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Abstract

Task Allocation and Vehicle Routing in
Dynamic Environments

by

Stephen Leslie Smith

Autonomous vehicles and sensors have the potential to transform many aspects
of societal infrastructure, from transportation networks and assisted living, to
emergency response systems and military operations. In fact, the transformation
is already occurring in areas such as reconnaissance and environmental monitoring.
However, in these applications autonomous vehicles are typically deployed in
small numbers, tightly coupled with human control. To realize the full potential
of such systems there is a required shift towards large groups of networked and
highly autonomous vehicles, capable of performing complex and evolving tasks.
This shift calls for vehicles that can adapt to dynamic environments, utilizing
newly acquired information to re-allocate resources, and re-plan routes.

This thesis addresses problems in distributed task allocation and in dynamic
vehicle routing. In task allocation we consider a target assignment problem in
which a group of vehicles must divide a set of targets (tasks) among themselves.
In dynamic vehicle routing—where vehicles must complete spatially distributed
tasks that arrive sequentially in time—we consider several problems. First, we
consider a problem in which the vehicles have different capabilities, and each task
requires a team of vehicles for its completion. Second, we consider a problem in
which tasks have different levels of urgency, and thus the vehicles must prioritize
the tasks, completing urgent tasks with minimal delay while simultaneously
considering and completing less urgent tasks. Finally, we consider a problem
in which task locations are non-stationary, and a variation wherein a vehicle
must guard a boundary from approaching targets. Our technical approach to
each of these problems follows the same basic steps. We show that the problem
exhibits an underlying structure that can be exploited to determine fundamental
limits on the achievable performance. Then, we design novel and provably
efficient algorithms for solving the problem. The solutions combine aspects of
combinatorial optimization, stochastic processes, and distributed control.
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Chapter One

Introduction

Systems of networked autonomous vehicles1 have the potential to transform many
aspects of our societal infrastructure, from transportation networks and assisted
living, to emergency response systems and military operations. In fact, the
transformation is already occurring in several areas. One area is environmental
monitoring, where autonomous vehicles are currently being deployed for ocean
sampling (see Leonard et al., 2007), and for estimating the boundaries of wildfires
(see Casbeer et al., 2006) or oil spills (see Clark and Fierro, 2007). Another
area is in reconnaissance, where there have been significant advances in using
autonomous vehicles to gather information in remote or dangerous environments
(see Beard et al., 2006). However, in these applications, autonomous vehicles
are typically deployed in small numbers, tightly coupled with human control.
To realize the full potential of such systems, there is a required shift towards
large groups of networked and highly autonomous vehicles, capable of performing
complex and evolving tasks. This shift calls for vehicles that can adapt to dynamic
environments, utilizing newly acquired information to re-allocate resources, and
re-plan routes; that is, vehicles that can dynamically perform task allocation and
vehicle routing. It is these two problems—task allocation and vehicle routing—
that will be the focus of this thesis.

Broadly speaking, task allocation is concerned with the following problem:

Given a group of a vehicles and a set of tasks, decide which vehicle(s)
should perform which task(s).

An illustration of task allocation is shown in Figure 1.1. We are typically thinking
of tasks that consist of a location (or set of locations) and a service to be provided
at that location. In the settings of environmental monitoring and reconnaissance,
a task may consist of a location at which an unmanned aerial vehicle is needed
to take a picture or some video footage. After determining a task allocation, the
problem of vehicle routing is as follows:

Given an allocation of tasks to vehicles, determine routes that allow
each vehicle to complete its tasks.

1We use the word “vehicle” to refer to any form of robotic agent capable of motion.
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Figure 1.1: An illustration of task allocation. Vehicles are denoted by chevrons, and
task locations by disks. The left-figure shows a group of vehicles and a set of tasks and
the right-figure shows an allocation of tasks to vehicles.

Figure 1.2: An illustration of vehicle routing. Vehicles are denoted by chevrons, and
task locations by disks. The left-figure shows a task allocation and the right-figure
shows a set of routes for completing the tasks.

An illustration of vehicle routing is shown in Figure 1.2. In task allocation and in
vehicle routing we are often interested in minimizing a metric, or cost function,
such as the amount of time until all tasks are completed. Notice, however, that the
problems of allocation and routing are interconnected; to equitably divide tasks
among vehicles, one needs to know the amount of time it will take for a vehicle
to complete a set of tasks. However, there are many important applications
for which the problems can be decoupled, and thus task allocation and vehicle
routing can be studied independently.

As stated above, many future applications call for highly autonomous vehicles
that are capable of performing complex and evolving tasks. Thus, we would like
to address the problems of task allocation and vehicle routing in the distributed
setting, where allocation and routing decisions are made by the vehicles rather
than a supervisor. In addition, we are interested in dynamic environments, where
new task information becomes available in real-time. Thus, the focus of this
thesis is on the areas of distributed task allocation and dynamic vehicle routing.
In the following sections we will review the existing literature in allocation and

2



Chapter 1. Introduction

routing and describe the contributions of this thesis.

1.1 Literature Synopsis

In this section we give an overview of the existing literature in the areas of task
allocation and vehicle routing. This will allow for a more concrete statement of
the contributions of the thesis. However, each chapter of the thesis deals with a
specific problem in the area. Thus, at the beginning of each chapter we review
the literature related directly to the chapter’s topic.

1.1.1 Centralized task allocation

In a centralized setting, there is a single processor (supervisor) is given complete
information of the vehicles and tasks, and must determine an efficient allocation.
In many cases such a problem can be cast in the combinatorial optimization
framework. For example, if there are an equal number of vehicles and tasks,
and the goal is simply to assign one vehicle to each task, then the problem is
known as the maximum matching problem (Korte and Vygen, 2005). If one
wishes to capture the notion of efficiency, then we many be interested in finding
a maximum matching that minimizes a cost function. If the cost function is
the sum of distances from each vehicle to its assigned task, then the problem
is known as the sum assignment problem (Korte and Vygen, 2005). Another
choice of cost function is to minimize the maximum distance between vehicles and
their assigned targets. This problem is commonly referred to as the bottleneck
assignment problem (Burkard, 2002). There exist efficient polynomial time
algorithms for the solution of all these problems (Hopcroft and Karp, 1973),
(Kuhn, 1955), (Burkard, 2002). The auction algorithm (Bertsekas and Tsitsiklis,
1997) also provides a solutions to the sum assignment problem, and has the
advantage that can be implemented on a parallel processing machine.

1.1.2 Decentralized task allocation

In decentralized task allocation the goal is generally to assign vehicles to spatially
distributed tasks while maximizing the “score” of the mission. Gerkey and Mataric
(2004) give a taxonomy of task allocation problems, dividing problems into groups
based on, among other things, the number of tasks a vehicle can execute, and the
number of vehicles required for a task. As an example, Parker (1998) designed
the ALLIANCE architecture for fault-tolerant multi-vehicle coordination, which
provides a method for task allocation. In papers such as (Jin. et al., 2003;
Schumacher et al., 2003; Godwin et al., 2006; Alighanbari and How, 2008; Brunet
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et al., 2008), advanced heuristic methods are developed, and their effectiveness
is demonstrated through simulation or real-world implementation. Bethke et al.
(2008) provide a nice review of task allocation for unmanned aerial vehicles, with a
focus on hardware implementation. There have been other interesting approaches
to task allocation. For example, Moore and Passino (2007) adapt the auction
algorithm to solve a task allocation problem in the presence of communication
delays. Castañón and Wu (2003) study the problem of dynamically reassigning
vehicles as new tasks arrive and old tasks expire. Arslan et al. (2007) formulate
a task allocation problem as a multi-player game and seek to optimize a global
utility. Finally, Zavlanos and Pappas (2008) develop a task allocation algorithm
based on hybrid systems tools.

1.1.3 Classic vehicle routing

Vehicle routing problems are concerned with planning optimal vehicle routes
for providing service to a given set of customers. The routes are planned with
complete information of the customers, and thus the optimization is static, and
typically combinatorial (Toth and Vigo, 2001). Arguably, the most famous vehicle
routing problem is the traveling salesperson problem (TSP) (see Applegate et al.,
2006) 2. In the TSP, there are a fixed number of customer locations (or tasks),
and the goal is to find the shortest tour which visits each location exactly once,
and returns to the starting point. A more thorough review of the results on the
TSP and related problems is given in Chapter 2.

Other interesting vehicle routing problems include the TSP for the Dubins
vehicle (Savla, Frazzoli and Bullo, 2008) and for the double integrator (Savla et al.,
2009); the deadline-TSP, where each location has a deadline before which it must
be visited (Bansal et al., 2004); vehicle routing with time-windows (Solomon,
1987), where locations may also have a start time before which they cannot
be visited; the Dial-a-ride problem (Psaraftis, 1980) and its many variations
(Cordeau and Laporte, 2003), where each demand for service consists of a pick-up
location and a destination; orienteering problems (Blum et al., 2007) where there
is a prize at each location, and the vehicle must maximize the value of prizes
collected in a fixed time horizon; and, the minimum latency problem (Blum et al.,
1994), where the vehicle seeks to minimize the sum of service latencies for each
demand. An in-depth characterization of vehicle routing problems is given by
Toth and Vigo (2001) and Golden et al. (2008).

Recently, researchers have looked at the Euclidean TSP with moving objects.
In (Chalasani and Motwani, 1999) the authors consider objects moving on straight
lines in the y-direction and focus on the case when the objects are slower than

2This problem is also commonly referred to as the traveling salesman problem.
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the vehicle and when the vehicle moves parallel to the x- or y-axis. The same
problem is studied in (Hammar and Nilsson, 2002), but with arbitrary vehicle
motion, and it is called the translational TSP. The authors of (Hammar and
Nilsson, 2002) propose a polynomial-time approximation scheme to catch all
objects in minimum time. Another variation of this problem with object motion
on piece-wise straight line paths, and with different but finite object speeds has
been addressed in (Asahiro et al., 2008). Other variants of the moving TSP in
which the points are allowed to move in different directions have been addressed
in (Helvig et al., 2003).

1.1.4 Dynamic vehicle routing

In contrast to the classic vehicle routing problems discussed above, dynamic
vehicle routing (DVR) considers scenarios in which not all customer information
is known a priori, and thus routes must be re-planned as new customer infor-
mation becomes available (Powell et al., 1995; Larsen, 2000). These types of
problems have been studied in the context of urban operations research for many
years (Larson and Odoni, 1981). Dynamic vehicle routing addresses problems
where autonomous vehicles are deployed in complex and uncertain environments.
Because of this, DVR provides a model for applications such as environmental
monitoring, surveillance and perimeter defence, where the vehicles must re-plan
their motion as they acquire information on their surroundings. In addition,
DVR models scenarios where remote operators may add tasks to, or remove tasks
from, the vehicles’ mission in real-time.

Dynamic traveling repairperson problem: The first DVR problem was
arguably the dynamic traveling repairperson Problem (DTRP) (Psaraftis, 1988;
Bertsimas and van Ryzin, 1991), in which customers (frequently called demands
for service or simply demands), arrive sequentially in a region, and a service
vehicle seeks to serve them by reaching each demand location and spending some
amount of on-site service time. The goal is for the service vehicle to minimize
the expected delay between a demands’ arrival, and its service completion. The
DTRP was first introduced on a graph by Psaraftis (1988), and for the Euclidean
Plane by Bertsimas and van Ryzin (1991). In Bertsimas and van Ryzin (1991),
the authors study the DTRP for a single service vehicle, a Poisson demand
arrival process, and a uniform spatial density of demand arrivals. Optimal DTRP
policies are proposed in light load conditions (i.e., when the fraction of time the
service vehicles spends performing on-site service approaches zero) and policies
within a constant factor of the optimal are proposed for heavy load conditions
(i.e., when the fraction of time the service vehicles spend performing on-site
service approaches one). In Bertsimas and van Ryzin (1993a) the DTRP was

5



Chapter 1. Introduction

extended to multiple vehicles with finite service capacity (i.e., vehicles must
go to a central depot to recharge). In addition, an improved policy was given
for the heavy load conditions. Xu (1995, page 23) developed a stronger policy
independent lower bound for heavy load conditions, which showed that the
improved policy of Bertsimas and van Ryzin (1993a) is optimal in heavy load
conditions. In Bertsimas and van Ryzin (1993b) the DTRP was generalized to
nonuniform spatial density and any renewal arrival process. Finally, Papastavrou
(1996) developed a single vehicle routing policy which provides near optimal
performance in both light and heavy load conditions.

Relation to spatial queueing: The DTRP can be thought of as a spatial
queuing problem. Instead of customers arriving at a fixed queuing location, they
are distributed throughout space, and thus service is composed of both a travel
time and an on-site service time. Because of this relation, the analysis of the
DTRP relies heavily on results in classical queueing theory (Kleinrock, 1975,
1976). The DTRP is also related to polling system problems (Takagi, 1986),
where customers arrive only at fixed locations in space.

Online algorithms and DVR In the computer science community there has
been considerable interest in online algorithms (Borodin and El-Yaniv, 1998).
An online algorithm is one that operates based on input information given up to
the current time. Thus, these algorithms are designed to operate in scenarios
where the entire input is not known at the outset, and new pieces of the input
should be incorporated as they become available. Typically, the performance
of an online algorithm is characterized by comparing it to the performance of a
corresponding offline algorithm (i.e., an algorithm that has a priori knowledge of
the entire input).

Dynamic vehicle routing problems have been studied from the perspective of
online algorithms. A well studied online problem is called the k-server problem.
This problem is equivalent to the DTRP, but with the added constraint that
demands must be served in the order in which they arrive (Manasse et al., 1990;
Koutsoupias and Papadimitriou, 1995). More recently the DTRP has been
studied in the online framework under the name of the online traveling repairman
problem (Krumke et al., 2003; Jaillet and Wagner, 2006). For this problem,
constant factor competitive ratios have been obtained, and the online algorithms
generally utilize solvers for vehicle routing with time-windows (Solomon, 1987).

Decentralized DTRP: Most policies designed for the DTRP are centralized;
a central dispatcher notifies each vehicle of its route. Recently, there has been
research on solving the DTRP in a distributed manner, where the vehicles divide
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the demands amongst themselves. The problem was addressed for uniform spatial
density by Frazzoli and Bullo (2004) and for nonuniform spatial density by
Pavone, Frazzoli and Bullo (2009). The idea behind this work is that vehicles
must agree on an equitable partition (Pavone, Arsie, Frazzoli and Bullo, 2008)
of the environment, such that the workload (i.e., the expected amount of time
required to service all customers that arrive over a fixed time interval), of each
region is equal. One vehicle then works in each region of the partition. Enright
and Frazzoli (2006) studied a variation of the DTRP where the vehicles have a
limited sensor range, and can only see customers within that range.

Dynamic pick-up and delivery problem: There have been several other
variations on DVR problems, and a thorough review is given by Larsen (2000).
One example is the dynamic pick-up and delivery problem (DPDP), which is a
dynamic version of the dial-a-ride problem (Psaraftis, 1980). The DPDP was
introduced for a single vehicle with a fixed capacity by Swihart and Papastavrou
(1999), and provides a model for a taxi company, where service requests are
generated in real-time, and consist of a pick-up location and a destination.
Waisanen et al. (2008), considered a variation of the DPDP motivated by wireless
networks, where the service vehicle can be thought of as a mobile relay, picking
up messages from source locations, and delivering them to their destinations. For
many of these problems, policies have been proposed which provide expected
customer delays that are within a constant factor of this lower bound.

Recent DVR variations: Recently, there has been an increased interest in
DVR among researchers in robotic motion planning, as it provides a powerful
method for completing spatially distributed tasks that are generated in real-time.
Some interesting research includes DTRP problems for the Dubins vehicle (Savla,
Frazzoli and Bullo, 2008; Enright et al., 2009), where the service vehicle’s motion
is subject to a nonholonomic constraint. Pavone, Bisnik, Frazzoli and Isler (2008)
study a DVR problem with impatient customers, where demands for service leave
the system if they are not serviced within a certain time window. Another variant
is the dynamic traveling repairperson problem for dynamical systems (Itani et al.,
2008). A related problem is dynamic data harvesting (Le Ny, Dahleh, Feron
and Frazzoli, 2008), where a service vehicle must collect data from wireless data
stations, and its signal strength for a given station (and thus service rate) depends
on distance from the service vehicle to the station. Savla, Temple and Frazzoli
(2008) study a variation of the DTRP where the service time of a particular
demand is dictated by a human operator. This work models situations where
there is a “human-in-the-loop.” Le Ny, Dahleh and Feron (2008) study a problem
where demands are modeled as a two-state Markov chain, and they must be
periodically visited by a service vehicle while in one of the two states. Another
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related problems is a dynamic variant of the assignment problem (Spivey and
Powell, 2004). A discussion of other recent DVR variations is given by Golden
et al. (2008).

1.2 Contributions of the Thesis

In this thesis we look at a problem in distributed task allocation, and several
problems in the area of dynamic vehicle routing. Chapter 3 looks at a task
allocation problem called the target assignment problem. Chapters 4, 5, 6, and 7
look at different problems within the area of dynamic vehicle routing.

Technical approach: Fundamental theory and algorithms: Our techni-
cal approach for each problem relies on developing a model which captures the
essential features of the problem, and then following the three basic steps. They
can be summarized as follows:

(i) For each problem we identify underlying problem structure. This
typically consists of intrinsic regimes in the space of problem parameters.

(ii) Leveraging the problem structure, we determine fundamental limits on
the achievable performance of any algorithm for solving the problem
of interest.

(iii) Utilizing the fundamental limits and problem structure, we design provably
efficient algorithms. Generally, we seek algorithms that are guaranteed
to perform within a constant factor of the optimal algorithm.

In using this approach will are able to not only learn about the limits on
achievable performance, but also provide provably efficient solutions to each
problem.

Contributions of each chapter: The organization of the thesis, and the
contributions of each chapter can be summarized as follows.

Chapter 2: In this chapter we review some results in combinatorial optimization,
including the TSP problem and related variations, matching problems, and
vertex coloring. The results will be applied in the subsequent chapters for
both the design of algorithms and their analysis.

Chapter 3: In this chapter we study a problem in distributed task allocation
which consists of an equal number of vehicles and distinct target locations
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dispersed in an environment. Each vehicle has a limited communication
range and either (1) knowledge of every target position, or (2) a finite-range
sensor capable of acquiring target positions and no a priori knowledge of
target positions. The problem is to design a distributed algorithm with
which the vehicles divide the targets among themselves and, simultaneously,
move to their unique target. We evaluate an algorithm’s performance
by characterizing its worst-case asymptotic time to complete the target
assignment; that is the completion time as the number of vehicles (and
targets) increases, and the size of the environment scales to accommodate
them. We introduce the intuitive class of monotonic algorithms, and give a
lower bound on its worst-case completion time. We design and analyze two
algorithms within this class: the ETSP Assgmt algorithm which works
under assumption (1), and the Grid Assgmt algorithm which works under
either assumption (1) or (2). In “sparse environments,” where communica-
tion is infrequent, the ETSP Assgmt algorithm is within a constant factor
of the optimal monotonic algorithm for worst-case initial conditions. In
“dense environments,” where communication is more prevalent, the Grid
Assgmt algorithm is within a constant factor of the optimal monotonic
algorithm for worst-case initial conditions. In addition we characterize
the performance of the Grid Assgmt algorithm for uniformly distributed
targets and vehicles, and for the case when there are more vehicles than
targets.

The work in this chapter is based on the journal article (Smith and Bullo,
2009b) and the preliminary conference papers (Smith and Bullo, 2007a)
and (Smith and Bullo, 2007b).

Chapter 4: In this chapter we introduce a DVR problem called the dynamic
team forming problem (DTFP). The DTFP for a heterogeneous group
of vehicles is described as follows. Each vehicle is capable of providing
a specific service. Tasks arrive sequentially over time, assume random
locations in the environment, and require several different services. A
task is completed when a team of vehicles travels to the task location and
provides the required services. The goal is to minimize the expected delay
between a task’s arrival and its completion. We restrict our attention to
unbiased policies for the DTFP, i.e., policies for which the expected delay is
the same for all tasks. We introduce three intuitive policies, and in certain
asymptotic regimes we analyze their delay as a function of the arrival rate
of tasks (or throughput). For each policy we show that there is a broad
class of system parameters for which the policy’s performance is within a
constant factor of the optimal.

The work in this chapter is based on the journal article (Smith and Bullo,
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2009a) and the preliminary conference paper (Smith and Bullo, 2008).

Chapter 5: In Chapter 4 we restricted our attention to unbiased policies. In
this chapter we explore the concept of biasing service by introducing a
DVR problem in which there are multiple vehicles and multiple priority
classes of service demands. Service demands of each priority class arrive
in the environment randomly over time and require a random amount of
on-site service that is characteristic of the class. The quality of service
provided to each class is given by the expected delay between the arrival of
a demand in the class, and that demand’s service completion. The goal is
to design a routing policy for the service vehicles which minimizes a convex
combination of the delays for each class. First, we provide a lower bound
on the achievable values of the convex combination of delays. Then, we
propose a novel routing policy and analyze its performance under heavy
load conditions (i.e., when the fraction of time the service vehicles spend
performing on-site service approaches one). The policy performs within a
constant factor of the lower bound, where the constant depends only on the
number of classes, and is independent of the number of vehicles, the arrival
rates of demands, the on-site service times, and the convex combination
coefficients.

The work in this chapter is based on the journal article (Smith, Pavone,
Bullo and Frazzoli, 2009) and the preliminary conference papers (Smith
et al., 2008) and (Pavone, Smith, Bullo and Frazzoli, 2009).

Chapter 6: In this chapter we introduce a DVR problem in which demands
arrive stochastically on a line segment, and upon arrival, move with a fixed
velocity perpendicular to the segment. We design a receding horizon service
policy for a vehicle with speed greater than that of the demands, based
on the translational minimum Hamiltonian path (TMHP). We consider
Poisson demand arrivals, uniformly distributed along the segment. For a
fixed segment width and fixed vehicle speed, the problem is governed by
two parameters; the demand speed and the arrival rate. We establish a
necessary condition on the arrival rate in terms of the demand speed for
the existence of any stabilizing policy. We derive a sufficient condition on
the arrival rate in terms of the demand speed that ensures stability of the
TMHP-Based policy. When the demand speed tends to the vehicle speed,
every stabilizing policy must service the demands in the first-come-first-
served (FCFS) order; and of all such policies, the TMHP-Based policy
minimizes the expected time before a demand is serviced. When the demand
speed tends to zero, the sufficient condition on the arrival rate for stability
of the TMHP-Based policy is within a constant factor of the necessary
condition for stability of any policy. Finally, when the arrival rate tends to
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zero for a fixed demand speed, the TMHP-Based policy minimizes the
expected time before a demand is serviced. We numerically validate our
analysis and empirically characterize the region in the parameter space for
which the TMHP-Based policy is stable.

The work in this chapter is based on the journal article (Bopardikar,
Smith, Bullo and Hespanha, 2009a) and the preliminary conference papers
(Bopardikar, Smith, Bullo and Hespanha, 2009b) and (Smith, Bopardikar,
Bullo and Hespanha, 2009).

Chapter 7: In this chapter we introduce a DVR problem in which a service
vehicle seeks to defend a deadline from dynamically arriving mobile targets.
The environment is a rectangle and the deadline is one of its edges. Targets
arrive continuously over time on the edge opposite the deadline, and move
towards the deadline at a fixed speed. The goal for the vehicle is to maximize
the fraction of targets that are captured before reaching the boundary. We
consider two cases; when the service vehicle is faster than the targets; and,
when the service vehicle is slower than the targets. In the first case we
develop a novel vehicle policy based on computing longest paths in a directed
acyclic graph. We give a lower bound on capture fraction of the policy and
show that it is optimal when the distance between the target arrival edge
and boundary becomes very large. We present numerical results which
suggest that the policy performs very near the optimal even for moderate
distances between the arrival edge and the boundary. In the second case,
when the targets are slower than the vehicle, we propose a policy based on
servicing fractions of the translational minimum Hamiltonian path. In the
limit of low target speed and high arrival rate, the capture fraction of this
policy is within a small constant factor of the optimal.

The work in this chapter is based on the recent conference paper (Smith,
Bopardikar and Bullo, 2009).

Chapter 8: This chapter outlines some broad directions for future research in
the areas of dynamic and distributed task allocation and vehicle routing,
and concludes the thesis.
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Chapter Two

Preliminaries in Combinatorics and Queueing

In this chapter we review results on the shortest paths and tours through sets of
points and on some basics of queueing theory. We begin by introducing some
notation which will be used consistently throughout the remaining chapters.

2.1 Notation

We let R, R≥0 and N denote the set of real numbers, the set of non-negative real
numbers, and the set of positive integers, respectively. Given a finite set A, we
let |A| denote its cardinality, and given an infinite set A ⊂ Rd, d ≥ 2 we let |A|
denote its d-dimensional volume. For two functions f, g : N → R>0, we write
f(n) ∈ O(g) (respectively, f(n) ∈ Ω(g)) if there exist N ∈ N and c ∈ R>0 such
that f(n) ≤ cg(n) for all n ≥ N (respectively, f(n) ≥ cg(n) for all n ≥ N). If
f(n) ∈ O(g) and f(n) ∈ Ω(g), then we say f(n) ∈ Θ(g). We say that event A(n)
occurs with high probability (w.h.p.) if the probability of A(n) occurring tends to
one as n→ +∞.

2.2 Combinatorics

In this section we review results combinatorial optimization which will be useful
in the algorithm designs in subsequent chapters.

2.2.1 Basic Graph Definitions

A directed graph G = (V (G), E(G)) consists of a set of vertices V (G) and a
set of directed edges E(G) ⊂ V (G)× V (G). An edge (v, w) ∈ E(G) is directed
from vertex v to vertex w. A subgraph of a graph G = (V (G), E(G)) is a graph
H = (V (H), E(H)) such that V (H) ⊂ V (G) and E(H) ⊂ E(G).

A graph is undirected if (v, w) ∈ E(G) implies that (w, v) ∈ E(G), and in
this case we write {v, w} ∈ E(G). For an undirected graph an edge {v, w} ∈ E
is incident to v and w, and v and w are neighbors. The degree of v ∈ V is the
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number of edges incident to v. The complete graph is an undirected graph G
such that for every u, v ∈ V (G), the edge {u, v} ∈ E(G).

A path in G is a subgraph P = ({v1, . . . , vk+1}, {e1, . . . , ek}) such that vi 6= vj
for all i 6= j, and ei = (vi, vi+1) for each i ∈ {1, . . . , k}. We say that the path
starts at v1 and ends at vk+1, and at times we will simply identify a path by
its vertex sequence v1, . . . , vk+1. A cycle or closed path is a path in which the
first and last vertex in the sequence are the same, i.e., v1 = vk+1. A graph G is
acyclic if it contains no cycles. A Hamiltonian path P in a graph G is a path
such that V (P ) = V (G). Similarly, a Hamiltonian tour T in a graph G is a
cycle such that V (T ) = V (G). A weighted graph is a graph G along with a
cost function w : E(G)→ R which assigns a weight to each edge. If a graph is
unweighted, then the length of a path P is given by |V (P )|, and if the graph is
weighted, then the length of the path is

∑
e∈E(P ) w(e).

2.2.2 Traveling Salesperson and Shortest Path Problems

We begin by introducing the Traveling Salesperson (Salesman) Problem. In the
terminology of the previous section this problem is also known as the minimum
Hamiltonian tour problem.

The traveling salesperson problem (TSP): Given a complete
graph G and weights w : E(G) → R>0, find a Hamiltonian tour T
(i.e., a closed path which visits each vertex in V (G) exactly once)
whose weight

∑
e∈E(T ) w(e) is minimum.

In many instances we are interested in the TSP with weights on edges are given
by the Euclidean distances between vertices.

The Euclidean traveling salesperson problem (ETSP): Given
a finite set V ⊂ R2, find a Hamiltonian tour T (i.e., a closed path
which visits each point in V exactly once) in the complete graph on
V such that the total length

∑
{v,w}∈E(T ) ‖v − w‖2 is minimum.

If we are interested in finding shortest paths that visit all vertices in graph
rather than shortest tours (that is, if the salesperson is not required to return to
their start vertex), then the problems are called the minimum Hamiltonian
path problem (MHP) and the Euclidean minimum Hamiltonian path
problem (EMHP), respectively.

Finally, a variation on the EMHP problem which we will be interested in is
stated as follows
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The Constrained EMHP: Given a set V = {s,Q, f} ⊂ R2 consist-
ing of a start point s, a finite set of points Q, and a finish point f ,
determine the shortest EMHP on V which starts at s, and terminates
at f .

Approximate solutions for the TSP and MHP

The well known negative result is that the TSP is NP -hard, and for general
weights no approximation algorithms exist unless P = NP (Sahni and Gonzalez,
1976). The ETSP is still NP -hard, but the structure added by having weights
which satisfy the triangle inequality results in the existence of several efficient
approximation algorithms. In particular, the Christofides’ algorithm (Christofides,
1976) is guaranteed to find a tour that is no more than 3/2 times longer than
the optimal tour. In addition, the algorithm runs in O(|V |3) computation time.
Another algorithm known as the double-tree algorithm produces tours that are no
longer than twice the optimal in O(|V |2) computation time (Korte and Vygen,
2005). There also exist polynomial time approximation schemes. For example, it
is shown by Arora (1998) and Mitchell (1999) that a tour no longer than (1 + ε)
times the shortest one can be found in |V |(log |V |)O(1/ε) computation time. Thus,
the ETSP can be approximated in polynomial time to any desired degree of
accuracy. However, the constants involved in the run time are quite large and
thus the approximation schemes appear to have little practical value.

The Lin-Kernighan algorithm is a local search heuristic which does not have
an approximation guarantee but usually produces solutions within a few percent
of the optimal (Lin and Kernighan, 1973). In addition, it is reported to have
an empirical running time of about O(|V |2.2), and thus is often the algorithm of
choice for producing efficient and high quality solutions in many applications.
Finally the Concorde TSP solver 1, see (Applegate et al., 2006), is a computer
code for determining exact solutions of the TSP. It has been used to obtain the
optimal solution to problems as large as 15, 112 vertices.

In the subsequent chapters, all numerical experiments involving a solution to
the TSP or ETSP will utilize the linkern implementation of the Lin-Kernighan
algorithm. The linkern takes as an input an instance of the TSP, but it can
also be used to produce solutions to MHP and EMHP problems. To transform
a constrained EMHP problem into a TSP, we can simply replace the distance
between the start and end points with a large negative number, ensuring that
this edge is included in resulting tour.

1The TSP heuristic linkern and the solver Concorde are freely available for academic
research use at http://www.tsp.gatech.edu/concorde.html.
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The length of Euclidean TSP tour and MHP

An instance of the ETSP (or EMHP) is defined by the set V ⊂ E , where E is a
compact subset of R2 with area |E|. Let N := |V |, denote the number of points
in V . Additionally, let ETSP(V ) denote the length of the shortest tour on V
and let EMHP(V ) denote the length of the shortest path. The following results
characterize some aspects of the length of ETSP(V ).

Worst-case length: We begin by presenting an upper bound on the length of
the EMHP through a set of points in the unit square (Few, 1955). We extend the
bound to the case of a rectangular region, as it will prove useful in the subsequent
chapters. For completeness, we have included the proof in the Appendix.

Lemma 2.1 (EMHP worst-case length, Few (1955)). Given N points in a 1× h
rectangle in R2, where h ∈ R>0, there exists a path that starts from a unit
length edge of the rectangle, passes through each of the n points exactly once, and
terminates on the opposite unit length edge, having length upper bounded by

√
2hN + h+ 5/2.

The previous lemma has the following consequence.

Theorem 2.2 (ETSP tour worst-case length, Few (1955)). If V is a set of N

points in a compact square region E, then ETSP(V ) ∈ O(
√
n|E|).

Note that the previous theorem can be equivalently written as follows: There

exists β > 0 such that for every set V of N points in E , ETSP(Q) ≤ β
√
N |E|. In

addition, one can show that there exists a set of points (for example, space the

points evenly on a grid) such that the length of the ETSP is in Ω(
√
N |E|). This

implies that the worst-case length of the ETSP is in Θ(
√
N |E|). In fact, these

results can be extended to higher dimensional spaces. For a compact d-cube
E ⊂ Rd, d ≥ 2, with d-volume |E|, the worst-case length of the ETSP is in

Θ
(
(N |E|)1−1/d

)
.

Length for randomly distributed points: Assume that the locations of
the N points in V are random variables independent and identically distributed
(i.i.d.) in a compact set E . The following result characterizes the length of this
stochastic ETSP when the points are distributed uniformly.

Theorem 2.3 (Asymptotic ETSP length, Beardwood et al. (1959)). If a set V
of N points are distributed independent and uniformly in a compact region E,
then there exists a constant βTSP such that, with probability one,

lim
N→+∞

ETSP(V )√
N

= βTSP

√
|E|. (2.1)
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The constant βTSP has been estimated numerically as βTSP ≈ 0.7120 ±
0.0002, (Percus and Martin, 1996). The bound in equation (2.1) holds for all
compact sets E , and the shape of E only affects the convergence rate to the
limit. In (Larson and Odoni, 1981), the authors note that if E is “fairly compact
[square] and fairly convex”, then equation (2.1) provides an adequate estimate of
the optimal TSP tour length for values of N as low as 15.

Theorem 2.3 also characterizes the asymptotic length of the constrained
EMHP. More precisely, let EMHP(s,Q, f) denote the length of the constrained
EMHP on V := {s,Q, f}. If s, Q and f are contained in a compact set, and if
the points in Q are uniformly distributed in the set, then with probability one

lim
n→+∞

EMHP(s,Q, f)

ETSP(Q)
= 1,

The result in Theorem 2.3 has been generalized to Rd, d ≥ 2, and to nonuni-
form point distributions in (Beardwood et al., 1959) and (Steele, 1990). The
result takes the following form: For N i.i.d. random variables with compact
support, with probability one

lim
n→+∞

ETSP(V )

n1−1/d
= βTSP,d

∫

E
f̄(q)1−1/d dq, (2.2)

where f̄ is the density of the absolutely continuous part of the distribution of the
points. From equation (2.2), one can readily show that the asymptotic cost of
the stochastic ETSP for uniform point distributions is an upper bound on the
asymptotic cost for general point distributions.

2.2.3 Translational Minimum Hamiltonian Path Problem

One can think of the length of the shortest ETSP tour (or the shortest EMHP)
as the amount of time required for a salesperson moving at unit speed to visit
all points in V . An interesting variation on the ETSP and EMHP problems
is when the points in V are moving. In particular, consider the case when all
points in V translate in the same direction at a fixed speed v ∈ ]0, 1]. The goal
is determine the shortest path for a unit speed salesperson to visit all moving
points. In this case a path consists of an ordering of the points in V and a way
of moving between consecutive points.

The problem was proposed and solved by Hammar and Nilsson (2002), and
can be stated as follows.

The translational minimum Hamiltonian path (TMHP) prob-
lem: Given initial coordinates; s of a start point, Q := {q1, . . . ,qN}
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(X, Y )

(x, y)

(x, y + vT )

y

Figure 2.1: Constant bearing control. The salesperson (square) moves towards the
point (x, y + vT ), where (x, y) is in initial position of the destination point, v is its
speed, and T is the travel time in (2.3).

of a set of points, and f of a finish point, all moving with speed
v ∈]0, 1[ in the positive y-direction, determine a minimum length path
for a unit speed salesperson that starts at time zero from point s,
visits all points in the set Q and ends at the finish point f .

The solution is given by the Convert-to-EMHP method:

(i) Define the map cnvrtv : R2 → R2 by

cnvrtv(x, y) =
(

x√
1− v2

,
y

1− v2

)
.

(ii) Compute the constrained EMHP that starts at cnvrtv(s), passes through
{cnvrtv(q1), . . . , cnvrtv(qN)} =: cnvrtv(Q) and ends at cnvrtv(f).

(iii) To reach a translating point with initial position (x, y) from the initial
position (X, Y ), move towards the point (x, y + vT ), where

T =

√
(1− v2)(X − x)2 + (Y − y)2

1− v2
− v(Y − y)

1− v2
. (2.3)

We call the motion described in step (ii) of the Convert-to-EMHP method
constant bearing control. Isaacs (1965) showed that constant bearing control gives
the minimum time motion for moving between successive points. The motion is
shown in Figure 2.1.

The length TMHPv(s,Q, f) of the shortest translational Hamiltonian path is
as follows.
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Lemma 2.4 (TMHP length, Hammar and Nilsson (2002)). Let the initial co-
ordinates of the start and finish points be s = (xs, ys) and f = (xf , yf ), and the
speed of the points be v ∈ ]0, 1[. Then,

TMHPv(s,Q, f) = EMHP(cnvrtv(s), cnvrtv(Q), cnvrtv(f)) +
v(yf − ys)

1− v2
.

This lemma implies the following result: given a start point, a set of points
and an end point all of whom translate in the positive vertical direction at speed
v ∈ ]0, 1[, the order of the points followed by the optimal TMHP solution is the
same as the order of the points followed by the optimal EMHP solution through
a set of static locations equal to the locations of the moving points at initial time
converted via the map cnvrtv.

2.2.4 Longest paths in Directed Acyclic Graphs

We have defined the TSP problem on a complete and undirected graph. In this
case there exists a Hamiltonian tour (path). However, when the graph is directed
and is not complete, then there may not exist a tour in the graph which visits
each vertex exactly once. In this case, an interesting problem is to find the longest
path in a graph G.

The longest path problem: Given an unweighted directed graph
G, find a path P whose length |V (P )| is maximum.

In general the longest path problem is NP -hard. This can be seen by noting
that a solution to the problem would result in a test for determining whether or
not a graph contains a Hamiltonian path – a well known NP -complete problem.
However, if the graph is a directed acyclic graph (DAG), then the longest path
problem has an efficient dynamic programming solution (Christofides, 1975) with
complexity O(|V |+ |E|), that relies on topologically sorting (Cormen et al., 2001)
the vertices.

2.2.5 Maximum and Weighted Matching Problems

To discuss matching problems let us introduce bipartite graphs. In an undirected
bipartite graph G = (V (G), E(G)) we can partition the vertex set V (G) =
A∪B, such that A∩B = ∅ and for every edge {u, v} ∈ E(G), u ∈ A and v ∈ B.
A matching or assignment in a bipartite graph is a set of pairwise disjoint
edges M (i.e., the endpoints are all different). That is, each vertex can be a
member of at most one edge in M . We can think of a matching as a one-to-one
assignment of persons in A to jobs in B. The matching M is a maximum
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matching if for every matching M̃ , we have |M̃ | ≤ |M |. If |A| = |B| then we say
that a matching is perfect when |M | = |A|. The matching M is maximal if
there does not exist a matching M̃ , such that M̃ is a strict superset of M . There
are several polynomial time algorithms for determining a maximum matching
(Hopcroft and Karp, 1973).

In a weighted maximum matching problem, the edges of the bipartite graph
G are weighted according to w : E(G)→ R. Two common weighted problems
are the following:

The sum matching problem: Given a bipartite graph G with
weights w : E(G)→ R, find the matching M whose weight

∑
e∈M w(e)

is minimum.

The bottleneck matching problem: Given a bipartite graph G
with weights w : E(G) → R, find the matching M whose weight
maxe∈M w(e) is minimum.

Assuming that the bipartite graph G has partition V (G) = A ∪B where |A| =
|B| = N , then sum matching problem (or sum assignment problem) can be
solved in O(N3) computation time using methods such as the Hungarian method
(Kuhn, 1955) or the auction algorithm (Bertsekas and Tsitsiklis, 1997). The sum
matching (assignment) problem can also be written as a integer linear program
with a totally unimodular constraint matrix (Korte and Vygen, 2005). This
implies that one can solve the sum matching problem by solving a linear program
obtained by relaxing the integer constraints.

In the following chapters we will require a standard algorithm, called Maximal
Match, for computing a maximal matching. The algorithm chooses the edge
with lowest cost, adds it to the matching, removes the edge from the problem,
and repeats. In the case in which the bipartite graph is complete (i.e., for every
u ∈ A and v ∈ B, {u, v} ∈ E), this algorithm determines a perfect, and thus
maximum, matching.

Algorithm 2.1: Maximal Match

Input: A bipartite graph G = (A(G) ∪B(G), E(G))
Output: A maximal matching M
Initialize M := ∅, and E := E(G).1

while E is nonempty do2

Find the lowest cost edge {u, v} ∈ E and add it to M .3

Remove every edge from E that has an endpoint u or endpoint v.4
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2.2.6 Vertex Coloring

Here we review the concept of a vertex coloring on a graph, which will be useful
in producing non-conflicting schedules. A vertex-coloring of an undirected graph
G is a mapping f : V (G) → N with f(v) 6= f(w) for all {v, w} ∈ E(G). The
number f(v) is the color of v. Finding the minimum vertex coloring (i.e., a
vertex coloring for which the number of colors is minimum) is NP -hard, and no
approximation algorithms exist. However, the following theorem gives an upper
bound on the number of colors required.

Theorem 2.5 (Vertex coloring, Korte and Vygen (2005)). Let G be an undirected
graph with N vertices and with maximum degree α. Then G has a vertex coloring
with at most α+ 1 colors, and such a coloring can be found in O(N) computation
time using the Greedy Color algorithm.

Algorithm 2.2: Greedy Color

Input: An undirected graph G = ({v1, . . . , vN}, E)
Output: A color f(vi) for each i ∈ {1, . . . , N}.
for i from 1 to N do1

Set f(vi) to the minimum color k ∈ N such that k 6= f(vj) for all2

neighboring vertices vj, j < i.

2.3 Queueing Theory

In this section we give a very brief review of queueing models and the Poisson
process. For a more detailed review we refer the reader to (Kleinrock, 1975,
1976).

2.3.1 Queueing system models

A queueing system can be described as customers (or demands) arriving for
service, waiting for service, and leaving the system after being serviced. While
waiting for service the customers enter a queue, which can be described as a
set Q(t) with cardinality N(t). When a customer reaches the head of line, it is
removed from Q(t) and served period of time, after which it leaves the system.
That is, N(t) represents the number of customers waiting in the queue at time t.
Generally, the arrival of new customers is modeled as a stochastic process with
independent and identically distributed (i.i.d.) inter-arrival times, and average
arrival rate λ. The service time required for each customer is an i.i.d. random
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variable with mean s̄. If there are n servers, then the traffic intensity or load
factor is defined as

% :=
λs̄

n
.

The load factor captures the fraction of time the n servers are busy providing
service.

We are often interested in determining the steady-state length of the queue,
defined as N̄ := limt→+∞ E [N(t)]. It turns out that when % > 1, the queue never
settles down to a steady-state and the N̄ is not defined (i.e., it is +∞). Thus, a
necessary condition for the existence of a finite steady-state queue length is that
% ≤ 1. If a queue reaches a steady-state then we say that it is stable. In many
cases, it is difficult to study the properties of a queueing system for all values of
% ∈ [0, 1), and a common technique is to focus on the limiting regimes of %→ 1−,
referred to as the heavy load regime, and %→ 0+, referred to as the light load
regime.

Another quantity of interest is the amount of time each customer spends
waiting in the queue, which is called the wait-time, and for the ith customer
it is denoted Wi. If the queue reaches a steady-state, then we can define the
steady-state wait-time to be

W := lim
i→+∞

E [W ].

Similarly, we can define the service delay of the ith customer to be Di =Wi+si,
where si is the service time of customer i. The steady-state service delay is then
simply D :=W + s̄.

A useful result in queueing theory is called Little’s law, which relates the
steady-state queue length to the steady-state wait-time:

N̄ = λW .

Thus, in a stable system, if one determines the steady-state wait-time, this yields
the steady-state queue length.

2.3.2 The G/G/1 queueing system

A G/G/1 system is a queueing system with a general arrival process, generally
distributed service times, and a single server. More specifically, we consider i.i.d.
inter-arrival times with expected value 1/λ and variance σ2

a; and i.i.d. service
times with expected value s̄ and variance σ2

s . For such a system the wait-time
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satisfies (Kleinrock, 1976)

W ≤ λ(σ2
a + σ2

s)

2(1− %)
. (2.4)

In addition, in heavy load as %→ 1− the upper bound is exact.

2.3.3 The Poisson process

A common model for the arrival of customers is the Poisson process. Its defining
feature is that the inter-arrival times are exponentially distributed. More formally,
we define the process as follows. A Poisson process with intensity λ is an arrival
counting process {N(t) : t ≥ 0} where N(t) denotes the total number of arrivals
up to time t, with N(0) = 0, and which satisfies the following three assumptions:

(i) If t1 < t2 then N(t1) ≤ N(t1);

(ii) In a small time interval h > 0 the number of arrivals satisfies2:

P [N(t+ h) = j1 + j2|N(t) = j1] =





λh+ o(h) if j2 = 1,

o(h) if j1 > 1,

1− λh+ o(h) if j2 = 0,

(iii) If t1 < t2, then the number N(t2)−N(t1) of arrivals in the interval ]t1, t2]
is independent of the times of arrivals in [0, t1];

It can be shown that the random variable N(t) has the Poisson distribution with
parameter λt, which implies that

P [N(t) = j] =
(λt)j

j!
e−λt, j = 0, 1, 2, . . . . (2.5)

A consequence of equation (2.5) is that in a time interval [t1, t2] where t2 > t1,
we have

E [N(t2)−N(t1)] = λ(t2 − t1).

2.3.4 Spatial queueing systems

In a spatial queueing system, customers arrive at distinct locations in space, and
the server must travel to a customers’ location in order to provide service to it. In
such systems the total service requirement of a customer, say customer i, consists
not only of the on-site service time si, but also the travel time from the customer

2We say that f(h) ∈ o(g(h)) if f(h)/g(h)→ 0+ as h→ 0+.
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serviced prior to i, to customer i’s location. This difference is very significant
as it implies that the total service requirements of the customers are not i.i.d.
random variables (Bertsimas and van Ryzin, 1991). Because of this, the results
in standard queueing theory such as equation (2.4), do not apply. In addition, in
much of queueing theory, the policy by which the server attends to customers is
simply first-come-first-served. However, in spatial queueing the server may wish
to attend to customers based on their proximity rather than on their order of
arrival. Thus, for spatial queueing the problem arises of determining an efficient
order in which to attending to customers.

To highlight the differences between classic queueing and spatial queueing,
consider customers arriving according to a Poisson process with rate λ. Upon
arrival each customer assumes a i.i.d. position uniformly in a compact environment
E . The on-site service requirement of each customer is i.i.d. with expected value
s̄. Suppose there is a single server that can move in E with speed vmax. Then,
for any policy by which the vehicle services the customers, the steady-state wait
time satisfies

W ≥ γ2 λ|E|
v2

max(1− %)2
− s̄

2%
,

where γ = 2/(3
√

2π) ≈ 0.266. What is striking about the above bound is that
it shows that in heavy load conditions as % → 1−, the wait-time in spatially
queueing must increase with (1− %)−2. In contrast, for a classic queueing system,
equation (2.4) tells us that the wait-time scales as (1− %)−1.

The above problem is known as the dynamic traveling repairperson problem
(DTRP). In Chapter 4 we will review the DTRP more extensively.
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Chapter Three

Monotonic Target Assignment

In this chapter we consider a task allocation problem that consists of a group
of n mobile robotic agents (henceforth called vehicles), equipped with wireless
transceivers for limited range communication, dispersed in an environment E ⊂ R2

which contains n target (or task) locations. In addition, we consider two scenarios:
(1) each vehicle is given a list containing all target positions (the positions may be
given as GPS coordinates); or (2) each vehicle has no initial target information,
but has a finite-range target sensor to acquire target positions. The task is for
the vehicles to divide the targets among themselves so that in minimum time,
each target location is occupied by an vehicle. Since no a priori assignment of
target-vehicle pairs has been given, the vehicles must solve the problem through
communication and motion. We call this the target assignment problem. This
problem has many applications in UAV surveillance and exploration, or mobile
sensor networks. The first scenario could arise when a high-altitude, sensory-rich
aircraft communicates a large number of target positions to a correspondingly
large group of smaller, slower, autonomous aircraft at lower altitudes. The second
(local sensing) scenario could arise in exploration tasks where a group of UAVs
are sent into a region to find, and provide service to, spatially distributed tasks.

Unlike the prior work in the area of task allocation (see Chapter 1 for a review),
in this chapter we study the scalability properties of the minimum-time target
assignment problem. We assume that each vehicle has limited communication
capabilities and either (1) full target knowledge (i.e., each vehicle knows the
position of every target), or (2) local target sensing (i.e., each vehicle has a finite-
range target sensor to acquire target positions). We focus on characterizing the
completion time as the number of vehicles n grows, and the square environment
E(n) grows to accommodate them.1

The contributions of this chapter are: a novel and concise statement of
the minimum-time target assignment problem for vehicle networks; a broad

1The size of the environment E is a function of n, and thus we write E(n). If the environment
size were independent of n, then the density of robots would become arbitrarily large as the
task size n became large, which is not realistic. Thus, either the environment should grow
with n (as is assumed here), or the robot’s attributes should shrink with n (as discussed in
Section 3.7.3).
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class of distributed algorithms for solving this problem; lower bounds on the
worst-case performance achievable by any algorithm in this class; and algorithms
which perform within a constant factor of the optimal monotonic algorithm for
worst-case initial conditions. In Section 3.3.1 we introduce the class of monotonic
algorithms, which provides an intuitive approach for solving the target assignment
problem. We show that in “sparse environments,” that is when |E(n)|/n→ +∞,
for every monotonic algorithm there exists a (worst-case) set of initial target

and vehicle positions such that the completion time is in Ω(
√
|E(n)|n).2 In

“dense environments,” that is when |E(n)|/n→ 0+, every algorithm in the class
has worst-case completion time in Ω(|E(n)|). In Section 3.4, we assume full
target knowledge and present a monotonic algorithm, called the ETSP Assgmt

algorithm, with worst-case completion time in O(
√
|E(n)|n). In this algorithm,

each vehicle computes an ETSP tour through the n targets, turning the cloud of
target points into an ordered ring. Vehicles then move along the ring, looking for
the next available target. When vehicles communicate, they exchange information
on the location of the next available target along the ring. Then, in Section
3.5 we present a monotonic algorithm, called the Grid Assgmt algorithm,
which operates under either the full target knowledge assumption, or the local

target sensing assumption as long as the sensing range is at least
√

2/5 times the
communication range. Under either assumption, the Grid Assgmt algorithm has
worst-case completion time in O(|E(n)|). In this algorithm, the vehicles partition
the environment into cells, and determine local maximum assignments in the cell
which they occupy. A leader is elected in each cell, and through communication
between leaders of adjacent cells, local assignments are merged into a global
and complete assignment. These two algorithms are complementary in terms of
worst-case performance: in “sparse environments,” the ETSP Assgmt algorithm
is within a constant factor of the optimal monotonic algorithm, and is “dense
environments,” the Grid Assgmt algorithm is within a constant factor of the
optimal monotonic algorithm.

We also characterize the stochastic properties of the Grid Assgmt algorithm
in “dense environments.” If the vehicles and targets are uniformly distributed,

then the completion time belongs to O(
√
|E(n)|) with high probability. Addition-

ally, if there are n vehicles and only n/ log n targets, then the completion time
belongs to O(1) with high probability. In Section 3.7 we discuss extensions of
the ETSP Assgmt and Grid Assgmt algorithms to higher dimensional spaces
and to the case of n vehicles and m targets, n 6= m.

2|E(n)| denotes the area of E(n), and Ω(·) is the asymptotic notation for lower bounds as
reviewed in Section 3.1.
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3.1 Preliminary Material

In this section we review a few useful results on occupancy problems and random
geometric graphs.

3.1.1 Occupancy Problems

Occupancy problems, or “bins and balls” problems, are concerned with randomly
distributing m balls into n equally sized bins. The following results will be useful
in our analysis. We say that event A(n) occurs with high probability (w.h.p.) if
P [A(n)]→ 1− as n→ +∞ (i.e., the probability of event A(n) occurring tends to
one as n tends to infinity).

Theorem 3.1 (Bins and balls properties, (Motwani and Raghavan, 1995; Xue
and Kumar, 2004)). Consider uniformly randomly distributing m balls into n
bins and let γ be any function such that γ(n)→ +∞ as n→ +∞. The following
statements hold:

(i) if m = n, then w.h.p. each bin contains at most O
(

logn
log logn

)
balls;

(ii) if m = n log n+ γ(n)n, then w.h.p. there exist no empty bins;

(iii) if m = n log n− γ(n)n, then w.h.p. there exists an empty bin;

(iv) if m = Kn log n, where K > 1/ log(4/e), then w.h.p. every bin contains
Θ(log n) balls.

We will be interested in partitioning a square environment into equally sized
and openly disjoint square bins such that the area of each bin is “small.” To do
this, we require the following simple fact.

Lemma 3.2 (Dividing the environment). Given n ∈ N and rcomm > 0, consider
a square environment E(n). If E(n) is partitioned into b2 equally sized and openly
disjoint square bins, where

b :=




√
5|E(n)|
rcomm



, (3.1)

then the area of each bin is no more than r2
comm/5. Moreover, if x, y ∈ E(n) are

in the same bin or in adjacent bins, then ‖x− y‖ ≤ rcomm.
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3.1.2 Random Geometric Graphs

In Chapter 2 we introduced directed and undirected graphs. Here we introduce
an undirected graph whose vertices are embedded in the plane, and whose edges
represent geometric relations between edges. For n ∈ N and rcomm ∈ R>0, a
planar geometric graph G(n, rcomm) consists of n vertices in R2, and undirected
edges connecting all vertex pairs {x, y} with ‖x− y‖ ≤ rcomm. We also refer to
this as the rcomm-geometric graph. If the vertices are randomly distributed in
some subset of R2, then we call the graph a random geometric graph.

Theorem 3.3 (Connectivity of geometric graphs, (Penrose, 2003)). Consider the
random geometric graph G(n, rcomm) obtained by uniformly randomly distributing
n points in the square environment E(n) with

πr2
comm

|E(n)| =
log n+ γ(n)

n
.

Then G(n, rcomm) is connected w.h.p. if and only if γ(n)→ +∞ as n→ +∞.

This theorem will be important for understanding some of our results, as it
provides a bound on the environment size necessary for the communication graph
of n randomly deployed vehicles to be asymptotically connected.

3.2 Network Model and Problem Statement

In this section we formalize our vehicle and target models and define the sparse
and dense environments.

3.2.1 Vehicle Network Model

Consider n vehicles in an environment E(n) := [0, `(n)]2 ⊂ R2, where `(n) > 0
(that is, E(n) is a square with side length `(n)). The environment E(n) is compact
for each n but its size depends on n. A robotic vehicle, V [i], i ∈ I := {1, . . . , n},
is described by the tuple

V [i] := {uid[i],p[i], rcomm, rsense,u
[i],M[i]},

where the quantities are as follows: Its unique identifier (UID) is uid[i], taken
from the set Iuid ⊂ N. Note that each vehicle does not know the set of UIDs
being used and thus does not initially know the magnitude of its UID relative
to those of other vehicles. Its position is p[i] ∈ E(n). Its communication range
is rcomm > 0, i.e., two vehicles, V [i] and V [k], i, k ∈ I, can communicate if and
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only if ‖p[i] − p[k]‖ ≤ rcomm. Its target sensing range is rsense. With this sensor
vehicle i can determine the relative position of targets within distance rsense of
p[i]. Its continuous time velocity input is u[i], corresponding to the kinematic
model ṗ[i] = u[i], where ‖u[i]‖ ≤ vmax for some vmax > 0. Finally, its memory is
M[i] and is of cardinality (size) |M[i]|. From now on, we simply refer to vehicle
V [i] as vehicle i.

The vehicles move in continuous time and communicate according to a syn-
chronous discrete time schedule consisting of an increasing sequence {tk}k∈N of
time instants with no accumulation points. We assume |tk+1 − tk| ≤ tmax, for all
k ∈ N, where tmax ∈ R>0. We also assume that the time between communica-
tion rounds tmax is much smaller than rcomm/vmax, the amount of time taken to
travel the distance rcomm. At each communication round, vehicles can exchange
messages of length O(log n).3 Communication round k occurs at time tk, and all
messages are sent and received instantaneously at tk. Motion then occurs from
tk until tk+1. It should be noted that in this setup we are emphasizing the time
complexity due to the motion of the vehicles.

3.2.2 The Target Assignment Problem

Let Q := {q1, . . . ,qn} ⊂ E(n) be a set of distinct target locations. In this
chapter we make one of two assumptions:
Full target knowledge: Each vehicle knows the position of every target. Thus,
vehicle i’s memory, M[i], contains a copy of Q, which we denote Q[i]. To store
Q[i] the size of each vehicles’ memory, |M[i]|, must be in Ω(n).
Local target sensing: Each vehicle has no initial target information (i.e.,
Q[i] = ∅), but can acquire target positions through its target sensor of range
rsense.

Our goal is to solve the target assignment problem:

Determine an algorithm for n ∈ N vehicles, with attributes as de-
scribed above, satisfying the following requirement; there exists a
time T ≥ 0 such that for each target qj ∈ Q, there is a unique vehicle
i ∈ I, with p[i](t) = qj for all t ≥ T .

If the task begins at time t = 0, then the completion time of the target assignment
task is the minimum T ≥ 0, such that for each qj ∈ Q, there is a unique i ∈ I,
with p[i](t) = qj for all t ≥ T . In this chapter we seek algorithms that minimize
this completion time. Note that in the local target sensing assumption the vehicles
have less target information than in the full target knowledge assumption. Because

3The number of bits required to represent an ID, unique among n vehicles, is directly
proportional to the logarithm of n.
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of this, an algorithm’s performance under the local target sensing assumption can
be no better than its performance under the full target knowledge assumption.

Remark 3.4 (Consistent target knowledge). Another possible assumption on
the target sets, Q[i], which still ensures the existence of a complete matching, is
the consistent target knowledge assumption: For each K ⊆ I,

∣∣∣∪k∈KQ[k]
∣∣∣ ≥ |K|.

In fact, it was proved by Frobenius in 1917 and by Hall in 1935 that this is the
necessary and sufficient condition for the existence of a complete matching (Korte
and Vygen, 2005). •

3.2.3 Sparse, Dense, and Critical Environments

We wish to study the scalability of a particular approach to the target assignment
problem; that is, how the completion time increases as we increase the number
of vehicles, n. The velocity vmax and communication range rcomm of each vehicle
are independent of n. However, we assume that the size of the environment
increases with n in order to accommodate an increase in vehicles. Borrowing terms
from the random geometric graph literature (Penrose, 2003), we say that the
environment is sparse if, as we increase the number of vehicles, the environment
grows quickly enough that the density of vehicles (as measured by the sum of
their communication footprints) decreases; we say the environment is critical,
if the density is constant, and we say the environment is dense if the density
increases. Formally, we have the following definition.

Definition 3.5 (Dense, critical and sparse environments). The environment E(n)
is

(i) sparse if |E(n)|/n→ +∞ as n→ +∞;

(ii) critical if |E(n)|/n→ const ∈ R>0 as n→ +∞;

(iii) dense if |E(n)|/n→ 0+, as n→ +∞.

It should be emphasized that a dense environment does not imply that the
communication graph between vehicles is dense. On the contrary, from Theorem
3.3 we see that the communication graph at random vehicle positions in a dense
environment may not even be connected.

3.3 Classes of Algorithms

In this section we introduce a class of algorithms for the target assignment
problem that provides the structure for algorithms developed in this chapter.
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We will provide a lower bound on the classes performance using the full target
knowledge assumption. Necessarily this also provides a lower bound for the
problem using the local target sensing assumption.

3.3.1 Monotonic Algorithms

We introduce a class of algorithms which provides an intuitive approach to target
assignment.

Definition 3.6 (Monotonic algorithms). A target assignment algorithm is mono-
tonic if it is deterministic and has the following property: If a subset of vehicles
J ⊂ I are all located at target qj at time t1 (i.e., p[i](t1) = qj, ∀ i ∈ J ), then at
least one vehicle in J remains located at qj for all t > t1 (i.e., ∃ i ∈ J such that
p[i](t) = qj, ∀ t > t1).

We call these algorithms “monotonic” since occupied targets remain occupied
for all time, and thus the number of occupied targets monotonically increases
throughout the execution. We focus on monotonic algorithms for two reasons:
First, monotonicity is a natural constraint for target assignment problems since
in many scenarios the vehicles will begin servicing a target immediately upon
arriving at its location—in non-monotonic algorithms, service will be halted as
vehicles leave their targets. Second, monotonic algorithms provide a broad class
of algorithms for which rigorous analysis remains tractable.

We are now ready to lower bound the worst-case asymptotic completion time
of the target assignment problem for any monotonic algorithm. This bound holds
under both the full target knowledge and local target sensing assumptions.

Theorem 3.7 (Time complexity of target assignment). Consider n vehicles,
with communication range rcomm > 0, and n targets in E(n). For all monotonic
algorithms the worst-case completion time of the target assignment problem is
lower bounded as follows:

(i) if E(n) is sparse, then the completion time is in Ω(
√
n|E(n)|);

(ii) if E(n) is critical, then the completion time is in Ω(n);

(iii) if E(n) is dense, then the completion time is in Ω(|E(n)|).

Proof. The proof proceeds by constructing a set of vehicle and target positions
such that the lower bound is achieved. To do this, we place the targets in E(n)
such that the rcomm-geometric graph, generated by the target positions, has a
maximum number of disconnected components. Next we place vehicles 2, . . . , n
so that they occupy targets q2, . . . ,qn. We then place vehicle 1 in E(n)\Q. If the
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√√√√√√
|E(n)|
Npart

rcomm

rcomm √

|E(n)|

(a) Partitioning E(n) to construct target posi-
tions that generate an rcomm-geometric graph
with a maximum number of disconnected com-
ponents.

rcomm

ε/4> 2rcomm + 3
4ε

(b) The ε/4-disk located at the center of one
of the squares in the partition. Targets are
shown in the disk, along with a lower bound
on side-length.

Figure 3.1: Partitioning the environment E(n) for the proof of Theorem 3.7.

vehicles run a monotonic algorithm to solve the target assignment problem, then
vehicles 2, . . . , n will not move, and thus the assignment will not be complete
until vehicle 1 reaches target q1. In the best case, when vehicle 1 comes within
distance rcomm of a connected component, it immediately determines whether or
not there is a free target in that component (i.e., whether or not q1 is in that
component). However, vehicle 1 will not receive information about the availability
of any targets outside of that component. So, vehicle 1 must come within distance
rcomm of the connected component containing q1, before the assignment can be
completed. Since the algorithm is deterministic, we can place the targets, and
vehicles such that the connected component containing q1 is the last connected
component that vehicle 1 will visit.

To create the maximum number of disconnected components, we partition
the environment, E(n) into Npart equally sized, and openly disjoint squares, as
shown in Fig. 3.1(a). We consider two cases, based on whether or not there
exists an ε > 0 such that |E(n)| ≥ (2rcomm + ε)2n.

Case 1: [there exists ε > 0 such that |E(n)| ≥ (2rcomm + ε)2n] In this
case we set Npart := d√ne2 and place a target at the center of each square
until there are no targets remaining. The area of each square is given by
|E(n)|/Npart, and thus the distance between any two targets is lower bounded by√
|E(n)|/Npart ≥

√
(2rcomm + ε)2n/d√ne2, which for sufficiently large n, is greater

than 2rcomm. Thus, we have created n disconnected components, as depicted
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in Fig. 3.1(a). The distance between rcomm-disks centered at any two targets is

lower bounded by
√
|E(n)|/d√ne2 − 2rcomm, and we can place the vehicles and

targets such that one vehicle must travel this distance n− 1 times. Thus, the
worst-case travel distance is at least

(n− 1)



√√√√ |E(n)|
d√ne2 − 2rcomm


 ∈ Ω(

√
|E(n)|n).

Since the vehicle travel at constant speed, the completion time is also in

Ω(
√
|E(n)|n).

Case 2: [for every ε > 0, |E(n)| < (2rcomm + ε)2n] In this case we fix any
ε > 0 and set

Npart :=




√√√√ |E(n)|
(2rcomm + ε)2




2

.

We define a disk of radius ε/4 at the center of each of the Npart squares. We then
place dn/Nparte targets in each ε/4-disk, until there are no targets remaining, as
shown in Fig. 3.1(b). Note that for any α ∈ ]0, 1[, we can find N ∈ N such that

Npart <
|E(n)|

(2rcomm + αε)2
, for all n ≥ N.

Letting α = 3/4, we find that for large n, the distance between the centers of any

two squares is lower bounded by
√
|E(n)|
Npart

≥ 2rcomm + 3ε/4, as shown in Fig. 3.1(b).

So, the distance between any two ε/4-disks is lower bounded by 2rcomm + ε/4.
Thus, we have created Ω(Npart) disconnected components. The distance between
rcomm-disks centered at any two targets in different squares is lower bounded by
ε/4. Again, we can place the vehicles and targets such that one vehicle will have
to travel this distance Ω(Npart) times. Thus, the worst-case distance is lower
bounded by

ε

4
Ω(Npart) ∈ Ω(|E(n)|).

Since the vehicles travel at constant speed, the completion time is also in Ω(|E(n)|).
Thus, if |E(n)|/n → +∞ as n → +∞, then we are in Case 1 and the

completion time is in Ω(
√
|E(n)|n). If |E(n)|/n→ const ∈ R>0 as n→ +∞, then

we may be in either Case 1 or Case 2, depending on the value of const, but in
either case the completion time is in Ω(n). Finally, if |E(n)|/n→ 0+ as n→ +∞,
then we are in Case 2 and the completion time is in Ω(|E(n)|).

Remark 3.8 (Interpretation of lower bound). In Theorem 3.7 we provided
a worst-case lower bound. This should be interpreted as follows. For every
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monotonic algorithm there exists a set of initial target and vehicle position for
which the completion time is no smaller than the lower bound. It should be
noted that there are many initial positions for which the completion time is less
than this worst-case lower bound (indeed, there are initial positions for which the
completion time is zero).

Also note that for a critical environment, the vehicle and target positions used
in the proof of Theorem 3.7 give a completion time of Ω(n) for every monotonic
algorithm. However, if a centralized solver were used to assign vehicles to targets
from the same initial positions, then the motion time would be O(1). Hence the
distributed solutions given by a monotonic algorithm may severely under-perform
when compared to solutions given by the optimal centralized solver. •

3.3.2 The Rendezvous Strategy and its Drawbacks

In this section we discuss another approach to solving the target assignment
problem that we call the Rendezvous Strategy. The strategy, which works
only under the full target knowledge assumption, can be described as follows.

Rendezvous Strategy (for vehicle i)

Compute a common meeting point, such as the centroid of the target1

positions.
Move to the meeting point and wait for all other vehicles to arrive.2

Once all vehicles have arrived, broadcast uid[i] and p[i], and receive uid[k]
3

and p[k] from all other vehicles.
Compute a complete assignment of target-vehicle pairs using the Maximal4

Match algorithm and move to your assigned target.

Since every vehicle knows the position of all targets, the vehicles can compute
a common meeting point. The time for an vehicle to reach any meeting point is
bounded by

√
2|E(n)|/vmax, and thus each vehicle can determine when all other

vehicles have arrived at the meeting point. Once all vehicles reach the meeting
point the communication graph is complete and each vehicle can broadcast its
UID and position to all other vehicles in one communication round. Then, each
vehicle can use Maximal Match to solve a centralized assignment, and all
vehicles end up with the same complete assignment. In addition, since the vehicles
are co-located, this assignment is optimal. Each vehicle then moves to the target
to which it has been assigned. Essentially, this approach turns the distributed
problem into a centralized one.

Theorem 3.9 (Time bound for Rendezvous Strategy). Consider n vehicles
and n targets in the environment E(n). In the worst-case, the Rendezvous
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Strategy solves the target assignment problem in Θ(
√
|E(n)|) time. Moreover, if

the targets and vehicles are uniformly randomly distributed in E(n), the completion

time is in Θ(
√
|E(n)|).

Proof. Since all information can be exchanged in one round, and we are not
considering computation time, the completion time is given by the time to reach
the meeting point plus the time to go from the meeting point to the assigned
target. To see the worst-case, place all targets at one side of the environment, and

all vehicles at the other side. Then each vehicle must travel a distance Θ(
√
|E(n)|).

The distance from the meeting point back to any assigned target is also bounded

by O(
√
|E(n)|). Thus, the worst-case completion time is Θ(

√
|E(n)|).

If we uniformly randomly distribute n vehicles in E(n), then it is a well known
fact (see, for example (Sharma et al., 2007)) that w.h.p., the maximum distance

between vehicles, maxi,j∈I ‖p[i] − p[j]‖, is in Θ(
√
|E(n)|). Thus, one vehicle must

travel a distance of at least 1
2

maxi,j∈I ‖p[i] − p[j]‖ ∈ Θ(
√
|E(n)|). Hence, w.h.p.,

the completion time is in Θ(
√
|E(n)|).

Remark 3.10 (Drawbacks of Rendezvous Strategy). From Theorem 3.9
we see that the Rendezvous Strategy has better worst-case performance
than any monotonic algorithm. Thus, there may be applications in which this
is the best algorithm for solving the target assignment problem. However, there
are several drawbacks to the algorithm. First, this approach is not a distributed
solution in the sense that it requires each vehicle to acquire information about
all other vehicles in the group, and to solve a centralized assignment problem.
Second, the process of meeting to exchange information creates a single point of
failure for the system. Third, if we consider an initial configuration where m
targets are occupied, then in the Rendezvous Strategy all of these targets
become unoccupied as the vehicles travel to the meeting point. Thus, this is
not a monotonic algorithm. In fact, if every target is occupied and we run the
Rendezvous Strategy, all vehicles leave their targets, move to the meeting
point, compute a complete assignment, and move to a new target. This is obviously
not the desired behavior in this instance. Fourth, the Rendezvous Strategy is
ill-suited for heterogeneous situations where vehicles have widely distinct speeds, or
become active at different instants of time; in these situations the Rendezvous
Strategy essentially reduces the performance of every vehicle to that of the
slowest vehicle. Fifth, the Rendezvous Strategy does not work under the
local target sensing assumption, whereas we will provide an algorithm later that
does. Finally, in settings where more vehicle are available than targets, there is
hope to complete the target assignment problem in time that is independent of n.
The Rendezvous Strategy never achieves this time complexity, whereas we
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will prove this property for one of our proposed algorithms below. •

Because of the drawbacks mentioned in the previous remark, in the remainder
of this chapter, we look at distributed monotonic algorithms and their performance
in solving the target assignment problem.

3.4 A Constant Factor Monotonic Algorithm in Sparse
Environments

We begin by introducing a monotonic algorithm, called the ETSP Assgmt
algorithm, for solving the target assignment problem. This algorithm operates
only under the full target knowledge assumption. In this algorithm, each vehicle
precomputes an optimal tour through the n targets, turning the cloud of target
points into an ordered ring. Vehicles then move along the ring, looking for the
next available target. When vehicles communicate, they exchange information
on the next available target along the ring. We show that in sparse or critical
environments, the ETSP Assgmt algorithm is within a constant factor of the
optimal monotonic algorithm for worst-case initial conditions.

3.4.1 The ETSP Assgmt Algorithm

The ETSP Assgmt algorithm is designed under the full target knowledge
assumption. In the following description it will be convenient to assume that the
target positions are stored in each vehicles memory as an array, rather than as
an unordered set. That is, we replace the target set Q with the target n-tuple
q := (q1, . . . ,qn), and the local target set Q[i] with the n-tuple q[i] := q.4 The
algorithm can be described as follows. For each i ∈ I, vehicle i computes a
constant factor approximation of the optimal ETSP tour of the n targets in q[i]

(as discussed in Section 2.2.2), denoted tour(q[i]). We can think of tour as a
permutation that reorders the entries of q[i]. This permutation is independent of
i since all vehicles use the same method. An example is shown in Fig. 3.2(a).

Vehicle i then replaces its n-tuple q[i] with tour(q[i]). Next, vehicle i computes
the index of the closest target in q[i], and calls it curr[i]. Vehicle i also maintains
the index of the next target in the tour that may be available, next[i], and first
target in the tour before curr[i] that may be available, prev[i]. Thus, next[i]

is initialized to curr[i] + 1 (mod n) and prev[i] to curr[i] − 1 (mod n). This is
depicted in Fig. 3.2(b). Vehicle i also maintains the n-tuple, status[i], which
records whether a target is occupied by (assigned to) another vehicle or not.

4It is possible that the order of the targets in the local sets q[i] may initially be different.
However, given a set of distinct points in R2, it is always possible to create a unique ordering.

35



Chapter 3. Monotonic Target Assignment

1

5

3

2

6

4

1

5

3

2

6

4

tour

7

7

(a) ETSP tour of seven targets.

curr[i] = 7

next[i] = 1

prev[i] = 6
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(b) Vehicle i initialization.

Figure 3.2: The initialization process for the ETSP Assgmt algorithm.

Letting status[i](j) denote the jth entry in the n-tuple, the entries are given by

status[i](j) =





0, if vehicle i knows q
[i]
j is assigned

to another vehicle,

1, otherwise.

(3.2)

Thus, status[i] is initialized as the n-tuple (1, . . . , 1). The initialization is summa-
rized in Algorithm A.1 of Appendix A.

Vehicle i then moves toward the target curr[i] at constant speed vmax > 0:

ṗ[i] =





vmax

q
[i]

curr[i]
−p[i]

‖q[i]

curr[i]
−p[i]‖

, if q
[i]

curr[i]
6= p[i],

0, otherwise,

(3.3)

Finally, at each communication round vehicle i executes the algorithm comm-rd
displayed in Algorithm A.2 of Appendix A. The comm-rd algorithm operates as
follows: Vehicle i, which is heading toward target curr[i], communicates with its
neighbors to determine if any other vehicles are heading toward curr[i]. If another
vehicle is heading to curr[i], then the vehicle closer to curr[i] continues moving
toward the target, while the farther vehicle selects a new target along the tour
(ties are broken using uid’s). The vehicles also exchange information on targets
that are occupied using the prev, and next variables. The following is a more
formal description that omits a few minor technicalities.

Fig. 3.3 gives an example of comm-rd resolving a conflict between vehicles
i and k, over curr[i] = curr[k]. In this figure, all other vehicles are omitted.
In summary, the ETSP Assgmt algorithm is the triplet consisting of the
initialization of each vehicle (see Algorithm A.1), the motion law in Eq. (3.3),
and comm-rd (see Algorithm A.2), which is executed at each communication
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Description of comm-rd for vehicle i

Broadcast msg[i], consisting of uid[i], the target indices prev[i], curr[i], and1

next[i], and the distance to the current target, dist[i].
foreach message, msg[k], received do2

Set status[i](j) to assigned (‘0’) for each target j from3

prev[k] + 1 (mod n) to next[k] − 1 (mod n) not equal to curr[i].
if curr[i] = curr[k] and dist[i] > dist[k] then4

Set the status of curr[i] to assigned (‘0’).5

else if curr[i] = curr[k] and dist[i] < dist[k] then6

Leave curr[i] unchanged. However, vehicle k will set curr[k] to a new7

target. This target will be at least as far along the tour as the
farther of next[i] and next[k]. So, set the status of next[i] and next[k]

to assigned (‘0’).

Update curr[i] to the next target in the tour with status available (‘1’),8

next[i] to the next available target in the tour after curr[i], and prev[i] to
the first available target in the tour before curr[i].

curr[k] = curr[i] = 7 2

prev[k] = 5

next[k] = next[i] = 1

prev[i] = 6

p[k]
3

4

p[i]

(a) Before conflict over target 7.

curr[i] = 7

2 = next[k] = next[i]

prev[k] = prev[i] = 5

curr[k] = 1

6

3

4

p[k]p[i]

(b) After resolution of the conflict.

Figure 3.3: The resolution of a conflict between vehicles i and k over target 7. Since
vehicle k is closer to target 7 than vehicle i, vehicle k wins the conflict.
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round.

3.4.2 Performance of the ETSP Assgmt Algorithm

We now present our main result on the ETSP Assgmt algorithm. Section 3.4.3
contains its proof. Recall that the ETSP Assgmt algorithm requires the full
target knowledge assumption.

Theorem 3.11 (Worst-case bound for ETSP Assgmt). For any initial positions
of n vehicles and n targets in E(n), ETSP Assgmt solves the target assignment

problem in O(
√
n|E(n)|) time. In addition, if E(n) is sparse or critical, then

ETSP Assgmt is within a constant factor of the optimal monotonic algorithm
for worst-case initial positions.

3.4.3 Proof s for Statements about the ETSP Assgmt Algorithm

To prove Theorem 3.11 we introduce a few definitions. We say that vehicle i ∈ I
is assigned to target q

[i]
j , j ∈ I, when curr[i] = j. In this case, we also say target j

is assigned to vehicle i. We say that vehicle i ∈ I enters a conflict over the target
curr[i], when vehicle i receives a message, msg[k], with curr[i] = curr[k]. Vehicle i
loses the conflict if vehicle i is farther from curr[i] than vehicle k, and wins the
conflict if vehicle i is closer to curr[i] than vehicle k, where ties are broken by
comparing UIDs.

The following lemma is a direct result of the facts that the environment is
bounded for each n ∈ N, and that the vehicles move at constant speed vmax > 0.

Lemma 3.12 (Conflict in finite time). Consider any communication range
rcomm > 0, and any fixed number of vehicles n ∈ N. If, for two vehicles i and k,
curr[i] = curr[k] at some time t1 ≥ 0, then vehicle i (and likewise, vehicle k) will
enter a conflict over curr[i] in finite time.

In order to prove correctness, we require a few properties of the ETSP
Assgmt algorithm.

Lemma 3.13 (ETSP Assgmt properties). During an execution of the ETSP
Assgmt algorithm, the following statements hold for vehicle i ∈ I:

(i) the current target curr[i] satisfies status[i](curr[i]) = 1;

(ii) status[i](j) = 0 for each j ∈ {prev[i] + 1, prev[i] + 2, . . . , next[i] − 1} \
{curr[i]} (mod n);

(iii) status[i](j) = 0 only if target j is assigned to some vehicle k 6= i;
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(iv) if status[i](j) = 0 at some time t1, then status[i](j) = 0 for all t ≥ t1;

(v) if vehicle i receives msg[k] during a communication round, then vehicle
i will set status[i](j) = 0 for each j ∈ {prev[k] + 1, . . . , next[k] − 1} \
{curr[i]} (mod n).

Proof. Statements (i) and (iv) and (v) follow directly from the initialization and
comm-rd.

Statement (ii) is initially satisfied since prev[i] +1 = curr[i] = next[i]−1 implies
that {prev[i] + 1, . . . , next[i] − 1} \ {curr[i]} = ∅. Assume that statement (ii) is
satisfied before the execution of comm-rd. At the end of comm-rd, prev[i] is
updated to the first target before curr[i] in the tour with status available (‘1’). If
status[i](curr[i]) = 1, then curr[i] remains unchanged. If status[i](curr[i]) = 0, then
curr[i] is increased to the first target with status available (‘1’). Finally, next[i] is
set to the first target after curr[i] that is available. Thus, at the end of comm-rd
the status of prev[i], curr[i] and next[i] are available, and status[i](j) = 0 for each
target j ∈ {prev[i] + 1, . . . , next[i] − 1} \ {curr[i]} (mod n).

Statement (iii) is also initially satisfied since status[i] = 1n for each i ∈ I.
Assume Statement (iii) is satisfied before the execution of comm-rd and that
during this communication round vehicle i changes the status of a target j to
assigned (‘0’). We show that Statement (iii) is still satisfied upon completion
of the execution of comm-rd. In order for status[i](j) to be changed, vehicle
i must have received a message, msg[k], for which one of the following cases is
satisfied: (1) Target j 6= curr[i] lies between prev[k] and next[k] on the tour; (2)
There is a conflict between vehicles i and k over target j that vehicle i loses; or,
(3) There is a conflict between vehicles i and k that vehicle i wins and next[i] = j
or next[k] = j.

In Case (1) either status[k](j) = 0 or curr[k] = j, and thus target j is assigned.
In Case (2) vehicle k won the conflict implying curr[k] = j entering the communi-
cation round. Thus after the communication round, curr[i] 6= j and target j is
assigned to another vehicle. In Case (3), curr[i] = curr[k] 6= j, and vehicle k loses
the conflict. In this case, vehicle k will change curr[k] to the next available target
on its tour. All targets from prev[k] + 1 to next[k] − 1 have been assigned. Also,
during the communication round, vehicle k will receive msg[i] and determine that
all targets from prev[i] + 1 to next[i] − 1 are assigned. Thus, the next available
target is at least as far along the tour as the farther of next[i] and next[k]. Thus,
after the communication round, both next[i] and next[k] are assigned.

We are now ready to prove Theorem 3.11.

Theorem 3.11. We begin by proving the correctness of the ETSP Assgmt
algorithm. Assume by way of contradiction that at some time t1 ≥ 0 there are
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J ∈ {1, . . . , n− 1} targets unassigned, and for all time t ≥ t1, J targets remain
unassigned. Since the algorithm is monotonic, the same n− J assigned targets
remain assigned for all time, and thus it must be the same J targets that remain
unassigned for all t ≥ t1. Let J denote the index set of the J unassigned targets.
From our assumption, and by Lemma 3.13 (iii), for every t ≥ t1 and for every
i ∈ I, status[i](j) = 1 for each j ∈ J . Now, among the n − J assigned targets
there is at least one target to which two or more vehicles are assigned. Consider
one such target, call it j1, and consider an vehicle i1 with curr[i1] = j1. By Lemma
3.12, vehicle i1 will enter a conflict over j1 in finite time. Let us follow the loser of
this conflict. The losing vehicle, call it i2, will set status[i2](j1) = 0 and will move
to the next target in the tour it believes may be available, call it j2. Now, we
know j2 is not in J , for if it were J−1 targets would be unassigned contradicting
our assumption. Moreover, by Lemma 3.13 (i), j2 6= j1. Thus, vehicle i2 will
enter a conflict over j2 in finite time. After this conflict the losing vehicle, call
it i3, will set status[i3](j2) = 0 (because it lost the conflict), and from Lemma
3.13 (v), status[i3](j1) = 0. Again, vehicle i3’s next target j3 must not be in J ,
for if it were we would have a contradiction. Thus, repeating this argument n−J
times we have that vehicle in−J loses a conflict over jn−J . After this conflict, we
have status[in−J ](jk) = 0 for each k ∈ {1, . . . , n− J}, where jk1 = jk2 if and only
if k1 = k2. In other words, vehicle in−J knows that all n − J assigned targets
have indeed been assigned. Also, by our initial assumption, status[in−J ](j) = 1
for each j ∈ J . By Lemma 3.13 (i), vehicle in−J ’s new current target must have
status available (‘1’). Therefore, it must be that vehicle in−J will set curr[in−J ] to
a target in J . Thus, after a finite amount of time J − 1 targets are unassigned,
a contradiction.

We now prove the upper bound on the performance of the ETSP Assgmt
algorithm. First notice the following: Consider the optimal ETSP tour through
all n targets. This provides an ordering in which the n targets are visited. Now,
suppose k targets are removed from the tour, and the n− k remaining targets are
visited in the order they appeared in the n-target tour. In general, this is not the
optimal tour through the n− k points. However, by the triangle inequality, the
length of the tour is no longer than that of the tour through all n points. Because
of this, in the worst-case some vehicle must travel to its nearest target, and then
around its entire ETSP tour, losing a conflict at each of the first n− 1 targets in
the tour. For any initial vehicle and target positions, the distance to the nearest

target is O(
√
|E(n)|). Since the length of each vehicle’s tour is a constant factor

approximation of the optimal, the tour length is O(
√
nE(n)) (see Theorem 2.2).

The vehicle will not follow the ETSP tour exactly because it may enter conflicts
before actually reaching the targets; however, by the triangle inequality, the
resulting path cannot be longer than the ETSP tour. Hence, the total distance
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traveled is in O(
√
nE(n)), and since the vehicles move at constant speed, the

completion time is in O(
√
nE(n)). Combining this with Theorem 3.7 we see that

in critical or sparse environments the completion time is in Θ(
√
nE(n)).

3.5 A Constant Factor Monotonic Algorithm in Dense
Environments

In the previous section we presented the ETSP Assgmt algorithm which op-
erates only with full target knowledge but has provably good performance in
sparse and critical environments. In this section we introduce a monotonic algo-
rithm called the Grid Assgmt algorithm which operates under both full target

knowledge and local target sensing with rsense ≥
√

2/5rcomm. In this algorithm,
the vehicles partition the environment into cells. Vehicles then determine local
maximum assignments, and elect a leader in the cell which they occupy. Through
communication between leaders of adjacent cells, each leader obtains estimates
of the location of free targets, and uses this information to guide unassigned
vehicles to free targets. We show that in critical or dense environments, the
Grid Assgmt algorithm is within a constant factor of the optimal monotonic
algorithm for worst-case initial conditions. In addition, we characterize the
stochastic performance of the Grid Assgmt algorithm.

3.5.1 The Grid Assgmt Algorithm

In the Grid Assgmt algorithm we make either the full target knowledge as-
sumption (i.e., Q[i] := Q), or the local target sensing assumption with rsense ≥√

2/5rcomm. In addition we assume each vehicle knows the environment E(n).

Each vehicle partitions the environment into b2 equally sized square cells, where
b ∈ N. It then labels the cells like entries in a matrix, so cell C(r, c) resides in the
rth row and cth column, as shown in Fig. 3.4. Since the vehicles started with the
same information, they all create the same partition. The quantity b is chosen
so that an vehicle in cell C(r, c) is within communication range of any vehicle
in cells C(r, c), C(r − 1, c), C(r + 1, c), C(r, c− 1), and C(r, c + 1). In light of

Lemma 3.2, we see that this is satisfied when b = d
√

5|E(n)|/rcomme. Note that

with rsense ≥
√

2/5rcomm an vehicle in cell C(r, c) can sense the position of all
targets in that cell. We now outline the Grid Assgmt algorithm.

Outline of the Grid Assgmt algorithm

Initialization and role assignment : Each vehicle partitions the environ-
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C(1, 1)

C(2, 1)

C(3, 1)

C(1, 2)

C(2, 2)

C(3, 2)

C(1, 3)

C(2, 3)

C(3, 3)

Figure 3.4: Partitioning E(n), containing 35 targets, into b2 = 9 cells.

ment as described above. In each cell, vehicles find a maximum assignment
between vehicles and targets occupying the cell, and assigned vehicles
elect a leader among them. Accordingly, vehicles are labeled leader, unas-
signed, or assigned non-leader. According to their role, vehicles allocate
certain variables describing their location and their knowledge about target
assignments.

Assigned non-leader vehicles: Each assigned non-leader vehicle move to its
assigned target and goes silent.

Cell leaders: Each cell leader estimates the number of available targets in all
cells below it in its column. The leader i of cell C(r, c) stores this estimate in

the variable ∆
[i]
blw(r, c); to maintain the estimates, cell leaders communicate

to the cell leader in the cell directly above it. Additionally, each cell leader
in the top row communicates to the cell leader in the cell directly to the
right, to obtain an estimate of the number of available targets in all columns
to the right (denoted ∆

[j]
rght(1, c) for leader j of cell C(1, c)).

Unassigned vehicles: Each unassigned vehicle seeks a free target by entering
cells and querying their respective leaders. The motion of unassigned
vehicles is illustrated in Fig. 3.5. Assuming no communication with the
leaders, the nominal order in which an unassigned vehicle visits all cells of
the grid is shown in the left-hand figure. The way in which this path is
shortened as the unassigned vehicle receives available target estimates from
cell leaders is shown on the right-hand figure.

Remark 3.14 (Computations performed by cell leaders). If vehicle i is the leader
of cell C(r, c), it computes ∆[i](r, c), which is (# of targets)− (# of vehicles) in

C(r, c). In addition, leader i maintains ∆
[i]
blw(r, c), which is an estimate of

(# of targets)− (# of vehicles) in cells C(r+ 1, c) to C(b, c). This quantity must
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∆
[j]
rght(1, 3) ≤ 0

∆
[i]
blw(3, 3) ≤ 0

∆
[k]
blw(1, 2) ≤ 0

Figure 3.5: The left figure shows the nominal order in which an vehicle (blue square)
searches the cells in the absence of communication. The blue lines on the right figure
show how this path is shortened by the non-positive estimates from leader i of C(3, 3),
leader j of C(1, 3) and leader k of C(1, 2).

be estimated because vehicle i does not initially know the number of vehicles in
cells C(r + 1, c) to C(b, c). The variable ∆

[i]
blw(r, c) is initialized to +∞ (i.e.,

a very large positive number) for the leaders in rows 1 to b − 1, and to 0 for
the leaders in row b. Then, at each communication round vehicle i updates its
estimate by communicating with the leaders in cells C(r − 1, c) and C(r + 1, c):

1 Send msg[i] := ∆
[i]
blw(r, c) + ∆[i](r, c) to leader in cell C(r− 1, c) and

receive msg[k] from
vehicle k, the leader of C(r + 1, c).

2 Set ∆
[i]
blw(r, c) := msg[k] = ∆

[k]
blw(r + 1, c) + ∆[k](r + 1, c).

The update procedure is depicted in Fig. 3.6. A leader j of cell C(1, c) in the

top row uses a similar method to maintain the estimate ∆
[j]
rght(1, c). It should be

noted that as unassigned vehicles enter and exit cells, the actual values of ∆blw

and ∆rght change. Thus, to maintain accurate estimates, there is a procedure
whereby vehicles send enter and exit messages to cell leaders. This is detailed
in Appendix B. •

Remark 3.15 (Motion performed by unassigned vehicles). Let us describe the
unassigned vehicles motion in more detail. First, each unassigned vehicle seeks a
free target in its column as follows. It queries the leader of its current cell about
free targets in its column, below its current cell. If the leaders estimate ∆

[i]
blw(r, c)

is positive, then the vehicle moves down the column. Otherwise, the vehicle moves
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∆[k](3, c)

∆
[k]
blw(3, c)

−2

+∞

+1

+∞

+1

+∞

−1

0

−2

+∞

+1

+∞

+1

−1

−1

0

−2

+∞

+1

0

+1

−1

−1

0

−2

+1

+1

0

+1

−1

−1

0

InitializationExample column c Fixed point

comm.
round

comm.
round

comm.
round

∆[l](4, c)

∆
[l]
blw(4, c)

∆[i](1, c)

∆
[i]
blw(1, c)

∆[j](2, c)

∆
[j]
blw(2, c)

Figure 3.6: In the column c, blue squares depict vehicles, and black disks depict targets.
The figure shows how the estimates ∆ and ∆blw are initialized and updated by leader
i of C(1, c), j of C(2, c), k of C(3, c), and l of C(4, c). The estimates converge to true
values in three communication rounds.

up the column. While moving down, upon entering a new cell the vehicle first
queries the cell leader on free targets in the cell, and then on free targets in cells
below. If the vehicle starts moving up the column, then it only queries cell leaders
on free targets in the cell (since it knows no targets are free in the cells below).

Second, if the vehicle reaches the top cell of its column, then the column
contains no free targets. To transfer to a new column, the vehicle queries the
leader of the top cell about free targets in all columns to the right. If the leader’s
estimate ∆

[j]
blw(1, c) is positive, then the vehicle moves to the right; otherwise, the

vehicle moves to the left. Upon reaching the next cell, the vehicle recommences
the column procedure. •

A detailed description of the Grid Assgmt algorithm is given in Appendix B:
all variables maintained by the vehicles are listed in Table B.1; the initialization
and role assignment is performed by the Role Assgmt algorithm, see Algorithm
B.1; the behavior of the cell leaders and of the unassigned vehicles are described
by the Leader and Unassigned algorithms, see Algorithms B.2 and B.3,
respectively.

Remark 3.16 (Using a single transfer row). In our description of the Grid
Assgmt algorithm, vehicles use the top row to transfer to a new column. This
choice of “transfer row” is arbitrary and the top row was chosen for simplicity
of presentation. Intuitively, it seems the middle row is a more efficient choice.
The upcoming analysis shows that such a choice does not affect the algorithm’s
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asymptotic performance. The reason we require unassigned vehicles to use a
single transfer row is because it allows for cell leaders to easily maintain up-to-
date estimates of unassigned vehicle and free target locations. To understand
this, suppose that there were two transfer rows, row 1 and row b, and that two
unassigned vehicles simultaneously transfer from column c− 1 to column c, one

using row 1, and the other using row b. Then, it would take b ∈ Θ(
√
|E(n)|)

communication rounds for the leader in cell C(1, c) to become aware that an
unassigned vehicle transferred using row b, implying that leader estimates are not
up-to-date. To overcome this, one would need to halt unassigned vehicle motion
until leader estimates have been updated; a process which would require more leader
communication. In addition, using more transfer rows does not appear to change
the asymptotic performance (although the constant factor could be significantly
reduced since the algorithm would rely more heavily on communication than
vehicle motion). Thus, we have utilized a single transfer row to minimize excess
communication, and avoid introducing more complexity in the algorithm. This
also reduces wireless congestion, which can become significant for large numbers
of vehicles (Gupta and Kumar, 2000). •

Remark 3.17 (Details of the Grid Assgmt algorithm). (1) Vehicles move
at speed vmax, and to transfer between cells vehicles move toward the center of
the new cell. (2) If an vehicle or target lies on the boundary between cells, a
simple tie breaking scheme is used assign it to a cell. (3) In our presentation, we
implicitly assumed that every cell initially contains at least one vehicle and one
target. If a cell has no targets, then any vehicles initially in the cell leave, and
the empty cell is then ignored. If a cell initially contains targets but no vehicles,
then the first vehicles to enter the cell run the Maximal Match algorithm and
a leader is elected. •

3.5.2 Performance of the Grid Assgmt Algorithm

We now present our main results on the Grid Assgmt algorithm. Section 3.5.3
contains their proofs. Recall that the Grid Assgmt algorithm operates under

full target knowledge, or local target sensing with rsense ≥
√

2/5rcomm.

Theorem 3.18 (Worst-case bound for Grid Assgmt). For any initial positions
of n vehicles and n targets in E(n), the Grid Assgmt algorithm solves the target
assignment problem in O(|E(n)|) time. In addition, if E(n) is dense or critical,
then the Grid Assgmt algorithm is within a constant factor of the optimal
monotonic algorithm for worst-case initial conditions.

Remark 3.19 (Grid Assgmt vs. ETSP Assgmt). The worst-case bound

for the ETSP Assgmt algorithm in Theorem 3.11 was O(
√
|E(n)|n). Thus, in
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sparse environments the ETSP Assgmt algorithm performs better, where as in
dense environments the Grid Assgmt algorithm performs better. In critical
environments, the bounds are equal. Thus, the two algorithms are complementary.
In practice, a vehicle can determine which algorithm to run by comparing the area
of the environment |E(n)| to the area of n disks of radius rcomm. That is, given
n, E(n) and rcomm, a vehicle could use a rule such as the following: if |E(n)| >
πr2

commn, then execute the ETSP Assgmt algorithm, else if |E(n)| < πr2
commn,

then execute the Grid Assgmt algorithm. •

The following theorem shows that for randomly placed targets and vehicles,
the performance of the Grid Assgmt algorithm is considerably better than in
the worst-case.

Theorem 3.20 (Stochastic time complexity). Consider n vehicles and n targets,
uniformly randomly distributed in E(n). Then, the Grid Assgmt algorithm

solves the target assignment problem in O(
√
|E(n)|) time with high probability if

|E(n)| ≤ r2
comm

5

n

log n+ γ(n)
,

where γ is any function such that γ(n)→ +∞ as n→ +∞.

Remark 3.21 (Generalization of Theorem 3.20). The bound in Theorem 3.20
holds, more generally, for any initial positions such that every cell contains at
least one target and at least one vehicle.

Theorem 3.22 (Stochastic time complexity, cont’d). Consider n vehicles and
n/ log n targets, uniformly randomly distributed in E(n). Then the Grid Assgmt
algorithm solves the target assignment problem in O(1) time with high probability
if there exists K > 1/ log(4/e), such that

|E(n)| ≤ r2
comm

5

n

K log n
.

3.5.3 Proofs for Statements about the Grid Assgmt Algorithm

In this section we prove the results presented in Section 3.5.2. The leaders of
each cell maintain estimates of the difference between the number of targets and
vehicles in various parts of the grid. In order to talk about the convergence of
these estimates we introduce a few quantities. Let tar(r, c) denote the number
of targets in C(r, c). Let ∆(r, c)(t) denote the difference between tar(r, c) and
the number of vehicles with currcell[i] = C(r, c) at time t > 0. (Notice the
lack of superscript on ∆(r, c)(t), when compared to vehicle i’s estimate of the
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quantity, ∆[i](r, c).) Recall that in our model, communication round k occurs
instantaneously at time tk. Thus, we let t−k denote start of the round, and t+k , its
completion, and so ∆[i](r, c)(t+k ) denotes value of ∆[i](r, c) at the completion of
communication round k.

Lemma 3.23 (Convergence of estimates). During an execution of the Grid
Assgmt algorithm, if vehicle i ∈ I is the leader of cell C(r, c) then for each
communication time tk, k ∈ N:

(i) ∆[i](r, c)(t+k ) = ∆(r, c)(tk);

(ii) ∆
[i]
blw(r, c)(t+k ) ≥

b∑
r∗=r+1

∆(r∗, c)(tk);

(iii) if k > b and each cell in column c contains a leader, then ∆
[i]
blw(r, c)(t+k ) =

b∑
r∗=r+1

∆(r∗, c)(tk).

Proof. To see part (i) notice that each vehicle j ∈ I initially sets currcell[j] to the
cell it occupies. The leader of cell C(r, c), call it vehicle i, can communicate with all
vehicles in its cell, and it knows the number of targets in C(r, c). Thus, at t1 vehicle
i counts the vehicles in its cell, and correctly calculates ∆[i](r, c)(t+1 ) = ∆(r, c)(t1).
Assume that ∆[i](r, c) is correct at t+k−1. We will show that it is correct at t+k . If

at t−k vehicle j changes currcell[j] to C(r, c), then it must either be in C(r − 1, c)
or C(r + 1, c), or if r = 1, possibly C(r, c− 1) and C(r, c+ 1). Upon changing
currcell[j] to C(r, c), vehicle j sends an enter message to the leader of C(r, c),
and by Lemma 3.2 the leader will receive it at tk. Likewise, if an vehicle changes
currcell[j] from C(r, c) to another cell, the vehicle must be in cell C(r, c). Thus,
when this vehicle sends the exit message, the leader of C(r, c) will receive it at
tk. Hence, after the leader updates ∆[i](r, c) (Step 8 of Leader), it will have
∆[i](r, c)(t+k ) = ∆(r, c)(tk).

The proof of (ii) is as follows. Notice that we can write
∑b
r∗=r+1 ∆(r∗, c)(tk)

as
b∑

r∗=r+1

(∆(r∗, c)(tk−1)) + enter(tk−1, tk)− exit(tk−1, tk). (3.4)

where enter(tk−1, tk) is the number of vehicles that entered cells C(r+1, c), . . . , C(b, c)
between time tk−1 and time tk, and exit(tk−1, tk) is the number that exited.

Let vehicle i be the leader of cell C(r, c). Vehicle i initializes ∆
[i]
blw(r, c) to

+∞, so the inequality is satisfied initially. Assume (ii) is satisfied at t+k−1. We
will show that it is satisfied at t+k . If there is no leader in C(r+ 1, c), then vehicle
i will not receive a message. In this case one of two updates occurs: 1) If an
unassigned vehicle enters cell C(r, c) from cell C(r + 1, c) then vehicle i sets
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∆
[i]
blw(r, c) := 0 (Step 10 of Leader). But, from Unassigned, an vehicle moves

up a column only if there are no available targets below, and thus the inequality
is satisfied at t+k . Alternatively, 2) vehicle i leaves ∆

[i]
blw(r, c) unchanged, and thus

the inequality will be satisfied at t+k .

The other case is that leader j is in cell C(r + 1, c), and vehicle i receives the
message

∆
[j]
blw(r + 1, c)(t+k−1) + ∆[j](r + 1, c)(t+k−1), (3.5)

But by assumption

∆
[j]
blw(r + 1, c)(t+k−1) ≥

b∑

r∗=r+2

(∆(r∗, c)(tk−1))

and from (i), ∆[j](r + 1, c)(t+k−1) = ∆(r + 1, c)(tk−1). Thus, Eq. (3.5) is no
smaller than

∑b
r∗=r+1 ∆(r∗, c)(tk−1). But, when vehicle i receives the message

in Eq. (3.5), it adds enter(tk−1, tk) and subtracts exit(tk−1, tk) (see Step 9 of
Leader). Thus, from Eq. (3.4), the inequality is satisfied at t+k .

In light of the proof for (ii), we see that to prove (iii) we need only show
that for all k ≥ b, the message in Eq. (3.5) equals

∑b
r∗=r+1 ∆(r∗, c)(tk−1). We

do this by induction. Notice that in cell C(b, c), ∆
[j]
blw(b + 1, c)(t+k−1) = 0, and

so (iii) holds trivially for k > 0. In cell C(b − 1, c), for k > 1, the message in
Eq. (3.5) becomes ∆[j](b, c)(t+k−1), which by (i) equals ∆(b, c)(tk−1). Thus (iii)
holds for cell C(b − 1, c) and C(b, c) for all k > 1. Assume that (iii) holds for
C(r + 1, c), . . . , C(b, c) at time t+k−1, where k > b − r. We will show it holds
for C(r, c) at time t+k . Since (iii) holds for cell C(r + 1, c) at tk−1, the first
term in Eq. (3.5) is

∑b
r∗=r+2 ∆(r∗, c)(tk−1), and from (i), the second term is

∆(r + 1, c)(tk−1). Thus, the message is
∑b
r∗=r+1 ∆(r∗, c)(tk−1).

We have an analogous result for the convergence of ∆
[i]
rght(r, c). It follows

directly from Lemma 3.23 (i) and (iii) and the fact that ∆
[i]
rght(c) is initially

overestimated.

Lemma 3.24 (Convergence of estimates, cont’d). If vehicle i ∈ I is the leader
of cell C(1, c), then for each communication time tk, k ∈ N,

(i) ∆
[i]
rght(c)(t

+
k ) ≥

b∑
c∗=c+1

b∑
r∗=1

∆(r∗, c∗)(tk);

(ii) if each cell contains a leader and if k > 2b, then

∆
[i]
rght(c)(t

+
k ) =

b∑

c∗=c+1

b∑

r∗=1

∆(r∗, c∗)(tk).
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We will now prove theorems 3.18, 3.20, and 3.22.

Theorem 3.18. We begin by proving the correctness of the Grid Assgmt algo-
rithm. Assume by way of contradiction that J ∈ {1, . . . , n− 1} targets remain
unassigned for all time and thus B ∈ {1, . . . , J} cells contain unassigned targets.
By construction of the Grid Assgmt algorithm, an assigned target never be-
comes unassigned. Thus, the same targets remain unassigned for all time. Let C
denote the set of cells containing these unassigned targets.

Consider a cell C(r, c) ∈ C. If C(r, c) does not contain a leader, then it has
never been entered by an vehicle. If it does contain a leader, then taravail[i](r, c)
contains the available targets. Thus if there is an unassigned vehicle in cell
C(r, c) ∈ C, then upon querying the leader (or if there is no leader, electing a
leader), at least one of the targets in C(r, c) will become assigned, contradicting
our assumption. Likewise, for each cell C(r, c) /∈ C, either there is a leader and
taravail[i](r, c) = ∅, or there are no targets in the cell.

Now, consider an unassigned vehicle i, in cell C(r, c) /∈ C. Vehicle i must
never enter a cell in C, for if it did an unassigned target would become assigned,
a contradiction. We will show this is not possible. According to the Unassigned
algorithm, vehicle i travels down its current column, querying the leader of each
cell for available targets in the cell and in cells below. By Lemma 3.23(ii) vehicle i
will only travel back up the column if all targets in cells below have been assigned.
After traveling back up the column, if there are no available targets in the top cell
in the column, vehicle i will set colstatus[i](c) = 0 and will never enter column c
again. By Lemmas 3.23 and 3.24, vehicle i will travel down each column that
may possibly have a free target. Thus, at some point vehicle i necessarily will
enter a column containing a cell in C. Hence, either vehicle i, or another assigned
vehicle will enter the cell in C at which point the number of assigned targets will
increase by at least one, a contradiction.

We now prove the upper bound on the performance of the Grid Assgmt
algorithm. In the worst case, the targets are positioned such that leaders cannot
exchange any information about availability of targets. Then, in the worst case
an vehicle, call it i, must visit all b2 cells before reaching an unassigned target.
In the worst case vehicle i will travel up and down once in every column in the
grid, and back and forth once along the top of the grid. In each cell, vehicle i
will query the leader for available targets. If there is no leader in the cell, then
vehicle i will solve a maximum matching among vehicles that entered at the
same time as it, and one of them will become the leader. In either case, the time

spent in each cell is O(1). The length of each column is
√
|E(n)|, and thus the

49



Chapter 3. Monotonic Target Assignment

worst-case travel distance is bounded by 2
√
|E(n)|(b+ 2) ∈ O(|E(n)|). Since the

vehicle moves at constant speed vmax, the time for the last vehicle to reach its
final target is in O(|E(n)|).

Theorem 3.20. From Lemma 3.2, b ≤ d
√
n/(log n+ γ(n))e, where γ(n)→ +∞

as n→ +∞. From Theorem 3.1 when we uniformly randomly distribute n targets
and n vehicles into b2 cells, w.h.p. each cell contains at least one vehicle, and
one target. The maximum matching and leader election in the Role Assgmt
algorithm can be performed in O(1) time. Thus in O(1) time there will be a

leader in every cell. By Lemma 3.23(iii), in b ∈ O(
√
|E(n)| communication rounds,

every leader will know the difference between the number of vehicles and the

number of targets in the cells below it. Thus after O(
√
|E(n)|) time, the leader

of each cell will only let an vehicle move further down the column if it knows

the vehicle will find an assignment. Also, by Lemma 3.24(ii) after O(
√
|E(n)|)

time, each leader in the top row will only send vehicles right if there are available
targets to the right. Thus, in the worst case, an vehicle may have to travel out of
its own column, across the top column, and then down a new column in order

to find its target. This distance is in O(
√
|E(n)|), and since the vehicle spends

O(1) time in each cell, the time complexity is in O(
√
|E(n)|). Thus the total time

complexity is in O(
√
|E(n)|) +O(

√
|E(n)|) ∈ O(

√
|E(n)|) time.

Theorem 3.22. From Lemma 3.2, there are b2 ≤ d
√

(n/K log n)e2 cells, where

K is a constant satisfying K > 1/ log(4/e). Equivalently, we can write b2 =
1

C(n)
d
√

(n/K log n)e2, where C(n) ≥ 1 for all n ∈ N. From Theorem 3.1(i),

when we distribute n/ log n targets into b2 cells, w.h.p. there are at most

C(n)O
(

logn
log logn

)
targets in any given cell. From Theorem 3.1(iv), w.h.p. there are

at least C(n)Ω(log n) vehicles in each cell. Thus, w.h.p, there are more vehicles
than targets in every cell. Thus after running the Role Assgmt algorithm, every
target in each cell will be assigned. The maximum matching can be found in
O(1) time. Since each cells area is ≤ r2

comm/5, and the vehicles move at constant
speed, the assignment will be complete in O(1) time, with high probability.

3.6 Simulations

We have performed extensive simulations of the ETSP Assgmt and Grid
Assgmt algorithms. The ETSP Assgmt algorithm has been simulated in both
two and three dimensional environments. To compute the ETSP tour we have
used the linkern TSP solver (see Chapter 2 for a review of TSP computation).
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(a) Initial positions. (b) Mid execution. (c) Final assignment.

Figure 3.7: Simulation of the ETSP Assgmt algorithm for 20 vehicles in a sparse
environment. Targets are black dots and vehicles are blue squares. The ETSP tour
is shown connecting the targets, and a red line is drawn between vehicles within
communication range.

A representative simulation for 20 vehicles and targets uniformly randomly placed
in a sparse environment is shown in Fig. 3.7. The ETSP tour is shown connecting
the target positions. Dashed blue trails in Fig. 3.7(b) and Fig. 3.7(c), give
the trajectories of vehicles that have yet to reach a target. A representative
simulation of the Grid Assgmt algorithm for 65 vehicles and targets uniformly
randomly distributed in a dense environment is shown in Fig. 3.8. In Fig. 3.8(c)
the communication between the leaders of each cell is shown with red lines, and
a dashed blue trail shows the trajectory for the final vehicle, as it is about to
reach its target in cell C(1, 1).

Fig. 3.9 contains the numerical outcomes of Monte Carlo simulations for
the ETSP Assgmt and Grid Assgmt algorithms with uniformly randomly
generated target and vehicle positions. Both sets of simulations were performed for
vehicles with rcomm = 10 and vmax = 1. Each data point is the mean completion
time of 30 trials, where each trial was performed at randomly generated vehicle
and target positions. Error bars show plus/minus one standard deviation. The
simulation for the ETSP Assgmt algorithm in Fig 3.9(a) was performed in
a square environment with area 4r2

commn, and suggests that even for uniformly
randomly generated positions, ETSP Assgmt solves the target assignment

problem in time proportional to
√
n|E(n)|. The Monte Carlo simulation for

the Grid Assgmt algorithm is shown in Fig. 3.9(b). These simulations were
performed in a square environment with area r2

commn/(6 log n), which satisfies
the bound in Theorem 3.20. For simplicity of implementation we discard trials
in which there exists a cell without targets. This is justified by the fact that
w.h.p. every cell contains at least one target, and thus the number of discarded
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(a) Initial positions. (b) Role assignment. (c) Final assignment.

Figure 3.8: A simulation of 65 vehicles in a dense environment. Targets are black disks
and vehicles are blue squares. The partition of E(n) is shown in dashed lines, and red
lines are drawn between communicating vehicles.

trials tends to zero as n increases. The simulation suggests that asymptotically,

the expected completion time is bounded below by 1.5
√
|E(n)| and above by

2.5
√
|E(n)|. This agrees with the O(

√
|E(n)|) bound in Theorem 3.20 and gives

some idea as to the constant in front of this bound.

3.7 Extensions and Summary

We have attempted to present the ETSP Assgmt and Grid Assgmt algorithms
in their most basic forms. In this section we discuss some extensions to these
algorithms.

3.7.1 Higher dimensional Spaces

We have presented our algorithms for the environment E(n) := [0, `(n)]2 ⊂ R2.
However, these algorithms can be generalized to subsets of Rd, d ≥ 1. The ETSP
Assgmt algorithm we have presented is valid for any environment E(n) ⊂ Rd,
d ≥ 1. In (Smith and Bullo, 2007a), we have presented time complexity bounds
for environments in Rd. In this case, the length of the ETSP tour is bounded by
O(n(d−1)/d|E(n)|1/d) and thus the ETSP Assgmt algorithm has time complexity
in O(n(d−1)/d|E(n)|1/d).5

The Grid Assgmt algorithm we have presented is only valid for environments
in R2. This was done in an effort to simplify the presentation. However, the

5Here |E(n)| denotes the d-dimensional volume of E(n).
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(b) Grid Assgmt algorithm in a dense envi-
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Figure 3.9: Monte Carlo simulations for uniformly randomly generated vehicle and
target positions. Each point is the mean completion time of 30 independent trials.
Error bars show plus-minus one standard deviation.

extension to Rd is straightforward. For example, in R3 the environment is
partitioned into small cubes. Vehicles first try to find a free target in their own
cube, then in their own column, then in their own plane, and then finally, they
transfer into a new plane that has an available target. The worst-case bound
is then given by O(|E(n)|), and for uniformly randomly generated target and
vehicle positions, when the environment satisfies the bound

|E(n)| ≤ r2
comm

K(d+ 3)

n

log n
,

where K > 1, is O(|E(n)|1/d), with high probability.

3.7.2 The Case of n Vehicles and m Targets

It should be noted that both the ETSP Assgmt and Grid Assgmt algorithms
work, without any modification, when there are n vehicles and m targets. If
m ≥ n, at completion, then n targets are assigned and m − n targets are
not. When m < n, at completion, all m targets are assigned, and the n −m
unassigned vehicles come to a stop after losing a conflict at each of the m targets.
By modifying the algorithms so that the n − m unassigned vehicles revisit
assigned targets to check for failed vehicles, the robustness of the algorithms
can be increased. It is a straightforward exercise to alter the upper bounds
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when m 6= n. For example, the worst-case upper bound on the ETSP Assgmt

algorithm becomes O(
√
|E(n)|N), where N := min{n,m}, and holds for any n

and m. Similarly, the worst-case upper bound on the Grid Assgmt algorithm
remains O(|E(n)|) and holds for any n and m. In addition, the lower bound on
the monotonic class easily extends when m ≥ n. However, the extension for
m < n appears to require a different construction of worst-case vehicle and target
positions.

3.7.3 Alternate Scaling Laws

We have given complexity bounds for the case when rcomm and vmax are fixed
constants, and E(n) grows with n. We allow the environment E(n) to grow with
n so that, as more vehicles are involved in the task, their workspace is larger.
An equivalent setup would be to consider a fixed size environment, and allow
rcomm and vmax to decrease with increasing n. Scaling the communication radius
inversely with the number of vehicles arises in the study of wireless networks
(Gupta and Kumar, 2000). As the density of wireless nodes in a fixed area
increase, the effects of wireless congestion and media access problems become
more prevalent. To reduce these effects, the nodes reduce their transmission
radius, thus reducing their interference footprint. The idea of scaling the vehicles’
maximum speed inversely with n occurs due to physical congestion (Sharma
et al., 2007). As the density of robots increases, it necessarily takes longer for
the robots to travel across their environment.

Motivated by this discussion, we introduce a new set of parameters, Ẽ ,
r̃comm(n), and ṽmax(n) satisfying |Ẽ | ∈ R>0 and ṽmax(n) = Θ(r̃comm(n)). Since
ṽmax(n) and r̃comm(n) scale at the same rate, the amount of time required to
travel a distance r̃comm(n) is independent of n. Then, analogous to the defi-
nition of environment size, we define the communication range to be: sparse
if r̃comm(n)

√
n → 0+, as n → +∞; critical if r̃comm(n)

√
n → const ∈ R>0 as

n→ +∞; dense if r̃comm(n)
√
n→ +∞, as n→ +∞.

We now summarize the worst-case results as follows.

Corollary 3.25 (Scaling radius and speed). Consider any initial positions of
n vehicles, with communication range r̃comm(n) and maximum speed ṽmax(n) =
Θ(r̃comm(n)), and n targets in the fixed environment Ẽ. Then:

(i) the ETSP Assgmt algorithm solves the target assignment problem in
O(
√
n/r̃comm(n)) time;

(ii) if r̃comm(n) is sparse or critical, then ETSP Assgmt is within a constant
factor of the optimal monotonic algorithm for worst-case initial conditions;
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(iii) the Grid Assgmt algorithm solves the target assignment problem in
O(1/r̃comm(n)2) time; and

(iv) if r̃comm(n) is dense or critical, then the Grid Assgmt algorithm is within
a constant factor of the optimal monotonic algorithm for worst-case initial
conditions.

3.7.4 Summary

In this chapter we have studied a version of the target assignment problem in which
each vehicle has a list of the target positions, but has only limited communication
capabilities. We introduced the class of monotonic algorithms for approaching
these problems and gave a lower bound on its asymptotic performance. We
introduced two algorithms in this class, the ETSP Assgmt algorithm and the
Grid Assgmt algorithm. We have shown that in sparse environments, where
communication between vehicles is infrequent, the ETSP Assgmt algorithm is
within a constant factor of the optimal monotonic algorithm for worst-case initial
conditions. On the other hand, in dense environments, where communication is
more prevalent, the Grid Assgmt algorithm is within a constant factor of the
optimal monotonic algorithm for worst-case initial conditions. Both algorithms
extend to higher dimensional spaces and to problems where the number of vehicles
and targets differ, and the Grid Assgmt algorithm can be implemented in a
sensor based version, where vehicles have no a priori target knowledge.
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Chapter Four

Team Forming

In this chapter we consider a dynamic vehicle routing problem, where new task
locations arrive in real-time. In particular, we consider a heterogeneous fleet of
mobile robotic agents deployed in an environment E ⊂ R2. Each robot is capable
of providing one of κ services. Tasks (from now on we will call these demands
for service, or simply demands to be consistent with the dynamic vehicle routing
literature) appear in the environment sequentially over time, assume a random
location in E , and require some subset of the κ services. To service a demand, all
required services must be present at the demand location. Thus, for each demand,
a team of vehicles which can provide the required services must be formed, and
must travel to the demand location. The goal is to minimize the expected delay
between a demand arrival and its service completion. We refer to this problem
as the dynamic team forming problem (DTFP). This problem arises, for example,
in UAV surveillance (Chong et al., 2008) where the services represent waveforms
for interrogation of a target/region, such as electro-optical, infra-red, synthetic
aperture radar, foliage penetrating radar, and moving target indication radar.

In dynamic vehicle routing problems, such as the dynamic traveling repairper-
son and the dynamic pick-up and delivery problem (see Chapter 1) the expected
delay increases with the demand arrival rate. This trade-off is well known in ad
hoc wireless networks (Sharma et al., 2006; Gamal et al., 2006); If nodes increase
the rate at which they send messages (i.e., the throughput), then this increases
the expected delay a message will incur before arriving at its destination. Thus,
our perspective in this chapter is to study the service delay in the DTFP as a
function of the demand throughput.

The contributions of this chapter are the following. First, we introduce
the novel dynamic team forming problem. Second, we propose three policies for
dynamic team forming; the Complete Team policy where teams are formed that
consist of all possible services; the Demand-Specific Team policy where teams
are formed for each type of demand; and the Scheduled Demand-Specific
Team policy where each type of demand is serviced by a demand-specific team,
but only during certain intervals of time, as defined by a schedule. All three
policies utilize Euclidean traveling salesperson tours to compute optimal routes
through sets of demands. Third, by making some assumptions on the system
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parameters (e.g., on relative number of vehicles, demand-type frequency, etc.),
we study the expected demand delay as a function of the throughput of the
vehicle network (i.e., the rate at which demands are serviced). We derive a lower
bound on the expected delay of the DTFP, upper bounds for the delay each of
the three policies, and show that for certain classes of system parameters each
policy performs within a constant factor of the optimal. In addition, we show
that there is a canonical throughput delay profile which is common to the lower
bound and all three policies.

The chapter is organized as follows. In Section 4.1 we review some background
material. In Section 4.2 we introduce the dynamic team forming problem, and in
Section 4.3 we present the three policies. In Section 4.4.1 we present simplifying
assumptions for the purpose of analysis and in Section 4.4.2 we introduce the
canonical throughput-delay profile. In Section 4.4.3 we present a lower bound
on the delay, and in Section 4.4.4 we present upper bounds for each the policies.
Finally, in Section 4.4.5 we present a comparison between the three policies.

4.1 Preliminary Material

Here we review results on partitioning an environment into “fairly” square regions,
and some concepts of queueing theory.

4.1.1 Partitioning an environment

The following definition formalizes the idea of partitioning a square environment
E ⊂ R2 into n regions, such that each region is “approximately” a square of area
|E|/n. The result will be useful when bounding the length of an ETSP tour using
Theorem 2.2.

Definition 4.1 (c-square partition). A partition of E into n regions is c-square
if each region can be contained in a square of area c|E|/n.

One can easily create a 4-square partition by 1) gridding E into d√ne2 squares,
2) selecting d√ne2−n pairs of edge adjacent squares, such that no square appears
in more than one pair, and 3) fusing each pair into a single region.

4.1.2 Queueing with bulk service

Consider a queueing system (see Chapter 2 for a review on queueing systems)
with Poisson arrivals at rate λ, and a single server providing bulk service. As
customers arrive they form a queue and are served in batches. Every tbatch

seconds a batch is served containing either the first M customers in the queue,
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or the entire queue, whichever is smaller. In (Bailey, 1954) the following result is
established.

Theorem 4.2 (Expected waiting time, (Bailey, 1954)). If M > λtbatch, then the
expected waiting time W satisfies

W ≤ M − 1

2λ
+

tbatch

2(M − λtbatch)
. (4.1)

4.2 The Dynamic Team Forming Problem (DTFP)

Vehicle model: Consider n vehicles (robotic agents) contained in a square
environment E ⊂ R2. Each vehicle has first order dynamics with speed bounded
by vmax > 0. Each vehicle is capable of providing one of κ services. We assume
there are nj vehicles capable of providing service j, for each j ∈ {1, . . . , κ}, and
thus

n :=
κ∑

j=1

nj.

Demand model: There are K different types of demands. Demands of type
α ∈ {1, . . . ,K} arrive in the environment over time according to a Poisson process
with rate λα. Upon arrival each demand assumes an independent and identically
distributed (i.i.d.) location uniformly in E . Each demand-type α ∈ {1, . . . ,K}
requires a subset of the κ services. It will be useful to record the required services
in a zero-one vector Uα ∈ {0, 1}κ. The jth entry of Uα is 1 if service j is required
for demand-type α, and 0 otherwise. The on-site service time for a demand of
type α is an i.i.d. random variable with mean s̄α and finite variance. To complete
the service of a demand of type α, a team of vehicles capable of providing the
required services must travel to the demand location and remain there for the
on-site service time. Note that the total demand arrival rate is

λ :=
K∑

α=1

λα.

Performance metric: A policy for a service vehicle is a map which assigns
a velocity to each service vehicle as a function of the current state of the system
(i.e., the outstanding demands and the current vehicle locations). For a given
policy P by which vehicles service demands1, let Dα(i) denote the difference
between the service completion time and the arrival time of the ith demand
of type α. Let Dα(P ) := limi→+∞ E[Dα(i)] denote the limiting expected delay

1We assume that computations are centralized, and leave the problem of decentralizing our
policies to future work.
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of demand-type α under policy P . Then, the DTFP is to find policies which
minimize some cost function of the delays. In particular we consider two cost
functions; the worst-case delay, and the average delay:

min
P

max
α

Dα(P ) or min
P

∑

α

Dα(P ).

As in the classical queueing literature (Kleinrock, 1975), we can give a necessary
condition for the existence of a stabilizing policy (i.e., a policy for which the
limiting expected delays are all finite). First, we define the matrix

U := [U1, . . . , UK] ∈ {0, 1}κ×K. (4.2)

Then, a necessary condition for stability is that

U [λ1s̄1, . . . , λKs̄K]T < [n1, . . . , nκ]
T (4.3)

component-wise. The jth inequality in equation (4.3) states that the fraction of
time a vehicle of type j is busy performing on-site service must be less than 1 for
any stable policy.

Dynamic traveling repairperson problem (DTRP): The DTRP is a
special case of the dynamic team forming problem in which there is only one
service (i.e., κ = 1), and thus only one demand-type. When κ = 1 equation (4.3)
becomes λs̄ < n, or

% :=
λs̄

n
< 1.

The quantity % is the load factor introduced in Chapter 2. In (Bertsimas and
van Ryzin, 1993a), two lower bounds on the optimal expected delay D∗ are
presented which will be useful in the upcoming analysis. First,

D∗ ≥ 1

vmax

E
[

min
p∈{p1,...,pn}

‖q− p‖
]

+ s̄, (4.4)

where p1, . . . ,pn are the n locations which minimize the expected distance to a
uniformly distributed location q. Second, there exists a γ > 0 such that

D∗ ≥ γ2 λ|E|
n2v2

max(1− %)2
− s̄(1− 2%)

2%
=: DDTRP(n, λ). (4.5)

Several policies are developed in (Bertsimas and van Ryzin, 1993a). A policy
which we will utilize in this chapter is the TSP Partitioning policy shown
in Algorithm 4.1. We slightly alter the policy and use the c-square partition in
Definition 4.1.
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Algorithm 4.1: TSP Partitioning policy

Optimize: over demand set-size M .
Partition E into n approximately square regions and assign one vehicle to1

each region.
foreach region-vehicle pair do2

As demands arrive in the region, form sets of size M .3

As sets are formed, deposit them in a queue.4

Service the queue first-come, first-served, following an optimal TSP5

tour on each set of M demands.

From Bertsimas and van Ryzin (1993a), the optimal value of M is

Cλ2|E|
n2v2

max(1− %)2
,

for some C > 0. While we will utilize the TSP Partitioning policy in what
follows, it should be noted that we could equivalently utilize the receding-horizon
policy in Papastavrou (1996).

4.3 Dynamic Team Forming Policies

In what follows we will consider demand-type unbiased policies; policies P for
which the delay of each demand is equal and thus

D1(P ) = D2(P ) = · · · = DK(P ).

For demand-type unbiased policies, the worst-case delay and average delay
problems are equivalent. Policies of this type are amenable to analysis because
the demand-type unbiased constraint collapses the feasible set of delays from a
subset of RK to a subset of R. Because of this, we can simply talk about the
delay of a policy P as D(P ) (or DP ), and the least achievable delay as D∗.

We will now introduce three policies for the dynamic team forming problem.
Their performance will be analyzed in Section 4.4.

4.3.1 Policy 1: Complete Team

We begin by proposing a policy which essentially turns the problem into a dynamic
traveling repairperson problem.

60



Chapter 4. Team Forming

Policy 1: Complete team

Form Nct := min{n1, . . . , nκ} teams of κ vehicles, where each team1

contains one vehicle of each type.
Have each team meet and move as a single entity.2

As demands arrive, service them by one of the Nct teams according to the3

TSP Partitioning policy.

4.3.2 Policy 2: Demand-Specific Team

Recalling that U := [U1, . . . , UK] ∈ Rκ×K, the vector U1K records in its jth entry
the number of demand-types that require service j, where 1K is a K × 1 vector
of ones. Thus, if

U1K ≤ [n1, . . . , nκ]
T (4.6)

component-wise, then there are enough vehicles of each type to create a dedicated
team for every demand-type. More specifically, we could create

Ntst :=
⌊

min
{ nj
eTj U1K

| j ∈ {1, . . . , κ}
}⌋

teams for each demand-type, where ej is the jth vector of the standard basis
of Rκ. Thus, when equation (4.6) is satisfied, we have the following policy.

Policy 2: Demand-Specific Team

Assumes: Equation (4.6) is satisfied.
For each of the K demand-types, create Ntst teams of vehicles, where there1

is one vehicle in the team for each service required by the demand-type.
Service each demand by one of its Ntst corresponding teams, according to2

the TSP Partitioning policy.

4.3.3 Policy 3: Scheduled Demand-Specific Team

The Demand-Specific Team policy can be applied only when equation (4.6)
is satisfied; that is, when there is a sufficient number of vehicles of each type.
Here we propose a policy which requires only a single vehicle of each type. The
policy partitions the demand-types into groups, where each group is chosen such
that there is a sufficient number of vehicles to create a dedicated team for each
demand-type in the group. The Demand-Specific Team policy is then run
on each group sequentially. We begin by introducing a service schedule which
defines the partition of demand-types into groups.
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Definition 4.3 (Service schedule). A service schedule is a partition of the K
demand-types into L time slots, such that each demand-type appears in precisely
one time slot, and the demand-types in each time slot are pairwise disjoint (i.e.,
In a given time slot, each service appears in at most one demand-type).

With the definition of a service schedule we can present the third policy.

Policy 3: Scheduled Demand-Specific Team

Assumes: A service schedule with time slot duration tB.
Optimize: over time slot duration tB and demand set-size M .
Partition E into Nct := min{n1, . . . , nκ} approximately square regions and1

assign one vehicle of each type to each region.
foreach region do2

Form a queue for each of the K demand-types.3

foreach time slot in the schedule do4

For each demand-type in the time slot, create a team containing one5

vehicle for each required service.
For each team, service the first M demands in the corresponding6

queue, or as many as can be served in time tB, by following an
optimal TSP tour.

When the end of the service schedule is reached, repeat.7

4.4 Analysis of the Dynamic Team Forming Problem

In this section we present simplifying assumptions, scaling laws, and the canonical
throughput-delay profile which will allow us to study the asymptotic expected
delay of the three team forming policies. We derive a lower bound on the
achievable delay (independent of policy), and upper bounds for the delay of each
policy.

4.4.1 Simplifying assumptions and asymptotic regime

To analyze the performance of the three policies we assume the following:

(A1) There are n/κ vehicles of each type (i.e., nj = n/κ for each j ∈ {1, . . . , κ}).
(A2) The arrival rate is λ/K for each demand-type, (i.e., λα = λ/K for each

demand α ∈ {1, . . . ,K}).
(A3) The on-site service time has mean s̄ and is upper bounded by smax for all

demand-types (i.e., s̄α = s̄ for each demand-type α ∈ {1, . . . ,K}).
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(A4) There exists p ∈ [1/κ, 1] such that for each j ∈ {1, . . . , κ}, the service j
appears in pK of the K demand-types. Thus, each demand will require
service j with probability p.

With these assumptions, the stability condition in equation (4.3) simplifies to

λ

n
<

1

pκs̄
. (4.7)

For a stable policy P we say that λ is the total throughput of the system (i.e.,
the total number of demands served per unit time), and

T (n) :=
λ

n

is the per-vehicle throughput (in what follows we write the per-vehicle throughput
as Tn to simplify notation).

We are interested in studying the expected delay of each demand-type as a
function of the per-vehicle throughput Tn. In particular, in the next sections
we study the performance as the number of vehicles n becomes large. As n
increases, if the density of vehicles is to remain constant, then the environment

must grow. In fact, the ratio
√
|E|/vmax must scale as

√
n, (Sharma et al., 2007).

In Chapter 3 we referred to this scaling as a critical environment. Thus we will
study the performance in the following regime.

Definition 4.4 (Asymptotic regime). In the asymptotic regime (i) the number
of vehicles n → +∞; (ii) on-site service times are independent of n; (iii)
|E(n)|/(nv2

max(n))→ const > 0.

4.4.2 Canonical throughput-delay profile

In what follows we will characterize the way in which the delay varies with the
per-vehicle throughput Tn. We will see that there is a canonical throughput-delay
profile fDmin,Dord,Tcrit : R>0 → R>0 ∪ {+∞} which has the form

T 7→





max

{
Dmin,

Dord(T /Tcrit)

(1− T /Tcrit)2

}
, if T < Tcrit,

+∞, if T ≥ Tcrit.

(4.8)

This profile is described by the three positive parameters Dmin, Dord and Tcrit,
where Dord ≥ Dmin. These parameters have the following interpretation:

• Dmin is the minimum achievable delay for any positive throughput.
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Figure 4.1: The canonical throughput-delay profile for the dynamic team forming
problem. In this figure Dmin = 1, Dord = 10, and Tcrit = 1. If T ≥ Tcrit, then the delay
is +∞.

• Tcrit is the maximum achievable throughput (or capacity).

• Dord is the delay when operating at (3 −
√

5)/2 ≈ 0.38 of capacity Tcrit.
Additionally, Dord captures the order of the delay when operating at a
constant fraction of capacity.

An example of the throughput-delay profile with parameters Dmin = 1, Dord = 10,
and Tcrit = 1 is shown in Figure 4.1. In what follows we will use these three
parameters to compare the performance of our policies.

4.4.3 Lower bound on the achievable delay

We now lower bound the achievable delay D∗ for demand-type unbiased policies.
Note that all parameters are potentially a function of n. However, to simplify the
notation we omit the explicit dependence. For convenience, Table 4.1 contains
all parameters and their definitions.

Theorem 4.5 (Optimal delay). In the asymptotic regime, the optimal delay of the

DTFP as a function of the per-vehicle throughput Tn is in Ω
(
fDmin,Dord,Tcrit(Tn)

)
,

where

Dmin =
√
κ, Dord = κ, Tcrit =

1

pκs̄
.

64



Chapter 4. Team Forming

Table 4.1: Parameters used in the dynamic team forming problem.
Parameter Definition

κ number of different services
K number of different demand-types
p fraction of demands requiring an individual service

s̄, smax expected and maximum on-site service time
L number of time slots in service schedule

κmax maximum number of services required for a demand

Proof. By assumption (A4), service j ∈ {1, . . . , κ} is required in pK of the K
demand-types. By assumption (A2), the arrival rate of demands requiring service
j is pλ. By assumption (A1), nj = n/κ vehicles can provide service j. Thus, we
can use the results on the DTRP to lower bound the achievable delay of n/κ
vehicles servicing demands arriving at rate pλ. That is, for every policy P we
have ∑

tasks α requiring service j

λα
pλ
Dα(P ) ≥ DDTRP(n/κ, pλ). (4.9)

By assumption (A2), λα = λ/K for each α ∈ {1, . . . ,K}, and by restricting
our attention to demand-type unbiased policies, Dα(P ) = D(P ) for each α ∈
{1, . . . ,K}. Applying the bound in equation (4.5), we can write equation (4.9) as

D∗(n) ≥ DDTRP(n/κ, pλ) ∈ Ω

(
pλ|E|

(n/κ)2v2
max(1− pκλ/n)2

)
,

In the asymptotic regime the above equation becomes

D∗(n) ∈ Ω

(
pκ2Tn

(1− pκs̄Tn)2

)

In addition, in the asymptotic regime, equation (4.4) yields D∗(n) ∈ Ω(
√
κ).

Combining the two results we obtain a lower bound of Ω(fDmin,Dord,Tcrit(Tn)), where
fDmin,Dord,Tcrit is the canonical throughput-delay profile defined in equation (4.8),
and the parameters are Dmin =

√
κ, Dord = κ and Tcrit = 1/(pκs̄).

4.4.4 Upper bounds on the policy throughput-delay

In this section we characterize the performance of each policy in terms of the
canonical throughput-delay profile of equation (4.8).

Policy 1: Complete Team
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The Complete Team policy is simply the TSP Partitioning policy with
n/κ vehicles and with arrival rate λ. In the limiting regime as % → 1−, the
performance of this policy (Bertsimas and van Ryzin, 1993a) is within a known
constant factor of the lower bound in equation (4.5). The proof in (Bertsimas
and van Ryzin, 1993a) utilizes the following facts: as % → 1−, the number of
unserviced demands M tends to +∞, and for a set Q of M i.i.d. uniform points
in a square environment of area |E|

lim
M→+∞

ETSP(Q)√
M

= βTSP

√
|E|, (4.10)

for some constant βTSP > 0. Following the same proof as in (Bertsimas and
van Ryzin, 1993a) but replacing equation (4.10) with the result in Theorem 2.2
(which is not as tight, but holds for all values of M), and using the fact that
the partition is approximately square, one can prove that the delay of the TSP
Partitioning policy with n vehicles and with arrival rate λ is in

O


max





1

vmax

√
|E|
n
,

λ|E|
n2v2

max(1− λs̄/n)2






 , (4.11)

in the asymptotic regime. Combining equation (4.11) with the throughput-delay
profile in equation (4.8) we obtain the following result.

Theorem 4.6 (Complete Team delay). In the asymptotic regime, the expected
delay of the Complete Team policy as a function of the per-vehicle throughput
Tn is in O

(
fDmin,Dord,Tcrit(Tn)

)
, where

Dmin =
√
κ, Dord = κ, Tcrit =

1

κs̄
.

Notice that if p ∼ 1 (i.e., each service is required in a constant fraction of the
demands), then the policy is within a constant factor of the optimal. However, in
certain instances policy 1 may be inefficient as each vehicle visits every demand,
not just the ones which require its service. This inefficiency appears as a limit on
the per-vehicle throughput of 1/κ, independent of p.

Remark 4.7 (Dynamic traveling repairperson delay). In the DTRP we have
κ = p = K = 1, and thus combining Theorems 4.5 and 4.6 we see that the expected
delay in the asymptotic regime is in Θ

(
fDmin,Dord,Tcrit(Tn)

)
, where Dmin = Dord = 1,

and Tcrit = 1/s̄. •

Policy 2: Demand-Specific Team
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With assumptions (A1)-(A4), the necessary condition on the number of
vehicles required for this policy, given in equation (4.6), becomes pK ≤ n/κ, and
thus Ntst := bn/(κpK)c. In the following theorem we characterize the delay of
the demand-specific team policy.

Theorem 4.8 (Demand-Specific Team delay). In the asymptotic regime, if
pK ≤ n/κ, then the expected delay of the Demand-Specific Team policy as a

function of the per-vehicle throughput Tn is in O
(
fDmin,Dord,Tcrit(Tn)

)
where

Dmin =
√
pκK, Dord = pκK, Tcrit =

1

Cs̄pκ
,

and C ∈ [1, 2[ is defined as C = n/(κpKNtst).

Proof. The arrival rate for each demand-type is λ̄ = λ/K (by assumption (A2)),
and the number of teams that provide service to each demand type is Ntst. Since
Ntst ≥ 1, and Ntst ≤ n/(κpK), we can define

C :=
n

κpKNtst

∈ [1, 2[.

From the TSP Partitioning policy result in equation (4.11), the delay is

DTST(n) ∈ O

max





1

vmax

√
|E|
Ntst

,
λ̄|E|

N2
tstv

2
max(1− λ̄s̄/Ntst)2








= O

(√
pκK, p2κ2KTn

(1− Cs̄pκTn)2

)
.

Letting Dmin =
√
pκK, Dord = pκK and Tcrit = 1/(2s̄pκ) we obtain the desired

result.

From this analysis we see that the demand-specific team policy can achieve
near optimal throughput. However, it requires that there are a sufficient number
of vehicles. The following policy requires only a single vehicle of each type.

Policy 3: Scheduled Demand-Specific Team

The following theorem bounds the delay of policy 3.

Theorem 4.9 (Scheduled Demand-Specific Team delay). In the asymptotic
regime, the expected delay of the Scheduled Demand-Specific Team policy
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as a function of the per-vehicle throughput Tn is in O
(
fDmin,Dord,Tcrit(Tn)

)
where

Dmin = L
√
κ, Dord = Lκ, Tcrit =

K
νsmaxLκ

,

for any fixed ν > 1.

Proof. Consider a service schedule with length L and time slot duration tB.
In each of the n/κ regions (assumption (A1)), each demand-type has arrival
rate λ̄ := λκ/(Kn) (assumption (A2)), and the queue for that demand-type is
serviced for tB seconds every LtB seconds. (Notice that for stability we require
that tB ≥ s̄λ̄LtB, which implies that the per-vehicle throughput must satisfy
Tn < K/(Ls̄κ).) Since each region can be contained in a square of area c|E|κ/n,
where c ≤ 4, we can use Theorem 2.2 to upper bound the amount of time required

to service M demands by (2β/vmax)
√
M |E|κ/n + smaxM. Using the fact that

there exists C ∈ R>0 such that
√
|E|/vmax ≥ C

√
n, and redefining β := 2Cβ, the

upper bound becomes
β
√
Mκ+ smaxM. (4.12)

Now, fix ε > 0, and let us set M := ηλ̄(LtB), where η ≥ 1 + ε is the smallest
number such that M ∈ N. With this value of M we are guaranteed to service
more demands in time slot tB than are expected to arrive in time LtB. Let us
now consider two cases: M = 1, and M > 1. If M = 1, then in order to service
one demand in time tB, we require from equation (4.12) that

tB ≥ β
√
κ+ smax. (4.13)

In the other case, when M = ηλ̄(LtB) ∈ N \ {1}, in order to service M
demands in time tB, we require from equation (4.12) that

tB ≥
√
ηβ
√
λ̄LtBκ+ ηsmaxλ̄LtB.

If ηsmaxλ̄L < 1, or equivalently M ≤ tB/smax, then the previous condition can
be rewritten as

tB ≥
ηβ2λ̄Lκ

(1− ηsmaxλ̄L)2
. (4.14)

The condition for tB to be finite (i.e., ηsmaxλ̄L < 1) depends on η ≥ (1+ ε), which
is not desirable since the exact value of η is implicitly defined. However, notice
that as ηsmaxλ̄L→ 1−, we have tB → +∞, and thus M = ηλ̄(LtB)→ +∞. This
implies that as ηsmaxλ̄L → 1−, we have (1 + ε)/η → 1−. Thus, we can replace
denominator of equation (4.14) by a constant times (1− (1 + ε)smaxλ̄L)2. Making
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this replacement and substituting λ̄ = κTn/K, we obtain

tB ≥
βLκ2Tn

K(1− (1 + ε)smaxLκTn/K)2
, (4.15)

where the constant β has been redefined.

Let us now examine the queue for a particular demand-type and compute the
expected delay. In this queue, demands arrive at a rate λ̄, and every LtB seconds,
M are served (i.e., tbatch = LtB). Thus, from equation (4.1), the expected time
W that a demand spends waiting in the queue is

W ≤ M − 1

2λ̄
+

LtB
2(M − λ̄LtB)

.

If M = 1, then we easily obtain that W ∈ O(LtB).

On the other hand, if M > 1, then

W ≤ ηλ̄LtB − 1

2λ̄
+

LtB
2(ηλ̄LtB − λ̄LtB)

≤ ηLtB
2

+
1

2(η − 1)λ̄
.

Noticing that M > 1 implies that 1/λ̄ ≤ ηLtB, we again obtain thatW ∈ O(LtB).
The expected delay for a demand to be serviced is DSTST(n) ≤ W + tB ∈ O(LtB).
Choosing tB to be the smallest value that satisfies both equations (4.13) and
(4.15), we can upper bound DSTST(n) by the canonical throughput-delay profile,

where Dmin = L
√
k, Dord = LK, and Tcrit = K/

(
(1 + ε)smaxLκ

)
, for any positive

constant ε.

Next, we will describe a method for creating a service schedule, and bound
the schedule length L. The following lemma, lower bounding L, follows from
assumption (A4).

Lemma 4.10 (Schedule length I). Every service schedule contains at least pK
time slots. (i.e., L ≥ pK).

From Lemma 4.10, every service schedule must contain at least pK slots. We
now give a method for creating a schedule. Consider the graph consisting of
K vertices, one for each demand-type, and edges connecting any two vertices
that contain a common service. This is known as an intersection graph (McKee
and McMorris, 1999). A service schedule is then simply a vertex coloring of
this graph. From Section 4.1, the problem of determining the optimal (minimal)
coloring is NP -hard. However, we can color the graph using the greedy heuristic
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{3}

{4}

{5}

{6}

{1}
{2}

{1, 2}

{1, 4}
{2, 5}{3, 4}

{3, 6}

{5, 6}

{1, 2, 3}

{1, 3, 5}

{1, 4, 6}

{2, 3, 5}

{2, 4, 6}
{4, 5, 6}

Figure 4.2: Creating a service schedule using the greedy vertex coloring heuristic. In
this figure, κ = 6, K = 18, p = 1/3, and the resulting schedule has length L = 6.

in Section 4.1. An example is shown in Figure 4.2. Using Theorem 2.5 we arrive
at the following result.

Lemma 4.11 (Schedule length II). If each demand requires no more than κmax ≤
κ services, then a service schedule with L ≤ Kmin{κmaxp, 1} can be found in
O(K) computation time.

timetB 2tB 3tB 4tB 5tB 6tB

{1}
{2}
{3}
{4}
{5}
{6}

{1, 2}
{3, 4}
{5, 6}

{1, 4}
{2, 5}
{3, 6}

{1, 2, 3}
{4, 5, 6}

{1, 3, 5}
{2, 4, 6}

{1, 4, 6}
{2, 3, 5}

0

Figure 4.3: Service schedule created by the coloring in Figure 4.2. The demand-types
serviced during each time slot are shown (e.g., in time slot [tB, 2tB[, vehicles of type 1
and 2 meet to service demands with demand-type {1, 2}).
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Table 4.2: A comparison the canonical throughput-delay parameters for the three
policies. Two entries for the scheduled demand-specific policy are shown depending on
the value of p ∈ [1/k, 1]. Only the order of the capacity is shown, with the constant
omitted.

Dmin Dord Tcrit

Lower bound
√
κ κ 1/(pκ)

Policy 1: Complete Team
√
κ κ 1/k

Policy 2: Demand-Specific Team
√
pκK pκK 1/(pκ)

Policy 3: Scheduled Demand-Specific (p ∼ 1
k
) p
√
κK pκK 1/(pκ)

Policy 3: Scheduled Demand-Specific (p ∼ 1)
√
κK κK 1/(κ)

4.4.5 Policy comparison

We have shown that the lower bound and the three policies all have delay profiles
of the form

D(n) ∼ max

{
Dmin,

Dord(Tn/Tcrit)

(1− Tn/Tcrit)2

}
.

The parameters Dmin, Dord, and Tcrit are summarized for the lower bound and
each of the three policies in Table 4.2. From these results, we can make several
conclusions. First, if the throughput is very low, then Policy 1 has an expected
delay of Θ(

√
k), which is within a constant factor of the optimal. In addition,

if p ∼ 1 and each demand requires nearly every service, then Policy 1 is within
a constant factor of the optimal in terms of capacity and delay. Second, if
p ∼ 1/k and each demand requires few services, then the capacity of Policy 1
is sub-optimal, and the capacity of both Policies 2 and 3 are within a constant
factor of optimal. However, the delay of Policies 2 and 3 may be much higher
than the lower bound when the number of demand-types K is very large. Third,
Policy 2 performs at least as well as Policy 3, both in terms of capacity and delay.
Thus, one should use Policy 2 if there are a sufficient number of vehicles of each
type. However, if p ∼ 1/k and if resources are limited such that Policy 2 cannot
be used, then Policy 3 should be used to maximize capacity.

From this discussion we see that the policies are complementary, and have
large parameter regimes for which their performance, either in terms of capacity
or delay, is within a constant factor of the optimal.

4.5 Summary

In this chapter we introduced the novel dynamic team forming problem for
vehicle (robotic) networks. We proposed three policies for team forming and
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characterized their performance in certain asymptotic regimes. For each policy
we showed that there is a large regime in the problem parameters for which the
performance is within a constant factor of the optimal.
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Chapter Five

Priority Classes of Stochastic Demands

In the previous chapter we looked introduced a dynamic vehicle routing problem
called the dynamic team forming problem. However, we restricted ourselves to
unbiased policies where the expected delay is the same for all demands. In this
chapter we explore the concept of biasing or prioritizing among tasks.

A classic problem in queueing theory is that of priority queueing (Kleinrock,
1976). In the simplest setup, customers arrive at a single server sequentially over
time. Each customer is a member of either the high-priority or the low-priority
class. High priority customers and low priority customers form separate queues.
The goal is to provide the highest possible quality of service to the high priority
queue (Q1) while maintaining stability of the low priority queue (Q2). That
is, the goal is to minimize the expected delay for high-priority customers while
keeping the length of the low-priority queue finite. If the customer inter-arrival
times and the customer service times are distributed exponentially, then the
preemptive priority policy is known to be optimal (Kleinrock, 1976):

When Q1 is nonempty, serve high priority customers; when Q1 is
empty, serve low-priority customers. If a high priority customer
arrives while serving Q2, then preempt service and immediately begin
serving the high-priority customer.

A more general two-class queueing problem is to minimize a convex combina-
tion of the service delays for high- and low-priority customers

cD1 + (1− c)D2, where c ∈ (0, 1).

In this case an optimal policy can be created by using a mixed policy that spends
fraction c of the time serving Q1 as the high-priority queue, and fraction (1− c)
serving Q2 as though it is the high-priority queue (Coffman Jr. and Mitrani,
1980). The set of achievable delays has also been studied in the more general
setting of queueing networks (Bertsimas et al., 1994).

In this chapter we introduce an m-class, n-service-vehicle spatial queueing
problem, called dynamic vehicle routing with priority classes. Demands for service
arrive sequentially over time in a compact environment E in the plane. Each
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demand is a member of one of m priority classes. Upon arrival, each demand
assumes a location in E , and requires a class-dependent amount of on-site service
time. To service a demand, one of the n vehicles must travel to the demand
location and perform the on-site service. If we specify a policy by which the
vehicles serve demands, then the expected delay for demands of class α, denoted
Dα, is the expected amount of time between a demands arrival and its service
completion. Then, given convex combination coefficients c1, . . . , cm > 0, the
goal is to find the vehicle routing policy that minimizes c1D1 + · · ·+ cmDm. By
increasing the coefficients for certain classes, a higher priority level can be given
to their demands. This problem has important applications in areas such as
UAV surveillance, where targets are given different priority levels based on their
urgency or potential importance (Beard et al., 2002).

The main contribution of this chapter is to introduce dynamic vehicle routing
with priority classes. We derive a lower bound on the achievable values of the
convex combination of delays, and propose a novel policy in which each class
of demands is served separately from the others. We show that in heavy load,
the policy performs within a constant factor 2m2 of the lower bound. Thus,
the constant factor is independent of the number of vehicles, the arrival rates
of demands, the on-site service times, and the convex combination coefficients.
To establish the constant factor, we proceed in a similar manner as (Papas-
tavrou, 1996; Pavone, Bisnik, Frazzoli and Isler, 2008) and develop a system
of nonlinear inequality-based recursive equations on the expected number of
outstanding demands. We then utilize a novel proof technique to upper bound
the limiting number of outstanding demands, which relies on constructing a set
of linear equality-based recursive equations to bound trajectories. We present
an improvement on the policy in which classes of similar priority are merged to-
gether. We also perform extensive simulations and introduce an effective heuristic
improvement called the tube heuristic.

This chapter is organized as follows. In Section 5.1 we formalize the problem
and in Section 5.2 we derive a lower bound on the achievable delay. In Section 5.3
we introduce and analyze the Separate Queues policy, and present the im-
provements given by queue merging and the tube heuristic. Finally, in Section 5.4
we present simulation results.

The work in this chapter was performed in collaboration with Marco Pavone
of the Massachusetts Institute of Technology.

5.1 Problem Statement

Consider a compact environment E in the plane with area |E|. The environment
contains n vehicles, each with maximum speed v. Demands of type α ∈ {1, . . . ,m}
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1

1

2
2

3

1

2
2

3
3

Figure 5.1: A depiction of the problem for two vehicles and three priority classes. Left
figure: One vehicle is moving to a class 1 demand, and the other to a class 2 demand.
Right figure: The bottom vehicle has serviced the class 1 demand and is moving to a
class 2 demand. A new class 3 demand has arrived.

(also called α-demands) arrive in the environment according to a Poisson process
with rate λα. Upon arrival, demands assume an independently and uniformly
distributed location in E . An α-demand is serviced when the vehicle spends an
on-site service time at the demand location, which is generally distributed with
finite mean s̄α.

Consider the arrival of the ith α-demand. The service delay for the ith
demand, Dα(i), is the time elapsed between its arrival and its service completion.
The wait-time is Wα(i) = Dα(i)− sα(i), where sα(i) is the on-site service time
required by demand i. Recall that a policy for routing the vehicles is said to be
stable if the expected number of demands in the system for each class is bounded
uniformly at all times. A necessary condition for the existence of a stable policy
is

% :=
1

n

m∑

α=1

λαs̄α < 1. (5.1)

We define this as the load factor for this spatial queueing system. As noted in
the review on queueing theory in Chapter 2, in general, it is difficult to study a
queueing system for all values of % ∈ [0, 1), and a common technique is to focus
on the limiting regimes of % → 1−, referred to as the heavy load regime, and
%→ 0+, referred to as the light load regime.

Given a stable policy P the steady-state service delay is defined as Dα(P ) :=
limi→+∞ E [Dα(i)], and the steady-state wait time isWα(P ) = Dα(P )− s̄α. Thus,
for a stable policy P , the average delay per demand is

D(P ) =
1

Λ

m∑

α=1

λαDα(P ),

where Λ :=
∑m
α=1 λα. The average delay per demand is the standard cost

functional for queueing systems with multiple classes of demands. Notice that we
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can write D(P ) =
∑m
α=1 cαDα(P ) with cα = λα/Λ. Thus, we can model priority

among classes by allowing any convex combination of D1, . . . , Dm. If cα > λα/Λ,
then the delay of α-demands is being weighted more heavily than in the average
case. Thus, the quantity cαΛ/λα gives the priority of α demands compared to
that given in the average delay case. Without loss of generality we can assume
that priority classes are labeled so that

c1

λ1

≥ c2

λ2

≥ · · · ≥ cm
λm

, (5.2)

implying that if α < β for some α, β ∈ {1, . . . ,m}, then the priority of α-demands
is at least as high as that of β-demands. With these definitions, we are now ready
to state our problem.

Problem Statement: Let Π be the set of all causal, stable and
stationary policies for dynamic vehicle routing with priority classes.
Given the coefficients cα > 0, α ∈ {1, . . . ,m}, with

∑m
α=1 cα = 1, and

satisfying equation (5.2), let D(P ) :=
∑m
α=1 cαDα(P ) be the cost of

policy P ∈ Π. Then, the problem is to determine a vehicle routing
policy P ∗, if one exists, such that

D(P ∗) = inf
P∈Π

D(P ). (5.3)

We let D∗ denote the right-hand side of equation (5.3). A policy P for which
D(P )/D∗ is bounded has a constant-factor guarantee. If lim sup%→1− D(P )/D∗ =
ξ < +∞, then the policy P has a heavy-load constant-factor guarantee of ξ. In
this paper we focus on the heavy-load regime, and look for policies with a heavy-
load constant-factor guarantee that is independent of the number of vehicles, the
arrival rates of demands, the on-site service times, and the convex combination
coefficients. In the light-load regime, existing policies for the dynamic traveling
repairperson can be used, as is summarized in the following remark.

Remark 5.1 (Light-load regime). In light load, %→ 0+, optimal policies have
been developed for the dynamic traveling repairperson problem (i.e., the single-
class dynamic vehicle routing problem). These policies rely on the computation
of a set of n-median locations for the environment E ; that is, a set of n positions
Q∗ ⊂ E, that minimize

E
[

min
q∈Q∗

‖q− q0‖
]
,

where q0 is a uniformly distributed location in E . In particular, the n Stochastic
Queue Median (nSQM) policy, first introduced in (Bertsimas and van Ryzin,
1993a), can be described as follows:
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Place one vehicle at each of the n-median locations of E. When a
demand arrives, assign it to the closest median location, and to the
corresponding vehicle. Have each vehicle service its demands in the
first-come-first-served order, returning to its median location after
each service is completed.

In fact, by following the proof in (Bertsimas and van Ryzin, 1993a), one can
show that the nSQM policy is an optimal policy for dynamic vehicle routing with
priority classes. The proof of this statement is omitted in the interest of brevity,
and we refer interested readers to (Bertsimas and van Ryzin, 1993a) for details.•

5.2 Lower Bound in Heavy Load

In this section we present two lower bounds on the delay in equation (5.3). The
first holds only in heavy load (i.e., as % → 1−), while the second (less tight)
bound holds for all %.

Theorem 5.2 (Heavy-load lower bound). For every routing policy P ,

D(P ) ≥ β2
TSP|E|

2n2v2(1− %)2

m∑

α=1


cα + 2

m∑

j=α+1

cj


λα as %→ 1−, (5.4)

where c1, . . . , cm satisfy equation (5.2).

Before proving Theorem 5.2 let us quickly comment on the form of equa-
tion (5.4). The right-hand side of equation (5.4) approaches +∞ as % → 1−.
Thus, one should more formally write the inequality with D(P )(1− %)2 on the
left-hand side, so that the right-hand side is finite. However, this makes the
presentation less readable, and thus, henceforth we adhere to the less formal but
more transparent style of equation (5.4).

Proof. Consider a tagged demand i of type α, and let us quantify its total service
requirement. The demand requires on-site service time sα(i). Let us denote
by dα(i) the distance from the location of the demand served prior to i, to i’s
location. In order to compute a lower bound on the wait-time, we will allow
“remote” servicing of some of the demands. For an α-demand i that can be
serviced remotely, the travel distance dα(i) is zero (i.e., a service vehicle can
service the ith α-demand from any location by simply stopping for the on-site
service time sα(i)). Thus, the wait-time for the modified remote servicing problem
provides a lower bound on the wait-time for the problem of interest. To formalize
this idea, we introduce the variables remα ∈ {0, 1} for each α ∈ {1, . . . ,m}.
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If remα = 0, then α-demands can be serviced remotely. If remα = 1, then
α-demands must be serviced on location. We assume that remα = 1 for at
least one α ∈ {1, . . . ,m}. Thus, the total service requirement of α-demand i is
remαdα(i) + sα(i). The steady-state expected service requirement is remαd̄α + sα,
where d̄α := limi→+∞ E [dα(i)]. In order to maintain stability of the system we
must require

1

n

m∑

α=1

λα

(
remαd̄α

v
+ s̄α

)
< 1. (5.5)

Applying the definition of % in equation (5.1), we write equation (5.5) as

m∑

α=1

remαλαd̄α < (1− %)nv. (5.6)

For a stable policy P , let N̄α represent the steady-state expected number
of unserviced α-demands. Then, the expected total number of outstanding
demands that require on-site service (i.e., cannot be serviced remotely) is given
by
∑m
j=1 remjN̄j . We now apply a result from the dynamic traveling repairperson

problem (see (Xu, 1995), page 23) which states that in heavy load (%→ 1−), if
the steady-state number of outstanding demands is N , then a lower bound on

expected travel distance between demands is (βTSP/
√

2)
√
|E|/N . Applying this

result we have that

d̄α ≥
βTSP√

2

√√√√ |E|
∑
j remjN̄j

=: d̄, (5.7)

for each α ∈ {1, . . . ,m}. Combining equations (5.6) and (5.7),

∑
α remαλα
nv(1− %)

<
1

d̄
.

Applying the definition of d̄, squaring both sides, and rearranging we obtain

β2
TSP

2

|E|(∑α remαλα)2

n2v2(1− %)2
<
∑

α

remαN̄α.

From Little’s law, N̄α = λαWα for each α ∈ {1, . . . ,m}, and thus

∑

α

remαλαWα >
β2

TSP

2

|E|
n2v2(1− %)2

(∑

α

remαλα

)2

. (5.8)

Recalling that Wα = Dα − s̄α and remα ∈ {0, 1} for each α ∈ {1, . . . ,m}, we
see that equation (5.8) gives us 2m − 1 constraints on the feasible values of
D1(P ), . . . , Dm(P ). Hence, a lower bound on D∗ can be found by minimizing
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W2

W1 = Ψλ1

W1λ1 + W2λ2 = Ψ(λ1 + λ2)2

W1

Figure 5.2: The feasible region of the linear program for 2 queues. When class 1 is of
higher priority, the solution is given by the corner. Otherwise, the solution is −∞.

∑m
α=1Wα subject to the constraints in equation (5.8). We can lower bound the

solution to the optimization problem by minimizing the cost function subject
to only a subset of the 2m − 1 constraints. In particular, consider the following
linear program

minimize
m∑

α=1

cαWα,

subject to




λ1 0 0 · · · 0
λ1 λ2 0 · · · 0
...

...
. . . 0

λ1 λ2 λ3 · · · λm







W1

W2
...
Wm



≥ Ψ




λ2
1

(λ1 + λ2)2

...
(λ1 + · · ·+ λm)2



,

where

Ψ :=
β2

TSP

2

|E|
n2v2(1− %)2

.

The above problem is feasible (see Fig. 5.2), it has only one basic feasible
solution, and it is of the form: minimize cTW subject to AW ≥ b, where
W = [W1, . . . ,Wm]T . Thus, either the problem is unbounded, or the solution
W∗ is given by the basic feasible solution. To establish boundedness we consider
the dual problem: maximize bTy subject to ATy = c and y ≥ 0. By the Duality
Theorem of Linear Programming (Luenberger, 1984), if the dual is feasible, then
the minimization problem is bounded. To check feasibility of the dual, we solve
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for ATy = c, with y ≥ 0, to obtain

yα =
cα
λα
− cα+1

λα+1

≥ 0 for all α ∈ {1, . . . ,m− 1},

ym =
cm
λm
≥ 0.

Thus, the dual is feasible if and only if the priority classes are labeled as in
equation (5.2). When equation (5.2) is satisfied, the minimization problem is
bounded, and its solution (W∗1 , . . . ,W∗m) is given by

W∗α =
Ψ

λα

(
(λ1 + · · ·+ λα)2 − (λ1 + · · ·+ λα−1)2

)
= Ψ


λα + 2

α−1∑

j=1

λj


 .

(In fact, this is the solution of the full optimization problem with 2m−1 constraints.
This fact can be verified, somewhat tediously, by writing the dual of the full
problem and directly computing its solution. To shorten the presentation we
omit the direct computation and use the above technique.) The optimal value of
the cost function, and thus the lower bound on D∗, is given by

m∑

α=1

cαW∗α = Ψ
m∑

α=1

cα


λα + 2

α−1∑

j=1

λj


 = Ψ

m∑

α=1


cα + 2

m∑

j=α+1

cj


λα.

Applying the definition of Ψ we obtain the desired result.

Remark 5.3 (Lower bound for all % ∈ [0, 1)). With slight modifications, it is
possible to obtain a less tight lower bound valid for all values of %. In the above
derivation, the assumption that % → 1− is used only in equation (5.7). It is
possible to use, instead, a lower bound valid for all % ∈ [0, 1) (see (Bertsimas and
van Ryzin, 1993a)):

d̄α ≥ γ

√√√√ |E|
∑
α remαNα + n/2

,

where γ = 2/(3
√

2π) ≈ 0.266. Using this bound we obtain the same linear
program as in the proof of Theorem 5.2, with the difference that Ψ is now a
function given by

Ψ(x) :=
γ2|E|

n2v2(1− %)2
x− n

2
.
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Following the procedure in the proof of Theorem 5.2

W∗1 =
γ2|E|

n2v2(1− %)2
λ1 −

n

2λ1

W∗α =
γ2|E|

n2v2(1− %)2


λα + 2

α−1∑

j=1

λj


 ,

for each α ∈ {2, . . . ,m}. Finally, for every policy P , Dα(P ) ≥ W∗α + s̄α, and
thus

D(P ) ≥ γ2|E|
n2v2(1− %)2

m∑

α=1




cα + 2

m∑

j=α+1

cj


λα


− nc

2λ1

+
m∑

α=1

cαs̄α, (5.9)

for all % ∈ [0, 1) under the labeling in equation (5.2). •

In the remainder of the chapter we design a policy and establish a constant-
factor guarantee relative to the heavy load lower bound.

5.3 Separate Queues Policy

In this section we introduce and analyze the Separate Queues (SQ) policy.
We show that this policy is within a factor 2m2 of the lower bound in heavy load.

To present the SQ policy we need some notation. We assume vehicle k ∈
{1, . . . , n} has a service region R[k] ⊆ E , such that {R[1], . . . ,R[n]} forms a
partition of the environment E . In general the partition could be time varying,
but for the description of the SQ policy this will not be required. We assume
that information on outstanding demands of type α ∈ {1, . . . ,m} in region
R[k] at time t is summarized as a finite set of demand positions Q[k]

α (t) with
N [k]
α (t) := card(Q[k]

α (t)) . Demands of type α with location in R[k] are inserted in
the set Q[k]

α as soon as they are generated. Removal from the set Q[k]
α requires that

service vehicle k moves to the demand location, and provides the on-site service.
The SQ policy is described in Algorithm 5.1. Fig. 5.3 shows an illustrative
example of the SQ policy. In the first two frames the vehicle is servicing only class
1 (circle shaped) demands, whereas in the third frame, the vehicle is servicing
class 2 (diamond shaped) demands.

5.3.1 Stability Analysis of the SQ Policy in Heavy Load

In this section we analyze the SQ policy in heavy load, i.e., as %→ 1−. In the
SQ policy each region R[k] has equal area, and contains a single vehicle. Thus,
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Algorithm 5.1: Separate Queues (SQ) policy

Assumes: A probability distribution [p1, . . . , pm].
Partition E into n equal area regions and assign one vehicle to each region.1

foreach vehicle-region pair k do2

if the set ∪αQ[k]
α is empty then3

Move vehicle toward the median of its own region until a demand4

arrives.
else5

Select Q ∈ {Q[k]
1 , . . . , Q

[k]
m } according to [p1, . . . , pm].6

if Q is empty then7

Reselect until Q is nonempty.8

Compute TSP tour through all demands in Q.9

Service Q following the TSP tour, starting at the demand closest to10

the vehicle’s current position.

Repeat.11

Optimize over [p1, . . . , pm].12

Figure 5.3: A representative simulation of the SQ policy for one vehicle and two priority
classes. Circle shaped demands are high priority, and diamond shaped are low priority.
The vehicle is marked by a chevron shaped object and TSP tour is shown in a solid
line.
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the n vehicle problem in a region of area |E| has been turned into n independent
single-vehicle problems, each in a region of area |E|/n, with arrival rates λα/n.
To determine the performance of the policy we need only study the performance
in a single region k. For simplicity of notation we omit the label k. We refer
to the time instant ti in which the vehicle computes a new TSP tour as the
epoch i of the policy; we refer to the time interval between epoch i and epoch
i + 1 as the ith iteration and we will refer to its length as ∆ti. Finally, let
Nα(ti) := Nα,i, α ∈ {1, . . . ,m}, be the number of outstanding α-demands at
beginning of iteration i.

The following straightforward lemma, similar to Lemma 1 in (Papastavrou,
1996), will be essential in deriving our main results.

Lemma 5.4 (Number of outstanding demands). In heavy load (i.e., %→ 1−),
after a transient, the number of demands serviced in a single tour of the vehicle
in the SQ policy is very large with high probability (i.e., the number of demands
tends to +∞ with probability that tends to 1, as % approaches 1−).

Proof. Consider the case where the vehicle moves with infinite velocity (i.e.,
v → +∞); then the system is reduced to the usual M/G/1 queue. The infinite-
velocity system has fewer demands (for every α ∈ {1, . . . ,m}) waiting in queue.
A known result on M/G/1 queues (Wolff, 1989) states that, after transients, the
total number of demands, as %→ 1−, is very large with high probability. Thus,
in the SQ policy, the number of demands in all m classes is very large with high
probability. In particular, this implies that, after a transient, the number of
demands is very large with high probability at the instances when the vehicle
starts a new tour.

Let TSj be the event that Qj is selected for service at iteration i of the SQ
policy. By the total probability law

E [Nα,i+1] =
m∑

j=1

pjE [Nα,i+1|TSj], α ∈ {1, . . . ,m},

where the conditioning is with respect to the task being performed during iteration
i. During iteration i of the policy, demands arrive according to independent
Poisson processes. Call Nnew

α,i the α-demands (α ∈ {1, . . . ,m}) newly arrived
during iteration i; then, by definition of the SQ policy

E [Nα,i+1|TSj] =





E
[
Nnew
α,i |TSj

]
, if α = j

E [Nα,i|TSj] + E
[
Nnew
α,i |TSj

]
, otherwise.

By the law of iterated expectation, we have E
[
Nnew
α,i |TSj

]
= (λα/n)E [∆ti|TSj].
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Moreover, since the number of demands outstanding at the beginning of iteration
i is independent of the task that will be chosen, we have E [Nα,i|TSj] = E [Nα,i].
Thus we obtain

E [Nα,i+1|TSj] =




λα
n

E [∆ti|TSj], if α = j

E [Nα,i] + λα
n

E [∆ti|TSj], otherwise.

Therefore, we are left with computing the conditional expected values of
∆ti. The length of ∆ti is given by the time needed by the vehicle to travel
along the TSP tour plus the time spent to service demands. Assuming i large
enough, Lemma (5.4) holds, and we can apply Theorem 2.3 to estimate from
the quantities Nα,i, α ∈ {1, . . . ,m}, the length of the TSP tour at iteration i.
Conditioning on TSj (when only demands of type j are serviced), we have

E [∆ti|TSj] =
βTSP

√
|E|/n
v

E
[√
Nj,i|TSj

]
+ E

[∑Nj,i
k=1 sj,k|TSj

]

≤
βTSP

√
|E|/n
v

√
E [Nj,i] + E [Nj,i]s̄j,

where we have

(i) applied equation (2.1);

(ii) applied Jensen’s inequality for concave functions, in the form E
[√
X
]
≤

√
E [X];

(iii) removed the conditioning on TSj, since the random variables Nα,i are
independent from future events, and in particular from the choice of the
task at iteration i; and

(iv) used the crucial fact that the on-site service times are independent from
the number of outstanding demands.

Collecting the above results (and using the shorthand X̄ to indicate E [X],
where X is any random variable), we have

N̄α,i+1 ≤ (1− pα)N̄α,i +
m∑

j=1

pj
λα
n


βTSP

√
|E|

√
nv

√
N̄j,i + N̄j,is̄j


, (5.10)

for each α ∈ {1, . . . ,m}. The m inequalities above describe a system of recursive
relations that describe an upper bound on N̄α,i, α ∈ {1, . . . ,m}. The following
theorem bounds the values to which they converge.
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Theorem 5.5 (Steady-state queue length). For every set of initial conditions
{N̄α,0}α∈{1,...,m}, the trajectories i 7→ N̄α,i, α ∈ {1, . . . ,m}, resulting from equa-
tions (5.10), satisfy

lim sup
i→+∞

N̄α,i ≤
β2

TSP|E|
n3v2(1− %)2

λα
pα




m∑

j=1

√
λjpj




2

, as %→ 1−.

Proof. Define qj := 1− pj and let λ̂α denote the arrival rate in region R[k]. Thus

λ̂α := λα/n for each α ∈ {1, . . . ,m}. Let x(i) := (N̄1,i, N̄2,i, . . . , N̄m,i) ∈ Rm and
define two matrices

A :=




λ̂1p1s̄1 + q1 λ̂1p2s̄2 . . . λ̂1pms̄m
λ̂2p1s̄1 λ̂2p2s̄2 + q2 . . . λ̂2pms̄m

...
. . .

...

λ̂mp1s̄1 λ̂mp2s̄2 . . . λ̂mpms̄m + qm



,

and

B :=
βTSP

√
|E|

√
nv




λ̂1p1 λ̂1p2 . . . λ̂1pm
λ̂2p1 λ̂2p2 . . . λ̂2pm

...
. . .

...

λ̂mp1 λ̂mp2 . . . λ̂mpm



.

Then, letting the relation “≤” in Rm denote the product order of m copies of R
(in other words, for v, w ∈ Rm, the relation v ≤ w is interpreted component-wise),
equations (5.10) can be written as

x(i+ 1) ≤ Ax(i) +B




√
x1(i)√
x2(i)
...√
xm(i)




=: f(x(i)), (5.11)

where f : R≥0 → R≥0, and xj(i), j ∈ {1, . . . ,m}, are the components of vector
x(i). We refer to the discrete system in equation (5.11) as System-X. Next we
define two auxiliary systems, System-Y and System-Z. We define System-Y as

y(i+ 1) = f(y(i)). (5.12)

System-Y is, therefore, equal to System-X, with the exception that we replaced
the inequality with an equality.
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Pick, now, any ε > 0. From Young’s inequality

√
a ≤ 1

4ε
+ εa, for all a ∈ R≥0. (5.13)

Hence, for i 7→ y(i) ∈ Rm
≥0, the equation (5.12) becomes

y(i+ 1) ≤ Ay(i) +B
(

1

4ε
1m + ε y(i)

)

=
(
A+ εB

)
y(i) +

1

4ε
B1m.

where 1m is the vector (1, 1, . . . , 1)T ∈ Rm. Next, define System-Z as

z(i+ 1) =
(
A+ εB

)
z(i) +

1

4ε
B1m =: g(z(i)). (5.14)

The proof now proceeds as follows. First, we show that if x(0) = y(0) = z(0),
then

x(i) ≤ y(i) ≤ z(i), for all i ≥ 0. (5.15)

Second, we show that the trajectories of System-Z are bounded; this fact, together
with equation (5.15), implies that also trajectories of System-Y and System-X
are bounded. Third, and last, we will compute lim supi→+∞ y(i); this quantity,
together with equation (5.15), will yield the desired result.

Let us consider the first issue. We have y(1) = f(y(0)) and z(1) = g(z(0)).
Since, by assumption z(0) = y(0), we have that g(z(0)) = g(y(0)) ≥ f(y(0)),
where the last inequality follows from equation (5.13) and by definition of f
and g . Therefore, we get y(1) ≤ z(1). Then, we have y(2) = f(y(1)) and
z(2) = g(z(1)). Since z(1), y(1) ∈ Rm

≥0, and the elements in matrices A and B
are all non-negative, then y(1) ≤ z(1) implies g(y(1)) ≤ g(z(1)). Using similar
arguments, we can write z(2) ≥ g(y(1)) ≥ f(y(1)) = x(2); therefore, we get
y(2) ≤ z(2). Then, it is immediate by induction that y(i) ≤ z(i) for all i ≥ 0.

Similarly, we have x(1) ≤ f(x(0)) = f(y(0)) = y(1), where we have used
the assumption x(0) = y(0). Then, we get x(1) ≤ y(1). Since x(1), y(1) ∈ Rm

≥0,
the elements in matrices A and B are nonnegative, and by the monotonicity
of
√·, then x(1) ≤ y(1) implies f(x(1)) ≤ f(y(1)). Therefore, we can write

x(2) ≤ f(x(1)) ≤ f(y(1)) = y(2); thus, we get x(2) ≤ y(2). Then, it is immediate
to show by induction that x(i) ≤ y(i) for all i ≥ 0, and equation (5.15) holds.

We now turn our attention to the second issue, namely boundedness of
trajectories for System-Z (in equation (5.14)). Notice that System-Z is a discrete-
time linear system. The eigenvalues of A are characterized in the following
lemma.
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Lemma 5.6. The eigenvalues of A are real and have magnitude strictly less than
1 (i.e., A is a stable matrix).

Proof. Let w ∈ Cm be an eigenvector of A, and µ ∈ C be the corresponding
eigenvalue. Then we have Aw = µw. Define r := (p1s̄1, p2s̄2, . . . , pms̄m). Then
the m eigenvalue equations are

λ̂j w · r + qjwj = µwj, j ∈ {1, . . . ,m}, (5.16)

where w · r is the scalar product of vectors w and r, and wj is the jth component
of w.

There are two possible cases. If w · r = 0, then equation (5.16) becomes
qj wj = µwj, for all j. Since w 6= 0, there exists j∗ such that w∗j 6= 0; thus, we
have µ = qj∗ . Since qj∗ ∈ R and 0 < qj∗ < 1, we have that µ is real and |µ| < 1.

Assume, now, that w · r 6= 0. This implies that µ 6= qj and wj 6= 0 for all j,
thus we can write, for all j,

wj =
λ̂j

µ− qj
w · r, (5.17)

and hence

wj =
λ̂j

λ̂1

µ− q1

µ− qj
w1.

Therefore, (5.17) can be rewritten as

m∑

j=1

remjλ̂j
µ− qj

= 1. (5.18)

Equation (5.18) implies that the eigenvalues are real. To see this, write µ = a+ ib,
where i is the imaginary unit: then

m∑

j=1

remjλ̂j
a+ ib− qj

=
m∑

j=1

remjλ̂j[(a− qj)− ib]
(a− qj)2 + b2

.

Thus equation (5.18) implies

b
m∑

j=1

remjλ̂j
(a− qj)2 + b2

︸ ︷︷ ︸
>0

= 0,

that is, b = 0. Equation (5.18) also implies that the eigenvalues (that are real)
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have magnitude strictly less than 1. Indeed, assume, by contradiction, that
µ ≥ 1. Then we have µ − qj ≥ 1 − qj > 0 (recall that the eigenvalues are real
and 0 < qj < 1) and we can write

m∑

j=1

remjλ̂j
µ− qj

≤
m∑

j=1

remjλ̂j
1− qj

=
m∑

j=1

s̄jλ̂j = % < 1,

which is a contradiction. Assume, again by contradiction, that µ ≤ −1. In
this case we trivially get another contradiction

∑m
j=1 remjλ̂j/(µ− qj) < 0, since

µ− qj < 0.

Hence, A ∈ Rm×m has eigenvalues strictly inside the unit disk, and since the
eigenvalues of a matrix depend continuously on the matrix entries, there exists
a sufficiently small ε > 0 such that the matrix A+ εB has eigenvalues strictly
inside the unit disk. Accordingly, each solution i 7→ z(i) ∈ Rm

≥0 of System-Z
converges exponentially fast to the unique equilibrium point

z∗ =
(
Im − A− εB

)−1 1

4ε
B1m. (5.19)

Combining equation (5.15) with the previous statement, we see that the solutions
i 7→ x(i) and i 7→ y(i) are bounded. Thus

lim sup
i→+∞

x(i) ≤ lim sup
i→+∞

y(i) < +∞. (5.20)

Finally, we turn our attention to the third issue, namely the computation
of y := lim supi→+∞ y(i). Taking the lim sup of the left- and right-hand sides of
equation (5.12), and noting that

lim sup
i→+∞

√
yα(i) =

√
lim sup
i→+∞

yα(i) for α ∈ {1, 2, . . . ,m},

since x 7→ √x is continuous and strictly monotone increasing on R>0, we obtain
that

yα = (1− pα)yα + λ̂α
m∑

j=1

pj

(
βTSP

√
|E|

√
nv

√
yj + s̄jyj

)
.

Rearranging we obtain

pαyα = λ̂α
m∑

j=1

pj

(
βTSP

√
|E|

√
nv

√
yj + s̄jyj

)
. (5.21)
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Dividing pαyα by p1y1 we obtain

yα =
λ̂αp1

λ̂1pα
y1. (5.22)

Combining equations (5.21) and (5.22), we obtain

p1y1 = % p1y1 +
βTSP

√
|E|

√
nv

√
p1λ̂1y1

m∑

j=1

√
λ̂jpj

Thus, recalling that λ̂α = λα/n, we obtain

yα =
β2

TSP|E|
n3v2(1− %2)

λα
pα




m∑

j=1

√
λjpj




2

.

Noting that from equation (5.20), lim supi→+∞Nα,i ≤ yα, we obtain the desired
result.

5.3.2 Delay of the SQ Policy in Heavy Load

From Theorem 5.5, and using Little’s law, the delay of α-demands satisfies

Dα(SQ) ≤ n

λα
lim sup
i→+∞

N̄α,i + s̄α

=
β2

TSP|E|
n2v2(1− %)2

1

pα




m∑

j=1

√
λjpj




2

.

Thus, the delay (as defined in equation (5.3)) of the SQ policy, satisfies

D(SQ) ≤ β2
TSP|E|

n2v2(1− %)2

m∑

α=1

cα
pα

(
m∑

i=1

√
λipi

)2

, as %→ 1−. (5.23)

With this expression we prove our main result on the performance of the SQ
policy.

Theorem 5.7 (SQ policy performance). As %→ 1−, the delay of the SQ policy
is within a factor 2m2 of the optimal delay. This factor is independent of the
arrival rates λ1, . . . , λm, coefficients c1, . . . , cm, service times s̄1, . . . , s̄m, and the
number of vehicles n.

Proof. We would like to compare the performance of this policy with the lower
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bound. To do this, consider setting

pα := cα for each α ∈ {1, . . . ,m}.

Defining Ψ := β2
TSP|E|/(n2v2(1− %)2), equation (5.23) can be written as

D(SQ) ≤ Ψm

(
m∑

i=1

√
ciλi

)2

.

Next, the lower bound in equation (5.4) is

D∗ ≥ Ψ

2

m∑

i=1


ci + 2

m∑

j=i+1

cj


λi ≥

Ψ

2

m∑

i=1

(ciλi) .

Thus, comparing the upper and lower bounds

D(SQ)

D∗
≤ 2m

(∑m
i=1

√
ciλi

)2

∑m
i=1 (ciλi)

. (5.24)

Letting xi :=
√
ciλi, and x := [x1, . . . , xm], the numerator of the fraction in

equation (5.24) is ‖x‖2
1, and the denominator is ‖x‖2

2. But the one- and two-
norms of a vector x ∈ Rm satisfy ‖x‖1 ≤

√
m‖x‖2. Thus,

D(SQ)

D∗
≤ 2m

(
‖x‖1

‖x‖2

)2

≤ 2m2, as %→ 1−,

and the policy is a 2m2-factor approximation.

Remark 5.8 (Relation to Randomized Priority policy in (Smith et al.,
2008)). For m = 2 the SQ policy is within a factor of 8 of the optimal. This
improves on the factor of 12 obtained for the Randomized Priority policy
in (Smith et al., 2008). However, it appears that the Randomized Priority
policy bound is not tight, since for two classes, simulations indicate it performs
no worse than the SQ policy. •

5.3.3 Separate Queues Policy with Queue Merging

In this section we propose a modification the SQ policy based on queue merging.
Queue merging is guaranteed to never increase the upper bound on the expected
delay, and in certain instances it significantly decreases the upper bound. The
modification can be used when we have a modest number of classes (fewer than,
say, 20), which encompasses most applications of interest.
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To motivate the modification, consider the case when all classes have equal
priority (i.e., c1/λ1 = · · · = cm/λm), and we use the probability assignment
pα = cα for each class α. Then, the upper bound for the Separate Queues
policy in equation (5.23) becomes

Ψm(λ1 + · · ·+ λm),

where Ψ := β2
TSP|E|/(n2v2(1− %)2).

On the other hand, if we ignore priorities, merge the m classes into a single
class, and run the SQ policy on the merged class (i.e., at each iteration, service
all outstanding demands in E via the TSP tour), then the upper bound becomes

Ψ(λ1 + · · ·+ λm).

Thus, there is a factor of m separating the two upper bounds. This is due to the
fact that the basic SQ policy services each of the m classes separately, even when
they have the same priority.

The above discussion motivates the addition of queue merging to the SQ
policy. We define a merge configuration to be a partition of m classes {1, . . . ,m}
into ` sets C1, . . . , C`, where ` ∈ {1, . . . ,m}. The upper bound for a merge
configuration {C1, . . . , C`} is

Ψ`


∑̀

i

√∑

α∈Ci
cα
∑

β∈Ci
λβ




2

. (5.25)

The SQ-policy with merging can be summarized as follows:

Algorithm 5.2: Separate Queues with Merging policy

Find the merge configuration {C1, . . . , C`} which minimizes equation (5.25).1

Run the Separate Queues policy on ` classes, where class i has arrival2

rate
∑
α∈Ci λα and convex combination coefficient

∑
α∈Ci cα.

Now, to minimize equation (5.25) in step 1 of the Separate Queues with
Merging policy, one must search over all possible partitions of a set of m
elements. The number of partitions is given by the Bell Number Bm which is
defined recursively as Bm =

∑m−1
k=0 Bk

(
m−1
k

)
. Thus, the search becomes infeasible

for more than 10 classes.

If the search space is too large, then one can limit the search to all partitions
such that if i < j, then each class in Ci has higher priority than all classes in Cj.
This is the set of partitions in which only adjacent classes are merged. For m
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classes, there are 2m−1 such merge configurations, which is significantly less than
the Bell number Bm, but is still infeasible more than, say, 20 classes.

5.3.4 The “Tube” Heuristic for Improving Performance

We now introduce a simple heuristic improvement for the SQ policy that can be
used for implementation. The heuristic improvement is as follows:

Tube Heuristic: When following the tour in step 10 of the SQ
policy, service all newly arrived demands that lie within distance
ε > 0 of the tour.

The idea behind the heuristic is to utilize the fact that some newly arrived
demands will be “close” to the demands in the current service batch, and
thus can be serviced with minimal additional travel cost. Analysis of the tube
heuristic is complicated by the fact that it introduces correlation between demand
locations. A similar difficulty arises when attempting to analyze the nearest
neighbor policy (Bertsimas and van Ryzin, 1991). However, we can demonstrate
the effectiveness of this heuristic through simulations.

The parameter ε should be chosen such that the total tour length is not
increased by more than, say, 10%. A rough calculation shows that the area of the
“tube” of width 2ε centered around a tour that passes through the card(Q) demands

in Q, has area upper bounded by 2εβTSP

√
card(Q)|E|. While following the tour, a

vehicle will deviate to service no more than 2εβTSP

√
card(Q)/|E|(N̄1 + · · ·+ N̄m)

demands. Finally, since the vehicle will have to travel no more than 2ε to service
each demand in the “tube,” we see that ε should scale as

ε ∼
√

f |E|
N̄1 + · · ·+ N̄m

,

where N̄α is expected number of α-demands in the environment, and f is the
fractional increase in tour length (e.g., 10%).

Fig. 5.4 shows numerical results for the Tube Heuristic for a single unit speed
vehicle in a square environment with side length 50. The simulation is performed
for two classes of demands with c = 0.8, λ2 = 6λ1, and several different load
factors %. Each experimental data point represents the average of the steady state
delay of ten runs, where each run consists of 200 iterations of the SQ policy. To
ensure convergence to steady state and avoid effects due to the transient response,
only the last 50 iterations in each run are used to calculate the delay. The basic
policy is shown in left-most data points (i.e., ε = 0). Fig. 5.4 demonstrates that
as the load factor increases, the value of ε should be chosen smaller in order to
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Figure 5.4: The tube heuristic for two classes of demands with c = 0.8, λ2 = 6λ1, and
several different load factors %. The delay at ε = 0 corresponds to the basic SQ policy.

achieve the best performance. Table 5.1 shows the improvement in expected delay
when using the tube heuristic. The heuristic appears to decrease the delay by a
factor of 2. One should note that the heuristic is difficult to accurately simulate
for high load factors. This is due to the additional computations required to
determine if a newly arrived demand lies within a distance ε of the current tour.
A more sophisticated implementation of tube heuristic is to define an εα for each

Load factor % Delay Best ε Delay with best ε Heuristic improvement
0.14 358 (34) 5 183 (11) 0.51 (0.16)
0.28 496 (61) 4 244 (25) 0.49 (0.23)
0.42 774 (78) 3 384 (26) 0.50 (0.17)
0.56 1330 (84) 2 706 (52) 0.53 (0.14)
0.70 3380 (357) 1 1770 (121) 0.52 (0.17)

Table 5.1: A comparison between the expected delay of the basic SQ policy, and the
SQ policy with the tube heuristic. The values in brackets give the standard deviation
of the corresponding table entry.

α ∈ {1, . . . ,m}, where the magnitude of εα is proportional to its priority, and
thus proportional to the probability pα.
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5.4 Simulations and Discussion

In this section we discuss, through the use of simulations, the performance of
the SQ policy with the probability assignment pα := cα, for each α ∈ {1, . . . ,m}.
In particular, we study (i) the tightness of the upper bound in equation (5.23),
(ii) conditions for which the gap between the lower bound in equation (5.4)
and the upper bound in equation (5.23) is maximized, (iii) the suboptimality
of the probability assignment pα = cα, and (iv) the difference in performance
between the SQ policy and a policy that merges all classes together irrespective
of priorities. Simulations of the SQ policy were performed using linkern as a
solver to generate approximations to the optimal TSP tour (see Chapter 2 for
more information on computing TSP tour approximations).

5.4.1 Tightness of the Upper Bound

We consider one vehicle, four classes of demands, and several values of the
load factor %. For each value of % we perform 100 runs. In each run we uni-
formly randomly generate arrival rates λ1, . . . , λm, convex combination coefficients
c1, . . . , cm, and on-site service times s̄1, . . . , s̄m, and normalize the values such
that the constraints

∑m
α=1 λαs̄α = % and

∑m
α=1 cα = 1 are satisfied. In each run we

iterate the SQ policy 4000 times, and compute the steady-state expected delay by
considering the number of demands in the last 1000 iterations. For each value of
% we compute the ratio χ between the expected delay and the theoretical upper
bound in equation (5.23). Table 5.2 reports the ratio, its standard deviation, and
its minimum and maximum values for each % value. One can see that the upper
bound provides a reasonable approximation for load factors as low as % = 0.75.

Load factor (%) E [χ] σχ maxχ minχ
0.75 0.803 0.092 1.093 0.354
0.8 0.778 0.108 0.943 0.256
0.85 0.773 0.111 1.150 0.417
0.9 0.733 0.159 1.162 0.203
0.95 0.716 0.131 0.890 0.257

Table 5.2: Ratio χ between experimental results and upper bound for various values
of %.

5.4.2 Maximum deviation from lower bound

In Theorem 5.7 we showed that the SQ policy performs within a factor of 2m2 of
the lower bound for all initial conditions. The difference between the upper bound
equation (5.23) and the lower bound in equation (5.4) can be made arbitrarily
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Figure 5.5: Experimental results for the SQ policy in worst-case conditions; % = 0.85
and λ1 = 1.

close to 2m2 by choosing λ1 � λ2 � · · · � λm and c1 � c2 � · · · � cm, with
λαcα = a, for each α ∈ {1, . . . ,m} and for some positive constant a. In this case,
the upper bound is equal to Bm3a and the lower bound is approximately Bma/2.
To test the deviation experimentally we simulated the SQ policy for several
values of % with initial conditions of λm = bλm−1 = b2λm−1 = · · · = bm−1λ1 and
c1 = bc2 = · · · = bm−1cm, where b = 2. Fig. 5.5 shows that the experimentally
determined ratio of delays (averaged over 10 simulation runs) indeed increases
proportionally to m2.

5.4.3 Suboptimality of the Approximate Probability Assignment

To prove Theorem 5.7 we used the probability assignment

pα := cα for each α ∈ {1, . . . ,m}. (5.26)

However, one would like to select [p1, . . . , pm] that minimizes the right-hand side
of equation (5.23). The minimization of the right-hand side of equation (5.23) is a
constrained multi-variable nonlinear optimization problem over [p1, . . . , pm], that
is, in m dimensions. Thus, for a general m class problem, solving the optimization
problem is difficult. However, for two classes of demands the optimization is
over a single variable p1 (with the constraint that p2 = 1 − p1), and it can be
readily solved. A comparison of optimized upper bound, denoted upbdopt, with
the upper bound obtained using the probability assignment in equation (5.26),
denoted upbdc, is shown in Fig. 5.6. In this figure the ratio of upper bounds is
bounded by two.
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Figure 5.6: The ratios upbdc/upbdopt for 2 classes of demands.

Number of classes (m) upbdc/upbdlocal opt Max. % variation in ratio
3 1.60 0.12
4 1.51 0.04
5 1.51 0.08
6 1.74 0.02
7 1.88 0.08
8 1.63 0.15

Table 5.3: Ratio of upper bound with pα = cα for each α ∈ {1, . . . ,m} and the upper
bound with a locally optimized probability assignment.

For m > 2 we approximate the solution of the optimization problem as
follows. For each value of m we perform 1000 runs. In each run we randomly
generate λ1, . . . , λm, c1, . . . , cm, and five sets of initial probability assignments.
From each initial probability assignment we use a line search to locally optimize
the probability assignment. We take the ratio between upbdc and the least
upper bound upbdlocal opt obtained from the five locally optimized probability
assignments. We also record the maximum variation in the five locally optimized
upper bounds. This is summarized in Table 5.3. The second column shows the
largest ratio obtained over the 1000 runs. The third column shows the largest %
variation in the 1000 runs. The assignment in equation (5.26) seems to perform
within a factor of two of the optimized assignment, and the optimization appears
to converge to values close to a global optimum since all five random conditions
converge to values that are within ∼ 0.1% of each other on every run.
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Figure 5.7: Ratio of experimental delays between Complete Merge policy and SQ
policy as a function of λ2, with m = 2, λ1 = 1, c = 0.995 and % = 0.9.

5.4.4 The Complete Merge Policy

As described in Section 5.3.3, a naive policy for our problem is to ignore priorities,
merge all classes into a single class, and repeatedly form TSP tours through all
outstanding demands. We call this policy the Complete Merge (CM) policy.
In this section we briefly verify that the performance of the Complete Merge
policy can be arbitrarily bad when compared to the SQ policy. In addition, the
conditions for which the Complete Merge policy performs poorly are precisely
the conditions of interest for most applications; when low priority demands arrive
much more frequently than high priority demands. To see this, define the total
arrival rate Λ :=

∑m
α=1 λα and total mean on-site service S̄ :=

∑m
α=1 s̄α. Using the

upper bounds in (Bertsimas and van Ryzin, 1991), we immediately obtain that

D(CM) ≤ β2
TSP|E|Λ

n2v2(1−%)2
. Thus, the ratio D(CM)/D(SQ) can be made arbitrarily

large by choosing λ1 � λ2 � · · · � λm and c1 � c2 � · · · � cm. Fig. 5.7 shows
the experimentally obtained ratio between the delay of the Complete Merge
policy and that of the SQ policy (averaged over 10 simulation runs), and verifies
the poor performance of the CM policy.

5.5 Summary

In this chapter we introduced a dynamic vehicle routing problem with priority
classes. We captured the priority levels of classes by writing the system delay
as a convex combination of the delay of each class. We determined a lower
bound on the achievable values of the convex combination of the class delays. We
then presented the Separate Queues (SQ) policy and showed that it performs
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within a constant factor of the lower bound, which depends only on the number
of the classes. We believe that it may be possible to improve the lower bound and
remove, or reduce, the constant factor’s dependence on the number of classes.
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Chapter Six

Translating Demands

In this chapter, we introduce a dynamic vehicle routing problem in which the
demands move with a specified velocity upon arrival, and we design a novel
receding horizon control policy for a single vehicle to service them. This problem
has applications in areas such as surveillance and perimeter defense, wherein
the demands could be visualized as moving targets trying to cross a region
under surveillance by an Unmanned Air Vehicle. Another application is in the
automation industry where the demands are objects that arrive continuously
on a conveyor belt and a robotic arm performs a pick-and-place operation on
them (Chalasani and Motwani, 1999). Our problem also has similarities to the
RoboFlag game (D’Andrea and Murray, 2003), which consists of two teams
of robots, with each team attempting to capture the other team’s flag while
defending its own.

In addition to the dynamic vehicle routing literature reviewed in Chapter 1, the
work in this chapter is related to geometric location problems such as (Megiddo
and Supowit, 1984), and (Zemel, 1984), where given a set of static demands, the
goal is to find supply locations that minimize a cost function of the distance from
each demand to its nearest supply location. In our problem, in the asymptotic
regime of low arrival, when the arrival rate λ tends to zero for a fixed demand
speed v, the problem becomes one of providing optimal coverage. In this regime,
the demands are served in a first-come-first-served order; such policies are common
in classical queuing theory (see Chapter 2). Another related work is by Mart́ınez
et al. (2007), who study the problem of deploying robots into a region so as to
provide optimal coverage. Other relevant literature include (Tang and Özgüner,
2005) in which multiple mobile targets are to be kept under surveillance by
multiple mobile sensor agents. Kingston and Schumacher (2005) propose mixed-
integer-linear-program approach to assigning multiple agents to time-dependent
cooperative tasks such as tracking mobile targets.

The contributions of this chapter are as follows. We introduce a dynamic
vehicle routing problem in which demands arrive via a stochastic process on a
line segment of fixed length, and upon arrival, translate with a fixed velocity
perpendicular to the segment. A service vehicle, modeled as a first-order integrator
having speed greater than that of the demands, seeks to serve these mobile
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demands. We analyze the problem when the demands are uniformly distributed
along the segment and the demand arrival process is Poisson with rate λ. For a
fixed length W of the segment and the vehicle speed normalized to unity, the
problem is governed by two parameters; the demand speed v and the arrival
rate λ. Our results are as follows. First, we derive a necessary condition on λ in
terms of v for the existence of a stable service policy. Second, we analyze our
novel TMHP-Based policy and derive a sufficient condition for λ in terms of
v that ensures stability of the policy. With respect to stability of the problem,
we identify two asymptotic regimes: (a) High speed regime: when the demands
move as fast as the vehicle, i.e., v → 1− (and therefore for stability, λ → 0+);
and (b) Low speed regime: when demand speed tends to zero, i.e., v → 0+ (and
so a sufficiently high λ may still ensure stability). In the high speed regime, we
show that: (i) for existence of a stabilizing policy, λ must converge to zero as

1/
√
− log(1− v), (ii) every stabilizing policy must service the demands in the

first-come-first-served (FCFS) order, and (iii) of all such policies, the TMHP-
Based policy minimizes the expected time to service a demand. In the low
speed regime, we show that the sufficient condition on λ for the stability of the
TMHP-Based policy is within a constant factor of the necessary condition on λ
for stability of any policy. Third, we identify another asymptotic regime, termed
as the low arrival regime, in which the arrival rate λ→ 0+ for a fixed demand
speed. In this low arrival regime, we establish that the TMHP-Based policy is
optimal in terms of minimizing the expected time to service a demand. Fourth,
for the analysis of the TMHP-Based policy, we study the classic FCFS policy
in which demands are served in the order in which they arrive. We determine
necessary and sufficient conditions on λ for the stability of the FCFS policy.
Fifth and finally, we validate our analysis with extensive simulations and provide
an empirically accurate characterization of the region in the parameter space of
demand speed and arrival rate for which the TMHP-Based policy is stable.

A plot of the theoretically established necessary and sufficient conditions for
stability in the v-λ parameter space is shown in Figure 6.1. The bottom figures
are for the asymptotic regimes of v → 0+, and v → 1−, respectively.

This chapter is organized as follows. The problem formulation, the TMHP-
Based policy, and the main results are presented in Section 6.1. The FCFS policy
is presented and analyzed in Section 6.2. Utilizing the results of Section 6.2, the
main results are proven in Section 6.3. Finally, simulation results are presented
in Section 6.4.

The work in this chapter was performed in collaboration with Shaunak D.
Bopardikar. For consistency, this thesis contains all results. However, the TMHP-
based policy was primarily the work of S. D. Bopardikar in collaboration with
S. L. Smith, while the necessary stability conditions, and the analysis of the
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Figure 6.1: A summary of stability regions for the TMHP-Based policy. Stable
service policies exist only under the solid black curve. In the top figure, the solid black
curve is due to part (i) of Theorem 6.1 and the dashed blue curve is due to part (i)
of Theorem 6.2. In the asymptotic regime shown in the bottom left, the dashed blue
curve is described in part (ii) of Theorem 6.2, and is different than the one in the top
figure. In the asymptotic regime shown in the bottom right, the solid black curve is
due to part (ii) of Theorem 6.1, and is different from the solid black curve in the top
figure.
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p(t) = (X(t), Y (t))

v

Figure 6.2: The problem setup. The thick line segment is the generator of mobile
demands. The dark circle denotes a demand and the square denotes the service vehicle.

FCFS policy was primarily the work of S. L. Smith in collaboration with S. D.
Bopardikar.

6.1 Problem Formulation and the TMHP-Based policy

In this section, we pose the dynamic vehicle routing problem with translating
demands and present the TMHP-Based policy along with the main results.

6.1.1 Problem Statement

We consider a single service vehicle that seeks to service mobile demands that
arrive via a spatio-temporal process on a line segment with length W along the
x-axis, termed the generator. The vehicle is modeled as a first-order integrator
with speed upper bounded by one. The demands arrive uniformly distributed
on the generator via a temporal Poisson process with intensity λ > 0, and
move with constant speed v ∈ ]0, 1[ along the positive y-axis, as shown in
Figure 6.2. We assume that once the vehicle reaches a demand, the demand
is served instantaneously. The vehicle is assumed to have unlimited fuel and
demand servicing capacity.

We define the environment as E := [0,W ] × R≥0 ⊂ R2, and let p(t) =
[X(t), Y (t)]T ∈ E denote the position of the service vehicle at time t. LetQ(t) ⊂ E
denote the set of all demand locations at time t, and N(t) the cardinality of Q(t).
Servicing of a demand qi ∈ Q and removing it from the set Q occurs when the
service vehicle reaches the location of the demand. Recall that a policy for the
vehicle is a map P : E × FIN(E)→ R2, where FIN(E) is the set of finite subsets
of E , assigning a velocity to the service vehicle as a function of the current state
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of the system: ṗ(t) = P (p(t),Q(t)). Let D(i) denote the delay between the
generation of the ith demand and the time it is serviced. Recall that a policy P
is stable if under its action, the steady-state expected delay D(P ), or equivalently
the steady-state N̄(P ) is finite. That is, if the vehicle is able to service demands
at a rate that is—on average—at least as fast as the rate at which new demands
arrive. In what follows, our goal is to design stable control policies for the system.

To obtain further intuition into stability of a policy, consider the v-λ parameter
space. In the asymptotic regime of high speed, where v → 1−, the arrival rate λ
must tend to zero for stability, otherwise the service vehicle would have to move
successively further away from the generator in expected value, thus making the
system unstable. In the asymptotic region of low demand speed, where v → 0+,
if λ→ +∞, then we expect the system to be unstable; while for a sufficiently low
λ, we expect to be able to stabilize the system. Thus, our goal is to characterize
regions in the v-λ parameter space in which one can never design any stable
policy, as well as those in which our policies are stable, with additional emphasis
in the above two asymptotic regimes. In addition, for the asymptotic regime
of low arrival, where for a fixed speed v < 1, the arrival rate λ→ 0+, stability
is intuitive as demands arrive very rarely. Hence, in this regime, we seek to
minimize the steady state expected delay for a demand.

6.1.2 The TMHP-Based policy

We now present a novel receding horizon service policy for the vehicle that is
based on the repeated computation of a translational minimum Hamiltonian
path through successive groups of outstanding demands. For a given arrival rate
λ and demand speed v ∈ ]0, 1[, let (X∗, Y ∗) denote the vehicle location in the
environment that minimizes the expected time to service a demand once it appears
on the generator. The expression for the optimal location (X∗, Y ∗) is postponed
to Section 6.2.1. The TMHP-based policy is summarized in Algorithm 6.1, and
an iteration of the policy is illustrated in Figure 6.3.

Algorithm 6.1: TMHP-Based policy

Assumes: The optimal location (X∗, Y ∗) ∈ E is given.
if no outstanding demands are present in E then1

Move to the optimal position (X∗, Y ∗).2

else3

Service all outstanding demands by following a translational minimum4

Hamiltonian path starting from the vehicle’s current location, and
terminating at the demand with the lowest y-coordinate.

Repeat.5
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qlast

qlast

qlast

Figure 6.3: An iteration of the TMHP-Based policy. The vehicle (square) serves
all outstanding demands (black dots) as per the TMHP beginning at (X,Y ) and
terminating at qlast. The left-figure shows a TMHP at the beginning of an iteration.
The middle-figure shows the vehicle midway through servicing the demands along
the TMHP; new demands have arrived in the environment. The right-figure shows
the vehicle reaching qlast and commencing the next iteration by computing a TMHP
through all outstanding demands.

6.1.3 Main Results

The following is a summary of our main results and the locations of their proofs
within the chapter. We begin with a necessary condition for stability, the proof
of which is presented in Section 6.3.1.

Theorem 6.1 (Necessary condition for stability). The following are necessary
conditions for the existence of a stabilizing policy:

(i) For v ∈ ]0, 1[,

λ ≤ 4

vW
.

(ii) For the asymptotic regime of high speed, where v → 1−, every stabilizing
policy must serve the demands in the order in which they arrive and hence,

λ ≤ 3
√

2

W
√
− log(1− v)

.

Then, we derive a sufficient condition for stability of the TMHP-Based
policy, the proof of which is presented in Section 6.3.2. We introduce the following
notation. Let

λFCFS(v,W ) :=





3

W

√
1− v
1 + v

, for v ≤ v∗suf,√
12v

W

√
(1 + v)

(
Csuf − log

(
1−v
v

)) , otherwise,
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where Csuf = π/2− log(0.5 ·
√

3/
√

2), and v∗suf is the solution to

√
12v∗ − 3

√
(1− v∗)(Csuf − log(1− v∗) + log v∗) = 0,

and is approximately equal to 2/3.

Theorem 6.2 (Sufficient condition for stability). The following are sufficient
conditions for stability of the TMHP-Based policy.

(i) For v ∈ ]0, 1[,

λ < max

{
(1− v2)3/2

2vW (1 + v)2
, λFCFS(v,W )

}
.

(ii) For the asymptotic regime of low speed where v → 0+,

λ <
1

β2
TSPvW

, where βTSP ≈ 0.7120.

A plot of the necessary and sufficient conditions is shown in Fig. 6.1. In
the asymptotic regime of high speed, the sufficient condition from part (i) of
Theorem 6.2 simplifies to

λ <

√
6

W
√
− log(1− v)

=: λ1−

suf,

and the necessary condition established in part (ii) of Theorem 6.1 simplifies to

λ ≤ 3
√

2

W
√
− log(1− v)

=: λ1−

nec.

In the asymptotic regime of low speed, the sufficient condition from part (ii) of
Theorem 6.2 is λ < 1/(β2

TSPvW ) =: λ0+

suf, and the necessary condition established
in part (i) of Theorem 6.1 is λ ≤ 4/(vW ) =: λ0+

nec.

Theorems 6.1 and 6.2 immediately lead to the following corollary.

Corollary 6.3 (Constant factor sufficient condition). In the asymptotic regime
of

(i) high speed, which is the limit as v → 1−, the ratio λ1−
nec/λ

1−
suf →

√
3.

(ii) low speed, which is the limit as v → 0+, the ratio λ0+

nec/λ
0+

suf → 4β2
TSP ≈ 2.027.
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Finally, we state the following optimality property of the TMHP-Based
policy, the proof of which is presented in Section 6.3.2.

Theorem 6.4 (Optimality of TMHP-Based policy). The TMHP-Based
policy minimizes the expected time to service a demand in

(i) the low arrival asymptotic regime, where λ→ 0+ for a fixed v ∈ ]0, 1[, and

(ii) the high speed asymptotic regime, where v → 1− (and therefore λ→ 0+).

In order to study the stability of the TMHP-Based policy, we introduce
and analyze a first-come-first-served (FCFS) policy in the next section.

6.2 The First-Come-First-Served (FCFS) Policy and its
Analysis

In this section, we present the FCFS policy and establish some of its properties.
To state the FCFS policy we review the constant bearing control motion from
Section 2.2.3.

Definition 6.5 (Constant bearing control). Given initial locations p := (X, Y ) ∈
R2 and q := (x, y) ∈ R2 of the service vehicle and a demand, respectively, with
the demand moving in the positive y-direction with constant speed v ∈ ]0, 1[, the
motion of the service vehicle towards the point (x, y + vT ), where

T (p,q) :=

√
(1− v2)(X − x)2 + (Y − y)2

1− v2
− v(Y − y)

1− v2
, (6.1)

with unit speed is defined as the constant bearing control.

Constant bearing control is illustrated in Figure 6.4 and characterized in the
following proposition.

Proposition 6.6 (Minimum time control, Isaacs (1965)). The constant bearing
control is the minimum time control for the service vehicle to reach the moving
demand.

In the FCFS policy, the service vehicle uses constant bearing control and
services the demands in the order in which they arrive. If the environment
contains no demands, the vehicle moves to the location (X∗, Y ∗) which minimizes
the expected time to catch the next demand to arrive. This policy is summarized
in Algorithm 6.2. Figure 6.5 illustrates an instance of the FCFS policy. The
following lemma establishes the relationship between the FCFS policy and the
TMHP-Based policy.
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W

p = (X, Y )

q = (x, y)

C = (x, y + vT )

Figure 6.4: Constant bearing control. The vehicle moves towards the point
C := (x, y + vT ), where x, y, v and T are as per Definition 6.5, to reach the demand.

Algorithm 6.2: FCFS policy

Assumes: The optimal location (X∗, Y ∗) ∈ E is given.
if no outstanding demands are present in E then1

Move toward (X∗, Y ∗) until the next demand arrives.2

else3

Move using the constant bearing control to service the furthest demand4

from the generator.

Repeat.5

W

p
qi

qi+1

qi+2

qi+3

Figure 6.5: The FCFS policy. The vehicle services the demands in the order of their
arrival in the environment, using the constant bearing control.
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Lemma 6.7 (Relationship between TMHP-Based policy and FCFS policy).
Given an arrival rate λ and a demand speed v, if the FCFS policy is stable, then
the TMHP-Based policy is stable.

Proof. Consider an initial vehicle position and a set of outstanding demands, all
of which have lower y-coordinates than the vehicle. Let us compare the amount of
time required to service the outstanding demands using the TMHP-Based policy
with the amount of time required for the FCFS policy. Both policies generate
paths through all outstanding demands, starting at the initial vehicle location,
and terminating at the outstanding demand with the lowest y-coordinate. By
definition, the TMHP-Based policy generates the shortest such path. Thus,
the TMHP-Based policy will require no more time to service all outstanding
demands than the FCFS policy. Since this holds at every iteration of the policy,
the region of stability of TMHP-Based policy contains the region of stability
for the FCFS policy.

In the following subsections, we analyze the FCFS policy. We then combine
these results with the above lemma to establish analogous results for the TMHP-
Based policy.

The first question is, how do we compute the optimal position (X∗, Y ∗)? This
will be answered in the following subsection.

6.2.1 Optimal Vehicle Placement

In this subsection, we study the FCFS policy when v ∈ ]0, 1[ is fixed and λ→ 0+.
In this regime, stability is not an issue as demands arrive very rarely, and the
problem becomes one of optimally placing the service vehicle (i.e., determining
(X∗, Y ∗) in the statement of the FCFS policy).

We seek to place the vehicle at location that minimizes the expected time
to service a demand once it appears on the generator. Demands appear at
uniformly random positions on the generator and the vehicle uses the constant
bearing control to reach the demand. Thus, the expected time to reach a demand
generated at position q = (x, 0) from vehicle position p = (X, Y ) is given by

E [T (p,q)] =
1

W (1− v2)

∫ W

0

(√
(1− v2)(X − x)2 + Y 2 − vY

)
dx. (6.2)

The following lemma characterizes the way in which this expectation varies with
the position p.

Lemma 6.8 (Properties of the expected time). The expected time p 7→ E [T (p,q)]
is convex in p, for all p ∈ [0,W ]×R>0. Additionally, there exists a unique point
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p∗ := (W/2, Y ∗) ∈ R2 that minimizes p 7→ E [T (p,q)].

Proof. Regarding the first statement, it suffices to show that the integrand in
equation (6.2), T (p, (x, 0)) is convex for all x. To do this we compute the Hessian
of T ((X, Y ), (x, 0)) with respect to X and Y . Thus, for Y > 0,

[
∂2T
∂X2

∂2T
∂X∂Y

∂2T
∂Y ∂X

∂2T
∂Y 2

]
=

1
(

(1− v2)(X − x)2 + Y 2

)3/2

[
Y 2 Y (X − x)

Y (X − x) (X − x)2

]
.

The Hessian is positive semi-definite because its determinant is zero and its trace
is non-negative. This implies that T (p,q) is convex in p for each q = (x, 0), from
which the first statement follows.

Regarding the second statement, since demands are uniformly randomly
generated on the interval [0,W ], the optimal horizontal position is X∗ = W/2.
Thus, it suffices to show that Y 7→ E [T ((W/2, Y ),q)] is strictly convex. From
the ∂2T/∂Y 2 term of the Hessian we see that T (p,q) is strictly convex for all
x 6= W/2. But, letting p = (W/2, Y ) and q = (x, 0) we can write

E [T (p,q)] =
1

W (1− v2)

∫

x∈[0,W ]\{W/2}
T (p,q)dx.

The integrand is strictly convex for all x ∈ [0,W ] \ {W/2}, implying that
E [T (p,q)] is strictly convex on the line X = W/2, and that the point (W/2, Y ∗)
is the unique minimizer.

Lemma 6.8 tells us that there exists a unique point p∗ := (X∗, Y ∗) which min-
imizes the expected travel time. In addition, we know that X∗ = W/2. Obtaining
a closed form expression for Y ∗ does not appear to be possible. Computing the
integral in equation (6.2), with X = W/2, one can obtain

E [T (p,q)] =
Y

a


1

2

√

1 +
aW 2

4Y 2
− Y√

aW
log



√

1 +
aW 2

4Y 2
−
√
aW 2

4Y 2


− v


 ,

where a = 1 − v2. For each value of v and W , this convex expression can be
easily numerically minimized over Y , to obtain Y ∗. A plot of Y ∗ as a function of
v for W = 1 is shown in Figure 6.6.

For the optimal position p∗, the expected delay between a demand’s arrival
and its service completion is

D∗ := E [T (p∗, (x, 0))].
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Figure 6.6: The optimal position Y ∗ of the service vehicle which minimizes the expected
distance to a demand, as a function of v. In this plot, the generator has length W = 1.

Thus, a lower bound on the steady-state expected delay of any policy is D∗. We
now characterize the steady-state expected delay of the FCFS policy DFCFS, as
λ tends to zero.

Lemma 6.9 (FCFS optimality). Fix any v ∈ ]0, 1[. Then in the limit as
λ→ 0+, the FCFS policy minimizes the expected time to service a demand, i.e.,
DFCFS → D∗.

Proof. We have shown how to compute the position p∗ := (X∗, Y ∗) which
minimizes equation (6.2). Thus, if the vehicle is located at p∗, then the expected
time to service the demand is minimized. But, as λ→ 0+, the probability that
demand i+ 1 arrives before the vehicle completes service of demand i and returns
to p∗ tends to zero. Thus, the FCFS policy is optimal as λ→ 0+.

Remark 6.10 (Minimizing the worst-case time). Another metric that can be
used to determine the optimal placement (X∗, Y ∗) is the worst-case time to service
a demand. Using an argument identical to that in the proof of Lemma 6.9, it is
possible to show that for fixed v ∈ ]0, 1[, and as λ→ 0+, the FCFS policy, with
(X∗, Y ∗) = (W/2, vW/2), minimizes the worst-case time to service a demand. •
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6.2.2 A Necessary Condition for FCFS Stability

In the previous subsection, we studied the case of fixed v and λ → 0+. In
this subsection, we analyze the problem when λ > 0, and determine necessary
conditions on the magnitude of λ that ensure the FCFS policy remains stable.
To establish these conditions we utilize a standard result in queueing theory
(see Chapter 2) which states that a necessary condition for the existence of a
stabilizing policy is that λE [T ] ≤ 1, where E [T ] is the expected time to service
a demand (i.e., the travel time between demands). We begin with the following
result.

Proposition 6.11 (Special case of equal speeds). For v = 1, there does not exist
a stabilizing policy.

Proof. When v = 1, each demand and the service vehicle move at the same
speed. If a demand has a higher vertical position than the service vehicle, then
clearly the service vehicle cannot reach it. The same impossibility result holds
if the demand has the same vertical position and a distinct horizontal position
as the service vehicle. In summary, a demand can be reached only if the service
vehicle is above the demand. Next, note that the only policy that ensures that
a demand’s y-coordinate never exceeds that of the service vehicle (i.e., that all
demands remain below the service vehicle at all time) is the FCFS policy. In
what follows, we prove the proposition statement by computing the expected
time to travel between demands using the FCFS policy. First, consider a vehicle
location p := (X, Y ) and a demand location with initial location q := (x, y), the
minimum time T in which the vehicle can reach the demand is given by

T (p,q) =
(X − x)2 + (Y − y)2

2(Y − y)
, if Y > y, (6.3)

and is undefined if Y ≤ y. Second, assume there are many outstanding demands
below the service vehicle, and none above. Suppose the service vehicle completed
the service of demand i at time ti and position (xi(ti), yi(ti)). Let us compute
the expected time to reach demand i+ 1, with location (xi+1(ti), yi+1(ti)). Since
arrivals are Poisson it follows that yi(ti) > yi+1(ti). To simplify notation we define
∆x = |xi(ti)− xi+1(ti)| and ∆y = yi(ti)− yi+1(ti). Then, from equation (6.3)

T (qi,qi+1) =
∆x2 + ∆y2

2∆y
=

1

2

(
∆x2

∆y
+ ∆y

)
.

Taking expectation and noting that ∆x and ∆y are independent,

E [T (qi,qi+1)] =
1

2

(
E [∆x2]E

[
1

∆y

]
+ E [∆y]

)
.
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Now, we note that E [∆y] = 1/λ, that E [∆x2] is a positive constant independent
of λ, and that

E
[

1
∆y

]
=
∫ +∞

y=0

1

y
λe−λydy = +∞.

Thus E [T (qi,qi+1)] = +∞, and for every λ > 0,

λE [T (qi,qi+1)] = +∞.

This means that the necessary condition for stability, i.e., λE [T (qi,qi+1)] ≤ 1, is
violated. Thus, there does not exist a stabilizing policy.

Next we look at the FCFS policy and give a necessary condition for its
stability.

Lemma 6.12 (Necessary stability condition for FCFS). A necessary condition
for the stability of the FCFS policy is

λ ≤





3

W
, for v ≤ v∗nec,

3
√

2v

W

√
(1 + v)

(
Cnec − log

(√
1−v2
v

)) , otherwise,

where Cnec = 0.5 + log(2) − γ, where γ is the Euler constant; and v∗nec is the
solution to

2v − (1 + v)(Cnec − 0.5 · log(1− v2) + log v) = 0,

and is approximately equal to 4/5.

Proof. Suppose the service vehicle completed the service of demand i at time
ti at position (xi(ti), yi(ti)), and demand i + 1 is located at (xi+1(ti), yi+1(ti)).
Define ∆x := |xi(ti) − xi+1(ti)| and ∆y := yi(ti) − yi+1(ti). For v ∈ ]0, 1[, the
travel time between demands is given by

T =
1

1− v2

(√
(1− v2)∆x2 + ∆y2 − v∆y

)
. (6.4)

Observe that the function T is convex in ∆x and ∆y. Jensen’s inequality
leads to

E [T ] ≥ 1

1− v2

(√
(1− v2)(E [∆x])2 + (E [∆y])2 − vE [∆y]

)
.
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Substituting the expressions for the expected values, we obtain

E [T ] ≥ 1

1− v2

(√

(1− v2)
W 2

9
+
v2

λ2
− v2

λ

)
.

From the necessary condition for stability, we must have

λE [T ] ≤ 1 ⇐⇒ λ
1

1− v2

(√
(1− v2)W 2

9
+
v2

λ2
− v2

λ

)
≤ 1.

By simplifying, we obtain

λ ≤ 3

W
. (6.5)

This provides a good necessary condition for low v. Next, we obtain a much
better necessary condition for large v.

Since T is convex in ∆x, we apply Jensen’s inequality to equation (6.4) to
obtain

E [T |∆y] ≥ 1

1− v2

(√
(1− v2)W 2/9 + ∆y2 − v∆y

)
, (6.6)

where E [∆x] = W/3. Now, the random variable ∆y is distributed exponentially
with parameter λ/v and probability density function

f(y) =
λ

v
e−λy/v.

Un-conditioning equation (6.6) on ∆y, we obtain

E [T ] =
∫ +∞

0
E [T |y]f(y)dy ≥ λ

v(1− v2)

∫ +∞

0



√

(1− v2)W 2

9
+ y2 − vy


 e−λy/vdy.

(6.7)
The right hand side can be evaluated using the software Maple R© and equals

πW

2 · 3
√

1− v2

[
H1

(
λW
√

1− v2

3v

)
−Y1

(
λW
√

1− v2

3v

)]
− v2

λ(1− v2)
,

where H1 : R → R is the 1st order Struve function and Y1 : R → R is 1st
order Bessel function of the second kind (Newman, 1984).Using a Taylor series
expansion of the function H1(z)−Y1(z) about z = 0, followed by a subsequent
analysis of the higher order terms, one can show that

H1(z)−Y1(z) ≥ 1

π

(
2

z
+ Cnecz − z log(z)

)
, ∀z ≥ 0,
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where Cnec = 1/2 + log(2) − γ, and γ is the Euler constant. This inequality
implies that equation (6.7) can be written as

E [T ] ≥ v

λ(1 + v)
+
λW

18v

(
Cnec − log

(
λW
√

1− v2

3v

))
,

where we have used the fact that

v

λ(1− v)2
− v2

λ(1− v2)
=

v

λ(1 + v)
.

To obtain a stability condition on λ we wish to remove λ from the log term. To
do this, note that from equation (6.5) we have λW/3 < 1, and thus

E [T ] ≥ v

λ(1 + v)
+
λW

18v

(
Cnec − log

Wλ

3
− log

W
√

1− v2

3v

)

≥ v

λ(1 + v)
+
λW

18v

(
Cnec − log

(√
1− v2

v

))
.

The necessary stability condition is λE [T ] ≤ 1, from which a necessary condition
for stability is

λ2W

18v

(
Cnec − log

(√
1− v2

v

))
≤ 1− v

1 + v
=

1

1 + v
.

Solving for λ when log(
√

1− v2/v) < Cnec, we obtain that

λ ≤ 3
√

2v

W

√
(1 + v)

(
Cnec − log

(√
1−v2
v

)) , (6.8)

The condition Cnec > log(
√

1− v2/v), implies that the above bound holds for
all v > 1/

√
1 + e2Cnec . We now have two bounds; equation (6.5) which holds for

all v ∈ ]0, 1[, and equation (6.8) which holds for v > 1/2. The final step is to
determine the values of v for which each bound is active. To do this, we set the
right-hand side of equation (6.5) equal to the right-hand side of equation (6.8)
and denote the solution by v∗nec. Thus, the necessary condition for stability is
given by equation (6.5) when v ≤ v∗nec, and by equation (6.8) when v > v∗nec.

6.2.3 A Sufficient Condition for FCFS stability

In Section 6.2.2, we determined a necessary condition for stability of the FCFS
policy. In this subsection, we will derive the following sufficient condition on the
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arrival rate that ensures stability for the FCFS policy. To establish this condition,
we apply the sufficient condition for the existence of a stabilizing policy, which is
that λE [T ] < 1, where E [T ] is the expected time to service a demand (i.e., the
travel time between demands).

Lemma 6.13 (Sufficient stability condition for FCFS). The FCFS policy is stable
if

λ <





3

W

√
1− v
1 + v

, for v ≤ v∗suf,√
12v

W

√
(1 + v)

(
Csuf − log

(
1−v
v

)) , otherwise,

where Csuf = π/2− log(0.5 ·
√

3/
√

2), and v∗suf is the solution to

√
12v∗ − 3

√
(1− v∗)(Csuf − log(1− v∗) + log v∗) = 0,

and is approximately equal to 2/3.

Proof. We begin with the expression for the travel time between two consecutive
demands using the constant bearing control (see Definition 6.5),

T =

√
(1− v2)∆x2 + ∆y2

1− v2
− v∆y

1− v2
≤ |∆x|√

1− v2
+

∆y

1− v2
, (6.9)

where we used the inequality
√
a2 + b2 ≤ |a|+ |b|. Taking expectation,

E [T ] ≤ W

3
√

1− v2
+

v

λ(1− v2)
,

since the demands are distributed uniformly in the x-direction and Poisson in
the y-direction. A sufficient condition for stability is

λE [T ] < 1 ⇐⇒ λ <
3

W

√
1− v
1 + v

. (6.10)

The upper bound on T given by equation (6.9) is very conservative except
for the case when v is very small. Alternatively, taking expected value of T
conditioned on ∆y, and applying Jensen’s inequality to the square-root part, we
obtain

E [T |∆y] ≤ 1

1− v2

(√
(1− v2)W 2/6 + ∆y2 − v∆y

)
,

since E [∆x2] = W 2/6. Following steps which are similar to those between
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equation (6.6) and equation (6.7), we obtain

E [T ] ≤ πW

2 ·
√

6
√

1− v2

[
H1

(
λW
√

1− v2

√
6v

)
−Y1

(
λW
√

1− v2

√
6v

)]
− v2

λ(1− v2)
.

(6.11)

In (Newman, 1984), polynomial approximations have been provided for the
Struve and Bessel functions in the intervals [0, 3] and [3,+∞). We seek an upper
bound for the right-hand side of (6.11) when v is sufficiently large, i.e., when the
argument of H1 and Y1 is small. From (Newman, 1984), we know that

H1(z) ≤ z

2
, Y1(z) ≥ 2

π

(
J1(z) log

z

2
− 1

z

)
, and J1(z) ≤ z

2
, for 0 ≤ z ≤ 3,

where z := λW
√

1− v2/(
√

6v), and J1 : R→ R denotes the Bessel function of
the first kind. To obtain a lower bound on Y1(z), we observe that if 0 ≤ z ≤ 2,
then due to the log term in the above lower bound for Y1(z), we can substitute
z/2 in place of J1(z). Thus, we obtain

H1(z) ≤ z

2
, Y1(z) ≥ 2

π

(
z

2
log

z

2
− 1

z

)
, for 0 ≤ z ≤ 2. (6.12)

Substituting into equation (6.11), we obtain

E [T ] ≤ πW

2 ·
√

6
√

1− v2

[
λW
√

1− v2

2
√

6v
+

2

π

( √
6v

λW
√

1− v2

−λW
√

1− v2

2
√

6v
log

λW
√

1− v2

2
√

6v

)]
− v2

λ(1− v2)
,

which yields

E [T ] ≤ λW 2

12v

(
π

2
− log

λW

3
− log

√
3
√

1− v2

2
√

2v

)
− 1

λ(1 + v)
. (6.13)

Now, let λ∗ be the least upper bound on λ for which the FCFS policy is
unstable, i.e., for every λ < λ∗, the FCFS policy is stable. To obtain λ∗, we need
to solve λ∗E [T ] = 1. Using equation (6.13), we can obtain a lower bound on λ∗

by simplifying

λ∗2W 2

12v

(
π

2
− log

λ∗W

3
− log

√
3
√

1− v2

2
√

2v

)
− 1

1 + v
≥ 1.

From the condition given by equation (6.10), the second term in the paren-
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theses satisfies
λ∗W

3
>

√
1− v
1 + v

.

Thus, we obtain,

λ∗ ≥
√

12v

W

√
(1 + v)

(
Csuf − log

(
1−v
v

)) ,

where Csuf = π/2− log(0.5 ·
√

3/
√

2). Since λ < λ∗ implies stability, a sufficient
condition for stability is

λ <

√
12v

W

√
(1 + v)

(
Csuf − log

(
1−v
v

)) . (6.14)

To determine the value of the speed v∗suf beyond which this is a less conservative
condition than equation (6.10), we solve

√
12v∗suf

W

√
(1 + v∗suf)

(
C − log

(
1−v∗

suf

v∗
suf

)) =
3

W

√
1− v∗suf

1 + v∗suf

.

For v > v∗suf, one can verify that the numerical value of the argument of the Struve
and Bessel functions is less than 2, and so the bounds given by equation (6.12)
used in this analysis are valid. Thus, a sufficient condition for stability is given
by equation (6.10) for v ≤ v∗suf, and by equation (6.14) for v > v∗suf.

Remark 6.14 (Tightness in low speed regime). As v → 0+, the sufficient
condition for FCFS stability becomes λ < 3/W , which is exactly equal to the
necessary condition given by part (ii) of Lemma 6.12. Thus, the condition for
stability is asymptotically tight in this limiting regime.

Figure 6.7 shows a comparison of the necessary and sufficient stability condi-
tions for the FCFS policy. It should be noted that λ converges to 0+ extremely
slowly as v tends to 1−, and still satisfy the sufficient stability condition in
Lemma 6.13. For example, with v = 1− 10−6, the FCFS policy can stabilize the
system for an arrival rate of 3/(5W ). •

6.3 Proofs of the Main results

In this section, we present the proofs of the main results which were presented in
Section 6.1.3.
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Figure 6.7: The necessary and sufficient conditions for the stability for the FCFS
policy. The dashed curve is the necessary condition for stability as established in
Lemma 6.12; while the solid curve is the sufficient condition for stability as established
in Lemma 6.13.

6.3.1 Proof of Theorem 6.1 (Necessary stability condition)

We first present the proof of part (i). We begin by looking at the distribution of
demands in the service region.

Lemma 6.15 (Distribution of outstanding demands). Suppose the generation of
demands commences at time 0 and no demands are serviced in the interval [0, t].
Let Q denote the set of all demands in [0,W ]× [0, vt] at time t. Then, given a
measurable compact region R of area |R| contained in [0,W ]× [0, vt],

P[|R ∩ Q| = N ] =
e−λ̄|R|(λ̄|R|)N

N !
, where λ̄ := λ/(vW ).

Proof. Let R = [`, `+∆`]× [h, h+∆h] be a rectangle contained in [0,W ]× [0, vt]
with area |R| = ∆`∆h. Let us calculate the probability that at time t, |R∩Q| =
N (that is, the probability that R contains n points in Q). We have

P[|R ∩ Q| = N ] =
∞∑

i=N

P
[
i demands arrived in

[
h

v
,
h+ ∆h

v

]]

× P[n of i are generated in [`, `+ ∆`]].
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Since the generation process is temporally Poisson and spatially uniform the
above equation can be rewritten as

P[|R ∩ Q| = N ] =
∞∑

i=N

P [i demands arrived in [0,∆h/v]]

× P[n of i are generated in [0,∆`]]. (6.15)

Now we compute

P [i demands arrived in [0,∆h/v]] =
e−λ∆h/v(λ∆h/v)i

i!
,

and

P[n of i are in [0,∆`]] =

(
i

N

)(
∆`

W

)N (
1− ∆`

W

)i−N
,

so that, substituting these expressions and adopting the shorthands L := ∆`/W
and H := ∆h/v, equation (6.15) becomes

P[|R ∩ Q| = N ] = e−λHLN
∞∑

i=N

(λH)i

i!

(
i

N

)
(1− L)i−N . (6.16)

Rewriting (λH)i as (λH)N(λH)i−N , and using the definition of binomial
(
i
N

)
=

i!
N !(i−N)!

, equation (6.16) reads

P[|R ∩ Q| = N ] = e−λH
(λLH)N

N !

∞∑

j=0

(λH(1− L))j

j!

= e−λH+λH(1−L) (λLH)N

N !
= e−λLH

(λLH)N

N !
.

Finally, since LH = |R|/(vW ), we obtain

P[|R ∩ Q| = N ] = e−λ̄|R|
(λ̄|R|)N
N !

,

where λ̄ := λ/(vW ). Thus, the result is established for rectangles. However, every
measurable, compact region can be written as a countable union of rectangles,
and thus the result follows.

Remark 6.16 (Uniformly distributed demands). Lemma 6.15 shows us that the
number of demands in an unserviced region with area A is Poisson distributed
with parameter λA/(vW ), and conditioned on this number, the demands are
distributed uniformly. •
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Lemma 6.17 (Travel time bound). Consider the set Q of demands that are
uniformly distributed in E at time t. Let Td be a random variable giving the
minimum amount of time required to travel to a demand in Q from a vehicle
position selected a priori. Then

E [Td] ≥
1

2

√
vW

λ
.

Proof. Let p = (X, Y ) denote the vehicle location selected a priori. To obtain
a lower bound on the minimum travel time, we consider the best-case scenario,
when no demands have been serviced in the time interval [0, t], and when the set
Q contains many demands (i.e., t is very large). Consider a demand in Q with
position (x, y) at time t. Using Proposition 6.6, we can write the travel time T
from p to q := (x, y) implicitly as

T (p,q)2 = (X − x)2 + ((Y − y)− vT (p,q))2. (6.17)

Next, define the set ST as the collection of demands that can be reached from
(X, Y ) in T or fewer time units. From equation (6.17) we see that when v < 1,
the set ST is a disk of radius T centered at (X, Y − vT ). That is,

ST := {(x, y) ∈ E | (X − x)2 + ((Y − vT )− y)2 ≤ T 2},

where we have omitted the dependence of T on p and q. The area of the set ST ,
denoted |ST |, is upper bounded by πT 2, and the area is equal to πT 2 if the ST
does not intersect a boundary of E . Now, by Lemma 6.15 the demands in an
unserviced region are uniformly randomly distributed with density λ̄ = λ/(vW ).
Let us compute the distribution of Td := minq∈Q T (p,q). For every vehicle
position p chosen before the generation of demands, the probability that Td > T
is given by

P[Td > T ] = P[|ST ∩Q| = 0] ≥ e−λ̄|ST | ≥ e−λπT
2/(vW ).

Hence we have

E [Td] ≥
∫ +∞

0
P[Td > T ]dT ≥

∫ +∞

0
e−λπT

2/(vW )dT =

√
π

2
√
λπ/(vW )

=
1

2

√
vW

λ
.

We can now prove part (i) of Theorem 6.1.

Proof of part (i) of Theorem 6.1. A necessary condition for the stability of any
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policy is
λE [T ] ≤ 1,

where E [T ] is the steady-state expected travel time between demands i and i+ 1.

For every policy E [T ] ≥ E [Td] ≥ 1
2

√
vW
λ

. Thus, a necessary condition for stability
is that

λ
1

2

√
vW

λ
≤ 1 ⇐⇒ λ ≤ 4

vW
.

Remark 6.18 (Constant fraction service). A necessary condition for the existence
of a policy which services a fraction ξ ∈ ]0, 1] of the demands is that

λ ≤ 4

ξ2vW
.

Thus, for a fixed v ∈ ]0, 1[ no policy can service a constant fraction of the demands
as λ→ +∞. This follows because in order to service a fraction ξ we require that
ξλE [Td] < 1.

In order to service a fraction ξ of the demands, we consider a subset of the
generator having length ξW , with the arrival rate on that subset being equal to
ξλ. The use of the TMHP-Based policy on this subset and with the arrival rate
ξλ gives a sufficient condition for stability analogous to Theorem 6.2, but with
an extra term of ξ2 in the denominator. •

For the proof of part (ii) of Theorem 6.1, we first recall from Lemma 6.12
that for stability of the FCFS policy, although λ must go to zero as v → 1−, it
can go very slowly to 0. Specifically, λ goes to zero as

1√
− log(1− v)

.

This quantity goes to zero more slowly than any polynomial in (1− v). We are
now ready to complete the proof of Theorem 6.1.

Proof of part (ii) of Theorem 6.1. Observe that the condition on λ in the state-
ment of part (ii) is the expression given by the necessary condition for FCFS
stability in the asymptotic regime as v → 1−, from Lemma 6.12. Therefore,
suppose there is a policy P that does not serve demands FCFS, but can stabilize
the system with

λ = B(1− v)p,

for some p > 0, and B > 0. Let ti be the first instant at which policy P deviates
from FCFS. Then, the demand served immediately after i is demand i+ k for
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some k > 1. When the vehicle reaches demand i+ k at time ti+1, demand i+ 1
has moved above the vehicle. To ensure stability, demand i+ 1 must eventually
be served. The time to travel to demand i + 1 from any demand i + j, where
j > 1, is

T (qi+j,qi+1) =

√√√√
(

∆x√
1− v2

)2

+
(

∆y

1− v2

)2

+
v∆y

1− v2

≥ ∆y

1− v2
+

v∆y

1− v2
=

∆y

1− v ,

where ∆x and ∆y are now the minimum of the x and y distances from qi+j to
the qi+1. The random variable ∆y is Erlang distributed with shape j − 1 ≥ 1
and rate λ, implying

P[∆y ≤ c] ≤ 1− e−λc/v, for each c > 0, and in particular, for c = (1− v)1/2−p.

Now, since λ = B(1− v)p as v → 1−, almost surely ∆y > (1− v)1/2−p. Thus

T (qi+j,qi+1) ≥ (1− v)−(p+1/2),

almost surely as v → 1−. Thus, the expected number of demands that arrive
during T (qi+j,qi+1) is

λT (qi+j,qi+1) ≥ B(1− v)p(1− v)−(p+1/2) ≥ B(1− v)−1/2 → +∞,

as v → 1−. This implies that almost surely the policy P becomes unstable
when it deviates from FCFS and that any deviation must occur with probability
zero as v → 1−. Thus, a necessary condition for a policy to be stabilizing with
λ = B(1− v)p is that, as v → 1−, the policy must serve demands in the order
in which they arrive. But this needs to hold for every p and, by letting p go to
infinity, B(1− v)p converges to zero for all v ∈ (0, 1]. Thus, a non-FCFS policy
cannot stabilize the system no matter how quickly λ→ 0+ as v → 1−. Hence, as
v → 1−, every stabilizing policy must serve the demands in the order in which
they arrive. Additionally, notice that the definition of the FCFS policy is that it
uses the minimum time control (i.e., constant bearing control) to move between
demands, thus the expression in part (ii) of Theorem 6.1 is a necessary condition
for all stabilizing policies as v → 1−.

6.3.2 Proof of Theorems 6.2 and 6.4 (TMHP-Based stability)

We first present the proof of Theorem 6.2. We begin with the proof of part (i).
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Proof of part (i) of Theorem 6.2. If there are any demands “above” the vehicle
initially, at the end of the first iteration of the TMHP-Based policy, all out-
standing demands have their y-coordinates less than or equal to that of the
vehicle, and hence would be located “below” the vehicle as shown in the first of
Figure 6.3. Hence at the end of every iteration of the TMHP-Based policy, all
outstanding demands would be located “below” the vehicle.

Let the vehicle be located at p(ti) = (X(ti), Y (ti)) and qlast denote the
demand with the least y-coordinate at time instant ti. Let |Q| denote the number
of demands in the set Q. If there exists a non-empty set of unserviced demands
Q below the vehicle at time ti, then letting Q̃ = Q \ qlast we have

Y (ti+1) = vTMHPv(p(ti), Q̃(ti),qlast(ti)) + ylast(ti)),

w.p. P(|Q| = k), for k ∈ {1, 2, . . . },

where ylast(ti) is the y-coordinate of qlast(ti) and TMHPv(p(ti), Q̃(ti),qlast(ti)) is
the time taken for the vehicle to travel the TMHP that begins at p(ti), serves all
demands in Q other than qlast and ends at the demand qlast (see Section 2.2.3).

We seek an upper bound for the length TMHPv of the TMHP for which we
use the Convert-to-EMHP method (see Section 2.2.3). Invoking Lemma 2.4,
and writing Yi := Y (ti) for convenience, we have

TMHPv(p(ti), Q̃(ti),qlast(ti))

= EMHP(cnvrtv(p(ti)), cnvrtv(Q̃(ti), cnvrtv(qlast(ti))) +
v(ylast(ti)− Yi)

1− v2

≤
√√√√2W (Yi − ylast(ti))k

(1− v2)3/2
+
Yi − ylast(ti)

1 + v
+

5W

2
√

1− v2

≤
√

2WYik

(1− v2)3/2
+

Yi
1 + v

+
5W

2
√

1− v2
,

where the first inequality is obtained using Lemma 2.1, and the second inequality
follows since ylast(ti) ≥ 0.

If Q is empty at time ti, then the vehicle moves towards the optimal location
(X∗, Y ∗). When a new demand arrives, the vehicle moves towards it. If Yi ≤ W ,
then in the worst-case, the vehicle is very close to an endpoint of the generator
and the next demand arrives at the other endpoint. In this case, the vehicle moves
with a vertical velocity component equal to v and horizontal component equal
to
√

1− v2. So in the worst-case, the vehicle is at a height vW/
√

1− v2 at the
beginning of the next iteration. The other possibility is if Yi > W . In this case, to
get an upper bound on the height of the vehicle at the next iteration, we consider
the vehicle motion when it first moves horizontally so that the x-coordinate
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equals that of the demand, and then moves vertically down to meet the demand.
This gives an upper bound on the height of the vehicle at the next iteration as
v(Yi−vW )/(1 +v). Thus, if Q is empty, then the sum of these two upper bounds
is trivially an upper bound on the height of the vehicle at the beginning of the
next iteration. Thus, if Q is empty, then

Yi+1 ≤
vW√
1− v2

+
v

1 + v
(Yi − vW ) ≤ vW√

1− v2
+

vYi
1 + v

.

Conditioned on Yi, we have

E
[
Yi+1

∣∣∣∣Yi
]
≤
(

vW√
1− v2

+
vYi

1 + v

)
P(|Q| = 0|Yi) + v

∞∑

k=1

(√
2WYik

(1− v2)3/2

+
Yi

1 + v
+

5W

2
√

1− v2

)
P(|Q| = k|Yi).

Collecting the terms with vYi/(1 + v) together, we obtain

E
[
Yi+1

∣∣∣∣Yi
]
≤ vW√

1− v2
P(|Q| = 0|Yi) +

vYi
1 + v

∞∑

k=0

P(|Q| = k|Yi)

+
∞∑

k=1

(√√√√ 2v2WYik

(1− v2)3/2
+

5vW

2
√

1− v2

)
P(|Q| = k|Yi)

≤ vW√
1− v2

+
vYi

1 + v
+

√√√√ 2v2W

(1− v2)3/2
E
[√
|Q|Yi

∣∣∣∣Yi
]

+
5vW

2
√

1− v2

∞∑

k=1

P(|Q| = k|Yi)

≤ vYi
1 + v

+

√√√√ 2v2W

(1− v2)3/2

√
YiE

[√
|Q|

∣∣∣∣Yi
]

+
7vW

2
√

1− v2
. (6.18)

Applying Jensen’s inequality to the conditional expectation in the second term
in the right hand side of equation (6.18), we have

E
[√
|Q|

∣∣∣∣Yi
]
≤
√

E
[
|Q|

∣∣∣∣Yi
]

=

√

λ
Yi
v
,

where the equality follows since the arrival process is Poisson with rate λ and for
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a time interval Yi/v. Substituting into equation (6.18), we obtain

E
[
Yi+1

∣∣∣∣Yi
]
≤
(

v

1 + v
+

√
2vλW

(1− v2)3/2

)
Yi +

7vW

2
√

1− v2
.

Using the law of iterated expectation, we have

E [Yi+1] = E [E [Yi+1|Yi]] ≤
(

v

1 + v
+

√
2vλW

(1− v2)3/2

)
E [Yi] +

7vW

2
√

1− v2
, (6.19)

which is a linear recurrence in E [Yi]. Thus, limi→+∞ E [Yi] is finite if

v

1 + v
+

√
2Wvλ

(1− v2)3/2
< 1 ⇐⇒ λ <

(1− v2)3/2

2Wv(1 + v)2
.

Thus, if λ satisfies the above condition, then expected number of demands in the
environment is finite and the TMHP-Based policy is stable.

Finally, from Lemma 6.7, the region of stability for the FCFS policy is
contained in the region of stability for the TMHP-Based policy. Thus, the
TMHP-Based policy is stable for all arrival rates satisfying the bound in
Lemma 6.13. This gives us the desired result.

Remark 6.19 (Upper bound on expected delay). Since equation (6.19) is a
linear recurrence in E [Yi], we can easily obtain an upper bound for limi→+∞ E [Yi].
Moreover, we may upper bound the expected delay for a demand by

7W

2
√

1− v2


 1

1/(1 + v)−
√

2Wvλ/(1− v2)3/2


 . •

Proof of part (ii) of Theorem 6.2. In this part, we make use of the following two
facts. First, as v → 0+, the length of the TMHP constrained to start at the
vehicle location and end at the lowest demand, is equal to the length of the
EMHP in the corresponding static instance under the map cnvrtv, as described in
Lemma 2.4. Second, consider a set Q of N points which are uniformly distributed
in a region with finite area. Then, in the limit as N → +∞, the length of a
constrained EMHP through Q tends to the length of the ETSP tour through Q.

More specifically, consider the ith iteration of the TMHP-Based policy,
and let Yi > 0 be the position of the service vehicle. In the limit as λ →
+∞, the number of outstanding demands in that iteration Ni → +∞, and in
addition, conditioned on Ni, the demands are uniformly distributed in the region
[0,W ]× [0, Yi] (see Remark 6.16). Now using the above two facts, we can apply
Theorem 2.3 to obtain an expression for the length of the TMHP constrained to
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start at the vehicle location and ending at the lowest demand. As λ→ +∞, the
position of the vehicle at the end of the ith iteration is given by

Yi+1 = vβTSP

√
NiA = vβTSP

√
NiYiW,

where A := YiW is the area of the region below the vehicle at the ith iteration.
Thus, conditioned on Yi being bounded away from 0, we have

E [Yi+1|Yi] = vβTSP

√
YiE

[√
Wni

]
≤ vβTSP

√
WYiE [Ni],

where we have applied Jensen’s inequality. Using Lemma 6.15, E [Ni] = WYiλ/(vW )
and thus

E [Yi+1|Yi] ≤ vβTSP

√

W 2Y 2
i

λ

vW
= βTSP

√
λvWYi.

Thus, the sufficient condition for stability of the TMHP-Based policy as λ→
+∞ (and thus v → 0+) is

λ <
1

β2
TSPvW

≈ 1.9726

vW
.

Finally, we present the proof of Theorem 6.4.

Proof of Theorem 6.4. The proof of part (i) of Theorem 6.4 follows from Lemma 6.9
and Lemma 6.7. The proof of part (ii) follows from part (ii) of Theorem 6.1
and Lemma 6.7 along with the fact that the TMHP-Based policy spends the
minimum amount of time to travel between demands.

6.4 Simulations

In this section, we present a numerical study to determine stability of the
TMHP-Based policy. We numerically determine the region of stability of the
TMHP-Based policy, and compare it with the theoretical results from the
previous sections.

The linkernsolver was used to generate approximations to the TMHP at every
iteration of the policy, by generating an approximate solution to the corresponding
constrained EMHP problem. The stability properties of the TMHP-Based
policy were determined according to the following procedure.

(i) For a collection of instructive pairs of the demand speed v and λ in the
region of interest, we set the generator width W = 1, we set the number
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of outstanding demands N0 = 1000 and we determined the corresponding
initial height of the environment of interest by h0 = vN0/λ.

(ii) We repeated 10 times the following procedure. The vehicle is placed at the
height h0 and at a uniformly random location in the horizontal direction.
A number N0 of outstanding demands are uniformly randomly placed in
the environment (see Lemma 6.15). The vehicle uses the TMHP-Based
policy to serve all outstanding demands and we store the height h1 of the
vehicle at the end of the single iteration of the policy. Finally, we compute
the average height h̄1 of the 10 iterations.

(iii) If h̄1 ≤ h0, then the policy is deemed to be stable for the chosen value of
(v, λ). Otherwise the policy is deemed to be unstable.

The results of this numerical experiment are presented in Figure 6.8. For the
purpose of comparison, we overlay the plots for the theoretical curves, which
were presented in Figure 6.1. We observe that the numerically obtained stability
boundary for the TMHP-Based policy falls between the necessary and the
sufficient conditions which were established in parts (i) of Theorems 6.1 and
6.2 respectively. In addition, notice that the sufficient condition in the low
speed regime, characterized in part (ii) of Theorem 6.2, serves as a very good
approximation to the stability boundary, for nearly the entire range of demand
speeds.

6.5 Summary

We introduced a dynamic vehicle routing problem with translating demands.
We determined a necessary condition on the arrival rate of the demands for
the existence of a stabilizing policy. In the limit when the demands move as
fast as the vehicle, we showed that every stabilizing policy must service the
demands in the FCFS order. We proposed a novel receding horizon policy that
services the moving demands as per a translational minimum Hamiltonian path.
In the asymptotic regime when the demands move as fast as the vehicle, we
showed that the TMHP-Based policy minimizes the expected time to service a
demand. We derived a sufficient condition for stability of the TMHP-Based
policy, and showed that in the asymptotic regime of low demand speed, the
sufficient condition is within a constant factor of the necessary condition for
stability. In a third asymptotic regime when arrival rate tends to zero for a fixed
demand speed, we showed that the TMHP-Based policy is optimal in terms
of minimizing the expected time to service a demand. Finally, we presented an
implementation of the TMHP-Based policy to numerically determine its region
of stability. We observe that the sufficient condition for the asymptotic regime
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Figure 6.8: Numerically determined region of stability for the TMHP-Based policy.
A lightly shaded (green-coloured) dot represents stability while a darkly shaded (blue–
coloured) dot represents instability. The uppermost (thick solid) curve is the necessary
condition for stability for any policy as derived in Theorem 6.1. The lowest (dashed)
curve is the sufficient condition for stability of the TMHP-Based policy as established
by Theorem 6.2. The broken curve between the two curves is the sufficient stability
condition of the TMHP-Based policy in the low speed regime as derived in part (ii)
of Theorem 6.2. The environment width is W = 1.
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of low demand speeds serves as a good approximation to the boundary of the
stability region for a significantly large interval of values of demand speed.
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Chapter Seven

Boundary Guarding for Translating Demands

In this chapter we study a variation of the translating demands problem of
Chapter 6, which can be described as follows (see Fig. 7.1): Demands arrive
according to a stochastic process on a line segment of length W . Upon arrival
the demands move with fixed speed v towards a deadline which is at a distance
L from the generator. A unit speed service vehicle seeks to capture the demands
before they reach the deadline (i.e., within L/v time units of being generated).
The performance metric is the fraction of demands that are captured before
reaching the deadline.

The contributions of this chapter are as follows. We introduce a dynamic
boundary (deadline) guarding problem. For analysis, we assume that the arrival
process is uniform along the line segment and temporally Poisson with rate λ. In
the case when the demands are faster than the service vehicle (i.e., v ≥ 1) we
introduce the novel Longest Path policy, which is based on computing longest
paths in a directed acyclic reachability graph. When L ≥ vW , we derive a lower
bound on the capture fraction as a function of the system parameters. We show
that the Longest Path policy is the optimal policy when L is much greater
than vW . In the case when the demands are slower than the service vehicle (i.e,
v < 1), we propose a policy based on the translational minimum Hamiltonian
path called the TMHP-Fraction policy. In the limit of low demand speed and
high arrival rate, the capture fraction of this policy is within a small constant
factor of the optimal. We present numerical simulations which verify our results,
and show that the Longest Path policy performs very near the optimal even
when L < vW .

The chapter is organized as follows. In Section 7.1 we formulate the problem.
In Section 7.2 we consider the case of v ≥ 1 and introduce the Longest Path
policy. In Section 7.3 we study v < 1 and introduce the TMHP-Fraction
policy. Finally, in Section 7.4 we present simulations results which show that the
Longest Path policy performs very near optimal over a large set of problem
parameters.

The work in this chapter was primarily performed by Stephen L. Smith, but
in collaboration with Shaunak D. Bopardikar.
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L

W

Service vehicle

Deadline

Generator

v

Figure 7.1: The problem setup. Demands are shown as black disks approaching the
deadline at speed v. The service vehicle is a square.

7.1 Problem Formulation

Consider an environment E := [0,W ] × [0, L] ⊂ R2 as shown in Figure 7.1.
The line segment [0,W ] × {0} ⊂ E is termed the generator, and the segment
[0,W ] × {L} ⊂ E is termed the deadline. The environment contains a single
vehicle with position p(t) = [X(t), Y (t)]T ∈ E , modeled as a first-order integrator
with unit speed. Demands (or targets) arrive in the environment according to a
temporal Poisson process with rate λ > 0. Upon arrival, each demand assumes a
uniformly distributed location on the generator, and then moves with constant
speed v > 0 in the positive y-direction towards the deadline. If the vehicle
intercepts a demand before the demand reaches the deadline, then the demand is
captured. On the other hand, if the demand reaches the deadline before being
intercepted by the vehicle, then the demand escapes. Thus, to capture a demand,
it must be intercepted within L/v time units of being generated.

We let Q(t) ⊂ E denote the set of all outstanding demand locations at time t.
If the ith demand to arrive is captured, then it is removed from Q and placed
in the set Qcapt with cardinality Ncapt. If the ith demand escapes, then it is
removed from Q and placed in Qesc with cardinality Nesc.

Causal Policy In this chapter, and in previous chapters, we are interested
in causal policies. These are policies defined as a map P : E × FIN(E) → R2,
where FIN(E) is the set of finite subsets of E , which assigns a commanded
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velocity to the service vehicle as a function of the current state of the system:
ṗ(t) = P (p(t),Q(t)).

Non-causal Policy In a non-causal feedback control policy the commanded
velocity of the service vehicle is a function of the current and future state of the
system. Such policies are not physically realizable, but they will prove useful in
the upcoming analysis.

Formally, let the generation of demands commence at time t = 0, and consider
the sequence of demands (q1,q2, . . .) arriving at increasing times (t1, t2, . . .), with
x-coordinates (x1, x2, . . .). We can also model the arrival process by assuming
that at time t = 0, all demands are located in [0,W ] × (−∞, 0], move in the
y-direction at speed v for all t > 0, and are revealed to the service vehicle when
they cross the generator. Thus, at time t = 0, the position of the ith demand is
(xi, v(t− ti)). We can define a set containing the position of all demands in the
region [0,W ] × (−∞, 0] at time t as Qunarrived(t). Then, a non-causal policy is
one for which ṗ(t) = P (p(t),Q(t) ∪Qunarrived(t)).

Problem Statement The goal in this chapter is to find causal policies P that
maximize the fraction of demands that are captured Fcap(P ), termed the capture
fraction, where

Fcap(P ) := lim
t→+∞

E
[

Ncapt(t)
Ncapt(t)+Nesc(t)

]
.

7.2 Demand Speed Greater Than Vehicle Speed

Here we develop a policy for the case when the demand speed v ≥ 1. In this
policy, the service vehicle remains on the deadline and services demands as per
the longest path in a directed acyclic reachability graph. In this section we begin
by introducing the reachability graph, and then proceed to state and analyze the
Longest Path policy.

7.2.1 Reachable Demands

Consider a demand generated at time t1 ≥ 0 at position (x, 0). The demand moves
in the positive y-direction at speed v ≥ 1, and thus (x(t), y(t)) = (x, v(t− t1))
for each t ∈ [t1, tf ], where tf is either the time of escape (i.e., tf = L/v + t1), or
it is the time of capture. Now, given the service vehicle location (X(t), Y (t)), a
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demand with position (x, y(t)) is reachable if and only if

v|X(t)− x| ≤ Y (t)− y(t). (7.1)

That is, the service vehicle must be at a height of at least v|X(t)− x| above the
demand in order to capture it.

Definition 7.1 (Reachable set). The reachable set from a position (X, Y ) ∈ E is

R(X, Y ) := {(x, y) ∈ E : v|X − x| ≤ |Y − y|}.

If the service vehicle is located at (X, Y ), then a demand can be captured if and
only if it lies in the set R(X, Y ).

An example of the reachable set is shown in Figure 7.2. Next, given a demand
in the reachable set, the following motion gives a method of capture.

Definition 7.2 (Intercept motion). Consider a vehicle position ((X(t̄), Y (t̄)) and
a demand position (x, y(t̄)) ∈ R(X(t̄), Y (t̄)) at time t̄ ≥ 0. In intercept motion,
the service vehicle captures the demand by first moving horizontally at unit speed
to the position (xi, Y (t̄)), and then waiting at the location for the demands arrival.

Lemma 7.3 (Optimality of intercept motion). Consider v ≥ 1, and let the
service vehicle be initially positioned on the deadline. Then, there is an optimal
policy in which the service vehicle uses only intercept motion.

Proof. Let the service vehicle be positioned at (X,L), and consider a demand
at (x, y) ∈ R(X,L). From equation (7.1), we have v|X − x| ≤ L − y. If
v|X − x| = L − y, then deadline motion is the only way in which the demand
can be captured. Thus, assume that v|X − x| < L− y, and consider two cases;
Case 1 in which intercept motion is used, and Case 2 in which the demand is
captured at a location (x, Y ), where Y < L.

Notice that the position of each outstanding demand relative to the service
vehicle position at capture is the same in Case 1 as in Case 2. Thus, the reachable
set in Case 2 is a strict subset of reachable set in Case 1 and the vehicle gains no
advantage by moving off of the deadline.

Next, consider the set of demands in R(X(t̄), Y (t̄)), and suppose the vehicle
chooses to capture demand i, with position qi(t̄) = (xi, yi(t̄)) ∈ R(X(t̄), Y (t̄)).
Upon capture at time tf , the service vehicle can recompute the reachable set,
and select a demand that lies within. Since all demands translate together, every
demand that was reachable from qi(t̄), is reachable from qi(tf ). Thus, the service
vehicle can “look ahead” and compute the demands that will be reachable from
each captured demand position. This idea motivates the concept of a reachability
graph.
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Reachable demands

Figure 7.2: The construction of the reachability graph. The top-left figure shows the
set of reachable points from a vehicle positioned on the deadline. The top-right and
bottom-left figures show the reachable set from demand locations. The bottom-right
figure shows the reachability graph.
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Definition 7.4 (Reachability graph). For v ≥ 1, the reachability graph of a set of
points {q1, . . . ,qn} ∈ E , is a directed acyclic graph with vertex set V := {1, . . . , n},
and edge set E, where for i, j ∈ V , the edge (i, j) is in E if and only if qj ∈ R(qi)
and j 6= i.

Given a set Q of N outstanding demands, and a vehicle position (X, Y ),
we can compute the corresponding reachability graph (see Fig. 7.2) in O(N2)
computation time. In addition, by Section 2.2.4 we can compute the longest path
in a reachability graph in O(N2) computation time.

7.2.2 A Non-causal Policy and Upper Bound

To derive an upper bound for v ≥ 1, we begin by considering a non-causal policy,
shown in Algorithm 7.1.

Algorithm 7.1: Non-causal Longest Path (NCLP) policy

Assumes: Vehicle is located on deadline and v ≥ 1.
Compute the reachability graph of the vehicle position and all demands in1

Q(0) ∪Qunarrived(0).
Compute a longest path in this graph, starting at the service vehicle2

location.
Capture demands in the order they appear on the path, intercepting each3

demand on the deadline.

Figure 7.3 shows an example of a path generated by the Non-causal
Longest Path policy. Note that the service vehicle will intercept each de-
mand on the deadline, and thus the path depicts which demands will be captured,
and in what order.

Lemma 7.5 (Optimal non-causal policy). If v ≥ 1, then the Non-causal
Longest Path policy is an optimal non-causal policy. Moreover, if v ≥ 1, then
for every causal policy P ,

Fcap(P ) ≤ Fcap(NCLP).

Proof. The reachability graph Q(0) ∪Qunarrived(0) contains every possible path
that the service vehicle can follow. When v ≥ 1 the graph is a directed acyclic
graph and thus the longest path (i.e., the path which visits the most vertices
in the graph) is well defined. The vehicle uses intercept motion, and thus by
Lemma 7.3 the NCLP policy is an optimal non-causal policy, and its capture
fraction upper bounds every causal policy.
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Deadline

Generator

non-causal path

causal path

Figure 7.3: A snapshot in the evolution of the Non-causal Longest Path. The
vehicle has planned the solid red path through all demands, including those that have
not yet arrived. In comparison, a dashed causal longest path is shown, which only
considers demands that have arrived.
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7.2.3 The Longest Path Policy

We now introduce the Longest Path policy, shown in Algorithm 7.2.

Algorithm 7.2: Longest Path (LP) policy

Assumes: Vehicle is located on deadline and v ≥ 1
Compute the reachability graph of the vehicle position and all demands in1

Q(0).
Compute a longest path in this graph, starting at the service vehicle2

location.
Capture demands in the order they appear on the path, intercepting each3

demand on the deadline.
Once a fraction η ∈ ]0, 1] of the demands on the path have been serviced,4

recompute the reachability graph of all outstanding demands and return to
step 2.

In the LP policy, the fraction η is a design parameter. The lower η is chosen,
the better the performance of the policy, but this comes at the expense of
increased computation. In the following theorem, we relate the Longest Path
policy to its non-causal relative.

Theorem 7.6 (Optimality of Longest Path policy). If v ≥ 1, then

Fcap(LP) ≥
(

1− vW

L

)
Fcap(NCLP),

and thus the LP policy is optimal as vW/L→ +∞.

Proof. Suppose that the generation of demands begins at t = 0 and let us consider
two scenarios; (a) the vehicle uses the Longest Path policy, and (b) the vehicle
uses the Non-causal Longest Path policy. Then, at any instant in time
t1 > 0 we can compare the number of demands captured in scenario (a) to the
number captured in scenario (b).

Let us consider a time instant t1 where in scenario (a), the vehicle is re-
computing the longest path through all outstanding demands Q(t1). Let us
denote by pa(t1) and pb(t1), the vehicle position in scenario (a) and scenario
(b), respectively, at time t1. In scenario (b), let the path that the vehicle will
take through Q(t1) be given by (qb1 ,qb2 , . . . ,qb`), where qbi ∈ Q(t1) for each
i ∈ {1, . . . , `}. The demand qb1 is reachable from pb(t1), but it may not be
reachable from pa(t1). However, a lower bound on the length of the longest path
in scenario (a) is: (qba+1 ,qba+2 , . . . ,qb`), where qba+1 , with a ∈ {0, . . . , `− 1}, is
the highest demand (i.e., the demand with the largest y-coordinate) that can be
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captured from pa(t1). Thus, the length of the longest path in scenario (a), La, is
at least

La ≥ `− a, (7.2)

where ` is the length of the path in scenario (b).

Now, since the deadline has width W , the vehicle in scenario (a) can capture
any demand (x, y) with y ≤ L−vW . Thus, the demands qb1 ,qb2 , . . . ,qb` must all
have y-coordinates in ]L− vW,L]. Let the total number of outstanding demands
at time t1 be Ntot. Then, conditioned on Ntot, by Lemma 6.15, the expected
number of outstanding demands contained in [0,W ]× ]L− vW,L] is NtotvW/L.
Hence,

E [a|Ntot] = Ntot
vW

L
Fcap(NCLP). (7.3)

Similarly, for the length of the path through Q(t1) in scenario (b), we have

E [`|Ntot] = NtotFcap(NCLP). (7.4)

Combining equations (7.3) and (7.4) with equation (7.2) we obtain

E [La|Ntot] ≥ Ntot

(
1− vW

L

)
Fcap(NCLP),

E
[
La
Ntot
|Ntot

]
≥
(

1− vW

L

)
Fcap(NCLP).

But La/Ntot is the fraction of outstanding demands in Q(t1) that will be captured
in scenario (a), and it does not depend on the value of Ntot. By the law of total
expectation

E
[
La
Ntot

]
= E

[
E
[
La
Ntot
|Ntot

]]
≥
(

1− vW

L

)
Fcap(NCLP).

Each time the longest path is recomputed, the path in scenario (b) will capture
at least this fraction of demands. Thus, we have Fcap(LP) ≥ E [La/Ntot] and
have proved the result.

Remark 7.7 (Conservativeness of bound). The bound in Theorem 7.6 is con-
servative. This is primarily due to bounding the expected distance between the
causal and non-causal paths by W . The distance between two independently and
uniformly distributed points in [0,W ], is W/3. The distance is even less if the
points are positively correlated (as is likely the case for the distance between
paths). Thus, it seems that it may be possible to increase the bound to

Fcap(LP) ≥
(

1− vd

L

)
Fcap(NCLP),
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where d < W/3. •

The previous theorem establishes the performance of the Longest Path
policy relative to a non-causal policy. However, the LP policy is difficult analyze
directly. This is due to the fact that the position of the vehicle at time t depends
on the positions of all outstanding demands in Q(t). Thus, our approach is to
lower bound the capture fraction of the LP policy with a greedy policy, shown in
Algorithm 7.3.

Algorithm 7.3: Greedy Path (GP) policy

Assumes: Vehicle is located at (X,L)
Compute the reachability set R(X,L).1

Capture the demand in R(X,L) with the highest y-coordinate using2

intercept motion.
Repeat.3

Given a set of outstanding demands Q(t) at time t, the Greedy Path policy
generates a suboptimal longest path through Q(t). In addition, the vehicle
position is independent of all outstanding demands, except the demand currently
being captured. Thus, the capture fraction of the Greedy Path policy provides
a lower bound for the capture fraction of the Longest Path policy. We are
now able to establish the following result.

Theorem 7.8 (Lower Bound for Longest Path policy). If L ≥ vW , then for
the Longest Path policy

Fcap(LP) ≥ Fcap(GP) ≥ 1√
πω erf(

√
ω) + e−ω

,

where ω = λW/2 and erf : R→ [−1, 1] is the error function.

Proof. We begin by looking at the expression for the capture fraction. Notice
that if Ncapt(t) > 0 for some t > 0, then

lim
t→+∞

E
[

Ncapt(t)
Ncapt(t)+Nesc(t)

]
= lim

t→+∞
E
[

1

1+
Nesc(t)
Ncapt(t)

]

≥
(

1 + lim
t→+∞

E
[
Nesc(t)
Ncapt(t)

])−1

,

(7.5)

where the last step comes from an application of Jensen’s inequality. Thus, we
can determine a lower bound on the capture fraction by studying the number of
demands that escape per captured demand.
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Deadline
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Ryd

yd escyd

W

L

Figure 7.4: The setup for the proof of Theorem 7.8. The service vehicle is located at
(0, L). All demands in the region escyd escape while capturing the demand with the
highest y-coordinate.

Let us study the time instant t at which the service vehicle captures its
ith demand, and determine an upper bound on the number of demands that
escape before the service vehicle captures its (i+ 1)th demand. Since we seek a
lower bound on the capture fraction of the LP policy, we may consider the path
generated by the Greedy Path policy. In addition, we consider the worst-case
service vehicle position; namely, the position (0, L) (or equivalently (W,L)).

From the position (0, L), the reachable set is

R(0, L) = {(x, y) ∈ E : vx ≤ L}.

Let Ry denote the reachable set intersected with [0,W ] × [L − y, L], where
y ∈ [0, L], and let |Ry| denote its area. Then,

|Ry| =




y2

2v
, if y ≤ vW,

yW − vW 2

2
, if y > vW.

An illustration of the set Ry is shown in Figure 7.4. Let yd be the y-distance to
the reachable demand with the highest y-coordinate. That is,

yd = min
(x,y)∈Q(t)∩R(0,L)

{L− y},

where Q(t) is the set of outstanding demands at time t. By Lemma 6.15, the
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probability that a subset B ⊂ E with area |B| contains zero demands is given by

P[|B ∩ Q(t)| = 0] = e−λ|B|/(vW ),

where |B ∩ Q(t)| denotes the cardinality of the finite set B ∩ Q(t). Thus,

P[yd > y] = P[|Ry ∩Q(t)| = 0] = e−λ|Ry |/(vW ).

The probability density function of yd for yd ≤ vW is

f(y) =
d

dy
(1− P[yd > y]) =

d

dy
e−λy

2/(2v2W )

=
λ

v2W
ye−λy

2/(2v2W ).

Now, given yd, all demands residing in the region escyd := ([0,W ] × [L −
yd, L]) \Ryd will escape (see Fig. 7.4). The area of escyd is

|escyd| =



ydW − y2d

2v
, if yd ≤ vW,

vW 2

2
, if yd ≥ vW.

From Lemma 6.15 and Remark 6.16 in Chapter 6, the expected number of
outstanding demands in an unserviced region of area A is λA/(vW ). Thus, given
that the vehicle is located at (0, L), the expected number of demands that escape
while the service vehicle is capturing its (i+ 1)th demand is given by

E [Nesc,i] =
λ

vW
E [|escyd |]

=
λ

vW

[∫ vW

0

(
yW − y2

2v

)
f(y)dy +

vW 2

2
P[yd > vW ]

]
.

Applying the probability density function and cumulative distribution function
of yd we obtain

E [Nesc,i] =
λ2

v3W 2

∫ vW

0

(
yW − y2

2v

)
ye−λy

2/(2v2W )dy +
λW

2
e−λW/2. (7.6)

To evaluate the integral, consider the change of coordinates z := y/vW , and
define ω := λW/2. After simplifying, the integral becomes

4ω2
∫ 1

0

(
z2 − z3

2

)
e−ωz

2

dz.
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Integrating by parts we obtain

√
πω erf(

√
ω) + ωe−ω + e−ω − 1, (7.7)

where erf : R→ [−1, 1] is the error function:

erf(x) =
2

π

∫ x

0
e−t

2

dt.

Substituting equation (7.7) into equation (7.6) we obtain

E [Nesc,i] =
√
πω erf(

√
ω) + e−ω − 1.

Since E [Nesc,i] is computed for the worst-case vehicle position (0, L), and since
this expression holds at every capture, we have that

lim
t→+∞

E
[
Nesc(t)
Ncapt(t)

]
≤ √πω erf(

√
ω) + e−ω − 1,

and thus by equation (7.5) we obtain the desired result.

7.3 Demand speed less than vehicle speed

In this section we study the case when the demand speed v < 1. For this case,
an upper bound on the capture fraction has been derived in in Remark 6.18. We
introduce a policy which is a variant of the TMHP-based policy in Chapter 6,
and lower bound its capture fraction in the limit of low demand speed and high
demand arrival rate.

7.3.1 Capture Fraction Upper Bound

The following theorem upper bounds the capture fraction of every policy for the
case of v < 1, and follows from Remark 6.18 in Chapter 6.

Theorem 7.9 (Capture fraction upper bound). If v < 1, then for every causal
policy P

Fcap(P ) ≤ min

{
1,

2√
vλW

}
.

Notice that for low demands speed, i.e., v � 1, it may be possible to achieve
a capture fraction of one, even for high arrival rates.
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Figure 7.5: The TMHP-Fraction policy. The left-hand figure shows a TMHP
through all outstanding demands. The right-figure shows the instant when the vehicle
has followed the path for L/(2v) time units and recomputes its path, allowing some
demands to escape.

7.3.2 The TMHP-fraction Policy

In Section 2.2.3 we reviewed the translational minimum Hamiltonian Path
(TMHP) through a set of demands. The TMHP-Fraction policy, shown
in Algorithm 7.4, utilizes this path to service demands.

Algorithm 7.4: TMHP-Fraction (TF) policy

Assumes: Vehicle is located on the line y = L/2.
Compute a translational minimum Hamiltonian path through all1

outstanding demands in [0,W ]× [0, L/2], starting at the service vehicle
position, and terminating at the demand with the lowest y-coordinate.
if time to travel entire path is less than L/(2v) then2

Service all outstanding demands by following the computed path.3

else4

Service outstanding demands along the computed path for L/(2v) time5

units.
Repeat.6

Figure 7.5 shows an example of the TMHP-Fraction policy. In contrast
with the LP policy, where the vehicle remains on the deadline, in the TMHP-
Fraction policy the vehicle follows the TMHP using minimum time motion
between demands as described in Section 2.2.3. Notice that none of the demands
in the region [0,W ]× [0, L/2] at time t will have escaped before time t+ L/(2v).
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Thus, the vehicle is guaranteed that for the first L/(2v) time units, all demands
on the TMHP path are still in the environment. For the TMHP-Fraction
policy we have the following result.

Theorem 7.10 (TMHP-Fraction policy lower bound). In the limit as v → 0+

and λ→ +∞, the capture fraction of the TMHP-Fraction policy satisfies

Fcap(TF) ≥ min

{
1,

1

βTSP

√
vλW

}
.

Proof. Consider the beginning of an iteration of the policy, and assume that
the duration of the previous iteration was L/(2v). In this case, the vehicle has
y-coordinate Y ∈ [L/2, L], and by Lemma 6.15, the region R := [0,W ]× [0, L/2]
contains a number of demands N that is Poisson distributed with parameter
λL/(2v). Conditioned on N , the demands are independently and uniformly
distributed in R.

Now, we make use of the following three facts. First, as v → 0+, the length
of the TMHP constrained to start at the vehicle location and end at the lowest
demand, is equal to the length of the EMHP in the corresponding static instance,
as described in Lemma 2.4. Second, from Section 2.2.2, for uniformly distributed
points, the asymptotic length of a constrained EMHP is equal to the asymptotic
length of the ETSP tour. Third, as v → 0+, and λ → +∞, we have that N
tends to +∞ with probability one. Using the above facts we obtain that the
length of the TMHP starting at the vehicle position, passing through all demands
in R, and terminating at the demand with the lowest y-coordinate, has length

βTSP

√
NWL/2 in the limiting regime as v → 0+, and λ→ +∞.

The vehicle will follow the TMHP for at most L/(2v) time units, and thus
will service ξN demands, where

ξ = min

{
1,

√
L

βTSPv
√

2NW

}
.

Now, the random variable N has expected value E [N ] = λL/(2v) and variance
σ2
N = λL/(2v). By the Chebyshev inequality, P[|N − E [N ]| ≥ a] ≤ σ2

N/a
2, and

thus letting a =
√
vE [N ], we have

P[N ≥ (1 +
√
v)E [N ]] ≤ 1

vE [N ]
=

2

λL
.

Thus, we have

ξ ≥ min



1,

1

βTSP

√
(1 +

√
v)vλW



 .
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with probability at least 1− 2/(λL). In the limit as λ→ +∞, with probability 1,

ξ ≥ min

{
1,

1

βTSP

√
vλW

}
. (7.8)

Therefore, if the previous iteration had duration at least L/(2v), then the total
fraction of demands captured in the current iteration is given by equation (7.8).

The other case is that the previous iteration had duration T < L/(2v). In
this case, all outstanding demands in the region R := [0,W ]× [0, L/2] lie in a
subset [0,W ]× [0, vT ], and the subset contains a number of demands N that is
Poisson distributed with parameter λT ≤ λL/(2v). Thus, in this case there are
fewer outstanding demands, and the bound on ξ still holds. Thus, Fcap(TF) ≥ ξ,
and we obtain the desired result.

Remark 7.11 (Bound comparison). In the limit as v → 0+, and λ→ +∞, the
capture fraction of the TMHP-Fraction policy is within a factor of 2βTSP ≈
1.42 of the optimal. •

7.4 Simulations

We now present two sets of results from numerical experiments. The first set
compares the Longest Path policy with η = 1 to the Non-causal Longest
Path policy and to the theoretical lower bound in Theorem 7.8. The second set
compares the TMHP-Fraction policy to the policy independent upper bound
in Theorem 7.9 and the lower bound in Theorem 7.10.

To simulate the LP and the NCLP policies, we perform 10 runs of the policy,
where each run consists of 5000 demands. A comparison of the capture fractions
for the two policies is presented in Figure 7.6. When L > vW , the capture
fraction of the LP policy is nearly identical to that of the NCLP policy. Even
in Figure 7.6(a), where L < vW , the capture fraction of the LP policy is within
2% of the NCLP policy, and thus the optimal. This suggests that the Longest
Path policy is essentially optimal over a large range of parameter values.

To simulate the TMHP-Fraction policy, the linkern solver is used to
generate approximations to the optimal TMHP (see Chapter 2 for a review on
generating approximate solutions to the TMHP). For each value of arrival rate, we
determine the capture fraction by taking the mean over 10 runs of the policy. A
comparison of the simulation results with the theoretical results from Section 7.3
are presented in Figure 7.7. For v = 0.01 in Fig. 7.7(a), the experimental results
are in near exact agreement with the theoretical lower bound in Theorem 7.9. For
v = 0.05 in Fig. 7.7(b), the experimental results are within 5% of the theoretical
lower bound. However, notice that the experimental capture fraction is smaller

145



Chapter 7. Boundary Guarding for Translating Demands

0 0.02 0.04 0.06 0.08 0.10.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Arrival rate

Ca
pt

ur
e 

fra
ct

io
n

 

 

LP policy experimental
Noncausal LP experimental
Lower bound

(a) v = 2 and L > vW .
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(b) v = 5 and L < vW .

Figure 7.6: Simulation results for LP policy (solid red line with error bars showing ±
one standard deviation) and the NCLP policy (dashed black line) for an environment
of width W = 100 and length L = 500. In (a), L > vW , and the lower bound in
Theorem 7.8 is shown in solid green.
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(a) Demand speed v = 0.01.
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(b) Demand speed v = 0.05.

Figure 7.7: Simulation results for TMHP-Fraction policy. The solid black curve
shows the upper bound in Theorem 7.9 and the dashed line shows the lower bound in
Theorem 7.10. Numerical results are shown with error bars.
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than the theoretical lower bound. This is due to several factors. First, we have
not reached the limit as v → 0+ and λ → +∞ where the asymptotic value of
βTSP ≈ 0.712 holds. Second, we are using an approximate solution to the optimal
TMHP, generated via the linkern solver.

7.5 Summary

In this chapter we introduced a dynamic vehicle routing problem in which a
vehicle must defend a deadline from approaching demands. We presented novel
policies in the case when the demand speed is greater than the vehicle speed, and
in the case when the demand speed is less than the vehicle speed. In the former
case we introduced the Longest Path policy which is based on computing
longest paths in the directed acyclic reachability graph, and in the latter case
we introduced the TMHP-Fraction policy. For each policy, we analyzed the
fraction of demands that are captured. It appears that for the Longest Path
policy we may be able to extend our results to the case of L < vW , and tighten
our existing bounds to reflect the near optimal performance shown in simulation.
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Conclusions

There are many potential applications for large groups of autonomous vehicles,
capable of performing complex tasks in unknown an dynamic environments.
Examples include environmental monitoring, surveillance, reconnaissance, search
and rescue mission, infrastructure monitoring and security, and assisted living.
This thesis has focused on two enabling technologies for such applications; dis-
tributed task allocation, and dynamic vehicle routing. In each chapter we have
considered a different problem within task allocation and vehicle routing. Our
technical approach to each problem has followed the same basic plan. First,
for each problem we have identified underlying problem structure. This
typically consists of intrinsic regimes in the space of problem parameters. Second,
by leveraging the problem structure, we have determined fundamental limits
on the achievable performance of any algorithm for solving the problem of
interest. Third and finally, by utilizing the fundamental limits and problem
structure, we have designed provably efficient algorithms. Generally, we have
designed algorithms that are guaranteed to perform within a constant factor of
the optimal algorithm.

8.1 Summary

In Chapter 3 we considered a task allocation problem called the target assignment
problem. We considered two scenarios: (1) each vehicle is given a list containing
all target positions (the positions may be given as GPS coordinates); or (2) each
vehicle has no initial target information, but has a finite-range target sensor
to acquire target positions. For each scenario we studied the scalability of the
completion time of target assignment as a function of the number of vehicles.
We developed algorithms for each scenario which exhibit worst-case performance
within a constant factor of the optimal. In addition, we studied the performance
of our target assignment algorithms for stochastic initial conditions.

In Chapters 4, 5, 6, and 7 we studied several problems in the area of dynamic
vehicle routing. In Chapter 4 we looked at dynamic vehicle routing problem
which consists of a heterogeneous group of vehicles, and service demands that
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require teams of vehicles for their completion. We developed three unbiased
algorithms, each of which has large parameter regimes for which its performance
is within a constant factor of the optimal.

In Chapter 5 we looked at a dynamic vehicle routing problem in which
vehicles are allowed to bias their service towards certain demands. In particular,
we considered a problem in which each demand is a member of one of m priority
classes, and the vehicle must minimize a convex combination of the expected
delay (i.e., quality of service) of each class. We determined a fundamental limit
on the performance of any algorithm, and developed an algorithm that performs
within a known constant factor of the optimal in both heavy load and light load
conditions.

In Chapter 6 we considered a dynamic vehicle routing problem in which
service demands are generated on a line segment, and move perpendicular to the
segment at a fixed speed. We determined fundamental limits on the stability
region of any policy, and developed a policy whose stability region is optimal or
near-optimal in several limiting regimes. Finally, in Chapter 7 we considered a
variation of the problem studied in Chapter 6, wherein the demands must be
serviced before they reach a deadline. The goal was to maximize the fraction of
demands that are serviced before they reach the deadline. We developed two
policies for this problem, each of which performs within a constant factor of the
optimal for large problem parameter regimes.

8.2 Future Directions

In this thesis we have looked at problems in task allocation and dynamic vehicle
routing. For several different problems we have determined bounds on the best
achievable performance. In addition, we have designed algorithms that perform
well when compared to the bounds. However, while this research has provided
answers to many questions in the areas of task allocation and vehicle routing, it
has raised many new questions. A few of these will be outlined here.

Realistic environments and vehicle dynamics: Throughout this thesis we
have modeled the vehicles as omnidirectional first-order integrators. In addition,
we have modeled the environments as convex, or in many cases square regions. It
would be very interesting to extend our work to the case of vehicles with motion
constraints, such as the Dubins vehicle or double integrator model. There has
recently been work by Savla et al. (2009), Savla, Frazzoli and Bullo (2008), and
Le Ny et al. (2009) which provide bounds on the length of TSP tours for vehicles
with motion constraints, and algorithms for computing approximate solutions.
To extend to more realistic environments it would be important to look at general
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non-convex regions with obstacles. To tackle these complex environments, one
would need to incorporate some ideas of robotic motion planning (see LaValle,
2006).

Moving demands: In Chapters 6 and 7, we looked at problems where demands
(or targets) moved in straight lines at constant speed. The arrival of demands
was Poisson in time, and uniform in space along a generating line segment. A
first extension would be to demands with a non-uniform spatial arrival density
and to multiple service vehicles. The next step would be to look at demands with
velocity vectors selected according to a distribution (i.e., demands have different
speeds and headings). Also, we could consider adversarial arrivals, motion, and
even cooperation between demands. These considerations would start to bring
in aspects of game theory (Başar and Olsder, 1999) and pursuit evasion games
(Isaacs, 1965). Another interesting aspect would be to introduce on-site service
times. For the case in which the on-site service times are independent and
identically distributed with a known expected value, and the vehicle is permitted
to move with the demand upon reaching it, the results of Chapter 6 appear to
directly extend. Finally, it appears that the Longest Path policy has promising
extensions to the cases where demands have different priority levels, arbitrary
motion, and where the vehicle has a finite capture radius.

Team forming and biased policies: In Chapter 4 we performed analysis and
developed algorithms for unbiased team forming. The term unbiased referred to
the constraint that policies must provide the same quality of service to every type
of demand. That is, a team vehicle was not allowed to give preferential treatment
to a certain class of demands. In Chapter 5 we considered the exact opposite,
and looked at a problem where a vehicle attempts to provide a high quality of
service to “high priority demands” will still providing service to “low priority
demands.” We captured the concept of high and low priority demands by asking
the service vehicles to minimize a convex combination of the delays of priority
classes. Thus, a natural question is “Can we use the priority policy developed
in Chapter 5 to develop biased policies for the dynamic team forming problem
of Chapter 4?” It appears that the priority policy provides some answers, but
there is still a significant amount of work to be done in order to provide provably
efficient biased team forming policies. Efficient algorithms will require advanced
scheduling technique for answering questions about when vehicles should meet,
how often, and where.

Other interesting extensions include relaxing other assumptions in the analysis
of team forming policies (see Section 4.4.1). And considering vehicles with different
speeds and dynamics.

150



Chapter 8. Conclusions

Exploration vs. exploitation In the problems we have considered we gener-
ally assume that the vehicles have full information on the demands (the one major
exception to this is the sensor-based target assignment problem in Chapter 3.
An interesting direction is to look at dynamic vehicle routing problems in which
vehicles have some (possibly local) information on demands, but must perform
searches to acquire new demand information. When considering a problem of
this form, it brings into play a classic trade-off of exploitation versus exploration
(see Sutton and Barto, 1998; Russell and Norvig, 2003): Should a vehicle exploit
its current knowledge of demand locations and provide service to them, or should
it explore in order to find new demand locations? To search for new demands,
vehicles might use techniques such as milling and lawn mowing (Arkin et al.,
2000), which provide efficient environment sweeping methods.

Cooperative load balancing In this thesis we have essentially looked at two
methods for task allocation. The first method was target assignment (Chapter 3),
where each vehicle was explicitly assigned to a single target. The second method
of task allocation, utilized in Chapters 4 and 5, involved environment partitioning.
In this second method the assignment was implicit in that each vehicle had a
single region of responsibility, and all demands (or tasks) which arrived in a
given region were the responsibility of the corresponding vehicle. This method of
allocation works well in heavy load conditions, where the rate of demand arrivals
is high, or in light load conditions, where the rate of demand arrivals is very low.
However, in the intermediate regime, the performance of partitioning is not fully
characterized.

Based on this discussion, an interesting direction for future research is to
look into new methods of task allocation, which possibly combine allocation-by-
partitioning with explicit allocations to improve performance.
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Formal Description the ETSP Assgmt

Algorithm

This appendix formally describes the ETSP Assgmt algorithm presented in
Chapter 3.

Algorithm A.1: Initialization of vehicle i in ETSP Assgmt.

Assumes: Vehicle i has the target array q[i] := q, stored in its memory.
Compute a TSP tour of q[i], tour(q[i]), and set q[i] := tour(q[i]).1

Compute the closest target in q[i], and set curr[i] equal to its index:2

curr[i] := arg minj∈I{‖q[i]
j − p[i]‖}.

Set next[i] := curr[i] + 1 (mod n).3

Set prev[i] := curr[i] − 1 (mod n).4

Set status[i] := 1n (i.e., an n-tuple containing n ones).5
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Algorithm A.2: comm-rd, executed at each communication round.

Assumes: Vehicle i has been initialized as in Algorithm A.1.
Compute dist[i] := ‖p[i] − q

[i]

curr[i]
‖.1

Broadcast msg[i] := (prev[i], curr[i], next[i], i, dist[i])2

Receive msg[k], from each k 6= i satisfying ‖p[i] − p[k]‖ ≤ rcomm.3

foreach msg[k] received do4

for s = prev[k] + 1 to next[k] − 1 (mod n) do5

if s 6= curr[i] then Set status[i](s) := 06

if prev[k] = next[k] = curr[k] 6= curr[i] then Set status[i](curr[k]) := 07

if curr[i] = curr[k] then8

if (dist[i] > dist[k]) OR (dist[i] = dist[k] AND i < k) then9

Set status[i](curr[i]) := 0.10

if next[i] 6= curr[i] then Set status[i](next[i]) := 0.11

if next[k] 6= curr[i] then Set status[i](next[k]) := 0.12

if status[i](j) = 0 for every target j then Exit ETSP Assgmt and stop13

motion.
while status[i](curr[i])=0 do curr[i] := curr[i] + 1 (mod n).14

Set next[i] := curr[i] + 1 (mod n).15

while status[i](next[i])=0 do next[i] := next[i] + 1 (mod n).16

while status[i](prev[i])=0 do prev[i] := prev[i] − 1 (mod n).17
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Formal Description of the Grid Assgmt

Algorithm

This appendix gives a formal description of the Grid Assgmt algorithms
presented in Chapter 3. As noted in Remark 3.17, we have simplified the
presentation of the Unassigned algorithm by assuming that every cell initially
contains at least one vehicle and one target. It is straightforward to relax this
assumption. If a cell has no then any vehicles initially in the cell move to the cell
below, and the empty cell is ignored for the rest of the algorithm. If there is a
cell that contains targets but no vehicles, then the first vehicles to enter the cell
run the Role Assgmt algorithm and one becomes the leader.
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Table B.1: Variables for the Grid Assgmt algorithm.
Vehicle role Variable Description Value

all

currcell[i] cell currently occupied
by vehicle i

a cell C(r, c)

leader[i] cell for which vehicle i is
leader

a cell C(r, c) or
null

curr[i] vehicle i’s assigned tar-
get

a target in Q or
null

unassigned

dircol[i] travel direction in col-
umn c

up or down

dirrow[i] travel direction when in
row 1

left or right

colstatus[i](c) records whether or not
there are free targets in
column c

full or notfull

prevcell[i] previous cell occupied by
vehicle i

a cell C(r, c)

C(r, c) leader

taravail[i](r, c) set of available targets in
C(r, c)

a subset of Q

∆[i](r, c) (# of targets) − (# of
vehicles) in C(r, c)

an integer

∆
[i]
blw(r, c) estimate of (# of tar-

gets) − (# of vehicles)
in C(r + 1, c) to C(b, c)

an integer or +∞

C(1, c) leader ∆
[i]
rght(1, c) estimate of (# of tar-

gets) − (# of vehicles)
in columns c+ 1 to b

an integer or +∞
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Algorithm B.1: Role Assgmt, executed at the start of the Grid Ass-
gmt algorithm to assign roles, and initialize vehicle i.

Assumes: Vehicle i is in C(r, c), knows E(n), and either (1) knows all

target positions, or (2) has rsense ≥
√

2/5rcomm.

Compute b as in Lemma 3.2, partition E(n) into the b2 square cells.1

Set currcell[i] := C(r, c), leader[i] := null and curr[i] := null.2

Broadcast msg[i] containing uid[i], p[i], and currcell[i] to vehicles in3

currcell[i].
Receive msg[k] from, all vehicles in C(r, c).4

Use the Maximal Match algorithm to find a maximum matching5

between vehicles and targets C(r, c).
Elect a leader among assigned vehicles in C(r, c).6

case unassigned7

Set dircol[i] := down, dirrow[i] := right, and colstatus[i](c) to notfull8

for each c ∈ {1, . . . , b}.
Run Unassigned algorithm.9

case assigned to q ∈ C(r, c) and not elected leader10

Set curr[i] := q, and move to curr[i] at speed vmax11

case assigned and elected leader12

Set leader[i] := currcell[i], curr[i] := q, and move to curr[i] at speed vmax13

Set ∆[i](r, c) to number of targets in C(r, c) minus number of vehicles in14

C(r, c).
Set taravail[i](r, c) to the collection of unassigned targets in C(r, c).15

Set ∆
[i]
blw(r, c) to +∞ if r ∈ {1, . . . , b− 1} and to 0 if r = b.16

if r = 1 then Set ∆
[i]
rght(c) to +∞ if c ∈ {1, . . . , b− 1} and to 0 if c = b.17

Run Leader algorithm.18
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Algorithm B.2: Leader, executed at each communication round.

Assumes: Vehicle i is the leader of C(r, c).

Send msg
[i]
1 := ∆

[i]
blw(r, c) + ∆[i](r, c) to leader in cell C(r − 1, c).1

if r = 1 then2

Send msg
[i]
2 := ∆

[i]
rght(c) + ∆

[i]
blw(1, c) + ∆[i](1, c) to leader of C(1, c− 1).3

Receive msg
[k]
2 from leader k of C(1, c+ 1) and set ∆

[i]
rght(c) := msg

[k]
2 .4

For each enter msg from an vehicle coming from C(1, c+ 1), add 1 to5

∆
[i]
rght(1, c) and for each exit msg from an vehicle going to C(1, c+ 1)

subtract 1 from ∆
[i]
rght(1, c).

If ∆
[i]
rght(1, c) > 0 and an enter msg was received from an vehicle6

coming from C(1, c+ 1), then set ∆
[i]
rght(1, c) := 0.

Receive msg
[k]
1 from leader k of C(r + 1, c), and set ∆

[i]
blw(r, c) := msg

[k]
1 .7

Subtract 1 from ∆[i](r, c) for each enter msg received, and add 1 for each8

exit msg received.
For each enter msg from an vehicle coming from C(r + 1, c), add 1 to9

∆
[i]
blw(r, c) and for each exit msg from an vehicle going to C(r + 1, c)

subtract 1 from ∆
[i]
blw(r, c).

If ∆
[i]
blw(r, c) > 0 and an enter msg was received from an vehicle coming10

from C(r + 1, c), then set ∆
[i]
blw(r, c) := 0.

forall queries on availability of target in C(r, c) do11

if taravail[i] 6= ∅ then12

Select a target in taravail[i], assign it requesting vehicle, and remove13

it from taravail[i].
else if taravail = ∅ then Reply no.14

forall queries on availability of target below C(r, c) do15

Respond yes to ∆
[i]
blw(r, c) requests, and no to all others.16

if r = 1 then17

forall queries on availability of target to right of column c do18

Respond yes to ∆
[i]
rght(c) requests, and no to all others.19
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Algorithm B.3: Unassigned, executed each time a new cell is entered.

Assumes: Vehicle i has run Role Assgmt, and currcell[i] = C(r, c).
Query leader of C(r, c) on free targets in currcell[i].1

if leader returns a target q ∈ C(r, c) then Set curr[i] := q, and move to2

target.
else if leader returns no then3

case dircol[i] = down4

Query leader on availability of target below C(r, c).5

if leader returns yes then6

Set prevcell[i] := currcell[i] and currcell[i] := C(r + 1, c)7

else if leader returns no then8

Set dircol[i] := up, prevcell[i] := currcell[i] and9

currcell[i] := C(r − 1, c).

case (dircol[i] = up) and (r > 1)10

Set prevcell[i] := currcell[i], currcell[i] := C(r − 1, c), and11

dircol[i] := up

case (dircol[i] = up) and (r = 1) and (dirrow[i] = right)12

Set colstatus[i](c) := full.13

Query leader on availability to the right of column c.14

if leader returns yes then15

Set prevcell[i] := currcell[i], currcell[i] := C(1, c+ 1)16

if colstatus[i](c+ 1) = notfull then dircol[i] := down.17

else if leader returns no then18

Set prevcell[i] := currcell[i], currcell[i] := C(1, c− 1),19

dirrow[i] := left.
Set colstatus[i](c∗) := full for each c∗ ∈ {c+ 1, . . . , b}.20

if colstatus[i](c− 1) = notfull then dircol[i] := down.21

case (dircol[i] = up) and (r = 1) and (dirrow[i] = left)22

Set prevcell[i] := currcell[i] and currcell[i] := C(1, c− 1).23

if colstatus[i](c− 1) = notfull then dircol[i] := down.24

Send exit to leader in prevcell[i], enter to leader in currcell[i], and25

move to currcell[i].
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