
Scuola Superiore Meridionale
University of Naples Federico II

Doctoral Thesis
in Modeling and Engineering Risk and Complexity

Contracting Dynamics for
Biologically Plausible Neural Networks

and Optimization

Author:
Veronica Centorrino

Supervisors:
Prof. Francesco Bullo
Prof. Giovanni Russo

Submitted in fulfilment of the requirements for
the degree of Doctor of Philosophy in
Modeling and Engineering Risk and Complexity.
Coordinator: Prof. Mario di Bernardo.

Modelling and Engineering
Risk and Complexity

December 12, 2024





...alwayS

To my family.

iii



iv



Abstract

Our brain is perhaps one of the most striking examples of complex systems: about 1010
neurons, interconnected by approximately 1015 recurrent synaptic connections, capable
of adapting and learning through local synaptic rules, continuously solving optimization
problems like sparse representation. While artificial neural networks (ANN) were initially
inspired by natural networks, nowadays they have significantly diverged from biological
realism, driven by performance criteria. As a result, ANNs still exhibit errors and
biases that are absent in natural networks and that cannot be explained and quantified a
priori. This naturally raises important questions: What if we could design ANNs with
today’s performance, but that more closely mimic the way natural networks work? How
can we obtain biologically plausible models and how can we guarantee their stability
and robustness? What optimization problems do natural networks solve, and how can
biologically plausible neural networks mimic these processes? Can we create a normative
framework translating optimization problems into ANNs that are guaranteed to converge
to equilibria representing optimal solutions of the initial optimization problems?

Motivated by these exciting open challenges, in this thesis we aim at laying the
theoretical groundwork for the modeling and understanding of neural networks that
align more closely with biological principles. We propose a normative framework that
translates complex tasks, described as optimization problems, into biologically plausi-
ble neural networks that are guaranteed to converge to equilibria corresponding to the
optimal solutions. Our models incorporate core principles of natural networks: the use
of continuous-time dynamical systems for both neural and synaptic changes, recurrent
connections, positivity of the system, and local learning rules. Specifically, for the
neural dynamics we focus on two widely used recurrent neural network (RNN) mod-
els – the Hopfield neural network (HNN) and the firing rate neural network (FNN) –
and model synaptic weight dynamics using continuous-time Hebbian learning rules. To
ensure stability and robustness of our models, we leverage contraction theory, a robust
computationally-friendly stability tool from control theory. This approach offers a signif-
icant advantage: with a single condition, it guarantees global exponential convergence,
along with a number of highly ordered transient and asymptotic behaviors of contracting
dynamics, which are advantageous for our objectives.

We begin our analysis by developing essential theoretical tools to analyze relevant
neural dynamics, filling a gap in the literature by establishing conditions for strong
and weak Euclidean contractivity of RNNs with locally Lipschitz activation functions.
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Remarkably, our lower bound on the contraction rate is log-optimal for almost all sym-
metric weight matrices, making our results sharp – they are the best achievable within
this framework. Additionally, we establish new algebraic results on matrix polytopes
and symmetric matrix products, advancing both neural network stability and broader
applications in matrix theory and optimization.

Building on these theoretical results, we propose a top-down normative framework
for designing biologically plausible networks that solve sparse reconstructions and other
optimization problems. This framework is based upon the theory of proximal operators
for composite optimization and leads to continuous-time firing rate neural networks –
the firing rate competitive network – that are therefore interpretable. We analyze the
behavior of these dynamics, establishing a direct link between the network equilibria and
the optimal solutions of sparse reconstruction problems. Under a standard assumption,
we prove that the dynamics converge linear-exponentially (and thus globally) to the
equilibrium. Importantly, we show that the positive variant of the firing rate competitive
network preserves non-negativity in its state variables, aligning with biological principles
and further underscoring the plausibility of the model.

In the second part, we explore the interaction between neural and synaptic dynamics
by embedding Hebbian learning rules into the continuous-time RNN models of the first
part. This results in the coupled neural-synaptic networks: RNNs with dynamic synaptic
connections that closely mirror biological processes. We propose and analyze these sys-
tems, combining HNNs and FNNs with Hebbian learning rules. For these dynamics, we
propose a low-dimensional formulation that captures synaptic sparsity of neural circuits.
We establish sufficient conditions for the contractivity of each model by leveraging non-
Euclidean contraction arguments. Additionally, we demonstrate biologically plausible
forward invariance results and show that under suitable conditions, the models satisfy
Dale’s Principle – an empirical principle referring to the fact that a neuron has either
only excitatory or only inhibitory synapses – further enhancing biological plausibility.

In the final part of the thesis, we explore the potential of a contractivity-based ap-
proach for optimization. We begin by translating canonical static optimization problems
into continuous-time dynamical systems, establishing conditions for strong infinitesimal
contractivity. For both static and time-varying optimization problems, we derive con-
tractivity conditions and, in certain cases, demonstrate improved convergence rates. Our
work includes two key results on equilibrium tracking in parameter-varying contracting
dynamics, addressing both known and unknown rates of parameter change. Addition-
ally, we extend our analysis to convex optimization problems with unique minimizers.
We show that these problems lead to dynamics that are globally-weakly contracting in
the state space and only locally-strongly contracting. For these dynamics, we present
a detailed convergence analysis, showing that convergence is linear-exponential. This
means that the distance between each solution and the equilibrium is upper-bounded by
a function that first decreases linearly and then exponentially. We also provide input-
to-state stability conditions for these dynamics, further strengthening the robustness and
applicability of the approach.

We conclude by highlighting potential future directions and with an appendix with
novel complementary results on the Euclidean contractivity of FNNs with dissipation.
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1 Introduction

Problems worthy of attack prove
their worth by fighting back.

Paul Erdos

This thesis proposes a normative framework for translating optimization problems
into biologically plausible neural networks that are guaranteed to converge to equilibria
corresponding to optimal solutions of the optimization problem. These neural networks
are systems that more closely align with the principles governing natural neural net-
works. We aim to model and analyze such systems, using contraction theory – a robust
computationally-friendly stability tool from control theory – to establish conditions en-
suring their stability and robustness, and use these models to solve static and time-varying
optimization problems.

Part of this thesis was conducted during research visits abroad. Specifically, from
September 2022 to August 2023, I was at the University of California, Santa Barbara,
working in Professor Francesco Bullo’s lab at the Center for Control, Dynamical Systems,
and Computation. Additionally, in May and June 2023, I was at the Automatic Control
Laboratory at ETH Zürich, hosted by Professor Florian Dörfler.

1.1 Context of the Research Topic

Our brain is one of the most complex systems in nature: about 1010 neurons, intercon-
nected by approximately 1015 recurrent synaptic connections [1]. These neurons are
capable of adapting and learning through local synaptic rules [2], continuously solving
complex optimization problems. A notable example is sparse representation [3], where
biological neural networks efficiently process information using minimal resources.

Attempt to mimic the computations of natural neural networks is what originally
inspired [4] artificial neural networks (ANNs). However, over time, most ANNs have
diverged significantly from biological realism, driven by performance criteria. Today,
the principles guiding ANNs are quite different from those governing biological net-
works. A clear example of this divergence is the backpropagation algorithm [5], the most
commonly used learning algorithm in ANNs. Backpropagation is indeed recognized to
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be biologically implausible [6, 7, 8, 9]. The key reason is that it violates the local nature
of synaptic changes observed in biological neurons. To see this, consider a synaptic
connection between a pre-synaptic neuron j and a post-synaptic neuron i, say it Wij . In
backpropagation, changes to Wij depend not only on the activities of neurons i and j, but
also on the activities of other neurons of the network. This non-locality contrasts with
biological networks, where synaptic changes are local, that is changes to Wij depend
only on the activities of the pre- and the post-synaptic neuron.

Despite these differences, ANNs have achieved impressive results, even surpassing
human performance in specific tasks, see, e.g., [10, 11]. However, ANNs still exhibit
errors and biases that cannot be explained and quantified a-priori and that are absent in
biological neurons [12]. For example, ANNs typically require extensive training with
large datasets, may lack generalization ability, and can be unstable, with small changes
in input leading to significant errors in output [13].

Given the success of ANNs, one might ask: why should we care about the differences
between artificial and biological neural networks? The reason lies in what should be the
broader goal of AI development. If the aim is to outperform humans on isolated tasks,
the current trajectory of ANN development might suffice. However, if the aim is to create
general-purpose artificial network that overcomes the actual limitations of ANN, under-
standing the algorithms governing biological neural networks becomes highly relevant.
Quoting [14]: “Natural NNs must contain some “secret sauce” that artificial NNs lack.
This is why we need to understand the algorithms implemented by natural NNs and go
back to models that mimic the computations of such complex systems.”

Motivated by these challenges, our research seeks to model and understand ANNs
that more closely align with the principles governing natural networks. The moonshot
objective is to develop trustable neural networks: robust systems with the ability, typical
of human intelligence, to generalize, compose, and abstract knowledge from data.
While it is unrealistic to expect an exact replication of the complex dynamics in biological
brains, we aim to develop models that respect some key biological constraints. Our
approach does not attempt to reproduce all the intricate biological details. Instead, we
focus on a few fundamental principles, including (i) positivity of the system, that is non-
negative neuronal outputs [15, 16], and (ii) locality of the learning rules, that is synaptic
weights are updated based on local learning rules [2].

Recent advances in neuroscience have provided valuable insights into how popu-
lations of neurons compute information. Research has increasingly shifted towards a
dynamical systems perspective [17, 18, 19], where neural populations are seen as evolv-
ing systems that perform computations over time [20, 21]. In this framework, neural
responses are treated as trajectories in high-dimensional state spaces, influenced by both
the internal dynamics of the network and external inputs. Recurrent neural networks
(RNNs), in particular, have proven useful as models for brain dynamics, as they allow
for the study of high-dimensional, distributed, and time-varying neural activity. From
a computational perspective, an important feature of RNNs is that they are modeled as
nonlinear dynamical systems. This allows for the use of well-established techniques to
analyze and understand the properties of those systems. For example, tools from control
theory can be employed to ensure the stability and robustness of RNNs. Specifically,
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the tool that we are gonna use throughout this thesis, is contraction theory. The main
motivation for looking for contracting dynamics is that with just a single condition, global
exponential convergence, along with a number of highly ordered transient and asymptotic
behaviors of contracting dynamics, are guaranteed (we expand on why contraction theory
is useful in this context in Section 1.3).

Understanding neural dynamics, however, is only one part of the puzzle. To build
biologically plausible artificial systems, we must also consider how synaptic plasticity –
changes in synaptic connections over time – is modeled. As emphasized in [22],

“Model neural networks, abstractions from neurobiology, are conceived in terms of two
different kinds of variables. One class of variables represents the activity of the nerve
cells, or ‘units’. The other class of variables describes the synapses, or connections,

between the nerve cells. A complete model of an adaptive neural system requires two
sets of dynamical equations, one for each class of variables, to specify the evolution and

behavior of the neural system (...).”

This insight suggests that continuous-time dynamical systems are essential not only
for modeling neural dynamics but also for capturing synaptic changes (allowing for dif-
ferent time scales). Incorporating such synaptic dynamics is a key aspect of biologically
plausible models, yet quite underexplored [22, 23, 24].

In this context, a normative approach to translate complex tasks, that mathematically
can be described by optimization problems that model natural network mechanisms,
into biologically plausible neural networks is still missing. The main advantage of such
approach is that it provides a direct way to investigate the underlying principles of neural
functioning – via the properties of the biologically plausible neural networks – while
offering a mathematically tractable framework for understanding these mechanisms. At
its core, this challenge can be seen as that to solve complex optimization problems
using biologically plausible neural networks, which take the form of continuous-time
dynamical systems. This process involves two key steps: (i) establishing the equivalence
between the optimal solutions of the optimization problem and the equilibrium points of
the network dynamics, and (ii) identifying conditions that guarantee stable convergence
of these dynamics to their equilibria. Contraction theory will play a crucial role in
ensuring both stability and convergence of the dynamics of our interest, as discussed in
later chapters.

This area of research pushes the boundaries of our understanding of neural networks,
bridging fields such as neuroscience, machine learning, optimization, control theory, and
applied mathematics. In this thesis, we build on these ideas, by proposing a multidis-
ciplinary approach that integrates concepts across diverse fields to lay the groundwork
for how contractions theory can be used in the context of biologically plausible (stable)
neural networks and optimization.
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1.2 Key Research Questions
In the context of the scenario discussed in the previous section, the main objective of
this thesis is to establish a normative framework to translate optimization problems into
biologically plausible NNs that are guaranteed to converge to equilibria corresponding
to the optimal solution to the starting problem. We aim to model and analyze such ANN
systems, leverage contraction theory to establish conditions that ensure their stability
and robustness, and use those dynamics to solve (static or time-varying) optimization
problems. To achieve this, several key questions guide our research:

1. How can we obtain biologically plausible models and how can we guarantee
stability and robustness of those dynamics?

2. What are the functional implications of these models? That is, what mechanisms
(optimization problems) do natural neural networks solve, and how can biologically
plausible neural networks mimic these processes?

3. Can we derive a normative framework to translate optimization problems into NNs
that are guaranteed to converge to equilibria corresponding to the optimal solution
to the corresponding problem?

4. Given a neural network in which both neural and synaptic change are ruled by
continuous-time dynamics, can we establish conditions that guarantee the stability
of these systems?

5. Can we effectively use contraction theory to study the stability and robustness of
those systems?

6. Given the characteristics of contracting systems, can a contractivity-based approach
be effectively applied to track solutions to time-varying optimization problems?

7. In many convex optimization problems, the associated dynamics are non-expansive.
In such cases, under what conditions can we guarantee convergence? Additionally,
what is the converge behavior for such dynamics?

These questions form the foundation of our research. In the following chapters, we
address these questions through a rigorous theoretical and interdisciplinary approach that
combines insights from computational neuroscience, control theory, monotone operator
theory, and optimization. With our results, we aim to propose an alternative way to how
model and analyze biologically plausible neural networks. At the same time, we aim to
provide theoretical insights useful in broader contexts, such as the analysis of non-smooth
neural networks, nonlinear dynamical systems, static and time-varying optimization –
areas with a plethora of practical applications. The long-term objective of this project is
to obtain trustable neural networks, i.e., robust neural networks having the ability typical
of human intelligence to generalize and abstract knowledge from data. While there
are many challenges ahead, our goal is to lay a possible groundwork for achieving this
ambitious goal. Further discussions on potential future work are presented in Chapter 13.
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1.3 Contraction Theory: What and Why?
Contraction theory is the central analytical tool used throughout this thesis to charac-
terize stability and robustness of continuous-time dynamical models. While we refer to
Chapter 4 for a comprehensive review of contraction theory, it is important to highlight
the reasons why contracting dynamics are particularly well-suited for our analysis.

In dynamical neuroscience, biologically plausible continuous-time neural network
models are widely studied to simplify and understand complex neural dynamics. These
models must account for uncertainties such as unmodeled dynamics and delays. For
instance, central pattern generators (CPGs) are biological neural circuits responsible for
rhythmic behaviors like walking and swimming. To properly model CPGs in neural
networks, one needs to ensure that, if a neural network is interconnected with a CPG,
then all trajectories of the neural network converge to a unique stable limit cycle.

In optimization a growing body of work focuses on synthesizing continuous-time
dynamical systems that converge to equilibria that are also optimal solutions of the
corresponding optimization problem. Consequently, significant research effort has been
dedicated to characterizing the stability and convergence rates of these systems, along
with their robustness against uncertainty. In many applications, optimization algorithms
must operate in real-time on time-varying problems, such as tracking a moving target or
online learning. In these contexts, the dynamical system should converge to the unique
optimal solution when the problem is time-invariant or to an explicitly computable
neighborhood of the optimal solution trajectory when the problem is time-varying.

Remarkably, these challenges can be effectively addressed using contracting dy-
namics. Indeed, contracting systems exhibit highly ordered transient and asymptotic
behaviors, which are advantageous in the above contexts. For example: (i) initial con-
ditions are exponentially forgotten [25]; (ii) for time-invariant dynamics, there exists a
unique globally exponential stable equilibrium [25]; (iii) contraction ensures entrainment
to periodic inputs [26] and implies robustness properties such as input-to-state stability,
also when there are delayed dynamics [27, 28]. Moreover, efficient numerical algorithms
can be devised for numerical integration and fixed point computation of contracting
systems [29]. For a more extensive list of these properties, we refer to Section 4.4.

1.4 Contributions of This Work
This section summarizes the main contributions of this thesis. Detailed statements
and references for each contribution are provided in the corresponding chapters. In
Chapters 2, 3, and 4 we introduce the main definitions, notations and review the main
dynamical models and analytical tools needed for our analysis. With these, we give an
answer to the research question number 1 in Section 1.2.

Next, in Chapter 5, we begin our analysis by developing the theoretical tools neces-
sary to analyze the stability of the dynamics resulting when solving sparse reconstruction
problems and other optimization problems. Specifically, we investigate stability con-
ditions of two commonly used RNN models, i.e., the Hopfield neural network (HNN)
and the firing rate neural network (FNN) by leveraging contraction theory. Initially, we
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present several useful algebraic results on matrix polytopes and products of symmetric
matrices. Then, we give sufficient conditions for strong and weak Euclidean contractivity
of both models with symmetric weights and possibly non-smooth activation functions.
The main contributions of this chapter, which includes results published in a paper
that received the 2024 IEEE Control Systems Letters Outstanding Paper Award, can be
summarized as follows.
Contribution 1: We provide a set of sufficient conditions characterizing strong and
weak infinitesimal contractivity of continuous-time HNNs and FNNs with symmetric
weights and possibly non-smooth activation functions. This result is crucial for our
analysis, enabling the use of common activation functions such as ReLU and soft-
thresholding functions.
Contribution 2: We establish lower bounds on the contraction rates and prove that
these bounds are log-optimal for almost all symmetric weight matrices. This implies that
our results are sharp, in the sense that they are the best achievable within this framework.
Contribution 3: We present several general algebraic results on matrix polytopes,
which are interesting per se. With these results, we: (i) determine a weighted Euclidean
norm for matrix polytopes which is log-optimal for almost all synaptic matrices; (ii) give
a lower bound on the spectral abscissa of matrix polytopes; (iii) provide optimal and
log-optimal norms for the product of symmetric matrices.

In Chapters 6 and 7, we propose and analyze continuous-time FNNs, the firing rate
competitive networks, to tackle sparse reconstruction problems. With the analysis in
these chapters, we address the research questions 2 and 3 outlined in Section 1.2. The
main contributions of these chapters are the following.
Contribution 4: We propose a top/down normative framework for a biologically plau-
sible explanation of neural circuits solving sparse reconstruction and other optimization
problems. This framework uses the recently studied proximal gradient dynamics, pro-
viding a means to transcribe a composite optimization problem into a continuous-time
firing rate neural network, which is therefore interpretable.
Contribution 5: We propose and analyze the firing rate competitive network and the
positive firing rate competitive network to tackle the sparse reconstruction and positive
sparse reconstruction problems, respectively. We establish a result connecting the equi-
libria of these networks to the optimal solutions of sparse reconstruction problems. To
the best of our knowledge, the positive firing rate competitive network is the first RNN
designed to tackle positive sparse reconstruction problems.
Contribution 6: We characterize the convergence of the dynamics towards the equi-
librium. With our main convergence result we prove that, under a standard assumption
on the dictionary, our dynamics converge linear-exponentially to the equilibrium, in the
sense that (in a suitably defined norm) the trajectory’s distance from the equilibrium is
initially upper bounded by a linear function and then convergence becomes exponential.
This, in turn, implies that converge towards the equilibrium is global.
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Contribution 7: We show that the positive firing rate competitive network is a positive
system, i.e., if the system starts with non-negative initial conditions, its state variables
remain non-negative. This is an important, biologically plausible property of the network,
enabling to effectively model both excitatory and inhibitory synaptic connections in a
biologically plausible way.

In Chapters 8 and 9, we propose the modeling and analysis of HNNs and FNNs
with dynamic recurrent connections undergoing Hebbian learning rules. Through this
analysis, we contribute to provide answers to the research questions 4 and 5 outlined in
Section 1.2. The main contributions of these chapters are the following.
Contribution 8: We study a number of coupled neural-synaptic dynamical systems
that combine Hopfield neural networks and firing rate neural networks for the neural
dynamics and two different Hebbian learning rules for the synaptic dynamics. These
models capture networks with both excitatory and inhibitory synapses governed by both
Hebbian and anti-Hebbian learning rules.
Contribution 9: To capture synaptic sparsity of the neural circuits, we propose a
low-dimensional formulation of our models.
Contribution 10: We give sufficient conditions for the contractivity of each coupled
neural-synaptic model by leveraging non-Euclidean contraction arguments. Our suffi-
cient conditions for contractivity and our lower bounds on the contraction rate are both
based upon biologically meaningful quantities.
Contribution 11: For each coupled neural-synaptic model, we present a biologically
inspired forward invariance result and show that, under suitable conditions, they satisfy
Dale’s principle. These results enhance the biological plausibility of our models.

In Chapters 10, 11, and 12, we explore the potential of a contractivity-based approach
for optimization. With our results, we contribute to provide answers to the research
questions 6 and 7 outlined in Section 1.2. Specifically, in Chapter 10, we review
convex optimization theory and give natural transcriptions into contracting dynamics
for canonical optimization problems. The main contributions of the chapter are the
following.
Contribution 12: We give natural transcriptions into contracting dynamics for three
canonical strongly convex optimization problems namely monotone inclusions, linear
equality-constrained problems, and composite minimization problems. We also review
the case of unconstrained optimization problem.
Contribution 13: For each problem we study, we prove the sharpest-known rates of
contraction and provide explicit tracking error bounds between solution trajectories and
minimizing trajectories.

In Chapter 11, we present a contraction-theoretic approach to continuous-time time-
varying convex optimization. The main contributions of the chapter are the following.
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Contribution 14: We prove a general theorem regarding parameter-dependent strongly
infinitesimally contracting dynamics. Specifically, we show that the tracking error is
asymptotically proportional to the rate of change of the parameter with a proportionality
constant upper bounded by the Lipschitz constant in which the parameter appears divided
by the square of the contraction rate of the dynamics.

Contribution 15: We propose an alternative dynamical system that augments contract-
ing dynamics with a feedforward term. This augmentation ensures that the tracking error
decays exponentially to zero.

Contribution 16: We provide explicit tracking error bounds between solution tra-
jectories and minimizing trajectories for three canonical problems, namely monotone
inclusions, linear equality-constrained problems, and composite minimization problems.

In Chapter 12, we investigate the convergence characteristics of dynamics that are
globally weakly and locally strongly contracting. Such dynamics naturally arise in
the context of convex (but not strongly convex) optimization problems with a unique
minimizer. The main contributions of the chapter are the following.

Contribution 17: We analyze the convergence of globally-weakly and locally-strongly
contracting dynamics, showing that this is linear-exponential, in the sense that the distance
between each solution of the system and the equilibrium is upper bounded by a linear-
exponential function, introduced in the corresponding chapter.

Contribution 18: Through a novel technical result, we characterize the evolution of
certain dynamics with saturation in terms of the linear-exponential function.

Contribution 19: We characterize local input-to-state stability for input-dependent
dynamics that are globally-weakly and locally-strongly contracting with respect to the
same norm.

Finally, each chapter includes numerical examples to illustrate the effectiveness of
our results.

1.5 Relevance to Risk and Complexity
When giving examples of complex systems, the human brain is almost always cited
as a prime example. In fact, by definition, the brain embodies complexity: countless
interconnected particles (neurons), interacting in a nonlinear way to produce a larger-
scale collective outcome, and that are continually influenced by input signals. [30, 31].
This thesis builds on the starting idea of ANN to mimic the computations of the complex
systems that are natural neural networks to lay the ground for a normative approach
to translate complex tasks into stable and robust biologically plausible neural networks
that are guaranteed to converge to equilibria, corresponding to optimal solutions of the
original problem. The link to complexity is both direct and fundamental. Moreover, it
is worth highlighting that this work is inherently interdisciplinary. To reach our goal we
combine in new and unexplored ways insights from computational neuroscience, control
theory, and optimization.

8



While the framework and results we propose are primarily theoretical, our find-
ings hold significant promise for practical applications, particularly in managing risk
and complexity in real-world systems that operate in dynamic, uncertain environments.
Examples of such applications include time series forecasting, predictive modeling in
smart cities, COVID-19 spread prediction, short-term load forecasting, tracking mov-
ing targets, estimating stochastic process paths, and online learning [32, 33, 34, 35].
Sparse representation – one of the key optimization problems we will focus on – and
static and time-varying optimization problems are widely applicable in complex sys-
tem scenarios. The biologically plausible neural networks we develop in this thesis,
grounded in continuous-time dynamical systems and contraction theory, provide a po-
tential framework for addressing the above problems. Additionally, the work on coupled
neural-synaptic networks and time-varying optimization problems further strengthens
the link between this research and the management of complex systems. Moreover,
the modeling and analysis of locally-strongly and globally-weakly contracting systems
provide valuable insights into complex systems that enjoy conservation or invariance
properties, such as flow systems, traffic networks, and population dynamics [36].

In summary, the interdisciplinary framework we propose in this thesis has far-reaching
implications for the design and analysis of biologically plausible neural networks capa-
ble of addressing complex and risk-related tasks. We believe that our findings lay a
possible groundwork for future research that will lead to systems capable of enhancing
the efficiency and reliability of applications operating in time-varying and risk-related
environments.

1.6 Thesis Structure and Outline
The thesis is organized as follows. Detailed outlines are provided in each chapter.

Chapter 2 introduces definitions and notations used throughout the thesis together
with needed mathematical preliminaries. Chapter 3 provides essential background on
continuous-time dynamics governing both neural masses and synaptic weights. Chapter 4
reviews contraction theory for continuous-time dynamical systems. Next, the main
contributions of this thesis are presented in three major parts.

Part I proposes a top-down normative framework for biologically plausible neural
networks solving optimization problems. This part is made of three chapters. Chapter 5
establishes theoretical results related to the stability of continuous-time Hopfield and
firing rate neural networks, providing a sharp characterization of their contractivity
with respect to Euclidean norms. These results are essential for the analysis of our
models. Next, in Chapters 6 and 7, we propose a top-down normative framework
for biologically plausible neural networks that solve sparse reconstruction and other
optimization problems. Specifically, in Chapters 6 the modeling of a novel family of
continuous-time firing rate neural networks, called firing rate competitive networks, to
address the sparse reconstruction problems is introduced. Chapter 7 then focuses on the
analysis of the convergence behavior of the proposed models.

Part II explores embedding biologically plausible learning mechanisms within neural
networks, specifically through Hebbian learning. This part is composed of two chapters.
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Chapter 8 focuses on the modeling of coupled neural-synaptic dynamics. These models
combine Hopfield neural networks and firing rate neural networks for the neural dynamics
and two different Hebbian learning rules for the synaptic dynamics. Chapter 9 follows
with the analysis of the dynamical properties and stability of these coupled systems.

Part III investigates the potential of a contractivity-based approach for convex opti-
mization. This part is made of three chapters. In Chapter 10 we provide a transcription
to continuous-time dynamical systems of canonical time-invariant optimization prob-
lems. For each of these dynamics, we give conditions under which these are strongly
infinitesimally contracting. This is extended in Chapter 11, which explores time-varying
optimization problems and gives results on equilibrium tracking for parameter-varying
contracting systems. Finally, Chapter 12 extends the analysis to continuous-time dynami-
cal systems that solve convex optimization problems with unique minimizers. As we will
show, these dynamics are globally weakly contracting and locally strongly contracting.
For these systems, we present a comprehensive analysis of their convergence behavior.

Chapter 13 summarizes the main findings and highlights potential future directions.
The thesis concludes with Appendix A where additional novel complementary results on
the Euclidean contractivity of firing rate neural networks with dissipation are presented.
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2 Mathematical Preliminaries

This chapter introduces the main notations, acronyms, and mathematical tools we use
throughout the thesis to obtain our results. The chapter is organized as follows. We start
in Section 2.1 by introducing the general notation we use throughout the manuscript.
Next, in Section 2.2, we give the main definitions and properties of maps necessary for
our analysis. In Sections 2.3 and 2.4, we review the properties of logarithmic norms
and one-sided Lipschitz conditions. Following this, we recall the concept of composite
norms in Section 2.5 and some useful concepts of graph theory in Section 2.6. We
conclude the chapter with a primer on proximal operator in Section 2.7.

2.1 Notation
We adopt standard notation throughout the thesis. Unless explicitly stated otherwise, we
use the definitions and notations listed here.

General notation:

• R := (−∞,+∞) is the set of real numbers,

• R := [−∞,+∞] is the set of extended real numbers,

• Rn is the set of n-dimensional real numbers,

• R≥0 := [0,+∞) is the set of non-negative real numbers,

• Sn is the set of real symmetric n× n matrices,

• 1n ∈ Rn is the all-ones vector of size n,

• 0n ∈ Rn is the all-zeros vector of size n,

• In is the n× n identity matrix,

• 0n,m is the n×m zero matrix,

• A⊤ denotes the transpose of a vector/matrix A,
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• [x] ∈ Rn×n is the diagonal matrix with diagonal entries equal to the vectorx ∈ Rn,

• “◦” denotes the Hadamard product.

Acronyms:

• LMI := Linear Matrix Inequality,

• SVD := Singular Value Decomposition,

• ReLU := Rectified Linear Units,

• ANN := Artificial Neural Network,

• RNN := Recurrent Neural Network,

• FNN := Firing rate Neural Network,

• HNN := Hopfield Neural Network,

• FCN := Firing rate Competitive Network,

• PFCN := Positive Firing rate Competitive Network,

• LCA := Locally Competitive Algorithm,

• RIP := Restricted Isometry Property,

• GW-LS-C := Globally-Weakly and Locally-Strongly Contracting.

Elements of matrix theory: Vector inequalities of the form x ≤ (≥) y are entrywise.
We let A ∈ Rn×m denote a n × m matrix with real entries aij , i ∈ {1, . . . n}, j ∈
{1, . . . ,m}. Given A ∈ Rn×n we denote by

• rank(A) its rank,

• spec(A) := {λ | λ eigenvalue of A} its spectrum,

• α(A) := max{Re(λ) | λ eigenvalue of A} its spectral abscissa, where Re(λ)
denotes the real part of λ,

• λmax(A), λmin(A) the maximum and minimum eigenvalue of A, respectively.

Given A ∈ Sn, we say that A is positive definite (semi-positive definite) and we write
A ≻ 0 (resp. ⪰ 0) if x⊤Ax > 0 (resp. ≥ 0) for all x ∈ Rn (resp. for all x ∈ Rn \{0n}).
Given A,B ∈ Sn, we write A ⪯ B (resp. A ≺ B) if B − A is positive semidefinite
(resp. definite). A triple (UA,ΣA, VA) denote the singular value decomposition (SVD)
of A ∈ Rm×n, that is A = UAΣAV

⊤
A , where

• UA = [uA
1 , . . . , u

A
m] ∈ Rm×m is orthonormal, with the eigenvectors of AA⊤ as

columns,
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• VA = [vA1 , . . . , v
A
n ] ∈ Rn×n is orthonormal, with the eigenvectors of A⊤A as

columns,

• for positive diagonal matrix Σr
A ∈ Rr×r, r ≤ min{m,n},

ΣA =

[︃
Σr

A 0r,n−r

0m−r,r 0n−r,n−r

]︃
∈ Rm×n,

where Σr
A = [σA] := [

√
λA], with λA ∈ Rr being the positive eigenvalues of

AA⊤ and A⊤A.

When m = n, UA = VA, ΣA = ΛA := [λA], and we denote by (UA,ΛA) the SVD of A.
Next, we recall the definition of two important types of matrices commonly used in

the study of the stability of continuous-time dynamical systems: Hurwitz matrices and
Metzler matrices. In our analysis, we will run into Hurwitz matrices several times when
analyzing stability of the dynamical systems of our interest. Metzler matrices will play a
significant role in the stability analysis of coupled neural-synaptic systems in Chapter 9.

Definition 2.1 (Hurwitz and Metzler matrices). A matrix A ∈ Rn×n is

1. Hurwitz if α(A) < 0,

2. Metzler if aij ≥ 0 for all i ̸= j, i, j ∈ {1, . . . , n}.

Norms: We let ∥ · ∥ denote both a norm on Rn and its corresponding induced matrix
norm on Rn×n. For a given p ∈ [1,+∞] and an invertible matrix R, the weighted vector
norm and weighted matrix norm are, respectively, defined by

∥x∥p,R = ∥Rx∥p and ∥A∥p,R = ∥RAR−1∥p, for all x ∈ Rn, A ∈ Rn×n.

Given x ∈ Rn and r > 0, we let Bp

(︁
x, r
)︁
:= {z ∈ Rn | ∥z − x∥p ≤ r} be the ball

of radius r centered at x computed with respect to the norm p. Given two vector norms
∥ · ∥α and ∥ · ∥β on Rn there exist positive equivalence coefficients kβα > 0 and kαβ > 0
such that

∥x∥α ≤ kβα∥x∥β , ∥x∥β ≤ kαβ∥x∥α, for all x ∈ Rn. (2.1)

We recall the concept of equivalence ratio between two norms. This is used in Chapters 7
and 12 for analyzing the convergence behavior of non-expansive dynamics with a locally
exponentially stable equilibrium.

Definition 2.2 (Equivalence ratio between two norms). Given two norms ∥·∥α and ∥·∥β ,
let kβα and kαβ be the minimal coefficients satisfying inequalities (2.1). The equivalence
ratio between ∥ · ∥α and ∥ · ∥β is kα,β := kβαk

α
β .
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Functions: Finally, we give a list of useful functions used throughout the manuscript.
Given d > 0 and a set C, we denote by

• ⌈ ⌉ : R → Z the ceiling function, defined by ⌈x⌉ = min{y ∈ Z | x ≤ y},

• sign: R → {−1, 0, 1} the sign function, defined by sign
(︁
x
)︁
:= −1 if x < 0,

sign
(︁
x
)︁
:= 0 if x = 0, and sign

(︁
x
)︁
:= 1 if x > 0,

• softd : R → R the soft thresholding function, defined by softd = 0 if |x| ≤ d, and
softd = x− d sign

(︁
x
)︁

if |x| > d,

• satd : R → [−d, d] the saturation function, defined by satd
(︁
x
)︁
= x if |x| ≤ d,

satd
(︁
x
)︁
= d if x > d, and satd

(︁
x
)︁
= −d if x < −d,

• ιC : Rn → [0,+∞] the zero-infinity indicator function on C, defined by ιC(x) = 0
if x ∈ C and ιC(x) = +∞ otherwise,

• 1C : R → {0, 1} the indicator function on C, defined by 1C(x) = 1 if x ∈ C and
1C(x) = 0 otherwise,

• ReLU: R → R≥0 the Rectified Linear Units, defined by ReLU(x) = max{0, x},

• ReLUd : R → [d,+∞[ the shifted Rectified Linear Units, defined byReLUd(x) =
max{0, x− d}.

2.2 Operators
We review the main definitions and properties of maps used in this thesis. We begin with
the following standard definition.

Definition 2.3 (Lipschitz map). Given two normed spaces (X , ∥ ·∥X ), (Y, ∥ ·∥Y), a map
T : X → Y is Lipschitz from (X , ∥ · ∥X ) to (Y, ∥ · ∥Y) with constant L ≥ 0 if

∥T (x1)− T (x2)∥Y ≤ L∥x1 − x2∥X , for all x1, x2 ∈ X .

If Y = X and ∥ · ∥X = ∥ · ∥Y , we say that T is Lipschitz on (X , ∥ · ∥X ) with constant
L ≥ 0. Additionally, we omit to specify the vector space in which the map is Lipschitz if
this is clear from the context or is simply (Rn, ∥ · ∥Rn). We let Lip(T ) be the minimum
Lipschitz constant of a map T . If T is a multi-variable function we write Lip(·)(T ) to
specify the variable with respect to which we are computing the Lipschitz constant.

Definition 2.4 (Upper-right Dini derivative). The upper-right Dini derivative of a function
f : R → R at t is defined by

D+f(t) := lim sup
h→0+

f(t+ h)− f(t)

h
.
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We recall the following theorem [37, 38] for locally Lipschitz function. With this
result, in Section 12.5, we characterize local input-to-state stability of non-expansive
dynamical systems with a locally exponentially stable equilibrium.

Theorem 2.1 (Mean value theorem for locally Lipschitz function). Let C ⊆ Rn be an
open and convex set, and f : C → Rm be a locally Lipschitz map. Then, for almost every
x, y ∈ C it holds

f(x)− f(y) =

(︃∫︂ 1

0

Df(y + s(x− y))ds

)︃
(x− y),

where the integral of a matrix is to be understood component-wise.

2.3 Logarithmic Norm
In this section, we review the properties of logarithmic norm, also known as matrix
measure. The concept of logarithmic norms was introduced in 1958 separately by
Dahlquist [39] and Lozinskij [40] as a tool to study the growth of ODE’s solutions and
the error growth in discretization methods for their approximate solution. For continuous-
time dynamical systems, logarithmic norms have become a fundamental tool for defining
infinitesimal contractivity and inferring various properties of dynamical systems.

We begin with the following.

Definition 2.5 (Logarithmic norm). Given a norm ∥ · ∥ and a matrix A ∈ Rn×n, the
logarithmic norm (log-norm) of A, µ(A), is defined by

µ(A) = lim
h→0+

∥In + hA∥ − 1

h
. (2.2)

Remark 2.1.

• The existence of the limit in (2.2) is established based on the convexity of the norm
function.

• The name logarithmic norm is justified by the following reason. Consider the
dynamics ẋ = Ax. By applying Coppel’s upper bound [41] [42, Th. 2.3] we get

d

dx
log ∥x∥ ≤ µ(A),

i.e., the maximal growth rate of the logarithm of the norm of x is bounded by µ(A).

• The log-norm of a matrix A can be interpreted as the directional derivative of the
matrix norm in the direction of A and evaluated at the point In.
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Given a weighted matrix norm ∥ · ∥p,R, with p ∈ [1,+∞] and R invertible matrix,
the corresponding weighted log-norm is defined as

µp,R(A) = µp(RAR−1).

It is worth highlighting that the log-norm of a matrix can be negative, which is a key
difference from matrix norms. This property makes the log-norm a useful tool for
studying the stability of continuous-time dynamical systems. Table 2.1 provides explicit
formulas for computing the log-norms corresponding to some of the most commonly
used norms, along with the corresponding vector norms and induced matrix norms.

Vector Norm Induced matrix norm Logarithmic norm

∥x∥1 =
n∑︂

i=1

|xi| ∥A∥1 = max
j∈{1,...,n}

n∑︂

i=1

|aij | µ1(A) = max
j∈{1,...,n}

(︂
ajj +

n∑︂

i=1,i̸=j

|aij |
)︂

∥x∥22 =
n∑︂

i=1

x2
i ∥A∥22 = λmax(A

⊤A) µ2(A) = λmax

(︂A⊤ +A

2

)︂

∥x∥∞ = max
i∈{1,...,n}

|xi| ∥A∥∞ = max
i∈{1,...,n}

n∑︂

j=1

|aij | µ∞(A) = max
i∈{1,...,n}

(︂
aii +

n∑︂

j=1,i̸=j

|aij |
)︂

Table 2.1: Vector norms, induced matrix norms, and corresponding log-norms, for
x ∈ Rn and A ∈ Rn×n.

Next, we give some of the main properties of the log-norms used throughout the
manuscript.

Proposition 2.2 (Properties of the log-norm). Given A, B ∈ Rn×n, the following
properties hold

(i) positive homogeneity: µ(cA) = |c|µ(sign
(︁
c
)︁
A), ∀c ∈ R,

(ii) subadditivity: µ(A+B) ≤ µ(A) + µ(B),

(iii) translation: µ(A+ cIn) = µ(A) + c, ∀c ∈ R,

(iv) product: max{−µ(A),−µ(−A)}∥x∥ ≤ ∥Ax∥, ∀x ∈ Rn,

(v) norm of difference: |µ(A)− µ(B)| ≤ ∥A−B∥,

(vi) norm spectrum: −∥A∥ ≤ −µ(−A) ≤ Re(λ) ≤ α(A) ≤ µ(A) ≤ ∥A∥,
∀λ ∈ spec(A).

The norm spectrum property shows that the log-norm of a matrix A is an upper
bound on the spectral abscissa of A. This is fundamental for analyzing the stability of
continuous-time dynamical systems. As a consequence, it is interesting to understand
the gap between the spectral abscissa and the log-norm of a matrix. To this purpose,
we recall the following definition of logarithmic optimality of norms. We extend this
definition in Chapter 5 to matrix polytopes.
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Definition 2.6 (Logarithmic optimality of norms). Given a matrix A ∈ Rn×n with
spectral abscissa α(A) and a scalar ε > 0, the norm ∥ · ∥ with associated log-norm µ is

1. logarithmically optimal for A if µ(A) = α(A),

2. logarithmically ε-optimal for A if α(A) ≤ µ(A) ≤ α(A) + ε.

Finally, we recall a result on Metzler matrices [43] (see also [44]) that we use in
Chapter 8 to analyze contractivity of the coupled neural-synaptic models.

Lemma 2.3 (Optimal diagonally-weighted norms for Metzler matrices). Consider a
Metzler matrix M ∈ Rn×n. For any p ∈ [1,∞], and δ > 0, define ηM,p,δ ∈ Rn

≥0 by

ηδ =

(︄
l
1/p
1

r
1/q
1

, . . . ,
l
1/p
n

r
1/q
n

)︄
,

where q ∈ [1,∞] is the conjugate index of p, while l and r ∈ Rn
≥0 are the left and right

dominant eigenvectors of M + δ1n1⊤
n . Then for each ε > 0 there exists δ > 0 such that

1. the norm ∥ · ∥p,[ηδ] is ε-logarithmically optimal for M , that is

α(M) ≤ µp,[ηδ]

(︁
M
)︁
≤ α(M) + ε,

2. if M is irreducible, then ∥ · ∥p,[η0] is logarithmically optimal for M , that is

α(M) = µp,[η0]

(︁
M
)︁
.

2.4 One-sided Lipschitz Conditions
In this section, we review the concept of one-sided Lipschitz conditions, which serve as
a useful tool for characterizing the contractivity of continuous-time dynamical systems.
To do so, we first introduce the notion of weak pairing.

Definition 2.7 (Weak pairing). A weak pairing J·, ·K onRn is a map J·, ·K : Rn×Rn → R
satisfying

• sub-additivity of first argument: Jx+ z, yK ≤ Jx, yK+ Jz, yK, for all x, y, z ∈ Rn,

• curve norm derivative formula: ∥y(t)∥D+∥y(t)∥ = Jẏ(t), y(t)K, for every differ-
entiable curve y : ]a, b[→ Rn and for almost every t ∈]a, b],

• Cauchy-Schwartz inequality: |Jx, yK| ≤ ∥x∥∥y∥, for all x, y ∈ Rn,

• Lumer’s equality: µ
(︁
A
)︁
= sup

z∈Rn,z ̸=0n

JAz, zK
Jz, zK

, for every A ∈ Rn×n.

For every norm ∥ · ∥ on Rn, there exists a (possibly not unique) compatible weak
pairing J·, ·K such that ∥x∥2 = Jx, xK, for every x ∈ Rn. We give the following.
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Definition 2.8 (One-sided Lipschitz constant). Given a convex set C ⊆ Rn, a norm with
compatible weak pairing, and a continuous map f : C → Rn, the minimal one-sided
Lipschitz constant of f , denoted by osL(f), is defined by

osLip(f) := sup
x,y∈C,x̸=y

Jf(x)− f(y), x− yK
∥x− y∥2 ∈ R.

For a continuously differentiable map f : C → Rn, where C ⊆ Rn is convex, the
log-norm of the Jacobian matrix of f , denoted by Df(x), satisfies the following property

osL(f) = sup
x∈C

µ(Df(x)).

Given f : R≥0 × C → Rn, where C ⊆ Rn is open and connected, we denote by
osL(ft) the one-sided Lipschitz constant of ft := f(t, ·). Note that the Cauchy-Schwarz
inequality for weak pairings implies osL(ft) ≤ Lip (ft).

Given an invertible matrix Q, a scalar p ∈ [0,+∞], and a map f , we write
osLipp,Q(f) to specify that the one-sided Lipschitz constant of f is computed with
respect to a Q-weighted ℓp norm. For example, for the Q-weighted Euclidean norm we
have

osL2,Q1/2(ft) = sup
x,y∈C,x̸=y

(x− y)⊤Q(f(x)− f(y))

∥x− y∥2
2,Q1/2

.

2.5 Composite Norms
In this section, we review the concept of composite norms, originally studied in [45] (see
also [46]). Composite norms provide a framework for studying systems with intercon-
nected components by combining different norms in a structured manner. This approach
is particularly useful when dealing with systems where multiple subsystems interact,
such as the coupled neural-synaptic systems we study in Chapter 9. Specifically, we use
composite norms for analyzing the overall stability and contractivity properties of these
interconnected dynamical systems.

Consider r positive integers n1, . . . , nr, such that
∑︁r

i=1 ni = n, and

• r local norms ∥ · ∥i defined on Rni with induced log-norms µi(·),

• an aggregating norm ∥ · ∥agg on Rr with induced log-norm µagg(·).

The composite norm ∥ · ∥cmpst on Rn is defined as

∥x∥cmpst =

⃦⃦
⃦⃦
⃦⃦
⃦

⎡
⎢⎣
x1

...
xr

⎤
⎥⎦

⃦⃦
⃦⃦
⃦⃦
⃦
cmpst

=

⃦⃦
⃦⃦
⃦⃦
⃦

⎡
⎢⎣
∥x1∥1

...
∥xr∥r

⎤
⎥⎦

⃦⃦
⃦⃦
⃦⃦
⃦
agg

.

We denote by µcmpst(·) the log-norm induced by ∥·∥cmpst. Next, consider a block matrix
A ∈ Rn×n with blocksAij ∈ Rni×nj , i, j ∈ {1, . . . , r}. The aggregate majorant |A|agg
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and aggregate Metzler majorant |A|M in Rr×r are defined by

(︁
|A|agg

)︁
ij
:= ∥Aij∥ij , (|A|M)ij :=

{︄
µi(Aii), if j = i,

∥Aij∥ij , if j ̸= i,

where ∥Aij∥ij = max{∥Aijyj∥i | yj ∈ Rnj s.t. ∥yj∥j = 1}. Finally, we report results
that can be found, under different technical statements, in [45, 28] with the upper bound
for the log-norm introduced in [46].

Theorem 2.4. For any set of local norms ∥ · ∥i, i ∈ {1, . . . , r}, consider a monotonic
aggregating norm ∥ · ∥agg over a decomposition of Rn and a matrix A ∈ Rn×n. Then:

max
i∈{1,...,r}

∥Aii∥i ≤ ∥A∥cmpst ≤ ∥|A|agg∥agg,

max
i∈{1,...,r}

µi(Aii) ≤ µcmpst(A) ≤ µagg(|A|M).
(2.3)

2.6 Out-Incidence and In-Incidence Matrices

In this section, we review some concepts from graph theory used in Chapter 8 to derive
low-dimensional reformulations of the coupled neural-synaptic models.

LetG be a weighted directed graph withn nodes andm edges, and letV = {1, . . . , n}
andE = {1, . . . ,m} be the set of nodes and edges ofG, respectively. We write e = (i, j),
i, j ∈ V , when we want to emphasize the nodes associated with the edge e, and we refer
to i as the tail and to j as the head of e. According to the context, with a little abuse of
notation, we let e denote both an ordered pair (i, j) as well as an element of E. We let
{ae}e∈E be the set of weights for the edges of G.

The adjacency matrix A ∈ Rn×n is defined as follows: for each edge e = (i, j) ∈ E,
the entry (i, j) of A is equal to the weight ae of the edge (i, j), and all other entries of A
are equal to zero. The weight matrix A ∈ Rm×m is the diagonal matrix of edge weights,
that is A := [{ae}e∈E ].

Definition 2.9 (Topological in-degree and out-degree). Given a weighted directed graph
G and a vertex i ∈ V , the topological in-degree and out-degree of i are the number
of in-neighbors and out-neighbors of i, respectively. We define maximum topological
in-degree and maximum topological out-degree, the highest topological in-degree and
out-degree among all vertices in G, respectively.

Next, we introduce the key tools we use in Section 8.4 to derive low-dimensional
reformulations for the coupled neural-synaptic models.

Definition 2.10 (Out-incidence and in-incidence matrices). Given a weighted directed
graphG, for any node i ∈ V and edge e ∈ E, the out-incidence matrixBout ∈ {0, 1}n×m
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and in-incidence matrix Bin ∈ {0, 1}n×m are respectively defined by

(Bout)ie =

{︄
1 if node i is the head of edge e,
0 otherwise,

(2.4)

(Bin)ie =

{︄
1 if node i is the tail of edge e,
0 otherwise.

(2.5)

Note that, by construction, the matrices Bout and Bin have unit row sums, thus B⊤
out

and B⊤
in have unit column sums. The following result can be found in [47, Ex. 9.4].

Proposition 2.5. Consider the adjacency matrix A ∈ Rn×n, the weight matrix A ∈
Rm×m, the out-incidence matrix Bout ∈ {0, 1}n×m, and the in-incidence matrixBin ∈
{0, 1}n×m. Then:

1. for each x ∈ Rn and e ∈ E of the form e = (i, j),

(B⊤
outx)e = xj , and (B⊤

in x)e = xi. (2.6)

2. the following identity holds

A = BinAB⊤
out. (2.7)

3. ∥B⊤
out∥∞ = ∥B⊤

in ∥∞ = 1, ∥Bout∥∞ and ∥Bin∥∞ are the maximum topological
out-degree and maximum topological in-degree of G, respectively.

Finally, we give a representative example to clarify the graph theoretic concepts
introduced in this section.

Example 2.1. Consider the directed graph G in Figure 2.1. The set of nodes and edges
of G, are, respectively, V = {1, . . . , 4} and E = {e1, . . . , e5}. Specifically, we have
e1 = (4, 1), e2 = (1, 2), e3 = (4, 2), e4 = (1, 3), e5 = (3, 4).

Figure 2.1: Directed graphGwith nodes i, i ∈ {1, . . . , 4}, and edges, ej , j ∈ {1, . . . , 5}.

The out- and in-incidence matrices for G are:

Bin =

⎡
⎢⎢⎣

0 1 0 1 0
0 0 0 0 0
0 0 0 0 1
1 0 1 0 0

⎤
⎥⎥⎦ , Bout =

⎡
⎢⎢⎣

1 0 0 0 0
0 1 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎦ .
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2.7 A Primer on Proximal Operators
We provide a brief overview of proximal operators and outline the key properties relevant
to our analysis. The proximal operator of a convex function extends the concept of a pro-
jection operator onto a convex set, offering a powerful tool for dealing with non-smooth
optimization problems. This concept has gained increasing significance in various fields
including signal processing and optimization [48, 49]. In our analysis, proximal opera-
tors play a crucial role in Chapter 6 for transcribing a composite optimization problem
into an interpretable continuous-time RNN. Additionally, this operator is instrumental in
Chapters 10 and 11 to design continuous-time dynamical systems solving the monotone
inclusion problem in both static and time-varying scenarios.

We start by giving several preliminary concepts. Given a function g : Rn → R, the
epigraph of g is the set epi(g) = {(x, y) ∈ Rn+1 | g(x) ≤ y}.

Definition 2.11 (Convex, proper, and closed function). A function g : Rn → R is

• convex if epi(g) is a convex set,

• proper if its value is never −∞ and there exists at least one x ∈ Rn such that
g(x) < ∞,

• closed if it is proper and epi(g) is a closed set.

Next, we define the proximal operator of a function g, which is a map that takes a
vector x ∈ Rn and maps it into a subset of Rn, which can be either empty, contain a
single element, or be a set with multiple vectors.

Definition 2.12 (Proximal Operator). The proximal operator of a function g : Rn → R
with parameter γ > 0, proxγg : Rn → Rn, is defined by

proxγg(x) = argmin
z∈Rn

g(z) +
1

2γ
∥x− z∥22, ∀x ∈ Rn. (2.8)

Of particular interest for our analysis is the case when proxγg is a singleton. The next
Theorem [49, Th. 6.3] provides conditions under which proxγg exists and is unique.

Theorem 2.6 (Existence and uniqueness). Let g : Rn → R be a convex, closed, and
proper function. Then proxγg(x) is a singleton for all x ∈ Rn.

The above result shows that for any convex, closed, and proper function g, the
proximal operator proxγg(x) exists and is unique for all x ∈ Rn. Next, we recall key a
result in the calculus of proximal mappings [49, Section 6.3]. This result is instrumental
in our interpretation of certain dynamics as recurrent neural networks in Chapter 6.
Specifically, this property enables us to view in our context the proximal operator as the
activation function of an RNN.

Lemma 2.7 (Prox of separable functions). Let g : Rn → R be a convex, closed, proper,
and separable function, that is g(x) =

∑︁n
i=1 gi(xi), with gi : R → R being convex,

closed, and proper functions. Then

(proxγg(x))i = proxγgi(xi), i ∈ {1, . . . , n}.
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Remark 2.2. Given a convex set C, the proximal operator of the zero-infinity indicator
function on C is the Euclidean projection onto C, that is proxγιC (x) = PC(x) :=
argmin

z∈C
∥x− z∥2 ∈ C.

Finally, we introduce the Moreau envelope associated with the proximal operator of
a function g.

Definition 2.13. The Moreau envelope of a function g : Rn → R with parameter γ > 0,
Mγg : Rn → R, is defined by

Mγg(x) = g(proxγg(x)) +
1

2γ
∥x− proxγg(x)∥22. (2.9)

The Moreau envelope of a function g is essentially a smoothed or regularized form
of the function. An important property of the Moreau envelope is that it is always
continuously differentiable, even when g is not, and its gradient is given by

∇Mγg(x) =
1

γ
(x− proxγg(x)). (2.10)

The gradient of the Moreau envelope is Lipschitz on (Rn, ∥ · ∥2) with constant 1/γ.

Example 2.2. Let g(x) = ∥x∥1. Note that g is separable, thus satisfies Lemma 2.7. We
have that

• the proximal operator of g is the soft-thresholding function, that is

proxγg(x) = softγ(x),

• the associated Moreau envelope of g is the Huber function, i.e.,

Mγg(xi) =

{︄
1
2γx

2
i if |xi| ≤ γ,

γ
(︁
|xi| − 1

2γ
)︁
, if |xi| > γ,

• the gradient of the Moreau envelope is the saturation function

∇Mγg(xi) = sign
(︁
xi

)︁
min

(︂ |xi|
γ

, 1
)︂
.

2.7.1 Proximal Gradient Method
The proximal gradient method generalizes standard gradient descent to certain classes of
non-smooth optimization problems. Based on the use of proximal operators, proximal
gradient method (see, e.g., [50]) can be devised to iteratively solve a class of composite
(possibly non-smooth) convex problems of the form

min
x∈Rn

f(x) + g(x), (2.11)
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where f : Rn → R, g : Rn → R are convex, proper and closed functions, and f is
differentiable. At its core, the proximal gradient method updates the estimate of the
solution of the optimization problem by computing the proximal operator of αg, where
α > 0 is a step size, evaluated at the difference between the current estimate and the
gradient of αf computed at the current estimate. That is,

xk+1 := proxαkg

(︁
xk − αk∇f(xk)

)︁
.

Remark 2.3. When g = 0, the proximal gradient method simplifies to standard gradient
descent. When g is the indicator function of a convex set, the proximal gradient method
simplifies to projected gradient descent.

Notably, this method has been recently extended and generalized to a continuous-time
framework [51, 52, 53], resulting in solving a continuous-time FNN. In this case, the
iteration becomes the continuous-time proximal gradient dynamics

ẋ = −x+ proxγg
(︁
x− γ∇f(x)

)︁
, (2.12)

with γ > 0. The above dynamics are central to developing a normative framework for bi-
ologically plausible neural networks solving sparse reconstruction problems in Chapter 6.
Additionally, these dynamics are useful for the design of contracting continuous-time
dynamical systems solving non-smooth and convex composite optimization problems, as
we show in Chapters 10 and 11.

2.8 Summary
In this chapter, we introduced the main symbols and notations we will use throughout
the thesis and provided a self-contained review of the key concepts and theories that
underpin our results, providing the details useful for our developments. Specifically, we
listed the main functions we will use in this thesis. Then, we reviewed the concept of
logarithmic norm. This is an important tool for analyzing the stability of continuous-
time dynamical systems, as it provides an upper bound on the spectral abscissa of a
matrix. Next, we recalled the concept of one-sided Lipschitz conditions, which, together
with logarithmic norms, we use throughout the thesis to characterize the contractivity
of possibly non-smooth continuous-time dynamical systems. We then discussed com-
posite norms, a useful tool for analyzing interconnected systems. Following this, we
presented key concepts from graph theory that, as we will see in Chapter 9, allow us to
derive low-dimensional reformulations of the interconnected neural-synaptic models we
propose. This low-dimensional formulation allows to capture synaptic sparsity of the
neural circuits. Finally, we provided a review of proximal operators. In the following
chapters, the continuous-time proximal gradient dynamics, in particular, play a key role
in designing contracting continuous-time dynamical systems solving non-smooth and
convex composite optimization problems, including the sparse reconstruction problem.
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3 Neural and Synaptic
Dynamics

In this chapter, we provide backgrounds on the continuous-time dynamical rules gov-
erning both neural masses and synaptic weights, which are central to our analysis.
Specifically, for the neural dynamics, we focus on two widely used continuous-time
RNN models: the Hopfield neural network (HNN) and the firing rate neural network
(FNN). In Chapter 5, we analyze the stability of these dynamics, providing novel stability
conditions for non-smooth activation function, allowing the use of the more commonly
used ones. Additionally, we run into FNNs in Chapters 6 and 7, where we propose a
top/down normative framework for a biologically plausible explanation of neural circuits
solving sparse reconstruction problems and other optimization problems. These neural
dynamics are also at the basis of the coupled neural-synaptic problems we propose and
analyze in Part II. There, we assume the synaptic weight dynamics evolve according to
continuous-time Hebbian learning rules.

3.1 Introduction
Artificial neural networks, inspired by biological neural systems, are typically conceptu-
alized through two distinct sets of variables: one representing the activity of neurons and
the other describing the synapses (or connections) between them. Understanding and
modeling these two aspects is crucial in both computational neuroscience and machine
learning, as they form the basis of how networks process information and learn.

Recurrent neural networks naturally emerge when modeling neural dynamics due to
both anatomical and functional properties of the brain [54, 20]. A large fraction of the
output from cortical regions loops back to the area of origin, making recurrent connections
a fundamental feature of cortical organization [55]. Furthermore, RNNs can generate
rich intrinsic activity patterns, reminiscent of ongoing activity observed in the brain [56].
From a computational perspective, RNNs are particularly powerful because feedback
loops enable the modeling of temporal dependencies, making these networks well-suited
for tasks involving sequential data or time-series predictions. Another important feature
of RNNs is that they are modeled as nonlinear dynamical systems. This allows to
apply tools from dynamical systems theory to study key properties like stability, attractor
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dynamics, and convergence, as we will explore in the following chapters.
Synaptic plasticity refers to changes in the strength of connections between neurons

over time. This process is at the basis of learning and memory in biological systems. One
of the most widely accepted theories of synaptic plasticity is Hebbian learning [2], often
captured by the phrase “neurons that fire together, wire together”. Hebbian learning
is a form of unsupervised learning and provides a biologically plausible mechanism for
how networks adapt based on experience. Over the years, this rule has inspired various
learning algorithms in artificial neural networks, with the goal of developing biologically
plausible models of learning.

The chapter is organized as follows. In Section 3.2, we provide a concise litera-
ture review on RNNs and Hebbian learning. Then, in Section 3.3, we introduce the
continuous-time dynamical rules governing the neural masses of the RNN models we are
interested in: the Hopfield neural network and the firing rate neural network. Finally, in
Section 3.4 we review Hebbian learning rules and the mathematical formulation we use
in our analysis.

3.2 Overview
Wilson and Cowan pioneered the study of RNN in a biological context work by describing
the average firing rates of groups of neurons through differential equations, thus modeling
the dynamics of neural populations [57]. This model laid the foundation for modern RNN
frameworks, which have since become instrumental in analyzing neural circuit behaviors
through rate-based equations.

Two common models of RNNs are the firing rate neural network (FNN) [54] and
Hopfield neural network (HNN) [58]. The key difference between these models lies
in the order in which the activation function is applied. For certain synaptic weight
matrices and initial conditions, the two models can be shown to be mathematically
equivalent via a transformation of coordinates and input states [59]. However, this
transformation is state-dependent, particularly when the synaptic matrix is rank deficient.
Additionally, the transformation of solutions from HNNs to FNNs requires that the
initial condition of the input depends on the initial condition of the state. RNNs have
been demonstrated to be suitable in applications requiring the learning of sequential
tasks. For example, they have been successfully used in time series forecasting [60] and
pattern generation [61]. Over the years, Hopfield neural networks, originally designed to
model associative memory systems, have found applications in optimization and machine
learning tasks [62, 63, 64, 65].

One of the central mechanisms underlying learning in both biological and artifi-
cial systems is synaptic plasticity—the process by which synaptic connections between
neurons are strengthened or weakened based on neural activity. This principle is often
captured through Hebbian learning rules, first introduced by Donald Hebb in his seminal
work, “The Organization of Behavior” [2]. Hebbian learning rules have since played
a crucial role in modeling and understanding neural learning dynamics and have been
extensively studied within the framework of unsupervised feedforward neural networks.
For instance, Hebbian learning rules have been used in training a neuron to extract the
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first principal component of its inputs [66]. In [67] it is shown that a layer of simple
Hebbian units connected by modifiable anti-Hebbian feedback connections can learn to
code a set of patterns so that statistical dependency between the representation elements is
reduced, while information is preserved. Several mathematical formulations of Hebbian
learning are presented in [68]. In [69] is presented a mathematical analysis of the effects
of Hebbian learning in random recurrent neural networks. In the context of Hopfield
neural networks with adapting synapses undergoing Hebbian rules, we recall [22, 24, 70].
Additionally, Hopfield neural networks with a coupled Hebbian learning rule have been
shown to be able to learn the underlying geometry of a given set of inputs [23]. Along
these lines, recently, [8] proposed an unsupervised biologically plausible learning rule
that allows the network to achieve good performance on the MNIST and CIFAR datasets.
Finally, Hebbian learning has been generalized to a variety of computational paradigms,
including sparse coding [71] and similarity matching [72, 73, 74, 15, 14, 16].

3.3 Neural Dynamics: Hopfield Neural Network and
Firing Rate Neural Network

In this section, we introduce the dynamical rules governing the neural masses. Specifi-
cally, we are interested in two widely used continuous-time RNN models: the Hopfield
neural network and the firing rate neural network.

Hopfield neural network: the continuous-time HNN follows the dynamics of the form

τHẋ = −x+WΦ(x) + uH, (3.1)

where

• x ∈ Rn is the neural activation vector,

• τH > 0 is the timescale of the network,

• W ∈ Rn×n is the synaptic matrix, with Wij ∈ R being the synaptic weight from
a pre-synaptic neuron j to a post-synaptic neuron i,

• Φ: Rn → Rn is a nonlinear and diagonal activation function, that is, for x ∈ Rn,
(Φ(x))i = ϕ(xi), where ϕ : R → R,

• uH ∈ Rn represents external stimuli, which may be time-dependent.
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Firing rate neural network: the dynamics of the FNN are given by

τFν̇ = −ν +Φ(Wν + uF) (3.2)

where, similar to (3.1),

• ν ∈ Rn is the neural activation vector,

• τF > 0 is the timescale of the network,

• W ∈ Rn×n is the synaptic matrix, with Wij ∈ R being the synaptic weight from
a pre-synaptic neuron j to a post-synaptic neuron i,

• Φ: Rn → Rn is a nonlinear and diagonal activation function,

• uF ∈ Rn represents the external stimuli, which may be time-dependent.

Remark 3.1.
(i) We term the RNN (3.2) as firing rate neural network because when the activation

function is non-negative, the positive orthant is forward-invariant and the state ν
is interpreted as a firing rate. In contrast, in (3.1), the state x can be either positive
or negative, and thus x is interpreted as a membrane potential.

(ii) The HNN (3.1) has the same form as the original Hopfield model [58] with the
key difference that the synaptic matrix is not assumed symmetric if not explicitly
stated. Despite the absence of the symmetry assumption, with a slight abuse
of terminology, we also term the Hopfield-like neural network (3.1) as Hopfield
neural network. This terminology is consistent with the terminology used in,
e.g., [75, 76, 23].

An important characteristic of the HNN in equation (3.1) is that it can be implemented
as an analog electronic circuit (see, e.g., [77, Section 13.5]). To the best of our knowledge,
there is no such implementation for the FNN in equation (3.2).

The HNN (3.1) and FNN (3.2) are known to be mathematical equivalent through
suitably defined state and input transformations. [59]. However, the input transformation
is state-dependent when the synaptic matrix is rank deficient (as in the sparse recon-
struction problem we analyze in Part I) and, counter-intuitively, the transformation of
solutions from HNN to FNN requires that the initial condition of the input depends on
the initial condition of the state. Moreover, the FNN might hold an advantage over the
HNN in terms of biological plausibility in the following sense. When the activation
function is non-negative, the positive orthant is forward-invariant, i.e., the state remains
non-negative from non-negative initial conditions and is thus interpreted as a vector of
firing rates. Therefore, even if the HNN state can be interpreted as a vector of membrane
potentials, it is more natural to interpret negative (resp. positive) synaptic connections as
inhibitory (resp. excitatory) in the FNN rather than the HNN.

A complete understanding of the correspondence between (3.1) and (3.2) remains
an ongoing area of research. In [78] we take a step further in the analysis of this
correspondence.
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3.4 Synaptic Dynamics: Hebbian Learning
Biological synaptic plasticity is believed to be a fundamental process underlying human
learning and memory. One of the most widely accepted theories of synaptic plasticity is
Hebbian learning, introduced by Donald Hebb in 1949 [2]. Hebb proposed that learning
is based on the correlated activity of connected neurons. Specifically, in a famous passage
of [2], he stated the following postulate:

“When an axon of cell A is near enough to excite cell B and repeatedly or persistently
takes part in firing it, some growth process or metabolic change takes place in one or

both cells such that A’s efficiency, as one of the cells firing B, is increased.”

In essence, Hebb’s rule suggests that synapses are strengthened or stabilized when there
is a correlation between pre- and post-synaptic neurons. Hebb formulated his principle
on purely theoretical grounds, therefore the postulate does not have a single mathematical
formulation. Instead, Hebbian learning can be seen as a family of learning rules that
share two key characteristics derived from Hebb’s law: (i) the learning rule must be
local, meaning that only the activities of the connected neurons A and B matter, without
any influence from any other neurons C that might make a connection onto A or B, and
(ii) cooperativity, meaning that both pre-synaptic neuron A and post-synaptic neuron
B must be active to induce a weight increase. Locality is one of the key properties
that a learning rule must possess to be considered biologically plausible [16]. As
discussed in Section 1.1, the absence of this property is one of the primary reasons why
backpropagation is considered biologically implausible.

Mathematical Formulation
A rigorous mathematical description of Hebbian learning, along with the key properties
that make it significant for implementation in artificial neural networks (ANNs), is given
in [79]. Here, we review these properties and their formulations, following the approach
presented in [79]. For further details, we refer the reader to the original paper. To this
purpose, we focus on a single synapse with efficacy wij , which transmits signals from
a pre-synaptic neuron νj to a post-synaptic neuron νi. The first two properties, locality
and cooperativity, are direct consequences of Hebb’s postulate.

• Locality: the learning rule for the synapse wij should depend only on the activity
of j and i and not on that of any other neurons. Mathematically, this can be
expressed as:

d

dt
wij = F (wij , νi, νj), (3.3)

where F is a function that should be chosen according to the additional properties
we want the dynamics to satisfy.

• Cooperativity: pre- and post-synaptic neurons have to be active simultaneously
to induce a weight increase. Given a parameter c, mathematically, the simplest
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choice for the function F in (3.3) is

d

dt
wij = cνiνj . (3.4)

Equation (3.4) represents the simpler and more direct implementation of Hebb’s
postulate, but from this simple formulation, one can see that it leads to unrealistic
behavior, as the weights diverge. To have a more realistic system, additional properties
must be considered:

• Synaptic depression: To avoid divergence, synaptic weights should be able to
decrease (or increase). Given cd > 0, this, for example, can be modeled by adding
a weight decay to equation (3.4), obtaining

d

dt
wij = cνiνj − cdwij . (3.5)

• Boundedness: In realistic systems, synaptic weights should remain bounded.

• Competition: If some synaptic weights grow, they should do so at the expense
of others, ensuring a competitive balance. Given c > 0, a well-known rule that
satisfies this property is Oja’s rule [66] given by

d

dt
wij = cνiνj − cν2i wij . (3.6)

The above mathematical formulations play a central role in Part II, where we the-
oretically explore the embedding of biologically plausible learning mechanisms – and
Hebbian learning one is the most widely accepted of such mechanisms – into neural net-
works. Specifically, we introduce and analyze there coupled neural-synaptic dynamics
that combine HNNs and FNNs with two different Hebbian learning rules for the synaptic
dynamics. The first rule satisfies the biological properties of locality, cooperativity,
synaptic depression, and boundedness; the second rule – which we refer to as Oja’s like
learning rule – fulfills, in addition, a competitiveness property.

3.5 Summary
This chapter presented a self-contained review of the continuous-time dynamical rules
governing neural masses and synaptic weights central to our analysis. Specifically, in
Section 3.3 we introduced the continuous-time dynamical rules governing the neural
dynamics. Then, in Section 3.4 we reviewed Hebbian learning rules and the mathemat-
ical formulation used in our analysis. The rationale behind choosing these dynamics
is supported by both theoretical and experimental evidence, as discussed in the intro-
duction (Section 3.1) and overview (Section 3.2) sections. These dynamics play a key
role in Parts I and II, where we propose a normative framework for translating optimiza-
tion problems into biologically plausible neural networks and a possible way to embed
learning within this framework.

30



4 Contraction Theory
for Dynamical Systems

Contraction theory is the main analytical tool we use throughout the thesis for studying
the convergence, stability, and robustness properties of the dynamics of our interest. In
this chapter, we review basic results of contraction theory for continuous-time dynamical
systems. The treatment presented is based on the monograph [42]. We refer to the
monograph and the original papers referenced in this chapter for further details.

4.1 Introduction
Contraction theory is a powerful mathematical framework for the analysis and under-
standing of the stability and convergence behavior of dynamical systems. Traditionally,
stability properties are defined in terms of convergence to an invariant set, such as an
equilibrium or a periodic orbit, combined with a Lyapunov stability requirement that
trajectories starting near the attractor remain close to it for all future times. However,
these methods typically require prior knowledge of the system’s attractors, which can
make them challenging to apply in complex scenarios where such information is not read-
ily available. In contrast, rather than focusing on specific attractors, contraction theory
focuses on the distance between trajectories, requiring that any two trajectories (expo-
nentially and without overshoot) converge towards each other. In general, contraction
theory can be viewed as a unified and coherent framework that aims to combine results
from Lyapunov stability theory, incremental stability, fixed point theorems, monotone
systems theory, and the geometry of Banach and Riemann spaces.

The importance of contraction theory extends beyond its theoretical elegance and lies
in its practical effectiveness. In fact, contraction theory has been successfully applied in
various fields, including, e.g., network synchronization [80], learning-based control [81],
and convex optimization [53].

The chapter is organized as follows. In Section 4.2, we provide a brief literature
review on contraction theory. Then, in Section 4.3, we review some basic concepts and
results on continuous-time dynamical systems that we use throughout the manuscript
to prove our results. Finally, Section 4.4 presents the definition and main properties of
contracting dynamics.
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4.2 Overview
The study of contraction theory started with the seminal work of Stefan Banach in
1922 [82]. The groundwork for understanding contraction properties in dynamical
systems through the use of logarithmic norms was laid by Lewis [83], Demidovič [84],
and Krasovskiı̆ [85]. A historical review is given by Pavlov et al. [86].

Contraction theory applied to control problems began with the seminal work of
Lohmiller and Slotine [25], who introduced an approach based on differential conditions
for contraction using the Euclidean norm. This work marked a pivotal shift in the
analysis of nonlinear systems, opening new avenues for research and application. Since
then, contraction analysis has been extensively studied and numerous generalizations
have been proposed. These include partial contraction [87], contraction of stochastic
differential equations [88, 89], contraction on Riemannian and Finsler manifolds [90, 91],
weak and semi-contraction [36], contraction in systems with different time scales [92],
and k-contraction [93].

The application of contraction theory has also expanded beyond smooth dynamical
systems. For instance, the framework has been extended to piecewise smooth dynamical
systems [80], and more recently to locally Lipschitz functions [38].

The classic approach to contraction theory is with respect to the Euclidean norm, using
linear matrix inequality (LMI) tools to design optimal weight matrices. However, recent
works have shown that stability can be studied more systematically and efficiently using
non-Euclidean norms (e.g., ℓ1, ℓ∞, and polyhedral norms), particularly in large classes
of network systems. Examples include biological transcriptional systems [26], coupled
oscillators [46], chemical reaction networks [94], Hopfield neural networks [95, 38],
biologically plausible models [96, 70], and traffic networks [97, 98].

Beyond these results, contractivity has proven effective in other application domains,
including modern control design on multiple time scales [99] and online feedback op-
timization [100]. An implicit model that uses contraction theory to allow for a convex
parametrization of stable models is presented in [101]. Contraction-theoretic tools have
also been applied to machine learning and ANNs. For example, in [28] contraction-based
conditions are given to characterize disturbance rejection properties of HNNs with delays.
Euclidean contractivity is analyzed in the context of RNN with dynamic synapses [24]
and in [102], where a number of contractivity conditions are proposed. Additionally,
contractivity has been shown to enhance the robustness of neural ordinary differential
equations [103] and implicit neural networks [104, 27] against adversarial perturbations.

Contraction dynamics have also been effectively employed to solve optimization
problems [105, 53, 106]. The asymptotic behavior of weakly contracting dynamics has
been characterized in various contexts, including monotone systems [98] and primal-
dynamics with locally stable equilibria [36], as well as in non-expansive functions with
a locally exponentially stable equilibrium [107, 106].

For a more comprehensive understanding of contraction theory, notable surveys, and
reviews include [108, 109, 80, 81, 110, 111], along with the recent monograph by
Bullo [42].
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4.3 Nonlinear Dynamical Systems: Basic Concepts
In this section, we introduce key notations and basic concepts for nonlinear continuous-
time dynamical systems, which will be referenced throughout this manuscript.

Specifically, we consider dynamical systems of the form

ẋ = f(t, x), (4.1)

where f : R≥0 × C → Rn, is a smooth nonlinear function and C ⊆ Rn is a forward
invariant (see the above definition) set for the dynamics. We let t ↦→ ϕt

(︁
x(0)

)︁
denote

the flow map at time t of (4.1) starting from initial condition x(0) := x0. We denote
by Df(t, x) := ∂f(t, x)/∂x the Jacobian matrix of f with respect to x. If f is a
multi-variable function, we write D(·)f to specify the variable with respect to which we
are computing the partial derivative. Whenever it is clear from the context, we omit
specifying the dependence of functions on time t.

We now recall some standard definitions useful for our analysis.

Definition 4.1 (Forward Invariant set). A set A ⊆ Rn is said to be forward invariant
for system (4.1) if the trajectories of every solution of (4.1) starting from any point of
x(0) ∈ A remains in A for all t ≥ 0, that is

x0 ∈ A =⇒ ϕt

(︁
x0

)︁
∈ A ∀t ≥ 0.

Definition 4.2 (Attractive set). A set A ⊆ Rn is said to be attractive for system (4.1) if
the trajectories of every solution of (4.1) starting from any point of Rn asymptotically
converge to the set A, that is for any initial condition x0 ∈ Rn there exists a time t0 > 0
such that

ϕt

(︁
x0

)︁
∈ A ∀t ≥ t0.

Next, we recall the following result from [112, pp. 102-103] that we will use several
times to prove our statements.

Theorem 4.1 (Comparison Lemma). Let f : R≥0×C ⊂ R → R be continuous in t and
locally Lipschitz in x, for all t ≥ 0 and x ∈ C. Consider the scalar differential equation

ẋ = f(t, x), x(t0) = x0,

and let [t0, T ) (T could be infinity) be the maximal interval of existence of the solution
x(t). Suppose that x(t) ∈ C, for all t ∈ [t0, T ). Let v(t) be a continuous function whose
Dini derivative satisfies the differential inequality

D+v(t) ≤ f(t, v(t)), v(t0) ≤ x0,

with v(t) ∈ C, for all t ∈ [t0, T ). Then v(t) ≤ x(t) for all t ∈ [t0, T ).

Finally, we recall Nagumo’s Theorem [113] for the positive orthant. We refer to [42,
Exercise 3.13] for more details. We use this result to prove that the positive orthant is
forward invariant for a given dynamical system. This, in turn, implies that the dynamical
systems is positive, which, as we argue in Section 1.1, is a key property for biologically
plausible dynamical models.
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Theorem 4.2 (Nagumo’s Theorem for the positive orthant). The positive orthant Rn
≥0 is

forward invariant for a vector field f if and only if

fi(x) ≥ 0 ∀x ∈ Rn
≥0 such that xi = 0. (4.2)

4.4 Contraction Theory
In this section, we review the main properties of continuous-time contracting dynamical
systems. Throughout this manuscript we follow the approach in [109, 42], characterizing
contractivity through the log-norm of the Jacobian of the system. Specifically, we focus on
continuous-time dynamical systems whose Jacobians have log-norms uniformly upper-
bounded by a negative constant either everywhere or almost everywhere in the state
space, depending on the differentiability properties of the system under consideration.

We begin with the following:

Definition 4.3 (Contracting systems [42]). Let ∥ · ∥ be a norm on Rn with compatible
weak pairing and with associated log-norm µ. Given a function f : R≥0 × C → Rn,
with C ⊆ Rn f -invariant, open and convex, and a constant c > 0 (c = 0) referred as
contraction rate, f is strongly (weakly) infinitesimally contracting on C if

osLip(ft) ≤ −c, for all t ∈ R≥0,

or, equivalently for differentiable vector fields, if

µ(Df(t, x)) ≤ −c, for all x ∈ C and t ∈ R≥0. (4.3)

Of particular interest is the case of non-smooth map f , as such functions appear
in several frameworks. For example, in neural network models, non-smooth activation
functions such as ReLU and saturation functions are prevalent. Indeed, as we will
see, these models naturally arise when using contracting dynamics for solving convex
optimization problems. The next result [38, Theorem 16] allows using condition (4.3) for
locally Lipschitz function, for which, by Rademacher’s theorem, the Jacobian Df(t, x)
exists almost everywhere in C.

Theorem 4.3 (osLip and log-norm equivalence for locally Lipschitz functions). Given a
norm ∥·∥ on Rn with compatible weak pairing and with associated log-norm µ, consider
a function f : R≥0 × C → Rn locally Lipschitz on C ⊂ Rn open and convex set. Then
for every c ∈ R the following statements are equivalent:

1. osLip(ft) ≤ c, for all t ∈ R≥0,

2. µ(Df(t, x)) ≤ c, for almost every x ∈ C, and t ∈ R≥0.

It is evident from the definition that contractivity is a metric property and depends
on the specific metric used. A system may be contracting with respect to one metric but
not with respect to another. We show this statement in the following simple example of
a linear dynamical system.
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Example 4.1. Consider the system
[︃
ẋ
ẏ

]︃
= A

[︃
x
y

]︃
:=

[︃
−0.1 1
−1 −0.1

]︃ [︃
x
y

]︃
. (4.4)

We have

µ2(A) = λmax

(︂A⊤ +A

2

)︂
= λmax

(︂[︃−0.1 0
0 −0.1

]︃)︂
= −0.1 < 0,

and

µ1(A) = max
j∈{1,...,n}

(︂
ajj +

n∑︂

i=1,i̸=j

|aij |
)︂
= max{−1.1, 0.9} = 0.9 > 0.

Therefore system (4.4) is 0.1-strongly contracting with respect to the norm ∥ · ∥2, but it
is not strongly contracting with respect to the norm ∥ · ∥1.

One of the benefits of contraction theory is that it enables the study of the convergence
behavior of the flow map with a single condition. Specifically, if f is contracting, for any
two trajectories x(·) and y(·) of (4.1) rooted from x0, y0 ∈ C it holds

∥ϕt

(︁
x0

)︁
− ϕt(y0)∥ ≤ e−ct∥x0 − y0∥, for all t ≥ 0,

i.e., the distance between the two trajectories rooted in C shrinks exponentially with
rate c if f is c-strongly infinitesimally contracting, and never increases if f is weakly
infinitesimally contracting.

Properties of Strongly Infinitesimally Contracting Dynamics
Strongly infinitesimally contracting dynamical systems exhibit highly ordered transient
and asymptotic behavior, making them particularly advantageous for analyzing and con-
trolling dynamical systems. Namely,

1. initial conditions are forgotten exponentially quickly,

2. the distance between any two trajectories is monotonically decreasing,

3. time-invariant dynamics admit a unique globally exponential stable equilibrium
(see Figure 4.1). Additionally, two natural Lyapunov functions are automatically
available: the distance from the equilibrium and norm of the vector field itself,

4. time-varying and periodic vector fields admit a unique periodic orbit, which is
globally exponentially stable,

5. contracting dynamics enjoy highly robust behavior including:

• incremental input-to-state stability,
• finite input-state gain,
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• contraction margin to unmodeled dynamics, and
• input-to-state stability in the presence of delayed dynamics.

6. contraction theory is a modular framework: under proper conditions, the intercon-
nection of contracting dynamical systems is contracting, with an explicit estimate
of the contraction rate available (see Section 4.4.1 for more details).

Additionally, contracting dynamical systems admit systematic procedures for the com-
putation of their equilibria. We recall the following result that shows that, for a given
time-invariant contracting dynamical system, the forward Euler integration of the dynam-
ics with a proper step size guarantees that this discrete-time iteration is also a contraction.

Theorem 4.4 (Contractivity of Euler discretization). Given a norm ∥ · ∥ induced by an
inner product ⟨·, ·⟩, consider a Lipschitz map f : Rn → Rn. The following statements
are equivalent

1. the dynamical system ẋ = f(x) is strongly infinitesimally contracting with respect
to the norm ∥ · ∥,

2. for α ∈]0, 2c/L2[ the explicit Euler integration algorithm xk+1 = xk+αf(xk) =
(Id+ αf)(xk) is strongly contracting with respect to the norm ∥ · ∥.

Proof. Let f : Rn → Rn be Lipschitz with constant L, and J·, ·K be the weak pairing
associated to the norm ∥ · ∥. First we prove that statement 1 implies statement 2.

Assume ẋ = f(x) is strongly infinitesimally contracting with respect to the norm
∥ · ∥ with rate c > 0, that is, by using the one-sided Lipschitz condition,

Jf(x)− f(y), (x− y)K = ⟨f(x)− f(y), (x− y)⟩ ≤ −c∥x− y∥2, ∀x, y ∈ Rn,

where in the first equality we used the fact that if a norm is induced by an inner product,
then the weak pairing coincides with the inner product. To prove statement 2 we show
that there exists a constant d < 1 such that ∥xk+1 − yk+1∥ ≤ d∥xk − yk∥, for all xk,
and yk ∈ Rn. We compute

∥xk+1 − yk+1∥2 : = ∥xk + αf(xk)− yk − αf(yk)∥2

= ∥xk − yk + α
(︁
f(xk)− f(yk)

)︁
∥2

= ∥xk − yk∥2 + 2α⟨f(xk)− f(yk), xk − yk⟩+ α2∥f(xk)− f(yk)∥2

≤ ∥xk − yk∥2 − 2αc∥xk − yk∥2 + α2L2∥xk − yk∥2

=
(︁
1− 2αc+ α2L2

)︁
∥xk − yk∥2

where in the last inequality we used the contractivity and Lipschitzness of the map f . The
statement then follows by noticing that 1−2αc+α2L2 < 1 if and only if α ∈]0, 2c/L2[.

Viceversa, assume that statement 2 holds, that is Lip (Id+ αf) < 1 forα ∈]0, 2c/L2[.
To prove statement 1 we show that osL (f) < 0. We have

osL (Id+ αf) = 1 + osL (αf) = 1 + α osL (f).
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On the other hand, it always holds osL (Id+ αf) ≤ Lip (Id+ αf) and, by assumption,
Lip (Id+ αf) < 1. These inequalities imply

1 + α osL (f) < 1 ⇐⇒ osL (f) < 0.

This concludes the proof.

The optimal choice of step size depends on the norm. For more details and guidance
on the step-size selection, we refer to [114] for the Euclidean case, and to [115] for the
non-Euclidean case.

Figure 4.1: Strongly infinitesimally contracting systems: the distance between any two
trajectories converges exponentially to the unique equilibrium point x⋆. The figure
illustrates contractivity with respect to the Euclidean norm. Given two initial conditions
x0, and y0, the trajectory of y(t) remains inside the ball centered at x(t) with radius
e−ct and both trajectories converge exponentially to x⋆. Image reused with permission
from [42].

Properties of Weakly Infinitesimally Contracting Dynamics
The properties listed in the previous section do not generally extend to weakly infinitesi-
mally contracting (or non-expansive) systems, where the distance between trajectories is
non-increasing. These systems are, e.g., systems that exhibit conservation or invariance
properties and that, therefore, cannot be strongly infinitesimally contracting since the
system trajectories cannot fully forget initial conditions. Nevertheless, these systems still
enjoy numerous useful properties, such as the so-called dichotomy property [36]. This
property states that a weakly infinitesimally contracting system on C has either:

• no equilibrium point in C, and every trajectory starting in C is unbounded (see
Figure 4.2.a),

• at least one equilibrium, and every trajectory starting in C is bounded (see Fig-
ure 4.2.b).

Moreover, if there exists an equilibrium point that is locally asymptotically stable, then it is
also globally asymptotically stable. We rigorously prove this result and provide a detailed
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characterization of the convergence behavior for systems that are weakly contracting over
the entire state space and have a locally asymptotically stable equilibrium point.

Figure 4.2: Illustration of the dichotomy property of weakly contracting systems: a) the
system has no equilibrium and every trajectory is unbounded or b) there exists at least one
equilibrium and every trajectory is bounded. Images reused with permission from [42].

4.4.1 Interconnected Systems
In this section, we briefly review the theory of contracting interconnected systems. This
is crucial for analyzing the stability of complex systems, and we use it in Chapter 9 to
establish the contractivity of coupled neural-synaptic dynamics.

Given r positive integers n1, . . . , nr such that n1 + · · · + nr = n, consider the
decompositionRn = Rn1×· · ·×Rnr , a local norm ∥·∥i onRni , for each i ∈ {1, . . . , r},
with associated log-norm µi(·). Now, consider the interconnection of r dynamical
systems given by

ẋi = fi(t, xi, x−i), ∀i ∈ {1, . . . , r}, (4.5)
where xi ∈ Rni , and x−i ∈ Rn−ni denotes the vector x without the component xi. We
recall the following result [45, 46], which provides conditions under which interconnected
systems are contracting.

Theorem 4.5 (Contractivity of interconnected system). Consider the interconnected
system in (4.5). For each i ∈ {1, . . . , r}, assume that

(1) (contractivity-at-each-node) at fixed x−i and t, the map xi → fi(t, xi, x−i) is
strongly infinitesimally contracting with rate ci with respect to ∥ · ∥i.

(2) (Lipschitz interconnections) at fixedxi and t, each functionx−i → fi(t, xi, x−i)
is Lipschitz with Lipschitz constant γij ∈ R≥0, i ̸= j.
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Define the gain matrix

Γ =

⎡
⎢⎣
−c1 . . . γ1r

... . . .
...

γr1 . . . −cr

⎤
⎥⎦ ∈ Rr×r. (4.6)

If the gain matrix Γ is Hurwitz, then the interconnected system is strongly infinitesimally
contracting with respect to a composite norm ∥·∥ generated by logarithmic optimal norm
for Γ, with rate |α(Γ) + ε|.

Let Df(x) denote the Jacobian of the interconnected system (4.5) and note that the
gain matrix Γ is an aggregate Metzler majorant of (4.5). By applying inequality (2.3)
and the monotonicity property of the log-norm, we have

sup
x

µcmpst(Df(x)) ≤ µagg(sup
x

|Df(x)|M) = µagg(Γ).

Then a logarithmic optimal norm for Γ in Theorem 4.5 can be selected by applying
Lemma 2.3.

4.5 Summary
In this chapter, we provided a self-contained review of contraction theory for nonlinear
continuous-time dynamical systems. This is the main theoretical framework we use to
analyze the stability and robustness of the dynamics we study. We began by introducing
the basic concepts of dynamical systems needed for our analysis. Then, we dive into
the analysis of contracting systems. After formally defining contracting dynamics, we
outlined the key properties that make contraction theory a powerful analytical tool, as
discussed in Section 1.3. In the following chapters, we give conditions that ensure
contractivity in our models, explicitly stating the norm and contractivity rate for each
case. Moreover, in Part III we show the effectiveness of contracting dynamics in analyzing
static and time-varying convex optimization problems.
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Part I
—— · ——

A Normative Framework for
Biologically Plausible

Neural Networks
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I.1 Introduction
Recurrent neural networks are a class of computational models used for explaining
neurobiological phenomena and for solving machine learning problems. In RNNs, the
neurons’ activity is influenced not only by the current stimulus but also by the current state
of the network. This feedback property makes RNNs particularly suited for computations
that unfold over time, such as tasks involving sequential data or time-series predictions.

RNNs have been successfully applied to many domains, including solving optimiza-
tion problems. Typically, in this framework, researchers define the dynamics and then
demonstrate that these dynamics effectively solve the problem at hand. However, this
approach often lacks a clear biological interpretability.

Research questions: As a result, key questions arise:

• What are the functional implications of RNN models? That is, what mechanisms
(optimization problems) do natural neural networks solve, and how can biologically
inspired neural networks mimic these processes?

• How do the dynamics of such networks emerge when solving optimization prob-
lems, and how can we use these dynamics to tackle these problems effectively?

I.2 A Normative Framework for Biologically Plausible
Neural Networks

In this part, to address the above questions, we propose a top/down, normative framework
for a biologically plausible explanation of neural networks solving sparse reconstruction
and other optimization problems. By normative framework, we refer to an approach that
starting with an optimization problem that models natural network mechanisms, derives
an artificial neural network that provides a theoretical understanding of the computation
principles of the circuit. This approach has the advantage of directly investigating
the underlying principles of neural functioning, while also providing a mathematically
tractable framework for understanding the network.

It is widely believed that a key function of both biological and artificial neural
networks is to extract information from large amounts of data and there are empirical and
theoretical evidences that support the use of sparse representations in neural systems.
Motivated by this, we focus on sparse reconstruction problems, which are ubiquitous in
a wide range of domains including compressed sensing, image processing, and machine
learning. These problems entail approximating a given stimulus as a combination of a
sparse set of neurons and a dictionary and can be formalized as a regularized least squares
problem. At its core, our approach can be viewed as the task of solving optimization
problems through the use of continuous-time RNNs. This process essentially consists of
two key steps:

1. establishing the equivalence between the optimal solutions of the optimization
problem and the equilibrium points of the network dynamics,
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2. identifying conditions that guarantee stable convergence of these dynamics to their
equilibria.

A fundamental aspect of this analysis, and a crucial property for any complex system, is
the stability of the system of interest. Among the tools for characterizing the stability of
a dynamical system, we adopt a control-theory perspective leveraging contraction theory
– a robust method that ensures more than simple stability, as discussed in Chapter 4.

In this framework, we identified a gap in the literature regarding the contractivity
analysis of RNNs: contractivity conditions for some of the most common activation func-
tions and systems – including RNNs designed for solving sparse reconstruction problems
– were missing. This gap motivated us to develop the theoretical tools necessary to ana-
lyze the stability of the dynamics resulting when solving sparse reconstruction problems
and others. Specifically, in Chapter 5, we conduct a comprehensive sharp Euclidean
contractivity analysis of continuous-time Hopfield and firing rate neural networks with
symmetric weights. The assumption of symmetric weights is motivated by the wide
range of optimization problems whose solutions can be encoded via the equilibrium
points of neural networks with symmetric synaptic matrices. We provide several exam-
ples of these throughout the thesis. Remarkably our main results give logarithmically
optimal contractivity bounds for almost all symmetric synaptic matrices and for RNNs
with locally Lipschitz activation functions. Our analysis focuses on HNN and FNN, but
is built upon two useful classes of matrix polytopes which includes the Jacobian of the
HNN and FNN, but does not exclude the application of our results to other dynamical
systems whose Jacobian belongs to one of the matrix polytopes defined in Section 5.3.

We continue our analysis by proposing a top-down normative framework for biolog-
ically plausible neural networks that solve sparse reconstruction and other optimization
problems. To streamline the analysis, we divide our results into two chapters: Chap-
ter 6 presents the modeling of our dynamics, while Chapter 7 focuses on the analysis
of the convergence behavior. Specifically, in Chapter 6 we introduce a novel family of
continuous-time FNNs, called firing rate competitive networks (FCN), to address the
sparse reconstruction problems, by leveraging tools from monotone operator theory.
This general theory explains how to transcribe a composite optimization problem into a
continuous-time firing rate neural network, which is therefore interpretable. Because real
neurons produce non-negative outputs in response to non-negative stimuli (e.g., visual
input), we are particularly interested in solving the positive sparse reconstruction prob-
lem, where solutions are constrained to be non-negative. This leads to the introduction
of the positive firing rate competitive network (PFCN), which is the first RNN, to our
knowledge, designed to tackle positive sparse reconstruction problems.

Next, we proceed to the analysis of the proposed model. Our key findings can be
informally summarized as follows:

Informal statement (Summary of the main results in Chapters 6 and 7). The equilibria
of FCN are the optimal solutions to sparse reconstruction problems, and vice-versa.
Furthermore, the trajectories of the FCN are bounded. Additionally, if the dictionary
satisfies a standard assumption (that is the restricted isometry property), then:

1. the FCN converges to an equilibrium point that is also the optimal solution of the
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corresponding sparse reconstruction problem;

2. the convergence is linear-exponential, in the sense that the trajectory’s distance
from the equilibrium point initially decays at worst linearly, and then, after a
transient, exponentially.

Figure 4.3: Schematic diagram summarizing the main results of Chapters 6 and 7 and their
assumptions. To streamline the presentation, we focus on the PFCN in the diagram. With
Theorem 7.8 we show that the PFCN exhibits linear-exponential convergence towards
the optimal solution of the positive sparse reconstruction problem. The result follows
from: (i) establishing a link between the optimal solution of the optimization problem
and the equilibria of the PFCN; and (ii) characterizing the contractivity of the PFCN.

The assumptions, the results, and their links towards building the claims in the
informal statement are also summarized in Figure 4.3 for the PFCN. Specifically, in
Chapter 6 we show that the equilibria of both the FCN and PFCN are the optimal
solutions of the sparse reconstruction problem and the positive sparse reconstruction
problem, respectively (Lemma 6.3 and Corollary 6.4). Then, in Chapter 7 we focus
on the convergence behavior of our dynamics, focusing on the PFCN to streamline
the presentation. We demonstrate that the distance between any two trajectories of
the PFCN never increases (Theorem 7.6). Moreover, we show that if the dictionary
satisfies a standard assumption, then the equilibrium point for the PFCN is not only
locally exponentially stable but it is also strongly contracting in a neighborhood of the
equilibrium (Theorem 7.7). These results then lead to Theorem 7.8, where we show
that the PFCN (6.9) has a linear-exponential convergence behavior. That is, the distance
between any trajectory of the PFCN and its equilibrium is upper bounded, up to some
linear-exponential crossing time, say tcross, by a decreasing linear function. Then, for all
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t > tcross, the distance is upper bounded by a decreasing exponential function.
The analysis of the FCN and PFCN dynamics naturally leads to the study of the

convergence of globally-weakly and locally-strongly contracting systems. These are
dynamics that are weakly infinitesimally contracting on Rn and strongly infinitesimally
contracting on a subset of Rn. While in this part we provide a preliminary result on
the convergence behavior of this class of dynamics instrumental for the analysis of our
FCN models, we formalize and extend the study of such systems, which naturally arise
in the context of convex (but not strongly convex) optimization problems with a unique
minimizer, in Chapter 12.

I.3 Overview
Historically, understanding how neural systems represent sensory input has been a central
challenge in neuroscience. The evidence that many sensory neural systems employ sparse
reconstruction traces back to the pioneering work by Hubel and Wiesel, where it is shown
that the responses of simple-cells in the mammalian visual cortex (V1) can be described
as a linear filtering of the visual input [116]. This insight was further expanded upon by
Barlow, who hypothesized that sensory neurons aim to encode an accurate representation
of the external world using the fewest active neurons possible [117]. Subsequently, Field
showed that simple cells in V1 efficiently encode natural images using only a sparse
fraction of active units [118]. Then, Olshausen and Field proposed that biological vision
systems encode sensory input data and showed that a neural network trained to reconstruct
natural images with sparse activity constraints develops units with properties similar to
those found in V1 [3]. These ideas have since gained substantial support from studies on
different animal species and the human brain [119].

From a mathematical perspective, the sparse reconstruction problem can be formu-
lated as a composite minimization problem given by a least squares optimization problem
regularized with a sparsity-inducing penalty function. While traditional optimization
methods rely on discrete algorithms, recently an increasing number of continuous-
time recurrent neural networks have been used to solve optimization problems. Es-
sentially, these RNNs are continuous-time dynamical systems converging to an equi-
librium that is also the optimizer of the problem. Consequently, much research effort
has been devoted to characterizing the stability of those systems and their convergence
rates [120, 121, 63, 122, 78, 53]. A particularly notable RNN designed to tackle the
sparse reconstruction problem is the Locally Competitive Algorithm (LCA) introduced
by Rozell et al. [64]. This network is a continuous-time Hopfield-like neural network [58]
in equation (3.1). Following [64], several results were established to analyze the proper-
ties of the LCA. Specifically, in [123] it is proven that, provided that the fixed point of the
LCA is unique then, for a certain class of activation functions, the LCA globally asymp-
totically converges. Then, in [124] it is shown that the fixed points of the LCA coincide
with the solutions of the sparse reconstruction problem. Using a Lyapunov approach,
under certain conditions on the activation function and on the solutions of the systems,
it is also shown that the LCA converges to a single fixed point with exponential rate
of convergence. In [125] a technique using the Łojasiewicz inequality is used to prove
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convergence of both the output and state variables of the LCA. Various sparsity-based
probabilistic inference problems are shown to be implemented via the LCA in [126].
[127], [128], [129] focus on analyzing the LCA for the sparse reconstruction problem
with ℓ1 sparsity-inducing penalty function. Specifically, the convergence rate is analyzed
in [127]. In [129] it is rigorously shown how the LCA can recover a time-varying sig-
nal from streaming compressed measurements. Additionally, physiology experiments
in [128] demonstrate that numerous response properties of non-classical receptive field
(nCRF) can be reproduced using a model having the LCA as neural dynamics with an
additional non-negativity constraint enforced on the output to represent the instantaneous
spike rate of neurons within the population.

In a broader context, RNNs have been used both for explaining neurobiological
phenomena and as a tool for solving machine learning problems [130, 131, 44, 132,
102, 133]. While multistability is a key feature of the original Hopfield model [58]
(with multiple equilibria interpreted as memories), significant interest has grown over
the years in establishing conditions that ensure convergence to a unique equilibrium
point [75, 44, 76, 134]. The use of continuous-time RNNs to solve optimization problems
and research on stability conditions for these RNNs has gained considerable interest
in a wide range of fields, see, e.g., [122, 124, 125, 135]. For example, sufficient
conditions for the stability of HNNs are given in [134] based on the use of Lyapunov
diagonally stable matrices. A recent comprehensive survey is [122]. A powerful tool to
simultaneously establish stability and robustness of RNNs is contraction theory (which
precludes multistability). Among recent works studying contractivity of RNNs we
recall [101, 103, 24, 38, 102].
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5 Euclidean Contractivity
of Neural Networks
with Symmetric Weights

To deepen the understanding of the correspondence between the Hopfield neural network
in equation (3.1) and the firing rate neural network in equation (3.2), and to derive results
applicable to the study of biologically plausible neural networks addressing the sparse
reconstruction problem, this chapter provides a comprehensive sharp characterization
of the contractivity of HNNs and FNNs with respect to Euclidean norms. Notably, we
address the case of weak contractivity, which makes our results applicable to systems
that exhibit conservation or invariance properties. Moreover, we handle weakly increas-
ing and locally Lipschitz activation functions, allowing us to consider commonly used
activation functions such as the ReLU and soft-thresholding functions.

The results presented in this chapter appeared in:

• V. Centorrino, A. Gokhale, A. Davydov, G. Russo, and F. Bullo. “Euclidean Con-
tractivity of Neural Networks with Symmetric Weights”. IEEE Control Systems
Letters, 7:1724-1729, 2023. doi: 10.1109/LCSYS.2023.3278250. Recipient of
the 2024 IEEE Control Systems Letters Outstanding Paper Award.

Additionally, these results were presented at:

• V. Centorrino, A. Davydov, A. Gokhale, G. Russo, and F. Bullo. “Euclidean Con-
tractivity of Neural Networks with Symmetric Weights”, 62nd IEEE Conference
on Decision and Control, Singapore, December 2023. Presented in the invited
session “Contraction Theory for Analysis, Synchronization, and Regulation I”.
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5.1 Introduction
Continuous-time recurrent neural networks are dynamical models that have been exten-
sively studied in various fields, including computational neuroscience, machine learning,
and optimization. Recent research efforts have been directed to establish the contractivity
properties of continuous-time RNNs. Motivated by optimization [62, 63] and neurosci-
entific applications [64], [54, Chapter 17], this work specifically targets the analysis of
symmetric synaptic interactions. Indeed, as we will see in later chapters, continuous-time
RNNs used to solve optimization problems often involve symmetric synaptic interactions.

While a comprehensive contractivity analysis with respect to non-Euclidean ℓ1 and
ℓ∞ norms was recently presented in [38], the corresponding analysis with respect to
Euclidean norms was not complete yet. In this chapter, we bridge this gap, following
a recent breakthrough in this direction that was obtained in [102]. Specifically, we
focus on two common models of RNNs: the firing rate neural network and the Hopfield
neural network, both introduced in Chapter 3. As previously discussed, for certain
synaptic matrices and initial conditions, FNN and HNN can be shown to be equivalent
through an appropriate change of coordinates and input transformation [59]. However, the
understanding of this partial correspondence is not complete and, as we show below, their
contractivity properties are similar but not entirely equivalent. Finally, to demonstrate the
practical application of our contractivity analysis, we propose a firing rate neural network
to solve certain quadratic optimization problems. This analysis sets the stage for further
exploration of contracting dynamical systems in the context of solving optimization
problems, which is the focus of Part III.

The chapter is organized as follows. Section 5.2 presents the initial setup for the
chapter, outlining the assumptions and notations needed for the analysis. In Section 5.3,
we introduce the matrix polytopes relevant to our analysis and extend the concept of
logarithmic optimal norm for a matrix, given in Definition 2.6, to matrix polytopes. We
then give two general algebraic results: a lower bound on the spectral abscissa of matrix
polytopes and a result concerning products of symmetric matrices. These findings are
then used to prove the main result of the section, that is the explicit weighted ℓ2 norm
for the matrix polytopes which is log-optimal for almost all synaptic matrices. Building
on this result, we establish a set of sufficient conditions characterizing strong and weak
infinitesimal contractivity of FNNs and HNNs, in Section 5.4.1. Finally, in Section 5.5,
we propose an FNN solving quadratic optimization problems with box constraints and
apply our results to ensure global exponential convergence of the proposed dynamics,
along with all the other properties of contracting systems.
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5.1.1 Contributions
The main contributions of this chapter are a set of comprehensive, sharp sufficient con-
ditions that characterize both strong and weak infinitesimal contractivity of FNNs and
HNNs with symmetric weights and possibly non-smooth activation functions. Here,
by comprehensive we mean that we provide the specific norms with respect to which
the models are contracting, as well as explicit lower bounds on the contraction rates.
Remarkably, we demonstrate that these lower bounds are log-optimal in almost all sym-
metric weight matrices, making our results sharp – they are the best achievable within
this framework.

These theoretical findings are fundamental for the analysis in the next chapters of
this thesis and, in general, for the analysis of continuous-time RNNs. Indeed, with these
results, we address a significant gap in the existing literature by establishing conditions for
the Euclidean contractivity of RNNs with locally Lipschitz activation functions, which,
to the best of our knowledge, were missing. Our findings not only characterize the
contractivity properties of HNNs and FNNs with symmetric weights but also extend to a
broader family of matrix polytopes. Additionally, we also address the weak contractivity
case, thereby extending the applicability of our results to systems with conservation or
invariance properties, as well as to RNNs designed to solve specific convex optimization
problems, which we explore in subsequent chapters. To derive our main results, we
extend the concept of logarithmic optimal norms for matrices, recalled in Definition 2.6,
to matrix polytopes. Our approach leverages several general algebraic results, which are
interesting per se and constitute a contribution in their own right. With these algebraic
results, we: (i) determine a weighted ℓ2 norm for matrix polytopes which is log-optimal
for almost all synaptic matrices; (ii) give a lower bound on the spectral abscissa of matrix
polytopes; (iii) provide optimal and log-optimal norms for the product of symmetric
matrices.

Finally, we apply our sufficient contractivity conditions to propose an FNN that solves
certain quadratic optimization problems with box constraints. This application sets the
stage for further exploration of contracting FNNs for solving optimization problems,
which is the focus of the next chapters.

5.2 Set-up
Motivated by optimization [62, 63] and neuroscientific applications [64], [54, Chap-
ter 17], we work under the following assumption on the weight matrices.

Assumption 5.1 (Symmetric synaptic weights). The synaptic matrix W ∈ Rn×n

is symmetric.

We remark that Assumption 5.1 is valid in optimization applications, as the solutions
to a wide range of optimization problems can be encoded via the equilibrium points of
neural networks with symmetric synaptic weights. An example of this is provided in
Section 5.5, along with several other examples throughout this thesis.
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Under Assumption 5.1, the eigenvalues of W are real, α(W ) = λmax(W ) and it
holds the inequality W ⪯ α(W )In. We let the pair (UW ,ΛW ) denote the SVD of W
(see Section 2.1 for a review of SVD).

We start by defining a function that plays a crucial role in determining the contractivity
weight matrices. Given λm > 0, we define the map θλm : ]−∞, λm] → [2λm,+∞[ by

θλm(z) := 2λm
(︁
1 +

√︁
1− z/λm

)︁
, ∀z ∈ ]−∞, λm]. (5.1)

We illustrate θλm(·) in Figure 5.1. For our derivations, it is useful to introduce the
shorthand notation θλm(ΛW ) := [(θλm(λ1), . . . , θλm(λn))], where (λ1, . . . , λn) is the
vector of eigenvalues of W . Additionally, we introduce the matrix QF,λm ∈ Rn×n

defined as

QF,λm := UW θλm(Λ)U
⊤
W ≻ 0, (5.2)

and, when W is invertible, the matrix QH,λm ∈ Rn×n defined as

QH,λm := QF,λmW
−1 = UW θλm(ΛW )Λ−1

W U⊤
W ≻ 0. (5.3)
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Figure 5.1: Plot of the function θλm(·) in equation (5.1) with λm = 5.

Remark 5.1. The matrixQH,λm defined in (5.3) can be written asQH,λm = UW gλm(ΛW )U⊤
W ,

where we use the notation gλm(ΛW ) := [gλm(λ1), . . . , gλm(λn)], with gλm(·) defined by

gλm(z) := 2b
1 +

√︁
1− z/λm

z
, ∀z ∈ ]−∞, b] \ {0}.

Our first result, instrumental in proving the main result of this chapter, is on upper-
bounded symmetric matrices.

52



Lemma 5.1 (Splitting upper-bounded symmetric matrices). Consider a symmetric matrix
W (Assumption 5.1). Assume W ⪯ λmIn, for some λm > 0 and let θλm(·) and QF,λm be
defined in equations (5.1) and (5.2), respectively. Then,

W = QF,λm − 1

4λm
Q2

F,λm
. (5.4)

Proof. By definition of the function θλm(·), for all λi ≤ λm, i ∈ {1, . . . , n}, it holds

λi = θλm(λi)−
1

4λm
θλm(λi)

2. (5.5)

In fact, we have

θλm(λi)−
1

4λm
θλm(λi)

2 = 2λm

(︄
1 +

√︃
1− λi

λm

)︄
− 1

4λm
4λ2

m

(︄
1 +

√︃
1− λi

λm

)︄2

= 2λm

(︄
1 +

√︃
1− λi

λm

)︄
− λm

(︄
2 + 2

√︃
1− λi

λm
− λi

λm

)︄

= λm

(︄
2 + 2

√︃
1− λi

λm
− 2 +

λi

λm
− 2

√︃
1− λi

λm

)︄

= λi.

Equation (5.5) implies ΛW = θλm(ΛW ) − 1
4λm

θλm(ΛW )2. Equality (5.4) follows by
multiplying by UW and U⊤

W to the left and to the right.

5.3 Main Results
This section presents the main results of the chapter. Namely, we give algebraic results
on weighted Euclidean norms of certain matrix polytopes. These polytopes naturally
arise in the analysis of the contractivity properties of HNNs and FNNs.

First, in the following definition, we extend the concept of logarithmic optimal norm
for a matrix, given in Definition 2.6, to matrix polytopes.

Definition 5.1 (Log-optimal and log-ε-optimal norms for matrix polytopes). Given
A1, . . . , Am ∈ Rn×n, consider the polytope

P =
{︂ m∑︂

j=1

βjAj

⃓⃓
βj ≥ 0,

m∑︂

j=1

βj = 1
}︂

and a scalar ε > 0. We say that the norm ∥ · ∥ is

(i) logarithmically optimal (log-optimal) for P if

max
A∈P

α(A) = max
j∈{1,...,m}

µ(Aj),
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(ii) logarithmically ε-optimal (log-ε-optimal) for P if

max
A∈P

α(A) ≤ max
j∈{1,...,m}

µ(Aj) ≤ max
A∈P

α(A) + ε.

We are specifically interested in the matrix polytopesPF := {[d]W | d ∈ [0, 1]n} and
PH := {W [d] | d ∈ [0, 1]n}. Namely, in Theorem 5.4 we give algebraic results on the
Euclidean log-norm of matrices in PF and PH.

Remark 5.2. It is always possible to rewrite PF and PH in the form of Definition 5.1.
In fact, let A1, . . . , A2n ∈ Rn×n be the 2n vertices defined by Aj = [vj ]W where
vj ∈ {0, 1}n is the binary vector with entries either 0 or 1 (note that there are 2n such
binary vectors). Then the set {∑︁2n

j=1 βjAj | βj ≥ 0,
∑︁2n

j=1 βj = 1} is exactly the set
PF := {[d]W | d ∈ [0, 1]n}. To prove this, note that the vertices of the convex set [0, 1]n
are the 2n vectors vj . Therefore, given d ∈ [0, 1]n there exist βj ≥ 0, j = 1, . . . , 2n,
with

∑︁2n

j=1 βj = 1 such that [d] =
∑︁2n

j=1 βj [vj ]. Thus,

PF := {[d]W | d ∈ [0, 1]n} =
{︂ 2n∑︂

j=1

βj [vj ]W
⃓⃓
βj ≥ 0,

2n∑︂

j=1

βj = 1, vj ∈ {0, 1}n
}︂

=
{︂ 2n∑︂

j=1

βjAj

⃓⃓
βj ≥ 0,

2n∑︂

j=1

βj = 1
}︂
.

The same reasoning holds for PH.

Before stating the main result of this section, we provide some technical lemmas
necessary for the proof. First, we give a technical result for the spectral abscissa of
matrix polytopes.

Lemma 5.2 (Lower bound on spectral abscissa of polytope of matrices). For any matrix
W ∈ Rn×n, we have

max
d∈[0,1]n

α([d]W ) ≥ max{0, α(W )}, (5.6)

max
d∈[0,1]n

α(W [d]) ≥ max{0, α(W )}. (5.7)

Proof. First, note that the spectral abscissa is a continuous function and that the set PF
is compact, hence the maximum is well-defined. To prove (5.6) we compute:

max
d∈[0,1]n

α([d]W ) ≥ max{α([d]W )|d=0n
, α([d]W )|d=1n

}

= max{ 0, α(W ) }.

The same calculation applies to prove inequality (5.7).

Next, we give the following algebraic result for products of symmetric matrices.
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Lemma 5.3 (Optimal norms for products of symmetric matrices). LetA1 = SQ ∈ Rn×n

and A2 = QS ∈ Rn×n, where S, Q ∈ Sn, with Q ≻ 0. Then, for each i ∈ { 1, 2 },

(i) spec(Ai) is real and has the same number of negative, zero, and positive eigen-
values as S;

(ii) the norm ∥ · ∥2,Q1/2 is optimal for the matrix Ai, i.e., ∥Ai∥2,Q1/2 = ρ(Ai);

(iii) the norm ∥ · ∥2,Q1/2 is log-optimal for Ai, i.e., µ2,Q1/2(Ai) = α(Ai).

Proof. Let i = 1. A1 is similar to Q1/2SQ1/2 ∈ Sn, hence spec(A1) is real. State-
ment (i) then follows from Sylvester’s law of inertia, noting that Q1/2SQ1/2 is congruent
to S. Regarding statement (ii), we compute

∥A1∥22,Q1/2 = λmax(Q
−1A⊤

1 QA1) = λmax(Q
−1(QS)Q(SQ))

= λmax((SQ)2) = ρ(SQ)2,

where the last equality follows from the fact that (SQ)2 has the same eigenvectors as SQ
and real eigenvalues equal to the square of the real eigenvalues of SQ. Finally, to prove
statement (iii) we compute

µ2,Q1/2(A1) = λmax

(︂QA1Q
−1 +A⊤

1

2

)︂
= λmax

(︂Q(SQ)Q−1 +QS

2

)︂

= λmax(QS) = λmax(QSQQ−1)

= λmax(QA1Q
−1) = λmax(A1) = α(A1).

This concludes the proof of item (ii). The proof for i = 2 is a straightforward adaptation.

We now give the main result of this section. To enhance clarity we prove its parts
case by case. Statements (i) and (ii) in Theorem 5.4, are based upon and extend the
treatment in [102, Theorem 2] – see Remark 5.3 for more details.

Theorem 5.4 (Euclidean log-norm of matrix polytopes). Given a symmetric synaptic
matrix W (Assumption 5.1), the following statements holds:

(i) if α(W ) > 0, then ∥ · ∥2,QF,α(W )
, with QF,α(W ) ∈ Rn×n defined in (5.2), is

log-optimal for PF, i.e.,

max
d∈[0,1]n

µ2,QF,α(W )
([d]W ) = max

d∈[0,1]n
α([d]W ) = α(W ).

In addition, if W is invertible, then ∥ · ∥2,QH,α(W )
, with QH,α(W ) ∈ Rn×n defined

in (5.3), is log-optimal for PH, i.e.,

max
d∈[0,1]n

µ2,QH,α(W )
(W [d]) = max

d∈[0,1]n
α(W [d]) = α(W ),
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(ii) if α(W ) = 0, then for each ε > 0 the norm ∥ · ∥2,QF,ε , with QF,ε ∈ Rn×n defined
in (5.2), is log ε-optimal for PF, i.e.,

max
d∈[0,1]n

µ2,QF,ε([d]W ) ≤ max
d∈[0,1]n

α([d]W ) + ε = ε,

(iii) if α(W ) < 0, then ∥ · ∥2,(−W )1/2 is log-optimal for PF and PH, i.e.,

max
d∈[0,1]n

µ2,(−W )1/2([d]W ) = max
d∈[0,1]n

α([d]W ) = 0,

max
d∈[0,1]n

µ2,(−W )1/2(W [d]) = max
d∈[0,1]n

α(W [d]) = 0.

Proof of statement (i). First, we prove that ∥·∥2,QF,α(W )
is log-optimal forPF and it holds

max
d∈[0,1]n

α([d]W ) = α(W ). For this purpose, define

P :=
1

4α(W )
Q2

F,α(W ) ≻ 0.

Lemma 5.1 implies W = QF,α(W ) − P . Next, pick d ∈ Rn satisfying 0n < d ≤ 1n, so
that [d] is diagonal and invertible. Then

2α(W )P − 1

2
Q2

F,α(W ) ⪰ 0 (5.8)

=⇒ 2α(W )P − 1

2
QF,α(W )[d]QF,α(W ) ⪰ 0

⇐⇒ 2α(W )P −QF,α(W )[d]P (2P [d]P )−1P [d]QF,α(W ) ⪰ 0.

Since P [d]P ≻ 0, we can apply the Schur complement to this LMI to conclude that

y⊤
[︃

2α(W )P −QF,α(W )[d]P
−P [d]QF,α(W ) 2P [d]P

]︃
y ≥ 0, ∀y ∈ R2n. (5.9)

Setting y = (y1, y1) for arbitrary y1 ∈ Rn, the inequality (5.9) implies

2α(W )P −QF,α(W )[d]P − P [d]QF,α(W ) + 2P [d]P ⪰ 0

⇐⇒ QF,α(W )[d]P + P [d]QF,α(W ) − 2P [d]P ⪯ 2α(W )P

W=QF,α(W )−P⇐⇒ W [d]P + P [d]W ⪯ 2α(W )P

⇐⇒ Q2
F,α(W )[d]W +W [d]Q2

F,α(W ) ⪯ 2α(W )Q2
F,α(W ). (5.10)

In summary, we have established that the weak LMI (5.8) (independent of d) implies the
weak LMI (5.10) for all 0 < d ≤ 1n. Here, by weak LMI, we mean to state that the linear
matrix inequality is not strict. It is known [136, Theorem 6.3.5] that the eigenvalues
of a symmetric matrix are continuous functions of the matrix entries. Therefore, the
LMI (5.10) holds also for 0n ≤ d ≤ 1n. Finally, note that the LMI (5.10) is equivalent
to the condition µ2,QF,α(W )

([d]W ) ≤ α(W ) for all d ∈ [0, 1]n, therefore

max
d∈[0,1]n

µ2,QF,α(W )
([d]W ) ≤ α(W ).
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Moreover, the norm spectrum property of log-norm (vi) implies that for every log-norm
µ and every matrix A it holds α(A) ≤ µ(A). Specifically in our case:

max
d∈[0,1]n

α([d]W ) ≤ max
d∈[0,1]n

µ2,QF,α(W )
([d]W ).

The proof then follows from (5.6), after noticing that under the assumptions of state-
ment (i) it holds max{0, α(W )} = α(W ).

Next, assume that W is invertible. We need to prove that ∥ · ∥2,QH,α(W )
is log-optimal

for PH and that it holds max
d∈[0,1]n

α(W [d]) = α(W ). Note that for two invertible matrices

Q1, Q2 ∈ Rn×n, it holds

µp,Q1Q2
(A) = µp,Q1

(Q2AQ−1
2 ). (5.11)

We have

max
d∈[0,1]n

µ2,QH,α(W )
(W [d]) = max

d∈[0,1]n
µ2,QF,α(W )W−1(W [d])

(5.11)
= max

d∈[0,1]n
µ2,QF,α(W )

([d]W ) = α(W ),

where the last equality follows from the log-optimality of ∥ ·∥2,QF,α(W )
for PF. The proof

again follows from (5.6).

Proof of statement (ii). The proof follows the same reasoning as that of statement (i) by
considering ε > 0 instead of α(W ). Hence, we omit it here for brevity.

Proof of statement (iii). Pick d ∈ Rn satisfying 0n ≤ d ≤ 1n and consider the matrices
[d]W and W [d]. Lemma 5.3 with S := [−d] and Q := −W ≻ 0, implies that the
spectrum of the product matrices [d]W = [−d](−W ) and W [d] = (−W )[−d] is real
and has the same number of negative, zero, positive eigenvalues as [−d]. Therefore,

µ2,(−W )1/2([d]W ) = α([d]W )

{︃
< 0 if d > 0n,
≤ 0 otherwise,

µ2,(−W )1/2(W [d]) = α(W [d])

{︃
< 0 if d > 0n,
≤ 0 otherwise.

Maximizing over d ∈ [0, 1]n we get statement (iii).

It is worth elaborating on the previous results, as it is key for obtaining sufficient
conditions for the strong infinitesimal contractivity of the FNNs and HNNs with sym-
metric weights with respect to weighted Euclidean norms. Given a symmetric matrix W ,
Theorem 5.4 provides weighted Euclidean log-optimal log-norms for matrix polytopes in
PF and PH. Moreover, it applies also to polytopes that arise when studying contractivity
of the FNNs and HNNs, that are polytopes of the form aIn + [d]W and aIn +W [d], for
all a ∈ R, where d ∈ [0, 1]n. This last statement follows from the log-norm translation
property (iii). The log-optimality of the proposed log-norms is key to obtain sharp results
in our contractivity analysis for some cases.
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5.4 Contractivity of Recurrent Neural Networks
Consider the neural network dynamics for the FNN in equation (3.2) and for the HNN in
equation (3.1). Using the results in Section 5.3, we now derive sufficient conditions for
the strong infinitesimal contractivity of the FNN and the HNN with symmetric weights
with respect to weighted Euclidean norms.

We make the following assumption on the activation functions.

Assumption 5.2 (Slope restricted activation function). The activation function
ϕ : R → R is Lipschitz and slope restricted in [0, 1], i.e.,

0 ≤ ϕ(x)− ϕ(y)

x− y
≤ 1, for all x, y ∈ R, x ̸= y.

Assumption 5.2 ensures that ϕ′(x) ∈ [0, 1] for almost all x ∈ R. Many common
activation functions including ReLU, and sigmoid, satisfy Assumption 5.2, possibly
after rescaling. In fact, Assumption 5.2 can be relaxed for larger classes of coupling by
restricting the slope to [0, d̄], where d̄ > 0. By defining [d] := DΦ/d̄ and W := d̄W
our following results still hold for this general case, with α(W ) replaced by α(d̄ ·W ) =
d̄ · α(W ). We assume d̄ = 1 to simplify the notation.

Remark 5.3. Our results for strong infinitesimal contractivity of the FNN and HNN
with symmetric weights are based on and generalize [102, Theorem 2]. Specifically, in
the next sections, we (i) provide the explicit expression of the matrix weights for which
the models are contracting. The matrices we find are different for the two dynamics,
highlighting the importance of choosing the appropriate model based on the properties
being studied; (ii) address the weak contractivity case, making our results applicable
for, e.g., systems that enjoy conservation or invariance properties; (iii) handle weakly
increasing and (iv) locally Lipschitz activation functions, which allows our framework
to encompass common activation functions such as the rectified linear unit (ReLU) and
soft thresholding functions.

5.4.1 Contractivity of Firing Rate Neural Networks
We now provide an upper bound on the ℓ2 one-sided Lipschitz constant and sufficient
conditions for the Euclidean contractivity of the FNN with symmetric weights.

Theorem 5.5 (Euclidean one-sided Lipschitz constant of the FNN). Consider the FNN (3.2)
with symmetric synaptic matrix (Assumption 5.1), Lipschitz and slope restricted in [0, 1]
activation function (Assumption 5.2),

(i) if α(W ) > 0, then

osLip2,QF,α(W )
(fF) ≤ −1 + α(W ),

with QF,α(W ) ∈ Rn×n defined in (5.2);
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(ii) if α(W ) = 0, then
osLip2,QF,ε

(fF) ≤ −1 + ε,

with QF,ε ∈ Rn×n defined in (5.2);

(iii) if α(W ) < 0, then
osLip2,(−W )1/2(fF) ≤ −1.

Proof. Regarding statement (i) note that for almost all ν ∈ Rn we have

µ2,QF,α(W )
(DfF(ν)) = µ2,QF,α(W )

(−In +DΦ(Wν + u)W )

≤ max
d∈[0,1]n

µ2,QF,α(W )
(−In + [d]W ) = −1 + α(W ),

where the last equality follows by the log-norm translation property (iii) and statement (i)
in Theorem 5.4. The proof follows by applying Theorem 4.3. Statements (ii) and (iii)
can be proved similarly, using statements (ii) and (iii) in Theorem 5.4.

The next result shows that, under further assumptions on the synaptic matrix and the
activation function, some inequalities in Theorem 5.5 are tight.

Lemma 5.6 (Sharp Euclidean one-sided Lipschitz constant of the FNN). Given the
FNN (3.2) with symmetric (Assumption 5.1) and invertible synaptic matrix W , Lips-
chitz and slope restricted in [0, 1] (Assumption 5.2) activation function ϕ satisfying the
equalities inf

x∈R
ϕ′(x) = 0 and sup

x∈R
ϕ′(x) = 1,

(i) if α(W ) > 0, then

osLip2,QF,α(W )
(fF) = −1 + α(W ),

with QF,α(W ) ∈ Rn×n defined in (5.2);

(ii) if α(W ) < 0, then
osLip2,(−W )1/2(fF) = −1.

Proof. The proof of both statements follows by applying Theorem 5.5 and noticing that
under the above assumptions for any log-norm µ it holds the reverse inequality

µ(DfF(ν)) ≥ −1 + α(W ), ∀ν ∈ Rn. (5.12)

To prove (5.12), let h : R \ Ωϕ → [0, 1] be the function defined by h(ν) = ϕ′(ν) where
Ωϕ is the measure zero set of points in R where ϕ is not differentiable. It is well-known
that for any closed and bounded set S ⊂ R, S ⊇ {inf(S), sup(S)}. Then, since h is
bounded, the closure of Im(h) satisfies

Im(h) ⊇
{︂

inf
ν∈R\Ωϕ

ϕ′(ν), sup
ν∈R\Ωϕ

ϕ′(ν)
}︂
= {0, 1}. (5.13)
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Letting ΩΦ be the measure zero points in Rn where Φ is not differentiable, we compute

sup
ν∈Rn\ΩΦ

µ(DΦ(Wν + u)W ) = sup
ν∈Rn\ΩΦ

µ(DΦ(ν)W ) (5.14)

= sup{µ([d]W ) | di ∈ Im(h),∀i}
= max{µ([d]W ) | di ∈ Im(h),∀i}
≥ max

d∈{0,1}n
µ([d]W ) (5.15)

= max
d∈[0,1]n

µ([d]W ). (5.16)

We justify the above (in)equalities as follows. Equality (5.14) holds because W is
invertible. Inequality (5.15) holds because of the condition (5.13). Finally, equality (5.16)
follows becauseµ is a convex function of its argument and the maximum value of a convex
function over a polytope occurs at one of its vertices.

In particular, for the respective choice of norm in statements (i) and (ii), the result is
proved in view of Theorem 5.4 and the translation property for log-norms (iii).

The following is an immediate consequence of Theorem 5.5.

Corollary 5.7 (Euclidean contractivity of the FNN). Under the same assumptions and
notations as in Theorem 5.5,

(i) if α(W ) = 1, then the FNN is weakly infinitesimally contracting with respect to
∥ · ∥2,QF,α(W )

,

(ii) if 0 < α(W ) < 1, then the FNN is strongly infinitesimally contracting with rate
1− α(W ) > 0 with respect to ∥ · ∥2,QF,α(W )

,

(iii) ifα(W ) = 0, then for any 0 < ε < 1 the FNN is strongly infinitesimally contracting
with rate 1− ε > 0 with respect to ∥ · ∥2,QF,ε ,

(iv) if α(W ) < 0, then the FNN is strongly infinitesimally contracting with rate 1 with
respect to ∥ · ∥2,(−W )1/2 .

5.4.2 Contractivity of Hopfield Neural Networks
We first provide an upper bound on the Euclidean one-sided Lipschitz constant and
sufficient conditions for the ℓ2 contractivity of HNNs with non-singular symmetric
synaptic matrix. Then, we give sufficient conditions for the ℓ2 contractivity with singular
symmetric synapses, as the two scenarios require a distinct mathematical approach.

Theorem 5.8 (Euclidean one-sided Lipschitz constant of the HNN with non-singular
symmetric weights). Consider the HNN (3.1) satisfying Assumptions 5.1 and 5.2 with
non-singular weight matrix W ,

(i) if α(W ) > 0, then

osLip2,QH,α(W )
(fH) ≤ −1 + α(W ),

with QH,α(W ) ∈ Rn×n defined in (5.3),
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(ii) if α(W ) < 0, then
osLip2,(−W )1/2(fH) ≤ −1.

Proof. Regarding statement (i), note that for almost all x ∈ Rn we have

µ2,QH,α(W )
(DfH(x)) = µ2,QH,α(W )

(−In +WDΦ(x))

≤ max
d∈[0,1]n

µ2,QH,α(W )
(−In +W [d]) = −1 + α(W ),

where the last equality follows by the log-norm translation property (iii) and statement (i)
in Theorem 5.4. The proof then follows by applying Theorem 4.3. statement (ii) can be
proved similarly, using statement (iii) in Theorem 5.4.

Remark 5.4. Following the same reasoning as in Lemma 5.6, under the same as-
sumptions of Theorem 5.8, if the activation function satisfies infx∈R ϕ′(x) = 0, and
supx∈R ϕ′(x) = 1, then the inequalities in Theorem 5.8 are tight.

Corollary 5.9 (Euclidean contractivity of the HNN with non-singular symmetric weights).
Under the same assumptions and notations as in Theorem 5.8,

(i) if α(W ) = 1, then the HNN is weakly infinitesimally contracting with respect to
∥ · ∥2,QH,α(W )

,

(ii) if 0 < α(W ) < 1, then the HNN is strongly infinitesimally contracting with rate
1− α(W ) > 0 with respect to ∥ · ∥2,QH,α(W )

,

(iii) if α(W ) < 0, then the HNN is strongly infinitesimally contracting with rate 1 with
respect to ∥ · ∥2,(−W )1/2 .

Finally, we give sufficient infinitesimal contractivity conditions of the HNN with
singular symmetric synapses.

Theorem 5.10 (Contractivity of the HNN with singular symmetric weights). Consider
the HNN (3.1) satisfying Assumptions 5.1 and 5.2 with W having kernel K ̸= {0n},
and such that α(W ) < 1. Then, for each ε ∈ ]0, 1− α(W )[ the HNN is strongly
infinitesimally contracting with rate |1− α(W )− ε|.

Proof. Let r be the number of non-zero eigenvalues of W ∈ Rn×n. For simplicity of
notation, we here drop the subscript W in the SVD decomposition of W , denoting it
simply as (U,Λ). Without loss of generality, we reorder the elements in λ ∈ Rn and
U ∈ Rn×n, so that λ = (λ1, . . . , λr, 0, . . . , 0) and U = [u1, . . . , ur, ur+1, . . . , un],
where ui ∈ Rn is the eigenvector of λi ∈ R.

Next, let K∗ := span{u1, . . . , ur }, n∥ := dim(K∗), K := span{ur+1, . . . , un },
n⊥ := dim(K), and define U∥ := [u1, . . . , ur] ∈ Rn×n∥ , U⊥ := [ur+1, . . . , un] ∈
Rn×n⊥ , so that U = [U∥ U⊥].

We have Rn = {x ∈ Rn | x ∈ K∗ } ⊕ {x ∈ Rn | x ∈ K}. Therefore,
given x ∈ Rn we can always define x∥ = U⊤

∥ x ∈ K∗ and x⊥ = U⊤
⊥x ∈ K. We

note that U⊤U = In implies U⊤
∥ U∥ = In∥ , U⊤

⊥U⊥ = In⊥ , U⊤
⊥U∥ = 0n⊥×n∥ , and
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U⊤
∥ U⊥ = 0n∥×n⊥ . Additionally, we define θ∥ := [(θα(W )(λ1), . . . , θα(W )(λr))] and

θ⊥ := [(θα(W )(λr+1), . . . , θα(W )(λn))]. Also,

W = [U∥ U⊥]

[︃
Λ∥ 0n∥×n⊥

0n⊥×n∥ 0n⊥×n⊥

]︃ [︃
U⊤
∥

U⊤
⊥

]︃
= U∥Λ∥U

⊤
∥ ,

QF,α(W ) = Uθα(W )(Λ)U
⊤ = [U∥ U⊥]

[︃
θ∥ 0n∥×n⊥

0n⊥×n∥ θ⊥

]︃ [︃
U⊤
∥

U⊤
⊥

]︃

= U∥θ∥U
⊤
∥ + U⊥θ⊥U

⊤
⊥ .

Moreover, we have

max
d∈[0,1]n

µ2,θ∥(−In∥ + U⊤
∥ [d]U∥Λ∥) ≤ −1 + α(W ). (5.17)

In fact, from Corollary 5.7 we know:

2α(W )QF,α(W ) +QF,α(W )[d]W +W [d]QF,α(W ) ⪯ 0

⇐⇒ 2α(W )(U∥θ
2
∥U

⊤
∥ + U⊥θ

2
⊥U

⊤
⊥ )

+ (U∥θ
2
∥U

⊤
∥ + U⊥θ

2
⊥U

⊤
⊥ )[d]U∥Λ∥U

⊤
∥

+ U∥Λ∥U
⊤
∥ [d](U∥θ

2
∥U

⊤
∥ + U⊥θ

2
⊥U

⊤
⊥ ) ⪯ 0.

By multiplying by U⊤
∥ and U∥ to the left and to the right, respectively, we get

2α(W )θ2∥ + θ2∥U
⊤
∥ [d]U∥Λ∥ + Λ∥U

⊤
∥ [d]U∥θ

2
∥ ⪯ 0. (5.18)

Thus, µ2,θ∥(−In∥ +U⊤
∥ [d]U∥Λ∥) ≤ −1+α(W ). Next, by multiplying (3.1) by U⊤

⊥ and
U⊤
∥ we obtain the interconnected system:

{︃
U⊤
⊥ ẋ = −U⊤

⊥x+ U⊤
⊥WΦ(x) + U⊤

⊥u,
U⊤
∥ ẋ = −U⊤

∥ x+ U⊤
∥ WΦ(Wx) + U⊤

∥ u,

thus,
{︄
ẋ⊥ = −x⊥ + u⊥ := f⊥

H (x⊥, u⊥), (5.19)

ẋ∥ = −x∥ + Λ∥U
⊤
∥ Φ(x) + u∥ := f

∥
H(x, u

∥). (5.20)

Equation (5.19) is always contracting with respect to any norm in the subspace K with
osLip(f⊥

H ) = −1, being µ(Df⊥
H ) = µ(−In⊥) = −1. For system (5.20) we define

QH,α(W ) := QF,α(W )W
† = Uθα(W )Λ

†U⊤, where W † = UΛ†U⊤ is the Moore-
Penrose pseudoinverse of W , with Λ† defined as

Λ† =

[︃
Λ−1
∥ 0n∥×n⊥

0n⊥×n∥ 0n⊥×n⊥

]︃
.
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Next, we note that the matrix QH∥ := U⊤
∥ QF,α(W )W

†U∥ = θ∥Λ
−1
∥ and that it holds

Df
∥
H = −In∥ + Λ∥U

⊤
∥ [d]U∥. Thus, we have

osLip2,QH∥
(f

∥
H) ≤ max

d∈[0,1]n
µ2,QH∥(Df

∥
H) ≤ max

d∈[0,1]n
µ2,θ∥Λ

−1
∥
(−In∥ + Λ∥U

⊤
∥ [d]U∥)

(5.11)
= max

d∈[0,1]n
µ2,θ∥(−In∥ + U⊤

∥ [d]U∥Λ∥)

(5.17)
≤ −1 + α(W ).

Thus system (5.20) is strongly infinitesimally contracting in K∗ with respect to ∥ · ∥QH∥

with rate 1− α(W ).
Finally, we note that at fixed x∥ and t, the map x⊥ → f∥ is Lipschitz with constant

L∥⊥ := α(W ). In fact, ∀x1
⊥, x

2
⊥ ∈ K, we get

∥f∥(x∥, x
1
⊥)− f∥(x∥, x

2
⊥)∥ = ∥−x∥ +WΦ(x1

⊥ + x∥) + u+ x∥−WΦ(x2
⊥ + x∥)−u∥

= ∥W (Φ(x1
⊥ + x∥)− Φ(x2

⊥ + x∥))∥
≤ α(W )∥Φ(x1

⊥ + x∥)− Φ(x2
⊥ + x∥)∥ ≤ α(W )∥x1

⊥ − x2
⊥∥.

We can now construct the gain matrix (4.6)

Γ =

[︃
−1 0

α(W ) −1 + α(W )

]︃
∈ R2×2. (5.21)

The eigenvalues of Γ are λ1 = −1, λ2 = −1 + α(W ). The fact that K ≠ {0n} implies
α(W ) ≥ 0. In turn, since by assumptions α(W ) < 1, we have λ2 ∈ [−1, 0[. Thus Γ is
Hurwitz andα(Γ) = −1+α(W ). By applying Theorem 4.5, for each ε ∈ ]0, 1− α(W )[
we have that the HNN is strongly infinitesimally contracting with rate |α(Γ) + ε|. This
concludes the proof.

Remark 5.5. If W = 0, then the FNN (3.2) and the HNN (3.1) are contracting with rate
1. As a consequence of Corollaries 5.7, 5.9 and Theorem 5.10, when coupling is added
to the networks, they remain (strongly) contracting as long as α(W ) < 1. Note that the
entries of W are allowed to be large, so as the activation function and this allows to have
different types of coupling as long as the matrix In −W is Hurwitz.

5.5 Using Euclidean Contractivity to Solve Quadratic
Optimization Problems

To demonstrate the practical application of the previous results, we now apply them to
propose a firing rate neural network solving certain quadratic optimization problems with
box constraints. Leveraging Corollary 5.7, we ensure global exponential convergence of
our dynamic, along with all the other properties of contracting systems. We focus on the
use of contracting dynamical systems to solve optimization problems in Part III.
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Given A = A⊤ ≻ 0, an input u ∈ Rn, and a ≤ b ∈ Rn the quadratic optimization
problem with box constraints is

min
y∈Rn

(︂
JA,u(y) :=

1

2
y⊤Ay − u⊤y

)︂
, s.t. a ≤ y ≤ b. (5.22)

Note that JA,u(·) is strongly convex and the constraints are convex, thus (5.22) admits
a unique global optimal solution.

We propose the following FNN model to solve (5.22). Given a single-layered neural
network of n neurons, the state ν ∈ Rn evolves according to

ν̇ = −ν + sata,b
(︁
(In −A)ν + u

)︁
, (5.23)

with output y = ν. The activation function sata,b
(︁
·
)︁
: Rn → [a, b] := [a1, b1] ×

· · · × [an, bn], illustrated in Figure 5.2, is defined as (sata,b
(︁
z
)︁
)i = satai,bi

(︁
zi
)︁
, where

satai,bi

(︁
·
)︁
: R → [ai, bi] is

satai,bi

(︁
zi
)︁
=

⎧
⎨
⎩

ai if zi ≤ ai,
zi if ai < zi < bi,
bi if zi ≥ bi.

To simplify the notation, whenever it is clear from the context, we use the same symbol
for both the scalar and vector forms of the saturation function.

−4 −3 −2 −1 0 1 2 3 4 z

−1

0

1

2

3

sata,b(z)

−4 −3 −2 −1 0 1 2 3 4 z

−1

1

2

3

∂sata,b(z)
∂z

Figure 5.2: Saturation function sata,b
(︁
·
)︁

for a = −1 and b = 3 (left panel) and its
derivative (right panel). As shown, the saturation function is slope restricted in [0, 1].

Remark 5.6. The function satai,bi

(︁
·
)︁

satisfies Assumption 5.2 (see Figure 5.2). Almost
everywhere, its partial derivative is ∂ sata,b

(︁
·
)︁
: R \ { a, b } → {0, 1} defined by

∂ sata,b
(︁
z
)︁

∂z
=

{︃
0 if z /∈ ]a, b[,
1 if z ∈ ]a, b[.
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Next, we use Corollary 5.7 to give sufficient conditions for the strong infinitesimal
contractivity of (5.23). Then, we show that the equilibrium of the FNN (5.23) is the
optimal solution of the optimization problem (5.22).

Lemma 5.11 (Strong infinitesimal contractivity). Let A = A⊤ ≻ 0 in (5.23). The
FNN (5.23) is strongly infinitesimally contracting with rate c > 0 with respect to the
norm ∥ · ∥2,P , where

(i) if λmin(A) < 1, then c = λmin(A) andP = QF,1−λmin(A), withQF,1−λmin(A) defined
in (5.2);

(ii) if λmin(A) = 1, then for any 0 < ε < 1, c = 1− ε > 0 and P = QF,ε, with QF,ε
defined in (5.2);

(iii) if λmin(A) > 1, then c = 1 and P = (A− In)
1/2.

Proof. The thesis follows by applying Corollary 5.7 noticing that A ≻ 0 implies W =
In−A ≺ In, thusα(W ) = 1−λmin(A) < 1, and satµ,ν

(︁
·
)︁

satisfies Assumption 5.2.

A consequence of Lemma 5.11 is that the FNN (5.23) admits a unique equilibrium
point. Next, we prove that this equilibrium point is the optimal solution of (5.22).

Lemma 5.12. The vector ν⋆ ∈ Rn is the global minimum for the quadratic optimization
point (5.22) if and only if ν⋆ is the equilibrium point of the FNN (5.23).

Proof. Let ν⋆ ∈ Rn be a global minimum for (5.22), thus ν⋆ ∈ [a, b]. Then it follows
from the KKT conditions that, for all i ∈ {1, . . . , n},

∂JA,u

∂xi
(ν⋆) = (Aν⋆)i − ui

⎧
⎨
⎩

≥ 0 if ν⋆i = ai,
= 0 if ai < ν⋆i < bi,
≤ 0 if ν⋆i = bi.

(5.24)

Note that ν⋆ is an equilibrium of (5.23) if, for all i ∈ {1, . . . , n}, we have

−ν⋆i + satai,bi

(︁
ν⋆i − (Aν⋆)i + ui

)︁
= 0. (5.25)

If ν⋆i = ai, let z⋆ := (Aν⋆)i|ν⋆
i =ai

− ui. By definition of satai,bi

(︁
·
)︁

it holds
−ai + satai,bi

(︁
ai − z⋆

)︁
≥ 0. Moreover, from the KKT conditions (5.24), and being

satai,bi

(︁
·
)︁

monotonically non-decreasing, we get the reverse inequality. Thus ν⋆i = ai
verifies (5.25). Similarly it can be proved that (5.25) holds for ai < ν⋆i < bi, and ν⋆i = bi.

Vice versa, let ν⋆ ∈ Rn be an equilibrium of (5.22), i.e., (5.25) holds. If ν⋆i ≤
ai, then (5.25) implies ν⋆i = satai,bi

(︁
ai − z⋆

)︁
. By definition of satai,bi

(︁
·
)︁

we get
ν⋆i ∈ [ai, bi], thus ν⋆i = ai, and ai − z⋆ ≤ ai, which implies z⋆ ≥ 0. Similarly, if
ai < ν⋆i < bi, then z⋆ = 0, while if ν⋆i ≥ bi, then ν⋆i = bi and z⋆ ≤ 0. This ends the
proof since we have shown that the KKT conditions (5.24) hold for all i.
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5.5.1 Numerical Example
We validate the effectiveness of the FNN (5.23) in solving the quadratic optimization
problem with box constraints (5.22) via a simple numerical example.

Consider problem (5.22) with A =

(︃
4 −1
−1 2

)︃
, u =

(︃
1
0

)︃
, a = −1, and b = 5, that

is the following quadratic optimization problem with box constraints

min
y∈R2

2y21 − y1y2 + y22 − y1,

s.t. − 1 ≤ y1 ≤ 5,−1 ≤ y2 ≤ 5.
(5.26)

Solving (5.26) in Python using the function minimize we obtain the vector y⋆ =
(0.28, 0.14). The corresponding FNN for problem (5.26) reads

ν̇1 = −ν1 + sat−1,5

(︁
(I2 −A)ν + 1

)︁
,

ν̇2 = −ν2 + sat−1,5

(︁
(I2 −A)ν

)︁
.

(5.27)

We simulate the dynamics (5.27) over the time interval t ∈ [0, 5]with a forward Euler
discretization with step-size ∆t = 0.01 from 100 randomly generated initial conditions.
We plot the trajectories of the variables ν1 and ν2 along with the optimal values y⋆ in
Figure 5.3. We empirically observe how the trajectories of the dynamics converge to
the optimal values y⋆ of the quadratic optimization problem with box constraints (5.26)
from any initial conditions.
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Figure 5.3: Trajectories of the FNN dynamics (5.27) solving the quadratic optimization
problem with box constraints (5.26). The left panel shows the evolution of the variables
ν1(t) from 100 randomly chosen initial conditions as solid curves and the optimal values
y⋆1 as dot. The right panel shows the evolution of the variables ν2(t) from 100 randomly
chosen initial conditions as solid curves and the optimal values y⋆2 as dot.
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5.6 Summary
In this chapter, we provided sharp conditions for strong and weak Euclidean contractivity
of HNNs and FNNs with symmetric weights and potentially non-smooth activation
functions, together with a number of general algebraic results of independent interest.

We began our analysis by extending the concept of logarithmic optimal norm for
a matrix to matrix polytopes in Definition 5.1. Building on this, in Theorem 5.4, we
gave algebraic results on the Euclidean log-norm of matrix polytopes which includes
the Jacobian of HNNs and FNNs. With these results, which are fundamental for the
contractivity analysis, we proposed norms that are log-optimal for almost all matrices.
Next, leveraging these algebraic results, we analyzed the contractivity of FNNs and
HNNs. This was built upon Theorems 5.5 and 5.8, where upper bounds on the ℓ2
one-sided Lipschitz constant of the FNN and of the HNN (with non-singular symmetric
weights) are given. We then analyzed the contractivity of HNNs with non-singular
symmetric synaptic matrix separately, as this scenario required a distinct mathematical
approach. For each case, we provided a complete contractivity analysis, specifying
the norms with respect to which the models are contracting, as well as lower bounds
on the contraction rates. Notably, we considered networks with (possibly) non-smooth
activation functions, enabling the use of common activation functions such as ReLU
and soft thresholding functions. These results are instrumental for the analysis in the
following chapter, where, by studying biologically plausible RNNs for solving convex
optimization problems like sparse representation, we will run into FNNs with locally
Lipschitz activation function.

Finally, to demonstrate the application-oriented implications of our contractivity
results, we proposed an FNN to solve quadratic optimization problems with box con-
straints. This example opens the door to the use of contracting FNNs for solving convex
optimization problems, which is the focus of the next chapters of this Part I and of
Part III.
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6 From Optimization Problems
to Biologically Plausible
Neural Networks: Modeling

In this chapter, we propose a top-down normative framework for a biologically plausi-
ble explanation of neural circuits solving sparse reconstruction and other optimization
problems. To do so, we leverage tools from monotone operator theory [48, 50] and,
specifically, the recently studied proximal gradient dynamics [52, 53]. This general the-
ory explains how to transcribe a composite optimization problem into a continuous-time
firing rate neural network, which is therefore interpretable.

The results in this chapter appeared in:

• V. Centorrino, A. Gokhale, A. Davydov, G. Russo, and F. Bullo. “Positive
Competitive Networks for Sparse Reconstruction”. Neural Computation, May, 36
(6): 1163–1197, 2024. doi: 10.1162/neco_a_01657.

Additionally, part of these results were presented at:

• V. Centorrino, A. Gokhale, A. Davydov, G. Russo, and F. Bullo. “Contractivity
of Symmetric Neural Networks for Non-negative Sparse Approximation”. CC-
S/Italy23 Conference, Naples, October 9-11, 2023. Website: https://italy.
cssociety.org/index.php/2023/05/23/ccs-italy-conference-2023/,

• Workshop “Mathematics for Artificial Intelligence and Machine Learning”. “Bi-
ologically Plausible Neural Networks for Sparse Reconstruction: a Normative
Framework”, Oral Talk, Milan, January 17-19, 2024. https://dec.unibocconi.
eu/mathematics-artificial-intelligence-and-machine-learning.
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6.1 Introduction
Sparse reconstruction or sparse approximation problems are ubiquitous in a wide range of
domains, including neuroscience, signal processing, compressed sensing, and machine
learning [137, 138, 139, 140]. These problems involve approximating a given input
stimulus from a dictionary, using a set of sparse (active) units/neurons. Over the past
years, an increasing body of theoretical and experimental evidence [116, 117, 118,
141, 3, 119] has supported the use of sparse representations in neural systems. Formally,
sparse reconstruction problems can be formulated as a composite minimization problem1,
specifically, a least squares optimization problem regularized with a sparsity-inducing
penalty function. Among the methods for solving optimization problems, we focus on
the use of continuous-time recurrent neural networks.

In this context, we propose (and characterize the behavior of) a novel family of
continuous-time firing rate neural networks that we show tackle sparse reconstruction
problems. Given their biological relevance, we are particularly interested in sparse
reconstruction problems with non-negativity constraints, and, to solve these problems,
we propose the positive firing rate competitive network. This is an FNN whose state
variables have the desirable, biologically plausible property of remaining non-negative.

The chapter is organized as follows. In Section 6.2, we provide an overview of
the sparse reconstruction problems. Then, in Section 6.3, we propose the firing rate
competitive networks to solve the sparse reconstruction problems and present its specific
formulation for the ℓ1 sparsity-inducing cost function with and without non-negative
constraint. Our primary focus is on the latter due to its biological plausibility. Finally,
in Section 6.4 we demonstrate the equivalence between the equilibria of the firing rate
competitive networks and the optimal solutions of the sparse reconstruction problems.

6.1.1 Contributions
In this chapter, we present a top/down normative framework to translate composite op-
timization problems into continuous-time firing rate neural networks. This framework
is based upon the theory of proximal operators for composite optimization and leads to
continuous-time FNNs that are therefore interpretable. Starting from the sparse represen-
tation problem, a task that has both theoretical and empirical evidence supporting its use
in the human brain, we propose a normative approach for designing biologically plausible
neural networks, such as FNNs. Specifically, we introduce a family of continuous-time
FNNs, called firing rate competitive networks, to address sparse reconstruction prob-
lems. Within this framework, we provide explicit formulations for two common cases:
the sparse reconstruction problem with the ℓ1-norm regularization and its variant with
non-negative constraints, the positive sparse reconstruction problem.

Motivated by the fact that biological neurons produce non-negative outputs, we are
specifically interested in the dynamics solving the positive sparse reconstruction problem.

1A composite minimization problem refers to an optimization task that involves minimizing a function
composed of the sum of a differentiable and a non-differentiable component, typically combining a smooth
loss function with a non-smooth regularization term.
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We call this dynamics the positive firing rate competitive network. A significant property
of this network, as we demonstrate, is its nature as a positive system: starting from
non-negative initial conditions, its state variables remain non-negative.

Finally, we formally demonstrate the equivalence between the equilibria of the pro-
posed networks and the optimal solutions of the sparse reconstruction problems.

6.2 The Sparse Reconstruction Problems
Given a m-dimensional input u ∈ Rm (e.g., a m-pixel image), the sparse reconstruction
problem consists in reconstructing u with a linear combination of a sparse vector y ∈
Rn and a dictionary D ∈ Rm×n composed of n (unit-norm) vectors Di ∈ Rm (see
Figure 6.1.b). Following [3], sparse reconstruction problems can be formulated as the
following composite minimization problem

min
y∈Rn

(︂
E(y) :=

1

2

⃦⃦
u−Dy

⃦⃦2
2
+ λS(y)

)︂
, (6.1)

where λ ≥ 0 is a scalar parameter that controls the trade-off between accurate reconstruc-
tion error (the first term) and sparsity (the second term). Indeed, in (6.1) S : Rn → R is
a non-linear cost function that induces sparsity. We make use of the following standard
assumption on the sparsity-inducing cost function S.

Assumption 6.1 (Sparsity-inducing cost function). The function S is convex,
closed, proper, and separable across the indices, i.e., S(y) =

∑︁n
i=1 s(yi), for

all y ∈ Rn, where s : R → R is a convex, closed, and proper scalar function.

Using the definitions of the Euclidean norm we can write the cost function in (6.1) as

E(y) =
1

2
(u⊤u− 2u⊤Dy + y⊤D⊤Dy) + λS(y).

The matrix D⊤D ∈ Rn×n is known as Gramian matrix of D.

Remark 6.1. When S is convex and rank(D) = n, the objective function E(y) is
strongly convex, therefore (6.1) admits a unique solution. While, when rank(D) < n,
E(y) is not strongly convex, leading to possibly multiple solutions.

Sparse reconstruction problems focus on the underdetermined case, i.e., whenn ≫ m
(Note that, when n > m we have rank(D) < n).

A common choice of the sparsity inducing cost function S is the ℓ1 norm, resulting
in the following formulation of (6.1), known as basis pursuit denoising or LASSO:

min
y∈Rn

(︂
EL(y) :=

1

2

⃦⃦
u−Dy

⃦⃦2
2
+ λ∥y∥1

)︂
. (6.2)

For problem (6.2), accurate reconstruction of u is possible under the condition that u is
sparse enough and the dictionary satisfies the following:
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Definition 6.1 (k-sparse vector). Let k < n be natural numbers. A vector x ∈ Rn is
k-sparse if it has at most k non-zero entries.

Definition 6.2 (RIP condition [142]). Let k < n be natural numbers. A matrix D ∈
Rn×m satisfies the restricted isometry property (RIP) of order k if there exist a constant
δ ∈ [0, 1), such that for all k-sparse x ∈ Rn we have

(1− δ)∥x∥22 ≤ ∥Dx∥22 ≤ (1 + δ)∥x∥22. (6.3)

The order-k restricted isometry constant δk is the smallest δ such that (6.3) holds.

We are particularly interested in the minimization problem (6.2) with non-negative
constraints, which we term positive sparse reconstruction problem. The goal of this
constrained minimization problem is to reconstruct an input u using a linear combination
of a non-negative and sparse vector y ∈ Rn

≥0 and a unit-norm dictionary D ∈ Rm×n.
Formally, the positive sparse reconstruction problem can be stated as follows:

min
y∈Rn

1

2

⃦⃦
u−Dy

⃦⃦2
2
+ λ∥y∥1,

s.t. y ∈ Rn
≥0.

(6.4)

The minimization problem (6.4) can equivalently be written as the unconstrained opti-
mization problem

min
y∈Rn

1

2

⃦⃦
u−Dy

⃦⃦2
2
+ λ∥y∥1 + ιRn

≥0
(y). (6.5)

We note that problem (6.5) can be formally written as problem (6.1) when the sparsity
inducing cost in (6.1) is

S1(y) := ∥y∥1 +
1

λ
ιRn

≥0
(y) =

n∑︂

i=1

(︁
yi +

1

λ
ιR≥0

(yi)
)︁
,

where we used the fact that y must belong to Rn
≥0. Also, for our derivations, it is useful

to introduce the scalar function s1(yi) := yi +
1
λ ιR≥0

(yi).

6.3 Firing Rate Neural Networks for Solving Sparse
Reconstruction Problems

The sparse reconstruction problems introduced in Section 6.2 naturally arise in the
context of visual information processing. For example, as illustrated in Figure 6.1.a for
mammalians, the visual sensory input data u ∈ Rm is encoded by the receptive fields
of simple cells in V1 using only a small fraction of active (sparse) neurons. Formally
(see Figure 6.1.b), the input signal u is reconstructed through a linear combination
of an overcomplete matrix D ∈ Rm×n and a sparse vector y ∈ Rn. The FCN and
PFCN introduced in this thesis to tackle the sparse reconstruction and positive sparse
reconstruction problems are schematically illustrated in Figure 6.1.c. Namely, each
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Figure 6.1: The visual sensory input data u ∈ Rm is encoded by the receptive fields of
simple cells in the mammalian visual cortex (V1) using only a small fraction of active
(sparse) neurons. Formally, b) the input u is reconstructed by a linear combination of an
overcomplete (n ≫ m) set of features Di ∈ Rn and sparse neurons y ∈ Rn. c) Block
scheme of the proposed (positive) firing rate competitive network. The hidden node
νi receives as stimulus the similarity score between the input signal u ∈ Rm and the
dictionary element Di ∈ Rn and collectively all hidden neurons give as output a sparse
(non-negative) vector y = ν ∈ Rn.

hidden node, or neuron in what follows, νi receives as stimulus the similarity score
between the input signal u ∈ Rm and the dictionary element Di ∈ Rn and, collectively,
all the hidden neurons give as output a sparse (non-negative) vector y = ν ∈ Rn.

To transcribe the sparse reconstruction problem in (6.1) into an interpretable continuous-
time firing rate neural network, we leverage the theory of proximal operators (see Sec-
tion 2.7 for a self-contained primer on proximal operators). We start by noticing that the
sparse reconstruction problem (6.1) is a special instance of the composite minimization
problem of the form (2.11) with f(x) := 1

2

⃦⃦
u −Dy

⃦⃦2
2

and g(x) := λS(y). Therefore,
to tackle problem (6.1) we introduce the following special instance of proximal gradient
dynamics, that we denote the firing rate competitive network (FCN):

ν̇(t) = −ν(t) + proxλS
(︁
(In −D⊤D)ν(t) +D⊤u(t)

)︁
, (6.6)

with output y(t) = ν(t). This dynamics is schematically illustrated in Figure 6.1.c.
In (6.6), the term D⊤u(t) is the input to the FCN and it captures the similarity between
the input signal and the dictionary elements, while the term

(︁
In−D⊤D

)︁
ν(t) models the

recurrent interactions between the neurons. These interactions implement competition
between nodes to represent the stimulus. Additionally, we note that in (6.6) the particular
form of the activation function is linked to the sparsity-inducing term in (6.1), λS, via
the proximal operator. To be precise, the activation function is the proximal operator of
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λS computed at the point ν −∇
(︁
1
2

⃦⃦
u−Dν

⃦⃦2
2

)︁
= ν −D⊤Dν +D⊤u.

The dynamics given in (6.6) are quite general, as they encompass a broad class
of sparse reconstruction problems. Next, we provide specific formulas for how these
dynamics read in two common problems: the ℓ1 sparse reconstruction problem in (6.2)
and the positive sparse reconstruction problem in (6.5).

6.3.1 LASSO Problem
For the LASSO problem (6.2), the sparsity-inducing cost function is S(ν) = ∥ν∥1.
This function is convex, separable and s(νi) = |νi|, for all νi ∈ R, thus satisfying
Assumption 6.1. Moreover, it is well known (see, e.g., [50]) that for any ν ∈ Rn,
the proximal operator of λ∥ν∥1 is proxλ∥ν∥1

= softλ
(︁
ν
)︁
. We illustrate the activation

function softλ in Figure 6.2 for a given value of the parameter λ. Now and throughout
the rest of the chapter, we adopt a slight abuse of notation by using the same symbol to
represent both the scalar and vector form of the activation function. The corresponding
FCN (6.6) for the LASSO problem (6.2) is therefore:

ν̇(t) = −ν(t) + softλ
(︁
(In −D⊤D)ν(t) +D⊤u(t)

)︁
. (6.7)

Remarkably, the dynamics (6.7) is the firing rate version of the LCA designed for tackling
the LASSO problem (6.2), which is a continuous-time Hopfield-like neural network of
the form [64]:

ν̇(t) = −ν(t)+
(︁
In −D⊤D

)︁
softλ(ν(t)) +D⊤u(t), (6.8)

with output y(t) = softλ(ν(t)).

−1 0 1 2z

−1

1

soft1(z)

−1 0 1 2z

−1

1

∂soft1(z)
∂z

Figure 6.2: Soft thresholding function softλ(·) with λ = 1 (left panel) and its derivative
(right panel). As shown, the soft thresholding function is slope restricted in [0, 1].
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6.3.2 Positive Sparse Reconstruction Problem
Next, we define the FCN that solves the positive sparse reconstruction problem (6.5).
For this purpose, we need to determine the proximal operator of the sparsity-inducing
term λS1(ν) =

∑︁n
i=1

(︁
λνi + ιR≥0

(νi)
)︁
. The next result shows that this operator is the

(shifted) ReLU function.

Lemma 6.1 (Proximal operator of λS in the positive sparse reconstruction problem).
Consider λ > 0 and a function S1 : Rn → R defined by S1(y) = ∥y∥1 + 1

λ ιRn
≥0
(y),

∀y ∈ Rn. Then
proxλS1

(y) = ReLU(y − λ1n).

Proof. We start by noticing that λS1 is separable across indices and, for any yi ∈ R, we
have λs1(yi) = λyi + ιR≥0

(yi). Hence, Lemma 2.7 implies that the computation of the
proximal operator of λS1 reduces to computing scalar proximals of λs1(yi). This can
be done as follows:

proxλs1(yi) = argmin
z∈R

1

2
(yi − z)2 + λz + ιR≥0

(z)

=

{︄
0 if yi ≤ λ

yi − λ if yi > λ
:= ReLU(yi − λ).

This proves the statement.

Lemma 6.1 implies that the FCN (6.6) that solves the positive sparse reconstruction
problem (6.5) is

ν̇(t) = −ν(t) + ReLU
(︁
(In −D⊤D)ν(t) +D⊤u(t)− λ1n

)︁
:= fPFCN(ν), (6.9)

with output y(t) = ν(t). We illustrate the activation function ReLUλ in Figure 6.3 for a
given value of the parameter λ. We call the dynamics (6.9) positive firing rate competitive
network (PFCN). In the next lemma we show a key property of the PFCN, that it is the
fact that this is a positive system, i.e., given a non-negative initial state, the state variables
are always non-negative. In order words, the positive orthant Rn

≥0 is forward invariant.

Lemma 6.2 (On the positiveness of the PFCN). The PFCN (6.9) is a positive system.

Proof. To prove the statement we use Nagumo’s Theorem 4.2 to prove that the positive
orthant Rn

≥0 is forward invariant for fPFCN. To this purpose, let us consider the PFCN
written in components

νi̇ = −νi+ReLU
(︂
−

n∑︂

j=1,j ̸=i

D⊤
i Djνj(t) +D⊤

i u(t)− λ
)︂
= fPFCN,i(ν), i ∈ {1, . . . , n}.

Then, for all ν ∈ Rn
≥0 such that νi = 0 we have

fPFCN,i(ν) = ReLU
(︂
−

n∑︂

j=1,j ̸=i

D⊤
i Djνj(t) +D⊤

i u(t)− λ
)︂
≥ 0,

for each i. This concludes the proof.
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Figure 6.3: Shifted ReLU function, ReLUλ(·), with λ = 1 (left panel) and its derivative
(right panel). As shown, the ReLU function is slope restricted in [0, 1].

To the best of our knowledge, the PFCN is the first continuos-time RNN designed
to tackle the positive sparse reconstruction problem. The positiveness of the PFCN is a
desirable property that can be useful to effectively model both excitatory and inhibitory
synaptic connections. In fact, in the PFCN the nature of excitatory and inhibitory
recurrent interactions, described by the term −∑︁n

j ̸=i,j=1 D
⊤
i Djνj , only depends on the

sign of the weights. Specifically, the recurrent interaction between two nodes, say them i
and j, is inhibitory if−∑︁n

j ̸=i,j=1 D
⊤
i Dj < 0, and excitatory if−∑︁n

j ̸=i,j=1 D
⊤
i Dj > 0.

Finally, for later use, we note that the Jacobian of fPFCN exists almost everywhere
by Rademacher’s theorem, and now and throughout the rest of the thesis we denote by
Ωf ⊂ Rn the measure zero set of points where the function fPFCN is not differentiable.

6.4 Relating the FCN and PFCN with Sparse Recon-
struction Problems

We conclude the chapter by demonstrating that the firing rate competitive networks
effectively solve the sparse reconstruction problems. Specifically, we establish that a
given vector is the optimal solution to the problem (6.1) if and only if it is also an
equilibrium of the FCN (6.6)

Lemma 6.3 (Linking the optimal solutions of the sparse reconstruction problem and
the equilibria of the FCN). The vector x∗ ∈ Rn is an optimal solution of the sparse
reconstruction problem (6.1) if and only if it is an equilibrium point of the FCN (6.6).

Proof. The necessary and sufficient condition for x⋆ ∈ Rn to be a solution of prob-
lem (6.1) is

0n ∈ ∂E(x⋆) = D⊤Dx⋆ −D⊤u+ λ∂S(x⋆) := G(x⋆) + λ∂S(x⋆),
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where we have introduced the function G : Rn → Rn defined as G(x) = D⊤Dx−D⊤u.
Note that G is a linear function of x, thus it is Lipschitz, and G(x) = ∇

(︁
1
2

⃦⃦
u−Dx

⃦⃦2
2

)︁
.

That is, G is the gradient (with respect to x) of a convex function, and thus it is monotone.
Moreover, by Assumption 6.1, the functionS is convex, closed, and proper, and therefore,
so it is λS. Then, by applying the result in [53, Proposition 4] (picking γ = 1, F = G, and
g = λS in such proposition), we have that 0n ∈

(︁
G+ ∂λS

)︁
(x⋆) if and only if x⋆ is an

equilibrium of ẋ = −x+proxλS
(︁
x−G(x)

)︁
= −x+proxλS

(︁
(In −D⊤D)x+D⊤u

)︁
.

This concludes the proof.

The next result relates the optimal solutions of (6.5) with the equilibria of the
PFCN (6.9).

Corollary 6.4 (Linking the optimal solutions of the positive sparse reconstruction prob-
lem and the equilibria of the PFCN). The vector x∗ ∈ Rn is an optimal solution of the
positive sparse reconstruction problem (6.5) if and only if it is an equilibrium point of
the PFCN (6.9).

Proof. The proof, which follows the arguments used to prove Lemma 6.3, is omitted for
brevity.

6.5 Summary
In this chapter, we addressed several key research questions posed in Section 1.2. Specif-
ically, we understood that one of the functional implications of the FNN in equation 3.2 is
dimensionality reduction, being sparse representation a mechanism believed to occur in
V1, and demonstrate how it can be modeled by continuous-time FNNs. To this end, we
proposed a top-down normative framework that translates composite optimization prob-
lems into interpretable continuous-time firing rate neural networks. First, we considered
the sparse reconstruction problem in equation (6.1) and transcribed this optimization
problem into a continuous-time firing rate neural network. This framework is based
upon the theory of proximal operators for composite optimization and leads to FNNs that
are therefore interpretable. The key idea behind our analysis relies on the fact that the
sparse reconstruction problem (6.1) is a special instance of a composite minimization
problem that is the sum of a smooth loss term, which captures the reconstruction error, and
a non-smooth regularization term, S(·), which promotes sparsity. As we demonstrated,
the resulting FNN is therefore dependent on the specific form of the function S(·). We
gave specific formulas for two common cases: the sparse reconstruction problem with
the ℓ1-norm regularization, leading to the soft-thresholding activation function, and its
variant with non-negative constraints, resulting in the ReLU activation. The positive
sparse reconstruction problem is particularly relevant, as it aligns with the non-negative
output characteristics of biological neurons. We called to the resulting dynamics positive
firing rate competitive network (PFCN). Crucial for the PFCN is the fact that this is a
positive system (see Lemma 6.2). This, in turn, can be useful to effectively model both
excitatory and inhibitory synaptic connections in a biologically plausible way. To the
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best of our knowledge, the PFCN is the first RNN designed to tackle the positive sparse
reconstruction problem.

Finally, we established (Lemma 6.3 and Corollary 6.4) the equivalence between the
optimal solutions of the sparse reconstruction and positive sparse reconstruction problems
to the equilibria of the FCN and PFCN, respectively. In the next chapter, we complete
this analysis by identifying conditions that guarantee stable convergence of the FCN (and
the PFCN) to their equilibria, which corresponds to the optimal solutions of the sparse
reconstruction (and positive sparse reconstruction) problems.
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7 From Optimization Problems
to Biologically Plausible
Neural Networks: Analysis

Chapter 6 laid the groundwork for a biologically plausible framework for neural circuits
solving sparse reconstruction problems, focusing on the modeling of these dynamics
through continuous-time firing rate neural networks. Specifically, we introduced the
firing rate competitive network and the positive firing rate competitive network, which are
designed to solve sparse reconstruction problems, including those with non-negativity
constraints. In this chapter, we advance this framework by providing a comprehensive
analysis of these networks, focusing on their convergence properties and stability.

The results in this chapter appeared in the same paper and were presented at the same
conferences as those in Chapter 6.

7.1 Introduction
In the previous chapter, we introduced biologically plausible neural networks solving
optimization problems and established the equivalence between the equilibria of the pro-
posed FNN models and the solutions of sparse reconstruction problems (see Section 6.4).
This foundational result demonstrated that the steady states of both the FCN and PFCN
correspond to the minimizers of their respective optimization problems, and vice versa.
The next crucial step in our analysis is to understand and characterize the convergence
behavior of these networks. This step is essential not only to confirm that the networks
will eventually converge to solutions to the optimization problems but also to provide
insights into the stability and rate of convergence of the dynamics.

As a consequence, building upon the theoretical foundation established in the previous
chapter, we now present a detailed analysis of the dynamic behavior and convergence
properties of the proposed networks. Specifically, we aim to rigorously establish the
conditions under which these networks converge to their respective equilibria.

The chapter is organized as follows. In Section 7.3, we begin by analyzing the con-
vergence behavior of globally-weakly and locally-strongly contracting systems, showing
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that this is linear-exponential. We also provide an algebraic result of the ℓ2 log-norm of
upper triangular block matrices. In Section 7.4 we analyze the convergence behavior of
the FCN. Specifically, we first prove that the PFCN is weakly infinitesimally contracting
in the entire state space. Then, under a standard assumption on the dictionary, we show
that the PFCN is locally-strongly contracting and apply the results in Section 7.3 to show
that the PFCN converges linear-exponentially to the equilibrium. Finally, in Section 7.5,
we illustrate the effectiveness of our approach via a numerical example.

7.1.1 Contributions
In the previous chapter, we presented a normative way for designing biologically plausible
neural networks that solve sparse reconstruction problems. These networks are the firing
rate competitive network and, for the specific case with non-negative constraints, the
positive firing rate competitive network. In this chapter, we complete the analysis by
giving conditions that guarantee stable convergence of our proposed dynamics to their
equilibria, which correspond to the minimizers of the original optimization problems.

Our analysis for the FCN and PFCN dynamics naturally leads to the study of the con-
vergence behavior of globally-weakly and locally-strongly contracting systems. These are
dynamics that are weakly infinitesimally contracting on Rn and strongly infinitesimally
contracting on a subset of Rn. For this class of dynamics, we show that convergence is
linear-exponential, in the sense that (in a suitably defined norm) the trajectory’s distance
from the equilibrium is initially upper bounded by a linear function, and then conver-
gence becomes exponential. An immediate and key implication of this result is that
convergence towards the equilibrium is global. We also provide a useful technical result
on the Euclidean logarithm norm of upper triangular block matrices.

Building upon these results, we analyze the convergence behavior of the FCN and
PFCN. Specifically, after characterizing the local stability and contractivity of these
dynamics, with our main convergence result we prove that, under a standard assumption
on the dictionary, the FCN and PFCN converge linear-exponentially to the equilibrium.
We also give explicit expressions for the average linear decay rate and the time at which
exponential convergence begins. Finally, we illustrate the effectiveness of our results
via numerical experiments. The code to replicate our numerical examples is available at
https://tinyurl.com/PFCN-for-Sparse-Reconstruction.

7.2 Set-up
Given their central role in this chapter, we begin by reviewing the dynamics of the firing
rate competitive network and its positive variant introduced in the previous chapter.

For a m-dimensional input u ∈ Rm (e.g., a m-pixel image), a dictionary D ∈
Rm×n composed of n (unit-norm) vectors Di ∈ Rm, consider the sparse reconstruction
problems

min
y∈Rn

(︂
E(y) :=

1

2

⃦⃦
u−Dy

⃦⃦2
2
+ λS(y)

)︂
, (7.1)
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where λ ≥ 0 is a scalar parameter that controls the trade-off between accurate recon-
struction error and sparsity, and S : Rn → R is a non-linear cost function that induces
sparsity. We assume that the sparsity-inducing cost function S satisfies Assumption 6.1.

To tackle problem (7.1), we introduced in Chapter 6 the following biologically plau-
sible neural network, the FCN:

ν̇(t) = −ν(t) + proxλS
(︁
(In −D⊤D)ν(t) +D⊤u(t)

)︁
, (7.2)

with output y(t) = ν(t).
While the dynamics in (7.2) are quite general, as they encompass a broad class

of sparse reconstruction problems, we also provided specific formulas for two common
problems: the ℓ1 sparse reconstruction problem and its non-negative variant. Specifically,
when S is the ℓ1 norm, problem (7.1) is known as basis pursuit denoising or LASSO:

min
y∈Rn

(︂
EL(y) :=

1

2

⃦⃦
u−Dy

⃦⃦2
2
+ λ∥y∥1

)︂
. (7.3)

The corresponding FCN (7.2) is

ν̇(t) = −ν(t) + softλ
(︁
(In −D⊤D)ν(t) +D⊤u(t)

)︁
. (7.4)

For biological plausibility, we are particularly the non-negative variant of the above
optimization problem, the positive sparse reconstruction problem, that can be written as
the following unconstrained optimization problem

min
y∈Rn

1

2

⃦⃦
u−Dy

⃦⃦2
2
+ λ∥y∥1 + ιRn

≥0
(y). (7.5)

The corresponding FCN (7.2), termed as positive firing rate competitive network, is:

ν̇(t) = −ν(t) + ReLU
(︁
(In −D⊤D)ν(t) +D⊤u(t)− λ1n

)︁
:= fPFCN(ν), (7.6)

with output y(t) = ν(t). A key property of the PFCN is the fact that this is a positive
system (see Lemma 6.2).

7.3 Methods
In this section, we present a convergence result for a class of dynamical systems, from
which the convergence of the firing rate competitive networks introduced in Chap-
ter 6 follows. Specifically, we consider nonlinear systems of the form (4.1) that
are globally-weakly contracting and locally-strongly contracting (possibly, in different
norms). Through our analysis, we characterize their convergence behavior, showing that
this is linear-exponential, in the sense that the trajectory’s distance from the equilibrium is
initially upper bounded by a linear function, and then convergence becomes exponential.
This analysis will be formalized, sharpened, and extended in Chapter 12, as this class of
systems is of significant interest due to their occurrence in various scenarios.

We begin our analysis by giving a general algebraic result on the inclusion relationship
between balls computed with respect to different norms.
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Lemma 7.1 (Inclusion between balls computed with respect to different norms). Given
two norms ∥ · ∥α and ∥ · ∥β on Rn and a point x⋆ ∈ Rn, for all r > 0, it holds that

Bβ

(︁
x⋆, r/kβα

)︁
⊆ Bα

(︁
x⋆, r

)︁
⊆ Bβ

(︁
x⋆, rkαβ

)︁
, (7.7)

where kβα and kαβ are the minimal equivalence coefficients given in (2.1).

Proof. We start by proving the inequality Bα

(︁
x⋆, r

)︁
⊆ Bβ

(︁
x⋆, rkαβ

)︁
. By definition of

ball of radius r, for any x ∈ Bα

(︁
x⋆, r

)︁
, we know that ∥x− x⋆∥α ≤ r. Also, we have

1

kαβ
∥x− x⋆∥β ≤ 1

kαβ
kαβ∥x− x⋆∥α ≤ ∥x− x⋆∥α ≤ r.

Therefore ∥x− x⋆∥β ≤ rkαβ , so that x ∈ Bβ

(︁
x⋆, rkαβ

)︁
.

The inequalityBβ

(︁
x⋆, r/kβα

)︁
⊆ Bα

(︁
x⋆, r

)︁
follows directly from the above inequality

and from the fact that kβαkαβ ≥ 1. Specifically, we have:

∥x− x⋆∥α ≤ kβα∥x− x⋆∥β ≤ kβαrk
α
β ≤ r.

We are now ready to state the main result of this section, which characterizes the
convergence of globally-weakly and locally-strongly contracting dynamics.

Theorem 7.2 (Finite decay in finite time of globally-weakly and locally-strongly con-
tracting systems). Let ∥ · ∥L and ∥ · ∥G be two norms on Rn. Consider a dynamical
system (4.1) with f : R≥0 × Rn → Rn being a locally Lipschitz map satisfying the
following assumptions

(A1) f is weakly infinitesimally contracting on Rn with respect to ∥ · ∥G;
(A2) f is cexp-strongly infinitesimally contracting on a forward-invariant set S with

respect to ∥ · ∥L;
(A3) x⋆ ∈ S is an equilibrium point, i.e., f(t, x⋆) = 0n, for all t ≥ 0.

Also, let BG
(︁
x⋆, r

)︁
⊂ S be the largest closed ball centered at x⋆ with radius r > 0

with respect to ∥ · ∥G. Then, for each trajectory x(t) starting from x(0) /∈ S and for
any contraction factor 0 < ρ < 1, the distance along the trajectory decreases at worst
linearly with an average linear decay rate

clin =
(1− ρ)r

tρ
, (7.8)

up to at most the linear-exponential crossing time

tcross =

⌈︃∥x(0)− x⋆∥G − r

(1− ρ)r

⌉︃
tρ, (7.9)

when the trajectory enters BG
(︁
x⋆, r

)︁
.
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Proof. Consider a trajectory x(t) of the dynamical system in equation (4.1) starting from
initial condition x(0) ̸∈ S and define the intermediate point xtmp = x⋆ + r x(0)−x⋆

∥x(0)−x⋆∥G
,

as in Figure 7.1. Note that xtmp is a point on the boundary of BG
(︁
x⋆, r

)︁
, since ∥xtmp −

x⋆∥G = r. Moreover, the points x⋆, xtmp, and x(0) lie on the same line segment, thus

∥x(0)− x⋆∥G = ∥x(0)− xtmp∥G + ∥xtmp − x⋆∥G. (7.10)

𝒮

x⋆

BG
r

xtmp
x(0)

ϕt(x(0))
ϕt(xtmp)

BG
ρr

Figure 7.1: Illustration of the set up for the proof of Theorem 7.2 with ∥ · ∥G = ∥ · ∥2.
Given the equilibrium pointx⋆ ∈ S, withS forward invariant set, we consider a trajectory
ϕt

(︁
x(0)

)︁
of (4.1) starting from x(0) ̸∈ S and define the intermediate point xtmp ∈

BG
(︁
x⋆, r

)︁
. After a time tρ the trajectory starting at xtmp (which may exit BG

(︁
x⋆, r

)︁
)

must enter BG
(︁
x⋆, ρr

)︁
, for 0 < ρ < 1. Image reused with permission from [42].

Using the triangle inequality, we get

∥ϕt

(︁
x(0)

)︁
− x⋆∥G ≤ ∥ϕt

(︁
x(0)

)︁
− ϕt

(︁
xtmp

)︁
∥G + ∥ϕt

(︁
xtmp

)︁
− x⋆∥G.

By Assumption (A1) and equality (7.10), we know that ∥ϕt

(︁
x(0)

)︁
− ϕt

(︁
xtmp

)︁
∥G ≤

∥x(0)− xtmp∥G = ∥x(0)− x⋆∥G − r, thus

∥ϕt

(︁
x(0)

)︁
− x⋆∥G ≤ ∥x(0)− x⋆∥G − r + ∥ϕt

(︁
xtmp

)︁
− x⋆∥G.

Next, we upper bound the term ∥ϕt

(︁
xtmp

)︁
−x⋆∥G. We note that, because each trajectory

originating in BG
(︁
x⋆, r

)︁
remains in S, the time required for each trajectory starting in

BG
(︁
x⋆, r

)︁
, to be inside BG

(︁
x⋆, ρr

)︁
for the c-strongly contracting map f is

tρ =
ln(kL,Gρ

−1)

cexp
.

This follows by noticing that

x(0) ∈ BG
(︁
x⋆, r

)︁ (7.7), 2nd inequality
=⇒ x(0) ∈ BL

(︁
x⋆, rkG

L
)︁
,

x(tρ) ∈ BG
(︁
x⋆, ρr

)︁ (7.7), 1st inequality⇐= x(tρ) ∈ BL
(︁
x⋆, ρr/kL

G
)︁
.
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Thus, the time required for a trajectory starting in BG
(︁
x⋆, r

)︁
to be inside BG

(︁
x⋆, ρr

)︁

is upper bounded by the time required for the trajectory to go from BL
(︁
x⋆, rkG

L
)︁

to
BL
(︁
x⋆, ρr/kL

G
)︁
. In these balls, Assumption (A2) implies ∥x(t)−x⋆∥L ≤ e−cexpt∥x(0)−

x⋆∥L and so tρ is determined by the equality e−cexptρrkG
L = ρr/kL

G.
Therefore, at time tρ, we know ϕtρ

(︁
xtmp

)︁
∈ BG

(︁
x⋆, ρr

)︁
and we have

∥ϕtρ

(︁
x(0)

)︁
− x⋆∥G ≤ ∥x(0)− x⋆∥G − r + ρr = ∥x(0)− x⋆∥G − (1− ρ)r.

By iterating the above argument, it follows that after each interval of duration tρ, the
distance ∥x(t)−x⋆∥G has decreased by an amount (1− ρ)r for each x(t). Therefore the
average linear decay satisfies

clin :=
variation in distance to x⋆

variation in time
=

(1− ρ)r

tρ
= cexpr

1− ρ

ln(kL,Gρ−1)
. (7.11)

Hence, after at most a linear-exponential crossing time tcross :=
⌈︂
∥x(0)−x⋆∥G−r

(1−ρ)r

⌉︂
tρ, the

trajectory will be inside BG
(︁
x⋆, r

)︁
⊂ S. This concludes the proof.

Remark 7.1. Assumptions (A2) and (A3) of Theorem 7.2 imply that for any x(0) ∈ S ,
the distance ∥x(t)− x⋆∥L decreases exponentially with time with rate cexp. Specifically,
for all t ≥ 0 it holds that

∥x(t)− x⋆∥L ≤ e−cexpt∥x(0)− x⋆∥L. (7.12)

The next result, which establishes the linear-exponential convergence of dynamical
systems of the form system (4.1), follows from Theorem 7.2.

Corollary 7.3 (Linear-exponential decay of globally-weakly and locally-strongly con-
tracting systems). Under the same assumptions and notations as in Theorem 7.2, for
each x(0) /∈ S and for any contraction factor 0 < ρ < 1, the distance ∥x(t) − x⋆∥G
decreases linear-exponentially with time, in the sense that:

∥x(t)− x⋆∥G ≤
{︄

∥x(0)− x⋆∥G + (1− ρ)r − clint, if t ≤ tcross,

kL,G r e−cexp(t−tcross) if t > tcross.
(7.13)

Proof. The result follows directly from Theorem 7.2. Indeed, given a trajectory x(t)
of (4.1) starting from x(0) /∈ S, for all t ≤ tcross, from Theorem 7.2 we know that the
distance ∥x(t)− x⋆∥G decreases linearly by an amount (1− ρ)r with an average linear
decay rate clin = (1− ρ)r/tρ towards BG

(︁
x⋆, r

)︁
⊂ S, which implies the upper bound

∥x(t)− x⋆∥G ≤ ∥x(0)− x⋆∥G + (1− ρ)r − clint.

Next, for all t > tcross the trajectory x(t) is inside BG
(︁
x⋆, r

)︁
and Assumption (A2), i.e.,

cexp-strongly infinitesimally contractivity on S, implies the bound

∥ϕt

(︁
x(0)

)︁
− x⋆∥L ≤ ∥x(0)− x⋆∥L e

−cexp(t−tcross), ∀t > tcross.
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Applying the equivalence of norms to the above inequality we have

∥ϕt

(︁
x(0)

)︁
− x⋆∥G ≤ kL,G ∥x(0)− x⋆∥G e−cexp(t−tcross), ∀t > tcross.

Therefore, for all t > tcross we have

∥x(t)− x⋆∥G := ∥ϕt

(︁
x(0)

)︁
− x⋆∥G ≤ kL,G r e−cexp(t−tcross).

This concludes the proof.

7.3.1 The ℓ2 Logarithmic Norm of Upper Triangular Block Matrices
We present an algebraic result on the ℓ2 log-norm of upper triangular block matrices.
This result is inspired by [42, E2.28] and is instrumental for determining the rate and
norm with respect to which the PFCN exhibits strong infinitesimal contractivity. We also
refer to [26] for a result on the log-norm of these triangular matrices using non-Euclidean
norms.

Lemma 7.4 (The ℓ2 logarithmic norm of upper triangular block matrices). Consider the
block matrix

A =

[︃
A11 A12

0 A22

]︃
∈ R(n+m)×(n+m).

For all ε > 0 and for Pε =

[︃
εP1 0
0 ε−1P2

]︃
with P1 = P⊤

1 ≻ 0 and P2 = P⊤
2 ≻ 0, we

have

µ
2,P

1/2
ε

(A) ≤ max
{︁
µ
2,P

1/2
1

(A11), µ2,P
1/2
2

(A22)
}︁
+ ε∥P 1/2

1 A12P
−1/2
2 ∥2. (7.14)

Proof. We compute

µ
2,P

1/2
ε

(A) = µ2

(︄[︄
P

1/2
1 A11P

−1/2
1 εP

1/2
1 A12P

−1/2
2

0 P
1/2
2 A22P

−1/2
2

]︄)︄

= µ2

(︄[︄
P

1/2
1 A11P

−1/2
1 0

0 P
1/2
2 A22P

−1/2
2

]︄
+

[︃
0 εP

1/2
1 A12P

−1/2
2

0 0

]︃)︄

≤ µ2

(︄[︄
P

1/2
1 A11P

−1/2
1 0

0 P
1/2
2 A22P

−1/2
2

]︄)︄
+ε

⃦⃦
⃦⃦
⃦

[︃
0 P

1/2
1 A12P

−1/2
2

0 0

]︃ ⃦⃦
⃦⃦
⃦
2

where the last inequality follows by applying the log-norm translation property (iii) and
the norm spectrum inequality (vi), µ(B) ≤ ∥B∥, for all matrix B. From the LMI
characterization of the ℓ2 logarithmic norm, we obtain

µ2

(︄[︄
P

1/2
1 A11P

−1/2
1 0

0 P
1/2
2 A22P

−1/2
2

]︄)︄
= max

{︂
µ
2,P

1/2
1

(A11), µ2,P
1/2
2

(A22)
}︂
.
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The claim then follows by noting that
⃦⃦
⃦⃦
⃦

[︃
0 P

1/2
1 A12P

−1/2
2

0 0

]︃ ⃦⃦
⃦⃦
⃦
2

= ∥P 1/2
1 A12P

−1/2
2 ∥2.

Next, we give a specific result for a particular case of the matrix A, where we can
explicitly determine the matrices P1 and P2. This specific matrix form is of significant
interest because, as we will see, the Jacobian of the PFCN computed at the equilibrium
exhibits this structure.

Corollary 7.5. Consider the block matrix

B =

[︃
−B11 B12

0 −Im

]︃
∈ R(n+m)×(n+m),

with B11 = B⊤
11 ≻ 0 satisfying λmin(B11) ≥ l, with l ∈ ]0, 1]. Then, for all ε > 0 and

for Qε =

[︃
εIn 0
0 ε−1Im

]︃
, we have

µ2,Qε
(B) ≤ −

(︁
l − ε2∥B12∥2

)︁
. (7.15)

Proof. By applying Lemma 7.4 to the block matrix B, for all ε > 0 we obtain

µ2,Qε
(B) ≤ max

{︁
µ2,In(−B11), µ2,Im(−Im)

}︁
+ ε2∥InB12Im∥2

≤ max
{︁
− l,−1

}︁
+ ε2∥B12∥2 = −l + ε2∥B12∥2.

This concludes the proof.

Remark 7.2. The result in Corollary 7.5 implies that:

(i) if ∥B12∥2 = 0, then µ2,Qε(B) < 0 for all ε > 0,

(ii) if ∥B12∥2 ̸= 0, then µ2,Qε
(B) < 0, for all ε ∈ ]0,

√︁
l/∥B12∥2[.

7.4 Analysis of the Firing Rate Competitive Networks
In this section, we investigate the key properties of the models introduced in Chapter 6. To
streamline the presentation and due to its biological relevance, our primary focus is on the
analysis of the PFCN. However, the results presented here are not limited to this specific
model, but can be extended to any FCN (7.2), whose proximal operator is Lipschitz and
slope restricted in [0, 1]. For example, our convergence analysis can be applied to the
firing rate version of the LCA tackling problem (7.3), i.e., the dynamics (7.4), given that
the operator softλ is Lipschitz and slope restricted in [0, 1].
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7.4.1 Convergence Analysis
We now present our convergence analysis for the PFCN in equation (7.6). We start with
the following.

Definition 7.1 (Active and inactive neuron). Consider the PFCN (7.4). Given a neural
state ν⋆ ∈ Rn, an input u ∈ Rm, and a parameter λ > 0, the i-th neuron is active if
ReLU

(︁
((In − D⊤D)ν⋆ + D⊤u − λ1n)i

)︁
̸= 0, inactive if ReLU

(︁
((In − D⊤D)ν⋆ +

D⊤u− λ1n)i
)︁
= 0.

Remark 7.3.

(i) The definition of active and inactive neuron/node in our model aligns with the
definitions provided in [124] for the LCA. Specifically, as in [124], for an equi-
librium point ν⋆ ∈ Rn, the activation function in our model is also composed
of two operational regions. Namely: (i) one region characterized by having
(In −D⊤D)ν⋆ +D⊤u− λ1n below zero, in which case the output y is zero, as
the system is at the equilibrium ν⋆ = ReLU

(︁
(In −D⊤D)ν⋆ +D⊤u− λ1n

)︁
. (ii)

one region characterized by having (In −D⊤D)ν⋆ +D⊤u− λ1n above zero, in
which case y is strictly increasing with the state ν.

(ii) For the FCN, the ReLU in Definition 7.1 is replaced by proxλS .

We now show that the distance between any two trajectories of the PFCN never
increases (see Figure 4.3). We do so by proving that the PFCN is weakly infinitesimally
contracting.

Theorem 7.6 (Global weak contractivity of the PFCN). The PFCN (7.4) is weakly
infinitesimally contracting on Rn with respect to the weighted norm ∥ · ∥2,Q.1

Proof. First, we note that the activation function ReLU is Lipschitz with constant 1 and
slope restricted in [0, 1]. Moreover, α

(︁
W
)︁
= α

(︁
In − D⊤D

)︁
= 1, being D⊤D ⪰ 0.

The result then follows by applying Corollary 5.7 in Chapter 5.

Essentially, with the above results we established that the trajectories of the PFCN are
bounded. Next, we further characterize the stability of the equilibria of the PFCN when
the dictionary is RIP. We prove that the equilibrium is not only locally exponentially
stable but also locally-strongly contracting in a suitably defined norm (see Figure 4.3).

Theorem 7.7 (Local exponential stability and local strong contractivity of the PFCN).
Let ν⋆ ∈ Rn

≥0 \Ωf be an equilibrium point of the PFCN (7.4) having na active neurons.
If the dictionary D is RIP of order na and parameter δ ∈ [0, 1[, then

(i) ν⋆ is locally exponentially stable,
1the explicit expression of Q ∈ Rn×n is given in (5.2) in Chapter 5.
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(ii) the PFCN (7.4) is strongly infinitesimally contracting with rate cexp > 0 with
respect to the norm ∥ · ∥2,Sε in a neighborhood of ν⋆.

Proof. To prove statement (i), we show that DfPFCN(ν
⋆) is a Hurwitz matrix, i.e.,

α(DfPFCN(ν
⋆)) < 0. We start noticing that

DfPFCN(ν
⋆) = −In + [d]

(︁
In −D⊤D

)︁
, (7.16)

where [d] =
[︁
∂ ReLU

(︁
(In −D⊤D)ν⋆ +D⊤u− λ1n

)︁]︁
is a diagonal matrix having

diagonal entries equal to 0 or 1. We let na and nia be the number of active and inactive
neurons of ν⋆, respectively, and rearrange the ordering of the elements in ν⋆ such that
ν⋆ = [ν⋆a , ν⋆ia]

⊤, where, ν⋆a ∈ Rna and ν⋆ia ∈ Rnia , so that

[d] =

[︃
Ina 0
0 0

]︃
. (7.17)

Further, we also decompose D⊤D into

D⊤D =

[︃
D⊤

a Da D⊤
a Dia

D⊤
ia Da D⊤

ia Dia

]︃
, (7.18)

where D⊤
a Da ∈ Rna×na , D⊤

a Dia ∈ Rna×nia , D⊤
ia Da ∈ Rnia×na , D⊤

ia Dia ∈ Rnia×nia .
The fact that D is RIP of order na implies that

∥D⊤
a νa∥22 = x⊤

a D
⊤
a Daνa =

[︃
νa
0nia

]︃⊤ [︃
D⊤

a Da D⊤
a Dia

D⊤
ia Da D⊤

ia Dia

]︃ [︃
νa

0nia

]︃
≥ (1− δ)∥νa∥22 > 0.

Therefore, D⊤
a Da is positive definite, and its smallest eigenvalue is bounded below by

1− δ. Moreover, DfPFCN(ν
⋆) can be written as

DfPFCN(ν
⋆) =

[︃
−D⊤

a Da −D⊤
a Dia

0 −Inia

]︃
, (7.19)

that is a block upper triangular matrix with Hurwitz diagonal block matrices, and
α
(︁
DfPFCN(ν

⋆)
)︁
= δ − 1 < 0. Thus DfPFCN(ν

⋆) is Hurwitz. This concludes the
proof of the statement.

Next, to prove statement (ii) we note that λmin
(︁
D⊤

a Da
)︁
≥ 1 − δ. By applying

Corollary 7.5 to the matrix DfPFCN(ν
⋆), we have

µ2,Sε
(DfPFCN(ν

⋆)) ≤ −cexp < 0,

with the explicit expression of cexp and Sε given in (7.24). Let K be the region of
differentiable points in a neighborhood of ν⋆. Then, by the continuity property of the
log-norm, there exists a neighborhood of ν⋆,

BSε

(︁
ν⋆, q

)︁
:= {z ∈ Rn | ∥z−ν⋆∥2,Sε ≤ q}, with q := sup{z > 0 | BSε

(︁
ν⋆, z

)︁
⊂ K},
(7.20)

where DfPFCN(ν) exists and µ2,Sε
(DfPFCN(ν)) ≤ −cexp, for all ν ∈ BSε

(︁
ν⋆, q

)︁
. This

concludes the proof.
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Symbol Meaning Ref.

Q Weight matrix with respect to the PFCN is globally-weakly contracting Eq. (5.2)

∥ · ∥2,Q Euclidean weighted norm with respect to the PFCN is globally-weakly contracting Th. 7.6

Sε Weight matrix with respect to the PFCN is locally-strongly contracting Eq. (7.24)

∥ · ∥2,Sε
Euclidean weighted norm with respect to the PFCN is locally-strongly contracting Th. 7.7

kSε,Q Equivalence ratio between ∥ · ∥2,Sε and ∥ · ∥2,Q Def. 2.2

q Radius of the ball where the system is strongly infinitesimally contracting Eq. (7.20)

BSε

(︁
q
)︁

Ball of radius q centered at ν⋆ computed with respect to ∥ · ∥2,Sε
Eq. (7.20)

r Radius of the largest ball BQ

(︁
r
)︁

contained in BSε

(︁
q
)︁

Th. 7.8

BQ

(︁
r
)︁

Ball of radius r centered at ν⋆ computed with respect to ∥ · ∥2,Q Th. 7.8

cexp Exponential decay rate Eq. (7.24)

clin Average linear decay rate Eq. (7.22)

tcross Linear-exponential crossing time Eq. (7.23)

ρ Contraction factor, 0 < ρ < 1 Th. 7.8

Table 7.1: Symbols used in Theorem 7.8.

Remark 7.4. To improve readability, in the statement of Theorem 7.7 we do not provide
the explicit expression for cexp and Sε. These are instead given in Remark 7.5. For the
same reason, we do not report in the statement of Theorem 7.7 the neighborhood in which
the PFCN is strongly infinitesimally contracting. However, as apparent from the proof,
the neighborhood is BSε

(︁
ν⋆, q

)︁
, which is defined in (7.20).

With the next result, we prove that the PFCN converges linear-exponentially to ν⋆

(see Figure 7.2 for an illustration of this behavior). We summarize the key symbols used
in the next theorem in Table 7.1.

Theorem 7.8 (Linear-exponential stability of the PFCN). Consider the PFCN (7.4)
satisfying the same assumptions and with the same notations of Theorems 7.6 and 7.7. Let
BSε

(︁
ν⋆, q

)︁
be the ball around ν⋆ where the system is strongly infinitesimally contracting.

Then, for each trajectory ν(t) starting from ν(0) /∈ BSε

(︁
ν⋆, q

)︁
and for any 0 < ρ < 1,

the distance ∥ν(t)− ν⋆∥2,Q decreases linear-exponentially, in the sense that:

∥ν(t)− ν⋆∥2,Q ≤
{︄

∥ν(0)− ν⋆∥2,Q + (1− ρ)r − clint if t ≤ tcross,

kSε,Q r e−cexp(t−tcross) if t > tcross,
(7.21)

where r > 0 is the radius of the largest ball BQ

(︁
ν⋆, r

)︁
centered at ν⋆ such that
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BQ

(︁
ν⋆, r

)︁
⊂ BSε

(︁
ν⋆, q

)︁
and where

clin =
cexp(1− ρ)r

ln(kSε,Qρ
−1)

, (7.22)

tcross =

⌈︃∥ν(0)− ν⋆∥2,Q − r

(1− ρ)r

⌉︃
ln(kSε,Qρ

−1)

cexp
, (7.23)

are the average linear decay rate and the linear-exponential crossing time, respectively.

Proof. We begin by noting that, under the assumptions of the theorem we have that (i)
Theorem 7.6 implies that the PFCN is weakly infinitesimally contracting on Rn with
respect to ∥ · ∥2,Q; (ii) Theorem 7.7 implies that the PFCN is cε-strongly infinitesimally
contracting on BSε

(︁
ν⋆, q

)︁
with respect to ∥ · ∥2,Sε . Hence, the statement follows from

Corollary 7.3 with S = BSε

(︁
ν⋆, q

)︁
, ∥ · ∥G = ∥ · ∥2,Q and ∥ · ∥L = ∥ · ∥2,Sε

.

tcross t

lin
ex

p(
t)

linear decay

exponential decay

Figure 7.2: Schematic representation of the linear-exponential convergence behavior
exhibited by the PFCN. The distance of the trajectory from the equilibrium point is upper
bounded by a function that decreases linearly with time until tcross and then exponentially
for all t > tcross. While the solution of the PFCN is continuous, a bounded jump in the
upper bound we obtain might occur at time tcross.

Remark 7.5 (Expression of Sε and cexp in Theorem 7.7). Corollary 7.5 enables the
computation of the rate and the norm with respect to which the PFCN is strongly in-
finitesimally contracting, as stated in Theorem 7.7. In fact, the Jacobian of fPFCN
computed at the equilibrium, given by equation (7.19), is in the form of the matrix B
in Corollary 7.5 with n = na, m = nia, B11 := D⊤

a Da ≻ 0, l = 1 − δ ∈ ]0, 1],
and B12 := −D⊤

a Dia. Therefore the PFCN is strongly infinitesimally contracting with
respect to the norm ∥ · ∥2,Sε with rate cexp, where

(i) if ∥D⊤
a Dia∥2 = 0, then Sε := Qε, cexp = 1− δ, ∀ε > 0,

(ii) if ∥D⊤
a Dia∥2 ̸= 0, then Sε := Qε, cexp = 1− δ − ε2∥D⊤

a Dia∥2,

∀ε ∈ ]0,
√︂

(1− δ)/∥D⊤
a Dia∥2[.

(7.24)
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It is important to highlight the significance and practical implication of Theo-
rems 7.6, 7.7 and 7.8. First, a key aspect to emphasize is the fact that convergence
is global: the PFCN converges towards the equilibrium point ν⋆ from any initial con-
dition. Moreover, global linear-exponential convergence is a stronger result than global
asymptotic convergence, since with the bound in (7.21) we provide an explicit estimate
of the time required to reach a neighborhood of the equilibrium. Next, the role of the RIP
assumption to obtain this result deserves some comments. From Theorem 7.6, we know
that the trajectories of the PFCN are bounded, meaning that the distance between any
two trajectories never increases over time. However, boundedness alone is not enough to
guarantee global convergence. For this, we need more "structure" on the problem. The
RIP assumption provides this structure, ensuring (Theorem 7.7) the existence of a locally
stable equilibrium point ν⋆. This, in turn, ensures a number of highly ordered transient
and asymptotic behaviors, characteristic of contracting dynamics.

7.5 Simulations
We now illustrate the effectiveness of the PFCN in solving the positive SR problem (7.3)
via a numerical example2. This example, built upon the one in [124], serves two key
purposes: first, to validate the ability of the PFCN to solve the positive SR problem while
respecting the non-negativity bounds of its state variables; and second, to illustrate the
global convergence behavior of the PFCN.

To this aim, we consider a n = 512 dimensional sparse signal y0 ∈ Rn
≥0, with

na = 5 randomly selected non-zero entries. The amplitude of these non-zero entries is
obtained by drawing from a normal Gaussian distribution and then taking the absolute
values. As in [124] the dictionary D ∈ Rm×n is built as a union of the canonical basis
and a sinusoidal basis (each basis is normalized so that the dictionary columns have unit
norms). Also, we set: (i) the measurements u ∈ Rm, with m = 256, to be u = Dy0+η,
where η is a Gaussian random noise with standard deviation σ = 0.0062; (ii) λ = 0.025.

Given this set-up, we simulated both the PFCN (7.4) and, for comparison, the
LCA (6.8). Simulations were performed with Python using the ODE solver solve_ivp. In
all the numerical experiments, the simulation time was t ∈ [0, 15], and initial conditions
were set to 0, except for 20 randomly selected neurons (initial conditions were kept
constant across the simulations). The time evolution of the state variables for both the
PFCN and LCA is shown in Figure 7.3. Both panels illustrate that both the PFCN and
the LCA converge to an equilibrium that is close to y0 (although it can not be exactly
y0 because of the measurement noise). Also, the figure clearly shows, in accordance
with Lemma 6.2, that the trajectories of the PFCN are always non-negative. Instead, the
trajectories of the LCA nodes exhibit also negative values over time.

To illustrate the global convergence behavior of the PFCN (7.4), we performed
an additional set of simulations, this time with the PFCN starting from 20 randomly

2The code to replicate all the simulations in this section is available at the GitHub https://tinyurl.
com/PFCN-for-Sparse-Reconstruction.
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Figure 7.3: Time evolution of the state/neuron variables of the proposed PFCN (7.4)
(leftward panel) and of the LCA (6.8) (rightward panel) networks. The cross symbols
are the non-zero elements of the sparse vector y0. Both the PFCN and the LCA converge
to an equilibrium that is close to y0. Note that, in accordance with Lemma 6.2, the state
variables of the PFCN never become negative.

generated initial conditions. Then, we randomly selected two neurons from the active
and inactive sets and recorded their evolution. The result of this process is shown
in Figure 7.4, which reports a projection of the phase plane defined by these nodes.
Figure 7.4 shows that the trajectories of the selected nodes converge to the equilibrium
point from any of the chosen initial conditions. Specifically, in accordance with our
results, the trajectories of the active neurons converge to positive values, while the
trajectories of the inactive nodes converge to the origin.

Finally, we performed an additional, exploratory, numerical study to investigate what
happens when the activation function of the LCA is the shifted ReLU. Even though the
assumptions in [124] on the activation function exclude the use of theReLU for the LCA,
we decided to simulate this scenario to investigate if the LCA dynamics would become
positive if theReLUwas used as activation function. Hence, for our last numerical study,
we considered the following LCA dynamics:

ν̇(t) = −ν(t) +
(︁
In +D⊤D

)︁
ReLU

(︁
ν(t)− λ1n

)︁
+D⊤u(t), (7.25)

with output y(t) = ReLU
(︁
ν(t) − λ1n

)︁
. In Figure 7.5 the time evolution of the state

variables of the LCA (7.25) is shown. As apparent from the figure, even using the ReLU
as activation function, the trajectories of the LCA states still exhibit negative values over
time.
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Figure 7.4: Trajectories of two randomly chosen nodes of the PFCN (7.4) from the active
(leftward panel) and inactive (rightward panel) set in the planes defined by these two
nodes, respectively. In the panels, the evolution is shown from 20 randomly chosen
initial conditions. In accordance with our results, the trajectories of the active neurons
converge to positive values, while the trajectories of the inactive nodes converge to the
origin.
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Figure 7.5: Time evolution of the state variables of the LCA (7.25) with ReLU as
activation function. The cross symbols are the non-zero elements of y0. The LCA
converges to an equilibrium close to y0. Even using the ReLU as activation function, the
trajectories of the LCA states still exhibit negative values over time.
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7.6 Summary
In this chapter, we completed the analysis we began in Chapter 6 for a biologically
plausible framework for neural networks solving sparse reconstruction problems, by
giving a comprehensive convergence analysis of the proposed network dynamics. For
simplicity of presentation, we provided an explicit analysis only for the PFCN and gave
rigorous conditions to extend this analysis to the FCN. Specifically, we showed that (i)
the PFCN (7.4) is weakly contracting on Rn (Theorem 7.6); (ii) if the dictionary is
RIP, then the equilibrium point of the PFCN is locally exponentially stable and, as a
consequence, in a suitably defined norm, it is also strongly contracting in a neighborhood
of the equilibrium (Theorem 7.7). These results lead to the main result of the chapter, i.e.,
Theorem 7.8, which establishes the global linear-exponential convergence of the PFCN.

To derive our key findings, we also devised a number of instrumental results, inter-
esting per se, providing: (i) algebraic results on the log-norm of triangular matrices; (ii)
convergence analysis for a broader class of non-linear dynamics (globally-weakly and
locally-strongly contracting systems) that naturally arise from the study of the FCN and
PFCN. Finally, we illustrated the effectiveness of our results via numerical experiments.

The findings in the Methods section 7.3 open the way for an exciting research direc-
tion, which we investigate further in Chapter 12: the study of globally-weakly contracting
and locally-strongly contracting systems. As we will show, this class of systems naturally
arises in the context of convex (but not strongly convex) optimization problems with a
unique minimizer, making them relevant to a wide array of applications.
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Part II
—— · ——

Towards Embedding Learning
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II.1 Introduction
Driven by the massive availability of data in many applications and the increase in com-
puting power, the leading paradigm to train artificial neural networks has become that
of feeding them with data, using backpropagation to learn the network weights. This
approach has achieved impressive results, spanning from computer vision to natural lan-
guage processing. However, despite their initial biological inspiration and performance
achievements, these systems differ from human intelligence in several ways. As already
discussed in Section 1.1, the backpropagation algorithm is not biologically plausible and
this might explain the poor ability, typical of human intelligence, of certain deep networks
to generalize, compose, and abstract knowledge from data. In this context, it has been
recently shown that models trained via backpropagation can be extremely fragile, in the
sense that even small changes in the input can produce large changes in the output.

This gap between artificial learning networks and biological learning drives the
exploration of more biologically plausible neural networks, particularly RNNs with
synapses undergoing Hebbian learning rules. Hebbian learning, based on the principle
“neurons that fire together wire together”, mimics the plasticity observed in synaptic
connections in the brain.

Research questions: In the above context, several questions naturally arise:

• How can we design RNNs that incorporate biologically plausible learning rules,
such as Hebbian learning?

• What conditions ensure that these networks exhibit stable, robust behavior?

• How can these biologically plausible RNNs be analyzed and controlled to guarantee
convergence and reliable performance?

II.2 Towards Embedding Learning
In this part, to address the above questions, inspired by [22], we propose embedding
nonlinear Hebbian learning rules into the continuous-time RNN models analyzed in
Part I, allowing for dynamic synaptic weight updates that mirror biological processes
more closely. We name these systems coupled neural-synaptic networks. Our goal is
to characterize the behavior of these systems and provide conditions that ensure their
stability and robustness. To streamline the analysis we divide our results into two
chapters: Chapter 8 focuses on the modeling of these networks, while Chapter 9 explores
their dynamic behavior and stability properties.

Specifically, in Chapter 8 we introduce the coupled neural-synaptic dynamics. These
models combine HNNs and FNNs for the neural dynamics and two different Hebbian
learning rules for the synaptic dynamics. The first rule fulfills the biological properties
of locality, cooperativity, synaptic depression, and boundedness; the second rule fulfills,
in addition, a competitiveness property (see Chapter 3.4 for further details on these
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principles). To capture and reflect the synaptic sparsity of biological neural circuits, we
propose a low-dimensional formulation for our coupled neural-synaptic models.

Next, in Chapter 9 we turn to the analysis of the dynamical properties of the proposed
models. First, we show that the solutions to the coupled neural-synaptic systems are
bounded, reflecting the biological reality that neurons eventually saturate in response
to high input levels, and synaptic weights do not grow indefinitely. Then, we provide
sufficient conditions to guarantee contractivity of each model. We recall that, by ensuring
contractivity, global exponential convergence and other useful robustness properties are
guaranteed. Finally, we show that, under suitable conditions, our coupled neural-synaptic
models satisfy Dale’s law [143]. This is an empirical principle referring to the fact that
a neuron has the same type of effect, inhibitory or excitatory, on all its neighbor neurons.

II.3 Overview
Over the last few years, there has been a growing interest in the study of biologically
plausible learning rules to train neural networks and in finding connections between
these rules and backpropagation [144, 9]. For example, HNNs coupled with a Hebbian
learning rule have been shown to be able to learn the underlying geometry of a given set
of inputs [23]. Recently, an unsupervised biologically plausible learning rule has been
proposed and it has been demonstrated how this rule allows the network to achieve good
performance on the MNIST and CIFAR [8] datasets; also, in [14] it has been shown
that neural networks equipped with both Hebbian and anti-Hebbian learning rules can
perform a broad range of unsupervised learning tasks.

When studying RNN models a key problem is that of guaranteeing stability and
robustness; see, e.g., [135, 122]. Over the years, significant interest has grown in estab-
lishing conditions that ensure convergence of RNNs to a unique equilibrium point [75,
44, 76, 134]. As already emphasized multiple times, contraction theory (which precludes
multistability) is a useful tool for studying stability and robustness. An implicit model
that uses contraction analysis to allow for a convex parametrization of stable models is
presented in [101], while in [28] contraction-based conditions are given to characterize
disturbance rejection properties of HNNs with delays. Contraction theory is also used
in [102] to find conditions under which assemblies of RNNs are stable. Recently, non-
Euclidean contractivity of RNNs has been studied in [38]. In the context of networks
with adapting synapses undergoing Hebbian rules we recall [22], where stability of the
combined neural and synaptic dynamics is shown via Lyapunov analysis, and [24], where
Euclidean contraction theory is used to study the stability of RNNs with linear coupling
between the different nodes and with dynamic synapses undergoing a correlation-based
Hebbian learning rule.
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8 Coupled Neural-Synaptic
Networks: Modeling

This chapter focuses on the modeling and analysis of coupled neural-synaptic networks
that combine recurrent neural networks with dynamical recurrent connections undergoing
Hebbian learning rules. The aim is to model neural circuits that not only learn from input
data but also adapt their synaptic strengths in a way that mirrors learning processes
observed in biological systems. For these models, we also propose a low-dimensional
formulation to capture the synaptic sparsity of the neural circuits.

The results presented in this chapter appeared in:

• V. Centorrino, F. Bullo, and G. Russo. “Modeling and Contractivity of Neural-
Synaptic networks with Hebbian learning”. Automatica, 164:111636, 2024. doi:
10.1016/j.automatica.2024.111636,

• V. Centorrino, F. Bullo, G. Russo. “Contraction Analysis of Hopfield Neural
Networks with Hebbian Learning”. 2022 IEEE 61st Conference on Decision and
Control, Cancun, Mexico, pp. 622-627, 2022. doi: 10.1109/CDC51059.2022.
9993009. Presented in the invited session “Brain Dynamics and Control”.

8.1 Introduction
Driven by the massive availability of data and the increase in computing power, the
leading paradigm to train deep neural networks has become that of feeding them with
data, using backpropagation to learn the network weights. This approach has achieved
impressive results, spanning from computer vision to natural language processing [6]
and to the end-to-end control of complex video games [145]. Nevertheless, as discussed
in Section 1.1, despite their initial biological inspiration and performance achievements,
these systems differ from human intelligence in several ways [12]. Today, the principles
guiding artificial neural networks are quite different from those governing biological
networks. A clear example of this divergence is the backpropagation algorithm itself,
which is indeed well-known to be biologically implausible [6, 7, 8, 9] and this might
explain [12] the poor ability, typical of human intelligence, of certain artificial networks
to generalize, compose and abstract knowledge from data.
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Motivated by these observations, this chapter aims to model and understand ANNs
that more closely align with the principles governing natural neural networks. As
highlighted in [22] a complete model of biologically plausible neural networks requires
two sets of continuous-time dynamical systems, one for the activity of the neurons and
one describing synaptic changes. As a consequence, this chapter presents the modeling
and analysis of biologically plausible recurrent neural networks with dynamical recurrent
connections. Specifically, following the motivations in Chapter 3, for the neural dynamics
we focus here on two widely used continuous-time RNN models: the Hopfield neural
network and the firing rate neural network. As for the synaptic weight dynamics, we use
continuous-time Hebbian learning rules.

The chapter is organized as follows. In Section 8.2 we introduce the dynamical rules
governing the neural masses and synaptic weights. Namely, Hopfield neural networks
and firing rate neural networks for modeling the neural dynamics, and Hebbian Learning
rules for synaptic dynamics. Then, in Section 8.3, we present the coupled neural-synaptic
dynamics we are interested in. These systems combine HNN and FNN (for the neural
dynamics) and two different Hebbian learning rules (for the synaptic dynamics). Finally,
in Section 8.4 we propose a low dimensional formulation for the neural-synaptic models
introduced in Section 8.3.

8.1.1 Contributions
This chapter presents the modeling of biologically plausible coupled neural-synaptic
systems: recurrent neural networks with dynamic recurrent connections. Specifically,
we study a number of neural-synaptic systems that combine HNN and FNN (for the neural
dynamics) and two different Hebbian learning rules (for the synaptic dynamics). The first
rule, simply termed Hebbian learning rule, fulfills the biological properties of locality,
cooperativity, synaptic depression, and boundedness; the second rule (Oja-like learning
rule) fulfills, in addition, a competitiveness property. We refer to the resulting models as
Hopfield-Hebbian, firing-rate-Hebbian, Hopfield-Oja, and firing-rate-Oja networks. The
models capture networks with both excitatory and inhibitory synapses governed by both
Hebbian and anti-Hebbian learning rules. We note that our Hopfield-Hebbian model
generalizes the ones analyzed in [22, 24] by relaxing the assumptions of these papers
on the sign of the coefficients of the Hebbian rule and on the linearity of the coupling
between neurons. Additionally, to capture synaptic sparsity, which is a defining feature
of many biological neural networks, we propose a low-dimensional formulation of these
models, relying on out-incidence and in-incidence matrices.
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8.2 Set-up
We begin by introducing the dynamical rules governing the neural masses and synaptic
weights. Then, we present the coupled neural-synaptic dynamical systems we analyze.

8.2.1 Neural Dynamics
As discussed in Chapter 3, for the dynamical rules governing the neural masses we
are interested in two widely used continuous-time RNN models: the Hopfield neural
network (8.1) and firing rate neural network (8.3). We briefly recall these dynamics here
for completeness and also introduce slight modifications in the notation to streamline our
analysis.

Hopfield Neural Network

For each neural mass i, we denote its mean membrane potential at time t by xi(t) ∈ R
and assume it evolves according to the following continuous-time HNN:

ẋi(t) = −cnxi(t) +

n∑︂

j=1

Wij(t)ϕ(xj(t)) + ui(t). (8.1)

The first term on the right-hand side of (8.1) models the intrinsic dynamics of neuron i,
where cn is its decay rate. The second term models the coupling of neuron iwith the other
neurons. Specifically, Wij : R≥0 → R denotes the effective time-dependent synaptic
weight of the signal transmitted from a pre-synaptic neuron j to a post-synaptic neuron
i, and ϕ : R → R is the activation function. Finally, ui : R≥0 → R is a time-dependent
external stimulus to neuron i.

In vector form the dynamics (8.1) reads:

ẋ(t) = −cnx(t) +W (t)Φ(x(t)) + u(t), (8.2)

where x ∈ Rn, Φ: Rn → Rn is a nonlinear and diagonal activation function, i.e.,
(Φ(x))i = ϕ(xi), W ∈ Rn×n is the synaptic matrix, and u ∈ Rn are the external neural
stimuli.

Firing rate Neural Network

For each neural mass i, we denote its firing rate at time t by νi(t) ∈ R and we assume it
evolves according to the following continuous-time FNN:

ν̇i(t) = −cnνi(t) + ϕ

(︄
n∑︂

j=1

Wij(t)νj(t) + ui(t)

)︄
, (8.3)

where, as in (8.1), the decay rate is cn, the synaptic weight is Wij : R≥0 → R, the
external stimulus is ui : R≥0 → R, and the activation function is ϕ : R → R. The vector
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form of the dynamics (8.3) is:

ν̇(t) = −cnν(t) + Φ
(︁
W (t)ν(t) + u(t)

)︁
, (8.4)

where ν ∈ Rn,Φ: Rn → Rn is a nonlinear and diagonal activation function,W ∈ Rn×n

is the synaptic matrix, and u ∈ Rn are the external neural stimuli.

Remark 8.1. The activation functions in (8.1) and (8.3) can be different, but they have
the same properties. Therefore, to streamline our derivation, we are using the same
symbol for both activation functions.

8.2.2 Synaptic Dynamics
For modeling the synaptic dynamics, as discussed in Chapter 3, we consider continuous-
time Hebbian learning rules. Following Hebb’s postulate [2], the synaptic weight between
two neurons, say i and j, should increase if both neurons are simultaneously active. Our
models capture this aspect and are based upon the framework presented in [79], where
a number of formulations of Hebbian learning are reviewed (see Section 3.4 for more
details). The first synaptic rule we consider is modeled via a dynamic of the form:

Ẇ ij(t) = Hijϕ(yi(t))ϕ(yj(t))− csWij(t) + Ū ij(t), (8.5)

where yi can be either the membrane potential or the firing rate (from now on we use yi
when referring to both state variables). As described next, the dynamics (8.5) satisfies
the properties of locality, cooperativity, and synaptic depression, which are biologically-
inspired requirements for any model aiming to capture Hebbian synaptic plasticity, [79].
Specifically,

• Cooperativity Property: the first term on the right-hand side of (8.5) describes
the cooperation between pre- and post-synaptic activity: in the absence of external
stimuli, both the pre- and post-synaptic neurons must be active to induce a synaptic
weight increase or decrease. The coefficient Hij ∈ R is defined so that a non-
zero entry corresponds to an existing synaptic connection and a corresponding
evolution of the synaptic weight. Specifically, Hij describes the topology of the
network (and this is constant over time), while Wij(t) describes the time-varying
evolution of the corresponding synaptic weight.

• Synaptic Depression Property: the second term on the right-hand side of (8.5) is
a decay factor (cs > 0) that prevents the weights from diverging.

• Locality Property: the rule modeled in (8.5) is local, in the sense that changes in
Wij only depend on the activities of neurons j and i.

Finally, the third term on the right-hand side of (8.5), Ū ij : R≥0 → R, is a time-dependent
external stimulus, e.g., it can represent some exogenous phenomena.

In compact form, the dynamics (8.5) reads

Ẇ (t) = HΦ(y(t))Φ(y(t))− csWij(t) + Ū(t), (8.6)
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whereW ∈ Rn×n is the synaptic matrix, y ∈ Rn is the neural variable,Φ : Rn → Rn
≥0 is

the term by term application of the activation function ϕ, i.e., Φ(x)i = ϕ(xi), Ū ∈ Rn×n

are the external synaptic stimuli.
For our derivations, it is useful to define:

hmax := max
i,j∈{1,...,n}

|Hij | . (8.7)

Moreover, following [79], we give the following

Definition 8.1 (Hebbian and anti-Hebbian learning rules). We call a Hebbian learning
rule with Hij > 0 Hebbian learning, and a rule with Hij < 0 anti-Hebbian learning.

The second model for Hebbian learning we consider also fulfills a

• competivity property: feature implying that if some synaptic weights grow, they
do so at the expense of others.

To capture this feature, we consider the following Oja’s like learning rule [66]:

Ẇ ij = Hijϕ(yi)ϕ(yj)−
(︁
cs + coϕ

2(yi)
)︁
Wij + Ū ij , (8.8)

with co > 0. We observe that if co= 0, the dynamics (8.8) reduces to (8.5).

Remark 8.2. When yi is the membrane potential and there are no external stimuli,
equations (8.5) and (8.8) become the ones found in [79]. When yi is the firing rate,
through the activation function we are introducing a non-linearity. We emphasize that
to streamline our derivations we are using the same notation for the activation functions
across the models since they verify the same properties. However the activation function
in (8.1), (8.3), (8.5), and (8.8) can be different.

8.3 Coupled Neural-Synaptic Dynamics
Consider an RNN ofn neurons with dynamic synapses and fixed topology of interactions.
That is, the coefficients of H = (Hij)i,j ∈ Rn×n describing the Hebbian and anti-
Hebbian learning connections are constant. We make no assumptions on the relative
timescales of synaptic and neural activity. We now present the models that are the
subject of our study. These models are obtained by combining the neural and synaptic
dynamics introduced in Section 8.2. See Figure 8.1 for an illustration of a coupled
neural-synaptic model.

Hopfield-Hebbian Model

The coupled Hopfield-Hebbian model is obtained by combining the HNN (8.1), and the
Hebbian learning rule (8.5), with initial neural and synaptic conditions xi(0) ∈ R and
Wij(0) ∈ R, respectively. For our analysis, it is useful to write this system in vector
form: {︄

ẋ = −cnx+WΦ(x) + u,

Ẇ = H ◦ Φ(x)Φ(x)⊤ − csW + Ū ,
(8.9)
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Figure 8.1: Example of a coupled neural-synaptic (Hopfield-Hebbian) model (without
external stimuli, for simplicity) describing the dynamical evolution of both neural activity
xi and synaptic weights Wij .

with initial neural and synaptic conditions x(0) := x0 ∈ Rn and W (0) := W0 ∈ Rn×n,
respectively.

Firing-rate-Hebbian Model

The coupled firing-rate-Hebbian model is obtained by combining the FNN (8.3), and the
Hebbian learning rule (8.5), with initial neural and synaptic conditions νi(0) ∈ R and
Wij(0) ∈ R, respectively. In vector form, the system is:

{︄
ν̇ = −cnν +Φ

(︁
Wν + u

)︁
,

Ẇ = H ◦ Φ(ν)Φ(ν)⊤ − csW + Ū ,
(8.10)

with initial neural and synaptic conditions ν(0) := ν0 ∈ Rn, and W0, respectively. In
system (8.10), ν ∈ Rn is the vector of the firing rates, while for notational convenience
the other terms are defined consistently with (8.9).

Hopfield-Oja Model

The coupled Hopfield-Oja model is obtained by combining the HNN (8.1), and the Oja’s
like synaptic plasticity rule (8.8), with initial neural and synaptic conditions xi(0) and
Wij(0), respectively. Using the same notation as for the dynamics in (8.9) we write this
system in vector form as

{︄
ẋ = −cnx+WΦ(x) + u,

Ẇ = H ◦ Φ(x)Φ(x)⊤ −
(︁
csIn + co[Φ(x)][Φ(x)]

)︁
W + Ū ,

(8.11)

with initial neural and synaptic conditions x0 and W0, respectively.
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Firing-rate-Oja Model

The coupled firing-rate-Oja model is obtained by combining the FNN (8.3), and the Oja’s
like synaptic plasticity model (8.8), with initial neural and synaptic conditions νi(0) and
Wij(0), respectively. Using the same notation as in (8.10) we write this system in vector
form as {︄

ν̇ = −cnν +Φ
(︁
Wν + u

)︁
,

Ẇ = H ◦ Φ(ν)Φ(ν)⊤ −
(︁
csIn + co[Φ(ν)][Φ(ν]

)︁
W + Ū ,

(8.12)

with initial neural and synaptic conditions ν0 and W0, respectively.

8.4 Low Dimensional Reformulations
The neural-synaptic models introduced in Section 8.3 consist of n × n2 variables – n
neurons and n2 synaptic connections. However, in biological systems, synaptic connec-
tivity is sparse compared to the number of neurons [1, 24]. To see this, just think about
the C. Elegans, one of the simplest organisms with a nervous system and the first mul-
ticellular organism to have a completed mapped connectome. C. Elegans has a system
that contains 302 neurons but only about 7,000 synapses [146], so it is pretty sparse.

To effectively exploit this sparsity, we now propose low-dimensional reformulations
of the models introduced in Section 8.3. These reformulations, which leverage the out-
incidence and in-incidence matrices reviewed in Section 2.6, are used in the next chapter
to give biologically-inspired forward invariance results and to obtain sufficient conditions
for non-Euclidean contractivity of the models.

Let m be the number of synaptic connections in the neural-synaptic dynamics intro-
duced in Section 8.3. To obtain the reduced formulation, we pick them nonzero elements
of H , say Hij , and the corresponding elements of W and Ū , say Wij and Ū ij . We then
vectorize these elements in h ∈ Rm, w ∈ Rm and ū ∈ Rm, respectively. We stress that,
in our notation, Wij is the synaptic weight of the signal transmitted from a pre-synaptic
neuron j to a post-synaptic neuron i. These connections define a graph, whose n × n
adjacency matrix has the weight Wij as the element at position (i, j). By applying
the identity (2.7), we can write the synaptic weight matrix W as W = Bin[w]B

⊤
out,

where Bout and Bin are defined as in (2.4) and (2.5). Moreover, from (2.6) for each
edge (i.e., synaptic connection) of the form e = (i, j), we get

(︁
B⊤

outΦ(y)
)︁
e
= ϕ(yj),

and
(︁
B⊤

in Φ(y)
)︁
e
= ϕ(yi). Substituting the above identities into the full dimensional

coupled neural-synaptic models introduced in Section 8.3, we obtain the corresponding
low dimensional reformulations. It is worth remarking that, in each case, we obtain a
system with n×m variables, with m ≪ n2, instead of a system with n× n2 variables.
Specifically, these reformulations yield the following systems.
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Hopfield-Hebbian Model Reformulation
{︄
ẋ = −cnx+Bin[w]B

⊤
outΦ(x) + u,

ẇ = h ◦B⊤
outΦ(x) ◦B⊤

in Φ(x)− csw + ū,
(8.13)

with x(0) := x0 ∈ Rn and w(0) := w0 ∈ Rm. The components of w0 are the m
elements of W0 having non zero Hij’s.

Firing-rate-Hebbian Model Reformulation
{︄
ν̇ = −cnν +Φ

(︁
Bin[w]B

⊤
outν + u

)︁
,

ẇ = h ◦B⊤
outΦ(ν) ◦B⊤

in Φ(ν)− csw + ū,
(8.14)

with ν(0) := ν0 ∈ Rn and w0 ∈ Rm defined consistently with the initial conditions in
(8.13).

Hopfield-Oja Model Reformulation
{︄
ẋ =− cnx+Bin[w]B

⊤
outΦ(x) + u,

ẇ =h ◦B⊤
outΦ(x) ◦B⊤

in Φ(x)−
(︁
csIm + co[B

⊤
in Φ(x)][B

⊤
in Φ(x)]

)︁
w + ū,

(8.15)

with x0 ∈ Rn and w0 ∈ Rm defined consistently with the initial conditions in (8.13).

Firing-rate-Oja Model Reformulation
{︄
ν̇ = −cnν +Φ

(︁
Bin[w]B

⊤
outν + u

)︁
,

ẇ = h ◦B⊤
outΦ(ν) ◦B⊤

in Φ(ν)−
(︁
csIm + co[B

⊤
in Φ(ν)][B

⊤
in Φ(ν)]

)︁
w + ū,

(8.16)

with ν0 ∈ Rn and w0 ∈ Rm defined consistently with the initial conditions in (8.14).

8.5 Summary
Motivated by the aim to model and study ANNs that more closely align with the principles
governing natural neural networks, in this chapter we introduced biologically plausible
recurrent neural networks with dynamical recurrent connections. Specifically, we pre-
sented the modeling of four coupled neural-synaptic models: the Hopfield-Hebbian
model, the firing-rate-Hebbian model, the Hopfield-Oja model, and the firing-rate-Oja
model. We considered networks with both excitatory and inhibitory synapses governed
by both Hebbian and anti-Hebbian rules. To reflect the inherent synaptic sparsity found
in neural circuits, in Section 8.4 we proposed a low dimensional modeling formulation
of each model that allowed us to go from a system with n × n2 variables–n neurons
and n2 synaptic connections–to a system with n × m variables, where m ≪ n2 is the
number of non zero elements of the synaptic connection matrix H . In the next chapter,
we analyze the dynamical properties of these coupled neural-synaptic models, focusing
on their stability and convergence behaviors.
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9 Coupled Neural-Synaptic
Networks: Analysis

In Chapter 8 we introduced a number of coupled neural-synaptic models, combining
biologically plausible recurrent neural networks with dynamical recurrent connections
undergoing Hebbian learning rules. In this chapter, we shift our focus to a rigorous
analysis of the dynamical behavior of these models. Building on the framework presented
in the previous chapter, we now aim to deepen our understanding of the properties of
such networks. Specifically, we aim to explore and establish conditions for the stability,
robustness, and convergence properties of our coupled neural-synaptic dynamics.

The results in this chapter appeared in the same paper and were presented at the same
conferences as those in Chapter 8.

9.1 Introduction
Understanding the dynamical behavior of coupled neural-synaptic networks is important
for advancing both biological and artificial systems. Indeed, the analysis of such networks
is not only crucial for understanding the underlying mechanisms of learning in biological
systems but also for designing ANNs capable of more accurately mimicking natural
processes. In this context, Chapter 8 laid the groundwork by introducing models that
capture the complex interplay between neurons and synapses. Namely, we presented a
number of coupled neural-synaptic models that combine HNN and FNN for the neural
dynamics and two different Hebbian learning rules for the synaptic dynamics.

Building upon this framework, we now take a step forward by analyzing the dynamical
properties of these models to derive conditions under which the networks exhibit desirable
dynamical properties. The goal is to take a first step in the understanding of ANNs that
more closely align with the principles governing natural neural networks, to ensure that
not only these networks can learn and adapt efficiently but also to guarantee that they do
so in a stable and robust manner, mirroring the resilience of biological neural systems.
By leveraging tools from contraction theory and other mathematical frameworks, we
provide rigorous conditions that guarantee the stability and robustness of our coupled
neural-synaptic networks, together with other biologically-inspired forward invariance
results.
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The chapter is organized as follows. Section 9.2 presents the initial setup for the
chapter, outlining the assumptions and notations needed for the analysis. In Section 9.3
we show bounded evolutions of the solutions of the proposed coupled neural-synaptic
models. Then, in Section 9.4 we analyze the stability of those systems, by giving sufficient
strong infinitesimal contractivity conditions. The contractivity tests we propose are based
on biologically meaningful quantities, such as the neural and the synaptic decay rate,
the maximum out-degree, the maximum synaptic strength. In Section 9.5, we analyze
invariance properties of the synaptic dynamics. Specifically, we show that these dynamics
satisfy Dale’s principle and analyze the case of symmetric synaptic matrices. Finally, in
Section 9.6, we validate the effectiveness of our approach via a numerical example.

9.1.1 Contributions
In this chapter, we establish several key results that advance the understanding of the
dynamical properties of the coupled neural-synaptic networks introduced in Chapter 8.

First, we provide biologically-inspired forward invariance results for the coupled
neural-synaptic dynamics. Specifically, we show that the solutions of these models
are bounded, aligning with the biological observation that neurons eventually saturate
with high input values and that synaptic weights are inherently bounded. We also
show that, under suitable conditions, our models satisfy Dale’s principle – an empirical
principle [143] referring to the fact that an individual neuron has either only excitatory
or only inhibitory synapses. We then focus on the stability and robustness analysis
of the coupled neural-synaptic models. We do so by providing sufficient conditions
for the contractivity of each coupled model and leveraging non-Euclidean contraction
arguments. Remarkably, our sufficient conditions for contractivity and our lower bounds
on the contraction rate are both based upon biologically meaningful quantities, i.e., neural
and synaptic decay rate, maximum in-degree, and maximum synaptic strength.

Finally, we complement our theoretical results with numerical simulations on a
biologically-inspired network [146]. We leverage this network to illustrate the effective-
ness of our conditions and use the numerical results as a motivation to outline possible
avenues for future research.

9.2 Set-up
Starting from the low-dimensional reformulations of the coupled neural-synaptic models
introduced in Section 8.4 of the previous chapter, we now analyze several dynamical
properties of those systems. To conduct this analysis, in this chapter, we work under the
following assumptions.
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Assumption . For every neuron i we assume that the activation function satisfies

(9.A1) 0 ≤ ϕ(yi) ≤ ϕmax := max
i∈{1,...,n}

sup
t

ϕ(yi(t)),

(9.A2) 0 ≤ ϕ′(yi) ≤ 1.

Moreover, for every i and j, we assume that the external stimuli are such that

(9.A3) |ui(t)| ≤ umax := max
i∈{1,...,n}

sup
t

ui(t),

(9.A4)
⃓⃓
Ū ij(t)

⃓⃓
≤ ūmax := max

i,j∈{1,...,n}
sup
t

Ū ij(t).

Remark 9.1.

(i) The assumptions on bounded activation function and external stimuli are used to
prove forward invariance results for the coupled neural-synaptic dynamics. While
all the assumptions are used for the contraction analysis, as we will show, for the
results on the firing-rate-Hebbian and firing-rate-Oja models, Assumption (9.A3)
is not needed.

(ii) For each result of this chapter, except for Dale’s principle, we can relax Assump-
tion (9.A1) by letting ϕmin := mini∈{1,...,n} supt ϕ(yi(t)) ≤ ϕ(yi) ≤ ϕmax :=
maxi∈{1,...,n} supt ϕ(yi(t)). We assume ϕmin = 0 for simplicity of notations.

(iii) The assumptions are not restrictive in practice. Indeed, widely used activation
functions (e.g., sigmoid – see Figure 9.1 for an illustration) satisfy, possibly after
rescaling, Assumptions (9.A1) and (9.A2). It is also physically plausible that the
external stimuli are bounded.

−4 −2 0 2 4 z

1

sigmoid(z)

−4 −2 0 2 4 z

1

∂sigmoid1(z)
∂z

Figure 9.1: Sigmoid function sigmoid(z) = 1
1+e−z (left panel) and its derivative (right

panel). As shown, the sigmoid function is slope restricted in [0, 1].
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Additionally, we define the following quantities:

• dmax := ∥Bin∥∞ is the maximum topological in-degree of the network.

• xmax := (umax + dmaxϕmaxwmax)/cn is the maximum membrane potential,

• νmax := ϕmax/cn is the maximum firing rate,

• wmax := (hmaxϕ
2
max+ūmax)/cs is the maximum synaptic weight value.

These quantities are used throughout our analysis to derive conditions for stability,
forward invariance, and contractivity of the neural-synaptic models under consideration.

9.3 Dynamical Property of the Models: Bounded Evo-
lution

All biological neurons eventually saturate for high input values and the synaptic weights
remain bounded. Inspired by these properties, we now investigate whether the solutions
of the coupled neural-synaptic models introduced in Section 8.4 are bounded. To state
our results, we define the following sets:

X := {x ∈ Rn | |xi| ≤ xmax, i ∈ {1, . . . , n}},
V := {ν ∈ Rn | |νi| ≤ νmax, i ∈ {1, . . . , n}},
W := {W ∈ Rn×n | |Wij | ≤ wmax, i, j ∈ {1, . . . , n}}.

With the next result, we show that the solutions of the Hopfield-Hebbian model have
bounded evolutions when Assumptions (9.A1), (9.A3), and (9.A4) hold.

Lemma 9.1 (Bounded evolutions Hopfield-Hebbian). Consider model the coupled Hopfield-
Hebbian system (8.13) and let Assumptions (9.A1), (9.A3), and (9.A4) hold. Then, the
set X × W is forward invariant and attractive, in the sense that, for every neuron
i ∈ {1, . . . , n}, and every edge e ∈ {1, . . . ,m}, the following inequalities hold

|xi(t)| ≤
(︁
|xi(0)| − xmax

)︁
e−cnt + xmax, t ≥ 0, (9.1)

|we(t)| ≤
(︁
|we(0)| − wmax

)︁
e−cst + wmax, t ≥ 0. (9.2)

Proof. Let (x⊤, w⊤)⊤ be a solution of (8.13) having initial conditions (x⊤
0 , w

⊤
0 )

⊤ ∈
X × W . Considering the synaptic dynamics in (8.13) written in component, for each
edge e we have ẇe(t) = he

(︁
B⊤

outΦ(x)
)︁
e

(︁
B⊤

in Φ(x)
)︁
e
− cswe(t) + ūe, for all t ≥ 0.

Assumptions (9.A1) and (9.A4) and the fact that the matrices B⊤
out and B⊤

in are unit
column sum, imply the upper bound

ẇe(t) ≤ hmaxϕ
2
max − cswe(t) + ūmax. (9.3)
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Next, let v(t) := |we(t)|, for all t ≥ 0.From inequality (9.3) we get

D+ |we(t)| = lim sup
k→0+

1

k

(︁
|we(t+ k)| − |we(t)|

)︁

≤ lim sup
k→0+

⃓⃓
we(t) + k

(︁
hmaxϕ

2
max − cswe(t) + ūmax

)︁⃓⃓
− |we(t)|

k

≤ lim sup
k→0+

∥Im − kcsIm∥ − 1

k
|we(t)|+ hmaxϕ

2
max + ūmax

= µ(−csIm) |we(t)|+ hmaxϕ
2
max + ūmax = −cs |we(t)|+ hmaxϕ

2
max + ūmax.

Therefore D+ |we(t)| ≤ −cs |we(t)| + hmaxϕ
2
max + ūmax, for all t ≥ 0. Next, consider

the function u : R≥0 → R and define the differential equation

u̇(t) = g(u, t) := −csu(t) + hmaxϕ
2
max + ūmax, u(0) = |we(0)| .

Its solution isu(t) = (|we(0)|−wmax)e
−cst+wmax, wherewmax :=

(︁
hmaxϕ

2
max + ūmax

)︁
/cs.

Applying the comparison Lemma 4.1 we have v(t) ≤ u(t), for all t ≥ 0, i.e.,

|we(t)| ≤
(︁
|we(0)| − wmax

)︁
e−cst + wmax. (9.4)

Being we(0) ∈ W we get |we(t)| ≤ wmax, hence we(t) ∈ W , for all t ≥ 0 and edges
e. Moreover, considering the neural dynamics in (8.13) written in component, for each i
we have ẋi = −cnxi+(Bin[w]B

⊤
outΦ(x))i+ui. By Assumption (9.A1), Definition (8.7)

and having proved that we(t) ∈ W , for all t ≥ 0 and e ∈ {1, . . . ,m}, it holds

ẋi(t) ≤ umax + dmaxϕmaxwmax − cnxi(t).

Hence, following steps similar to those we used to bound the synaptic dynamics, we have

|xi(t)| ≤
(︁
|xi(0)| − xmax

)︁
e−cnt + xmax, (9.5)

where xmax := (umax+dmaxϕmaxwmax)/cn. Being xi(0) ∈ X we get |xi(t)| ≤ xmax. This
implies that xi(t) ∈ X , for all t ≥ 0 and for all i. Thus the trajectories of any solution
(x⊤, w⊤)⊤ of the coupled Hopfield-Hebbian system (8.13) having initial conditions in
the set X ×W remain in this set, which therefore is forward invariant.

Finally, to prove that the set is also attractive, we observe that as t → +∞ condi-
tions (9.4) and (9.5) are verified for all initial conditions (x⊤

0 , w
⊤
0 )

⊤, not only for those
starting inX×W . Thus, inequalities (9.1) and (9.2) hold and according to Definition 4.2,
the set X ×W is attractive.

Next, we consider the coupled firing-rate-Hebbian model and show that it exhibits
bounded evolution of the solutions if Assumptions (9.A1) and (9.A4) hold.

Lemma 9.2 (Bounded evolutions firing-rate-Hebbian). Consider the coupled firing-rate-
Hebbian system (8.14) and let Assumptions (9.A1), and (9.A4) hold. Then, the set V×W
is forward invariant and attractive, in the sense that, for every neuron i ∈ {1, . . . , n},
and every edge e ∈ {1, . . . ,m}, the following inequalities hold

|νi(t)| ≤
(︁
|νi(0)| − νmax

)︁
e−cnt + νmax, t ≥ 0, (9.6)

|we(t)| ≤
(︁
|we(0)| − wmax

)︁
e−cst + wmax, t ≥ 0. (9.7)
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Proof. The proof, which follows similar steps to the one given for Lemma 9.1, is omitted
here for brevity.

Then, we give the following result for the bounded evolution of the solutions of the
Hopfield-Oja model.

Lemma 9.3 (Bounded evolutions Hopfield-Oja). Consider the coupled Hopfield-Oja
system (8.15) and let Assumptions (9.A1), (9.A3) and (9.A4) hold. Then, the set X ×W
is forward invariant and attractive in the sense that, for every neuron i ∈ {1, . . . , n},
and every edge e ∈ {1, . . . ,m}, inequalities (9.1) and (9.2) hold.

Proof. The proof, which follows a reasoning similar to the proof of Lemma 9.1, is
obtained once the following upper bound for D+ |we(t)| is established

D+ |we(t)| ≤ µ
(︁
−csIm − co[B

⊤
in Φ(x)][B

⊤
in Φ(x)]

)︁
|we(t)|+ hmaxϕ

2
max + ūmax.

Applying the translation property of the log-norm (iii) and noticing that the inequal-
ity −µ

(︁
co[B

⊤
in Φ(x)][B

⊤
in Φ(x)]

)︁
≤ 0 hold, we get D+ |we(t)| ≤ hmaxϕ

2
max + ūmax −

cs |we(t)|, for all t ≥ 0. The desired results then follow.

Finally, we show that coupled firing-rate-Oja model exhibits bounded evolution of
the solutions if Assumptions (9.A1) and (9.A4) hold.

Lemma 9.4 (Bounded evolutions firing-rate-Oja). Consider coupled firing-rate-Oja sys-
tem (8.16) and let Assumptions (9.A1), and (9.A4) hold. Then, the set V ×W is forward
invariant and attractive, in the sense that, for every neuron i ∈ {1, . . . , n}, and every
edge e ∈ {1, . . . ,m}, inequalities (9.6) and (9.7) hold.

Proof. The proof, which follows similar steps to the one given for Lemma 9.3, is omitted
here for brevity.

Remark 9.2. Lemmas 9.1, 9.2, 9.3, 9.4 ensure that the synaptic rule of each of our
models fulfills the boundedness property. This is a desirable property for realistic neural
network models, see e.g. [79].

9.4 Showing Contractivity of the Models
We now investigate the contractivity of the coupled neural-synaptic models introduced in
Section 8.4. Specifically, we give sufficient conditions for strong infinitesimal contrac-
tivity by leveraging suitably-defined composite norms (see Section 2.5 for more details).
For each model, we propose a contractivity test based on biologically meaningful quan-
tities, such as the neural and the synaptic decay rate, the maximum out-degree, and the
maximum synaptic strength. Our first result in this section presents a sufficient condition
for the contractivity of the coupled Hopfield-Hebbian model.

112



Theorem 9.5 (Strong infinitesimal contractivity of the Hopfield-Hebbian model). Con-
sider the coupled Hopfield-Hebbian model (8.13) and let Assumptions (9.A1) – (9.A4)
hold. Further, assume that:

cncs > 3dmaxhmaxϕ
2
max + dmaxūmax. (9.8)

Then, the dynamics (8.13) is strongly infinitesimally contracting on X ×W with respect
to the norm ∥ [∥x∥∞, ∥W∥∞] ∥p,[η], for any p ∈ [1,∞] and where η is some positive
vector. Moreover, the contraction rate is at least

λHH = −
c̃HH + gh −

√︂
(c̃HH + gh)

2 − 4ghc2s

2cs
, (9.9)

where bmax := dmaxhmaxϕ
2
max, c̃HH := c2s + 2bmax , and gh := cncs − 3bmax − dmaxūmax.

Proof. Let us consider the low dimensional formulation of the coupled Hopfield-Hebbian
model (8.13) satisfying Assumptions (9.A1) – (9.A4). Its Jacobian is

J(x,w) :=

[︃
Jnn Jns
Jsn Jss

]︃
,

where, defining fn := −cnx+Bin[w]B
⊤
outΦ(x)+u, and fs := h◦B⊤

outΦ(x)◦B⊤
in Φ(x)−

csw + ū, we have

Jnn =
∂fn

∂x
= −cnIn +Bin[w]B

⊤
out[Φ

′(x)],

Jns =
∂fn

∂w
=

∂
(︁
Bin[B

⊤
outΦ(x)]w

)︁

∂w
= Bin[B

⊤
outΦ(x)],

Jsn =
∂fs

∂x
= [h]

(︁
[B⊤

outΦ(x)]B
⊤
in + [B⊤

in Φ(x)]B
⊤
out
)︁
[Φ′(x)],

Jss =
∂fs

∂w
= −csIm.

We consider the infinity norm both on Rn and Rm and we define the aggregate Metzler
majorant of the matrix J(x,w):

|J(x,w)|M =

[︃
µ∞(Jnn) ∥Jns∥∞
∥Jsn∥∞ µ∞(Jss)

]︃
. (9.10)

For any p ∈ [1,∞] and for η > 0 as in Lemma 2.3 we consider the aggregation norm
∥ · ∥agg = ∥ · ∥p,[η]. Then Theorem 2.4 implies

µcmpst(J(x,W )) ≤ µp,[η](|J(x,w)|M).

From Proposition 2.5 we know ∥B⊤
in ∥∞ = ∥B⊤

out∥∞ = 1. Also, being ∥[Φ′(x)]∥∞ ≤ 1,
∥Φ(x)∥∞ = ϕmax and |Wij | ≤ (hmaxϕ

2
max + ūmax)/cs, for all i, j ∈ {1, . . . , n}, we
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bound:

∥Jns∥∞ ≤ ∥Bin∥∞∥[B⊤
outΦ(x)]∥∞ ≤ dmaxϕmax,

∥Jsn∥∞ ≤ ∥[h]∥∞∥[B⊤
outΦ(x)]B

⊤
in + [B⊤

in Φ(x)]B
⊤
out∥∞ ≤ 2hmaxϕmax,

µ∞(Jnn) = −cn + µ∞
(︁
Bin[w]B

⊤
out[Φ

′(x)]
)︁
≤ −cn + ∥Bin[w]B

⊤
out[Φ

′(x)]∥∞
≤ dmax

(︁
hmaxϕ

2
max + ūmax

)︁
/cs − cn,

µ∞(Jss) = −cs.

Hence |J(x,w)|M ≤

⎡
⎣
dmax

(︁
hmaxϕ

2
max + ūmax

)︁

cs
− cn dmaxϕmax

2hmaxϕmax −cs

⎤
⎦ := J̃M-HH.

Applying the monotonicity property of the log-norm of a Metzler matrix, and being
J̃M-HH an irreducible Metzler matrix, from Lemma 2.3 we get

µp,[η](|J(x,w)|M) ≤ µp,[η](J̃M-HH) = α(J̃M-HH).

Finally, the last step is to find conditions for which J̃M-HH, and thus |J(x,w)|M, is
Hurwitz. In our case, being J̃M-HH a 2× 2 matrix this happens if and only if

det (J̃M-HH) = cncs − 3dmaxhmaxϕ
2
max − dmaxūmax > 0, (9.11)

and tr(J̃M-HH) = dmax(hmaxϕ
2
max + ūmax)/cs − cn − cs < 0, i.e.,

cncs > −c2s + dmax(hmaxϕ
2
max + ūmax). (9.12)

Now, since condition (9.11) implies (9.12), J̃M-HH is Hurwitz if and only if condi-
tion (9.11), that is condition (9.8), holds. Next, we determine the spectral abscissa of
J̃M-HH. Note that the eigenvalues of J̃M-HH are the zero of the characteristic polynomial

p(λ) = λ2 − tr(J̃M-HH)λ+ det(J̃M-HH),

where bmax := dmaxhmaxϕ
2
max, tr(J̃M-HH) = (bmax + ūmaxdmax)/cs − cs − cn, and

det(J̃M-HH) = cncs − 3bmax − ūmaxdmax. Defining c̃HH := c2s + 2bmax, and gh :=

cncs − 3bmax − dmaxūmax, we write p(λ) = λ2 +

(︃
c̃HH + gh

cs

)︃
λ+ gh. We have p(λ) = 0

if and only if

λ1 = −
c̃HH + gh −

√︂
(c̃HH + gh)

2 − 4ghc2s

2cs
,

λ2 = −
c̃HH + gh +

√︂
(c̃HH + gh)

2 − 4ghc2s

2cs
.

We observe that the delta of the polonium p(λ) is

∆ =
(c2s + gh + 2bmax)

2 − 4ghc
2
s

c2s
=

(gh − c2s )
2 + 4bmax(bmax + c2s + gh)

c2s
.
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Assuming condition (9.8) (which implies that gh > 0) and being bmax and cs non negative,
we have ∆ > 0, so that λ2 < λ1 = α(J̃M-HH) := λHH.

Hence, if (9.8) is satisfied, then, from the definition of contracting systems 4.3,
we have that the coupled neural synaptic dynamics (8.13) is strongly infinitesimally
contracting and its contraction rate is at least λHH. This completes the proof.

With the next result, we give a sufficient condition for the contractivity of the firing-
rate-Hebbian model.

Theorem 9.6 (Strong infinitesimal contractivity of the firing-rate-Hebbian model). Con-
sider the coupled firing-rate-Hebbian system (8.14) and let Assumptions (9.A1), (9.A2)
and (9.A4) hold. Further, assume that:

cncs > dmaxhmaxϕ
2
max

(︂
1 +

2

cn

)︂
+ dmaxūmax. (9.13)

Then, the dynamics (8.14) is strongly infinitesimally contracting on V ×W with respect
to the norm ∥ [∥ν∥∞, ∥W∥∞] ∥p,[η], for any p ∈ [1,∞] and where η is some positive
vector. Moreover, the contraction rate is at least

λFH = −
c̃FH + gf −

√︂
(c̃FH + gf)

2 − 4gfc2s

2cs
, (9.14)

where gf := cncs − amax (1 + 2/cn)− ūmaxdmax and c̃FH := c2s + 2amax/cn.

Proof. The proof follows similar steps as these used to prove Theorem 9.5. The full proof
is therefore omitted here, we only notice that, for the firing-rate-Hebbian dynamics, the
Jacobian is partitioned into the following matrices:

Jnn = Bin[w]B
⊤
out
[︁
Φ′(︁Bin[w]B

⊤
outν + u

)︁]︁
− cnIn,

Jns = Bin[B
⊤
outν]

[︁
Φ′(︁Bin[w]B

⊤
outν + u

)︁]︁
,

Jsn = [h]
(︁
[B⊤

outΦ(ν)]B
⊤
in + [B⊤

in Φ(ν)]B
⊤
out
)︁
[Φ′(ν)],

Jss = −csIm.

Additionally, we compute the lower bounds on the contraction rate. To this purpose,
consider the matrix

J̃M-FH =

[︃
dmax(hmaxϕ

2
max + ūmax)/cs − cn dmaxϕmax/cn
2hmaxϕmax −cs

]︃
.

We have p(λ) = λ2 +
1

cs
(c̃FH + gf)λ+ gf. We observe that under condition (9.13) it is

gf > 0. We have p(λ) = 0 if and only if

λ1 = − c̃FH + gf −
√︁

(c̃FH + gf)2 − 4gfc2s
2cs

,

λ2 = − c̃FH + gf +
√︁

(c̃FH + gf)2 − 4gfc2s
2cs

.
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We observe that the determinant of p(λ) is

∆ =
1

c2s

(︄(︃
c2s + gf +

2

cn
amax

)︃2

− 4gfc
2
s

)︄

=
1

c2s

(︃(︁
gf − c2s

)︁2
+

4

cn
amax

(︃
amax

cn
+ gf + c2s

)︃)︃
.

Therefore, under condition (9.13) and being amax, cn, cs non negative, it always results
∆ > 0, so that α(|J(x,w)|M) := λFH = λ1.

With the next result, we give a sufficient condition for the contractivity of the Hopfield-
Oja model.

Theorem 9.7 (Strong infinitesimal contractivity of the Hopfield-Oja model). Consider
the the coupled Hopfield-Oja system (8.15) and let Assuptions (9.A1) – (9.A4) hold.
Further, assume that:

cncs > dmax
(︁
3hmaxϕ

2
max + ūmax

)︁
+ 2

co

cs
ϕ2

maxdmax
(︁
hmaxϕ

2
max + ūmax

)︁
. (9.15)

Then, the dynamics (8.15) is strongly infinitesimally contracting on X ×W with respect
to the norm ∥ [∥x∥∞, ∥W∥∞] ∥p,[η], for any p ∈ [1,∞] and where η is some positive
vector. Moreover, the contraction rate is at least

λHO = −
c̃HO + go −

√︂
(c̃HO + go)

2 − 4goc2s

2cs
,

where c̃HO := c2s +2bmax+2ϕ2co/cs
(︁
bmax+dmaxūmax

)︁
and go := cncs−3dmaxhmaxϕ

2
max+

dmaxūmax − 2
co

cs
ϕ2

max
(︁
dmaxhmaxϕ

2
max + dmaxūmax

)︁
.

Proof. The full proof, which follows similar steps to the ones used to prove Theorem 9.5,
is omitted here for brevity. We only note that, for the Hopfield-Oja dynamics, the Jacobian
is partitioned into the following matrices:

Jnn = −cnIn +Bin[w]B
⊤
out[Φ

′(x)],

Jns = Bin[B
⊤
outΦ(x)],

Jsn = [h]
(︁
[B⊤

outΦ(x)]B
⊤
in + [B⊤

in Φ(x)]B
⊤
out
)︁
[Φ′(x)]− 2co[w][B

⊤
in Φ(x)]B

⊤
in [Φ

′(x)],

Jss = −csIm − co[B
⊤
in Φ(x)][B

⊤
in Φ(x)].

For completeness, we also compute the lower bounds on the contraction rate. To this
purpose, consider the matrix

J̃M-HO =

[︃
dmax(hmaxϕ

2
max + ūmax)/cs − cn dmaxϕmax

2ϕmax(hmax + co(hmaxϕ
2
max + ūmax)/cs) −cs

]︃
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and its characteristic polynomial p(λ) = λ2 +

(︃
c̃HO + go

cs

)︃
λ+ go. We have p(λ) = 0

if and only if

λ1 = −
c̃HO + go −

√︂
(c̃HO + go)

2 − 4goc2s

2cs
,

λ2 = −
c̃HO + go +

√︂
(c̃HO + go)

2 − 4goc2s

2cs
.

The determinant of p(λ) is

∆ =

(︁
c2s + go + 2bmax + 2ϕ2co/cs(bmax + dmaxūmax)

)︁2

c2s
− 4go

=
(go − c2s )

2 + 4bmax(bmax + c2s + go)

c2s
+

4ϕ4c2o/c
2
s (bmax + dmaxūmax)

2

c2s

+
4ϕ2co/cs(bmax + dmaxūmax)

(︁
c2s + go + 2bmax

)︁

c2s
.

Therefore, under condition (9.15) and being bmax, co, and cs non negative, it always results
∆ > 0, so that α(J̃M-HO) := λHO = λ1.

Finally, with the next result, we give a sufficient condition for the contractivity of the
firing-rate-Oja model.

Theorem 9.8 (Strong infinitesimal contractivity of the firing-rate-Oja model). Consider
the coupled firing-rate-Oja (8.16) and let Assumptions (9.A1), (9.A2) and (9.A4) hold.
Further, assume that:

cncs > dmaxhmaxϕ
2
max

(︂
1+

2

cn

)︂
+dmaxūmax +2

co

cscn
ϕ2

maxdmax
(︁
hmaxϕ

2
max + ūmax

)︁
. (9.16)

Then, the dynamics (8.16) is strongly infinitesimally contracting on V ×W with respect
to the norm ∥ [∥ν∥∞, ∥W∥∞] ∥p,[η], for any p ∈ [1,∞] and where η is some positive
vector. Moreover, the contraction rate is at least

λFO = −
c̃FO + gof −

√︂
(c̃FO + gof)

2 − 4gofc2s

2cs
,

where amax := dmaxhmaxϕ
2
max, c̃FO := c2s + 2amax/cn + 2ϕ2 co

cscn

(︁
amax + dmaxūmax

)︁
and

gof = cncs − amax

(︂
1 + 2

cn

)︂
− dmaxūmax − 2 co

cscn
ϕ2

max
(︁
amax + dmaxūmax

)︁
.

Proof. We omit the proof since it follows the same steps of Theorem 9.5. The main
differences are the Jacobian of (8.16) and the bound on the contraction rate, that, for
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completeness, we present here. The Jacobian is partitioned into the following matrices:

Jnn = −cnIn +Bin[w]B
⊤
out
[︁
Φ′ (︁Bin[w]B

⊤
outν + u

)︁]︁
,

Jns = Bin[B
⊤
outν]

[︁
Φ′(︁Bin[w]B

⊤
outν + u

)︁]︁
,

Jsn = [h]
(︁
[B⊤

outΦ]B
⊤
in + [B⊤

in Φ]B
⊤
out
)︁
[Φ′]2co[w][B

⊤
in Φ(x)]B

⊤
in [Φ

′],

Jss = −csIm − co[B
⊤
in Φ(x)][B

⊤
in Φ(x)].

Additionally, the lower bound on the contractivity rate is given by the following standard
reasoning. Given the matrix

J̃M-FO =

⎡
⎢⎢⎣

dmax(hmaxϕ
2
max + ūmax)

cs
− cn

dmaxϕmax

cn

2ϕmax

(︃
hmax +

co

cs
(hmaxϕ

2
max + ūmax)

)︃
−cs

⎤
⎥⎥⎦

and its characteristic polynomial p(λ) = λ2 +
(︂

c̃FO+gof
cs

)︂
λ+ gof, where for simplicity of

notation we have defined amax := dmaxhmaxϕ
2
max, c̃FO := c2s +2amax/cn+2ϕ2

max
co
cscn

(amax+

dmaxūmax) and gof = cncs − amax

(︂
1 + 2

cn

)︂
− dmaxūmax − 2 co

cscn
ϕ2

max (amax + dmaxūmax).
We observe that under condition (9.16) it is gh > 0. We have p(λ) = 0 if and only if

λ1 = −
c̃FO + gof −

√︂
(c̃FO + gof)

2 − 4gofc2s

2cs
,

λ2 = −
c̃FO + gof +

√︂
(c̃FO + gof)

2 − 4gofc2s

2cs
.

It is

∆ =

(︂
c2s + gof + 2amax

cn
+ 2ϕ2

max
co
cscn

(amax + dmaxūmax)
)︂2

c2s
− 4gof

=
(gof − c2s )

2 + 4amax
cn

(amax
cn

+ c2s + gof)

c2s
+

4ϕ4
max

(︂
co
cscn

)︂2
(amax + dmaxūmax)

2

c2s

+
4ϕ2

max
co
cscn

(amax + dmaxūmax)
(︂
c2s + gof + 2amax

cn

)︂

c2s
.

Therefore, under condition (9.16) and being bmax, co, and cs non negative, it always results
∆ > 0, so that α(J̃M-FO) := λFO = λ1.

Finally, we close this section with the following observation. Comparing condi-
tions (9.8), (9.13), (9.15) and (9.16), we can see that the contractivity test for the coupled
Hopfield-Oja (8.15) and firing-rate-Oja (8.16) systems are more conservative than the
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test for the coupled Hopfield-Hebbian (8.13) and firing-rate-Hebbian (8.14) systems.
On the other hand, when cn = 1 the contractivity test for the Hopfield-Hebbian and
the firing-rate-Hebbian models is the same, while when cn > 1 (9.13) gives sharper
contractivity condition with respect to (9.8). Vice versa when cn < 1.

Remark 9.3.
• Sparse connectivity enables the low-dimensional reformulations of the coupled

neural-synaptic systems (8.9) – (8.12) as systems (8.13) – (8.16). The contractivity
conditions in (9.8), (9.13), (9.15) and (9.16), are less conservative compared
to what one could obtain if the analysis was applied directly to the original
dynamics (8.9) – (8.12).

• Throughout this section as in, e.g., [23, 79, 102, 59], we consider homogeneous
decay rates. However, it is worth noting that our analysis can be generalized to
heterogeneous decay rates. For example, let cin be the decay rate for the i-th neuron
so that the dynamics (3.1) reads ẋi = −cinxi +

∑︁n
j=1 Wijϕ(xj) + ui. Then the

contractivity condition (9.8) becomes
(︁
min
i

cin
)︁
cs > 3dmaxhmaxϕ

2
max + dmaxūmax.

9.5 Invariance Properties of the Synaptic Dynamics
In this section, we explore invariance properties of the synaptic dynamics of our neural-
synaptic models. These invariance results are important as they ensure that certain
biological constraints are respected throughout the evolution of the system, thereby
enhancing the biological plausibility of the models.

9.5.1 Dale’s Principle
Biological neurons release either excitatory (E) or inhibitory (I) outgoing synapses,
not both [143, 147]. This characteristic, known as Dale’s Principle, imposes a strict
constraint on the type of output a neuron can produce. Specifically, Dale’s Principle
implies that a single neuron cannot have a mixture of positive (excitatory) and negative
(inhibitory) output synapses. Furthermore, the nature of these synapses is invariant
over time, meaning that once a neuron is classified as excitatory or inhibitory, all of its
outgoing synapses remain either non-negative or non-positive, respectively, for all time.
Mathematically, this principle implies that the elements of the columns of the synaptic
weight matrix W (t) are either all non-negative or all non-positive at any time t.

We illustrate Dale’s principle with a simple example of a network of five neurons in
Figure 9.2. In the example, the network on the left satisfies the principle, as each neuron
releases either excitatory or inhibitory outgoing synapses, but not both. In contrast, the
network on the right violates Dale’s Principle, as neurons 2 and 4 release both excitatory
and inhibitory synapses.
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Figure 9.2: Left: Example of a network satisfying Dale’s principle. Each neuron has
either all positive (green) or all negative (red) output synapses. Right: Example of a
network that violates Dale’s Principle, as neurons 2 and 4 have both positive and negative
output synapses.

9.5.2 Invariance Results for the Synaptic Dynamics: Dale’s Prin-
ciple

We now investigate if the models considered in this thesis satisfy Dale’s Principle.

Lemma 9.9 (Dale’s Principle). Consider the coupled neural-synaptic models (8.9) –
(8.12) with external synaptic stimuli Ū = 0 and let Assumptions (9.A1)–(9.A3) hold.
Pick a neuron j ∈ {1, . . . , n}. If, for all i ∈ {1, . . . , n}:

(i) Hij > 0 and Wij(0) ≥ 0, then Wij(t) ≥ 0, ∀t ≥ 0,

(ii) Hij < 0 and Wij(0) ≤ 0, then Wij(t) ≤ 0, ∀t ≥ 0.

Proof. We start by proving statement (i) for the coupled Hopfield-Oja model (8.11) with
Ū ij = 0. We show the result by considering the synaptic dynamics

Ẇ ij(t) = Hijϕ(yi(t))ϕ(yj(t))− (cs + coϕ
2(yi(t)))Wij(t), (9.17)

with yi(t) and yj(t) being exogenous inputs. Let Wj := (Wij)i∈{1,...,n} ∈ Rn be the
j-th column of W . We show that, if the assumptions in (i) are satisfied, then the positive
orthant is forward invariant for the dynamics for Wj uniformly in yi(t) and yj(t).

To this aim, note that by assumptions when Wij = 0, the right-hand side in (9.17) is
non-negative. Hence, by Nagumo’s Theorem 4.2, the positive orthant is forward invariant
for (9.17). Moreover, since this property holds for all signals yi(t) and yj(t), this property
also holds when yi(t) = xi(t) and yj(t) = xj(t). This gives the result for the coupled
Hopfield-Oja (8.11) and firing-rate-Oja (8.12) models. Furthermore, the non-negativity
condition for the right-hand side in (9.17) also holds when co = 0, and this, in turn, yields
the result for coupled Hopfield-Hebbian (8.9) and firing-rate-Hebbian (8.10) models. The
proof of statement (ii) follows similar reasoning and is omitted here for brevity.

Remark 9.4. A key assumption in Lemma 9.9 is that the models satisfy (9.A1), ensuring
the activation function’s non-negativity. It is worth noting that if the activation function
acting on the pre-synaptic node yj has an opposite sign with respect to the one acting
on the post-synaptic node yi, then not only Dale’s principle is not satisfied, but neurons
over time will change the outgoing synapses they release. That is, excitatory synapses
become inhibitory and vice-versa.
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9.5.3 Invariance Results for the Synaptic Dynamics: Symmetric
Matrices

Finally, we investigate invariant results for symmetric synaptic matrices. We analyze this
aspect as in the neuroscience literature this appears to be a key property for a number
of well-known models, e.g., [22, 58, 24, 9]. Nevertheless, the assumption of symmetric
weight matrices, which is often made to streamline the mathematical analysis, violates
Dale’s Principle. To investigate invariant results for symmetric synaptic matrices, we
consider the dynamics (8.5) in vector form with Ū = 0:

Ẇ (t) = H ◦ Φ(y(t))Φ(y(t))⊤ − csW (t), (9.18)

where y(t) is an exogenous input. The following Lemma formalizes the fact that, if H
is symmetric the system always converges to a symmetric synaptic matrix. Moreover, if
W (0) is symmetric, then W (t) = W⊤(t), ∀t ≥ 0.

Lemma 9.10. [Invariance Results for the Symmetric Synaptic Matrices] Consider the
coupled Hopfield-Hebbian (8.9) and firing-rate-Hebbian (8.10) models with external
synaptic stimuli Ū = 0, satisfying Assumptions (9.A1)–(9.A3). Assume that H is
symmetric and let WS(t) and WA(t) be the symmetric and skew-symmetric components
of W (t), then:

(i) if WA(0) = 0, then WA(t) = 0, ∀t ≥ 0;

(ii) lim
t→∞

WA(t) = 0.

Proof. The proof is inspired by [23, Appendix 8.1]. First, we write W (t) = WS(t) +
WA(t), ∀t ≥ 0, so that equation (9.18) can be written as

Ẇ S + ẆA = (H ◦ Φ(y)Φ(y)⊤ − csWS)− csWA.

To prove statement (i) note that WA(0) = 0 implies that the right end side in (9.18) is
symmetric at time t = 0, thus WA(t) = 0, ∀t ≥ 0 and uniformly in y(t). This leads
to the desired result. Next, for statement (ii) it suffices to note that the dynamics for the
skew-symmetric component of W (t) are given by ẆA(t) = −csWA(t), whose solution
is WA(t) = WA(0)e

−cst, ∀t≥ 0. The desired result then follows.

Remark 9.5. The previous results hold only when co = 0. In fact, if co ̸= 0, in general,
the right end side of (9.17) is not symmetric, and therefore Lemma 9.10 can’t apply.

9.6 Numerical Example
We validate our theoretical results via a simple example and, for brevity, we present
numerical results only for the Hopfield-Hebbian model (8.13). Inspired by one of the
building blocks of the nematode C. elegans neural circuit studied in [146], we consider
the simple network of Figure 9.3 with six neurons and six edges (four excitatory and two
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Figure 9.3: Coupled neural-synaptic model with six neurons i and six edges, ei, i =
1, . . . , 6, four excitatory (green) and two inhibitory (red). Only nodes 1 and 2 are
subjected to the external stimuli u1 and u2, respectively. Colors online.

inhibitory). The C. elegans architecture can be schematically represented as a cascade
of the blocks of the network in Figure 9.3.
The out- and in-incidence matrices for this network are:

Bin =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 1 0 1
0 1 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦
, Bout =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

In this case dmax = 2 and we pick the elements of h in (8.13) from the interval [−1, 1].
These elements are selected so that ei, i ∈ {1, . . . , 4}, are excitatory, while e5 and e6 are
inhibitory. For the neurons we set ϕ(x) = 1

1+e−x and hence ϕmax = 1. In the network,
only neurons 1 and 2 receive the external stimuli u1 = 20 sin(8t) and u2 = 15 cos(8t),
respectively; also, the excitatory synaptic weights are subject to a constant stimulus
ū = 1.5. In our experiments, we pick the initial conditions from the set [−1, 1] and select
the synaptic initial conditions so that Dale’s Principle is satisfied. To numerically validate
the results presented in Section 9.4 we set cn = 3.6 and cs = 3.2, so that condition (9.8)
is satisfied, i.e., the Hopfield-Hebbian network is strongly infinitesimally contracting.
The behavior of the network is illustrated in Figure 9.4. The contraction rate estimate
given by (9.9) is λHH = 0.54. As expected, this estimate is more conservative than
the empirical contraction rate of 4.10 obtained from numerical simulations. Moreover,
a direct computation shows that xmax = 5.98 and wmax = 0.78, in accordance with
Lemma 9.1. Also, the behavior in the figure is in accordance with Lemma 9.9: note
indeed that the synaptic weights have always the same sign. We also note that, since
our conditions guarantee the contractivity of the network, the Hopfield-Hebbian network
becomes entrained by the periodic inputs u1 and u2 (see Figure 9.4).

Finally, to validate our results for RNNs, we introduce recurrent connections to the
network in Figure 9.3, obtaining the network in Figure 9.5. Here, dmax = 2 and we pick
the elements of h in (8.13) from the interval [−1, 1]. These elements are selected so
that e5, e6, and e7 are inhibitory, while the other edges are excitatory. In the network,
only neurons 1, 2, and 4 receive the external stimuli u1 = 5 tanh (t), u2 = 3 tanh (t),
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Figure 9.4: Simulation of the Hopfield-Hebbian model of Figure 9.3 exhibiting entrain-
ment to periodic inputs typical of contracting systems. See Section 9.6 for the parameters.

Figure 9.5: Coupled neural-synaptic model with six neurons i, i = 1, . . . , 6, and nine
edges, ej , j = 1, . . . , 9, six excitatory (green) and three inhibitory (red). Only nodes 1,
2, and 4 are subjected to the external stimuli u1, u2, and u3, respectively. Colors online.

and u3 = 7 tanh (t), respectively; also, the synaptic weights e1 and e4 are subject to a
constant stimulus ū = 1.5, while e2, e3 and e9 to ū = 1. In our experiments, we pick
the initial conditions from the set [−1, 1] and select the synaptic initial conditions so
that Dale’s Principle is satisfied. Also in this case, we set cn = 3.6 and cs = 3.2, so
that condition (9.8) is satisfied. For this example, we perform an exploratory numerical
study to investigate what happens when the network parameters are set so as to satisfy
Theorem 9.5, but the activation functions are affected by the delay, say τ = 2s in
our simulations. While it is well known that contraction is preserved through specific
time-delayed communications [148], to the best of our knowledge this property has not
been investigated for the types of dynamics considered here. The resulting behavior of
the network, illustrated in Figure 9.6, shows that the delayed system appears to be still
contracting. We leave the study of neural-synaptic networks with delays to future work.
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Figure 9.6: Simulation of the Hopfield-Hebbian model of Figure 9.5 with the activation
functions affected by 2s of delay. Even with the delays the system appears to be still
contracting. See Section 9.6 for the parameters.

9.7 Summary
In this chapter, we completed the analysis of Chapter 8 for the modeling and understanding
of ANNs that more closely align with the principles governing natural NNs. Given the
coupled neural-synaptic models combining RNNs with dynamical recurrent connections
undergoing Hebbian learning rules, in this chapter we characterized key dynamical
properties of such models, supporting some biologically realistic behaviors.

First, in Section 9.3 we established a key biologically-inspired forward invariance
result for the trajectories of the system, showing bounded solutions for each model. This
result mirrors the fact that biological neurons eventually saturate with high input values
and that synaptic weights are bounded. Then in Section 9.4 we gave sufficient conditions
for the non-Euclidean contractivity of the models. Importantly, each contractivity test
we presented is based upon biologically meaningful quantities, i.e., neural and synaptic
decay rate, maximum in-degree, and maximum synaptic strength. Specifically, we found
that when the neural decay rate cn > 1 the model with the FNN has sharper contractivity
conditions with respect to the one with the HNN. We then explored invariance properties
of the synaptic dynamics in Section 9.5. Specifically, in Lemma 9.9 we showed that
under suitable conditions the synaptic rules satisfy Dale’s Principle. With this result, we
enhanced the biological plausibility of our models. Additionally, in Theorem 9.10 we
gave invariant results for symmetric synaptic matrices. Finally, to validate our theoretical
results, we conducted a numerical example using a biologically inspired network. This
example is based on a block of the C. elegans neural architecture.

The results of this chapter establish a theoretical framework for advancing ANNs
that more closely align with biologically plausible principles, setting the stage for further
developments in biologically inspired machine learning.
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Part III
—— · ——

Contracting Dynamics for
Convex Optimization
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III.1 Introduction
Optimization problems are fundamental in science and engineering, with a wide range
of applications spanning from control theory to computational neuroscience, as demon-
strated in earlier parts of this thesis. Within the family of optimization problems, convex
optimization stands out as a central tool across many domains.

Traditionally, optimization algorithms have been implemented as iterative procedures
on digital devices, where the focus is on their numerical performance. However, a
growing alternative approach for addressing possibly time-varying optimization problems
is to synthesize continuous-time dynamical systems, akin to recurrent neural networks,
which converge to equilibria that are also optimal solutions. As a result, significant
efforts have been directed toward characterizing the stability and convergence rates
of these systems, along with their robustness against uncertainty. Remarkably, strongly
infinitesimally contracting systems exhibit these desirable properties such as convergence
for time-invariant systems, tracking for time-varying systems, and robustness to noise.

Research questions: In the above context, several questions naturally arise:

• Can contractivity be used to obtain improved rate of convergence for canonical
optimization problems?

• Can a contractivity-based approach be effectively applied to track solutions of
continuous-time time-varying optimization problems?

• In many convex optimization problems, the associated dynamics are only weakly
contracting. In which cases can we ensure convergence? And what is the conver-
gence behavior for these cases?

III.2 Contracting Dynamics for Convex Optimization
In this final part of this thesis, motivated by the above questions, we explore the potential
of a contractivity-based approach for convex optimization. Specifically, in Chapter 10,
we consider four canonical time-invariant optimization problems, say themP (x): uncon-
strained problems, monotone inclusions problems, linear equality-constrained problems,
and composite minimization problems. For each of these problems, we provide a tran-
scription to continuous-time dynamical systems, say it F (x), and give conditions under
which these dynamics are strongly infinitesimally contracting.

The goal is to use contracting dynamics whose equilibrium point corresponds to the
optimal solution of the optimization problem. Informally, we can schematize this as:

x⋆ = argminP (x) ⇐⇒ x⋆ eq. point of ẋ = F (x).

For a static optimization problem, we know that for any input (or parameter) at
each time instant strongly contracting dynamics admit a unique equilibrium. When
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considering parametric and time-varying convex optimization, intuitively we can track
the equilibrium trajectory by defining parametric and time-varying contracting dynamics.

Chapter 11 expands on these ideas. We present two results on equilibrium tracking for
parameter-varying contracting dynamics, addressing scenarios where the rate of change
of the parameter is known and unknown. Then, we introduce contracting continuous-
time dynamical systems designed to track the optimal solutions of time-varying instances
of monotone inclusions problems, linear equality-constrained problems, and composite
minimization problems.

Finally, in Chapter 12 we extend our analysis beyond the case of strong convexity to
examine convex (but not strongly convex) optimization problems with unique minimizers.
We show that these problems lead to dynamics that are globally-weakly contracting in
the state space and only locally-strongly contracting, such as the FCNs analyzed in
Chapter 7. For such dynamics, we present a comprehensive analysis of their convergence
behavior, showing that this is linear-exponential, in the sense that the distance between
each solution and the equilibrium is upper-bounded by a function that first decreases
linearly and then exponentially decays. This result extends the findings in Section 7.3,
offering a refined convergence bound (we give more details on this in Chapter 12). In
addition to convergence results, we also provide input-to-state stability conditions for
these dynamics, further strengthening the robustness and applicability of the approach.

III.3 Overview
Studying optimization algorithms as continuous-time dynamical systems has been an
active area of research since the seminal work of Arrow, Hurwicz, and Uzawa [120], with,
e.g., [62] being one of the first works to design neural networks for LPs. Notable examples
include Hopfield and Tank in dynamical neuroscience [121], Kennedy and Chua in analog
circuit design [149], and Brockett in systems and control [150]. Recent advancements
in, e.g., online and dynamic feedback optimization [151] and reservoir computing [152],
have renewed the interest in continuous-time dynamics for optimization. A recent survey
on studying optimization algorithms from a feedback control perspective is [153].

Asymptotic and exponential stability of dynamical systems solving convex op-
timization problems is a classical problem and has been studied in papers includ-
ing [154, 155, 156, 157, 158] among many others. Compared to papers studying asymp-
totic and exponential stability, there are far fewer works studying the contractivity of
dynamical systems solving optimization problems. A few exceptions include [105, 159]
which analyze primal-dual dynamics and [160, 90] which study gradient flows on Rie-
mannian manifolds. Additionally, optimization problems have been related to dynamical
systems via proximal gradients, and the corresponding continuous-time proximal gradi-
ent dynamics are studied in, e.g., [51, 158, 52]. Exponential stability of continuous-time
primal-dual dynamics with linear equality constraints with full row rank constraint ma-
trices has been also studied in works including [156, 158, 161]. The exponential stability
of such dynamics with not full rank constraints is established in [162, 163]. This result
is extended in a contractivity framework in [164] using semicontraction theory, a branch
of contractivity made by systems that are contracting only when restricted to a certain
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subspace.
In the context of time-varying convex optimization, algorithms to track the optimal

solution are designed based on Newton’s method in discrete-time in [165, 166] and in
continuous-time in [167]. Reviews of these results and theoretical extensions are given
in [168] and [169]. These results have been applied to study the feedback interconnection
of an LTI system and a dynamical system solving an optimization problem in [170].
Other examples of problems analyzed in a time-varying framework include works on
distributed convex optimization with time-varying cost functions [171, 172, 173]. From
a contraction theory perspective, both [105] and [159] provide tracking error bounds for
continuous-time time-varying primal-dual dynamics.

Finally, the asymptotic behavior of weakly contracting dynamics is instead charac-
terized in, e.g., [98] for monotone systems and in [36] for primal-dynamics with a locally
stable equilibrium.
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10 Contracting Dynamics for
Canonical Convex
Optimization Problems

In this chapter, we investigate whether a contractivity-based approach can effectively
be applied to study optimization problems. To this end, we begin our analysis by
providing a transcription of canonical convex optimization problems to continuous-
time dynamical systems that are strongly infinitesimally contracting. These systems
offer a robust framework for solving convex problems with guarantees of convergence
to optimal solutions, laying the groundwork for robust, real-time solution tracking in
dynamic optimization settings.

Some of the results in this chapter appeared in:

• A. Davydov, V. Centorrino, A. Gokhale, G. Russo, and F. Bullo. “Time-Varying
Convex Optimization: A Contraction and Equilibrium Tracking Approach”, con-
ditionally accepted on IEEE Transactions on Automatic Control, June 2023,
https://arxiv.org/abs/2305.15595.

Additionally, part of the results were presented at:

• Workshop “Variational Inequalities, Nash Equilibrium Problems and Applica-
tions”. “On Contracting Dynamics for Convex Optimization”, Oral Talk, Catania,
July 11-12, 2024. Website: https://vinepa.dmi.unict.it/.

10.1 Introduction
Convex optimization plays a central role in many areas of applied mathematics, machine
learning, control theory, and economics, offering a powerful framework for solving a
broad class of problems. A paradigm that is becoming increasingly popular is that to
synthesize continuous-time dynamical systems that converge to an equilibrium, which
corresponds to the optimal solution of the optimization problem. A suitable tool to assess
convergence and robustness is contraction theory, which has proven particularly useful
for time-varying convex problems, as we explore in the next chapter.
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Motivated by this, in this chapter, we consider canonical convex optimization prob-
lems, namely unconstrained problems, monotone inclusions problems, linear equality-
constrained problems, and composite minimization problems. For each of these opti-
mization problems, we provide a transcription to continuous-time dynamical systems and
give conditions under which these dynamics are strongly infinitesimally contracting. In
this way, we ensure global exponential convergence to the optimal solution, along with
the other useful properties of contracting dynamics (we refer to Section 4.4 for a detailed
list of these properties).

The chapter is organized as follows. In Section 10.2 we present a brief primer on
convex optimization. Then we analyze the unconstrained optimization problem in Sec-
tion 10.3, the monotone inclusion problem Section 10.3, the linear equality constrained
optimization problems in Section 10.5, and the composite minimization problems in
Section 10.6. Finally, in Section 10.7 we provide a summary table.

10.1.1 Contributions
We consider natural transcriptions into contracting dynamics for four canonical strongly
convex optimization problems: unconstrained problems, monotone inclusions problems,
linear equality-constrained problems, and composite minimization problems.

For (i) unconstrained problems and saddle dynamics, we review results known in
the literature. For the remaining problems, we make specific contributions by introduc-
ing new or improved transcriptions of strongly contracting dynamics. Specifically, for
(ii) monotone inclusion problems, we consider the continuous-time forward-backward
splitting dynamics, a generalization of the projected dynamics studied in [174] and the
proximal gradient dynamics studied in [51, 52]. We demonstrate that the continuous-
time forward-backward splitting dynamics are contracting and provide improved rates
of exponential convergence in certain special cases. For (iii) linear-equality constrained
problems, we study the continuous-time primal-dual dynamics and prove their strong
infinitesimal contractivity, providing the contractivity norm and explicit estimates of the
rate of contraction. To the best of our knowledge, our rates are improved with respect
to those presented in literature. Finally, for (iv) composite minimization, we adopt the
proximal augmented Lagrangian approach from [158]. We show that the continuous-time
primal-dual dynamics on the proximal augmented Lagrangian are contracting. This find-
ing improves on the exponential convergence result from [158, Theorem 3] by allowing
for a larger range of parameters, thus increasing the method’s flexibility and applicability.
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10.2 A Primer on Convex Optimization
In this section, we recall basic definitions and facts on convex optimization.

Convex optimization is a subfield of mathematical optimization that deals with prob-
lems where the objective function is convex, and the feasible region forms a convex set.
We recall the following standard definitions.

Definition 10.1 (Convex set). A set C ⊆ Rn is convex if

αx1 + (1− α)x2 ∈ C,

for all x1, x2 ∈ C and for all α ∈ [0, 1].

In words, a set is convex if any line segment connecting two points within the set
remains entirely inside the set.

Definition 10.2 (Convex and strongly convex functions). Let f : Rn → R be a scalar
function defined over a convex set C ⊆ Rn. The function f is

• convex if f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2),

• strongly convex with parameter mf > 0 if

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2) +
1

2
mfα(1− α)∥x− y∥22,

for all x1 ̸= x2 ∈ C and for all α ∈ [0, 1]. We refer to Figure 10.1 for an illustration of
a convex (but not strongly convex) function and a strongly convex function.
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Figure 10.1: Left panel: Convex but not strongly convex function. Right panel: Strongly
convex function.

Geometrically, a function is convex if the line segment between any two points on its
graph lies above or on the graph. A key property of convex function that makes them
particularly useful is the fact that any local minimum is a global minimum. Finally, we
recall a characterization of convexity for twice-differentiable functions.
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Lemma 10.1 (Second order characterization of convex function). Let f : Rn → R be a
twice-differentiable function defined over a convex set C ⊆ Rn. Then

• the function f is convex if and only if its Hessian matrix∇2f(x) ⪰ 0 for all x ∈ C,

• the function f is strongly convex with parameter mf > 0 if and only if its Hessian
matrix ∇2f(x) ⪰ mfIn, for all x ∈ C.

10.3 Unconstrained Optimization Problem
Let f : Rn → Rn be a convex and differentiable function. We are interested in solving
the unconstrained optimization problem

min
x∈Rn

f(x). (10.1)

A common approach to solve problem (10.1) is through the continuous-time gradient
flow dynamics, given by:

ẋ = −∇f(x) = FGD. (10.2)

In the following result, we give conditions under which the dynamics (10.2) is strongly
infinitesimally contracting.

Lemma 10.2 (Contractivity of continuous-time gradient flow dynamics). Let f : Rn →
Rn be continuously differentiable. Then

(i) the map f is strongly convex with parametermf > 0 if and only if the gradient-flow
dynamics (10.2) is strongly infinitesimally contracting with rate mf with respect
to the norm ∥ · ∥2,

(ii) the map f is convex if and only if then the gradient-flow dynamics (10.2) is weakly
contracting with respect to the norm ∥ · ∥2.

Proof. The statements follows from Lemma 10.1 after noticing that µ2

(︁
DFGD

)︁
=

∇2f(x).

Remark 10.1.

(i) Statement (i) in Lemma 10.2 is also known as Kachurovskii’s Theorem [175].

(ii) the result in Lemma 10.2 holds also when the function f is locally Lipschitz,
by asking that the conditions are verified at every point where the function is
differentiable.
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10.4 Monotone Inclusion Problem
Let F : Rn → Rn be monotone and g : Rn → R be convex. We are interested in solving
the monotone inclusion problem

find x⋆ ∈ Rn s.t. 0n ∈ (F+ ∂g)(x⋆). (10.3)

We make the following assumptions on the functions F and g.

Assumption 10.1. The function F : Rn → Rn is strongly monotone with parameter
mF and Lipschitz with constant LF. The map g : Rn → R is closed, convex and
proper.

Under Assumption 10.1, the monotone inclusion problem (10.3) has a unique solution
due to strong monotonicity of F [176].

We begin with two examples of well-known problems that can be stated in terms of
the monotone inclusion problem (10.3).

Example 10.1 (Convex minimization). Consider the convex optimization problem

min
x∈Rn

f(x) + g(x), (10.4)

where f : Rn → R is strongly convex and continuously differentiable and g : Rn → R
is CCP. In this case, the unique point x⋆ ∈ Rn that minimizes (10.4) also solves the
inclusion problem (10.3) with F = ∇f .

Example 10.2 (Variational inequalities). Consider the variational inequality

Find x⋆ ∈ C s.t. F(x⋆)⊤(x− x⋆) ≥ 0, ∀x ∈ C, (10.5)

where C is a nonempty, convex, and closed set. We denote the problem (10.5) byVI(F, C).
It is known that x⋆ ∈ C solves VI(F, C) if and only if for all γ > 0, x⋆ is a fixed point of
the map PC ◦ (Id−γF), that is x⋆ = PC(x

⋆−γF(x⋆)). In turn, this fixed-point condition
is equivalent to asking x⋆ to solve the monotone inclusion problem (10.3) with g = ιC
(see, e.g., [177, pp. 37]).

To solve the monotone inclusion problem (10.3), we consider the following continuous-
time forward-backward splitting dynamics with parameter γ > 0:

ẋ = −x+ proxγg(x− γF(x)) =: Fγ
FB(x). (10.6)

Remark 10.2.

(i) when g = ιC for some convex and closed set C, then for any γ > 0, proxγg = PC ,
we are solving the VI(F, C) (10.5) and the dynamics (10.6) are the projected
dynamics [174]

ẋ = −x+ PC(x− γF(x)).
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(ii) when F = ∇f for some continuously differentiable convex function f , we are solv-
ing the convex optimization problem (10.4) and the dynamics (10.6) corresponds
to the proximal gradient dynamics

ẋ = −x+ proxγg(x− γ∇f(x)).

First, we establish a result relating the equilibrium points of the dynamics (10.6) and
the solutions of the inclusion problem (10.3).

Lemma 10.3 (Equilibria of (10.6)). Consider the continuous-time forward-backward
splitting dynamics (10.6) satisfying Assumption 10.1. Then for any γ > 0, 0n ∈
(F+ ∂g)(x⋆) if and only if x⋆ ∈ Rn is an equilibrium point of the dynamics (10.6).

Proof. Note that equilibria of (10.6), x⋆ ∈ Rn, satisfy the fixed point equation

x⋆ = proxγg(x
⋆ − γF(x⋆)). (10.7)

Moreover, it is known that fixed points of (10.7) also solve the monotone inclusion
0n ∈ (F + ∂g)(x⋆) (see, e.g., [178, Proposition 26.1(iv)(a)]) noting that proxγg is the
resolvent of ∂g with parameter γ.

Remark 10.3. Proposition 10.3 continues to hold under the assumption of monotone
F [178, Propositon 26.1(iv)(a)].

Next, we give conditions on the parameter γ for which the dynamics (10.6) are
strongly infinitesimally contracting.

Theorem 10.4 (Contractivity of continuous-time forward-backward splitting dynamics).
Consider the dynamics (10.6) satisfying Assumption 10.1. Then

(i) for every γ ∈ ]0, 2mF/L
2
F[, the dynamics (10.6) are strongly infinitesimally con-

tracting with respect to the norm ∥ · ∥2 with rate 1−
√︁

1− 2γmF + γ2L2
F. More-

over, the contraction rate is optimized at γ∗ = mF/L
2
F.

Additionally,

(ii) if F = ∇f for some strongly convex f : Rn → R, for every γ ∈ ]0, 2/LF[, the
dynamics (10.6) are strongly infinitesimally contracting with respect to ∥ · ∥2 with
rate 1−max{|1− γmF|, |1− γLF|}. Moreover, the contraction rate is optimized
at γ∗ = 2/(mF + LF);

(iii) if F(x) = Ax + b for all x ∈ Rn, with A = A⊤ ≻ 0, then for every γ ∈
]1/λmin(A),+∞[, the dynamics (10.6) are strongly infinitesimally contracting
with respect to the norm ∥ · ∥(γA−In) with rate 1.

Proof. Regarding statement (i) note that, for every γ > 0, we have
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• the map proxγg is nonexpansive with respect to the norm ∥ · ∥2, being g : Rn → R
CCP (see, e.g., [178, Proposition 12.28]);

• the map Id − γF has Lipschitz constant upper bounded by
√︁
1− 2γmF + γ2L2

F

with respect to the norm ∥ · ∥2 (see, e.g., [177, pp. 16]).

Now, since the Lipschitz constant of the composition of two maps is upper bounded by
the product of the Lipschitz constants, we have

osL(Fγ
FB) = osL(−Id+ proxγg(Id− γF)) = −1 + osL(proxγg ◦ (Id− γF))

≤ −1 + Lip(proxγg) Lip(Id− γF)

≤ −1 + Lip(Id− γF) ≤ −1 +
√︂
1− 2γmF + γ2L2

F,

where in the first equality we used the translation property of osL and in the first inequality
we used the upper bound osL(T) ≤ Lip(T). Therefore, for γ ∈ ]0, 2mF/L

2
F[, we have

osL(Fγ
FB) < 0. Moreover, minimizing osL(Fγ

FB) corresponds to minimizing 1−2γmF+
γ2L2

F as a function of γ ∈ ]0, 2mF/L
2
F[. This minimization occurs at γ⋆ = mF/L

2
F and

yields a one-sided Lipschitz estimate of osL(Fγ⋆

FB) ≤ −1 +
√︁

1−m2
F/L

2
F < 0. This

concludes the proof of item (i). Statement (ii) follows the same argument as in item (i),
after noticing that, for all γ > 0, Lip(Id − γ∇f) ≤ max{|1 − γmF|, |1 − γLF|} (see,
e.g., [177, pp. 15]). Moreover, the optimal choice of γ is γ⋆ = 2/(mF + LF) and the
corresponding bound on osL(Fγ⋆

FB) is −1 + (κ − 1)/(κ + 1), where κ := LF/mF ≥ 1
(see, e.g., [177, pp. 15]).

Finally, to prove statement (iii), we compute

DFγ
FB(x) = −In +Dproxγg(In − γ(Ax+ b))(In − γA)

for almost every x ∈ Rn. Note that for all x ∈ Rn for which the Jacobian exists, there
exists G = G⊤ ∈ Rn×n with 0 ⪯ G ⪯ In satisfying Dproxγg(In − γ(Ax + b)) = G
(see [53] for more details). Then, by the log-norm translation property, we have

sup
x

µ(DFγ
FB(x)) ≤ −1 + max

0⪯G⪯In
µ(G(In − γA)), (10.8)

where the sup is over all x for which DFγ
FB(x) exists. Moreover, for γ > 1/λmin(A),

γA − In is positive definite and by Lemma 5.3 we have that G(In − γA) has all real
eigenvalues and has the same number of positive, zero, and negative eigenvalues as −G
does, i.e., all eigenvalues are nonpositive. Then from Theorem 5.4, with the choice of
norm ∥ · ∥2,γA−In , we find

µ2,γA−In(G(In − γA)) = µ2,γA−In((−G)(γA− In)) ≤ 0,

where in the last equality we used the definition of ℓ2 log-norm. Finally, since this
equality holds for all symmetric G satisfying 0 ⪯ G ⪯ In, by applying inequality (10.8)
we have

sup
x∈Rn

µ2,γA−In(DFγ
FB(x)) ≤ −1.
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Remark 10.4. The rates of contraction in Theorem 10.4(i) and (ii) are consequences
of the contraction rates of the discrete-time forward-backward splitting algorithm in
monotone operator theory, see [177, pp. 25] and [178, Proposition 26.16]. Instead,
Theorem 10.4(iii) is novel and provides an improved and sharp rate of contraction.

10.5 Linear Equality Constrained Optimization
Let f : Rn → R be convex, A ∈ Rm×n, and b ∈ Rm. Consider the linear equality-
constrained problem

min
x∈Rn

f(x),

s.t. Ax = b.
(10.9)

We make the following assumptions on the function f and the matrix A.

Assumption 10.2. The function f : Rn → R is continuously differentiable, strongly
convex and strongly smooth with parameters mf and Lf , respectively. The matrix
A ∈ Rm×n satisfies aminIm ⪯ AA⊤ ⪯ amaxIm, for amin, amax ∈ R>0.

Note that the linear equality-constrained problem (10.9) is a special case of the
monotone inclusion problem (10.3) with F = ∇f and g = ιC , where C = {z ∈
Rn | Az = b}. In this case, we have that proxαg = PC and PC(z) = z −A†(Az − b) =

(In − A†A)z + A†b, where A† denotes the pseudoinverse of A. In this context, the
forward-backward splitting dynamics (10.6) read

ẋ = −x+ (In −A†A)(x− γ∇f(x)) +A†b. (10.10)

The downside to using the dynamics (10.10) is the cost of computing A†. To
remedy this issue, a common approach is to leverage duality and jointly solve primal
and dual problems. In what follows, we take this approach and study contractivity
of the corresponding primal-dual dynamics. To this purpose, consider the Lagrangian
associated to problem (10.9), that is the map L : Rn × Rm → R given by

L(x, λ) = f(x) + λ⊤(Ax− b).

The continuous-time primal-dual dynamics (also called Arrow-Hurwicz-Uzawa flow [120])
are gradient descent of L in x and gradient ascent of L in λ, i.e.,

ẋ = −∇xL(x, λ) = −∇f(x)−A⊤λ,

λ̇ = ∇λL(x, λ) = Ax− b.
(10.11)

We give a preliminary result on saddle matrices instrumental for our analysis.

Lemma 10.5 (Logarithmic norm of Hurwitz saddle matrices). Given B = B⊤ ∈ Rn×n

and A ∈ Rm×n, with m ≤ n, consider the saddle matrix

B =

[︃
−B −A⊤

A 0

]︃
∈ R(m+n)×(m+n).
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Then, for each matrix pair (B,A) satisfying bminIn ⪯ B ⪯ bmaxIn and aminIm ⪯
AA⊤ ⪯ amaxIm, for bmin, bmax, amin, amax ∈ R>0, the following contractivity LMI holds:

B⊤P + PB ⪯ −2cP ⇐⇒ µP (B) ≤ −c,

where

P =

[︃
In αA⊤

αA Im

]︃
≻ 0, α =

1

2
min

{︂ 1

bmax
,
bmin

amax

}︂
, and (10.12)

c =
1

2
αamin =

1

4
min

{︂amin

bmax
,
amin

amax
bmin

}︂
. (10.13)

Proof. We start by verifying that P ≻ 0. Using the Schur complement of the (2, 2)
entry, we need to verify that

In − α2A⊤A ≻ 0 ⇐⇒ 1− α2amax > 0 ⇐⇒ α2 < 1/amax.

The inequality α2 < 1/amax follows from the tighter inequality (2α)2 ≤ 1
amax

which is
proved as follows:

min
{︂ 1

bmax
,
bmin

amax

}︂2

≤ min
{︂ 1

bmax
,
bmin

amax

}︂
·max

{︂ 1

bmax
,
bmin

amax

}︂

=
1

bmax
· bmin

amax
≤ 1

amax
.

Next, we aim to show that Q := −B⊤P − PB − 2cP ⪰ 0. After some bookkeeping,
we compute

Q =

[︃
2B − 2αA⊤A− 2cIn αBA⊤ − 2cαA⊤

A+ αAB −A− 2cαA 2αAA⊤ − 2cIm

]︃
.

The (2,2) block satisfies the lower bound

2αAA⊤ − 2cIm = 2
(︁
1
2αAA⊤ − cIm

)︁
+ αAA⊤

⪰ 2
(︁
1
2αamin − c

)︁
Im + αAA⊤ = αAA⊤ ≻ 0.

Given this lower bound, we can factorize the resulting matrix as follows:

Q = −B⊤P − PB − 2cP

⪰
[︃
In 0
0 A

]︃ [︃
2B − 2(αA⊤A+ cIn) αB − 2cαIn

αB − 2cαIn αIn

]︃ [︃
In 0
0 A⊤

]︃
.

Since αIn ≻ 0, it now suffices to show that the Schur complement of the (2,2) block of
n× n matrix is positive semidefinite. We proceed as follows:

2B − 2(αA⊤A+ cIn)− α
(︁
B − 2cIn

)︁2 ⪰ 0

⇐⇒ 2B − αB2 + 4αcB ⪰ 2(αA⊤A+ cIn) + 4αc2In

⇐= 2B − αB2 ⪰ 2(αA⊤A+ cIn) and 4αcB ⪰ 4αc2In.
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To prove 2B −αB2 ⪰ 2(αA⊤A+ cIn), we upper bound the right hand side as follows:

2(αA⊤A+ cIn)
(10.12)
⪯ α(2amax + amin)In

α≤ 1
2 bmin/amax

⪯ 1

2

bmin

amax
(2amax + amin)In ⪯ 3

2
bminIn.

Next, since α ≤ 1
2bmax

, we know −αbmax ≥ − 1
2 . We then upper bound the left hand side

as follows:

2B − αB2 ⪰ 2B − αbmaxB ⪰ (2− 1
2 )B ⪰ 3

2bminIn.

Finally, the inequality 4αcB ⪰ 4αc2In follows from noting c ≤ 1
4
amin
amax

bmin < bmin.

Finally, we give the main result of this section.

Theorem 10.6 (Contractivity of primal-dual dynamics). Consider the dynamics (10.11)
satisfying Assumption 10.2. Then the continuous-time primal-dual dynamics (10.11) are
strongly infinitesimally contracting with respect to ∥ · ∥2,P with rate c > 0 where

P =

[︃
In αA⊤

αA Im

]︃
≻ 0, α =

1

2
min

{︂ 1

Lf
,
mf

amax

}︂
, (10.14)

c =
1

2
αamin =

1

4
min

{︂amin

Lf
,
amin

amax
mf

}︂
. (10.15)

Proof. Since f is continuously differentiable, convex, and strongly smooth, it is almost
everywhere twice differentiable so the Jacobian of the dynamics (10.11) exists almost

everywhere and is given by JPD(z) :=

[︃
−∇2f(x) −A⊤

A 0

]︃
,where z = (x, λ) ∈ Rn+m.

To prove strong infinitesimal contractivity it suffices to show that for all z for which
JPD(z) exists, the bound µ2,P (JPD(z)) ≤ −c holds for P , c given in (10.14) and (10.15),
respectively. The assumption of strong convexity and strong smoothness of f further
imply mfIn ⪯ ∇2f(x) ⪯ LfIn for all x for which the Hessian exists. Moreover, it
holds:

sup
z

µ2,P (JPD(z)) ≤ max
mf In⪯B⪯Lf In

µ2,P

(︃[︃
−B −A⊤

A 0

]︃)︃
,

where the sup is over all points for which JPD(z) exists. The result is then a consequence
of Lemma 10.5.

Remark 10.5. Our method of proof in Lemma 10.5 follows the same method as was pre-
sented in [156, Lemma 2], but uses a sharper upper bounding to yield a sharper contrac-
tion rate of

1

4
min

{︂amin

Lf
,
amin

amax
mf

}︂
compared to the estimate

1

8
min

{︂amin

Lf
,
amin

amax
mf

}︂

in [156, Lemma 2].
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10.6 Composite Minimization

Let f : Rn → R and g : Rm → R be convex, andA ∈ Rm×n. We consider the composite
minimization problem of the form

min
x∈Rn

f(x) + g(Ax). (10.16)

We make the following assumptions on the functions f, g, and the matrix A.

Assumption 10.3. The function f : Rn → R is continuously differentiable, strongly
convex, and strongly smooth with parameters mf and Lf , respectively. The map
g : Rm → R is convex, closed and proper. Finally, the matrix A ∈ Rm×n satisfies
aminIm ⪯ AA⊤ ⪯ amaxIm, for amin, amax ∈ R>0.

While problem (10.16) is a special case of (10.4), it may be computationally challenging
to compute the proximal operator of g ◦ A. Thus, we treat this problem separately,
leveraging the approach proposed in [158] to solve it. We begin by noticing that, the
optimization problem (10.16) is equivalent to

min
x∈Rn,y∈Rm

f(x) + g(y),

s.t. Ax− y = 0m.
(10.17)

For γ > 0, consider the augmented Lagrangian associated to (10.17), that is the
function Lγ : Rn × Rm × Rm → R defined by

Lγ(x, y, λ) = f(x) + g(y) + λ⊤(Ax− y) +
1

2γ
∥Ax− y∥22,

and, by a slight abuse of notation, the proximal augmented Lagrangian associated
to (10.17) is the function Lγ : Rn × Rm → R defined by

Lγ(x, λ) = f(x) +Mγg(Ax+ γλ)− γ

2
∥λ∥22. (10.18)

The proximal augmented Lagrangian corresponds to the augmented Lagrangian where
the minimization over y has already explicitly been performed and the optimal value
for y has been substituted (we refer to [158, Theorem 1] for more details). Moreover,
minimizing (10.16) corresponds to finding saddle points of (10.18). To this end, the
primal-dual flow corresponding to the proximal augmented Lagrangian is

ẋ = −∇xLγ(x, λ) = −∇f(x)−A⊤∇Mγg(Ax+ γλ),

λ̇ = ∇λLγ(x, λ) = γ(−λ+∇Mγg(Ax+ γλ)).
(10.19)

To provide estimates on the contraction rate and the norm with respect to which the
dynamics (10.19) are strongly infinitesimally contracting, we need to introduce a useful
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nonlinear program. For ε ∈ ]0, 1/
√
amax[, consider the nonlinear program

max
c≥0,α≥0,κ≥0

c (10.20a)

s.t. α ≤ min
{︂ 1√

amax
− ε,

γ

amax

}︂
, (10.20b)

κ ≥ 2

3
, (10.20c)

c ≤
(︂3
4
− 1

2κ

)︂
αamin, (10.20d)

h(c, α,κ) ≥ 0, (10.20e)

with h : R≥0 × R≥0 × R≥0 → R given by

h(c, α,κ) =2mf − ReLU
(︂
2α− 2

γ

)︂
amax − 2c

− ακ
amax

amin

(︂
γ2 amax

amin
+ (Lf +

amax

γ
+ 2c)2 + 2γ

amax

amin
(Lf +

amax

γ
+ 2c)

)︂
.

Theorem 10.7 (Contractivity of the dynamics (10.19)). Consider the continuous-time
primal-dual dynamics (10.19) satisfying Assumption 10.3 and let γ > 0 be arbitrary.
Then the primal-dual dynamics (10.19) are strongly infinitesimally contracting with
respect to ∥ · ∥2,P with rate c⋆ > 0 where

P =

[︃
In α⋆A⊤

α⋆A Im,

]︃
(10.21)

and α⋆ > 0, c⋆ > 0 are the arguments solving problem (10.20).

Proof. Let z = (x, λ) ∈ Rn+m and let F : Rn+m → Rn+m be the vector field (10.19)
for ż = F(z). Let y := Ax+ γλ and define G(y) := γ∇2Mγg(y) where it exists. The
Jacobian of F is then

DF(z) =

[︃−∇2f(x)− 1
γA

⊤G(y)A −A⊤G(y)

G(y)A −γ(Im −G(y))

]︃
,

which exists for almost every z. We then aim to show that µP (DF(z)) ≤ −c, for almost
every z. First, we note that for almost every z it holds

sup
z

µP (DF(z))≤ max
0⪯G⪯Im,

mf In⪯B⪯Lf In

µP

(︃[︃−B − 1
γA

⊤GA −A⊤G

GA γ(G− Im)

]︃)︃
.

The result is then a consequence of a generalization of [156, Lemma 4]. We refer to [53]
for more details.

Note that any triple (c, α,κ) ∈ R3
≥0 satisfying the constraints (10.20b)-(10.20e)

provides a suboptimal contraction estimate, i.e., the dynamics (10.19) are strongly in-
finitesimally contracting with rate c (weakly contracting if c = 0) with respect to norm

∥ · ∥2,P , where P =

[︃
In αA⊤

αA Im

]︃
.
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10.7 Table of Contracting Dynamics
Let f : Rn → R be strongly convex and strongly smooth with parameters mf and Lf ,
respectively. Let g : Rm → R be a convex, closed, and proper function and C be a convex
set. Finally, consider a matrix A ∈ Rm×n satisfying aminIm ⪯ AA⊤ ⪯ amaxIm, for
amin, amax ∈ R>0.

In the following, we provide a table summarizing the canonical optimization problems
analyzed in this chapter and the corresponding transcription to continuous-time dynami-
cal systems which are strongly contracting under the assumptions in Sections 10.3 – 10.6.

Convex Optimization Problem Contracting Dynamics

Unconstrained: min
x∈Rn

f(x) ẋ = −∇f(x)

Constrained:
min
x∈Rn

f(x),

x ∈ C
ẋ = −x+ PC(x− γf(x))

Composite: min
x∈Rn

f(x) + g(x) ẋ = −x+ proxγg(x− γ∇f(x))

Equality constraints:
min
x∈Rn

f(x),

s.t. Ax = b

ẋ = −∇f(x)−A⊤λ,

λ̇ = Ax− b

Inequality constraints:
min
x∈Rn

f(x),

s.t. Ax ≤ b

ẋ = −∇f(x)−A⊤∇Mγg(Ax+ γλ),

λ̇ = γ(−λ+∇Mγg(Ax+ γλ))

Table 10.1: Table of canonical optimization problems and the corresponding transcrip-
tion to contracting continuous-time dynamical systems. In the table, f : Rn → R is
continuously differentiable, strongly convex and strongly smooth. The set C is convex.
The map g : Rm → R is convex, closed and proper. The matrix A ∈ Rm×n satisfies
aminIm ⪯ AA⊤ ⪯ amaxIm, for amin, amax ∈ R>0, and b ∈ Rm. Finally, γ > 0 is a
parameter.

10.8 Summary
In this chapter, we proposed a contractivity-based approach for solving strongly convex
optimization problems. We considered natural transcriptions into contracting dynamics
for four canonical convex optimization problems: unconstrained problems, monotone
inclusions problems, linear equality-constrained problems, and composite minimization
problems.

For the unconstrained problems and gradient dynamics, we reviewed results known
in the literature. For the monotone inclusion problems, we considered the forward-
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backward splitting dynamics and studied its contractivity in Theorem 10.4, providing
improved rates of exponential convergence in certain cases. For the linear-equality con-
strained problems, we studied the contractivity properties of the primal-dual dynamics,
providing explicit estimates of the rate of contraction in Theorem 10.6. Also, in this
case, we provided improved rate with respect to those presented in the literature. For
composite minimization, we considered the proximal augmented Lagrangian approach
and gave conditions under which this is contracting in Theorem 10.7. This finding
improves on previous exponential convergence results by allowing for a larger range of
parameters, thus increasing the method’s flexibility and applicability. We concluded with
a summary table of the canonical optimization problems analyzed in the chapter and the
corresponding strongly contracting dynamics.

The results of this chapter demonstrate the effectiveness of using contracting dynam-
ics for static convex optimization, providing improved rates of exponential convergence
in some cases. The advantages of strongly contracting systems are that these guarantee
exponential stability, convergence, along with robustness features that make these dy-
namics particularly promising in a time-varying setting. In the next chapter, we expand
on this framework, exploring a contractivity-based approach for time-varying convex
optimization.
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11 Contracting Dynamics for
Time-Varying
Convex Optimization

In the previous chapter, we introduced a contractivity-based approach for solving static
convex optimization problems, demonstrating that for any given input or parameter at
each moment, the strongly contracting dynamics yield a unique equilibrium that coincides
with the optimization problem’s minimizer. In this chapter, we expand on this approach,
exploring a contractivity-based approach for time-varying convex optimization. These
problems often arise in many real-world scenarios where conditions evolve continuously,
and decision-making must adapt in real-time. To address these challenges, we examine
contracting continuous-time dynamical systems designed to track the optimal solutions
of the corresponding time-varying problems.

The results in this chapter appeared in the same paper and were presented at the same
conferences as those in Chapter 10.

11.1 Introduction
Time-varying optimization problems are fundamental to modern applications, such as
tracking moving targets, adapting in online learning, or following the trajectory of stochas-
tic processes. Unlike static optimization, where the objective is fixed, time-varying prob-
lems require algorithms capable of continuously adjusting to changes and converging to
an optimal solution at each time instant. In such problems, we aim for dynamical systems
that not only converge to the unique optimal solution when the problem is time-invariant,
but also converge to an explicitly-computable neighborhood of the optimal solution tra-
jectory when the problem is time-varying. Beyond tracking optimal trajectories, a key
desirable feature of optimization algorithms is robustness in the face of uncertainty. In
many real-world scenarios, the exact value of the cost function or its gradients may not
always be available in their true form; instead, they might be estimated with some error
or delay. Thus, for practical use of an optimization algorithm, it is essential to ensure that
this has these robustness features built-in. A powerful approach to achieve these goals is
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through strongly infinitesimally contracting dynamical systems, which inherently ensure
stability, convergence, and robustness against noise and time-delays. Motivated by this,
we now present equilibrium tracking results for parameter-varying contracting dynam-
ical systems. Building on the transcription of canonical convex optimization problems
to continuous-time strongly infinitesimally contracting systems presented in Chapter 10,
we show how contracting dynamics can be used to tackle time-varying instances of some
canonical convex optimization problems.

The chapter is organized as follows. Section 11.2 presents the initial setup, defining
the parameter-varying dynamical systems and their key properties. Next, in Section 11.3,
we present our main results on equilibrium tracking for parameter-varying contracting
dynamical systems, giving estimates of the tracking error for both unknown and known
rates of parameter change. These results are then applied in Section 11.4 to establish
tracking error bounds for contracting dynamics solving three canonical convex optimiza-
tion problems. Finally, in Section 11.5, we validate the effectiveness of our approach
through numerical simulations.

11.1.1 Contributions
We present two results on equilibrium tracking for parameter-varying contracting dynam-
ics, addressing both scenarios where the rate of change of the parameter is known and
unknown. For the first scenario, where the rate of change of the parameter is unknown,
we prove a general theorem for parameter-dependent strongly infinitesimally contracting
dynamics. Specifically, we prove that the tracking error between any solution trajectory
and the equilibrium trajectory is uniformly upper-bounded and is asymptotically propor-
tional to the rate of change of the parameter. For the scenario where the rate of change
of the parameter is known, we propose an alternative dynamical system. This system
augments the contracting dynamics in the first scenario with a feedforward term. This
augmentation ensures that the tracking error is exponentially decaying to zero and does
not require any Lipschitz condition on how the parameter appears in the dynamics.

We apply these results to contracting dynamics solving three canonical strongly
convex optimization problems, as introduced in Chapter 10. Specifically, we focus on
(i) monotone inclusions, (ii) linear equality-constrained problems, and (iii) composite
minimization problems. For each of these problems, we provide estimates of the tracking
error in time-varying convex optimization scenarios.

Finally, to validate our theoretical results, we present numerical experiments that
showcase the tracking error bounds for time-varying equality and inequality-constrained
minimization problems.
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11.2 Parameter-Varying Contracting Dynamical Systems

Consider a parameter-varying dynamical system, that is a dynamical system that depends
on a time-varying parameter, say it θ. Specifically, for a vector field f : Rn ×Rd → Rn,
the system is described by

ẋ(t) = f(x(t), θ(t)), x(0) = x0 ∈ Rn, (11.1)

where, for all t ≥ 0, x(t) and θ(t) take value in X ⊆ Rn and Θ ⊆ Rd, respectively. In
this chapter, we work under the following assumptions.

Assumption . Assume there exist two norms ∥·∥X , ∥·∥Θ on X and Θ, respectively,
such that

(11.A1) there exists c > 0 such that for all θ, the map x ↦→ f(x, θ) is strongly
infinitesimally contracting with respect to ∥ · ∥X with rate c,

(11.A2) there exists Lθ ≥ 0 such that for all x, the map θ ↦→ f(x, θ) is Lipschitz from
(Θ, ∥ · ∥Θ) to (X , ∥ · ∥X ) with constant Lθ.

Note that Assumption (11.A1) implies that, for each θ ∈ Θ, there exists a unique
equilibrium solution x⋆

θ ∈ X such that f(x⋆
θ, θ) = 0n. Given this, it is meaningful to

define the following

Definition 11.1 (Equilibrium curve). Given θ ∈ Θ, consider the parameter-varying
system (11.1) and let Assumption (11.A1) holds. We define equilibrium curve the map
x⋆ : Θ → X defined by x⋆(θ) = x⋆

θ .

First, we give a result on the Lipschitzness of parametrized time-varying equilibrium
trajectories and a bound on their time derivatives.

Lemma 11.1 (Lipschitzness of parametrized curves). Consider X ⊆ Rn and Θ ⊆ Rd

with associated norms ∥ · ∥X : Rn → R≥0 and ∥ · ∥Θ : Rd → R≥0, respectively. Let
g : Θ → X be Lipschitz with constant Lip(g). Then for every a, b ∈ R with a < b and
every continuously differentiable θ : ]a, b[→ Θ,

(i) the curve x : ]a, b[→ X given by x(t) = g(θ(t)) is locally Lipschitz;

(ii) ∥ẋ(t)∥X ≤ Lip(g)∥θ̇(t)∥Θ, for almost every t ∈ ]a, b[.

Proof. Statement (i) follows from the facts that continuously differentiable maps are
locally Lipschitz and that a composition of Lipschitz maps is Lipschitz. Note that, in
turn, this statement implies that ẋ(t) exists almost everywhere by Rademacher’s theorem
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Next, to prove statement (ii), for all t ∈ ]a, b[ for which ẋ(t) exists, we compute

∥ẋ(t)∥X =
⃦⃦
⃦ lim

h→0+

x(t+ h)− x(t)

h

⃦⃦
⃦
X

= lim
h→0+

1

h
∥x(t+ h)− x(t)∥X

≤ lim
h→0+

Lip(g)

h
∥θ(t+ h)− θ(t)∥Θ

= Lip(g)
⃦⃦
⃦ lim

h→0+

θ(t+ h)− θ(t)

h

⃦⃦
⃦
Θ
= Lip(g)∥θ̇(t)∥Θ,

where we have used the continuity of ∥ · ∥X and ∥ · ∥Θ and the Lipschitzness of g. This
concludes the proof.

Next, we give a result on parametrized contracting systems.

Lemma 11.2 (Parametrized contractions). Consider the parameter-varying system (11.1)
and let Assumptions (11.A1) and (11.A2) hold. Then the equilibrium curve x⋆ : Θ → X
is Lipschitz with constant Lθ/c.

Proof. Given two constant inputs θ1 and θ2, let x⋆(θ1) and x⋆(θ2) be the two equilibrium
solutions of (11.1), respectively. The assumptions of [42, Theorem 3.16] are satisfied with
c = − osLx(f) andLθ = Lipθ(f), and the ISS differential inequality [42, Equation 3.39]
implies

0 ≤ −c∥x⋆(θ1)− x⋆(θ2)∥X + Lθ∥θ1 − θ2∥θ.
This concludes the proof.

Given the previous results, we can give the following

Definition 11.2 (Time-varying equilibrium curve). Consider a continuously differen-
tiable curve θ : R≥0 → Θ and the parameter-varying system (11.1) satisfying Assump-
tions (11.A1) and (11.A2). The time-varying equilibrium curve is the map t ↦→ x⋆(θ(t)).

Finally, we note that Lemma 11.1 implies that the time-varying equilibrium curve
x⋆(θ(·)) is locally Lipschitz. Additionally, this curve satisfies the condition

f(x⋆(θ(t)), θ(t)) = 0n, for all t ≥ 0.

11.3 Equilibrium Tracking for Parameter-Varying Con-
tracting Dynamical Systems

In this section, we derive tracking error bounds for parameter-varying contracting dy-
namical systems for both unknown and known rates of parameter change.

We begin by analyzing the case where the rate of parameter change is unknown. In
the following theorem, we provide tracking error bounds between any trajectory of (11.1)
and the time-varying equilibrium curve.
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Theorem 11.3 (Equilibrium tracking for contracting dynamics). Let θ : R≥0 → Θ be
continuously differentiable and consider the parameter-varying system (11.1) satisfying
Assumptions (11.A1) and (11.A2). Then the following statements hold for almost every
t ≥ 0:

(i) the tracking error ∥x(t)− x⋆(θ(t))∥X satisfies

D+∥x(t)− x⋆(θ(t))∥X ≤ −c∥x(t)− x⋆(θ(t))∥X +
Lθ

c
∥θ̇(t)∥Θ.

(ii) the Grönwall inequality for Dini derivatives implies

∥x(t) − x⋆(θ(t))∥X ≤ e−ct∥x0 − x⋆(θ0)∥X +
Lθ

c

∫︂ t

0

e−c(t−τ)∥θ̇(t)∥Θdτ.

(iii) from any initial conditions x0 ∈ Rn, θ0 ∈ Rd and uniformly bounded ∥θ̇(t)∥Θ,
the following inequality holds

lim sup
t→∞

∥x(t)− x⋆(θ(t))∥X ≤ Lθ

c2
lim sup
t→∞

∥θ̇(t)∥Θ. (11.2)

Proof. Consider the dynamics

ẋ(t) = f(x(t), θ(t)) + v(t) := T (x(t), θ(t), v(t)), (11.3)

where T : Rn × Rd × Rn → Rn and v : R≥0 → X . Note that by assumption (11.A1),
for fixed θ, v, the map x ↦→ T (x, θ, v) is strongly infinitesimally contracting with rate
c > 0. Moreover, at fixed x, θ, the map v ↦→ T (x, θ, v) is Lipschitz on (X , ∥ · ∥X ) with
constant Lv = 1. Next, consider the inputs v1(t) = 0n and v2(t) = ẋ⋆(θ(t)) and note
that ẋ⋆(θ(t)) = f(x⋆(θ(t)), θ(t)) + ẋ⋆(θ(t)), so that the curve x⋆(θ(·)) is a solution
to system (11.3) with input v2(t) and initial condition x⋆(θ0). Additionally, for any
initial condition x0 ∈ X , the solution x(t) to the dynamics (11.1) is a solution to the
system (11.3) with input v1(t). By an application of the incremental ISS theorem for
contracting dynamical systems [42, Theorem 3.15] to the trajectories x(·), and x⋆(θ(·))
arising from inputs v1(·), and v2(·), respectively, we get

D+∥x(t)− x⋆(θ(t))∥X ≤ −c∥x(t)− x⋆(θ(t))∥X + ∥ẋ⋆(θ(t))∥X

≤ −c∥x(t)− x⋆(θ(t))∥X +
Lθ

c
∥θ̇(t)∥Θ,

where the last inequality follows from Lemma 11.1. This proves statement (i). State-
ment (ii) is a consequence of the Grönwall inequality. Finally, statement (iii) is a
consequence of statement (ii).

Remark 11.1. A related result to Theorem 11.3 was proved in [105, Lemma 2], but
with the tracking error bound depending on the knowledge of the rate of change of the
equilibrium trajectory, which is unknown, in general. Instead, Theorem 11.3 provides a
bound that depends purely on the rate of change of the parameter, which may be much
easier to estimate.
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Theorem 11.3 is a general result that establishes that one does not need to know
ẋ⋆(θ(t)) to obtain an estimate on the tracking error. However, if one knows the rate of
change of the parameter, it stands to reason that some system should be able to track the
equilibrium trajectory with eventually zero tracking error. To show this, we introduce
a new dynamics that augment the contracting dynamics (11.1) with a feedforward term
proportional to the rate of change of the parameter.

Specifically, consider a parameter-dependent vector field f : Rn × Rd → Rn con-
tinuously differentiable in both arguments, and let θ : R≥0 → Θ ⊆ Rd be continuously
differentiable. Assume that the function f satisfies Assumption (11.A1). The time-
varying contracting dynamics with feedforward prediction is defined by

ẋ(t) = f(x(t), θ(t))− (Dxf(x(t), θ(t)))
−1Dθf(x(t), θ(t))θ̇(t). (11.4)

Remark 11.2. Assumption (11.A1) implies thatDxf(x, θ) is invertible for all x, θ, which
makes the dynamics (11.4) well-posed.

The following theorem shows that by considering the time-varying contracting dy-
namics with feedforward prediction we obtain exponential decay to zero tracking error.

Theorem 11.4 (Exact tracking with feedforward prediction). Given a parameter-dependent
map f : Rn×Rd → Rn continuously differentiable in both arguments satisfying Assump-
tion (11.A1), and a function θ : R≥0 → Θ ⊆ Rd continuously differentiable, consider
the time-varying contracting dynamics with feedforward prediction (11.4). Then ∀t ≥ 0,

(i) the residual, ∥f(x(t), θ(t))∥X , satisfies

∥f(x(t), θ(t))∥X ≤ e−ct∥f(x(0), θ(0))∥X . (11.5)

(ii) the tracking error ∥x(t)− x⋆(θ(t))∥X satisfies

∥x(t)− x⋆(θ(t))∥X ≤ 1

c
e−ct∥f(x(0), θ(0))∥X . (11.6)

Additionally, if f is Lipschitz in its first argument with constant Lx uniformly in θ,
then

∥x(t)− x⋆(θ(t))∥X ≤ Lx

c
e−ct∥x(0)− x⋆(θ(0))∥X . (11.7)

Proof. Given a trajectoryx(t) of (11.4), letV (t) = ∥f(x(t), θ(t))∥X . Then we compute,
omitting dependencies of x and θ on time,

D+V (t) = lim sup
h→0+

∥f(x(t+ h), u(t+ h))∥X − ∥f(x(t), u(t))∥X
h

(⋆)
= lim

h→0+

∥f(x, θ) + h d
dtf(x, θ)∥X − ∥f(x, θ)∥X

h

(11.4)
= lim

h→0+

∥f(x, θ) + hDxf(x, θ)f(x, θ)∥X − ∥f(x, θ)∥X
h

≤ ∥f(x, θ)∥X lim
h→0+

∥In + hDxf(x, θ)∥X − 1

h

≤ µX (Dxf(x, θ))V (t) ≤ −cV (t),
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where (⋆)
= is by a Taylor expansion of f in t and the equality (11.4)

= holds since (11.4)
implies that d

dtf(x, θ) = Dxf(x, θ)ẋ+Dθf(x, θ)θ̇ = Dxf(x, θ)f(x, θ). The Grönwall
inequality for Dini derivatives implies statement (i). Statement (ii) is a consequence of
the fact that ∥f(x, θ)−f(x⋆(θ), θ)∥X ≥ c∥x−x⋆(θ)∥X since f(x⋆(θ), θ) = 0n and for
fixed θ, the map x ↦→ f(x, θ) is invertible and the inverse map is Lipschitz on (X , ∥ · ∥X )
with constant 1/c [42, Lemma 3.5].

Remark 11.3.

(i) A related treatment to Theorem 11.4 is proposed in [167], (see also the early
reference [179]) where the authors study a continuous-time Newton method and
show how to add a feedforward term to ensure zero tracking error in the Euclidean
norm. In contrast, Theorem 11.4 is very general and applies to any contracting
dynamics with respect to any norm and need not be limited to the solution of
time-varying optimization problems.

(ii) Compared to Theorem 11.3, Theorem 11.4 does not require Assumption (11.A2)
but does additionally require differentiability of f .

11.4 Parameter-Varying Contracting Dynamical Systems
for Canonical Convex Optimization Problems

We now focus on three canonical strongly convex optimization problems from Chapter 10:
monotone inclusions, linear equality-constrained problems, and composite minimization
problems, each of which we assume to be time-varying. For these problems, we consider
the natural transcriptions into contracting dynamics introduced in Chapter 10 and apply
the result of the previous section to provide tracking error estimates.

11.4.1 Parameter-Varying Monotone Inclusion Problem
Let F : Rn×Θ → Rn and g : Rn×Θ → R and, for fixed θ ∈ Θ, denote by Fθ : Rn → Rn

the map F(·, θ) and by gθ : Rn → R the map g(·, θ). We make the following assumptions
on the functions F and g.

Assumption 11.2. For each θ ∈ Θ, the function Fθ is Lipschitz with constant
Lipx(F) and strongly monotone with parameter mF. The map gθ is closed, convex,
and proper. Additionally, at fixed x ∈ Rn the map θ ↦→ F(x, θ) is Lipschitz and,
for every γ > 0 the map θ ↦→ proxγgθ (x) is Lipschitz with constant Lipθ(proxγg).

Consider the following parameter-varying monotone inclusion problem

for θ ∈ Θ, find x⋆(θ) ∈ Rn s.t. 0n ∈ (Fθ + ∂gθ)(x
⋆(θ)), (11.8)
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To solve the monotone inclusion problem (11.8), we consider the corresponding continuous-
time parameter-varying forward-backward splitting dynamics defined by

ẋ = −x+ proxγgθ (x− γFθ(x)) =: Fγ
MI(x, θ), (11.9)

where γ > 0 is a parameter.
For each θ ∈ Θ, Theorem 10.4 implies that, for suitable γ > 0, the dynamics (11.9)

are strongly infinitesimally contracting. Therefore, problem (11.8) has a unique solution
x⋆(θ). When θ : R≥0 → Θ is a continuously differentiable curve, let x⋆(θ(·)) be the
corresponding time-varying equilibrium curve. If the map θ ↦→ Fγ

MI(x, θ) is Lipschitz,
Theorem 11.3 ensures that trajectories of (11.9) track x⋆(θ(t)) with a tracking error
proportional to ∥θ̇(t)∥Θ after a transient. The following lemma formalizes this statement,
providing a precise estimate of the tracking error.

Lemma 11.5 (Equilibrium tracking for (11.9)). Consider the continuous-time parameter-
varying forward-backward splitting dynamics (11.9) satisfying Assumption 11.2. Then

(i) for fixed x ∈ Rn, for any γ > 0 the map θ ↦→ Fγ
MI(x, θ) is Lipschitz with constant

Lipθ(F
γ
MI) ≤ Lipθ(proxγg) + γ Lipθ(F).

Additionally, if the map θ : R≥0 → Θ is continuously differentiable, then

(ii) for γ ∈ ]0, 2mF/ Lip
2
x(F)[, any x0 ∈ Rn, and any trajectory x(t) satisfying

ẋ(t) = Fγ
MI(x(t), θ(t)) with initial conditions x(0) = x0 satisfies

∥x(t)− x⋆(θ(t))∥2 ≤ e−ct∥x0 − x⋆(θ0)∥2

+
Lipθ(proxγg) + γ Lipθ(F)

c

∫︂ t

0

e−c(t−τ)∥θ̇(τ)∥dτ,

where c = 1−
√︂

1− 2γmF + γ2 Lip2x(F).

Proof. To prove statement (i), let θ1, θ2 ∈ Θ. For any γ > 0 we have

∥Fγ
MI(x, θ1)− Fγ

MI(x, θ2)∥2 = ∥proxγgθ1 (x− γFθ1(x))− proxγgθ2
(x− γFθ2(x))∥2

≤ ∥proxγgθ1 (x− γFθ1(x))− proxγgθ2
(x− γFθ1(x))∥2

+ ∥proxγgθ2 (x− γFθ1(x))− proxγgθ2
(x− γFθ2(x))∥2

≤ Lipθ(proxγg)∥θ1−θ2∥Θ + ∥x−γFθ1(x)−x+γFθ2(x)∥2
≤ (Lipθ(proxγg) + γ Lipθ(F))∥θ1 − θ2∥Θ.

Statement (ii) is a consequence of Theorem 10.4 for strong infinitesimal contractivity
in x with rate 1 −

√︂
1− 2γmF + γ2 Lip2x(F) and statement (i) for Lipschitzness in θ.

Theorem 11.3 then provides the bound. This concludes the proof.

If, additionally, Fγ
MI is differentiable in both arguments, one can design a feedforward

term to attain zero tracking error leveraging Theorem 11.4.
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11.4.2 Parameter-Varying Linear Equality Constrained Optimiza-
tion

Let f : Rn × Θ → R, b : Θ → Rm, and A ∈ Rm×n be full row rank. For fixed θ ∈ Θ
we denote by fθ : Rn → the map f(·, θ) and by bθ ∈ Rm the vector b(θ). We make the
following assumptions.

Assumption 11.3. For each θ ∈ Θ, the function fθ is continuously differentiable,
strongly convex and strongly smooth with parameters mf and Lf , respectively.
Additionally, at fixed x ∈ Rn, the map θ ↦→ ∇xf(x, θ) is Lipschitz with constant
Lipθ(∇f). The map θ ↦→ bθ is Lipschitz with constant Lipθ(b). Finally, the matrix
A ∈ Rm×n satisfies aminIm ⪯ AA⊤ ⪯ amaxIm, for amin, amax ∈ R>0.

Consider the parameter-dependent equality-constrained minimization problem:

min
x∈Rn

fθ(x),

s.t. Ax = bθ.
(11.10)

To solve this minimization problem, we consider the corresponding continuous-time
parameter-varying primal-dual dynamics defined by

ẋ = −∇fθ(x)−A⊤λ,

λ̇ = Ax− bθ.
(11.11)

By Theorem 10.6, for each θ ∈ Θ, the dynamics (11.11) is guaranteed to converge
to the unique primal-dual pair solving problem (11.10). The following lemma shows
that, under proper assumptions, the dynamics (11.11) track the time-varying equilibrium
curve x⋆(θ(t)), λ⋆(θ(t)) with a tracking error proportional to ∥θ̇(t)∥ after a transient.

Lemma 11.6 (Equilibrium tracking for (11.11)). Consider the continuous-time parameter-
varying forward-backward splitting dynamics (11.11) satisfying Assumption 11.3. Let
z = (x, λ) ∈ Rn+m, and let fPD : Rn+m × Θ → Rn+m be the vector field defining
ż = fPD(z, θ) via the dynamics (11.11). Then

(i) for fixed z ∈ Rn+m, the map θ ↦→ fPD(z, θ) is Lipschitz with constant

Lipθ(fPD) ≤
√︁

∥P∥2∥P−1∥2(Lipθ(∇f)2 + Lipθ(b)
2),

where the matrix P is defined in (10.14).

Additionally, if the map θ : R≥0 → Θ is continuously differentiable, then

(ii) for any x0 ∈ Rn, λ0 ∈ Rm, and any trajectory z = (x, λ) ∈ Rn+m satisfying
ż(t) = fPD(θ(t), z(t)) with initial condition z0 = (x0, λ0) further satisfies

∥z(t)− z⋆(θ(t))∥P ≤ e−ct ∥z0(t)− z⋆(θ0(t))∥P

+

√︁
∥P∥2∥P−1∥2(Lipθ(∇f)2 + Lipθ(b)

2)

c

∫︂ t

0

e−c(t−τ)∥θ̇(τ)∥Θdτ,
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where P is defined in (10.14) and c > 0 is defined in (10.15).

Proof. To prove statement (i), let θ, φ ∈ Θ. We compute

∥fPD(θ, z)− fPD(φ, z)∥2P =

⃦⃦
⃦⃦
[︃
−∇fθ(x)−A⊤λ+∇fφ(x) +A⊤λ

Ax− bθ −Ax+ bφ

]︃⃦⃦
⃦⃦
2

P

=

⃦⃦
⃦⃦
[︃
∇fφ(x)−∇fθ(x)

bφ − bθ

]︃⃦⃦
⃦⃦
2

P

≤ ∥P∥2∥P−1∥2
⃦⃦
⃦⃦
[︃
∇fφ(x)−∇fθ(x)

bφ − bθ

]︃⃦⃦
⃦⃦
2

2

= ∥P∥2∥P−1∥2(∥∇fθ(x)−∇fφ(x)∥22 + ∥bθ − bφ∥22)
≤ ∥P∥2∥P−1∥2(Lipθ(∇f)2 + Lipθ(b)

2)∥θ − φ∥2Θ,

which implies the statement. Statement (ii) is a consequence of Theorem 10.6, which
proves strong infinitesimal contractivity in z with rate c defined in Equation (10.15), and
statement (i) for Lipschitzness in θ. Finally, Theorem 11.3 provides the bound.

If, additionally, ∇θf is differentiable in x and θ and bθ is differentiable in θ, then
we can design a feedforward term involving θ̇ leveraging Theorem 11.4 to attain zero
tracking error.

Remark 11.4. We have not let the matrix A depend on the parameter θ since the norm
with respect to which the dynamics (10.11) are contracting depends on A. If A depends
on θ, then the norm with respect to which the dynamics are contracting is also parameter-
dependent and the results from Theorems 11.3 and 11.4 do not directly apply.

11.4.3 Parameter-Varying Composite Minimization

Let f : Rn × Θ → R, g : Rm × Θ → R, and A ∈ Rm×n be full row rank. For fixed
θ ∈ Θ we denote by fθ : Rn → the map f(·, θ) and by gθ : Rm → R the map g(·, θ). We
make the following assumptions.

Assumption 11.4. For each θ ∈ Θ, the function f : Rn ×Θ → R is continuously
differentiable, strongly convex and strongly smooth with parameters mf and Lf ,
respectively, while the map gθ is convex, closed and proper. Additionally, at fixed
x ∈ Rn, the map θ ↦→ ∇xf(x, θ) is Lipschitz with constant Lipθ(∇f) and, for every
γ > 0, the map θ ↦→ proxγgθ (x) is Lipschitz with constant Lipθ(proxγg). Finally,
the matrix A ∈ Rm×n satisfies aminIm ⪯ AA⊤ ⪯ amaxIm, for amin, amax ∈ R>0.

Consider the following parameter-dependent composite minimization problem

min
x∈Rn

fθ(x) + gθ(Ax). (11.12)
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To solve this composite minimization problem we consider the primal-dual dynamics on
the parameter-varying proximal augmented Lagrangian defined by

ẋ = −∇fθ(x)−A⊤∇Mγgθ (Ax+ γλ),

λ̇ = γ(−λ+∇Mγgθ (Ax+ γλ)).
(11.13)

By Theorem 10.7, the dynamics (11.13) converge to the unique primal-dual pair solving
the minimization problem (11.12). In what follows, we show that, under proper assump-
tions, the dynamics (11.13) track the time-varying equilibrium curve x⋆(θ(t)), λ⋆(θ(t))
with a tracking error proportional to ∥θ̇(t)∥ after a transient.

Lemma 11.7 (Equilibrium tracking for (11.13)). Consider the parameter-varying proxi-
mal augmented Lagrangian (11.13) satisfying Assumption 11.4. Let z = (x, λ) ∈ Rn+m,
and let fCM : Rn+m × Θ → Rn+m be the vector field defining ż = fCM(z, θ) via the
dynamics (11.13). Then

(i) for fixed z ∈ Rn+m, the map θ ↦→ fCM(z, θ) is Lipschitz with estimate

Lipθ(fCM)≤
√︃

∥P∥2∥P−1∥2(Lipθ(∇f)2 +
(︂amax

γ2
+ 1
)︂
Lipθ(proxγg)

2) =: Lθ,

where the matrix P is defined in (10.21).

Additionally, if the map θ : R≥0 → Θ is continuously differentiable, then

(ii) for any x0 ∈ Rn, λ0 ∈ Rm and any trajectory z = (x, λ) ∈ Rn+m satisfying
ż(t) = fCM(θ(t), z(t)) with initial condition z0 = (x0, λ0), satisfies

∥z(t)− z⋆(θ(t))∥P ≤ e−c⋆t ∥z0(t)− z⋆(θ0(t))∥P +
Lθ

c⋆

∫︂ t

0

e−c⋆(t−τ)∥θ̇(τ)∥Θdτ,

where P is defined in (10.21), c⋆ > 0 is the optimal parameter solving (10.20).

Proof. The proof of statement (i) follows from analogous steps to the proof of 11.6(i) and
using the equality∇Mγgθ (Ax+γλ) = 1

γ (Ax+γλ−proxγgθ (Ax+γλ)). Statement (ii)
is a consequence of Theorem 11.3, which proves strong infinitesimal contractivity in z
with rate c⋆, and statement (i) for Lipschitzness in θ with estimate Lθ. Finally, the bound
follows from Theorem 11.3.

Additionally, if fCM is differentiable in both of its arguments, then we can leverage
Theorem 11.4 to design a feedforward term involving θ̇ to attain zero tracking error.

Remark 11.5. As in the case of linear equality-constrained minimization, the matrix A
cannot depend on the parameter θ. For the same reason as before, the norm with respect
to which the dynamics (10.19) are contracting depends on A.
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11.5 Numerical Simulations
In this section, we report two numerical examples to validate the performance of the
proposed dynamics. We present an application of Theorem 11.3 to a problem with
equality constraints, which corresponds to Problem (11.10) and a case with inequality
constraints, which corresponds to Problem (11.12).

11.5.1 Equality Constraints
Consider the following time-varying quadratic optimization problem with equality con-
straints

min
x∈R3

1

2
∥x− r(t)∥22,

s.t. x1 + 2x2 + x3 = sin(ωt),

(11.14)

where ω = 0.2 and r(t) = (sin(ωt), cos(ωt), 1). We can see that the minimization prob-
lem (11.14) is an instance of the parameter-dependent equality-constrained minimization
problem (11.10) with n = 3 primal variables and m = 1 equality constraints by letting
θ(t) = (cos(ωt), sin(ωt)) ∈ Θ := {z ∈ R2 | ∥z∥2 ≤ 1} ⊂ R2. Letting ∥ · ∥Θ = ∥ · ∥2,
we can verify that the Lipschitz assumptions are verified for fθ(t)(x) = 1

2∥x − r(t)∥22
and bθ(t) = sin(ωt). The corresponding primal-dual dynamics for problem (11.14) read

ẋ1 = −x1 + sin(ωt)− λ,

ẋ2 = −x2 + cos(ωt)− 2λ,

ẋ3 = −x3 + 1− λ,

λ̇ = x1 + 2x2 + x3 − sin(ωt).

(11.15)

We simulate the dynamics (11.15) over the time interval t ∈ [0, 50] with a forward
Euler discretization with stepsize ∆t = 0.01 and set the initial conditions x(0) =
03, λ(0) = 0. We plot the trajectories of the primal variables in dynamics along with the
instantaneously optimal values x⋆(θ(t)) in Figure 11.1.

We empirically observe how the trajectories of the dynamics track the instantaneously
optimal values x⋆(θ(t)) after a small transient.

11.5.2 Inequality Constraints
Consider the following time-varying quadratic optimization problem with inequality
constraints

min
x∈R2

1

2
∥x+ r(t)∥22,

s.t. − x1 + x2 ≤ cos(ωt),

(11.16)

where ω = 0.2 and r(t) = (sin(ωt), cos(ωt)). We see that (11.16) is an instance
of (11.13) with g : R×Θ → R given by g(z, θ) = ιCθ

(z)where Cθ = {z ∈ R | z ≤ θ1},
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Figure 11.1: Plots of trajectories of the primal variables in dynamics (11.15) solving
the equality-constrained minimization problem (11.14). Left panel: trajectories of the
primal variables x(t) as solid curves and trajectories of the instantaneously optimal
primal variables x⋆(θ(t)) as dashed curves. Right panel: trajectories of the dual variable
λ(t) as solid curve and trajectory of the instantaneously optimal dual variable λ(θ(t)) as
dashed curve.

θ(t) = (cos(ωt), sin(ωt)) ∈ Θ := {z ∈ R2 | ∥z∥2 ≤ 1}, and A = [−1, 1]. Then for
given t, θ(t), z, we can verify that

proxγgθ(t)(z) = PCθ(t)
(z) = min{z, cos(ωt)}

and the corresponding Moreau envelope is

∇Mγgθ(t)(z) =
1

γ
(z −min{z, cos(ωt)}) = 1

γ
ReLU(z − cos(ω(t))).

Thus, we can verify that the Lipschitz assumptions in θ hold. The corresponding primal-
dual dynamics on the augmented Lagrangian for problem (11.16) then read

ẋ1 = −x1 − sin(ωt) +
1

γ
ReLU(−x1 + x2 + γλ− cos(ωt)),

ẋ2 = −x2 − cos(ωt)− 1

γ
ReLU(−x1 + x2 + γλ− cos(ωt)),

λ̇ = −γλ+ReLU(−x1 + x2 + γλ− cos(ωt)).

We simulate the dynamics (11.17) with γ = 10 over the time interval t ∈ [0, 50]
with a forward Euler discretization with stepsize ∆t = 0.01 and initial conditions
x(0) = 02, λ(0) = 0. We plot the trajectories of the primal variables in dynamics along
with the instantaneously optimal values x⋆(θ(t)) in Figure 11.2.

We empirically observe how the trajectories of the dynamics track the instantaneously
optimal values x⋆(θ(t)) after a small transient.
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Figure 11.2: Plots of trajectories of the primal variables in dynamics (11.17) solving
the inequality-constrained minimization problem (11.16). Left panel: trajectories of
the primal variables x(t) as solid curves and trajectories of the instantaneously optimal
primal variables x⋆(θ(t)) as dashed curves. Right panel: trajectories of the dual variable
λ(t) as solid curve and trajectory of the instantaneously optimal dual variable λ(θ(t)) as
dashed curve.

11.6 Summary
In this chapter, we proposed a contraction theory approach to the problem of tracking op-
timal trajectories in time-varying convex optimization problems. We presented two main
results on equilibrium tracking for parameter-varying contracting dynamics, address-
ing both scenarios where the rate of change of the parameter is known and unknown.
Specifically, in Theorem 11.3, we proved that the tracking error between any solution
trajectory of a strongly infinitesimally contracting system and its equilibrium trajectory
is upper bounded with an explicit estimate on the bound. This bound gives designers
valuable insight into how they may accelerate their dynamics to achieve lower tracking
errors. Specifically, we showed that the bound is asymptotically proportional to the rate
of change of the parameter, confirming the intuitive result that the faster the system the
bigger the tracking error. The applicability of these results has already been proved in
other contexts. Specifically, [180] leveraged these findings to develop a computationally
efficient barrier function-based contraction approach for safety verification. For the sce-
nario where the rate of change of the parameter is known, in Theorem 11.4, we prove
that by augmenting a strongly infinitesimally contracting system with a feedforward term
we can ensure that the tracking error converges to zero exponentially quickly.

Then, we applied these results to convex optimization problems. By leveraging
the contractivity results in Chapter 10, we applied Theorem 11.3 to provide explicit
tracking error bounds. Specifically, we focused on monotone inclusions, linear equality-
constrained problems, and composite minimization problems. We concluded the chapter
with two numerical examples to validate the proposed bounds.
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12 On Weakly Contracting
Dynamics for
Convex Optimization

In Chapters 10 and 11, we proposed a contractivity-based approach to effectively solve
static and time-varying strongly-convex optimization problems. In this chapter, we
extend our analysis beyond the case of strong convexity and focus on convex optimization
problems with unique minimizers. As we will show, these problems lead to dynamics that
are globally-weakly contracting in the state space and only locally-strongly contracting,
such as the the firing rate competitive networks analyzed in Chapter 7. Our goal is to
study and characterize the convergence behavior of these systems. The results presented
in this chapter appeared in:

• V. Centorrino, A. Davydov, A. Gokhale, G. Russo, and F. Bullo. “On Weakly
Contracting Dynamics for Convex Optimization”. IEEE Control Systems Letters,
vol. 8, pp. 1745-1750, June 2024. doi: 10.1109/LCSYS.2024.3414348.

Additionally, part of the results were presented at:

• Workshop “Variational Inequalities, Nash Equilibrium Problems and Applica-
tions”. “On Contracting Dynamics for Convex Optimization”, Oral Talk, Catania,
July 11-12, 2024. Website: https://vinepa.dmi.unict.it/,

• V. Centorrino, A. Davydov, A. Gokhale, G. Russo, and F. Bullo. “On Weakly
Contracting Dynamics for Convex Optimization”, 63rd IEEE Conference on De-
cision and Control, Milan, Italy, December 2024. Presented in the invited session
“Contraction Theory in Systems and Control I”.
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12.1 Introduction
As established in previous chapters, one powerful way to analyze convex optimization
problems is to synthesize continuous-time dynamical systems that converge to an equi-
librium that is also the optimal solution to the problem. A suitable tool to assess the
convergence of these dynamics is contraction theory. For optimization problems with
strongly convex costs, the corresponding gradient dynamics, primal-dual dynamics (in
the presence of constraints), or proximal gradient dynamics (for non-smooth costs) are
strongly contracting, implying that trajectories exponentially converge to the equilib-
rium, which is also the optimal solution. In contrast, for optimization problems with only
convex costs, the corresponding gradient, primal-dual, or proximal gradient dynamics
are weakly contracting, and convergence depends on the existence of the minimizer. In
this context, we now focus on convex optimization problems with a unique minimizer
via continuous-time dynamical systems. These optimization problems lead to a class
of continuous-time dynamical systems that are globally-weakly contracting in the state
space and only locally-strongly contracting. We characterize the convergence behavior
of such dynamics, showing that this is linear-exponential, and present local input-to-state
stability (ISS) results.

The chapter is organized as follows. Section 12.2 presents the initial setup, for-
mally defining the linear-exponential function and its properties. Then, we analyze the
convergence properties of globally-weakly and locally-strongly contracting dynamics.
Specifically, in Section 12.3 we analyze the case in which global and local contractivity
are with respect to the same norm. The scenario of different norms is then analyzed in
Section 12.4. Section 12.5 characterizes local ISS for input-dependent dynamics that
are GW-LS-C. Finally, in Section 12.6, we illustrate the effectiveness of our results by
applying them to a dynamical system solving the LP problem.

12.1.1 Contributions
We analyze the convergence behavior of the class of globally-weakly and locally-strongly
contracting (GW-LS-C) dynamics, showing that this is linear-exponential, in the sense
that the distance between each solution of the system and the equilibrium is upper bounded
by a linear-exponential function, introduced in this chapter. Through a novel technical
result, we characterize the evolution of certain dynamics with saturation in terms of the
linear-exponential function. This result is then exploited for our convergence analysis,
which is carried out considering two cases that require distinct mathematical approaches.
First, we consider systems that are GW-LS-C with respect to the same norm. Then, we
consider the case where the dynamics are GW-LS-C with respect to two different norms.
Additionally, we characterize local ISS for input-dependent dynamics that are GW-LS-C
with respect to the same norm. Finally, we show the effectiveness of our results by
considering continuous-time dynamics tackling LPs and propose a general conjecture.
The code to replicate our numerical example is given at https://shorturl.at/vGNY1.
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12.2 Linear-Exponential Function
In this section, we define the linear-exponential function, which plays a pivotal role in
bounding the convergence behavior of GW-LS-C systems.

Definition 12.1 (Linear-exponential function). Given a linear decay rate clin > 0, an
intercept q > 0, an exponential decay rate cexp > 0, and a linear-exponential crossing
time tcross < q/clin, the linear-exponential function lin-exp: R≥0 → R≥0 is defined by

lin-exp(t) =

{︄
q − clint if t ≤ tcross,(︁
q − clintcross

)︁
e−cexp(t−tcross) if t > tcross.

(12.1)

We write lin-exp(t ; q, clin, cexp, tcross)when we want to highlight the parameters in (12.1).
See Figure 12.1 for an illustration of equation (12.1) for some parameters.

0 1 2 3 4 5 6
t

0

1

2

3

4

lin
-e

xp
(t)

q=2.5
q=3.5
q=4.5

Figure 12.1: Plot of the linear-exponential function (12.1) with linear decay rate
clin = 0.8, intercepts q = {2.5, 3.5, 4.5}, exponential decay rate cexp = 1, and linear-
exponential crossing time tcross = 2.

The next result shows that the linear-exponential function is the solution of certain
continuous-time dynamics with saturations.

Lemma 12.1 (Property of the linear-exponential function). Let cexp and d be positive
scalars. Consider the dynamics

ẋ(t) = −cexp satd
(︁
x(t)

)︁
, x0 = q > d. (12.2)

Then, x(t) = lin-exp(t ; q, clin, cexp, tcross), with clin = dcexp and tcross := qc−1
lin − c−1

exp ,
is a solution of (12.2).

Proof. First, we note that being the right-hand side of the dynamics (12.2) locally
Lipschitz continuous, the ODE (12.2) admits a unique continuous solution at least within
a certain neighborhood of the initial condition. Using the definition of saturation function,
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for all t ∈ R≥0 we can write the ODE (12.2) as

ẋ(t) =

⎧
⎪⎨
⎪⎩

dcexp if x(t) < −d,

−cexpx(t) if x(t) ∈ [−d, d],

−dcexp if x(t) > d,

(12.3)

which, in each interval [t0, t1] ⊆ R≥0 where the solution is continuous and does not
change regime, has general solution

x(t) =

⎧
⎪⎨
⎪⎩

dcexpt+ x(t0) if x(t) < −d,

x(t0)e
−cexp(t−t0) if x(t) ∈ [−d, d],

−dcexpt+ x(t0) if x(t) > d.

(12.4)

At time t = 0, we have x0 = q > d. For continuity of the solution, there exists t⋆ such
that x(t) > d, ∀t ∈ [0, t⋆]. Thus from equality (12.4) and being x(t0 = 0) = q, it is
x(t) = −dcexpt + q,∀t ∈ [0, t⋆]. Moreover being x(t) decreasing, the time value t⋆ is
finite and there exists a time, say it t̄, such that x(t̄) = d. Let clin := dcexp, we have

x(t̄) = d ⇐⇒ −dcexpt̄+ q = d ⇐⇒ t̄ = qc−1
lin − c−1

exp := tcross.

In summary, we have shown that the solution of (12.3) is x(t) = q − clint for all
t ∈ [0, tcross] and is x(t) = d at time tcross. Thus, since x(tcross) = q − clintcross, for all
t > tcross, from (12.4) we have x(t) =

(︁
q−clintcross

)︁
e−cexp(t−tcross). Specifically, x(t) > 0

for all t > tcross, thus it can never be the case x(t) < −d. This concludes the proof.

In the next sections, we focus on studying the convergence behavior of GW-LS-C
dynamical systems of the form given by (4.1), where the function f : R≥0 × C → Rn is
locally Lipschitz, and where C ⊆ Rn is an open, convex, and f -invariant set. In what
follows, we make the following assumptions.

Assumption . There exist norms ∥ · ∥G, ∥ · ∥L on Rn such that

(12.A1) f is weakly infinitesimally contracting on Rn with respect to ∥ · ∥G,
(12.A2) f is cexp-strongly infinitesimally contracting on a forward-invariant set S

with respect to ∥ · ∥L,
(12.A3) x⋆ ∈ S is an equilibrium point, i.e., f(t, x⋆) = 0n, for all t ≥ 0.

Remark 12.1. Assumptions (12.A2), (12.A3) can be equivalently replaced by assuming
the existence of a locally exponentially stable equilibrium.

In what follows, we first consider GW-LS-C systems with respect to the same norm
and then GW-LS-C dynamics with respect to different norms. In both scenarios, we
show that convergence is (globally) linear-exponential. That is, given a trajectory x(t)
of the dynamics, the distance ∥x(t) − x⋆∥G is upper bounded by a linear-exponential
function (12.1).
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12.3 Convergence of Globally-Weakly and
Locally-Strongly Contracting Dynamics with Re-
spect to the Same Norm

We start by giving a bound on the upper right Dini derivative of the distance of any
solution of the dynamical systems (4.1) with respect to the equilibrium x⋆.

Lemma 12.2 (Saturated error dynamics). Consider the dynamical system (4.1) and let
Assumptions (12.A1) – (12.A3) hold with ∥ · ∥G = ∥ · ∥L := ∥ · ∥. Let r be the largest
radius such that B

(︁
x⋆, r

)︁
⊆ S. Then, for every trajectory x(t) starting from x0 /∈ S ,

for almost every t ≥ 0, we have

D+∥x(t)− x⋆∥ ≤ −cexp satr(∥x(t)− x⋆∥). (12.5)

Proof. Consider an arbitrary trajectory x(t) starting from x0 /∈ S and a second trajectory
equal to the equilibrium x⋆. Let µ be the log-norm associated to ∥ · ∥. For for almost
every t ≥ 0 it holds ([37, 38]):

D+∥x(t)− x⋆∥ ≤
∫︂ 1

0

µ
(︂
Df
(︁
t, x⋆ + α(x(t)− x⋆)

)︁)︂
dα · ∥x(t)− x⋆∥ := RHS.

where α ∈ [0, 1], and x⋆ + α(x(t)− x⋆) is the segment from x⋆ to x(t).
For each t ≥ 0, if ∥x(t)− x⋆∥ ≤ r, then Assumption (12.A2) implies

RHS ≤
∫︂ 1

0

(−cexp)dα · ∥x(t)−x⋆∥ = −cexp∥x(t)−x⋆∥ = −cexp satr
(︁
∥x(t)− x⋆∥

)︁
,

where in the last equality we have used the definition of saturation function.
If ∥x(t) − x⋆∥ ≥ r, define α∗ = r/∥x(t) − x⋆∥ and note that, for almost every t ≥ 0,
Assumptions (12.A2) and (12.A1) imply

α ≤ α∗ =⇒ µ
(︁
Df(t, x⋆ + α(x(t)− x⋆))

)︁
≤ −cexp,

α > α∗ =⇒ µ(Df(t, x⋆ + α(x(t)− x⋆))
)︁
≤ 0.

Therefore, for almost every t ≥ 0, it holds

RHS ≤
∫︂ α∗

0

µ
(︁
Df(t, x⋆ + α(x(t)− x⋆))

)︁
dα · ∥x(t)− x⋆∥

+

∫︂ 1

α∗
µ
(︁
Df
(︁
t, x⋆ + α(x(t)− x⋆))

)︁
dα
)︂
· ∥x(t)− x⋆∥

≤ (−cexpα
∗ + 0)∥x(t)− x⋆∥ = −cexpr = −cexp satr

(︁
∥x(t)− x⋆∥

)︁
, (12.6)

where in the last equality we used the definition of saturation. Figure 12.2 provides an
illustration of this result about the average of the log-norm. This concludes the proof.
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r

Figure 12.2: Illustration of the inequality (12.6) with ∥ · ∥ = ∥ · ∥2.

With this result in mind, we can now give our convergence result for GW-LS-C
systems with respect to the same norm.

Theorem 12.3 (Linear-exponential convergence of GW-LS-C systems with respect to
the same norm). Consider the dynamical system (4.1) and let Assumptions (12.A1) –
(12.A3) hold with ∥ · ∥G = ∥ · ∥L := ∥ · ∥. Also, let r be the largest radius such that
B
(︁
x⋆, r

)︁
⊆ S. For each trajectory x(t) starting from x0, it holds that

(i) if x0 ∈ S, then, for almost every t ≥ 0,

∥x(t)− x⋆∥ ≤ e−cexpt∥x0 − x⋆∥,

(ii) if x0 /∈ S, then, for almost every t ≥ 0,

∥x(t)− x⋆∥ ≤ lin-exp(t ; q, clin, cexp, tcross), (12.7)

with

• exponential decay rate cexp > 0,
• linear decay rate clin = cexp r,
• intercept q = ∥x0 − x⋆∥,
• linear-exponential crossing time tcross = (q − r)/clin.

Proof. Statement (i) follows from Assumption (12.A2). Item (ii) follows by using the
Comparison Lemma 4.1 to upper bound the solution to the differential inequality (12.5).
Additionally, the upper bound obeys precisely the initial value (12.2) in Lemma 12.1, for
parameter values d = r, clin = cexpr, q = ∥x0 − x⋆∥, and tcross = (q − r)/clin.
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12.4 Convergence of Globally-Weakly and
Locally-Strongly Contracting Dynamics
with Respect to Different Norms

In this section, we extend the results from Section 7.3 by refining the convergence bound
presented in Corollary 7.3. This improvement stems from a more accurate intercept and
linear-exponential crossing time. Differently from the bound in inequality (7.13), the
bound introduced here remains continuous at all times, and no jump can occur at tcross.

We begin by formalizing the concept of the ρ-contraction time, where 0 < ρ < 1
is the contraction factor introduced in Lemma 7.2. This concept plays a crucial role in
quantifying the convergence behavior of the dynamics when different norms are applied
globally and locally.

Definition 12.2 (ρ-contraction time). Let the dynamical system (4.1) be strongly in-
finitesimally contracting with respect to a norm ∥ · ∥α. Consider the contraction factor
0 < ρ < 1, a norm ∥ · ∥β , and a vector x ∈ Rn.

• The ρ-contraction time is the time required for each trajectory starting inBα

(︁
x, r
)︁
,

for some r > 0, to be inside Bα

(︁
x, ρr

)︁
,

• The ρ-contraction time with respect to the norm ∥ · ∥β is the time required for each
trajectory starting in Bβ

(︁
x, r
)︁
, for some r > 0, to be inside Bβ

(︁
x, ρr

)︁
.

Remark 12.2. It is implicit in Definition 12.2 that the ρ-contraction time for a specific
trajectory depends on the initial condition and the center of the ball.

Lemma 12.4 (Contraction times with respect to distinct norms). Given ∥ · ∥α and ∥ · ∥β
norms on Rn with equivalence ratio kα,β , consider system (4.1) satisfying Assump-
tions (12.A2), (12.A3) with ∥ · ∥L = ∥ · ∥α. Then, for each contraction factor 0 < ρ < 1,

(i) the ρ-contraction time is tρ = ln(ρ−1)/c,

(ii) the ρ-contraction time with respect to the norm ∥ · ∥β is tα,βρ = ln(kα,β ρ
−1)/c.

Proof. Consider a trajectory x(t) of the dynamical system (4.1) such that ∥x0∥α ≤ r.
To prove statement (i) we need to find the first time tρ such that ∥x(tρ) − x⋆∥α ≤ ρr.
Clearly the worst-case time is achieved when ∥x0−x⋆∥α = r. But c-strongly infinitesimal
contractivity with respect to ∥ · ∥α implies ∥x(t) − x⋆∥α ≤ e−ct∥x0 − x⋆∥α and so tρ
is determined by the equality e−ctρr = ρr, from which item (i) follows.

Regarding statement (ii), we need to find the first time tα,βρ such that it holds the
inequality ∥x(tρ)− x⋆∥β ≤ ρr. We note that

x0 ∈ Bβ

(︁
x⋆, r

)︁ (7.7), 2nd inequality
=⇒ x0 ∈ Bα

(︁
x⋆, kβαr

)︁
,

x(tρ) ∈ Bβ

(︁
x⋆, ρr

)︁ (7.7), 1st inequality⇐= x(tρ) ∈ Bα

(︁
x⋆, ρr/kαβ

)︁
.
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Thus, the contraction time from Bβ

(︁
x⋆, r

)︁
to Bβ

(︁
x⋆, ρr

)︁
is upper bounded by the

contraction time from Bα

(︁
x⋆, kβαr

)︁
to Bα

(︁
x⋆, ρr/kαβ

)︁
. Therefore, the contraction factor

with respect to the ∥ · ∥α norm is (ρr/kαβ )/(kβαr) = ρ/kα,β . Statement (ii) then follows
from statement (i).

We can now give our convergence result for GW-LS-C systems with respect to the
different norms.

Theorem 12.5 (Linear-exponential convergence of GW-LS-C systems). Let ∥ · ∥L and
∥ · ∥G be two norms on Rn with equivalence ratio kL,G. Consider system (4.1) satisfying
Assumptions (12.A1) – (12.A3). Let r be the largest radius such that BG

(︁
x⋆, r

)︁
⊆ S .

For each trajectory x(t) starting from x0, it holds that

(i) if x0 ∈ S, then, for almost every t ≥ 0,

∥x(t)− x⋆∥G ≤ kL,Ge
−cexpt∥x0 − x⋆∥G, (12.8)

(ii) if x0 /∈ S, then for any contractor factor 0 < ρ < 1 and, for almost every t ≥ 0,

∥x(t)− x⋆∥G ≤ lin-exp(t ; q, clin, cexp, tcross), (12.9)

with

• exponential decay rate cexp > 0,
• linear decay rate clin = cexpr(1− ρ)/ ln(kL,Gρ

−1),

• intercept q = ∥x0 − x⋆∥G + r(1− ρ)
ln(kL,G)

ln(kL,Gρ−1)
,

• linear-exponential crossing time tcross =
⌈︂
∥x0−x⋆∥G−r

(1−ρ)r

⌉︂
ln(kL,Gρ

−1)/cexp +

ln(kL,G)/cexp.

Proof. Consider a trajectory x(t) starting from initial condition x0. If x0 ∈ S , then
statement (i) follows from Assumption (12.A2) and the equivalence of norms. Indeed,
Assumption (12.A2) implies that for every x0 ∈ S and for almost every t ≥ 0, it holds

∥ϕt

(︁
x0

)︁
− x⋆∥L ≤ e−cexpt∥x0 − x⋆∥L.

Applying the equivalence of norms to the above inequality, we get

∥ϕt

(︁
x0

)︁
− x⋆∥G ≤ kL,Ge

−cexpt∥x0 − x⋆∥G. (12.10)

If x0 /∈ S, define the point y0 := x⋆ + r x0−x⋆

∥x0−x⋆∥G
∈ ∂BG

(︁
x⋆, r

)︁1. The norm
∥y0 − x⋆∥G = r, therefore y0 is a point on the boundary of BG

(︁
x⋆, r

)︁
. Moreover, the

points x⋆, y0, and x0 lie on the same line segment, thus

∥x0 − x⋆∥G = ∥x0 − y0∥G + r. (12.11)
1Note that ∂BG

(︁
x⋆, r

)︁
means the boundary of BG

(︁
x⋆, r

)︁
.

166



By Lemma 12.4(ii) and because each trajectory originating in BG
(︁
x⋆, r

)︁
remains in

S, the ρ-contraction with respect to ∥ · ∥G for the cexp-strongly contracting map f is

tL,Gρ =
ln(kL,Gρ

−1)

cexp
. (12.12)

Then, for almost every t ∈ [0, tL,Gρ ], we have

∥ϕt

(︁
x0

)︁
− x⋆∥G ≤ ∥ϕt

(︁
x0

)︁
− ϕt(y0)∥G + ∥ϕt(y0)− x⋆∥G (12.13)

≤ ∥x0 − y0∥G + kL,Ge
−cexpt∥y0 − x⋆∥G (12.14)

(12.11)
= ∥x0 − x⋆∥G − ∥x⋆ − y0∥G + kL,Ge

−cexptr

t=tL,G
ρ

≤ ∥x0 − x⋆∥G − r(1− kL,Ge
−cexpt

L,G
ρ )

(12.12)
= ∥x0 − x⋆∥G − r(1− ρ), (12.15)

where in (12.13) we added and subtracted ϕt(y0) and applied the triangle inequality,
while inequality (12.14) follows from Assumption (12.A1) and inequality (12.10). Now,
equality (12.15) implies ∥ϕtL,G

ρ

(︁
x0

)︁
− x⋆∥G ≤ ∥x0 − x⋆∥G − r(1− ρ). If ∥x0 − x⋆∥G −

r(1− ρ) ≤ r, then by Assumption (12.A2), for almost every in t ≥ tL,Gρ , we have

∥ϕt

(︁
x0

)︁
− x⋆∥G ≤ kL,Ge

−cexp(t−tL,G
ρ )
(︁
∥x0 − x⋆∥G − r(1− ρ)

)︁
.

If ∥x0 − x⋆∥G − r(1− ρ) > r, we iterate the process. Specifically, let xρ := ϕtL,G
ρ
(x0),

and define yρ := x⋆+r
xρ − x⋆

∥xρ − x⋆∥G
∈ ∂BG

(︁
x⋆, r

)︁
. Consider the solution to ẏ = f(t, y)

with initial condition y(tL,Gρ ) = yρ and note that ϕt(xρ) = ϕt+tL,G
ρ
(x0). For almost every

t ∈ [tL,Gρ , 2tL,Gρ ], we compute

∥ϕt+tL,G
ρ
(x0)− x⋆∥G ≤ ∥ϕt(xρ)− ϕt(yρ)∥G + ∥ϕt(yρ)− x⋆∥G (12.16)

≤ ∥xρ − yρ∥G + kL,Ge
−c(t−tL,G

ρ )∥y0 − x⋆∥G (12.17)
(12.11)
= ∥xρ − x⋆∥G − ∥x⋆ − yρ∥G + kL,Ge

−c(t−tL,G
ρ )r

≤ ∥ϕtL,G
ρ
(x0)− x⋆∥G − r(1− kL,Ge

−c(t−tL,G
ρ ))

(12.15)
≤ ∥x0 − x⋆∥G − r(1− ρ)− r(1− kL,Ge

−c(t−tL,G
ρ ))

t=2tL,G
ρ

≤ ∥x0 − x⋆∥G − 2r(1− ρ),

where in (12.16) we added and subtracted ϕt(y0) and applied the triangle inequality,
while (12.14) follows from Assumption (12.A1) and inequality (12.10). We now reason
as done in [0, tL,Gρ ]. If ∥x0 − x⋆∥G − 2r(1− ρ) ≤ r, then Assumption (12.A2) implies

∥ϕt+tL,G
ρ
(x0)− x⋆∥G ≤ kL,G

(︁
∥x0 − x⋆∥G − 2r(1− ρ)

)︁
e−c(t−2tL,G

ρ ), ∀t ≥ 2tL,Gρ .
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If ∥x0−x⋆∥G−2r(1−ρ) > r, we proceed analogously until ∥x0−x⋆∥G−Tr(1−ρ) ≤ r.
This inequality is verified after at most T :=

⌈︂
∥x0−x⋆∥G−r

(1−ρ)r

⌉︂
steps. Iterating the previous

process, at step T , for almost every t ∈ [(T − 1)tL,Gρ , T tL,Gρ ], we get

∥ϕt+(T−1)tL,G
ρ
(x0)−x⋆∥G ≤ ∥x0−x⋆∥G−(T−1)r(1−ρ)−r(1−kL,Ge

−c(t−(T−1)tL,G
ρ )),

t=ktL,G
ρ

≤ ∥x0 − x⋆∥G − Tr(1− ρ) ≤ r,

where the last inequality follows from the definition of T . Local strong contractivity then
implies

∥ϕt+TtL,G
ρ
(x0)−x⋆∥G ≤ kL,G

(︁
∥x0−x⋆∥G−Tr(1−ρ)

)︁
e−c(t−TtL,G

ρ ), for a.e. t ≥ TtL,Gρ .

The above reasoning together with Assumption (12.A1) implies that for almost every
t ∈ [itL,Gρ , (i+ 1)tL,Gρ ], i ∈ {0, . . . , T − 1}, we have

∥ϕt+itL,G
ρ
(x0)− x⋆∥G ≤ min

{︂
∥x0 − x⋆∥G − ir(1− ρ), (12.18)

∥x0 − x⋆∥G − ir(1− ρ)− r
(︁
1− kL,Ge

−c(t−itL,G
ρ )
)︁}︂

.

By partitioning the interval [0,+∞[ as [0, tL,Gρ [∪ · · ·∪ [(T −1)tL,Gρ , T tL,Gρ [∪[TtL,Gρ ,+∞[
and summing up the above inequalities we obtain the bound:

∥ϕt(x0)− x⋆∥G ≤
T−1∑︂

i=0

1{itL,G
ρ ≤t<(i+1)tL,G

ρ }(t)·

min
{︂
∥x0 − x⋆∥G − ir(1− ρ), ∥x0 − x⋆∥G − ir(1− ρ)

− r
(︁
1− kL,Ge

−c(t−itL,G
ρ )
)︁}︂

+ 1{t≥TtL,G
ρ }(t)·

min
{︂
∥x0 − x⋆∥G − Tr(1− ρ),

kL,G (∥x0 − x⋆∥G − Tr(1− ρ)) e−c(t−TtL,G
ρ )
}︂
:= gB(t). (12.19)

Finally, statement (ii) follows by noticing that gB(t) ≤ lin-exp(t ; q, clin, cexp, tcross),
t ≥ 0, for tcross = T ln(kL,Gρ

−1)/cexp +ln(kL,G)/cexp, clin = r cexp(1−ρ)/ ln(kL,Gρ
−1),

and q = ∥x0 − x⋆∥G + r(1− ρ)
ln(kL,G)

ln(kL,Gρ−1)
. This concludes the proof.

Figure 12.3 illustrates the bound in (12.9) and the one in (7.13).

Remark 12.3.

(i) The bound in Theorem 12.5 generalizes the result for equal norms in Theorem 12.3.
In fact, the factor (1−ρ)/ ln(kL,Gρ

−1) is always less than 1 forkL,G > 1. Moreover,
when kL,G = 1 it results lim

ρ→1
(1−ρ)/ ln(kL,Gρ

−1) = 1, thereby exactly recovering
the equal-norm result.
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Figure 12.3: Linear-exponential bound in (12.9) (solid blue curve) and the decay bound
in (7.13) (red curve) for ∥x0 − x⋆∥G = 2.4, r = 1, cexp = 1, kL,G = 2, ρ = 0.4.

(ii) A consequence of Theorem 12.5 is that, jointly, Assumptions (12.A1), (12.A2),
and (12.A3) preclude the existence of any other invariant sets besides S, and the
convergence towards the equilibrium is global.

(iii) Linear-exponential convergence is weaker than global exponential convergence,
but stronger than global asymptotic convergence (e.g., we provide an explicit
estimate of the time required to reach a neighborhood of the equilibrium).

With the following Lemma, we give the explicit expression for the optimal contraction
factor ρ that maximizes the average linear decay rate clin.

Lemma 12.6 (Optimal contraction factor). Under the same assumptions and notations
as in Theorem 12.5, for kL,G > 1 the contraction factor ρ ∈ ]0, 1[ that maximize the
average linear decay rate clin is

ρ̄(kL,G) = − 1

W−1(−e−1k−1
L,G)

, (12.20)

where W−1(·) is the branch of the Lambert function W (·) 2 satisfying W (x) ≤ −1, for
all x ∈ [−1/e, 0[.

Proof. To maximize the linear decay rate clin we need to solve the optimization problem

max
0<ρ<1

1− ρ

ln(kL,G)− ln(ρ)
. (12.21)

We compute

d

dρ

1− ρ

ln(kL,G)− ln(ρ)
=

ρ ln(ρ)− ρ
(︁
1 + ln(kL,G)

)︁
+ 1

ρ
(︁
ln(kL,G)− ln(ρ)

)︁2 = 0,

2The Lambert function W (·) is a multivalued function defined by the branches of the converse relation of
the function f(x) = xex. See [181] for more details.
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which holds if and only if

ρ ln(ρ)− ρ
(︁
1 + ln(kL,G)

)︁
+ 1 = 0. (12.22)

Note that the equality (12.22) is a transcendental equation of the formx ln(x)+ax+b = 0,
whose solution is known to be the value x = −b

W0(−bea) if −bea ≥ 0 and the two values
x = −b

W0(−bea) and x = −b
W−1(−bea) if −1/e ≤ −bea < 0, where W0(·) is the branch

satisfying W (x) ≥ −1, and W−1(·) is the branch satisfying W (x) ≤ −1.
In our case it is b = 1 and a = −(1 + ln(kL,G)), thus −bea = −e−(1+ln(kL,G)) ∈

]− 1
e , 0[. Therefore, the solutions of the equality (12.22) are ρ = − 1

W0(−e−1k−1
L,G)

and ρ =

− 1
W−1(−e−1k−1

L,G)
. Being 0 < ρ < 1, the only admissible solution is ρ = − 1

W−1(−e−1k−1
L,G)

,
thus the thesis.
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Figure 12.4: Plot of the optimal contraction factor ρ̄(kL,G) given by equation (12.20).

12.5 Local Stability in the Presence of External Inputs
We now characterize local ISS for GW-LS-C systems with respect to the same norm.
Specifically, we consider the input-dependent dynamics

ẋ(t) = f
(︁
t, x(t), u(t)

)︁
. (12.23)

where, f : R≥0 × C × U → Rn, the map x ↦→ f(t, x, u) is locally Lipschitz, for all t,
u, with C ⊆ Rn f -invariant, open and convex, and U ⊂ Rm. Given ū ∈ Rm, we define
the set of bounded inputs Ū := {u : R≥0 → U | ∥u(t)∥U ≤ ū,∀t ≥ 0}. We make the
following assumptions.
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Assumption . There exist norms ∥ · ∥, ∥ · ∥U on C and U , respectively, such that

(12.A1’) for all t, u, the map x ↦→ f(t, x, u) is weakly infinitesimally contracting on
Rn w.r.t. ∥ · ∥,

(12.A2’) for all t, x, the map u ↦→ f(t, x, u) is Lipschitz with constant Lu ≥ 0,
(12.A3’) there exist a forward-invariant set S and cexp > 0 such that, for all t,

for each u ∈ Ū , the map x ↦→ f(t, x, u(t)) is cexp-strongly infinitesimally
contracting on S w.r.t. ∥ · ∥,

(12.A4’) at u(t) = 0m, for all t, there exists an equilibrium point x⋆ ∈ S.

We begin by giving two technical lemmas, needed to prove the main result of this section.

Lemma 12.7 (Error dynamics for input-dependent systems). Consider the input-dependent
dynamics (12.23) satisfying Assumption (12.A2’). Then any two solutions x(t) and y(t)
with inputs ux, uy : R≥0 → Rm, satisfy for almost every t ≥ 0,

D+∥x(t)−y(t)∥ ≤
∫︂ 1

0

µ
(︂
Df(y+α(x−y), uy)

)︂
dα∥x(t)−y(t)∥+Lu∥ux(t)−uy(t)∥U .

(12.24)

Proof. Let x(t) and y(t) be two trajectories of (12.23) with input signals ux, uy , respec-
tively. Let J·, ·K be a weak pairing compatible with ∥ · ∥. We compute

∥x(t)− y(t)∥D+∥x(t)− y(t)∥ = Jf(t, x, ux)− f(t, y, uy), x− yK (12.25)
≤ Jf(t, x, uy)− f(t, y, uy), x− yK + ∥f(t, x, ux)− f(t, x, uy)∥∥x− y∥

(12.26)
≤ Jf(t, x, uy)− f(t, y, uy), x− yK + Lu∥ux − uy∥U∥x− y∥,

(12.27)

where in (12.25) we used the curve norm derivative formula 2.7, in (12.26) we added
and subtracted f(t, x, uy) and used the sub-additivity 2.7 and the Cauchy-Schwartz
inequality 2.7, and in (12.27) we used Assumption (12.A2’). Next, by dividing both
sides for ∥x(t)− y(t)∥ we get

D+∥x(t)− y(t)∥ =
Jf(t, x, uy)− f(t, y, uy), x− yK

∥x− y∥2 ∥x− y∥+ Lu∥ux − uy∥U .
(12.28)

By applying the mean-value Theorem 2.1 to (12.28), a.e., we get

D+∥x(t)−y(t)∥ ≤

r∫︁ 1

0
Df(y+s(x−y), uy)ds(x−y), x−y

z

∥x−y∥
∥x−y∥
∥x−y∥+Lu∥ux−uy∥U

(12.29)

≤
∫︂ 1

0

JDf(y+s(x−y), uy)ds(x−y), x−yK
∥x−y∥2 ds∥x−y∥+Lu∥ux−uy∥U

(12.30)
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where in (12.29) we have used the weak pairing sub-additivity 2.7. Next, recall that

Lumer’s equality 2.7 implies,
JAz, zK
Jz, zK

≤ µ
(︁
A
)︁

for every A ∈ Rn×n and z ̸= 0n. By

applying this equality to (12.30) (with A = Df(y + s(x − y), uy) and z = x − y) we
get inequality (12.24). This concludes the proof.

The next result gives a linear-exponential bound for the solution of dynamics with
saturations and additive inputs.

Lemma 12.8 (Solution of dynamics with saturations and additive inputs). Let cexp and
d be positive scalars, and u : R≥0 → Rn satisfying ∥u(t)∥∞ = umax < dcexp, for all t.
Consider the dynamics

ẋ(t) = −cexp satd
(︁
x(t)

)︁
+ u(t), x0 = q > d. (12.31)

Then, a solution of (12.31) satisfies

x(t) ≤ lin-exp(t ; q, clin, cexp, tcross) + 1[tcross,+∞[(t)(1− e−cexp(t−tcross))
umax

cexp
,

with clin := dcexp − umax > 0 and tcross :=
q−d
clin

> 0.

Proof. Using the definition of saturation function, for all t ∈ R≥0 we can upper bound
the ODE (12.31) as

ẋ(t) ≤ ẏ(t) :=

⎧
⎪⎨
⎪⎩

−dcexp + umax if y(t) > d,

−cexpx(t) + umax if y(t) ∈ [−d, d],

dcexp + umax if y(t) < −d,

(12.32)

which, in each interval [t0, t1] ⊆ R≥0 where the solution is continuous and does not
change regime, has general solution

y(t) =

⎧
⎪⎪⎨
⎪⎪⎩

(−dcexp + umax)t+ y(t0) if y(t) > d,(︂
y(t0)−

ū

cexp

)︂
e−cexp(t−t0) +

umax

cexp
if y(t) ∈ [−d, d],

(dcexp + umax)t+ y(t0) if y(t) < −d.

(12.33)

At time t = 0, we have x0 = q > d. For continuity of the solution, there exists t⋆ such
that y(t) > d for all t ∈ [0, t⋆]. Thus from (12.33) and being x(t0 = 0) = q, it is

y(t) = (−dcexp + umax)t+ q,

for all t ∈ [0, t⋆]. Moreover being umax < dcexp, the function y(t) is decreasing,
the time value t⋆ is finite and there exists a time, say it t̄, such that y(t̄) = d. Let
clin := dcexp − umax, we have

y(t̄) = d ⇐⇒ −clint̄+ q = d ⇐⇒ t̄ =
q − d

clin
:= tcross.
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In summary, we have shown that y(t) = q − clint, for all t ∈ [0, tcross], and y(t) = d
at time tcross. Thus, from (12.33) and being y(tcross) = q − clintcross, ∀t > tcross we have

y(t) =
(︁
q − clintcross

)︁
e−cexp(t−tcross) +

(︁
1− e−cexp(t−tcross)

)︁umax

cexp
.

Specifically, y(t) > 0 for all t > tcross, thus it can never be y(t) < −d. This concludes
the proof.

We are now ready to state the main result of this section.

Theorem 12.9 (Local ISS for input-dependent GW-LS-C systems). Consider system (12.23)
satisfying Assumptions (12.A1’) – (12.A4’). Let r be the largest radius such that
B
(︁
x⋆, r

)︁
⊆ S, ū < rcexp, and umax := supτ∈[0,t] ∥ux(τ)∥U ≤ ū. For each trajectory

x(t) with input ux ∈ Ū starting from x0 /∈ S, for almost every t ≥ 0, we have:

(i) D+∥x(t)− x⋆∥ ≤ −cexp satr(∥x(t)− x⋆∥) + Lu∥ux(t)∥U ,

(ii) ∥x(t)−x⋆∥ ≤ lin-exp(t ; q, clin, cexp, tcross)+1[tcross,+∞[(t)
Lu

cexp
(1− e−cexpt)umax,

with

• exponential decay rate cexp > 0,
• intercept q = ∥x0 − x⋆∥,
• linear decay rate clin = rcexp − umax,
• linear-exponential crossing time tcross = (q − r)/clin.

Proof. Consider an arbitrary trajectory x(t) starting from x0 /∈ S with input ux and a
second trajectory equal to the equilibrium x⋆ with input u = 0m. To prove statement (i),
let µ be the log-norm associated to ∥ · ∥. By applying inequality (12.24) to those
trajectories, for almost every t ≥ 0, we have

D+∥x(t)− x⋆∥ ≤
∫︂ 1

0

µ
(︂
Df(x⋆ + α(x(t)− x⋆), 0)

)︂
dα∥x(t)− x⋆∥+ Lu∥ux∥U .

(12.34)

The proof follows by using similar reasoning as the one in the proof of Lemma 12.2.
Statement (ii) follows by using the Comparison Lemma 4.1 and Lemma 12.8 to upper
bound the solution to the differential inequality (i).

12.6 Applications
We now demonstrate the effectiveness of the previous results by applying them to two
dynamical systems: one minimizing the Huber loss, and the other addressing linear
programming problems.
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12.6.1 Huber Loss
Consider the convex minimization problem

min
x∈R

hδ(x), (12.35)

where hδ : R → R≥0 is the Huber loss [182] and is defined by

hδ(x) =

{︄
1
2x

2 if |x| ≤ δ,

δ ·
(︁
|x| − 1

2δ
)︁
, if |x| > δ,

(12.36)

with δ ∈ R≥0. The Huber loss is a function used in robust regression and represents
a compromise between the ℓ1 and ℓ2 loss functions. Figure 12.5 illustrates the Huber
loss (12.36) for different values of the parameter δ.
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Figure 12.5: Huber Loss in equation 12.35 for δ = 1, 2, 3, 4.

To solve (12.35), we consider the associated continuous-time gradient flow dynamic

ẋ = −∇hδ(x) = − satδ
(︁
x
)︁
= fH(x). (12.37)

Given that the Huber loss is convex, the gradient dynamics (12.37) is weakly contracting,
and not strongly contracting. The following theorem characterizes the convergence
behavior of the gradient dynamics (12.37).

Theorem 12.10 (Contractivity of the Huber Loss function). Consider the gradient-flow
dynamics (12.37). Then

(i) the dynamics (12.37) is weakly contracting on R with respect to any norm;

(ii) the dynamics (12.37) is locally strongly contracting with respect to any norm in
B(0, r), for any 0 < r < δ with rate c = 1.
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Proof. Statement (i) follows directly from Lemma 10.2, as the Huber loss is convex and
the saturation function is locally Lipschitz.

To prove statement (ii), note that, by definition of saturation function, the equilibrium
point of the gradient-flow dynamics (12.37) is x⋆ = 0 and

f ′
H(x) =

{︄
0 if |x| > δ,

−1 if |x| < δ.

Therefore, for any 0 < r < δ, we have f ′
H(x) < −1 for all x ∈ B(0, r). This concludes

the proof.

Corollary 12.11 (Convergence of (12.37)). Given δ > 0, consider the gradient-flow
dynamics (12.37). For each trajectory x(t) starting from x0, it holds that

(i) if x0 < δ, then, for almost every t ≥ 0,

x(t) ≤ e−tx0,

(ii) if x0 > δ, then, for almost every t ≥ 0,

x(t) ≤ lin-exp(t ; q, clin, cexp, tcross), (12.38)

with exponential decay rate cexp = 1, linear decay rate clin = cexp δ, intercept
q = x0, and linear-exponential crossing time tcross = (x0 − δ)/clin.

Numerical Experiments

Consider the minimization problem (12.35) and the associated continuous-time gradi-
ent flow dynamics (12.37). We set δ = 2 and simulate the dynamics (12.37) over the
time interval t ∈ [0, 11] starting from initial conditions 0.5, 3, 6, 9, respectively. The
simulation results show that each trajectory converges to the optimum x⋆ = 0. Fig-
ure 12.6 illustrates the simulated trajectories of (12.37) and the corresponding bounds
from Corollary 12.11. Depending on whether the initial condition x0 is smaller or larger
than the threshold δ = 2, the convergence follows either an exponential decay or a
linear-exponential decay, as predicted by Corollary 12.11.

12.6.2 Tackling Linear Programs
Given c ∈ Rn, A ∈ Rm×n and b ∈ Rm, we consider the linear program:

min
x∈Rn

c⊤x,

s.t. Ax ≤ b,
(12.39)

and its equivalent unconstrained formulation

min
x∈Rn

c⊤x+ ιIb
(Ax), (12.40)
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Figure 12.6: Plots of trajectories of the dynamics (12.37) starting from four different
initial conditions. The figure shows the trajectories as solid curves and the corresponding
linear-exponential bound from Corollary 12.11 as dashed curves. In agreement with
Corollary 12.11 the convergence is linearly-exponentially bounded.

where Ib = {y ∈ Rm | y − b ≤ 0m}. We assume that (12.40) admits a unique
equilibrium. Note that (12.40) is a particular composite minimization problem:

min
x∈Rn

f(x) + g(Ax), (12.41)

with f(x) = c⊤x and g(Ax) = ιIb
(Ax). To solve (12.40), we leverage the proximal

augmented Lagrangian approach proposed in [158] and consider the proximal augmented
Lagrangian, L̃γ : Rn × Rm → R, defined by

L̃γ(x, λ) = f(x) +Mγg(Ax+ γλ)− γ

2
∥λ∥22, (12.42)

where λ ∈ Rm is the Lagrange multiplier, γ > 0 is a parameter, and Mγg is Moreau
envelope of g.

Remark 12.4. For f continuously differentiable, convex, and with a Lipschitz contin-
uous gradient, and g convex, closed and proper, solving the composite minimization
problem (12.41) corresponds to finding saddle points of (12.42), simultaneously updat-
ing the primal and dual variables [158, Theorem 2].

Next, consider the continuous-time augmented primal-dual dynamics associated to
the proximal augmented Lagrangian of problem (12.40)

ẋ = −∇xL̃γ(x, λ) = −c−A⊤∇MγιIb
(Ax+ γλ) = −c− 1

γ
A⊤ ReLU

(︁
Ax+ γλ− b

)︁
,

λ̇ = ∇λL̃γ(x, λ) = −γλ+ γ∇MγιIb
(Ax+ γλ) = −γλ+ReLU

(︁
Ax+ γλ− b

)︁
.

(12.43)
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We let FLP : Rn+m → Rn+m denote the vector field for (12.43).

Remark 12.5. Equation (12.43) follows directly after noticing that for almost every
y ∈ Rm it results

∇MγιI (y) =
1

γ

(︁
y − PιI (y)

)︁
=

1

γ

(︁
y −min{y, b}

)︁
=

1

γ
ReLU

(︁
y − b

)︁
.

The next result characterizes the convergence of (12.43).

Theorem 12.12 (Convergence of the linear program). Consider the dynamics (12.43)
and let (x⋆, λ⋆) ∈ Rn+m be an equilibrium point. If DFLP

(︁
x⋆, λ⋆) is Hurwitz, then any

solution of (12.43) linear-exponentially converges towards (x⋆, λ⋆).

Proof. To prove the statement we show that (12.43) satisfies the assumptions of Theo-
rem 12.5. First, we prove that the system is globally-weakly contracting. To this purpose,
let z := (x, λ) ∈ Rn+m, y := Ax+ γλ− b and define G(y) := DReLU

(︁
y
)︁
, for almost

every y ∈ Rm. The Jacobian of (12.43) is

DFLP(z) =

[︃− 1
γA

⊤G(y)A −A⊤G(y)

G(y)A −γ(Im −G(y))

]︃
.

Being 0 ⪯ G(y) ⪯ Im
3, a.e. y ∈ Rm, we have

sup
z

µ2

(︁
DFLP(z)

)︁
≤ max

0⪯G⪯Im
µ2

(︃[︃
−γ−1A⊤GA −A⊤G

GA γ
(︁
G− Im

)︁
]︃)︃

,

By definition of µ2, we have that

µ2

(︃[︃
−γ−1A⊤GA −A⊤G

GA γ
(︁
G− Im

)︁
]︃)︃

= λmax

(︄[︃
−γ−1A⊤GA 0

0 γ
(︁
G− Im

)︁
]︃)︄

= max{λmax
(︁
−γ−1A⊤GA

)︁
, λmax

(︁
γ
(︁
G− Im

)︁)︁
} ≤ 0.

The last equality follows from the fact thatλmax
(︁
−γ−1A⊤GA

)︁
= λmax

(︁
γ
(︁
G−Im

)︁)︁
≤ 0.

In particular, the equality λmax
(︁
−γ
(︁
G− Im

)︁)︁
≤ 0 follows directly from 0 ⪯ G ⪯ Im;

while λmax
(︁
−γ−1A⊤GA

)︁
≤ 0, follows noticing that A⊤GA ⪰ 04. This implies

that (12.43) is weakly contracting on Rn+m with respect to ∥ ·∥2. Thus (12.43) is weakly
contracting on Rn+m with respect to ∥ · ∥2.

Next, we prove that the system is locally-strongly contracting. To do so, we first
note that for any equilibrium point z⋆ := (x⋆, λ⋆) of (12.43), both DReLU(y⋆) and
DFLP(z

⋆) are differentiable in a neighborhood of y⋆ and z⋆, respectively. In fact, for each
i, the KKT conditions ensures that either (Ax⋆)i−bi = 0 or λ⋆

i = 0. In turn, this implies
that y⋆i = (Ax⋆)i+γλ⋆

i −bi ̸= 0, for all i. Now, being by assumptionDFLP(z
⋆)Hurwitz,

3For every γ > 0, 0 ⪯ ∇2Mγg(y) ⪯ 1
γ
In, a.e. y ∈ Rm [53, Lemma 18].

4A⊤GA ⪰ 0 ⇐⇒ x⊤A⊤GAx ≥ 0 ∀x ∈ Rn ⇐⇒ y⊤Gy ≥ 0, ∀y ∈ Rm ⇐⇒ G ⪰ 0.
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there exists Q invertible such that µ2,Q(DFLP(z
⋆)) < 0 [42, Corollary 2.33]. Let K be

the set of differentiable points in a neighborhood of z⋆. Then, by the continuity property
of the log-norm, there exists B2,Q

(︁
z⋆, p

)︁
, with p := sup{p > 0 | B2,Q

(︁
z⋆, p

)︁
⊂ K},

where DFLP(z) exists and µ2,Q(DFLP(z)) < −cexp for all z ∈ B2,Q

(︁
z⋆, p

)︁
, for some

cexp > 0. Therefore (12.43) is strongly infinitesimally contracting with respect to ∥ · ∥2,Q
in B2,Q

(︁
z⋆, p

)︁
. This concludes the proof.

A key hypothesis of Theorem 12.12 is that DFLP(x
⋆, λ⋆) is Hurwitz. This hypothesis

can only be verified by prior knowledge of the LP solution. This limitation motivates the
following conjecture, which would relate stability of DFLP(x

⋆, λ⋆) to matrix A and the
KKT conditions.

Conjecture 1. Let (x⋆, λ⋆) be the equilibrium of (12.43). The LP (12.39) has a unique
solution, x⋆, if and only if DFLP

(︁
x⋆, λ⋆) is Hurwitz.

Numerical Experiments

Consider the following LP

min
x∈R3

x1 + x2 + x3,

s.t. − 1 ≤ x1 ≤ 1,−1 ≤ x2 ≤ 1,−1 ≤ x3 ≤ 1.
(12.44)

for which the unique optimal solution is x⋆ = (−1,−1,−1).
Next, consider the corresponding continuous-time augmented primal-dual dynamics:

ẋ1 = −1− 1

γ

(︂
ReLU (x1 + γλ1 − 1)− ReLU (−x1 + γλ4 − 1)

)︂
,

ẋ2 = −1− 1

γ

(︂
ReLU (x2 + γλ2 − 1)− ReLU (−x2 + γλ5 − 1)

)︂
,

ẋ3 = −1− 1

γ

(︂
ReLU (x3 + γλ3 − 1)− ReLU (−x3 + γλ6 − 1)

)︂
,

λ̇1 = −γλ1 +ReLU (x1 + γλ1 − 1) ,

λ̇2 = −γλ2 +ReLU (x2 + γλ2 − 1) ,

λ̇3 = −γλ3 +ReLU (x3 + γλ3 − 1) ,

λ̇4 = −γλ4 +ReLU (−x1 + γλ4 − 1) ,

λ̇5 = −γλ5 +ReLU (−x2 + γλ5 − 1) ,

λ̇6 = −γλ6 +ReLU (−x3 + γλ6 − 1) .

(12.45)

We set γ = 0.5 and simulate the dynamics (12.45) over the time interval t ∈ [0, 40] with
a forward Euler discretization with step-size ∆t = 0.001, starting from 150 initial condi-
tions generated as follows: we first randomly generate an initial condition and then define
the remaining 149 initial conditions by adding, to the first initial condition, random noise
generated from a normal distribution with mean 0 and standard deviation 2. The simu-
lation results show that each trajectory converges to z⋆ = (−1,−1,−1, 0, 0, 0, 1, 1, 1).
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Next, we numerically found that DFLP (z
⋆) is Hurwitz (in alignment with our conjec-

ture). Figure 12.7 illustrates the mean and standard deviation of the log-norm of the ℓ2
distance of the 150 simulated trajectories of (12.45) with respect to z⋆. In agreement
with Theorem 12.12 the convergence is linearly-exponentially bounded.
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Figure 12.7: Mean (red curve) and standard deviation (shadow curve) of the log-norm
of the Euclidean distance of 150 simulated trajectories of (12.45) with respect to the
equilibrium point z⋆. In agreement with Theorem 12.12 the convergence is linearly-
exponentially bounded.

12.7 Summary
In this chapter, we analyzed the convergence of globally-weakly and locally-strongly
contracting dynamics, which naturally arise from convex optimization problems with
a unique minimizer. First, in Lemma 12.1, we characterized the evolution of certain
dynamics with saturation in terms of the linear-exponential function (12.1).

Then we studied the convergence behavior of GW-LS-C dynamics in two cases
requiring distinct mathematical approaches. In the first case, for GW-LS-C systems
with respect to the same norm, we applied Lemma 12.1 to establish linear-exponential
convergence (Theorem 12.3). This means that the distance between each solution of
the system and the equilibrium is upper bounded by a linear-exponential function. In
the second case, for GW-LS-C dynamics with respect to two different norms, we also
demonstrated linear-exponential convergence (see Theorem 12.5), extending the results
from Section 7.3. Remarkably, linear-exponential convergence implies that convergence
towards the equilibrium is global. Additionally, in Theorem 12.9, we characterized local
ISS for input-dependent dynamics that are GW-LS-C with respect to the same norm.
Finally, we illustrated our results on two applications: minimizing the Huber loss and
solving LP problems. Our results motivated a conjecture relating the optimal solution of
LPs to the local stability properties of the equilibrium of the resulting dynamics.
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13 Conclusions and
Future Work

Life is a climb.
But the view is great.

Miley Cyrus

In this thesis, we proposed a normative framework for translating optimization prob-
lems into biologically plausible neural networks that are guaranteed to converge to
equilibria corresponding to optimal solutions of the initial optimization problem. By
leveraging contraction theory, we characterized stability and robustness of the proposed
models, along with the other properties of contracting dynamics. We then used these
models to solve static and time-varying convex optimization problems.

Our theoretical contributions began in Part I with the development of the mathemat-
ical tools needed for analyzing stability and convergence properties of continuous-time
recurrent neural networks. Specifically, in Chapter 5 we provided sharp conditions
for both strong and weak Euclidean contractivity of HNNs and FNNs with symmetric
weights and possible non-smooth activation functions, together with a number of general
algebraic results on matrix polytopes. With these findings, we proposed norms that are
log-optimal for almost all synaptic matrices. In this sense our results are sharp – they are
the best achievable within this framework. Remarkably, with our contractivity results,
we filled a significant gap in the literature by enabling the use of RNNs with non-smooth
activation functions, as most common activation functions such as ReLU and threshold-
ing functions. Additionally, we addressed the weak contractivity case, thereby extending
the applicability of our results to systems with invariance properties, as well as to RNNs
designed to solve certain convex optimization problems.

We then proposed, in Chapters 6 and 7, a top/down normative framework to trans-
late composite optimization problems into continuous-time firing rate neural networks.
These results provided a biologically plausible explanation for how neural circuits solve
sparse reconstruction and other composite optimization problems relevant to machine
learning, compressed sensing, and signal processing applications. The framework we
proposed is based upon the theory of proximal operators for composite optimization
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and led to continuous-time firing rate neural networks that are therefore interpretable.
Specifically, we proposed and analyzed the firing rate competitive network, FCN, and
the positive firing rate competitive network, PFCN, to tackle sparse reconstruction and
positive sparse reconstruction problems, respectively. Crucial for the PFCN is the fact
that this is a positive system. To the best of our knowledge, the positive firing rate
competitive network is the first RNN designed to tackle positive sparse reconstruction
problems. We presented a detailed convergence analysis for our models, proving that
convergence is linear-exponential. This, in turn, implies global convergence toward the
equilibrium. We illustrated the effectiveness of our results via numerical examples where
we proposed an FNN that solves certain quadratic optimization problems with box con-
straints. This application set the stage for further exploration of contracting FNNs for
solving optimization problems.

Next, in Part II we investigated how to embed learning within our biologically
plausible framework. To this purpose, we proposed embedding nonlinear Hebbian
learning rules into the continuous-time RNN models analyzed in Part I. In this way,
we allowed for dynamic synaptic weight updates mirroring biological processes more
closely. Specifically, we studied four coupled neural-synaptic systems: the Hopfield-
Hebbian model, the firing-rate-Hebbian model, the Hopfield-Oja model, and the firing-
rate-Oja model. To capture the synaptic sparsity of neural circuits, for each model we
derived a low dimensional formulation that allowed us to go from a system with n× n2

variables–n neurons and n2 synaptic connections–to a system with n × m variables,
where m ≪ n2 is the number of non zero elements of the synaptic connection matrix
H . We then characterized the key dynamical properties of the models. First, we gave a
biologically-inspired forward invariance result for the trajectories of the system, showing
bounded solutions for each model. Then we provided sufficient conditions for the non-
Euclidean contractivity of the models. Each contractivity test we presented is based
upon biologically meaningful quantities, i.e., neural and synaptic decay rate, maximum
in-degree, and maximum synaptic strength. Notably, we showed that under specific
neural decay rates, the FNN model displayed sharper contractivity conditions compared
to the HNN. Additionally, we proved that under suitable conditions the synaptic rules
satisfy Dale’s Principle, further enhancing the biological plausibility of our models. We
illustrated the effectiveness of our results via numerical examples based on a block of the
C. Elegans neural architecture.

In the final part, Part III, we explicitly considered optimization problems, using
contracting continuous-time dynamical systems to address both static and time-varying
convex optimization problems. We first applied contraction theory to time-invariant
problems by considering four canonical time-invariant optimization problems. For each
of these problems, we provided a transcription to continuous-time dynamical systems
and gave conditions under which these dynamics are strongly infinitesimally contracting.
We then extended this approach to the problem of tracking optimal trajectories in time-
varying convex optimization problems. To this purpose, with our two main results, we
proved (i) that the tracking error between any solution trajectory of a strongly infinitesi-
mally contracting system and its equilibrium trajectory is upper bounded with an explicit
estimate on the bound, (ii) that any strongly infinitesimally contracting system can be
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augmented with a feedforward term to ensure that the tracking error converges to zero
exponentially quickly. We established the strong infinitesimal contractivity of canonical
dynamical systems solving optimization problems and applied our main results to provide
explicit tracking error bounds. We validated these bounds in two numerical examples.
With these results, we showed the potential of a contractivity-based approach for analyz-
ing strongly convex optimization problems. Finally, we extended our analysis beyond the
case of strong convexity and focused on convex (but not strongly convex) optimization
problems with unique minimizers. This led to the analysis of globally weakly and lo-
cally strongly contracting dynamics. For such dynamics, we showed linear-exponential
convergence to the equilibrium. Specifically, we demonstrated that linear-exponential
behavior arises naturally in certain dynamics with saturations and used this result for
our convergence analysis. Depending on the norms where the system is GW-LS-C, we
considered two different scenarios that required two distinct mathematical approaches,
yielding convergence bounds that are sharper than those provided in Part I.
Additionally, after giving a sufficient condition for local ISS, we illustrated our results on
the continuous-time augmented primal-dual dynamics solving LPs. Our results motivated
a conjecture relating the optimal solution of LPs to the local stability properties of the
equilibrium of the resulting dynamics.

Overall, this thesis advances the understanding of how biologically plausible neural
networks can solve sparse reconstruction and other optimization problems. Additionally,
we showed the effectiveness of using contracting dynamics for static and time-varying
convex optimization, highlighting their value for both theoretical exploration and practical
applications. We believe that our work not only provides theoretical foundations but also
provides practical tools for future research in both neuroscience and optimization.

13.1 Future Work
Several interesting research directions emerge from the findings of this thesis, each
offering promising avenues for further exploration.

One key area for future research involves extending our results to design networks
able to tackle sparse coding problems [71, 183], which involves learning features to
reconstruct a given stimulus. We expect this will lead to the study of coupled neural-
synaptic dynamics. Building on the approach developed in Part I, our goal is to derive
together with the dynamics of neural activity, also learning rules for synaptic weights
from the same objectives. While doing this from the composite optimization problems
analyzed in this thesis remains an open and challenging question, a promising direction
was introduced in [72] (see also [74, 14]). The proposed approach, based on a novel cost
function called similarity matching, provides a biologically plausible neural network
with Hebbian learning rules. Interestingly, from this objective function a number of
dimensionality reduction problems [73, 15, 16], including sparse reconstructions, can
be obtained. However, the proposed algorithm still lacks a formal theoretical proof of
convergence, and we are currently working on bridging this gap.

Additionally, we aim to explore sparse reconstruction problems involving more gen-
eral and non-convex sparsity-inducing cost functions [184]. This would broaden the
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scope of our current results, potentially allowing us to tackle a wider range of tasks.
In terms of extending our contractivity analysis, future work will focus on broadening

our current results to cover more general synaptic matrices, including arbitrary (non-
symmetric) synaptic matrices and heterogeneous dissipation matrices. We propose
preliminary conservative results in this direction in Appendix A. Further investigation
into higher-order contractivity properties using the theory of k-contraction [93] and the
analysis of the stochastic models [89] will also be of interest. In particular, stochastic
models and systems with arbitrary synaptic matrices could yield new insights into both
neuroscience and machine learning problems.

Moreover, motivated by the numerical findings reported in Figure 9.6, it would be
interesting to investigate models with delays. This could allow to better understand the
effects of temporal lags in neural dynamics and their potential implications for both
theoretical models and real-world applications.

Additionally, we aim to prove Conjecture 1 introduced in Chapter 12 and extend our
input-to-state stability (ISS) analysis to systems evaluated under different norms.

Least but not last, it is important to highlight that the potential applications of our
results extend across a wide range of problems, particularly in the realm of complex
systems and risk-related issues. In this direction, implementing the proposed dynamics
to design efficient and robust algorithms would be a valuable next research direction.
Testing these algorithms on real-world datasets will provide an additional application-
oriented validation of the theoretical results developed in this thesis.
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Appendix A

Euclidean Contractivity of
Firing Rate Neural Networks
with Dissipation

In this appendix, we present additional and preliminary novel results on the contractivity
of FNN with dissipation. These results are direct applications of recent findings in [185]
and have not been published elsewhere yet.

While the contractivity results in Corollary 5.7 are sharp (in the sense that they are
the best achievable), they are limited to dynamics with homogeneous dissipation and
symmetric weight matrices. In this appendix, we address these limitations by providing
conditions for the Euclidean contractivity of FNN with heterogeneous dissipation and
general weight matrices. The drawback of this approach is that, as we will show, leads
to conservative results. Consider the continuous-time FNN (3.2) with dissipation, i.e.,

ν̇ = −Dν +Φ(Wν + u), (A.1)

where D ∈ Rn×n is a positive diagonal matrix and the other terms are defined as
in (3.2). We assume that the activation function is Lipschitz and slope restricted, that is
Assumption 5.2 in Chapter 5, but we do not make any assumption on the matrix W .

To study the contractivity of the dynamics (A.1), we adopt a different approach com-
pared to the methods used in Chapter 5. Specifically, we (i) reformulate the FNN (A.1)
as a Lur’e system1, and (ii) use the contractivity conditions recently developed in [185]
to analyze the stability of the resulting system.

To begin with our analysis we note that we can rewrite the FNN (A.1) as a Lur’e

1A Lur’e system is a nonlinear system obtained by connecting a linear time-invariant (LTI) system with a
time-varying nonlinear feedback control. The resulting closed-loop system is ẋ = Ax+ BF (t, Cx), where
A, B, and C are matrices of the proper dimensions.
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system. In fact, let us consider the Lur’e system
{︄

ν̇(t) = −Dν(t) + b(t),

y(t) = Wν(t) + u(t)

with b(t) = Φ
(︁
t, y(t)). The resulting closed-loop system is ν̇(t) = −Dν(t) +

Φ(Wν(t) + u(t)), which corresponds exactly to the FNN in (A.1).
The following theorem is a rewriting of [185, Theorem 1] in the context of the FNN

dynamics (A.1). This result provides sufficient conditions for the contractivity of a Lur’e
system in a closed-loop form.

Theorem A.1 (Sufficient condition for contractivity). Consider the FNN (A.1) with
Lipschitz and slope restricted in [0, 1] activation function. Let P = P⊤ ∈ Rn×n be
a positive definite matrix. The system (A.1) is strongly infinitesimally contracting with
respect to the weighted Euclidean norm ∥ · ∥2,P with rate c > 0 if there exists γ ≥ 0 such
that the following LMI holds:
[︃
2cP −DP − PD P + γW⊤

P + γW −2γIn

]︃
⪯ 0 ⇐⇒

[︃
DP + PD − 2cP −P − γW⊤

−P − γW 2γIn

]︃
⪰ 0.

(A.2)

Theorem A.1 implies that to study the contractivity of the FNN (A.1) we have to find
a matrix P = P⊤ ≻ 0 and a scalar γ ≥ 0 (and c > 0) such that the LMI (A.2) holds.

Next, we recall the following definition, needed for our analysis.

Definition A.1 (Lyapunov Diagonally Stability). A matrix A ∈ Rn×n is Lyapunov
Diagonally Stable (LDS) with rate η > 0 if there exists a diagonal P = [p], p ∈ Rn

>0

satisfying the LMI
PA+A⊤P ≺ 2ηP. (A.3)

Before proceeding with our analysis, we verify whether the LMI (A.2) holds for the
results in Corollary 5.7, which we know implies contractivity of the FNN (A.1). For
simplicity, we are gonna check it only for the case when α(W ) < 0.

Remark A.1 (Check if the LMI (A.2) holds for results in Corollary 5.7). Let D = In
and W = W⊤ ∈ Rn×n satisfying α(W ) < 0. Additionally, let P = (−W )1/2 and
c = 1. In this case, the LMI (A.2) reads: find γ ≥ 0 such that

[︃
0n×n −(−W )1/2 − γW

−(−W )1/2 − γW 2γIn

]︃
⪰ 0. (A.4)

For γ ̸= 0, since 2γIn ≻ 0, applying the Schur complement to the LMI (A.4) yields: the
LMI (A.4) holds if and only if

− 1

2γ

(︂
(−W )1/2 + γW

)︂2
⪰ 0 ⇐⇒

(︂
(−W )1/2 + γW

)︂2
⪯ 0.
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which leads to an absurd. Therefore, the LMI (A.2) does not hold in this case, even
though we know the system is contracting. This discrepancy is likely due to the fact that
the results in Corollary 5.7 are optimal, whereas the conditions in (A.2) are conservative.

Finally, we note also that if W ̸= In is diagonal, then the matrix −D + W =
−In +W ≺ 0 is Lyapunov Diagonally Stable (LDS) with respect to P = (−W )1/2. In
fact, we have

(−W )1/2
(︁
−In +W

)︁
+
(︁
−In +W

)︁⊤
(−W )1/2

= (−W )1/2
(︁
−In +W

)︁
+
(︁
−In +W

)︁
(−W )1/2

= −2(−W )1/2 + (−W )1/2W +W (−W )1/2

= 2(W )1/2 − 2(W )1/2W

= 2(W )1/2
(︂
In − Λ

)︂
≺ 0,

where the last LMI follows from being W ≺ 0 and In − Λ ≻ 0.

The next result characterizes the contractivity of the FNN (A.1).

Theorem A.2 (Contractivity of the FNN (A.1)). Consider the FNN (A.1) with Lipschitz
and slope restricted in [0, 1] activation function. Assume that the matrix−D+W ∈ Rn×n

is LDS with rate η for some diagonal matrix P ≻ 0. If

η ≥ 1

4

λmax

(︁
P
)︁

λmin

(︁
P
)︁ λmax(W

⊤W
)︁

λmin

(︁
D
)︁ , (A.5)

then the FNN (A.1) is strongly infinitesimally contracting with respect to ∥ · ∥2,P .

Proof. To prove our result we apply Theorem A.1. Therefore we have to find P = P⊤ ≻
0 and γ ≥ 0 (and c > 0) such that the LMI (A.2) holds. We compute
[︃
−DP − PD + 2cP P + γW⊤

P + γW −2γIn

]︃
=

[︃
−2PD + 2cP P + γW⊤

P + γW −2γIn

]︃

=

[︃
P 0n×n

0n×n P

]︃ [︃
−2D + 2cIn In

In 0n×n

]︃

+

[︃
0n×n γW⊤

γW −2γIn

]︃
.

First, we show that γ ̸= 0. In fact, for γ = 0 the LMI (A.2) becomes
[︃

P 0n×n

0n×n P

]︃ [︃
2cIn − 2D In

In 0n×n

]︃
⪯ 0.

The above LMI holds if and only if
[︃
2c− 2D In

In 0n×n

]︃
⪯ 0 ⇐⇒

[︃
2(D − cIn) −In

−In 0n×n

]︃
⪰ 0. (A.6)

The Schur complement characterization implies that the LMI (A.6) holds if and only if
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1. D − cIn ≻ 0,

2. −(D − cIn)
−1 ⪰ 0,

which leads to an absurd. Therefore it has to be γ ̸= 0.
Next, let γ > 0. By assumption there exists P = [p], p ∈ Rn

>0 such that

P (−D +W ) + (−D +W⊤)P ⪯ −2ηP. (A.7)

Consider the LMI (A.2) with P being the matrix satisfying (A.7). Our goal is to find
γ > 0 (and c > 0) such that the following LMI holds

[︃
2P (D − cIn) −(P + γW⊤)
−(P + γW ) 2γIn

]︃
⪰ 0. (A.8)

Since 2γIn ≻ 0, we can apply the Schur complement characterization to the LMI (A.8):
the LMI (A.8) holds if and only if

2P (D − cIn)− (P + γW⊤)
1

2γ
(P + γW ) ⪰ 0 ⇐⇒

2PD − 1

2γ
P 2 − 1

2
PW − 1

2
W⊤P − γ

2
W⊤W ⪰ 2cP ⇐⇒

PD +
1

2

(︂
P (D −W ) + (D −W )P

)︂
− 1

2γ
P 2 − γ

2
W⊤W ⪰ 2cP ⇐=

PD + ηP − 1

2γ
P 2 − γ

2
W⊤W ⪰ 2cP. (A.9)

Let pmin := λmin

(︁
P
)︁
, pmax := λmax

(︁
P
)︁
, and dmin := λmin

(︁
D
)︁
. For proper c > 0

the LMI (A.9) follows if there exists γ > 0 such that

PD ⪰ 1

2γ
P 2 ⇐⇒ P

(︂
D − 1

2γ
P
)︂
⪰ 0 ⇐⇒ D − 1

2γ
P ⪰ 0

⇐⇒ D ⪰ 1

2γ
P ⇐⇒ dmin ≥ 1

2γ
pmax; (A.10)

ηP ⪰ γ

2
W⊤W ⇐⇒ ηpmin ≥ γ

2
λmax

(︁
W⊤W

)︁

⇐⇒ η ≥ γ

2

λmax

(︁
W⊤W

)︁

pmin
. (A.11)

Now, note that inequalities (A.10) and (A.11) implies, respectively:

γ ≥ 1

2

pmax

dmin
and γ ≤ 2ηpmin

λmax

(︁
W⊤W

)︁ .

Such a γ exists if and only if
1

2

pmax

dmin
≤ 2η

pmin

λmax

(︁
W⊤W

)︁ ⇐⇒ 2η
pmin

λmax

(︁
W⊤W

)︁ ≥ 1

2

pmax

dmin

⇐⇒ η ≥ 1

4

pmax

pmin

λmax(W
⊤W

)︁

dmin
,
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which is true by assumptions. Note that, for proper c > 0, the LMI (A.9) follows also if

PD ⪰ γ

2
W⊤W ⇐⇒ pmindmin ≥ γ

2
λmax

(︁
W⊤W

)︁

ηP ⪰ 1

2γ
P 2 ⇐⇒ ηIn ⪰ 1

2γ
P

⇐⇒ η ≥ 1

2γ
pmax.

These bounds lead to the same condition on η.

Remark A.2. As intuitively shown by Remark (A.1), for a given diagonal matrix P , the
LDS is not sufficient to guarantee the existence of a γ ≥ 0 such that the LMI (A.2) holds.
Instead, the value of η for which the LDS holds is crucial. In the following, we provide
a simple numerical example showing that for the choice of diagonal P in Remark (A.1),
the LDS with parameter η > 0 does not hold for η satisfying inequality (A.5). Let

W =

⎛
⎝
−9 0 0
0 −4 0
0 0 −1

⎞
⎠ and P = (−W )1/2 =

⎛
⎝
3 0 0
0 2 0
0 0 1

⎞
⎠ (A.12)

We compute

P (−I3 +W ) + (−I3 +W )P =

⎛
⎝
−60 0 0
0 −20 0
0 0 −4

⎞
⎠ ≺ 0, (A.13)

therefore the −I3 +W is LDS with respect to the diagonal matrix (−W )1/2. Next, pick

η =
1

4

pmax

pmin

λmax(W
⊤W

)︁

dmin
=

1

4

3

1

81

1
=

243

4
. (A.14)

We have

P (−I +W ) + (−I +W )P + 2ηP =

⎛
⎝

609
2 0 0
0 223 0
0 0 235

2

⎞
⎠ ,

which is positive definite. Therefore the “strong” LDS with parameter η satisfying
inequality (A.5) does not hold and indeed, as proved in Remark (A.1), there not exists
γ ≥ 0 such that the LMI (A.2) holds.
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