
UNIVERSITY of CALIFORNIA

Santa Barbara

Distributed boundary estimation and monitoring

A Dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Electrical and Computer Engineering

by

Sara Susca

Committee in charge:

Professor Francesco Bullo, Chair

Professor Bassam Bamieh

Professor João P. Hespanha

Professor Sonia Mart́ınez

December 2007



The dissertation of Sara Susca is approved.

Professor Bassam Bamieh

Professor João P. Hespanha

Professor Sonia Mart́ınez

Professor Francesco Bullo, Committee Chair

December 2007



Distributed boundary estimation and monitoring

Copyright c© 2007

by

Sara Susca

iii



To my parents

Mario and Maria

iv



Acknowledgements

I would like to thank my advisor Francesco Bullo for training me for this marathon

(as he calls the PhD). His maniacal search for rigor and perfection will be with

me for a long time.

I wish to thank Petar Kokotovic for believing in me when I did not. Petar

introduced me to the wonderland of nonlinear dynamics and I guess since then I

have been Alice.

I owe a special thank to Sonia Mart́ınez for all the productive discussions.

I want to express all my gratitude to Prabir for being there especially in the

most difficult moments. Prabir’s intelligence, patience, and positivity have being

indispensable for me to reach the finish line.

I cannot forget the wonderful summers in Honeywell that filled me up with

immense joy. I have many people to thank for that, but I will mention only my

mentor, Kailash Krishnaswamy. Thank you Kailash.

During this marathon, pottery and photography have being my energy drinks.

I wish to thank my pottery teachers Genie Thomsen and Deanna Pini, my numer-

ous ceramics classmates, and Dr. Dr. Chiranjeeb Buragohain (it is not a typo, he

really has two PhDs), for teaching me much of what I know about photography.

Ceramics and photography have given me the opportunity to reconvert unused

neurons and find new energy to tackle research problems.

Finally, I want to thank my parents Mario and Maria, my sister Flavia and

my dog Virgola for being encouraging, supportive, and above all for giving me a

good reason to keep going: not to let my whole home town down!

v



Curriculum Vitæ

Sara Susca

Education

09/1995-04/2001 Laurea in Aerospace Engineering, Politecnico di Milano, Mi-

lano, Italy.

Experience

06/2007–09/2007 Summer Intern, Honeywell, Minneapolis, MN, USA.

06/2006–09/2006 Summer Intern, Honeywell, Minneapolis, MN, USA.

07/2001–07/2002 Visiting Scholar, Bioserve Space Technologies, Boulder, CO,

USA.

Selected Publications

S. Susca, S. Mart́ınez, and F. Bullo, “Gradient Algorithms for Polygonal Approx-

imation of Convex Contours,” in Automatica, 2007, Note: To appear.

S. Susca, S. Mart́ınez, and F. Bullo, “Monitoring Environmental Boundaries with

a Robotic Sensor Network” in IEEE Transaction on Control Systems Technology,

2007, Note: To appear.

S. Susca, F. Bullo, and S. Mart́ınez, “Synchronization of beads on a ring,” in

Proceedings of IEEE Conference on Decision and Control, New Orleans, 2007.

vi



S. Susca, F. Bullo, and S. Mart́ınez, “Synchronization of N-beads on a ring by

feedback control,” Note: In preparation.

Complete list and pdf files available at:

http://motion.mee.ucsb.edu/papers/Author/SUSCA-S.html.

vii



Abstract

Distributed boundary estimation and monitoring

by

Sara Susca

This thesis illustrates some algorithms designed to enable a robotic sensor network

to estimate a planar contour and to patrol it in a synchronized manner. The

common tread of these algorithms are the tool needed to analyze and prove their

correctness: consensus algorithms. In fact, the algorithms described in this thesis

give rise to dynamical systems that can be easily analyzed once it is shown that

they are just consensus algorithms in which inputs are present. This gives us the

opportunity to extend the contribution of this thesis by studying some robustness

properties of consensus algorithms with inputs.

viii



Contents

Acknowledgments v

Curriculum Vitæ vi

Abstract viii

List of Figures xii

1 Introduction 1

1.1 Statement of contribution . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Gradient algorithms for polygonal approximation of convex con-
tours 5

2.1 Problem setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Inner-polygon approximation algorithms . . . . . . . . . . . . . . 9

2.2.1 Discrete-time inner-polygon approximation
algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Outer-polygon approximation algorithms . . . . . . . . . . . . . . 16

2.3.1 Discrete-time outer-polygon approximation
algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 “Outer minus inner” polygon approximation algorithms . . . . . . 22

2.5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

ix



3 Monitoring environmental boundaries with a robotic sensor net-
work 27

3.1 Approximation theory for convex bodies . . . . . . . . . . . . . . 29

3.2 Boundary estimation and agent pursuit algorithm . . . . . . . . . 30

3.2.1 Algorithm description . . . . . . . . . . . . . . . . . . . . 32

3.2.2 Algorithm analysis . . . . . . . . . . . . . . . . . . . . . . 40

3.2.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Summary and open issues . . . . . . . . . . . . . . . . . . . . . . 52

4 ISS properties of discrete-time consensus algorithms 55

4.1 Review of ISS concepts . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Consensus algorithms with inputs and outputs . . . . . . . . . . . 58

4.3 Consensus algorithms with error outputs are IOS . . . . . . . . . 61

4.3.1 IOS with respect to pairwise error . . . . . . . . . . . . . . 61

4.3.2 IOS with respect to max-min error . . . . . . . . . . . . . 65

4.4 Consensus algorithms are iISnS . . . . . . . . . . . . . . . . . . . 71

4.4.1 Consensus value for algorithms in C1 . . . . . . . . . . . . 73

4.4.2 Consensus value for algorithms in C2 . . . . . . . . . . . . 73

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5 Synchronization of N-Beads on a Ring by Feedback Control 76

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2 Model and problem statement . . . . . . . . . . . . . . . . . . . . 78

5.3 Synchronization algorithm . . . . . . . . . . . . . . . . . . . . . . 80

5.4 Preliminary results . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.5 Convergence analysis . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.5.1 Convergence of nominal speed and desired sweeping arc . . 89

5.5.2 Balanced synchrony . . . . . . . . . . . . . . . . . . . . . . 91

5.5.3 Unbalanced synchrony . . . . . . . . . . . . . . . . . . . . 95

5.6 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.6.1 Balanced collection of beads . . . . . . . . . . . . . . . . . 107

x



5.6.2 Unbalanced collection of beads . . . . . . . . . . . . . . . 108

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6 Conclusions 119

Bibliography 120

A Metzler matrices 126

xi



List of Figures

2.1 From left to right: the half-plane H(pi) and its boundary ℓ(pi) =
ℓ+(pi)∪ℓ−(pi), three points defining a bounded outer polygon, and
three points defining an unbounded outer polygon. . . . . . . . . 8

2.2 From left to right: saddle point configuration, nearby configuration
that increases the error EI , bear by configuration that decreases
the error EI , configuration corresponding to a minimum error con-
figuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 (a) Illustration of αi, αi−1, Ai and Bi. (b) Variation of EO de-
scribed in Proposition 2.3. . . . . . . . . . . . . . . . . . . . . . . 16

2.4 From left to right and from top to bottom: initial condition of
eleven nodes on a convex boundary, final condition after the imple-
mentation of the inner-polygon, outer-polygon, and “outer minus
inner” polygon approximation algorithms. . . . . . . . . . . . . . 25

2.5 From left to right: initial condition of eleven nodes on a convex
boundary and final condition after the implementation of Algo-
rithm 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 In the figure the solid line is the boundary ∂Q, the triangles are the
agents, the circles are the interpolation points, and the dotted line
is the approximating polygon defined by the interpolation points. 31

3.2 Mobile agent moving along boundary, projecting (white arrow)
and locally updating (black arrow) interpolation points. . . . . . . 35

3.3 Mobile agent projecting interpolation point onto the observed bound-
ary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Mobile agent locally optimizing interpolation point pnow−1 along
the observed boundary, after projecting pnow . . . . . . . . . . . . 37

xii



3.5 This figure shows initial and final configuration after 50 seconds
simulation obtained by the implementation of the Estimate Up-

date and Pursuit Algorithm with na = 3, nip = 30, v0 = 1,
kprop = 0.05, λ = 10

11
. ∂Q is time invariant. The agents posi-

tion is represented by the triangles and are initialized to be on the
boundary ∂Q. In the last frame also the approximating polygon
is shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.6 Estimate Update and Pursuit Algorithm This plots refers
to the case of ∂Q being time-invariant. In the first plot from right it
is shown the error maxi∈{1,...,nip} Dλ(pi, pi+1)−mini∈{1,...,nip} Dλ(pi, pi+1)
vs time. The second plot shows the arc length distances between
the three agents. . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.7 This figure shows four different instants of the 200 seconds sim-
ulation obtained by implementing the Estimate Update and

Pursuit Algorithm with na = 4, nip = 35, v0 = 1, kprop = 0.05,
λ = 10

11
. The boundary ∂Q is slowly time-varying in this case. The

agents positions are represented by triangles and initialized to be
on the boundary ∂Q. The last frame also shows the approximating
polygon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.8 Estimate Update and Pursuit Algorithm. This figure refers
to the case of ∂Q being slowly time-varying. In the first plot
from the right we shown the error maxi∈{1,...,nip} Dλ(pi, pi+1) −
mini∈{1,...,nip} Dλ(pi, pi+1) vs time. The second plot shows the arc
length distances between the four agents. . . . . . . . . . . . . . . 53

5.1 The figure shows a collection of four beads which are synchronized. 79

5.2 This figure shows that, regardless from where and with which ve-
locities beads i and i+1 impact, the order of the beads is preserved.
The velocities in the figure are the velocities after the impact. The
speed ν is just the average value of νi and νi+1 before the impact. 87

5.3 This figure shows how the speeds of bead i and i + 1 change they
are traveling towards each other. Note that bead i is early with
respect to bead i + 1. . . . . . . . . . . . . . . . . . . . . . . . . . 92

xiii



5.4 This figure shows the periodic orbit described in Theorem 5.2. The
white circles are the positions of beads i − 2, i − 1, i, and i + 1
when i and i+1 meet at Ui−δ. The black dots are the locations of
the impacts for any two neighboring beads. Note that bead i − 1
and i− 2 are moving towards each other. Because bead i− 2 is in
its desired sweeping arc, its speed is ν while i − 1 is moving away
from it and therefore its speed is fν. The same holds for i and
i + 1 respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.5 This figure illustrates G(t) for t ∈ [t1,2, t1,2 + 22π
N

1
ν
] and the time

at which each edge appears for N = 5 and
∑N

i=1 di(0) = −1 when
unbalanced synchrony is reached. . . . . . . . . . . . . . . . . . . 98

5.6 This figure shows how the speeds of bead 1 and 2 change as they
are traveling towards each other, shortly after bead 1 meets bead N . 99

5.7 From top to bottom, the figure illustrates the position of C̃i−1, C̃i,
and of Ui−1 − δ − ∆ for δ < π

N
and δ > π

N
. . . . . . . . . . . . . . 103

5.8 This figure shows θi vs time, obtained by implementing the Syn-

chronization Algorithm with N = 8 beads, the beads are ran-
domly positioned on T, νi(0) uniformly distributed ∈]0, 1], d1(0) =
d2(0) = d4(0) = d6(0) = +1, and f = 0.7. The positions of the
beads 2, 4, 6, 8 are represented by solid lines, while the dash line,
dash-dot line, point line, and thicker dash line represent the posi-
tions of beads 1, 3, 5, 7. . . . . . . . . . . . . . . . . . . . . . . . . 108

5.9 This figure shows maxi νi−mini νi vs time, obtained by implement-
ing the Synchronization Algorithm with N = 8 beads, the
beads are randomly positioned on T, νi(0) uniformly distributed
∈]0, 1],d1(0) = d2(0) = d4(0) = d6(0) = +1, and f = 0.7. . . . . . . 109

5.10 This figure shows θ5(t) (solid line), U5(t) (thicker solid line), and
L5(t) (dash-dot line), obtained by implementing the Synchro-

nization Algorithm with N = 8 beads, the beads are ran-
domly positioned on T, νi(0) uniformly distributed in ]0, 1], d1(0) =
d2(0) = d4(0) = d6(0) = +1, and f = 0.7. . . . . . . . . . . . . . . 110

5.11 This figure shows θi vs time, obtained by implementing the Syn-

chronization Algorithm with N = 7 beads, the beads are ran-
domly positioned on T, νi(0) uniformly distributed ∈]0, 1], d1(0) =
d4(0) = d5(0) = d7(0) = −1, and f = 0.6. The positions of the
beads 2, 4, 6 are represented by solid lines, while the dash line,
dash-dot line, point line, and thicker dash line represent the posi-
tions of beads 1, 3, 5, 7. . . . . . . . . . . . . . . . . . . . . . . . . 111

xiv



5.12 This figure shows θ3(t) (solid line), U3(t) (thicker solid line), and
L3(t) (dash-dot line), obtained by implementing the Synchro-

nization Algorithm with N = 7 beads, the beads are ran-
domly positioned on T, νi(0) uniformly distributed in ]0, 1], d1(0) =
d4(0) = d5(0) = d7(0) = −1, and f = 0.6. . . . . . . . . . . . . . . 112

5.13 This figure shows θi vs time, obtained by implementing the Syn-

chronization Algorithm with N = 12 beads, the beads are
randomly positioned on T, νi(0) uniformly distributed ∈]0, 1], d1(0) =
d2(0) = d4(0) = d6(0) = d7(0) = d9(0) = d12(0) = −1, and
f = 0.84. The positions of the beads 2, 4, 6, 8, 10, 12 are repre-
sented by solid lines, while the dash line, dash-dot line, point line,
and thicker dash line represent the positions of beads 1, 3, 5, 7, 9, 11.115

5.14 This figure shows θ3(t) (solid line), U3(t) (thicker solid line), and
L3(t) (dash-dot line), obtained by implementing the Synchro-

nization Algorithm with N = 12 beads, the beads are ran-
domly positioned on T, νi(0) uniformly distributed in ]0, 1], d1(0) =
d2(0) = d4(0) = d6(0) = d7(0) = d9(0) = d12(0) = −1, and f = 0.84. 116

5.15 This figure shows θi vs time, obtained by implementing the Syn-

chronization Algorithm with N = 12 beads, the beads are
randomly positioned on T, νi(0) uniformly distributed ∈]0, 1], d1(0) =
d4(0) = d6(0) = d7(0) = d8(0) = d9(0) = d10(0) = −1, and
f = 0.87. The positions of the beads 2, 4, 6, 8, 10, 12 are repre-
sented by solid lines, while the dash line, dash-dot line, point line,
and thicker dash line represent the positions of beads 1, 3, 5, 7, 9, 11.117

5.16 This figure shows θ3(t) (solid line), U3(t) (thicker solid line), and
L3(t) (dash-dot line), obtained by implementing the Synchro-

nization Algorithm with N = 12 beads, the beads are ran-
domly positioned on T, νi(0) uniformly distributed in ]0, 1], d1(0) =
d4(0) = d6(0) = d7(0) = d8(0) = d9(0) = d10(0) = −1, and f = 0.87. 118

xv



Chapter 1

Introduction

Advances in technology have led to miniaturizations of sensors and electronic

components and, therefore, have led the fantasy of the researchers run across

childhood prairies: fleets of small robots that cooperatively and autonomously

accomplishing a task. Some examples of tasks to accomplish are: monitoring

and patrolling of sensitive boundaries such as an oil spill in the ocean or a forest

fire. In this thesis we propose (i) algorithms enabling a robotic sensor network

to optimally estimate a planar contour and (ii) an algorithm that will steer a

robotic sensor network to synchronously patrol a planar contour.

1.1 Statement of contribution

The contribution of this work can be summarized as follows:

• In this work our goal is to design distributed algorithms to optimally ap-

proximate smooth planar bodies (both convex and nonconvex) by a poly-

1



gon. By distributed we mean that the algorithms can be implemented by

a fleet of robots which have communication constraints and therefore do

not have global knowledge of the planar body to approximate. Our inter-

est is motivated by all the possible applications for such algorithms, for

example: environmental monitoring, data compression. We first consider

smooth strictly convex bodies and three simple metrics. Given n points

in fact, it is natural to define an enclosed (i.e., inscribed) polygon and an

enclosing (i.e., circumscribed) polygon to the contour. Here the faces of

the enclosing polygon are subsets of the tangent lines to the strictly convex

contour. The first two metrics we consider are the difference between the

area enclosed in the contour and the following areas: the inner polygon area

and the outer polygon area. The third metric is the difference between the

area of the outer polygon and the area of the inner polygon. We derive the

expressions, two of which are novel contributions, of the error metrics as

functions of the vertex positions of the approximating polygon. We pro-

pose three gradient descent laws for n points to dynamically construct the

optimal approximating polygon. The laws are distributed with respect to

the positions of the vertices of the approximating polygon. This makes the

algorithms suitable for implementation by a robotic sensor network.

• Although the results on the gradient descent laws are encouraging, the

extensions to nonconvex and possibly time-varying boundaries pose a num-

ber of challenges and they will still require a large number of agents. We

then propose and analyze an algorithm to handle generally smooth non-

convex boundaries that requires far fewer agents. The agents rely only

on sensed local information to position some interpolation points defining

2



an approximating polygon. This new algorithm distributes the vertices of

the approximating polygon uniformly along the boundary. The notion of

uniform placement relies on a metric inspired by approximation theory for

convex bodies. The algorithm is provably convergent for static boundaries

and efficient for slowly-moving boundaries because of certain input-to-state

(ISS) stability properties. These properties are consequences of the fact

that the algorithm can be seen as the combination of two consensus al-

gorithms. Consensus algorithms, in their simplest form, are distributed

algorithms that a team of autonomous agents can use to reach agreement

on something without the help of a central authority. They are, however,

more versatile than simply devices for reaching agreement. In fact, the

analysis of several algorithms proposed in this dissertation have benefited

from posing them as consensus-type algorithms.

• Consensus algorithms are widely studied and used so, starting from the ISS

properties of the boundary estimation algorithm, we move on to study gen-

eral robustness properties of discrete-time linear consensus algorithms with

respect to measurement and communication noise for different topologies.

For consensus algorithms with inputs, we establish integral input-to-state

neutral stability (iISnS) under general assumptions and input-to-state sta-

bility (ISS) when a leader node is not subject to noise. Introducing appro-

priate error outputs, input-to-output stability (IOS) can be established via

two alternate routes. By analyzing the contraction over time of the max-

imum minus the minimum value of the agents’ states, we obtain specific

gain values that characterize how close the trajectories of each node will be

to each other.

3



• Finally we propose a discrete-time algorithm to synchronize a collection

of agents moving back and forth on a unit circle. Each agent or “bead”

changes direction upon encountering another bead moving in the opposite

direction. Communication is sporadic: only when two beads come suffi-

ciently close they are able to exchange information. This allows agents to

update their state. Our analysis makes use of consensus algorithms tools

and it guarantees local asymptotic stability of the synchronous behavior.

1.2 Organization

The thesis is organized as follows: in Chapter II we introduce and analyze gra-

dient descent laws to optimally approximate a smooth strictly convex contour, in

Chapter III we discuss a distribute algorithm to optimally approximate a smooth

nonconvex contour, in Chapter IV we illustrate some robustness properties of

linear discrete-time consensus algorithms, and finally, in Chapter V we introduce

and analyze a switching law that enables a fleet of robots to synchronously patrol

a planar boundary. The conclusions are summarized in Chapter VI.

4



Chapter 2

Gradient algorithms for

polygonal approximation of

convex contours

Constructing an optimal polygonal approximation of a contour has been a re-

search subject for mathematicians and engineers across the last three centuries.

Still interesting problems continue to remain unsolved especially for the general

setting of non-convex bodies. Boundary estimation and tracking is also a relevant

problem in computer vision [22]. Some references on the boundary estimation

problem for robotic sensor networks include [28, 8, 7, 43]. A final motivation for

this work is the interest in dynamical systems that solve optimization problems,

as described for example in [16]; discrete-time gradient systems and discrete-time

balancing algorithms for networks of agents are discussed in [1] and in [36].

As pointed out by the authors in [21], in the XIX century it was known

how to geometrically characterize the polygon enclosed in a convex body that

5



minimizes the area difference between itself and the enclosing convex body. On

the other hand, the geometric characterization of a polygon, enclosing a given

strictly convex body, that again minimizes the difference of the areas is more

complex and less intuitive. To the best of our knowledge, the earliest reference

on this matter appeared only in 1949 by E. Trost, see [41]. In the XX century

it was also proved that for a convex planar body the approximation error, for

various useful metrics, goes to zero as 1/N2, where N is the number of vertices

of the interpolating polygon. For a detailed list of references we refer to the

surveys [13] and [14]. In this chapter we introduce three intuitive metrics and

corresponding gradient flows to approximate a strictly convex body by a polygon

of N vertices placed on the boundary. The metrics are: (i) the difference between

the area of body and the enclosed polygon, (ii) the difference between the area of

the enclosing polygon and the area of the body, and (iii) the difference between

the area of the enclosing polygon and of the enclosed polygon. The gradient

flows for (ii) and (iii) are novel results. The flows can be implemented, in a

distributed fashion, by a robotic sensor network. For the metrics (i) and (ii) we

also introduced a corresponding discrete-time algorithm.

2.1 Problem setup

Let R̄ = R ∪ {+∞,−∞}. Let Q ⊆ R
2 be a bounded, strictly convex body

with a twice differentiable boundary ∂Q. Let T ⊆ R
2 denote the unit circle. We

parameterize ∂Q by a map γ : T → ∂Q, and represent its signed curvature by

κ : T → R. Note that κ remains positive as we traverse the curve γ in a counter-

clockwise manner. For si ∈ T, i ∈ {1, . . . , N}, let pi = γ(si) = (xi, yi) ∈ ∂Q be

6



the position of N points on the boundary ordered in counter-clockwise direction.

We assume N ≥ 3 and use the identification 0 ≡ N and N +1 ≡ 1. For s ∈ T, let

t(s) and n(s) denote the tangent vector γ′(s) and the unit outward normal vector

at γ(s) ∈ ∂Q. With a slight abuse of notation, we sometimes refer to unit tangent

and normal vectors at the point pi as ti and ni, and at the point p ∈ ∂Q as t(p)

and n(p). For p ∈ ∂Q, define the half-plane H(p) = {z ∈ R
2 | (p− z) ·n(p) ≤ 0};

see Figure 2.1. Given two points A and B, let AB denote the segment between

them.

Definition 2.1 (Inner and outer polygons) Let p1, . . . , pN be the positions

of N points on ∂Q and let P(R2) denote the parts of R
2. Let us define

PI : (∂Q)N → P(R2) by PI(p1, . . . , pn) = co(p1, . . . , pn), the inner polygon gen-

erated by the vertices {p1, . . . , pn}. With a slight abuse of notation, let us define

the possibly unbounded outer polygon PO : (∂Q)N → P(R2) by PO(p1, . . . , pN) =

H(p1) ∩ · · · ∩ H(pN).

Definition 2.2 (Tangent lines and tangent connections) Define the rays

ℓ+ : ∂Q → P(R2) and ℓ− : ∂Q → P(R2) by ℓ+(p) = {p + λt(p) | λ ≥ 0} and

ℓ−(p) = {p + λt(p) | λ ≤ 0}, respectively. Also, let ℓ(p) = ℓ+(p) ∪ ℓ−(p). A

pair (p, q) of points in ∂Q is counter-clockwise tangent-connected (abbreviated

cc-tangent-connected) if ℓ+(p) ∩ ℓ−(q) 6= ∅.

The following result is illustrated in Figure 2.1.

Lemma 2.1 (Bounded outer polygon) All pairs (pi, pi+1), i ∈ {1, . . . , N},

are cc-tangent-connected if and only if PO(p1 . . . , pN) is bounded.

7



pi

ℓ−(pi)

ni

ℓ+(pi)∂Q

Q

H(pi)

ti

ℓ+(p2) ∩ ℓ−(p3)

ℓ+(p2) ∩ ℓ−(p3) ℓ+(p1) ∩ ℓ−(p2)
t2

p3

p3

Qp2

p1t2

ℓ+(p1) ∩ ℓ−(p2)

t3

p2

p1

ℓ+(p3) ∩ ℓ−(p1)

Q

t1

t3

t1

Figure 2.1. From left to right: the half-plane H(pi) and its boundary ℓ(pi) =

ℓ+(pi) ∪ ℓ−(pi), three points defining a bounded outer polygon, and three points

defining an unbounded outer polygon.

8



Definition 2.3 (Error metrics) We quantify the approximation error of Q

through three different metrics:

• The inner set approximation error EI : (∂Q)N → R+ is defined by

EI(p1, . . . , pn) = Area(Q \ PI(p1, . . . , pn)).

• The outer set approximating error EO : (∂Q)N → R̄+ is defined by

EO(p1, . . . , pn) = Area(PO(p1, . . . , pn) \ Q).

• The symmetric difference error ES : (∂Q)N → R̄+ is defined by

ES(p1, . . . , pn) = Area(PO(p1, . . . , pn) \ PI(p1, . . . , pn)).

Remark 2.1 (Implementation by group of robots) In what follows we

present descent algorithms for the minimization of these error metrics. The algo-

rithms can be implemented by group of robots where we regard pi as a robot that

can sense a portion of ∂Q, communicate with some robots and move to improve

the approximation of ∂Q. For all the algorithms that follow we establish how

much sensing and communication are required. •

2.2 Inner-polygon approximation algorithms

The algorithms of this section are based on the interpolation error EI . Observe

that EI(p1, . . . , pN) = Area(Q) − Area(PI(p1, . . . , pN)). Recalling that the set of

points {p1, . . . , pN} is ordered in counter-clockwise direction, and that (xi, yi) are

coordinates of pi, then an expression for Area(PI(p1, . . . , pN)) is:

Area(PI(p1, . . . , pN)) =
1

2

N∑

i=1

(xiyi+1 − xi+1yi) .

9



We now define a dynamical system by projecting the ith component of the gra-

dient of EI on the tangent ti:

ṗi =

(
ti ·

∂ Area(PI(p1, . . . , pN))

∂pi

)
ti (2.1)

=




1

2
tT
i




yi+1 − yi−1

xi−1 − xi+1







 ti , i ∈ {1, . . . , N} .

Lemma 2.2 (Gradient flow for EI) If t 7→ η(t) = (p1(t), . . . , pN(t)) denotes a

trajectory of the dynamical system (2.1), then EI ◦η is monotonic non-increasing

and η converges asymptotically to the set of critical configurations of EI . A

configuration p1, . . . , pN is critical for EI if and only if, for all i ∈ {1, . . . , N},

ti ⊥




yi+1 − yi−1

xi−1 − xi+1



 , (2.2)

that is, ni ⊥ (pi+1 − pi−1). Furthermore, if the boundary ∂Q is analytic, then η

converges asymptotically to a critical configuration.

Proof. It is easy to see that ṗi(t) = −∂EI(t)
∂pi

|∂Q therefore (2.1) is a gradient

system. As a consequence, EI is monotonic non-increasing:

dEI

dt
= −Area(PI(p1, . . . , pN))

dt
= −

N∑

i=1

(
ti ·

∂ Area(PI(p1, . . . , pN))

∂pi

)2

ti ≤ 0,

and the pi’s asymptotically converge to the set of critical configurations of EI . If

the boundary ∂Q is analytic, then EI is analytic (because it is a composition of

analytic functions) and, by [27], we can conclude that every trajectory has finite

length and tends to a single point belonging to the set of critical configurations.

�

Not every critical point of EI is an extremum of EI : Figure 2.2 illustrates a

saddle point of EI .

10



Figure 2.2. From left to right: saddle point configuration, nearby configuration

that increases the error EI , bear by configuration that decreases the error EI ,

configuration corresponding to a minimum error configuration.

Remark 2.2 (Historical notes) The characterization (2.2) of the critical con-

figurations was already obtained in the XIX century according to [21]. The

paper [21] additionally shows how the critical point configurations satisfy the

condition that points remain closer in regions of higher mean curvature, which is

a desirable condition for shape representation. It is believed [13] that as the num-

ber of nodes increases, the type of configurations that satisfy (2.2) correspond

only to global error minima. •

Remark 2.3 (Implementation by group of robots) In the dynamical sys-

tem (2.1), the velocity ṗi depends only on pi−1, pi+1, and ti. Therefore, to

implement this velocity control, every robot has to receive information about the

positions of its immediate clockwise and counter-clockwise neighbors and sense

the gradient of the contour at its position. Clearly, the communication graph is

a ring graph. •

11



2.2.1 Discrete-time inner-polygon approximation

algorithms

Here we present two discrete-time versions of the vector field in equation (2.1).

Given a strictly convex set Q, define qmax : (∂Q)2 → ∂Q as follows: qmax(q1, q2)

is the point of the counter-clockwise arc from q1 to q2 whose tangent to ∂Q is par-

allel to the segment q1q2. Note that qmax(q1, q2) maximizes q 7→ Area(PI(q1, q, q2)).

Algorithm 1. At each discrete time instant k ∈ N and for each node i ∈ {1, . . . , N}

define:

pi(k + 1) =






qmax(pi−1(k), pi+1(k)), if i ≡ k mod N,

pi(k), if i 6= k mod N .

(2.3)

Proposition 2.1 (Convergence of Algorithm 1) If

k 7→ η(k) = (p1(k), . . . , pN(k)) denotes a trajectory of the dynamical system (2.3),

then EI ◦η is monotonic non-increasing and η converges asymptotically to the set

of critical configurations of EI .

Proof. Let Ak = Area(PI(p1(k), . . . , pN(k)) and let i be congruent mod N with

k. We have that Ak = Tk + Āk, where Tk = Area(PI(pi−1(k), pi(k), pi+1(k)) and

Āk is the area of the inner polygon generated by the complementary set of nodes.

Since qmax(q1, q2) maximizes q 7→ Area(PI(q1, q, q2)),

Tk = Area(PI(pi−1(k), pi(k), pi+1(k)) ≤ Area(PI(pi−1(k), pi(k + 1), pi+1(k)) =

T̄k+1. Therefore, Ak = Tk + Āk ≤ T̄k+1 + Āk = Ak+1, i.e., the point that

moves at time k does so in order to increase the area of the inner polygon or,

equivalently, to decrease the error EI . Using the extension of the LaSalle In-

variance Principle for discrete-time systems ([25]) we can claim that the pi’s will

12



asymptotically reach the largest weakly invariant set in {(p1(k), . . . , pN(k)) ∈

∂QN |EI ◦ η(k + 1)−EI ◦ η(k) = 0}, which is the set of critical configurations for

EI . �

The quintuplet (p−2, p−1, p0, p1, p2) is admissible if the following three inequal-

ities hold:

Area(PI(qmax(p−2, p0), p0, qmax(p0, p2)))

≤ Area(PI(qmax(p−2, p0), qmax(p−1, p1), qmax(p0, p2))),

Area(PI(p−1, p0, qmax(p0, p2))) ≤ Area(PI(p−1, qmax(p−1, p1), qmax(p0, p2))),

Area(PI(qmax(p−2, p0), p0, p1)) ≤ Area(PI(qmax(p−2, p0), qmax(p−1, p1), p1)).

Algorithm 2. At each discrete time instant k ∈ N and for each node i ∈ {1, . . . , N}

define:

pi(k + 1) = qmax(pi−1(k), pi+1(k)), (2.4)

if (pi−2(k), pi−1(k), pi(k), pi+1(k), pi+2(k)) is admissible, and pi(k + 1) = pi(k)

otherwise. Here is our main analysis result in this section.

Proposition 2.2 (Convergence of Algorithm 2) EI is monotonic

non-increasing along all trajectories of (2.4).

Proof. The proof consists of two parts. As first fact (i), we prove inductively that

the area of any polygon of N vertices increases by leaving any two consecutive

nodes fixed and by moving the other N −2 vertices according to (2.4). As second

fact (ii), building on the previous result, we show that the area of any polygon

of N vertices increases by moving the all the N vertices according to (2.4).

Let us prove first (i) by induction on the number of vertices of a polygon.

Let us consider N = 3. Clearly, if two of the three vertices are fixed and the

13



other one moves according to (2.4), the area of the triangle formed by the three

nodes increases, just as seen for Algorithm 1. Assume now that, given a polygon

PI(p1, . . . , pN−1) with N −1 vertices, its area can be increased by leaving any two

consecutive nodes fixed and moving the other N−1−2 vertices according to (2.4).

Let us now prove that the same property holds for the polygon PI(p1, . . . , pN)

with N vertices. Clearly, we have that:

Area(PI(p1, . . . , pN)) = Area(PI(p1, . . . , pN−1)) + Area(PI(pN−1, pN , p1)),

where for simplicity of notation we dropped the time index k. By assumption,

the area of a polygon with N − 1 vertices increases if any two consecutive points

are fixed and the rest moves according to (2.4). Therefore, we have

Area(PI(p1, p2 . . . , pN−2, pN−1)) ≤ Area(PI(p1, p
+
2 . . . , p+

N−2, pN−1)),

where for simplicity of notation the superscript + indicates that the node has

updated its position according to (2.4). This implies:

Area(PI(p1, . . . , pN))

≤ Area(PI(p1, p
+
2 . . . , p+

N−2, pN−1)) + Area(PI(pN−1, pN , p1))

= Area(PI(p+
2 . . . , p+

N−2, pN−1, pN)) + Area(PI(pN , p1, p
+
2 ))

≤ Area(PI(p+
2 . . . , p+

N−2, pN−1, pN)) + Area(PI(pN , p+
1 , p+

2 ))

= Area(PI(p+
1 , p+

2 , . . . , p+
N−2, pN−1, pN)).

The second inequality holds because along the trajectories of (2.4) we have that

Area(PI(pN , p1, p
+
2 ))≤ Area(PI(pN , p+

1 , p+
2 )). This concludes the proof of (i). To

14



prove (ii), note that

Area(PI(p+
1 , p+

2 , . . . , p+
N−2, pN−1, pN))

= Area(PI(p+
1 , . . . , p+

N−2, pN−1)) + Area(PI(pN−1, pN , p+
1 ))

≤ Area(PI(p+
1 , . . . , p+

N−2, pN−1)) + Area(PI(pN−1, p
+
N , p+

1 ))

= Area(PI(p+
N , p+

1 , . . . , p+
N−2)) + Area(PI(p+

N−2, pN−1, p
+
N))

≤ Area(PI(p+
N , p+

1 , . . . , p+
N−2)) + Area(PI(p+

N−2, p
+
N−1, p

+
N))

= Area(PI(p+
1 , . . . , p+

N)).

�

Remark 2.4 Stationary configurations of (2.4) are not necessarily critical points

of EI , i.e., at an equilibrium configuration for (2.4) there could exist a node

for which condition (2.2) is not satisfied. A set of nodes could be “unlocked”

by running a leader-election algorithm between neighbors and giving priority of

motion to the consensual leader. This operation respects the descent nature of

the algorithm and guarantees that we reach a desired critical configuration. •

Remark 2.5 (Implementation by group of robots) To implement

Algorithm 1, each robot pi needs to have knowledge about its own label number

i ∈ {1, . . . , N} and about the position of its one-hop neighbors. Algorithm 2, does

not require a labeling of robots, but requires each robot to have knowledge about

part of the contour and knowledge about the position of its two-hop neighbors.•

15



2.3 Outer-polygon approximation algorithms

The algorithms of this section are based on the interpolation error EO. We

begin with a geometric characterization of the partial derivative of EO and of the

critical configurations for EO. First, for i ∈ {1, . . . , N}, we define αi(pi, pi+1) to

be the angle (measured in counter-clockwise order) from ti to ti+1. Assuming

any pair (pi, pi+1) is cc-tangent-connected, consider Ai = ℓ−(pi) ∩ ℓ+(pi−1) and

Bi = ℓ−(pi+1)∩ ℓ+(pi). Let us denote by d−
i (resp. d+

i ) the length of the segment

piAi (resp. the segment piBi), as in Figure 2.3(a). It is useful to define d−
i = +∞

pi

αi

αi−1

pi+1
pi−1

Ai

Bi d+
i

d−i

(a)

p(si + δsi)
p(si)

A(si + δsi)

B(si + δsi)

D

pi+1

T2

pi−1

A(si)

−δαi

B(si) T1

(b)

Figure 2.3. (a) Illustration of αi, αi−1, Ai and Bi. (b) Variation of EO described

in Proposition 2.3.

(resp. d+
i = +∞) when the pair (pi−1, pi+1) is not cc-tangent-connected. One can

16



show that:

d−
i (pi, pi−1) =






+∞ , if pi 6= pi−1

and ti · ni−1 = 0,

(pi − pi−1) · ni−1

ti · ni−1

, otherwise ,

d+
i (pi, pi+1) =






+∞ , if pi 6= pi+1

and ti · ni+1 = 0 ,

(pi+1 − pi) · ni+1

ti · ni+1

, otherwise .

Proposition 2.3 (Partial derivative of EO) If all the pairs (pi, pi+1) are cc-

tangent-connected, then

∂EO(p1, . . . , pn)

∂si

=
1

2
(d−

i + d+
i )(d−

i − d+
i )κ(si).

Proof. Let us consider p(si) and p(si + δsi), two points on the arc from pi−1

to pi+1, as shown in Figure 2.3(b). Let D = ℓ+(si) ∩ ℓ−(si + δsi). Let δαi =

α(si + δi) − α(si). Note that δαi < 0 when δsi > 0. By construction:

Area(T1) − Area(T2) = EO(p1, . . . , p(si + δsi), . . . pn) − EO(p1, . . . , p(si), . . . , pn),

where T1 is the triangle with vertices D, A(si), and A(si + δsi), and T2 is the

triangle with vertices D, B(si), and B(si + δsi). We now prove that Area(T1) =

(d−
i )2(−δαi) + o(δα2

i ) and that Area(T2) = (d+
i )2(−δαi) + o(δα2

i ), for small δsi.

Note that ‖p(si +δsi)−p(si)‖ = ‖γ′(si)δsi‖+o(δs2
i ) and that ∂α(s)

∂s
= ∂α(s)

∂t(s)
∂t(s)
∂s

=

−κ(s). Therefore, we have δαi = −κ(si)δsi + o(δs2
i ). In fact, provided that

pi 6= pi+1, the function αi(pi, pi+1) is differentiable and its gradient is: ∂αi(pi,pi+1)
∂ti

=

(t2i ,−t1i ), where ti = (t1i , t
2
i ). Clearly,

∂ti

∂si

= (−t2i , t
1
i )κ(si). It can be shown that

17



‖D − A(si)‖ = d−
i + ‖γ′(si)δsi‖

2
+ o(δs2

i ). Let h be the height of the triangle T1

with respect to the base ‖D − A(si)‖. Clearly, we have h = ‖A(si) − A(si +

δsi)‖ sin(αi−1) and

‖A(si) − A(si + δsi)‖
sin(−δαi)

=
‖D − A(si)‖

sin(π − (αi−1 − δαi))
,

and, therefore,

h = ‖D − A(si)‖
sin(−δαi)

sin(αi−1 − δαi)
sin(αi−1).

We have then:

Area(T1) =
1

2
‖D − A(si)‖h =

1

2
‖D − A(si)‖2 sin(αi−1)

sin(αi−1 − δαi)
sin(−δαi).

For small δsi, and hence small δαi, we have that sin(αi−1)
sin(αi−1−δαi)

= 1 + o(δαi), and

sin(−δαi) = −δαi + o(δα2
i ). Therefore:

Area(T1) =
1

2
(d−

i )2(−δαi) + o(δα2
i ).

Analogously, it can be proved that Area(T2) = 1
2
(d+

i )2(−δαi) + o(δα2
i ). We can

now compute

∂EO(p1, . . . , pn)

∂si

= lim
δsi→0

Area(T1) − Area(T2)

δsi

,

= lim
δsi→0

1

2
((d+

i )2 − (d−
i )2)

δαi

δsi

,

=
1

2
(d−

i + d+
i )(d−

i − d+
i )κ(si).

where we used the fact that ∂αi/∂si = κ. �

Based on these notions and concepts, we define the dynamical system

ṗi = satv((d+
i )2 − (d−

i )2) ti , i ∈ {1, . . . , N}, (2.5)

18



where the function satv : R → R, defined for some positive saturation value v ∈

(0, +∞), is given by:

satv(x) =






x , |x| ≤ v,

x
|x|

v , |x| ≥ v .

Equation (2.5) is well defined if we adopt the convention | ±∞| = +∞, and the

usual operations in R. We are ready for the main result of this section; note that

the characterization of the critical points of EO was originally given in [41].

Proposition 2.4 (Gradient flow for EO) If t 7→ η(t) = (p1(t), . . . , pN(t)) de-

notes a trajectory of the dynamical system (2.5), then (i) EO ◦ η is bounded in

finite time and monotonic non-increasing afterwards, and (ii) η converges asymp-

totically to the set of critical configurations of EO. A configuration p1, . . . , pN is

critical for EO if and only if, for all i ∈ {1, . . . , N},

d+
i (pi, pi+1) = d−

i (pi, pi−1).

Furthermore, if the boundary ∂Q is analytic, then η converges asymptotically to

a critical configuration.

Proof. Suppose that there exists i ∈ {1, . . . , N} such that (pi, pi+1) is not

cc-tangent-connected (i.e., d−
i < +∞ and d+

i = +∞). Since d+
i = +∞ also

d−
i+1 = +∞ and EO is unbounded. Since ∂Q is strictly convex, we have d−

j < +∞

(resp. d+
j < +∞), for all j 6∈ {i, i + 1}. Because of equation (2.5), pi will move

counter-clockwise with speed v > 0, while pi+1 will move clockwise with the

same speed. Therefore, in finite time the two rays ℓ+
i and ℓ−i+1 intersect, (pi, pi+1)

become cc-tangent-connected and EO becomes bounded. Now, we prove that

19



if all pairs (pi, pi+1) are cc-tangent-connected, then EO ◦ η decreases. Using

equation (2.5) we compute

ṗi = γ′(si)ṡi = ‖γ′(si)‖tiṡi = ti satv((d+
i )2 − (d−

i )2)

=⇒ ṡi =
satv((d+

i )2 − (d−
i )2)

‖γ′(si)‖
,

and therefore:

dEO(p1, . . . , pN)

dt
=

N∑

i=1

∂EO(p1, . . . , pN)

∂αi

∂αi

∂ti

· ∂ti

∂si

ṡi

=
N∑

i=1

κ(si)
((d−

i )2 − (d+
i )2) satv((d+

i )2 − (d−
i )2)

2‖γ′(si)‖
.

Because we assumed κ > 0 on the entire boundary, the cost function EO de-

creases monotonically along the trajectories of equation (2.5). Using the LaSalle

Invariance Principle, it can be proved that the pi’s will asymptotically converge

to the set of critical configurations for EO.

Let s(t) = [s1(t), . . . , sN(t)]T ∈ T
N , and note that if ∂Q is analytic then EO

is analytic. Next, we recall a result from [1]. If there exists δ > 0 and τ such

that, for all t > τ , the following holds

dEO

dt
≡ 〈∇EO(s(t)), ṡ(t)〉 ≤ −δ‖∇EO(s(t))‖‖ṡ(t)‖,

then s(t) converges to a unique critical configuration s∗. We use this result as

follows. Note that as t → +∞, s(t) approaches the set of critical configurations.

We can then conclude that there exists a time τ after which satv is not active

any longer and, hence, ṡi(t) = −λi(t)
∂EO

∂si
, where λi(t) = 2

κ(si)‖γ′(si)‖
. Therefore

we have

〈∇EO(s(t)), ṡ(t)〉 = −∇EO(s(t))T Λ(t)∇EO(s(t)) ≤ −λmin(t)‖∇EO(s(t))‖2 ,

20



where Λ(t) ∈ R
N×N is a diagonal matrix with entries [Λ(t)]ii = λi(t) > 0, and

λmin(t) = min{λ1(t), . . . , λN(t)}. We require:

−λmin(t)‖∇EO(s(t))‖2 ≤ −δ‖∇EO(s(t))‖‖ṡ(t)‖ ,

or equivalently

λmin(t)‖∇EO(s(t))‖ ≥ δ‖ṡ(t)‖ .

Note that ‖ṡ(t)‖ ≤ λmax(t))‖∇EO(s(t))‖, where λmax(t) = max{λ1(t), . . . , λN(t)},

therefore:

δ = inf
t>τ

λmin(t))‖∇EO(s(t))‖
‖ṡ(t)‖ ≥ inf

t>τ

λmin(t)

λmax(t)
> 0.

We can then conclude that the pi’s will asymptotically converge to a unique

critical configuration for EO. �

Remark 2.6 (Implementation by group of robots) To dynamically

construct the best outer-polygon approximation according to equation (2.5), the

robots need to exchange information not only about their positions (like for the

inner-polygon approximation) but also about their local tangent. •

2.3.1 Discrete-time outer-polygon approximation

algorithms

It is easy to prove that an algorithm analogous to Algorithm 1 in the previous

section guarantees convergence to the critical configuration of EO. We state the

analogous results here omitting the corresponding proof.

21



Given a strictly convex set Q, define qmin : (∂Q)2 → ∂Q as follows: qmin(q1, q2)

is the point of the counter-clockwise arc from q1 to q2 whose tangent to ∂Q satisfies

d−
i = d+

i . Note that qmin(q1, q2) minimizes q 7→ Area(PO(q1, q, q2)).

Algorithm 3. At each discrete time instant k ∈ N and for each node i ∈ {1, . . . , N}

define:

pi(k + 1) =






qmin(pi−1(k), pi+1(k)), if i ≡ k mod N,

pi(k), if i 6= k mod N .

(2.6)

Proposition 2.5 (Convergence of Algorithm 3) If

k 7→ η(k) = (p1(k), . . . , pN(k)) denotes a trajectory of the dynamical system (2.6),

then EO ◦ η is monotonic non-increasing and η converges asymptotically to the

set of critical configurations of EO.

Remark 2.7 Similarly to Algorithm 2 in the inner-polygon approximation prob-

lem, it is possible to design a discrete time algorithm based on admissible quin-

tuplets. Such algorithm would have limitations similar to the ones of Algorithm

2 and we do not present it here in the interest of brevity.

2.4 “Outer minus inner” polygon approxima-

tion algorithms

An alternative cost function that quantifies the accuracy of a polygonal ap-

proximation of a convex body Q, is provided by the symmetric difference error

ES. In this section we provide a novel expression for ∂ES

∂pi
, i ∈ {1, . . . , N} under

22



the assumption that the outer polygon is bounded. This expression leads to a

new type of gradient decent algorithm.

Lemma 2.3 (Partial derivative of ES) If (pi, pi+1) is cc-tangent-connected,

then the area of the triangle formed by the segment pi+1pi and the rays ℓ+(pi) and

ℓ−(pi+1) is

Ai(pi, pi+1,ni,ni+1) =
1

2

(ni · (pi − pi+1))(ni+1 · (pi − pi+1))

(ni × ni+1) · e3

.

Regarding pi and ni = n(pi) as a functions of the parameter si ∈ [0, 1], we have

∂ES(p1, . . . , pN)

∂si

=

(
∂Ai−1

∂pi

+
∂Ai

∂pi

− κ(si)

(
∂Ai−1

∂ni

+
∂Ai

∂ni

))
· ti.

Proof. In the interest of space, we only mention here that the proof is based

upon elementary calculations. �

If we set pi = (xi, yi), ni = (n1
i , n

2
i ) and ni−1 × n+

i := n1
i−1n

2
i + n1

i n
2
i−1, then

explicit expressions for the relevant partial derivatives in Lemma 2.3 are:

∂Ai−1

∂xi

=
(pi − pi−1) · ( 2n1

i−1n
1
i , ni−1 × n+

i )

2(ni−1 × n+
i )

,

∂Ai−1

∂yi

=
(pi − pi−1) · ( ni−1 × n+

i , 2n1
i−1n

1
i )

2(ni−1 × n+
i )

,

∂Ai−1

∂n1
i

=
n2

i (ni−1 · (pi − pi−1)
2)

2(ni−1 × n+
i )2

,

∂Ai−1

∂n2
i

=
n1

i (ni−1 · (pi − pi−1)
2)

2(ni−1 × n+
i )

.

Lemma 2.4 (Gradient flow for ES) If t 7→ η(t) = (p1(t), . . . , pN(t)) denotes

a trajectory of the dynamical system

ṗi = − ti

(
∂Ai−1

∂pi

+
∂Ai

∂pi

− κ(si)

(
∂Ai−1

∂ni

+
∂Ai

∂ni

))
· ti , i ∈ {1, . . . , N},

23



with ES ◦ η(0) < +∞, then ES ◦ η is monotonic non-increasing and η converges

asymptotically to the set of critical configurations of ES. Furthermore, if the

boundary ∂Q is analytic, then η converges asymptotically to a critical configura-

tion.

We omit the proof of this lemma as it closely parallels that of Lemma 2.2.

Remark 2.8 (Implementation by group of robots) Even for this scenarios,

the robots can move along the gradient of ES relying upon information that is

available to them through one-hop communication and through sensing of local

tangent and curvature data. •

2.5 Simulations

Figure 2.4 shows the implementation results of the three continuous time

descent algorithms described in Sections 2.2, 2.3,and 2.4. The eleven nodes are

on the contour described by γ(θ) = (2.1 + sin(2πθ))(cos(2πθ), sin(2πθ))T , for

θ ∈ [0, 1). Figure 2.5 shows the implementation results of the discrete-time

Algorithm 2 described in Sections 2.2.

2.6 Summary

In this chapter we have introduced three intuitive metrics and corresponding

gradient flows to approximate a strictly convex planar body by a polygon of N

vertices. The metrics are: (i) the difference between the area of body and the

inner polygon, (ii) the difference between the area of the outer polygon and the

24



−3 −2 −1 0 1 2 3

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Initial configuration

−3 −2 −1 0 1 2 3

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Inner-polygon

−3 −2 −1 0 1 2 3

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Outer-polygon

−3 −2 −1 0 1 2 3

−1

−0.5

0

0.5

1

1.5

2

2.5

3

“Outer minus inner” polygon

Figure 2.4. From left to right and from top to bottom: initial condition of eleven

nodes on a convex boundary, final condition after the implementation of the

inner-polygon, outer-polygon, and “outer minus inner” polygon approximation

algorithms.

area of the body, and (iii) the difference between the area of the outer polygon and

of the inner polygon. The gradient flows for (ii) and (iii) are novel results. The

flows can be implemented, in a distributed fashion, by a robotic sensor network.

For the metrics (i) and (ii) we also introduced a corresponding discrete-time

algorithm.

25



−3 −2 −1 0 1 2 3

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Initial configuration

−3 −2 −1 0 1 2 3

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Inner-polygon Algorithm 2

Figure 2.5. From left to right: initial condition of eleven nodes on a convex

boundary and final condition after the implementation of Algorithm 2.

26



Chapter 3

Monitoring environmental

boundaries with a robotic sensor

network

Much recent attention has been given to the problem of boundary estimation

and tracking by means of robotic networks. The common goal is to design a

distributed algorithm that allows a limited number of mobile agents to detect

the boundary of a region of interest and estimate it as it evolves. Boundary

estimation and tracking is useful in numerous applications such as the detection

of harmful algae bloom [28, 5], oil spill [8], and fire containment [7]. In [28],

Marthaler and Bertozzi adopt the so-called “snake algorithm” (from the com-

puter vision literature) to detect and track the boundary of harmful algae bloom.

Each agent is equipped with a chemical sensor that is able to measure the con-

centration gradient and with a communication system that is able to exchange

information with a data fusion center. In [5], Bertozzi et al. suggest an algo-

27



rithm that requires only a concentration sensor: the agents repeatedly cross the

region boundary using a bang-bang angular velocity controller. In [8], Clark and

Fierro use a random coverage controller, a collision avoidance controller and a

bang-bang angular velocity controller to detect and surround an oil spill. In [7],

Casbeer et al. describe an algorithm that allows Low Altitude Short Endurance

Unmanned Vehicles (LASEUVs) to closely monitor the boundary of a fire. Each

of the LASEUVs has an infrared camera and a short range communication de-

vice to exchange information with other agents and to download the information

collected onto the base station. A different approach is considered by Zhang and

Leonard in [43]. A formation of four robots tracks at unitary speed the level

sets of a field. Their relative position changes so that they optimally measure

the gradient and they estimate the curvature of the field in the center of the

formation. Challenges in boundary estimation using motion-enabled sensors are

discussed in [35].

In this chapter we propose an algorithm to estimate and reconstruct the

boundary of a nonconvex time-varying region. The objective is for a group of

mobile agents to optimally place some interpolation points on the boundary of

a simply connected planar region. The boundary is then reconstructed by linear

interpolation of the interpolation points. We assume that (i) at initial time the

agents have an estimate of the boundary, (ii) each agent is equipped with a

limited-footprint camera-like sensor and with algorithms to locally estimate the

tangent and curvature of the boundary, and (iii) the agents exchange information

through a ring-topology communication network. An example scenario for these

assumptions is a situation where a group of Unmanned Air Vehicles (UAVs) with

an on-board camera are tasked to reconstruct the boundary of an oil spill or of a

28



forest fire.

3.1 Approximation theory for convex bodies

In this section we review some known useful results from the literature on

approximation of strictly convex bodies; e.g., see the extensive survey [13]. In the

standard literature on convex bodies approximations, the symmetric difference

δS between two compact, and strictly convex bodies C, B ∈ R
d is defined by

δS(C,B) = µ(C ∪ B) − µ(C ∩ B), where µ is the Lebesgue measure on R
d. If

Q is the body to be approximated by an inscribed n-vertices polygon Pn, then

δS(Q,Pn) = µ(Q) − µ(Pn). Let ∂Q be the boundary of Q, ℓ be the arc length

along ∂Q, and θ be the angular position in a polar variable parameterization of

∂Q. Let ρ and κ = ρ−1 be the curvature radius and curvature of the boundary,

respectively. For n sufficiently large, McLure and Vitale [29] show that

δS(Q,P ∗
n) ≈ 1

12n2

(∫ 2π

0

ρ(θ)2/3dθ

)3

=
1

12n2

(∫

∂Q

κ(ℓ)1/3dℓ

)3

,

where P ∗
n is the best approximating polygon with n vertices inscribed in Q. To

construct the best approximating polygon P ∗
n for a strictly convex body McLure

and Vitale in [29] suggest the method of empirical distributions. According to

this method, the positions θi, i ∈ {1, . . . , n}, of the vertices along ∂Q have the

property that DS(i) =
∫ θi+1

θi
ρ(θ)2/3dθ has the same value for every consecutive

pair of vertices (i, i + 1). (Here and in what follows, we adopt the convention

that n + 1 = 1.) Interpolating polygons computed according to the method of

empirical distributions converge to P ∗
n as n → +∞.

For smooth nonconvex bodies with a finite number of inflection points, the

29



method of empirical distributions will also yield a nearly optimal distribution as

n → +∞ because of the local convexity of the body away from inflection points.

We show how to do this in what follows. Since the curvature radius may be

unbounded at some point of a nonconvex boundary, the integral DS(i) may be

unbounded for some i. We avoid this problem by considering the following general

notion of distance along a boundary. For λ ∈ [0, 1], we define the pseudo-distance

Dλ between vertices (i, i + 1) by:

Dλ(i) = λ

∫ ℓi+1

ℓi

κ(ℓ)1/3dℓ + (1 − λ)(ℓi+1 − ℓi).

This definition is inspired by the fact that, for convex bodies, we have
∫ 2π

0
ρ(θ)α =

∫
∂Q

κ(ℓ)1−αdℓ for α > 0, see [13]. Introducing the convex combination with arc

length, we guarantee that Dλ(i) is nonzero whenever the vertices i and i + 1 do

not coincide. Note that changing the value of the parameter λ has less noticeable

impact in arcs of the boundary with high curvature and more in the arcs with

low curvature. In what follows we develop a version of the method of empirical

distributions in which consecutive vertices are uniformly distributed according to

the pseudo-distance Dλ.

3.2 Boundary estimation and agent pursuit al-

gorithm

In this section we propose and analyze an algorithm that leads a group of

na agents to compute and constantly update an estimate of a slowly moving

boundary. The estimate is computed in the form of an interpolating polygon;

the algorithm aims to place the interpolation points so that they are uniformly

30



distributed according to the pseudo-distance Dλ introduced in the previous sec-

tion. As discussed in the Introduction, we assume that (i) at initial time the

agents have an estimate of the boundary, (ii) each agent can locally estimate the

tangent and curvature of the boundary, and (iii) the agents are able to exchange

information according to a ring-topology communication service.

We let {Pi}i∈{1,...,na} be the positions of the mobile agents and we let

{pα}α∈{1,...,nip} be the vertices of the interpolating polygon; in a practical imple-

mentation, we assume that each agent maintains a copy of these virtual positions.

Relying upon the initial estimate of the boundary, we make the following addi-

tional assumptions: at time t = 0, the agents have reached a point of ∂Q and

the interpolation points are distributed (possibly nonuniformly) on the estimated

boundary. We assume that both the interpolation points and the agents are

ordered counterclockwise, and that the agents move counterclockwise along the

boundary with speed vi, see Figure 3.1.

positive direction

P1

P3

P4

P2

p3

p4

p5

p6

p8

p9

p2

p1

p7
p10

Figure 3.1. In the figure the solid line is the boundary ∂Q, the triangles are

the agents, the circles are the interpolation points, and the dotted line is the

approximating polygon defined by the interpolation points.

The agents have two objectives: (i) update the interpolation points such

31



that they are uniformly distributed along ∂Q according to the estimated pseudo-

distance D̂λ, (ii) move along the boundary equally distributed according to arc

length distance. To achieve these two objectives we propose the novel

Estimate Update and Pursuit Algorithm that can be summarized as fol-

lows.

Every agent moves counterclockwise along the time-varying ∂Q and
collects estimates of the curve ∂Q and of its tangent and curvature.
Using these estimates, the agent completes the following four actions:
First, each agent updates the positions of the interpolation points
so that they take value in ∂Q. In other words, as sufficient infor-
mation is available, each interpolation point pα, α ∈ {1, . . . , nip}, is
projected onto the measured boundary. Second, after an interpolation
point pα has been projected, the agent collects sufficient information
so that it can locally optimize its position along the estimate of ∂Q.
Third, every agent estimates the arc length distance between itself
and its immediate clockwise and counterclockwise neighbors and uses
this information to speed up or slow down. Fourth and last, the up-
dated interpolation point pα is transmitted to appropriate neighboring
agents.

The first two steps have the combined effect of updating the local estimates

of the boundary. The third step has the effect of distributing the agents uni-

formly along the boundary. The fourth step has the effect of maintaining correct

distributed information about the boundary estimate.

3.2.1 Algorithm description

In this section we present the Estimate Update and Pursuit Algorithm

in some detail and we analyze its stability. We begin by introducing some basic

geometric notions about curves and making some smoothness assumptions. In

what follows, we let ‖v‖ be the Euclidean norm of v ∈ R
n, R+ be the set of

32



nonnegative real numbers, and N0 be the set of nonnegative integers. Let ∂Q

be the boundary of a simply connected, and possibly nonconvex set Q in R
2.

Let γ : R+ × [0, 1] → R
2 be a parametric representation of the time-varying

boundary so that, at fixed t ∈ R+ and for all s ∈ [0, 1], γ(t, s) describes the

boundary ∂Q(t). We assume that ∂γ(t,s)
∂s

= γ′(t, s) 6= 0 for all s ∈ [0, 1] and

for all t, that γ(t, 0) = γ(t, 1), and that s increases as we traverse the curve

in the counterclockwise direction. We also assume that γ(t, s) is smooth with

respect to s and t and that the length of the boundary ∂Q is upper and lower

bounded uniformly in t. The curvature κ : [0, 1] → R̄+ of the curve γ is defined

by κ(s) = ‖γ′(s)×γ′′(s)‖
‖γ′(s)‖3 .

Now, we can begin our detailed description of our algorithm; we begin with

the data structure. Each agent i maintains the following the following variables

in its memory.

Variable #1: a counter now taking values in {1, . . . , nip}, when necessary we

will use nowi to indicate the value of the counter now for agent i;

Variable #2: a buffer bufferarc containing a collection of triplets

{oj, γ̂′(oj), κ̂(oj)}, where oj is a point on ∂Q, γ̂′(oj) and κ̂(oj) are tangent

vector and curvature at the point oj, respectively, and j takes value in an

index set {1, . . . , no}. It is also convenient to let O = {oj}j∈{1,...,no};

Variable #3: a boundary estimate given by interpolation points p1, . . . , pip,

tangent vectors at interpolation points γ′
1, . . . , γ

′
ip, and pairwise pseudo-

distance between interpolation points D̂λ(pα, pα+1), α ∈ {1, . . . , nip}.

These variables are initialized as follows: now is set equal to the index of the

33



interpolation point that is immediately counterclockwise from Pi(0), bufferarc

is empty, and the boundary estimate is given by assumption.

Remark 3.1 (Interpretation) The positions O are points that an individual

agent has recently visited while moving along ∂Q and are an arbitrarily accurate

discretization of a portion of ∂Q; these points reside in the memory of every in-

dividual agent. On the contrary, the interpolation points p1, . . . , pip are a coarser

discretization of a portion of ∂Q and are communicated among agents. The idea

is that the agent moves and gathers sufficient information to update the interpo-

lation point pnow with the set of observations in bufferarc, that is, to project

pnow onto the discretized representation bufferarc of ∂Q(t). •

Let us illustrate the meaning of the variables in Figure 3.2. The curve of

points represents the approximation bufferarc of ∂Q as seen by agent i, while

the solid line represents ∂Q as known through the interpolation points p1, . . . , pip

and the tangent vectors γ′
1, . . . , γ

′
ip before any update takes place. The agent is

represented by a triangle. The white circles are the interpolation points before

the update, and the black circles represent the interpolation points after the

update; the white arrows denote the projection of the interpolation points onto

the recently measured boundary and the black arrow denotes the locally optimal

repositioning of the interpolation points.

34



pnow+1

pnow

pnow−1

Pi(t)

pnow−2

Figure 3.2. Mobile agent moving along boundary, projecting (white arrow) and

locally updating (black arrow) interpolation points.

In what follows, we need to provide rules to perform the various data man-

agement tasks:

Rule #1: how to maintain the data in bufferarc, i.e., how long should the

buffer be;

Rule #2: when and how to project onto ∂Q the next outstanding interpolation

point pnow;

Rule #3: when and how to locally optimize the updated interpolation point

pnow−1; and

Rule #4: when and what to communication and to whom.

Rule #1: If agent i is in the process of projecting interpolation point pnow,

then bufferarc must contain information about ∂Q starting from interpolation

point pnow−2 up to the agent position.

Rule #2: In most cases, the projection takes place when the agent crosses

the line ℓnow that passes through p−
now

and is perpendicular to γ̂′(p−
now

). To be

specific, p−
now

denotes the interpolation point about to be updated, and γ̂′(p−
now

)

denotes the corresponding tangent vector. We can therefore define p+
now

to be

35



the point where the mobile agent trajectory Pi(t) crosses ℓnow, and γ̂′(p+
now

) to

be the tangent to ∂Q at p+
now

. This is indeed the correct definition if the agent

does cross this ℓnow. This projection operation is illustrated in Figure 3.3.

pnow−1

p−now

p+
now

pnow−2

p−
now−1

Pi(t)

ℓnow

Figure 3.3. Mobile agent projecting interpolation point onto the observed bound-

ary

We therefore amend the algorithm to act as follows. If sufficient time has

elapsed without the agent crossing ℓnow, e.g., if no crossing has happened at

time t such that D̂λ(pnow−1, P (t)) = 2D̂λ(p−now−1, p
−
now

), then p+
now

is set equal

to the point on O that is closest to p−
now

. The corresponding definition is also

employed for γ̂′(p+
now

). In both cases, this projection is well defined and has the

following properties. If ∂Q is time-invariant, then p−
now

= p+
now

, if ∂Q is slowly

time-varying, then p+
now

is close to the orthogonal projection of p−
now

onto ∂Q.

Rule #3: The local optimization of pnow−1 takes place immediately after the

update of pnow. Using the data in bufferarc, the agent computes the Voronoi

cell inside O of the interpolation point pnow−1 and moves pnow−1 to the center of

this cell. This operation is illustrated in Figure 3.4.

36



Pi(t)

move towards center of Voronoi cell

pnow−2
p+
now

p+
now−1

oℓ
ou

Figure 3.4. Mobile agent locally optimizing interpolation point pnow−1 along the

observed boundary, after projecting pnow

To describe this local optimization accurately, let us introduce some notation.

The Voronoi cell {oℓ, . . . , ou} ⊂ O of the interpolation point pnow−1 is defined

implicitly by

D̂λ(pnow−2, oℓ) = D̂λ(oℓ, pnow−1) =
D̂λ(pnow−2, pnow−1)

2
,

D̂λ(pnow−1, ou) = D̂λ(ou, p
+
now

) =
D̂λ(pnow−1, p

+
now

)

2
.

In other words, the point oℓ is the midpoint between pnow−2 and pnow−1, while ou

is the midpoint between pnow−1 and p+
now

after the latter was projected on ∂Q.

We now implicitly define the center ok ∈ O of the Voronoi cell by

D̂λ(oℓ, ok) = D̂λ(ok, ou) =
D̂λ(pnow−2, pnow−1) + D̂λ(pnow−1, p

+
now

)

4
. (3.1)

Thus, the new position of pnow−1 is p+
now−1 = ok.

As a consequence D̂λ(pnow−2, pnow−1) and D̂λ(pnow−1, pnow) have changed, but

we can easily calculate their new values:

D̂λ(pnow−2, p
+
now−1) = D̂λ(pnow−2, oℓ) + D̂λ(oℓ, p

+
now−1)

=
D̂λ(pnow−2, pnow−1)

2
+

D̂λ(pnow−2, pnow−1) + D̂λ(pnow−1, p
+
now

)

4
,

similarly, the new value for D̂λ(p+
now−1, pnow) can be calculated.

37



Rule #4: Transmission rule: after locally optimizing the position of the in-

terpolation point pnow−1 and updating the corresponding data γ̂′(pnow−1) and

D̂λ(pnow−2, pnow−1), agent i transmits this information to agent i − 1. We as-

sume the transmission is reliable. After this local optimization is performed,

the counter now is updated to now + 1 and Rule #1 is applied again, i.e., the

buffer bufferarc is updated by dropping all observations oj between pnow−2

and pnow−1.

Remark 3.2 (Synchronization assumption) We assume that when agent i

is relocating and transmitting information about pnow−1 agent (i− 1) has not yet

projected now − 2. If this assumption does not hold, i.e., if agent i − 1 is ready

to apply Rule #2 before agent i has applied Rule #4, then agent i − 1 will have

to keep collecting data in its buffer bufferarc until agent i transmits the new

position of pnow−1. •

Remark 3.3 (Extensions) In the interest of simplicity, we have omitted two

possible generalization that might be useful in practice. First, each agent does

not need to know all interpolation points; it would suffice for it to know only

the interpolation points located ahead of its position and before the position of

the preceding agent. Second, each agent could locally optimize not only a single

interpolation point, but it could store a longer buffer and locally optimize arrays

of interpolation points. •

This completes our description of the estimate update algorithm and we now

focus on the pursuit objective. To uniformly distribute the agents along the

boundary ∂Q according to arc length, we use the following update law for their

38



velocities:

vi(t) = v0 + kprop(L̂(Pi, Pi+1) − L̂(Pi−1, Pi)),

with kprop, v0 > 0 and L̂(Pn, Pm) =
∑

nowm

α=nown+1(‖pα−1 − pα‖), for all n,m ∈

{1, . . . , na}. Here, recall that pnown , pnown+1 , . . . , pnowm are the interpolation points

separating agent n and agent m, with n < m, and therefore L̂ is the esti-

mated arc length of the portion of ∂Q that has to be traversed to go from

the agent n to the agent m. The agents have only local information of ∂Q

but still they have to estimate the distance, along ∂Q, from their clockwise

and counterclockwise neighbors in order to calculate their speed. The estimate

L̂(Pn, Pm) is obtained from the approximating polygon formed by the interpola-

tion points. In practice, any agent will speed up if it is closer to the agent behind

it, and slow down if closer to the agent in front of it. With a saturation-like

function: sat(vi(t)) = max{vmin, min{vi(t), vmax}}, we additionally impose that

0 < vmin ≤ vi(t) ≤ vmax for all t.

Remark 3.4 (Partial knowledge) The pursuit objective of the proposed algo-

rithm requires more knowledge than the boundary estimation objective. In fact,

to calculate vi(t), agent i needs to know the position not only of all the interpo-

lation points between itself and Pi+1, but also of the ones between itself and Pi−1.

Therefore, in addition to the data transmitted according to Rule #4, we require

that agent i transmits p+
now

and pnow+1 to i− 1 and the counter now+ 1 to i + 1.

•

Now we summarize the discussion in this section with a pseudo-code descrip-

tion of the algorithm in Table 3.1.

39



3.2.2 Algorithm analysis

Some steps of the algorithm are affected by noise and error: (i) γ̂′ and κ̂ are

only estimate of the true values, (ii) L̂ is an approximation of L, (iii) the set O is

a discretization of the subset of ∂Q that agent i is visiting, therefore, the center

of the Voronoi cell of the interpolation point pnowi−1 might not be calculated

exactly. Let D̂(t) and L(t) be the column vectors:

D̂(t) =
[
D̂λ(p1(t), p2(t)), . . . , D̂λ(pnip−1(t), pnip

(t)), D̂λ(pnip
(t), p1(t))

]T
,

L(t) =
[
L(P1(t), P2(t)), . . . , L(Pna−1(t), Pna

(t)), L(Pna
(t), P1(t))

]T
.

Consider now the disagreement vectors d(t) and δL(t) defined by:

d(t) = D̂λ(t) − 1T D̂λ(t)

nip

1, (3.2)

δL(t) = L(t) − 1TL(t)

na

1. (3.3)

Note that they are orthogonal to the vector 1, i.e., the column vector in R
n with

all entries equal to 1.

We now establish that the dynamics of d and δL are input-to-state stable

(ISS) where the inputs are the errors and noises above discussed. Because of the

ISS property we can conclude that, if the errors are bounded, then the states d

and δL are within a bounded distance from the origin.

Theorem 3.1 (ISS of the dynamics of the interp. points distances) If the

boundary is slowly time-varying and if t 7→ L(∂Q(t)) is upper and lower bounded

uniformly in t, then, under the Estimate Update and Pursuit Algorithm,

there exists a sequence of instants τk, for k ∈ N0, and a sequence of ergodic and

doubly stochastic matrices A(k), for k ∈ N0, such that

d(τk+1) = A(k)d(τk) + δu(τk), k ∈ N0,

40



where δu(τk) = u(τk)− 1
T
u(τk)
nip

1, and u(τk) is a bounded vector taking into account

the effect of the estimation errors and of the boundary deformation during the

interval [τk, τk+1]. Furthermore, the dynamics of d are input-to-state stable with

input δu.

Proof. In what follows we identify τ0 ≡ 0 and τk ≡ k. Let us suppose that

∂Q(t) is time-invariant, and that O is a continuous (and not discrete) represen-

tation of ∂Q, i.e., u(k) = 0 for all k ∈ N0. Then, because of Rule #2, pnow is

projected onto itself and, because of Rule #3, pnow−1 is moved exactly to the

center if its Voronoi cell. Suppose that an agent has passed by the point pnow,

and then it can optimally place pnow−1. As a consequence, the pseudo-distances

D̂λ(pnow−2, pnow−1) and D̂λ(pnow−1, pnow) will take new values that can be ex-

pressed as follows, (recall Figure 3.4):

D̂λ(pnow−2, pnow−1)
+ =

3

4
D̂λ(pnow−2, pnow−1) +

1

4
D̂λ(pnow−1, pnow),

D̂λ(pnow−1, pnow)+ =
1

4
D̂λ(pnow−2, pnow−1) +

3

4
D̂λ(pnow−1, pnow),

where the superscript + indicates the new values of the pseudo-distances af-

ter pnow−1 has been optimally placed. For α ∈ {1, . . . , nip}, define the doubly

stochastic matrix Aα ∈ R
nip×nip by

(Aα)jh =






3/4, if j = h = α, or j = h = α − 1,

1/4, if j = α − 1 and h = α, or if j = α, and h = α − 1,

δjh, otherwise.

Therefore, Aα, for α ∈ {1, . . . , nip}, are the matrices determining the dynamic

system D̂λ(t2) = AαD̂λ(t1), where t2 > t1 is the time when the interpolation

point α is moved by an agent to its new Voronoi center and where we are assum-

ing that between t1 and t2 no other interpolation point has been moved. If at the

41



same instant more interpolation points are relocated, then the matrix describing

the dynamics is the product of all the Aα that correspond to the relocated inter-

polation points. The order of the matrix multiplication is irrelevant as one can

show that these matrices commute. Let us now derive the dynamics of D̂λ when

∂Q is slowly time-varying, while O is still a continuous representation of ∂Q. By

assumption γ(t, s) is smooth in both its arguments and, as argued above, the

projection of the interpolation points is well defined and unique.

Let tk+1
α be the k + 1-th time that pα is optimally placed by an agent.

Before optimally placing pα, the agent will project pα+1. It can be proved

that right before placing pα, because the boundary has changed, the pseudo-

distance D̂λ(pα, pα+1, t
k+1
α ) will differ from D̂λ(pα, pα+1, t

k
α+1)

+ by some noise

g(tk+1
α − tkα+1) which is a continuous function of tk+1

α − tkα+1 and g(0) = 0. With

D̂λ(pα, pα+1, t
k
α+1)

+ we denote the pseudo-distance between pα and pα+1 right af-

ter pα+1 has been optimally placed for the kth time. Therefore, the system is

evolving according to a dynamical system of the form:

D̂λ(pα, pα+1, t
k+1
α )+ = Aα

(
D̂λ(pα, pα+1, t

k
α+1) + eα+1g(tk+1

α − tkα+1)
)

, (3.4)

where eα is the column vector with null entries but the α-th component that is

equal to 1, and the subscript + indicates that the interpolation point pα has just

been optimally placed. Let ∆T = supt∈R+

L(∂Q(t))
vmin

. Note that ∆T < +∞ since by

assumption the length of the boundary ∂Q(t) is uniformly upperbounded. This

means that at most after ∆T any interpolation point is updated at least once.

Any time that an agent updates any interpolation point pα the vector D̂λ evolves

according to (3.4), where tk+1
α − tkα+1 is upperbounded by ∆T . Because ∆T is

finite, there exists a sequence of instants τk, with k ∈ N0, such that across the

interval [τk, τk+1] every interpolation point has been updated at least once by an

42



agent, and:

D̂λ(k + 1) = A(k)D̂λ(k) + u(k), k ∈ N0. (3.5)

The matrix A(k) is the product of a finite number M(k) of matrices Aα, i.e.,

A(k) = Π
M(k)
β=1 Aαβ

, αβ ∈ {1, . . . , nip}. The value of the index αβ depends on the

order in which the interpolation points are updated. It is easy to see that nip ≤

M(k) ≤ nanip. Note that A(k) is doubly stochastic because it is the product of

doubly stochastic matrices. Since across the interval [τk, τk+1] every interpolation

point has been updated at least once by an agent, the graph associated with A(k)

is connected and therefore A(k) is ergodic (see [12]). Furthermore, sup(τk+1 −

τk) ≤ ∆T < +∞, and (by [30]) we claim that, if u(k) ≡ 0, then D̂λ(k) converges

exponentially fast to 1
T bDλ(k)

nip
1 (see Remark 4.1 in Section 4.3). Consider now

the disagreement vector d(k) defined in (3.2). Recalling (3.5), and that A(k) is

doubly stochastic, we can derive the update law of the disagreement d(k):

d(k + 1) = A(k)d(k) + δu(k), k ∈ N0, (3.6)

where δu(k) = u(k)− 1
T
u(k)

nip
1. Given the properties of the matrix A(k), the origin

of the unforced system (3.6) is exponentially stable. Since the input δu enters

linearly, we conclude that the system is input-to-state stable ([23]). This implies

that D̂λ will asymptotically reach a ball centered at 1
T bDλ(k)

nip
1 (the equilibrium of

the unforced system) and with radius that is a K-function of the input, see [23]

and 4.1. This also holds if we now relax the assumption that no errors affect

the calculation of the Voronoi centers, because this error enters linearly in the

system (3.6). �

Theorem 3.2 (ISS of the dynamics of the inter-agent distances) If the

boundary is slowly time-varying and if t 7→ L(∂Q(t)) is upper and lower bounded

43



uniformly in t, then, under the Estimate Update and Pursuit Algorithm,

˙δL(t) = kpropA(c1(t), . . . , cna
(t))
(
δL(t) + δw1(t)

)
+ δw2(t),

where δw1(t) = w1(t) − 1
T
w1(t)
na

1, δw2(t) = w2(t) − 1
T
w2(t)
na

1, and

(A(c1(t), . . . , cna
(t)))jh =






−ci(t) − ci+1(t) if j = h = i,

ci+1(t) if j = i and h = i + 1,

ci(t) if j = i and h = i − 1,

0 otherwise.

with ci(t) ∈ [β(t), 1] for all i ∈ {1, . . . , na}, and β(t) = min{vmax−v0,v0−vmin}
kpropL(∂Q(t))

. The

variable w2(t) ∈ R
na×1 expresses the change in the arc length distance between

any two consecutive agents due to the deformation of ∂Q(t), while w1(t) = L(t)−

L̂(t) ∈ R
na×1 is the error due to the fact that the agents do not know exactly L,

the arc length distance between them and their neighbors, but only an estimate

through the interpolation points L̂. Furthermore, the dynamics of δL is input-to-

state stable with t 7→ δw1(t) and t 7→ δw2(t) as inputs.

Proof. Let us suppose that the ∂Q(t) is time-invariant and that the agents

can actually compute without error the arc length distance between them and

their clockwise and counterclockwise neighbors, i.e., w1(t) = w2(t) = 0 for all

t ≥ 0. The dynamics for L(t) can be written as L̇(Pi(t), Pi+1(t)) = vi+1 −

vi, where vi+1 = sat(v0 + kprop (L (Pi+1, Pi+2) − L (Pi, Pi+1))) and vi = sat(v0 +

kprop (L (Pi, Pi+1) − L (Pi−1, Pi))). Therefore, if the saturation on the speeds is

not active, we have:

L̇(Pi(t), Pi+1(t)) = kprop

(
L (Pi+1, Pi+2) − 2L (Pi, Pi+1) + L (Pi−1, Pi)

)
,

44



which in matrix form becomes:

L̇(t) = kprop





−2 1 0 . . . 1

1 −2 1 . . . 0

...
. . . . . . . . .

...

0 . . . 1 −2 1

1 0 . . . 1 −2





L(t) = kpropALL(t).

If, for agent i, the saturation is active, then we have that

vi = v0 +k′
i (L(Pi, Pi+1) − L(Pi−1, Pi)), where k′

i = kpropci, ci ≤ 1. In other words,

we can think of the saturation function as a change in the gain in the control

law. If vi = vmax, then

k′
i =

vmax − v0

(L(Pi, Pi+1) − L(Pi−1, Pi))
≥vmax − v0

L(∂Q(t))

=⇒ ci =
k′

i

kprop

≥ 1

kprop

vmax − v0

L(∂Q(t))
> 0.

If vi = vmin, then

k′
i =

v0 − vmin

(L(Pi, Pi+1) − L(Pi−1, Pi))
≥ v0 − vmin

L(∂Q(t))

=⇒ ci =
k′

i

kprop

≥ 1

kprop

v0 − vmin

L(∂Q(t))
> 0,

in any case ci ∈ [β(t), 1] and β(t) = min{vmax−v0,v0−vmin}
kpropL(∂Q(t))

.

Clearly then, if we introduce the saturation on the speeds vi, the dynamics of

L becomes:

L̇(t) = kpropA(c1(t), . . . , cna(t))L(t). (3.7)

Note that β(t) is constant because we are still considering ∂Q time-invariant.

Using the properties of Metzler matrices, it can be proved (see Appendix) that

the new matrices A(c1(t), . . . , cna(t)), like AL, are negative semidefinite. The

unique zero eigenvalue is associated with the eigenvector 1.

45



Let us consider the disagreement δL as described by (3.3), then

˙δL(t) = kpropA(c1(t), . . . , cna(t))δL(t). (3.8)

Let V (δL(t)) = δLT (t)δL(t) be the candidate Lyapunov function for the sys-

tem (3.8), then we have that V̇ (δL(t)) = 2kpropδL(t)A(c1(t), . . . , cna(t))δL(t) ≤ 0,

where the equality holds only if the entries of δL(t) are all zero. Since ci belong

to a compact set, the matrices A(c1(t), . . . , cna(t)) belong to a compact set, and

since the eigenvalues of a matrix are continuous functions of its entries (see [17]),

then there exists an upperbound −ρ < 0 for the eigenvalues that are different

from zero and as a consequence V̇ (δL(t)) ≤ −ρ‖δL(t)‖2. We can then conclude

that for the system (3.8) the origin is exponentially stable and therefore, for the

system (3.7), the equilibrium 1
T
L(t)
na

1 is exponentially stable.

Let us now assume that the boundary is slowly-varying and that instead of

L(Pi, Pi+1) the agents use only the approximation L̂(Pi, Pi+1), i.e., w1(t), w2(t) 6=

0. Then, the variation in time of the vector L(t) is due, not only to the fact that

the agents speed up and slow down, but also to the deformation of ∂Q:

L̇(t) = kpropA(t)L̂(t) + w2(t) = kpropA(t)(L(t) + w1(t)) + w2(t),

where A(t) = A(c1(t), . . . , cna(t)), w1(t) = L − L̂, and w2(t) expresses the defor-

mation of ∂Q(t). In particular the i-th entry of w2(t) is equal to

∂
∂t

∫ si+1

si
‖γ′(s, t)‖ds−kpropAi(t)(L(t)+w1(t)), where Ai(t) is the i-th row of A(t).

Note that ci(t) ∈ [β(t), 1] for all i ∈ {1, . . . , na}, and that β(t) = min{vmax−v0,v0−vmin}
kpropL(∂Q(t))

is indeed uniformly upper bounded even when ∂Q is time-varying because we as-

sumed that L(∂Q(t)) is upper and lower bounded uniformly in t. The vector w2 is

bounded because by assumption the boudary is smooth and slowly time-varying.

Using the change of variables in equation (3.3), and recalling that A(t)1 = 0, for

46



all t, we have:

L̇(t) = kpropA(t)δL(t) + kpropA(t)δw1(t) + δw2(t) +
1Tw2(t)

na

1,

where δw2(t) = w2(t) − 1
T
w2(t)
na

1. It is easy to see that we can write L̇(t) =

δL̇(t) + 1
T
L̇(t)
na

1 and therefore:

δL̇(t) +
1T L̇(t)

na

1 = kpropA(t)δL(t) + kpropA(t)δw1(t) + δw2(t) +
1Tw2(t)

na

1.

Since 1 is orthogonal to δL(t), δw1(t), and δw2(t) we have:

δL̇(t) = kpropA(t)δL(t) + kpropA(t)δw1(t) + δw2(t). (3.9)

The system described by equation (3.9) is input-to-state stable with inputs

δw1(t) and δw2(t) because (i) the origin of the unforced system is exponentially

stable, and (ii) the right-hand-side of (3.9) is differentiable and uniformly globally

Lipschitz in δL, δw1(t) and δw2(t), (see [23]).

The ISS property guarantees that if w1 and w2 are bounded, then L will

asymptotically reach a ball centered at 1
T
L(t)
na

1 (the equilibrium of the unforced

system) and with radius that is a K-function, see [23] and 4.1. The larger nip is

and the slower the deformation of ∂Q is, then the smaller w1 and w2 are, and

the closer to 0 the disagreement δL will be asymptotically. �

3.2.3 Simulations

In this section we present results of two different simulations obtained with

the implementation of the Estimate Update and Pursuit Algorithm. In

the first simulation the boundary ∂Q is time invariant, while in the second is

time varying.

47



Time-invariant boundary

In this simulation we use na = 3 agents to have an approximation of the

nonconvex boundary ∂Q described by:

γ(θ) =
(

2 + cos(10πθ) + 0.5 sin(4πθ)
)



cos(2πθ)

sin(2πθ)



 .

The outcome is shown in Figure 3.5. In order to calculate their speeds, the agents

use v0 = 1, and kprop = 0.05. The saturation function for the speed has lower

limit vmin = 0.5 and upper limit vmax = 2. The number of interpolation points

is nip = 30, while λ = 10
11

. The simulation time is 50 seconds and the sampling

time 0.01 seconds. The plots in Figure 3.5 corresponds to the positions of the

interpolation points and the agents at the initial and final configuration. The

interpolation points pnowi for i ∈ {1, . . . , na} at time t = 0 coincide with the

positions of the agents. The other interpolation points are randomly distributed

on the boundary. In the last frame one can also see the approximating polygon

and how close it is to the actual boundary.

Since the pseudo-distance Dλ and the arc length L can be calculated after

the simulation is completed, we use Dλ and L instead of their estimate D̂λ and

L̂ to show the algorithm performance. Figure 3.6 does indeed show the conver-

gence of the algorithm. In the first plot we can see that the consensus on the

pseudo-distance Dλ(pi, pi+1), between any two consecutive interpolation points,

is reached. The quantity

max
α∈{1,...,nip}

Dλ(pα, pα+1) − min
α∈{1,...,nip}

Dλ(pα, pα+1)

does not vanish because of numerical errors in the estimate D̂λ. The second plot

shows how the agents get uniformly spaced along the boundary. The steady state

48



−3 −2 −1 0 1 2 3

−2

−1

0

1

2

3

Initial Configuration

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

3

Final Configuration

Figure 3.5. This figure shows initial and final configuration after 50 seconds simu-

lation obtained by the implementation of the Estimate Update and Pursuit

Algorithm with na = 3, nip = 30, v0 = 1, kprop = 0.05, λ = 10
11

. ∂Q is time

invariant. The agents position is represented by the triangles and are initialized

to be on the boundary ∂Q. In the last frame also the approximating polygon is

shown.

values of the arc length distances oscillates around 8.3 which is the target value.

The noise is again due to the fact that the agents only estimate the arc length

using the positions of the interpolation points.

Slowly time-varying boundary

In this simulation we used na = 4 agents to have an approximation of the

nonconvex boundary ∂Q(t) described by:

γ(θ, t) =

(
2

(
1 − t

tf

)
+
(

2 + cos(10πθ) + 0.5 sin(4πθ)
) t

tf

)



cos(2πθ)

sin(2πθ)



 ,

with θ ∈ [0, 1), tf = 200 seconds as shown in Figure 3.7. The values of v0,

kprop, vmin, vmax and λ are respectively: 1, 0.05, 0.5, 2, and 10
11

. The simulation

time is 200 seconds, the sampling time 0.01 seconds. The plots in Figure 3.7

49



0 5 10 15 20 25 30 35 40 45 50
0.5

1

1.5

2

2.5

3

time (sec)

max Dλ − min Dλ

0 5 10 15 20 25 30 35 40 45 50
4

5

6

7

8

9

10

11

12

time (sec)

Arc length distances

Figure 3.6. Estimate Update and Pursuit Algorithm This plots refers to

the case of ∂Q being time-invariant. In the first plot from right it is shown the

error maxi∈{1,...,nip} Dλ(pi, pi+1) − mini∈{1,...,nip} Dλ(pi, pi+1) vs time. The second

plot shows the arc length distances between the three agents.

correspond to the positions of the interpolation points and the agents at four

different instants, t = 0, t = 50, t = 100, and t = 200 seconds respectively.

The algorithm is initialized with the agents on the boundary. The interpolation

points pnowi at time t = 0 coincide with the positions of the agents. The other

interpolation points are randomly distributed. In the last frame we can also see

the approximating polygon and how close to the actual boundary is. From the

frames in Figure 3.7 it is clear that the agents can adapt as ∂Q changes.

The pseudo-distance Dλ is well defined only if the interpolation points belong

to the boundary ∂Q. Since the boundary changes with time, the interpolation

points are only for some time on the boundary after an agents has projected them.

So, we consider as pseudo-distance between any two consecutive interpolation

points in a certain time τ the pseudo-distance between their radial projection

onto ∂Q(τ). The disagreement in the placement of the interpolation points,

where Dλ is redefined as just explained, is shown in the first plot of Figure 3.8.

50



−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−1.5

−1

−0.5

0

0.5

1

1.5

Initial Configuration

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

t = 50 sec

−2 −1 0 1 2 3

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
t = 100 sec

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

3

Final Configuration

Figure 3.7. This figure shows four different instants of the 200 seconds simulation

obtained by implementing the Estimate Update and Pursuit Algorithm

with na = 4, nip = 35, v0 = 1, kprop = 0.05, λ = 10
11

. The boundary ∂Q is

slowly time-varying in this case. The agents positions are represented by trian-

gles and initialized to be on the boundary ∂Q. The last frame also shows the

approximating polygon.

51



The arc length between any two consecutive agents is shown in the second

plot of Figure 3.8. The four distances increase with time because L(∂Q), the total

length of the boundary, increases with time. Clearly the variables na and nip are

design variables and are results of two different trade-offs. In deciding the number

of agents, the speed with which the boundary changes and the maximum speed

at which the robots can move play an important role. If the boundary changes

very fast and the maximum speed of the robots is fixed, then a larger network will

guarantee better performances. If the boundary changes slowly, then few robots

(1 or 2) might suffice. In deciding the number of interpolation points, on the

other hand, the most important role is played by the complexity of the boundary

measured by the number of inflection points. To have good performance, nip

should increase as the number of the inflection points of the boundary increases.

3.3 Summary and open issues

In this chapter we have addressed the problem of boundary estimation and

tracking by means of robotic sensors. We have presented an algorithm to position

interpolation points along a time-varying boundary in such a way as to obtain

an approximating polygon with some optimality features. The convergence was

also established.

An important problem for future research concerns the possible and realistic

occurrence of boundary splits. In other words, it would be of interest to consider

problems where the region enclosed in the boundary can split into two or more

separate regions. A natural extension to this work would be also be monitoring

3-dimensional regions, such as clouds of chemical pollutants.

52



0 20 40 60 80 100 120 140 160 180 200
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

time (sec)

max Dλ − min Dλ

0 20 40 60 80 100 120 140 160 180 200
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

time (sec)

Arc length distances

Figure 3.8. Estimate Update and Pursuit Algorithm. This figure refers

to the case of ∂Q being slowly time-varying. In the first plot from the right

we shown the error maxi∈{1,...,nip} Dλ(pi, pi+1)−mini∈{1,...,nip} Dλ(pi, pi+1) vs time.

The second plot shows the arc length distances between the four agents.

53



Table 3.1. Estimate Update and Pursuit Algorithm

Goal: Uniformly distribute the interpolation points according to
the pseudo-distance D̂λ, and the agents according to the arc
length L̂.

Data: Location of the interpolation points, unitary tangent vec-
tor at ∂Q at those points, last value of D̂λ between any two
consecutive interpolation points, local tangent and local cur-
vature of the boundary ∂Q.

Requires: At t0 = 0, pi lie on ∂Q, D̂λ between any two interpolation
points is known, and oq = ∅.

At every sensing instant, the agent at position Pi(t) = P (t) performs:

1: update bufferarc+ := bufferarc ∪

{ono+1, γ̂′(ono+1), κ̂(ono+1), D̂λ(ono
, ono+1)}

2: if oq = ∅, then

3: if ono
ono+1 ∩ ℓnow 6= ∅, then

4: oq := argminoj∈{ono ,ono+1} ‖ono
ono+1 ∩ ℓnow − oj‖

5: else

6: if ono
ono+1 ∩ ℓnow = ∅ and D̂λ(pnow−1, ono+1) > 2D̂λ(pnow−1, pnow), then

7: oq := argminoj∈{pnow−1,...,ono+1}⊂O ‖oj − pnow‖

8: if oq 6= ∅ and pnowi 6= pnowi+1−2, then

9: update the interpolation point pnow by projecting it onto ∂Q: p+
now

:= oq

10: calculate ok as in (3.1) and update pnow−1 by: p+
now−1 := ok

11: transmit to agent i − 1 : pnow+1, p+
now

, p+
now−1, γ̂′(p+

now−1),

D̂λ(pnow−2, p
+
now−1), and transmit to agent i + 1: now + 1

12: update the set bufferarc and the counter now:

bufferarc
+ := {ok, . . . , ono+1}, now

+ := now + 1

13: calculate vi(t): vi(t) := sat(v0 + kprop(L̂(Pi, Pi+1) − L̂(Pi−1, Pi)))

54



Chapter 4

ISS properties of discrete-time

consensus algorithms

Consensus algorithms and conditions for their convergence have been widely stud-

ied. An incomplete list of references includes continuous-time consensus algo-

rithms [11, 32, 34], discrete-time consensus, flocking and rendezvous [19, 40, 26],

time-delayed and asynchronous properties of consensus algorithms [38, 3, 6, 30,

32], and consensus over random graphs [15]. Extensions of consensus algorithms

to achieve different consensus values has also been investigated, see [10, 4]. Con-

sensus algorithms have already been proposed for the implementation of dis-

tributed data fusion techniques [38, 31].

Since the characteristics of networked systems require distributed algorithms

to be robust to disturbances (see Chapter 3), a natural question to ask is how

the consensus algorithms perform in the presence of undesired inputs. Previous

work on this topic includes [42], [33], and [24]. In [42] the authors present a

stochastic analysis of consensus algorithms in the presence of additive zero-mean

55



noise for fixed topologies. In [33] the authors show the asymptotic behavior of

the ǫ-consensus time as the number of the nodes in the network grows for fixed

topologies.

In this chapter we investigate the robustness properties of discrete-time con-

sensus algorithms following a worst case analysis rather then a stochastic analysis.

A early work in this sense is [24], where the authors prove that for continuous-time

consensus algorithms the disagreement dynamics is ISS. Regarding discrete-time

consensus algorithms, we include here two complementary analyses of the fact

that disagreement values asymptotically remain within bounded distance of the

consensus space when noise is present. The first proof is similar to that of [24],

and provides a first theoretical explanation for the fact that linear consensus al-

gorithms are IOS. Alternatively, the second approach goes further in producing

specific estimates for the input-output gain and transient bounds that character-

ize the behavior of the disagreement output in terms of bounded disturbances, and

is valid also when the network topology is not fixed. This second proof generalizes

a certain contraction result from [6]. After this, we further analyze the robustness

of the nodes’ states to disturbance. We establish that, in general, discrete-time

consensus algorithms are only iISnS and the consensus value is driven by the in-

tegral of the noise. Finally, we see how, in a single leader protocol, discrete-time

consensus is exactly ISS. Our work leads to a deeper understanding of robustness

properties of discrete-time consensus algorithms.

56



4.1 Review of ISS concepts

This section introduces notation and main concepts for ISS discrete-time sys-

tems as introduced in [20, 2, 37], which will be employed in the sequel.

We let N0 and R̄+ denote the non-negative integer and real numbers, respec-

tively. We let 1n = (1, . . . , 1)T ∈ R
n. For x ∈ R

n and D ∈ R
n×k, we let |x| and

|D| denote the Euclidean and the induced norm of x and of D, respectively. Given

functions φ : N0 → R
n and D : N0 → R

n×m, we define ‖φ‖ = sup{|φ(t)| | t ∈ N0},

‖D‖ = sup{|D(t)| | t ∈ N0}, and D = sup{(
∑m

j=1 |Dj
i (t)|2)

1
2 | t ∈ N0, j{1, . . . , n}}.

A function γ : R̄+ → R̄+ is a K-function if it is continuous, strictly increasing,

and γ(0) = 0; and it is a K∞-function if it is a K-function and if it is unbounded.

A function β : R̄+ × R̄+ → R̄+ is a KL-function if, for each t ∈ R̄+, the function

s 7→ β(s, t) is a K-function, and for each s ∈ R̄+, t 7→ β(s, t) is decreasing and

β(s, t) → 0 as t → +∞.

Consider the discrete-time nonlinear system

x(t + 1) = f(t, x(t), u(t)), (4.1)

where t takes value in N0, x takes value in R
n, and u takes value in R

m. We

assume that f : N0 × R
n × R

m → R
n is continuous.

System (4.1) is input-to-state stable (ISS) if there exist a KL-function β and

a K-function γ such that, for each initial condition x0 ∈ R
n at time t0 ∈ N0 and

for each bounded input u : N0 → R
m, the system evolution x satisfies, for each

t ≥ t0,

|x(t)| ≤ β(|x0|, t − t0) + γ(‖u‖).

Analogously, system (4.1) with an output y = h(x) is input-to-output stable

57



(IOS), respectively input-to-output stable (IOS) with gain γ, if there exist a KL-

function β and a K-function γ such that, for each initial condition x0 ∈ R
n at

time t0 ∈ N0 and for each bounded input u : N0 → R
m, the output y(t) = h(x(t))

satisfies, for each t ≥ t0,

|y(t)| ≤ β(|x0|, t − t0) + γ(‖u‖),

respectively

|y(t)| ≤ max
{

β(|x0|, t − t0), γ(‖u‖)
}

.

System (4.1) is integral input-to-state neutrally stable (iISnS), see [2], if there

exist K∞-functions α, σ and γ such that, for each initial condition x0 ∈ R
n at

time t0 ∈ N0 and for each bounded input u : N0 → R
m, the system evolution x

satisfies, for each t ≥ t0,

α(|x(t)|) ≤ γ(|x0|) +
t−1∑

k=t0

σ(|uk|).

4.2 Consensus algorithms with inputs and out-

puts

In this section we present our problem statement regarding the ISS stability

of discrete-time consensus systems. The consensus problem presentation mainly

follows that of Moreau in [30]. A discrete-time consensus algorithm is defined as:

x(t + 1) = A(t)x(t), (4.2)

where t takes value in N0 and x takes value in R
n. We let xi(t) and Aij(t) denote

the entries of x(t) and of A(t), respectively. For each t ∈ N0, the matrix A(t) gives

58



rise to a directed graph G(t) = {{1, . . . , n}, E(t)} where (j, i) ∈ E(t) if and only

if i 6= j and Aij(t) > 0. In general, we will consider the following assumptions:

(A1) Non-degenerate Averaging: There exists α > 0, such that

1. Aii(t) ≥ α, for all i, t,

2. Aij(t) ∈ {0} ∪ [α, 1], for all i, j, t.

(A2) Stochasticity:
∑n

j=1 Aij(t) = 1, for all i, t.

(A3) Uniform Connectivity: There exists B > 0 such that for every t ∈ N0

the graph {{1, . . . , n},∪s∈[t,t+B]E(s)} has a node connected1 to all other

nodes.

Let us now briefly review a definition and a theorem from [30]. Assume that Φ

is a set of equilibrium points for a time-dependent discrete-time dynamical system

x(t + 1) = f(t, x(t)). The dynamical system is uniformly globally attractive with

respect to Φ if for each φ1 ∈ Φ, for all c1, c2 > 0 and for all t0 ∈ N, there exists

T > 0 such that every solution x has the following property: if |x(t0) − φ1| < c1,

then there exists φ2 ∈ Φ such that |x(t) − φ2| < c2 for all t ≥ t0 + T .

Theorem 4.1 (Uniform asymptotic consensus, [30]) Under Assumptions

(A1), (A2) and (A3), the discrete-time dynamical system (4.2) is uniformly global

attractive with respect to the collection of equilibrium solutions x1(t) = · · · =

xn(t) = constant.

In other words, Theorem 4.1 states that the consensus algorithm (4.2) con-

verges uniformly and asymptotically to the vector subspace generated by 1n.

1A node i is connected to a node j 6= i in a directed graph if there exists an oriented path
from i to j in the directed graph.

59



Motivated by this successful analysis, we shall consider the system

x(t + 1) = A(t)x(t) + D(t)u(t), (4.3)

where t 7→ u(t) ∈ R
k is a disturbance possibly coming from noise or communi-

cation errors and A(t), t ∈ N0, satisfies assumptions (A1), (A2) and (A3). A

reasonable question to ask is how the evolution of the trajectories x is affected by

the noise u. We will address this in the following section relying on the following

assumption.

(A4) Uniformly Bounded Input Gain: The operator norm ‖D‖ is bounded,

i.e., the induced norm of D(t), for t ∈ N0, is uniformly bounded.

We also will consider the following two outputs for the dynamical system (4.3):

ymax-min = max
i∈{1,...,n}

xi − min
i∈{1,...,n}

xi,

yerr =





x1 − x2

...

xn−1 − xn




= Px,

for

P =





1 −1 0 . . . 0

0 1 −1 . . . 0

...
. . . . . .

...

0 . . . 0 1 −1





∈ R
(n−1)×n.

Both outputs can be thought of as error signals quantifying a measure of dis-

agreement among the components of the state.

60



4.3 Consensus algorithms with error outputs are

IOS

In this section we provide two complementary analyses of the fact that discrete-

time consensus is IOS. First, we present a main proof that parallels that of

continuous-time consensus systems in [24]. Second, we extend a result recently

presented in [6] that leads to specific gain bounds for the evolution of the second

type of disagreement affected by noise.

4.3.1 IOS with respect to pairwise error

Define T ∈ R
n×n by

T =




P

1
n
1T

n



 =





1 −1 0 . . . 0

0 1 −1 . . . 0

...
. . . . . .

...

0 . . . 0 1 −1

1/n 1/n . . . 1/n 1/n





.

For the system (4.3), consider the change of variables

z(t) = Tx(t) =




yerr(t)

xave(t)



 ,

where yerr(t) ∈ R
n−1, and xave(t) ∈ R is the average of the components of x. It is

easy to verify that T is invertible and that, therefore, system (4.3) reads in the

new variables

z(t + 1) = TA(t)T−1 z(t) + TD(t)u(t).

61



Lemma 4.1 (Block decomposition) If A(t), t ∈ N0, satisfies the Stochas-

ticity Assumption (A2), then there exists Aerr(t) ∈ R
(n−1)×(n−1) and cerr(t) ∈

R
1×(n−1), for t ∈ N0, such that

TA(t)T−1 =




Aerr(t) 0(n−1)×1

cerr(t) 1



 .

Moreover, if A(t) = AT (t), then cerr(t) = 01×(n−1).

Proof. Define en =

(
0 . . . 0 1

)T

and Az(t) = TA(t)T−1. Note that A(t)1n =

1n by Assumption (A2) and that T1n = en by definition of T . From the equality

TA(t)1n = Az(t)T1n, we derive:

en = Az(t)en.

This implies that the last column of Az(t) is always equal to en; this concludes

the proof of the first statement. The symmetry result is proved as follows. Note

that T T AT
z (t) = A(t)T T by symmetry of A(t) and that T T en = 1

n
1n by definition

of T . Because T is invertible, the last equality can also be rewritten as en =

(T T )−1( 1
n
1n). Now, we compute:

T T AT
z (t)en = A(t)T T en =

1

n
A(t)1n =

1

n
1n,

which implies AT
z (t)en = en. This fact in turn is equivalent to cerr(t) = 01×(n−1).

�

The lemma states in careful words the following intuition. Because of the

definition of z and of the special structure of A, the variable xave plays no role in

the evolution of yerr. Accordingly, we define the error system by

yerr(t + 1) = Aerr(t)yerr(t) + Derr(t)u(t), (4.4)

62



and the average system by

xave(t + 1) = xave(t) + cerr(t)yerr(t) + Dave(t)u(t), (4.5)

for Derr(t) = PD(t), and Dave(t) = 1
n
1T

nD(t). Finally, we are ready for the main

result of this section.

Theorem 4.2 Under Assumptions (A1), (A2), (A3) and (A4), the following

equivalent statements hold:

1. The system (4.3) with output yerr is IOS.

2. The error system (4.4) is ISS.

Proof. By Theorem 4.1, Assumptions (A1), (A2), and (A3) imply that sys-

tem (4.3) with u(t) = 0, t ∈ N0, is uniformly global attractive with respect to the

collection of equilibrium solutions x1(t) = · · · = xn(t) = constant. The matrix T

maps the equilibrium solutions for (4.3) with u(t) = 0 into the trivial equilibrium

solutions for the error system, i.e., t 7→ yerr(t) = 0. This implies that the origin

is uniformly global attractive for the error system (4.4) with u(t) = 0. Because

of linearity, we conclude that the origin is uniformly globally exponentially sta-

ble for (4.4). This implies the existence of Γ ∈ R̄+ and λ ∈ [0, 1), such that

|yerr(t)| ≤ Γλt|yerr(0)| for all t ∈ N0. If the input sequence is different from the

zero sequence, then we write the trajectory of (4.4) as

yerr(t + 1) =
t∏

j=0

Aerr(j)yerr(0) +
t∑

j=0

Aerr(t) · · ·Aerr(j + 1)Derr(j)u(j).

63



We then compute the following upper bounds:

∣∣∣
t∑

j=0

( t∏

k=j+1

Aerr(k)
)
Derr(j)u(j)

∣∣∣ ≤ ‖Derr‖‖u‖
t∑

j=0

∣∣∣
t∏

k=j+1

Aerr(k)
∣∣∣

≤ Γ‖Derr‖‖u‖
t∑

j=0

λt−j = Γ‖Derr‖‖u‖
t∑

k=0

λk

≤ Γ‖Derr‖‖u‖
∞∑

k=0

λk = Γ‖Derr‖‖u‖
1

1 − λ
,

and therefore

|yerr(t + 1)| ≤ Γλt+1|yerr(0)| + Γ
1

1 − λ
‖Derr‖ ‖u‖.

This concludes the proof of fact (ii). Fact (i) is clearly equivalent. �

Remark 4.1 (Deviation from the average) Consider now the deviation from

the average δx(t) = x(t) − xave(t). As seen in Theorem 4.2, the origin of the

system (4.4) is exponentially stable when u(t) = 0, i.e., x(t) exponentially ap-

proaches c1n where c depends on the initial condition and on the matrices A(t).

As a consequence δx(t) also will approach exponentially the origin.

Remark 4.2 (Asymptotic gain) The ISS gain Γ 1
1−λ

‖Derr‖ can easily calcu-

lated if λ is known. An estimate for the value of λ is usually difficult to calculate

unless A(t) is constant, in this case λ is the largest eigenvalue of A(t) smaller

than 1. For some topologies and weights it is possible to calculate the eigenvalues

of A(t) in closed form and estimate the asymptotic behavior of the ISS gain as

the number of nodes approaches infinity. Let us consider the ring topology for a

network of n nodes

64



4.3.2 IOS with respect to max-min error

As is well known [18], finding good estimates of the ISS gains is important

to determine via small-gain theorems the classes of systems that can be stably

interconnected to the multi-agent system. As a byproduct of an extension of a

result in [6], we will prove IOS of system (4.3) with output ymax-min and obtain

numerical bounds on the comparison gains.

Proposition 4.1 (Max-min contraction) Let x be the solution to (4.3) and

C = n2(B + 1). Under Assumptions (A1), (A2), (A3) and (A4), there exists a

sequence {tq}q∈N0, where tq+1 − tq ≤ C, such that:

ymax-min(tq+1) ≤ (1 − α(n−1)C+n)ymax-min(tq) + 2CD‖u‖ . (4.6)

Proof. Assume that t0 = 0, and mini xi(0) = 0. Consider the n2 intervals

[j(B + 1), j(B + 1) + B], for j ∈ 1, . . . , n2. Then, by assumption (A3), there

is a node that is connected to all other nodes in each one of these intervals. In

particular, there exists a node i0 which satisfies this property for at least n of

these intervals. Otherwise, let ℓi, for i ∈ {1, . . . , n}, be the number of intervals

[j(B + 1), j(B + 1) +B] where i is the node connected to all other nodes by (A3).

If ℓi < n for all i ∈ {1, . . . , n}, then
∑n

i=1 ℓi < n2 which is a contradiction with

the fact that the number of intervals must sum up to n2. Let us denote by s0 = 0

and let [s1(B + 1), s1(B + 1) + B], . . . , [sn(B + 1), sn(B + 1) + B] be the first n

consecutive time intervals for which i0 is connected to all other nodes. Observe

that sℓ(B + 1) + B + 1 ≤ sℓ+1(B + 1) for all ℓ ∈ {1, . . . , n − 1}.

Let us use the shorthand notation xi0(0) = x0, maxi xi(0) = M0, and c0 =

M0−x0. We define the following properties P k and Pk associated with i0. We say

65



that P k holds if there exist at least k nodes and a time τk ≤ (sk−1 + 1)(B + 1) ≤

sk(B + 1) for which

xi(τk) ≤ x0 + (1 − α(k−1)C+k)c0 + τkD‖u‖ ,

Analogously, we say that Pk holds if there exist at least k nodes and a time

τk ≤ (sk−1 + 1)(B + 1) ≤ sk(B + 1) for which

xi(τk) ≥ α(k−1)C+kx0 − τkD‖u‖ .

We will prove by induction on k that P n and Pn will eventually hold for all indices

i ∈ {1, . . . , n} at the same time τn ≤ sn(B + 1) ≤ C.

To see this define Sk and Sk to be the sets of nodes for which properties P̄k

and Pk are true. For k = 1 there exists at least i0 such that at time τ1 = 1 ≤

(s0 + 1)(B + 1) ≤ s1(B + 1) satisfies:

xi0(1) = Ai0
i0

(0)x0 + Aj
i0

(0)xj(0) + Dj
i0

(0)uj(0)

≤ Ai0
i0

(0)x0 +
∑

j 6=i0

Aj
i0

(0)M0 + D‖u‖

=
n∑

j=1

Aj
i0

(0)x0 +
∑

j 6=i0

Aj
i0

(0)c0 + D‖u‖.

Here we used the following inequality:

−D ‖u‖ ≤
n∑

j=1

Dj
i (t)uj(t) ≤ D ‖u‖.

Using (A2) and the fact that
∑

j 6=i0
Aj

i0
(0) = 1−Ai0

i0
≤ 1−α because of (A1), we

have that

xi0(1) ≤ x0 + (1 − α)c0 + D‖u‖

Therefore P 1 is satisfied at τ1 = 1 ≤ (s0 + 1)(B + 1) ≤ s1(B + 1).

66



On the other hand, since Aj
i (0) ≥ 0, xj(0) ≥ 0, ∀i, j and D < 0, we have that

xi0(1) ≥ Ai0
i0

(0)x0 + Dj
i0

(0)uj(0)

≥ αx0 − D‖u‖ ,

therefore P1 also holds at τ1 = 1 ≤ (s0 + 1)(B + 1) ≤ s1(B + 1) with the

index i0. Suppose now that P̄k and Pk hold for k > 1 at the same time τk ≤

(sk−1 + 1)(B + 1) ≤ sk(B + 1). Then we will prove that P k+1 and Pk+1 will hold

at the same time τk+1 ≤ (sk +1)(B +1) ≤ sk+1(B +1). We reason for P k+1 being

the treatment for Pk+1 analogous.

Let τk < η1 be the first time a connection between a node in S̄c
k, say l0,

and a node in S̄k, say j, is established. Two situations are possible. Either (i)

Al0
j (η1) 6= 0; i.e. a node in S̄c

k influences a node in S̄k or (ii) Aj
l0

(η1) 6= 0; i.e. a

node in S̄k influences a node in S̄c
k.

For all time τk ≤ t < η1, and l ∈ S̄k we have that:

xl(t + 1) =
∑

i∈S̄k

Ai
l(t)xi(t) +

n∑

i=1

Di
l(t)ui(t)

≤
∑

i∈S̄k

Ai
l(t)(x0 + (1 − α(k−1)C+k)c0

+ tD‖u‖) + D‖u‖

≤x0 + (1 − α(k−1)C+k)c0 + (t + 1)D‖u‖.

67



Assume that (ii) holds. At time t = η1 and for l0, we have that:

xl0(η1 + 1)

≤
∑

i∈S̄k

Ai
l0

(η1)(x0 + (1 − α(k−1)C+k))c0

+
∑

i∈S̄k

Ai
l0

(η1)η1D‖u‖ +
∑

i∈S̄c
k

Ai
l0

(η1)xi(η1)

+ Dj
l0

(η1)uj(η1)

≤
∑

i∈S̄k

Ai
l0

(η1)(x0 + (1 − α(k−1)C+k))c0+

∑

i∈S̄c
k

Ai
l0

(η1)M0 + (η1 + 1)D‖u‖ .

Let us denote by a =
∑

i∈S̄c
k
Al0

i 6= 0 and 1 − a =
∑

i∈S̄k
Al0

i ≥ α. Using now that

M0 = x0 + c0, we can reorganize the above terms in

xl0(η1 + 1) ≤ x0 + ((1 − α(k−1)C+k)(1 − a) + a)c0 + (η1 + 1)D‖u‖

= x0 + (1 − α(k−1)C+k(1 − a))c0 + (η1 + 1)D‖u‖

≤ x0 + (1 − α(k−1)C+k+1)c0 + (η1 + 1)D‖u‖ .

For every other node l in S̄k that only receives influence from nodes in S̄k we can

argue that

xl(η1 + 1) ≤ x0 + (1 − α(k−1)C+k)c0 + (η1 + 1)D‖u‖

≤ x0 + (1 − α(k−1)C+k+1)c0 + (η1 + 1)D‖u‖ .

Assume now that (i) holds and suppose that there exist a sequence τk ≤

η1 ≤ · · · ≤ ηr of times such that a node from S̄c
k influences a node from S̄k and,

moreover, during this time, nodes from S̄k do not get to influence nodes from S̄c
k.

Reasoning as above, we can conclude that ∀l ∈ S̄k we have

xl(ηr + 1) ≤ x0 + (1 − α(k−1)C+k+r)c0 + (ηr + 1)D‖u‖ .

68



Now there must exist a first time ηr < ρk when a node from S̄k influences a

node from S̄c
k, that is eventually (ii) holds. We have that τk ≤ (sk−1 +1)(B+1) ≤

sk(B + 1) and there exists an interval [sk(B + 1), sk(B + 1) + B] where i0 is

connected to all other nodes. This implies that for every j ∈ S̄c
k there is a path

(i0, l1), . . . , (lk, j) ∈ ∪[sk+1(B+1),sk+1(B+1)+B]E(t). But if nodes in S̄k only influence

nodes in S̄k from τk on, this would imply j ∈ S̄k, which is a contradiction.

Therefore there must exist a direct connection from a node of S̄k to a node in S̄c
k,

j0, at a time ρk ≤ sk(B + 1) + B.

It is easy to see that at time ρk + 1 we have

xi(ρk + 1) ≤ x0 + (1 − α(k−1)C+k+r+1)c0 + (ρk + 1)D‖u‖

for i ∈ S̄k ∪ {j0}. Obviously we have that r ≤ C so we can upper bound the

previous quantity by

xi(ρk + 1) ≤ x0 + (1 − αkC+k+1)c0 + (ρk + 1)D‖u‖

and take τk+1 = ρk + 1. Observe that τk+1 ≤ (sk + 1)(B + 1) ≤ sk+1(B + 1), so

we have been able to prove the induction.

From the above induction we can conclude that there exists a time τn ≤

sn(B + 1) ≤ n2(B + 1) = C for which P n and Pn hold. In particular this implies

that

ymax-min(τn) ≤ (1 − α(n−1)C+n)M0 + 2τnD‖u‖.

In other words, setting t1 = τn we have that

ymax-min(t1) ≤ (1 − α(n−1)C+n)ymax-min(t0) + 2CD‖u‖ . (4.7)

This argument can be repeated for the new vector x̃ = x−min xi(t1)1n, satisfying

the discrete-time equation (4.3) for t ≥ t1 and mini x̃i(t1) = 0. �

69



We now state the main result of this section.

Theorem 4.3 Under Assumptions (A1), (A2), (A3) and (A4), the system (4.3)

with output ymax-min is IOS with gain

γ(s) = 4CD
(

1 +
1

αR

)
s, (4.8)

where C = n2(B + 1) and R = (n − 1)C + n.

Proof. Let us consider first the subsequence {ymax-min(tq)}q∈N0 as defined in

Proposition 4.1. Iterating equation (4.6) we can upper bound |ymax-min(tq)| as

follows:

|ymax-min(tq)| ≤ (1 − αR)q|ymax-min(0)| + 2CD‖u‖
q−1∑

i=0

(1 − αR)i

≤ (1 − αR)q|ymax-min(0)| + 2CD‖u‖
∞∑

i=0

(1 − αR)i

= (1 − αR)q|ymax-min(0)| +
2CD

αR
‖u‖.

Observe that the sequence {tq} satisfies tq → +∞. Then for all t, there exists

q(t) such that tq(t) ≤ t ≤ tq(t)+1. It is easy to see that

ymax-min(t) = ymax-min(tq(t) + (t − tq(t)))

≤ (1 − αR)q(t)|ymax-min(0)| + 2CD
(

1 +
1

αR

)
‖u‖ .

This implies that:

ymax-min(t) ≤ max
{

2(1 − αR)q(t)|ymax-min(0)|, 4CD
(

1 +
1

αR

)
‖u‖
}
,

that is, the IOS gain for the system (4.3) with output ymax-min is

γ(s) = 4CD
(

1 +
1

αR

)
s .

�

70



4.4 Consensus algorithms are iISnS

In the previous sections we analyzed the effect of the noise on the consensus

behavior of algorithms such as (4.3). We now move our attention on the value

of the consensus variable and how it is affected by the noise. We saw that yerr

reaches asymptotically a ball centered at the origin with radius depending on

‖u‖. This implies that, in general, the nodes are not able to reach asymptotic

consensus but, as the effect of the initial condition vanishes, the trajectories xi

evolve close to each other. We will now show that in general the trajectories xi do

not stay close to any constant value. If no further information on A(t) is given,

an estimate of the consensus value is given by xave(t), which evolves according to

the integral of the noise.

Theorem 4.4 Under Assumptions (A1), (A2), (A3), and (A4), the following

statements hold:

1. the system (4.3) is iISnS with respect to the input u,

2. the system (4.5) is iISnS with respect to the inputs yerr and u.

Proof. We shall start with the first statement. Calculating the trajectory of (4.3)

leads to:

x(t + 1) =
t∏

j=0

A(j)x(0) +
t∑

j=0

A(t) . . . A(j + 1)D(j)u(j).

We can then upper bound the norm of x(t + 1) as follows:

|x(t + 1)| ≤ |
t∏

j=0

A(j)||x(0)| +
t∑

j=0

|A(t) . . . A(j + 1)|‖D‖|u(j)|.

71



Since the matrices A(t) are stochastic we have that |∏m
j=0 A(j)| ≤ √

n, for all

m ∈ N, and therefore

|x(t + 1)| ≤ √
n|x(0)| +

t∑

j=0

√
n‖D‖|u(j)|.

To verify (ii) just note that:

xave(t + 1) = xave(0) +
t∑

j=0

[cerr(j), Dave(j)][yerr(j), u(t)]T .

Let ‖D̃‖ be the upper bound of the induced norm of [cerr(j), Dave(j)], then:

|xave(t + 1)| = |xave(0)| +
t∑

j=0

‖D̃‖|[yerr(j), u(t)]|.

�

We will now show that the bound, given for the consensus value in Theo-

rem 4.4, can be tightened when the matrices A(t) and D(t) have certain proper-

ties.

Let C be the set of all pairs of sequences {A(t)}t∈N0 , {D(t)}t∈N0 that describe

the algorithms in (4.3). We shall consider now two disjoint subsets of C:

1. C1 = {({A(t)}t∈N0 , {D(t)}t∈N0)|A(t) = A(t)T for all t ∈ N0},

2. C2 = {({A(t)}t∈N0 , {D(t)}t∈N0)|A(t) =




1 0T

Q(t) Anet(t)



 and

D(t) =




0T

Dnet(t)



 for all t ∈ N0}, where Anet(t) ∈ R
n−1×n−1.

The graphs of the consensus algorithms that belong to C1 are undirected and the

weights are symmetric while the graphs of the consensus algorithms that belong

to C2 have a node that behaves as a leader (i.e., does not average the value of its

72



internal variable with anybody) and that is not affected by noise. For this two

special subsets of C we will further analyze how the noise affects the consensus

variable value.

4.4.1 Consensus value for algorithms in C1

When u(t) = 0, xave(t) is constant with time and is the asymptotic value of

the consensus variable, as is well known. When u(t) 6= 0, xave(t) is not constant

but, because A(t) = A(t)T , cerr(j) = 01×(n−1) for all j ∈ N0 (see Lemma 4.1).

Hence, from Theorem 4.4, it is clear that the dynamics of xave is iISnS respect to

the sole input u. From the difference equation (4.5) for xave we can conclude that

the network is overall behaving like an integrator: the states xi(t) are pushed

around by the average 1
n
1nD(t)u(t).

4.4.2 Consensus value for algorithms in C2

When u(t) = 0, x1(t) is constant with time and is the asymptotic value of

the consensus variable simply because node 1 behaves as a leader and does not

average with anybody. Even if noise is introduced, the value of x1(t) does not

change and, therefore, the consensus value for the nodes is still x1(0). The noise,

though, prevents the nodes from reaching x1(0) asymptotically as shown in the

next theorem.

Define T̃ ∈ R
n×n by:

T̃ =




1 01×(n−1)

−1n−1 In−1



 .

73



For the system (4.3), consider the change of variables

z̃(t) = T̃ x(t) =




x1(t)

ỹerr(t)



 ,

where ỹerr(t) = [x1(t) − x2(t), . . . , x1(t) − xn(t)]T ∈ R
n−1. The dynamics for the

new variable z̃(t) is:

z̃(t + 1) = T̃A(t)T̃−1 z(t) + T̃D(t)u(t).

It is easy to check that:

ỹerr(t + 1) = Anet(t)ỹerr(t) + Dnet(t)u(t). (4.9)

Let x̃(t) = [x2(t), . . . , xn(t)]T , then:

x̃(t + 1) = Anet(t)x̃(t) + Q(t)x1(t) + Dnet(t)u(t). (4.10)

Lemma 4.2 Let ({A(t)}t∈N0 , {D(t)}t∈N0) ∈ C2. Under Assumptions (A1), (A2),

(A3) and (A4), the following equivalent statements hold:

1. The system (4.3) with output ỹerr is IOS.

2. The error system (4.9) is ISS.

3. The system (4.10) is ISS respect to the inputs x1 and u.

Proof. The proof of the equivalence of (i) and (ii) proceeds along the same

lines as that for Theorem 4.2 and, therefore, we will use the results omitting the

details. That is, there exist Γ > 0 and λ ∈ (0, 1) such that:

|ỹerr(t + 1)| ≤ Γλt+1|ỹerr(0)| + Γ
1

1 − λ
‖Derr‖ ‖u‖.

74



Since the state dynamics matrix for equations (4.10) and (4.9) are the same:

|x̃(t + 1)| ≤ Γλt+1|x̃(0)| + Γ2

(
‖Q‖|x1| + ‖Derr‖ ‖u‖

)
,

where Γ2 = Γ 1
1−λ

. Note that ‖Q‖ ≤
√

n − 1 and that x1 is constant with time.

The statement (iii) is then proved. �

For algorithms in C2, the network behaves like a low pass filter with respect

to the input x1(t). Lemma 4.2 shows that, after a transient due to the initial

condition, the trajectories xi(t) (for i 6= 1) will stay close to x1(t). If x1(t)

changes slowly with time, then each other state xi(t) will track that value but

with non-vanishing tracking error.

4.5 Summary

In this chapter we have established some ISS properties of linear consensus

algorithms with inputs and outputs. We have shown that, in the presence of

noise, the disagreement is bounded but the consensus value, in general, does not

remain bounded since the network behaves like an integrator. In applications

for which consensus value boundness is crucial and the network topology is not

known, a linear algorithm cannot be implemented. On the other hand, for some

nonlinear update laws (i.e., as in the Kuramoto coupled oscillators) it can be

proved that also the consensus value is bounded. This will be subject of further

investigation.

75



Chapter 5

Synchronization of N-Beads on a

Ring by Feedback Control

5.1 Introduction

Consider N motion-enabled agents that can speed up and slow down, and

also communicate when in proximity of each other. If the N agents control their

motion to simulate N beads sliding on a frictionless ring, we know that their

dynamics is very rich. In fact, in [9], the authors study extensively the case of

N = 3 and prove the existence of periodic as well as chaotic orbits. The authors

also describe how to use the three-bead system dynamics for a random number

generator algorithm which is computationally efficient. We therefore pose the

question: can N intelligent beads, capable of controlling their motion, reach a

periodic orbit and get in sync? In other words, can each bead sweep a sector

of the ring and impact with the neighboring beads always at the boundaries of

76



the sector? We show that synchronization can be indeed achieved by a simple

feedback law. We present an algorithm which requires only occasional communi-

cation – two beads exchange information only when they impact – and, using of

the theory of discrete-time consensus algorithms, we prove its correctness.

Relevant to this chapter is the reference [7], which presents a synchronization

algorithm for cooperative surveillance of a forest fire using a team of unmanned

aerial vehicles. A preliminary version of this work appeared in [39].

The contributions of this chapter can be summarized as follows. We design a

distributed algorithm that allows a collection of beads to reach synchronization.

The definitions of synchronization for both the case of an even and odd number

of beads is given. The beads can be deployed with arbitrary initial positions and

speeds. At the desired steady state, every bead sweeps a sector of equal length,

and neighboring beads meet always at the same point. If N is even the beads

will all travel at the same speed, while if N is odd the beads will travel at the

same average speed. Two beads exchange information only when they impact.

We prove a local convergence result – the agents will reach the desired steady

state – under some assumptions.

Extensive simulations show that synchronization is reached in general, even

when the assumptions are not satisfied. In [7] pairs of agents have to be released

at the same point, sequentially, and with the same speed. In contrast, in our

algorithm the number of agents can be odd, the agents can be released at arbitrary

positions, with arbitrary speeds and directions. For the case of N even we only

require half of the agents to move clockwise direction and the rest to move in the

counterclockwise direction.

77



Notation

On the torus T, by convention, let us define positions as angles measured

counterclockwise from the positive horizontal axis. The counterclockwise distance

between two angles dist
cc

: T × T → [0, 2π) is the path length from an angle to

the other traveling counterclockwise. Specifically, if x, y ∈ T, then dist
cc

(x, y) =

(y − x) mod 2π, where x mod 2π is the remainder of the division of x by 2π.

We denote by 1 ∈ R
N×1 the column vector with entries all equal to 1.

5.2 Model and problem statement

In this section we describe a synchronized collection of beads moving on a

circle and our model of robotic agents.

Definition 5.1 (Balanced synchronization) Consider a collection of N beads

moving on a ring. The collection of beads is balanced synchronized with period

T , if (i) any two neighboring beads impact always at the same point, (ii) the time

interval between two consecutive impacts, involving the same beads, has length T ,

and (iii) all the beads impact simultaneously. In other words, in a synchronized

collection, each bead sweeps an arc of length 2π/N at constant speed 2 2π
NT

.

An example of a collection of four beads in sync is shown in Figure 5.1.

If N is odd, synchronization, as defined in Definition 5.1, cannot be reached.

Therefore we give a more general definition of synchronization reachable also by

an odd number of beads.

78



impact time = t0, t0 + 2T, . . . , t0 + 2mT, . . . impact time = t0 + T, . . . , t0 + (2m + 1)T, . . .

Figure 5.1. The figure shows a collection of four beads which are synchronized.

Definition 5.2 (Unbalanced synchronization) Consider a collection of N

beads moving on a ring. The collection of beads is unbalanced synchronized with

period T , if (i) any two beads impact always at the same point and (ii) the time

interval between two consecutive impacts, involving the same beads, has length T .

In other words, in an unbalanced synchronized collection, each bead sweeps an arc

of length 2π/N at average speed 2 2π
NT

.

In this chapter we propose and analyze a distributed algorithm that will steer a

collection of “intelligent beads”, i.e., mobile robots, to be synchronized according

to either Definition 5.1 or Definition 5.2. The model of agent we consider is

described as follows. We assume a collection of N agents moves on the torus T.

Let θi(t) ∈ T, i ∈ {1, . . . , N} be the agents’ positions at time t ≥ 0, ordered in

counterclockwise direction, at let θ̇i(t) be their velocity. Each agent senses its

position on the circle. Motivated by surveillance application, we consider agents

equipped with short-range communication device; for simplicity and elegance we

79



assume they communicate only when they impact. We use the identifications

0 ≡ N and N + 1 ≡ 1.

5.3 Synchronization algorithm

In this section we describe an algorithm that allows the collection of agents

to achieve synchronization. We begin by defining all variables that each agent

maintains in memory and we later state how these variables are updated as time

evolves and “communication impacts” take place.

Variables in memory

Let us define di ∈ {−1, +1} to be the direction of motion of the i-th bead,

and let the counterclockwise direction of motion be positive. Let νi > 0 be the

i-th bead’s nominal speed.

Definition 5.3 (Impacts classification) If at time t it holds θi(t) = θi+1(t),

then we say that an impact has occurred between beads i and i + 1. If di(t) =

di+1(t), then the impact is said to be of head-tail type, otherwise it is said to be

of head-head type.

Next, we associate to each bead its desired sweeping arc, i.e., an arc of the

circle that eventually each bead would sweep if balanced synchrony, as defined

in 5.1, is reached.

Definition 5.4 (Desired sweeping arc) Let [Li(t), Ui(t)] ⊂ T be the desired

sweeping arc of bead i with Li(t) ∈ T and Ui(t) ∈ T as its clockwise and

80



counterclockwise boundary. Then [Li(t), Ui(t)] = {θ ∈ T | dist
cc

(Li(t), θ) ≤

dist
cc

(Li(t), Ui(t))}. Let Ci(t) be the center of the desired sweeping arc defined by

Ci(t) = Li(t) + 1
2

dist
cc

(Li(t), Ui(t)).

Note that nothing is assumed on the length of the desired sweeping arcs.

In summary, we denote by xi(t) the logic state that bead i maintains in its

memory:

xi(t) := (νi(t), di(t), Li(t), Ui(t), sdiri(t)),

where we let sdir(t) be a flag that can assume values ±1. We let (θi, xi) denote

the state of each bead.

Regarding initialization, we will assume that νi > 0, di ∈ {+1,−1}, Li(0) =

Ui(0) = θi(0), and sdiri(0) = di(0).

Rules

This concludes our description of the agents’ memory. Next we define the

algorithm. At all time t ≥ 0, each bead checks whether it is traveling inside its

desired sweeping arc, or outside the sweeping arc while moving away from it or

towards it. Each bead will then travel at nominal speed νi(t) when inside its

desired sweeping arc, it will slow down when moving away from it, and speeding

up while moving towards it. Formally,

θ̇i(t) =






di(t)νi(t), if θi(t) ∈ [Li(t), Ui(t)],

fdi(t)νi(t), if θi(t) /∈ [Li(t), Ui(t)] and di(t) = sdiri(t),

hdi(t)νi(t), if θi(t) /∈ [Li(t), Ui(t)] and di(t) = −sdiri(t),

where f ∈ ]0.5, 1[ and h = f
2f−1

> 1.

81



The logic state for bead i changes only when one of the following events

occurs: (1) an impact takes place between with either bead i − 1 or i, and (2)

bead i crosses either Li or Ui while leaving its desired sweeping arc.

Event 1. If at time t an impact occurs for bead i with either bead i + 1

or i − 1, then two events will take place: (1) both beads will exchange through

communication their logic state, and (2) each bead will update its memory. Bead

i will update its nominal speed and direction by:

νi(t
+) =

νi(t) + νi+1(t)

2
; (5.1)

di(t
+) =






−di(t), if the impact is “head-head type”,

di(t), otherwise,

(5.2)

where the upper-script + indicates the value of the state variables right after the

impact. Furthermore, bead i updates the boundary of its sweeping arc by

Li(t
+) =






Ci(t) − distcc(Ci−1(t),Ci(t))
2

, if the impact occurs with i − 1,

Li(t), otherwise,

(5.3)

and

Ui(t
+) =






Ci(t) + distcc(Ci(t),Ci+1(t))
2

, if the impact occurs with i + 1,

Ui(t), otherwise,

(5.4)

where the center of the jth desired sweeping arc is computed by Cj(t) = Lj(t) +

dist
cc

(Lj(t), Uj(t))/2, for all j. Note that after any impact between beads i and

i−1 equations (5.3) and (5.4) imply that Li−1(t
+) = Ui(t

+), simply because they

are defined as the midpoint in the arc from Ci−1(t) to Ci(t). The flag sdiri does

not change its value, i.e.:

sdiri(t
+) = sdiri(t) .

82



Event 2. The memory of each bead i will be update also when it reaches either

Li(t) or Ui(t), and it crosses it while leaving the desired sweeping arc. While the

nominal speed νi, the direction di and the boundary of the desired sweeping arc

Li and Ui do not change:

νi(t
+) = νi(t),

di(t
+) = di(t),

Li(t
+) = Li(t),

Ui(t
+) = Ui(t),

the flag sdiri is updated as follows:

sdiri(t
+) = di(t),

where the upper-script + indicates the value of the memory right after bead i

crosses the boundary of its desired sweeping arc.

5.4 Preliminary results

In this section we prove some preliminary results before we can prove the

correctness of the Synchronization Algorithm. We begin with an important

characterization of initial states.

Definition 5.5 (Admissible, balanced and unbalanced configurations) A

state

{(θi(0), xi(0))}i∈{1,...,N} is

1. admissible if, for all i, j ∈ {1, . . . , N}, j 6= i,

νi(0) > 0, and θi(0) 6= θj(0);

83



2. balanced if it is admissible and if N is even and
∑N

i=1 di(0) = 0, that is,

N/2 beads are moving clockwise and N/2 are moving counterclockwise; and

3. D-unbalanced, for D ∈ {−N, . . . , N} \ {0}, if it is admissible and if

∑N
i=1 di(0) = D.

The set of admissible configurations, balanced configurations, and D-unbalanced

configurations are denoted by A, A0−bal, and AD−unbal, respectively.

Next, we construct an undirected graph G(t) with vertex set {1, . . . , N} and

edge from i to i + 1 if the beads i and i + 1 collide at time t.

Proposition 5.1 (Uniform connectivity) Along the trajectories of the Syn-

chronization Algorithm, with {(θi(0), xi(0))}i∈{1,...,N} ∈ A, for all t0 ≥ 0 the

graph
⋃

t∈[t0,t0+ 2π
fνmin

] G(t) is connected.

The proof of Proposition 5.1 builds up on the following facts.

Lemma 5.1 (Properties) Along the trajectories of the Synchronization Al-

gorithm, with {(θi(0), xi(0))}i∈{1,...,N} ∈ A:

1.
∑n

i=1 di(t) is constant,

2. any two desired sweeping arcs are disjoint sets or at most share a bound-

ary point, furthermore their label index increases in the counterclockwise

direction, i.e., Li+1(t) = Ui(t),

3. the order of the beads is preserved, i.e., for all i, j ∈ {1, . . . , N}, t ≥ 0, and

for j 6= i, dist
cc

(θi−1(t), θi(t)) ≤ dist
cc

(θi−1(t), θi+1(t)) and

84



dist
cc

(θi−1(t), θj(t)) ≥ dist
cc

(θi−1(t), θi+1(t)). Therefore, a bead i can be

involved only in impacts its immediate neighbors i − 1 and i + 1.

Proof.We first prove 1. Let
∑n

i=1 di(0) = D. The only instants in which

∑n
i=1 di(t) can change is when an impact occurs, as in equation (5.2). If the

impact is of “head-tail type” the directions of both the beads involved do not

change. On the other hand, if the impact is of “head-head type”, the directions

of the beads involved are just swapped, therefore
∑n

i=1 di(t) = D for any t ≥ 0.

We now prove 2. For convenience let Di = [Li(t), Ui(t)]. Part 2 is simply

proved by noticing that, to initialize the algorithm, Di(0) = Li(0) = Ui(0) =

θi(0), and θi(0) are ordered along the counterclockwise direction. The desired

sweeping arc Di is updated only when the bead i is involved in an impact and,

by equations (5.3) and (5.4). It is elementary to show that the update equations

for Li and Ui will force Ui(t
+) = Li+1(t

+) and Li(t
+) = Ui−1(t

+). This clearly

implies that the order of the desired sweeping arcs is never changed and that any

two desired sweeping arcs can at most share a boundary.

We finally prove 3. The order of the beads can change only as a consequence

of an impact. We will see that even after an impact the order of the beads is

preserved. If beads i and i + 1 are involved in an impact of “head-head type”,

after the impacts both beads will change their direction so clearly dist
cc

(θi−1(t +

s), θi(t + s)) ≤ dist
cc

(θi−1(t + s), θi+1(t + s)), with 0 ≤ s < s and t + s is

the time at which i will impact again. If the impact is of “head-tail type” the

directions of the two beads will not change, but their nominal velocities νi(t
+)

and νi+1(t
+) will be equal because of equation (5.1). The impact can occur in

Di(t), or in Di+1(t) or in neither, see Figure 5.2. If the impact occurs in Di(t) and

85



di(t) = di+1(t) = +1, after the impact ui(t
+) = νi(t

+) while ui+1(t
+) = hνi+1(t

+).

In fact, because of part 2, i + 1 is moving towards its desired sweeping arc. If the

impact occurs in Di(t) and di(t) = di+1(t) = −1 after the impact ui(t
+) = −νi(t

+)

and ui+1(t
+) = −fνi+1(t

+) because i+1 is moving away from its desired sweeping

arc, again because of part 2. Recalling that f < 1 and h > 1 we have that, in

both cases, dist
cc

(θi−1(t + s), θi(t + s)) ≤ dist
cc

(θi−1(t + s), θi+1(t + s)) for any

time 0 ≤ s < s. An analogous reasoning will conclude that this holds also if the

impact occurs in Di+1(t). Now, if the impact occurs in neither Di(t) nor Di+1(t),

the beads are both moving either towards or away their desired sweeping arcs

therefore ui(t
+) = ui+1(t

+) = hνi(t
+) or ui(t

+) = ui+1(t
+) = fνi(t

+). Again

dist
cc

(θi−1(t + s), θi(t + s)) ≤ dist
cc

(θi−1(t + s), θi+1(t + s)) for any 0 ≤ s < s. �

Lemma 5.2 (Impacts in bounded interval) Let νmin = mini∈{1,...,N} νi(0).

Along the trajectories of the Synchronization Algorithm, with

{(θi(0), xi(0))}i∈{1,...,N} ∈ A, for all i ∈ {1, . . . , N} and for all t0 > 0, bead i will

impact at least once with both its neighbors i − 1 and i + 1 across the interval

[t0, t0 + 2π
fνmin

].

Proof. Note that mini∈{1,...,N} νi(t) ≥ mini∈{1,...,N} νi(0) = νmin because of equa-

tion (5.1). Therefore for any t > 0 the lowest possible speed at which a bead

can travel is fνmin. We first show that at most after π
fνmin

any bead will have a

“head-head type” impact one of its neighbors.

First, any bead i can only impact neighbors i + 1 and i − 1 because of

Lemma 5.1, part 3. The necessary time for two beads i, i + 1 to impact depends

on their positions, the directions of motion and the speeds they are traveling

with.

86



Di+1

θi+1
θi

θi−1

Di

θ̇i+1 = hν

θ̇i = ν

Di+1

θi+1
θi

θi−1

Di

θ̇i+1 = −fν

θ̇i = −ν

Di+1

θi−1

Di

θi+1

θi

θ̇i = θ̇i+1 = hν

Di+1

θi−1

Di

θi+1

θi

θ̇i = θ̇i+1 = −fν

Figure 5.2. This figure shows that, regardless from where and with which veloci-

ties beads i and i + 1 impact, the order of the beads is preserved. The velocities

in the figure are the velocities after the impact. The speed ν is just the average

value of νi and νi+1 before the impact.

87



In the worst possible case at a time t = t0 all the beads are clustered in a

small arc of T of length ǫ, with i and i + 1 at the opposite ends of the arc (i.e.,

dist
cc

(θi+1(t0), θi(t0)) = ǫ), di(t0) = di+1(t0), and the speeds have the smallest

possible value |ui(t0)| = |ui+1(t0)| = fνmin.

Let us suppose di(t0) = di+1(t0) = +1. That is, i + 1 is moving towards the

cluster of beads and i is moving away from it. Because of Lemma 5.1, part 1,

we have that —
∑n

i=1 di(t0)| = D < N and this implies that i + 1 can travel at

most for ǫ
2fνmin

before having a “head-head type” impact. So at t1 ≤ t0 + ǫ
2fνmin

,

di+1(t1) = −1, and dist
cc

(θi+1(t1), θi(t1)) ≥ ǫ. This is true because by assumption

|ui(t0)| = |ui+1(t0)| and i could have had a “head-tail type” impact with i− 1 so

that |ui(t1)| ≥ fνmin. Now, suppose that even after the impact |ui+1(t1)| = fνmin,

then beads i and i+1 are moving towards each other and dist
cc

(θi(t1), θi+1(t1)) ≤

2π−ǫ. They will then meet at time t2 ≤ t1+ 2π−ǫ
2fνmin

≤ t0+ ǫ
2fνmin

+ 2π−ǫ
2fνmin

= t0+ π
fνmin

.

After the impact with i+1, di(t2) = −1 and, therefore, in its next “head-head

type” impact bead i will meet i− 1. Following the same reasoning, we have that

at most after π
fνmin

the two beads i and i− 1 will meet. Hence across the interval

[t0, t0 + 2π
fνmin

] any bead will impact at least once with both its neighbors. �

Proof.[of Proposition 5.1] Because of Lemma 5.2, for all i and for all t0 there

exist t1 and t2 ∈ [t0, t0 + 2π
fνmin

] such that G(t1) and G(t2) have respectively an

edge between vertices i and i + 1 and between vertices i and i− 1. Then, clearly

the graph
⋃

t∈[t0,t0+ 2π
fν(0)

] G(t) is connected. �

88



5.5 Convergence analysis

In this first part of this section we prove that the nominal speeds νi will asymp-

totically be equal to the average of their values, and that the desired sweeping

arc will asymptotically have length 2π/N . In the second and third part of this

section we show that Synchronization Algorithm enables the beads to reach

balanced synchrony if N is even and unbalanced synchrony if N is odd, respec-

tively.

5.5.1 Convergence of nominal speed and desired sweeping

arc

We start by proving that the nominal speeds νi will be all equal to the average

of their values.

Lemma 5.3 (Speed convergence) Let ν(t) = [ν1(t), . . . , νn(t)]T ∈ R
N×1.

Along the trajectories of the Synchronization Algorithm, with

{(θi(0), xi(0))}i∈{1,...,N} ∈ A:

lim
t→+∞

‖ν(t) − 1T ν(0)

N
1‖ = 0 .

Proof. For all i ∈ {1, . . . , N}, define Ai ∈ R
N×N by:

[Ai]lm =






1
2
, if l = m = i or l = m = i + 1,

1
2
, if (l,m) ∈ {(i, i + 1), (i + 1, i)},

δlm, otherwise .

Because of equation (5.1), if at time t an impact between i and i+1 occurs, then:

ν(t+) = Aiν(t).

89



Therefore the dynamics of ν(t) is just the average consensus dynamics with ma-

trices Ai and, because of Proposition 5.1, the consensus is asymptotically reached

(see [30]). Clearly, because the matrices Ai are doubly stochastic, the consensus

value is 1
N

∑N
i=1 νi(0). �

We now prove that the desired sweeping arc will asymptotically have length

2π/N .

Lemma 5.4 (Desired sweeping arc convergence) Let

ℓi(t) = dist
cc

(Li(t), Ui(t)) be the length of the desired sweeping arc [Li(t), Ui(t)]

for i ∈ {1, . . . , N}, and ℓ(t) = [ℓ1(t), . . . , ℓn(t)]T ∈ R
N×1. Along the trajectories

of the Synchronization Algorithm, with {(θi(0), xi(0))}i∈{1,...,N} ∈ A:

lim
t→+∞

‖ℓ(t) − 2π

N
1‖ = 0 .

Proof. From equations (5.3) and (5.4) we have that after the impact between i

and i + 1:

ℓi(t
+) =

3

4
ℓi(t) +

1

4
ℓi+1(t),

ℓi+1(t
+) =

1

4
ℓi(t) +

3

4
ℓi+1(t).

Now, define Bi ∈ R
N×N by:

[Bi]lm =






3
4
, if l = m = i or l = m = i + 1,

1
4
, if (l,m) ∈ {(i, i + 1), (i + 1, i)},

δlm, otherwise.

Then, if at time t > t0 + 2π
fνmin

an impact between i and i + 1 occurs, the

dynamics for ℓ(t) is simply:

ℓ(t+) = Biℓ(t).

90



We recall that νmin = mini∈{1,...,N} νi(0), and that at t0 + 2π
fνmin

every impact

between two consecutive beads has occurred. Once again, the dynamics of ℓ(t)

is just the weighted average consensus dynamics with matrices Bi and, because

of Proposition 5.1, the consensus is asymptotically reached (see [30]). Since

∑n
i=1 ℓi(t) = 2π, or equivalently because the matrices Bi are doubly stochastic,

we have that ℓi(t) → 2π
N

asymptotically. �

We have then proved that asymptotically the nominal velocities νi(t) will be

equal to the average of the initial nominal velocities and the lengths of the desired

sweeping arcs will asymptotically be equal to 2π/N .

5.5.2 Balanced synchrony

We will now prove that the Synchronization Algorithm will steer the

collection of beads to be in balanced synchrony for a set of initial conditions

contained entirely in A0−bal.

Theorem 5.1 (Balanced synchrony convergence) For all i ∈ {1, . . . , N},

let νi(0) = νi(t) = ν > 0, Li(t) = Li(0), Ui(t) = Ui(0), with Li(0) = Ui−1(0), and

with dist
cc

(Li(0), Li+1(0)) = 2π
N

. Let di(0) = −dj(0) for j ∈ {i − 1, i + 1}. Let

γi = dist
cc

(Ci(0), θi(0)), δi = min{γi, 2π − γi}, and let δ = [δ1, . . . , δN ]T ∈ R
N×1.

Let T k
i be the instant in which bead i passed by the center of its desired sweeping

arc for the k-th time and T k = [T k
1 , . . . , T k

N ]T ∈ R
N×1. If ‖δ− 1

T δ
N

1‖ is sufficiently

small, then along the trajectories of the Synchronization Algorithm:

lim
k→+∞

‖T k − 1T T k

N
1‖ = 0 .

91



Proof. Before tackling the proof it is useful to see that both the quantities

‖δ− 1
T δ
N

1‖ and ‖T k − 1
T T k

N
1‖ are measures of the asynchrony of the collection of

beads. However, due to the switching nature of the dynamics of the beads, the

asymptotic behavior of T k is simpler to analyze. On the other hand δ is a more

suitable quantity to describe the asynchrony at time 0.

For convenience let Di = [Li(t), Ui(t)]. Let us suppose that at time t the beads

i and i+ 1, with directions di(t) = −di+1(t) = +1, are about to collide. We know

that T k
i and T k

i+1, for some k, are the times at which they passed by the centers

of their desired sweeping arcs. If T k
i < T k

i+1, that is bead i is early with respect

to bead i + 1, the impact will occur in Di+1 as shown in Figure 5.3, otherwise

it will occur in Di. Without loss of generality we suppose that the impact will

occur in Di+1, and precisely at Ui + ∆.

Di+1 Di

θ̇1 = ν
θ̇i+1 = −ν

DiDi+1

θ̇i+1 = −ν
θ̇i = fν

DiDi+1

∆

θ̇i+1 = ν
θ̇i = −hν

Figure 5.3. This figure shows how the speeds of bead i and i + 1 change they

are traveling towards each other. Note that bead i is early with respect to bead

i + 1.

In order to calculate where and when the beads will impact we need to impose

that i and i + 1 reach simultaneusly Ui + ∆:

T k
i +

π

N

1

ν
+

∆

fν
= T k

i+1 +
π

N

1

ν
− ∆

ν
. (5.5)

This clearly holds because i + 1 is traveling in its desired sweeping arc, therefore

its speed is simply ν; on the other hand bead i initially travels in its arc but

92



eventually leaves it and therefore its speed becomes fν. Solving (5.5) for ∆ we

have:

∆ = ν
f

1 + f
(T k

i+1 − T k
i ) . (5.6)

After the impact the directions of both beads change because the impact is of

“head-head type”, and they both head towards Ci and Ci+1, that they will reach

at time T k+1
i and T k+1

i+1 :

T k+1
i = T k

i +
2π

N

1

ν
+

∆

ν

(
1

f
+

1

h

)
,

T k+1
i+1 = T k

i+1 + 2
( π

N
− ∆

) 1

ν
.

Recalling that h = f
2f−1

we have:

T k+1
i = T k

i +
2

ν
(
π

N
+ ∆) , (5.7)

T k+1
i+1 = T k

i+1 +
2

ν
(
π

N
− ∆) . (5.8)

Substituting (5.6) in (5.7) and in (5.8):

T k+1
i =

1 − f

1 + f
T k

i +
2f

1 + f
T k

i+1 +
2π

Nν
,

T k+1
i+1 =

2f

1 + f
T k

i +
1 − f

1 + f
T k

i+1 +
2π

Nν
.

Note that 0 < 1−f
1+f

< 1/3 and 2/3 < 2f
1+f

< 1 since f ∈ ]0.5, 1[. Now, let us define

the matrices Ceven and Codd ∈ R
N×N by:

[Ceven]lm =






1−f
1+f

, if l = m,

2f
1+f

, if (l,m) ∈ {(i, i + 1), (i + 1, i)}, i even,

[Codd]lm =






1−f
1+f

, if l = m,

2f
1+f

, if (l,m) ∈ {(i, i + 1), (i + 1, i)}, i odd.

93



Then, if the first impact after t = 0 is between i and i+1, and i is odd the vector

T k evolves as follows:

T k+1 =






CoddT k + 2π
Nν

1, if k odd,

CevenT k + 2π
Nν

1, if k even.

(5.9)

If the first impact is between i and i + 1, and i is even, equation (5.9) is still

valid as long as the definitions of Codd and Ceven are exchanged. In any case, the

dynamics of T k is just the weighted average consensus dynamics with matrices

Codd and Ceven, and, because of Proposition 5.1, the consensus is asymptotically

reached (see [30]). �

Although Theorem 5.1 proves convergence to balanced synchronization only

locally, simulations show that indeed the set of initial conditions for which the

balanced synchronization is reached is quite large and may be equal to A0−bal.

In the next remark we give some insight.

Remark 5.1 The Synchronization Algorithm leads to a dynamical system

that can be seen as a cascade of three dynamical systems: the dynamical systems of

the nominal velocities νi(t) , the dynamical systems of the desired sweeping arcs

Di(t), and the dynamical system of the synchrony T k
i . The dynamical systems

of the nominal velocities and of the desired sweeping arcs are independent from

each other and independent from the dynamics of the synchrony, furthermore

they act as disturbances on the latter. As proved in Lemma 5.3 and Lemma 5.4,

limt→+∞ ‖ν(t)− 1
T ν(t)
N

1‖ = 0 and limt→+∞ ‖ℓ(t)− 1
T ℓ(t)
N

1‖ = 0 for all initial condi-

tions in A – the consensus of the nominal speeds and of the lengths of the desired

sweeping arcs is guaranteed. Furthermore, since the convergence is uniform and

the dynamics are linear the convergence is exponential. For the same reasons also

94



the convergence of ‖T k − 1
T T k

N
1‖ is exponential. If the inputs ‖ν(t) − 1

T ν(t)
N

1‖

and ‖ℓ(t) − 1
T ℓ(t)
N

1‖ enter linearly in the dynamics of T k
i , then the local stability

properties of the equilibrium ‖T k − 1
T T k

N
1‖ = 0 are not destroyed. This follows

from Input-to-State Stability of exponentially stable systems [23]. If this holds, the

restrictive assumptions for Theorem 5.1 are that ‖δ − 1
T δ
N

1‖ is sufficiently small

and that di(0) = −dj(0) for j ∈ {i − 1, i + 1}, while the assumptions that νi(0)

have the same value and that dist
cc

(Li(0), Li+1(0)) = 2π/N are not restrictive.

5.5.3 Unbalanced synchrony

We now prove that the Synchronization Algorithm will steer the col-

lection of beads to be in unbalanced synchrony for a set of initial conditions

contained entirely in AD−unbal with D = ±1, however we first start by proving

that there exists an orbit along which the beads can reach unbalanced synchrony.

Theorem 5.2 (Exist. of periodic orbit for 1-unbal.: sufficiency) Given

D ∈ {−1, +1}, assume that {(θi(0), xi(0))}i∈{1,...,N} ∈ AD−unbal,
1
2

< f < N
1+N

,

and that, for i ∈ {1, . . . , N}, νi(t) = νi(0) = ν, Li(t) = Li(0), Ui(t) = Ui(0) with

Li(0) = Ui−1(0) and with dist
cc

(Li(0), Li+1(0)) = 2π
N

. Then

1. there exists a periodic orbit for the Synchronization Algorithm in

which the beads are in unbalanced synchrony with period 22π
N

1
ν
; and

2. along this orbit each bead i impacts its neighboring bead i − 1 at position

Li(0) + Dδ, where δ = 2π
N2

f
1−f

< 2π
N

.

95



α

θi

δ
δ

δ

θi+1

θi−2

δ

θi−1

Ui+1

Ui = Li+1Ui−1 = Li

Ui−2 = Li−1

Li−2

Figure 5.4. This figure shows the periodic orbit described in Theorem 5.2. The

white circles are the positions of beads i − 2, i − 1, i, and i + 1 when i and

i + 1 meet at Ui − δ. The black dots are the locations of the impacts for any

two neighboring beads. Note that bead i − 1 and i − 2 are moving towards each

other. Because bead i− 2 is in its desired sweeping arc, its speed is ν while i− 1

is moving away from it and therefore its speed is fν. The same holds for i and

i + 1 respectively.

96



Remark 5.2 (Impacts order in 1-unbalanced synchrony) It is useful to

take note of the order in which the impacts happen in a D-unbalanced collection

of beads that reached unbalanced synchrony, where D ∈ {−1, +1}. As we will see

in the proof of Theorem 5.2, if
∑N

i=1 di(0) = −1 and i and i + 1 have just met,

the next impact will be between i− 1 and i− 2 and so on until i meets i + 1 again

and the periodic orbit is complete. More concisely, if the first two beads to impact

are i and i + 1, then the k-th impact will happen between (i− 3Dk) mod N and

(i + 1 − 3Dk) mod N . Therefore if
∑N

i=1 di(0) = −1, then the impacts happen

in a counterclockwise fashion, on the other hand, if
∑N

i=1 di(0) = +1, then the

impacts happen in a clockwise fashion. Let us illustrate the idea using a the graph

G(t) introduced in Proposition 5.1. We recall that the graph G(t) has as vertex

set {1, . . . , N} and edge from i to i + 1 if the beads i and i + 1 collide at time t.

Figure 5.5 shows G(t) for t ∈ [t1,2, t1,2 + 22π
N

1
ν
] and the time at which the impacts

happen for N = 5.

Proof.[of Theorem 5.2] We will prove the theorem by constructing the periodic

orbit. Without loss of generality let us suppose that
∑N

i=1 di(0) = −1. Let ti,i+1

be the time at which bead i and bead i + 1 impact at Ui(0) − δ ≡ Li+1(0) − δ.

Let us suppose that θi−1(ti,i+1) = Li−1(0) − α and that θi−2(ti,i+1) is such that:

ti−2,i−1 = ti,i−1 +
δ − α

fν
, (5.10)

with δ < 2π
N

and α < δ (see Figure 5.4). Let t0 = t1,2 then, recalling (5.10) and

by symmetry we have:

t2,3 = t0 +
N − 1

2

δ − α

fν
(5.11)

tN,1 = t0 +
N + 1

2

δ − α

fν
. (5.12)

97



1

25

t1,2

34

2

1

5

34

t1,2 + δ−α
fν

1

3

5 2

4

t1,2 + 2δ−α
fν

5 2

1

34

t1,2 + 3δ−α
fν

1

25

34

t1,2 + 4δ−α
fν

4

5 2

1

3

t1,2 + 22π
N

1
ν

Figure 5.5. This figure illustrates G(t) for t ∈ [t1,2, t1,2 + 22π
N

1
ν
] and the time

at which each edge appears for N = 5 and
∑N

i=1 di(0) = −1 when unbalanced

synchrony is reached.

For beads 1 and 2 to meet again at U1(0) − δ ≡ L2(0) − δ, the following must

hold:

t2,3 +

(
2π

N
− δ

)
1

ν
+

δ

fν
= tN,1 +

δ

hν
+

(
2π

N
− δ

)
1

ν
. (5.13)

In fact, after impacting with bead 3, bead 2 travels along the arc [L2(0), U2(0)−δ]

with velocity −ν since it is in its desired sweeping arc. After crossing L2(0), the

speed of bead 2 becomes −fν because it is moving away from its arc. For bead

1 the dual is true. After impacting with bead N , bead 1 travels along the arc

[L1(0)− δ, L1(0)] with velocity hν since it is moving towards its desired sweeping

arc. After crossing L1(0), the speed of bead 1 becomes ν because it is in its arc

(see Figure 5.6).

98



U2

U1 = L2

δ

δ

δ

L1̇
θ1 = hν

θ̇2 = −ν

˙θN = −ν

U2

δ

δ

δ

L1

U1 = L2

θ̇2 = −ν
θ̇1 = ν

U2

δ

δ

δ

L1

U1 = L2

θ̇1 = ν

θ̇2 = −fν

Figure 5.6. This figure shows how the speeds of bead 1 and 2 change as they are

traveling towards each other, shortly after bead 1 meets bead N .

Recalling (5.11) and (5.12), we have:

t0 +
N − 1

2

δ − α

fν
+

(
2π

N
− δ

)
1

ν
+

δ

fν
= t0 +

N + 1

2

δ − α

fν
+

δ

hν
+

(
2π

N
− δ

)
1

ν
,

rearranging all the terms:

α = δ(2f − 1). (5.14)

In order to be a periodic orbit we need to impose that beads 1 and 2 meet again

after a period:

t0 +
N − 1

2

δ − α

fν
+

(
2π

N
− δ

)
1

ν
+

δ

fν
= t0 + 2

2π

N

1

ν
. (5.15)

If we substitute (5.14) in (5.15) and solve for δ we have:

δ =
2π

N2

f

1 − f
.

Recalling the assumption of f we have:

f <
N

1 + N
⇒ δ =

2π

N2

f

1 − f
<

2π

N
.

�

It turns out that f < N
1+N

is not only sufficient but also necessary for the

existence of a periodic orbit along the trajectories of the Synchronization

Algorithm and {(θi(0), xi(0))}i∈{1,...,N} ∈ AD−unbal with D ∈ {−1, +1}.

99



Theorem 5.3 (Exist. of periodic orbit for 1-unbal.: necessity) Given

D ∈ {−1, +1}, assume that {(θi(0), xi(0))}i∈{1,...,N} ∈ AD−unbal, and that, for i ∈

{1, . . . , N}, νi(t) = νi(0) = ν, Li(t) = Li(0), Ui(t) = Ui(0) with Li(0) = Ui−1(0)

and with dist
cc

(Li(0), Li+1(0)) = 2π
N

. If along the trajectories of the Synchro-

nization Algorithm the unbalanced synchrony is reached, that is, beads i and

i − 1 always meet at Li(t) + Dδ with δ < 2π
N

and the period of the orbit is 22π
N

1
ν
,

then f < N
1+N

.

Proof. Let us assume, with no loss of generality, that
∑N

i=1 di(0) = −1. Let t+

be the time spent by each bead traveling along the positive direction, and t− be

the time spent by each bead traveling along the negative direction in a period

of the periodic orbit. In other words, if δ < 2π
N

, then t− = (2π
N

− δ) 1
ν

+ δ
fν

, and

t+ = δ
hν

+ (2π
N

− δ) 1
ν
, as in (5.13). Clearly t− + t+ = 22π

N
1
ν
, which is the period of

the orbit, and t− > t+, that is each bead spends more time traveling along the

negative direction than along the positive. Every instant of time only one bead

is unbalanced and t− − t+ is the time each bead is unbalanced during a period.

By symmetry we can then conclude that N(t− − t+) must be equal to a period:

2
2π

N

1

ν
= N(t− − t+) . (5.16)

Recalling the expressions for t− and t+, we have:

2
2π

N

1

ν
= N2

δ

ν

f

1 − f
,

and solving for δ

δ =
2π

N2

f

1 − f
.

By assumption δ < 2π
N

, therefore:

δ =
2π

N2

f

1 − f
<

2π

N
⇒ f <

N

1 + N
.

100



�

A natural question to ask is if there exists a periodic orbit for the Synchro-

nization Algorithm when {(θi(0), xi(0))}i∈{1,...,N} ∈ AD−unbal and |D| > 1.

To answer this question, we will extend the result of Theorem 5.3 to the more

general case of D-unbalanced collections of beads.

Theorem 5.4 (Existence of a periodic orbit: necessity) Let

{(θi(0), xi(0))}i∈{1,...,N} ∈ AD−unbal and |D| > 1. If along the trajectories of the

Synchronization Algorithm the unbalanced synchrony is reached and bead i

meets bead i − 1 at location Li(t) + D
|D|

δ with δ < 2π
N

, then f < N/|D|
1+N/|D|

.

Proof. The proof parallels the one of Theorem 5.3. Without loss of generality let

us assume
∑N

i=1 di(t) = D < −1. Every instant of time |D| beads are unbalanced

and t− − t+ is the time each bead is unbalanced during a periodic orbit. By

symmetry we can then conclude that N (t−−t+)
|D|

must be equal to a period, therefore

equation (5.16) becomes:

2
2π

N

1

ν
= N

(t− − t+)

|D| ,

where t− − t+ = 2 δ
ν

f
1−f

. Solving for δ we have:

δ = |D| 2π

N2

f

1 − f
.

Imposing the constraint δ < 2π
N

we can calculate the necessary condition for the

existence of the periodic orbit in a D-unbalanced collection of beads:

f <
N/|D|

1 + N/|D| .

Note that the higher the ratio |D|/N is, the smaller f needs to be so that each

bead spends enough time outside of its desired sweeping arc [Li(t), Ui(t)] but it

does not get too far from it. �

101



We will now prove that if {(θi(0), xi(0))}i∈{1,...,N} ∈ AD−unbal with

D ∈ {−1, +1}, and the initial condition is such that the collection of beads is

close to unbalanced synchrony, then the Synchronization Algorithm will

asymptotically steer the collection of beads to unbalanced synchrony. In par-

ticular we will prove that the interval between two consecutive times each bead

passes by a point while moving in the same direction asymptotically approaches

22π
N

1
ν
, which is the period of the periodic orbit. This is just a consequence of the

definition of unbalanced synchrony.

Theorem 5.5 (1-unbalanced synchrony convergence) Given

D ∈ {−1, +1}, assume that {(θi(0), xi(0))}i∈{1,...,N} ∈ AD−unbal, and that, for

i ∈ {1, . . . , N}, νi(0) = νi(t) = ν > 0, Li(t) = Li(0), Ui(t) = Ui(0), with

Li(0) = Ui−1(0), and with dist
cc

(Li(0), Li+1(0)) = 2π
N

. Let δ = 2π
N2

f
1−f

< 2π
N

,

and C̃i be the center of the counterclockwise arc [Li(0) + Dδ,Ui(0) + Dδ] for all

i ∈ {1, . . . , N}, i.e., C̃i(t) = Li(t) + Dδ + π
N

. Let T k
i be the instant in which bead

i passed by C̃i for the k-th time and T k = [T k
1 , . . . , T k

N ]T ∈ R
N×1. Let us suppose

that the collection of beads is sufficiently close to be unbalanced synchronized, that

is (i) after any impact each bead i passes by C̃i before impacting again, (ii) the

impacts occurs according to the impact sequence described in Remark 5.2. Then,

along the trajectories of the Synchronization Algorithm:

lim
k→+∞

T 2k − T 2(k−1) = 1
2

ν

2π

N
,

that is, the collection of beads asymptotically reaches unbalanced synchrony.

Proof. Case (i) Let us suppose δ < π
N

, and
∑N

i=1 di(0) = −1. Let us suppose

that bead i− 1 and bead i are moving towards each other and let T k
i−1 and T k

i be

the last time they passed by C̃i−1 and C̃i with directions di−1 = +1 and di = −1.

102



If the two beads are not in unbalanced sync they will not meet at Ui−1 − δ but

at Ui−1 − δ − ∆, as shown in Figure 5.7. In order to calculate where and when

C̃i

C̃i−1

∆

Ui

Ui−1 = Li

Li−1

δ

δ

δ

π
N

π
N

π
N

∆ Ui

Ui−1 = Li

Li−1

C̃i

C̃i−1

δ

δ

δ

π
N

π
N

π
N

Figure 5.7. From top to bottom, the figure illustrates the position of C̃i−1, C̃i,

and of Ui−1 − δ − ∆ for δ < π
N

and δ > π
N

.

the beads will impact we need to impose that i and i − 1 reach simultaneously

Ui−1 − δ − ∆:

T k
i−1 + (

π

N
− ∆)

1

ν
= T k

i + (
π

N
− δ)

1

ν
+

(δ + ∆)

fν
,

This clearly holds because i− 1 is traveling in its desired sweeping arc, therefore

its speed is simply ν; on the other hand, bead i initially travels in its arc but

eventually leaves it and therefore its speed becomes fν.

Solving for ∆ we have:

∆ =
−f

f + 1
ν(T k

i − T k
i−1) +

f − 1

f + 1
δ. (5.17)

Note that requiring i and i − 1 to be in unbalanced sync is equivalent to impose

∆ = 0 which implies T k
i − T k

i−1 = f−1
f

δ
ν
. After impacting at Ui−1 − δ − ∆, beads

103



i − 1 and i will change directions and head back towards C̃i−1 and C̃i, that they

will reach at time T k+1
i−1 and T k+1

i :

T k+1
i−1 = T k

i−1 + 2(
π

N
− ∆)

1

ν
,

T k+1
i = T k

i + 2(
π

N
+ ∆)

1

ν
.

Recalling equation (5.17) and rearranging the terms we have:



T k+1

i−1

T k+1
i



 = M




T k

i−1

T k
i



+
2δ

ν

1 − f

f




1

−1



+
1

ν

2π

N




1

1



 ,

where

M =




1 − 2f

f+1
2f

f+1

2f
f+1

1 − 2f
f+1



 . (5.18)

Note that the dynamics matrix M is doubly stochastic since f ∈]0.5, 1[. Let

T k = [T k
1 , . . . , T k

N ]T , any time an impact between i − 1 and i occurs we have:




T k
1

...

T k+1
i−1

T k+1
i

...

T k
N





= Ai−1





T k
1

...

T k
i−1

T k
i

...

T k
N





+
2δ

ν

1 − f

f
ui−1 +

1

ν

2π

N
wi−1 ,

where

Ai−1 =





1 0 . . . 0

0
. . . 0

... M11 M12
...

... M21 M22
...

. . .

0 0 . . . 1





, ui−1 =





0

...

1

−1

...

0





, wi−1 =





0

...

1

1

...

0





,

104



and Mij are the entries of the matrix M defined in equation (5.18). After any

bead has met both its two neighbors we have:

T k+2 = ÃT k +
2δ

ν

1 − f

f
Ũ +

1

ν

2π

N
W̃ , (5.19)

where Ã =
∏N

m=1 Ajm
, jm ∈ {1, . . . , N} (the value of jm depends on the order of

the impacts), Ũ =
∑N

r=1

(∏N
m=1+r Ajm

)
ujr

, and W̃ =
∑N

r=1

(∏N
m=1+r Ajm

)
wjr

.

Note that the matrix Ã is ergodic doubly stochastic because the associated graph

is connected and it is the product of doubly stochastic matrices. Furthermore,

for all k ∈ N the dynamics matrix Ã is actually constant because by assumption

the order of the impacts is just like in Figure 5.5. Since the dynamics (5.19) is

time invariant we can write the trajectory in closed-form:

T 2k+1 = ÃkT 1 +

(
k−1∑

j=1

Ãj

)(
2δ

ν

1 − f

f
Ũ +

1

ν

2π

N
W̃

)
.

We can then calculate:

T 2k+1 − T 2(k−1)+1 = (Ãk − Ãk−1)T 1 + Ã(k−1)

(
2δ

ν

1 − f

f
Ũ +

1

ν

2π

N
W̃

)
.

Since Ã is ergodic and doubly stochastic, then limk→+∞ Ãk = 11
T

N
(see [30]),

and therefore:

lim
k→+∞

T 2k+1 − T 2(k−1)+1 =

(
11T

N
− 11T

N

)
T 1 +

11T

N

(
2δ

ν

1 − f

f
Ũ +

1

ν

2π

N
W̃

)
,

=
11T

N

N∑

r=1

(
2δ

ν

1 − f

f

N∏

m=1+r

Ajm
ujr

+
1

ν

2π

N

N∏

m=1+r

Ajm
wjr

)
,

=
2δ

ν

1 − f

f

N∑

r=1

(
11T

N
ujr

)
+

1

ν

2π

N

N∑

r=1

(
11T

N
wjr

)
,

= 0 +
1

ν

2π

N

N∑

r=1

2
1

N
,

=
2

ν

2π

N
.

105



The third equality holds because 1T Ajm
= 1T for all jm ∈ {1, . . . , N} since

Ajm
is doubly stochastic, while the fourth equality holds because 1T ujr

= 0 and

1T wjr
= 2 for all jr ∈ {1, . . . , N}.

Case (ii) Let us now suppose δ ≥ π
N

. To calculate where beads i − 1 and i

will impact we need to solve (see Figure 5.7):

T k
i−1 + (δ − π

N
)

1

hν
+ (

2π

N
− δ − ∆)

1

ν
= T k

i + (
π

N
+ ∆)

1

fν
,

solving for ∆ we have:

∆ =
−f

f + 1
ν(T k

i − T k
i−1) +

f − 1

f + 1
δ, (5.20)

just like for case (i). After impacting at Ui−1−δ−∆ beads i−1 and i will change

directions and head back towards C̃i−1 and C̃i. We can now calculate T k+1
i−1 and

T k+1
i :

T k+1
i−1 = T k

i + 2(
π

N
+ ∆)

1

ν

T k+1
i = T k

i + 2(
π

N
− ∆)

1

ν
.

The dynamics of Ti−1 and Ti are just like in case (i), therefore the analysis and

conclusion of case (i) are valid also for case (ii). �

5.6 Simulations

In this section we present simulations obtained by implementing the Syn-

chronization Algorithm on balanced and unbalanced collection of beads.

106



5.6.1 Balanced collection of beads

As we have seen in Section 5.5.2, it can be proved that the Synchronization

Algorithm would allow the beads to get in sync if for all i ∈ {1, . . . , N}, νi(0) =

ν > 0, dist
cc

(Li(0), Li+1(0)) = 2π
N

, dist
cc

(Li(0), Ui(0)) = 2π
N

, and di(0) = −dj(0)

for j ∈ {i − 1, i + 1}. But, extensive simulations have suggested the possibility

that the basin of attraction of the periodic orbit is indeed much larger.

Conjecture 1 (Balanced collection: global basin of attraction) Let

{(θi(0), xi(0))}i∈{1,...,N} ∈ A0−bal. Let T k
i be the last instant in which bead i passed

by the center of its desired sweeping arc before time t and T k = [T k
1 , . . . , T k

N ]T ∈

R
N×1, then, along the trajectories of the Synchronization Algorithm:

lim
k→+∞

‖T k − 1T T k

N
1‖ = 0 .

In what follows we present the simulation results obtained by implementing

the Synchronization Algorithm with N = 8 beads, beads are randomly

positioned on T, νi(0) uniformly distributed ∈]0, 1], d1(0) = d2(0) = d4(0) =

d6(0) = +1 and f = 0.7.

Figure 5.8 shows the positions of the eight beads vs time. Clearly, asymptot-

ically each bead meets its neighbor at the same location on the circle, reaching

synchrony.

Figure 5.9 shows maxi νi(t)−mini νi(t), which is a measure of disagreement of

the nominal speeds. As expected the disagreement goes to zero asymptotically.

In Figure 5.10, the positions and the desired sweeping arc boundaries for bead

i = 5 are illustrated. The solid line represents θ5(t), the dash-dot line represents

Li(t), and the thicker solid line represents U5(t). The distance dist
cc

(L5(t), U5(t))

107



asymptotically approaches 360/N = 45 degrees.

0 5 10 15 20 25 30 35 40 45 50
50

100

150

200

250

300

350

400

450

Positions of the beads vs time

seconds

d
eg

re
es

Figure 5.8. This figure shows θi vs time, obtained by implementing the Synchro-

nization Algorithm with N = 8 beads, the beads are randomly positioned

on T, νi(0) uniformly distributed ∈]0, 1], d1(0) = d2(0) = d4(0) = d6(0) = +1,

and f = 0.7. The positions of the beads 2, 4, 6, 8 are represented by solid lines,

while the dash line, dash-dot line, point line, and thicker dash line represent the

positions of beads 1, 3, 5, 7.

5.6.2 Unbalanced collection of beads

In Theorem 5.5 we have proved that if {(θi(0), xi(0))}i∈{1,...,N} ∈ AD−unbal

with D ∈ {−1, +1}, and if the collection of beads is close to be in unbalanced

synchrony, then the Synchronization Algorithm will steer the collection to

108



0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
maxi νi − mini νi

ra
d
ia

n
s/

se
co

n
d
s

seconds

Figure 5.9. This figure shows maxi νi−mini νi vs time, obtained by implementing

the Synchronization Algorithm with N = 8 beads, the beads are randomly

positioned on T, νi(0) uniformly distributed ∈]0, 1],d1(0) = d2(0) = d4(0) =

d6(0) = +1, and f = 0.7.

synchrony. Also in this case, extensive simulations have suggested that the basin

of attraction of the periodic orbit might be much larger.

Conjecture 2 (1-unbalanced collection: global basin of attraction) Let

{(θi(0), xi(0))}i∈{1,...,N} ∈ AD−unbal with D ∈ {−1, +1}. Let δ = 2π
N2

f
1−f

< 2π
N

,

and C̃i(t) be the center of the counterclockwise arc [Li(t) + Dδ,Ui(t) + Dδ] for

all i ∈ {1, . . . , N}, i.e., C̃i(t) = Li(t) + Dδ + 1
2

dist
cc

(Li(t) + Dδ,Ui(t) + Dδ).

Let T k
i be the instant in which bead i passed by C̃i for the k-th time and T k =

[T k
1 , . . . , T k

N ]T ∈ R
N×1, then, along the trajectories of the Synchronization

Algorithm:

lim
k→+∞

T 2k − T 2(k−1) = 1
2

ν

2π

N
,

109



0 5 10 15 20 25 30 35 40 45 50
230

240

250

260

270

280

290

300

310

320

θ5(t),U5(t), and L5(t)

seconds

d
eg

re
es

Figure 5.10. This figure shows θ5(t) (solid line), U5(t) (thicker solid line), and

L5(t) (dash-dot line), obtained by implementing the Synchronization Al-

gorithm with N = 8 beads, the beads are randomly positioned on T, νi(0)

uniformly distributed in ]0, 1], d1(0) = d2(0) = d4(0) = d6(0) = +1, and f = 0.7.

that is, the collection of beads asymptotically reaches unbalanced synchrony.

In what follows we present the simulation results obtained by implementing

the Synchronization Algorithm with N = 7 beads, the beads are randomly

positioned on T, νi(0) uniformly distributed ∈]0, 1], d1(0) = d4(0) = d5(0) =

d7(0) = −1, that is the collection of beads is D unbalanced with D = −1, and

f = 0.6. Note that f < N
1+N

= 7
8
.

Figure 5.11 shows the positions of the seven beads vs time. Clearly, asymp-

totically each bead meets its neighbor at the same location on the circle, reaching

synchrony.

110



In Figure 5.12, the positions and the desired sweeping arc boundaries for bead

i = 3 are illustrated. The solid line represents θ3(t), the dash-dot line represents

L3(t), and the thicker solid line represents U3(t). The distance dist
cc

(L3(t), U3(t))

asymptotically approaches 360/N ≈ 51.42 degrees.

0 10 20 30 40 50
−50

0

50

100

150

200

250

300

350

400
Positions of the beads vs time

seconds

d
eg

re
es

Figure 5.11. This figure shows θi vs time, obtained by implementing the Syn-

chronization Algorithm with N = 7 beads, the beads are randomly posi-

tioned on T, νi(0) uniformly distributed ∈]0, 1], d1(0) = d4(0) = d5(0) = d7(0) =

−1, and f = 0.6. The positions of the beads 2, 4, 6 are represented by solid lines,

while the dash line, dash-dot line, point line, and thicker dash line represent the

positions of beads 1, 3, 5, 7.

111



0 10 20 30 40 50
80

100

120

140

160

180

200
θ3(t),U3(t), and L3(t)

seconds

d
eg

re
es

Figure 5.12. This figure shows θ3(t) (solid line), U3(t) (thicker solid line), and

L3(t) (dash-dot line), obtained by implementing the Synchronization Al-

gorithm with N = 7 beads, the beads are randomly positioned on T, νi(0)

uniformly distributed in ]0, 1], d1(0) = d4(0) = d5(0) = d7(0) = −1, and f = 0.6.

For the more general case of D-unbalanced collections with N > |D| > 1,

Theorem 5.4 states that f < N/|D|
1+N/|D|

is just a necessary condition for the existence

of a period orbit, along which, i and i−1 meet always at Li+
D
|D|

δ, with δ < 2π
N

. We

conjecture that (i) f < N/|D|
1+N/|D|

is also sufficient for the existence of a periodic orbit

in the most general case of |D| > 1, and (ii) the Synchronization Algorithm

will steer the collection of D-unbalanced beads to synchrony.

Conjecture 3 (D-unbalanced collection: existence of periodic orbit) Let

{(θi(0), xi(0))}i∈{1,...,N} ∈ AD−unbal, νi(t) = ν, dist
cc

(Li(0), Li+1(0)) = 2π
N

for all

i ∈ {1, . . . , N}. If and only if 1
2

< f < N
1+N

, then there exists a periodic orbit,

for the Synchronization Algorithm, along which each bead i always impacts

with i − 1 at Li(0) + Dδ, where δ = 2π
N2

f
1−f

< 2π
N

.

112



Conjecture 4 (D-unbal. collection: global basin of attraction) Let

{(θi(0), xi(0))}i∈{1,...,N} ∈ AD−unbal with N > |D| > 1, δ = 2π
N2

f
1−f

< 2π
N

, and

C̃i(t) be the center of the counterclockwise arc [Li(t) + Dδ,Ui(t) + Dδ] for all i ∈

{1, . . . , N}, i.e., C̃i(t) = Li(t)+Dδ+ 1
2

dist
cc

(Li(t)+Dδ,Ui(t)+Dδ). Let T k
i be the

instant in which bead i passed by C̃i for the k-th time and T k = [T k
1 , . . . , T k

N ]T ∈

R
N×1, then, along the trajectories of the Synchronization Algorithm:

lim
k→+∞

T 2k − T 2(k−1) = 1
2

ν

2π

N
,

that is, the collection of beads asymptotically reaches unbalanced synchrony.

In what follows we present the results of two simulations (figures 5.13, 5.14,

and 5.15, 5.16) obtained by implementing the Synchronization Algorithm

with a collection of N = 12 beads which are D-unbalanced with D = −2, the

beads are randomly positioned on T, νi(0) uniformly distributed ∈]0, 1]. Note

that according to our conjectures f < N/|D|
1+N/|D|

= 6
7
≈ 0.857 has to hold in order

to reach unbalanced synchrony. In the first simulation f = 0.84, while in the

second simulation f = 0.87, therefore we expect to the collection of beads to be

in sync asymptotically in the first simulation but not in the second one.

Figure 5.13 shows the positions of the seven beads vs time. Clearly, asymp-

totically each bead meets its neighbor at the same location on the circle, reaching

synchrony, because f = 0.84 < 6
7
.

In Figure 5.14, the positions and the desired sweeping arc boundaries for bead

i = 3 are illustrated. The solid line represents θ3(t), the dash-dot line represents

L3(t), and the thicker solid line represents U3(t). The distance dist
cc

(L3(t), U3(t))

asymptotically approaches 360/N = 30 degrees.

113



Figure 5.15 shows the positions of the seven beads vs time. Clearly synchrony

is not reached.

In Figure 5.16, the positions and the desired sweeping arc boundaries for bead

i = 3 are illustrated. The solid line represents θ3(t), the dash-dot line represents

L3(t), and the thicker solid line represents U3(t). The distance dist
cc

(L3(t), U3(t))

asymptotically approaches 360/N = 30 degrees.

5.7 Summary

We presented and analyzed an algorithm that synchronizes a collection of N

agents or beads, moving on a ring, so that each bead patrols only a sector of the

ring. The algorithm is distributed and requires that two agents exchange infor-

mation only when they meet. We proved that the proposed algorithm allows the

agents to reach the desired steady state for certain initial conditions. Simulations

show convergence to the desired steady state for a larger set of initial conditions.

114



0 10 20 30 40 50 60 70
−50

0

50

100

150

200

250

300

350

400
Positions of the beads vs time

seconds

d
eg

re
es

Figure 5.13. This figure shows θi vs time, obtained by implementing the Syn-

chronization Algorithm with N = 12 beads, the beads are randomly posi-

tioned on T, νi(0) uniformly distributed ∈]0, 1], d1(0) = d2(0) = d4(0) = d6(0) =

d7(0) = d9(0) = d12(0) = −1, and f = 0.84. The positions of the beads

2, 4, 6, 8, 10, 12 are represented by solid lines, while the dash line, dash-dot line,

point line, and thicker dash line represent the positions of beads 1, 3, 5, 7, 9, 11.

115



0 10 20 30 40 50 60 70
20

40

60

80

100

120

140
θ3(t),U3(t), and L3(t)

seconds

d
eg

re
es

Figure 5.14. This figure shows θ3(t) (solid line), U3(t) (thicker solid line), and

L3(t) (dash-dot line), obtained by implementing the Synchronization Al-

gorithm with N = 12 beads, the beads are randomly positioned on T, νi(0)

uniformly distributed in ]0, 1], d1(0) = d2(0) = d4(0) = d6(0) = d7(0) = d9(0) =

d12(0) = −1, and f = 0.84.

116



0 20 40 60 80 100
−200

−100

0

100

200

300

400
Positions of the beads vs time

seconds

d
eg

re
es

Figure 5.15. This figure shows θi vs time, obtained by implementing the Syn-

chronization Algorithm with N = 12 beads, the beads are randomly posi-

tioned on T, νi(0) uniformly distributed ∈]0, 1], d1(0) = d4(0) = d6(0) = d7(0) =

d8(0) = d9(0) = d10(0) = −1, and f = 0.87. The positions of the beads

2, 4, 6, 8, 10, 12 are represented by solid lines, while the dash line, dash-dot line,

point line, and thicker dash line represent the positions of beads 1, 3, 5, 7, 9, 11.

117



0 20 40 60 80 100
−100

−50

0

50

100

150
θ3(t),U3(t), and L3(t)

seconds

d
eg

re
es

Figure 5.16. This figure shows θ3(t) (solid line), U3(t) (thicker solid line), and

L3(t) (dash-dot line), obtained by implementing the Synchronization Al-

gorithm with N = 12 beads, the beads are randomly positioned on T, νi(0)

uniformly distributed in ]0, 1], d1(0) = d4(0) = d6(0) = d7(0) = d8(0) = d9(0) =

d10(0) = −1, and f = 0.87.

118



Chapter 6

Conclusions

In this thesis we addressed the problem of approximating and patrolling a planar

contour by a fleet of autonomous vehicles with limited communication capabili-

ties. We proposed and proved the correctness of distributed algorithms that will

enable the autonomous vehicles to perform such tasks.

119



Bibliography

[1] P.-A. Absil, R. Mahony, and B. Andrews. Convergence of the iterates of

descent methods for analytic cost functions. SIAM Journal on Control and

Optimization, 6(2):531–547, 2005.

[2] D. Angeli. Intrinsic robustness of global asymptotic stability. Systems &

Control Letters, 38(4-5):297–307, 1999.

[3] D. Angeli and P.-A. Bliman. Stability of leaderless discrete-time multi-agent

systems. Mathematics of Control, Signals and Systems, 18(4):293–322, 2006.

[4] D. Bauso, L. Giarré, and R. Pesenti. Distributed consensus in networks

of dynamic agents. In IEEE Conf. on Decision and Control and European

Control Conference, pages 7054–7059, Seville, Spain, 2005.

[5] A. L. Bertozzi, M. Kemp, and D. Marthaler. Determining environmental

boundaries: Asynchronous communication and physical scales. In V. Kumar,

N. E. Leonard, and A. S. Morse, editors, Cooperative Control, volume 309 of

Lecture Notes in Control and Information Sciences, pages 25–42. Springer

Verlag, 2004.

[6] V. D. Blondel, J. M. Hendrickx, A. Olshevsky, and J. N. Tsitsiklis. Conver-

120



gence in multiagent coordination, consensus, and flocking. In IEEE Conf. on

Decision and Control and European Control Conference, pages 2996–3000,

Seville, Spain, December 2005.

[7] D. W. Casbeer, D. B. Kingston, R. W. Beard, T. W. Mclain, S.-M. Li, and

R. Mehra. Cooperative forest fire surveillance using a team of small un-

manned air vehicles. International Journal of Systems Sciences, 37(6):351–

360, 2006.

[8] J. Clark and R. Fierro. Mobile robotic sensors for perimeter detection and

tracking. ISA Transactions, 46(1):3–13, 2007.

[9] B. Cooley and P. K. Newton. Iterated impact dynamics of N -beads on a

ring. SIAM Review, 47(2):273–300, 2005.

[10] J. Cortés. Distributed algorithms for reaching consensus on arbitrary func-

tions. Automatica, October 2006. Submitted.

[11] J. A. Fax and R. M. Murray. Information flow and cooperative control of

vehicle formations. IEEE Transactions on Automatic Control, 49(9):1465–

1476, 2004.

[12] M. Fielder. Special Matrices and their Applications in Numerical Mathemat-

ics. Martinus Nijhoff Publishers, 1986.

[13] P. M. Gruber. Approximation of convex bodies. In P. M. Gruber and J. M.

Willis, editors, Convexity and its Applications, pages 131–162. Birkhäuser

Verlag, 1983.

[14] P. M. Gruber. Aspect of approximation of convex bodies. In P. M. Gruber

121



and J. M. Willis, editors, Handbook of Convex Geometry, volume A, pages

319–345. Elsevier, Oxford, UK, 1993.

[15] Y. Hatano and M. Mesbahi. Agreement over random networks. In IEEE

Conf. on Decision and Control, pages 2010–2015, Paradise Island, Bahamas,

December 2004.

[16] U. Helmke and J. B. Moore. Optimization and Dynamical Systems. Springer

Verlag, New York, 1994.

[17] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University

Press, Cambridge, UK, 1985.

[18] S. Huang, M. R. James, D. Nesic, and P. M. Dower. Analysis of input to

state stability for discrete time nonlinear systems via dynamic programming.

Automatica, 41(12):2055–2065, 2005.

[19] A. Jadbabaie, J. Lin, and A. S. Morse. Coordination of groups of mobile

autonomous agents using nearest neighbor rules. IEEE Transactions on

Automatic Control, 48(6):988–1001, 2003.

[20] Z.-P. Jiang and Y. Wang. Input-to-state stability for discrete-time nonlinear

systems. Automatica, 37:857–869, 2001.

[21] H. H. Johnson and A. Vogt. A geometric method for approximating convex

arcs. SIAM Journal on Applied Mathematics, 38(2):317–325, 1980.

[22] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models.

International Journal of Computer Vision, 1(4):321–331, 1987.

122



[23] H. K. Khalil. Nonlinear Systems. Prentice Hall, Englewood Cliffs, NJ, 2

edition, 1995.

[24] D. B. Kingston, W. Ren, and R. W. Beard. Consensus algorithms are input-

to-state stable. In American Control Conference, pages 1686–1690, Portland,

OR, June 2005.

[25] J. P. LaSalle. The Stability and Control of Discrete Processes, volume 62 of

Applied Mathematical Sciences. Springer Verlag, New York, 1986.

[26] J. Lin, A. S. Morse, and B. D. O. Anderson. The multi-agent rendezvous

problem: An extended summary. In V. Kumar, N. E. Leonard, and A. S.

Morse, editors, Proceedings of the 2003 Block Island Workshop on Coop-

erative Control, volume 309 of Lecture Notes in Control and Information

Sciences, pages 257–282. Springer Verlag, New York, 2004.

[27] S.  Lojasiewicz. Sur les trajectoires du gradient d’une fonction analytique.

Seminari di Geometria 1982-1983, pages 115–117, 1984. Istituto di Geome-

tria, Dipartimento di Matematica, Università di Bologna, Bologna, Italy.

[28] D. Marthaler and A. L. Bertozzi. Tracking environmental level sets with

autonomous vehicles. In S. Butenko, R. Murphey, and P. M. Pardalos, edi-

tors, Recent Developments in Cooperative Control and Optimization, pages

317–330. Kluwer Academic Publishers, 2003.

[29] D. E. McLure and R. A. Vitale. Polygonal approximation of plane convex

bodies. Journal of Mathematical Analysis and Applications, 51(2):326–358,

1975.

123



[30] L. Moreau. Stability of multiagent systems with time-dependent commu-

nication links. IEEE Transactions on Automatic Control, 50(2):169–182,

2005.

[31] R. Olfati-Saber, E. Franco, E. Frazzoli, and J. S. Shamma. Belief consen-

sus and distributed hypothesis testing in sensor networks. In P.J. Antsaklis

and P. Tabuada, editors, Network Embedded Sensing and Control. (Proceed-

ings of NESC’05 Worskhop), volume 331 of Lecture Notes in Control and

Information Sciences, pages 169–182. Springer Verlag, New York, 2006.

[32] R. Olfati-Saber and R. M. Murray. Consensus problems in networks of agents

with switching topology and time-delays. IEEE Transactions on Automatic

Control, 49(9):1520–1533, 2004.

[33] S. Patterson, B. Bamieh, and A. E. Abbadi. Brief announcement: Conver-

gence analysis of scalable gossip protocols. In International Symposium on

Distributed Computing (DISC 2006), pages 540–542, September 2006.

[34] W. Ren, R. W. Beard, and E. M. Atkins. A survey of consensus problems

in multi-agent coordination. In American Control Conference, pages 1859–

1864, Portland, OR, June 2005.

[35] A. Savvides, J. Fang, and D. Lymberopoulos. Using mobile sensing nodes

for boundary estimation. In Workshop on Applications of Mobile Embedded

Systems (Held in conjunction with MobiSys 2004), Boston, MA, June 2004.

[36] L. Scardovi, A. Sarlette, and R. Sepulchre. Synchronization and balancing

on the N -torus. Systems & Control Letters, 56(5):335–341, 2007.

124



[37] E. D. Sontag. Input to state stability: Basic concepts and results. In P. Nistri

and G. Stefani, editors, Nonlinear and Optimal Control Theory, Lecture

Notes in Mathematics, pages 163–220. Springer Verlag, 2006.

[38] D. P. Spanos, R. Olfati-Saber, and R. M. Murray. Approximate distributed

Kalman filtering in sensor networks with quantifiable performance. In Sym-

posium on Information Processing of Sensor Networks (IPSN), pages 133–

139, Los Angeles, CA, April 2005.

[39] S. Susca, F. Bullo, and S. Mart́ınez. Synchronization of beads on a ring. In

IEEE Conf. on Decision and Control, pages 4845–4850, New Orleans, LA,

December 2007.

[40] H. Tanner, A. Jadbabaie, and G. J. Pappas. Stable flocking of mobile agents,

Part I: Fixed topology. In IEEE Conf. on Decision and Control, pages 2010–

2015, Maui, HI, December 2003.

[41] E. Trost. Über eine Extremalaufgabe. Nieuw Archief voor Wiskunde, 2:1–3,

1949.

[42] L. Xiao, S. Boyd, and S.-J. Kim. Distributed average consensus with least-

mean-square deviation. Journal of Parallel and Distributed Computing,

67(1):33–46, 2007.

[43] F. Zhang and N. E. Leonard. Generating contour plots using multiple sen-

sor platforms. In IEEE Swarm Intelligence Symposium, pages 309–316,

Pasadena, CA, June 2005.

125



Appendix A

Metzler matrices

We begin by introducing some definitions and notations taken from Chapter 5 in

[12]. For A ∈ R
n×m, we let A ≻ (�)0 denote that the elements of A are positive

(resp. non-negative). For A ∈ R
n×n, we let A > (resp. ≥)0 denote that the

matrix A is positive definite (resp. positive semidefinite) and we let ρ(A) be the

spectral radius of A.

Definition A.1 1. A square matrix is said to be of class Z if all of its off-

diagonal elements are non-positive.

2. A square matrix A of class Z is said to belong to class K if there exits a

matrix C � 0 and a number k > ρ(C) such that A = kI − C.

3. A square matrix A of class Z is said to belong to class Ko if there exists a

matrix C � 0 and a number k ≥ ρ(C) such that A = kI − C.

Matrices of class K and Ko are called M-matrices (Metzler matrices). Note

that equivalent definitions of matrices of class K and Ko are provided in [12].

126



We briefly recall that a matrix A is irreducible if and only if its associated di-

rected graph is strongly connected. The following theorem presents a few useful

properties of these matrices.

Theorem A.1 1. If A ∈ Z and if there exists x ≻ 0 such that Ax � 0, then

A ∈ Ko.

2. If A ∈ R
n×n belongs to the class Ko, is irreducible and singular, then there

exists u ≻ 0 such that Au = 0. Moreover, rank(A) = n − 1.

3. If A ∈ Ko, then every eigenvalue of A has nonnegative real part.

Theorem A.1 is proved in Theorem 5.11, 5.8 and 5.3 in [12], respectively.

Next we present an application of these concepts. For β ∈]0, 1], let ci ∈ [β, 1]

for all i ∈ {1, . . . , n}, and define the n × n square matrices

A(c1, . . . , cn) =





−c1 − c2 c2 0 . . . c1

c2 −c2 − c3 c3 . . . 0

...
. . .

...

c1 0 . . . cn −cn − c1





,

These matrices have the following useful properties.

Lemma A.1 The matrices A(c1, . . . , cn) have rank n − 1 and their eigenvalues

have non-positive real part.

Proof. Let M = −A(c1, . . . , cn) so that M ∈ Z. By Theorem A.1(i) with x = 1,

it can be seen that M ∈ Ko. Moreover M is irreducible because represents a

strongly connected graph, and singular because M1 = 0. We can then apply

127



Theorem A.1(ii) which proves that the origin is an eigenvalue of M with mul-

tiplicity 1. With Theorem A.1(iii) finally it can be proved that M is positive

semidefinite which implies that A(c1, . . . , cn) is negative semidefinite. �

128


