specific, the propagation dynamics on social networks. Part II

discusses dynamics of social networks, particularly, the interpersonal appraisal networks.

Part III is a brief discussion of some potentially interesting future research directions in

social network dynamics. We state the main contents and contributions of each chapter

in Part I and part II as follows.

Chapter 1: We review a class of deterministic nonlinear models for the propagation

of infectious diseases over contact networks with strongly-connected topologies. We con-

sider network models for susceptible-infected (SI), susceptible-infected-susceptible (SIS),

and susceptible-infected-recovered (SIR) settings. In each setting, we provide a compre-

hensive nonlinear analysis of equilibria, stability properties, convergence, monotonicity,

positivity, and threshold conditions, including both known and novel results.

Chapter 2: We propose a class of propagation models for multiple competing prod-

ucts over a social network. We consider two propagation mechanisms: social conver-

sion and self conversion, corresponding, respectively, to endogenous and exogenous fac-

tors. According to the chronological order of social and self conversions, we develop two

Markov-chain models and, based on the independence approximation, we approximate

them with two corresponding difference equations systems. Both theoretical and numer-

ical study are conducted for both mean-field systems. Finally, we propose two classes

of games based on the mean-field competitive propagation models and characterize their

Nash equilibria.

Chapter 3: We apply the idea of social influence to an engineering system, in which

local sensors perform binary sequential hypothesis testing and a fusion center collects the

local decisions and reaches a global decision according to some threshold rule. The local

sensors decisions are influenced by those who have already made their decisions, which

xx



characterizes the role of social pressure. We establish the accuracy and expected decision

time of the fusion center in systems with finite local sensors. In systems with infinitely

many local sensors, we analyze the limit accuracy and expected decision time of some

specific threshold rules by means of a mean-field analysis.

Chapter 4: We propose models of learning processes in teams of individuals who

collectively execute a sequence of tasks and whose actions are determined by individual

skill levels and networks of interpersonal appraisals and influence. The closely-related

proposed models have increasing complexity, starting with a centralized manager-based

assignment and learning model, and finishing with a social model of interpersonal ap-

praisal, assignments, learning, and influences. We show how rational optimal behavior

arises along the task sequence for each model, and discuss conditions of suboptimality.

Our models are grounded in replicator dynamics from evolutionary games, influence net-

works from mathematical sociology, and transactive memory systems from organization

science.

Chapter 5: We propose two discrete-time dynamical systems that explain how an

appraisal network evolves towards social balance from an initially unbalanced configu-

ration. These two models are based on two different socio-psychological mechanisms

respectively: the homophily mechanism and the influence mechanism. Our main theo-

retical contribution is a comprehensive analysis for both models in three steps. First,

we establish the well-posedness and bounded evolution of the interpersonal appraisals.

Second, we characterize the set of equilibrium points as follows: for both models, each

equilibrium network is composed by an arbitrary number of complete subgraphs satis-

fying structural balance. Third, under a technical condition, we establish convergence

of the appraisal network to a final equilibrium network satisfying structural balance. In

addition to our theoretical analysis, we provide numerical evidence that our technical

condition for convergence holds for generic initial conditions in both models. Finally,

xxi



adopting the homophily-based model, we present numerical results on the mediation and

globalization of local conflicts, the competition for allies, and the asymptotic formation

of a single versus two factions.

In addition, at the beginning of each part, a general and brief overview is provided.

xxii



Part I

Propagation Dynamics on Social Networks
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Overview: dynamics on social networks

The two most widely studied classes of dynamics on social networks are the opinion

dynamics and the network propagation dynamics. Part I of this thesis focuses on the

latter but the opinion dynamics has some connections with what to be discussed in Part

II. Therefore we provide brief overviews for both classes of dynamics.

Opinion dynamics studies the evolution of individuals’ opinions driven by the social

influence of other individuals in the network. There are mainly two types of opinion

dynamics models: the averaging-based models and the voter models. In the averaging-

based models, individuals’ opinions are denoted by real numbers and change continuously.

Individuals update their opinions by computing certain convex combination of their own

opinions, the opinions of their social neighbors, and, potentially, their initial opinions or

some external inputs. Widely-studied models include the classic DeGroot model [2], the

Friedkin-Johnsen model [3], and the bounded-confidence model [4]. The voter models

assume that individual opinions take their values from a discrete (usually binary) set.

The switching of opinions is driven by the social pressure from individuals’ neighbors

via some stochastic processes, see [5, 6, 7]. We refer to the surveys [8] and [9] for more

detailed literature review.

There are also two main approaches to study the network propagation processes. The

first approach is to build the dynamical models on random graphs. This approach is based

on the following observation: although it is almost impossible to obtain the detailed and

well-quantified information of every local connection in the large-scale social networks,

social network as an entirety does exhibit some prominent global characteristics, such as

the small-world feature, the scale-free degree distribution, and the clustering property.

Therefore, dynamical models based only on those estimable global network characteris-

tics should lead to some theoretical predictions that are also data-verifiable. Examples

2



of network propagation models following this approach include the graph percolation

model [10, 11] and the degree-based model [12, Chapter 17]. The second approach is to

first assume that the network has an arbitrary topology with all the connections well-

quantified and known, and then try to derive the theoretical results that do not depend

on all the local details of the network. The advantage of such approach is that, more

sophisticated and realistic dynamical processes can be modeled and understood based on

the well-established mathematical tools in dynamical systems, control theory, algebraic

graph theory, and matrix analysis. Examples include the network epidemic spreading

models [13, 14] and the linear threshold model [15, 16]. Regarding the network propaga-

tion models, this thesis focuses on the second approach.

3



Chapter 1

Deterministic Epidemic Propagation

over Networks

1.1 Introduction

Problem motivation and description

Propagation phenomena appear in numerous disciplines. Examples include the spread

of infectious diseases in contact networks, the transmission of information in communica-

tion networks, the diffusion of innovations in competitive economic networks, cascading

failures in power grids, and the spreading of wild-fires in forests.

One important class of models of propagation phenomena are scalar deterministic

models. These models have been widely studied, e.g., see the survey [17]. These models

qualitatively capture some dynamic features, including phase transitions and asymptotic

states. However, shortcomings of scalar models are also prominent: for example, scalar

models are typically based on the assumption that individuals in the population have

the same chances of interacting with each other. This assumption overlooks the internal
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structure of the network over which the propagation occurs, as well as the heterogeneity of

individuals in the network. Both these aspects play critical roles in shaping the dynamical

behavior of the propagation processes.

In a general formulation, propagation is a dynamical process on a complex network.

Each network node has a state taking value in a discrete set and state changes are

influenced by the nodes’ neighbors in the network. Many relevant research questions

arise naturally, including: how to model the local dynamics at each node, how to identify

model parameters, how to estimate the state of such a dynamical system, and how to

analyze the system transient and asymptotic properties.

Various types of models have been proposed to describe propagation processes over

complex networks; one key distinguishing feature of these models is whether the prop-

agation dynamics is assumed to be stochastic or deterministic. Deterministic network

epidemic models were originally proposed in the late 1970’s in the seminal works [13, 18].

These models are of great research value, as attested by the large literature focusing

on them (see below). Moreover, they can be considered as approximations of certain

Markov-chain models, e.g., see [19].

In this chapter, we review three key continuous-time deterministic models for epi-

demic propagation over networks. Depending upon the nodal dynamics, i.e., the disease

propagation behavior, deterministic epidemic propagation models are classified as: the

Susceptible-Infected (SI) model, the Susceptible-Infected-Susceptible (SIS) model and the

Susceptible-Infected-Recovered (SIR) model; basic representations of these models are il-

lustrated in Figure 1.1. In this work we focus on transient and asymptotic behavior of

these three continuous-time dynamical models over networks. It is our key objective to

relate the structure of the network to the function of the network (i.e., the transient and

asymptotic behavior of the propagation phenomenon).
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Susceptible Infected Susceptible Infected

Susceptible Infected Recovered

Figure 1.1: Three basic models of infectious diseases: SI, SIS and SIR.

Literature review on deterministic network epidemic models

The literature on epidemic propagation is exceedingly vast. This chapter focuses on

deterministic models over networks and on their dynamical behavior. Accordingly, this

subsection reviews the literature on deterministic epidemic models. Unless specified, the

works and results reviewed in what follows are all for the deterministic models. For

readers interested in Markov-chain models and in the mean-field approximation method,

we refer to [19, 20, 21, 14] and [1, Chapter 17]. (Note that Markov-chain network epi-

demic models and their deterministic approximating models are different in some of the

dynamical properties, such as the epidemic threshold and the asymptotic behavior.)

The dynamics of several classic scalar epidemic models, i.e., the population models

without network structure, are surveyed in detail by Hethcote [17]. Among the different

metrics discussed, identifying the effective reproduction number R is of particular interest

to researchers; R is the expected number of individuals that a randomly infected individ-

ual can infect during its infection period. In these scalar models, whether an epidemic

outbreak occurs or the disease dies down depends upon whether R > 1 or R < 1, i.e.,

upon whether the system is above or below the so-called epidemic threshold. Here by

epidemic outbreak we mean an exponential growth of the fraction of the infected pop-

ulation for small time. The basic reproduction number R0 is the effective reproduction

number in a fully-healthy susceptible population. In what follows we focus our review

on deterministic network models.

The earliest work on the (continuous-time heterogeneous) SIS model on networks

6
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is [13]. This work proposes an n-dimensional model on a contact network and analyzes the

system’s asymptotic behavior. This article proposes a rigorous analysis of the threshold

for the epidemic outbreak, which depends on both the disease parameters and the spectral

radius of the contact network. For the case when the basic reproduction number is above

the epidemic threshold, this paper establishes the existence and uniqueness of a nonzero

steady-state infection probability, called the endemic state. In what follows we refer to

the model by Lajmanovich et al. [13] as the network SIS model ; it is also known as the

multi-group or multi-population SIS model.

Allen [22] proposes and analyzes a discrete-time network SIS model. This work ap-

pears to be the first to revisit and formally reproduce, for the discrete-time case, the

earlier results proposed in [13]; see also the later work [23]. This work confirms the

existence of an epidemic threshold, as a function of the spectral radius of the contact

network. Further recent results on the discrete-time model are obtained by Ahn et al. [24]

and Azizan Ruhi et al. [20].

Van Mieghem et al. [25] argue that the (continuous-time) network SIS model is in

fact the mean-field approximation of the original Markov-chain SIS model of exponential

dimension; this claim is rigorously proven in [19]. Van Mieghem et al. [25] refer to this

model as the intertwined SIS model and write the endemic state as a continued fraction.

The works [26] and [27] discuss the continuous-time network SIS model in a more

modern language. Fall et al. [26] refer to this model as the n-group SIS model and apply

Lyapunov techniques and Metzler matrix theory to establish existence, uniqueness, and

stability of the equilibrium points below and above the epidemic threshold. Khanafer et

al. [27] use positive system theory in their analysis and extend the existence, uniqueness,

and stability results to the setting of weakly connected digraphs.

Numerous extensions of these basic results on the network SIS model and other re-

lated works have appeared over the years. For example, the estimation of the epidemic

7



Deterministic Epidemic Propagation over Networks Chapter 1

threshold in contact networks with power-law degree distributions has been studied both

by mathematically rigorous analysis, see [28], and by numerical simulation, see [29]. The

deterministic network SIS models without mean-field approximation and with second-

order mean-field approximation have been analyzed in [30] and [31], respectively.

An early work by Hethcote [18] proposes a general multi-group SIR model with

birth, death, immunization, and de-immunization. The epidemic threshold and the equi-

libria below/above the threshold are characterized. For the simplified model without

birth/death and de-immunization, Hethcote [18] proves that the system converges asymp-

totically to an all-healthy state. Guo et al. [32] consider a generalized network SIR model

with vital dynamics, that is, with birth and death. They characterize the basic repro-

duction number and, through a careful Lyapunov analysis, show the existence and global

asymptotic stability of an endemic state above the threshold. Youssef et al. [33] study

a special case of the network SIR model under the name of individual-based SIR model

over undirected networks. Through a simulation-based analysis, the epidemic threshold

is given as a function of the spectral radius of the network.

There are also some extensions and related studies regarding the network SIR model.

Sharkey [34] investigates the deterministic network SIR model without mean-field ap-

proximation. Castellano et al. [29] point out that the (mean-field) network SIR predicts

a vanishing threshold for a certain class of power-law distributed networks, which is in-

consistent with the corresponding stochastic SIR model. Sharkey et al. [35] show that,

different from the network SIR model with mean-field approximation, the so-called pair-

based approach gives an exact description of the stochastic SIR process for the tree

topology.

To the best of our knowledge, no works have comprehensively characterized the prop-

erties of the network SI model.

We conclude by mentioning other surveys and textbook treatments. In [36], the

8
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stability of equilibria for the SEIR model is reviewed through Lyapunov and graph theory.

The additional state E represents the exposed population, i.e., the individuals who are

infected but not infectious. Various heterogeneous epidemic models are reviewed in [12,

Chapter 17], [37, Chapter 21], and [38, Chapter 9]. The recent survey by Nowzari et

al. [14] presents various epidemic models and addresses many solved and open problems

in the control of epidemic spreading.

Statement of Contribution

This chapter reviews, in a comprehensive and coherent manner, deterministic models

and dynamical behavior of SI, SIS and SIR epidemic phenomena over networks. This

review includes known results from the literature as well as several novel results. We

discuss SI, SIS and SIR models in three subsequent corresponding sections. Each section

starts by reviewing the well-known results for the corresponding scalar models; these are

the models in which variables represent an entire ?well-mixed? population or nodes of an

all-to-all unweighted graph. The core of each section is a discussion about multi-group

network models. We provide a tutorial treatment with comprehensive statements and

proofs for the deterministic network SI, SIS and SIR models.

We first analyze the network SI model. We analyze its asymptotic convergence, pos-

itivity of infection probabilities, initial and asymptotic growth rates, and the stability of

equilibria. We show that in the network SI model, the system does not display a thresh-

old and, with the exception of the trivial no-epidemics equilibrium, all the trajectories

converge to the full contagion state. While these results are not technically difficult,

they are novel here in the sense that, to the best of our knowledge, the properties of the

network SI model have never before been formally characterized.

Next we focus on the network SIS model. Our presentation includes known results

9
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from [13] (see also [26, 27]) regarding the epidemic threshold, the system’s behavior

below the epidemic threshold, the existence and uniqueness of the endemic state for

systems above the epidemic threshold, and the asymptotic stability of the endemic state.

Moreover, we provide a novel provably-correct iterative algorithm for computing the

fraction of infected individuals converging to the endemic state. This algorithm also

provides an alternative proof for the existence and uniqueness of the endemic state for

systems above the epidemic threshold. We argue that this alternative proof is more

concise that the those proposed in the previous works [13, 26, 27]. In addition, we

present novel Taylor expansions for the endemic state near the epidemic threshold and

in the limit of high infection rates. These novel Taylor expansions shed light on these

previously poorly-understood regimes. Finally, we show that the spread of infection takes

place instantaneously upon infecting at least one node in the network.

Finally, for the network SIR model, we review some known results on the monotonic-

ity of the individuals’ susceptible probabilities and the system’s asymptotic behavior

from [18]. More importantly, we provide the several novel results: We present novel tran-

sient behavior and system properties. First, we propose new threshold conditions above

which the epidemic grows initially, and below which it exponentially dies down. The ini-

tial rate of growth above the threshold is given in terms of network characteristics, initial

conditions, and infection parameters. Moreover, we show that our proposed weighted

average of the infected population, obtained by the entries of dominant eigenvector of an

irreducible quasi-positive matrix, captures information regarding the distribution of infec-

tion in the system. We also establish positivity of the infection probabilities. Finally, we

provide a novel iterative algorithm to compute the asymptotic state of the network SIR

model, with any arbitrary initial condition. For the iterative algorithm, the existence

and uniqueness of the fixed point, and the convergence of the iteration are rigorously

proved. Our results are analogous to the scalar SIR model properties and are valid for
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any arbitrary network topologies. In comparison with [33], our treatment builds on their

numerical results but our result is more general in that it does not depend upon specific

initial conditions and graph topologies, and establishes numerous properties, including

the novel characterization of epidemic threshold.

Organization

Section 1.2 introduces our model set-up and some preliminary notations. The SI, SIS

and SIR models are presented, respectively, in Sections 1.3, 1.4, and 1.5. Section 6 is the

conclusion.

1.2 Model Set-Up and Notations

For the scalar models, we use the notation x(t) (s(t) and r(t) resp.) for the fraction

of infected (susceptible and recovered resp.) individuals in the population at time t.

The rest of this section is about the notations and basic model set-up for the network

epidemic model.

a) Contact Network: The epidemics are assumed to propagate over a weighted digraph

G = (V,E), where V = {1, . . . , n} and E is the set of directed links. Nodes of G can

be interpreted as either single individuals in the contact network or as homogeneous

populations of individuals at each location/node in the contact network. A = (aij)n×n

denotes the adjacency matrix associated with G. For any i, j ∈ V , aij characterizes the

contact strength from node j to node i. For (i, j) ∈ E, aij > 0 and for (i, j) /∈ E, aij = 0.

In this chapter, G is assumed to be strongly connected.

b) Node States and Probabilities: For different epidemic propagation models, the set

of possible node states are distinct. For network SI or SIS models, each node can be in

either the “susceptible” or “infected” state, while in the network SIR model, there is an
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additional possible node state: “recovered.” For a graph in which the nodes are single

individuals, let si(t) (xi(t) and ri(t) resp.) be the probability that individual i is in the

susceptible (infected and recovered resp.) state at time t. Alternatively, if the nodes

are considered to be the populations, then si(t) (xi(t) and ri(t) resp.) is interpreted as

the fraction of susceptible (infected and recovered resp.) individuals in population i. In

this chapter, without loss of generality, we adopt the interpretation of nodes as single

individuals.

c) Frequently Used Notations: The symbol R denotes the set of real numbers, while

R≥0 denotes the set of non-negative real numbers. The symbol φ denotes the empty set.

For any two vectors x, y ∈ Rn, we write

x ≺ y, if xi < yi for all i ∈ {1, . . . , n},

x � y, if xi ≤ yi for all i ∈ {1, . . . , n}, and

x < y, if x ≤ y and x 6= y.

Let In denote the n×n identity matrix. Given x = [x1, . . . , xn]> ∈ Rn, let diag(x) denote

the diagonal matrix whose diagonal entries are x1, . . . , xn. For an irreducible nonnegative

matrix A, let λmax(A) denote the dominant eigenvalue of A that is equal to the spectral

radius ρ(A). Moreover, we let vmax(A) (umax(A) resp.) denote the corresponding entry-

wise strictly positive left (right resp.) eigenvector associated with λmax(A), normalized

to satisfy 1>n vmax(A) = 1 (resp. 1>numax(A) = 1). The Perron-Frobenius Theorem for

irreducible matrices guarantees that λmax(A), vmax(A) and umax are well defined and

unique. Where not ambiguous, we will drop the (A) argument and, for example, write

v>maxA = λmaxv
>
max and Aumax = λmaxumax,
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with vmax � 0n and 1>n vmax = 1; umax � 0n and 1>numax = 1.

1.3 Susceptible-Infected Model

In this section, we first review the classic scalar susceptible-infected (SI) model, and

then present and characterize the network SI model.

1.3.1 Scalar SI model

The scalar SI model assumes that the growth rate of the fraction of the infected

individuals is proportional to the fraction of the susceptible individuals, multiplied by a

so-called infection rate β > 0. The model is given by

ẋ(t) = βs(t)x(t) = β
(
1− x(t)

)
x(t). (1.1)

This is the well-established logistic equation. The following results can be found for

example in the textbook [39].

Lemma 1.3.1 (Dynamical behavior of the SI model) Consider the scalar SI model (1.1)

with β > 0. The solution from initial condition x(0) = x0 ∈ [0, 1] is

x(t) =
x0eβt

1− x0 + x0eβt
. (1.2)

All initial conditions 0 < x0 < 1 result in the solution x(t) being monotonically increasing

and converging to the unique equilibrium 1 as t→∞.

Solutions to equation (1.1) with different initial conditions are plotted in Figure 1.2.

The SI model (1.1) results in an evolution akin to a logistic curve, and is also called the

logistic equation for population growth.
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Figure 1.2: Evolution of the (lumped deterministic) SI model (β = 1) from small
initial fraction of infected individuals.

1.3.2 Network SI model

The network SI model on a weighted digraph with the adjacency matrix A ∈ Rn×n
≥0 is

given by

ẋi(t) = β
(
1− xi(t)

) n∑
j=1

aijxj(t), (1.3)

or, in equivalent vector form,

ẋ(t) = β
(
In − diag

(
x(t)

))
Ax(t), (1.4)

where β > 0 is the infection rate. Alternatively, in terms of the fractions of susceptible

individuals s(t) = 1n − x(t), the network SI model is

ṡ(t) = −β diag(s(t))A(1n − s(t)). (1.5)

The network SI model is a particular case of the widely-studied network SIS model,

which is to be discussed in the next section. The dynamical properties of the network

SI model are not difficult to analyze, but, to the best of our knowledge, have not been

formally presented in any previous literature. We present the results on the transient
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and asymptotic behavior of the network SI model, as well as the proof, in the following

theorem.

Theorem 1.3.2 (Dynamical behavior of network SI model) Consider the network

SI model (1.4) with β > 0. For strongly connected graph with adjacency matrix A, the

following statements hold:

(i. if x(0), s(0) ∈ [0, 1]n, then x(t), s(t) ∈ [0, 1]n for all t > 0. Moreover, x(t)

is monotonically non-decreasing (here by monotonically non-decreasing we mean

x(t1) � x(t2) for all t1 ≤ t2). Finally, if x(0) > 0n, then x(t) � 0n for all t > 0;

(ii. the model (1.4) has two equilibrium points: 0n (no epidemic), and 1n (full conta-

gion);

(a) the linearization of model (1.4) about the equilibrium point 0n is ẋ = βAx and

it is exponentially unstable;

(b) let D = diag(A1n) be the degree matrix. The linearization of model (1.5) about

the equilibrium 0n is ṡ = −βDs and it is exponentially stable;

(iii. each trajectory with initial condition x(0) 6= 0n converges asymptotically to 1n, that

is, the epidemic spreads monotonically to the entire network.

Proof:

(i) The fact that, if x(0), s(0) ∈ [0, 1]n, then x(t), s(t) ∈ [0, 1]n for all t > 0 means that

[0, 1]n is an invariant set for the differential equation (1.4). This is the consequence of

Nagumo’s Theorem (see [40, Theorem 4.7]), since for any x belonging on the boundary

of the set [0, 1]n, the vector β
(
In−diag

(
x
))
Ax is either tangent, or points inside the set

[0, 1]n.

Observe that the invariance of the set [0, 1]n implies that ẋ(t) � 0n and so x(t1) �

x(t2) for all t1 ≤ t2.
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We want to prove now that,if x(0) > 0n, then x(t) � 0n for all t > 0. If by contra-

diction there is i ∈ {1, . . . , n} and T > 0 such that xi(T ) = 0, then the monotonicity of

xi(t) = 0 would imply that xi(t) = 0 for all t ∈ [0, T ], which would yield ẋi(t) = 0 for all

t ∈ [0, T ]. By (1.3) this would imply that xj(t) = 0 for all t ∈ [0, T ] for all j such that

aij > 0. We could iterate this argument and using the irreducibility of A we would get

the contradiction that x(t) = 0 for all t ∈ [0, T ] concluding in this way the proof of (i.

(ii) Regarding statement (ii, note that 0n and 1n are clearly equilibrium points. Let

x̄ ∈ [0, 1]n be an equilibrium and assume that x̄ 6= 1n. Then there is i such that x̄i 6= 1.

Since β
(
1 − x̄i

)∑n
j=1 aijx̄j = 0, then

∑n
j=1 aijx̄j = 0 which implies that x̄j = 0 for all j

such that aij > 0. By iterating this argument and using the irreducibility of A we get

that x̄ = 0 concluding only 0n and 1n are equilibrium points. Statements (iia and (iib are

obvious. Exponential stability of the linearization ṡ = −βDs is obvious, and the Perron-

Frobenius Theorem implies the existence of the unstable positive eigenvalue ρ(A) > 0 for

the linearization ẋ = βAx.

(iii) Consider the function V (x) = 1>n (1n − x); this is a smooth function defined over

the compact and forward invariant set [0, 1]n (see statement (i). Since V̇ = −β1>n
(
In −

diag(x)
)
Ax, we know that V̇ ≤ 0 for all x and V̇ (x) = 0 if and only if x ∈ {0n, 1n}. The

LaSalle Invariance Principle implies that all trajectories with x(0) converge asymptoti-

cally to either 1n or 0n. Additionally, note that 0 ≤ V (x) ≤ n for all x ∈ [0, 1]n, that

V (x) = 0 if and only if x = 1n and that V (x) = n if and only if x = 0n. Therefore, all

trajectories with x(0) 6= 0n converge asymptotically to 1n.

In the next two paragraphs we present the “initial-time” (“final-time” resp.) ap-

proximation of the solution to the network SI model, i.e., the approximated solution to

equation (1.4), or equation (1.5) equivalently, when t is sufficiently small (large resp.).

These results are novel.

For the adjacency matrix A, there exists a non-singular matrix T such that A =
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TJT−1, where J is the Jordan normal form of A. Since A is non-negative and irreducible,

according to Perron-Frobenius theorem, the first Jordan block J1 = (λmax)1×1 and λmax >

Re(λi) for any other eigenvalue λi of A. Consider now the onset of an epidemic in a large

population characterized by a small initial infection x(0) = x0 much smaller than 1n.

The system evolution is approximated by ẋ = βAx. This “initial-times” linear evolution

satisfies

x(t) = eβAtx(0) = T eβJtT−1x(0) = eβλmaxt
(
Te1e

>
1 T
−1x(0) + o(1)

)
,

where e1 is the first standard basis vector in Rn and o(1) denotes a time-varying vector

that vanishes as t→ +∞. Let u1 denote the first column of T and let v>1 denote the first

row of T−1. Since AT = TJ and T−1A = JT−1, one can check that u1 (v1 resp.) is the

right (left resp.) eigenvector of A associated with the eigenvalue λmax. Since T−1T = In,

we have v>1 u1 = 1. therefore,

x(t) = eβλmaxt
(
u1v

>
1 x(0) + o(1)

)
= eβλmaxt

( v>maxx(0)

v>maxumax

umax + o(1)
)
. (1.6)

That is, the epidemic initially experiences exponential growth with rate βλmax and with

distribution among the nodes given by the eigenvector umax.

Now suppose that at some time T , for all i we have that xi(T ) = 1− εi, where each εi

is much smaller than 1. Then, for time t > T , the approximated system for s(t) is given

by:

ṡi(t) = −βdisi(t) =⇒ si(t) = εie
−βdi(t−T ),

where, for any i ∈ {1, . . . , n}, di =
∑n

j=1 aij denotes the out-degree of node i in the

network. From the discussion above, we conclude that the initial infection rate is pro-
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portional to the eigenvector centrality, and the final infection rate is proportional to the

degree centrality.

1.4 Susceptible-Infected-Susceptible model

In this section we review the Susceptible-Infected-Susceptible (SIS) epidemic model.

In addition to the existence of an infection process with rate β > 0, this model assumes

that the infected individuals recover to the susceptible state at so-called recovery rate

γ > 0.

1.4.1 Scalar SIS model

In the scalar SIS model, the population is divided into two fractions: the infected

x(t) and the susceptible s(t), with x(t) + s(t) = 1, obeying the following dynamics:

ẋ(t) = βs(t)x(t)− γx(t) = (β − γ − βx(t))x(t). (1.7)

The dynamical behavior of system (1.7) given below can be found in [17].

Lemma 1.4.1 (Dynamical behavior of the SIS model) For the SIS model (1.7) with

β > 0 and γ > 0:

(i. the closed-form solution to equation (1.7) from initial condition x(0) = x0 ∈ [0, 1],

for β 6= γ, is

x(t) =
(β − γ)x0

βx0 − e−(β−γ)t(γ − β(1− x0))
; (1.8)

(ii. if β ≤ γ, all trajectories converge to the unique equilibrium x = 0 (i.e., the epidemic

disappears);
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Figure 1.3: Evolution of the scalar SIS model with varying initial fraction of infected
individuals. Top figure: β = 0.5 < γ = 1. Bottom figure: β = 0.8 > γ = .4.

(iii. if β > γ, then each trajectory from an initial condition x(0) > 0 converges to the

exponentially stable equilibrium x∗ = (β − γ)/β, which is called the endemic state.

Case (iii corresponds to the case in which epidemic outbreaks take place and a steady-

state epidemic contagion persists. The basic reproduction number in this deterministic

scalar SIS model is given by R0 = β/γ. Simulations regarding to Lemma 1.4.1(ii and (iii

are shown in Figure 1.3.

1.4.2 Network SIS Model

In this section we study the network SIS model which is closely related to the original

“multi-group SIS model” proposed by [13]; see also the intertwined SIS model in [25].

The network SIS model with infection rate β and recovery rate γ is given by:

ẋi(t) = β(1− xi(t))
n∑
j=1

aijxj(t)− γxi(t), (1.9)

or, in equivalent vector form,

ẋ(t) = β
(
In − diag(x(t))

)
Ax(t)− γx(t). (1.10)
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In the rest of this section we study the dynamical properties of this model. We start

by defining the monotonically-increasing functions

f+(y) = y/(1 + y), and f−(z) = z/(1− z),

for y ∈ R≥0 and z ∈ [0, 1[. Note that f+(f−(z)) = z for all z ∈ [0, 1). For vector

variables y ∈ Rn
≥0 and z ∈ [0, 1)n, we write F+(y) = (f+(y1), . . . , f+(yn)), and F−(z) =

(f−(z1), . . . , f−(zn)).

Behavior of System Below the Threshold In this subsection, we characterize the

behavior of the network SIS model in a regime we describe as “below the threshold.”

The results presented in the theorem below can be found in [13, 26, 27]. Historically, it

is meaningful to attribute this theorem to [13], even if the language adopted here is more

modern.

Theorem 1.4.2 (Dynamical behavior of the network SIS model: Below the threshold)

Consider the network SIS model (1.9), with β > 0 and γ > 0, over a strongly connected

digraph with adjacency matrix A. Let λmax and vmax be the dominant eigenvalue of A

and the corresponding normalized left eigenvector respectively. If βλmax/γ < 1, then

(i. if x(0), s(0) ∈ [0, 1]n, then x(t), s(t) ∈ [0, 1]n for all t > 0. Moreover, if x(0) > 0n,

then x(t) � 0n for all t > 0;

(ii. there exists a unique equilibrium point 0n, the linearization of (1.9) about 0n is

ẋ = (βA− γIn)x and it is exponentially stable;

(iii. from any x(0) 6= 0n, the weighted average t 7→ v>maxx(t) is monotonically and

exponentially decreasing, and all the trajectories converge to 0n.
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Proof: (i As in Theorem 1.3.2 the first part is the consequence of Nagumo’s

Theorem. Then define y(t) := eγtx(t). Notice that this variable satisfies the differential

equation ẏ(t) = β diag(s(t))Ay(t). From the same arguments used in the proof of the

point (i of Theorem 1.3.2 we argue that y(t) � 0n for all t > 0. From this it follows that

also x(t) � 0n for all t > 0.

(ii Assume that x∗ is an equilibrium point. It is easy to see that x∗ ≺ 1n. Let Â =

βA/γ. Observe moreover that x∗ is an equilibrium point if and only if Âx∗ = F−(x∗) or,

equivalently, if and only if F+

(
Âx∗

)
= x∗. This means that x∗ is an equilibrium if and

only if it is a fixed point of F , where F(x) := F+

(
Âx
)
. For x ∈ [0, 1]n, note F+(Âx) � Âx

because f+(z) � z. Moreover, 0n � x � y implies that 0n � F(x) � Ây. Therefore, if

0n � x, then Fk(x) � Âkx, for all k. Since Â is Schur stable, then limk→∞Fk(x) = 0.

This shows that the only fixed point of F is zero.

Next, the linearization of equation (1.10) is verified by dropping the second-order

terms. The linearized system is exponentially stable at 0n for βλmax − γ < 0 because

λmax is larger, in real part, than any other eigenvalue of A by the Perron-Frobenius

Theorem for irreducible matrices.

(iii Finally, regarding statement (iii, define y(t) = v>maxx(t) and note that
(
In−diag(z)

)
vmax ≤

vmax for any z ∈ [0, 1]n. Therefore,

ẏ(t) ≤ βv>maxAx(t)− γv>maxx(t) = (βλmax − γ)y(t) < 0.

By the Grönwall-Bellman Comparison Lemma, y(t) is monotonically decreasing and

satisfies y(t) ≤ y(0)e(βλmax−γ)t from all initial conditions y(0). This concludes our proof

of statement (iii.

21



Deterministic Epidemic Propagation over Networks Chapter 1

Behavior of System Above the Threshold We present the dynamical behavior of

the network SIS model above the threshold as follows. Statement (i of the theorem below

is a straightforward result from equation (1.10). Historically, the existence of a unique

endemic state and its global attractivity properties, i.e., statements (ii, (iii, (iiia and (iv

in the theorem below, are due to [13], and can be found in [26, 27]. To the best our

knowledge, the Taylor expansions in parts (iiib and (iiic and the algorithm in part (iiid

are novel. In addition, compared with the previous works [13, 26, 27], construction of the

algorithm in part (iiid provides an alternative and more concise proof for the existence

and uniqueness of the endemic state, and the convergence of any solution starting with

x(0) ∈ (0, 1)n to this endemic state.

Theorem 1.4.3 (Dynamical behavior of the network SIS model: Above the threshold)

Consider the network SIS model (1.9), with β > 0 and γ > 0, over a strongly connected

digraph with adjacency matrix A. Let λmax be the dominant eigenvalue of A and let vmax

and umax be the corresponding normalized left and right eigenvectors respectively. Let

d = A1n. If βλmax/γ > 1, then

(i. if x(0), s(0) ∈ [0, 1]n, then x(t), s(t) ∈ [0, 1]n for all t > 0. Moreover, if x(0) > 0n,

then x(t) � 0n for all t > 0;

(ii. 0n is an equilibrium point, the linearization of system (1.10) at 0n is unstable due

to the unstable eigenvalue βλmax − γ (i.e., there will be an epidemic outbreak);

(iii. besides the equilibrium 0n, there exists a unique equilibrium point x∗, called the

endemic state, such that

(a) x∗ � 0n,
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(b) x∗ = δaumax +O(δ2) as δ → 0+, where δ := βλmax/γ − 1 and

a =
vTmaxumax

vTmax diag(umax)umax

,

(c) x∗ = 1n − (γ/β) diag(d)−11n + O(γ2/β2), at fixed A, as γ/β → 0+, where

d = A1n,

(d) define a sequence {y(k)}k∈N ⊂ Rn by

y(k + 1) := F+

(
β

γ
Ay(k)

)
. (1.11)

If y(0) ≥ 0 is a scalar multiple of umax and satisfies either 0 < maxi yi(0) ≤

1− γ/(βλmax) or mini yi(0) ≥ 1− γ/(βλmax), then

lim
k→∞

y(k) = x∗.

Moreover, if maxi yi(0) ≤ 1 − γ/(βλmax), then y(k) is monotonically non-

decreasing; if mini yi(0) ≥ 1 − γ/(βλmax), then y(k) is monotonically non-

increasing.

(iv. the endemic state x∗ is locally exponentially stable and its domain of attraction is

[0, 1]n \ 0n.

Note: statement (ii means that, near the onset of an epidemic outbreak, the expo-

nential growth rate is βλmax − γ and the outbreak tends to align with the dominant

eigenvector umax; for more details see the discussion leading up to the approximate evo-

lution (1.6). The basic reproduction number for this deterministic network SIS model

is given by R0 = βλmax/γ. The network SI model discussed in Section 3 describes the

limit behavior of the network SIS model as γ/β → 0+. Statement (iiic in Theorem 1.4.3
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indicates that x∗ → 1n as γ/β → 0+, which is consistent with statement (iii in Theo-

rem 1.3.2.

Proof: [Proof of selected statements in Theorem 1.4.3]

(i This point can be proved as done in point (i of Theorem 1.3.2.

(ii This follows from the same analysis of the linearized system as in the proof of Theo-

rem 1.4.2(ii.

(iii We begin by establishing two properties of the map x 7→ F+(Âx), for Â = βA/γ.

First, we claim that, y � z � 0n implies F+(Ây) � F+(Âz). Indeed, note that G being

connected implies that the adjacency matrix A has at least one strictly positive entry

in each row. Hence, y − z � 0n implies Â(y − z) � 0n and, since f+ is monotonically

increasing, Ây � Âz implies F+(Ây) � F+(Âz).

Second, we observe that, for any 0 < α < 1 and z > 0, we have f+(αz) ≥ z if and

only if z ≤ 1 − 1/α. Suppose y(0) is a scalar multiple of umax and 0 < maxi yi(0) ≤

1− γ/(βλmax). We have

F+(Ây(0))i = f+

(βλmax

γ
yi(0)

)
≥ yi(0).

Therefore, the sequence {y(k)}k∈N defined by equation (1.11) satisfies y(1) � y(0), which

in turn leads to y(2) = F+(Ây(1)) � F+(Ây(0)) = y(1), and by induction, y(k + 1) =

F+(Ây(k)) � y(k) for any k ∈ N. Such sequence {y(t)} is monotonically non-decreasing

and entry-wise upper bounded by 1n. Therefore, as k diverges, y(k) converges to some

x∗ � 0n such that F+

(
Âx∗

)
= x∗. This proves the existence of an equilibrium x∗ =

limk→∞ y(k) � 0n as claimed in statements (iiia and (iiid.

Similarly, for any 0 < α < 1 and z > 0, f+(αz) ≤ z if and only if z ≥ 1 − 1/α.

Following the same line of argument in the previous paragraph, one can check that the

{y(k)}k∈N defined by equation (1.11) is monotonically non-increasing and converges to
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some x∗ , if y(0) is a scalar multiple of umax and satisfies mini yi(0) ≥ 1− γ/(βλmax).

Now we establish the uniqueness of the equilibrium x∗ ∈ [0, 1]n \ {0n}. First, we

claim that an equilibrium point with an entry equal to 0 must be 0n. Indeed, assume y∗

is an equilibrium point and assume y∗i = 0 for some i ∈ {1, . . . , n}. The equality y∗i =

f+(
∑n

j=1 aijy
∗
j ) implies that also any node j with aij > 0 must satisfy y∗j = 0. Because G

is connected, all entries of y∗ must be zero. Second, by contradiction, we assume there

exists another equilibrium point y∗ � 0n distinct from x∗. Let α := minj{y∗j/x∗j} and let

i such that α = y∗i /x
∗
i . Then y∗ � αx∗ � 0n and y∗i = αx∗i . Notice that we can assume

with no loss of generality that α < 1 otherwise we exchange x∗ and y∗. Observe now that

(
F+(Ây∗)− y∗

)
i

= f+

(
(Ây∗)i

)
− αx∗i

≥ f+

(
α(Âx∗)i

)
− αx∗i (Â � 0n×n)

> αf+

(
(Âx∗)i

)
− αx∗i (0 < α < 1 and z > 0)

= α
(
F+(Âx∗)− x∗

)
i

= 0. (x∗ is an equilibrium)

Therefore,
(
F+(Ây∗)− y∗

)
i
> 0, which contradicts the fact that y∗ is an equilibrium.

Now we prove (iiib. Observe first that, since taking

y(0) =

(
1− γ

βλmax

)
umax

maxi{umax,i}
=

δ

δ + 1

umax

maxi{umax,i}

then y(k) is monotonically non-decreasing and converges to x∗, and since taking instead

y(0) =

(
1− γ

βλmax

)
umax

mini{umax,i}
=

δ

δ + 1

umax

mini{umax,i}
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then y(k) is monotonically non-increasing and converges to x∗, we can argue that

δ

δ + 1

umax

maxi{umax,i}
≤ x∗ ≤ δ

δ + 1

umax

mini{umax,i}

This implies that x∗ is infinitesimal as a function of δ. Consider the expansion x∗(δ) =

x1δ + x2δ
2 +O(δ3). Since the equilibrium x∗ satisfies the equation

(δ + 1)
(
In − diag(x∗)

)
Ax∗ − λmaxx

∗ = 0

by substituting the expansion and equating to zero the coefficient of the term δ we obtain

the equation

Ax1 − λmaxx1 = 0

which proves that x1 is a multiple of umax, namely x1 = aumax for some constant a. By

equating to zero the coefficient of the term δ2 we obtain instead the equation

Ax1 + Ax2 − diag(x1)Ax1 − λmaxx2 = 0

Using the fact that x1 = aumax we argue that

aλmaxumax + Ax2 − a2λmax diag(umax)umax − λmaxx2 = 0

By multiplying on the left by vTmax we obtain

aλmaxv
T
maxumax − a2λmaxv

T
max diag(umax)umax = 0

which proves that

a =
vTmaxumax

vTmax diag(umax)umax
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Point (iiic can be proved in a similar way. Indeed, define ε := γ/β. Since

(
1− ε

λmax

)
umax

maxi{umax,i}
≤ x∗ ≤

(
1− ε

λmax

)
umax

mini{umax,i}

we can argue that the expansion x∗(ε) = x0 + x1ε+O(ε2) as ε tends to zero is such that

x0 � 0n. Since the equilibrium x∗ satisfies the equation

(
In − diag(x∗)

)
Ax∗ − εx∗ = 0

by substituting the expansion and equating to zero the coefficient of the term ε0 we obtain

the equation

Ax0 − diag(x0)Ax0 = 0

which proves that x0 = vectorones[n]. By equating to zero the coefficient of the term ε1

we obtain instead the equation

Ax1 − diag(x1)Ax0 − diag(x0)Ax1 − x0 = 0

Using the fact that x0 = 1n we argue that

diag(A1n)x1 + 1n = 0

which yieds the thesis.

(iv For this point we refer to [13, 26] or [27, Theorems 1 and 2] in the interest of brevity.

Remark 1.4.4 The network SI model can be regarded as the limit case of the network

SIS model with vanishing curing rate γ → 0+. According to Theorem 1.4.2 and 1.4.3, for
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any strongly connected digraph and any fixed infection rate β > 0, the quantity βλmax/γ

is always above the threshold in the limit γ → 0+. Moreover, statement (iii)(c) indicates

that, as γ → 0+, the endemic state x∗ satisfies x∗ → 1n. Therefore, the behavior of the

network SI model is the same as that for the network SIS model in the limit γ → 0+.

1.5 Network Susceptible-Infected-Recovered Model

In this section we review the Susceptible-Infected-Susceptible (SIR) epidemic model.

1.5.1 Scalar SIR model

In this model individuals who recover from infection are assumed not susceptible

to the epidemic any more. In this case, the population is divided into three distinct

groups: s(t), x(t), and r(t), denoting the fraction of susceptible, infected, and recovered

individuals, respectively, with s(t) +x(t) + r(t) = 1. We write the (Susceptible–Infected–

Recovered) SIR model as:

ṡ(t) = −βs(t)x(t),

ẋ(t) = βs(t)x(t)− γx(t),

ṙ(t) = γx(t).

(1.12)

The following results on the dynamical behavior of the scalar SIR model can be found

in [17].

Lemma 1.5.1 (Dynamical behavior of the SIR model) Consider the SIR model (1.12).

From each initial condition s(0) + x(0) + r(0) = 1 with s(0) > 0, x(0) > 0 and r(0) ≥ 0,

the resulting trajectory t 7→ (s(t), x(t), r(t)) has the following properties:

(i. s(t) > 0, x(t) > 0, r(t) ≥ 0, and s(t) + x(t) + r(t) = 1 for all t ≥ 0;
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Figure 1.4: Left figure: evolution of the scalar SIR model from small initial fraction
of infected individuals (and zero recovered); parameters β = 2, γ = 1/4 (case (iv in
Lemma 1.5.1). Right figure: intersection between the two curves in equation (1.13)
with s(0) = 0.95, r(0) = 0 and β/γ ∈ {1/4, 4}. If β/γ = 1/4, then .05 < r∞ < .1. If
β/γ = 4, then .95 < r∞.

(ii. t 7→ s(t) is monotonically decreasing and t 7→ r(t) is monotonically increasing;

(iii. limt→∞(s(t), x(t), r(t)) = (s∞, 0, r∞), where r∞ is the unique solution to the equality

1− r∞ = s(0)e−
β
γ

(
r∞−r(0)

)
; (1.13)

(iv. if βs(0)/γ < 1, then t 7→ x(t) monotonically and exponentially decreases to zero as

t→∞;

(v. if βs(0)/γ > 1, then t 7→ x(t) first monotonically increases to a maximum value

and then monotonically decreases to 0 as t→∞; the maximum fraction of infected

individuals is given by:

xmax = x(0) + s(0)− γ

β

(
log(s(0)) + 1− log

(γ
β

))
.

As mentioned before, we describe the behavior in statement (v as an epidemic out-

break, an exponential growth of t 7→ x(t) for small times.) The effective reproduction

number in the deterministic scalar SIR model is R = βs(t)/γ. Note that the basic

reproduction number R0 = β/γ does not have predict power in this model.
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1.5.2 Network SIR model

The network SIR model on a graph with adjacency matrix A is given by

ṡi(t) = −βsi(t)
∑n

j=1
aijxj(t),

ẋi(t) = βsi(t)
∑n

j=1
aijxj(t)− γxi(t),

ṙi(t) = γxi(t),

where β > 0 is the infection rate and γ > 0 is the recovery rate. Note that the third

equation is redundant because of the constraint si(t) + xi(t) + ri(t) = 1. Therefore, we

regard the dynamical system in vector form as:

ṡ(t) = −β diag(s(t))Ax(t), (1.14a)

ẋ(t) = β diag(s(t))Ax(t)− γx(t). (1.14b)

We state our main results of this section below. Weaker versions of statements (ia

and (ib are due to [18]. To the best of our knowledge, statements (ic, (ii, (iii, (iv and (v

are novel.

Theorem 1.5.2 (Dynamical behavior of the network SIR model) Consider the net-

work SIR model (1.14), with β > 0 and γ > 0, over a strongly connected digraph with

adjacency matrix A. For t ≥ 0, let λmax(t) and vmax(t) be the dominant eigenvalue of

the non-negative matrix diag(s(t))A and the corresponding normalized left eigenvector,

respectively. The following statements hold:

(i. if x(0) > 0n, and s(0) � 0n, then

(a) t 7→ s(t) and t 7→ x(t) are strictly positive for all t > 0,
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(b) t 7→ s(t) is monotonically decreasing, and

(c) t 7→ λmax(t) is monotonically decreasing;

(ii. the set of equilibrium points is the set of pairs (s∗, 0n), for any s∗ ∈ [0, 1]n, and the

linearization of model (1.14) about (s∗, 0n) is

ṡ(t) = −β diag
(
s∗
)
Ax,

ẋ(t) = β diag
(
s∗
)
Ax− γx;

(1.15)

(iii. (behavior below the threshold) let the time τ ≥ 0 satisfy βλmax(τ) < γ. Then the

weighted average t 7→ vmax(τ)>x(t) , for t ≥ τ , is monotonically and exponentially

decreasing to zero;

(iv. (behavior above the threshold) if βλmax(0) > γ and x(0) > 0n, then,

(a) (epidemic outbreak) for small time, the weighted average t 7→ vmax(0)>x(t)

grows exponentially fast with rate βλmax(0)− γ, and

(b) there exists τ > 0 such that βλmax(τ) < γ;

(v. each trajectory converges asymptotically to an equilibrium point, that is, limt7→∞ x(t) =

0n so that the epidemic asymptotically disappears.

The effective reproduction number in the deterministic network SIR model is R(t) =

βλmax(t)/γ. When R(0) > 1, we have an epidemic outbreak, i.e., an exponential growth

of infected individual for short time. In any case, the theorem guarantees that, after at

most finite time, R(t) < 1 and the infected population decreases exponentially fast to

zero.

Proof: Regarding statement (ia, s(t) � 0n is due to the fact that Ax is bounded

and s(t) is continuously differentiable to t. The statement that x(t) � 0n for all t > 0 is
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proved in the same way as Theorem 1.4.2 (i. Statement (ib is the immediate consequence

of ṡi(t) being strictly negative. From statement (ia we know that each si(t) is positive, and

from A being irreducible and x(0) 6= 0n we know that
∑n

j=1 aijxj is positive. Therefore,

ṡi(t) = −βsi(t)
∑n

j=1 aijxj(t) < 0 for all i ∈ V and t ≥ 0.

For statement (ic, we start by recalling the following property from [41, Exam-

ple 7.10.2]: for B and C nonnegative square matrices, if B ≤ C, then ρ(B) ≤ ρ(C).

Now, pick two time instances t1 and t2 with 0 < t1 < t2. Let α = maxi si(t2)/si(t1) and

note 0 < α < 1 because s(t) is strictly positive and monotonically decreasing. Now note

that,

diag(s(t1))A > α diag(s(t1))A � diag(s(t2))A,

so that, using the property above, we know

ρ(diag(s(t1))A) > αρ(diag(s(t1))A) ≥ ρ(diag(s(t2))A).

This concludes the proof of statement (ic.

Regarding statement (ii, note that a point (s∗, x∗) is an equilibrium if and only if:

0n = −β diag
(
s∗
)
Ax∗, and

0n = β diag
(
s∗
)
Ax∗ − γx∗.

Therefore, each point of the form (s∗, 0n) is an equilibrium. On the other hand, summing

the last two equalities we obtain 0n = γx∗ and thus x∗ must be 0n. As a straightforward

result, the linearization of model (1.14) about any equilibrium point (s∗, 0n, 1n − s∗) is

given by equation (1.15).

Regarding statement (iii, multiplying vmax(τ)> from the left on both sides of equa-
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tion (1.14b) we obtain:

d

dt

(
vmax(τ)>x(t)

)
= vmax(τ)>

(
β diag

(
s(t)
)
Ax(t)− γx(t)

)
≤ vmax(τ)>

(
β diag

(
s(τ)

)
Ax(t)− γx(t)

)
= (βλmax(τ)− γ)vmax(τ)>x(t).

Therefore, we obtain

vmax(τ)>x(t) ≤ (vmax(τ)>x(0))e(βλmax(τ)−γ)t.

The right-hand side exponentially decays to zero when βλmax(τ) < γ. Therefore, vmax(τ)>x(t)

also decreases monotonically and exponentially to zero for all t > τ .

Regarding statement (iva, note that based on the argument in (ia, we only need to

consider the case when x(0) � 0n. Left-multiplying vmax(0)> on both sides of equa-

tion (1.14b), we obtain:

d

dt

(
vmax(0)>x(t)

)∣∣∣
t=0

= vmax(0)>
(
β diag

(
s(t)
)
Ax(t)−γx(t)

)∣∣∣
t=0

= (βλmax(0)−γ)vmax(0)>x(0).

Since βλmax(0) − γ > 0, the initial time derivative of vmax(0)>x(t) is positive. Since

t 7→ vmax(0)>x(t) is a continuously differentiable function, there exists τ ′ > 0 such that

d
dt

(
vmax(0)>x(t)

)
> 0 for any t ∈ [0, τ ′].

Regarding statement (ivb, since ṡ(t) � 0n and is lower bounded by 0n, we conclude

that the limit lim
t→+∞

s(t) exists. Moreover, since s(t) is monotonically non-increasing, we

have lim
t→+∞

ṡ(t) = 0, which implies either lim
t→+∞

s(t) = 0n or lim
t→+∞

x(t) = 0n. If s(t)

converges to 0n, then ẋ(t) converges to −γx(t). Therefore, there exists T > 0 such that

βλmax(T ) < γ, which leads to x(t)→ 0n as t→ +∞; If s(t) converges to some s∗ > 0n,

then x(t) still converges to 0n. Therefore, for any
(
s(0), x(0)

)
, the trajectory

(
s(t), x(t)

)
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converges to some equilibria with the form (s∗, 0n), where s∗ � 0n. Let

s(t) = s∗ + δs(t), and x(t) = 0n + δx(t).

We know that δs(t) ≥ 0 and δx(t) ≥ 0 for all t ≥ 0. Moreover, δs(t) is monotonically

non-increasing and converges to 0n, and there exists T̃ > 0 such that, for any t ≥ T ,

δx(t) is monotonically non-increasing and converges to 0n.

Let λ∗ and v∗ denote the dominant eigenvalue and the corresponding normalized left

eigenvector of matrix diag(s∗)A, respectively, that is, v∗> diag(s∗)A = λ∗v∗>. First let

us suppose βλ∗−γ > 0, then the linearized system of (1.12) around (s∗, 0n) is written as

δ̇s = −β diag(s∗)Aδx,

δ̇x = β diag(s∗)Aδx − γδx.

Since βλ∗− γ > 0, the linearized system is exponentially unstable, which contradicts the

fact that
(
δs(t), δx(t)

)
→ (0n, 0n) as t → +∞. Alternatively, suppose βλ∗ − γ = 0. By

left multiplying v∗> on both sides of the equation for ẋ(t) in (1.12), we obtain

v∗>δ̇x = (βλ∗ − γ)(v∗>δx) + βv∗> diag(δs)Aδx = βv∗> diag(δs)Aδx � 0n,

which contradicts δx(t) → 0n as t → +∞. Therefore, we conclude that βλ∗ − γ <

0. Since λmax(t) is continuous on t, we conclude that there exists τ < +∞ such that

βλmax(t)− γ < 0.

Remark 1.5.3 Consider the network SIR model as a parameterized dynamical system,

with the curing rate γ as the parameter. The network SI model can be regarded the network
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SIR dynamics with γ = 0 and zero initial fraction of recovered individuals. However, due

to the specific bifurcation behavior of the network SIR model at γ = 0, the dynamical

properties of the network SIR model with γ = 0 are qualitatively different from the case

when γ > 0. When γ = 0, the set given by statement (ii of Theorem 1.5.2 is only a

subset of the equilibirum set. Points in the set of pairs (0n, x∗) are also the equilibria of

the network SIR with γ = 0. In addition, while statement (iva of Theorem 1.5.2 on the

initial epidemic outbreak is still true, statements (ivb and (v on the eventual decay no

longer hold for γ = 0.

In what follows, we present a novel result on an iterative algorithm that computes

the limit state limt→∞
(
s(t), 0, r(t)

)
of the network SIR model (1.14) as a function of an

arbitrary initial condition
(
s(0), x(0), r(0)

)
.

Note that, for the scalar SIR model (1.12), if we define

V
(
s(t), x(t)

)
:= s(t)e

β
γ

(
1−x(t)−s(t)

)
.

Simple calculations result in dV
(
s(t), x(t)

)
/dt = 0, which implies that the trajectories

are on the level sets of V and in the set {(s, x) ∈ R2 | s ≥ 0, x ≥ 0, s+ x ≤ 1}. Here, we

apply a similar approach to the network SIR system (1.14). Let

Vi(s, r) := sie
β
γ

∑n
j=1 aijrj , for any i ∈ {1, . . . , n}.

One can check that, along any trajectory of dynamics (1.14), dVi/dt = 0 for any i ∈

{1, . . . , n}. Therefore, the trajectories (s(t), r(t)) lie on the level curves of the functions

Vi(s, r) for i ∈ {1, . . . , n}.

Let s(∞) := limt→+∞ s(t), x(∞) := limt→+∞ x(t), and r(∞) := limt→+∞ r(t). Notice

that x(∞) = 0n and so r(∞) = 1n − s(∞). Since dVi/dt = 0 for any i ∈ {1, . . . , n}, we

35



Deterministic Epidemic Propagation over Networks Chapter 1

have

si(∞) = si(0)e−
β
γ

∑n
j=1 aij

(
1−rj(0)

)
e
β
γ

∑n
j=1 aijsj(∞). (1.16)

Given any initial condition
(
s(0), r(0)

)
, the right-hand side of equation (1.16) defines a

map

H(s) := e
β
γ

diag
(
A(s−1n+r(0))

)
s(0), (1.17)

and s(∞) is a fixed point of H, that is, s(∞) = H
(
s(∞)

)
. The following theorem is

novel.

Theorem 1.5.4 (Existence, uniqueness, and algorithm for the asymptotic point)

Consider the network SIR model (1.14), with positive rates β and γ and with initial condi-

tion
(
s(0), x(0), r(0)

)
satisfying s(0) � 0n, x(0) > 0n, r(0) � 0n and s(0)+x(0)+r(0) =

1n. Let
(
s(∞), 0n, r(∞)

)
be the asymptotic state of system (1.14). The map H : Rn → Rn

defined by equation (1.17) has the following properties:

(i. there exists a unique fixed point s∗ of the map H in the set {s ∈ Rn | 0n � s �

1n − r(0)}. Moreover, s∗ = s(∞) and r(∞) = 1n − s∗; and

(ii. any sequence {y(k)}k∈N defined by y(k + 1) = H(y(k)) and initial condition 0n �

y(0) � 1n − r(0) converges to the unique fixed point s∗.

Proof: Since A is a non-negative matrix, and s(0) � 1−r(0), one can easily observe

that, if 0n � p � q � 1n − r(0), then 0n � H(0n) � H(p) � H(q) � H(1n − r(0)) �

1n − r(0). According to the Brower Fixed Point Theorem, the map H has at least one

fixed point.

Define the sequence {p(k)}k∈N by p(k + 1) = H(p(k)) and p(0) = 0n. Since

1n − r(0) � p(1) = H(0n) = e
β
γ

diag
(
−A1n+Ar(0)

)
s(0) � p(0),
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we have 1n − r(0) � p(2) = H(p(1)) � H(p(0)) = p(1) and, by induction, 1n − r(0) �

p(k + 1) � p(k) for any k ∈ N. Since p(k) is non-decreasing and upper bounded by

1n − r(0), we conclude that the limit p∗ = limk→∞ p(k) exists, and p∗ is a fixed point of

the map H.

Similarly, define a sequence {q(k)}k∈N by q(k + 1) = H(q(k)) and q(0) = 1n − r(0).

One can check that q(k) is non-increasing and that q∗ = limk→∞ q(k) is a fixed point of

map H. Moreover, since p(0) � q(0), we have p(k) � q(k) for any k ∈ N and thereby

p∗ � q∗.

If p∗ = q∗, then, for any 0n � y(0) � 1n − r(0), the sequence {y(k)}k∈N defined

by y(k + 1) = H(y(k)) satisfies p(k) � y(k) � q(k) for any k ∈ N. Therefore, y∗ =

limk→∞ y(k) exists and y∗ = p∗ = q∗, which implies that the fixed point of map H is

unique. According to equation (1.16), s(∞) is the unique fixed point. This concludes

the proof for statement (i) and (ii).

Now we eliminate the case p∗ < q∗ by contradiction. First of all we prove that

q∗ ≺ 1n − r(0). Let Ni = {j | aij > 0} and I(k) =
{
i
∣∣ qi(τ) < 1 − ri(0) for any τ ≥ k

}
.

We have I(0) = φ. Since x(0) > 0n, we have q(1) = s(0) < 1 − r(0), that is, there

exists i such that qi(1) < 1 − ri(0). Moreover, since q(k) is non-increasing, we have

q(k) � q(1) for any k ≥ 1. Therefore, for any i such that qi(1) < 1 − ri(0), it satisfies

qi(k) ≤ qi(1) < 1 − ri(0) for any k ≥ 1. Since j /∈ I(1) if qj(1) = sj(0) = 1 − rj(0), we

conclude that I(1) = {i | si(0) < 1 − ri(0)}. Moreover, for any given k ≥ 1, since, for

any i such that Ni ∩ I(k) 6= φ,

qi(k + 1) = H(q(k))i = e
β
γ

∑n
j=1 aij

(
qj(k)−1+rj(0)

)
si(0) < si(0) ≤ 1− ri(0);
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and for any i such that Ni ∩ I(k) = φ and i /∈ I(k),

qi(k + 1) = H(q(k))i = e
β
γ

∑n
j=1 aij

(
qj(k)−1+rj(0)

)
si(0) = si(0) = 1− ri(0),

we have I(k+1) = {i | Ni∩I(k) 6= φ}∪I(k) for any k ≥ 1. Because the graph associated

with A is strongly connected, we can argue that I(k) contains all the indices when k is

large enough. Therefore, q∗ ≺ 1n − r(0).

Now suppose p∗ < q∗. Let

α = min
j

1− rj(0)− p∗j
q∗j − p∗j

, and w = (1− α)p∗ + αq∗.

We have α > 1, 0n � w < 1n − r(0), and wi = 1 − ri(0) for any i such that αi =(
1− ri(0)− p∗i

)
/(q∗j − p∗j). Let µ = 1/α. Thereby q∗ = µw+ (1− µ)p∗, where 0 < µ < 1.

This means that q∗ is a convex combination of p∗ and w. Since H(s)i is a strictly convex

function of s, we obtain that

q∗i = H
(
µw + (1− µ)p∗

)
i
< µH(w)i + (1− µ)p∗i ≤ µ

(
1− ri(0)

)
+ (1− µ)p∗i = q∗i .

In the last inequality, we used the fact that H(w)i ≤ 1−ri(0) for any 0n � w � 1n−r(0).

The previous inequality yields a contradiction.

In the rest of this section, we present some numerical results for the network SIR

model for the famous Krackhardt?s advice network illustrated in Figure 1.5. This net-

work reflects the data collected by [42] on the cognitive social structure of the manage-

ment personnel in a high-tech machine manufacturing firm. In the network, each node

represents an individual, and each directed link (i, j) means that individual i seeks advice

from individual j. We refer the interested readers to [42] for more details.

Consider the epidemic spreading process on the Krackhardt?s advice network. The
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associated adjacency matrix A is binary. Unless otherwise stated, the system parameters

are set as β = 0.5 and γ = 0.4. As for initial condition, we select one node fully infected

(the dark-gray node in Figure 1.5, say, with index 1), 16 fully healthy individuals, and

zero recovered fraction — corresponding to x(0) = e1, r(0) = 0n, and s(0) = 1n − x(0).

These parameters lead to an initial effective reproduction number R(0) = 3.57.

Figure 1.5: Main strongly-connected component of the Krackhardt digraph with 17 nodes

Figure 1.6 illustrates the time evolution of (β/γ)λmax(t) with varying network param-

eters. Note that each evolution starts above the threshold, reaches the threshold value 1

in finite time, and converges to a final value below 1.

0 10 20

10

20

30 �

�
�max(t)

t
5 15

1

Figure 1.6: Evolution of the spectral radius of (β/γ) diag(s(t))A) over the strongly
connected digraph in Figure 1.5. The parameter γ takes value in .1, .2, . . . , .9, corre-
sponding respectively to the curves from up to down in the time interval [0, 5].

Figure 1.7 illustrates the behavior of the average susceptible, average infected and

average recovered quantities in populations starting from a small initial infection fraction

and with an effective reproduction number above 1 at time 0. Note that the evolution of
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the infected fraction of the population displays a unimodal dependence on time, like in

the scalar model.
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Figure 1.7: Evolution of the network SIR model from initial condition consisting of
one node fully infected individual (the dark-gray node in Figure 1.5), 16 fully healthy
individuals, and zero recovered fraction. The effective reproduction number satisfies
R(0) = 3.57.

1.6 Conclusion

This chapter provides a comprehensive and consistent treatment of deterministic non-

linear continuous-time SI, SIS, and SIR propagation models over contact networks. We

investigated the asymptotic behaviors (vanishing infection, steady-state epidemic, and

full contagion). We studied the transient propagation of an epidemic starting from small

initial fractions of infected nodes. We presented conditions under which a possible epi-

demic outbreak occurs or the infection monotonically vanishes for arbitrary fixed topol-

ogy graphs. We introduced a network SI model and analyzed its behavior. Network SIS

model sections includes improved properties over previously proposed works. New tran-

sient behavior, threshold condition, and system properties for the network SIR model

were proposed. In addition, for the network SIR model, we provide a novel iterative

algorithm to compute the asymptotic state of the system. In all cases, we show the re-

sults for network models are appropriate generalizations of those for the respective scalar
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models.

There are numerous potential future research directions regarding the deterministic

network epidemic processes and the literature is still growing rapidly. Recent progress in

this area includes but is not limited to the modeling and analysis of epidemic spreading

on time-varying networks, e.g., see [43, 44], the optimal immunization strategies, e.g.,

see [45, 46], and the competitive propagation of multiple virus/memes, e.g., see [47, 48,

49].

Finally, we point out that, although the network SI, SIS, and SIR models have at-

tracted enormous attention by researchers working on network epidemics, they are not

the only deterministic models of epidemic spreading processes on networks. For example,

there is another class of deterministic network models, referred to as the multi-city model

or the epidemic model in a patchy environment. This class of models considers each node

in the network as a city obeying the scalar SIS or SIR dynamics. The disease is spread

via the traffic flows between those cities. We refer the interested reader to [50, 51, 52]

for detailed treatments.
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Chapter 2

Competitive Propagation and

Quality-Seeding Games

2.1 Introduction

a) Motivation and problem description:

It is of great scientific interest to model some sociological phenomenon as dynamics

on networks, such as consensus, polarization, synchronization and propagation. Indeed,

the past fifteen years have witnessed a flourishing of research on propagation of dis-

eases, opinions, commercial products etc, collectively referred to as memes, on social

networks. Much progress has been made both on obtaining and analyzing empirical

data [53, 54, 55, 56], and mathematical modeling [17, 57, 58, 59]. In a more recent set

of extensions, scientists have begun studying the simultaneous propagation of multiple

memes, in which not only the interaction between nodes (or equivalently referred to as

individuals) in the network, but also the interplay of multiple memes, plays an important

role in determining the system’s dynamical behaviors. These two forms of interactions

together add complexity and research value to the multi-meme propagation models.
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This chapter proposed a series of mathematical models on the propagation of com-

peting products. Three key elements: the interpersonal network, the individuals and the

competing products, are modeled respectively as a graph with fixed topology, the nodes

on the graph, and the states of nodes. Our models are based on the characterization

of individuals’ decision making behavior under social pressure. Two factors determine

individuals’ choices on which product to adopt: the endogenous factor and the exogenous

factor. The endogenous factor is the social contact between nodes via social links, which

forms a tendency of imitation, referred to as social pressure in this paper. The exogenous

factor is what is unrelated to the network, e.g., the products’ quality.

In the microscopic level, we model the endogenous and exogenous factors respectively

as two types of product-adoption processes: the social conversion and the self conver-

sion. In social conversion, any node randomly picks one of its neighbors and follows

that neighbor’s state with some given probability characterizing how open-minded the

node is. In the self conversion, each node independently converts from one product to

another with some given probability depending on the two products involved. Although

individuals exhibit subjective preferences when they are choosing the products, statistics

on a large scale of different individuals’ actions often reveal that the relative qualities

of the competing products are objective. For example, although some people may have

special affections on feature phones, the fact that more people have converted from fea-

ture phones to smart phones, rather than the other way around, indicates that the latter

is relatively better. We assume that the transit probabilities between the competing

products are determined by their relative qualities and thus homogeneous among the

individuals.

b) Literature review: Various models have been proposed to describe the propagation

phenomena on networks, such as the percolation model on random graphs [10, 11], the

independent cascade model [60, 61, 62], the linear threshold model [15, 63, 16] and the
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epidemic-like mean-field model [23, 25, 33].

As extensions to the propagation of a single meme, some recent papers have discussed

the propagation of multiple memes, e.g., see [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 47,

74]. Some of these papers adopt a Susceptible-Infected-Susceptible (SIS) epidemic-like

model and discuss the long-term coexistence of multiple memes in single/multiple-layer

networks, e.g., see [68, 69, 70]. Some papers focus instead on the strategy of initial

seeding to maximize or prevent the propagation of one specific meme in the presence of

adversaries [72, 73, 47, 74]. Among all these papers mentioned in this paragraph, our

model is most closely related to the work by Stanoev et. al. [71] but the social contagion

process in [71] is different from our model and theoretical analysis on the general model

is not included.

c) Contribution: Firstly we propose a generalized and novel model for the compet-

itive propagation on social networks. By taking into account both the endogenous and

exogenous factors and by considering the individual variance as well as the interplay of

the competing products, our model is general enough to describe a large class of multi-

meme propagation processes. Moreover, many existing models have difficulty in dealing

with the simultaneous contagions of multiple memes, and have to avoid this problem by

adding an additional assumption of the infinitesimal step length that only allows the oc-

currence of a single contagion at every step. Different from these models, the problem of

multiple contagions does not occur in our model since we model the contagion process as

the individual’s initiative choice under the social pressure, which is more suitable for the

product-adoption process. In addition, compared with the independent cascade model, in

which individuals’ choices are irreversible, our models adopt a more realistic assumption

that conversions from one product to another are reversible and occur persistently.

Secondly, we propose a new concept, the product-conversion graph, to characterize the

interplay between the products. There are two graphs in our model: the social network
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describing the interpersonal connections, and the product-conversion graph defining the

transitions between the products in self conversion, which in turn reflect the products’

relative quality.

Thirdly, starting from the description of individuals’ behavior, we develop two Markov-

chain competitive propagation models different in the chronological order of the social

conversion and the self conversion processes. Applying the independence approxima-

tion, we propose two corresponding network competitive propagation models, which are

difference equations systems, such that the dimension of our problem is reduced and

some theorems in the area of dynamical systems can be applied to the analysis of the

approximation models.

Fourthly, both theoretical analysis and simulation results are presented on the dy-

namical properties of the network competitive propagation models. We discuss the exis-

tence, uniqueness and stability of the fixed point, as well as how the systems’ asymptotic

state probability distribution is determined by the social network structure, the individ-

uals’ open-mindedness, the initial condition and, most importantly, the structure of the

product-conversion graph. We find that, if the product-conversion graph contains only

one absorbing strongly connected component, then the self conversion dominates the

system’s asymptotic behavior; With multiple absorbing strongly connected components

in the product-conversion graph, the system’s asymptotic state probability distribution

also depends on the initial condition, the network topology and the individual open-

mindedness. In addition, simulation results are presented to show the high accuracy of

the independence approximation and reveal that the original Markov-chain model also

exhibits the same asymptotic behavior.

At last, based on the network competitive propagation model, we propose two classes

of non-cooperative games. In both games the players are the competing companies

with bounded investment budgets on seeding, e.g., advertisement and promotion, and
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improving their products’ quality. The first model is a one-shot game, in which at each

step the players myopically maximize their next-step pay-off. We investigate the unique

Nash equilibrium at each stage. Theoretical analysis also reveals some strategic and

realistic insights on the seeding-quality trade-off and the allocation of seeding resources

among the individuals. The second model is a dynamic game with infinite horizon, in

which the players aim to maximize their discounted accumulated pay-offs. The existence

of Nash equilibrium for the two-player case is proved and numerical analysis is given on

the comparison with the one-shot game.

d) Organization: The rest of this chapter is organized as follows. Section II give the

assumptions for two Markov-chain propagation models. Section III and IV discuss the

approximation of these two models respectively. In Section V, we discuss the two classes

of games. Section VI is the conclusion.

2.2 Model Description and Notations

a) Social network as a graph: In this model, a social network is considered as an

undirected, unweighted, fixed-topology graph G = (V,E) with n nodes. The nodes are

indexed by i ∈ V = {1, 2, . . . , n}. The adjacency matrix is denoted by A = (aij)n×n with

aij = 1 if (i, j) ∈ E and aij = 0 if (i, j) /∈ E.

The row-normalized adjacency matrix is denoted by Ã = (ãij)n×n, where ãij = 1
Ni
aij

with Ni =
∑n

j=1 aij. The graph G = (V,E) is always assumed connected and there is no

self loop, i.e., ãii = 0 for any i ∈ V .

b) Competing products and the states of nodes: Suppose there are R competing prod-

ucts, denoted byH1, H2, . . . , HR, propagating in the network. We consider a discrete-time

model, i.e., t ∈ N, and assume the products are mutually exclusive. We do not specify the

state of adopting no product and collectively refer to all the states as “products”. Denote
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by Di(t) the state of node i after time step t. For any t ∈ N, Di(t) ∈ {H1, H2, . . . , HR}.

For simplicity let Θ = {1, 2, . . . , R}, i.e., the set of the product indexes.

c) Nodes’ production adoption behavior: Two mechanisms define the individuals’

behavior: the social conversion and the self conversion. The following two assumptions

propose respectively two models different in the chronological order of the social and self

conversions.

Assumption 2.1 (Social-self conversion model) Consider the competitive propaga-

tion of R products in the network G = (V,E). At time step t+ 1 for any t ∈ N, suppose

the previous state of any node i is Di(t) = Hr. Node i first randomly picks one of its

neighbor j and follows j’s previous state, i.e., Di(t + 1) = Dj(t), with probability αi. If

node i does not follow j’s state in the social conversion, with probability 1−αi, then node

i converts to product Hs with probability δrs for any s 6= r, or stay in Hr with probability

δrr.

Assumption 2.2 (Self-social conversion model) At any time step t+ 1, any node i

with Di(t) = Hr converts to Hs with probability δrs for any s 6= r, or stay in the state

Hr with probability δrr. If node i stays in Hr in the process above, then node i randomly

picks a neighbor j and follows Dj(t) with probability αi, or still stay in Hr with probability

1− αi.

Assumptions 2.1 and 2.2 are illustrated by Figure 2.1(a) and Figure 2.1(b) respec-

tively. By introducing the parameters δrs we define a directed and weighted graph with

the adjacency matrix D = (δrs)R×R, referred to as the product-conversion graph. Fig-

ure 2.2 gives an example of the product-conversion graph for different smart phone opera-

tion systems. Based on either of the two assumptions, D is row-stochastic. In this chapter

we discuss several types of structures of the product-conversion graph, e.g., the case when
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Di(t) = Hr
randomly pick

neighbor j

Di(t + 1) = Di(t)

Di(t + 1) = Dj(t)

Di(t + 1) = H1

Di(t + 1) = H2

Di(t + 1) = HR
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(a) social-self conversion
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Figure 2.1: Diagram illustrations for the social-self conversion model and the self-social
conversion model.
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Figure 2.2: An example of the product-conversion graph for different smart phone
operation systems. The self loops exist but are not displayed in this graph.

it is strongly connected, or consists of a transient subgraph and some isolated absorb-

ing subgraphs. The parameter αi characterizes node i’s inclination to be influenced by

social pressure. Define α = (α1, α2, . . . , αn)> as the individual open-mindedness vector.

Assume 0 < αi < 1 for any i ∈ V .

d) Problem description: According to either Assumption 2.1 or Assumption 2.2, at

any time step t+ 1, the probability distribution of any node’s states depends on its own

state as well as the states of all its neighbors at time t. Therefore, the collective evolution

of nodes’ states is a Rn-state discrete-time Markov chain. Define pir(t) as the probability

that node i is in state Hr after time step t, i.e., pir(t) = P[Di(t) = Hr]. We aim to
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understand the dynamics of pir(t). Since the Markov chain models have exponential

dimensions, we approximate it with lower-dimension difference equations systems and

analyze instead the dynamical properties of the approximation systems.

e) Notations: Before proceeding to the next section, we introduce some frequently

used notations in Table 2.1. In order to distinguish vectors from matrices, in this chapter,

we use symbols in bold to denote vectors.

Table 2.1: Notations frequently used in this chapter

Θ set of products. Θ = {1, . . . , R}
Snm(a) the set {X ∈ Rn×m |X � 0n×m, X1m = a} for any a ∈ Rn

S̃nm(a) the set {X ∈ Rn×m |X � 0n×m, X1m � a} for any a ∈ Rn

xr the r-th column vector of the matrix X ∈ Rn×m

x(i) the i-th row vector of the matrix X ∈ Rn×m

x(−i) the i-th row vector of the matrix ÃX ∈ Rn×m, i.e., x(−i) =
(x−i1, x−i2, . . . , x−im) where x−ir =

∑n
j=1 ãijxjr

2.3 Network Competitive Propagation Model with

Social-self conversion

This section is based on Assumption 2.1. We first derive an approximation model for

the time evolution of pir(t), referred to as the social-self conversion network competitive

propagation model (social-self NCPM), and then analyze the asymptotic behavior of

the approximation model and its relation to the social network topology, the product-

conversion graph, the initial condition and the individuals open-mindedness. Further

simulation work is presented in the end of this section.
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2.3.1 Derivation of the social-self NCPM

Some notations are used in this section.

Notation 2.3.1 For the competitive propagation of products {H1, H2, . . . , HR} on the

network G = (V,E),

(1) define the random variable Xr
i (t) by Xr

i (t) = 1 if Di(t) = Hr; X
r
i (t) = 0 if

Di(t) 6= Hr. Due to the mutual exclusiveness of the products, for any i ∈ V , if Xr
i (t) = 1,

then Xs
i (t) = 0 for any s 6= r;

(2) Define the n− 1 tuple D−i(t) = (D1(t), . . . , Di−1(t), Di+1(t), . . . , Dn(t)), i.e., the

states of all the nodes except node i after time step t;

(3) Define the following notations for simplicity:

P rs
ij (t) = P[Xr

i (t) = 1 |Xs
j (t) = 1],

P r
i (t;−i) = P[Xr

i (t) = 1 |D−i(t)],

Γri (t; s,−i) = P[Xr
i (t+ 1) = 1 |Xs

i (t) = 1,D−i(t)].

In the derivation of the network competitive propagation model, the following ap-

proximation is adopted:

Approximation 2.3.2 (Independence Approximation) For the competitive propa-

gation of R products on the network G = (V,E), approximate the conditional probability

Pms
ij (t) by its corresponding total probability pim(t) for any m, s ∈ Θ and any i, j ∈ V .

With the independence approximation, the social-self NCPM is presented in the the-

orem below.

Theorem 2.3.3 (Social-self NCPM) Consider the competitive propagation based on

Assumption 2.1, with the social network and the product-conversion graph represented by
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their adjacency matrices Ã = (ãij)n×n and D = (δrs)R×R respectively. The probability

pir(t) satisfies

pir(t+ 1)− pir(t) =
∑
s 6=r

αi

n∑
j=1

ãij
(
P sr
ij (t)pjr(t)− P rs

ij (t)pjs(t)
)

+
∑
s 6=r

(1− αi)(δsrpis(t)− δrspir(t)),
(2.1)

for any i ∈ V and r ∈ Θ. Applying the independence approximation, the approximation

model for equation (2.1), i.e., the social-self NCPM, is

pir(t+ 1) = αi

n∑
j=1

ãijpjr(t) + (1− αi)
R∑
s=1

δsrpis(t). (2.2)

Proof: By definition,

pir(t+ 1)− pir(t) = E
[
E[Xr

i (t+ 1)−Xr
i (t) |D−i(t)]

]
,

where the conditional expectation is given by

E[Xr
i (t+ 1)−Xr

i (t) |D−i(t)] =
∑
s 6=r

(
Γri (t; s,−i)P s

i (t;−i)− Γsi (t; r,−i)P r
i (t;−i)

)
.

According to Assumption 2.1,

Γri (t; s,−i)P s
i (t;−i) = αi

∑
j

ãijX
r
j (t)P s

i (t;−i) + (1− αi)δsrP s
i (t;−i).

Therefore,

E[Γri (t; s,−i)P s
i (t;−i)] = αi

∑
j

ãijE[Xr
j (t)P s

i (t;−i)] + (1− αi)δsrE[P s
i (t;−i)].
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One the right-hand side of the equation above, E[P s
i (t;−i)] = pis(t). Moreover,

E[Xr
j (t)P s

i (t;−i)] =
∑
d−i−j

P[Xs
i (t) = 1, Xr

j (t) = 1,D−i−j(t) = d−i−j] = P sr
ij (t)pjr(t).

Apply the same computation to E[Γsi (t; r,−i)P r
i (t;−i)] and then we obtain equation (2.1).

Replace P sr
ij (t) and P rs

ij (t) by pis(t) and pir(t) respectively and according to the equations∑
s 6=r pis(t) = 1− pir(t) and

∑
s 6=r δrs = 1− δrr, we obtain equation (2.2).

The derivation of Theorem 2.3.3 is equivalent to the widely adopted mean-field ap-

proximation in the modeling of the network epidemic spreading [25, 75, 19]. Notice that

the independence approximation neither neglects the correlation between any two nodes’

states, nor destroys the network topology, since pjr(t), pjs(t) and ãij all appear in the

dynamics of pir(t).

2.3.2 Asymptotic behavior of the social-self NCPM

Define the map f : Rn×R → Rn×R by

f(X) = diag(α)ÃX + (I − diag(α))XD . (2.3)

According to equation (2.2), the matrix form of the social-self NCPM is written as

P (t+ 1) = f
(
P (t)

)
, (2.4)

where P (t) = (pir(t))n×R. We analyze how the asymptotic behavior of system (2.4), i.e.,

the existence, uniqueness and stability of the fixed point of the map f , is determined by

the two graphs introduced in our model: the social network with the adjacency matrix

Ã, and the product-conversion graph with the adjacency matrix D .
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Structures of the social network and the product-conversion graph

Assume that the social network G(Ã) has a globally reachable node. As for the

product-conversion graph, we consider the more general case. Suppose that the product-

conversion graph G(D) has m absorbing strongly connected components (absorbing

SCCs) and a transient subgraph. Re-index the products such that the product index

set for any l-th absorbing SCCs is given by Θ1 = {1, 2, . . . , k1}, and

Θl =
{ l−1∑
u=1

ku + 1,
l−1∑
u=1

ku + 2, . . . ,
l∑

u=1

ku

}
,

for any l ∈ {2, 3, . . . ,m}, and the index set for the transient subgraph is Λ = {∑m
l=1 kl +

1, . . . ,
∑m

l=1 kl+2, . . . , R}. then the adjacency matrix D of the product-conversion graph

takes the following form:

D =

 D̄ 0(R−k0)×k0

Bk0×(R−k0) D0

 , (2.5)

where D̄ = diag[D1,D2, . . . ,Dm] and B = [B1, B2, . . . , Bm], with Bl ∈ Rk0×kl for any

l ∈ {1, 2, . . . ,m}, is non-zero and entry-wise non-negative. Matrix Dl = (δΘl
rs )kl×kl , with

δΘ1
rs = δrs and δΘl

rs = δ∑l−1
u=1 ku+r,

∑l−1
u=1 ku+s for any l ∈ {2, 3, . . . ,m}, is the adjacency matrix

of the l-th absorbing SCC, and is thus irreducible and row-stochastic. The following

definition classifies four types of structures of G(D).

Definition 2.3.4 (Four sets of product-conversion graphs) Based on whether the

product-conversion graph G(D) has a transient subgraph and a single or multiple absorb-

ing SCCs, we classify the adjacency matrix D into the following four cases:

(i. Case 1 (single SCC): The graph G(D) is strongly connected, i.e., D = D1, with

k1 = R;
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(ii. Case 2 (single SCC + transient subgraph): The graph G(D) contains one absorbing

SCC and a transient subgraph, i.e., D̄ = D1 and k0 ≥ 1;

(iii. Case 3 (multi-SCC): The graph G(D) contains m absorbing SCCs, i.e., D =

diag[D1,D2, . . . ,Dm], with
∑m

l=1 kl = R;

(iv. Case 4 (multi-SCC + transient subgraph): The graph G(D) contains m absorbing

SCCs and a transient subgraph, with D given by equation (2.5).

Stability analysis of the social-self NCPM

The following theorem states the distinct asymptotic behaviors of the social-self

NCPM, with different structures of the product-conversion graph.

Theorem 2.3.5 (Asymptotic behavior for social-self NCPM) Consider the social-

self NCPM on a strongly connected social network G(Ã), with the product-conversion

graph G(D). Assume that

(i. Each absorbing SCC G(Dl) of G(D) is aperiodic;

(ii. For any Dl, l ∈ {1, 2, . . . ,m}, as least one column of Dl is entry-wise strictly

positive;

(iii. For any r ∈ Λ,
∑

s∈Λ δrs < 1, i.e., D01k0 ≺ 1k0.

Then, for any P (0) ∈ SnR(1n), the solution P (t) to equation (2.4) has the following

properties, depending upon the structure of D :

(i. in Case 1, P (t) converges to P ∗ = 1nvleft(D)> exponentially fast, where P ∗ is the

unique fixed point in SnR(1n) for the map f defined by equation (2.3). Moreover,

the convergence rate is ε(D) = αmax + (1− αmax)ζ(D), where αmax = maxi αi and

ζ(D) = 1−∑R
r=1 mins δsr;
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(ii. in Case 2, for any i ∈ V ,

lim
t→∞

pir(t) =


0, for any r ∈ Λ,

wr(D1), for any r ∈ Θ1;

(iii. in Case 3, for any l ∈ {1, 2, . . . ,m} and i ∈ V ,

lim
t→∞

pΘl(i)(t) =
(
v>left(M)PΘl(0)1kl

)
v>left(Dl),

where M = diag(α)Ã + I − diagα and PΘl(t) =
(
pΘl
ir (t)

)
n×kl

, with pΘl
ir (t) =

pi,∑l−1
u=1 ku+r(t) and pΘl(i)(t) being the i-th row of PΘl(t);

(iv. in Case 4, for any l ∈ {1, 2, . . . ,m} and i ∈ V ,

lim
t→∞

pir(t) =


0, for any r ∈ Λ,

γlwr(Dl), for any r ∈ Θl,

where γl depends on Ã, Bl, P
Θl(0), PΛ(0) and satisfies

∑m
l=1 γl = 1.

Before proving the theorem above, a useful and well-known lemma is stated without

the proof.

Lemma 2.3.6 (Row-stochastic matrices after pairwise-difference similarity transform)

Let M ∈ Rn×n be row-stochastic. Suppose the graph G(M) is aperiodic and has a globally
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reachable node. Then the nonsingular matrix

Q =



−1 1

. . . . . .

−1 1

1/n . . . 1/n 1/n


satisfies

QMQ−1 =

Mred 0n−1

c> 1


for some c ∈ Rn−1 and Mred ∈ R(n−1)×(n−1). Moreover, Mred is discrete-time exponen-

tially stable.

Proof of Theorem 2.3.5: (1) Case 1:

Since matrix D is row-stochastic, irreducible and aperiodic, according to the Perron-

Frobenius theorem, vleft(D) ∈ RR is well-defined. By substituting P ∗, defined by p∗(i) =

vleft(D)> for any i ∈ V , into equation (2.3), we verify that P ∗ is a fixed point of f .

For any X and Y ∈ Rn×R, define the distance d(·, ·) by d(X, Y ) = ‖X − Y ‖∞. Then

(SnR(1n), d) is a complete metric space. For any X ∈ SnR(1n), it is easy to check that

f(X) � 0n×R and

f(X)1R = diag(α)ÃX1R + (I − diag(α))X1R = 1n.

Therefore, f maps SnR(1n) to SnR(1n).

For any X ∈ SnR(1n), according to equation (2.3),

‖f(X)(i) − f(P ∗)(i)‖1 ≤ αi‖x(−i) − p∗(−i)‖1 + (1− αi)‖(x(i) − p∗(i))D‖1. (2.6)
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The first term of the right-hand side of (2.6) satisfies

‖x(−i) − p∗(−i)‖1 ≤
R∑
r=1

n∑
j=1

ãij|xjr − wr(D)| ≤ ‖X − P ∗‖∞.

The second term of the right-hand side of (2.6) satisfies

‖(x(i) − p∗(i))D‖1 =
R∑
r=1

|
R∑
s=1

(
xis − ws(D)

)
δsr|.

If x(i) = p∗(i), then ‖f(X)(i) − f(P ∗)(i)‖1 ≤ αi‖X − P ∗‖∞. If x(i) 6= p∗(i), since x(i)1R =

p∗(i)1R = 1, both the set θ1 = {s |xis ≥ ws(D)} and the set θ2 = {s |xis < ws(D)} are

nonempty and

∑
s∈θ1

(
xis − ws(D)

)
=
∑
s∈θ2

(
ws(D)− xis

)
=

1

2

R∑
s=1

|xis − ws(D)|.

Therefore,

‖(x(i) − p∗(i))D‖1 =
R∑
r=1

R∑
s=1

|xis − ws(D)|δsr

− 2
R∑
r=1

min{
∑
s∈θ1

(xis − ws(D))δsr,
∑
s∈θ2

(ws(D)− xis)δsr},
(2.7)

where

min{
∑
s∈θ1

(xis − ws(D))δsr,
∑
s∈θ2

(ws(D)− xis)δsr} ≥
1

2
min
s
δsr‖x(i) − p∗(i)‖1.

Substituting the inequality above into (2.7), we obtain

‖(x(i) − p∗(i))D‖1 ≤
(

1−
R∑
r=1

min
s
δsr

)
‖x(i) − p∗(i)‖1.
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Since
∑R

r=1 δsr = 1 for any s,
∑R

r=1 mins δsr is no larger than 1. In addition, since at

least one column of D is strictly positive,
∑R

r=1 mins δsr > 0. Therefore, 0 ≤ ζ(D) =

1−∑R
r=1 mins δsr < 1, and

‖f(X)(i) − p∗(i)‖1 ≤
(
αi + (1− αi)ζ(D)

)
|X − P ∗‖∞.

This leads to

‖f(X)− f(P ∗)‖∞ ≤ ε(D)‖X − P ∗‖∞,

for any X ∈ SnR(1n) and 0 < ε(D) < 1. This concludes the proof for Case 1.

(2) Case 2:

For the transient subset Λ, define PΛ(t) =
(
pΛ
ir(t)

)
n×k0

, with pΛ
ir(t) = pi,r+k1(t), for

any i ∈ V and r ∈ {1, 2, . . . , k0}. Then,

PΛ(t+ 1) = diag(α)ÃPΛ(t) + (I − diag(α))PΛ(t)D0.

According to Assumption (iii) of Theorem 2.3.5,

c = max
r∈{1,2,...,k0}

k0∑
s=1

δΛ
rs < 1, and D01k0 ≤ c1k0 .

Therefore,

PΛ(t+ 1)1k0 �
(

diag(α)Ã+ c
(
I − diag(α)

))
PΛ(t)1k0 .

Since ρ
(

diag(α)Ã + c
(
I − diag(α)

))
< 1, for any PΛ(0) ∈ S̃nk0(1n), PΛ(t) → 0n×k0

exponentially fast.
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Define PΘ1(t) = (pir(t))n×k1 . then we have

PΘ1(t+ 1) = diag(α)ÃPΘ1(t) +
(
I − diag(α)

)
PΘ1(t)D1 +

(
I − diag(α)

)
PΛ(t)B.

Since PΛ(t) converges to 0n×k0 exponentially fast, we have: 1) there exists C > 0 and

0 < ξ < 1 such that

‖
(
I − diag(α)PΛ(t)B

)
‖∞ ≤ Cξt;

2) ‖PΘ1(t)1k1 − 1k1‖∞ → 0 exponentially fast, which implies d
(
PΘ1(t), Snk1(1n)

)
→ 0

exponentially fast.

For any X ∈ S̃nk1(1n), define map f̃ by

f̃(X) = diag(α)ÃX +
(
I − diag(α)

)
XD1.

According to the proof for Case 1, there exists a unique fixed point P̃ ∗ for the map f̃

in Snk1(1n), given by p̃∗ir = wr(D1). Moreover, there exists 0 < ε < 1 such that, for any

X ∈ Snk1(1n),

‖f̃(X)− P̃ ∗‖∞ ≤ ε‖X − P̃ ∗‖∞.

Since the function ‖f̃(X)−P̃ ∗‖∞
‖X−P̃ ∗‖∞

is continuous in S̃nk1(1n)\P̃ ∗ and d
(
PΘ1(t), Snk1(1n)

)
→ 0,

there exists T > 0 and 0 < η < 1 such that, for any t > T ,

‖f̃
(
PΘ1(t)

)
− P̃ ∗‖∞ ≤ η‖PΘ1(t)− P̃ ∗‖∞.

For t ∈ N much larger than T ,

‖PΘ1(t)− P̃ ∗‖∞ ≤ ηt−T‖PΘ1(T )− P̃ ∗‖∞ + C
ξt − ηt−T ξT

η/ξ
.
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Since 0 < η < 1, 0 < ξ < 1, as t → ∞, ‖PΘ1(t) − P̃ ∗‖∞ → 0. This concludes the proof

for Case 2.

(3) Case 3:

For any l ∈ {1, 2, . . . ,m},

PΘl(t+ 1) = f̂
(
PΘl(t)

)
=
(
I − diag(α)

)
PΘl(t)Dl + diag(α)ÃPΘl(t),

where Dl1kl = 1kl since Θl is absorbing and strongly connected. Therefore,

PΘl(t+ 1)1kl = MPΘl(t)1kl ,

where M = I − diag(α) + diag(α)Ã is row-stochastic and aperiodic. Moreover, the

graph G(M) has a globally reachable node and therefore the matrix M has a normalized

dominant left eigenvector vleft(M). Applying the Perron-Frobenius theorem,

lim
t→∞

PΘl(t)1kl =
(
v>left(M)PΘl(0)1kl

)
1n.

Let cl = v>left(M)PΘl(0)1kl . Following the same line of argument in the proof for

Case 2, f̂ maps Snkl(cl1n) to Snkl(cl1n), and maps S̃nkl(cl1n) to S̃nkl(cl1n). Moreover,

P̂ ∗ ∈ Rn×kl with p̂∗(i) = clvleft(Dl)
>, for any i ∈ V , is the unique fixed point of the map

f̂ in Snkl(cl1n). In addition, there exists 0 < ε < 1 such that for any X ∈ Snkl(cl1n),

‖f̂(X)− P̂ ∗‖∞ ≤ ε‖X − P̂ ∗‖∞.

The function ĥ(X) = ‖f̂(X)−P̂ ∗‖∞
‖X−P̂ ∗‖∞

is continuous in S̃nkl(cl1n) \ P̂ ∗. Since for any

PΘl(0) ∈ S̃nkl(cl1n)\P̂ ∗, we have PΘl(t)1kl → cl1kl , which implies d
(
PΘl(t), Snkl(cl1kl)

)
→
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0 as t→ 0. Therefore, there exists 0 < η < 1 and T > 0 such that for any t > T ,

‖f̂
(
PΘl(t)

)
− P̂ ∗‖∞ ≤ η‖PΘl(t)− P̂ ∗‖∞.

Therefore, PΘl(t)→ P̂ ∗ as t→∞.

(4) Case 4:

PΘl(t+ 1) = diag(α)ÃPΘl(t) +
(
I − diag(α)

)
PΘl(t)Dl +

(
I − diag(α)

)
PΛ(t)Bl.

for any l ∈ {1, 2, . . . ,m}. Therefore,

PΘl(t+ 1)1kl = MPΘl(t)1kl + φ(t), (2.8)

where M = diag(α)Ã + I − diag(α) is row-stochastic and primitive. The vector φ(t) is

a vanishing perturbation according to the proof for Case 2.

Let x(t) = PΘl(t)1kl and y(t) = Qx(t) with Q defined in Lemma 2.3.6. Let yerr(t) =

(y1(t), y2(t), . . . , yn−1(t))>, where yi(t) = xi+1(t)− xi(t) for any i = 1, 2, . . . , n− 1. Then

we have

y(t+ 1) = QMQ−1y(t) +Qφ(t).

Let ϕ(t) =
(
ϕ1(t), ϕ2(t), . . . , ϕn−1(t)

)>
with ϕi(t) =

∑
j Qijφj(t). ϕ(t) is also a vanishing

perturbation and

yerr(t+ 1) = Mredyerr(t) +ϕ(t).

The equation above is an exponentially stable linear system with a vanishing perturba-

tion. Since ρ(Mred) < 1, yerr → 0n−1 as t → ∞, which implies that PΘl(t)1kl → γ1n

and γl depends on M , Bl, P
Θl(0) and PΛ(0). Moreover,

∑
l γl = 1 since P (t)1R = 1n.
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Following the same argument in the proof for Case 3, we obtain

lim
t→∞

pΘl(i)(t) = γlv
>
left(Dl).

Interpretations of Theorem 2.3.5

Analysis on Case 1 to 4 leads to the following conclusions: 1) The probability of

adopting any product in the transient subgraph eventually decays to zero; 2) For the

product-conversion graph with only one absorbing SCC G(D1), the system’s asymptotic

product-adoption probability distribution only depends on vleft(D1). In this case, the self

conversion dominates the competitive propagation process; 3) With multiple absorbing

SCCs in the product-conversion graph, the initial condition P (t) and the structure of

the social network G(Ã) together determine the fraction each absorbing SCC eventually

takes in the total probability 1; 4) In each absorbing SCC G(Dl), the asymptotic adoption

probability for each product is proportional to its corresponding entry of Dl.

2.3.3 Further simulation work

a) Accuracy of the social-self NCPM solution: Simulation results have been presented

to compare the solution to the social-self NCPM with the solution to the original Markov

chain model defined by Assumption 2.1. Let the matrix D take the following form

D =


D1 0 0

0 D2 0

B1 B2 D0

 =



0.6 0.4 0 0

0.3 0.7 0 0

0 0 1 0

0 0.8 0 0.2


. (2.9)

62



Competitive Propagation and Quality-Seeding Games Chapter 2

0 10 20 30 40
0.25

0.3

0.35

0.4

0.45

p12(t)

t

(a) n = 5, p = 1

0 10 20 30 40
0.25

0.3

0.35

0.4

0.45

t

p12(t)

(b) n = 10, p = 0.5

0 10 20 30 40
0.25

0.3

0.35

0.4

0.45

p12(t)

t

(c) n = 50, p = 0.1

0 10 20 30 40
0.25

0.3

0.35

0.4

0.45

p12(t)

t

(d) n = 50, p = 1

Figure 2.3: Difference between the solutions to the social-self NCPM (blue dash) and
the original Markov-chain model (red) in complete graphs or Erdős-Rényi graphs.
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Figure 2.4: Difference between the solutions to the social-self NCPM (blue dash) and
the original Markov-chain model (red) in the power-law graph and the star graph.
The power-law graph has 100 nodes, with the degree distribution p(k) = 1010k−2.87.
The star graph consists of 10 nodes with node 1 as the center.

The Markov-chin solution is computed by the Monte Carlo method. In each sampling,

A, α and P (0) are randomly generated and set identical for the Markov chain and the

NCPM. The probability p12(t) is plotted for both models on different types of social

networks, such as the complete graph, the Erdős-Rényi graph, the power-law graph and

the star graph. As shown in Figure 2.3 and Figure 2.4, the solution to the social-self

NCPM nearly overlaps with the Markov-chain solution in every plot, due to the i.i.d self

conversion process.

b) Asymptotic behavior of the Markov chain model In Figure 2.5 and Figure 2.6,
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all the trajectories pir(t), for the Markov-chain model on an Erdős-Rényi graph with

n = 5, p = 0.4 and randomly generated α, are computed by the Monte Carlo method.

Figure 2.5(a) corresponds to the structure of the product-conversion graph defined by

Case 4 in Definition 2.3.4 with

D1 =

0.6 0.4

0.3 0.7

 ,D2 = 1,D0 = 0.2, B = [0 0.8 0].

The transient subgraph is only connected to SCC Θ1 and the intial adoption probability

for H3 is 0. Figure 2.5(b) corresponds to the structure of the product-conversion graph

defined by Case 3 in Defintion 2.3.4 with

D =

D1 0

0 D2

 ,D1 =

0.6 0.4

0.3 0.7

 ,D2 =

0.5 0.5

0.1 0.9

 .
The simulation results shows that, in these two cases the Markov-chain solutions converge

exactly to the values indicated by the social-self NCPM, regardless of the initial condition.

The matrix D used in Figure 2.6 is given by equation (2.9). As illustrated by Figure 2.6,

the asymptotic adoption probabilities vary with the initial condition in the Markov-chain

model, in consistence with the results of Theorem 2.3.5.

2.4 Analysis of the Self-social Network Competitive

Propagation Model

In this section we discuss the network competitive propagation model based on As-

sumption 2.2, i.e, the case in which self conversion occurs before social conversion at each

time step. Firstly we propose an approximation model, referred to as the self-social net-
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Figure 2.5: Asymptotic behavior of the Markov chain model with the production-con-
version graphs defined by Case 3 or Case 4 in Defintion 2.3.4. Every curve in this plot
is a trajectory pir(t) for i ∈ V and r ∈ Θ. Here xlr = v>left(M)PΘl(0)1klwr(Dl).
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(a) initial condition 1
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Figure 2.6: Asymptotic behavior of the Markov chain model with the production-con-
version graph consisting of multiple SCCs and a transient subgraph. Every curve in
this plot is a trajectory pir(t) for i ∈ V and r ∈ Θ.
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work competitive propagation model (self-social NCPM), and then analyze the dynamical

properties of this approximation model.

Theorem 2.4.1 (Self-social NCPM) Consider the competitive propagation model based

on Assumption 2.2, with the social network and the product-conversion graph represented

by their adjacency matrices Ã and D respectively. The probability pir(t) satisfies

pir(t+ 1)− pir(t) =
∑
s 6=r

(
δsrpis(t)− δrspir(t)

)
+
∑
s 6=r

δssαi

n∑
j=1

ãijpis(t)P
rs
ji (t)

−
∑
s 6=r

δrrαi

n∑
j=1

ãijpir(t)P
sr
ji (t),

for any i ∈ V and r ∈ Θ. Applying the independence assumption, the matrix form of the

self-social NCPM is

P (t+ 1) = P (t)D + diag(α) diag
(
P (t)δ

)
ÃP (t)− diag(α)P (t) diag(δ), (2.10)

with P (t) = (pir(t))n×R and δ = (δ11, δ22, . . . , δRR)>.

It is straightforward to check that, for any P (t) ∈ SnR(1n), P (t+1) is still in SnR(1n).

According to the Brower fixed point theorem, there exists at least one fixed point for the

system (2.10) in SnR(1n). Since the nonlinearity of equation (2.10) add much difficulty

to the analysis of it, in the remaining part of this section we discuss the special case when

R = 2.

For simplicity, in this section, let p(t) = p2(t) =
(
p12(t), p22(t), . . . , pn2(t)

)>
. Without

loss of generality, assume δ22 ≥ δ11. Define the map h : Rn → Rn by

h(x) = δ121n + (1− δ12 − δ21)x+ δ11 diag(α)Ãx− δ22 diag(α)x

+ (δ22 − δ11) diag(α) diag(x)Ãx.

(2.11)
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Then the self-social NCPM for R = 2 is written as

p(t+ 1) = h(p(t)), (2.12)

and p1(t) is computed by p1(t) = 1n − p(t).

We present below the main theorem of this section.

Theorem 2.4.2 (Dynamical behavior of self-social NCPM with R = 2) Consider

the two-product self-social NCPM, given by equations (2.11) and (2.12), with the param-

eters δ11, δ12, δ21, δ22, α1, . . . , αn all in the interval (0, 1), and δ22 ≥ δ11. We conclude

that,

(i. system (2.12) has a unique fixed point p∗ ∈ [0, 1]n;

(ii. the unique fixed point p∗ satisfies

1

2
1n � p∗ �

δ12

δ12 + δ21

1n, and (2.13)

p∗i − p∗−i ≤
1− 1

2
αi

αi

δ22 − δ11

δ22 + δ11

; (2.14)

(iii. if δ22 = δ11, the unique fixed point p∗ for system (2.12) is globally exponentially

stable; (By “globally” we mean “for any p(0) ∈ [0, 1]n.”)

(iv. if δ22 > δ11, and

αi <
8δ11δ22

(δ22 − δ11)2 + 8δ11δ22

for any i ∈ V, (2.15)

then p∗ is locally asymptotically stable;
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(v. if δ22 > δ11, and

αi <
δ22 + δ11

3δ22 − δ11

for any i ∈ V, (2.16)

then p∗ is globally exponentially stable. Moreover, the convergence rate is upper

bounded by maxi
(

max{εi, Kiεi + Ki − 1}
)
, where εi and Ki are defined as εi =

(2δ22 − δ11)αi/Ki and Ki = δ12 + δ21 + δ22αi, respectively.

Proof: We start the proof by establishing that h is a continuous map from [0, 1]n

to [0, 1]n itself. Firstly, since

h(x) = δ12(1n − x) + δ11 diag(α)Ãx+ (1− δ21)x− δ22 diag(α)x

+ (δ22 − δ11) diag(α) diag(x)Ãx,

and

(1− δ21)x− δ22 diag(α)x � (1− δ21 − δ22)x = 0n,

the right-hand side of the expression of h is non-negative. Therefore, for any x ∈ [0, 1]n,

h(x) � 0n. Secondly, recall that x−i = (Ãx)i =
∑

j ãijxj. That is, x−i is the weighted

average of all the xj’s except xi and the value of x−i does not depend on xi since ãii = 0.

Moreover, since
∑

j ãij = 1 for any i ∈ V , x−i is also in the interval [0, 1]. According to

equation (2.11), rewrite the i-th entry of h(x) as

h(x)i = δ12 + δ11αix−i + ηixi,

where ηi = 1− δ12− δ21− δ22αi + (δ22− δ11)αix−i. The maximum value of ηi is 1− δ12−

δ21 − δ11αi, obtained when x−i = 1. Therefore,

ηixi ≤ max(1− δ12 − δ21 − δ11αi, 0).
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Then we have

h(x)i ≤ δ12 + δ11αi + max(1− δ12 − δ21 − δ11αi, 0) = max(δ22, δ12 + δ11αi) < 1.

The inequality above leads to h(x) � 1n for any x ∈ [0, 1]n. Since h maps [0, 1]n to [0, 1]n

itself, according to the Brower fixed point theorem, there exists p∗ such that h(p∗) = p∗.

This concludes the proof of the existence of a fixed point.

Any fixed point of h should satisfy h(p∗) = p∗, i.e.,

0n = δ121n + δ11 diag(α)Ãp∗ + (δ22 − δ11) diag(α) diag(p∗)Ãp∗

− (δ12 + δ21)p∗ − δ22 diag(α)p∗.

(2.17)

Therefore,

p∗ = δ12K
−11n + δ11K

−1 diag(α)Ãp∗ + (δ22 − δ11)K−1 diag(α) diag(p∗)Ãp∗,

where K = (δ12 + δ21)I + δ22 diag(α) is a positive diagonal matrix. Define a map T :

Rn → Rn by

T (x) = δ12K
−11n + δ11K

−1 diag(α)Ãx+ (δ22 − δ11)K−1 diag(α) diag(x)Ãx. (2.18)

We have that map h has a unique fixed point if and only if map T has a unique fixed

point. For any x and y ∈ [0, 1]n, define the distance d(x,y) = ‖x−y‖∞. Then ([0, 1]n, d)

is a complete metric space. According to equation (2.18), since K−1, diag(α), Ã, δ22−δ11

and diag(x) are all nonnegative, for any x, y ∈ [0, 1]n and x � y, we have T (x) � T (y).

Moreover,

T (0n) = δ12K
−11n � 0n, and
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T (1n) = δ12K
−11n + δ11K

−1α+ (δ22 − δ11)K−1α = δ12K
−11n + δ22K

−1α.

Since

T (1n)i =
δ12 + δ22αi

δ12 + δ21 + δ22αi
< 1,

we have T (1n) ≺ 1n. Therefore, T maps [0, 1]n to [0, 1]n. For any x, y ∈ [0, 1]n,

T (x)i − T (y)i =
δ11αi
Ki

(x−i − y−i) +
(δ22 − δ11)αi

Ki

(xix−i − yiy−i).

Moreover,

|x−i − y−i| ≤ (
n∑
j=1

ãij) max
j
|xj − yj| = ‖x− y‖∞,

and

|xix−i − yiy−i| ≤ max
(

max
i
y2
i −min

i
x2
i , max

i
x2
i −min

i
y2
i

)
≤ 2‖x− y‖∞.

Therefore,

|T (x)i − T (y)i| ≤ εi‖x− y‖∞,

where εi = (2δ22−δ11)αi
δ12+δ21+δ22αi

. One can check that εi < 1 for any i ∈ V and εi does not depend

on the x and y. Let ε = maxi εi. Then for any x, y ∈ [0, 1]n,

‖T (x)− T (y)‖∞ ≤ ε‖x− y‖∞ with ε < 1.

Applying the Banach fixed point theorem, we know that the map T possesses a unique

fixed point p∗ in [0, 1]n. In addition, for any p(0), the sequence {p(t)}t∈N defined by

p(t+ 1) = T
(
p(t)

)
satisfies limt→∞ p(t) = p∗. This concludes the proof of statement (i).
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For statement (ii), one can check that T maps S = {x ∈ Rn | 1
2
1n � x � δ12

δ12+δ21
1n} to

S itself. Since T is a contraction map, the unique fixed point p∗ is in S. The concludes

the proof for equation (2.13). According to equation (2.17), we have Cip
∗
i − C−ip∗−i =

δ12 − δ12p
∗
i , where Ci = δ21 + δ22αi and C−i = δ11αi + (δ22 − δ11)αip

∗
i . Firstly we point

out that Ci > C−i, since Ci − C−i = δ21 + αi(δ22 − δ11)(1− p∗i ) > 0. Moreover,

p∗i − p∗−i =
δ12 −

(
δ12 + δ21 + αi(δ22 − δ11)(1− p∗i )

)
p∗i

δ11αi + (δ22 − δ11)αip∗i
.

The right-hand side of the equation above with 1
2
≤ p∗i ≤ δ12

δ12+δ21
achieves its maximum

value
1− 1

2
αi

αi

δ22−δ11
δ22+δ11

at p∗i = 1
2
. This concludes the proof for equation (2.14).

Now we prove statement (iii). With δ11 = δ22,

h
(
x
)

= x+ δ121n − 2δ12x+ δ11 diag(α)
(
Ãx− x

)
.

One can check that p∗ = 1
2
1n is a fixed point. According to statement (i), the fixed

point is unique. Let p(t) = y(t)+ 1
2
1n. Then the two-product self-social NCPM becomes

y(t + 1) = My(t), where M = (1− 2δ12)I + δ11 diag(α)Ã− δ11 diag(α). For any i ∈ V ,

if 1− 2δ12 − δ11αi ≥ 0, then

n∑
j=1

|Mij| = 1− 2δ12 − δ11αi + δ11αi = 1− 2δ12 < 1;

and, if 1− 2δ12 − δ11αi < 0, then

n∑
j=1

|Mij| = 2δ12 + δ11αi + δ11αi − 1 < 1.

Since ρ(M) ≤ ‖M‖∞ = maxi
∑n

j=1|Mij|, the spectral radius of M is strictly less than 1.

Therefore, the fixed point p∗ = 1
2
1n is globally exponentially stable.
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Now consider the case when δ22 > δ11. Let p(t) = y(t) + p∗. Then system (2.12)

becomes

y(t+ 1) = My + (δ22 − δ11) diag(α) diag(y(t))Ãy(t).

The right-hand side of the equation above is a linear term My(t) with a constant matrix

M , plus a quadratic term. The matrix M can be decomposed as M = M̃ − δ12I and

M̃ = M̃ (1) + M̃ (2) is further decomposed as a diagonal matrix M̃ (1) plus a matrix M̃ (2)

in which all the diagonal entries are 0. Since

M̃ (1) = (1− δ12)I − δ22 diag(α) + (δ22 − δ11) diag(α) diag(Ãp∗)

is a positive diagonal matrix, and

M̃ (2) = δ11 diag(α)Ã+ (δ22 − δ11) diag(α) diag(p∗)Ã

is a matrix with all the diagonal entries being zero and all the off-diagonal entries being

nonnegative. The matrix M̃ = M̃ (1) + M̃ (2) is nonnegative.

Since Ã = diag( 1
N1
, 1
N2
, . . . , 1

Nn
)A, the matrix M̃ can be written in the form DA+E,

where A is symmetric and D, E are positive diagonal matrix. One can easily prove that

all the eigenvalues of any matrix in the form M̃ = DA+E are real since M̃ is similar to

the symmetric matrix D
1
2 (A+D−1E)D

1
2 .

The local stability of p∗ is equivalent to the inequality ρ(M) < 1, which is in turn

equivalent to the intersection of the following two conditions: λmax(M̃) < 1 + δ12 and

λmin(M̃) > −1+δ12. First we prove λmax(M̃) < 1+δ12. Since A is irreducible and α � 0n,

p∗ � 0n, we have M̃ij > 0 if and only if aij > 0 for any i 6= j. In addition, M̃ii > 0

for any i ∈ V . Therefore, M̃ is irreducible, aperiodic and thus primitive. According to

the Perron-Frobenius theorem, λmax(M̃) = ρ(M̃). We have ρ(M̃) ≤ ‖M̃‖∞ and for any
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i ∈ V , ∑
j

|M̃ij| = 1− δ21 + (δ22 − δ11)
(
αi(p

∗
−i + p∗i )− αi

)
.

According to equation (2.13), for any i ∈ V ,

1− δ21 ≤
∑
j

|M̃ij| ≤ 1− δ21 +
(δ12 − δ21)2

δ12 + δ21

αi < 1 + δ12.

Therefore,

λmax(M̃) ≤ 1− δ21 +
(δ12 − δ21)2

δ12 + δ21

αi < 1 + δ12.

Now we prove λmin(M̃) > −1 + δ12. According to the Gershgorin circle theorem,

λmin(M̃) ≥ min
i

(M̃ii −
∑
j 6=i

|M̃ij|).

For any i ∈ V ,

M̃ii −
∑
j 6=i

|M̃ij| = 1− δ21 − αi(δ22 + δ11)− αi(δ22 − δ11)(p∗i − p∗−i).

According to equation (2.14),

p∗i − p∗−i ≤
1− 1

2
αi

αi

δ22 − δ11

δ22 + δ11

.

Moreover, inequality (2.15) is necessary and sufficient to

1− 1
2
αi

αi

δ22 − δ11

δ22 + δ11

<
1− αi
αi

δ22 + δ11

δ22 − δ11

.
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Therefore,

M̃ii −
∑
j 6=i

|M̃ij| > 1− δ21 − αi(δ22 + δ11)− (1− αi)(δ22 + δ11) = −1 + δ12,

for any i ∈ V . That is to say, the inequality (2.15) is sufficient for ρ(M) < 1, i.e., the

local stability of p∗. This concludes the proof for statement (iv).

For statement (v), observe that the maps h and T satisfy the following relation:

h(x) = KT (x) + (I −K)x,

for any x ∈ [0, 1]n, where K = (δ12 + δ21)I + δ22 diag(α). For any x, y ∈ [0, 1]n,

|h(x)i − h(y)i| = |Ki

(
T (x)i − T (y)i

)
+ (1−Ki)(xi − yi)|.

We estimate the upper bound of |h(x)i − h(y)i| in terms of ‖x− y‖∞ in two cases.

Case 1: δ12 + δ21 + δ22αi < 1 for any i. Firstly,

δ11

δ22

+ 1− 1

δ22

<
δ11 + δ22

3δ22 − δ11

always holds as long as δ11 < δ22. Then recall that, for any x, y ∈ [0, 1]n,

|T (x)i − T (y)i| ≤ εi‖x− y‖∞,

where εi = (2δ22−δ11)αi
Ki

< 1. Therefore,

|h(x)i − h(y)i| ≤ (Kiεi + 1−Ki)‖x− y‖∞,
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for any i ∈ V . The coefficient Kiεi + 1−Ki is always strictly less than 1 because it is a

convex combination of εi < 1 and 1. Therefore, h is a contraction map.

Case 2: There exists some i such that δ12 + δ21 + δ22αi ≥ 1. In this case, for any such

i,

|h(x)i − h(y)i| ≤ (Kiεi +Ki − 1)‖x− y‖∞.

If αi <
δ11+δ22
3δ22−δ11 , then we have

Kiεi +Ki − 1 = (3δ22 − δ11)αi + δ12 + δ21 − 1 < δ11 + δ22 + δ12 + δ21 − 1 = 1.

Therefore, h is also a contraction map.

Combining Case 1 and Case 2 we conclude that if αi <
δ11+δ22
3δ22−δ11 for any i ∈ V , then

h is a contraction map. According to the proof for statement (i), h maps [0, 1]n to

[0, 1]n. Therefore, according to the Banach fixed point theorem, for any initial condition

p(0) ∈ [0, 1]n, the solution p(t) converges to p∗ exponentially fast and the convergence

rate is upper bounded by maxi
(

max(εi, Kiεi +Ki − 1)
)
.

The rest of this section are some remarks of Theorem 2.4.2. Firstly, equation (2.13)

has a meaningful interpretation: The condition δ22 ≥ δ11 implies that product H2 is

advantageous to H1, in the sense that the nodes in state H1 have a higher or equal

tendency of converting to H2 than the other way around. As the result, the fixed point

is in favor of H2, i.e., p∗ ≥ 1
2
1n.

From the proof of statement (iv), we know that, around the unique fixed point, the

linearized system is y(t + 1) = My(t), where M is a Metzler matrix and is Hurwitz

stable. Usually the Metzler matrices are presented in continuous-time network dynamics

models, e.g., the epidemic spreading model [26, 27]. In the proof of Theorem 2.4.2 (iv),

we provide an example of the Metzler matrix in a stable discrete-time system.
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Figure 2.7: This figure illustrates how the conditions for the local stability and global
stability change with the ratio δ11/δ22. Curve (1) is 8δ11δ22/((δ22)−δ11)2+8δ11δ22), i.e,
corresponding to the condition for local stability. Curve (2) is (δ22 + δ11)/(3δ22− δ11),
corresponding to the condition for global stability. Curve (3) is δ11/δ22.

Figure 2.7 plots the right-hand sides of inequalities (2.15) and (2.16), respectively,

as functions of the ratio δ11
δ22

, for the case when 0 < δ11
δ22

< 1. One can observe that, for

a large range of δ11
δ22

, the sufficient condition we propose for the global stability is more

conservative than the sufficient condition for the local stability.

One major difference between the self-social and the social-self NCPM in the asymp-

totic property is that, in the self-social NCPM, every individual’s state probability dis-

tribution is not necessarily identical. Moreover, distinct from the social-self NCPM, for

any of the four cases of G(D) defined in Definition 2.3.4, the asymptotic behavior of the

self-social NCPM depends on not only the structure of G(D), but also the structure of

the social network G(Ã) and the individual open-mindedness α.

2.5 Non-cooperative Quality-Seeding Games

Based on the social-self NCPM given by equation (2.4), we propose two non-cooperative

multi-player games distinct in the pay-off functions, and analyze their Nash equilibria.

These two games share the common idea that, companies benefit from the adoption of
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their products, and thereby invest on both improving their products’ quality, and seeding,

e.g., advertisement and promotion, to maximize their products’ adoption probabilities.

All the notations in Table 2.1 and the previous sections still apply, and, in Table 2.2, we

introduce some additional notations and functions exclusively for this section.

Table 2.2: Notations and functions used in Section V

X(t) seeding matrix at time t. X(t) =
(
xir(t)

)
n×R, where xir(t) ≥ 0 is

company r’s investment on seeding for individual i. xr(t) is the
r-th column of X(t) and x(i)(t) is the i-th column of X(t)

w(t) the quality investment vector at time t. w(t) ∈ RR×1, and each
entry wr(t) ≥ 0 is company r’s investment at time t on product
Hr’s quality

Y (t) action matrix at time t. Y (t) =
(
X(t)>,w(t)

)>
, in which any

yr(t) = (xr(t)
>, wr(t))

> is Player r’s action at t.
c the budget vector. c ∈ RR×1 and c � 0R. entry cr is the budget

limit for company r
Ωr player r’s action set. Ωr = {y ∈ Rn+1

≥0 | 1>n+1y ≤ cr}
ψr(x

(i); γ) ψr : R1×R
≥0 → R≥0 defined by ψr(x

(i); γ) = xir/(x
(i)1R + γ), with

model parameter γ > 0
gr(w; ς) gr : RR×1

≥0 → R≥0 defined by gr(w; ς) = (wr + ςr)/1>R(w+ ς), where
ς ∈ RR

>0

βr(t) βr(t) =
(
β1r(t), . . . , βnr(t)

)>
= Ãpr(t)

ur(P ) single-stage reward for player r with system state P . ur(P ) = 1>npr

2.5.1 One-shot quality-seeding game

Game set-up and analysis

In this subsection we consider the scenario in which the companies allocate their

investments aiming to maximize their instant pay-offs. The set-up is grounded in the

natural assumption that the managers of the competing companies’ are motivated to

make investment decisions aimed at maximizing their companies’ profits during their

terms of service.
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The game is referred to as the one-shot quality-seeding game, and is formalized as

follows.

(a) Players: The players are the R companies. Each company r has a product Hr

competing on the network.

(b) Players’ actions: At each stage (or time step equivalently) t, each company r has

two types of investments. The investment on seeding, i.e., xr(t), and the investment on

quality, i.e., wr(t). The total investment is bounded by a fixed budget cr, i.e., 1>nxr(t) +

wr(t) ≤ cr.

(c) Rules: The investment on seeding changes the individuals’ product-adoption prob-

ability in the social conversion process. For any individual i ∈ V , each company r’s

investment xir(t) creates a ”virtual node” in the network, who is always adopting the

product Hr. In the social conversion process, the probability that individual i picks

company r’s virtual node is ψr
(
x(i)(t); γ

)
for any i ∈ V and r ∈ Θ. The probability

that individual i picks individual j in the social conversion process is then given by(
1−∑R

s=1 ψs
(
x(i); γ

))
ãij. The investment on quality, i.e., wr(t), influences the product-

conversion graph. We assume that the product-conversion graph is associated with a

rank-one adjacency matrix [δ11n, δ21n, . . . , δR1n] and δr = gr(w(t); ς) is determined by

all the companies’ investments on product quality and the products’ preset qualities

ς = (ς1, . . . , ςR)> � 0R. With each company r’s action yr(t) =
(
xr(t)

>, wr(t)
)>

at time

t, the dynamics of the product-adoption probabilities P (t) ∈ Rn×R
≥0 is given by

P (t+ 1) = H
(
P (t),y1(t), . . . ,yR(t)

)
, (2.19)
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where the map H is defined by

H
(
P,y1(t), . . . ,yR(t)

)
ir

= αi
γ

x(i)(t)1R + γ

n∑
k=1

ãikpkr

+ αiψr
(
x(i)(t); γ

)
+ (1− αi)gr

(
w(t); ς

)
,

for any P ∈ SnR(1n), i ∈ V , and r ∈ Θ.

(d) Pay-offs and goals: At each stage t, each player r chooses its action yr(t), in order

to maximize the pay-off ur(P (t + 1)) = 1>npr(t + 1), i.e., the total adoption probability

of product Hr at the next stage.

The following theorem gives a closed-form expression of the Nash equilibrium at each

stage and the system’s asymptotic behavior when every player is adopting the policy at

the Nash equilibrium.

Theorem 2.5.1 (One-shot quality-seeding game) Consider the R-player quality-seeding

game described in this subsection. Further assume that the budget limit cr for any com-

pany r satisfies

cr ≥ max
{

(
n

mini αi
− 1)γ − ςr,

1>nα
n− 1>nα

ςr

}
. (2.20)

Then we have the following conclusions:

i) for each t, there exists a unique pure-strategy Nash equilibrium Y ∗(t) =
(
X∗(t)>,w∗(t)

)>
,

given by

x∗ir(t) =
αi
n
cr +

αiγ

n
1>nβr(t) +

αi
n
ςr − βir(t)γ, (2.21)

w∗r(t) =
(
1− 1>nα

n

)(
cr + 1>nβr(t)γ

)
− 1>nα

n
ςr, (2.22)

and x∗ir(t) ≥ 0, w∗r(t) ≥ 0 for any i ∈ V, r ∈ Θ;

ii) if
(
X(t),w(t)

)
=
(
X∗(t),w∗(t)

)
for any t ∈ N and P (0) ∈ SnR(1n), then P (t)
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obeys the following iteration equations:

pr(t+ 1) =
cr + ςr + 1>n Ãpr(t)γ

1>Rc+ 1>Rς + nγ
1n, (2.23)

for any r ∈ Θ, t ∈ N. As the result, pr(t) converges to (cr+ςr)
/(

1>R(c+ς)
)

exponentially

fast with the rate nγ
/(

1>R(c+ ς) + nγ
)
.

Proof: Since we only discuss the actions at stage t in this proof, for simplicity of

notations and without causing any confusion, we use xir (wr, x
∗
ir, w

∗
r resp.) for xir(t)

(wr(t), x
∗
ir(t), w

∗
r(t) resp.).

If company r knows the actions of all the other companies at time step t, i.e., ys,

for any s 6= r, the optimal response for company r is the solution to the following

optimization problem:

minimize
(x,w)∈Ωr

− 1>npr(t+ 1)

subject to 1>nx+ w − cr ≤ 0.

(2.24)

Let x̃ir = xir + βir(t)γ, w̃r = wr + ςr, and Lr(xr, wr, µr) = −1>npr(t + 1) + µr1>nxr +

µrwr − µrcr, for any i ∈ V and r ∈ Θ. The solution to the optimization problem (2.24)

satisfies

∂Lr
∂xir

= −αi
∑

s 6=r x̃is

(
∑R

s=1 x̃is)
2

+ µr = 0, (2.25)

∂Lr
∂wr

= −1>n (1n −α)

∑
s 6=r w̃s

(1>Rw̃)2
+ µr = 0, (2.26)

∂Lr
∂µr

= 1>nxr + wr − cr = 0. (2.27)

According to the definition of Nash equilibrium, (x∗r, w
∗
r) solves the optimization

problem (2.24) with (xs, ws) = (x∗s, w
∗
s) for any s 6= r. One immediate result is that
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1>nx
∗
r + w∗r − cr = 0 for any r ∈ Θ. Moreover, equation (2.25) leads to:

1√
µr

=
1∑n

k=1

√
αk
∑
s 6=r

x̃∗ks

R∑
s=1

(
cs − w∗s + 1>nβs(t)γ

)
,

and therefore, √
αi
∑

s6=r x̃
∗
is

n∑
k=1

√
αk
∑
s 6=r

x̃∗ks

=

R∑
s=1

x̃∗is

R∑
s=1

(
cs − w∗s + 1>nβs(t)γ

) . (2.28)

The right-hand side of the equation above does not depend on the product index r.

Therefore,

∑
s6=r x̃

∗
is∑

s 6=τ x̃
∗
is

=

∑n
k=1

√
αk
∑

s 6=r x̃
∗
ks∑n

k=1

√
αk
∑

s 6=τ x̃
∗
ks

2

,

for any r, τ ∈ Θ. Since the right-hand side of the equation above does not depend on i,

we have ∑
s 6=r x̃

∗
is∑

s 6=r x̃
∗
js

=

∑
s 6=τ x̃

∗
is∑

s 6=τ x̃
∗
js

=

∑R
s=1 x̃

∗
is∑R

s=1 x̃
∗
js

=
x̃∗ir
x̃∗jr

,

for any r, τ ∈ Θ. Combine the equation above with equation (2.28) and then we obtain

∑R
s=1 x̃

∗
is∑R

s=1 x̃
∗
js

=

√
αi
αj

√∑
s 6=r x̃

∗
is∑

s 6=r x̃
∗
js

⇒ x̃∗ir
x̃∗jr

=
αi
αj
,

for any r ∈ Θ. Therefore,

x̃∗ir =
αi

1>nα

(
cr − w∗r + 1>nβr(t)γ

)
. (2.29)
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Combining equation (2.29) and (2.26), we obtain

cr − w∗r + 1>nβr(t)γ
w̃∗r

=
cτ − w∗τ + 1>nβτ (t)γ

w̃∗τ
= η,

for any r, τ ∈ Θ and some constant η. Substitute the equation above into equation (2.26),

we solve that η = 1>nα/1
>
n (1n−α). Therefore, we obtain equation (2.22), and by substi-

tuting equation (2.22) into equation (2.29) we obtain equation (2.21). The uniqueness of

the pure-strategy Nash equilibrium (X∗>,w)> is implied from the computation. More-

over, equation (2.20) guarantees x̃∗ir ≥ 0 and w∗r ≥ 0 for any i ∈ V and r ∈ Θ.

Substituting equation (2.21) and (2.22) into the dynamical system (2.19), after sim-

plification, we obtain equation (2.23) and thereby all the results in Conclusion ii).

Interpretations and Remarks:

The basic idea of seeding-quality trade-off in the competitive seeding-quality game is

similar to the work by Fazeli et. al. [74], but, in our model, players take actions at every

step, instead of only at the beginning of the game. Moreover, our model is based on a

different propagation model.

Theorem 2.5.1 reveals the behavior of the competitive propagation dynamics under

the players’ rational but myopic actions, and provides some strategic insights on the in-

vestment decisions and the seeding-quality trade-off for short-term reward maximization.

(a) Interpretation of βir(t): By definition, βir(t) is the average probability, among

all the neighbors of individual i, of adopting product Hr at time step t. The larger

βir(t), the more individual i is inclined to adopt Hr via social conversion. Therefore,

βir(t) characterizes the current “social attraction” of Hr for individual i, and 1>nβr(t)/n

characterizes the current overall social attraction of product Hr in the network.

(b) Seeding-quality trade-off: According to equation (2.22), at the Nash equilibrium,
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the investment on Hr’s product quality monotonically decreases with 1>nα/n, and in-

creases with 1>nβr. This observation implies that: 1) in a society with relatively low

open-mindedness, the competing companies should relatively emphasize more on improv-

ing their products’ quality, rather than seeding, and vice versa; 2) for products which do

not have much social attraction, seeding is more efficient than improving the product’s

quality.

(c) Allocation of seeding resources among the individuals: According to equation (2.21),

for any company r, at the Nash equilibrium at each time step t, the investment on seed-

ing for any individual i, i.e., xir(t), increases with individual i’s open-mindedness, since

it is easier for a more open-minded individual to be influence by seeding. Moreover, by

rewriting equation (2.21), one would observe that x∗ir(t) monotonically decreases with

βir(t). A possible interpretation is that, seeding is relatively not efficient for products

with strong social attraction. Moreover, one can also observe that x∗ir(t) increases with∑n
l=1 ãlipir(t), in which

∑n
l=1 ãli is individual i’s in-degree, reflecting i’s potential of influ-

encing the others, and
∑n

l=1 ãlipir(t) characterizes individual i’s potential of converting

other individuals to product Hr.

(d) Nash equilibrium on the boundary: Without equation (2.20), the right-hand sides

of equation (2.21) and (2.22) could be non-positive. In this case, the Nash equilibrium

would be on the boundary of the feasible action set, i.e., some of the x∗ir(t) or w∗r(t) might

be 0.

2.5.2 Dynamic quality-seeding game with infinite-horizon

In this subsection we introduce a game among more farsighted players than in the

previous subsection. The players aim to maximize the accumulated pay-offs of all the

stages. We refer to this game as the dynamic quality-seeding game. The model set-up is
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the same with the game defined in the previous subsection, except for the following two

modifications:

(a) Players’ policies: Denote by Yr the set of functions mapping SnR(1n) to Ωr. Each

player r’s policy is a sequence of maps, denoted by Yr = {Yr,t}t∈N, where Yr,t ∈ Yr for

any t. Player r’s action at each stage t is thus given by yt = Yr,t

(
P (t)

)
. We refer to

Yr = {Yr,t}t∈N as stationary policy if Yr,t = Yr,τ for any t 6= τ , and simply use Yr for the

map at each stage.

(b) Pay-offs and goals: Denote by vr(P ; Y1, . . . ,YR) the pay-off of Player r, with

initial condition P (0) = P and each Player s adopting the policy Ys. The pay-off

vr(P ; Y1, . . . ,YR) is given by the accumulated step pay-offs with discount, that is,

vr(P ; Y1, . . . ,YR) =
∞∑
t=0

εtur(P (t)),

where P (0) = P and P (t+ 1) = H
(
P (t); Y1(P (t)), . . . ,YR(P (t))

)
for any t ∈ N.

This model set-up defines a non-cooperative dynamic game with infinite horizon.

One interpretation of the discounted accumulated pay-off is that, people tend to value

the immediate profit more than the future profit. An alternative explanation is that, the

discount factor ε characterizes the bank interest rate 1/ε− 1.

The R-tuple (Y ∗
1 , . . . ,Y

∗
R ) is a Nash equilibrium if, for any P ∈ SnR(1n) and r ∈ Θ,

vr(P ; Y ∗
1 , . . . ,Y

∗
R ) ≥ vr(P ; Y ∗

1 , . . . ,Y
∗
r−1,Yr,Y ∗

r+1, . . . ,Y
∗
R ), for any Yr ∈ Y∞r = Yr×Yr×

. . . . In this subsection, we limit our discussion to the case of two players. The following

theorem presents some results on the stationary Nash equilibrium and the equilibrium

pay-off function for this dynamic quality-seeding game.

Theorem 2.5.2 (Two-player infinite-horizon game) Consider the dynamic quality-

seeding game defined in this subsection, with R = 2. Define the subset of continuously
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differentiable functions V =
{
v : [0, 1]n → R

∣∣ v satisfies properties P1 and P2

}
, where

P1 : p � p̂⇒ v(p) ≤ v(p̂) for any p, p̂ ∈ [0, 1]n,

P2 : v(p) is convex in p.

We conclude that:

(i. There exists a Nash equilibrium (Y ∗
1 ,Y

∗
2 ), where Y ∗

1 and Y ∗
2 are both stationary

policies;

(ii. The total pay-off for Player 2 at this Nash equilibrium is given by v2(P ; Y ∗
1 ,Y

∗
2 ) =

v∗(Pe2), where e2 is the second standard basis vector of R2, and v∗ is the unique

fixed point of the map T : V → V, defined by

T v(p) = 1>np+ ε sup
y2∈Ω2

inf
y1∈Ω1

v
(
H(P ;y1,y2)e2

)
,

where P = [1n − p,p] ∈ Rn×2. As a result, v1(P ; Y ∗
1 ,Y

∗
2 ) = n/(1 − ε) −

v2(P ; Y ∗
1 ,Y

∗
2 );

(iii. The stationary Nash policies Y ∗
1 , Y ∗

2 are given by

Y ∗
1 (P ) = argmin

y1∈Ω1

sup
y2∈Ω2

v∗
(
H(P ;y1,y2)e2

)
,

Y ∗
2 (P ) = argmax

y2∈Ω2

inf
y1∈Ω1

v∗
(
H(P ;y1,y2)e2

)
.

Before proving the theorem above, we summarize Theorem 4.4 and Property 4.1

in [76], on the two-player zero-sum continuous games, into the following lemma.

Lemma 2.5.3 (Pure-strategy Nash equilibrium) Consider the two-player zero-sum

continuous game with Player 1 as the minimizer and Player 2 as the maximizer. Sup-
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pose the action sets of Player 1 and 2, denoted by Ω1 and Ω2 respectively, are both

compact and convex subsets of finite-dimension Euclidean spaces. If the cost function

v(y1,y2) : Ω1 × Ω2 → R is continuously differentiable, convex in y1, and concave in y2,

then: (1) the game admits at least one saddle-point Nash equilibrium in pure strategies;

(2) if there are multiple saddle points, the saddle points satisfy the ordered interchange-

ability property. That is, if (y∗1,y
∗
2) and (ỹ1, ỹ2) are saddle points, so are (y∗1, ỹ2) and

(ỹ1,y
∗
2).

Proof of Theorem 2.5.2: In this proof, for simplicity, denote by p the second

column of the matrix P , i.e., P = [1n−p,p], and correspondingly, P̂ = [1n− p̂, p̂]. Since

Ω1 and Ω2 are compact subsets of Rn+1, for any v ∈ V , there exists (y1,y2) such that

T v(p) = 1>np + εv
(
H(P ;y1,y2)e2

)
. Moreover, from the expression of map H, one can

deduce that H(P,y1,y2) satisfies

p � p̂⇒ H(P ;y1,y2)e2 � H(P̂ ;y1,y2)e2,

for any (y1,y2) ∈ Ω1 × Ω2 and p, p̂ ∈ [0, 1]n. This leads to the conclusion that T v also

satisfies property P1. Moreover, by definition, H(P ;y1,y2) is linear in P . Since v(p)

is convex in p, one can check that T v(p) is also convex in p. Therefore, T satisfies

property P2 and maps V to V itself. Now we prove that T is a contraction map. Define

the function norm ‖·‖ for any v ∈ V as ‖v‖ = supp∈[0,1]n|v(p)|. For any v, v̂ ∈ V , we have

‖T v − T v̂‖ = ε sup
p∈[0,1]n

|T v(p)− T v̂(p)| ≤ ε sup
p∈[0,1]n

sup
y2∈Ω2

sup
y1∈Ω1

|v(p)− v̂(p)| ≤ ε‖v − v̂‖.

According to the Banach fixed-point theorem, there exists a unique v∗ ∈ V satisfying

v∗(Pe2)=1>nPe2 + ε sup
y2∈Ω2

inf
y1∈Ω1

v∗
(
H(P ;y1,y2)e2

)
.
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According to the expression of the mapH(P ;y1,y2), one can check that, for any η ∈ [0, 1],

P ∈ SnR(1n), and y1, ŷ1 ∈ Ω1,

H
(
P ; ηy1 + (1− η)ŷ1,y2

)
e2 � ηH(P ;y1,y2) + (1− η)H(P ; ŷ1,y2).

Since v∗(p) satisfies properties P1 and P2,

v∗
(
H(P ; ηy1 + (1− η)ŷ1,y2)e2

)
≤ ηv∗

(
H(P ;y1,y2)e2

)
+ (1− η)v∗

(
H(P ; ŷ1,y2)e2

)
.

That is, v∗
(
H(P ;y1,y2)e2

)
is convex in y1. Similarly, we have v∗

(
H(P ;y1,y2)e2

)
is

concave in y2.

According to Lemma 2.5.3, for any P ∈ SnR(1n) and the two-player zeros-sum

game with cost function v∗
(
H(P ;y1,y2)e2

)
, there exists a saddle-point Nash equilib-

rium (y∗1,y
∗
2) ∈ Ω1 × Ω2 such that

v∗
(
H(P ;y∗1,y

∗
2)e2

)
= sup

y2∈Ω2

inf
y1∈Ω1

v∗
(
H(P ;y∗1,y

∗
2)e2

)
= inf

y1∈Ω1

sup
y2∈Ω2

v∗
(
H(P ;y1,y2)e2

)
.

Therefore, there exists functions Y1, Y2 such that y∗1 = Y ∗
1 (P ) and y∗2 = Y ∗

2 (P ) satisfy

the equation above, for any P ∈ SnR(1n). Moreover, since

v∗(Pe2)− v2(P ; Y ∗
1 ,Y

∗
2 ) = ε

(
v∗
(
H(P ; Y ∗

1 (P ),Y ∗
2 (P ))e2

)
− v2

(
H(P ; Y ∗

1 (P ),Y ∗
2 (P )); Y ∗

1 ,Y
∗

2

))
,

for any P ∈ SnR(1n), and functions v and v2 are bounded, we conclude that v∗(Pe2) =
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v2(P ; Y ∗
1 ,Y

∗
2 ). Therefore, for any τ ∈ N, we have

v2(P ; Y ∗
1 ,Y

∗
2 ) ≥

τ−1∑
t=0

εtu2(P (t)) + ετv2

(
H
(
P (τ); Y ∗

1 (P (τ)),y2); Y ∗
1 ,Y

∗
2

))
,

for any y2 ∈ Ω2, and, due to the fact that v1(P ; Y1,Y2) = n/(1 − ε) − v2(P ; Y1,Y2) for

any (Y1,Y2), we have

v1(P ; Y ∗
1 ,Y

∗
2 ) ≥

τ−1∑
t=0

εtu1(P (t)) + ετv1

(
H
(
P (τ);y1,Y

∗
2 (P (τ))); Y ∗

1 ,Y
∗

2

))
,

for any y1 ∈ Ω1. Since both v1(P ; Y1,Y2) and v2(P ; Y1,Y2) satisfy the property of

continuity at infinity, according to the one-stage deviation principle, (Y ∗
1 ,Y

∗
2 ) is a Nash

equilibrium of the dynamics game. This concludes the proof.

Theorem 2.5.2 provides an iteration algorithm to compute the stationary Nash policy

(Y ∗
1 ,Y

∗
2 ), and the players’ respective pay-offs at the Nash equilibrium. A comparison

by simulation is given in Figure 2.8, between the Nash policies for the dynamic game

discussed in this subsection, and the one-shot game in the previous subsection. The

model parameters are set as n = 3, α = (0.51, 0.87, 0.77)>, γ = 5, ς1 = ς2 = 1, c1 = 30,

c2 = 60, ε = 0.8, and Ã such that ã13 = ã23 = 1, ã31 = ã32 = 0.5, and ãij = 0 otherwise.

Simulation results show that, with the same initial condition, for the two types of games,

the players’ total pay-offs at the corresponding Nash equilibria are very close to each

other. Moreover, from Figure 2.8 we can observe that, for each of the two games, the

players’ pay-offs are almost linear to the initial average probability of adopting H2.

88



Competitive Propagation and Quality-Seeding Games Chapter 2

1>P (0)e2

v2(P (0), y⇤
1 , y⇤

2)

0.1 0.3 0.5 0.7 0.9

7

8

9

10

Figure 2.8: Comparison between the Nash policies for the dynamic game discussed
in Subsection V.B (blue triangles), and the one-shot game in Subsection V.A (red
crosses).

2.6 Conclusion

This chapter discusses a class of competitive propagation models based on two product-

adoption mechanisms: the social conversion and the self conversion. Applying the in-

dependence approximation we propose two difference equations systems, referred to as

the social-self NCPM and the self-social NCPM respectively. Theoretical analysis reveals

that the structure of the product-conversion graph plays an important role in determin-

ing the nodes’ asymptotic state probability distributions. Simulation results reveal the

high accuracy of the independence approximation and the asymptotic behavior of the

original social-self Markov chain model. Based on the social-self NCPM, we propose

two-types of competitive propagation games and discuss their Nash equilibria, as well

as the trade-off between seeding and quality for the one-shot game. One possible future

work is the deliberative investigation on the Nash equilibrium on the boundary. It is

also of research value to explore the extension of the analysis in Section V.B to the case

of multiple-player dynamic games. Another open problem is the stability analysis of the
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self-social NCPM with R > 2. Simulation results support the claim that, for the case

when R > 2, there also exists a unique fixed point P ∗ and, for any initial condition

P (0) ∈ SnR(1n), the solution P (t) to equation (2.10) converges to P ∗. We leave this

statement as a conjecture.
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Chapter 3

Sequential Decision Aggregation

with Social Pressure

3.1 Introduction

3.1.1 Motivation and problem set-up

Decision making has been a classic research topic in the areas of industrial engineering

as well as social science. In a centralized decision making model, all the signals are avail-

able to one decision maker, based on which the decision maker makes a choice among some

candidate hypotheses according to some prescribed decision making policy. Numerous

centralized decision making policies have been proposed. However, an isolated decision

maker is always limited in decision accuracy and reliability. Moreover, in the context of

sociological psychology, if we consider the decision maker as an individual in a social net-

work, the individual is not likely to have access to all the disseminated information and

make decisions independently. Instead, individuals have their private information sets

and their decision making behaviors are influenced by others in the network. Therefore,
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it is of great research interest to study the group decision making problem. Recent years

have seen much research on this topic with a focus on two objectives. The first is to

establish the optimal group decision making policy. The second aspect is to build models

to describe and understand the observed sociological phenomena. This chapter aims to

understand how grouping individual decision makers and their mutual interactions affect

the accuracy and speed with which these individuals reach a collective decision.

In this chapter, we consider a system consisting of a group of sequential decision

makers (SDMs) and a fusion center. The SDMs are doing the sequential hypothesis test

between two candidate hypotheses. The fusion center collects individual decisions and

makes the global final decision. In our model, the individual SDMs make individual

decisions based on both their private observations and the decisions of other SDMs. The

latter amounts to a form of social pressure. We aim to relate the fusion center’s global

accuracy and expected decision time to the individuals’ accuracy and expected decision

time.

3.1.2 Literature Review

Group decision making has been extensively studied by numerous literature in both

the engineering community [77, 78, 79, 80, 81, 82, 83, 84, 85, 86], and the area of soci-

ological psychology [87, 88, 89, 90, 91, 92]. In engineering areas, such as control system

and signal processing, two problems on group decision making are emphasized: 1) the

communication between the individual decision makers and the fusion center; 2) the

optimal decision making policy either in the individual level, or in the global level, to

maximize the system’s performance. In sociological psychology, researchers aim to inves-

tigate individuals’ cognitive behavior in presence of social pressure and interactions, and

the factors which influence individual or group decision making performance. Our model
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is closest to the work by Dandach et al. [84], of which the key feature is that, different

from models in [77, 78, 79, 80, 81, 82], the fusion center in [84] does not need to wait

for all the SDMs’ decisions. Our model generalizes [84] by allowing mutual interactions

among SDMs.

The process, with which a decision maker updates its posterior belief, or likelihood

function, according to the Bayesian formula and based on its private information set,

is sometimes collectively referred to as Bayesian learning, e.g. [93, 94]. Bayesian learn-

ing has been used to model the individuals’ rational behavior. As long as the signal-

generation mechanism and the decision policy are given, the individual’s decision making

probabilities at any given time can be predicted. In this chapter, we do not specify the

signal structure and decision policy for an individual SDM, but assume that, when iso-

lated, the SDM is adopting some Bayesian learning policy and its decision probabilities

at each time step are given. On the other hand, non-Bayesian learning is a wording

usually adopted to denote irrational decisions due to influence of other individuals in

the system, or any other rule of thumb [95]. In our model, the non-Bayesian learning

is characterized by the influence of social pressure. Therefore, our model can be con-

sidered as the combination of Bayesian learning [96, 83, 8] and non-Bayesian learning

processes. Examples of the combination of Bayesian and non-Bayesian learning, either

discrete-time or continuous-time, can be seen in [97, 86, 98], whereby individuals do not

make any final decision but just update their posterior belief based on accumulated pri-

vate information set (Bayesian), and combine it with the belief of their neighbors in the

network (non-Bayesian).

In our model, the way that the decisions on either hypothesis propagates in the group

through social pressure is similar to the independent cascade model [60, 99, 62, 72, 73,

47] used in the computer science community to model the network contagion process.

However, in the independent cascade model, the individuals are infected passively via
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the activated edges while in our model the decision makers proactively pick the other

decision makers and follow the picked individuals’ decisions with some probability.

3.1.3 Contribution

As the first contribution of this chapter, we propose an algorithm to compute the

fusion center’s decision probabilities at each time step, based on the individual SDMs’

decision probabilities. By introducing the concept of system state, we simplify our model,

which is an exponential-dimension Markov chain, to a lumped polynomial-dimension

Markov chain. The computation complexity of the iterative algorithm to compute the

fusion center’s decision probabilities is also polynomial. In addition, the algorithm does

not rely on the specific decision making policies of the individual SDMs.

As the second contribution, we analyze the asymptotic accuracy and expected decision

time of the fusion center as the system size n tends to infinity. We focus on two specific

group decision making rules: the fastest rule and the majority rule. We give the exact

expressions for the asymptotic accuracy and expected decision time in these two cases.

Our model under the fastest rule has the same asymptotic performance as the model

under the fastest rule in [84]. The analysis of the majority rule is based on the result on

the mean-field convergence analysis proposed by Le Boudec et al. [100]. The asymptotic

performance of the majority rule in our model is distinct from the model in [84] in that

our model achieves faster decision speed, while at the cost of less accuracy, with the same

individual SDMs. In addition, in our model under the majority rule, the decision speed

and the global accuracy can simultaneously be better than the isolated SDM, which is

not achieved by the model [84] without social pressure. Besides, leading order of a model

parameter, which characterizes the individual SDMs’ tendency of being influenced by the

social pressure, is analyzed for the mean-field approximation of our system.
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In addition, we present simulation work to validate the theoretical results and show

how the accuracy and decision speed of our system vary with the system size, the group

decision policies and the inclination of the decision makers to be influenced by the social

pressure. We discuss how to adjust the model parameters to trade off between the

system’s accuracy and expected decision time.

3.1.4 Organization

The rest of this chapter is organized as follows. Section 2 is the model description and

problem statement. Section 3 provides the algorithm of computing the fusion center’s

decision probabilities for finite system sizes. Section 4 is the discussion of the asymptotic

behavior as the system size tends to infinity. Some further simulation is provided in

Section 5. Section 6 is the conclusion and discussion.

3.2 Notations, Model Description, and

Problem Statement

The group decision making system discussed in this chapter consists of a fusion center

and n identical individual decision makers indexed by i ∈ V = {1, 2, . . . , n}. The individ-

ual decision makers are taking sequential hypothesis test between two hypotheses, H1 and

H0, and are thus referred to as the sequential decision makers (SDMs). The SDMs make

individual decisions based on both their private signals and communication with other

SDMs in the system. The fusion center collects individual decisions and reach a global

decision according to the q-out-of-n aggregation rule. Before the model description, we

present in Table 3.2 all the notations frequently used in this chapter.
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Table 3.1: Notations frequently used in this chapter

Di(t) decision of SDM i after time step t. Di(t) ∈ {H1, H0.Hnd}
pr(t) isolated SDM’s probability of deciding Hr, for r ∈ {1, 0}, at time

step t, on condition that it has not decided H1 or H0 before time t
pnd(t) isolated SDM’s probability of not deciding H1 or H0 at time step

t, on condition that it has not decided H1 or H0 before time t
fr(t |N1, N0) SDM’s probability of deciding Hr, r ∈ {1, 0}, after time step t, on

condition that it has not decide H1 or H0, and N1 (N0 resp.) SDMs
have already decided H1 (H0 resp.) before time t

fnd(t |N1, N0) SDM’s probability of not deciding H1 or H0 after time step t, on
condition that it has not decide H1 or H0, and N1 (N0 resp.) SDMs
have already decided H1 (H0 resp.) before time t

N1(t) (N0(t) resp.) the number of SDMs who have decided H1 (H0 resp.) up to time
step t

pr(t;n, q) the probability that the fusion center, running the q-out-of-n rule,
decides Hr, r ∈ {1, 0}, right at time step t

Tfc decision time of the fusion center, which is a random variable
pc(n, q) the probability that the fusion center, running the q-out-of-n rule,

makes the correct global decision, i.e., the accuracy of the fusion
center

E[Tfc |n, q] the expected decision time for the fusion center running the q-out-
of-n rule
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3.2.1 Behavior of an isolated SDM

Our model of the isolated SDM is the same as that studied by Dandach et al. [84].

Suppose H1 and H0 are the candidate hypotheses and Hnd(t) corresponds to the state of

“not deciding either H1 or H0”. Without loss of generality, we always assume H1 to be the

correct hypothesis. Denote by Di(t) the decision state of SDM i at any time t, thereby

Di(t) ∈ {H1, H0, Hnd}, and assume that the decision on H1 or H0 is irreversible. We

assume that, when isolated from other SDMs, an SDM adopts some prescribed Bayesian

learning and decision policy. We do not specify what the policy is, but just assume that

the decision probabilities at each time, which can be predicted by the signal structure and

the learning and decision policy, are given as the individual decision probability sequence

(IDPS) {p1(t), p0(t), pnd(t)}t∈N, where

pr(t) = P
[
Di(t) = Hr |Di(t− 1) = Hnd

]
for any r ∈ {1, 0}, and

pnd(t) = P
[
Di(t) = Hnd|Di(t− 1) = Hnd

]
.

(3.1)

Example: The Sequential Probability Ratio Test (SPRT) is a type of discrete-time

Bayesian learning and decision policy, which achieves the minimum expected decision

time for any prescribed error rate [93]. For an SDM running the SPRT, a signal St

is received at each time step t, and, based on the accumulated information set It =

{s1, s2, . . . , st}, the SDM calculate the log-likelihood function

Λ(t) = log

(
P[S1 = s1, S2 = s2, . . . , St = st | θ = H1]

P[S1 = s1, S2 = s2, . . . , St = st | θ = H0]

)
,

according to the Bayesian formula, where θ denotes the underlying hypothesis. Prescribed

thresholds η1 > 0 and η0 < 0 are used to manipulate the trade-off between decision

accuracy and speed. Whenever Λ(t) > η1 (Λ(t) < η0 resp.), the SDM decides H1 (H0

resp.) at time step t. Given the signal structure, i.e., fS|θ=H1(s) and fS|θ=H0(s), and
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Figure 3.1: IDPS for an SDM implementing an SPRT. In Figure 3.1(a), the blue
solid curve represents p1(t) while the red dash curve represent p0(t). In Figure 3.1(b),
the blue solid curve represent F1(t) = P[Di(t) = H1, Di(t − 1) = Hnd], i.e., the
probability of deciding H1 right at time step t. The red dash curve represents
F0(t) = P[Di(t) = H0, Di(t− 1) = Hnd].

the thresholds η1 and η0, the IDPS, i.e., the probabilities of deciding H1 or H0 at each

time step, can be predicted before the SPRT process occurs. We refer the computation

algorithm to Appendix B in [84]. Figure 3.1 is an example of the IDPS for an SDM

running the SPRT with η1 = 2.94 and η0 = −2.94. In this case the false-alarm and

mis-detection probabilities are both 0.05.

In our model the IDPS of an isolated SDM are assumed to have the following property.

Assumption 3.1 (Isolated SDMs’ almost-sure decision and decision speed) The

isolated SDM, with the IDPS {p1(t), p0(t), pnd(t)}t∈N, makes the final individual decision

almost surely, that is,
∏∞

t=1 pnd(t) = 0. Moreover, the isolated SDM has finite expected

decision time, i.e.,

p1(1) + p0(1) +
∞∑
t=2

t
((
p1(t) + p0(t)

) t−1∏
τ=1

pnd(τ)
)
<∞.

98



Sequential Decision Aggregation with Social Pressure Chapter 3

3.2.2 The n-SDM system

By n-SDM system we mean the system consisting of one fusion center and n identical

and interacting SDMs. The behavior of the individual SDMs is described by the following

assumption.

Assumption 3.2 (Individual decision making behavior in a n-SDM system) In

the n-SDM system, at each time step t, the following process occurs independently for

any SDM i ∈ V who has not made the final decision between H1 and H0:

(i. SDM i first runs the sequential hypothesis test as an isolated SDM, i.e., SDM i

decides H1 (resp. H0) with the probability p1(t) (resp. p0(t));

(ii. If no final decision is made in Step (i, SDM i will randomly pick one SDM j (can

be SDM i itself) in the system and follow SDM j’s previous decision state, i.e.,

Dj(t− 1), with some probability β.

In our model the more SDMs who have already made the decision H1 (resp. H0),

the higher probability that the remaining SDMs decide H1 (resp. H0) at the current

time step, that is, those SDMs who have made the final decision form the social pressure,

which pushes other SDMs towards the final decisions. The probability β characterizes

the inclination of the SDMs to be influenced by the social pressure. The model proposed

by Dandach et. al. [84] is a special case when β = 0. Denote by fr(t |N1, N0), r ∈ {1, 0},

the probability that an SDM in the n-SDM system decides Hr at time step t, on condition

that it has not made the final decision up to time t − 1 and N1 (resp. N0) numbers of

SDMs have decided H1 (resp. H0) before time t. Denote by fnd(t |N1, N0) the probability

that an SDM does not make the final decision at time step t, on condition that it has

not made the final decision up to time t − 1 and N1 (resp. N0) numbers of SDMs have
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Figure 3.2: The first diagram shows the structure of the n-SDM system. The con-
nections between the SDMs are bilateral with self loops. Therefore any SDM can be
picked by any other SDM or itself. Once an individual final decision is made, the
decision is sent to the fusion center. The second diagram describes how an SDM in
the n-SDM system makes the individual decision at time step t+ 1.

decided H1 (resp. H0) before time t. According to Assumption 3.2,

fr(t|N1, N0) = pr(t) + βpnd(t)
Nr

n
for r ∈ {1, 0}, and

fnd(t|N1, N0) = pnd(t)

(
n−N1 −N0

n
+ (1− β)

N1 +N0

n

)
.

(3.2)

One can easily check that f1(t|N1, N0) + f0(t|N1, N0) + fnd(t|N1, N0) = 1 for any t, N1

and N0.

Denote by N1(t) (resp. N0(t)) the numbers of SDMs who have decided H1 (resp.

H0) up to time step t. The fusion center receives each final individual decision from the

SDMs and records N1(t) and N0(t). The global decision is made based on N1(t) and

N0(t), according to the q-out-of-n rule defined below.

Definition 3.2.1 (The q-out-of-n rule) In an n-SDM sequential decision aggregation

system, the fusion center running a q-out-of-n rule decides H1 at time step t whenever

N1(t) > N0(t) and N1(t) ≥ q, where q is a prescribed threshold. The global decision H0

is made if N0(t) > N1(t) and N0(t) ≥ q.
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Figure 3.2 gives a visual depiction of the n-SDM system structure and the individual

SDMs’ behavior.

3.2.3 Problem Statement

With the n-SDM system described in Section 2.1 and 2.2, we aim to solve the following

problems.

Problem 1 (Finite-system behavior) For the fusion center running the q-out-of-n

rule in a system with finite SDMs, given the IDPS {p1(t), p0(t), pnd(t)}t∈N, compute the

probabilities p1(t;n, q), p0(t;n, q), pc(n, q), and the expected decision time E[Tfc|n, q], as

defined in Table 1.

Problem 2 (Asymptotic behavior) For the fusion center running the q-out-of-n rule

in a n-SDM system, given the IDPS, compute the limit of the fusion center’s accuracy

and expected decision time as n tends to infinity, especially in the cases when q = 1 or

q = dn/2e.

3.3 The Behavior of the Fusion Center in a Finite

n-SDM System

In this section we solve Problem 1, i.e., the fusion center’s behavior in a system

with finite SDMs. Firstly, we state a proposition on the almost-sure decision and finite

expected decision time for the fusion center.

Proposition 3.3.1 (Almost-sure decision and finite expected decision time) Consider

an n-SDM system, assume that for the isolated SDM, there exists some t̃ ∈ N such that
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p1(t̃) 6= 0, p0(t̃) 6= 0 and
∏t̃−1

τ=1 pnd(τ) 6= 0, then the fusion center has the almost-sure

decision property if and only if

(i. the isolated SDMs have almost-sure decision property;

(ii. the system size n is an odd number;

(iii. the threshold q satisfies 1 ≤ q ≤ dn/2e.

Moreover, in addition to the conditions (ii and (iii, if the isolated SDMs have finite

expected decision time, then the fusion center also has finite expected decision time.

Proof: We first prove the contrapositive of the statement that the almost-sure decision

of the fusion center leads to the conditions (i, (ii, and (iii.

(1) If the individual SDMs do not have the almost-sure decision property, i.e., pnd =∏
t=1 pnd(t) 6= 0, then the probability that none of the SDMs makes any final decision in

the n-SDM system is equal to pnnd. Therefore, the probability that the fusion center does

not make any global decision at all is no less than pnnd > 0.

(2) If n is even, the event “no SDM has made any final decision after time t̃ − 1, at

time t̃, n/2 SDMs decide H1 while n/2 SDMs decide H0” has probability

 t̃−1∏
τ=1

pnd(τ)

n(
n

n/2

)
p1(t̃)n/2p0(t̃)n/2 > 0.

If this event occurs, then the fusion center will never make a global decision.

(3) If q > dn/2e, then consider the following event: “No SDM has decided up to

t̃ − 1. At t̃, dn/2e SDMs decide H1 while bn/2c SDMs decide H0.” This event has the

probability  t̃−1∏
τ=1

pnd(τ)

n(
n

dn/2e

)
p1(t̃)dn/2ep0(t̃)bn/2c > 0.
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In this case, neither N1 nor N0 has a chance to exceed the threshold, therefore the fusion

center has a non-zero probability of making no global decision. Combining (1), (2) and

(3) we conclude that the fusion center having the almost-sure decision property implies

conditions (i, (ii, and (iii.

Next, we prove that conditions (i, (ii, and (iii lead to the almost-sure decision of

the fusion center. Before the argument, we introduce some notations used in this

proof. Define the random variable Ti as the decision time of SDM i when it is iso-

lated, and define T
(n)
i as the decision time of SDM i in an n-SDM system. Define T

(n)
max

as maxi T
(n)
i , i.e., the time instant when the last SDM makes the final individual de-

cision. By definition, the fusion center’s decision time must be prior or equal to T
(n)
max.

Let T
(n)
−i = (T

(n)
1 , . . . , T

(n)
i−1, T

(n)
i+1, . . . , T

(n)
n ), i.e., the (n − 1)-tuple of the decision time

instants of all the SDMs except SDM i. Denote by ω one possible “trajectory” of the n-

SDM system, i.e., a sequence of 2-tuples
{(
n1(t), n0(t)

)}
t∈N, where n1(t), n0(t) ∈ N and

n1(t) + n0(t) ≤ n for any t ∈ N. For simplicity, let fα(t |ω) = fα
(
t |n1(t− 1), n0(t− 1)

)
with the right-hand side of the equation defined by equations (3.2) for α = 1, or 0, or

“nd”. Denote by Ω the set of all the possible trajectories, i.e., ω ∈ Ω.

Due to equations (3.2), f1(t |ω) ≥ p1(t), f0(t |ω) ≥ p0(t) and fnd(t |ω) ≤ pnd(t) for

any ω ∈ Ω. Since

P[T
(n)
i <∞|T (n)

−i <∞] =
∑
ω∈Ω

P[T
(n)
i <∞|ω,T (n)

−i <∞]P[ω |T (n)
−i <∞]

=
∑
ω∈Ω

(
1−

∞∏
t=1

fnd(t |ω)
)
P[ω |T (n)

−i <∞]

≥
∑
ω∈Ω

(
1−

∞∏
t=1

pnd(t)
)
P[ω |T (n)

−i <∞] = P[Ti <∞] = 1,
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we have

P[T (n)
max <∞] = P[T

(n)
1 <∞, T (n)

2 <∞, . . . , T (n)
n <∞] ≥

n∏
i=1

P[Ti <∞] = 1.

Therefore, P[T
(n)
max <∞] = 1. Due to conditions (ii and (iii, the q-out-of-n rule must have

been triggered no later than T
(n)
max. Therefore, the fusion center makes the global decision

almost surely.

We now prove the finite expected decision time for the fusion center. Conditions (ii

and (iii lead to the inequality Tfc ≤ T
(n)
max ≤ T

(n)
1 + T

(n)
2 + · · · + T

(n)
n for any ω ∈ Ω.

Moreover,

E[T
(n)
i ] =

∞∑
t=1

P[T
(n)
i ≥ t] =

∞∑
t=1

∑
ω∈Ω

P[T
(n)
i ≥ t |ω]P[ω] = 1 +

∞∑
t=2

∑
ω∈Ω

t−1∏
τ=1

fnd(t |ω)P[ω]

≤ 1 +
∞∑
t=2

∑
ω∈Ω

t−1∏
τ=1

pnd(t)P[ω] = 1 +
∞∑
t=2

P[Ti ≥ t] = E[Ti].

Therefore, E[Tfc |n, q] ≤ nE[Ti] <∞ for any 1 ≤ q ≤ dn/2e. This concludes the proof.

In the rest of this section, we quantitatively analyze the behavior of the fusion center

in an n-SDM system, given the IDPS of the isolated SDM. We compute the probabilities

of deciding either H1 or H0 at each time step, the accuracy, and the expected decision

time of the fusion center.

1) The n-SDM system as a lumped Markov chain: The n-SDM sequential decision

aggregation system is a 3n-state Markov chain, since Di(t) ∈ {H1, H0, Hnd} for any i ∈ V

and at any time step the decision of any SDM only depends on the states of all the SDMs

after the previous time step as well as the IDPS. Instead of focusing on any individual

SDM’s decision state, we discuss the time evolution of N1(t) and N0(t). Then the system

is reduced to to (n+1)(n+2)
2

-state Markov chain.
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Definition 3.3.2 Consider the n-SDM sequential aggregation system. Define the system

state after time step t by N (t) = (N1(t), N0(t))T and define p(t, N1, N0) as the probabil-

ity distribution of the system state after time t. Define Γ(t,∆N1,∆N0 |N1, N0) as the

state transition function, which correspond to the probability of the following event: “on

condition that N1 SDMs have decided H1 and N0 SDMs have decided H0 after time step

t− 1, ∆N1 SDMs decide H1 and ∆N0 SDMs decide H0 at time t.”

The computation algorithm of the system’s state probability distribution at any time

t is given by the following proposition. The proof is a straightforward application of

probability theory and thus omitted.

Proposition 3.3.3 (System state probability distribution) The probability distri-

bution of the n-SDM system state is given by the formulas below:

(i. For t = 1, p(1, N1, N0) = Γ(1, N1, N0 | 0, 0);

(ii. For t ≥ 2, the probability distribution of the system state is computed from the

distribution at last time step as

p(t, N1, N0) =

N1∑
l=0

N0∑
k=0

p(t− 1, l, k)Γ(t, N1 − l, N0 − k | l, k).

Here, the state transition function Γ(t,∆N1,∆N0 |N1, N0) is computed by

Γ(t,∆N1,∆N0 |N1, N0) =

(
n−N1 −N0

∆N1

)(
n−N1 −N0 −∆N1

∆N0

)
× f∆N1

1 (t|N1, N0)f∆N0
0 (t|N1, N0)fn−N1−N0−∆N1−∆N0

nd (t|N1, N0),

where t ∈ N and 0 ≤ ∆N1 + ∆N0 +N1 +N0 ≤ n.

Figure 3.3 illustrates the evolution of the probability distribution of the system state

for a group of 9 SDMs in which all the SDMs are running the SPRT as shown in Fig-
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(a) t = 1 (b) t = 21 (c) t = 41 (d) t = 101

Figure 3.3: The time-evolution of the state probability distribution of a 9-SDM system
with social pressure. The IDPS for individual SDMs are as shown in Figure 3.1.

ure 3.1. Initially, (N1, N0) = (0, 0) is the only state with non-zero probability and then

the states with non-zero probability spread out and finally aggregate on the diagonal line

N1 +N0 = 9.

2) Computation of p1(t;n, q) and p0(t; , n, q): With the n-SDM system’s state proba-

bility distribution at any time t, i..e, p(t, N1, N0), we can compute P1(t;n, q) and p0(t;n, q)

defined in Problem 1, that is, the probabilities that the fusion center running the q-out-

of-n rule makes the global decision H1 and H0 respectively right at time step t. Notice

that, in the sequential decision aggregation process for 1 ≤ q ≤ bn/2c, the cancel-out case

may occur. The cancel-out case in which the fusion center finally decides H1 corresponds

to the intersection of the following three events:

(i. N1(τ ∗ − 1) < q and N1(τ ∗) ≥ q for some τ ∗ < t;

(ii. For τ ∈ {τ ∗, τ ∗ + 1, . . . , t− 1}, N1(τ) = N0(τ) ≥ q;

(iii. After time step t, N1(t) > N0(t) ≥ q.

If the notations N1(t) and N0(t) are exchanged, the intersection of events (i), (ii) and (iii)

corresponds to the cancel-out case in which the fusion center decides H0. An example

of the cancel-out case is illustrated by Figure 3.4. Based on whether the cancel-out case
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N0
N1

q

(a) τ = τ∗ − 1

N0N1

q

(b) τ = τ∗

N0N1

q

(c) τ = t− 1

N0
N1

q

(d) τ = t

Figure 3.4: The cancel-out case in which the number of votes for H1 and H0 both
exceed the threshold q at time τ∗ and remain equal till t− 1. At time t, the vote for
H1 outnumbers H0 and the fusion center decides H1 at time t.

may occur, we discuss the computation of p1(t;n, q) and p0(t;n, q) in two cases, Case 1:

1 ≤ q ≤ bn/2c and Case 2: dn/2e ≤ q ≤ n.

Proposition 3.3.4 (Computation of p1(t;n, q) in Case 1) Consider the n-SDM se-

quential decision aggregation system with the fusion center running the q-out-of-n rule

and the individual SDMs with the IDPS {p1(t), p0(t), pnd(t)}t∈N. For 1 ≤ q ≤ bn/2c, the

probability p1(t;n, q) defined in Problem 1 is computed by the following formulas:

(i. For t = 1,

p1(1;n, q) =
n∑

N1=q

m̃∑
N0=0

p(1, N1, N0); (3.3)

(ii. For t ≥ 2,

p1(t;n, q) =

q−1∑
l=0

q−1∑
k=0

p(t− 1, l, k)
n−l−k∑

∆N1=q−l

m̄∑
∆N0=0

Γ(t,∆N1,∆N0 | l, k)

+

bn/2c∑
s=q

peven(t− 1, s)
n−2s∑

∆N1=1

m∗∑
∆N0=0

Γ(t,∆N1,∆N0 | s, s),
(3.4)

where m̃ = min{N1 − 1, n − N1}, m̄ = min{∆N1 + l − k − 1, n − l − k − ∆N1} and

m∗ = min{∆N1 − 1, n − 2s − ∆N1}. The probability p(t − 1, l, k) for any t ∈ N and

0 ≤ l+ k ≤ n is computed by Proposition 3.3.3 and the function peven(t, s) for any t ∈ N
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and q ≤ s ≤ bn/2c is given by the following iteration formulas:

(i. For t = 1, peven(t, s) = p(1, s, s);

(ii. For t ≥ 2,

peven(t, s) =

q−1∑
l=0

q−1∑
k=0

p(t−1, l, k)Γ(t, s−l, s−k | l, k)+
s∑

h=q

peven(t−1, h)Γ(t, s−h, s−h |h, h).

(3.5)

Proof: First we define peven(t, s) as the probability of the intersection of the following

tree events:

(i. N1(τ̃) < q and N0(τ̃) < q for some τ̃ < t;

(ii. For τ ∈ {τ̃ , τ̃ + 1, . . . , t}, N1(τ) = N0(τ);

(iii. After time step t, N1(t) = N0(t) = s ≥ q.

Then equation (3.5) is a straightforward application of the total probability formula. For

t = 1, peven(1, s) is equal to p(1, s, s) by definition. For the case t ≥ 2, the first term of

the right-hand side of equation (3.5) corresponds to the probability that both N1(t− 1)

and N0(t− 1) are under the threshold q and N1(t) = N0(t) = s ≥ q. The second term is

the probability that, for any τ ≤ t − 1, N1(τ) and N0(τ) remain equal if either of them

exceeds the threshold q, and N1(t) = N0(t) = s ≥ q.

With the computation algorithm of peven(t, s), now we derive the formula for p1(t; , n, q).

If the fusion center decides H1 at t = 1, then N1(1) ≥ q and N1(1) > N0(1). Since all

the system states (N1(1), N0(1)) are mutually exclusive, the probability that the fusion

center decides H1 at t = 1 is the sum of all the p(1, N1, N0) satisfying N1 > N0 and

N1 ≥ q. This concludes the proof of equation (3.3).

For t ≥ 2, first we consider the case when the cancel-out case does not occur. The

probability of the intersection of the following two events:
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(i. At time t−1, both N1(t−1) and N0(t−1) are below the threshold. The probability

of this event is
∑q−1

l=0

∑q−1
k=0 p(t− 1, l, k);

(ii. On condition that after time t − 1, the system is in some state (l, k) below the

threshold, i.e., l < q and k < q, the votes for H1 outnumbers the votes for H0 and

exceeds the threshold at time step t,

is equal to
n−l−k∑

∆N1=q−l

m̄∑
∆N0=0

Γ(t,∆N1,∆N0 | l, k).

Applying the total probability formula we obtain the probability that the fusion center

decides H1 at t when the cancel-out case does not occur, which is the first term of the

right-hand side of equation (3.4).

In the cancel-out case, the q-out-of-n condition is not triggered before t. After time

step t−1, both N1(t−1) and N0(t−1) must have exceeded the threshold q and they are

equal to s with probability peven(t− 1, s) for any s ∈ {q, q + 1, . . . , bn/2c}. On condition

that N1(t − 1) = N0(t − 1) = s ≥ q, the probability that N1(t) > N0(t) ≥ q is equal

to
∑n−2s

∆N1=1

∑m∗

∆N0=0 Γ(t,∆N1,∆N0 | s, s). According to the total probability formula, we

obtain the second term of the right hand side of equation (3.4). This concludes the

proof.

The computation of p1(t;n, q) in the case dn/2e, in which there is no cancel-out case,

is given by the proposition below. The proof is a straightforward application of the total

probability formula.

Proposition 3.3.5 (Computation of p1(t;n, q) in Case 2) Consider the n-SDM se-

quential decision aggregation process with the fusion center running the q-out-of-n rule.

For dn/2e ≤ q ≤ n, the probability p1(t;n, q) is computed by the following formulas:
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(i. For t = 1,

p1(t;n, q) =
n∑

N1=q

n−N1∑
N0=0

p(1, N1, N0); (3.6)

(ii. For t ≥ 2,

p1(t;n, q) =

q−1∑
l=0

n−q∑
k=0

p(t− 1, l, k)
n−l−k∑

∆N0=q−l

m̄∑
∆N0=0

Γ(t,∆N1,∆N0 | l, k), (3.7)

where m̄ = n− l − k −∆N1.

To compute p0(t;n, q) we just need to switch all the indexes corresponding to H1 and

H0 in equations (3.3), (3.4), (3.6), and (3.7).

3) Accuracy and expected decision time of the fusion center and the overall compu-

tation complexity: With the algorithm of computing p1(t;n, q) and p0(t;n, q), the fusion

center’s accuracy and expected decision time is given by the following equations:

pc(n, q) =
∞∑
t=1

p1(t;n, q), (3.8)

and

E[Tfc |n, q] =
∞∑
t=1

t
(
p1(t;n, q) + p0(t;n, q)

)
. (3.9)

The state transition function Γ(t,∆N1,∆N0 |N1, N0) is given by a closed form with

the computation complexity O(1). According to Proposition 3.3.3, the computation com-

plxity for p(t, N)1, N0) is O(1) for t = 1 and O(n2) for t ≥ 2. Knowing p(t−, N1, N0)

for any 0 ≤ N1 ≤ n, 0 ≤ N0 ≤ n and 0 ≤ N1 + N0 ≤ n, the algorithm of comput-

ing peven(t, s) has the complexity O(n2). Therefore, according to Proposition 3.3.4 and

Proposition 3.3.5 we know that the computation complexity for p1(t;n, q) is O(n5) when
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1 ≤ q ≤ bn/2c and is O(n4) when dn/2e ≤ q ≤ n.

3.4 Asymptotic Behaviors of the q-out-of-n Decision

Aggregation System

By asymptotic behavior we mean the behavior of the fusion center in the n-SDM

system as n tends to infinity. In this section, firstly we relate the accuracy and the

expected decision time of the fusion center to the IDPS of the isolated SDMs, particularly

for two special q-out-of-n rules: the fastest rule with q = 1 and the majority rule with

q = dn/2e. Then we discuss the influence of the parameter β on the sequential decision

aggregation system as n→∞.

3.4.1 The fastest rule

According to Proposition IV.1 in the paper by Dandach et. al. [84], which is a n-

SDM system with β = 0, the asymptotic accuracy and expected decision time of the

fusion center running the fastest rule only depends on the first time instance when either

p1(t) 6= 0 or p0(t) 6= 0. The following theorem states that the n-SDM system under the

fastest rule leads to the same result for any 0 ≤ β ≤ 1.

Theorem 3.4.1 (Asymptotic behavior for the fastest rule) Consider the sequen-

tial decision aggregation system in which the fusion center is running the fastest rule.

Define the earliest possible decision time t̄ as

t̄ = min{t ∈ N | p1(t) 6= 0 or p0(t) 6= 0}.
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Then the asymptotic accuracy of the fusion center satisfies

lim
n→∞

pc(n, 1) =


1, if p1(t̄) > p0(t̄),

0, if p1(t̄) < p0(t̄),

1/2, if p1(t̄) = p0(t̄),

(3.10)

and the asymptotic expected decision time satisfies

lim
n→∞

E[Tfc|n, 1] = t̄. (3.11)

Proof: In this proof it is convenient to modify our notation as follows: several systems

with different IDPS are indexed by subscripts. Denote by S
(n)
r the n-SDM system with

index r and the IDPS {pr1(t), pr0(t), prnd(t)}t∈N. Notice that here r is the system index

rather than the power. The accuracy and expected decision time for the fusion center

are denoted by pc(S
(n)
r , q) and E[Tfc|S(n)

r , q] respectively.

We introduce three different n-SDM systems. Define

(i. S
(n)
1 as the n-SDM system with IDPS {p1

1(t), p1
0(t), p1

nd(t)}t∈N, for which the earliest

possible decision time t̄ is defined by t̄ = min{t ∈ N | p1
1(t) 6= 0 or p1

0(t) 6= 0};

(ii. S
(n)
2 as the n-SDM system with β = 0, i.e., no social pressure, and the corresponding

IDPS satisfying


p2

1(t) = p1
1(t) and p2

0(t) = p1
0(t), for ∀t ≤ t̄,

p2
1(t̄+ 1) = 1 and p2

0(t̄+ 1) = 0,

p2
1(t) = p2

0(t) = 0 for ∀t > t̄+ 1;
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(iii. S
(n)
3 as the n-SDM system with β = 0 and the IDPS satisfying


p3

1(t) = p1
1(t) and p3

0(t) = p1
0(t), for ∀t ≤ t̄,

p3
1(t̄+ 1) = 0 and p3

0(t̄+ 1) = 1,

p3
1(t) = p3

0(t) = 0 for ∀t > t̄+ 1.

First we compare the accuracy of S
(n)
1 and the accuracy of S

(n)
2 when both are running

the fastest rule. The systems S
(n)
1 and S

(n)
2 are identical for t ≤ t̄ since the social pressure

terms βpnd(t)N1(t)/n and βpnd(t)N0(t)/n remain zero. For system S
(n)
2 , at time step t̄+1,

all the SDMs who have not made final individual decisions will decide H1. Therefore,

pc(S
(n)
1 , 1) ≤ pc(S

(n)
2 , 1). Applying the same argument we have pc(S

(n)
3 , 1) ≤ pc(S

(n)
1 , 1).

Moreover, according to Proposition IV.1 in [84], as n tends to infinity,

lim
n→∞

pc(S
(n)
2 , 1) = lim

n→∞
pc(S

(n)
3 , 1)

=


1, if p1

1(t̄) > p1
0(t̄),

0, if p1
1(t̄) < p1

0(t̄),

1

2
, if p1

1(t̄) = p1
0(t̄).

(3.12)

This leads to equation (3.10).

Now we discuss the asymptotic expected decision time. If p1
1(t̄) +p1

0(t̄) = 1, obviously

the fusion center’s expected decision time would be t̄ for any n. Suppose 0 < p1
1(t̄) +

p1
0(t̄) < 1. Define another system S

(n)
4 with the IDPS {p4

1(t), p4
0(t), p4

nd(t)}t∈N satisfies

p4
1(t̄) = p4

0(t̄) = 0, p4
nd(t̄) = 1, and

p4
1(t) = p1

1(t), p4
0(t) = p1

0(t), p4
nd(t) = p1

nd(t) for any t 6= t̄,
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and the fusion center in system S
(n)
4 makes the global decision after the SDMs have

decided H1 or H0. As long as p1
1(t̄) + p1

0(t̄) < 1, the isolated SDMs with the IDPS

{p4
1(t), p4

0(t), p4
nd(t)}t∈N still have almost-sure decision and finite expected decision time.

For system S
(n)
1 ,

E[Tfc |S(n)
1 , q = 1] = t̄P[Tfc = t̄ |S(n)

1 , q = 1]+E[Tfc |S(n)
1 , q = 1, Tfc > t̄]P[Tfc > t̄ |S(n)

1 , q = 1].

By definition and according to the proof of Proposition 3.3.1,

E[Tfc |S(n)
1 , q = 1, Tfc > t̄] ≤ E[T (n)

max |S(n)
4 ] ≤ nE[Ti|S(n)

4 ].

Moreover, according to the proof of Proposition IV.1 in [84], the term P[Tfc |S(n)
1 , q = 1]

is in order O(ε) for some 0 < ε < 1 and limn→∞ P[Tfc = t̄ |S(n)
1 , q = 1] = 1. Therefore,

lim
n→∞

E[Tfc |S(n)
1 , q = 1, Tfc > t̄]P[Tfc > t̄ |S(n)

1 , q = 1] = 0, and lim
n→∞

E[Tfc |S(n)
1 , q = 1] = t̄.

3.4.2 The majority rule

Before analyzing the accuracy and expected decision time of the fusion center un-

der the majority rule, we introduce a main result in the paper [100] on the mean-field

convergence for systems with interacting objects, which can be applied to our model.

Consider a discrete-time Markov chain with n individuals. Denote by Xi(t) the state

of individual i after time step t. The individual states set is identical for all the individuals

and is denoted by Θ = {1, 2, . . . , S}, i.e., Xi(t) ∈ Θ for any i ∈ {1, 2, . . . , n} and t ∈ N.

Define the occupancy measure M (n)(t) ∈ R1×S by M
(n)
r (t) = 1

n

∑n
i=1 1{Xi(t)=r} for
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any r ∈ Θ. Define the memory R(n)(t) as some d-dimension row vector, which is

updated according to some continuous function g : R1×d × R1×S → R1×d, that is,

R(n)(t + 1) = g(R(n)(t),M (n)(t)). Denote the individual state transition matrix by

K(n)(t) =
(
K

(n)
rm (t)

)
S×S, that is,

K(n)
rm (t) = P[X

(n)
i (t+ 1) = m |X(n)

i (t) = r],

and K
(n)
rm is an explicit function of R(n)(t), i.e., K(n)(t) =

(
K

(n)
rm (R(n)(t))

)
S×S. We

rewrite [100, Theorem 4.1] as follows.

Lemma 3.4.2 (Mean-field convergence) Consider the discrete-time Markov chain

described above. Assume that,

(i. For any r,m ∈ Θ, as n → ∞, K
(n)
rm (r) converges uniformly in r ∈ R1×d to some

Krm(r), which is a continuous function of r;

(ii. The vectors M (n)(0) and R(n)(0) converge almost surely to some deterministic

limits µ(t) and ρ(0).

Then for any fixed t, almost surely,

lim
n→∞

M (n)(t) = µ(t), and lim
n→∞

R(n)(t) = ρ(t),

where µ(t) and ρ(t) are defined by the following iteration formulas:

µ(t+ 1) = µ(t)K
(
ρ(t)

)
, and ρ(t+ 1) = g

(
ρ(t),µ(t+ 1)

)
.

In the lemma above, the deterministic vector µ(t) is referred to as the mean-field limit

of M (n)(t) as n → ∞. Now we apply this lemma to our model. Define the occupancy
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measure M (n)(t) by

M (n)(t) =

(
N1(t)

n
,
N0(t)

n
,
n−N1(t)−N0(t)

n

)
, (3.13)

and define the vector sequence {µ(t)}t∈N by

µ(0) = (0, 0, 1),

µ1(t+ 1) = µ1(t) + µ3(t)
(
p1(t+ 1) + βpnd(t+ 1)µ1(t)

)
,

µ2(t+ 1) = µ2(t) + µ3(t)
(
p0(t+ 1) + βpnd(t+ 1)µ2(t)

)
,

µ3(t+ 1) = 1− µ1(t+ 1)− µ2(t+ 1).

(3.14)

The following proposition states that, as n tends to infinity, the occupancy measure

M (n)(t) in our model converges almost surely to the mean-field limit µ(t).

Proposition 3.4.3 (Mean-field convergence in the n-SDM system) Consider the

n-SDM sequential decision aggregation system. For any t ∈ N, as the system size n tends

to infinity, the occupancy measure M (n)(t), defined by equation (3.13), satisfies

lim
n→∞

M (n)(t) = µ(t) almost surely, (3.15)

where µ(t) is defined by equation (3.14).

Proof: Define the memory vector by

R(n)(t) =
(
t,M

(n)
1 (t),M

(n)
2 (t)

)
=

(
t,
N1(t)

n
,
N0(t)

n

)
.
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Therefore the function g = (g1, g2, g3) becomes:

g1

(
R(n)(t),M (n)(t+ 1)

)
= R

(n)
1 (t) + 1 = t+ 1,

g2

(
R(n)(t),M (n)(t+ 1)

)
= M

(n)
1 (t+ 1) =

N1(t+ 1)

n
,

g3

(
R(n)(t),M (n)(t+ 1)

)
= M

(n)
2 (t+ 1) =

N0(t+ 1)

n
.

Let the individual states set be Θ = {1, 2, 3}, where the indexes 1, 2 and 3 correspond

to H1, H0 and Hnd respectively. Define the matrix K(r) by

K11(r) = 1, K12(r) = 0, K13(r) = 0; K21(r) = 0, K22(r) = 1, K23(r) = 0;

K31(r) = p1(r1 + 1) + βpnd(r1 + 1)r2, K32(r) = p0(r1 + 1) + βpnd(r1 + 1)r3,

K33(r) = 1−K31(r)−K32(r).

Based on Assumption 3.2 and equations (3.1) and (3.2), in our model, the individual

state transition matrix with any memory r satisfies K(n)(r) = K(r), for any n ∈ Z+.

Moreover, initially M (n)(0) = µ(0) and R(n)(0) = ρ(0). According to Lemma 3.4.2, we

obtain equation (3.15).

Having completed all preparations, we now present the theorem on the asymptotic

accuracy and expected decision time of the fusion center running the majority rule.

Theorem 3.4.4 (Asymptotic behavior for the majority rule) Consider the n-SDM

sequential decision aggregation system with the IDPS {p1(t), p0(t), pnd(t)}t∈N known. De-

fine the vector sequence {µ(t)}t∈N by equation (3.14). As the system size n tends to
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infinity, the accuracy of the fusion center satisfies:

lim
n→∞

pc(n, dn/2e) =


1, if limt→∞ µ1(t) > 1/2,

0, if limt→∞ µ2(t) > 1/2,

1/2, if ∃T ∈ N, s.t. µ1(T ) = µ2(T ) = 1/2.

(3.16)

As for the asymptotic expected decision time,

(i. if limt→∞ µ1(t) > 1/2 or limt→∞ µ2(t) > 1/2, then

t< 1
2

+ 1 ≤ lim
n→∞

E[Tfc |n, dn/2e] ≤ t> 1
2
,

where t> 1
2

= min{t ∈ N | max
(
µ1(t), µ2(t)

)
> 1/2} and t< 1

2
= max{t ∈ N | max

(
µ1(t), µ2(t)

)
<

1/2}. Particularly, if there does not exists any T ∈ N such that µ1(T ) = 1/2 or

µ2(T ) = 1/2, then limn→∞ E[Tfc |n, dn/2e] = t> 1
2
;

(ii. if there exists T ∈ N such that µ1(T ) = µ2(T ) = 1/2, then

lim
n→∞

E[Tfc |n, dn/2e] = t 1
2
,

where t 1
2

= min{t ∈ N |µ1(t) = µ2(t) = 1/2};

(iii. if for any t ∈ N, µ1(t) < 1/2 and µ2(t) < 1/2, while limt→∞ µ1(t) = limt→∞ µ2(t) =

1/2, then the fusion center’s expected decision time tends to infinity as n → ∞

almost surely.

Proof: First we discuss the asymptotic accuracy. If limt→∞ µ1(t) > 1/2, there exists

t̃ ∈ N such that µ1(t̃) > 1/2. Since M (n)(t) converges to µ(t) almost surely, M
(n)
1 (t̃) =
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N1(t̃)
n

> 1/2 almost surely as n→∞. According to the majority rule,

lim
n→∞

P[The fusion center decides H1 no later than t̃ |n, dn/2e] = 1,

that is, pc(n, dn/2e)→ 1 as n→∞. Following the same argument we have pc(n, dn/2e)→

0 when limt→∞ µ2(t) > 1/2.

Now consider the case when there exists T ∈ N such that µ1(T ) = µ2(T ) = 1/2.

Define t̄ = min{t |µ1(t) = µ2(t) = 1/2}. According to equation (3.14), for any t < t̄,

µ1(t) < 1/2 and µ2(t) < 1/2, which implies N1(t)/n < 1/2 and N0(t)/n < 1/2 almost

surely as n → ∞. Therefore, no global decision is made before t̄ and after time step t̄

the fusion center decides H1 with probability 1/2 due to the symmetry.

Now we prove the results on the asymptotic expected decision time. First, we discuss

the case when limt→∞ µ1(t) > 1
2
. The case limt→∞ µ2(t) > 1

2
follows the same line of

argument. For any t ≤ t< 1
2
, µ1(t) < 1

2
, µ2(t) < 1

2
, and therefore

P
[

lim
n→∞

N1(t)

n
= µ1(t) <

1

2

]
= 1.

The fusion center makes no decision before t< 1
2

+1, almost surely. For t = t> 1
2
, µ1(t) > 1

2
,

µ2(t) < 1
2
. We have

P
[

lim
n→∞

N1(t> 1
2
)

n
= µ1(t> 1

2
) >

1

2

]
= 1.

Therefore, almost surely, t< 1
2

+ 1 ≤ Tfc ≤ t> 1
2
. Particularly, if there does not exist any T

such that µ1(T ) = 1/2, then t< 1
2

+ 1 = t> 1
2
. This concludes the proof for Case (i.

In Case (ii, when µ1(t 1
2
) = µ2(t 1

2
) = 1

2
for any t < t 1

2
, we have µ1(t) < 1

2
and µ2(t) < 1

2
.

Therefore, as n tends to infinity, the fusion center makes the global decision at t 1
2

almost

surely. The asymptotic expected decision time is t 1
2
.

In Case (iii, since P[limn→∞N1(t)/n = µ1(t) < 1/2] = P[limn→∞N0(t)/n = µ2(t) <
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1/2] = 1 for any t ∈ N, the fusion center almost surely makes no global decision at any

time. Therefore, limn→∞ E[Tfc |n, q] =∞.

3.4.3 Analysis of the influence of parameter β

According to Proposition 3.4.3, µ1(t) (µ2(t), µ3(t) resp.) is a mean-field approxima-

tion of N1(t)/n (N0(t)/n,
(
n−N1(t)−N0(t)

)
/n resp.) for large n. The parameter β plays

an important role in the iteration of µ(t). In this subsection we discuss the dynamical

behavior of µ(t) as a function of the parameter β.

1) β=0: The case β = 0 corresponds to the system without social pressure. In this

scenario the n-SDM system is degenerated to the model discussed in [84]. Denote by

ν(t) =
(
ν1(t), ν2(t), ν3(t)

)
the solution to equation (3.14) with β = 0. Then we have

ν(t+ 1) = ν(t)A(t+ 1), with A(t+ 1) =


1 0 0

0 1 0

p1(t+ 1) p0(t+ 1) pnd(t+ 1)

 , (3.17)

and ν(0) = (0, 0, 1). It is straightforward to check that the closed form of ν(t) is given

by

ν1(t) =


p1(1), for t = 1,

p1(1) +
t−1∑
s=1

p1(s+ 1)
s∏

τ=1

pnd(τ), for t ≥ 2,

ν2(t) =


p0(1), for t = 1,

p0(1) +
t−1∑
s=1

p0(s+ 1)
s∏

τ=1

pnd(τ), for t ≥ 2,

ν3(t) =
t∏

τ=1

pnd(τ).

(3.18)

According to Assumption 3.1, limt→∞ ν3(t) = 0. According to the iteration equa-
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tions (3.17), ν1(t) and ν2(t) is non-decreasing with t and are both upper bounded by

1. Therefore, limt→∞ ν1(t) and lim→∞ ν2(t) both exist. Moreover, with the closed-form

of ν(t), one can check that Theorem 3.4.4 for the case β = 0 coincide with Proposition

IV.3 and IV.4 in [84].

2) β=1: Denote by ν̂(t) the solution to equation (3.14) in the other extreme case

when β = 1. The iteration equation for ν̂(t) is nonlinear and written as

ν̂1(t+ 1) = ν̂1(t) + ν̂3(t)
(
p1(t+ 1) + βpnd(t+ 1)ν̂1(t)

)
,

ν̂2(t+ 1) = ν̂2(t) + ν̂3(t)
(
p0(t+ 1) + βpnd(t+ 1)ν̂2(t)

)
,

ν̂3(t+ 1) = pnd(t+ 1)ν̂3(t)2.

(3.19)

One can deduce, from the third equation above, the closed form of ν̂3(t):

ν̂3(t) =
t∏

τ=1

pnd(τ)2t−τ .

Similar to the case when β = 0, we conclude that the limit of ν̂(t) exists, as t tends to

infinity. Moreover, with the same IDPS, ν̂3(t) decays to zero faster than ν3(t), that is, in

the system with large n and β = 1, the expected decision time for the individual SDMs

is no larger than in the case when β = 0.

3) Small β: We conduct the leading order analysis in β, for the expression of µ(t),

when β is very small. The following proposition is stated without proof.

Proposition 3.4.5 (Leading order analysis for small β) Consider the iteration equa-

tion (3.14) for µ(t) with β positive but close to 0. Let µr(t) = νr(t) + gr(t)β + O(β2)

for any r ∈ {1, 2, 3}, where gr(t) is the coefficient of the leading order in β and ν(t) =(
ν1(t), ν2(t), ν3(t)

)
is given by equation (3.18). Then,
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(i. for any r ∈ {1, 2, 3}, gr(t) satisfies the following iteration formula:

g1(t+ 1) = g1(t) + p1(t+ 1)g3(t) + ν1(t)ν3(t)pnd(t+ 1),

g2(t+ 1) = g2(t) + p0(t+ 1)g3(t) + ν2(t)ν3(t)pnd(t+ 1),

g3(t+ 1) = pnd(t+ 1)g3(t)− pnd(t+ 1)ν3(t)
(
1− ν3(t)

)
,

and g1(t) + g2(t) + g3(t) = 0 for any t ∈ N;

(ii. the closed form of gr(t) is given by g1(1) = g2(1) = g3(1) = 0,

g1(2) = p1(1)pnd(1)pnd(2), g2(2) = p0(1)pnd(1)pnd(2), g3(2) = −pnd(1)pnd(2)
(
p1(1)+

p0(1)
)
, and, for any t ≥ 3,

g1(t) = g1(2) +
t∑
l=3

pnd(l)ν1(l − 1)ν3(l − 1)

−
t∑
l=3

p1(l)
l−1∑
s=2

l−1∑
τ=s

pnd(τ)ν3(s− 1)
(
1− ν3(s− 1)

)
,

g2(t) = g2(2) +
t∑
l=3

pnd(l)ν2(l − 1)ν3(l − 1)

−
t∑
l=3

p0(l)
l−1∑
s=2

l−1∑
τ=s

pnd(τ)ν3(s− 1)
(
1− ν3(s− 1)

)
,

g3(t) = −
t∑

s=2

t∏
τ=s

pnd(τ)ν3(s− 1)
(
1− ν3(s− 1)

)
;

(iii. for any t ∈ N, g3(t) ≤ 0, and therefore µ3(t) is non-increasing with β;

(iv. for any t ∈ N, g1(t) (g2(t) resp.) is non-decreasing with pnd(t) and non-increasing

with p1(t) (p0(t) resp.), and |g3(t)| is non-decreasing with pnd(t).

4) β close to 1: We present the following proposition on the leading order in δ = 1−β

for small δ.
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Proposition 3.4.6 (Leading order analysis for β close to 1) Consider equation (3.14)

for µ(t) with β close to but less than 1. Let δ = 1− β and µr(t) = ν̂r(t) + δhr(t) +O(δ2)

for r ∈ {1, 2, 3}, where Hr(t) is the coefficient of the leading order in δ and ν̂(t) is given

by equation (3.19). Then we have:

(i. for r ∈ {1, 2, 3}, hr(t) satisfies the following iteration formula:

h1(t+ 1) =
(
1 + ν̂3(t)pnd(t+ 1)

)
h1(t) + p1(t+ 1)h3(t)

+ pnd(t+ 1)ν̂1(t)
(
h3(t)− ν̂3(t)

)
,

h2(t+ 1) =
(
1 + ν̂3(t)pnd(t+ 1)

)
h2(t) + p0(t+ 1)h3(t)

+ pnd(t+ 1)ν̂2(t)
(
h3(t)− ν̂3(t)

)
,

h3(t+ 1) = pnd(t+ 1)ν̂3(t)
(
2h3(t) + ν̂1(t) + ν̂2(t)

)
,

and h1(t) + h2(t) + h3(t) = 0 for any t ∈ N;

(ii. for any t ∈ N, h3(t) ≥ 0, and therefore µ3(t) is non-decreasing with β;

(iii. for any t ∈ N, h1(t) (h2(t) resp.) are non-decreasing with p1(t) (p0(t) resp.), and

h3(t) is non-decreasing with pnd(t).

3.5 Further Simulation

1) Validation of the asymptotic performance: Simulation work has been conducted to

validate the results of Theorems 3.4.1 and 3.4.4. In Figure 3.5(a) and 3.5(b), the IDPS has

t̄ = 2 and p1(t̄) > p0(t̄). The simulation result indicates that, as n increases, the fusion

center’s accuracy, i.e., 1−pw(n, 1) gets close to 1 and the expected decision time converges

to t̄. In Figure 3.5(c) and 3.5(d), the IDPS satisfies µ1(∞) > 1/2 > µ2(∞) and t> 1
2

= 2

for β = 1; µ1(∞) > 1/2 > µ2(∞) and t> 1
2

= 5 for β = 0. The simulation result indicates
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Figure 3.5: The probability of making wrong global decision, and the expected decision
time, for the fusion center in n-SDM systems with the fastest rule and the majority
rule. The blue curves correspond to the n-SDM systems with β = 1. The red dash-dot
curves represent the n-SDM systems with β = 0 and the black dotted lines correspond
to the isolated SDM.

that, as n tends to infinity, the probability of making wrong global decision under the

majority rule, i.e., the probability pw(n, dn/2e), converges to 0 and the expected decision

time converges to t> 1
2
, as indicated by Theorem 3.4.4. Moreover, Figure 3.5(d) shows

that, with the presence of social pressure, the expected decision time of the fusion center

running the majority rule can be even less than the expected decision time of a single

isolated SDM, while the expected decision time of the model without social pressure,

as the red dash line in Figure 3.5(d) indicates, is much larger than the single isolated

SDM’s.

2) Comparison among different values of β: Simulation work has been conducted to

compare the performances of systems with different values of the model parameter β.

The IDPS shown in Figure 3.1 are used in the simulation work illustrated by Figure 3.6.

Figure 3.6(a) and 3.6(b) are comparisons between the fastest rule and the majority rule

with varying values of β. We can see that, for any fixed n and β, the fastest rule has

less accuracy while faster decision speed than the majority. Moreover, the performance

of the fastest rule is not sensitive to the value of β while, for the majority rule with fixed

system size n, the probability of wrong global decision gets larger as β increases but the
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Figure 3.6: The probability of making wrong global decision and the expected decision
time, as functions of the system size n respectively, for different values of the parameter
β and different q-out-of-n rules. In Figure (a) and (b), the solid lines correspond to
the fastest rules while the dash lines correspond to the majority rules. In Figure (c)
and (d), the solid lines correspond to the systems with β = 0.3 while the dash lines
correspond to the system with β = 0.

expected decision time decreases as β increases.

3) Comparison among different q-out-of-n rules: Refer to the η-total rule as the dηne-

out-of-n rule. The case η = 0 corresponds to the fastest rule while η = 0.5 is the majority

rule. Figure 3.6(c) and 3.6(d) reveal that the system performance gets more sensitive to

β as η increases. Moreover, for fixed n and β, the system’s accuracy increases with the

increase of η, at the cost of the higher expected decision time.

3.6 Conclusion and Discussion

This chapter proposes a sequential decision aggregation model that does not rely on

the specific individual decision making policy and incorporates social pressure. Indi-

viduals in our model are sequential decision makers (SDMs) influenced by the decisions

of other individuals. We present an algorithm to compute the system’s decision prob-

abilities, accuracy and expected decision time. Two specific group decision rules, the

fastest rule and the majority rule, are analyzed in detail. We then focus on the case

when the system size tends to infinity and, via a mean-field analysis, provide the exact
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expression of the asymptotic accuracy and expected decision time for both the fastest

rule and the majority rule. These results relate the group’s decision making behavior to

the isolated SDM’s. In addition to the theoretical analysis, we provide some simulation

work to present the performance of our group decision making model and compare it to

the sequential decision aggregation model without social pressure, first proposed in [84].

Within our model, we also compared the performance of different q-out-of-n aggregation

rules.

This model could be extended to a generalized problem, in which the SDMs’ IDPS

are heterogeneous. Moreover, the connections between the SDMs might not necessar-

ily be all-to-all. If both the heterogeneous SDMs and the network structure are taken

into consideration, the group decision making policy becomes more complicated. The

generalized model would help to explain how a group of decision makers with different

information sources and confidence levels collaborate together and the optimization of

the group decision making performance will be related to the network topology.
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Part II

Dynamics of Interpersonal Appraisal Networks
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Overview: dynamics of social networks

One of the main challenges in the research on social network dynamics is that, there

are not only dynamical processes occurring over the networks, but the social networks

themselves are also evolving with time. Models of dynamics of social networks aim to

explain the evolution of the interconnections in social networks and the emergent global

network structure. Examples of such models include the network formation games [101,

102], evolution of interpersonal influence along issue sequence [103, 104], and dynamics

social balance [105, 106, 107].

In Part II of this thesis, we focus on the dynamics of interpersonal appraisal networks.

Depending on the specific content of the “appraisal” and the underlying microscopic inter-

action mechanism, different models of dynamics of appraisal networks explains different

social phenomena. In Chapter 4, the appraisal network represents individuals’ mutual

evaluations of their certain skill levels and the evolution of such appraisal dynamics lead

to collective learning under some conditions; In Chapter 5, appraisal network refers to

the sentiments network among a group of individuals and the evolution of such appraisal

network via homophily or influence mechanism leads to a special network configuration

called structural balance.
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Chapter 4

Collective Learning via

Assign/appraise/influence Dynamics

4.1 Introduction

4.1.1 Transactive memory system in applied psychology

Researchers in sociology, psychology, and organization science have long studied the

inner functioning and performance of teams with multiple individuals engaged in tasks.

Extensive qualitative studies, conceptual models and empirical studies in the laboratory

and field reveal some statistical features and various phenomena of teams [108, 109, 110,

111], but only a few quantitative and mathematical models are available [112, 113].

Transactive memory system (TMS) is a conceptual model of team learning and perfor-

mance well-established in organization science, see the seminal work by Wegner et al. [114]

and other highly cited works [115, 108, 109, 116]. A TMS is a collective “memory” sys-

tem that emerges in teams engaged in tasks, as the team members develop the collective

knowledge on who possesses what expertise. TMS facilitates coordination and division
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of labor. Empirical research across a range of team types and settings [108, 117, 118], as

well as some early simulation-based computational models [119, 120, 113], demonstrates

a strong positive relationship between the development of a TMS and team performance.

However, the mechanisms through which team members come to share an understanding

of the distribution of expertise is typically treated as “black box” processes in TMS re-

search. It remains an open problem how to mathematically characterize the TMS-related

social and cognitive processes, such as the division of labor and the evolution of collective

knowledge.

4.1.2 Problem description

In this chapter we propose a class of multi-agent dynamical systems as mathematical

formalizations of some important aspects of the TMS theory. We consider a natural

social process, in which a team of individuals, with unknown skill levels, is complet-

ing a sequence of tasks. Each task is completed by subdividing it into subtasks with

different workloads and assigning one subtask to each team member. The team perfor-

mance is maximized when the workload assignments are proportional to the individuals’

underlying skill levels. We adopt the concept of appraisal network, or equivalently its

corresponding row-stochastic appraisal matrix, to model the TMS of the team. The ap-

praisal network represents how the team members evaluate each other’s underlying skill

level. The dynamics of the appraisal matrix is as follows: First, after completing the

task, each individual receives a feedback signal equal to the deviation of her/his own

performance from the weighted average performance of a subset of observed individuals.

Second, based on the feedback signal, each individual adjusts her/his own appraisal and

the appraisals of other team members. Third, the appraisal network may or may not be

updated via an interpersonal influence process. Fourth, the workload division for the next
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tasks is computed as a function of the appraisal matrix. The evolution of the appraisal

network corresponds to the development of a team’s TMS. This chapter aims to mathe-

matically formalize this four-step process and investigate the conditions under which (i)

the team as an whole achieves asymptotically the optimal workload assignment; (ii) each

individual learns asymptotically the true relative skill levels of all the team members;

and (iii) the learning fails to occur. We refer to property (ii) as collective learning.

4.1.3 Literature review

To the best of our knowledge, this chapter is the first attempt to model the devel-

opment of TMS as a multi-agent system and provide rigorous conditions for collective

learning. To the best of our knowledge, the only related previous works are the computa-

tional models proposed by Palazzolo et al [119], Ren et al [120], and Anderson et al [113].

The model in [113] is a 2-dimension ODE and treats the collective knowledge as a scalar

variable, while the models in [119] and [120] are multi-agent. Palazzolo et al [119] con-

sider time-varying skill levels. Ren et al [120] consider multi-dimension skills and task

requirements. Both models take into account numerous complicated and realistic indi-

vidual/group actions, and the analysis of both models is based on simulation.

In our models, collective learning arises as the result of the co-evolution of interper-

sonal appraisals and influence networks. Related previous work includes social compar-

ison theory [121], averaging-based social learning [122], opinion dynamics [2, 123, 124],

reflected appraisal mechanisms [125, 103], and the combined evolution of interpersonal

appraisals and influence networks [107].

In the modeling and analysis of the evolution of appraisal and influence networks, we

build an insightful connection between our model and the well-known replicator dynamics

in evolutionary game theory; see the textbook [126], some control and optimization
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applications [127, 128], and the recent contributions [129, 130].

Our models are also marginally related to distributed optimization, e.g. [131, 132].

But in this chapter we focus on modeling the natural social behavior of individuals.

Moreover, the evolution of the decision variable, i.e., the workload assignment, is not

directly modeled, but a byproduct of the dynamics for the appraisal network.

4.1.4 Contribution

Firstly, based on a few natural assumptions, we propose three novel models with in-

creasing complexity for the dynamics of teams: the manager dynamics, the assign/appraise

dynamics, and the assign/appraise/influence dynamics. Without loosing mathematical

tractability and intuitive insights, our work integrates several natural processes in a single

model: the division of workload, the update of interpersonal appraisals via observation,

and the opinion dynamics over the influence network. To the best of our knowledge, this

is the first time that such an integration has been proposed and leads to rigorous and intu-

itive results. For the baseline manager dynamics, the workload assignment is adjusted in

a centralized manner: the increase rate of workload assigned to an individual is equal to

the deviation of his/her performance from the average. Under this intuitive assumption,

the evolution of the workload assignment obeys the well-established replicator dynamics

with novel fitness functions as the individual performances. The assign/appraise dy-

namics provides an insightful perspective on the connection between team performance

and the appraisal network, by assuming that, instead of by the manager, the workload

assignment is determined by the appraisal network in a social and distributed manner.

The update of the appraisals is driven by the individuals’ heterogeneous performance

feedback. In the assign/appraise/influence dynamics model, we further incorporate the

co-evolution of appraisal and influence networks.

132



Collective Learning via Assign/appraise/influence Dynamics Chapter 4

Secondly, we present comprehensive theoretical analysis on the dynamical properties

of our models. For the assign/appraise dynamics and the assign/appraise/influence dy-

namics, we relate the models’ asymptotic behavior with the connectivity property of the

observation network, which defines the heterogeneous feedback signals each individual

observes. Our theoretical results on the asymptotic behavior can be interpreted as the

exploration of the most relaxed conditions for the emergence of asymptotic optimal work-

load assignment. Moreover, some theoretical results also reveal insightful interpretations

that are consistent with the TMS theory studied in organization science. According to Lee

et al. [133], in teams with well-developed TMS, members’ agreements on the distribution

of expertise facilitate high levels of coordination and division of labor, which a centralized

manager might otherwise provide. In our paper, we prove that, along the assign/appraise

dynamics and the assign/appraise/influence dynamics, the evolution of the workload as-

signment determined by the appraisal network does indeed satisfy the manager (a.k.a.,

replicator) dynamics in a generalized form. In addition, the assign/appraise/influence

dynamics describes an emergence process by which team members’ perception of “who

knows what” become more similar over time, a fundamental feature of TMS [134, 133].

Thirdly, besides the models in which the team eventually learns the individuals’

true relative skill levels, we propose one variation in each of the three phases of the

assign/appraise/influence dynamics: the assignment rule, the update of appraisal network

based on feedback signal, and the opinion dynamics for the interpersonal appraisals. The

variations reflect some sociological and psychological mechanisms known to prevent the

team from learning. We investigate by simulation numerous possible causes of failure to

learn.
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4.1.5 Organization

The rest of this chapter is organized as follows: In the next subsection, we present

some preliminaries on evolutionary games and replicator dynamics. Section II pro-

poses our problem set-up and centralized manager model; Section III introduces the

assign/appraise dynamics; Section IV is the assign/appraise/influence model; Section V

discusses some causes of failure to learn; Section VI provides some further discussions

and conclusion.

4.1.6 Preliminaries

Evolutionary games apply game theory to evolving populations adopting different

strategies. Consider a game with n pure strategies, denoted by the unit vectors e1, . . . , en

respectively. A mixed strategy w is thereby a vector in the n-dimension simplex denoted

by ∆n. Denote by π(v,w) the expected payoff for any mixed strategy v against mixed

strategy w. A strategy w∗ is a locally evolutionarily stable strategy (ESS) if there ex-

ists a deleted neighborhood Ǔ(w∗) in int(∆n) such that π(w∗,w) > π(w,w) for any

w ∈ Ǔ(w∗), which implies that, in a population adopting strategy w, a sufficiently

small mutated subpopulation adopting strategy w∗ gets more payoff than the majority

population.

Replicator dynamics models the evolution of sub-populations adopting different strate-

gies. The total population is divided into n sub-populations. Individuals in each sub-

population i adopt the pure strategy ei. Denote by wi(t) the fraction of sub-population

i in the total population at time t. The fitness of sub-population i, denoted by πi
(
w(t)

)
,

depends on the sub-population distribution w(t) =
(
w1(t), . . . , wn(t)

)>
and is defined

as the expected payoff π
(
ei,w(t)

)
. The growth rate of sub-population i is equal to the

deviation of its fitness from the population average. The replicator dynamics is given by:
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ẇi = wi

(
πi(w)−

n∑
k=1

wkπk(w)
)
. (4.1)

There is a simple connection between the locally ESS and the replicator dynamics [129]:

Generally, a locally ESS in int(∆n) is a locally asymptotic equilibrium of the replicator

dynamics; Specifically, if there exists a matrix A such that π(v,w) = v>Aw for any

v,w ∈ ∆n, then a locally ESS in int(∆n) is a globally asymptotic stable equilibrium

of the replicator dynamics. In addition, the replicator dynamics is also a mean-field

approximation of some stochastic population process, which is out of the scope of this

chapter.

4.2 Problem Set-up and Manager Dynamics

In this section, we first mathematically formalize some concepts related to the social

processes we aim to model, and illustrate them by a concrete example. Then we introduce

a baseline centralized model for team learning dynamics. In this chapter, in order to

distinguish between vectors and matrices, we let symbols in bold represent vectors.

4.2.1 Model assumptions and notations

a) Team, tasks and assignments: The basic assumption on the individuals and the

tasks are given below.

Assumption 4.1 (Team, task type and assignment) Consider a team of n individ-

uals characterized by a fixed but unknown vector x = (x1, . . . , xn)> satisfying x � 0n and

x>1n = 1, where each xi denotes the skill level of individual i. The tasks being completed

by the team are assumed to have the following properties:
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(i. The total workload of each task is characterized by a positive scalar and is fixed as

1 in this chapter;

(ii. The task can be arbitrarily decomposed into n sub-tasks according to the workload

assignment w = (w1, . . . , wn)>, where each wi is the sub-task workload assigned

to individual i. The workload assignment satisfies w � 0n and w>1n = 1. The

sub-tasks are executed simultaneously.

The scalar skill levels can be interpreted in an abstract way as the individuals’ overall

abilities of contributing to the tasks, while the workload assignment corresponds to the

individuals’ relative responsibilities.

b) Individual performance: The measure of individual performance is defined below.

Assumption 4.2 (Individual performance) Given fixed skill levels, each individual

i’s performance, with the assignment w, is measured by pi(w) = f(xi/wi), where f :

[0,+∞) → [0,+∞) is strictly concave, continuously differentiable and monotonically

increasing.

The function f is assumed concave since it is widely adopted that the relation between

the performance and individual ability obeys the power law, i.e., f(x) ∼ xγ, with γ ∈

(0, 1) [113]. The specific form f( xi
wi

) could be generalized by adopting different measures

of xi and wi.

c) Optimal assignment: It is reasonable to claim that, in a well-functioning team,

individuals’ relative responsibilities, characterized by the workload assignment, should

be proportional to their true relative abilities. We thereby refer to w∗ = x as the

optimal assignment. There are various team performance models for which w∗ is the

unique optimal solution in ∆n. For example, define the measure of the mismatch between

workload assignment and individual’s true skill levels as H1(w) =
∑n

i=1 |wixi − 1|. This
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mismatch is minimized at w∗. Alternatively, if we define the team performance as the

weighted average individual performance, i.e., H2(w) =
∑n

i=1wif( xi
wi

), then the strict

concavity of f implies that H2(w) is maximized at w∗ = x.

We introduce a simple and concrete example to illustrate the mathematical formal-

ization introduced above.

Example (intruder detection task): Consider a group of n individuals monitoring an

environment. The environment is divided into numerous non-overlapping regions with

equal areas. Each region is monitored by a CCTV camera connected to its respective

screen. The aim of the group is to detect the locations of randomly-appearing intruders

via monitoring the screens. The appearance of the intruders is uniformly random in

space and is a homogeneous Poisson process. An intruder is successfully detected if it

is observed on a screen by one of the individuals within a certain time period since its

appearance. The team performance over a given task period is the fraction of successfully

detected intruders. The task is conducted in the follows way: each individual i monitors

wi number of screens and each screen is monitored by one and only one individual. Here

wi is normalized such that
∑

iwi = 1. Each individual i has an intrinsic but unknown

normalized skill level xi. Denote by pi(w) the probability that an intruder is successfully

detected by individual i, given the division of cameras w ∈ ∆n. This probability pi(w)

increases with individual i’s intrinsic skill level xi and decreases with the number of

screens monitored by i, i.e., wi. A natural assumption is that pi(w) = f( xi
wi

), where f is

a concave and monotonically increasing function, with f(0) = 0 and f(∞) = 1. One can

check that the expected team performance is given by
∑

iwif( xi
wi

), which is maximized

at w∗ = x.
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4.2.2 Centralized manager dynamics

In this subsection we introduce a continuous-time centralized model on the evolution

of workload assignment, referred to as the manager dynamics. The diagram illustration is

given by Figure 4.1(a). Suppose that, at each time t, a team is completing a task based on

the assignmentw(t). An outside manager observes the individuals’ performance p
(
w(t)

)
.

We adopt the intuitive assumption that the manager increases the workload assigned to

individual i if her/his performance is above the weighted team average and vice versa. In

addition, the sum of all the individuals’ workloads remains 1. The manager is assumed

to adjust the workload assignment according to the replicator dynamics below, which is

arguably the simplest model for the process described above.

ẇi = wi

(
pi(w)−

n∑
k=1

wkpk(w)
)
, (4.2)

for any i ∈ {1, . . . , n}. Equation (4.2) takes the same form as the classic replicator

dynamics from evolutionary game theory [126, 129], with the nonlinear fitness function

f(xi/wi). We refer to Section 4.1.6 for some preliminaries on evolutionary games and

replicator dynamics.

Theorem 4.2.1 (Manager dynamics) Consider equation (4.2) for the workload as-

signment as in Assumption 4.1 with performance as in Assumption 4.2. Then

(i. the set int(∆n) is invariant;

(ii. for any w(0) ∈ int(∆n), the manager’s assignment w(t) converges to w∗ = x, as

t→∞.

Proof: The vector form of equation (4.2) is written as

ẇ = diag(w)
(
p(w)−w>p(w)1n

)
. (4.3)
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Left multiply both sides by 1>n . We get d(1>nw)/dt = 0. Moreover, since ẇi = 0 whenever

wi = 0, the n-dimension simplex ∆n is an positively invariant set.

Since the function f is continuously differentiable, the right-hand side of equation (4.3)

is continuously differentiable and locally Lipschitz in int(∆n). Define

V (w) = −
n∑
i=1

xi log
wi
xi
.

Due to the strict concavity of log function and 1>nw = 1, we have that V (w) ≥ 0 for

any w ∈ ∆n and V (w) = 0 if and only if w = x. Moreover, since V (w) is continuously

differentiable inw, the level set {w ∈ int(∆n) |V (w) = ξ} is a compact subset of int(∆n).

Since the function f is monotonically increasing, along the trajectory,

dV (w)

dt
= −

∑
i∈θ1(w)

(xi − wi)f(xi/wi)−
∑

i∈θ2(w)

(xi − wi)f(xi/wi) < 0,

where θ1(w) = {i |xi ≥ wi} and θ2(w) = {i |xi < wi}. This concludes the proof for

the invariant set and the asymptotic stability of w∗ = x, and one can infer, from the

inequality above, that w∗ = x is the ESS for the evolutionary game with the payoff

function πi(w) = f(xi/wi). Moreover, since V (w) → +∞ as w tends to the boundary

of ∆n, the region of attraction is int(∆n).

In the proof above, we adopt the same Lyapunov function used for the asymptotic

stability analysis of the replicator dynamics in [126, 129]. The fitness function in the

manager dynamics is novel.
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Figure 4.1: Diagram illustrations of manager dynamics, assign/appraise dynamics,
and assign/appraise/influence dynamics.

4.3 The Assign/Appraise Dynamics of the

Appraisal Networks

Despite the desired property on the convergence of the workload assignment to opti-

mality, the manager dynamics does not capture the evolution of the team’s inner struc-

tures. In this section, we introduce a multi-agent system, in which workload assignments

are determined by the team members’ interpersonal appraisals, rather than any outside

authority, and the appraisal network is updated in a decentralized manner, driven by the

team members’ heterogeneous feedback signals.

4.3.1 Model description and problem statement

Appraisal network: Denote by aij the individual i’s evaluation of j’s skill levels and re-

fer to A = (aij)n×n as the appraisal matrix. Since the evaluations are in the relative sense,

we assume A � 0n×n and A1n = 1n. The directed and weighted graph G(A), referred to

as the appraisal network, reflects the team’s collective knowledge on the distribution of

its members’ abilities.

Assign/appraise dynamics: This multi-agent model is illustrated by the diagram in

Figure 4.1(b). We model three phases: the workload assignment, the feedback signal

and the update of the appraisal network, specified by the following three assumptions
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respectively.

Assumption 4.3 (Assignment rule) At any time t ≥ 0, the task is assigned according

to the left dominant eigenvector of the appraisal matrix, i.e., w(t) = vleft

(
A(t)

)
.

Justification of Assumption 4.3 is given in Section 4.6.3. For now we assume A(t)

is row-stochastic and irreducible for all t ≥ 0, so that vleft

(
A(t)

)
is always well-defined.

This will be proved later in this section.

Assumption 4.4 (Feedback signal) After executing the workload assignment w, each

individual i observes, with no noise, the difference between her own performance and the

quality of some part of the whole task, given by
∑

kmikpk(w), in which mik denotes the

fraction of workload individual k contributes to the part of task observed by i. The matrix

M = (mij)n×n defines a directed and weighted graph G(M), referred to as the observation

network, and satisfies M � 0n×n and M1n = 1n by construction.

The topology of the observation network defines the individuals’ feedback signal

structure. Notice that, the feedback signal for each individual i is only the deviation

pi
(
w(t)

)
−∑kmikpk

(
w(t)

)
, while the matrix M is not necessarily known to the individ-

uals.

Assumption 4.5 (Update of interpersonal appraisals) With the performance feed-

back signal defined as in Assumption 4.4, each individual i increases her self appraisal

and decreases the appraisals of all the other individuals, if pi(w) >
∑

kmikpk(w), and

vice versa. In addition, the appraisal matrix A(t) remains row-stochastic.

The following dynamical system for the appraisal matrix, referred to as the appraise
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dynamics, is arguably the simplest model satisfying Assumptions 4.4 and 4.5:


ȧii = aii(1− aii)

(
pi(w)−

n∑
k=1

mikpk(w)
)
,

ȧij = −aiiaij
(
pi(w)−

n∑
k=1

mikpk(w)
)
.

(4.4)

The matrix form of the appraise dynamics, together with the assignment rule as in

Assumption 4.3, is given by


Ȧ = diag

(
p(w)−Mp(w)

)
Ad(In − A),

w = vleft(A),

(4.5)

and collectively referred to as the assign/appraise dynamics. HereAd = diag(a11, . . . , ann).

Problem statement: In Section III.B, we investigate the asymptotic behavior of dy-

namics (4.5), including:

(i. convergence to the optimal assignment, which means that the team as an entirety

eventually learns all its members’ relative skill levels, i.e., limt→+∞w(t) = x;

(ii. appraisal consensus, which means that the individuals asymptotically reach consen-

sus on the appraisals of all the team members, i.e., aij(t)− akj(t)→ 0 as t→ +∞,

for any i, j, k.

Collective learning is the combination of the convergence to optimal assignment and

appraisal consensus.

4.3.2 Dynamical behavior of the assign/appraise dynamics

We start by establishing that the appraisal matrix A(t), as the solution to equa-

tion (4.5), is extensible to all t ∈ [0,+∞) and the assignment w(t) is well-defined, in
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that A(t) remains row-stochastic and irreducible. Moreover, some finite-time properties

are investigated.

Theorem 4.3.1 (Finite-time properties of assign/appraise dynamics) Consider

the assign/appraise dynamics (4.5), based on Assumptions 4.3-4.5, describing a workload

assignment as in Assumption 4.1, with performance as in Assumption 4.2. For any ob-

servation network G(M), and any initial appraisal matrix A(0) that is row-stochastic,

irreducible and has strictly positive diagonal,

(i. The appraisal matrix A(t), as the solution to (4.5), is extensible to all t ∈ [0,+∞).

Moreover, A(t) remains row-stochastic, irreducible and has strictly positive diagonal

for all t ≥ 0;

(ii. there exists a row-stochastic irreducible matrix C ∈ Rn×n with zero diagonal such

that

A(t) = diag
(
a(t)

)
+
(
In − diag

(
a(t)

))
C, (4.6)

for all t ≥ 0, where a(t) =
(
a1(t), . . . , an(t)

)>
and ai(t) = aii(t), for i ∈ {1, . . . , n};

(iii. Define the reduced assign/appraise dynamics as
ȧi = ai(1− ai)

(
pi(w)−

n∑
k=1

mikpk(w)
)
,

wi =
ci

(1− ai)
/ n∑

k=1

ck
(1− ak)

,

(4.7)

where c = (c1, . . . , cn)> = vleft(C). This dynamics is equivalent to system (4.5)

in the following sense: The matrix A(t)’s each diagonal entry aii(t) satisfies the

dynamics (4.7) for ai(t), and, for any t ≥ 0, aii(t) = ai(t) for any i, and aij(t) =

aij(0)
(
1− ai(t)

)
/
(
1− ai(0)

)
for any i 6= j;
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(iv. The set Ω =
{
a ∈ [0, 1]n

∣∣0 ≤ ai ≤ 1− ζi
(
a(0)

)}
, where ζi

(
a(0)

)
= ci

xi
mink

xk
ck

(
1−

ak(0)
)
, is a compact positively invariant set for the reduced assign/appraise dynam-

ics (4.7);

(v. the assignment w(t) satisfies the generalized replicator dynamics with time-varying

fitness function ai(t)
(
pi
(
w(t)

)
−∑lmilpl

(
w(t)

))
for each i:

ẇi = wi

(
ai
(
pi(w)−

n∑
l=1

milpl(w)
)
−

n∑
k=1

wkak
(
pk(w)−

n∑
l=1

mklpl(w)
))
. (4.8)

Before the proof, we state a useful lemma summarized from Page 62-67 of [135].

Lemma 4.3.2 (Continuity of eigenvalue and eigenvector) Suppose A,B ∈ Rn×n

satisfy |aij| < 1 and |bij| < 1 for any i, j ∈ {1, . . . , n}. For sufficiently small ε > 0,

(i. the eigenvalues λ and λ
′

of A and (A+ εB), respectively, can be put in one-to-one

correspondence so that |λ′ − λ| < 2(n+ 1)2(n2ε)
1
n ;

(ii. if λ is a simple eigenvalue of A, then the corresponding eigenvalue λ(ε) of A+ εB

satisfies |λ(ε)− λ| = O(ε);

(iii. if v is an eigenvector of A associated with a simple eigenvalue λ, then the eigen-

vector v(ε) of A + εB associated with the corresponding eigenvalue λ(ε) satisfies

|vi(ε)− vi| = O(ε) for any i ∈ {1, . . . , n}.

Proof of Theorem 4.3.1: In this proof, we extend the definition of vleft(A) to the

normalized entry-wise positive left eigenvector, associated with the eigenvalue of A with

the largest magnitude, if such an eigenvector exists and is unique. According to Perron-

Frobenius theorem and Lemma 4.3.2, vector vleft(A), as long as well-defined, depends

continuously on the entries of A. Therefore, for system (4.5), there exists a sufficiently
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small τ > 0 such that A(t) and w(t) are well-defined and continuously differentiable at

any t ∈ [0, τ ], and, moreover, pi
(
w(t)

)
−∑kmikpk

(
w(t)

)
remains finite. Therefore, for

any t ∈ [0, τ ] and i, j ∈ {1, . . . , n}, aij(t) > 0 if aij(0) > 0; aij(t) = 0 if aij(0) = 0, and

thus A(t) is row-stochastic and primitive for any t ∈ [0, τ ].

For any i ∈ {1, . . . , n}, there exists k 6= i such that aik(0) > 0. According to

equation (4.4),

daij(t)

daik(t)
=
aij(t)

aik(t)
, ∀t ∈ [0, τ ], ∀j ∈ {1, . . . , n} \ {i, k},

which leads to aij(t)/aik(t) = aij(0)/aik(0). Let C be an n × n matrix with the entries

cij defined as: (i) cii = 0 for any i ∈ {1, . . . , n}; (ii) cij = aij(0)
/(

1 − aii(0)
)

for any

j 6= i. One can check that C is row-stochastic and A(t) is given by equation (4.6), for

any t ∈ [0, τ ], where a(t) =
(
a1(t), . . . , an(t)

)>
with ai(t) = aii(t). Since the digraph,

with C as the adjacency matrix, has the same topology with the digraph associated with

A(0), matrix C is irreducible and c = vleft(C) is well-defined.

Since the matrix A(t) has the structure given by (4.6), according to Lemma 2.2

in [103], for any t ∈ [0, τ ],

wi(t) =
ci

1− ai(t)
/∑

k

ck
1− ak(t)

.

Therefore, for any t ∈ [0, τ ],

pi
(
w(t)

)
= f

(
xi
ci

(
1− ai(t)

)∑
k

wk(t)
ck

1− ak(t)

)
.

According to equation (4.4), ȧj(t) ≤ 0 for any j ∈ argmink
xk
ck

(
1 − ak(t)

)
. Therefore,

argmink
xk
ck

(
1 − ak(t)

)
is increasing, and similarly, argmaxk

xk
ck

(
1 − ak(t)

)
is decreasing
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with t, which implies that, the set

ΩA

(
A(0)

)
=
{
A ∈ Rn×n

∣∣∣A = diag(a) + (I − diag(a))C,

0 ≤ ai ≤ 1− ci
xi

min
k

xk
ck

(
1− akk(0)

)
,∀i
}

is a compact positive invariant set for system (4.5), as long as A(0) is row-stochastic,

irreducible and has strictly positive diagonal. Moreover, one can check that, for any

A ∈ ΩA

(
A(0)

)
, w = vleft(A) is well-defined and strictly lower (upper resp.) bounded from

0 (1 resp.). Therefore, the solution A(t) is extensible to all t ∈ [0,+∞) and equations (4.6)

and (4.7) hold for any t ∈ [0,+∞). Moreover, since pi
(
w(t)

)
−∑kmikpk

(
w(t)

)
remains

bounded, we have aij > 0 if aij(0) > 0 and aij(t) = 0 if aij(0) = 0. This concludes the

proof for (i) - (iv).

For statement (v), differentiate both sides of the equation w>(t)A(t) = w>(t) and

substitute equation (4.5) into the differentiated equation. We obtain

(w>diag(p(w)−Mp(w))Ad −
dw>

dt
)(In − A) = 0>n ,

where time index t is omitted for simplicity. Equation (4.8) in statement (v) is obtained

due to w>(t)1n = 1.

With the extensibility of A(t) and the finite-time properties, we now present the main

theorem of this section.

Theorem 4.3.3 (Asymptotic behavior of assign/appraise dynamics) Consider the

dynamics (4.5), based on Assumptions 4.3-4.5, with the workload assignment as in As-

sumption 4.1 and the performance as in Assumption 4.2. Assume the observation network

G(M) is strongly connected. For any initial appraisal matrix A(0) that is row-stochastic,
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irreducible and has positive diagonal,

(i. the solution A(t) converges, i.e., there exists A∗ ∈ Rn×n such that limt→∞A(t) =

A∗;

(ii. the limit appraisal matrix A∗ is row-stochastic and irreducible. Moreover, the work-

load assignment satisfies limt→∞w(t) = vleft(A
∗) = x.

Proof: We prove the theorem by analyzing the generalized replicator dynamics (4.8)

for w(t), and the reduced assign/appraise dynamics (4.7) for a(t), given any constant,

normalized and entry-wise positive vector c. According to equation (4.7), the assignment

w = vleft(A) can be considered as a function of the self appraisal vector a, that is,

w(t) = w
(
a(t)

)
for any t ≥ 0. In this proof, let φ(a) = p

(
w(a)

)
−Mp

(
w(a)

)
and

denote by D : Rn×Rn → R≥0 the distance induced by the 2-norm in Rn. For any x ∈ Rn

and subset S of Rn, defined D(x, S) = infy∈S D(x,y).

First of all, for any given a(0) ∈ (0, 1)n, we know that the set Ω, as defined in

Theorem 4.3.1(iv), is a compact positively invariant set for dynamics (4.7), and w(t) is

well-defined and entry-wise strictly lower (upper resp.) bounded from 0n (1n resp.), for

all t ∈ [0,+∞).

Secondly, for any a ∈ Ω, define a scalar function V : Rn → R as

V (a) = log
maxk xk/wk(a)

mink xk/wk(a)
,

and the following index sets

θ(a) =
{
i
∣∣∣ ∃ti > 0 s.t.

xi

wi
(
a(t)

) = max
k

xk

wk
(
a(t)

) for any t ∈ [0, ti], with a(0) = a
}
,
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and

θ(a) =
{
j
∣∣∣ ∃tj > 0 s.t.

xj

wj
(
a(t)

) = min
k

xk

wk
(
a(t)

) for any t ∈ [0, tj], with a(0) = a
}
.

Then the right time derivative of V
(
a(t)

)
, along the solution a(t), is given by

d+V
(
a(t)

)
dt

= aj(t)φj
(
a(t)

)
− ai(t)φi

(
a(t)

)
,

for any i ∈ θ
(
a(t)

)
and j ∈ θ

(
a(t)

)
. Define

E =
{
a ∈ Ω

∣∣ ajφj(a)− aiφi(a) = 0 for any i ∈ θ(a), j ∈ θ(a)
}
,

E1 =
{
a ∈ E

∣∣φ(a) = 0n
}
,

E2 =
{
a ∈ E

∣∣φ(a) 6= 0n
}
.

One can check that E and E1 are compact subsets of Ω, E = E1 ∪ E2, and E1 ∩ E2 is

empty. Denote by Ê the largest invariant subset of E. Applying the LaSalle Invariance

Principle, see Theorem 3 in [136], we have D
(
a(t), Ê

)
→ 0 as t → +∞. Note that,

lim
t→+∞

D
(
a(t), Ê

)
= 0 does not necessarily leads to lim

t→+∞
w(t) = x. We need to further

refine the result.

For set E1, it is straightforward to see that E1 ⊂ Ê and w(a) = x for any a ∈ E1.

Now we prove by contradiction that, if E2∩Ê is not empty, then, for any a ∈ E2∩Ê, there

exists i ∈ θ(a) such that ai = 0. Suppose ai > 0 for any i ∈ θ(a). Since the observation

network G(M) is strongly connected, there exists a directed path i, k1, . . . , kq, j on G(M),

where i ∈ θ(a) and j ∈ θ(a). We have k1 ∈ θ(a), otherwise, starting with ã(0) = a, there

exists sufficiently small ∆t > 0 such that φi
(
ã(t)

)
> 0 and ãi(t) > 0, which contradicts

the fact that a is in the largest invariant set of E. Repeating this argument, we have
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j ∈ θ(a), which contradicts φ(a) 6= 0n. Similarly, we have that, for any a ∈ E2 ∩ Ê,

there exists j ∈ θ(a) with aj = 0.

If the fixed vectors c and x satisfy c = x, then there can not exist a ∈ E2 ∩ Ê

satisfying all the following three properties: i) there exists i ∈ θ(a) such that ai = 0; ii)

there exists j ∈ θ(a) such that aj = 0; iii) φ(a) 6= 0n. In this case, E2 ∩ Ê is an empty

set, which implies that a(t)→ Ê = E1 and thus w(t)→ x as t→ +∞.

Before discussing the case when c 6= x, we present some properties of the individual

performance measure:

P1: For any k, l ∈ {1, . . . , n}, xk
ck

(1 − ak) ≤ xl
cl

(1 − al) leads to pk(a) ≤ pl(a), and

xk
ck

(1− ak) > xl
cl

(1− al) leads to pk(a) > pl(a);

P2: If there exists τ ≥ 0 such that i ∈ θ
(
a(τ)

)
and ai(τ) = 0, then i ∈ θ

(
a(t)

)
for

all t ≥ τ ;

P3: p(a(t)) is finite and strictly bounded from 0, satisfying f
(
xi
ci

(1 − ζi(a(0)))
)
≤

pi(a(t)) ≤ f
(
xi
ci

∑
k

ck
ζk(a(0))

)
, with ζi(a) defined in Theorem 4.3.1(iv).

For the case when c 6= x, consider the partition ϕ1, . . . , ϕm of the index set {1, . . . , n},

with m ≤ n, satisfying the following two properties:

(i. xk/ck = xl/cl for any k, l in the same subset ϕr;

(ii. xk/ck > xl/cl for any k ∈ ϕr, l ∈ ϕs, with r < s.

For any a ∈ E2 ∩ Ê, since there exists j ∈ θ(a) with aj = 0, we have ϕm ⊂ θ(a). For

any i ∈ ∪m−1
r=1 ϕr, let

E2,i =
{
a ∈ Ω

∣∣∣ ai = 0, aj = 0 for any j ∈ ϕm, 1−
xi
ci

ck
xk
≤ ak ≤ 1− min

l∈{1,...,n}

xl
cl

ck
xk
,

for any k ∈ ϕ1 ∪ · · · ∪ ϕm−1 \ {i}
}
.

With properties P1 and P2 of p(a), for any a ∈ E2,i, we have i ∈ θ(a) and ai = 0.
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Moreover,

(i. E2,i ⊂ Rn is compact for any i ∈ ϕ1 ∪ · · · ∪ ϕm−1;

(ii. ∪i∈ϕ1E2,i, . . . ,∪i∈ϕm−1E2,i are disjoint and compact subsets of Rn;

(iii. E2 ∩ Ê ⊂
⋃
i∈ϕ1∪···∪ϕm−1

E2,i.

For any a ∈ E2 ∩ Ê, since there exists i ∈ θ(a) and j ∈ θ(a) such that ai = aj = 0,

on the observation network G(M), there must exists a path i, k1, . . . , kq satisfying: i)

i ∈ θ(a) and ai = 0; ii) akq = 0 and xkq/ckq < xi/ci; iii) akl > 0 for any l ∈ {1, . . . , q−1}.

Consider the trajectory ã(t) with ã(0) = a, we have

˙̃akq−1 ≥ ãkq−1(1− ãkq−1)

(
f
(xkq−1

ckq−1

(1− ãkq−1)
n∑
l=1

cl
1− ãl

)
− f
((
mkq−1kq

xkq
ckq

+ (1−mkq−1kq)
xi
ci

) n∑
l=1

cl
1− ãl

))
.

The inequality is due to properties P1-P3 of pi(a) for i ∈ θ(a) with ai = 0, and the con-

cavity of the function f . Moreover, since ãkq−1 is strictly bounded from 1 and
∑

l cl/(1−ãl)

is strictly lower bounded from 0, there exists Tkq−1(M,a(0),a) > 0 such that

pkq−1

(
ã(t)

)
<

2−mkq−1kq

2
pi
(
ã(t)

)
+
mkq−1kq

2
pkq
(
ã(t)

)
.

Applying the same argument to kq−2, . . . , k1, we have that, there exists Tk1(M,a(0),a) >

0 and ηik1...kq(M) ∈ (0, 1) such that, for the solution ã(t) with ã(0) = a,

pk1
(
ã(t)

)
<
(
1− ηik1...kq(M)

)
pi
(
ã(t)

)
+ ηik1...kq(M)pkq

(
ã(t)

)
,
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for all t ≥ Tk1(M,a(0),a). This inequality implies that,

φi
(
ã(t)

)
≥ mik1ηik1...kq(M)

(
pi
(
ã(t)

)
− pkq

(
ã(t)

))
≥ mik1ηik1...kq(M)f ′

(
xi
ci

) n∑
l=1

cl

1− ζl
(
a(0)

)(xi
ci
− xkq
ckq

)
> 0.

Since the choices of i and the paths i, k1, . . . , kq are finite, there exists a constant η > 0

such that, for any a ∈ E2 ∩ Ê, there exists T
(
a(0),a

)
> 0 such that, for any t ≥

T
(
a(0),a

)
> 0, the solution ã(t), with ã(0) = a, satisfies i ∈ θ

(
ã(t)

)
and φi

(
ã(t)

)
≥

η > 0.

For any i ∈ ϕ1 ∪ · · · ∪ ϕm−1, define

Ê2,i =
{
a ∈ E2,i

∣∣ pi(a)−
n∑
k=1

mikpk(a) ≥ η
}
.

We have: i) each Ê2,i is a compact subset of Rn; ii) ∪i∈ϕ1Ê2,i, . . . ,∪i∈ϕm−1Ê2,i are disjoint

and compact subsets of Rn. Let Ê2 = ∪m−1
r=1

(
∪r∈ϕr Ê2,i

)
. For dynamics (4.7), due to

the continuous dependency on the initial condition, for any a ∈ (E2 ∩ Ê) \ (Ê2 ∩ Ê),

there exists δ > 0 such that, for any ã(0) ∈ U(a, δ) ∩ (E2 ∩ Ê), where U(a, δ) =
{
b ∈

Ω
∣∣D(b,a) ≤ δ

}
, ã(t) ∈ Ê2∩Ê for sufficiently large t. Therefore, a can not be an ω-limit

point of a(0). We thus obtain that, the ω-limit set of a(0) is in the set E1 ∪ (Ê2 ∩ Ê).

Moreover, since E1,∪i∈ϕ1Ê2,i, . . . ,∪i∈ϕm−1Ê2,i are disjoints compact subsets of Rn, and

the ω-limit set of a(0) is connected and compact, a(t) can only converge to one of the

sets E1,∪i∈ϕ1Ê2,i, . . . ,∪i∈ϕm−1Ê2,i.

Now we prove limt→+∞D(a(t), E1) = 0 by contradiction. Suppose ω
(
a(0)

)
∈ ∪i∈ϕrÊ2,i

for some r ∈ {1, . . . ,m − 1}. Since each Ê2,i is a compact set, there exists ε > 0 and

η(ε) > 0 such that φi(a) ≥ η(ε) > 0 for any a ∈ U(Ê2,i, ε). For this given ε > 0,

since ω
(
a(0)

)
∈ ∪i∈ϕrÊ2,i leads to D

(
a(t),∪i∈ϕrÊ2,i

)
→ 0 as t → +∞, we conclude
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that, there exists T > 0 such that, for any t ≥ T , a(t) ∈ ∪i∈ϕrU(Ê2,i, ε). Define

Vr(a) = mini∈ϕr ai, for any a ∈ ∪i∈ϕrU(Ê2,i, ε). The function Vr(a) satisfies that,

Vr(a) ≥ 0 for any a ∈ ∪i∈ϕrU(Ê2,i, ε) and Vr(a) = 0 if and only if a ∈ ∪i∈ϕrÊ2,i.

Therefore, D
(
a(t),∪i∈ϕrÊ2,i

)
→ 0 leads to Vr

(
a(t)

)
→ 0 as t → +∞. Moreover, since

a ∈ U(Ê2,i, ε) for any i ∈ argmink∈ϕr ak, we have

d+Vr
(
a(t)

)
dt

= min
i∈argmin

k∈ϕr
ak(t)

ȧi(t) ≥ δai(t)
(
1− ai(t)

)
.

According to Theorem 4.3.1(i), for any given a(0) ∈ (0, 1)n, a(t) ∈ (0, 1)n for all t ≥ 0.

Therefore, d+Vr(a(t))/dt > 0 for all t ≥ T , which contradicts limt→+∞ Vr
(
a(t)

)
= 0.

Therefore, we have limt→+∞D(a(t), E1) = 0 and limt→+∞w(t) = x.

Since Ȧ(t) → 0n×n as φ
(
a(t)

)
→ 0n, there exists an entry-wise non-negative and

irreducible matrix A∗, depending on A(0) and satisfying vleft(A
∗) = x, such that A(t)→

A∗ as t→ +∞. This concludes the proof.

Theorem 4.3.3 indicates that, the teams obeying the assign/appraise dynamics asymp-

totically achieves the optimal workload assignment, but do not necessarily reach appraisal

consensus. Figure 4.2 gives a visualized illustration of the asymptotic behavior of the

assign/appraise dynamics.

x
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Figure 4.2: Visualization of the evolution of A(t) andw(t) obeying the assign/appraise
dynamics with n = 6. The observation network is strongly connected. In these
visualized matrices and vectors, the darker the entry, the higher value it has.
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Remark 4.3.4 From the proof for Theorem 4.3.3 we know that, the teams obeying the

following dynamics


ȧii = γi(t)aii(1− aii)

(
pi(w)−∑kmikpk(w)

)
,

ȧij = −γi(t)aiiaij
(
pi(w)−∑kmikpk(w)

)
,

also asymptotically achieve the optimal assignment, if each γi(t) remains strictly bounded

from 0. This result indicates that our model can be generalized to the case of heterogeneous

sensitivities to performance feedback.

4.4 The Assign/appraise/influence Dynamics of the

Appraisal Networks

In this section we further elaborate the assign/appraise dynamics by assuming that

the appraisal network is updated via not only the performance feedback, but also the

influence process inside the team.

4.4.1 Model description

The new model, named the assign/appraise/influence dynamics, is defined by three

components: the assignment rule as in Assumption 4.3, the appraise dynamics based on

Assumptions 4.4 and 4.5, and the influence dynamics, which is the opinion exchanges

among individuals on the interpersonal appraisals. Denote by wij the weight individual i

assigns to j (including self weight wii) in the opinion exchange. The matrix W = (wij)n×n

defines a directed and weighted graph, referred to as the influence network, is row-

stochastic and possibly time-varying.
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The diagram illustration of assign/appraise/influence dynamics is presented in Fig-

ure 4.1(c), and the general form is given as follows:


Ȧ = 1

τave
Fave(A,W ) + 1

τapp
Fapp(A,w),

w = vleft(A).

(4.9)

The time index t is omitted for simplicity. The term Fapp(A,w) corresponds to the ap-

praise dynamics given by the right-hand side of the first equation in (4.5), while the term

Fave(A,W ) corresponds to the influence dynamics specified by the assumption below.

Parameters τave and τapp are positive, and relate to the time scales of influence dynamics

and appraise dynamics respectively.

Assumption 4.6 (Influence dynamics) For the assign/appraise/influence dynamics,

assume that, at each time t ≥ 0, the influence network is identical to the appraisal

network, i.e., W (t) = A(t). Moreover, assume that the individuals obey the classic

DeGroot opinion dynamics [2] for the interpersonal appraisals, i.e., Fave(W,A) = −(In−

W )A.

Based on equation (4.9) and Assumptions 4.3-4.6, the assign/appraise/influence dy-

namics is written as 
Ȧ= 1

τave
(A2 − A)

+ 1
τapp

diag
(
p(w)−Mp(w)

)
Ad(In − A),

w= vleft(A),

(4.10)

In the next subsection, we relate the topology of the observation network G(M) to

the asymptotic behavior of the assign/appraise/influence dynamics, i.e., the convergence

to optimal assignment and the appraisal consensus.
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4.4.2 Dynamical behavior of the assign/appraise/influence dy-

namics

The following lemma shows that, for the assign/appraise/influence dynamics, we only

need to consider the all-to-all initial appraisal network.

Lemma 4.4.1 (entry-wise positive for initial appraisal) Consider the assign/appraise/influence

dynamics (4.10) based on Assumptions 4.3-4.6, with the workload assignment and per-

formance as in Assumptions 4.1 and 4.2 respectively. For any initial appraisal matrix

A(0) that is primitive and row-stochastic, there exists ∆t > 0 such that A(t) � 0n×n for

any t ∈ (0,∆t].

Proof: Since A(0) is primitive and row-stochastic, following the same argument

in the proof for Theorem 4.3.1(i), we have that, there exists ∆t̃ > 0 such that, for any

t ∈ [0,∆t̃]: i) w(t) is well-defined and w(t) � 0n; ii) A(t) is bounded, continuously

differentiable to t, and satisfies A(t)1n = 1n; iii) p
(
w(t)

)
− Mp

(
w(t)

)
is bounded.

Therefore, for any t ≥ 0, there exists µ, depending on t and A(0), such that Ȧ(t) �
1
τave

A2(t)− ( 1
τave

+ µ)A(t).

Consider the equation Ḃ(t) = 1
τave

B2(t)−( 1
τave

+µ)B(t), with B(0) = A(0). According

to the comparison theorem, A(t) � B(t) for any t ≥ 0. Let bi(t) be the i-th column of

B(t) and let yk(t) = e( 1
τave

+µ)tbk(t). We obtain ẏk(t) = 1
τave

B(t)yk(t).

Denote by Φ(t, 0) the state transition function for the equation ẏk(t) = 1
τave

B(t)yk(t),

which is written as Φ(t, 0) = In +
∑∞

k=1 Φk(t), where Φ1(t) =
∫ t

0
B(τ1)dτ1 and Φl(t) =∫ t

0
B(τ1)

∫ τ1
0
. . . B(τl−1)

∫ τl−1

0
B(τl)dτl for l ≥ 2. By computing the MacLaurin expansion

for each Φk(t) and summing them together, we obtain that

Φ(t, 0) = In + h1(t)B(0) + h2(t)B2(0) + · · ·+ hn−1(t)Bn−1(0) +O(tn),
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where hk(t) is a polynomial with the form hk(t) = ηk,kt
k+ηk,k+1t

k+1 + . . . , and, moreover,

ηk,k > 0 for any k ∈ N. Therefore, for t sufficiently small, we have hk(t) > 0 for any

k ∈ {1, . . . , n−1}. Moreover, sinceBk(0) � 0n×n for any k ∈ N andB(0)+· · ·+Bn−1(0) �

0n×n, there exists ∆t ≤ ∆t̃ such that Φ(t, 0) � 0n×n for any t ∈ [0,∆t].

Before discussing the asymptotic behavior, we state a technical assumption.

Conjecture 4.4.2 (Strict lower bound of the interpersonal appraisals) Consider

the assign/appraise/influence dynamics (4.10) based on Assumptions 4.3-4.6, with the

workload assignment and performance as in Assumptions 4.1 and 4.2 respectively. For

any A(0) that is entry-wise positive and row-stochastic, there exists amin > 0, depending

on A(0), such that A(t) � amin1n1>n for any time t ≥ 0, as long as A(τ) and w(τ) are

well-defined for all τ ∈ [0, t].

Monte Carlo validation and a sufficient condition for Conjecture 4.4.2 are presented

in Section 4.6.4. Now we state the main results of this section.

Theorem 4.4.3 (Assign/appraise/influence dynamical behavior) Consider the as-

sign/appraise/influence dynamics (4.10) based on Assumptions 4.3-4.6, with the task

assignment and performance as in Assumptions 4.1 and Assumption 4.2 respectively.

Suppose that Conjecture 4.4.2 holds. Assume that the observation network G(M) con-

tains a globally reachable node. For any initial appraisal matrix A(0) that is entry-wise

positive and row-stochastic, and any time scales τave > 0 and τapp > 0 in equation (4.10),

(i. the solution A(t) exists and w(t) = vleft

(
A(t)

)
is well-defined for all t ∈ [0,+∞).

Moreover, A(t) � 0n×n and A(t)1n = 1n for any t ≥ 0;

(ii. the assignment w(t) obeys the generalized replicator dynamics (4.8), and ξ01n �
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w(t) �
(
1− (n− 1)ξ0

)
1n, where

ξ0 =

(
1 + (n− 1)

maxk xk
minl xl

γ0

)−1

, and γ0 =
maxk xk/wk(0)

minl xl/wl(0)
;

(iii. as t→ +∞, A(t) converges to 1nx> and thereby w(t) converges to x.

Proof: Statement (i) is proved following the same argument in the proof for Theo-

rem 4.3.1 (i). For any given A(0) that is row-stochastic and entry-wise positive, the closed

and bounded invariant set Ω forA(t) is given by Ω =
{
A ∈ Rn×n

∣∣A � amin1n1>n , A1n = 1n
}

,

where amin > 0 is given by Conjecture 4.4.2.

Since w>(t)
(
A2(t) − A(t)

)
= 0>n for all t ≥ 0, we conclude that, w(t) in the as-

sign/appraise/influence dynamics also obeys the generalized replicator dynamics (4.8).

Consider w(t) as a function of A(t). Define φ(A) = p
(
w(A)

)
−Mp

(
w(A)

)
and

V (A) = log
maxk xk/wk(A)

mink xk/wk(A)
.

For any t ∈ [0,+∞), there exists i ∈ argmaxk xk/wk
(
A(t)

)
and j ∈ argmink xk/wk

(
A(t)

)
such that V

(
A(t)

)
= log

(
xiwj

(
A(t)

)/
xjwi

(
A(t)

))
, and d+V (A)

dt
= ajjφj(A)− aiiφi(A) ≤

0. Therefore, V
(
A(t)

)
is non-increasing with t, which in turn implies

xi
xj

wj(t)

wi(t)
≤ maxk xk/wk(0)

mink xk/wk(0)
= γ0,

for any i, j ∈ {1, . . . , n}. This inequality, combined with the fact that
∑

k wk(t) = 1 for

any t ≥ 0, leads to the inequalities in statement (ii).
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Similar to the proof for Theorem 4.3.3, define

θ(A) =
{
i
∣∣∣∃ ti > 0 s.t.

xi

wi
(
A(t)

) = max
k

xk

wk
(
A(t)

) for any t ∈ [0, ti] with A(0) = A
}
,

θ(A) =
{
j
∣∣∣∃ tj > 0 s.t.

xj

wj
(
A(t)

) = min
k

xk

wk
(
A(t)

) for any t ∈ [0, tj] with A(0) = A
}
,

and let E =
{
A ∈ Ω

∣∣ d+V (A)/dt = 0
}

. For any A ∈ E, since A � amin1n1>n , we

have φi(A) = φj(A) = 0 for any i ∈ θ(A) and j ∈ θ(A). Suppose individual s is

a globally reachable node in the observation network. There exists a directed path

i, k1, . . . , kq, s. Without loss of generality, suppose q ≥ 1. For any A in the largest

invariant subset of E, we have k1 ∈ θ(A) and therefore φk1(A) = 0. This iteration of

argument leads to s ∈ θ(A). Following the same line of argument, we have s ∈ θ(A).

Therefore, for any given A(0) � 0n×n that is row-stochastic, the solution A(t) converges

to Ê = {A ∈ Ω |φ(A) = 0n} = {A ∈ Ω |vleft(A) = x}.

Let Ã = maxj
(

maxk akj − mink akj
)
. One can check that d+Ṽ (A)/dt along the

dynamics (4.10) is a continuous function of A for any A ∈ Ω. Define Êε/2 =
{
A ∈

Ê
∣∣ ‖A − 1nx>‖2 ≥ ε/2

}
. Since Ê is compact, Êε/2 is also a compact set. For any

A ∈ Êε/2, since d+Ṽ (A)/dt is strictly negative and depends continuously on A, there

exists a neighborhood U(A, rA) = {Ã ∈ Ω | ‖Ã − A‖2 ≤ rA} such that d+Ṽ (Ã)/dt < 0

for any Ã ∈ U(A, rA). Due to the compactness of Êε/2 and according to the Heine-Borel

finite cover theorem, there exists K ∈ N and {Ak, rk}k∈{1,...,K}, where Ak ∈ Êε/2 and

rk > 0 for any k ∈ {1, . . . , K}, such that Êε/2 ⊂ ∪Kk=1U(Ak, rk).

Define the distance D : Rn × Rn → R≥0 as in the proof for Theorem 4.3.3. Let
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δ = min{r1, . . . , rk, ε/2} and

B1 =
{
A ∈ Ω

∣∣D(A, Ê) ≤ δ,D(A, Êε/2) > δ
}
,

B2 =
{
A ∈ Ω

∣∣D(A, Ê) ≤ δ,D(A, Êε/2) ≤ δ
}
.

We have B1 ∩ B2 is empty. For any A ∈ B1, since D(A, Ê) ≤ δ, D(A, Êε/2) > δ, there

exists Ã ∈ Êε/2 such that D(A, Ã) ≤ δ. Since D(Ã, 1nx>) < ε/2, we have D(A, 1nx>) ≤

D(A, Ã) +D(Ã, 1nx>) < ε. Therefore, B1 ⊂ U(1nx>, ε). Moreover, since B2 is compact,

Ṽ (A) is lower bounded and d+Ṽ (A)/dt is strictly upper bounded from 0 in B2. Since

limt→+∞D(A(t), Ê) = 0, there exists t0 > 0 such that A(t) ∈ B1 ∪ B2 for any t ≥ 0.

Therefore, for any t ≥ t0, there exists t1 ≥ t such that A(t1) ∈ B1. This argument is

valid for any ε > 0, which implies that 1nx> is an ω-limit point for any given A(0).

Since Ê is compact, D(A, Ẽ) is strictly positive. Since limt→+∞D
(
A(t), Ê

)
= 0, any

A ∈ Ω \ Ê can not be an ω-limit point of A(0). For any A ∈ Ê \ {1nx>}, since the

solution passing through A asymptotically converges to 1nx>, A ∈ Ê \ {1nx>} can not

be an ω-limit point of A(0) either. Therefore, the ω-limit set of A(0) is {1nx>}. This

concludes the proof.

As Theorem 4.4.3 indicates, the team obeying the assign/appraise/influence dynam-

ics achieves collective learning. A visualized illustration of the dynamics is given by

Figure 4.3.

Theorem 4.4.3 indicates that the asymptotic behavior of the assign/appraise/influence

dynamics is independent of the time scales τave and τapp. The following argument adds

some intuition to this observation. The assign/appraise/influence dynamics can be re-

garded a combination of the assign/appraise dynamics (4.5) and the influence dynamics

Ȧ = A2. As shown in Section III, for an appraisal matrix A(t) obeying the assign/appraise

dynamics (4.5), the left dominant eigenvector vleft(A(t)) converges to the optimal assign-
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Figure 4.3: Visualization of the evolution of A(t) and w(t) obeying the as-
sign/appraise/influence dynamics with n = 6. The observation network contains a
globally reachable node. In these visualized matrices and vectors, the darker the
entry, the higher value it has.

ment x. Moreover, along the dynamics Ȧ = A2, the eigenvector vleft(A(t)) remains

unchanged. Theorem 4.4.3 states that the introduction of the influence dynamics does

not affect the convergence of the left dominant eigenvector of A(t) to x.

4.5 Model Variations: Causes of

Failure to Learn

The assign/appraise/influence dynamics (4.10) consists of three phases: the assign-

ment rule, the appraise dynamics, and the influence dynamics. In this section, we propose

one variation in each of the three phases, based on some socio-psychological mechanisms

that may cause a failure in team learning. We investigate the behavior of each model

variation by numerical simulation.

a) Variation in the assignment rule: workload assignment based on degree centrality:

In Assumption 4.3, the workload assignment is based on the individuals’ eigenvector

centrality in the appraisal network. If we assume instead that the assignment is based

on the individuals’ normalized in-degree centrality in the appraisal network, i.e., w(t) =

A>(t)1n/1>nA(t)1n, then the numerical simulation, see Figure 4.4, shows the following
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Figure 4.4: Examples of the assign/appraise (first row) and the as-
sign/appraise/influence (second row) dynamics in which the assignment is based on
the individuals’ in-degree centrality. The assign/appraise dynamics does not achieve
the collective learning, while the assign/appraise/influence dynamics does.

results: the team obeying the assign/appraise dynamics does not necessarily achieve

collective learning, while the team obeying the assign/appraise/influence dynamics still

achieves collective learning.

b) Variation in the appraise dynamics: partial observation of performance feedback:

According to Assumption 4.4, the observation network G(M) determines the feedback

signals received by each individual. If the observation network does not have the de-

sired connectivity property, the individuals do not have sufficient information to achieve

collective learning. Simulation results in Figure 4.5 shows that, if G(M) is not strongly

connected for the assign/appraise dynamics, or if G(M) does not contain a globally

reachable node for the assign/appraise/influence dynamics, the team does not necessar-

ily achieve collective learning.

c) Variation in the influence dynamics: prejudice model: In Assumption 4.6, we

assume that the individuals obey the DeGroot opinion dynamics. If we instead adopt
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Figure 4.5: Examples of failure to learn with partial observation for a six-individ-
ual team. The figures in the first row correspond to the assign/appraise dynamics, in
which the observation network is not strongly connected but contains a globally reach-
able node. The figures in the second row correspond to the assign/appraise/influence
dynamics, in which the observation network does not contain a globally reachable
node. In both cases, A(t) converges but lim

t→+∞
w(t) 6= x.
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Figure 4.6: Example of the evolution of A(t) and w(t) in the prejudice model with
n = 6. The darker the entry, the higher value it has. The simulation result shows
that A(t) converges but w(t) = vleft

(
A(t)

)
does not necessarily converges to x.

the Friedkin-Johnsen opinion dynamics, given by

Fave(A,W ) = −Λ(In −W )A+ (In − Λ)(A(0)− A),

where Λ = diag(λ1, . . . , λn) and each λi characterizes individual i’s attachment to her

initial appraisals. Numerical simulation, see Figure 4.6, shows that the team does not

necessarily achieve collective learning. The Friedkin-Johnsen model captures the social-

psychological mechanism in which individuals show an attachment to their initial opin-

ions, which causes the failure to learn.

4.6 Further Discussion and Conclusion

4.6.1 Connections with TMS theory

TMS structure: As discussed in the introduction, one important aspect of TMS is

the members’ shared understanding about who possess what expertise. For the case

of one-dimension skill, TMS structure is approximately characterized by the appraisal

matrix and thus the development of TMS corresponds to the collective learning on in-

dividuals’ true skill levels. Simulation results in Figure 4.7 compare the evolution of
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some features among the teams obeying the assign/appraise/influence model, the as-

sign/appraise model, and the team that randomly assigns the sub-tasks, respectively.

Figure 4.7(a) shows that, for both the assign/appraise/influence dynamics and the as-

sign/appraise dynamics, the team performance measure H1(w), defined by the mismatch

between workload assignment and individual skill levels, converges to 0, which exhibits

the advantage of a developing TMS.

Transitive triads: As Palazzolo [134] points out, transitive triads are indicative

of a well-organized TMS. The underlying logic is that inconsistency of interpersonal

appraisals lowers the efficiency of locating the expertise and allocating the incoming

information. In order to reveal the evolution of triad transitivity in our models, we

define an unweighted and directed graph, referred to as the comparative appraisal graph

G̃(A) = (V,E), with V = {1, . . . , n}, as follows: for any i, j ∈ V , (i, j) ∈ E if aij ≥ aii,

i.e., if individual i thinks j has no lower skill level than i herself. We adopt the standard

notion of triad transitivity and use the number of non-transitive triads as the indicator of

inconsistency in a team. Figure 4.7(b) shows that, the non-transitive triads vanish along

the assign/appraise/influence dynamics, but persist along the assign/appraise dynamics

or the random assignments.

4.6.2 Observation network structure and learning speed

Simulation results illustrate how the structure of the observation network affects the

convergence speeds of our models, characterized by the convergence time Tc = min
{
t ≥

0
∣∣ e−H1(w(t)) ≥ 0.99

}
. Tc is a function of the skill level x, the initial condition A(0), and

the observation network. We run 100 independent realizations of the assign/appraise

dynamics for a team with 7 individuals. In each realization, we first randomly gen-

erate x and A(0), and then randomly generate 9 strongly connected observation net-
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Figure 4.7: Evolution of the measure of mismatch between assignment and individual
skill levels, and the number of non-transitive triads in the comparative appraisal graph.
The solid curves represent the team obeying the assign/appraise/influence dynamics.
The dash curves represent the team obeying the assign/appraise dynamics. The dotted
curves represent the team that randomly assign sub-task workloads.

works, G1, . . . , G9, where each Gi is an Erdős-Rényi graph with the link probability

plink,i = 0.2 + 0.1(i − 1) and the individuals’ out-degrees normalized to 1. With the

same x and A(0), we run the assign/appraise dynamics with the observation networks

G1, . . . , G9 respectively, and denote by Tc,i the convergence time with respect to the ob-

servation network Gi. In each realization, Tc,1, . . . , Tc,9 are scaled by dividing them by

maxi Tc,i. For the 100 realizations, we compute the mean value of each Tc,i and plot it

as a function of plink,i, see Figure 4.8(a). The same simulation study has also been done

for the assign/appraise/influence dynamics, see Figure 4.8(b). Simulation results clearly

indicate that, for both the assign/appraise and the assign/appraise/influence dynamics

with Erdős-Rényi observation network, the convergence speed increases with the link

probability.
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Figure 4.8: The error bar plots for the mean convergence time of 100 random real-
izations, as a function of the link probability of the Erdős-Rényi observation network.
The errors are set to be the standard deviation of the convergence time. Figure 4.8(a)
depicts the realizations for the assign/appraise dynamics, while Figure 4.8(b) depicts
the realizations for the assign/appraise/influence dynamics.

4.6.3 Justifications of Assumption 4.3

We provide some justification of Assumption 4.3 on the workload assignment rule

w = vleft(A). Firstly, the entries of vleft(A) correspond to the individuals’ eigenvector cen-

trality in the appraisal network and thus reflect how much each individual is appraised by

the team. Secondly, each row i of A(t) can be considered as individual i’s opinion on how

to divide the workload for the task at time t. Suppose the group of individuals exchange

their opinions over the influence network defined by W = A(t) and eventually reach con-

sensus on the workload assignment. We have that the consensus workload assigned to any

individual j, denoted by wj(t), satisfies wj(t) = limk→∞W
kAj(t) = 1nvleft(A(t))>Aj(t),

where Aj(t) denotes the j-th column of A(t). Therefore, w>(t) = vleft(A(t))>A(t), which

leads to w(t) = vleft(A(t)). Thirdly, our eigenvector assignment rule is consistent with

the following natural property: in a team without performance feedback, , due to the

lack of information inflow, the team’s task assignment does not change. These arguments

justify Assumption 4.3; recall also Section 4.5 a) with a numerical evaluation of a different

assignment rule.
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4.6.4 Discussion on Conjecture 4.4.2

The Monte Carlo method [137] is adopted to estimate the probability that Conjec-

ture 4.4.2 holds. For any randomly generated A(0) ∈ int(∆n), define the random variable

Z : int(∆n)→ {0, 1} as

(i. Z
(
A(0)

)
= 1 if there exists amin > 0 such that A(t) � amin1n1>n for all t ∈ [0, 1000];

(ii. Z
(
A(0)

)
= 0 otherwise.

Let p = P
[
Z
(
A(0)

)
= 1

]
. For N independent random samples Z1, . . . , ZN , in each of

which A(0) is randomly generated in int(∆n), define p̂N =
∑N

i=1 Zi/N . For any accuracy

1 − ε ∈ (0, 1) and confidence level 1 − ξ ∈ (0, 1), |p̂N − p| < ε with probability greater

than 1− ξ if

N ≥ 1

2ε2
log

2

ξ
. (4.11)

For ε = ξ = 0.01, the Chernoff bound (4.11) is satisfied by N = 27000. We run 27000

independent MATLAB simulations of the assign.appraise/influence dynamics with n = 7

and find that p̂N = 1. Therefore, for any A(0) ∈ int(∆n), with 99% confidence level,

there is at least 0.99 probability that A(t) is entry-wise strictly lower bounded from 0n×n

for all t ∈ [0, 10000].

Moreover, we present in the following lemma a sufficient condition for Conjecture 4.4.2

on the initial appraisal matrix A(0) and the parameters τave, τapp.

Lemma 4.6.1 (Strictly positive lower bound of appraisals) Consider the assign/appraise/influence

dynamics (4.10), based on Assumptions 4.3-4.6, with the assignment w(t) and perfor-

mance p(w) as in Assumptions 4.1 and 4.2 respectively. For any initial appraisal matrix

A(0) that is entry-wise positive and row-stochastic, as long as

τapp

τave

≥ 1− ξ0

ξ0

(
f

(
xmax

ξ0

)
− f

(
xmin

1− (n− 1)ξ0

))
,
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where the constant ξ0 is defined as in Theorem 4.4.3 (ii), then there exists amin > 0 such

that A(t) � amin1n1>n .

Proof: First of all, by definition we have ws(t) =
∑

k wk(t)aks(t). The right-

hand side of this equation is a convex combination of {a1s(t), . . . , ans(t)}. Therefore,

maxk aks(t) ≥ ws(t) ≥ ξ0 for all t ∈ [0,+∞).

At any time t ≥ 0, for any pair (i, j) such that aij(t) = mink,l akl(t), the dynamics for

aij(t) is

ȧij(t) =
1

τave

(∑
k

aik(t)akj(t)− aij(t)
)
− 1

τapp

aii(t)aij(t)
(
pi
(
w(t)

)
−

n∑
k=1

mikpk
(
w(t)

))
.

For simplicity, in this proof, denote φi = pi
(
w(t)

)
−∑n

k=1 mikpk
(
w(t)

)
. Suppose amj(t) =

maxk akj(t). We have

ȧij(t) ≥
1

τave

aij(t)amj(t)−
1

τave

a2
ij(t)−

1

τapp

aii(t)aij(t)φi.

Therefore,

ȧij
aij
≥ 1

τave

ξ0 −
1

τapp

(1− ξ0)
(
f
(xmax

ξ0

)
− f

( xmin

1− (n− 1)ξ0

))
.

The condition on 1
τave

/ 1
τapp

in Lemma 4.6.1 guarantees that ȧij(t)
/
aij(t) is positive if

aij(t) = mink,l akl(t). This concludes the proof.

4.6.5 Conclusion

This chapter proposes a class of models closely connected with the TMS theory in

organization science. We generalize from qualitative TMS theory the following two ar-

guments, as the staring point of the mathematical modeling: (1) Team performance

168



Collective Learning via Assign/appraise/influence Dynamics Chapter 4

depends on whether the team members’ relative responsibilities are proportional to their

relative abilities in the team; (2) The team members’ relative responsibilities are de-

termined by how they evaluate each other’s relative ability. Theoretical analysis of the

assign/appraise dynamics and the assign/appraise influence dynamics can be interpreted

as the exploration of the most relaxed condition for the convergence to optimal workload

assignment, concluded as follows: (i) Each individual only needs to know, as feedback,

the difference between her own performance and the average performance of some sub-

group of individuals, but do not need to know exactly whom she is compared with; (ii)

The individuals can have heterogeneous but strictly positive sensitivities to the perfor-

mance feedback; (iii) With opinion exchange, the observation network with one globally

reachable node is sufficient for the convergence to optimal assignment; (iv) Without opin-

ion exchange, strongly connected observation network is sufficient for the convergence to

optimal assignment.

The theoretical results in this chapter can be broadly interpreted as follows. First,

we note that the connectivity requirement on the observation network for asymptotic

optimal assignment is more relaxed in the assign/appraise/influence model than in the

assign/appraise model. Therefore, our models lend credence to the argument that opinion

exchanges inside the group can compensate for the lack of sufficiently-rich observation

of performance feedback. Second, the numerical comparison between the assignment

simply by the average appraisals, i.e., w(t) = 1>nA(t)/n, and the assignment by the

appraisal centrality, i.e., w(t) = vleft(A(t)), shows that the former does not always leads

to asymptotic optimal assignment in the assign/appraise dynamics, while the latter does.

The main difference between these two assignment rules is that, for the assignment by

the appraisal centrality, the opinions of the “highly-appraised individuals” on how the

workload should be assigned are more important than those of the “lowly appraised,”

whereas, for the assignment by the average appraisals, all the individuals’ opinions are
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equally important. The interpretation of this observation is that, in a well-functioning

team, the individuals with higher appraisal should have higher weights in decision-making

processes. Third, as illustrated by the numerical study of the causes of failure to learn,

our models indicate that individuals’ persistent attachment to their initial appraisals,

i.e., prejudice, generally impedes collective learning and thus should be avoided in team

tasks.

Future research directions might include more realistic models considering noisy ob-

servation and finite individual memory.
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Chapter 5

Dynamics Structural Balance via

Homophily and Influence

Mechanisms

5.1 Introduction

Motivation and problem description

Social systems involving friendly/antagonistic relationships between their members

are often modeled as signed networks. Social balance (also referred to as structural

balance) theory, which originated from several seminal works by Heider [138, 139], char-

acterizes the stable configurations of signed social networks. According to the classic

social balanced theory [138, 139], in a balanced network, the interpersonal relationships

satisfy the four famous Heider’s axioms: “The friend of my friend is my friend; the friend

of my enemy is my enemy; the enemy of my friend is my enemy; the enemy of my enemy

is my friend.” While classic studies of social balance focus mainly on the static theory
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(i.e., the local and global configurations of balanced networks), dynamic social balance

theory has attracted much recent interest. In short, dynamic social balance theory aims

to explain if and how an initially unbalanced network evolves to a balanced network.

Despite recent progress, it remains a valuable open problem to propose dynamic models

that are based on natural assumptions and that enjoy desirable boundedness and con-

vergence properties. Such models make it possible for researchers to formulate and study

meaningful predictions and control/intervention strategies for the evolution of the social

network.

In this chapter, we propose two novel discrete-time dynamic models describing the

evolution of the interpersonal appraisals towards social balance. For both models, we

consider a group of individuals who repeatedly update their interpersonal appraisals

via two socio-psychological mechanisms respectively: the homophily mechanism and the

influence mechanism. The homophily mechanism means that individuals in a group tend

to be friendly to each other if their appraisals of the group members are in agreement

(in the sense of signs), and vice versa. On the other hand, the influence mechanism

defines an influence process, in which each individual updates its appraisals by assigning

positive or negative influences to all the group members. The interpersonal influences are

assumed proportional to the corresponding interpersonal appraisals. For both models,

our objectives are to characterize their fixed points and their dynamical behavior, with

a special emphasis on boundedness and convergence properties.

The homophily and influence mechanisms are both well established in the social

sciences literature; they have been studied separately in different contexts, e.g., see the

seminal work by Lazarsfeld and Merton [140] on the homophily mechanism and the award-

winning book by Friedkin and Johnsen on the influence mechanism [141], respectively.

These two mechanisms are not necessarily mutually exclusive: in reality, it can be argued

that they simultaneously play a role in shaping the evolution of a social network, through
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surely to varying and distinct degree. It is an open question beyond the scope of this

chapter to determine conditions under which one phenomenon dominates the other.

Literature review

Following the early works by Heider [138, 139], static social balance theory has been

extensively studied in the last seven decades. Theoretical studies include the characteri-

zation of the structurally balanced configurations for both complete networks [142, 143]

and arbitrary networks [144, 37]; the measure of the degree of balance [145, 146]; the

concept of clustering and its relation to balance [147, 148]; as well as the partitioning

algorithms that cut a signed network into multiple clusters [149, 150, 151]. In addition

to the theoretical contributions, numerous empirical studies have been conducted for dif-

ferent types of social systems, including social systems at the national level [152, 153], at

the group level [154, 155], and at the individual level [156].

In the last decade, researchers have started to incorporate dynamical systems into the

social balance theory, aiming to explain how a signed network evolves to a structurally

balanced state. Early works include the discrete-time local triad dynamics and con-

strained triad dynamics on complete graphs, proposed by Antal et al. [157, 158]. These

two models do not always converge to social balance as they suffer from the existence

of so-called jammed states, i.e., unbalanced equilibria. Radicchi et al. [159] extend the

LTD model to arbitrary graphs. Van De Rijt [160] proposes a network game model in

which each individual minimizes the number of the unbalanced triads involving itself, by

changing the signs of its out-links; this model evolves to social balance if each individual

is allowed to change the signs of multiple links simultaneously. A similar network game

model, allowing the adding and deleting of links, is proposed by Malekzadeh et al. [161].

In all the models introduced in this paragraph, the link weights in the signed networks
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are assumed to only take values from the set {−1, 0, 1}.

Our models are related to the continuous-time dynamic social balance models stud-

ied by Ku lakowski et al. [105], Marvel et al. [106], and Traag et al. [162], as well as the

discrete-time model proposed by Jia et al. [107]. In these models, the link weights can

take arbitrary real values. The model proposed by Ku lakowski et al. [105] is based on an

influence-like mechanism. The theoretical analysis of this model by Marvel et al. [106]

and Traag et al. [162] reveals that, from a specific set of initial conditions, the system

first reaches a structurally balanced state and then diverges to unbounded interpersonal

appraisals in finite time. In [105], the authors also modify their original model by impos-

ing a predetermined upper bound R of the interpersonal appraisals so that the evolution

of the system remains bounded. Rigorous analysis by Wongkaew et al. [163] shows that,

in the modified model, the interpersonal appraisals achieve social balance in finite time

and the magnitudes of all appraisals converge to the predetermined upper bound R, if

the initial appraisals are all lower bounded from −R. Traag et al. [162] propose and

analyze a continuous-time model based on the homophily mechanism. Similar to the

first model proposed by Ku lakowski et al. [105], the homophily-based model also reaches

social balance and then diverges to unbounded interpersonal appraisals in finite time.

Recently, Jia et al. [107] propose and analyze a discrete-time model based on the relax-

ation of the classic Heider’s social balance theory and a modified influence mechanism

with convergence to a generalized notion of structural stability.

Contributions

The contributions of this chapter are manifold. Firstly, we propose two novel discrete-

time dynamic social balance models and establish their well-posedness and bounded evo-

lution properties. These two models explain the evolution of the interpersonal appraisal
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networks towards the classic Heider’s social balance [138] via two sociologically-grounded

processes respectively: the homophily mechanism and the influence mechanism. In both

models, the appraisal networks are represented by their associated adjacency matrices,

i.e., the appraisal matrices. For the homophily-based model, we prove that, the appraisal

matrix is well-defined and uniformly bounded at any time, if each row of the initial ap-

praisal matrix has at least one nonzero item. For the influence-based model, we prove

that the well-posedness and bounded evolution are guaranteed if the initial appraisal ma-

trix is a symmetric matrix left multiplied by the diagonal matrix with positive diagonal

entries. In addition, both our models are invariant under scaling, i.e., if a solution is

scaled by a constant, then it remains a solution.

Secondly, we fully characterize the equilibrium sets and the asymptotic behavior of

both models. The analyses of the two models are performed in analogous ways. We

prove that, for both models, any appraisal network in the equilibrium state is composed

of an arbitrary number of isolated subgraphs, each of which satisfies social balance.

Moreover, we prove that, for the homophily-based model, in each of such subgraphs, all

individuals’ appraisals have the same magnitude, while, for the influence-based model,

in each subgraph of the equilibrium appraisal network, the individuals reach consensus,

in the sense of magnitude, on the appraisals of each individual. Finally, for both models,

under a technical condition, we establish the convergence of the appraisal networks to

structurally balanced complete graphs.

Thirdly, in addition to the comprehensive theoretical analysis, we further investigate

our models by numerical simulations. We provide numerical evidence that our techni-

cal condition for the convergence of the appraisal networks to balanced complete graphs

holds for generic initial conditions. Moreover, for the homophily-based model, numerical

results on the emergence of multi-clique social balance states and their behavior under

perturbations reveals some realistic and strategic insights on the escalation and medi-
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ation of conflicts. Finally, we numerically investigate the effect of the initial appraisal

distribution on the formation of factions, that is, whether an appraisal network eventually

evolves to two antagonistic factions or an all-friendly network.

In summary, our paper is the first to propose discrete-time dynamic social balance

models, for both the homophily and influence mechanisms, and to establish, through a

comprehensive theoretical analysis, that the evolution of appraisals is bounded and con-

vergent from generic initial conditions in appropriate sets. Compared with the continuous-

time homophily-based and influence-based models analyzed in [162] and [106] respec-

tively, our models enjoy the desirable property of convergent appraisals, (as opposed to

the undesirable property of finite-time divergence). Compared with the model proposed

in [105] with bounded evolution, (1) our models do not rely on any predetermined bound

to prevent divergence and (2) the asymptotic appraisals in our models are determined

by the initial condition rather than the predetermined bound.

Organization

The rest of the paper is organized as follows. Section 5.2 introduces some nota-

tions and basic concepts. Section 5.3 and Section 5.4 are the theoretical analyses of our

homophily-based and influence-based models respectively. Section 5.5 provides further

discussions and numerical results. Section 5.6 gives the conclusion.

5.2 Notations and basic concepts

5.2.1 Notations

Let Z≥0 denote the set of non-negative integers, respectively. For any X ∈ Rm×n,

denote by Xij the (i, j)-th entry of X. Let |X| denote the entry-wise absolute value
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of X, i.e., each (i, j)-th entry of |X| is equal to |Xij|. Let sign(X) ∈ {−1, 0,+1}m×n

denote the entry-wise sign of X, i.e., for any i and j, sign(Xij) = +1 when Xij > 0,

sign(Xij) = −1 when Xij < 0 and sign(Xij) = 0 when Xij = 0. Define the max norm of

X by ‖X‖max = maxi,j |Xij|. Let Xi∗ (X∗i resp.) denote the row (column resp.) vector

corresponding to the ith row (column resp.) of the matrix X. Let G(X) denote the

directed and weighted graph associated with the adjacency matrix X.

Note that, unlike in the traditional definition of weighted graphs, in this chapter we

allow the presence of links with negative weights. That is, if Xij < 0 for some i and j,

then the directed link (i, j) in graph G(X) has negative weight equal to Xij. We assume

that there is no link from i to j whenever Xij = 0. The terms graph and network are

assumed interchangeable.

The following sets will be used throughout this chapter:

Snz-row ={X ∈ Rn×n | for every i,Xi∗ 6= 0>n }, (5.1)

S+
s-symm ={X ∈ Rn×n | sign(X) = sign(X)> and Xii > 0 for every i}, (5.2)

S+
rs-symm ={X ∈ S+

s-symm | there exists γ � 0n such that diag(γ)X = X> diag(γ)}, (5.3)

S+
symm ={X ∈ S+

s-symm | X = X>}. (5.4)

In other words, Snz-row is the set of matrices with at least one non-zero entry in each

row, while S+
s-symm is the set of sign-symmetric matrices with positive diagonals. Simple

calculations show that any X ∈ S+
rs-symm can be written as the product of a diagonal

matrix with positive diagonal entries with a symmetric matrix with positive diagonal

entries. By definition, we have

S+
symm ⊂ S+

rs-symm ⊂ S+
s-symm ⊂ Snz-row.
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In addition, one can easily check by definition that, the sets S+
s-symm, S+

rs-symm, and S+
symm

are all invariant under permutations. That is, given any X ∈ S+
s-symm (or X ∈ S+

rs-symm

and X ∈ S+
symm resp.) and a permutation matrix P , we have PXP> ∈ S+

s-symm (or

PXP> ∈ S+
rs-symm and PXP> ∈ S+

symm resp.).

5.2.2 Appraisal matrices and social balance

Given a group of n agents, the network of interpersonal appraisals among the agents

is given by the appraisal matrix X ∈ Rn×n. The sign of Xij determines whether agent i’s

appraisal of j is positive, i.e., i “likes” j, or negative, i.e., i “dislikes” j. The magnitude

of Xij represents the intensity of the sentiment. When Xij = 0, the appraisal is one

of indifference. The diagonal entry Xii represents agent i’s self-appraisal. The directed

and weighted graph G(X) associated to X as the adjacency matrix is referred to as the

appraisal network.

Social balance is a specific property of complete appraisal networks, defined as follows.

Definition 5.2.1 (social balance [142, 139]) An appraisal network G(X) satisfies so-

cial balance, or, equivalently, is structurally balanced, if the associated appraisal matrix

is such that all of its entries are non-zero and the following conditions are satisfied for

all i, j, k ∈ {1, . . . , n}:

(i. positive self-appraisals: Xii > 0,

(ii. positive triads: sign(Xij) sign(Xjk) sign(Xki) = 1.

Proposition 5.2.2 (Equivalent conditions for social balance) For any X ∈ Rn×n

such that all of its entries are non-zero, G(X) satisfies social balance if and only if it

satisfies (i and

178



Dynamics Structural Balance via Homophily and Influence Mechanisms Chapter 5

(iii. sign(Xi∗) = ± sign(Xj∗), for all i, j ∈ {1, . . . , n} .

Moreover, for G(X) satisfying social balance, X is sign-symmetric, i.e., sign(X) =

sign(X)>.

Proof: Suppose that (i and (iii hold. For any i, j ∈ {1, . . . , n}, we have sign(Xi∗) =

δ sign(Xj∗), where δ is either−1 or 1. Therefore, sign(Xij) sign(Xji) = δ2 sign(Xjj) sign(Xii) =

1, i.e., sign(Xij) = sign(Xji). Moreover, for any k, since sign(Xij) = δ sign(Xjj) and

sign(Xjk) = δ sign(Xik), we have

sign(Xij) sign(xjk) sign(Xki) = δ2 sign(Xjj) sign(Xik) sign(Xki) = 1.

Therefore, (i and (iii imply (i and (ii, as well as the sign symmetry of X.

Now suppose (i and (ii hold. The sign symmetry of X is obtained by letting k = j

in (ii. Moreover, due to the sign symmetry and (ii, we obtain sign(Xij) sign(Xjk) sign(Xik) =

1, which in turn implies that sign(Xik) sign(Xjk) does not depend on k and is equal to

sign(Xij) ∈ {−1, 1}. Therefore, sign(Xi∗) = ± sign(Xj∗) for any i and j. This concludes

the proof.

According to [142], a structurally balanced appraisal network either has only one

faction in which the interpersonal appraisals are all positive, or is composed of two

antagonistic factions such that individuals in the same faction positively appraise each

other while all the inter-faction appraisals are negative.

5.3 Homophily-based Model

In this and the next sections, we propose and analyze two dynamic social balance

models respectively. These two models are distinct in the microscopic individual interac-
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tion mechanisms. In this section, we propose our first model: the homophily-based model

(HbM), and analyze its dynamical behavior.

Definition 5.3.1 (Homophily-based model) Given an initial appraisal matrix X(0) ∈

S+
s-symm ⊂ Rn×n, the homophily-based model is defined by:

X(t+ 1) = diag(|X(t)|1n)−1X(t)X>(t). (5.5)

Remark 5.3.2 (Interpretation) Equation (5.5) updates the appraisals based on what

can be considered as the homophily mechanism. For any i, j ∈ {1, . . . , n}, agent i’s

appraisal of agent j at time step t + 1 depends on to what extend they are in agreement

with each other on the appraisals of all the agents in the group. For any k ∈ {1, . . . , n}, if

sign(Xik(t)) = sign(Xjk(t)), then the term Xik(t)Xjk(t) contributes positively to Xij(t+1),

and vice versa.

The proposition below presents some useful results on the finite-time behavior of the

homophily-based model.

Proposition 5.3.3 (Invariant set and finite-time behavior of HbM) Consider the

dynamical system (5.5) and define fhomophily(X) = diag(|X|1n)−1XX>. Pick X0 ∈

S+
s-symm. The following statements hold:

(i. the map fhomophily is well-defined for any X ∈ Snz-row and maps S+
s-symm to S+

s-symm;

(ii. the solution X(t), t ∈ Z≥0, to equation (5.5) from initial condition X(0) = X0 is

unique and well-defined;

(iii. the max norm of any solution X(t) satisfies

‖X(t+ 1)‖max ≤ ‖X(t)‖max ≤ ‖X(0)‖max ;
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(iv. for any c 6= 0, the trajectory cX(t) is the solution to equation (5.5) from initial

condition X(0) = cX0.

Proof: For simplicity, denote X+ = fhomophily(X). For any X ∈ Snz-row, since,

for any i and j, X+
ij = 1

‖Xi∗‖1

∑
kXikXjk and ‖Xi∗‖1 > 0, fhomophily(X) is well-defined.

Moreover,

X+
ii =

1

‖Xi∗‖1

∑
k

XikXik =
‖Xi∗‖2

2

‖Xi∗‖1

> 0, and

X+
ij =

‖Xj∗‖1

‖Xi∗‖1

X+
ji , for any i and j.

Therefore, fhomophily maps S+
s-symm to S+

s-symm. This concludes the proof of statement (i.

Statements (ii is a direct consequence of statement (i. In addition,

|X+
ij | ≤

1

‖Xi∗‖1

n∑
k=1

∣∣XikXjk

∣∣ ≤ 1

‖Xi∗, ‖1

n∑
k=1

∣∣Xik

∣∣∣∣Xjk

∣∣ ≤ max
k
|Xjk| ≤ ‖X‖max

immediately leads to statement (iii. Finally, statement (iv is obtained by replacing X(t)

with cX(t) on the right-hand side of equation (5.5).

In fact, for any X(0) ∈ Snz-row, we have X(1) ∈ S+
s-symm and, thus, X(t) ∈ S+

s-symm for

any t ≥ 1. Therefore, the set of initial conditions of the system can be extended to the

set Snz-row. However, without loss of generality, we still consider S+
s-symm as the domain

of system (5.5). In addition, according to Proposition 5.3.3, for any X(0) ∈ S+
s-symm, the

solution X(t) to equation (5.5) is uniformly upper bounded for all t ∈ Z≥0. This is a

desired property compared with some previous models, in which X(t) diverge in finite

time [106, 162].

The theorem below characterizes the set of fixed points of system (5.5).

Theorem 5.3.4 (Fixed points and balance) Consider the dynamical system (5.5) in
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domain S+
s-symm. Define

Qhomophily =
{
PY P> ∈ S+

s-symm

∣∣∣P is a permutation matrix,

Y is a block diagonal matrix with blocks of

the form αbb>, α > 0, b ∈ {−1,+1}m, m ≤ n
}
.

Then we have that,

(i. Qhomophily is the set of all the fixed points of (5.5),

(ii. for any X ∈ Qhomophily, G(X) is composed by isolated complete subgraphs that

satisfy social balance.

Proof: We first prove that any X∗ ∈ Qhomophily is a fixed point of system (5.5). For

any α > 0 and b ∈ {−1,+1}n, the matrix Y = αbb> satisfies

fhomophily(Y ) = diag(nα1n)−1α2bb>bb> = αbb> = Y.

Now suppose that Y is a block diagonal matrix, i.e., Y = diag(Y (1), . . . , Y (K)), where

each Y (i) is a ni × ni matrix of the form αib
(i)b(i)>, with αi > 0, b(i) ∈ {−1,+1}ni , and

n1 + · · ·+ nK = n. One can check that, as long as

Y (i) = diag(|Y (i)|1n)−1Y (i)Y (i)> (5.6)

for any i ∈ {1, . . . , K}, Y is a fixed point of system (5.5). Since Y (i) = αib
(i)b(i)>, we know

that equation (5.6) is satisfied for any i. Therefore, Y is a fixed point of system (5.5).

Moreover, given any fixed point Y of system (5.5), for any permutation matrix P ∈ Rn×n,
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we have

PY P> = P diag(|Y |1n)−1Y Y >P>

= diag(|PY P>|1n)−1(PY P>)(PY P>)>

= fhomophily(PY P>).

Therefore, any X∗ ∈ Qhomophily is a fixed point of (5.5).

Now we prove by induction that Qhomophily is the set of all the fixed points of sys-

tem (5.5). For the trivial case of n = 1, Qhomophily represents the set of all the positive

scalars and one can easily check that any positive scalar X is a fixed point of system (5.5)

with n = 1. Suppose statement (i holds for any system with dimension ñ < n.

For system (5.5) with dimension n, suppose X is a fixed point, i.e., X = fhomophily(X),

which implies that,

Xij =
1

‖Xi∗‖1

n∑
k=1

XikXjk =
‖Xj∗‖1

‖Xi∗‖1

Xji, for any i 6= j.

Therefore, for any i, j ∈ {1, . . . , n} and j 6= i, we have sign(Xij) = sign(Xji). In addition,

since Xii =
∑n

k=1X
2
ik

/
‖Xi∗‖1, we have Xii > 0 for any i.

Let X+ denote fhomophily(X) for simplicity. Since X = X+, we have ‖X‖max =

‖X+‖max, which implies that there exists i, j such that |X+
ij | = ‖X‖max. We discuss two

cases which together include all the possible X’s.

Case 1: there exists i such that |Xii| = ‖X‖max and |Xij| = 0 for any j 6= i. Since

sign(Xij) = sign(Xji), we have Xji = 0 for any j 6= i. In addition, since Xii > 0,
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Xii = ‖X‖max. Therefore, there exists a permutation matrix P such that

PXP> =

‖X‖max 0>n−1

0n−1 X̃(n−1)×(n−1)

 ,
Since PXP> is also a fixed point of system (5.5), one can check that X̃ satisfies X̃ =

diag(|X̃|1n)−1X̃X̃>. Therefore, X̃ is a fixed point of system (5.5) with dimension n−1.

Since we have assumed that statement (i holds for dimension ñ < n, there exists an

(n−1)×(n−1) permutation matrix P̃ and a block diagonal Ỹ , with blocks of the form

αbb>, where α > 0, b ∈ {−1,+1}m, m < n−1, such that X̃ = P̃ Ỹ P̃>. Therefore,

X = P>

 1 0>n−1

0n−1 P̃


‖X‖max 0>n−1

0n−1 Ỹ


 1 0>n−1

0n−1 P̃


>

P.

The matrix

P>

 1 0>n−1

0n−1 P̃


is also a permutation matrix. Therefore X ∈ Qhomophily.

Case 2: there exists j 6= i such that |X+
ij | = ‖X‖max. We first define some notations

used in the following proof: For any k, let θk = {` | Xk` 6= 0} and |θk| be the cardinality

of the set θk. Note that, since X = fhomophily(X) ∈ S+
s-symm, k is always in θk and Xkk > 0.

Let X`∗,θk ∈ R1×|θk| be the `-th row vector of X with all the X`p entries such that p /∈ θk
removed.

We point out a general result that, for any k and `, if

|X+
k`| =

1

‖Xk∗‖1

∣∣∣ n∑
p=1

XkpX`p

∣∣∣ = ‖X‖max,
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then, for the second equality to hold, X must satisfy that: 1) θk ⊂ θl; 2) |X`p| = ‖X‖max

for any p ∈ θk; 3) sign(X`∗,θk) = ± sign(Xk∗,θk). Therefore, for the i, j indexes such

that |X+
ij | = ‖X‖max and i 6= j, we have: |Xjk| = ‖X‖max, for any k ∈ θi; θi ⊂ θj;

and sign(Xj∗,θi) = ± sign(Xi∗,θi). Since i ∈ θi and X+ = X, we obtain |X+
ji | = |Xji| =

‖X‖max. Therefore, |X+
ik| = |Xik| = ‖X‖max, for any k ∈ θj, and θj ⊂ θi, which in turn

leads to θi = θj and |X+
ik| = |Xik| = ‖X‖max for any k ∈ θi. Therefore, for any k ∈ θi,

|X+
ik| = ‖X‖max, which implies |Xk`| = ‖X‖max for any l ∈ θi. Since |X+

k`| = |Xk`|, we

further obtain that θk ⊂ θl and sign(Xk∗,θk) = ± sign(X`∗,θk). Moreover, due to the fact

that the indexes k and l are interchangeable, we conclude that, for any k, l ∈ θi: a)

θk = θl = θi; b) |Xk`| = ‖X‖max; c) sign(Xk∗) = ± sign(X`∗).

If |θi| = n, let α = X11 and b = sign(X1∗)
>, then we have X = αbb>. If |θi| < n,

there exists a permutation matrix P such that

PXP> =

 X(θi) 0|θi|×(n−|θi|)

0(n−|θi|)×|θi| X̃

 ,
where X(θi) is a |θi|× |θi| matrix. Moreover, X(θi) = ‖X‖maxbb

>, where b = sign(Xi∗,θi)
>.

Following the same line of argument for Case 1, we know that X̃ is of the form P̃ Ỹ P̃>

and thereby X ∈ Qhomophily. This concludes the proof for statement (i.

For any X∗ ∈ Qhomophily, there exists a permutation matrix P and a block diagonal

matrix Y = diag(Y (1), . . . , Y (K)) such that X∗ = PY P>. Note that G(Y ) has exactly

the same topology as G(X), but with the nodes reindexed. Therefore, we only need to

analyze the structure of G(Y ). One can easily check that Y has positive diagonals (and

is also sign-symmetric). Moreover, G(Y ) is made up of K isolated complete subgraphs.

Therefore, for any triad (j, k, `) in G(Y ), there exists i ∈ {1, . . . , K} such that nodes j, k, `

are all in the subgraph G(Y (i)) with the adjacency matrix Y (i) =
(
Y

(i)
jk

)
ni×ni

. Suppose
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Y (i) = αib
(i)b(i)>, where b(i) = (b

(i)
1 , . . . , b

(i)
ni )
>. We have Y

(i)
jk Y

(i)
k` Y

(i)
`j = α3

i b
(i)
j

2
b

(i)
k

2
b

(i)
`

2
> 0.

Therefore, every triad is positive in graph G(Y ). We conclude that any X∗ ∈ Qhomophily

is associated with a graph G(X∗) composed by isolated complete subgraphs that satisfy

social balance. This concludes the proof for statement (ii.

Remark 5.3.5 Since X being a fixed point of fhomophily implies that X is sign-symmetric

and has positive diagonal, Qhomophily is actually the set of all the fixed points of fhomophily

in Snz-row.

Now we present the main results on the convergence of the appraisal matrix to social

balance.

Theorem 5.3.6 (Convergence and social balance in HbM) Consider the homophily-

based model given by equation (5.5). The following statements hold:

(i) Each fixed point of rank one in Qhomophily is locally stable.

For any X(0) ∈ S+
s-symm such that lim inf

t→∞
min
i,j
|Xij(t)| > 0, we have that:

(ii) there exists X∗ ∈ Qhomophily of rank one such that limt→∞X(t) = X∗, and

(iii) there exists T > 0 such that G(X(t)) satisfies social balance for all t ≥ T .

Proof: We start by proving the following two claims. For any given t0 ≥ 0, if all

the entries of X(t0) are non-zero and G(X(t0)) satisfies social balance, then,

C.1) for any t ≥ t0, G(X(t)) satisfies social balance and sign(X(t)) = sign(X(t0));

C.2) there exists α > 0 and b ∈ {−1,+1}n, depending onX(t0), such thatX(t) converges

to αbb> as t→∞.
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To prove claim C.1), it suffices to prove that G(X(t0 + 1)) satisfies social balance and

sign(X(t0 + 1)) = sign(X(t0)), as the cases for t ≥ t0 + 1 follow by induction. For any

i and j, since G(X(t0)) satisfies social balance, according to Proposition 5.2.2, we have

sign(Xi∗(t0)) = ± sign(Xj∗(t0)). In addition, we have Xjj(t0) > 0 for any j. Therefore,

sign
(
Xij(t0 + 1)

)
= sign

( 1

‖Xi∗(t0)‖1

n∑
k=1

Xik(t0)Xjk(t0)
)

= sign
(
Xij(t0)Xjj(t0)

)
= sign

(
Xij(t0)

)
,

for any i and j. This concludes the proof for claim C.1).

For any t ≥ t0, since G(X(t)) satisfies social balance,

|Xij(t+ 1)| = 1

‖Xi∗(t)‖1

n∑
k=1

|Xik(t)||Xjk(t)| for any i, j,

which leads to the following two inequalities:

mink,`|Xk`(t+1)|≥mink,`|Xk`(t)|; maxk,`|Xk`(t+1)|≤maxk,`|Xk`(t)|. Therefore, mink,` |Xk`(t)|

is non-decreasing and upper bounded by maxk,` |Xk`(t0)|, while maxk,` |Xk`(t)| is non-

increasing and lower bounded by mink,` |Xk`(t0)|, which in turn implies that there exists

0 < α ≤ α, depending on X(t0), such that

lim
t→∞

min
k,`
|Xk`(t)| = α, and lim

t→∞
max
k,`
|Xk`(t)| = α.

Moreover, suppose maxk,` |Xk`(t)| > mink,` |Xk`(t)|, for some t ≥ t0, and |Xpq(t)| =
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mink,` |Xk`(t)|. We have

|Xjp(t+ 1)| = 1

‖Xj∗(t)‖1

n∑
k=1

|Xjk(t)||Xpk(t)| < max
k,`
|Xk`(t)|, and

|Xij(t+ 2)| = 1

‖Xi∗(t+ 1)‖1

n∑
k=1

|Xik(t+ 1)||Xjk(t+ 1)| < max
k,`
|Xk`(t)|, (5.7)

for any i and j. Let V1 : Rn×n → R≥0 be defined as:

V1(X) = max
k,`
|Xk`| −min

k,`
|Xk`|.

Due to inequality (5.7), for any t ≥ t0, 0 ≤ V1(X(t+2)) < V1(X(t)) as long as V1(X(t)) >

0. Therefore, V1(X(t)) converges to 0 as t → ∞, which implies α = α = α > 0. For

any i, j and any t ≥ t0, since mink,` |Xk`(t)|≤|Xij(t)|≤maxk,` |Xk`(t)|, we conclude that

limt→∞ |Xij(t)| = α. Moreover, since sign(X(t)) = sign(X(t0)) for any t ≥ t0, we have

limt→∞X(t) = αbb>, where b = sign(X1∗(t0))>. This concludes the proof for claim C.2).

Now we prove statement (i), i.e., each X∗ ∈ Qhomophily with rank 1 is locally stable.

Let X∗ = αbb>, where α > 0 and b ∈ {−1,+1}n. For any matrix ∆ ∈ Rn×n such that

δ = maxi,j |∆ij| < α, we have sign(X∗+ ∆) = sign(X∗). Due to claim C.1) and the proof

of claim C.2), we know that, for X(0) = X∗ + ∆, X(t) satisfies that, for any t ≥ 0: (1)

sign(X(t)) = sign(X(0)) = sign(X∗); (2) α−δ ≤ mini,j |Xij(t)| ≤ maxi,j |Xij(t)| ≤ α+δ.

Therefore, for any i and j, Xij(t) is of the form αij(t) sign(X∗ij), where 0 < α − δ ≤

αij(t) ≤ α + δ. We thereby have

‖X(t)−X∗‖max = max
ij

∣∣αij(t) sign(X∗ij)− α sign(X∗ij)
∣∣ = max

ij
|αij(t)− α| ≤ δ.

Therefore, for any ε > 0, there exists δ = min{α
2
, ε

2
} such that, for any X(0) satisfying

‖X(0)−X∗‖max < δ, ‖X(t)−X∗‖max<ε for any t≥0, i.e., X∗ is locally stable.
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For the rest of the proof, we proceed to prove the statements (ii) and (iii) of the

theorem. For simplicity, denote X+ = fhomophily(X). Firstly, one can easily check that

fhomophily(X) is continuous for any X ∈ S+
s-symm. Secondly, for any given X(0) ∈ S+

s-symm,

according to Proposition 5.3.3, ‖X(t)‖max ≤ ‖X(0)‖max for any t ∈ Z≥0. In addition,

lim inf
t→∞

min
i,j
|Xij(t)| = δ for some δ > 0 implies that there exists t̃ ∈ Z≥0 such that

min
i,j
|Xij(t)| ≥ δ/2 for any t ≥ t̃. Therefore, the set

Gc =
{
X ∈ S+

s-symm

∣∣∣ min
i,j
|Xij| ≥ δ/2, ‖X‖max ≤ ‖X(0)‖max

}

is a compact subset of S+
s-symm and X(t) ∈ Gc for any t ≥ t̃. Thirdly, define V2(X) =

‖X‖max. The function V2 is continuous on S+
s-symm and, according to Proposition 5.3.3,

satisfies V2(X+)−V2(X) ≤ 0 for any X ∈ S+
s-symm. According to the extended LaSalle in-

variance principle presented in Theorem 2 of [164], X(t) converges to the largest invariant

set M of the set E = {X ∈ Gc | V2(X+)− V2(X) = 0}.

Now we characterize the largest invariant set M . For any X ∈ M ⊂ E, V2(X+) =

V2(X) = ‖X‖max. Suppose |X+
ij | = max

k,`
|X+

k`|. Since

|X+
ij | =

1

‖Xi∗‖1

∣∣∣∣∣
n∑
`=1

Xi`Xj`

∣∣∣∣∣ ≤ 1

‖Xi∗‖1

n∑
`=1

|Xi`||Xj`| ≤ max
`
|Xj`|, (5.8)

we need all of these inequalities to hold with equality and max
`
|Xj`| = ‖X‖max. Since

X ∈ Gc implies |Xk`| > 0, for any k, ` ∈ {1, . . . , n}, X must satisfy that

(a) Xi∗ and Xj∗ have the same or opposite sign pattern, i.e., sign (Xi∗) = ± sign (Xj∗),

(b) All entries of Xj∗ have the magnitude ‖X‖max.

Therefore, for any X ∈ E, there exist some i and j such that the aforementioned
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conditions (a) and (b) hold. Moreover, since the set M is invariant, X ∈ M im-

plies X+ ∈ M ⊂ E, which in turn implies that there exists a j̃ such that, for any p,

|X+
j̃p
| = ‖X+‖max = ‖X‖max. Following the same argument on the conditions such that

the inequalities (5.8) become equalities, we know that, for any p, sign (Xj̃∗) = ± sign (Xp∗)

and |Xpk| = ‖X‖max for any k. As these relationships hold for any p, we conclude that

for any i, j ∈ {1, . . . , n}, Xi∗ and Xj∗ must have the same or the opposite sign pattern.

Let α = ‖X‖max and b = sign(X>1∗). Each row of X is thereby equal to either αb> or

−αb>. Therefore, X is of the form X = αcb>, where c ∈ {−1, 1}n. Moreover, since all

the diagonal entries of X are positive, the column vector c must satisfy cibi = 1 for any i,

which implies c = b. Therefore, X = αbb>. In addition, since any matrix X of the form

αbb>, with α > 0 and b ∈ {−1, 1}n, is a fixed point of system (5.5), we conclude that

M =
{
X = αbb>

∣∣ δ
2
≤ α ≤ ‖X(0)‖max , b ∈ {−1, 1}n

}
,

which is a compact subset of S+
s-symm.

For any X̂ ∈M , since X̂ satisfies social balance (see Theorem 5.3.4) and mini,j X̂ij ≥

δ/2 > 0, there exists an open neighbor set defined as U(X̂) = {X = X̂ + ∆ | ‖∆‖max <

min
i,j

X̂ij} such that any X ∈ U(X̂) satisfies social balance. According to Hein-Borel

theorem, there exists a finite set {X̂1, . . . , X̂K} ⊂ M such that M ⊂ ∪Kk=1U(X̂k). Since

∪Kk=1U(X̂k) is an open set, there exists ε > 0 such that the neighbor set of M , defined as

U(M, ε) = {X ∈ S+
s-symm | ‖X −M‖max < ε},

satisfies that U(M, ε) ⊂ ∪Kk=1U(X̂k) and thereby any X ∈ U(M, ε) satisfies social balance.

Since X(t) → M as t → ∞, there exists T ∈ Z≥0 such that X(t) ∈ U(M, ε) for any

t ≥ T . Therefore, X(t) satisfies social balance for any t ≥ T , which proves statement (iii).
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Moreover. Statement (ii) follows from claim C.2) and Theorem 5.3.4.

Extensive simulation results indicate that, under generic initial conditions X(0) ∈

Snz-row, every entry of the solution |X(t)| is uniformly lower bounded by a positive number

for all t > 0. This numerical result will be discussed in details in Section 5.5.

5.4 Influence-based Model

In this section, we propose and analyze our second model: the influence-based model

(IbM).

Definition 5.4.1 (Influence-based model) Given an initial appraisal matrix X(0) ∈

S+
rs-symm ⊂ Rn×n, the influence-based model is defined by:

X(t+ 1) = diag(|X(t)|1n)−1X(t)X(t). (5.9)

Remark 5.4.2 (Interpretation) The evolution of the appraisal matrix given by equa-

tion (5.9) can be interpreted as an influence process. The associated time-varying influ-

ence matrix W (t) is constructed by W (t) = diag(|X(t)|1n)−1X(t). That is, the influence

any agent i assigns to agent j is assumed to be proportional to i’s appraisal of j. We

allow negative influences. For any i and k, if agent i is has a positive appraisal of agent

k, then agent k’s positive (negative resp.) appraisal of j contributes positively (negatively

resp.) to agent i’s appraisal of j at the next time step, and vice versa.

Next, we present some results on the invariant set and finite-time behavior of the

influence-based model.

Proposition 5.4.3 (Finite-time Properties of the IbM) Consider the dynamical sys-

tem (5.9) and define finfluence(X) = diag(|X|1n)−1XX. Pick any X0 ∈ S+
rs-symm. The

following statements hold:
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(i. the map finfluence is well-defined for any X ∈ Snz-row and maps S+
rs-symm to S+

rs-symm;

(ii. the solution X(t), t ∈ Z≥0, to equation (5.9) from initial condition X(0) = X0 is

unique and well-defined;

(iii. the max norm of X(t) satisfies

‖X(t+ 1)‖max ≤ ‖X(t)‖max ≤ ‖X(0)‖max ;

(iv. for any c 6= 0, the trajectory cX(t) is the solution to equation (5.9) from initial

condition X(0) = cX0.

Proof: Denote X+ = finfluence(X) for simplicity. Following the same argument as in

the proof of Proposition 5.3.3, we know that finfluence is well-defined for any X ∈ Snz-row.

For any X ∈ S+
rs-symm, there exists γ � 0n such that diag(γ)X = X> diag(γ). Therefore,

X+
ii =

1

‖Xi∗‖1

∑
k

XikXki=
1

‖Xi∗‖1

∑
k

γi
γk
X2
ik>0, and

X+
ij =

1

‖Xi∗‖1

γj
γi

∑
k

XjkXki=
‖Xj∗‖1γj
‖Xi∗‖1γi

X+
ji .

Let γ̃ = diag
(
|X|1n

)
γ, then we have diag(γ̃)X = X> diag(γ̃). Therefore, X+ =

finfluence(X) ∈ S+
rs-symm. This concludes the proof of statement (i. Statements (ii is a

direct consequence of statement (i. Moreover,

∣∣X+
ij

∣∣ =
1

‖Xi∗‖1

∣∣∣∑
k

XikXkj

∣∣∣ ≤ 1

‖Xi∗‖1

∑
k

|Xik||Xkj| ≤ max
k
|Xkj| ≤ ‖X‖max

immediately lead to statement (iii. Statement (iv is a straightforward observation ob-

tained from equation (5.9).
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Notice that, unlike the homophily-based model, finfluence is not well-defined for all

X ∈ Snz-row. For example,

X(0) =

 1 2

−0.5 −1

 ∈ Snz-row

leads to X(1) /∈ Snz-row and finfluence(X(1)) is not defined. Instead, we consider S+
rs-symm as

the domain of system (5.9). According to Proposition 5.4.3, for any X(0) ∈ S+
rs-symm, the

solutions X(t) to equation (5.9) is uniformly upper bounded, which is a desired property,

that the previous models in [106, 162] do not have.

The following theorem characterizes the set of fixed points of the map finfluence in

S+
rs-symm.

Theorem 5.4.4 (Fixed points and social balance) Consider system (5.9) in domain

S+
rs-symm. Define

Qinfluence =
{
PY P> ∈ S+

rs-symm

∣∣∣P is a permutation matrix,

Y is a block diagonal matrix with blocks of the

form sign(w)w>, w ∈ Rm and |w| � 0m,m ≤ n
}
.

Then the following statements hold:

(i. Qinfluence is the set of all the fixed points of system (5.9) in domain S+
rs-symm,

(ii. for any X ∈ Qinfluence, G(X) is composed by isolated complete subgraphs that satisfy

social balance.

Proof: We first prove that any X∗ ∈ Qinfluence is a fixed point of system (5.9). For
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any w ∈ Rn such that |w| � 0n, the matrix Y = sign(w)w> satisfies

finfluence(Y ) = diag(| sign(w)w>|1n)−1(sign(w)w>)(sign(w)w>) = sign(w)w> = Y.

Therefore, Y = sign(w)w> is a fixed point of system (5.9). Now suppose that Y is a

block diagonal matrix, i.e., Y = diag(Y (1), . . . , Y (K)), where each Y (i) is a ni× ni matrix

of the form sign(w(i))w(i)>, with |w(i)| � 0ni , and n1 + · · ·+nK = n. One can check that,

as long as

Y (i) = diag(|Y (i)|1n)−1Y (i)Y (i) (5.10)

for any i ∈ {1, . . . , K}, Y is a fixed point of system (5.9). Since Y (i) = sign(w(i))w(i)>,

following the same line of argument for the case in which Y only has one block, we

know that equation (5.10) holds for any i. Therefore, Y is a fixed point of system (5.9).

Moreover, given any fixed point Y , for any permutation matrix P ∈ Rn×n, since

PY P>=P diag(|Y |1n)−1Y Y P>=diag(|PY P>|1n)−1(PY P>)(PY P>)

=finfluence(PY P
>),

any X∗ ∈ Qinfluence is a fixed point of finfluence.

For any X∗ ∈ Qinfluence, there exists a permutation matrix P and a block diagonal

matrix Y in the form diag(Y (1), . . . , Y (K)) such that X∗ = PY P>. One can easily check

that Y has positive diagonals and is sign-symmetric. Moreover, G(Y ) is made up of

K isolated complete subgraphs. Therefore, for any triad (j, k, l) in G(Y ), there exists

i ∈ {1, . . . , K} such that nodes j, k, l are all in the subgraph G(Y (i)) with the adjacency

matrix Y (i) =
(
Y

(i)
jk

)
ni×ni

. Suppose Y (i) = sign(w(i))w(i)>, where w(i) = (w
(i)
1 , . . . , w

(i)
ni )
>.

We have

Y
(i)
jk Y

(i)
k` Y

(i)
`j = |w(i)

j ||w(i)
k ||w

(i)
l | > 0.
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Therefore, every triad is positive in graph G(Y ). Since G(Y ) has exactly the same

topology as G(X), but just with the nodes reindexed. We conclude that any X∗ ∈

Qinfluence is associated with a graph G(X∗) composed by isolated complete subgraphs

that satisfy social balance. This concludes the proof for statement (ii.

Now we prove that Qinfluence contains all the fixed points of system (5.9) in S+
rs-symm.

We the notations θi and Xj∗,θi in the same way as defined in the proof of Theorem 5.3.4,

and, in addition, define X∗j,θi as the j-th column of X with all the k-th entry such that

k /∈ θi removed.

Now we prove by induction that Qinfluence is actually the set of all the fixed point of

system (5.9). One can check that the trivial case of n = 1 is true. Suppose statement (i

holds for any system with dimension ñ < n.

For system (5.9) with dimension n, suppose X ∈ S+
rs-symm is a fixed point of the

system (5.9), i.e., X = finfluence(X). For any given j,

|Xij| =
1

‖Xi∗‖1

∣∣∣∑
k

XikXkj

∣∣∣ ≤ 1

‖Xi∗‖1

∑
k

|Xik||Xkj| ≤ max
k
|Xkj|, for any i,

and there exists some i such that |Xij| = maxk |Xkj|. Now we discuss two cases that

cover all the possible X’s.

Case 1: |Xjj| = maxk |Xkj| and |Xij| < maxk |Xkj| for any i 6= j. Since X ∈ S+
rs-symm,

X is sign-symmetric,

|Xjj| =
1

‖Xj∗‖1

∑
k

|Xjk||Xkj| = max
k
|Xkj|.

Due to the second equality in the equations above, |Xkj| = max` |X`j| for any k ∈ θj.

Therefore, in Case 1, i /∈ θj for any i 6= j, which in turn implies that Xji = Xij = 0 for
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any i 6= j. As the consequence, there exists a permutation matrix P such that

PXP> =

Xjj 0>n−1

0n−1 X̃

 ,
where X̃ is an (n− 1)× (n− 1) matrix. Following the same line of argument in the Case

1 of the proof of Theorem 5.3.4, we conclude that X ∈ Qinfluence.

Case 2: there exists i 6= j such that |Xij| = maxk |Xkj|. For such i, we have j ∈ θi.

In addition, the equality below

|Xij| =
1

‖Xi∗‖1

∣∣∣∑
k

XikXkj

∣∣∣ = max
k
|Xkj|

leads to the following two results:

R.1) sign(Xi∗,θi) = ± sign(X>∗j,θi);

R.2) |Xkj| = max` |X`j| for any k ∈ θi.

Result R.2) and j ∈ θi lead to |Xjj| = max` |X`j|. Therefore, for any k ∈ θj, |Xkj| =

max` |X`j|. Moreover, since X is sign-symmetric, for any k /∈ θj, Xjk = Xkj = 0.

For any i ∈ θj, since |Xij| = 1
‖Xi∗‖1

∣∣∣∑kXikXkj

∣∣∣, |Xij| = max` |X`j| implies that

|Xkj| = max` |X`j| for any k ∈ θi. Since k /∈ θj leads to k /∈ θi, we have θi ⊂ θj.

For any given i ∈ θj, since X ∈ S+
rs-symm, we know that Xii > 0 and Xji > 0.

Apply the same argument for the j-th column in Case 2 to the i-th column, we conclude

that Xii = max` |X`i| and |Xji| = max` |X`i|, the latter of which in turn implies that

|Xki| = max` |X`i| for any k ∈ θj. Moreover, since Xii = max` |X`i| leads to |Xki| =

max` |X`i| for any k ∈ θi and Xik = Xki = 0 for any k /∈ θi, we have θj ⊂ θi. Since

we already get θi ⊂ θj, we conclude that θj = θi for any i ∈ θj. In addition, due
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to Result R.1) and the facts that θi = θj and X is sign-symmetric, we obtain that

sign(Xi∗, θj) = sign(X>∗i,θj) = ± sign(X>∗j,θj) for all i ∈ θj.

Taking together all the results we have obtained for Case 2, we conclude that, for

any given j in Case 2: (1) |Xkj| = max` |X`j| for any k ∈ θj and Xkj = Xjk = 0 for any

k /∈ θj; (2) For any i ∈ θj, θi = θj. In addition, |Xki| = max` |X`i| for any k ∈ θj and

Xki = Xik = 0 for any k /∈ θj; (3) For any i ∈ θj, sign(X∗i) = sign(X∗j). Denote by

|θj| the cardinality of θj and define the |θj| × |θj| matrix X(θj) = sign(w(θj))w(θj)
>

, where

w(θj) = X>j∗,θj . There exists a permutation matrix P such that

PXP> =

 X(θj) 0|θj |×(n−|θj |)

0(n−|θj |)×|θj | X̃

 .
Following the line of argument in Case 1, we have X ∈ Qinfluence. This concludes the

proof for statement (i.

Remark 5.4.5 By carefully examining the proof for Theorem 5.4.4, one can observe that

Qinfluence is actually the set of all the fixed point of the map finfluence in S+
s-symm. However,

the set Qinfluence does not contain all the fixed points in Snz-row. For example, let X = αbb>

for some α > 0 and b ∈ {−1,+1}n. Then, pick one i ∈ {1, . . . , n} and set X∗i = 0n. It

can be easily verified that X = finfluence(X) but X /∈ Qinfluence.

Now we present the main results on the convergence of the appraisal network to social

balance.

Theorem 5.4.6 (Convergence and social balance in the IbM) Consider the influence-

based model given by equation (5.9). The following statements hold:

(i. Each fixed point of rank one in Qinfluence is locally stable.
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For any X(0)∈S+
rs-symm such that lim inf

t→∞
min
i,j
|Xij(t)|>0,

(ii) there exists X∗ ∈ Qinfluence of rank one such that limt→∞X(t) = X∗, and

(iii) there exists T > 0 such that G(X(t)) satisfies social balance for all t ≥ T .

Proof: We start by proving the following two claims. For any given t0 ≥ 0, if all

the entries of X(t0) are non-zero and G(X(t0)) satisfies social balance, then,

C.1) for any t ≥ t0, G(X(t)) satisfies social balance and sign(X(t)) = sign(X(t0));

C.2) there exists w ∈ Rn \ {0n}, depending on X(t0), such that X(t) converges to

sign(w)w> as t→∞.

Claim C.1) is proved in the same way as in the proof of Theorem 5.3.6. For any t ≥ t0,

since G(X(t)) satisfies social balance,

|Xij(t+ 1)| = 1

‖Xi∗(t)‖1

n∑
`=1

|Xi`(t)||X`j(t)|,

for any i and j. Therefore, for a given j, the previous expression leads to the following

two inequalities:

min
`
|X`j(t+1)| ≥min

`
|X`j(t)|; max

`
|X`j(t+1)| ≤max

`
|X`j(t)|. Therefore, min

`
|X`j(t)| is

non-decreasing and upper bounded by max
`
|X`j(t0)|, while max

`
|X`j(t)| is non-increasing

and lower bounded by min
`
|X`j(t0)|, which in turn implies that there exists 0 < ω ≤ ω,

depending on X(t0), such that

lim
t→∞

min
`
|X`j(t)| = ω, and lim

t→∞
max
`
|X`j(t)| = ω.

Suppose, at some time t ≥ t0, min
`
|X`j(t)| < max

`
|X`j(t)| and |Xpj(t)| = max

`
|X`j(t)|.
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For any i,

|Xij(t+1)|≥

∑
k 6=p
|Xik(t)|min

`
|X`j(t)|+|Xip(t)||Xpj(t)|

‖Xi∗(t)‖1

>min
`
|X`j(t)|.

Therefore, min
`
|X`j(t+ 1)| > min

`
|X`j(t)| and, similarly, max

`
|X`j(t+ 1)| < max

`
|X`j(t)|.

As the consequence, max
`
|X`j(t)|−min

`
|X`j(t)| is strictly decreasing as long as min

`
|X`j(t)| <

max
`
|X`j(t)|. Therefeore, ω = ω > 0, which implies that |Xij| converges for any i and j,

and the magnitude of the entries of X in the same column converge to the same value. In

addition, since sign(X(t)) = sign(X(t0)) for all t ≥ t0, we conclude that X(t) converges

to a matrix in the form sign(w)w>. This concludes the proof for claim C.2).

Now we prove statement (i, i.e., each X̂ ∈ Qinfluence with rank 1 is locally stable.

Let X̂ = sign(w)w>, where |w| � 0n. For any matrix ∆ ∈ Rn×n such that for any

k ∈ {1, . . . , n}, δk = maxi |∆ik| < |wk|, we have sign(X̂∗k + ∆∗k) = sign(X̂∗k). Due to

claim C.1) and the proof of claim C.2), we know that, for X(0) = X̂ + ∆, X(t) satisfies

that, for any t ≥ 0,

(1) sign(X(t)) = sign(X(0)) = sign(X̂);

(2) |wk|−δk≤mini |Xik(t)|≤maxi |Xik(t)|≤|wk|+δk.

Therefore, for any i, Xik(t) is of the form αik(t)sign(X̂ik), where 0 < |wk| − δk ≤ αik(t) ≤

|wk|+ δk. We have

∥∥∥X(t)− X̂
∥∥∥

max
=max

ij

∣∣αij(t) sign(X̂ij)−|wj| sign(X̂ij)
∣∣=max

ij

∣∣αij(t)− |wj|∣∣≤δ,
where δ = max

k
δk. Therefore, for any ε > 0, there exists δ = min{maxk |wk|

2
, ε

2
} such that,

for any X(0) satisfying ‖X(0)−X∗‖max < δ, ‖X(t)−X∗‖max < ε for any t ≥ 0. That

is, X̂ is locally stable.
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Now we proceed to prove the statements (ii) and (iii) of the theorem. For simplicity,

denote X+ = finfluence(X). Firstly, one can easily check that finfluence(X) is continuous

for any X ∈ S+
rs-symm. Secondly, for any X(0) ∈ S+

rs-symm and any k ∈ {1, . . . , n}, accord-

ing to the proof of Proposition 5.4.3, ‖X∗k(t)‖max ≤ ‖X∗k(0)‖max for any t ∈ Z≥0. In

addition, lim inf
t→∞

min
i,j
|Xij(t)| > 0 implies that there exists δ > 0 and t̃ ∈ Z≥0 such that

min
i,j
|Xij(t)| ≥ δ/2 for any t ≥ t̃. Therefore, the set

Gc =
{
X ∈ S+

rs-symm

∣∣∣ min
i,j
|Xij| ≥ δ/2, and, for any k, ‖X∗k‖max ≤ ‖X∗k(0)‖max

}

is a compact subset of S+
rs-symm and X(t) ∈ Gc for any t ≥ t̃. Thirdly, define V2(X∗k) =

‖X∗k‖max. The function V2 is continuous on S+
rs-symm and, according to the proof of

Proposition 5.4.3, satisfies V2(X+
∗k)−V2(X∗k) ≤ 0 for any X ∈ S+

rs-symm. According to the

extended LaSalle invariance principle presented in Theorem 2 of [164], we conclude that,

given any X(0) ∈ S+
symm such that lim inf

t→∞
min
i,j
|Xij(t)| = δ, X(t) converges to the largest

invariantset M of the set E = {X ∈ Gc | V2(X+
∗k)− V2(X∗k) = 0 for any k}.

Now we characterize the largest invariant set M . For any X ∈ M ⊂ E and k ∈

{1, . . . , n}, V2(X+
∗k) = V2(X∗k) = ‖X∗k‖max. Suppose |X+

ik| = max
`
|X+

`k|. Since

|X+
ik| =

1

‖Xi∗‖1

∣∣∣∣∣
n∑
`=1

Xi`X`k

∣∣∣∣∣ ≤ 1

‖Xi∗‖1

n∑
`=1

|Xi`||X`k| ≤ max
`
|X`k|, (5.11)

we need all of these inequalities to hold with equality Since X ∈ Gc ⊂ S+
rs-symm implies

|Xj`| > 0, for any j, ` ∈ {1, . . . , n}, X must satisfy that

(a) Xi∗ and X∗k have the same or opposite sign pattern, i.e., sign (X∗k) = sign (Xk∗) =

± sign (Xi∗),

(b) All entries of X∗k have magnitude ‖X∗k‖max.
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Therefore, for any X ∈ E and k, there exist some i such that the aforementioned

conditions (a) and (b) hold. Moreover, since the set M is invariant, X ∈ M implies

X+ ∈ M ⊂ E, which in turn implies that, for any p, |X+
pk| =

∥∥X+
∗k
∥∥

max
= ‖X∗k‖max.

Following the same argument on the conditions such that the inequalities (5.11) become

strict equalities, we know that, for any p, sign (Xp∗) = ± sign (X>∗k) and |Xpk| = ‖X∗k‖max

for any k. Using these relationships, we conclude that for any i and j, Xi∗ and Xj∗ must

have the same or the opposite sign pattern, and that |Xij| = ‖X∗j‖max. Let w = X>1∗.

Each row of X is thereby equal to either w> or −w>. Therefore, X is of the form

X = cw>, where c ∈ {−1, 1}n. Moreover, since all the diagonal entries of X are positive,

the column vector c must satisfy ciwi = 1 for any i, which implies c = sign(w). Therefore,

X = sign(w)w>. Thus, since any matrix X of the form sign(w)w>, with |w| � 0n, is a

fixed point of system (5.9), we conclude that

M = {X = sign(w)w> | δ/2 ≤ wi ≤ ‖X(0)‖max , w ∈ Rn \ {0n}, for any i ∈ {1, . . . , n}},

which is a compact subset of S+
rs-symm. Following the same line of argument in the proof

of Theorem 5.3.6, we conclude that there exists ε > 0 such that any X in the neighbor

set U(M, ε) satisfies social balance.

Since X(t) → M as t → ∞, there exists T ∈ Z≥0 such that X(t) ∈ U(M, ε) for any

t ≥ T . Therefore, X(t) satisfies social balance for any t ≥ T , which proves statement (iii).

Moreover, according to claim C.2) and Theorem 5.4.4, there exists X∗ = sign(w)w>,

which is a matrix in the set Qinfluence with rank one, such that X(t) → X∗ as t → ∞,

concluding the proof for statement (ii).

Extensive simulation results indicate that, under generic initial conditions X(0) ∈

S+
rs-symm, every entry of |X(t)| is uniformly strictly lower bounded from 0 for all t > 0.

This numerical result is further discussed in Section 5.5.
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5.5 Further discussion and numerical simulations

5.5.1 Generic convergence to rank-one appraisal matrix

According to Theorem 5.3.6, for any X(0) ∈ S+
s-symm such that lim inf

t→∞
min
i,j
|Xij(t)| > 0,

in the homophily-based model, the solution X(t) converges to some rank-one matrix of

the form αbb>. In this subsection, we use the Monte Carlo method to numerically verify

that lim inf
t→∞

min
i,j
|Xij(t)| > 0 holds for generic initial conditions in Snz-row. By generic

initial condition, we mean each of X(0)’s entries is selected independently and uniformly

at random from a support of positive measure. We consider the support to be [−a, a],

where a > 0. For any randomly generated X(0) ∈ Snz-row, define the random variable

Z : Snz-row → {0, 1} as

(i. There exists δ > 0 such that min
i,j
|Xij(t)| ≥ δ for any t ∈ {100, . . . , 10000};

(ii. Z(X(0)) = 0 otherwise.

Let p = P[Z(X(0)) = 1]. For N independent random samples Z1, . . . , ZN , in each of

which X(0) ∈ Snz-row is a generic initial condition, define p̂N =
∑N

i=1 Zi/N . For any

accuracy 1− ε ∈ (0, 1) and confidence level 1− ξ ∈ (0, 1), |p̂N − p| < ε with probability

greater than 1 − ξ if the Chernoff bound is satisfied: N ≥ 1
2ε2

log 2
ξ
. For ε = ξ = 0.01,

the bound is satisfied by N = 27000. We ran the 27000 independent simulations of the

homophily-based model with n = 8 and a = 20, and found that p̂ = 1. Then, we conclude

that for any generic initial condition X(0) ∈ Snz-row, with 99% confidence level, there is

at least 0.99 probability that every entry of |X(t)| is lower bounded by a positive scalar

for all t ∈ {100, . . . , 10000}.

The Monte Carlo method under the same settings is applied to the influence-based

model, except that now the generic initial conditions X(0) ∈ S+
rs-symm ⊂ Rn×n is generated

by the following steps: 1) Randomly and independently generate the diagonal and the
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upper triangular entries of a matrix X̂ ∈ Rn×n, according to some uniform distribution;

2) Let X̂ij = X̂ji for any i > j; 3) Randomly and independently generate the entries of

a n × 1 vector γ, according to some uniform distribution with some positive interval as

the support; 4) Let X(0) = diag(γ)X̂. Not surprisingly, we obtained the same results

as the homophily-based model. That is, for any generic initial condition X(0) ∈ Snz-row,

with 99% confidence level, there is at least 0.99 probability that every entry of |X(t)| is

uniformly strictly lower bounded from 0 for all t ∈ {100, . . . , 10000}.

5.5.2 Multi-clique social balance and perturbation

1) The initial conditions leading to multi-clique social balance: Despite the generic

convergence to complete graphs, for both the homophily-based and the influence-based

models, there exists some special initial conditions leading to the multi-clique social

balance. By clique we mean an isolated subgraph (Negative links are counted as links),

and by multi-clique social balance we mean that the appraisal network consists of multiple

cliques and each of them satisfies social balance. For example, let

X(0) =


1 1 1

0.5 −1 0.5

−0.5 1 −0.5

 , X̂(0) =


−1 −1 0

−1 1 −2

0 −2 −1

 .

For the homophily-based model, the initial condition X(0) eventually results in the for-

mation of two isolated cliques with node sets {1} and {2, 3} respectively. For both the

homophily-based and the influence-based models, the initial condition X̂(0) results in

the formation of two isolated cliques with node sets {2} and {1, 3}.

2) Multi-clique social balance under perturbation: For the homophily model, ex-

tensive simulation observations indicate that the multi-clique social balance is unstable
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(a) no link added (b) t=0 (c) t=1 (d) t=6

Figure 5.1: Visualization of the evolution of the appraisal matrix under perturba-
tions. For each entry, the red color indicates a positive appraisal, while the blue color
indicates a negative one. The white color indicate no appraisal. The appraisal net-
work has 17 nodes and is initially in a multi-clique structurally balanced state with
three isolated balanced cliques. With 6 links (4 positive and 2 negative links) added
to the network, the appraisal network evolves to a single-clique structurally balanced
state after 6 iterations.

under perturbations. With some links added to the multi-clique structurally balanced

network, the perturbed network eventually converges to a single-clique structurally bal-

anced state, see Fig. 5.1 as a concrete example. The following two examples illustrate

the behavior of multi-clique social balance under perturbations.

Example 1: (Globalization of local conflicts) Consider the appraisal network with two

isolated cliques. Each clique is made up of two antagonistic factions. Clique 1 has two

factions, with node sets V1 and V2 respectively, and Clique 2 also has two factions, with

node sets V3 and V4 respectively. Suppose one link with weight ε is added from one node

in V1 to one node in V3. We find that the perturbed appraisal network always recovers

to a complete and structurally balanced network such that:

(i. It is composed of two antagonistic factions;

(ii. If ε > 0, the two factions are V1 ∪ V3 and V2 ∪ V4;

(iii. If ε < 0, the two factions are V1 ∪ V4 and V2 ∪ V3.

Figure 5.2 visualizes the behavior described above. In reality, such behavior could be

interpreted as the escalation of local conflicts. In the example above, the two original
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-
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V1 V2

V3 V4

-✏ < 0

V1 [ V4

V2 [ V3

(b) ε < 0

Figure 5.2: Visual illustration of the behavior of the multi-clique social balance with
the addition of one inter-clique link.

conflicting relations, i.e., V1 v.s. V2 and V3 v.s. V4, are escalated into global conflicts

between two reunified factions V1 ∪V2 and V3 ∪V4, once a node in V1 builds a connection

with V3. One real example of such phenomena is the formation of the globalized conflicts

between the Axis and the Ally in World War II, after the Nazi German allied with the

Imperial Japan.

Example 2: (Competition for ally and mediation of conflicts) Consider an appraisal

network with two isolated cliques: Clique 1 with two antagonistic factions V1 = {1, . . . , n1}

and V2 = {n1 + 1, . . . , n1 + n2}, and Clique 2 with only one faction V3 = {n1 + n2 +

1, . . . , n1 + n2 + n3}. Suppose the appraisal matrix associated with Clique 1 is given

by αbb>, where b = (1>n1
,−1>n2

)>, and α > 0 represents the sentiment strength inside

Clique 1. Similarly, the appraisal matrix associated with Clique 2 is given by α̂b̂b̂>,

where b̂ = 1n3 and α̂ > 0 represents the sentiment strength inside Clique 2. Imagine

then that both cliques V1 and V2 would aim to ally with V3 in order to grow the number

of their members. Accordingly, suppose that, in order to ally with V3, each node in V1

builds a bilateral link with each node in V3, with link weight ε1 > 0, while each node in

V2 builds a bilateral link with each node in V3 with weight ε2 > 0. With all these links
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added, the associated appraisal matrix takes the following form:

X(0) =


α1n11

>
n1

−α1n11
>
n2

ε11n11
>
n3

−α1n21
>
n1

α1n21
>
n2

ε21n21
>
n3

ε11n31n1 ε21n31
>
n1

α̂1n31
>
n3

 .

Along the evolution of X(t) determined by X(0), we obtain the following numerical

results.

(i) If ε1n1 > ε2n2, i.e., faction V1 takes greater effort than V2 in allying with V3, then

faction V1 gains at least one ally, either V2 or V3, which is a situation more in favor of V1

than V2. Moreover, the following conditions:

ε1n1 − ε2n2 ≥ α̂ε2n3/α and ε1ε2n3 ≤ α2(n1 + n2)

guarantee that V1 ally with V3; This argument also holds when all the subscripts 1 and

2 are switched;

(ii) If ε1ε2n3 ≤ α2(n1 + n2), then V3 eventually gains at least one ally. That is, V3

avoids the situation in which V1 and V2 end up allying with each other against V3;

(iii) Any of the following conditions guarantees the non-existence of any negative

link in the asymptotic state of the appraisal network: (1) ε1ε2n3 ≥ α2(n1 + n2) and

ε1n1 − ε2n2 = 0; (2) ε1ε2n3 ≥ α2(n1 + n2) and 0 < ε1n1 − ε2n2 ≤ ε2α̂n3; (3) ε1ε2n3 ≥

α2(n1 + n2) and 0 < ε2n2 − ε1n1 ≤ ε1α̂n3. Notice that the inequality

ε1ε2n3 ≥ α2(n1 + n2)

is required for all the three sufficient conditions. The right-hand side of the inequality

above reflects the “scale” of the conflicts between factions V1 and V2, while the left-hand
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side is V1 and V2’s average efforts in allying with V3, multiplied by the size of V3. From the

three sufficient conditions, we learn that, the larger the size of V3, the more capable it is

of mediating the conflicts between V1 and V2. In addition, V1 and V2’s strong willingness

to ally with V3, as well as the sentiment strength inside V3, i.e., α̂, also help mediate the

conflicts.

5.5.3 Distribution of initial conditions and formation of factions

in the homophily-based model

We investigate numerically, for the homophily-based model, the relation between the

initial condition distribution and the formation of factions. The question of interest is

whether the appraisal network evolves to only one faction or two antagonistic factions. We

randomly and independently sample the entries of X(0) from the uniform distribution

with support [xmin, xmax]. The quantity xmax − xmin indicates how spread out are the

possible values taken by the initial appraisals, while ave(xmin, xmax) = (xmax + xmin)/2

indicates how the initial appraisals are biased towards being positive. Given [xmin, xmax],

we independently generate 30 random samples of the initial condition X(0) and count

how many factions appear at X(500). The simulations are conducted under two different

set-ups:

Case 1: We set xmax − xmin = 2 and change the values of ave(xmin, xmax) and the

number of agents. Since any X(0) and −X(0) lead to the same X(1) and X(t) thereafter,

we only consider different values of ave(xmin, xmax) ≥ 0. Figure 5.3(a) shows that, for

fixed network size, the smaller the value of ave(xmin, xmax), the more likely is to find two

antagonistic factions; for fixed value of ave(xmin, xmax), the larger the network size, the

more likely that only one faction emerges.

Case 2: We set ave(xmin, xmax) = 1 and change xmax−xmin. Figure 5.3(b) shows that,

207



Dynamics Structural Balance via Homophily and Influence Mechanisms Chapter 5

3 33 63 93 n
0
0.1

0.3

0.5

0.7
ave(xmin, xmax)

(a) Case 1
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(b) Case 2

Figure 5.3: Formation of factions under different initial condition distributions. The blue

color indicates the presence of two factions in all the 30 random samples, while the yellow

color indicates the presence of one factions in all of the samples. The green color indicates

any other case.

for fixed network size n, the larger xmax − xmin, the more likely to find two antagonistic

factions; For fixed xmax− xmin, the larger the network size, the more likely that only one

faction emerges.

5.6 Conclusion

This chapter proposes two novel discrete-time dynamical models for the bounded

evolution of interpersonal appraisal networks towards social balance. Under a technical

condition, theoretical analysis shows that both models exhibit asymptotic convergence to

structurally balanced networks. Each model uses different social updating mechanisms for

updating the appraisals and, as a result, the asymptotic balanced states are qualitatively

different between the two models. Numerical study indicates how the final emergence of

factions in the social network is sensitive to the initial distribution of appraisals among

its agents. Moreover, our models admits the existence of two or more isolated cliques in

the final structure of the evolved social network, and simulation results reveal interesting
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sociological phenomena when they are under certain classes of perturbations. Possible

future research directions include a better understanding of the influence-based model for

arbitrary initial conditions, a validation of the proposed models with laboratory and/or

field data, the study of asynchronous models with pairwise updates, and the study of

conditions and cases in which one socio-psychological mechanism dominates the other.
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In this part we briefly introduce some potentially interesting general future research

directions regarding social network dynamics.

Opinion evolution as the best-response dynamics

Consensus in opinion dynamics has been widely studied. The classic DeGroot model

predicts consensus when the influence network contains a globally reachable node [2].

However, in reality, one can observe that, opinion consensus usually occurs only in groups

with relatively small sizes, while persistent disagreement and even opinion polarization

are common phenomena in large-scale social networks. Most of the current models explain

the presence of persistent disagreement by incorporating some additional assumptions

into the DeGroot model, such as the lack of network connectivity [2], the presence of

negative weights in the influence network [165], the existence of stubborn nodes [166],

the individuals’ bounded confidence [167], and the individuals’ persistent attachment

to their initial opinions [168]. These additional assumptions do not fully capture the

roles network structure and network size play in the emergence of opinion disagreement

and polarization. In fact, if we consider the evolution of individuals’ opinions as a best

response dynamics, see the recent work by Bindel et al. [169], we can find that, the

cost function for DeGroot model takes the quadratic form, which implies the individuals’

unrealistically high sensitivity to opinions distant from their own. The high sensitivity to

distant opinions forces the individual opinions to converge to consensus. One could expect

that, by only modifying the cost function, a novel opinion dynamics model would be

derived. The new model will reveal some interesting sociological insights and bifurcation

behavior, and serves as a unified framework connecting different opinion dynamics such

as the averaging protocols and the voter models. Moreover, it is also interesting to study

the particularly interesting case in which individuals in the network have heterogeneous

forms of cost functions.
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Dynamic social balance as network games

Structural balance theory is a classic highly-successful framework from mathematical

sociology [139, 170] aiming to describe allowable and forbidden configurations of topolo-

gies of signed directed social sentiment networks. A key research trend in the last decade,

see [157, 106, 162], has been the development of dynamic balance theories to describe

how a network moves towards structural balance from an initially unbalanced configu-

ration. Only very limited attention [160, 171] has been paid so far on game theoretical

models of balanced networks and on network games informed by cognitive dissonances in

interpersonal relations. Important progress can be made by a synergistic integration of

strategic interests and psychological response to cognitive dissonances. Specifically, the

game-theoretic dynamic structural balance model could be mathematically formalized

based on the following two mechanisms, corresponding to individuals’ strategic interests

and psychological response to cognitive dissonance respectively. The strategic mecha-

nism assumes that individuals benefit from friendly social links. The utility obtained

from each friendly link is proportional to the link weight, i.e., the strength of friendship,

which in turn increases with the number of common friends and common enemies. The

psychological mechanism is relevant to the concept of ego-network, i.e., the subgraph

made up of the individual itself, all its social neighbors and all the social links among

these nodes. Individuals change the signs of their own social links to minimize the num-

ber of unbalanced triads in their ego-networks. In addition, it remains an open problem

to study the noisy settings and characterize appropriate notions of approximate balance,

and stochastic stability.

Further mathematical formalization of transactive memory systems (TMS)

The assign/appraise/influence dynamics proposed in [172] applies to the class of team

tasks that are completed by allocating resources or assigning workloads to the team
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members. The individuals interact with each other in a decentralized manner and the

system asymptotically achieve optimal team performance. Based on the previous work,

it would be of significant research value to further investigate the role of TMS in two

other types of tasks: the role-playing tasks and the group decision-making tasks. In a

role-playing task, a team need to assign its members to multiple roles requiring different

sets of skills, which can be mathematically modeled as an assignment problem [173]. On

the other hand, in a group decision-making task, a team consisting of individual members

with heterogeneous information sets is required to make a single or a sequence of collective

decisions/motions. This process naturally involves the influence systems [141, 174], which

have been extensively studied in mathematical sociology. For both types of tasks, there

is currently a dearth of mathematical models that characterize how the TMS facilitates

the development of performance and how certain network structures inside a team evolve

along the task sequence. Potentially, theoretical analysis of such models might lead to

some well-motivated “socio-inspired” distributed optimization algorithms.

Novel model connecting team performance, evolutionary dynamics, and struc-

tural balance

Researchers in sociology and management science have long been interested in inves-

tigating the relation between team performance and structural balance. Evolutionary

games might provide an innovative tool to approach this problem mathematically. In

evolutionary games, matrix games with symmetric payoff matrices are referred to as

partnership games [175]. For such games, the corresponding replicator equation is writ-

ten as,

ẋ = diag(x)
(
Ax− (x>Ax)

)
,

where A ∈ Rn×n is symmetric and x is in the n-simplex. It is known that for any initial

condition in the simplex, along the replicator dynamics, x>(t)Ax(t) is non-decreasing.
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If we interpret this system as the dynamics of team performance, in which x denotes

the resource allocation or workload assignment among the team members and each Aij

denotes the productivity of the collaboration between team member i and j, we could

observe that, along the dynamics, the team productivity (performance), characterized by

x>(t)Ax(t) is non-decreasing. Furthermore, if we allow the entries of A to be negative,

it would be an interesting problem to investigate how the sign pattern of the graph G(A)

associated with the adjacency matrix A influence the asymptotic team productivity. It

remains an open question whether and in what sense a structurally balanced network

G(A) leads to better asymptotic team productivity.

Mathematical connections between random graph models and network dy-

namical systems

One of the main difficulties in the research on large-scale networks is the lack of

complete and well-quantified local details. Generally speaking, there are currently two

widely-adopted approaches to deal with this difficulty. The first approach is to model

the large-scale networks as random graphs. The advantage of this approach is that,

some of the global characteristics of the random graphs, e.g., the degree distribution and

the diameter, are relatively easy to be statistically estimated using the rapidly growing

technology of data mining. The second approach is to first assume that the network has

an arbitrary topology with all the connections well-quantified and known, then derive

the theoretical results that do not depend on all the local details of the network. The

advantage of the second approach is that, more sophisticated and realistic dynamical

processes can be modeled and understood based on the well-established mathematical

tools in dynamical systems, matrix analysis and algebraic graph theory. These two

approaches are both powerful. However, they often lead to different and inconsistent

conclusions for the same dynamical process being modeled. Take the epidemic spreading
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model as a concrete example. The epidemic threshold obtained by the random graph

approach is determined by the nodes’ degree distribution, while the second approach

gives the threshold as a function of the spectral radius of the contact network’s adjacency

matrix. It is still unknown how this spectral radius relates to the degree distribution.

Due to the inconsistency between these two approaches, it is of great scientific value to

investigate the fundamental mathematical connections between the random graph models

and the network dynamics built on algebraic graph theory.
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[44] P. E. Paré, C. L. Beck, and A. Nedić, Epidemic processes over time-varying
networks, IEEE Transactions on Control of Network Systems (2017). to appear.

[45] C. Nowzari, V. M. Preciado, and G. J. Pappas, Optimal resource allocation for
control of networked epidemic models, IEEE Transactions on Control of Network
Systems 4 (2017) 159–169.

[46] E. Ramı́rez-Llanos and S. Mart́ınez, A distributed dynamics for virus-spread
control, Automatica 76 (2017) 41–48.

[47] S. Goyal, H. Heidari, and M. Kerans, Competitive contagion in networks, Games
and Economc Behavior (2014). in press.
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