
An Algorithmic and Experimental Study

of

Coordinated Networked Vehicles

Student: Timur Karatas

Advisor: Prof. Francesco Bullo

Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign

Email: tkaratas@uiuc.edu

Completed on

This version March 3, 2004

Contents

1 Introduction 3

2 Literature Review 5

3 Development of Distributed Algorithms for Coverage Control 9

3.1 Locational Optimization . 9

3.2 Voronoi Partitions . 10

3.3 Centroidal Voronoi Partitions . 11

3.4 Continuous and Discrete Time Lloyd Descent 12

3.4.1 A continuous-time Lloyd algorithm 12

3.4.2 A family of discrete-time Lloyd algorithms 13

3.4.3 Computations over polygons with uniform density 14

3.4.4 Numerical simulations . 16

3.5 Asynchronous Distributed Implementations 16

3.5.1 Modeling an asynchronous distributed network of mobile robotic

agents . 17

3.5.2 Computation and maintenance of Voronoi cell and communication

radius . 18

3.5.3 Asynchronous distributed implementation of coverage control 19

3.6 Geometric patterns and formation control 20

4 Testbed Development 24

4.1 Mathematical Model of the Vehicle . 24

4.2 Hardware Components . 28

4.2.1 Original vehicle . 28

4.2.2 Modifications . 28

4.2.3 Single board computer . 28

4.2.4 Servo controller board . 29

4.2.5 Speed controller . 29

4.2.6 GPS sensor . 30

4.2.7 CMPS03 digital compass . 31

1

4.2.8 Optical encoder . 31

4.2.9 Wireless ethernet card . 32

4.3 Hardware Integration . 32

4.3.1 Docking Cart and Power Supply Flexibility 33

4.4 Ground Station Sofware . 35

4.4.1 create window . 37

4.4.2 socket udp listen . 37

4.5 gps listen . 38

4.5.1 speak thread . 38

4.6 Vehicle Software . 39

4.6.1 Compass thread . 40

4.6.2 GPS thread . 41

4.6.3 Estimator thread . 42

4.6.4 Control thread . 43

4.6.5 Trajectory thread . 44

4.6.6 Speak thread . 44

4.6.7 Listen thread . 44

4.6.8 Command listen thread . 44

5 Conclusion and Future Work 47

2

1 Introduction

Recent decades have witnessed a significant improvement in networking, navigation, em-

bedded computing, and miniaturization of electromechanical systems. Introduction of the

standard IEEE 802.11b has made implementation of ad-hoc wireless networks possible.

Navigation is improved by the removal of degradation of the Global Positioning System

(GPS) signals in 2000. Furthermore, introduction of Wide-Area Augmentation System

(WAAS) higher accuracy can be achieved by GPS, although WAAS is in experimental

state. Through the improvement in manufacturing processes, it is inexpensive nowadays

to purchase a whole computer system that fits into a single chip. This reduces space con-

straints and building smaller electromechanical systems becomes affordable, and easy to

build.

Due to aforementioned developments, it is becoming possible for us to implement

coordinated tasks by utilizing large number of robots. Their actions will utilize ad-hoc

communication networks, satellite navigation, and on-board computing power. There are

several advantages of using groups of agents. For instance, it increases robustness to failure

of single agents or communication links. Additionally, it enables us to accomplishing tasks

that are hard or impossible to implement by a single robot.

Although technology provides the physical components of such multi-vehicle networks,

the potential benefits of such systems are not yet being realized in high-performance ap-

plications. As of today, the fundamental limitation is a lack of understanding of how to

assemble and coordinate the individual vehicles into a coherent whole. In other words,

there are no systematic methodologies to control large-scale, reliable, distributed systems

such as a multi-vehicle network performing complex tasks.

Examples of complex tasks include coverage and surveillance problems such as optimal

sensor placement for signal detection, optimal sensor tuning, minimum-time to intercept,

and visibility. We can also add exploration and land mine detection, search and gradients

identification problems (plume tracing), map building and mosaicing, target acquisition

and identification. These problems are relevant in networks of devices of multiple scales

all the way from tiny embedded sensors to small-to-medium size vehicles.

In this study we would like to contribute to these emerging technologies in two stages.

In the first stage, we will build a theoretical background for control and coordination

3

algorithms for groups of vehicles. The focus of this stage will be on autonomous vehicle

networks performing distributed sensing tasks, where each vehicle acts as a tunable sensor.

This problem is also referred to as coverage control for multi-vehicle systems. In the second

stage, we will develop a testbed composed of a group of robotic vehicles. Furthermore we

will implement and illustrate the ideas that we have introduced during the first stage.

The development of the coordination algorithms is the theoretic contribution. It is in an

advanced state and appeared in [16]. The development of the testbed is the uncompleted

work and it is based on well known engineering concepts and methods. Development

of the testbed will enable us to illustrate the performance of the proposed algorithms.

The contribution of developing the testbed comes from integration of multiple disciplines

and technologies, such as, estimation, identification, non-linear control, path planning,

real-time programming and embedded systems.

This document is organized as follows. Section 2 is a literature review that is relevant

to our work. In Section 3 we develop distributed coordination algorithms for coverage

control. In Section 4 we explain the components of the testbed. we propose the work that

we plan to complete during this study in Section 5.

4

2 Literature Review

Mobile sensing networks

According to [18, 43, 57, 71], Working prototypes of active sensing networks have already

been developed. In [57], launchable miniature mobile robots communicate through a pre-

liminary wireless network. The vehicles are equipped with sensors for vibrations, acoustic,

magnetic, and IR signals as well as an active CMOS module. This construction is based

on groups, where each group has one central processing unit that is in charge of the high

level control, and a number of very small units that is dependent on central processing

unit.

A second system is suggested under the name of Autonomous Oceanographic Sampling

Network, see [18]. In this case, underwater vehicles are envisioned measuring temperature,

currents, and other distributed oceanographic signals. The vehicles communicate via an

acoustic local area network and coordinate their motion in response to local sensing infor-

mation and to evolving global data. This mobile sensing network is meant to provide the

ability to sample the environment adaptively in space and time.

There are also tested systems for wireless multi vehicle systems that are under develop-

ment, i.e., see [17, 19, 63]. The testbed in [63] consists of planar aerial vehicles (hovercraft)

which communicate via a wireless network. In this setting the high level control is central.

The setup in [17] is very similar to the one in [63], except that each vehicle has its own

decision unit and uses central computer for navigation. In [19], each vehicle has a simple

controller on board that receives input from a dedicated ground computer one for each.

Optimal sensor allocation and coverage problems

A basic problem that we consider in this study is that of characterizing and optimizing

notions of quality-of-measurement provided by an adaptive sensor network in a dynamic

environment. Within the context of this goal, we introduce a notion of sensor coverage

that formalizes an optimal sensor placement problem. This spatial resource allocation

problem is the subject of a discipline called locational optimization [22, 51, 52, 53, 65].

Because locational optimization problems are widely studied, a number of methods

are indeed available to tackle coverage problems; see [23, 51, 52, 53]. However, most

5

currently-available algorithms are not applicable to mobile sensing networks because they

inherently assume a centralized computation for a limited size problem in a known static

environment. This is not the case in multi-vehicle networks which, instead, rely on a

distributed communication and computation architecture. Although an ad-hoc wireless

network provides the ability to share some information, no global omniscient leader might

be present to coordinate the group. The inherent spatially-distributed nature and limited

communication capabilities of a mobile network invalidate classic approaches to algorithm

design.

Distributed algorithms for cooperative control

During recent years, we see a significant amount of research focused on motion plan-

ning and coordination problems for multi-vehicle systems. Subjects include geometric

patterns [2, 64, 66, 73], formation control [6, 21], gradient climbing [5], and conflict avoid-

ance [67]. However, the distributed coordination laws for dynamic networks are being

proposed just recently; e.g., see [36, 41, 54].

Along the line of behavior-based robotics, algorithms have been designed for sophis-

ticated cooperative tasks; see [3, 6, 7, 12, 26, 58]. An example of coverage control is

discussed in [35]. However, no formal results are currently available on how to design

reactive control laws, check their correctness, and guarantee their optimality with respect

to an aggregate objective.

The studies in [10, 68] discuss distributed asynchronous algorithms as networking al-

gorithms, rate and flow control, and gradient descent flows, from a numerical optimization

viewpoint. Typically, both of these references consider networks with fixed topology, and

do not address algorithms over ad-hoc dynamically changing networks. Another com-

mon assumption is that any time an agent communicates its location, it broadcasts it to

every other agent in the network. In our setting, this would require a non-distributed

communication set-up.

Estimation, path planning and control for a single robot

The problem of estimating state of a system from noisy sensor information has been

widely studied in literature. When the system dynamics and observer models are linear,

6

the classical approach is to calculate the minimum mean square error estimate by the

Kalman Filter [37]. Several suitable extensions have been sought to the Kalman filter

for the cases of nonlinear system dynamics and observers [20, 31, 59, 60, 69]. The most

widely used approach is Extended Kalman filtering (EKF), which attempts to cope with

nonlinearities simply by linearization, see [20, 59] for a comprehensive study.

It is well known that the optimal solution to the nonlinear filtering problem is infinite

dimensional [44]. A variety of suboptimal approaches has been developed, broadly classi-

fied as Monte Carlo methods and analytical approximations [31, 60, 69]. [69] introduces

unscented Kalman filter (UKF) to address the limitations of EKF and other suboptimal

approaches. UKF is based on a deterministic sampling approach to capture the mean and

covariance estimates with a minimal set of sample points. Additionally, some recent pa-

pers investigate general observation processes where sampling is randomly spaced in time

[48].

Various numerical techniques deal with trajectory and path planning problems. In

numerical optimal control, the optimal open-loop inputs and the resulting trajectories

are often obtained through nonlinear programming. Because the optimization problem is

infinite dimensional, various forms of transcription are used to cast the variational problem

into a nonlinear program; see [33] for an early reference on the collocation method, and

[11, 24, 70] for various recent surveys. Within the context of robotic path planning, the

most successful solution are randomized methods, e.g., see the recent overview article [45].

Specific examples of algorithms include randomized potential field [9] and probabilistic

roadmaps [38].

In [25] optimal trajectory generation for classes of differentially flat systems with aux-

iliary constraints has been studied. The constraints are satisfied through linearization

and offline optimization. [55] investigates fuel-optimal trajectory generation subject to

avoidance requirements via mixed integer linear programming (MILP). To use MIPL, only

linear models can be considered. [27, 28] study randomized path planning algorithms for

dynamical systems in the presence of fixed and moving obstacles. This work differs from

the original RRT approach by relying on a precomputed lookup-table of optimal cost-to-go

function as distance measure.

7

Embedded hardware and software

Text [14] covers designing, building and debugging embedded hardware. Information on

MicroChip PIC, Atmel AVR and Motorola 68000 series processors, as well as architec-

tures of digital signal processors are included. Additionally, the book gives information

about serial communication protocols, such as SPI, I2C, RS-232, RS-422, and networking

protocols such as, RS-485, CAN and Ethernet. The books [34, 72] also discuss embedded

hardware, focusing on x86-, StrongARM-, and PowerPC-based target boards. Information

on peripheral interfacing via serial, USB, and parallel ports, and memory mapped I/O is

also given. References [39, 56, 61] introduce avionics, embedded systems for navigation,

and their components.

There are various books that discuss development of software for embedded systems.

Books [34, 72] give information on building embedded systems utilizing the Linux oper-

ating system. Details include downloading and setting up development and debugging

tools, building a kernel and a root file system, manipulating storage devices, setting up

boot loader and networking. Text [4] covers threaded programming, including the de-

tails of synchronization and management of threads and POSIX standard. Text [29] gives

information on POSIX.4, real time programming standard on UNIX operating systems.

Text [62] discusses interprocess communications, including pipes, FIFOs, message queues,

mutexes, semaphores, and shared memory.

8

3 Development of Distributed Algorithms for Coverage Con-

trol

3.1 Locational Optimization

In this section we describe a collection of known facts about locational optimization prob-

lem. Along our study, we interchangeably refer to the elements of the network as sensors,

agents, vehicles, or robots. We let R+ be the set of nonnegative real numbers, N be the

set of positive natural numbers and N0 = N ∪ {0}.

Let Q be a convex polytope in RN including its interior, and let ‖ · ‖ denote the

Euclidean distance function. We call a map φ : Q→ R+ a distribution density function if

it represents a measure of information or probability that some event take place over Q.

One example of a distribution density function can be seen in Figure 1. Let P = [p1, . . . , pn]

be the location of n sensors, each moving in the space Q. Because of noise and loss of

signal strength, the sensing performance at point q taken from ith sensor at the position

pi degrades with the distance ‖q − pi‖ between q and pi. Let f : R+ → R+ be a non-

decreasing differentiable function to describe this degradation. Therefore, f (‖q − pi‖)

provides a quantitative assessment of how poor the sensing performance is.

Figure 1: Contour plot on a polygonal environment of the Gaussian density function

φ = exp(−x2 − y2).

A partition of Q is defined as a collection of n polytopes W = {W1, . . . ,Wn} with

disjoint interiors whose union is Q. We say that two partitions W and W ′ are equal if Wi

and W ′
i only differ by a set of φ-measure zero, for all i ∈ {1, . . . , n}.

9

We consider the task of minimizing the locational optimization function

H(P,W) =
n
∑

i=1

∫

Wi

f(‖q − pi‖)φ(q)dq, (1)

where we assume that the ith sensor is responsible for measurements over its “dominance

region” Wi. The function H, thus the optimization, has to be minimized with respect to

both the sensors location P , and the assignment of the dominance regions W to achieve

a local minim. This problem is referred to as a facility location and in particular as a

continuous p-median problem in [22].

If the positions of any two agents are interchanged, along with their associated re-

gions of dominance, the value of the locational optimization function H is not affected.

More precisely, let Σn denote the discrete group of permutations of n elements, then

H(p1, . . . , pn,W1, . . . ,Wn) = H(pσ(1), . . . , pσ(n),Wσ(1), . . . ,Wσ(n)) for all σ ∈ Σn. To elim-

inate this discrete redundancy, one could take natural action of Σn on Qn, and consider

Qn/Σn as the configuration space for the position P of the n vehicles.

3.2 Voronoi Partitions

If the sensors’ locations are fixed, the optimal partition of Q is the Voronoi partition

V(P) = {V1, . . . , Vn} generated by the points (p1, . . . , pn),

Vi = {q ∈ Q | ‖q − pi‖ ≤ ‖q − pj‖ , ∀j 6= i},

see [16]. The set of regions {V1, . . . , Vn} is called the Voronoi diagram for the generators

{p1, . . . , pn}. The two Voronoi regions Vi and Vj are called adjacent if they share an edge.

In this case pi is called a (Voronoi) neighbor of pj . The set of indexes of the Voronoi

neighbors of pi is denoted by N (i). Clearly, j ∈ N (i) if and only if i ∈ N (j). We also

define the (i, j)-face as ∆ij = Vi ∩ Vj . Voronoi diagrams can be defined with respect

to various distance functions, e.g., the 1-, 2-, s-, and ∞-norm over Q = Rm, see [42].

For a comprehensive treatment on Voronoi diagrams see [52]. Some useful facts about the

Euclidean setting are the following: if Q is a convex polytope in a N -dimensional Euclidean

space, the boundary of each Vi is the union of (N − 1)-dimensional convex polytopes.

For the following, we will denote the optimization problem (1) as,

HV(P) = H(P,V(P)).

10

By using the definition of the Voronoi partition, we have mini∈{1,...,n} f(‖q−pi‖) = f(‖q−

pj‖) for all q ∈ Vj . Therefore,

HV(P) =

∫

Q

min
i∈{1,...,n}

f(‖q − pi‖)φ(q)dq , (2)

= E(Q,φ)

[

min
i∈{1,...,n}

f(‖q − pi‖)

]

,

that is, the locational optimization function can be interpreted as an expected value com-

posed with a min operation. This is the usual way in which the problem is presented in

the facility location and operations research literature [22]. One can show [23] that

∂HV
∂pi

(P) =
∂H

∂pi
(P,V(P)) =

∫

Vi

∂

∂pi
f (‖q − pi‖)φ(q)dq, (3)

i.e., the partial derivative of HV with respect to the ith sensor only depends on its own

position and the position of its Voronoi neighbors. Therefore the computation of the

derivative of HV with respect to the sensors’ location is decentralized in the sense of

Voronoi. Furthermore, the Voronoi partition V depends at least continuously on P =

(p1, . . . , pn), the function HV is at least continuously differentiable.

3.3 Centroidal Voronoi Partitions

Let us recall some basic quantities associated to a region V ⊂ RN and a mass density

function ρ. The (generalized) mass, centroid (or center of mass), and polar moment of

inertia are defined as

MV =

∫

V

ρ(q) dq, CV =
1

MV

∫

V

q ρ(q) dq,

JV,p =

∫

V

‖q − p‖2 ρ(q) dq.

Additionally, by the parallel axis theorem, one can write,

JV,p = JV,CV
+MV ‖p− CV ‖

2 (4)

where JV,CV
∈ R+ is defined as the polar moment of inertia of the region V about its

centroid CV .

Let us consider again the locational optimization problem (1), and suppose now we are

strictly interested in the setting

H(P,W) =
n
∑

i=1

∫

Wi

‖q − pi‖
2φ(q)dq, (5)

11

that is, we assume f(‖q−pi‖) = ‖q−pi‖2. The parallel axis theorem leads to simplifications

for both the function HV and its partial derivative:

HV(P) =
n
∑

i=1

JVi,CVi
+

n
∑

i=1

MVi
‖pi − CVi

‖2

∂HV
∂pi

(P) = 2MVi
(pi − CVi

).

Here the mass density function is ρ = φ. It is convenient to define

HV,1 =
n
∑

i=1

JVi,CVi
, HV,2 =

n
∑

i=1

MVi
‖pi − CVi

‖2 .

Therefore, the local minimum points for both of the location optimization function HV

are centroids of their Voronoi cells. Equivalently,

CVi
= argminpi

HV(P). (6)

The partitions and points from (6) for H are called centroidal Voronoi partitions. We

will refer to a sensors’ configuration as a centroidal Voronoi configuration if it gives rise

to a centroidal Voronoi partition.

3.4 Continuous and Discrete Time Lloyd Descent

In this section, we introduce algorithms to compute the location of sensors that minimize

the cost H. We first discuss the Lloyd algorithm in quantization theory. Then, we will

treat them in two categories. In section 3.4.1, we propose a continuous-time version of the

classic Lloyd algorithm. In section 3.4.2, we present a family of algorithms in discrete-time.

In both settings, we show that the proposed algorithms are gradient descent flows.

Lloyd algorithm in quantization theory [32, 47] is usually presented as follows: given

the location of n agents, p1, . . . , pn, (i) construct the Voronoi partition corresponding to

P = (p1, . . . , pn); (ii) compute the mass centroids of the Voronoi regions found in step (i).

Set the new location of the agents to these centroids; and return to step (i).

3.4.1 A continuous-time Lloyd algorithm

Assume that the sensors location obeys the dynamical behavior,

ṗi = ui.

12

Let HV be a cost function to be minimized and impose that the location pi follows a

gradient descent. Equivalently, consider HV as a Lyapunov function and stabilize the

multi-vehicle system to one of its local minima via dissipative control. Formally, we set

ui = −kprop(pi − CVi
), (7)

where kprop ∈ R+. Further, we assume that the partition V(P) = {V1, . . . , Vn} is continu-

ously updated.

Proposition 3.1 (Continuous-time Lloyd descent). For the closed-loop system in-

duced by equation (7), the sensors location converges asymptotically to the set of critical

points of HV , i.e., the set of centroidal Voronoi configurations on Q. Assuming this set is

finite, the sensors location converges to a centroidal Voronoi configuration.

Proof. Under the control law (7), we have

d

dt
HV(P (t)) =

n
∑

i=1

∂HV
∂pi

ṗi = −2kprop

n
∑

i=1

MVi
‖pi − CVi

‖2 = −2kpropHV,2(P (t)).

By LaSalle’s principle [40], the sensors location converges to the largest invariant set

contained in H−1
V,2(0), which is precisely the set of centroidal Voronoi configurations. Since

this set is clearly invariant for (7), we get the stated result. If H−1
V,2(0) consists of a finite

collection of points, then P (t) converges to one of them by continuity of HV .

3.4.2 A family of discrete-time Lloyd algorithms

Let T be a continuous mapping T : Qn → Qn providing the following two properties,

(i) for all i ∈ {1, . . . , n}, ‖Ti(P) − CVi(P)‖ ≤ ‖pi − CVi(P)‖, where Ti denotes the ith

component of T ,

(ii) if P is not centroidal, then there exists at least one j, such that ‖Tj(P)−CVj(P)‖ <

‖pj − CVj(P)‖.

Property (i) assures that, the agents of the network do not increase their distance to

its corresponding centroid, if they moved according to T . Property (ii) assures that at

least one robot moves at each iteration and strictly approaches the centroid of its Voronoi

region. Therefore, by properties (i) and (ii), the fixed points of T are the set of centroidal

Voronoi configurations.

13

Proposition 3.2 (Discrete-time Lloyd descent). Let T : Qn → Qn be a continuous

mapping satisfying properties (a) and (b). Let P0 ∈ Qn denote the initial sensors’ loca-

tion. Then, the sequence {Tm(P0) | m ∈ N} converges to the set of centroidal Voronoi

configurations. If this set is finite, then the sequence {Tm(P0) | m ∈ N} converges to a

centroidal Voronoi configuration.

Proof. Consider HV : Qn → R+ as an objective function for the algorithm T . Using the

parallel axis theorem, H(P,W) =
∑n

i=1 JWi,CWi
+
∑n

i=1MWi
‖pi − CWi

‖2, and therefore

H(P ′,W) ≤ H(P,W) , (8)

as long as ‖p′i − CWi
‖ ≤ ‖pi − CWi

‖ for all i ∈ {1, . . . , n}, with strict inequality if for any

i, ‖p′i−CWi
‖ < ‖pi−CWi

‖. In particular, H(CW ,W) ≤ H(P,W), with strict inequality if

P 6= CW , where CW denotes the set of centroids of the partition W. Moreover, since the

Voronoi partition is the optimal one for fixed P , we also have

H(P,V(P)) ≤ H(P,W) , (9)

with strict inequality if W 6= V(P).

Now, because of property (a) of T , inequality (8) yields

H(T (P),V(P)) ≤ H(P,V(P)) = HV(P) ,

and the inequality is strict if P is not centroidal by property (b) of T . In addition,

HV(T (P)) = H(T (P),V(T (P))) ≤ H(T (P),V(P)) ,

because of (9). Hence, HV(T (P)) ≤ HV(P), and the inequality is strict if P is not

centroidal. Therefore, HV is a descent function for the algorithm T . The theorem follows

from the global convergence theorem from [40], and continuity of T .

3.4.3 Computations over polygons with uniform density

In this section, we study some of the closed-form expression for the control laws introduced

above. Assume the Voronoi region Vi is a convex polygon (i.e., a polytope in R2) with Ni

vertexes labeled {(x0, y0), . . . , (xNi−1, yNi−1)} such as in Fig. 2. It is convenient to define

(xNi
, yNi

) = (x0, y0). We also assume that the density function is φ(q) = 1.

14

(x2, y2)

(x3, y3)

(x5, y5)
(x0, y0) = (x6, y6)

(x1, y1)

(Cx, Cy)

(x4, y4)

Figure 2: Notation conventions for a convex polygon.

By evaluating the integrals corresponding to mass, center of mass and moment of

inertia, one can obtain the following closed-form expressions

MVi
=

1

2

Ni−1
∑

k=0

(xkyk+1 − xk+1yk)

CVi,x =
1

6MVi

Ni−1
∑

k=0

(xk + xk+1)(xkyk+1 − xk+1yk) (10)

CVi,y =
1

6MVi

Ni−1
∑

k=0

(yk + yk+1)(xkyk+1 − xk+1yk) .

To present a simple formula for the polar moment of inertia, let x̄k = xk − CVi,x and

ȳk = yk − CVi,y, for k ∈ {0, . . . , Ni − 1}. Then, the polar moment of inertia of a polygon

about its centroid, JVi,C becomes

JVi,CVi
=

1

12

Ni−1
∑

k=0

(x̄kȳk+1 − x̄k+1ȳk) · (x̄
2
k + x̄kxk+1 + x̄2

k+1 + ȳ2
k + ȳkȳk+1 + ȳ2

k+1) .

The proof of these formulas is based on decomposing the polygon into the union of

disjoint triangles. We refer to [15] for analog expressions over RN . We would like to note

that equation (10) for a polygon’s centroid leads to a closed-form algebraic expression for

the control law in equation (7) as a function of the neighboring vehicles’ location.

15

PSfrag replacements

0.5

0.6

0.7

0.8

0.9

Cost Function 20 40 60 80 100

0.14

0.16

0.18

0.2

0.22

PSfrag replacements

0.5

0.6

0.7

0.8

0.9

Cost Function

PSfrag replacements

0.5

0.6

0.7

0.8

0.9

Cost Function

PSfrag replacements

0.5

0.6

0.7

0.8

0.9

Cost Function

Figure 3: Uniform distribution of sensors obtained by 50 vehicles in a polygonal environ-

ment. The vehicles’ initial positions are in a tight group in the lower left corner and their

final positions are optimally distributed.

3.4.4 Numerical simulations

In this section we display some simulation results to show the performance of the continuous-

time Lloyd algorithm. The algorithm is implemented in Mathematica as a single central-

ized program. Figure 3 illustrates the result when the distribution density function is

uniform.

Figure 4 displays the result when the distribution density function is an inverse ex-

ponential about the location shown by the large dot. In both simulations the number of

agents were 50. One can see agents’ initial locations in the lower left corner, final locations

in the lower right corner, the cost function vs. time in the upper right corner, and the

path generated in the upper left corner.

3.5 Asynchronous Distributed Implementations

In this section we show an implementation of the Lloyd gradient algorithm in asynchronous

distributed fashion. In Section 3.5.1 we describe our model for a network of robotic agents,

Next, we provide a distributed algorithm for the local computation and maintenance of the

Voronoi cells and communication radius. Finally, in Section 3.5.3 we propose a distributed

16

PSfrag replacements

12

11

10

9

8

7

Cost Function 20 40 60 80 100

0.007

0.0072

0.0074

0.0076

0.0078

PSfrag replacements

12

11

10

9

8

7

Cost Function

PSfrag replacements

12

11

10

9

8

7

Cost Function

PSfrag replacements

12

11

10

9

8

7

Cost Function

Figure 4: Non-uniform setting. The distribution density function has an inverse exponen-

tial about the location shown by the large circle in the bottom left and right figures.

asynchronous implementation of the Lloyd algorithm based on the gradient optimization

algorithm as described in [68].

3.5.1 Modeling an asynchronous distributed network of mobile robotic agents

We start by introducing the notion of robotic agent with computation, communication,

sensing, and control capabilities as the ith element of a network. Each vehicle has access

to its unique identifier i. The ith agent occupies a location pi ∈ Q ⊂ RN and it is capable

of moving in space, at any time t ∈ R+ for any period of time δt ∈ R+, according to a first

order dynamics of the form:

ṗi(s) = ui, ‖ui‖ ≤ 1 , ∀s ∈ [t, t+ δt]. (11)

Each agent has one processor, i.e. agent i is associated with processor i. The processors

have the ability of allocating continuous and discrete states and performing operations on

them. The processor i has access to the agent’s location pi and determines the control pair

(δt, ui). Additionally, the processor i has access to a local clock ti ∈ R+, and a scheduling

sequence, i.e., an increasing sequence of times {Ti,k ∈ R+ | k ∈ N0} such that Ti,0 = 0

and 0 < ti,min < Ti,k+1 − Ti,k < ti,max. The processor i agent is capable of transmitting

17

information to any other agent within a closed disk of radius Ri ∈ R+.

We assume the communication radius Ri to be a quantity controllable by the ith

processor and the corresponding communication bandwidth to be limited. We represent

the information flow between the agents by means of “send” (within specified radius Ri)

and “receive” commands with a finite number of arguments. We also assume that all

communication between agents and all sensing of agents locations to be always accurate

and instantaneous.

Consider the closed-loop system formed by the evolution of a network of n agents,

according to equation (11). The network evolution is said to be Voronoi-distributed if each

ui(p1, . . . , pn) can be written as a function of the form ui(pi, pi1 , . . . , pim), with ik ∈ N (i),

k ∈ {1, . . . ,m}. It is well known that, for n ≥ 3 there are at most 3n − 6 neighborhood

relationships in a planar Voronoi diagram [52]. Therefore, the number of Voronoi neighbors

of each site is on average less than or equal to 6, and Voronoi-distributed algorithms lead to

scalable networks. Finally, note that the set of indexes {i1, . . . , im} for a specific generator

pi of a Voronoi-distributed dynamical system is not the same for all possible configurations

and time instances of the network, i.e., the topology of the closed-loop system is dynamic.

3.5.2 Computation and maintenance of Voronoi cell and communication

radius

A key requirement of the Lloyd algorithm presented in Section 3.4 is that each agent

needs to know the relative location of each Voronoi neighbor to be able to compute its

own Voronoi cell. The ability of locating neighbors plays a central role in numerous other

algorithms, especially for localization, media access, routing, and power control in ad-hoc

wireless communication networks, e.g. see [13, 30, 46]. In this study, the agents are able

to obtain this information from the communication layer. In what follows, we provide a

distributed asynchronous algorithm for the local computation and maintenance of Voronoi

cells and communication radius.

Consider a robotic agent with communication capability. The processor i stores the

information, such as position of the other agents in the state variable P i. The objective

is to determine the smallest distance Ri for vehicle i which provides sufficient information

18

Figure 5: An execution (from left to right) of Adjust communication radius algo-

rithm: the sensing disk B(pi, Ri) is in light gray, and the Voronoi cell estimate W (pi, Ri)

is the darker gray region.

to compute the Voronoi cell Vi. We start by noting that Vi is a superset of the convex set

W (pi, Ri) = B(pi, Ri) ∩
(

∩j:‖pi−pj‖≤Ri
Sij

)

, (12)

where B(pi, Ri) = {q ∈ Q | ‖q − pi‖ ≤ Ri} and the half planes Sij are

{q ∈ RN | ‖q − pi‖ ≤ ‖q − pj‖}.

One can show that all Voronoi neighbors of pi are within distance Ri from pi, provided Ri

is twice as large as the maximum distance between pi and the vertexes ofW (pi, Ri). There-

fore, the minimum adequate communication radius is Ri,min = 2maxq∈W (pi,Ri,min) ‖pi−q‖.

This argument guarantees the correctness of the algorithm outlined in Table 1, and visu-

alized in Figure 5. Here, we assume that update involves two steps:

send
(

“request to reply”, pi(ti)
)

within radius Ri

receive
(

“response”, pj
)

from all agents within radius Ri

Further, we require each agent to perform the following event-driven task: if the ith agent

receives at any time ti a “request to reply” message from the jth agent located at position

pj , it executes:

send
(

“response”, pi(ti)
)

within radius ‖pi(t)− pj‖

3.5.3 Asynchronous distributed implementation of coverage control

In this section we present a modification to Lloyd algorithm for the solution of the op-

timization problem (1), so that the algorithm can be implemented by an asynchronous

19

Name: Adjust communication radius algorithm

Goal: maintain communication radius for Voronoi cell

calculation

Requires: communication device with controllable radius Ri

At time ti, local agent i performs:

1: initialize Ri, detect all pj within radius Ri

2: update P i(ti), compute W (pi(ti), Ri)

3: while Ri < 2maxq∈W (pi(ti),Ri) ‖pi(ti)− q‖ do

4: set Ri := 2Ri

5: update P i(ti), compute W (pi(ti), Ri)

6: end while

7: set Ri := 2maxq∈W (pi(ti),Ri) ‖pi(ti)− q‖

8: set Vi :=Wi(pi(ti), Ri)

Table 1: Algorithm for adjusting communication radius

distributed network of robotic agents. For simplicity, we assume that at time 0 all clocks

are synchronized and that each agent knows at 0 the exact location of every other agent.

The algorithm Coverage algorithm is illustrated in Table 2.

We have the following proposition, as a consequence of the results in [68, Theorem 3.1

and Corollary 3.1].

Proposition 3.3. Let P0 ∈ Qn denote the initial sensors location. Let {Tk} be the se-

quence in increasing order of all the scheduling sequences of the agents of the network.

Assume infk{Tk − Tk−1} > 0. Then, there exists a sufficiently small δ∗ > 0 such that if

0 < δt ≤ δ∗, the Coverage algorithm converges to the set of critical points of HV ,

that is, the set of centroidal Voronoi configurations.

3.6 Geometric patterns and formation control

Here we suggest the use of decentralized coverage algorithms as formation control algo-

rithms, and we present various density functions that lead the multi-vehicle network to

predetermined geometric patterns. In particular, we present simple density functions that

20

Name: Coverage algorithm

Goal: distributed optimal agent location

Assumes: pi(t+ 1) = pi(t) + ui, ‖ui‖ ≤ 1

Requires: (i) Voronoi cell computation

(ii) centroid and mass computation

(iii) positive real δ0

(iv) Adjust communication radius algorithm

For i ∈ {1, . . . , n}, ith agent performs at ti = Ti,0 = 0:

0: set P i(Ti,0) := (pi1(Ti,0), . . . , p
i
n(Ti,0))

0: compute Voronoi region Vi(Ti,0)

0: set Vi := Vi(Ti,0) and Ri := 2maxq∈Vi
‖pi − q‖

For i ∈ {1, . . . , n}, the ith agent performs at time ti = Ti,k either one

of the following threads or both. For some Bi ∈ N, we require that

each thread is executed at least once every Bi steps of the scheduling

sequence.

[Information thread]

1: run Adjust communication radius algorithm

[Control thread]

1: compute centroid CVi
and mass MVi

of Vi

2: apply control pair
(

δ0, MVi
(CVi

− pi(Ti,k))
)

Table 2: Coverage algorithm

21

lead to segments, ellipses, polygons, or uniform distributions inside convex environments.

Consider a planar environment, let k be a large positive gain, and denote q = (x, y) ∈

Q ⊂ R2. Let a, b, c be real numbers, consider the line ax + by + c = 0, and define the

density function

φline(q) = exp(−k(ax+ by + c)2).

Similarly, let (xc, yc) be a reference point in R2, let a, b, r be positive scalars, consider the

ellipse a(x− xc)
2 + b(y − yc)

2 = r2, and define the density function

φellipse(q) = exp
(

− k(a(x− xc)
2 + b(y − yc)

2 − r2)2
)

.

Fig. 6 illustrates the performance of the closed-loop network corresponding to this density

function. During the simulations, we observed that the convergence to the desired pattern

was rather slow.

Figure 6: Coverage control for 32 vehicles with φellipse. The parameter values are: k = 500,

a = 1.4, b = .6, xc = yc = 0, r2 = .3, and kprop = 1.

Finally, define the smooth ramp function SR`(x) = x(arctan(`x)/π + (1/2)), and the

density function

φdisk(q) = exp(−k SR`(a(x− xc)
2 + b(y − yc)

2 − r2)).

This density function leads the multi-vehicle network to obtain a uniform distribution

inside the ellipsoidal disk a(x− xc)
2 + b(y − yc)

2 ≤ r2. We illustrate this density function

in Fig. 7.

It appears straightforward to generalize these types of density functions to the setting of

arbitrary curves or shapes. The proposed algorithms are to be contrasted with the classic

approach to formation control based on rigidly encoding the desired geometric pattern.

22

Figure 7: Coverage control for 32 vehicles to an ellipsoidal disk. The density function

parameters are the same as in Fig. 6, and ` = 10, kprop = 1.

One disadvantage of the proposed approach is the requirement for a careful numerical

computation of Voronoi diagrams and centroids. We refer to [64, 66] for previous work on

algorithms for geometric patterns, and to [6, 21] for formation control algorithms.

23

4 Testbed Development

4.1 Mathematical Model of the Vehicle

To obtain a model for the vehicle behavior, we start with the simple kinematic model of a

car, as shown in Figure 8, where we assume no slip. The state vector is x = [xc yc θ]T ,

where (xc, yc) are the coordinates of the center of the real axis in the inertial reference

frame, and θ is the orientation of the vehicle with respect to the y-axis of the inertial

reference frame.

x

y

(xc, yc)

θ

ψ

Figure 8: Input and state variables of a kinematic model of a car

We can now state the differential equation of the kinematic model as [49],

ẋ =











v cos(θ)

v sin(θ)

1
L
tan(ψ)v











(13)

where v is the speed and ψ is the steering angle of the car and they both are assumed to

be inputs of the system.

Once the kinematic model has been established, we can add some complexity in order

to model the real sytem with better accuracy. First, we will consider the effective volt-

age applied to the motors as an input rather than the vehicle speed. Thus, the motor

24

torque(Tmotor) equation is, [50]

Tmotor = KT iaia(t)

=
KT ia

Ra
(ea − eb(t))

Tmotor =
KT ia

Ra
(ea −Kebωω(t)) (14)

where ia is the armature current, Ra is the armature resistance, ea is the applied armature

voltage, eb is the back emf, ω is the angular velocity of the motor and KT ia , Kebω are

system constants relating torque to current and back emf to angular speed of the motor.

Substituting angular speed with linear speed, incorporating the power train gear ratios

into the motor torque equation, and lumping some constants, (14) becomes

Fcar = KFuu(t)−KFvv(t) (15)

In equation (15) Fcar is the thrust of the motor on the vehicle, KFv is the constant

accounting for decrease in force due to speeed of the vehicle, KFu is the constant relating

thrust to effective input, and u(t) ∈ [−1, 1] is the effective input.

We can further enhance the model by adding viscous friction and static friction terms

due to mechanical interactions, by which the equation (15) becomes

Fcar = KFuu(t)−KFv(u(t))v(t) (16)

In equation (16) we lump the viscous friction constant into KFv(u(t)). In particular, we

would like to point out that generally this term will be different in the cases of power

applied, and power not applied.

Now, we can state the speed dynamics as

v̇(t) =
1

M
(KFuu(t)−KFv(u(t))v(t)) (17)

where, M is the vehicle mass.

We can now move on to introducing steering dynamics. Steering on the vehicles is

performed using a standard RC servo. Specifications from the manufacturer’s manual

make it evident that we can approximate the servo behavior as

ψ̇(t) = Kψ(ψr(t)− ψ(t)) (18)

25

where Kψ is the servo travel rate, and ψr is the reference steering angle to be tracked.

Using equations (17) and (18), the system differential equation becomes

ẋc(t) = cos θ(t)v(t)

ẏc(t) = sin θ(t)v(t)

θ̇(t) =
1

L
tanψ(t)v(t) (19)

v̇(t) =
1

M
(KFuu(t)−KFv(u(t))v(t))

ψ̇(t) = Kψ(ψr(t)− ψ(t))

where ψr(t), ψ(t) ∈ [−Mψ,Mψ].

Some parameters require special attention. KFu is the constant relating the force

applied on the car by the motor to the effective input, u(t) ∈ [−1, 1], under the assumption

that the motor is locked. Force is related to the torque by the constant Kωv, which relates

motor speed (rad/s) to vehicle speed (m/s). We have

KFu = TmaxKωv

where Tmax is the maximum locked motor torque.

KFv(u(t)) is a function of the input. If the input is applied KFv(u(t)) combines the

effects of viscous friction due to moving parts of the vehicle and back emf generated by the

motor. If the input is not applied, KFv(u(t)) only contains the effects of viscous friction

due to moving parts of the vehicle. Thus, KFv(u(t)) can be expressed as

KFv(u) =











Cv, u = 0,

Tmax

smax
K2
ws + Cv, u 6= 0.

where smax is the speed that reduces the motor generated torque to zero, and Cv is the

viscous friction coefficient due to moving parts of the vehicle.

We have included the estimated values of the vehicle parameters in Table 3.

26

Table 3: Vehicle parameters

Parameter Explanation Value Unit

Tmax maximum motor torque 0.15 N·m

M mass of the vehicle 4.80 kg

Cv viscous friction coefficient 0.85 N·s/m

Kωs motor speed/vehicle speed
1st gear

2st gear

396.0

233.0
rad/m

Kencoder encoder count/distance
1st gear

2st gear

12978

7636.0
1/m

Kψ servo steering rate 0.12 rad/s

Mψ maximum servo steering angle 0.35 rad

Laxle distance between two axles 0.305 m

27

4.2 Hardware Components

4.2.1 Original vehicle

The original vehicle was an Emaxx 1/10 Scale Monster Truck RC-Car manufactured by

Traxxas Inc. It is the vehicle of choice because it has relatively large size, low cost, and

can be easily modified to provide a platform for the PC104 single board computer and

accessories. The motors provided with the vehicle are powerful enough to accommodate

additional weight. Figure 9 shows a top view of the vehicle chassis and components.

Figure 9: Top view of the vehicle chassis and components

4.2.2 Modifications

One of two motors on the vehicle was removed to reduce the top speed of the vehicle, and

the gearing from the removed motor provides a convenient manner in which to include

an encoder on the main drive shaft. The suspension of the vehicle can be modified to

accommodate increased loads, determined primarily by the heavy batteries. The chassis

of the vehicle provides sufficient space for a PC104 board, a DC/DC converter and a few

other devices, while housing them safely in the event of a collision.

4.2.3 Single board computer

The single board computer used on these vehicles is the Kontron VNS-786 PC-104 board,

shown in Figure 10. The VNS-786 offers a complete embedded PC platform with a foot-

28

print of 5.75 x 8 inches. The VNS-786 supports DiskonChip (DOC) solid-state hard drives.

We selected a 64 MB DOC as it is sufficient to store the operating system and necessary

programs. The board operates on 5V, has two enhanced parallel ports, and four RS-232

serial ports, as well as an integrated 10/100 Ethernet controller. The PC-104 platform

is well-suited for this application due to its reliable and rugged stackable expansion bus,

which we use for the PCMCIA expansion board to handle the wireless 802.11b Ethernet

cards and our custom compass/encoder data acquisition board.

Figure 10: Kontron VNS-786 PC-104 Single-Board Computer

4.2.4 Servo controller board

The SV203 is a PIC16C73 based microcontroller based servo motor controller board that

accepts RS-232 serial text based data from a host computer and outputs appropriate

signals to control up to 8 RC (radio controlled) servo motors. There is also a 5-channel

A/D port, built into the board for reading voltages in the range of 0-5V.

4.2.5 Speed controller

The EVX 3014 14.4V electronic Speed Controller comes packaged with the Emaxx truck.

Specificaly, this speed control unit utilizes a PWM (Pulse Width Modulation) signal. In

a simple way, PWM is a way of digitally encoding analog signal levels [8].

Through the use of counters, the duty cycle of a square wave is modulated to encode

29

a specific analog signal level. At any given instant of time, the PWM signal level is either

the full DC supply voltage or off. The voltage source is supplied to the analog load by

means of a repeating series of on and off pulses. The on-time is the time during which the

DC supply is applied to the load, and the off-time is the period during which that supply

is switched off. Given a sufficient bandwidth, any analog value can be encoded with PWM

[8].

Figure 11 shows three different PWM signals. Figure a shows a PWM output at a

10% duty cycle. That is, the signal is on for 10% of the period and off the other 90%.

Figures 1b and 1c show PWM outputs at 50% and 90% duty cycles, respectively. These

three PWM outputs encode three different analog signal values, at 10%, 50%, and 90% of

the full strength. If, for example, the supply is 14.4V and the duty cycle is 10%, a 1.44V

analog signal results.

V(t)

Off

On

(a) 10% Duty Cycle

V(t)

Off

On

V(t)

Off

On

t

(b) 50% Duty Cycle

(c) 90% Duty Cycle

t

t

Figure 11: PWM signal samples

4.2.6 GPS sensor

The GPS sensor, Garmin GPS-16 LVS, was specifically developed for interfacing with

mobile computing devices and wireless communications equipment, and specifically de-

veloped for outdoor, rugged use, see Figure 12. The GPS-16 provides a 1Hz data rate

The NMEA serial interface is standard across all GPS units and was simple to interface

with the PC-104 boards and the laptop base station. The unit provides an accuracy of

3-5 meters radius and less than 3 meters when using WAAS (Wide Area Augmentation

System). WAAS consists of approximately 25 ground reference stations positioned across

the United States that monitor GPS satellite data. Two master stations, located on ei-

30

ther coast, collect data from the reference stations and create a GPS correction message.

This correction accounts for GPS satellite orbit and clock drift plus signal delays caused

by the atmosphere and ionosphere. The corrected differential message is then broadcast

through one of two geostationary satellites, or satellites with a fixed position over the

equator. The information is compatible with the basic GPS signal structure, which means

any WAAS-enabled GPS receiver can read the signal.

Figure 12: Garmin GPS-16 LVS

4.2.7 CMPS03 digital compass

The CMPS03 was designed for use in robots as an aid to navigation. The compass uses two

Philips KMZ51 magnetic field sensors mounted at right angles to each other to compute

the direction of the horizontal component of the Earths magnetic field. The compass uses

a PWM signal whose duty cycle represents the angle. The pulse width varies linearly from

1mS (0) to 36.99mS (359.9) and gives 1uS resolution at a rate of 50 Hz.

Figure 13: SM03 Digital Compass

4.2.8 Optical encoder

US Digital S1-50-B8 50 counts per revolution Optical Encoders are used as a solution to

measure the local distance the vehicle travels in a given time interval. Optical encoders

31

are typically very high resolution. For this application, high resolution is not necessary, in

particular, considering the sampling intervals involved, and the backlash inherent to the

four-wheel-drive system transaxle.

Figure 14: US Digital S1-50-B8 50CPR Optical Encoder

4.2.9 Wireless ethernet card

The Linksys WPC11 provides the wireless ethernet connection. The protocol used by

the card is the IEEE802.11b standard, at 2.4 GHz, allowing a maximum transfer rate of

11Mbps. The card provides wireless communication up to a distance of 300’. The firmware

has been updated for Ad-Hoc wireless setup.

4.3 Hardware Integration

The overall hardware integration diagram, where the components described in the pre-

vious section were integrated onto the vehicle, can be seen in figure 15. The PC-104

mainboard and DC/DC converter were mounted to a Lexan platform which was secured

to the vehicle’s chassis as can be seen in Figure 9. The PCMCIA adapter, used by the

wireless ethernet card, and compass interface board were stacked on the PC104 expansion

bus. The steering servo, speed control unit, motor batteries, and one motor were left as

provided by the vehicle manufacturer, but the optical encoder was mounted in place of

one of the motors. The optical encoder and digital compass were connected to the in-

terface board via ribbon cables, carefully designed in such a way that prevents hardware

damage if the cables are connected improperly. A Ni-MH Computer Battery is connected

32

to the mainboard through the DC/DC power converter that provides steady 5V for the

mainboard logic.

Serial Ports 1 2 30

Parallel Ports 0 1
Computer Battery

Power Converter

VNS−786 Pentium−MMX−266

PC104/PCMCIA adapter

802.11b

Compass

Motor

Motor BatteryControl UnitServo
Steering

DOC

x86 Single Board Computer

Compass−Encoder
Interface Brd.

Controller Board
Servo Motor

Encoder

with uProcessor

with uProcessor

Speed

PCMCIA Wireless

Figure 15: Hardware component integration diagram

A custom interface board was designed to interface the mainboard with the some of the

vehicle’s sensors via the enhanced parallel port. These sensors include the optical encoder

and the digital compass. The board performs its functions via 16F877A microcontroller.

The microcontroller tracks the optical encoder via an interrupt line, and tracks the digital

compass via a PWM signal sent from the CMPS03. The microcontroller then relays the

sensor readings to the interface software that runs as a thread. The board is mechanically

connected to the PC104 expansion bus.

4.3.1 Docking Cart and Power Supply Flexibility

The docking cart developed for the lab allows indoor testing by providing a stand, an

intelligent Ni-MH battery charger, and an ATX power supply for each vehicle, up to a

maximum of six vehicles. A deep-cycle 12V battery is mounted on the stand and provides

two important features: the ability to run the vehicles on external 12V rather than their

on-board Ni-MH batteries for increased autonomy, and the ability to operate the Ni-

MH battery chargers outside the lab if necessary. The vehicles, equipped with four male

33

banana-jacks, facing downwards, on the bottom of their chassis’, can be placed on the

stands so the banana jacks fit into female receptacles. The four jacks serve to connect the

battery charger to the vehicle, and 12V from the deep cycle battery. The docking cart

includes a monitor, keyboard and mouse that may be connected to a PC-104 board for

diagnostic purposes.

Figure 16: Front view of testing platform

The docking cart, providing two external sources of power and a charger, provides a

great degree of flexibility, for a schematic see 17. When running hardware-in-the-loop

testing, we can operate continuously without a need for powering down the CPU by

running off the ATX power supply. Furthermore, when performing tests outdoors, we

can run the vehicles off the deep-cycle battery until we need to deploy them, and can

seamelessly remove them from their stands and run them off their Ni-MH batteries until

test completion and replace them on their stands for recharging. The deep cycle battery

can be charged daily as needed, or can be assisted by a 110V charger when power is

available.

34

+ −

+ −
+ −
+ −

+
−
+

−

Ni-MH Battery

Switch Converter

AT Power Supply

+

PC104 Mainboard

DC/DC
+

--

T
o

D
ee

p
C

yc
le

T
o

C
h
ar

ge
r

Figure 17: Chassis power system layout

4.4 Ground Station Sofware

A graphical interface was developed for the ground station to allow a user to visualize

the positions of the vehicles in a region of interest, or the playing field. The interface can

perform many other tasks including sending a variety of commands to the vehicles, sending

initial conditions to the vehicles, as well as performing logging operations and interfacing

with external devices such as the joystick and a GPS. The interface is a multithreaded

application developed entirely in Perl with Tk graphical interface modules. Perl v5.8 was

required for its multithreading capabilities, not available in previous versions. External

executables developed in C interface with the joystick and GPS and relay the data to the

interface through FIFO’s, a standard way to communicate between unrelated processes.

The graphical interface has the following specification:

(i) Receive all data from all vehicles

• Performed by a Listen thread implemented in Perl.

(ii) Start and Stop vehicles (possible feature)

• ssh into vehicles and start program

35

Figure 18: Snapshot of station software output

• Send instructions to vehicles

(iii) Data Logging

• Writes data to a file with appropriate timestamp every time data is received.

(iv) Visualize environment map with cars superimposed

• Displays boundary contour

• Scales everything to fit on 500x500 pixel display

• Maintains 1:1 aspect ratio

• Updates every time new data is received

• Displays color-coded vehicles with vectors indicating direction

The program is divided into the following threads:

• create window

• socket udp listen

• gps listen

• speak thread

36

external joystick applicationFIFO

FIFO

socket: 3000
protocol: udpprotocol: tcp

external GPS application

listen thread joystick thread

Main Thread

speak thread gps thread

Figure 19: Station software diagram

4.4.1 create window

create window is responsible for creating the main graphical display window with all its

components, and dealing with all the Tk graphical interface issues such as refreshing the

vehicles on the canvas, scaling the canvas and refreshing any data on the interface that is

updated in real time. The components used in the graphical display are buttons, labels,

text-entry fields, radio buttons, check buttons, and a canvas. The objects in the canvas

are removed and regenerated automatically every 100ms by a timer that calls a refresh

function. The refresh function removes all objects and redraws them. A “leave trace”

option is available if the user would not like to remove the objects every 100ms, but

rather redraw the objects on the screen, leaving a trace on the canvas of the vehicle’s

past positions. To reduce the memory usage of the interface program, a new object is

not created if the position of a vehicle has not changed. Nonetheless, for extended tests,

leaving traces does cause significant memory usage, causing the system to lag.

4.4.2 socket udp listen

socket udp listen serves the purpose of listening for UDP broadcasts of vehicle positions,

on the base station’s established UDP communication port: port 3000. It populates global

37

variables that the refresh routine then uses to draw the vehicles on the canvas.

4.5 gps listen

gps listen is a thread that communicates with the GPS. A self-standing executable was

written to read the serial port, and communicates with the interface application via a

FIFO, a common way of communicating between unrelated processes. gps listen creates a

FIFO, if not already present, and reads data from the socket and populates global variables

to store the GPS position. The graphical interface refresh routine then uses this data to

broadcast the ground station’s position to the vehicles.

4.5.1 speak thread

speak thread simply broadcasts the ground station’s position in (x,y) coordinates (in the

form of an EDT string) and the ground station’s GPS position (in the form of an RMC

string) so that the vehicles can determine their frame of reference; the ground station

determines the location of the playing field.

38

4.6 Vehicle Software

The operating system we have used on the vehicle computers are an embedded distribution

of Linux, referred as LEAF. It has been designed for embedded firewalls, which makes it

easy to modify for the scope of our work. The code running on the vehicles is multi-

threaded and the threads are divided into two categories real time threads, running with

high priority, and non-real time threads running with low priority. The real time threads

are compass thread, GPS thread, estimator thread and control thread. The non-real time

threads are trajectory thread, command listen thread, listen thread, speak thread, and

main thread. For a visual layout see Figure 20.

control thread

compass thread

trajectory thread

protocol: UDP protocol: UDP

estimator thread command_listen
thread

speak thread listen thread gps thread

Main Thread

Figure 20: Software Diagram

39

4.6.1 Compass thread

The Compass thread is responsible for communicating with compass-encoder board inter-

face board over the parallel port. The initialization sequence is followed by a loop that

reads requests and reads compass data from the micro-controller, pauses for the amount

of time required to make the loop execute at 10Hz. The data is filtered using a simple

median filter to remove stray readings that occur. The compass thread posts a semaphore

to inform the estimator thread that new data is present so he may compute a new position

estimate. The flowchart of this thread can be seen in Figure 21.

start

Initialize Compass

compass_thread_kill?

read compass

filter data

populate
compass_readingobject

post semaphore
for estimator

pause 100ms

end

Figure 21: Flow chart for Compass Thread

40

The communication to other threads are done through the data structure, designated

by CDT, declared as,

typedef struct{

long int D_count;

float angle;

float *virtual_angle;

char valid;

pthread_mutex_t mutex;

}CDT;

where, D count contains encoder ticks between samples, and angle contains compass

heading. valid and mutex are common for all threads and they carry informations of

validity and availability.

4.6.2 GPS thread

GPS Thread opens a serial port connection to the GPS, located on ttyS0 and sets up the

port settings consistent with those of the NMEA protocol used by all GPS units. The

GPS unit transmits RMC strings, which contain position information, as well as time,

date, and other useful data. Following an RMC string, the GPS will always transmit an

RME string, which contains estimated error values on the position readings obtained in the

previous RMC. Further information on NMEA strings see, [1]. This data will be used by

the Kalman filter in better estimating the position of the vehicle. The GPS unit transmits

RMC strings once every second. When a RMC string is received, the thread parses out

all data. If an RME is received, the valid bit from the previous RMC is checked, and if

valid, then the thread will parse the relevant data from the string. In the case of valid

data, whether RME or RMC, the thread will then populate the data structures RMC, and

RME declared as,

typedef struct {

TIME time;

POSITION latitude;

POSITION longitude;

41

char valid;

float groundspeed;

float course;

DATE date;

float magneticvariation;

char mvdirection;

char modeindicator;

pthread_mutex_t mutex;

}RMC;

and,

typedef struct {

float horizontal_position_error;

float vertical_position_error;

float position_error;

char valid;

pthread_mutex_t mutex;

}RME;

The flowchart of this thread is given in Figure 22.

4.6.3 Estimator thread

Estimator thread is responsible for running a Kalman filter on the data grabbed by

compass-encoder thread, GPS thread and the inputs. The result is best estimate of vehicle

state. The best estimate is represented by the data structure EDT, declared as,

typedef struct EDT_struct {

COORDINATE coordinate;

float angle;

float speed;

float psi;

char valid;

pthread_mutex_t mutex;

42

open serial port

gps_thread_kill?

read serial buffer

RMC?

RME?

scan in all data prior to valid bit scan in remaining data

valid "A"? scan in RME data

current_gps object
populate global

(blocking)

valid "A"?

end

set port settings

start

Figure 22: GPS Thread

}EDT;

4.6.4 Control thread

Comparing the best estimate of current state with given trajectory, control thread com-

putes appropriate actuator signal and sends it to servo control board via RS-232 serial

port. It also accepts signals from command listen thread such as “pause”, which stops

vehicle from moving.

43

4.6.5 Trajectory thread

Trajectory thread computes a feasible trajectory given initial state, goal state and vehicle

constraints. Currently we assume that there are no obstacles in the region the vehicles are

moving.

4.6.6 Speak thread

The Speak Thread broadcasts the position of the vehicle on the broadcast port (port 300)

once every second. Timing is not extremely critical, so this thread is not timed with any

other threads through semaphores or any other such synchronization method. If termi-

nated by means of setting the client thread kill flag, the speak thread sets client thread kill

equal to 5, in order to acknowledge.

4.6.7 Listen thread

The Listen thread opens a socket on the listening port (port 3000) and listens to broadcasts

made by the speak thread of other vehicles. It parses out the relevant data and populate

the data structures that keep track of the other vehicles’ positions. A flowchart of this

thread is given in Figure 23

4.6.8 Command listen thread

Command Listen creates a TCP socket on the command port (port 4000) and listens for

commands from the ground station. Commands may be one of the following:

Stop Commands (STC) Stops the vehicle unconditionally

Go Commands (GOC) Initiates a test sequence

Go Destination command (GDS) Tells a vehicle to go to a specific (x,y)

position in the playing field

Manual Override command (MOR) Sends the vehicle steering and throttle

Commands

Once a command is received, the loop returns to waiting for the next command. If the

buffer received did not contain any of the commands listed above, the connection was

closed. The flowchart of this thread can be seen in Figure 24

44

socket

to string

client_thread_kill = 5

start

create udp broadcast

client_thread_kill?

sleep 1 second

copy current object

broadcast string

end

socket

(blocking)

start

Open udp listening

server_thread_kill?

receive buffer

call string_to_data

end

Figure 23: Flow charts for Speak Thread (left) and for Listen Thread (right)

45

start

create tcp listening
socket

accept buffer (blocking)

receive

STC command control_thread_kill = 2

GOC command control_thread_kill = 0, launch = 1

parse goal destination coordinates
launch = 1GDS command

MOR command
parse commands and send

them to ttyS1

Figure 24: Command Listen Thread

46

5 Conclusion and Future Work

This thesis research has two objectives. First, we will complete our study of control and

coordination algorithms for groups of vehicles. The focus of this objective is on coverage

control of autonomous vehicle networks performing distributed sensing tasks. Second, we

will develop a testbed composed of a group of autonomous, networked robotic vehicles.

By utilizing this testbed, we will test and illustrate the distributed control methodologies

for multiple vehicle coordination, formation and stabilization that we have introduced in

Section 3. The research steps taken to date and future directions on the two stages are

summarized below.

Algorithm Development: We have started our work by studying a locational opti-

mization problem. We have studied different aspects of Voronoi partitioning, along with

centroidal Voronoi partitions. By a novel approach, we have shown that centroidal Voronoi

partitions correspond to local minima of the locational optimization problem. We also have

studied classical Lloyd Descent algorithm and introduced a novel family of discrete and

continuous time Lloyd algorithms that guarantee convergence to a local minima. Then,

based on [68], we have proposed an asynchronous and distributed procedure to calculate

and update the Voronoi cells and control inputs that guarantee convergence under some

technical conditions. Additionally, we have shown that our coverage control algorithm

can solve some of formation control problems via the design of appropriate distribution

density functions. The next step will be to extend the set of Lloyd Descent algorithms

to 4 wheeled mobile robots, by means of an appropriate combination of feedforward and

feedback control design. We also plan to address the issue of collision avoidance of vehicles

with each other, as well as with the objects in the environment.

Testbed Development: First we have selected the minimum set of required hardware

components that will result in a functional testbed. We have modified the structure of

the vehicles and integrated all the electronic and the mechanical components. We have

defined the minimum set of threads and data structures that will allow the agents to

perform coordinated tasks. Further we have completed the development of the “skeleton

code” and tested the code with success. We still have to design, and implement a path

planner, a trajectory tracking controller, and an estimator. The contribution of this stage

will be integrating of all the components to a functional platform, and illustrating the

47

effectiveness of the proposed algorithms.

48

References

[1] GARMIN GPS 16 GPS receiver/antenna quick start guide.

[2] H. Ando, Y. Oasa, I. Suzuki, and M. Yamashita. Distributed memoryless point

convergence algorithm for mobile robots with limited visibility. IEEE Transactions

on Robotics and Automation, 15(5):818–828, 1999.

[3] R. C. Arkin. Behavior-Based Robotics. Cambridge University Press, New York, NY,

1998.

[4] J. P. Farrell B. Nichols, D. Buttlar. Pthreads Programming. O’Reilly & Associates,

Inc., 1996.

[5] R. Bachmayer and N. E. Leonard. Vehicle networks for gradient descent in a sampled

environment. In IEEE Conf. on Decision and Control, pages 112–117, Las Vegas,

NV, December 2002.

[6] T. Balch and R. Arkin. Behavior-based formation control for multirobot systems.

IEEE Transactions on Robotics and Automation, 14(6):926–39, 1998.

[7] T. Balch and L. E. Parker, editors. Robot Teams: From Diversity to Polymorphism.

A K Peters Ltd., Natick, MA, 2002.

[8] M Barr. ”Introduction to pulse width modulation”. In Embedded Systems Program-

ming, volume 14. CMP Media LLC, 9 2001.

[9] J. Barraquand and J-C. Latombe. Robot motion planning: A distributed representa-

tion approach. International Journal of Robotics Research, 10(6):628–649, 1991.

[10] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation: Numerical

Methods. Athena Scientific, Belmont, MA, 1997.

[11] J. T. Betts. Survey of numerical methods for trajectory optimization. AIAA Journal

of Guidance, Control, and Dynamics, 21(2):193–207, 1998.

[12] R. A. Brooks. A robust layered control-system for a mobile robot. IEEE Journal of

Robotics and Automation, 2(1):14–23, 1986.

49

[13] M. Cao and C. Hadjicostis. Distributed algorithms for Voronoi diagrams and appli-

cation in ad-hoc networks. Preprint, October 2002.

[14] J. Catsoulis. Designing Embedded Hardware. O’Reilly & Associates, Inc., 2002.

[15] C. Cattani and A. Paoluzzi. Boundary integration over linear polyhedra. Computer-

Aided Design, 22(2):130–5, 1990.

[16] J. Cortés, S. Mart́ınez, T. Karatas, and F. Bullo. Coverage control for mobile sensing

networks: variations on a theme. Lisbon, Portugal, July 2002. Electronic proceedings.

[17] L. Cremean, W. B. Dunbar, D. van Gogh, J. Hickey, E. Klavins, J. Meltzer, and R. M.

Murray. The Caltech multi-vehicle wireless testbed. In IEEE Conf. on Decision and

Control, pages 86–88, Las Vegas, NV, December 2002.

[18] T. B. Curtin, J. G. Bellingham, J. Catipovic, and D. Webb. Autonomous oceano-

graphic sampling networks. Oceanography, 6(3):86–94, 1993.

[19] R. D’Andrea and M. Babish. The RoboFlag testbed. In IEEE American Control

Conference, pages 656–660, Denver, CO, June 2003.

[20] F. E. Daum. ”New exact nonlinear filters,” Bayesian Analysis of Time Series and

Dynamic Models. Marcel Dekker, Inc., NY, 1988.

[21] J. P. Desai, J. P. Ostrowski, and V. Kumar. Modeling and control of formations

of nonholonomic mobile robots. IEEE Transactions on Robotics and Automation,

17(6):905–908, 2001.

[22] Z. Drezner, editor. Facility Location: A Survey of Applications and Methods. Springer

Series in Operations Research. Springer Verlag, New York, NY, 1995.

[23] Q. Du, V. Faber, and M. Gunzburger. Centroidal Voronoi tessellations: applications

and algorithms. SIAM Review, 41(4):637–676, 1999.

[24] P. J. Enright and B. A. Conway. Discrete approximations to optimal trajectories

using direct transcription and nonlinear programming. AIAA Journal of Guidance,

Control, and Dynamics, 15(4):994–1002, 1992.

50

[25] N. Faiz, S. K. Agrawal, and R. M. Murray. Trajectory planning of differentially flat

systems with dynamics and inequalities. AIAA Journal of Guidance, Control, and

Dynamics, 24(2):219–227, 2001.

[26] M. S. Fontan and M. J. Mataric. Territorial multi-robot task division. IEEE Trans-

actions on Robotics and Automation, 14(5):815–822, 1998.

[27] E. Frazzoli, M. A. Dahleh, and E. Feron. A hybrid control architecture for aggressive

maneuvering of autonomous helicopters. In IEEE Conf. on Decision and Control,

pages 2471–6, Phoenix, AZ, December 1999.

[28] E. Frazzoli, M. A. Daleh, and E. Feron. Real-time motion planning for agile au-

tonomous vehicles. AIAA Journal of Guidance, Control, and Dynamics, 25(1):116–

129, 2002.

[29] Bill O. Gallmeister. POSIX.4:Programming for the Real World. O’Reilly & Associates,

Inc., 1995.

[30] J. Gao, L. J. Guibas, J. Hershberger, Li Zhang, and An Zhu. Geometric spanner for

routing in mobile networks. pages 45–55, Long Beach, CA, October 2001.

[31] N. J. Gordon, D. J. Salmond, and A. F. M. Smith. Novel approach to nonlinear/non-

gaussian bayesian state estimation. Radar and Signal Processing, IEE Proceedings F,

140(2):107–113, April 1993.

[32] R. M. Gray and D. L. Neuhoff. Quantization. IEEE Transactions on Information

Theory, 44(6):2325–2383, 1998. Commemorative Issue 1948-1998.

[33] C. R. Hargraves and S. W. Paris. Direct trajectory optimization using nonlinear

programming and collocation. AIAA Journal of Guidance, Control, and Dynamics,

10(4):338–342, 1987.

[34] C. Hollabaugh. Embedded Linux Hardware, Software and Interfacing. Addison-

Wesley, 2002.

[35] A. Howard, M. J. Mataric, and G. S. Sukhatme. Mobile sensor network deployment

using potential fields: A distributed scalable solution to the area coverage problem.

51

In International Conference on Distributed Autonomous Robotic Systems (DARS02),

pages 299–308, Fukuoka, Japan, June 2002.

[36] A. Jadbabaie, J. Lin, and A. S. Morse. Coordination of groups of mobile au-

tonomous agents using nearest neighbor rules. IEEE Transactions on Automatic

Control, 48(6):988–1001, 2003.

[37] R. E. Kalman. A new approach to linear filtering and prediction problems. Transac-

tions of the ASME - Journal of Basic Engineering on Automatic Control, 82(D):34–

45, 1960.

[38] L. E. Kavraki, P. Švestka, J. C. Latombe, and M. H. Overmars. Probabilis-

tic roadmaps for path planning in high-dimensional space. IEEE Transactions on

Robotics and Automation, 12(4):566–580, 1996.

[39] Kayton and Fried. Avionics Navigation Systems. John Wiley & Sons, 2 edition, 1997.

[40] H. K. Khalil. Nonlinear Systems. Prentice Hall, Englewood Cliffs, NJ, second edition,

1995.

[41] E. Klavins. Communication complexity of multi-robot systems. In J.-D. Boissonnat,

J. W. Burdick, K. Goldberg, and S. Hutchinson, editors, Algorithmic Foundations of

Robotics V, volume 7 of STAR, Springer Tracts in Advanced Robotics, Berlin Heidel-

berg, 2003. Springer Verlag.

[42] R. Klein. Concrete and abstract Voronoi diagrams, volume 400 of Lecture Notes in

Computer Science. Springer Verlag, New York, NY, 1989.

[43] E. Krotkov and J. Blitch. The Defense Advanced Research Projects Agency

(DARPA) tactical mobile robotics program. International Journal of Robotics Re-

search, 18(7):769–76, 1999.

[44] H. J. Kushner. Dynamical equations for optimum non-linear filtering. Journal of

Differential Equations, 3:179–190, 1967.

[45] J.-C. Latombe. Motion planning: A journey of robots, molecules, digital actors, and

other artifacts. International Journal of Robotics Research, 18(11):1119–1128, 1999.

52

[46] X.-Y. Li and P.-J. Wan. Constructing minimum energy mobile wireless networks.

ACM Journal of Mobile Computing and Communication Survey, 5(4):283–286, 2001.

[47] S. P. Lloyd. Least squares quantization in PCM. IEEE Transactions on Information

Theory, 28(2):129–137, 1982. Presented as Bell Laboratory Technical Memorandum

at a 1957 Institute for Mathematical Statistics meeting.

[48] M. Micheli and M. I. Jordan. Random sampling of a continuous-time stochastic

dynamical system. In Proceedings of 15th International Symposium on the Mathe-

matical Theory of Networks and Systems, South Bend, IN, Aug 2002. University of

Notre Dame.

[49] R. M. Murray, Z. X. Li, and S. S. Sastry. A Mathematical Introduction to Robotic

Manipulation. CRC Press, Boca Raton, FL, 1994.

[50] K Ogata. Modern Control Engineering. Prentice-Hall, inc., Englewood Cliffs, NJ,

2nd edition, 1990.

[51] A. Okabe, B. Boots, and K. Sugihara. Nearest neighbourhood operations with gener-

alized Voronoi diagrams: a review. International Journal of Geographical Information

Systems, 8(1):43–71, 1994.

[52] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu. Spatial Tessellations: Concepts

and Applications of Voronoi Diagrams. Wiley Series in Probability and Statistics.

John Wiley & Sons, New York, NY, second edition, 2000.

[53] A. Okabe and A. Suzuki. Locational optimization problems solved through Voronoi

diagrams. European Journal of Operational Research, 98(3):445–56, 1997.

[54] R. Olfati-Saber and R. M. Murray. Agreement problems in networks with directed

graphs and switching topology. In IEEE Conf. on Decision and Control, 2003. Sub-

mitted.

[55] A. Richards, T. Schouwenaars, J. How, and E. Feron. Spacecraft trajectory planning

with avoidance constraints using mixed-integer linear programming. AIAA Journal

of Guidance, Control, and Dynamics, 25(4):755–765, 2002.

53

[56] R. Rogers. Applied Mathematics in Integrated Navigation Systems. AIAA Education

Series. AIAA, 2000.

[57] P. E. Rybski, N. P. Papanikolopoulos, S. A. Stoeter, D. G. Krantz, K. B. Yesin,

M. Gini, R. Voyles, D. F. Hougen, B. Nelson, and M. D. Erickson. Enlisting rangers

and scouts for reconnaissance and surveillance. IEEE Robotics & Automation Maga-

zine, 7(4):14–24, 2000.

[58] A. C. Schultz and L. E. Parker, editors. Multi-Robot Systems: From Swarms to

Intelligent Automata. Kluwer Academic Publishers, 2002. Proceedings from the 2002

NRL Workshop on Multi-Robot Systems.

[59] H. W. Sorenson. Kalman Filtering: Theory and Application. IEEE Press, NY, 1985.

[60] H. W. Sorenson and A. R.Stubberud. Non-linear filtering by approximation of the a

posteriori density. Iinternational Journal of Control, 8(1):33–51, 1968.

[61] R. Stengel. Optimal Control and Estimation. Dover, 1994.

[62] W. R. Stevens. Interprocess Communication. Number 2 in UNIX Network Program-

ming. Prentice Hall, 2nd edition, 1999.

[63] A. Stubbs, V. Vladimerou, A. Vaughn, and G. E. Dullerud. Development of a vehicle

network control testbed. In IEEE American Control Conference, pages 3028– 3033,

Anchorage, AK, May 2002.

[64] K. Sugihara and I. Suzuki. Distributed algorithms for formation of geometric patterns

with many mobile robots. Journal of Robotic Systems, 13(3):127–39, 1996.

[65] A. Suzuki and Z. Drezner. The p-center location problem in an area. Location Science,

4(1/2):69–82, 1996.

[66] I. Suzuki and M. Yamashita. Distributed anonymous mobile robots: Formation of

geometric patterns. 28(4):1347–1363, 1999.

[67] C. Tomlin, G. J. Pappas, and S. S. Sastry. Conflict resolution for air traffic man-

agement: a study in multiagent hybrid systems. IEEE Transactions on Automatic

Control, 43(4):509–21, 1998.

54

[68] J. N. Tsitsiklis, D. P. Bertsekas, and M. Athans. Distributed asynchronous determinis-

tic and stochastic gradient optimization algorithms. IEEE Transactions on Automatic

Control, 31(9):803–12, 1986.

[69] S. ulier, J. Uhlmann, and H. F. Durrant-Whyte. A new method for the nonlinear

transformation of means and covariances in filters and estimators. IEEE Transactions

on Automatic Control, 45(3):477 – 482, March 2000.

[70] O. von Stryk and R. Bulirsch. Direct and indirect methods for trajectory optimization.

Annals of Operations Research, 37(1-4):357–73, 1992.

[71] C. R. Weisbin, J. Blitch, D. Lavery, E. Krotkov, C. Shoemaker, L. Matthies, and

G. Rodriguez. Miniature robots for space and military missions. IEEE Robotics &

Automation Magazine, 6(3):9–18, 1999.

[72] K. Yaghmour. Building Embedded Linux Systems. O’Reilly & Associates, Inc., 2003.

[73] H. Yamaguchi and T. Arai. Distributed and autonomous control method for gener-

ating shape of multiple mobile robot group. In IEEE/RSJ Int. Conf. on Intelligent

Robots & Systems, pages 800–807, Munich, Germany, September 1994.

55

