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Abstract

Network Science of Teams: Dynamics, Algorithms, and Implications

by

Shadi Mohagheghi

The scientific world has witnessed a significant paradigm shift in recent years: that

the networks should not be studied in isolation from the processes taking place over them

and the large amounts of data derived and generated by them. Science has now embraced

a systems approach that captures the effect of the interconnections between individual

units and the behavior of a network system. This dissertation provides modeling and

analysis of dynamical phenomena over interconnected network systems.

In chapter 1, we review a class of deterministic nonlinear models for the propagation of

infectious diseases over contact networks with strongly-connected topologies. We consider

network models for susceptible-infected (SI), susceptible-infected-susceptible (SIS), and

susceptible-infected-recovered (SIR) settings. In each setting, we provide a comprehensive

nonlinear analysis of equilibria, stability properties, convergence, monotonicity, positivity,

and threshold conditions.

The recent convergence of research in social sciences, dynamic modeling, and network

science has encouraged reexamining the collective team behavior from a quantitative

perspective. Research shows that teams cannot be understood fully by studying their

members in isolation. To study the coordination and control features of a group task, the

multiple subgroups’ performances must be fitted together. On such decomposed tasks,

group performance is more than a simple union of subgroup performances. This work

aims to understand how patterns of interactions among teams impact performance.

In chapter 2, we investigate the implications of different forms of multi-group connec-
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tivity. Four multi-group connectivity modalities are considered: co-memberships, edge

bundles, bridges, and liaison hierarchies. We propose generative models to generate these

four modalities. Our models are variants of planted partition or stochastic block models

conditioned under certain topological constraints. We report findings of a comparative

analysis in which we evaluate these structures, controlling for their edge densities and

sizes, on mean rates of information propagation, convergence times to consensus, and

steady state deviations from the consensus value in the presence of noise as network size

increases.

In chapter 3, we present a strategic network formation model predicting the emergence

of multigroup structures. Individuals decide to form or remove links based on the benefits

and costs those connections carry; we focus on bilateral consent for link formation. We

are interested in structures that arise to resolve coordination issues and, specifically,

structures in which groups are linked through bridging, redundant, and co-membership

interconnections. We characterize the conditions under which certain structures are

stable and study their efficiency as well as the convergence of formation dynamics.
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Chapter 1

Dynamics of Epidemic Propagation

over Networks

1.1 Introduction

Problem motivation and description

Propagation phenomena appear in numerous disciplines. Examples include the spread

of infectious diseases in contact networks, the transmission of information in communica-

tion networks, the diffusion of innovations in competitive economic networks, cascading

failures in power grids, and the spreading of wild-fires in forests.

One important class of models of propagation phenomena are scalar deterministic

models. These models have been widely studied, e.g., see the survey [1]. These models

qualitatively capture some dynamic features, including phase transitions and asymptotic

states. However, shortcomings of scalar models are also prominent: for example, scalar

models are typically based on the assumption that individuals in the population have

the same chances of interacting with each other. This assumption overlooks the internal
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Dynamics of Epidemic Propagation over Networks Chapter 1

structure of the network over which the propagation occurs, as well as the heterogeneity of

individuals in the network. Both these aspects play critical roles in shaping the dynamical

behavior of the propagation processes.

In a general formulation, propagation is a dynamical process on a complex network.

Each network node has a state taking value in a discrete set and state changes are

influenced by the nodes’ neighbors in the network. Many relevant research questions

arise naturally, including: how to model the local dynamics at each node, how to identify

model parameters, how to estimate the state of such a dynamical system, and how to

analyze the system transient and asymptotic properties.

Various types of models have been proposed to describe propagation processes over

complex networks; one key distinguishing feature of these models is whether the prop-

agation dynamics is assumed to be stochastic or deterministic. Deterministic network

epidemic models were originally proposed in the late 1970’s in the seminal works [2, 3].

These models are of great research value, as attested by the large literature focusing

on them (see below). Moreover, they can be considered as approximations of certain

Markov-chain models, e.g., see [4].

In this chapter, we review three key continuous-time deterministic models for epi-

demic propagation over networks. Depending upon the nodal dynamics, i.e., the disease

propagation behavior, deterministic epidemic propagation models are classified as: the

Susceptible-Infected (SI) model, the Susceptible-Infected-Susceptible (SIS) model and the

Susceptible-Infected-Recovered (SIR) model; basic representations of these models are il-

lustrated in Figure 1.1. In this work we focus on transient and asymptotic behavior of

these three continuous-time dynamical models over networks. It is our key objective to

relate the structure of the network to the function of the network (i.e., the transient and

asymptotic behavior of the propagation phenomenon).

2
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Susceptible Infected Susceptible Infected

Susceptible Infected Recovered

Figure 1.1: Three basic models of infectious diseases: SI, SIS and SIR.

Literature review on deterministic epidemic models over net-

works

The literature on epidemic propagation is exceedingly vast. This chapter focuses on

deterministic models over networks and on their dynamical behavior. Accordingly, this

subsection reviews the literature on deterministic epidemic models. Unless specified, the

works and results reviewed in what follows are all for the deterministic models. For read-

ers interested in Markov-chain models and in the mean-field approximation method, we

refer to [4, 5, 6, 7] and [8, Chapter 17]. (Note that Markov-chain network epidemic mod-

els and their deterministic approximating models are different in some of the dynamical

properties, such as the epidemic threshold and the asymptotic behavior.)

The dynamics of several classic scalar epidemic models, i.e., the population models

without network structure, are surveyed in detail by Hethcote in [1]. Among the different

metrics discussed, identifying the effective reproduction number R is of particular interest

to researchers; R is the expected number of individuals that a randomly infected individ-

ual can infect during its infection period. In these scalar models, whether an epidemic

outbreak occurs or the disease dies down depends upon whether R > 1 or R < 1, i.e.,

upon whether the system is above or below the so-called epidemic threshold. Here by

epidemic outbreak we mean an exponential growth of the fraction of the infected pop-

ulation for small time. The basic reproduction number R0 is the effective reproduction

number in a fully-healthy susceptible population. In what follows we focus our review

3
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on deterministic network models.

The earliest work on the (continuous-time heterogeneous) SIS model on networks

is [2]. This work proposes an n-dimensional model on a contact network and analyzes the

system’s asymptotic behavior. This article proposes a rigorous analysis of the threshold

for the epidemic outbreak, which depends on both the disease parameters and the spectral

radius of the contact network. For the case when the basic reproduction number is above

the epidemic threshold, this chapter establishes the existence and uniqueness of a nonzero

steady-state infection probability, called the endemic state. In what follows we refer to

the model by [2] as the network SIS model ; it is also known as the multi-group or multi-

population SIS model.

Allen [9] proposes and analyzes a discrete-time network SIS model. This work appears

to be the first to revisit and formally reproduce, for the discrete-time case, the earlier

results by [2]; see also the later [10]. This work confirms the existence of an epidemic

threshold, as a function of the spectral radius of the contact network. Further recent

results on the discrete-time model are obtained by Ahn and Hassibi [11] and by Azizan

Ruhi and Hassibi [5].

Van Mieghem et al. [12] argue that the (continuous-time) network SIS model is in

fact the mean-field approximation of the original Markov-chain SIS model of exponential

dimension; this claim is rigorously proven in [4]. Van Mieghem et al. [12] refer to this

model as the intertwined SIS model and write the endemic state as a continued fraction.

The works [13] and [14] discuss the continuous-time network SIS model in a more

modern language. Fall et al. [13] refer to this model as the n-group SIS model and apply

Lyapunov techniques and Metzler matrix theory to establish existence, uniqueness, and

stability of the equilibrium points below and above the epidemic threshold. Khanafer et

al. [14] use positive system theory in their analysis and extend the existence, uniqueness,

and stability results to the setting of weakly connected digraphs.
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Numerous extensions of these basic results on the network SIS model and other re-

lated works have appeared over the years. For example, the estimation of the epidemic

threshold in contact networks with power-law degree distributions has been studied both

by mathematically rigorous analysis, see [15], and by numerical simulation, see [16]. The

deterministic network SIS models without mean-field approximation and with second-

order mean-field approximation have been analyzed in [17] and [18], respectively.

An early work by Hethcote [3] proposes a general multi-group SIR model with birth,

death, immunization, and de-immunization. The epidemic threshold and the equilib-

ria below/above the threshold are characterized. For the simplified model without

birth/death and de-immunization, [3] proves that the system converges asymptotically

to an all-healthy state. Guo et al. consider a generalized network SIR model with vital

dynamics, that is, with birth and death in [19]. They characterize the basic reproduction

number and, through a careful Lyapunov analysis, show the existence and global asymp-

totic stability of an endemic state above the threshold. Youssef and Scogli [20] study a

special case of the network SIR model under the name of individual-based SIR model

over undirected networks. Through a simulation-based analysis, the epidemic threshold

is given as a function of the spectral radius of the network.

There are also some extensions and related studies regarding the network SIR model.

Sharkey investigates the deterministic network SIR model without mean-field approxima-

tion in [21]. Castellano and Pastor-Satorras [16] point out that the (mean-field) network

SIR predicts a vanishing threshold for a certain class of power-law distributed networks,

which is inconsistent with the corresponding stochastic SIR model. Sharkey et al. [22]

show that, different from the network SIR model with mean-field approximation, the

so-called pair-based approach gives an exact description of the stochastic SIR process for

the tree topology.

To the best of our knowledge, no works have comprehensively characterized the prop-
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erties of the network SI model.

We conclude by mentioning other surveys and textbook treatments. In [23], the

stability of equilibria for the SEIR model is reviewed through Lyapunov and graph theory.

The additional state E represents the exposed population, i.e., the individuals who are

infected but not infectious. Various heterogeneous epidemic models are reviewed in [24,

Chapter 17], [25, Chapter 21], and [26, Chapter 9]. The recent survey by Nowzari et

al. [7] presents various epidemic models and addresses many solved and open problems

in the control of epidemic spreading.

Statement of Contribution

This chapter reviews, in a comprehensive and coherent manner, deterministic models

and dynamical behavior of SI, SIS and SIR epidemic phenomena over networks. This

review includes known results from the literature as well as several novel results. We

discuss SI, SIS and SIR models in three subsequent corresponding sections. Each section

starts by reviewing the well-known results for the corresponding scalar models; these are

the models in which variables represent an entire ”well-mixed” population or nodes of an

all-to-all unweighted graph. The core of each section is a discussion about multi-group

network models. We provide a tutorial treatment with comprehensive statements and

proofs for the deterministic network SI, SIS and SIR models.

We first analyze the network SI model. We analyze its asymptotic convergence, pos-

itivity of infection probabilities, initial and asymptotic growth rates, and the stability of

equilibria. We show that in the network SI model, the system does not display a thresh-

old and, with the exception of the trivial no-epidemics equilibrium, all the trajectories

converge to the full contagion state. While these results are not technically difficult,

they are novel here in the sense that, to the best of our knowledge, the properties of the

6
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network SI model have never before been formally characterized.

Next we focus on the network SIS model. Our presentation includes known results

from [2] (see also [13, 14]) regarding the epidemic threshold, the system’s behavior below

the epidemic threshold, the existence and uniqueness of the endemic state for systems

above the epidemic threshold, and the asymptotic stability of the endemic state. More-

over, we provide a novel provably-correct iterative algorithm for computing the fraction

of infected individuals converging to the endemic state. This algorithm also provides

an alternative proof for the existence and uniqueness of the endemic state for systems

above the epidemic threshold. We argue that this alternative proof is more concise that

the those proposed in the previous works [2, 13, 14]. In addition, we present novel

Taylor expansions for the endemic state near the epidemic threshold and in the limit

of high infection rates. These novel Taylor expansions shed light on these previously

poorly-understood regimes. Finally, we show that the spread of infection takes place

instantaneously upon infecting at least one node in the network.

Finally, for the network SIR model, we review some known results on the monotonic-

ity of the individuals’ susceptible probabilities and the system’s asymptotic behavior

from [3]. More importantly, we provide the several novel results: We present novel tran-

sient behavior and system properties. First, we propose new threshold conditions above

which the epidemic grows initially, and below which it exponentially dies down. The ini-

tial rate of growth above the threshold is given in terms of network characteristics, initial

conditions, and infection parameters. Moreover, we show that our proposed weighted

average of the infected population, obtained by the entries of dominant eigenvector of an

irreducible quasi-positive matrix, captures information regarding the distribution of infec-

tion in the system. We also establish positivity of the infection probabilities. Finally, we

provide a novel iterative algorithm to compute the asymptotic state of the network SIR

model, with any arbitrary initial condition. For the iterative algorithm, the existence

7
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and uniqueness of the fixed point, and the convergence of the iteration are rigorously

proved. Our results are analogous to the scalar SIR model properties and are valid for

any arbitrary network topologies. In comparison with [20], our treatment builds on their

numerical results but our result is more general in that it does not depend upon specific

initial conditions and graph topologies, and establishes numerous properties, including

the novel characterization of epidemic threshold.

Organization

Section 1.2 introduces our model set-up and some preliminary notations. The SI, SIS

and SIR models are presented, respectively, in Sections 1.3, 1.4, and 1.5. Section 6 is the

conclusion.

1.2 Model Set-Up and Notations

For the scalar models, we use the notation x(t) (s(t) and r(t) resp.) for the fraction

of infected (susceptible and recovered resp.) individuals in the population at time t.

The rest of this section is about the notations and basic model set-up for the network

epidemic model.

a) Contact Network: The epidemics are assumed to propagate over a weighted digraph

G = (V,E), where V = {1, . . . , n} and E is the set of directed links. Nodes of G can

be interpreted as either single individuals in the contact network or as homogeneous

populations of individuals at each location/node in the contact network. A = (aij)n×n

denotes the adjacency matrix associated with G. For any i, j ∈ V , aij characterizes the

contact strength from node j to node i. For (i, j) ∈ E, aij > 0 and for (i, j) /∈ E, aij = 0.

In this chapter, G is assumed to be strongly connected.

b) Node States and Probabilities: For different epidemic propagation models, the set

8
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of possible node states are distinct. For network SI or SIS models, each node can be in

either the “susceptible” or “infected” state, while in the network SIR model, there is an

additional possible node state: “recovered.” For a graph in which the nodes are single

individuals, let si(t) (xi(t) and ri(t) resp.) be the probability that individual i is in the

susceptible (infected and recovered resp.) state at time t. Alternatively, if the nodes

are considered to be the populations, then si(t) (xi(t) and ri(t) resp.) is interpreted as

the fraction of susceptible (infected and recovered resp.) individuals in population i. In

this chapter without loss of generality, we adopt the interpretation of nodes as single

individuals.

c) Frequently Used Notations: The symbol R denotes the set of real numbers, while

R≥0 denotes the set of non-negative real numbers. The symbol φ denotes the empty set.

For any two vectors x, y ∈ Rn, we write

x� y, if xi < yi for all i ∈ {1, . . . , n},

x ≤ y, if xi ≤ yi for all i ∈ {1, . . . , n}, and

x < y, if x ≤ y and x 6= y.

We adopt the shorthand notations 1n = [1, . . . , 1]> and 0n = [0, . . . , 0]>. Let In denote

the n× n identity matrix. Given x = [x1, . . . , xn]> ∈ Rn, let diag(x) denote the diagonal

matrix whose diagonal entries are x1, . . . , xn. For an irreducible nonnegative matrix A,

let λmax(A) denote the dominant eigenvalue of A that is equal to the spectral radius ρ(A).

Moreover, we let vmax(A) (umax(A) resp.) denote the corresponding entry-wise strictly

positive left (right resp.) eigenvector associated with λmax(A), normalized to satisfy

1>n vmax(A) = 1 (resp. 1>numax(A) = 1). The Perron-Frobenius Theorem for irreducible

matrices guarantees that λmax(A), vmax(A) and umax are well defined and unique. Where

9
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not ambiguous, we will drop the (A) argument and, for example, write

v>maxA = λmaxv
>
max and Aumax = λmaxumax,

with vmax � 0n and 1>n vmax = 1; umax � 0n and 1>numax = 1.

1.3 Susceptible-Infected Model

In this section, we first review the classic scalar susceptible-infected (SI) model, and

then present and characterize the network SI model.

1.3.1 Scalar SI model

The scalar SI model assumes that the growth rate of the fraction of the infected

individuals is proportional to the fraction of the susceptible individuals, multiplied by a

so-called infection rate β > 0. The model is given by

ẋ(t) = βs(t)x(t) = β
(
1− x(t)

)
x(t). (1.1)

This is the well-established logistic equation. The following results can be found for

example in the textbook [27].

Lemma 1.3.1 (Dynamical behavior of the SI model) Consider the scalar SI model (1.1)

with β > 0. The solution from initial condition x(0) = x0 ∈ [0, 1] is

x(t) =
x0eβt

1− x0 + x0eβt
. (1.2)

All initial conditions 0 < x0 < 1 result in the solution x(t) being monotonically increasing

10
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Figure 1.2: Evolution of the (lumped deterministic) SI model (β = 1) from small
initial fraction of infected individuals.

and converging to the unique equilibrium 1 as t→∞.

Solutions to equation (1.1) with different initial conditions are plotted in Figure 1.2.

The SI model (1.1) results in an evolution akin to a logistic curve, and is also called the

logistic equation for population growth.

1.3.2 Network SI model

The network SI model on a weighted digraph with the adjacency matrix A ∈ Rn×n
≥0 is

given by

ẋi(t) = β
(
1− xi(t)

) n∑
j=1

aijxj(t), (1.3)

or, in equivalent vector form,

ẋ(t) = β
(
In − diag

(
x(t)

))
Ax(t), (1.4)

where β > 0 is the infection rate. Alternatively, in terms of the fractions of susceptibile

individuals s(t) = 1n − x(t), the network SI model is

ṡ(t) = −β diag(s(t))A(1n − s(t)). (1.5)

11
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The network SI model is a particular case of the widely-studied network SIS model,

which is to be discussed in the next section. The dynamical properties of the network

SI model are not difficult to analyze, but, to the best of our knowledge, have not been

formally presented in any previous literature. We present the results on the transient

and asymptotic behavior of the network SI model, as well as the proof, in the following

theorem.

Theorem 1.3.2 (Dynamical behavior of network SI model) Consider the network

SI model (2.4) with β > 0. For strongly connected graph with adjacency matrix A, the

following statements hold:

(i) if x(0), s(0) ∈ [0, 1]n, then x(t), s(t) ∈ [0, 1]n for all t > 0. Moreover, x(t)

is monotonically non-decreasing (here by monotonically non-decreasing we mean

x(t1) ≤ x(t2) for all t1 ≤ t2). Finally, if x(0) > 0n, then x(t)� 0n for all t > 0;

(ii) the model (2.4) has two equilibrium points: 0n (no epidemic), and 1n (full conta-

gion);

(a) the linearization of model (2.4) about the equilibrium point 0n is ẋ = βAx and

it is exponentially unstable;

(b) let D = diag(A1n) be the degree matrix. The linearization of model (1.5) about

the equilibrium 0n is ṡ = −βDs and it is exponentially stable;

(iii) each trajectory with initial condition x(0) 6= 0n converges asymptotically to 1n, that

is, the epidemic spreads monotonically to the entire network.

Proof:

(i) The fact that, if x(0), s(0) ∈ [0, 1]n, then x(t), s(t) ∈ [0, 1]n for all t > 0 means that

[0, 1]n is an invariant set for the differential equation (2.4). This is the consequence of

12



Dynamics of Epidemic Propagation over Networks Chapter 1

Nagumo’s Theorem (see [28, Theorem 4.7]), since for any x belonging on the boundary

of the set [0, 1]n, the vector β
(
In−diag

(
x
))
Ax is either tangent, or points inside the set

[0, 1]n.

Observe that the invariance of the set [0, 1]n implies that ẋ(t) ≥ 0n and so x(t1) ≤

x(t2) for all t1 ≤ t2.

We want to prove now that,if x(0) > 0n, then x(t) � 0n for all t > 0. If by contra-

diction there is i ∈ {1, . . . , n} and T > 0 such that xi(T ) = 0, then the monotonicity of

xi(t) = 0 would imply that xi(t) = 0 for all t ∈ [0, T ], which would yield ẋi(t) = 0 for all

t ∈ [0, T ]. By (1.3) this would imply that xj(t) = 0 for all t ∈ [0, T ] for all j such that

aij > 0. We could iterate this argument and using the irreducibility of A we would get

the contradiction that x(t) = 0 for all t ∈ [0, T ] concluding in this way the proof of (i).

(ii) Regarding statement (ii), note that 0n and 1n are clearly equilibrium points. Let

x̄ ∈ [0, 1]n be an equilibrium and assume that x̄ 6= 1n. Then there is i such that x̄i 6= 1.

Since β
(
1 − x̄i

)∑n
j=1 aijx̄j = 0, then

∑n
j=1 aijx̄j = 0 which implies that x̄j = 0 for all j

such that aij > 0. By iterating this argument and using the irreducibility of A we get that

x̄ = 0 concluding only 0n and 1n are equilibrium points. Statements (ii)a and (ii)b are

obvious. Exponential stability of the linearization ṡ = −βDs is obvious, and the Perron-

Frobenius Theorem implies the existence of the unstable positive eigenvalue ρ(A) > 0 for

the linearization ẋ = βAx.

(iii) Consider the function V (x) = 1>n (1n − x); this is a smooth function defined over

the compact and forward invariant set [0, 1]n (see statement (i)). Since V̇ = −β1>n
(
In −

diag(x)
)
Ax, we know that V̇ ≤ 0 for all x and V̇ (x) = 0 if and only if x ∈ {0n, 1n}. The

LaSalle Invariance Principle implies that all trajectories with x(0) converge asymptoti-

cally to either 1n or 0n. Additionally, note that 0 ≤ V (x) ≤ n for all x ∈ [0, 1]n, that

V (x) = 0 if and only if x = 1n and that V (x) = n if and only if x = 0n. Therefore, all

trajectories with x(0) 6= 0n converge asymptotically to 1n.

13
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In the next two paragraphs we present the “initial-time” (“final-time” resp.) ap-

proximation of the solution to the network SI model, i.e., the approximated solution to

equation (2.4), or equation (1.5) equivalently, when t is sufficiently small (large resp.).

These results are novel.

For the adjacency matrix A, there exists a non-singular matrix T such that A =

TJT−1, where J is the Jordan normal form of A. Since A is non-negative and irreducible,

according to Perron-Frobenius theorem, the first Jordan block J1 = (λmax)1×1 and λmax >

Re(λi) for any other eigenvalue λi of A. Consider now the onset of an epidemic in a large

population characterized by a small initial infection x(0) = x0 much smaller than 1n.

The system evolution is approximated by ẋ = βAx. This “initial-times” linear evolution

satisfies

x(t) = eβAtx(0) = T eβJtT−1x(0) = eβλmaxt
(
Te1e

>
1 T
−1x(0) + o(1)

)
,

where e1 is the first standard basis vector in Rn and o(1) denotes a time-varying vector

that vanishes as t→ +∞. Let u1 denote the first column of T and let v>1 denote the first

row of T−1. Since AT = TJ and T−1A = JT−1, one can check that u1 (v1 resp.) is the

right (left resp.) eigenvector of A associated with the eigenvalue λmax. Since T−1T = In,

we have v>1 u1 = 1. therefore,

x(t) = eβλmaxt
(
u1v

>
1 x(0) + o(1)

)
= eβλmaxt

( v>maxx(0)

v>maxumax

umax + o(1)
)
. (1.6)

That is, the epidemic initially experiences exponential growth with rate βλmax and with

distribution among the nodes given by the eigenvector umax.

Now suppose that at some time T , for all i we have that xi(T ) = 1− εi, where each εi

14
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is much smaller than 1. Then, for time t > T , the approximated system for s(t) is given

by:

ṡi(t) = −βdisi(t) =⇒ si(t) = εie
−βdi(t−T ),

where, for any i ∈ {1, . . . , n}, di =
∑n

j=1 aij denotes the out-degree of node i in the

network. From the discussion above, we conclude that the initial infection rate is pro-

portional to the eigenvector centrality, and the final infection rate is proportional to the

degree centrality.

1.4 Susceptible-Infected-Susceptible model

In this section we review the Susceptible-Infected-Susceptible (SIS) epidemic model.

In addition to the existence of an infection process with rate β > 0, this model assumes

that the infected individuals recover to the susceptible state at so-called recovery rate

γ > 0.

1.4.1 Scalar SIS model

In the scalar SIS model, the population is divided into two fractions: the infected

x(t) and the susceptible s(t), with x(t) + s(t) = 1, obeying the following dynamics:

ẋ(t) = βs(t)x(t)− γx(t) = (β − γ − βx(t))x(t). (1.7)

The dynamical behavior of system (1.7) given below can be found in [1].

Lemma 1.4.1 (Dynamical behavior of the SIS model) For the SIS model (1.7) with

β > 0 and γ > 0:
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Figure 1.3: Evolution of the scalar SIS model with varying initial fraction of infected
individuals. Top figure: β = 0.5 < γ = 1. Bottom figure: β = 0.8 > γ = .4.

(i) the closed-form solution to equation (1.7) from initial condition x(0) = x0 ∈ [0, 1],

for β 6= γ, is

x(t) =
(β − γ)x0

βx0 − e−(β−γ)t(γ − β(1− x0))
; (1.8)

(ii) if β ≤ γ, all trajectories converge to the unique equilibrium x = 0 (i.e., the epidemic

disappears);

(iii) if β > γ, then each trajectory from an initial condition x(0) > 0 converges to the

exponentially stable equilibrium x∗ = (β − γ)/β, which is called the endemic state.

Case (iii) corresponds to the case in which epidemic outbreaks take place and a steady-

state epidemic contagion persists. The basic reproduction number in this deterministic

scalar SIS model is given by R0 = β/γ. Simulations regarding to Lemma 1.4.1(ii) and (iii)

are shown in Figure 1.3.

1.4.2 Network SIS Model

In this section we study the network SIS model which is closely related to the original

“multi-group SIS model” proposed by [2]; see also the intertwined SIS model in [12].
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The network SIS model with infection rate β and recovery rate γ is given by:

ẋi(t) = β(1− xi(t))
n∑
j=1

aijxj(t)− γxi(t), (1.9)

or, in equivalent vector form,

ẋ(t) = β
(
In − diag(x(t))

)
Ax(t)− γx(t). (1.10)

In the rest of this section we study the dynamical properties of this model. We start

by defining the monotonically-increasing functions

f+(y) = y/(1 + y), and f−(z) = z/(1− z),

for y ∈ R≥0 and z ∈ [0, 1[. Note that f+(f−(z)) = z for all z ∈ [0, 1). For vector

variables y ∈ Rn
≥0 and z ∈ [0, 1)n, we write F+(y) = (f+(y1), . . . , f+(yn)), and F−(z) =

(f−(z1), . . . , f−(zn)).

Behavior of System Below the Threshold In this subsection, we characterize the

behavior of the network SIS model in a regime we describe as “below the threshold.”

The results presented in the theorem below can be found in [2, 13, 14]. Historically, it

is meaningful to attribute this theorem to [2], even if the language adopted here is more

modern.

Theorem 1.4.2 (Dynamical behavior of the network SIS model: Below the threshold)

Consider the network SIS model (2.5), with β > 0 and γ > 0, over a strongly connected

digraph with adjacency matrix A. Let λmax and vmax be the dominant eigenvalue of A

and the corresponding normalized left eigenvector respectively. If βλmax/γ < 1, then

17



Dynamics of Epidemic Propagation over Networks Chapter 1

(i) if x(0), s(0) ∈ [0, 1]n, then x(t), s(t) ∈ [0, 1]n for all t > 0. Moreover, if x(0) > 0n,

then x(t)� 0n for all t > 0;

(ii) there exists a unique equilibrium point 0n, the linearization of (2.5) about 0n is

ẋ = (βA− γIn)x and it is exponentially stable;

(iii) from any x(0) 6= 0n, the weighted average t 7→ v>maxx(t) is monotonically and

exponentially decreasing, and all the trajectories converge to 0n.

Proof: (i) As in Theorem 1.3.2 the first part is the consequence of Nagumo’s

Theorem. Then define y(t) := eγtx(t). Notice that this variable satisfies the differential

equation ẏ(t) = β diag(s(t))Ay(t). From the same arguments used in the proof of the

point (i) of Theorem 1.3.2 we argue that y(t) � 0n for all t > 0. From this it follows

that also x(t)� 0n for all t > 0.

(ii) Assume that x∗ is an equilibrium point. It is easy to see that x∗ � 1n. Let

Â = βA/γ. Observe moreover that x∗ is an equilibrium point if and only if Âx∗ = F−(x∗)

or, equivalently, if and only if F+

(
Âx∗

)
= x∗. This means that x∗ is an equilibrium if and

only if it is a fixed point of F , where F(x) := F+

(
Âx
)
. For x ∈ [0, 1]n, note F+(Âx) ≤ Âx

because f+(z) ≤ z. Moreover, 0n ≤ x ≤ y implies that 0n ≤ F(x) ≤ Ây. Therefore, if

0n ≤ x, then Fk(x) ≤ Âkx, for all k. Since Â is Schur stable, then limk→∞Fk(x) = 0.

This shows that the only fixed point of F is zero.

Next, the linearization of equation (1.10) is verified by dropping the second-order

terms. The linearized system is exponentially stable at 0n for βλmax − γ < 0 because

λmax is larger, in real part, than any other eigenvalue of A by the Perron-Frobenius

Theorem for irreducible matrices.

(iii) Finally, regarding statement (iii), define y(t) = v>maxx(t) and note that
(
In −

18
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diag(z)
)
vmax ≤ vmax for any z ∈ [0, 1]n. Therefore,

ẏ(t) ≤ βv>maxAx(t)− γv>maxx(t) = (βλmax − γ)y(t) < 0.

By the Grönwall-Bellman Comparison Lemma, y(t) is monotonically decreasing and

satisfies y(t) ≤ y(0)e(βλmax−γ)t from all initial conditions y(0). This concludes our proof

of statement (iii).

Behavior of System Above the Threshold We present the dynamical behavior of

the network SIS model above the threshold as follows. Statement (i) of the theorem

below is a straightforward result from equation (1.10). Historically, the existence of a

unique endemic state and its global attractivity properties, i.e., statements (ii), (iii), (iii)a

and (iv) in the theorem below, are due to [2], and can be found in [13] and [14]. To the

best our knowledge, the Taylor expansions in parts (iii)b and (iii)c and the algorithm

in part (iii)d are novel. In addition, compared with the previous works [2, 13, 14],

construction of the algorithm in part (iii)d provides an alternative and more concise

proof for the existence and uniqueness of the endemic state, and the convergence of any

solution starting with x(0) ∈ (0, 1)n to this endemic state.

Theorem 1.4.3 (Dynamical behavior of the network SIS model: Above the threshold)

Consider the network SIS model (2.5), with β > 0 and γ > 0, over a strongly connected

digraph with adjacency matrix A. Let λmax be the dominant eigenvalue of A and let vmax

and umax be the corresponding normalized left and right eigenvectors respectively. Let

d = A1n. If βλmax/γ > 1, then

(i) if x(0), s(0) ∈ [0, 1]n, then x(t), s(t) ∈ [0, 1]n for all t > 0. Moreover, if x(0) > 0n,

then x(t)� 0n for all t > 0;
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(ii) 0n is an equilibrium point, the linearization of system (1.10) at 0n is unstable due

to the unstable eigenvalue βλmax − γ (i.e., there will be an epidemic outbreak);

(iii) besides the equilibrium 0n, there exists a unique equilibrium point x∗, called the

endemic state, such that

(a) x∗ � 0n,

(b) x∗ = δaumax +O(δ2) as δ → 0+, where δ := βλmax/γ − 1 and

a =
vTmaxumax

vTmax diag(umax)umax

,

(c) x∗ = 1n − (γ/β) diag(d)−11n + O(γ2/β2), at fixed A, as γ/β → 0+, where

d = A1n,

(d) define a sequence {y(k)}k∈N ⊂ Rn by

y(k + 1) := F+

(
β

γ
Ay(k)

)
. (1.11)

If y(0) ≥ 0 is a scalar multiple of umax and satisfies either 0 < maxi yi(0) ≤

1− γ/(βλmax) or mini yi(0) ≥ 1− γ/(βλmax), then

lim
k→∞

y(k) = x∗.

Moreover, if maxi yi(0) ≤ 1 − γ/(βλmax), then y(k) is monotonically non-

decreasing; if mini yi(0) ≥ 1 − γ/(βλmax), then y(k) is monotonically non-

increasing.

(iv) the endemic state x∗ is locally exponentially stable and its domain of attraction is

[0, 1]n \ 0n.
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Note: statement (ii) means that, near the onset of an epidemic outbreak, the ex-

ponential growth rate is βλmax − γ and the outbreak tends to align with the dominant

eigenvector umax; for more details see the discussion leading up to the approximate evo-

lution (1.6). The basic reproduction number for this deterministic network SIS model

is given by R0 = βλmax/γ. The network SI model discussed in Section 3 describes the

limit behavior of the network SIS model as γ/β → 0+. Statement (iii)c in Theorem 1.4.3

indicates that x∗ → 1n as γ/β → 0+, which is consistent with statement (iii) in Theo-

rem 1.3.2.

Proof: [Proof of selected statements in Theorem 1.4.3]

(i) This point can be proved as done in point (i) of Theorem 1.3.2.

(ii) This follows from the same analysis of the linearized system as in the proof of

Theorem 1.4.2(ii).

(iii) We begin by establishing two properties of the map x 7→ F+(Âx), for Â = βA/γ.

First, we claim that, y � z ≥ 0n implies F+(Ây)� F+(Âz). Indeed, note that G being

connected implies that the adjacency matrix A has at least one strictly positive entry

in each row. Hence, y − z � 0n implies Â(y − z) � 0n and, since f+ is monotonically

increasing, Ây � Âz implies F+(Ây)� F+(Âz).

Second, we observe that, for any 0 < α < 1 and z > 0, we have f+(αz) ≥ z if and

only if z ≤ 1 − 1/α. Suppose y(0) is a scalar multiple of umax and 0 < maxi yi(0) ≤

1− γ/(βλmax). We have

F+(Ây(0))i = f+

(βλmax

γ
yi(0)

)
≥ yi(0).

Therefore, the sequence {y(k)}k∈N defined by equation (1.11) satisfies y(1) ≥ y(0), which

in turn leads to y(2) = F+(Ây(1)) ≥ F+(Ây(0)) = y(1), and by induction, y(k + 1) =

F+(Ây(k)) ≥ y(k) for any k ∈ N. Such sequence {y(t)} is monotonically non-decreasing
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and entry-wise upper bounded by 1n. Therefore, as k diverges, y(k) converges to some

x∗ � 0n such that F+

(
Âx∗

)
= x∗. This proves the existence of an equilibrium x∗ =

limk→∞ y(k)� 0n as claimed in statements (iii)a and (iii)d.

Similarly, for any 0 < α < 1 and z > 0, f+(αz) ≤ z if and only if z ≥ 1 − 1/α.

Following the same line of argument in the previous paragraph, one can check that the

{y(k)}k∈N defined by equation (1.11) is monotonically non-increasing and converges to

some x∗ , if y(0) is a scalar multiple of umax and satisfies mini yi(0) ≥ 1− γ/(βλmax).

Now we establish the uniqueness of the equilibrium x∗ ∈ [0, 1]n \ {0n}. First, we

claim that an equilibrium point with an entry equal to 0 must be 0n. Indeed, assume y∗

is an equilibrium point and assume y∗i = 0 for some i ∈ {1, . . . , n}. The equality y∗i =

f+(
∑n

j=1 aijy
∗
j ) implies that also any node j with aij > 0 must satisfy y∗j = 0. Because G

is connected, all entries of y∗ must be zero. Second, by contradiction, we assume there

exists another equilibrium point y∗ � 0n distinct from x∗. Let α := minj{y∗j/x∗j} and let

i such that α = y∗i /x
∗
i . Then y∗ ≥ αx∗ � 0n and y∗i = αx∗i . Notice that we can assume

with no loss of generality that α < 1 otherwise we exchange x∗ and y∗. Observe now that

(
F+(Ây∗)− y∗

)
i

= f+

(
(Ây∗)i

)
− αx∗i

≥ f+

(
α(Âx∗)i

)
− αx∗i (Â ≥ 0n×n)

> αf+

(
(Âx∗)i

)
− αx∗i (0 < α < 1 and z > 0)

= α
(
F+(Âx∗)− x∗

)
i

= 0. (x∗ is an equilibrium)

Therefore,
(
F+(Ây∗)− y∗

)
i
> 0, which contradicts the fact that y∗ is an equilibrium.

Now we prove (iii)b. Observe first that, since taking

y(0) =

(
1− γ

βλmax

)
umax

maxi{umax,i}
=

δ

δ + 1

umax

maxi{umax,i}
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then y(k) is monotonically non-decreasing and converges to x∗, and since taking instead

y(0) =

(
1− γ

βλmax

)
umax

mini{umax,i}
=

δ

δ + 1

umax

mini{umax,i}

then y(k) is monotonically non-increasing and converges to x∗, we can argue that

δ

δ + 1

umax

maxi{umax,i}
≤ x∗ ≤ δ

δ + 1

umax

mini{umax,i}

This implies that x∗ is infinitesimal as a function of δ. Consider the expansion x∗(δ) =

x1δ + x2δ
2 +O(δ3). Since the equilibrium x∗ satisfies the equation

(δ + 1)
(
In − diag(x∗)

)
Ax∗ − λmaxx

∗ = 0

by substituting the expansion and equating to zero the coefficient of the term δ we obtain

the equation

Ax1 − λmaxx1 = 0

which proves that x1 is a multiple of umax, namely x1 = aumax for some constant a. By

equating to zero the coefficient of the term δ2 we obtain instead the equation

Ax1 + Ax2 − diag(x1)Ax1 − λmaxx2 = 0

Using the fact that x1 = aumax we argue that

aλmaxumax + Ax2 − a2λmax diag(umax)umax − λmaxx2 = 0
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By multiplying on the left by vTmax we obtain

aλmaxv
T
maxumax − a2λmaxv

T
max diag(umax)umax = 0

which proves that

a =
vTmaxumax

vTmax diag(umax)umax

Point (iii)c can be proved in a similar way. Indeed, define ε := γ/β. Since

(
1− ε

λmax

)
umax

maxi{umax,i}
≤ x∗ ≤

(
1− ε

λmax

)
umax

mini{umax,i}

we can argue that the expansion x∗(ε) = x0 + x1ε+O(ε2) as ε tends to zero is such that

x0 � 0n. Since the equilibrium x∗ satisfies the equation

(
In − diag(x∗)

)
Ax∗ − εx∗ = 0

by substituting the expansion and equating to zero the coefficient of the term ε0 we obtain

the equation

Ax0 − diag(x0)Ax0 = 0

which proves that x0 = vectorones[n]. By equating to zero the coefficient of the term ε1

we obtain instead the equation

Ax1 − diag(x1)Ax0 − diag(x0)Ax1 − x0 = 0

Using the fact that x0 = 1n we argue that

diag(A1n)x1 + 1n = 0
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which yieds the thesis.

(iv) For this point we refer to [2, 13] or [14, Theorems 1 and 2] in the interest of brevity.

Remark 1.4.4 The network SI model can be regarded as the limit case of the network

SIS model with vanishing curing rate γ → 0+. According to Theorem 1.4.2 and 1.4.3, for

any strongly connected digraph and any fixed infection rate β > 0, the quantity βλmax/γ

is always above the threshold in the limit γ → 0+. Moreover, statement (iii)(c) indicates

that, as γ → 0+, the endemic state x∗ satisfies x∗ → 1n. Therefore, the behavior of the

network SI model is the same as that for the network SIS model in the limit γ → 0+.

1.5 Network Susceptible-Infected-Recovered Model

In this section we review the Susceptible-Infected-Susceptible (SIR) epidemic model.

1.5.1 Scalar SIR model

In this model individuals who recover from infection are assumed not susceptible

to the epidemic any more. In this case, the population is divided into three distinct

groups: s(t), x(t), and r(t), denoting the fraction of susceptible, infected, and recovered

individuals, respectively, with s(t) +x(t) + r(t) = 1. We write the (Susceptible–Infected–

Recovered) SIR model as:

ṡ(t) = −βs(t)x(t),

ẋ(t) = βs(t)x(t)− γx(t),

ṙ(t) = γx(t).

(1.12)
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The following results on the dynamical behavior of the scalar SIR model can be found

in [1].

Lemma 1.5.1 (Dynamical behavior of the SIR model) Consider the SIR model (1.12).

From each initial condition s(0) + x(0) + r(0) = 1 with s(0) > 0, x(0) > 0 and r(0) ≥ 0,

the resulting trajectory t 7→ (s(t), x(t), r(t)) has the following properties:

(i) s(t) > 0, x(t) > 0, r(t) ≥ 0, and s(t) + x(t) + r(t) = 1 for all t ≥ 0;

(ii) t 7→ s(t) is monotonically decreasing and t 7→ r(t) is monotonically increasing;

(iii) limt→∞(s(t), x(t), r(t)) = (s∞, 0, r∞), where r∞ is the unique solution to the equality

1− r∞ = s(0)e−
β
γ

(
r∞−r(0)

)
; (1.13)

(iv) if βs(0)/γ < 1, then t 7→ x(t) monotonically and exponentially decreases to zero as

t→∞;

(v) if βs(0)/γ > 1, then t 7→ x(t) first monotonically increases to a maximum value

and then monotonically decreases to 0 as t→∞; the maximum fraction of infected

individuals is given by:

xmax = x(0) + s(0)− γ

β

(
log(s(0)) + 1− log

(γ
β

))
.

As mentioned before, we describe the behavior in statement (v) as an epidemic out-

break, an exponential growth of t 7→ x(t) for small times.) The effective reproduction

number in the deterministic scalar SIR model is R = βs(t)/γ. Note that the basic

reproduction number R0 = β/γ does not have predict power in this model.
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Figure 1.4: Left figure: evolution of the scalar SIR model from small initial fraction
of infected individuals (and zero recovered); parameters β = 2, γ = 1/4 (case (iv) in
Lemma 1.5.1). Right figure: intersection between the two curves in equation (1.13)
with s(0) = 0.95, r(0) = 0 and β/γ ∈ {1/4, 4}. If β/γ = 1/4, then .05 < r∞ < .1. If
β/γ = 4, then .95 < r∞.

1.5.2 Network SIR model

The network SIR model on a graph with adjacency matrix A is given by

ṡi(t) = −βsi(t)
∑n

j=1
aijxj(t),

ẋi(t) = βsi(t)
∑n

j=1
aijxj(t)− γxi(t),

ṙi(t) = γxi(t),

where β > 0 is the infection rate and γ > 0 is the recovery rate. Note that the third

equation is redundant because of the constraint si(t) + xi(t) + ri(t) = 1. Therefore, we

regard the dynamical system in vector form as:

ṡ(t) = −β diag(s(t))Ax(t), (1.14a)

ẋ(t) = β diag(s(t))Ax(t)− γx(t). (1.14b)

We state our main results of this section below. Weaker versions of statements (i)a

and (i)b are due to [3]. To the best of our knowledge, statements (i)c, (ii), (iii), (iv)

and (v) are novel.
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Theorem 1.5.2 (Dynamical behavior of the network SIR model) Consider the net-

work SIR model (1.14), with β > 0 and γ > 0, over a strongly connected digraph with

adjacency matrix A. For t ≥ 0, let λmax(t) and vmax(t) be the dominant eigenvalue of

the non-negative matrix diag(s(t))A and the corresponding normalized left eigenvector,

respectively. The following statements hold:

(i) if x(0) > 0n, and s(0)� 0n, then

(a) t 7→ s(t) and t 7→ x(t) are strictly positive for all t > 0,

(b) t 7→ s(t) is monotonically decreasing, and

(c) t 7→ λmax(t) is monotonically decreasing;

(ii) the set of equilibrium points is the set of pairs (s∗, 0n), for any s∗ ∈ [0, 1]n, and the

linearization of model (1.14) about (s∗, 0n) is

ṡ(t) = −β diag
(
s∗
)
Ax,

ẋ(t) = β diag
(
s∗
)
Ax− γx;

(1.15)

(iii) (behavior below the threshold) let the time τ ≥ 0 satisfy βλmax(τ) < γ. Then the

weighted average t 7→ vmax(τ)>x(t) , for t ≥ τ , is monotonically and exponentially

decreasing to zero;

(iv) (behavior above the threshold) if βλmax(0) > γ and x(0) > 0n, then,

(a) (epidemic outbreak) for small time, the weighted average t 7→ vmax(0)>x(t)

grows exponentially fast with rate βλmax(0)− γ, and

(b) there exists τ > 0 such that βλmax(τ) < γ;

(v) each trajectory converges asymptotically to an equilibrium point, that is, limt7→∞ x(t) =

0n so that the epidemic asymptotically disappears.
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The effective reproduction number in the deterministic network SIR model is R(t) =

βλmax(t)/γ. When R(0) > 1, we have an epidemic outbreak, i.e., an exponential growth

of infected individual for short time. In any case, the theorem guarantees that, after at

most finite time, R(t) < 1 and the infected population decreases exponentially fast to

zero.

Proof: Regarding statement (i)a, s(t) � 0n is due to the fact that Ax is bounded

and s(t) is continuously differentiable to t. The statement that x(t) � 0n for all t >

0 is proved in the same way as Theorem 1.4.2 (i). Statement (i)b is the immediate

consequence of ṡi(t) being strictly negative. From statement (i)a we know that each

si(t) is positive, and from A being irreducible and x(0) 6= 0n we know that
∑n

j=1 aijxj is

positive. Therefore, ṡi(t) = −βsi(t)
∑n

j=1 aijxj(t) < 0 for all i ∈ V and t ≥ 0.

For statement (i)c, we start by recalling the following property from [29, Exam-

ple 7.10.2]: for B and C nonnegative square matrices, if B ≤ C, then ρ(B) ≤ ρ(C).

Now, pick two time instances t1 and t2 with 0 < t1 < t2. Let α = maxi si(t2)/si(t1) and

note 0 < α < 1 because s(t) is strictly positive and monotonically decreasing. Now note

that,

diag(s(t1))A > α diag(s(t1))A ≥ diag(s(t2))A,

so that, using the property above, we know

ρ(diag(s(t1))A) > αρ(diag(s(t1))A) ≥ ρ(diag(s(t2))A).

This concludes the proof of statement (i)c.
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Regarding statement (ii), note that a point (s∗, x∗) is an equilibrium if and only if:

0n = −β diag
(
s∗
)
Ax∗, and

0n = β diag
(
s∗
)
Ax∗ − γx∗.

Therefore, each point of the form (s∗, 0n) is an equilibrium. On the other hand, summing

the last two equalities we obtain 0n = γx∗ and thus x∗ must be 0n. As a straightforward

result, the linearization of model (1.14) about any equilibrium point (s∗, 0n, 1n − s∗) is

given by equation (1.15).

Regarding statement (iii), multiplying vmax(τ)> from the left on both sides of equa-

tion (1.14b) we obtain:

d

dt

(
vmax(τ)>x(t)

)
= vmax(τ)>

(
β diag

(
s(t)
)
Ax(t)− γx(t)

)
≤ vmax(τ)>

(
β diag

(
s(τ)

)
Ax(t)− γx(t)

)
= (βλmax(τ)− γ)vmax(τ)>x(t).

Therefore, we obtain

vmax(τ)>x(t) ≤ (vmax(τ)>x(0))e(βλmax(τ)−γ)t.

The right-hand side exponentially decays to zero when βλmax(τ) < γ. Therefore, vmax(τ)>x(t)

also decreases monotonically and exponentially to zero for all t > τ .

Regarding statement (iv)a, note that based on the argument in (i)a, we only need

to consider the case when x(0) � 0n. Left-multiplying vmax(0)> on both sides of equa-

tion (1.14b), we obtain:

d

dt

(
vmax(0)>x(t)

)∣∣∣
t=0

= vmax(0)>
(
β diag

(
s(t)
)
Ax(t)−γx(t)

)∣∣∣
t=0

= (βλmax(0)−γ)vmax(0)>x(0).
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Since βλmax(0) − γ > 0, the initial time derivative of vmax(0)>x(t) is positive. Since

t 7→ vmax(0)>x(t) is a continuously differentiable function, there exists τ ′ > 0 such that

d
dt

(
vmax(0)>x(t)

)
> 0 for any t ∈ [0, τ ′].

Regarding statement (iv)b, since ṡ(t) ≤ 0n and is lower bounded by 0n, we conclude

that the limit lim
t→+∞

s(t) exists. Moreover, since s(t) is monotonically non-increasing, we

have lim
t→+∞

ṡ(t) = 0, which implies either lim
t→+∞

s(t) = 0n or lim
t→+∞

x(t) = 0n. If s(t)

converges to 0n, then ẋ(t) converges to −γx(t). Therefore, there exists T > 0 such that

βλmax(T ) < γ, which leads to x(t)→ 0n as t→ +∞; If s(t) converges to some s∗ > 0n,

then x(t) still converges to 0n. Therefore, for any
(
s(0), x(0)

)
, the trajectory

(
s(t), x(t)

)
converges to some equilibria with the form (s∗, 0n), where s∗ ≥ 0n. Let

s(t) = s∗ + δs(t), and x(t) = 0n + δx(t).

We know that δs(t) ≥ 0 and δx(t) ≥ 0 for all t ≥ 0. Moreover, δs(t) is monotonically

non-increasing and converges to 0n, and there exists T̃ > 0 such that, for any t ≥ T ,

δx(t) is monotonically non-increasing and converges to 0n.

Let λ∗ and v∗ denote the dominant eigenvalue and the corresponding normalized left

eigenvector of matrix diag(s∗)A, respectively, that is, v∗> diag(s∗)A = λ∗v∗>. First let

us suppose βλ∗−γ > 0, then the linearized system of (1.12) around (s∗, 0n) is written as

δ̇s = −β diag(s∗)Aδx,

δ̇x = β diag(s∗)Aδx − γδx.

Since βλ∗− γ > 0, the linearized system is exponentially unstable, which contradicts the

fact that
(
δs(t), δx(t)

)
→ (0n, 0n) as t → +∞. Alternatively, suppose βλ∗ − γ = 0. By
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left multiplying v∗> on both sides of the equation for ẋ(t) in (1.12), we obtain

v∗>δ̇x = (βλ∗ − γ)(v∗>δx) + βv∗> diag(δs)Aδx = βv∗> diag(δs)Aδx ≥ 0n,

which contradicts δx(t) → 0n as t → +∞. Therefore, we conclude that βλ∗ − γ <

0. Since λmax(t) is continuous on t, we conclude that there exists τ < +∞ such that

βλmax(t)− γ < 0.

Remark 1.5.3 Consider the network SIR model as a parameterized dynamical system,

with the curing rate γ as the parameter. The network SI model can be regarded the network

SIR dynamics with γ = 0 and zero initial fraction of recovered individuals. However, due

to the specific bifurcation behavior of the network SIR model at γ = 0, the dynamical

properties of the network SIR model with γ = 0 are qualitatively different from the case

when γ > 0. When γ = 0, the set given by statement (ii) of Theorem 1.5.2 is only a

subset of the equilibirum set. Points in the set of pairs (0n, x∗) are also the equilibria of

the network SIR with γ = 0. In addition, while statement (iv)a of Theorem 1.5.2 on the

initial epidemic outbreak is still true, statements (iv)b and (v) on the eventual decay no

longer hold for γ = 0.

In what follows, we present a novel result on an iterative algorithm that computes

the limit state limt→∞
(
s(t), 0, r(t)

)
of the network SIR model (1.14) as a function of an

arbitrary initial condition
(
s(0), x(0), r(0)

)
.

Note that, for the scalar SIR model (1.12), if we define

V
(
s(t), x(t)

)
:= s(t)e

β
γ

(
1−x(t)−s(t)

)
.

Simple calculations result in dV
(
s(t), x(t)

)
/dt = 0, which implies that the trajectories
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are on the level sets of V and in the set {(s, x) ∈ R2 | s ≥ 0, x ≥ 0, s+ x ≤ 1}. Here, we

apply a similar approach to the network SIR system (1.14). Let

Vi(s, r) := sie
β
γ

∑n
j=1 aijrj , for any i ∈ {1, . . . , n}.

One can check that, along any trajectory of dynamics (1.14), dVi/dt = 0 for any i ∈

{1, . . . , n}. Therefore, the trajectories (s(t), r(t)) lie on the level curves of the functions

Vi(s, r) for i ∈ {1, . . . , n}.

Let s(∞) := limt→+∞ s(t), x(∞) := limt→+∞ x(t), and r(∞) := limt→+∞ r(t). Notice

that x(∞) = 0n and so r(∞) = 1n − s(∞). Since dVi/dt = 0 for any i ∈ {1, . . . , n}, we

have

si(∞) = si(0)e−
β
γ

∑n
j=1 aij

(
1−rj(0)

)
e
β
γ

∑n
j=1 aijsj(∞). (1.16)

Given any initial condition
(
s(0), r(0)

)
, the right-hand side of equation (1.16) defines a

map

H(s) := e
β
γ

diag
(
A(s−1n+r(0))

)
s(0), (1.17)

and s(∞) is a fixed point of H, that is, s(∞) = H
(
s(∞)

)
. The following theorem is

novel.

Theorem 1.5.4 (Existence, uniqueness, and algorithm for the asymptotic point)

Consider the network SIR model (1.14), with positive rates β and γ and with initial condi-

tion
(
s(0), x(0), r(0)

)
satisfying s(0)� 0n, x(0) > 0n, r(0) ≥ 0n and s(0)+x(0)+r(0) =

1n. Let
(
s(∞), 0n, r(∞)

)
be the asymptotic state of system (1.14). The map H : Rn → Rn

defined by equation (1.17) has the following properties:

(i) there exists a unique fixed point s∗ of the map H in the set {s ∈ Rn | 0n ≤ s ≤

1n − r(0)}. Moreover, s∗ = s(∞) and r(∞) = 1n − s∗; and

33



Dynamics of Epidemic Propagation over Networks Chapter 1

(ii) any sequence {y(k)}k∈N defined by y(k + 1) = H(y(k)) and initial condition 0n ≤

y(0) ≤ 1n − r(0) converges to the unique fixed point s∗.

Proof: Since A is a non-negative matrix, and s(0) ≤ 1−r(0), one can easily observe

that, if 0n ≤ p ≤ q ≤ 1n − r(0), then 0n ≤ H(0n) ≤ H(p) ≤ H(q) ≤ H(1n − r(0)) ≤

1n − r(0). According to the Brower Fixed Point Theorem, the map H has at least one

fixed point.

Define the sequence {p(k)}k∈N by p(k + 1) = H(p(k)) and p(0) = 0n. Since

1n − r(0) ≥ p(1) = H(0n) = e
β
γ

diag
(
−A1n+Ar(0)

)
s(0) ≥ p(0),

we have 1n − r(0) ≥ p(2) = H(p(1)) ≥ H(p(0)) = p(1) and, by induction, 1n − r(0) ≥

p(k + 1) ≥ p(k) for any k ∈ N. Since p(k) is non-decreasing and upper bounded by

1n − r(0), we conclude that the limit p∗ = limk→∞ p(k) exists, and p∗ is a fixed point of

the map H.

Similarly, define a sequence {q(k)}k∈N by q(k + 1) = H(q(k)) and q(0) = 1n − r(0).

One can check that q(k) is non-increasing and that q∗ = limk→∞ q(k) is a fixed point of

map H. Moreover, since p(0) ≤ q(0), we have p(k) ≤ q(k) for any k ∈ N and thereby

p∗ ≤ q∗.

If p∗ = q∗, then, for any 0n ≤ y(0) ≤ 1n − r(0), the sequence {y(k)}k∈N defined

by y(k + 1) = H(y(k)) satisfies p(k) ≤ y(k) ≤ q(k) for any k ∈ N. Therefore, y∗ =

limk→∞ y(k) exists and y∗ = p∗ = q∗, which implies that the fixed point of map H is

unique. According to equation (1.16), s(∞) is the unique fixed point. This concludes

the proof for statement (i) and (ii).

Now we eliminate the case p∗ < q∗ by contradiction. First of all we prove that

q∗ � 1n − r(0). Let Ni = {j | aij > 0} and I(k) =
{
i
∣∣ qi(τ) < 1− ri(0) for any τ ≥ k

}
.

We have I(0) = φ. Since x(0) > 0n, we have q(1) = s(0) < 1 − r(0), that is, there
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exists i such that qi(1) < 1 − ri(0). Moreover, since q(k) is non-increasing, we have

q(k) ≤ q(1) for any k ≥ 1. Therefore, for any i such that qi(1) < 1 − ri(0), it satisfies

qi(k) ≤ qi(1) < 1 − ri(0) for any k ≥ 1. Since j /∈ I(1) if qj(1) = sj(0) = 1 − rj(0), we

conclude that I(1) = {i | si(0) < 1 − ri(0)}. Moreover, for any given k ≥ 1, since, for

any i such that Ni ∩ I(k) 6= φ,

qi(k + 1) = H(q(k))i = e
β
γ

∑n
j=1 aij

(
qj(k)−1+rj(0)

)
si(0) < si(0) ≤ 1− ri(0);

and for any i such that Ni ∩ I(k) = φ and i /∈ I(k),

qi(k + 1) = H(q(k))i = e
β
γ

∑n
j=1 aij

(
qj(k)−1+rj(0)

)
si(0) = si(0) = 1− ri(0),

we have I(k+1) = {i | Ni∩I(k) 6= φ}∪I(k) for any k ≥ 1. Because the graph associated

with A is strongly connected, we can argue that I(k) contains all the indices when k is

large enough. Therefore, q∗ � 1n − r(0).

Now suppose p∗ < q∗. Let

α = min
j

1− rj(0)− p∗j
q∗j − p∗j

, and w = (1− α)p∗ + αq∗.

We have α > 1, 0n ≤ w < 1n − r(0), and wi = 1 − ri(0) for any i such that αi =(
1− ri(0)− p∗i

)
/(q∗j − p∗j). Let µ = 1/α. Thereby q∗ = µw+ (1− µ)p∗, where 0 < µ < 1.

This means that q∗ is a convex combination of p∗ and w. Since H(s)i is a strictly convex

function of s, we obtain that

q∗i = H
(
µw + (1− µ)p∗

)
i
< µH(w)i + (1− µ)p∗i ≤ µ

(
1− ri(0)

)
+ (1− µ)p∗i = q∗i .

In the last inequality, we used the fact that H(w)i ≤ 1− ri(0) for any 0 ≤ w ≤ 1n− r(0).
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The previous inequality yields a contradiction.

In the rest of this section, we present some numerical results for the network SIR

model for the famous Krackhardt’s advice network illustrated in Figure 1.5. This network

reflects the data collected by Krackhardt [30] on the cognitive social structure of the

management personnel in a high-tech machine manufacturing firm. In the network, each

node represents an individual, and each directed link (i, j) means that individual i seeks

advice from individual j. We refer the interested readers to [30] for more details.

Consider the epidemic spreading process on the Krackhardt’s advice network. The

associated adjacency matrix A is binary. Unless otherwise stated, the system parameters

are set as β = 0.5 and γ = 0.4. As for initial condition, we select one node fully infected

(the dark-gray node in Figure 1.5, say, with index 1), 16 fully healthy individuals, and

zero recovered fraction — corresponding to x(0) = e1, r(0) = 0n, and s(0) = 1n − x(0).

These parameters lead to an initial effective reproduction number R(0) = 3.57.

Figure 1.5: Main strongly-connected component of the Krackhardt digraph with 17 nodes

Figure 1.6 illustrates the time evolution of (β/γ)λmax(t) with varying network param-

eters. Note that each evolution starts above the threshold, reaches the threshold value 1

in finite time, and converges to a final value below 1.

Figure 1.7 illustrates the behavior of the average susceptible, average infected and

average recovered quantities in populations starting from a small initial infection fraction

and with an effective reproduction number above 1 at time 0. Note that the evolution of

the infected fraction of the population displays a unimodal dependence on time, like in
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Figure 1.6: Evolution of the spectral radius of (β/γ) diag(s(t))A) over the strongly
connected digraph in Figure 1.5. The parameter γ takes value in .1, .2, . . . , .9, corre-
sponding respectively to the curves from up to down in the time interval [0, 5].

the scalar model.
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Figure 1.7: Evolution of the network SIR model from initial condition consisting of
one node fully infected individual (the dark-gray node in Figure 1.5), 16 fully healthy
individuals, and zero recovered fraction. The effective reproduction number satisfies
R(0) = 3.57.

1.6 Conclusion

This chapter provides a comprehensive and consistent treatment of deterministic non-

linear continuous-time SI, SIS, and SIR propagation models over contact networks. We

investigated the asymptotic behaviors (vanishing infection, steady-state epidemic, and

full contagion). We studied the transient propagation of an epidemic starting from small
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initial fractions of infected nodes. We presented conditions under which a possible epi-

demic outbreak occurs or the infection monotonically vanishes for arbitrary fixed topol-

ogy graphs. We introduced a network SI model and analyzed its behavior. Network SIS

model sections includes improved properties over previously proposed works. New tran-

sient behavior, threshold condition, and system properties for the network SIR model

were proposed. In addition, for the network SIR model, we provide a novel iterative

algorithm to compute the asymptotic state of the system. In all cases, we show the re-

sults for network models are appropriate generalizations of those for the respective scalar

models.

There are numerous potential future research directions regarding the deterministic

network epidemic processes and the literature is still growing rapidly. Recent progress in

this area includes but is not limited to the modeling and analysis of epidemic spreading

on time-varying networks, e.g., see [31, 32], the optimal immunization strategies, e.g.,

see [33, 34], and the competitive propagation of multiple virus/memes, e.g., see [35, 36,

37].

Finally, we point out that, although the network SI, SIS, and SIR models have at-

tracted enormous attention by researchers working on network epidemics, they are not

the only deterministic models of epidemic spreading processes on networks. For example,

there is another class of deterministic network models, referred to as the multi-city model

or the epidemic model in a patchy environment. This class of models considers each node

in the network as a city obeying the scalar SIS or SIR dynamics. The disease is spread

via the traffic flows between those cities. We refer the interested reader to [38, 39, 40]

for detailed treatments.
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Chapter 2

Multi-group Connectivity Structures

and Their Implications

2.1 Introduction

2.1.1 Motivation and problem description

As the size of a connected social network increases, multi-group formations that

are distinguishable clusters of individuals become a characteristic and important fea-

ture of network topology. The connectivity of multi-group networks may be based on

co-memberships, edge bundles that connect multiple individuals located in two disjoint

groups, bridges that connect two individuals in two disjoint groups, or liaison hierarchies

of nodes. Fig. 2.1 illustrates each form. A large-scale network may include instances of

all four connectivity modalities. The work reported in this chapter is addressed to the

implications of these different forms of intergroup connectivity. We set up populations of

multiple subgroups and evaluate the implications of different forms of intergroup connec-

tivity structures. We analyze the implications of different forms by adopting standard
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models of opinion formation and information propagation that allow a comparative anal-

ysis on metrics of mean rates of information propagation, convergence times to consensus,

and steady state deviations from the consensus value under conditions of noise.

(a) Co-
memberships

(b) Edge Bun-
dles

(c) Bridges (d) Liaisons

Figure 2.1: Small-scale illustration of the four forms of multi-group connectivity structures

2.1.2 Related literature

Typically, a corporation has formal hierarchical structure and additional informal

communication structures [41]. The authority of the large-scale organizations is sub-

ject to the well-known problem of control loss, i.e., the cumulative decay of influence

of superiors over subordinates along the chain-of-command [42, 43]. Classic and fasci-

nating work on organization cultures [44] points to the importance of the topology of

informal communication and influence networks in mitigating and exacerbating coordi-

nation and control problems. Other work has emphasized particular types of network

typologies (linking-pin, bridge, ridge, co-membership, and hierarchical) that may serve

as structural bases of mitigating coordination and control loss [41, 45, 46, 47]. In this

work we propose generative network models and provide a comparative analysis for these
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typologies, which we believe are lacking in the literature. Among the multitude of pos-

sible coordination and control structures for large groups, we study four prototypical

structures and corresponding taxonomy shown in Fig. 2.1. Bridge connected structure,

in which communication between subgroups are based on single contact edges between

subgroups; the coordination and control importance of such bridges is the emphasis of

the [46] model. According to Granovetter [46] only weak ties can be bridges and those

weak ties are more likely to be sources of novel information making them surprisingly

valuable. Additional references include [48, 49, 50, 51]. Ridge connected or redundant

ties structure, in which multiple redundant contact edges connect pairs of groups pro-

viding a robust basis of subgroup connectivity; the coordination and control importance

of such ridges is the emphasis of [45], Chapter 8. Additional references are [52, 53, 54].

Co-membership intersection structures, in which subgroups have common members; the

coordination and control importance of such structures is the emphasis of the linking-pin

model by Likert [41]. This structure represents an organization as a number of overlap-

ping work units in which a member of a unit can belong to other units. Further references

include [55, 56, 57]. Hierarchical connected structure, in which distinct subgroups com-

municate through liaisons, e.g., a star configuration in which a single individual (who may

or may not be in a command role) monitors and facilitates all the work by subgroups and

is responsible for all communications among them. Further references are [58, 59, 47, 60].

We relate the generative models for the first three connectivity structures (co-memberships,

edge bundles, and bridges) to stochastic block models (SBMs), which were first intro-

duced in statistical sociology by Holland et al. [61] and Fienberg & Wasserman [62].

Also known as planted partition model in theoretical computer science, SBM is a gen-

erative graph model that leads to networks with clusters. Conventionally, SBMs are

defined for undirected binary graphs and non-overlapping communities. Generalizations

of these models to digraphs [63], overlapping memberships [64], weighted graphs [65] and
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arbitrary degree distributions [66] have also been studied.

In the field of social network science, the four forms of subgroup connectivity illus-

trated in Fig. 2.1 are familiar constructs. Comparative research on their implications is

limited. Granovetter [46] and Watts & Strogatz [67] have focused on the implications of

multi-group connectivity based on bridges. Friedkin [45] focused on co-membership and

edge-bundle connectivity constructs, referring to them as “ridge” structures. Reynolds &

Johnson [59] focused on the importance of liaisons. It may be that ridge structures pro-

vide a more robust basis of influence and information flows than thinly dispersed bridges

and liaisons. We are unaware of any comparative analysis of all four forms of inter-group

connectivity structures that employs a common set of dynamical-system behavioral met-

rics.

2.1.3 Statement of contribution

We develop generative-network models that set up sample networks for each form of

multi-group connectivity topology and conduct a comparative analysis of them, which

we believe is lacking in the literature. Our models, under some additional constraints,

can be regarded as stochastic block models. We compare these network topologies on

three metrics: (i) spectral radius, that is a metric of the rate of information propa-

gation in a network propagation models, (ii) convergence time to consensus based on

the classic French-DeGroot opinion dynamics, and (iii) steady state deviation from the

French-DeGroot consensus value in the presence of noise. We perform a regression anal-

ysis to obtain an equitable comparison on the performance of these four connectivity

structures and to account for the discrepancies among their structural properties. We

learned that the development of generative-network models, suitable for this comparative

analysis, is non-trivial. We lay out in detail the assumptions of our models. This is the
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methodological contribution of the chapter. The comparative analysis of network met-

rics, over samples of networks of increasing size in the class of each form of multi-group

connectivity, is our theoretical contribution to a better understanding of the implications

of these different forms.

For network propagation processes, we refer to the classic references [2, 3, 9] and to

the recent review [68]. For opinion dynamic processes and the French-DeGroot model,

we refer to the classic references [69, 70] and the books [45, 71, 8].

2.1.4 Preliminaries

Graph theory Each graph G(V , E) is identified with the pair (V , E). The set of graph

nodes V 6= ∅ represents actors or groups of actors in a social network. |V| = n is the size

of the network. The set of graph links E represents the social interactions or ties among

those actors. We denote the set of neighbors of node i with Ni. In a weighted graph,

edge weights represent the frequency or the strength of contact between two individuals,

whereas in a binary graph all edge weights are equal to one. The density of G is given by

ratio of the number of its observed to possible edges,
2|E|

n(n− 1)
. Graph G is called dense

if |E| = O(n2) and sparse if |E| � n2. A graph with density of 1 is a clique.

A walk of minimum length between two nodes is the shortest path or geodesic. Av-

erage geodesic length is defined by L = 1
n(n− 1)

∑
i,j∈V,i 6=j dij, where dij is the length

of the geodesic from node i to node j. A connected acyclic subgraph of G spanning all

of its nodes is a spanning tree. A uniform spanning tree of size n is a spanning tree

chosen uniformly at random in the set of all possible spanning trees of size n. Degree

or connectivity of node i is defined as the number of edges incident on it. The degree

distribution of a graph P (k) is the number of nodes with degree k, or the probability

that a node chosen uniformly at random has degree k. The clustering coefficient of node
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i is given by the ratio of existing edges between the neighbors of node i over all the

possible edges among those neighbors. Letting ci =
2ejk : vj, vk ∈ Ni, ejk ∈ E

ki(ki − 1)
, ki = |Ni|,

the average clustering coefficient of graph G is defined as C = 1
n

∑
i∈V ci.

An Erdős-Rényi graph [72] is constructed by connecting nodes randomly. Each edge

is included in the graph with a fixed probability p independent from every other edge. We

represent such graph as GER(n, p) where p is the probability that each edge is included in

the graph independent from every other edge. The probability distribution of GER(n, p)

follows a binomial distribution P (k) =
(
n−1
k

)
pk(1 − p)n−1−k, and its average clustering

coefficient is given as C = p.

Linear algebra We denote the adjacency matrix of G with A ∈ Rn×n whose aijth entry

is equal to the weight of the link between nodes i and j when such an edge exists, and

zero otherwise. Matrix A is irreducible if the underlying digraph is strongly connected.

If digraph G is aperiodic and irreducible, then A is primitive. (A digraph is aperiodic if

the greatest common divisor of all cycle lengths is 1.) A cycle is a closed walk, of at least

three nodes, in which no edge is repeated.

We adopt the shorthand notations 1n = [1, . . . , 1]> and 0n = [0, . . . , 0]>. Given

x = [x1, . . . , xn]> ∈ Rn, diag(x) denotes the diagonal matrix whose diagonal entries

are x1, . . . , xn. For an irreducible nonnegative matrix A, λmax denotes the dominant

eigenvalue of A which is equal to the spectral radius of A, ρ(A). The left positive

eigenvector of A associated with λmax is called the left dominant eigenvector of A.

Empirical networks properties Our generative-network models attend to three often

observed properties of real networks. (i) Small average shortest path: in networks with a

large number of vertices, the average shortest path lengths are relatively small due to the

existence of bridges or shortcuts. (ii) Heavy tail degree distribution: in contrast to Erdős-
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Rényi graphs with binomial degree distribution, degree distributions of more realistic

networks display a power law shape: P (k) ∼ Ak−α, where typically 2 < α < 3. (iii) High

average clustering coefficient : in most real world networks, particularly social networks,

nodes tend to create tightly knit groups with relatively high clustering coefficient.

Stochastic block model (SBM) Let n, k ∈ Z+ denote the number of vertices and

the communities, respectively; p = (p1, . . . , pk) be a probability vector (the prior) on the

k communities, and W ∈ {0, 1}k×k be a symmetric matrix of connectivity probabilities.

The pair (X,G) is drawn under the SBM(n, p,W ) if X is an n-dimensional random vector

with i.i.d. components distributed under p, and G(V , E) is a simple graph where vertices

v and u are connected with probability WXv ,Xu , independently of any other pairs. We

define the community sets by Ωi = Ωi(X) := {v ∈ V : Xv = i}, i ∈ {1, . . . , k}.

Note that edges are independently but not identically distributed. Instead, they are

conditionally independent, i.e., conditioned on their groups, all edges are independent

and for a given pair of groups (i, j), they are i.i.d. Because each vertex in a given group

connects to all other vertices in the same way, vertices in the same community are said

to be stochastically equivalent. The distribution of (X,G) for x ∈ {1, . . . , k}n is given

by:

P{X = x} :=
n∏
u=1

pxu =
k∏
i=1

p
|Ωi(x)|
i ,

P{E = y|X = x} :=
∏

1≤u<v≤n

W yuv
xu,xv(1−Wxu,xv)

(1−yuv).

The law of large numbers implies that, almost surely,
1

n
|Ωi| → pi.

Symmetric SBM (SSBM) If the probability vector p is uniform and W has all

diagonal entries equal to qin and all non-diagonal entries equal to qout, then the SBM is
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said to be symmetric. We say (X,G) is drawn under the SSBM(n, k, qin, qout), where the

community prior is p = {1/k}k, and X is drawn uniformly at random with the constraints

|{v ∈ V : Xv = i}| = n/k. The case where qin > qout is called assortative model.

2.2 Methods

To design our four models we first generate a sequence of group sizes, and refer to the

appendix for some of the detailed algorithms involved. Secondly, we produce the com-

munity structures according to the sequence of group sizes and add the interconnections

among them in the four modalities of multi-group connectivity.

2.2.1 Generating subgroup sizes

In this section we describe an algorithm to generate relative subgroup sizes, and

introduce the resulting properties of these subgroups. We compute a normalized sequence

of group sizes with a heavy tail distribution. We refer to Algorithm 1 in the appendix

for a formal description based on pseudocode. Each subgroup is modeled as a connected

dense Erdős-Rényi graph. For ε substantially smaller than 1 (we shall select it to be

10%), a subgroup of size i is the random graph GER(i, 1− ε).

Each subgroup of size i and edge probability 1− ε has the following properties:

(i) connectivity threshold of t(i) =
ln(i)

i
, that is, for 1− ε > t(i), GER is almost surely

connected (almost any graph in the ensemble GER is connected);

(ii) (1− ε)i(i− 1)
2 edges on average;

(iii) small average shortest path close to 1 and depending at most logarithmically on i;
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(iv) binomial degree distribution: P (k) =
(
i−1
k

)
(1 − ε)k(ε)i−1−k. Note that as ε de-

creases, the standard error becomes smaller and the distribution is more densely

concentrated around the mean (i− 1)(1− ε); and

(v) large clustering coefficient close to 1 (conditioned on small ε) and equal to C = 1−ε.

Given a population of n individuals, Algorithm 1 generates a sequence of relative

subgroup sizes, such that, when interpreted as a disconnected graph, the collection of

these subgroups exhibits a heavy tail degree distribution. An example of subgroup sizes

generated by Algorithm 1 is illustrated in Fig. 2.2.

Figure 2.2: A collection of subgroups on 100 individuals.

As part of Algorithm 1, we design the probability distribution for the subgroup size

i to be proportional to
1

i3
. The choice of exponent equal to 3 is based on the following

notes: first, in order for f(i) =
k

iα
and its mean to be well-defined, one should have

α ≥ 2; second, if one additionally requires the distribution to have a finite variance, then

α ≥ 3. With exponent 3, the outcome of each realization of the algorithm is a collection

of mostly small connected subgroups.
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2.2.2 Models of multi-group connectivity

In this section we describe the algorithms that generate realizations of the four multi-

group connectivity modalities.

For three of the four modalities (bridges, edge bundles, and co-members), we connect

the subgroups through a minimal set of pairwise coordination problems among them.

Specifically, a minimal set of pairwise coordination problems is modeled through the no-

tion of a random spanning tree among the subgroups. To define the generative algorithms

for these three structures, we apply the notion of stochastic block models.

Bridge connectivity model

Here we propose an algorithm to generate the bridge connected model. This structure

can be modeled as a stochastic block model where the communities are connected through

a uniform randomly generated spanning tree, and the interconnections are through pre-

cisely one node of each subgroup. We denote the edge set of this random tree with ET .

The graph is drawn under the SBM(n, p,WB), conditioned under connectivity, where p

is calculated by Algorithm 1, and WB is given by:

WB
ij =



1− ε, if i = j,

1

n2pipj
=

1

sisj
, if i 6= j and ij ∈ ET ,

0, otherwise,

(2.1)

where si = |Ωi| denotes the size of group i, and WB contains a tree structure. Note

that given an SBM, a node in community i has npjWij neighbors in expectation in

community j. We illustrate a realization of our algorithm in Fig. 2.3.
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Figure 2.3: Example of a network of 50 individuals in subgroups connected by bridges.

Edge bundle connectivity model

In this section we propose an algorithm to generate the edge bundle connectivity

model. Again we apply a random spanning tree as the building block of the interconnec-

tions. Here, instead of adding a single edge as the basis of intergroup connectivity, we

add multiple edges whose number grows with the size of the subgroups. We illustrate an

algorithm realization in Fig. 2.4.

We draw the graph under the SBM(n, p,WEB), conditioned under redundant con-

nectivity. Communities are connected through a uniform randomly generated spanning

tree with edge set ET . The interconnections involve two or more nodes from neighboring

subgroups. p is calculated by Algorithm 1, and WEB is given by:

WEB
ij =



1− ε, if i = j,

αij
n2pipj

=
αij
sisj

, if i 6= j and ij ∈ ET ,

0, otherwise,

(2.2)

where WEB contains a tree structure, αij = αji ≥ 2 for all i, j, and αij scales with sisj.
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Figure 2.4: Example of a network of 50 individuals in subgroups connected by bundles
of edges.

Co-membership connectivity model

In addition to the existence of a uniform random spanning tree over the subgroup,

our co-membership connectivity model generation is conditioned under the following

topological constraint: we consider each pair of connected subgroups, say i and j, and

select a fraction of edges in the complete bipartite graph over i and j. For each of these

selected edges, we randomly select one of the two individuals, say the individual in i,

and we turn this individual into a member of the subgroup j by adding edges from this

individual to almost all members of v.We illustrate an algorithm realization in Fig. 2.5.

The co-membership model can be generated as a realization of SBM(n, p,WC), con-

ditioned under the edge bundles initiated from a single node in one of the corresponding

subgroups. Again ET denotes the edge set of the random tree, p is calculated by Algo-

rithm 1, and WC is given by:

WC
ij =



1− ε, if i = j,

αij
n2pipj

=
αij
sisj

, if i 6= j and ij ∈ ET ,

0, otherwise,

(2.3)
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where WC contains a tree structure, αij = αji ≥ 3 for all i, j, and αij scales with either

si or sj (αij ≈ si or αij ≈ sj).

Figure 2.5: Example of 50 individuals in a co-membership connected network.

Liaison hierarchy connectivity model

Here, applying Algorithm 1 we first generate the subgroups as dense Erdős-Rényi

graphs. Then we partition the subgroups into sets of 2 or 3, and (i) assign a liaison to

each of sets and (ii) recursively assign a new liaison to groups of 2 or 3 liaisons until

we reach the root at the top of the hierarchy. The resulting graph is a hierarchical tree

structure with random branching factors of 2 and 3. A detailed description is provided

in Algorithm 3 in the appendix, and Fig. 2.6 illustrates a realization of this model.

2.3 Results

Realistic networks are usually not exclusively based on a single modality of subgroup

connectivity. Our comparative analysis of connectivity modalities is oriented to the ques-

tion of the implications of a shift away from one modality toward another modality. For
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Figure 2.6: Example of 50 individuals in subgroups joined by a liaison hierarchy
generated by Algorithm 3.

example, a modality shift from a liaison hierarchy toward direct bridges among sub-

groups, or from bridges among subgroups to intergroup edge bundles, or from intergroup

edge bundles to co-memberships.

In Fig. 2.7 we present a comparison of the average shortest paths and average degrees

of our generated networks as a function of network size for each of the four multi-group

connectivity modalities. Each sample point on the curves is based on 100 realizations on

networks with sizes that increase in step sizes of 50 up to 2,000 nodes. In analyses that

increase the sample point size to 1,500 over a range of sizes up to 500, there is no marked

change in the trajectories. In general, the confidence interval bands are narrow. Here, and

elsewhere, red refers to the bridge model, purple to the edge bundle model, green to the

co-membership model, and blue to the liaison hierarchy model. Fig. 2.7a shows that the

liaison hierarchy increasingly distinguishes itself from the three modalities as network size

increases. Its displayed trajectory is conditional on the liaison structure design. Average

shortest paths are insensitive to redundancies. Hence, the lack of distinctions among

the other three modalities is not surprising. Fig. 2.7b shows that the four modalities
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are systematically ordered with respect to their average degrees: (co-membership) >

(edge-bundle) > (bridge) > (liaison) with respect to their average degrees.

Spectral radius and propagation processes

Propagation phenomena appear in various disciplines, such as spread of infectious

diseases, transmission of information, diffusion of innovations, cascading failures in power

grids, and spread of wild-fires in forests. Based on the application, the objective can

vary from avoiding epidemic outbreaks and eradicating the disease in a population to

facilitating the spread of an ideology or product over a network in marketing campaigns.

In this subsection we provide a comparison of the system behavior under the simple and

well-studied epidemic models proposed in the literature for our four proposed network

models.

Let x(t) =
(
x1(t), . . . , xn(t)

)>
denote the infection probabilities of each node at time

t and A ∈ Rn×n denote the adjacency matrix of the contact graph. Let β > 0 be

the infection rate, and γ > 0 be the recovery rate to the susceptible state. Then the

linearization of the SI (Susceptible-Infected) and SIS (Susceptible-Infected-Susceptible)

network propagation models about the no-infection equilibrium point 0n on a weighted

digraph are given by, respectively,

ẋ = βAx, (2.4)

ẋ = (βA− γIn)x. (2.5)

The following results are well known (see the classic works [2, 9, 10] and the recent

review [68]). In the SI model the epidemic initially experiences exponential growth with

rate βλmax. In the SIS model near the onset of an epidemic outbreak, the exponential

growth rate is βλmax− γ and the outbreak tends to align with the dominant eigenvector.
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In Fig. 2.8 we plot the spectral radius of the networks as a function of network size

50-2,000 for the four models. In Table 2.1 we evaluate the differences among these curves

controlling a network’s size (N), average degree (Degree), and (0,1) indicator variables for

the edge-bundle, co-membership, and liaison modalities with the bridge modality taken

as the baseline. Similar findings were obtained with 660K observations on a reduced

range of network sizes 24-655. The average degree of a network has a positive effect on

the speed of viral propagation. Controlling for network size and average degree, relative

to the propagation speeds in the bridge modality, propagation speeds in the edge-bundle

and liaison modalities are greater and those of the co-membership modality are less.

The elevated curve for co-membership modality in Fig. 2.8 is based on its systematically

higher average degrees.

Table 2.1: Nonlinear regression results for spectral radius, controlling for network size
and average degree, and indicator variables for the connectivity modalities with bridge
modality as baseline (15,200 networks, R2= 0.833)

coeff. s.e. p-value
Constant -2.8103 0.12916 <.0001
N 0.0038847 5.2749e-05 <.0001
Degree 5.0734 0.088421 <.0001
Edge-bundle 0.2012 0.019035 <.0001
Co-membership -1.8589 0.062881 <.0001
Liaison 0.24287 0.023229 <.0001
N2 -8.3082e-07 2.1709e-08 <.0001

Time to convergence in influence processes generating consensus with dis-

tributed linear averaging

Consensus algorithms play an important role in many multi-agent systems. They are

usually defined as in French-DeGroot discrete-time averaging recursion

x(t+ 1) = Wx(t). (2.6)
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where W is row stochastic and x(t) ∈ Rn is the vector of individuals’ opinions at time t.

For primitive stochastic matrices the solution to (2.6) satisfies

lim
k→∞

x(k) =
(
vTx(0)

)
1n (2.7)

where v is the left dominant eigenvector of W satisfying v1 + · · ·+ vn = 1. Convergence

time to consensus may be defined as τasym = 1
log(1/rasym)

and it gives the asymptotic

number of steps for the error to decrease by the factor 1/e, where rasym denotes the

asymptotic convergence factor. It is well known, e.g., see [8], Chapter 10, that conver-

gence to consensus is exponentially fast as ρt2, where ρ2 is the second largest eigenvalue

of W in magnitude. We construct W from A as follows:

W = (D + In)−1(A+ In), (2.8)

where D = diag(A1n) denotes the diagonal matrix of all the nodes’ out-degrees, with

dii =
∑n

j=1 aij ∀i. Equation 2.8 gives positive weights wii that are equal to the wij weights

of i’s neighbors in A.

In Fig. 2.9, we plot the average convergence-times of the networks as a function of

network size 50-2,000 for the four models. In Table 2.2 we evaluate the differences among

these curves controlling a network’s size (N), average degree (Degree), and (0,1) indicator

variables for the edge-bundle, co-membership, and liaison modalities with the bridge

modality taken as the baseline. Similar findings were obtained with 660K observations

on a reduced range of network sizes 24-655. The convergence times of the bridge modality

are larger than those of the three other modalities, and the liaison modality has the fastest

convergence times. Higher average degrees lower times to convergence. Controlling for

network size and average degree, the convergence times of the edge-bundle modality are
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faster than those of the co-membership modality.

Table 2.2: Nonlinear regression results for convergence time, controlling for network
size and average degree, and indicator variables for the connectivity modalities with
bridge modality as baseline (15,200 networks, R2= 0.637)

coeff. s.e. p-value
Constant 6991.1 590.12 <.0001
N 11.558 0.241 <.0001
Degree -3300.9 403.98 <.0001
Edge-bundle -4652.9 86.969 <.0001
Co-membership -2993.9 287.29 <.0001
Liaison -7790.3 106.13 <.0001
N2 -0.0018372 9.9184e-05 <.0001

Consensus processes subject to white Gaussian noise

The general form of a French-DeGroot influence process with white Gaussian noise

is:

x(t+ 1) = Wx(t) + e(t) (2.9)

where e(t) is a random vector with zero mean and covariance Σe having independent

entries. In the presence of noise, the states of the agents will be brought close to each

other, but will not fully align to exact consensus. The resulting noisy consensus is

referred to as persistent disagreement. For strongly connected and aperiodic graphs, the

consensus dynamics (2.6) correspond to an irreducible and aperiodic Markov chain. The

matrix W then corresponds to the transition probability matrix and its normalized left

dominant eigenvector π corresponds to the stationary distribution vector of the chain.

The results on the steady-state disagreement by Jadbabaie & Olshevsky [73] apply to

reversible Markov chains which with the choice of weights on our adjacency matrix will

be met. For the Markov chain with reversible transition matrix W and with uncorrelated
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noise, the mean square asymptotic error δss can be measured by:

δss = πTHDπΣeDπ1n, (2.10)

where Dπ = diag(π), and H is the matrix of hitting times for the Markov chain. The

algorithm by Kemeny & Snell [74] is applied to compute H.

In Fig. 2.10, we plot the steady-state mean deviation from consensus, given by (2.10),

on the networks as a function of network size 50-2,000 for the four models. In Table 2.3

we evaluate the differences among these curves controlling a network’s size (N), aver-

age degree (Degree), and (0,1) indicator variables for the edge-bundle, co-membership,

and liaison modalities with the bridge modality taken as the baseline. Similar findings

were obtained with 660K observations on a reduced range of network sizes 24-655. The

steady-state mean deviations for the bridge modality are larger than those of the three

other modalities. Higher average degrees lower steady-state mean deviations from con-

sensus. Although the modalities have distinguishable effects, again we note that average

degree differences are “boiled into” the modality models, so that when average degree

is controlled, the relative ordering of modalities is altered. The edge-bundle and liaison

modalities have greater noise reduction properties than the co-membership modality.

Table 2.3: Nonlinear regression results for steady-state mean deviation from consen-
sus, controlling for network size and average degree, and indicator variables for the
connectivity modalities with bridge modality as baseline (15200 networks, R2= 0.768)

coeff. s.e. p-value
Constant 30.894 0.84085 <.0001
N 0.031003 0.0003434 <.0001
Degree -9.1312 0.57562 <.0001
Edge-bundle -16.807 0.12392 <.0001
Co-membership -10.502 0.40935 <.0001
Liaison -14.052 0.15122 <.0001
N2 -9.1291e-06 1.4133e-07 <.0001
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2.4 Discussion

We have proposed simple, synergistic, and stochastic algorithms to generate four

modalities of multi-group connectivity and have compared their implications. These al-

gorithms are a variant of what is known as planted partition or stochastic block models,

under some further topological constraints including that the intergroup connectivity is

shaped by an underlying tree. Models 1-3 are nested in the following sense: for appropri-

ate parameters, 1) graphs generated by the bridge connectivity structure are subgraphs of

those generated by the edge bundles, and 2) graphs generated by the edge bundle connec-

tivity structure could be subgraphs of those generated by the co-membership. However,

moving from the edge bundles to co-memberships, we introduce an additional constraint,

that is, edge bundles of the spanning tree are initiated from the same node in one of

neighboring subgroups in the co-membership model. The work touches on two central

traditions in network analysis: models of network structure and models of dynamical

processes that unfold on networks composed of multiple small groups with dense within-

group edges. In a connected network, any two such groups might be intersecting (with

one or more individuals who are members of both) or disjoint. Two disjoint subgroups

may be linked by a bridge, or by multiple edges, or by individuals who are not members

of any dense group. We consider networks that can be strictly characterized in terms of

one of these types of inter-group connectivity. The touchstone for our analysis is the work

that has been conducted on multiple-group connectivity based on bridges. Here we elab-

orate the analysis with a comparison of implications of group-connectivity based on (i) a

minimal set of bridges, (ii) a minimal block-model structure in which pairs of groups are

linked by multiple edges, (iii) a minimal set of group membership intersections, and (iv)

a hierarchical tree of group-independent agents (intermediary liaisons.) No doubt there

are many ways to construct realizations of each type of connectivity. No doubt there
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are many process metrics that might be examined. We compare structures in terms of

network process metrics. We focus on metrics of two processes—epidemic propagation

and consensus formation. These metrics are sensitive to network topology. We empha-

size that the results of these comparative analyses are not merely due to the different

numbers of links being added to isolated clusters. The regression results controlling for

the network sizes and average node degrees affirm this claim. We constrain topology to

four broad classes of markedly non-random clustered networks. Our contribution is to

show the feasibility of a principled approach to a comparative analysis that we believe is

currently lacking with respect to these distinguishable topological classes.

Our findings on the speed of viral propagation show that the speeds differ depending

on the form of multi-group connectivity. The average degree of a network has a positive

effect on the speed of viral propagation. If the average degrees differences, shown in

Fig. 2.7b, are characteristic features of the modalities, then Fig. 2.8 shows the net effect

of each modality. Controlling for network size and average degree, our regression analysis

in Table 2.1 evaluates the independent contributions of average degree and modality type.

If it were possible to construct modality types with identical average degrees, then the

regression results suggest that the bridge, edge-bundle, and liaison modalities do not

substantially differ in their speeds of viral propagation, and that the co-membership

modality dampens the speed of viral propagation.

Our findings on the times to convergence to consensus show that convergence times

differ depending on the form of multi-group connectivity. The average degree of a net-

work has a negative effect on convergence times, that is, higher average degrees are asso-

ciated with faster convergence to consensus. If the average degrees differences, shown in

Fig. 2.7b, are characteristic features of the modalities, then Fig. 2.9 shows the net effect of

each modality. The bridge modality has slower convergence times than all other modal-

ities. If it were possible to construct modality types with identical average degrees, then
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the regression results in Table 2.2 suggest somewhat similar results. As in Fig. 2.9, the

convergence times in the bridge modality are greater than all other modalities, and the

liaison modality has the fastest convergence times. The regression on the edge-bundle

and co-membership modalities indicates that, for a given average degree and network

size, convergence is faster for edge-bundles than co-membership modalities.

Finally, our findings for levels of steady-state stochastic deviations from consensus

in the presence of noise show that the mean deviations differ depending on the form

of multi-group connectivity. The average degree of a network has a negative effect on

steady-deviation, that is, higher average degrees are associated with smaller deviations

(more reduction of noise). If the average degrees differences, shown in Fig. 2.7b, are

characteristic features of the modalities, then Fig. 2.10 shows the net effect of each

modality. The bridge modality has greater deviations (less reduction of noise) than all

other modalities. If it were possible to construct modality types with identical average

degrees, then the regression results in Table 2.3 suggest somewhat similar results. As in

Fig. 2.9, the levels of noise reduction in the bridge modality are less than in all other

modalities. The regression on the edge-bundle, co-membership and liaison modalities

indicate that edge-bundles are associated with the greatest reduction of noise.

The important caveat on our findings is that they are conditional on positions taken

in the models with which we generated realizations of each modality; see Algorithms 1-2

in the appendix. In addition, although it is reasonable that differences of average degree

are associated with different modalities, we have not derived bounds on average degree for

each modality (this may be an intractable problem). Furthermore, our analysis of multi-

group connectivity modalities involves a uniform modality, whereas real networks with

multiple subgroups are likely to be connected with mixed modalities including instances

of bridges, edge-bundles, co-memberships, and liaison nodes who are not members of

any group. We believe that these obvious limitations are out-weighted by the insights
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obtained from an analysis of artificial network topologies with controllable features. In

the set of findings of this chapter, we were particularly struck by (1) the implications on

network process metrics of the social cohesion entailed in edge-bundle and co-membership

modalities of multi-group connectivity, and (2) by the strong effects on process metrics

of network differences of average degree arising from the multiple modalities.

An interesting future research direction is to propose sufficiently predictive indica-

tors that enable one to categorize an arbitrary graph into any of the four connectivity

structures discussed in this chapter. In other words, we are interested in the following

question: “given an empirically observed graph, can one provide a computationally effi-

cient algorithm to identify subgroups and classify them into these different connectivity

structures?” We find the results on the following literature relevant: recovery of the com-

munities in the prolific community detection literature [75, 76], graph clustering [77], and

graph modularity [78]. Stochastic block models are widely recognized generative mod-

els for community detection and clustering in graphs and they provide a ground truth

for identifying subgroups. [79] surveys recent developments for necessary and sufficient

conditions for community recovery and community detection in SBMs.
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(a) Plot of average shortest path

(b) Plot of average degree

Figure 2.7: In each plot red refers to the bridge model, purple to the edge bundle
model, green to the co-membership model, and blue to the liaison hierarchy model
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Figure 2.8: Plot of spectral radius

Figure 2.9: Plot of convergence time for the four network models with equal neigh-
boring weights
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Figure 2.10: Plot of δss of graph A for the four network models with equal neighboring
weights
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Chapter 3

Stable and Efficient Structures in

Multigroup Network Formation

3.1 Introduction

3.1.1 Motivation and problem description

To study the coordination and control features of a group task, the multiple groups’

performances must be fitted together. An enduring postulate in organization science is

that coordination and control cannot be achieved strictly by the authority structure, but

must also entail informal communication and influence networks that link the members of

different task-oriented groups; we focus on formation of such network structures. As the

size of a connected social network increases, multigroup formations that are distinguish-

able clusters of individuals become a characteristic and important feature of network

topology. The connectivity of multigroup networks may be based on edge bundles con-

necting multiple individuals in two disjoint groups, bridges connecting two individuals

in two disjoint groups, or co-memberships. A large-scale network may include instances
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of all of these connectivity modalities. We set up populations of multiple groups and

propose a dynamic model for formation of these intergroup connectivity structures.

Our economic dynamical model explains and predicts whether a network evolves into

different coordination and control structures. Medium and large scale organizations adopt

these multigroup structures to tackle complex nested tasks. Among the multitude of pos-

sible coordination and control structures, we study formation of multigroup connectivity

structures shown in Fig. 3.1, which are familiar constructs in the field of social network

science. For this purpose we apply a game-theoretic framework in which strategic agents

(a) Co-members (b) Bundles (c) Bridges

Figure 3.1: Schematic illustration of the three possible control and coordination structures

take actions based on the rate or importance of coordination problems. In other words, a

value is assigned to the coordination problem between any two distinct groups, so that all

control and coordination problems among groups are described by a square non-negative

matrix, as illustrated in Fig. 3.2. In our setting, agents are myopic, self-interested, and

have thorough knowledge of graph topology and the utility they acquire from any other

agent.

3.1.2 Related literature

Bridge, edge bundle, and co-membership connectivity models have been studied ex-

tensively in [80], where implications of these structures are investigated and generative

models are proposed for each. These prototypical structures can mitigate coordination
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Figure 3.2: F = frequency/importance of intergroup coordination problem

and control loss in an organization. Coordination and control importance of bridge con-

nected structure, in which communication between subgroups are based on single contact

edges, is the emphasis of the [46, 48], and [49] models. Coordination and control impor-

tance of the redundant ties structure, in which multiple redundant contact edges connect

pairs of groups, is the emphasis of [45], Chapter 8, [52], and [53]. Co-membership

intersection structures, in which subgroups have common members, is the emphasis of

the linking-pin model by Likert [41], as well as [56] and [57]. [81] and [82] propose a

community detection algorithm for overlapping networks.

Jackson and Wolinsky introduced a strategic network formation model in their seminal

paper [83]. They studied pairwise stability, where bilateral agreement is required for link

formation. Homogeneity and common knowledge of current network to all players are

two assumptions in this model. Jackson and Watts studied strategic network formation

in a dynamic framework in [84]. The network formation model we present in this work

is closely related to [83] and [84]. Jackson and Rogers examined an economic model of

network formation in [85] where agents benefit from indirect relationships. They showed

that small-world features necessarily emerge for a wide set of parameters.

In [86], Bala and Goyal proposed a dynamic model to study Nash and strict Nash

stability. In their model, starting from any initial network, each player with some positive
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probability plays a best response (or randomizes across them when there is more than

one); otherwise the player exhibits inertia. A Markov chain on the state space of all

networks is defined whose absorbing states are strict Nash networks. The authors proved

that starting from any network, the dynamic process converges to a strict Nash network

(i.e., the empty network or a center-sponsored star) with probability 1.

In [87], Olaizola and Valenciano extended the model in [86] and studied network

formation under linking constraints. An exogenous link-constraining system specifies the

admissible links. Players in the same component of the link-constraining network have

common knowledge of that component. This model collapses to the unrestricted setting

in [86] (when the underling constraining network is complete graph). The set of Nash

networks is a subset of Bala and Goyal’s unrestricted Nash network sets.

In the network formation game by Chasparis and Shamma in [88] and [89], agents

form and sever unidirectional links with other nodes, and stable networks are character-

ized through the notion of Nash equilibrium. Pagan and Dörfler [90] studied network

formation on directed weighted graphs and considered two notions of stability: Nash

equilibrium to model purely selfish actors, and pairwise-Nash stability which combines

the selfish attitude with the possibility of coordination among agents. McBride dropped

the common knowledge assumption and studied the effects of limited perception (each

player perceives the current network only up to a certain distance) in [91]. Song and van

der Schaar [92] studied a dynamic network formation model with incomplete information.

Community networks and their growth into potential socially robust structures is

studied in [93]. Bringmann et al. analyzed the evolution of large networks to predict link

creation among the nodes in [94]. [95] studied link inference problem in heterogeneous

information networks by proposing a knapsack-constrained inference method.
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3.1.3 Statement of contribution

We consider a strategic network formation game described by a cost of maintain-

ing links, a benefit of having connections, and an importance of coordination problems

among pre-specified groups. Our setup is a heterogeneous generalization of the famous

connection model. For this game, we study the resulting multi-group structures that are

pairwise stable and socially efficient.

For this game, we also introduce a formation dynamics whereby link formations re-

quire mutual consent and link removals can be initiated unilaterally. We study the

conditions that give rise to formation of multigroup structures, as well as conditions

which cause the multigroup structures be stable and/or efficient. Our contributions are

as follows:

We introduce certain threshold functions and provide bounds based on these functions

to study pairwise stable and efficient structures. We also investigate the convergence of

Formation Dynamics. For our analysis, we first focus on the structure of each group and

formation of intra-connections. We particularly study the conditions which result in each

group being a clique, and present results on pairwise stability, efficiency, and convergence

of these cliques.

We then focus on the interconnections among those cliques. We present results on the

pairwise stability and convergence to disjoint union of cliques for multigroup structures

of arbitrary sizes. The rest of the analysis for density of interconnections is divided into

two sections: two-group connectivity structures and multigroup connectivity structures.

For the two group structures, we provide a complete characterization of full ranges

of parameters for stability and efficiency. We present results on the pairwise stability

and efficiency of minimally connected, redundantly connected, and maximally connected

structures. We identify the ranges of parameter in which the efficient and the pairwise
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stable structure overlap and those in which they have a conflict.

We then investigate the multigroup structures. We study the pairwise stability of

minimally connected cliques along arbitrary interconnection structures. We show that

for the special case of the interconnection being a star graph, it is possible to identify the

boundaries of parameters for stability of all interconnections being minimally connected.

We also present results on formation of redundancies and for efficiency.

3.1.4 Preliminaries

Each undirected graph is identified with the pair (V , E). The set of graph nodes V 6= ∅

represents individuals or groups of individuals in a social network. |V| = n is the size of

the network. The pair (i, j) is called an edge and it indicates the interaction between the

two individuals i and j. The set of graph edges E represents the social interactions or ties

among all individuals. Throughout this chapter, since the individuals are unchangeable,

we refer to the network (V , E) simply as E .

The density of a graph is given by the ratio of the number of its observed to possible

edges,
2|E|

n(n− 1)
. In a complete graph every pair of distinct nodes is connected by an

edge. We denote the complete graph of size n by Kn. A clique is a subset of vertices of a

graph in which every two distinct vertices are adjacent. We say two graphs are adjacent

if they differ in precisely one edge. A path of length k is a sequence of nodes i1i2 . . . ik

such that {(is, is+1)} ∈ E . A walk of minimum length between two nodes is the shortest

path. dij(E) denotes the distance between nodes i and j, which is defined as the length

of the shortest path beginning at i and ending at j.
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3.2 Multigroup Network Formation Model

Consider a society of n individuals V , divided into m groups. The set of m groups

is denoted by {1, . . . ,m},m ≤ n. P = {P1, . . . , Pm} represents the partitioning of

individuals into the groups and is a set partition of size n, i.e, V =
m⋃
γ=1

Pγ, and
m⋂
γ=1

Pγ = ∅.

We use the shorthand notation sγ = |Pγ| denoting the size of group γ. Throughout this

chapter, we assume that sγ ≥ 3 for all γ ∈ {1, . . . ,m}.

Group coordination importance matrix (data): is given as F ∈ Rm×m, where 0 ≤

Fαβ ≤ 1 for α, β ∈ {1, . . . ,m} represents importance/frequency of coordination problem

between groups α and β. We assume F is a symmetric matrix with diagonal entries equal

to 1.

Individual coordination importance matrix : F̂ ∈ Rn×n, is obtained from F and the

partition P , i.e., F̂ = f(F, P ). We construct F̂ as follows:

F̂ij =


Fαβ, i ∈ Pα, j ∈ Pβ, i 6= j

0, i = j.

For the setting where groups are all of equal size s, one can write

F̂ = F ⊗ 1s1
T
s − In

At edge set E , the payoff function for individual i ∈ V is

Ui(E) =
n∑
k=1

F̂ikδ
dik(E) −

∑
k∈Ni(E)

c, (3.1)

where dik(E) is the number of steps from individual i to k, δ < 1 is the one-hop benefit,

and c is the cost of each link. The value of network E is defined as the sum of all
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individuals’ payoffs, i.e., v(E) =
∑n

i=1 Ui(E), and it indicates the social welfare. For a

given society V and value function v, E∗ is an efficient structure if its social welfare(value)

is maximized over all possible edge sets on V , i.e., E∗ = arg max
E

v(E). Given the pair

(i, j) in network E , we say that individual i benefits from edge {(i, j)} if Ui
(
E ∪{(i, j)}

)
>

Ui
(
E \ {(i, j)}

)
.

Formation Dynamics : Time periods are represented with countable infinite set N =

{1, 2, . . . , t, . . . }. In each period, a pair (i, j) is uniformly randomly selected and is added

to, or removed from, the network E according to the following rules:

• if {(i, j)} /∈ E , then it is added when its addition is marginally beneficial to the pair

of individuals (i.e., either both individuals benefit or one individual is indifferent

and the other benefits); the edge (i, j) is not added when its addition causes a

drop in the payoff of either or both individuals or both individuals are indifferent

towards it; and

• if {(i, j)} ∈ E , then (i, j) is removed when its removal benefits at least one of the

two individuals; no action is taken when both sides are either indifferent or benefit

from the existence of the edge.

Definition 3.2.1 (Pairwise Stability) A network E is pairwise stable if,

for all {(i, j)} ∈ E ,

Ui(E) ≥ Ui(E \ {(i, j)}) and Uj(E) ≥ Uj(E \ {(i, j)});

and for all {(i, j)} /∈ E ,

if Ui(E) < Ui(E ∪ {(i, j)}), then Uj(E) > Uj(E ∪ {(i, j)}).

Remark 3.2.2 According to Definition 3.2.1, if the edge (i, j) belongs to the pairwise

stable network, removing it results in a loss for i or j; and if the edge (i, j) does not
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belong to the pairwise stable network, adding it makes no difference or causes loss for i

or j.

Definition 3.2.3 E ′ defeats E if either E ′ = E \ {(i, j)} and Ui(E ′) > Ui(E), or E ′ =

E ∪ {(i, j)} and Ui(E ′) ≥ Ui(E) and Uj(E ′) ≥ Uj(E) with at least one inequality holding

strictly.

Lemma 3.2.4 A network is pairwise stable if and only if it does not change under For-

mation Dynamics.

Proof: To prove necessity, we refer to Remark 3.2.2. According to the definition, if

a network is pairwise stable, no network can defeat it, i.e., no links can be added to or

severed from it. To show sufficiency, note that a network not being changed by Formation

Dynamics, implies that:

(i) adding a link makes no difference or causes loss for at least one individual;

(ii) removing a link results in loss for at least one individual.

Therefore, the network is pairwise stable.

According to Lemma 3.2.4, if there exists some time t∗ such that from t∗ on, no

additional links are added to or severed from a network by Formation Dynamics, then

the network has reached the pairwise stable structure.

We define the following terms that we will frequently use throughout this chapter

indicating the density of the interconnections among the groups.

Definition 3.2.5 We say that a society of individuals consists of the disjoint union of

groups if there exists no interconnection among any pairs of groups. For a connected

pair, we say it is
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(i) minimally connected if there exists exactly one interconnection among the pair;

(ii) redundantly connected if there exist at least two interconnections among the pair;

(iii) maximally connected if all of the possible interconnections among the pair of groups

exist.

Fig. 3.3 represents a schematic illustration of the terms discussed above.

Remark 3.2.6 A minimally connected pair corresponds to the bridge connection (Fig. 3.1c),

redundantly connected to the ridge connection (Fig. 3.1b), and maximally connected to a

full co-membership connection (Fig. 3.1a.)

Disjoint Union Minimally Connected Redundantly Connected Maximally Connected

Figure 3.3: Schematic illustration of interconnection densities

We next define the Price of Anarchy (PoA) as a measure of how the efficiency of a

system degrades due to the selfish behavior of its individuals. It is calculated as follows:

PoA =
maxE v(E)

minp.w.stableE v(E)
.

Throughout this chapter we use the following threshold functions y1(s, δ), y2(s, δ),
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and y3(δ) defined by

y1(s, δ) = δ +
(
s− 1

)
δ2,

y2(s, δ) = δ − δ2 +
(
s− 1

)
δ2 −

(
s− 1

)
δ3 =

(
1− δ

)
y1(s),

y3(δ) = δ − δ2.

In what follows we will often suppress the argument δ in the interest of simplicity.

Under the conditions 0 < δ < 1 and s ≥ 3, we claim that,

0 < y3 < y2(s) < y1(s).

The proof is as follows: it is easy to see that y2(s) < y1(s). To verify y3 < y2(s), we

rewrite y2(s) as
(
δ − δ2

)(
1 + δ(s − 1)

)
= y3

(
1 + δ(s − 1)

)
> y3. Plots of these three

threshold functions for 0 < δ < 1, where s = 3 are depicted in Fig. 3.4. In what follows we

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5
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1.5

2

2.5

3

y1(3, �)

y2(3, �)

y3(�)
�

Figure 3.4: Plots of y1, y2, and y3 for s = 3.

provide bounds based on these functions to study pairwise stable and efficient structures,

and investigate the convergence of the Formation Dynamics when possible.
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3.3 Results on Formation of Disjoint Cliques

We first study the inner structure of each group in a pairwise stable network. Through-

out this chapter, we assume that the dynamics does not start with an initial state contain-

ing any interconnection. We define the invariant set of all subgraphs of disjoint cliques

as S =
{ m⋃
γ=1

Eγ | Eγ ⊂ EKsγ } where Eγ indicates the inner-network of group Pγ.

Theorem 3.3.1 (Formation of Cliques: Pairwise Stability, Efficiency, Convergence)

Consider n individuals partitioned into groups P1, . . . , Pm. Then, each one of these m

groups is a clique in the pairwise stable and in the efficient structure if and only if c < y3.

Moreover, starting from any state in the invariant set S, each group Pα will form a sα-size

clique along Formation Dynamics (introduced in Section 3.2).

Proof: We first provide the proof of sufficiency for pairwise stability: for any

individual i ∈ Pα, a direct link with individual j, (j 6= i) from the same group provides

a profit of δ − c. Without a direct link, this profit is equal to δdij where dij > 1 is the

distance between i and j in E \ {(i, j)}. Since δ − δ2 > c, we have δ − c > δ2 > · · · > δn;

meaning that all agents prefer direct links to any indirect link. Thus, if agents i and j

in group Pα are not directly connected, they will form a link and each will gain at least

(δ − c)− δdij > 0, i.e.,

for all {(i, j)} /∈ E , i, j ∈ Pα, i 6= j

Ui(E) < Ui(E ∪ {(i, j)}), and Uj(E) < Uj(E ∪ {(i, j)}).
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Moreover, no node has an incentive to break any link since its payoff strictly decreases if

it do so, i.e.,

for all {(i, j)} ∈ E , i, j ∈ Pα, i 6= j,

Ui(E) > Ui(E \ {(i, j)}), and Uj(E) > Uj(E \ {(i, j)}).

Thus, each group forms a clique and no intra-connection is removed after being formed,

and according to Lemma 3.2.4, these m groups are cliques in the pairwise stable structure.

To prove necessity, assume we have a pairwise stable clique. For Pα to remain a clique,

all pairs of nodes belonging to the same group should prefer to keep one-hop links rather

than having links with larger lengths, and thus δ − c > δ2 > δ3 > . . . . This proves the

claim that each group Pα is a clique if and only if c < δ − δ2. Convergence of dynamics

to cliques can be obtained directly from the same argument.

We now continue by first proving that if c < δ − δ2, in the efficient structure each

group is a clique. From the analysis above, when c < δ − δ2, we have:

v
(
E ∪ {(i, j)}

)
− v
(
E \ {(i, j)}

)
≥ Ui

(
E ∪ {(i, j)}

)
+ Uj

(
E ∪ {(i, j)}

)
− Ui

(
E \ {(i, j)}

)
− Uj

(
E \ {(i, j)}

)
≥ 2(δ − c− δ2) > 0

which holds for each pair (i, j) belonging to the same group, meaning that each group

is a clique in the efficient structure. We next prove necessity for efficiency: assume E is

the efficient structure and each group is a clique, i.e., {(i, j)} ∈ E for any two individuals
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i, j, (i 6= j) from the same group. Then, we have:

v(E)− v(E \ {(i, j)})

= Ui(E) + Uj(E)− Ui(E \ {(i, j)})− Uj(E \ {(i, j)})

= 2(δ − c− δ2) > 0,

which results in c < y3.

Note: Theorem 3.3.1 implies that formation of cliques requires c < 1/4.

Theorem 3.3.2 (Pairwise Stable Structures and Convergence: Disjoint Union of Cliques)

Consider n individuals partitioned into groups P1, . . . , Pm of sizes s1, . . . , sm respectively.

Assume that c < y3. Then, the unique pairwise stable structures consists of disjoint

union of cliques equal to the groups P1, . . . , Pm if and only if Fαβ ≤ max
s∈{sα,sβ}

c

y1(s)
for all

α, β ∈ {1, . . . ,m}, α 6= β. Moreover, starting from any state in the invariant set S, For-

mation Dynamics (introduced in Section 3.2) converges to this pairwise stable structure.

Proof: We first prove sufficiency. Since no interconnection exists in the invariant set

S, for any network E ∈ S, suppose two individuals i ∈ Pα and j ∈ Pβ are picked to decide

whether to add the corresponding interconnection or not. We know that Ui(E∪{(i, j)}) ≤

Fαβy1(sβ) − c and Uj(E ∪ {(i, j)}) ≤ Fαβy1(sα) − c, where equalities hold when both

groups form cliques. Since Fαβ ≤ max
s∈{sα,sβ}

c

y1(s)
, at least one of Ui

(
E ∪ {(i, j)}

)
≤ 0

and Ui
(
E ∪ {(i, j)}

)
≤ 0 holds. Therefore, the interconnection {(i, j)} does not belong

to pairwise stable structure and it does not form. From Theorem 3.3.1, we know that

unique stable state consists of the disjoint union of cliques equal to the groups {1, . . . ,m}.

Suppose that all groups form cliques at a time t∗. From then on, no link will be added or

removed. According to Lemma 3.2.4, the pairwise stable structure consists of the disjoint

union of cliques equal to the groups {1, . . . ,m}, and the network converges to this unique

stable state.
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To prove necessity, take any two individuals i ∈ Pα and j ∈ Pβ. Since {(i, j)} does

not belong to pairwise stable structure, we have at least one of Ui(E ∪ {(i, j)}) ≤ 0 and

Ui(E ∪ {(i, j)}) ≤ 0 holds, and therefore, Fαβ ≤ max
s∈{sα,sβ}

c

y1(s)
.

3.4 Two Group Connectivity Structure

In this section we study pairwise stable and efficient structures when individuals are

partitioned into two groups.

3.4.1 Pairwise Stability

In what follows we give the sufficient and necessary condition for pairwise stable

structures.

Theorem 3.4.1 (Pairwise Stability and Convergence with Two Groups) Consider

n individuals partitioned into groups P1, P2 of sizes s1 and s2 respectively. Then, under

the assumption c < y3, the network has

(i) a unique pairwise stable structure consisting of minimally connected cliques if and

only if

max
s∈{s1,s2}

c

y1(s)
≤ F12 < max

s∈{s1,s2}

c

y2(s)
;

(ii) a unique pairwise stable structure consisting of exact k (2 ≤ k ≤ min{s1, s2})

interconnections if and only if

max
s∈{s1,s2}

c

y2(s)− (k − 2)δy3

< F12 < max
s∈{s1,s2}

c

y2(s)− (k − 1)δy3

. (3.2)
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(iii) a unique pairwise stable structure consisting of maximally connected cliques if and

only if

c

y3

< F12 ≤ 1.

Moreover, starting from any state in the invariant set S, the Formation Dynamics (in-

troduced in Section 3.2) converges to the corresponding pairwise stable structure.

0 1

max
s2{s1,s2}

c

y2(s)
max

s2{s1,s2}
c

y1(s)

c

y3

Theorem III.2 Theorem IV.1 i) Theorem IV.1 ii) Theorem IV.1 iii)

F12

Figure 3.5: An illustration of the four ranges of parameter space in Theorems 3.3.2
and 3.4.1.

Proof:

From Theorem 3.3.2, we know that at least one interconnection will be formed under

Formation Dynamics if and only if F12 ≥ max
s∈{s1,s2}

c

y1(s)
. Without loss of generality, sup-

pose that E contain two cliques and at least one interconnection between them. Assume

that agents i and j, respectively from P1 and P2, are connected in E .

Take agents î from P1 and ĵ from P2. For î 6= i, ĵ = j, we have Uî(E ∪ {(̂i, j)}) =

(s1−1)δ+F12δ+(s2−1)F12δ
2−s1c and Uî(E\{(̂i, j)}) = (s1−1)(δ−c)+F12δ

2+(s2−1)F12δ
3,

implying Uî(E ∪ {(̂i, j)}) > Uî(E \ {(̂i, j)}) ⇐⇒ F12 >
c

y2(s2)
. From Uj(E ∪ {(̂i, j)}) =

(s2 − 1)δ + 2F12δ + (s2 − 2)F12δ
2 + (s2 + 1)c and Uj(E \ {(̂i, j)}) = (s2 − 1)δ + F12δ +

(s2 − 1)F12δ
2 + s2c, we obtain: Uj(E ∪ {(̂i, j)}) > Uj(E \ {(̂i, j)}) ⇐⇒ F12 >

c

y3

. Then,

from y2(s) > y3 > 0, we conclude that an additional interconnection {(̂i, j)} is added
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and maintained if and only if F12 >
c

y3

. Similarly, an additional interconnection {(i, ĵ)}

is added and maintained if and only if F12 >
c

y3

. For î 6= i, ĵ 6= j, using a similar

argument, we obtain that Uî(E ∪ {(̂i, ĵ)}) > Uî(E \ {(̂i, ĵ)}) ⇐⇒ F12 >
c

y2(s2)
and

Uĵ(E ∪{(̂i, ĵ)}) > Uĵ(E \{(̂i, ĵ)}) ⇐⇒ F12 >
c

y2(s1)
; which means that an additional in-

terconnection {(̂i, ĵ)} is added and maintained if and only if F12 > max
s∈{s1,s2}

c

y2(s)
(strictly

holds when s1 = s2). Thus, we conclude that at least two interconnections are added

and maintained if and only if F12 > min

{
c

y3

, max
s∈{s1,s2}

c

y2(s)

}
= max

s∈{s1,s2}

c

y2(s)
(strictly

holds when s1 = s2.) Therefore, the network contains precisely one interconnection if

and only if max
s∈{s1,s2}

c

y1(s)
< F12 < max

s∈{s1,s2}

c

y2(s)
. Moreover, from the moment when two

group form cliques and this unique interconnection builds, the network will not change.

According to Lemma 3.2.4, this concludes the proof of statement (i).

To prove (iii), assume that F12 > max
s∈{s1,s2}

c

y2(s)
. We have shown above that E contains

at least two interconnections between two cliques. As a result, for any agent î from P1 and

ĵ from P2, the distance between î and ĵ in E \{(̂i, ĵ)} is equal to either 2 or 3. If it is equal

to 2, then Uî(E∪{(̂i, ĵ)}−Uî(E \{(̂i, ĵ)} = Uĵ(E∪{(̂i, ĵ)}−Uĵ(E \{(̂i, ĵ)} = F12(δ−δ2)−c;

and if it is equal to 3, then Uî(E ∪ {(̂i, ĵ)} − Uî(E \ {(̂i, ĵ)} = Uĵ(E ∪ {(̂i, ĵ)} − Uĵ(E \

{(̂i, ĵ)} = F12(δ − δ3) − c. Interconnection {(̂i, ĵ)} is added and maintained if and only

if Uî(E ∪ {(̂i, ĵ)} − Uî(E \ {(̂i, ĵ)} > 0 and Uĵ(E ∪ {(̂i, ĵ)} − Uĵ(E \ {(̂i, ĵ)} > 0. Thus, we

conclude that {(̂i, ĵ)} is added and maintained if and only if F12 > max

{
c

δ − δ2
,

c

δ − δ3

}
.

Since max

{
c

δ − δ2
,

c

δ − δ3

}
=

c

δ − δ2
for 0 < δ < 1, {(̂i, ĵ)} is added and maintained

maintained if and only if F12 >
c

δ − δ2
=

c

y3

. Therefore, the network will not be changed

when all agents link with each other. By Lemma 3.2.4, this concludes the proof of (iii).

From statements (i) and (iii), we know that the pairwise stable structure contains at

least 2 but not fully numbers of interconnections if max
s∈{s1,s2}

c

y2(s)
< F12 <

c

y3

. Suppose

that (i1, j1), . . . , (ik−1, jk−1) are k − 1 interconnections between P1 and P2. Take agents
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î from P1 and ĵ from P2. Similar to the analysis in the proof of statement (i), we have

the following two cases:

(i) For î /∈ {i1, . . . , ik−1}, ĵ /∈ {j1, . . . , jk−1}, we have

Uî(E ∪ {(̂i, j)})− Uî(E \ {(̂i, j)})

= F12(y2(s2)− (k − 2)δy3), and

Uĵ(E ∪ {(̂i, j)})− Uî(E \ {(̂i, j)})

= F12(y2(s1)− (k − 2)δy3),

implying

Uî(E ∪ {(̂i, j)}) > Uî(E \ {(̂i, j)}), and

Uĵ(E ∪ {(̂i, j)}) > Uĵ(E \ {(̂i, j)})

⇐⇒ F12 > max
s∈{s1,s2}

c

y2(s)− (k − 2)δy3

.

(ii) For î ∈ {i1, . . . , ik−1}, ĵ /∈ {j1, . . . , jk−1} or î /∈ {i1, . . . , ik−1}, ĵ ∈ {j1, . . . , jk−1}, we

have

Uî(E ∪ {(̂i, j)}) > Uî(E \ {(̂i, j)}) and

Uĵ(E ∪ {(̂i, j)}) > Uĵ(E \ {(̂i, j)})

⇐⇒ F12 >
c

y3

.

Therefore, we conclude then k − th interconnection is added and maintained if and only

if F12 > max
s∈{s1,s2}

c

y2(s)− (k − 2)δy3

. Likewise, the (k + 1) − th interconnection is added

and maintained if and only if F12 > max
s∈{s1,s2}

c

y2(s)− (k − 1)δy3

. It follows that the unique

pair-wise stable structure has exact k (2 ≤ k ≤ min{s1, s2}) interconnections if and

only if max
s∈{s1,s2}

c

y2(s)− (k − 2)δy3

< F12 < max
s∈{s1,s2}

c

y2(s)− (k − 1)δy3

. This concludes

the proof of (ii).

Finally, we complete the proof of Theorem 3.4.1 by proving the convergence statement.
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Since c < y3, from Theorem 3.3.1 we know that the network structure, regardless of the

density of intra-group connections, consists of cliques of sizes s1 and s2. From above

analysis, starting from invariable set S, intra-connections will increase one by one until

one more intra-connection can not bring increasing of benefit for two players. Then, it

follows from Lemma 3.2.4 that the network can not be changed from then on, i.e., the

network will converge to the corresponding pairwise stable structure under the formation

dynamics in Section 3.2.

Theorem 3.4.1 implies that if F12 equals the boundaries, i.e., max
s∈{s1,s2}

c

y2(s)
, max
s∈{s1,s2}

c

y2(s)− δy3

, max
s∈{s1,s2}

c

y2(s)− 2δy3

,

. . . , max
s∈{s1,s2}

c

y3

, the pairwise stable structure is not unique. To show this, we provide the

following example for a society consisting of 8 individuals.

Example 3.4.2 Suppose that individuals are partitioned into groups P1 = {1, 2, 3} and

P2 = {4, 5, 6, 7, 8}. Let c = 0.2, δ = 0.5 and F12 = max
s∈{s1,s2}

c

y2(s)
= 0.4. Assume at time

0, each of the two groups have a line structure, illustrated in Fig 3.6. Now consider the

following two processes:

Process (A) At first, individuals 2 and 6 are chosen to play the game and interconnection (2, 6) is

formed. Then, individuals 3 and 7 are chosen to play the game, and interconnection

(3, 7) is also formed. After that, all possible intra-connections are considered and

formed. Finally, the network contains two interconnections and reaches pairwise

stability.

Process (B) At first, all possible intra-connections are considered and formed. Then individuals

2 and 6 are chosen to play the game and interconnection (2, 6) is formed. As a

result, the network contains only 1 interconnection and reaches pairwise stability.

Fig. 3.5 illustrates the scenarios specified in Theorems 3.3.2 and 3.4.1 for F12.
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Process A

Process B

Figure 3.6: An illustration of two processes in Example 3.4.2. At each step, the darker
dots are chosen to play the game.

Remark 3.4.3 As the difference between group sizes |s2 − s1| increases, the bound for

formation of bridges increases, and thus communication between groups becomes harder.

To see why this is true, for a society of n = s1 +s2 individuals, without loss of generality,

we assume that s1 ≤ s2. We know max
s∈{s1,s2}

c

y1(s)
=

c

min
s∈{s1,s2}

y1(s)
=

c

y1(min{s1, s2})
, and

since max
s∈{s1,s2}

c

y1(s)
is a monotonically decreasing function of s, as s1 increases, |s2− s1|,

and therefore, max
s∈{s1,s2}

c

y1(s)
decreases, and communication is facilitated. As illustrated

in Fig. 3.7, for a society of fixed size, as the sizes of the two groups becomes closer to

each other, the number of interconnections increases.

3.4.2 Efficiency

We now study the efficiency of two group structure.

Theorem 3.4.4 (Efficiency with Two groups) Consider n individuals partitioned into

groups P1, P2 of sizes s1 and s2 respectively. Under the assumption that c < y3, the effi-

cient structure consists of:
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Figure 3.7: Plots of no. of interconnections with fixed F12 = 0.25 and n = 20 as a
function of groups size s1, δ = 0.5, c = 0.2. Note that s2 = n− s1, and thus the plot
is symmetric about the line s1 = n

2 and maximized at s1 = n
2 .

(i) disjoint union of cliques if and only if

0 ≤ F12 ≤
cδ

y1(s1)y1(s2)
;

(ii) minimally connected cliques if and only if

cδ

y1(s1)y1(s2)
≤ F12 ≤

2c

y2(s2) + y2(s1) + (s1 + s2 − 4)δy3

;

(iii) redundantly connected cliques if and only if

2c

y2(s2) + y2(s1) + (s1 + s2 − 4)δy3

≤ F12 ≤
c

y3

;

(iv) maximally connected cliques if and only if

c

y3

≤ F12 ≤ 1.
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Proof: From Theorem 3.3.1, we know that addition of an intra-connection results in

increasing the payoff of both individuals involved in that link, as well as the social welfare,

and removal of any intra-connection causes loss for both individuals and decreases social

welfare. As a result, the efficient structure consists of two cliques. Suppose i ∈ P1 and

j ∈ P2. Let E0 = EKs1
⋃ EKs2 be the union of two cliques of sizes s1 and s2. We have

Uk(E0∪{(i, j)})− Uk(E0)

=



F12

(
δ + (s2 − 1)δ2

)
− c, k = i;

F12

(
δ + (s1 − 1)δ2

)
− c, k = j;

F12

(
δ2 + (s2 − 1)δ3

)
, k ∈ P1, k 6= i;

F12

(
δ2 + (s1 − 1)δ3

)
, k ∈ P2, k 6= j.

(3.3)

It follows that

v
(
(E0 ∪ {(i, j)}

)
− v(E0) = 2F12[δ + (s1 − 1)δ2 + (s2 − 1)δ2

+ (s1 − 1)(s2 − 1)δ3]− 2c.

E0 is the efficient structure if and only if v
(
(E0∪{(i, j)}

)
− v(E0) ≤ 0, which is equivalent

to:

F12 ≤
c

δ + (s1 − 1)δ2 + (s2 − 1)δ2 + (s1 − 1)(s2 − 1)δ3

=
cδ

y1(s1)y1(s2)
.

This concludes the proof of (i).
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Now let E1 = E0

⋃{(i, j)}. As elaborated above, v(E1)− v(E0) ≥ 0 if and only if

F12 ≥
c

δ + (s1 − 1)δ2 + (s2 − 1)δ2 + (s1 − 1)(s2 − 1)δ3

=
cδ

y1(s1)y1(s2)
.

Suppose î ∈ P1 and ĵ ∈ P2. For the case of î 6= i and ĵ 6= j, we have

Uk(E1 ∪ {(̂i, ĵ)})− Uk(E1) =



F12y2(s2)− c, k = î

F12y2(s1)− c, k = ĵ

0, k = i, j

F12(δ2 − δ3), otherwise.

For the case of î = i and ĵ 6= j, we have

Uk(E1∪{(i, ĵ)})− Uk(E1)

=



F12(δ − δ2)− c, k = i,

F12y2(s1)− c, k = ĵ,

0, k ∈ P2 and k 6= ĵ,

F12(δ2 − δ3), k ∈ P1 and k 6= i.
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For the case of î 6= i and ĵ = j, we have

Uk(E1∪{(̂i, j)})− Uk(E1)

=



F12(δ − δ2)− c, k = j,

F12y2(s2)− c, k = î,

0, k ∈ P1 and k 6= î,

F12(δ2 − δ3), k ∈ P2 and k 6= j.

It follows that

v(E1 ∪ {(̂i, ĵ)})− v(E1)

=



F12[y2(s2) + y2(s1) + (s1 + s2 − 4)(δ2 − δ3)]− 2c,

ĵ 6= j, î 6= i,

2F12y2(s1)− 2c, î = i, ĵ 6= j,

2F12y2(s2)− 2c, î 6= i, ĵ = j.

Since y2(s) is a monotonically increasing function of s and

2c

y2(s2) + y2(s1) + (s1 + s2 − 4)(δ2 − δ3)

=
c

y2(s1) + (s2 − 2)(δ2 − δ3)

=
c

y2(s2) + (s1 − 2)(δ2 − δ3)
,

we have

2c

y2(s2) + y2(s1) + (s1 + s2 − 4)(δ2 − δ3)

< min
s∈{s1,s2}

c

y2(s)
.
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c

y3

F12

c�

y1(s1)y1(s2)
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y2(s1) + y2(s2) + (s1 + s2 � 4)�y3
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y1(s)
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)

Figure 3.8: An illustration of the ranges of parameter space in Theorems 3.4.1
and 3.4.4. The intervals indicated above the horizontal line refer to bounds of pairwise
stability and those below the horizontal line refer to bounds of efficiency.

We then conclude that v(E2∪{(̂i, ĵ)})−v(E2) ≤ 0 if and only if F12 ≤
2c

y2(s2) + y2(s1) + (s1 + s2 − 4)δy3

.

Statement (ii) follows accordingly.

Assume F12 ≥ max
s∈{s1,s2}

c

y2(s)
. From statement (ii), we know that the efficient structure

has at least two interconnections. For any agent î from P1 and ĵ from P2, as elaborated

in the proof of Theorem 3.4.1, one has

v(E ∪ {(̂i, ĵ)} − v(E \ {(̂i, ĵ)} ≥ 2[F12(δ − δ2)− c],

which concludes statements (iii) and (iv).
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From the properties of y1(s), y2(s), and y3, we have:

(i) if δ ≥ max
s∈{s1,s2}

s− 3

n− 3
, then

cδ

y1(s1)y1(s2)
< max

s∈{s1,s2}

c

y1(s)

≤ 2c

y2(s2) + y2(s1) + (s1 + s2 − 4)δy3

< max
s∈{s1,s2}

c

y2(s)
;

(ii) if δ < max
s∈{s1,s2}

s− 3

n− 3
, then

cδ

y1(s1)y1(s2)
<

2c

y2(s2) + y2(s1) + (s1 + s2 − 4)δy3

< max
s∈{s1,s2}

c

y1(s)

< max
s∈{s1,s2}

c

y2(s)
.

From Theorems 3.4.1 and 3.4.4, we can directly obtain the conditions for the equivalence

between pairwise stability and efficiency.

Corollary 3.4.5 Consider n individuals partitioned into groups, P1 and P2 of sizes s1

and s2 respectively. Under the assumption c < y3, the efficient structure has equal or more

interconnections than the pairwise stable structure. Moreover, the efficient structure is

the pairwise stable structure if
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(i) for δ ≥ max
s∈{s1,s2}

s− 3

n− 3
,

F12 ∈
[
0,

cδ

y1(s1)y1(s2)

]
⋃[

max
s∈{s1,s2}

c

y1(s)
,

2c

y2(s2) + y2(s1) + (s1 + s2 − 4)δy3

]
⋃[

c

y3

, 1

]
, or

(ii) for δ < max
s∈{s1,s2}

s− 3

n− 3
,

F12 ∈
[
0,

cδ

y1(s1)y1(s2)

]⋃[ c
y3

, 1

]
,

We illustrate the compatibility (and incompatibility) between the pairwise stable and

efficient structures in Fig. 3.8. The intersections of efficient and pairwise stable structures

are highlighted.

Corollary 3.4.6 Consider n individuals partitioned into groups P1 and P2 of sizes s1 and

s2, respectively. Under the assumption c < y3, if the efficient structure is not pairwise

stable, then the efficient structure has more interconnections than the pairwise stable

structure.

Proof: If the efficient structure is not pairwise stable, it implies that it can be

changed by Formation Dynamics. Suppose that it has less interconnections than pairwise

stable structure. Then, adding interconnections can make it pairwise stable, which means

that both players involved in the interconnection benefit from this interconnection. Then

the social welfare increases which is conflict with the fact that the structure is efficient.

Thus, the efficient structure has more interconnections than the pairwise stable structure.
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Remark 3.4.7 For the two intervals
cδ

y1(s1)y1(s2)
< F12 < max

s∈{s1,s2}

c

y1(s)
and

2c

y2(s2) + y2(s1) + (s1 + s2 − 4)δy3

<

F12 < max
s∈{s1,s2}

c

y2(s)
, the pairwise stable structure is not efficient. For max

s∈{s1,s2}

c

y2(s)
≤

F12 <
c

y3

, the pairwise stable structure might not be efficient. This is because individuals

are rational and selfish (i.e., they only care about their own payoffs.) Therefore, total

social utility might drop when an individual tries to maximize its own payoff. Specifically,

(i) when
cδ

y1(s1)y1(s2)
< F12 < max

s∈{s1,s2}

c

y1(s)
, an individual experiences loss by having

an interconnection, although that interconnection could bring profit for other indi-

viduals and, therefore, result in an increase of total utility. The individual refuses

to add or maintain this interconnection.

(ii) when
2c

y2(s2) + y2(s1) + (s1 + s2 − 4)δy3

< F12 <
c

y3

, as mentioned in the proof of

Theorem 3.4.4, there exists at least one interconnection {(i, j)}, i ∈ P1, j ∈ P2. For

the two individuals î ∈ P1 and ĵ ∈ P2 (̂i 6= i, ĵ 6= j), an interconnection causes loss

for the player from the larger group, but brings profit for all other individuals, which

results in removal of the interconnection or rejection in adding it and, therefore, in

total utility loss.

Fig. 3.9 shows the number of interconnections and social welfare for both efficient and

stable structures for two cliques of sizes 3 and 5, where the value of δ = 0.5 and c = 0.2.

Note that:

(i) As shown in Fig. 3.9a, when F12 =
c

y3

which evaluates to 0.8 for the choice of our

parameters, there exist non unique pairwise stable and efficient structures, and the

number of interconnections for those structures vary between 3 and 15.

(ii) As shown in Fig. 3.9a and Fig. 3.9b, for F12 ∈ (0.67, 0.2)∪ (0.23, 0.53), the pairwise

stable structure is not efficient and thus the social welfare of efficient structures

is always greater than that of pairwise stable structures. Fig. 3.10 shows plot of

92



Stable and Efficient Structures in Multigroup Network Formation Chapter 3

PoA as a function of F12. We observe that the slope for F12 ∈ (0.67, 0.2) is the

highest. This is because in this interval, the pairwise stable structure does not have

any interconnection, whereas the efficient structure has one interconnection. This

link brings large value for the overall network and makes a large difference in social

welfare of two kinds of structures.

We next discuss the evolution of intra vs. interconnections according to Formation

Dynamics, when starting from an empty graph.

Remark 3.4.8 (Formation of intra- vs. interconnections) Starting from an empty

(or sparse) graph, initially the speed of formation of intra-connections is generally higher

than that of interconnections. Fig. 3.11 illustrates the fact that at the beginning of the

formation dynamics, a certain amount of intra-connections is required to produce enough

incentives for both groups to communicate through an interconnection.

3.5 Multigroup Connectivity Structure

In what follows we analyze the more general case of having more than two groups.

Consider n individuals partitioned into groups P1, . . . , Pm, and the payoff function defined

above with 1-benefit δ < 1 and edge cost c, and functions y1, y2, and y3. From Theorem

3.3.1 we know that each group forms a clique when y3 > c. We introduce the undirected

graph T = (VP , ET ), whose nodes represent groups and (α, β) ∈ ET if there exists at least

one connection between Pα and Pβ.

Theorem 3.5.1 (Sufficiency Condition for Minimally Connected Cliques) Consider

n individuals partitioned into groups P1, . . . , Pm of sizes s1, . . . , sm respectively. Assume

that c < y3 and T is connected. Then, there exists a pairwise stable structure consisting

of minimally connected cliques along T , if
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Figure 3.9: Plots of no. of interconnections and social welfare as a function of F12 for
two groups of sizes 3 and 5, δ = 0.5, c = 0.2.
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Figure 3.10: Plot of price of anarchy as a function of F12 for two groups of sizes 3 and
5, δ = 0.5, c = 0.2.
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(i) for all (α, β) ∈ ET , α, β ∈ {1, . . . ,m},

m∑
λ 6=α,λ=1

Fαλ(δ
d′αλ − δdαλ)(1 + (sλ − 1)δ) > c,

m∑
λ 6=β,λ=1

Fβλ(δ
d′βλ − δdβλ)(1 + (sλ − 1)δ) > c,

Fαβ < max
s∈{sα,sβ}

c

y2(s)
; and

(3.4)

(ii) for all (α, β) /∈ ET , α, β ∈ {1, . . . ,m},

m∑
λ 6=α,λ=1

Fαλ(δ
d′αλ − δdαλ)(1 + (sλ − 1)δ) < c,

or
m∑

λ 6=β,λ=1

Fβλ(δ
d′βλ − δdβλ)(1 + (sλ − 1)δ) < c,

(3.5)

where d′µλ = dµλ(ET ∪ {(α, β)}) and dµλ = dµλ(ET \ {(α, β)}).

Proof: Suppose the network E0 (consisting of disjoint cliques) be connected along

T and satisfy

(i) if (α, β) ∈ ET , there is only one inter-link between Pα and Pβ;

(ii) for every group Pα, only one agent iα has inter-links.

For any pair of (α, β), let E ′′ = E0 ∪ {(iα, iβ)} and E ′ = E0 \ {(iα, iβ)}. it is easy to find

that

Ui(E ′′)− Ui(E ′) =
m∑

k=1,k 6=α

Fkα
∑
l∈Pk

(δdil(E
′′) − δdil(E ′))− c.

Therefore, we have

Uiα(E ′′)− Uiα(E ′) =
m∑

λ 6=α,λ=1

Fαλ(δ
d′αλ − δdαλ)(1 + (sλ − 1)δ)− c
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and

Uiβ(E ′′)− Uiα(E ′) =
m∑

λ 6=β,λ=1

Fβλ(δ
d′βλ − δdβλ)(1 + (sλ − 1)δ)− c.

Therefore, for (α, β) ∈ ET , it follows from (3.4) that E ′′ defeats E ′. Similar to the proof

of Theorem 3.4.1, since Fαβ < maxs∈{sα,sβ}
c

y2(s)
, there only exists one inter-link between

Pα and Pβ. For (α, β) /∈ ET , (3.5) implies that there exist no inter-link between Pα and

Pβ.

By Theorem 3.2.4, since network E0 can not be changed under dynamics, we can

conclude that network E0 is stable.

Remark 3.5.2 Theorem 3.5.1 answers the question: given a certain matrix F and graph

structure E is E pairwise stable or not?

Corollary 3.5.3 For the special case of interconnection structure being a star, with Pγ

as the central group, the sufficient condition of Theorem 3.5.1 can be simplified as follows:

(i) for all α ∈ {1, . . . ,m}, (α 6= γ)

Fαγ > max
s∈{sα,sγ}

c

y1(s)
; and

(ii) for all (α, β) ∈ {1, . . . ,m}, (α, β 6= γ),

Fαβ < max
s∈{sα,sβ}

c

y2(s)
.

In the following example, we illustrate that due to randomness in choosing the pair of

players, Formation Dynamic does not always converge to a unique stable structure even

for the same initial network structure and matrix F .
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Example 3.5.4 Consider the case where we have
c

y1(s)
< Fαβ <

c

y2(s)
for all α, β, and

that δ <

√
5− 1

2
. We have five equal size groups named {1, 2, . . . , 5}. Two different

processes are shown in Fig. 3.12.

Process (A) For the process shown in Fig. 3.12a the order of pair selection is as follows: (1, 2)→

(1, 3)→ (1, 4)→ (1, 4)→ (1, 5). Note that by (1, 2) we mean an individual selected

from group 1 paired with an individual from group 2, which results in the star graph

being the convergent pairwise stable structure.

Process (B) Now, consider the process shown in Fig. 3.12b for which the order of pairs of groups

selected is as follows: (2, 3) → (1, 2) → (1, 3) → (1, 4) → (3, 5) → (2, 4) → (4, 5).

At the very last step, we have:

Ui
(
E ∪ {4, 5} − Ui(E \ {4, 5})

)
=F45

(
y1(s)

)
− F45

(
δ3y1(s)

)
+ F35

(
δy1(s)

)
− F35

(
δ2y1(s)

)
− c.

Since F35, F45 <
c

y1(s)
and δ <

√
5− 1

2
, we conclude that

F45(1− δ3) + F35(δ − δ2) >
c

y1(s)
.

Consequently, we obtain

Ui
(
E ∪ {4, 5} − Ui(E \ {4, 5})

)
> 0

which means that the connection (4,5) is formed. Now since we have Fαβ <
c

y2(s)
,

no connected triad and thereby, no additional links will be formed. Also no link will

be removed. Therefore, the final structure in Fig. 3.12b, which is a ring, is stable.
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Example 3.5.4 shows that, based on the order of the sequence of selected pairs, we can

have two or possibly more convergent stable structures, and therefore, the convergence

results cannot be generalized and the convergent structure is not always unique.

From Theorem 3.3.1 we know that each group forms a clique. We now analyze

the interconnections among those cliques. Theorem 3.5.5 addresses the redundancy of

interconnections.

Theorem 3.5.5 (Formation of Redundancies) Consider n individuals partitioned into

groups P1, . . . , Pm of sizes s1, s2, . . . sm. Suppose that c < y3. Then, under Formation

Dynamics,

(i) redundant interconnections between Pα and Pβ will be formed and never removed,

if Fαβ > max
s∈{sα,sβ}

c

y2(s)
, and

(ii) maximal interconnections between Pα and Pβ will be formed and never removed, if

c

y3

< Fαβ ≤ 1.

Fig. 3.13 illustrates the scenarios for Fαβ’s. The horizontal axis corresponds to the

values of Fαβ where {αβ} belongs to the edge-set of the spanning tree, and the vertical

axis corresponds to all other Fαβ’s.

Theorem 3.5.6 (Efficiency) For n individuals partitioned into groups according to P ,

the efficient structure requires the same node to be chosen from each clique to provide

bridges to other cliques, i.e., for a fixed interconnection structure and number of nodes,

choosing the same representative from each clique increases the social welfare.

Proof: Suppose that the density and the structure of interconnections are fixed. It

is easy to see that by choosing the same representative from each clique, the distance

between individuals from different cliques would be shortened, resulting in the term δdij

in equations (3.1) being larger. Therefore, the social welfare will increase.
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However, this structure is unlikely to be pairwise stable since the representative would

bear a high cost for maintaining these interconnections. Figure 3.15 illustrates two net-

works with the same interconnection structureswhere one network has higher social wel-

fare due to each group having only one representative.

3.6 Conclusion

This chapter proposes the first strategic network formation model that, given a matrix

specifying the frequency of a coordination problem among groups, identifies the condi-

tions that result in multigroup formation. The model deviates from the seminal papers

on strategic network formation in that it accounts for heterogeneous frequency of control

problems arising among the individuals and investigates pairwise stability and efficiency

of multigroup connectivity structures, as well as convergence of the formation dynamics.

In our model link formations occur bilaterally and thus many of the classical game-

theoretic concepts do not apply to our framework. In particular, to study equilibrium

structures, we utilize the concept of pairwise stability. A key challenge in our problem

stems from the fact that not many tools are available for rigorous analysis or that they

cannot be applied to the case of heterogeneous coordination problems among groups.

We identified the ranges of parameters where pairwise stable and efficient structures

do and do not coincide and concluded that, for two-group structures, the efficient struc-

tures always has the same or a larger number of links than the pairwise stable ones. We

also considered the price of anarchy and observed that the highest value occurs for the

case when pairwise stable structures consist of disjoint union of cliques and the efficient

structure has one link. Similar to the classical models, at the two ends of the spectrum

of link values there is an overlap between efficient and stable structures.

We presented the conditions that result in the formation dynamics starting from
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an invariant set converge to cliques, and provided rigorous results for the number of

interconnections in two-group structures. However, exact identification of the boundaries

that result in certain number of interconnections among arbitrary number of groups with

arbitrary size and interconnection structure is out of scope of this chapter.

We note that by providing a full characterization of pairwise stability and efficiency

for a two-group model, we focus on local topologies versus global topologies, as the

individual interconnections can capture valuable information about the whole network

and that all interconnections have subsets of two groups. This can be interpreted into

taking the distance only for the people in one’s group or in the next immediate group in

the utility function.
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Figure 3.12: The processes of Example 3.5.4. At each step, shaded nodes represent
the groups which the selected individuals belong to, and the outcome of the game
(action taken regarding link addition, link removal, or indifference) is represented in
the next.
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Figure 3.13: An illustration of ranges of parameter space in Theorem 3.5.5
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(a) (b)

Figure 3.15: In network a) each clique has only one representative, whereas in figure
b) some cliques have multiple representatives.

105



Appendix A

Algorithm Specifications

In this appendix we present a detailed pseudocode description for three relevant algo-

rithms. Specifically, we present pseudocode for generating relative subgroup sizes, for

the sub-problem of generating a sequence of realizations of a random variable subject to

a fixed sum, and for the liaison generative model.

Algorithm 1 Generating sequence of relative subgroup sizes

Input: n = number of nodes
Parameters: α = 3 exponent of power law
Output: sequence of relative subgroup sizes p

1: Define a random variable X taking values over {3, 4, . . . , n}, with probability mass
function P [X = x] ∝ 1/x3 to denote the random size of the subgroups

2: Invoke Algorithm 2 to incrementally and greedily generate a sequence of realizations
for X, denoted by {S1, . . . , Sk}, satisfying the constraint S1 + · · ·+ Sk = n

3: for i = 1 : k do
4: pi ← Si/n
5: end for
6: return p
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Algorithm 2 Generating a sequence of realizations of a given random variable
with fixed sum
Input: a discrete variable X taking values in {xmin, . . . , xmax} with given pmf, number:
n
Output: S = {S1, . . . , Sk} a sequence of realizations of X, adjusted in a greedy
incremental way such that S0 + · · ·+ Sk = n

1: S ← {}, ntmp ← n
2: while ntmp ≥ xmin do
3: x̄← realization of X
4: if x̄ ≤ ntmp then
5: S ← S ∪ {x̄},
6: ntmp ← ntmp − x̄
7: end if
8: end while
9: for i = 1 : ntmp do

10: Randomly select an number S∗ in the sequence S satisfying S∗ < xmax

11: S∗ ← S∗ + 1
12: end for
13: return S

Algorithm 3 Liaison hierarchy connectivity

Input: collection of subgroups generated using Algorithm 1
Parameters: branching factor of each liaison = 2 or 3
Output: graph composed of subgroups plus hierarchy interconnections

1: Define a random variable L taking values over {2, 3}, with pmf P [L = l] ∝ 1/l3 to
denote the random branching factor of liaisons

2: nl ← no. of subgroups
3: while nl > 1 do
4: invoke Algorithm 2 to generate a sequence of realizations for L, denoted by
{S1, . . . , Sk}, satisfying the constraint S1 + · · ·+ Sk = nl

5: for i = 1 : k do
6: Generate a liaison with branching factor Si
7: Incrementally connect the liaison to Si unattended subgroups, if any exist, or

unattended liaisons, after attending to all subgroups
8: end for
9: nl ← k

10: end while
11: Assign one liaison to the top of the hierarchy
12: return hierarchical tree with the subgroups as the leaves
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