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Abstract

Topics in Sequential Decision Making: Analysis and Applications

by

Sandra Hala Dandach

Interest in group decision making spans a wide variety of domains. Be it in

electoral votes in politics, Bayesian learning in social networks, distributed detec-

tion in robotic and sensor networks, or cognitive data processing in the human

brain, establishing the best strategy or understanding the motivation behind an

observed strategy, has been of interest for many researchers. This thesis studies

two sequential decision making problems, in the first problem the individuals do

not communicate with each other, while in the second problem they are allowed

to exchange information.

In the non-cooperative setting, we consider a collection of agents, each per-

forming binary hypothesis testing and obtaining a decision over time. We assume

that the agents are identical and receive independent information. Individual de-

cisions are sequentially aggregated via a threshold-based rule. In other words, a

collective decision is taken as soon as a specified number of agents report a con-
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cordant decision (simultaneous discordant decisions and no-decision outcomes are

also handled). We relate the accuracy and decision time of the whole population,

to the accuracy and decision time of a single individual and to the fusion rule.

We also provide a scalability analysis for some group decision rules and show that

in the limit of large group sizes, the accuracy and decision time of the group are

dictated by the accuracy and decision time of a single individual.

In the cooperative setting, a group of individuals are monitoring an environ-

ment and answering a question about the location of a source. The environment

is divided into smaller regions of responsibilities, each individual is responsible for

one or multiple regions. We pose the problem as a multiple hypothesis testing

problem and design a distributed sequential localization algorithm with guar-

anteed accuracy bounds; we also provide a proof of almost sure convergence of

our algorithm in the limit of a large numbers of measurements. We pose and

distributedly solve optimization problems whose solution provides a choice of re-

gions that improves the performance of the localization algorithm. We illustrate

the applicability of the proposed distributed optimization algorithm to a family

of optimization problems.
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Chapter 1

Introduction

Decision making happens so often and in such various contexts that it is slightly

difficult to relate it to a single science. How and why we do what we do, can be af-

fected by who we are and how we interact with our environment. The effect might

come, but is not limited to, people around us, our personalities and prejudgment,

our personal preferences, etc. Recently, this topic has captured the interests of

many scientists, each of which concentrated on understanding different parts of the

problem. Some researchers proposed models that study the effect of rewards and

feedback on individuals shedding light on motivation and character-related fea-

tures that are specific to each individual, while other researchers were interested in

studying the way decisions are made in the brain on a more detailed level from the

dynamics perspective. The work presented in this thesis falls somewhere between
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CHAPTER 1. INTRODUCTION

the two families of problems. In this work, we analyze how information processing

affects the overall group decision, which sets the ground to understanding ques-

tions about group information processing (e.g. cognitive information processing

in a group of neurons) if information is assumed to be available about the dy-

namics of the individuals (e.g. decision making at each neuron level). We note

that an additional motivation of the work presented in this thesis is the design of

distributed algorithms in cooperative robotic networks, where understanding the

effect of the interaction between the robots as well as understanding the decision

making of each stand-alone robot is useful in designing proper algorithms to per-

form a task of interest. We start by presenting the various problems studied in

this thesis.

Accuracy and Decision Time for Sequential Decision Aggregation

Work in this thesis related to sequential decision aggregation aims to understand

how sequential processing of decisions from sequential decision makers affects the

speed and accuracy with which these individuals reach a collective decision. This

class of problems has a rich history and some of its variations are studied in the

context of distributed detection in sensor networks and Bayesian learning in social

networks.

In our problem, a group of individuals independently decide between two alter-

native hypotheses, and each individual sends its local decision to a fusion center.

2



CHAPTER 1. INTRODUCTION

The fusion center decides for the whole group as soon as one hypothesis gets a

number of votes that crosses a pre-determined threshold. We are interested in

relating the accuracy and decision time of the whole population, to the accuracy

and decision time of a single individual.

Distributed Sequential Algorithms for Regional Source Localization

Applications where source localization is of great concern vary between finding

the source of oil spills in the ocean, determining cellular locations, detecting an

earthquake’s epicenter, locating an acoustic source, or simply finding an intruder

in a protected environment. For most of these applications, it is sufficient to find a

region that contains the source rather than pinpointing the exact source position,

which relies most of the time on approximations.

In this thesis, we consider the following problem: A source at an unknown

location in a bounded region Q transmits a power signal. N sensors receive

noisy and decayed versions of the signal, they can communicate and exchange

measurements. The environment Q is divided into M regions Wα, where α ∈

{1, . . . ,M}. The objective of the sensors is to find which region contains the

source.

Gossip algorithm for a class of environment partitioning problems

with separable rewards and equitability constraints Optimization problems

where a given region is divided into N sub-regions have applications in various

3
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fields. We name, among others, districting, facility design, warehouse layout, ur-

ban planning, etc. In each of these problems the objective function has certain

characteristics which are usually useful in tailoring a proper solution. In some

problems, the cost function is such that the optimality of partitions can be specif-

ically characterized, for example for some problems Voronoi partitions or other

general forms of Voronoi partitions were proved to be optimal. For more general

problems, such characterization is not possible.

In this thesis we study this group of problems and present gossip based al-

gorithms that solve environment partitioning problems where one part of the

problem is an equitability constraint, and where the objective function depends

on each variable independently from the other.

1.1 Literature review

In this section we give a brief literature review of the main references of the

various topics or tools mentioned in this thesis.

1.1.1 Hypothesis testing and decision making

The framework we analyze in this Chapter 2 is related to the one considered

in many papers in the literature, see for instance [1, 2] and references therein.
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The focus of these works is mainly two-fold. First, researchers in the fields aim to

determine which type of information the decision makers should send to the fusion

center. Second, many of the studies concentrate on computing optimal decision

rules both for the individual decision makers [3] and the fusion center, where

optimality refers to maximizing accuracy. One key implicit assumption made in

numerous works is that the aggregation rule is applied by the fusion center only

after all the decision makers have provided their local decisions.

Tsitsiklis in [4] studied the Bayesian decision problem with a fusion center

and showed that for large groups identical local decision rules are asymptotically

optimal. Varshney in [5] proved that when the fusion rules at the individuals level

are non-identical, threshold rules are the optimal rules at the individual level.

Additionally, Varshney proved that setting optimal thresholds for a class of fusion

rules, where a decision is made as soon as a certain number q out of the N group

members decide, requires solving a number of equations that grows exponentially

with the group size. The fusion rules that we study in this work fall under the

q out of N class of decision rules. Finally, Varshney proved that this class of

decision rules is optimal for identical local decisions.

One major difference between these fusion rules and previously analyzed sim-

ilar rules [6, 7, 8, 9], is the notion of time. While in the literature, researchers

have already studied the accuracy of a group aggregating decisions from various
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DMs under different fusion rules, one common assumption was implicitly made

by all the work we came across. This assumption is that the group applies the

fusion rule only after all individuals have decided. For more details see [10] and

references therein.

Researchers in behavioral studies refer to the decision making scheme where

everyone is given an arbitrary the time to respond as the free response paradigm.

Since the speed of the group’s decision is one of our main concerns, we found it

necessary to adjust the analysis in a way that makes it possible to compute the

joint probabilities of each decision at each time instant. For more detailed coverage

of this topic we refer the reader to [11, 12, 13] and references therein. Many

researchers proposed mathematical models that aimed to explain observations

made in the cognitive science literature. Among these works we mention [14, 15,

16, 17].

The multiple hypothesis problems are considerably more difficult than the

binary problem and optimality of the proposed algorithms is usually hard to prove.

Some tests that have some asymptotic optimality properties were developed in the

literature, but these tests tend to be very complex [18, 19, 20]. Alternatively ad

hoc tests based on repeated pairwise applications of optimal sequential hypothesis

tests [3] were developed but these tests have little optimality results, e.g., see [21].
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1.1.2 Source localization

In the classical source localization problem, a number of sensors collaborate to

locate the exact position of a source. The relation between the position of a source

and the received signal strength (RSS) is described in [22, 23]. A survey of the

literature is presented in [24]. Several authors treat localization as a nonconvex

optimization problem [25, 26]. Gradient descent algorithms and weighted least

squares approximations can be used to solve the maximum likelihood estimation

problems but such algorithms tend to get stuck at local optima [27, 28]. Authors

in [29] approximate the nonlinear nonconvex optimization problem by a linear and

convex problem. Hero et al. in [30] use a method of projection onto convex sets.

A necessary and sufficient condition for the convergence of this algorithm is that

the source lies inside the convex hull of the sensors. Properly placing the sensors

assumes knowledge of the position of the source.

1.1.3 Distributed algorithms and environment partition-

ing

Designing distributed algorithms is in general a problem specific task, and

many researchers from various communities have looked at this problem, see [31,

32, 33, 34, 35] and references therein. One of the many interesting problems
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studied over networks is average consensus. We will not cover this topic in details

here, but we will list the work presented by Boyd et al [36] that introduces the

distributed gossip algorithm to solve the consensus problem. In their work, Boyd

et al. prove that the gossip algorithm will achieve consensus and reach the average

of the initial conditions of all the states of the nodes in a network. As we will

show in the sequel, the gossip algorithm is a natural fit to the distributed regional

optimization problem we look to solve.

In addition to optimality, sometimes a notion of equal load or measure is

required, and the problem becomes one of finding equitable partitions. Many

recent papers study the problem of equitable partitioning see for instance [37, 38,

39, 40, 41] and references therein.

Optimally partitioning an environment into regions that improve an objective

function is yet another problem of interest. The isoperimetric problem is an ex-

ample of geometric problems where a geometric shape is sought as to maximize

a function (isoperimetric ratio) while maintaining a given measure (the area cov-

ered) . Mathematicians had conjectured for centuries that the circle is the one

geometric figure that satisfies this property. More complicated problems, with

closer connections to partitioning problems, had been proposed among which the

one we study in this chapter. Our objective is to cover an environment with-

out leaving empty spaces while minimizing the sum of the perimeters of all the

8
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partitions. The solution to this geometric optimization problem turns out to be

partitions obtained by hexagonal tiling. Interestingly, nature seems to foster the

first geometer to solve this problem. When building their honeycombs, bees re-

vert to hexagonal tiles. This minimizes the lost effort they need to put producing

wax, by minimizing the perimeter of the partitions, while avoiding any empty

spaces between the honey combs so that no parasites can grow in their honey-

combs [42, 43]. Triangles, squares and hexagons are the only regular polygons

that tile the plane. Among them, hexagonal tiles minimize the sum of perimeters

of the regions for a given area.

1.2 Contributions of the thesis

Chapter 2 studies prototypical strategies to sequentially aggregate independent

decisions. We consider a collection of agents, each performing binary hypothesis

testing and each obtaining a decision over time. We assume the agents are iden-

tical and receive independent information. Individual decisions are sequentially

aggregated via a threshold-based rule. In other words, a collective decision is taken

as soon as a specified number of agents report a concordant decision (simultaneous

discordant decisions and no-decision outcomes are also handled).

We obtain the following results. First, we characterize the probabilities of
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correct and wrong decisions as a function of time, group size and decision thresh-

old. The computational requirements of our approach are linear in the group size.

Second, we consider the so-called fastest and majority rules, corresponding to spe-

cific decision thresholds. For these rules, we provide a comprehensive scalability

analysis of both accuracy and decision time. In the limit of large group sizes, we

show that the decision time for the fastest rule converges to the earliest possible

individual time, and that the decision accuracy for the majority rule shows an

exponential improvement over the individual accuracy. Additionally, via a theo-

retical and numerical analysis, we characterize various speed/accuracy tradeoffs.

Finally, we relate our results to some recent observations reported in the cognitive

information processing literature.

Chapter 3 studies the problem of source localization as a multiple hypothesis

testing problem, where each hypothesis corresponds to the event that the source

belongs to a particular region. We use sequential hypothesis tests based on pos-

terior computations to solve for the correct hypothesis. Measurements corrupted

with noise are used to calculate conditional posteriors. We prove that the regional

localization problem has geometric properties that allow correct detection almost

surely in the limit of a large number of measurements. We present the Sense,

Transmit & Test distributed algorithm that allows sequential sensing, commu-

nication and testing and we analyze the accuracy of this distributed algorithm

10
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and show that the test ends in a finite time. We also present numerical results

illustrating properties of the suggested algorithm.

Chapter 4 studies distributed gossip algorithms that solve a family of environ-

ment partitioning problems over a network. This work was inspired by a quest

to choose environment partitions that optimize the performance of a localization

algorithm. The problem falls under a family of problems in facility design where

the objective function depends separately on each optimization parameter. We

design a gossip based algorithm that solves a sequence of optimization problems,

where the optimization variable are the partitions of the environment. We study

four problems of interest. The first problem is the equitable partitioning prob-

lem, the second problem is the doubly equitable partitioning problem, the third

problem is the isoperimetric problem (and some variation of it) and the fourth

problem is the regional localization problem. We present algorithms that solve

these problems and present simulation results showing the optimal partitioning

to all these problems.

Chapter 5 presents summaries of the results and suggested future research

directions.

11



Chapter 2

Accuracy and Decision Time for

Sequential Decision Aggregation

2.1 Introduction

In this chapter we study a group of individual sequential decision makers,

where each individual is running its independent binary sequential hypothesis

test. Individuals communicate their decisions, as soon as the latter are made, to

a fusion center that aggregates the information sequentially, until the number of

votes in favor of a hypothesis crosses a threshold. We study the group decision

time and accuracy and relate that to the group size and the local accuracies and

decision time at the individual level.
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2.1.1 Problem description and motivation

We study the following problem: a group of individuals independently decides

between two alternative hypothesis, and each individual sends its local decision

to a fusion center. The fusion center decides for the whole group as soon as one

hypothesis gets a number of votes that crosses a pre-determined threshold. We

are interested in relating the accuracy and decision time of the whole population,

to the accuracy and decision time of a single individual. We assume that all

individuals are independent and identical. That is, we assume that they gather

information corrupted by i.i.d. noise and that the same statistical test is used by

each individual in the population. The setup of similar problems studied in the

literature usually assumes that all individual decisions need to be available to the

fusion center before the latter can reach a final decision. The work presented here

relaxes this assumption and the fusion center might provide the global decision

much earlier than the all individuals in the group. Researchers in behavioral

studies refer to decision making schemes where everyone is given an equal amount

of time to respond as the “free response paradigm.” Since the speed of the group’s

decision is one of our main concerns, we adjust the analysis in a way that makes

it possible to compute the joint probabilities of each decision at each time instant.

13
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2.1.2 Chapter contributions

The contributions of this chapter are three-fold. First, we introduce a recursive

approach to characterize the probabilities of correct and wrong decisions for a

group of sequential decision makers (SDMs). These probabilities are computed as

a function of time, group size and decision threshold. The key idea is to relate the

decision probability for a group of size N at each time t to the decision probability

of an individual SDM up to that time t, in a recursive manner. Our proposed

method has many advantages. First, our method has a numerical complexity that

grows only linearly with the number of decision makers. Second, our method

is independent of the specific decision making test adopted by the SDMs and

requires knowledge of only the decision probabilities of the SDMs as a function

of time. Third, our method allows for asynchronous decision times among SDMs.

To the best of our knowledge, the performance of sequential aggregation schemes

for asynchronous decisions has not been previously studied.

Second, we consider the so-called fastest and majority rules corresponding,

respectively, to the decision thresholds q = 1 and q = dN/2e. For these rules we

provide a comprehensive scalability analysis of both accuracy and decision time.

Specifically, in the limit of large group sizes, we provide exact expressions for the

expected decision time and the probability of wrong decision for both rules, as a
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function of the decision probabilities of each SDM. For the fastest rule we show

that the group decision time converges to the earliest possible decision time of an

individual SDM, i.e., the earliest time for which the individual SDM has a non-

zero decision probability. Additionally, the fastest rule asymptotically obtains

the correct answer almost surely, provided the individual SDM is more likely to

make the correct decision, rather than the wrong decision, at the earliest possible

decision time. For the majority rule we show that the probability of wrong decision

converges exponentially to zero if the individual SDM has a sufficiently small

probability of wrong decision. Additionally, the decision time for the majority

rule is related to the earliest time at which the individual SDM is more likely to

give a decision than to not give a decision. This scalability analysis relies upon

novel asymptotic and monotonicity results of certain binomial expansions.

As third main contribution, using our recursive method, we present a compre-

hensive numerical analysis of sequential decision aggregation based on the q out of

N rules. As model for the individual SDMs, we adopt the sequential probability

ratio test (SPRT), which we characterize as an absorbing Markov chain. First, for

the fastest and majority rules, we report how accuracy and decision time vary as

a function of the group size and of the SPRT decision probabilities. Second, in the

most general setup, we report how accuracy and decision time vary monotonically

as a function of group size and decision threshold. Additionally, we compare the
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performance of fastest versus majority rules, at fixed group accuracy. We show

that the best choice between the fastest rule and the majority rule is a function of

group size and group accuracy. Our numerical results illustrate why the design of

optimal aggregation rules is a complex task [44]. Finally, we discuss relationships

between our analysis of sequential decision aggregation and mental behavior doc-

umented in the cognitive psychology and neuroscience literature [45, 11, 12, 13].

Finally, we draw some qualitative lessons about sequential decision aggregation

from our mathematical analysis. Surprisingly, our results show that the accuracy

of a group is not necessarily improved over the accuracy of an individual. In aggre-

gation based on the majority rule, it is true that group accuracy is (exponentially)

better than individual accuracy; decision time, however, converges to a constant

value for large group sizes. Instead, if a quick decision time is desired, then the

fastest rule leads, for large group sizes, to decisions being made at the earliest

possible time. However, the accuracy of fastest aggregation is not determined by

the individual accuracy (i.e., the time integral of the probability of correct deci-

sion over time), but is rather determined by the individual accuracy at a specific

time instant, i.e., the probability of correct decision at the earliest decision time.

Accuracy at this special time might be arbitrarily bad especially for ”asymmet-

ric” decision makers (e.g., SPRT with asymmetric thresholds). Arguably, these

detailed results for fastest and majority rules, q = 1 and q = bN/2c respectively,
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are indicative of the accuracy and decision time performance of aggregation rules

for small and large thresholds, respectively.

2.1.3 Decision making in cognitive psychology

An additional motivation to study sequential decision aggregation is our in-

terest in sensory information processing systems in the brain. There is a grow-

ing belief among neuroscientists [11, 12, 13] that the brain normally engages in

an ongoing synthesis of streams of information (stimuli) from multiple sensory

modalities. Example modalities include vision, auditory, gustatory, olfactory and

somatosensory. While many areas of the brain (e.g., the primary projection path-

ways) process information from a single sensory modality, many nuclei (e.g., in

the Superior Colliculus) are known to receive and integrate stimuli from multiple

sensory modalities. Even in these multi-modal sites, a specific stimulus might be

dominant. Multi-modal integration is indeed relevant when the response elicited

by stimuli from different sensory modalities is statistically different from the re-

sponse elicited by the most effective of those stimuli presented individually. (Here,

the response is quantified in the number of impulses from neurons.) Moreover,

regarding data processing in these multi-modal sites, the procedure with which

stimuli are processed changes depending upon the intensity of each modality-

specific stimulus.
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In [11], Werner et al. study a human decision making problem with multiple

sensory modalities. They present examples where accuracy and decision time

depend upon the strength of the audio and visual components in audio-visual

stimuli. They find that, for intact stimuli (i.e., noiseless signals), the decision time

improves in multi-modal integration (that is, when both stimuli are simultaneously

presented) as compared with uni-sensory integration. Instead, when both stimuli

are degraded with noise, multi-modal integration leads to an improvement in

both accuracy and decision time. Interestingly, they also identify circumstances

for which multi-modal integration leads to performance degradation: performance

with an intact stimulus together with a degraded stimulus is sometimes worse than

performance with only the intact stimulus.

Another point of debate among cognitive neuroscientists is how to characterize

uni-sensory versus multi-modal integration sites. Neuro-physiological studies have

traditionally classified as multi-modal sites where stimuli are enhanced, that is, the

response to combined stimuli is larger than the sum of the responses to individual

stimuli. Recent observations of suppressive responses in multi-modal sites has put

this theory to doubt; see [12, 13] and references therein. More specifically, studies

have shown that by manipulating the presence and informativeness of stimuli, one

can affect the performance (accuracy and decision time) of the subjects in interest-

ing, yet not well understood ways. We envision that a more thorough theoretical
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understanding of sequential decision aggregation will help bridge the gap between

these seemingly contradicting characterization of multi-modal integration sites.

As a final remark about uni-sensory integration sites, it is well known [17] that

the cortex in the brain integrates information in neural groups by implementing

a drift-diffusion model. This model is the continuous-time version of the so-called

sequential probability ratio test (SPRT) for binary hypothesis testing. We will

adopt the SPRT model for our numerical results.

2.1.4 Chapter organization

We start in Section 2.2 by introducing the problem setup. In Section 2.3

we present the numerical method that allows us to analyze the decentralized

Sequential Decision Aggregation (SDA) problem; We analyze the two proposed

rules in Section 2.4. We also present the numerical results in Section 2.6. Our

conclusions are stated in Section 2.7. The appendices contain some results on

binomial expansions and on the SPRT.
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2.2 Models of sequential aggregation and prob-

lem statement

In this section we introduce the model of sequential aggregation and the anal-

ysis problem we want to address. Specifically in Subsection 2.2.1 we review the

classical sequential binary hypothesis testing problem and the notion of sequential

decision maker, in Subsection 2.2.2 we define the q out of N sequential decisions

aggregation setting and, finally, in Subsection 2.2.3, we state the problem we aim

to solve.

2.2.1 Sequential decision maker

The classical binary sequential decision problem is posed as follows.

Let H denote a hypothesis which takes on values H0 and H1. Assume we

are given an individual (called sequential decision maker (SDM) hereafter) who

repeatedly observes at time t = 1, 2, . . . , a random variable X taking values in

some set X with the purpose of deciding between H0 and H1. Specifically the SDM

takes the observations x(1), x(2), x(3), . . ., until it provides its final decision at time

τ , which is assumed to be a stopping time for the sigma field sequence generated

by the observations, and makes a final decision δ based on the observations up

to time τ . The stopping rule together with the final decision rule represent the
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decision policy of the SDM. The standing assumption is that the conditional joint

distributions of the individual observations under each hypothesis are known to

the SDM.

In our treatment, we do not specify the type of decision policy adopted by the

SDM. A natural way to keep our presentation as general as possible, is to refer to a

probabilistic framework that conveniently describes the sequential decision process

generated by any decision policy. Specifically, given the decision policy γ, let χ
(γ)
0

and χ
(γ)
1 be two random variables defined on the sample space N × {0, 1} ∪ {?}

such that, for i, j ∈ {0, 1},

• {χ(γ)
j = (t, i)} represents the event that the individual decides in favor of Hi

at time t given that the true hypothesis is Hj; and

• {χ(γ)
j =?} represents the event that the individual never reaches a decision

given that Hj is the correct hypothesis.

Accordingly, define p
(γ)
i|j (t) and p

(γ)
nd|j to be the probabilities that, respectively,

the events {χ(γ)
j = (t, i)} and {χ(γ)

0 =?} occur, i.e,

p
(γ)
i|j (t) = P[χ

(γ)
j = (t, i)] and p

(γ)
nd|j = P[χ

(γ)
j =?].

Then the sequential decision process induced by the decision policy γ is com-
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pletely characterized by the following two sets of probabilities

{
p

(γ)
nd|0

}
∪
{
p

(γ)
0|0(t), p

(γ)
1|0(t)

}
t∈N

and
{
p

(γ)
nd|1

}
∪
{
p

(γ)
0|1(t), p

(γ)
1|1(t)

}
t∈N

, (2.1)

where, clearly p
(γ)
nd|0+

∑∞
t=1

(
p

(γ)
0|0(t) + p

(γ)
1|0(t)

)
= 1 and p

(γ)
nd|1+

∑∞
t=1

(
p

(γ)
0|1(t) + p

(γ)
1|1(t)

)
=

1. In what follows, while referring to a SDM running a sequential distributed hy-

pothesis test with a pre-assigned decision policy, we will assume that the above

two probabilities sets are known. From now on, for simplicity, we will drop the

superscript (γ).

Together with the probability of no-decision, for j ∈ {0, 1} we introduce also

the probability of correct decision pc|j := P[say Hj |Hj] and the probability of

wrong decision pw|j := P[say Hi, i 6= j |Hj], that is,

pc|j =
∞∑
t=1

pj|j(t) and pw|j =
∞∑
t=1

pi|j(t), i 6= j.

It is worth remarking that in most of the binary sequential decision making liter-

ature, pw|1 and pw|0 are referred as, respectively, the mis-detection and false-alarm

probabilities of error.

Below, we provide a formal definition of two properties that the SDM might

or might not satisfy.

Definition 2.2.1 For a SDM with decision probabilities as in (2.1), the following

properties may be defined:
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1. the SDM has almost-sure decisions if, for j ∈ {0, 1},

∞∑
t=1

(
p0|j(t) + p1|j(t)

)
= 1, and

2. the SDM has finite expected decision time if, for j ∈ {0, 1},

∞∑
t=1

t
(
p0|j(t) + p1|j(t)

)
<∞.

One can show that the finite expected decision time implies almost-sure decisions.

We conclude this section by briefly discussing examples of sequential decision

makers. The classic model is the SPRT model, which we discuss in some detail in

the example below and in Section 2.6. Our analysis, however, allows for arbitrary

sequential binary hypothesis tests, such as the SPRT with time-varying thresh-

olds [46], constant false alarm rate tests [47], and generalized likelihood ratio tests.

Response profiles arise also in neurophysiology, e.g., [48] presents neuron models

with a response that varies from unimodal to bimodal depending on the strength

of the received stimulus.

Example 2.2.2 (Sequential probability ratio test (SPRT)) In the case the

observations taken are independent, conditioned on each hypothesis, a well-known

solution to the above binary decision problem is the so-called sequential probability

ratio test (SPRT) that we review in Section 2.6. A SDM implementing the SPRT

test has both the almost-sure decisions and finite expected decision time properties.
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Moreover the SPRT test satisfies the following optimality property: among all

the sequential tests having pre-assigned values of mis-detection and false-alarm

probabilities of error, the SPRT is the test that requires the smallest expected

number of iterations for providing a solution.

In Appendix C we review the methods proposed for computing the probabili-

ties
{
pi|j(t)

}
t∈N when the SPRT test is applied, both in the case X is a discrete

random variable and in the case X is a continuous random variable. For illus-

tration purposes, we provide in Figure 2.1 the probabilities pi|j(t) when j = 1 for

the case when X is a continuous random variable with a continuous distribution

(Gaussian). We also note that pi|j(t) might have various interesting distributions.

2.2.2 The q out of N decentralized hypothesis testing

The basic framework for the binary hypothesis testing problem we analyze in

this chapter is the one in which there are N SDMs and one fusion center. The

binary hypothesis is denoted by H and it is assumed to take on values H0 and H1.

Each SDM is assumed to perform individually a binary sequential test; specifically,

for i ∈ {1, . . . , N}, at time t ∈ N, SDM i takes the observation xi(t) on a random

variable Xi, defined on some set Xi, and it keeps observing Xi until it provides its

decision according to some decision policy γi. We assume that
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Figure 2.1: This figure illustrates a typical unimodal set of decision probabili-

ties {p1|1(t)}t∈N and {p0|1(t)}t∈N. Here the SDM is implementing the sequential

probability ratio test with three different accuracy levels (see Section 2.6 for more

details).

1. the random variables {Xi}Ni=1 are independent and identically distributed;

2. the SDMs adopt the same decision policy γ, that is, γi ∼= γ for all i ∈

{1, . . . , N};

3. the observations taken, conditioned on either hypothesis, are independent

from one SDM to another;

4. the conditional joint distributions of the individual observations under each

hypothesis are known to the SDMS.
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In particular assumptions (i) and (ii) imply that the N decision processes induced

by the N SDMs are all described by the same two sets of probabilities

{
pnd|0

}
∪
{
p0|0(t), p1|0(t)

}
t∈N and

{
pnd|1

}
∪
{
p0|1(t), p1|1(t)

}
t∈N . (2.2)

We refer to the above property as homogeneity among the SDMs.

Once a SDM arrives to a final local decision, it communicates it to the fu-

sion center. The fusion center collects the messages it receives keeping track of

the number of decisions in favor of H0 and in favor of H1. A global decision is

provided according to a q out of N counting rule: roughly speaking, as soon as

the hypothesis Hi receives q local decisions in its favor, the fusion center globally

decides in favor of Hi. In what follows we refer to the above framework as q out

of N sequential decision aggregation with homogeneous SDMs (denoted as q out

of N SDA, for simplicity).

We describe our setup in more formal terms. Let N denote the size of the

group of SDMs and let q be a positive integer such that 1 ≤ q ≤ N , then the q

out of N SDA with homogeneous SDMs is defined as follows:

SDMs iteration : For each i ∈ {1, . . . , N}, the i-th SDM keeps observing Xi,

taking the observations xi(1), xi(2), . . . , until time τi where it provides its

local decision di ∈ {0, 1}; specifically di = 0 if it decides in favor of H0

and di = 1 if it decides in favor of H1. The decision di is instantaneously
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communicated (i.e., at time τi) to the fusion center.

Fusion center state : The fusion center stores in memory the variables Count0

and Count1, which are initialized to 0, i.e., Count0(0) = Count1(0) = 0. If

at time t ∈ N the fusion center has not yet provided a global decision, then

it performs two actions in the following order:

(1) it updates the variables Count0 and Count1, according to Count0(t) =

Count0(t−1)+n0(t) and Count1(t) = Count1(t−1)+n1(t) where n0(t) and

n1(t) denote, respectively, the number of decisions equal to 0 and 1 received

by the fusion center at time t.

(2) it checks if one of the following two situations is verified

(i)


Count1(t) > Count0(t),

Count1(t) ≥ q,

(ii)


Count1(t) < Count0(t).

Count0(t) ≥ q.

(2.3)

If (i) is verified the fusion center globally decides in favor H1, while if (ii)

is verified the fusion center globally decides in favor of H0. Once the fusion

center has provided a global decision the q out of N SDA algorithm stops.

Remark 2.2.3 (Notes about SDA) 1. Each SDM has in general a non-

zero probability of not giving a decision. In this case, the SDM might keep

sampling infinitely without providing any decision to the fusion center.

2. The fusion center does not need to wait until all the SDM have provided
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a decision before a decision is reach on the group level, as one of the two

conditions (i) or (ii) in equation 2.3 might be satisfied much before the N

SDM provide their decisions.

3. While we study in this manuscript the case when a fusion center receives

the information from all SDM, we note that a distributed implementation of

the SDA algorithm is possible. Analysis similar to the one presented here is

possible in that case. �

2.2.3 Problem formulation

We introduce now some definitions that will be useful throughout this chapter.

Given a group of N SDMs running the q out of N SDA algorithm, 1 ≤ q ≤ N ,

we denote

1. by T the random variable accounting for the number of iterations required

to provide a decision

T = min{t | either case (i) or case (ii) in equation (2.3) is satisfied};

2. by pi|j(t;N, q) the probability of deciding, at time t, in favor of Hi given

that Hj is correct, i.e.,

pi|j(t;N, q) := P [ Group of N SDMs says Hi |Hj, q, T = t] ; (2.4)
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3. by pc|j(N, q) and pw|j(N, q) the probability of correct decision and of wrong

decision, respectively, given that Hj is the correct hypothesis, i.e.,

pc|j(N, q) =
∞∑
t=1

pj|j(t;N, q) and pw|j(N, q) =
∞∑
t=1

pi|j(t;N, q), i 6= j;

(2.5)

4. by pnd|j(N, q), j ∈ {0, 1}, the probability of no-decision given that Hj is the

correct hypothesis, i.e.,

pnd|j(N, q) := 1−
∞∑
t=1

(
p0|j(t;N, q) + p1|j(t;N, q)

)
= 1−pw|j(N, q)−pc|j(N, q);

(2.6)

5. by E [T |Hj, N, q] the average number of iterations required by the algorithm

to provide a decision, given that Hj is the correct hypothesis, i.e.,

E [T |Hj, N, q] :=


∑∞

t=1 t(p0|j(t;N, q) + p1|j(t;N, q)), if pnd|j(N, q) = 0,

+∞, if pnd|j(N, q) > 0.

(2.7)

Observe that pi|j(t; 1, 1) coincides with the probability pi|j(t) introduced in (2.1).

For ease of notation we will continue using pi|j(t) instead of pi|j(t; 1, 1).

We are now ready to formulate the problem we aim to solve in this chapter.

Problem 2.2.4 (Sequential decision aggregation) Consider a group of N ho-

mogeneous SDMs with decision probabilities
{
pnd|0

}
∪
{
p0|0(t), p1|0(t)

}
t∈N and

{
pnd|1

}
∪
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{
p0|1(t), p1|1(t)

}
t∈N. Assume the N SDMs run the q out of N SDA algorithm

with the purpose of deciding between the hypothesis H0 and H1. For j ∈ {0, 1},

compute the distributions
{
pi|j(t;N, q)

}
t∈N as well as the probabilities of correct

and wrong decision, i.e., pc|j(N, q) and pw|j(N, q), the probability of no-decision

pnd|j(N, q) and the average number of iterations required to provide a decision,

i.e., E [T |Hj, N, q].

We will focus on the above problem in the next two Sections, both through

theoretical and numerical results. Moreover, in Section 2.4, we will concentrate on

two particular values of q, specifically for q = 1 and q = bN/2c+ 1, characterizing

the tradeoff between the expected decision time, the probabilities of correct and

wrong decision and the size of the group of SDMs. When q = 1 and q = dN/2e,

we will refer to the q out of N rule as the fastest rule and the majority rule,

respectively. In this case we will use the following notations

p
(f)
c|j(N) := pc|j(N ; q = 1), p

(f)
w|j(N) := pw|j(N ; q = 1)

and

p
(m)
c|j (N) := pc|j(N ; q = bN/2c+ 1), p

(m)
w|j (N) := pw|j(N ; q = bN/2c+ 1).

We end this Section by stating two propositions characterizing the almost-

surely decisions and finite expected decision time properties for the group of SDMs.
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Proposition 2.2.5 Consider a group of N SDMs running the q out of N SDA al-

gorithm. Let the decision-probabilities of each SDM be as in (2.2). For j ∈ {0, 1},

assume there exists at least one time instant tj ∈ N such that both probabilities

p0|j(tj) and p1|j(tj) are different from zero. Then the group of SDMs has the

almost-sure decision property if and only if

1. the single SDM has the almost-sure decision property;

2. N is odd; and

3. q is such that 1 ≤ q ≤ dN/2e.

Proof: First we prove that if the group of SDMs has the almost-sure decision

property, then properties (i), (ii) and (iii) are satisfied. To do so, we show that

if one between the properties (i), (ii) and (iii) fails then there exists an event

of probability non-zero that leads the group to not provide a decision. First

assume that the single SDM does not have the almost-sure decision property, i.e.,

pnd|j > 0, j ∈ {0, 1}. Clearly this implies that the event ”all the SDMs of the

group do not provide a decision” has probability of occurring equal to pNnd|j which

is strictly greater than zero. Second assume that N is even and consider the event

”at time tj, N/2 SDMs decide in favor of H0 and N/2 SDMs decide in favor of

H1”. Simple combinatorics and probabilistic arguments show that the probability

of this event is
(
N
N/2

)
p
N/2
0|j p

N/2
1|j , which is strictly greater than zero because of the
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assumption p0|j(tj) 6= 0 and p1|j(tj) 6= 0. Third assume that q > bN/2c + 1. In

this case we consider the event ”at time tj, dN/2e SDMs decide in favor of H0

and bN/2c SDMs decide in favor of H1” that, clearly, leads the group of SDMs

to not provide a global decision for any q > bN/2c+ 1. Similarly to the previous

case, we have that the probability of this event is
(

N
dN/2e

)
p
dN/2e
0|j p

bN/2c
1|j > 0.

We prove now that if properties (i), (ii) and (iii) are satisfied then the group

of SDMs has the almost-sure decision property. Observe that, since each SDM has

the almost-sure decision property, there exists almost surely aN -tuple (t1, . . . , tN) ∈

NN such that the i-th SDM provides its decision at time ti. Let t̄ := max{ti | i ∈

{1, . . . , N}}. Since N is odd, then Count1(t̄) 6= Count0(t̄). Moreover since

q ≤ bN/2c + 1 and Count1(t̄) + Count0(t̄) = N , either Count1(t̄) ≥ q or

Count0(t̄) ≥ q holds true. Hence the fusion center will provide a global deci-

sion not later than time t̄.

Proposition 2.2.6 Consider a group of N SDMs running the q out of N SDA al-

gorithm. Let the decision-probabilities of each SDM be as in (2.2). For j ∈ {0, 1},

assume there exists at least one time instant tj ∈ N such that both probabilities

p1|j(tj) and p1|j(tj) are different from zero. Then the group of SDMs has the finite

expected decision time property if and only if

1. the single SDM has the finite expected decision time property;
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2. N is odd; and

3. q is such that 1 ≤ q ≤ dN/2e.

Proof: The proof follows the lines of the proof of the previous proposition.

Remark 2.2.7 The existence, for j ∈ {0, 1}, of a time tj such that p0|j(tj) 6= 0

and p1|j(tj) 6= 0, is necessary only for proving the ”if” side of the previous propo-

sitions. In other words the validity of properties (i), (ii) and (iii) in Proposi-

tion 2.2.5 (resp. in Prop. 2.2.6) guarantees that the group of SDMs possesses the

almost-sure decision property (resp. the finite expected decision time property.)�

2.3 Recursive analysis of the q-out-of-N sequen-

tial aggregation rule

The goal of this section is to provide an efficient method to compute the prob-

abilities pi|j(t;N, q), i, j ∈ {0, 1}. These probabilities, using equations (2.5), (2.6)

and (2.7) will allow us to estimate the probabilities of correct decision, wrong

decision and no-decision, as well as the expected number of iterations required to

provide the final decision.

We first consider in subsection 2.3.1 the case where 1 ≤ q ≤ bN/2c; in subsec-

tion 2.3.2 we consider the case where bN/2c+ 1 ≤ q ≤ N .
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2.3.1 Case 1 ≤ q ≤ bN/2c

To present our analysis method, we begin with an informal description of the

decision events characterizing the q out of N SDA algorithm. Assume that the

fusion center provides its decision at time t. This fact implies that neither case

(i) nor case (ii) in equation (2.3) has happened at any time before t. Moreover,

two distinct set of events may precede time t, depending upon whether the values

of the counters Count0 and Count1 at time t − 1 are smaller than q or not.

In a first possible set of events, say the “simple situation,” the counters satisfy

0 ≤ Count0(t−1), Count1(t−1) ≤ q−1 and, hence, the time t is the first time that

at least one of the two counters crosses the threshold q. In a second possible set of

events, say the “canceling situation,” the counters Count0(t−1) and Count1(t−1)

are greater than q and, therefore, equal. In the canceling situation, there must

exist a time instant τ̄ ≤ t−1 such that Count0(τ̄ −1) < q, Count1(τ̄ −1) < q and

Count0(τ) = Count1(τ) ≥ q for all τ ∈ {τ̄ + 1, . . . , t − 1}. In other words, both

counters cross the threshold q at the same time instant τ̄ reaching the same value,

that is, Count0(τ̄) = Count1(τ̄), and, for time τ ∈ {τ̄ + 1, . . . , t− 1}, the number

n0(τ) of SDMs deciding in favor of H0 at time τ and the number n1(τ) of SDMs

deciding in favor of H1 at time τ cancel each other out, that is, n0(τ) = n1(τ).

In what follows we study the probability of the simple and canceling situa-
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tions. To keep track of both possible set of events, we introduce four probability

functions, α, β, ᾱ, β̄. The functions α and β characterize the simple situation,

while ᾱ and β̄ characterize the canceling situation. First, for the simple situation,

define the probability function α : N× {0, . . . , q − 1} × {0, . . . , q − 1} → [0, 1] as

follows: given a group of s0 + s1 SDMs, α(t, s0, s1) is the probability that

1. all the s0 + s1 SDMs have provided a decision up to time t; and

2. considering the variables Count0 and Count1 restricted to this group of

s0 + s1 SDMs , Count0(t) = s0 and Count1(t) = s1.

Also, define the probability function β1|j : N × {0, . . . , q − 1} × {0, . . . , q − 1} →

[0, 1], j ∈ {0, 1} as follows: given a group of N − (s0 + s1) SDMs, β1|j(t, s0, s1) is

the probability that

1. no SDMs have provided a decision up to time t− 1; and

2. considering the variables Count0 and Count1 restricted to this group of

N−(s0+s1) SDMs, Count0(t)+s0 < Count1(t)+s1, and Count1(t)+s1 ≥ q.

Similarly, it is straightforward to define the probabilities β0|j, j ∈ {0, 1}.

Second, for the canceling situation, define the probability function ᾱ : N ×

{q, . . . , bN/2c} → [0, 1] as follows: given a group of 2s SDMs, ᾱ(t, s) is the prob-

ability that
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1. all the 2s SDMs have provided a decision up to time t; and

2. there exists τ̄ ≤ t such that, considering the variables Count0 and Count1

restricted to this group of 2s SDMs

• Count0(τ̄ − 1) < q and Count1(τ̄ − 1) < q;

• Count0(τ) = Count1(τ) ≥ q for all τ ≥ τ̄ .

Also, define the probability function β̄1|j : N × {q, . . . bN/2c} → [0, 1], j ∈ {0, 1}

as follows: given a group of N − 2s SDMs, β̄1|j(t, s) is the probability that

1. no SDMs have provided a decision up to time t− 1; and

2. at time t the number of SDMs providing a decision in favor of H1 is strictly

greater of the number of SDMs providing a decision in favor of H0.

Similarly, it is straightforward to define the probabilities β̄0|j, j ∈ {0, 1}.

Note that, for simplicity, we do not explicitly keep track of the dependence of

the probabilities β and β̄ upon the numbers N and q. The following proposition

shows how to compute the probabilities
{
pi|j(t;N, q)

}∞
t=1

, i, j ∈ {0, 1}, starting

from the above definitions.

Proposition 2.3.1 ( q out of N: a recursive formula) Consider a group

of N SDMs, running the q out of N SDA algorithm. Without loss of generality,
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assume H1 is the correct hypothesis. Then, for i ∈ {0, 1}, we have, for t = 1,

pi|1(1;N, q) = βi|1(1, 0, 0), (2.8)

and, for t ≥ 2,

pi|1(t;N, q) =

q−1∑
s0=0

q−1∑
s1=0

(
N

s1 + s0

)
α(t− 1, s0, s1)βi|1(t, s0, s1) (2.9)

+

bN/2c∑
s=q

(
N

2s

)
ᾱ(t− 1, s)β̄i|1(t, s). (2.10)

Proof: The proof that the formula in (2.8) hold true follows trivially form

the definition of the quantities β1|1(1, 0, 0) and β0|1(1, 0, 0). We start by providing

three useful definitions.

First, let Et denote the event that the SDA with the q out of N rule provides

its decision at time t in favor of H1.

Second, for s0 and s1 such that 0 ≤ s0, s1 ≤ q− 1, let Es0,s1,t denote the event

such that

1. there are s0 SDMs that have decided in favor of H0 up to time t− 1;

2. there are s1 SDMs that have decided in favor of H1 up to time t− 1;

3. there exist two positive integer number r0 and r1 such that

• s0 + r0 < s1 + r1 and s1 + r1 ≥ q.
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• at time t, r0 SDMs decides in favor of H0 while r1 SDMs decides in

favor of H1

Third, for q ≤ s ≤ bN/2c, let Es,t denote the event such that

1. 2s SDMs have provided their decision up to time t − 1 balancing their de-

cision, i.e., there exists τ̄ ≤ t − 1 with the properties that, considering the

variables Count− and Count+ restricted to these 2s SDMs

• Count0(τ) < q, Count1(τ) < q, for 1 ≤ τ ≤ τ̄ − 1;

• Count0(τ) = Count1(τ) for τ̄ ≤ τ ≤ t− 1;

• Count0(t− 1) = Count1(t− 1) = s.

2. at time t the number of SDMs providing their decision in favor of H1 is

strictly greater than the number of SDMs deciding in favor of H0.

Observe that

Et =

(
∪

0≤s0,s1≤q−1
Es0,s1,t

)⋃(
∪

q≤s≤bN/2c
Es,t

)
.

Since Es0,s1,t, 0 ≤ s0, s1 ≤ q− 1, and Es,t, q ≤ s ≤ bN/2c are disjoint sets, we can

write

P [Et] =
∑

0≤s0,s1≤q−1

P [Es0,s1,t] +
∑

q≤s≤bN/2c

P [Es,t] . (2.11)
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Observe that, according to the definitions of α(t−1, s0, s1), ᾱ(t−1, s), β1|1(t, s0, s1)

and β̄1|1(t, s), provided above,

P [Es0,s1,t] =

(
N

s1 + s0

)
α(t− 1, s0, s1)β1|1(t, s0, s1) (2.12)

and that

P [Es,t] =

(
N

2s

)
ᾱ(t− 1, s)β̄1|1(t, s). (2.13)

Plugging equations (2.12) and (2.13) into equation (2.11) concludes the proof of

the Theorem. Formulas, similar to the ones in (2.8) and (2.9) can be provided

for computing also the probabilities
{
pi|0(t;N, q)

}∞
t=1

, i ∈ {0, 1}.

As far as the probabilities α(t, s0, s1), ᾱ(t, s), βi|j(t, s0, s1), β̄i|j(t, s), i, j ∈

{0, 1}, are concerned, we now provide expressions to calculate them.

Proposition 2.3.2 Consider a group of N SDMs, running the q out of N SDA

algorithm for 1 ≤ q ≤ bN/2c. Without loss of generality, assume H1 is the correct

hypothesis. For i ∈ {0, 1}, let πi|1 : N→ [0, 1] denote the cumulative probability up

to time t that a single SDM provides the decision Hi, given that H1 is the correct

hypothesis, i.e.,

πi|1(t) =
t∑

s=1

pi|1(t). (2.14)

For t ∈ N, s0, s1 ∈ {1, . . . , q−1}, s ∈ {q, . . . , bN/2c}, the probabilities α(t, s0, s1),

ᾱ(t, s), β1|1(t, s0, s1), and β̄1|1(t, s) satisfy the following relationships (explicit for
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α, β, β̄ and recursive for ᾱ):

α(t, s0, s1) =

(
s0 + s1

s0

)
πs00|1(t)πs11|1(t),

ᾱ(t, s) =

q−1∑
s0=0

q−1∑
s1=0

(
2s

s0 + s1

)(
2s− s0 − s1

s− s0

)
α(t− 1, s0, s1)ps−s00|1 (t)ps−s11|1 (t)

+
s∑

h=q

(
2s

2h

)(
2s− 2h

s− h

)
ᾱ(t− 1, h)ps−h0|1 (t)ps−h1|1 (t),

β1|1(t, s0, s1) =
N−s̄∑

h1=q−s1

(
N − s̄
h1

)
ph1

1|1(t)

×

[
m∑

h0=0

(
N − s̄− h1

h0

)
ph0

0|1(t)
(
1− π1|1(t)− π0|1(t)

)N−s̄−h0−h1

]
,

β̄1|1(t, s) =
N−2s∑
h1=1

(
N − 2s

h1

)
ph1

1|1(t)

×

[
m̄∑

h0=0

(
N − 2s− h1

h0

)
ph0

0|1(t)(1− π1|1(t)− π0|1(t))N−2s−h0−h1

]
,

where s̄ = s0 + s1, m = min{h1 + s1 − s0 − 1, N − (s0 + s1) − h1} and m̄ =

min{h1− 1, N − 2s− h1}. Moreover, corresponding relationships for β0|1(t, s0, s1)

and β̄0|1(t, s) are obtained by exchanging the roles of p1|1(t) with p0|1(t) in the

relationships for β1|1(t, s0, s1) and β̄1|1(t, s).

Proof: The evaluation of α(t, s0, s1) follows from standard probabilistic ar-

guments. Indeed, observe that, given a first group of s0 SDMs and a second group
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of s1 SDMs, the probability that all the SDMs of the first group have decided in

favor of H0 up to time t and all the SDMs of the second group have decided in

favor of H1 up to time t is given by πs00|1(t)πs11|1(t). The desired result follows from

the fact that there are
(
s1+s0
s0

)
ways of dividing a group of s0 + s1 SDMs into two

subgroups of s0 and s1 SDMs.

Consider now ᾱ(t, s). Let Eᾱ(t,s) denote the event of which ᾱ(t, s) is the prob-

ability of occurring, that is, the event that, given a group of 2s SDMs,

1. all the 2s SDMs have provided a decision up to time t; and

2. there exists τ̄ ≤ t such that, considering the variables Count0 and Count1

restricted to this group of 2s SDMs

• Count0(τ̄ − 1) < q and Count1(τ̄ − 1) < q;

• Count0(τ) = Count1(τ) ≥ q for all τ ≥ τ̄ .

Now, for a group of 2s SDMs, for 0 ≤ s0, s1 ≤ q−1, let Et−1,s0,s1 denote the event

that

1. s0 (resp. s1) SDMs have decided in favor of H0 (resp. H1) up to time t− 1;

2. s− s0 (resp. s− s1) SDMs decide in favor of H0 (resp. H1) at time t.

Observing that for s0 + s1 assigned SDMs the probability that fact (i) is verified
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is given by α(t− 1, s0, s1) we can write that

P[Et−1,s0,s1 ] =

(
2s

s0 + s1

)(
2s− s0 − s1

s− s0

)
α(t− 1, s0, s1)ps−s00|1 (t)ps−s11|1 (t).

Consider again a group of 2s SDMs and for q ≤ h ≤ s let Ēt−1,h denote the event

that

1. 2h SDMs have provided a decision up to time t− 1;

2. there exists τ̄ ≤ t−1 such that, considering the variables Count0 and Count1

restricted to the group of 2h SDMs that have already provided a decision,

• Count0(τ̄ − 1) < q and Count1(τ̄ − 1) < q;

• Count0(τ) = Count1(τ) ≥ q for all τ ≥ τ̄ ; and

• Count0(t− 1) = Count1(t− 1) = h;

3. at time instant t, s− h SDMs decide in favor of H0 and s− h SDMs decide

in favor of H1.

Observing that for 2h assigned SDMs the probability that fact (i) and fact (ii) are

verified is given by ᾱ(t− 1, h), we can write that

P[Ēt−1,h] =

(
2s

2h

)(
2s− 2h

s− h

)
ᾱ(t− 1, h)ps−h0|1 (t)ps−h1|1 (t).

Observe that

Eᾱ(t,s) =

(
q⋃

s0=0

q⋃
s1=0

Et−1,s0,s1

)⋃bN/2c⋃
h=q

Ēt−1,h

 .
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Since the events Et−1,s0,s1 , 0 ≤ s0, s1 < q and Ēt−1,h, q ≤ h ≤ bN/2c, are all

disjoint we have that

P[Eᾱ(t,s)] =

q−1∑
s0=0

q−1∑
s1=0

P[Et−1,s0,s1 ] +
s∑

h=q

P[Ēt−1,h].

Plugging the expressions of P[Et−1,s0,s1 ] and P[Ēt−1,h] in the above equality gives

the recursive relationship for computing ᾱ(t, s).

Consider now the probability β1|1(t, s0, s1). Recall that this probability refers

to a group of N−(s0+s1) SDMs. Let us introduce some notations. Let Eβ1|1(t,s0,s1)

denote the event of which β1|1(t, s0, s1) represents the probability of occurring and

let Et;h1,s1,h0,s0 denote the event that, at time t

• h1 SDMs decides in favor of H1;

• h0 SDMs decides in favor of H0;

• the remaining N − (s0 + s1)− (h0 +h1) do not provide a decision up to time

t.

Observe that the above event is well-defined if and only if h0 +h1 ≤ N − (s0 +s1).

Moreover Et;h1,s1,h0,s0 contributes to β1|1(t, s0, s1), i.e., Et;h1,s1,h0,s0 ⊆ Eβ1|1(t,s0,s1)

if and only if h1 ≥ q − s1 and h0 < h1 + s1 − s0 (the necessity of these two

inequalities follows directly from the definition of β1|1(t, s0, s1)). Considering the

three inequalities h0 + h1 ≤ N − (s0 + s1), h1 ≥ q − s1 and h0 < h1 + s1 − s0, it
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follows that

Eβ1|1(t,s0,s1) =
⋃{

Et;h1,s1,h0,s0 | q − s1 ≤ h1 ≤ N − (s0 + s1) and h0 ≤ m
}
,

where m = min{h1 + s1 − s0 − 1, N − (s0 + s1) − h1}. To conclude it suffices to

observe that the events Et;h1,s1,h0,s0 for q − s1 ≤ h1 ≤ N − (s0 + s1) and h0 ≤ m

are disjoint events and that

P[Et;h1,s1,h0,s0 ] =

(
N − s̄
j

)
ph1

1|1(t)

(
N − s̄− h1

h0

)
ph0

0|1(t)
(
1− π1|1(t)− π0|1(t)

)N−s̄−h0−h1 ,

where s̄ = s0 + s1.

The probability β̄1|1(t, s) can be computed reasoning similarly to β1|1(t, s0, s1).

Now we describe some properties of the above expressions in order to assess

the computational complexity required by the formulas introduced in Proposition

2.3.1 in order to compute
{
pi|j(t;N, q)

}∞
t=1

, i, j ∈ {0, 1}. From the expressions in

Proposition 2.3.2 we observe that

• α(t, s0, s1) is a function of π0|1(t) and π1|1(t);

• ᾱ(t, s) is a function of α(t− 1, s0, s1), 0 ≤ s0, s1 ≤ q − 1, p0|1(t), p1|1(t) and

ᾱ(t− 1, h), q ≤ h ≤ s;

• βi|1(t, s0, s1), β̄i|1, i ∈ {0, 1}, are functions of p0|1(t), p1|1(t), π0|1(t) and

π1|1(t).
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Moreover from equation (2.14) we have that πi|j(t) is a function of πi|j(t− 1) and

pi|j(t).

Based on the above observations, we deduce that p0|1(t;N, q) and p1|1(t;N, q)

can be seen as the output of a dynamical system having the (bN/2c − q + 3)-th

dimensional vector with components the variables π0|1(t−1), π1|1(t−1), ᾱ(t−1, s),

q ≤ h ≤ bN/2c as states and the two dimensional vector with components p0|1(t),

p1|1(t), as inputs. As a consequence, it follows that the iterative method we

propose to compute
{
pi|j(t;N, q)

}∞
t=1

, i, j ∈ {0, 1}, requires keeping in memory a

number of variables which grows linearly with the number of SDMs.

2.3.2 Case bN/2c+ 1 ≤ q ≤ N

The probabilities pi|j(t;N, q), i, j ∈ {0, 1} in the case where bN/2c + 1 ≤

q ≤ N can be computed according to the expressions reported in the following

Proposition.

Proposition 2.3.3 Consider a group of N SDMs, running the q out of N SDA

algorithm for bN/2c + 1 ≤ q ≤ N . Without loss of generality, assume H1 is the

correct hypothesis. For i ∈ {0, 1}, let πi|1 : N→ [0, 1] be defined as (2.14). Then,

for i ∈ {0, 1}, we have for t = 1

pi|1(1;N, q) =
N∑
h=q

(
N

h

)
phi|1(1)

(
1− pi|1(1)

)N−h
(2.15)
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and for t ≥ 2

pi|1(t;N, q) =

q−1∑
k=0

(
N

k

)
πki|1(t− 1)

N−k∑
h=q−k

(
N − k
h

)
phi|1(t)

(
1− πi|1(t)

)N−(h+k)
.

(2.16)

Proof: Let t = 1. Since q > N/2, the probability that the fusion center

decides in favor of Hi at time t = 1 is given by the probability that al least q

SDMs decide in favor of Hi at time 1. From standard combinatorics arguments

this probability is given by (2.15).

If t > 1, the probability that the fusion center decides in favor of Hi at time t

is given by the probability that h SDMs, 0 ≤ h < q, have decided in favor of Hi

up to time t − 1, and that at least q − h SDMs decide in favor of Hi at time t.

Formally let E
(i)
t denote the event that the fusion center provides its decision in

favor of Hi at time t and let E
(i)
h,t;k,t−1 denote the event that k SDMs have decided

in favor of Hi up to time t−1 and h SDMs decide in favor of Hi at time t. Observe

that

E
(i)
t =

q−1⋃
k=0

N−k⋃
h=q−k

E
(i)
h,t;k,t−1.

Since E
(i)
h,t;k,t−1 are disjoint sets it follows that

P
[
E

(i)
t

]
=

q−1∑
k=0

N−k∑
h=q−k

P
[
E

(i)
h,t;k,t−1

]
.
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The proof is concluded by observing that

P
[
E

(i)
h,t;k,t−1

]
=

(
N

k

)
πki|1(t− 1)

(
N − k
h

)
phi|1(t)

(
1− πi|1(t)

)N−(h+k)
.

Regarding the complexity of the expressions in (2.16) it is easy to see that the

probabilities pi|j(t;N, q), i, j ∈ {0, 1} can be computed as the output of a dynami-

cal system having the two dimensional vector with components π0|1(t−1), π1|1(t−

1) as state and the two dimensional vector with components p0|1(t), p1|1(t) as in-

put. In this case the dimension of the system describing the evolution of the

desired probabilities is independent of N .

2.4 Scalability analysis of the fastest and major-

ity sequential aggregation rules

The goal of this section is to provide some theoretical results characterizing

the probabilities of being correct and wrong for a group implementing the q-out-

of-N SDA rule. We also aim to characterize the probability with which such a

group fails to reach a decision in addition to the time it takes for this group to

stop running any test. In Sections 2.4.1 and 2.5.1 we consider the fastest and

the majority rules, namely the thresholds q = 1 and q = dN/2e, respectively;
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we analyze how these two counting rules behave for increasing values of N . In

Section 2.5.2, we study how these quantities vary with arbitrary values q and fixed

values of N .

2.4.1 The fastest rule for varying values of N

In this section we provide interesting characterizations of accuracy and ex-

pected time under the fastest rule, i.e., the counting rules with threshold q = 1.

For simplicity we restrict to the case where the group has the almost-sure decision

property. In particular we assume the following two properties.

Assumption 2.5 The number N of SDMs is odd and the SDMs satisfy the

almost-sure decision property.

Here is the main result of this subsection. Recall that p
(f)
w|1(N) is the probability

of wrong decision by a group of N SDMs implementing the fastest rule (assuming

H1 is the correct hypothesis).

Proposition 2.5.1 (Accuracy and expected time under the fastest rule)

Consider the q out of N SDA algorithm under Assumption 2.5. Assume q = 1,

that is, adopt the fastest SDA rule. Without loss of generality, assume H1 is the

correct hypothesis. Define the earliest possible decision time

t̄ := min{t ∈ N | either p1|1(t) 6= 0 or p0|1(t) 6= 0}. (2.17)
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Then the probability of error satisfies

lim
N→∞

p
(f)
w|1(N) =



0, if p1|1(t̄) > p0|1(t̄),

1, if p1|1(t̄) < p0|1(t̄),

1
2
, if p1|1(t̄) = p0|1(t̄),

(2.18)

and the expected decision time satisfies

lim
N→∞

E [T |H1, N, q = 1] = t̄. (2.19)

Proof: We start by observing that in the case where the fastest rule is

applied, formulas in (2.9) simplifies to

p1|1(t;N, q = 1) = β1|1(t, 0, 0), for all t ∈ N.

Now, since p1|1(t) = p0|1(t) = 0 for t < t̄, it follows that

p1|1(t;N, q = 1) = β1|1(t, 0, 0) = 0, t < t̄.

Moreover we have π1|1(t̄) = p1|1(t̄) and π0|1(t̄) = p0|1(t̄). According to the definition

of the probability β1|1(t̄, 0, 0), we write

β1|1(t̄, 0, 0) =
N∑
j=1

(
N

j

)
pj1|1(t̄)

{
m∑
i=0

(
N − j
i

)
pi0|1(t̄)

(
1− p1|1(t̄)− p0|1(t̄)

)N−i−j}
,
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where m = min {j − 1, N − j}, or equivalently

β1|1(t̄, 0, 0) =

bN/2c∑
j=1

(
N

j

)
pj1|1(t̄)

{
j−1∑
i=0

(
N − j
i

)
pi0|1(t̄)

(
1− p1|1(t̄)− p0|1(t̄)

)N−i−j}

+
N∑

j=dN/2e

(
N

j

)
pj1|1(t̄)

{
N−j∑
i=0

(
N − j
i

)
pi0|1(t̄)

(
1− p1|1(t̄)− p0|1(t̄)

)N−i−j}

=

bN/2c∑
j=1

(
N

j

)
pj1|1(t̄)

{
j−1∑
i=0

(
N − j
i

)
pi0|1(t̄)

(
1− p1|1(t̄)− p0|1(t̄)

)N−i−j}

+
N∑

j=dN/2e

(
N

j

)
pj1|1(t̄)

(
1− p1|1(t̄)

)N−j
. (2.20)

An analogous expression for β0|1(t̄, 0, 0) can be obtained by exchanging the roles

of p0|1(t̄) and p0|1(t̄) in equation (2.20). The rest of the proof is articulated as

follows. First, we prove that

lim
N→∞

(
p1|1(t̄;N, q = 1) + p0|1(t̄;N, q = 1)

)
= lim

N→∞

(
β1|1(t̄, 0, 0) + β0|1(t̄, 0, 0)

)
= 1.

(2.21)

This fact implies that equation (2.19) holds and that, if p1|1(t̄) = p0|1(t̄), then

limN→∞ p
(f)
w|1(N) = 1/2. Indeed

lim
N→∞

E [T |Hj, N, q = 1] = lim
N→∞

∞∑
t=1

t(p0|j(t;N, q = 1) + pi|j(t;N, q = 1)) = t̄.

Moreover, if p1|1(t̄) = p0|1(t̄), then also (β1|1(t̄, 0, 0) = β0|1(t̄, 0, 0).

Second, we prove that p1|1(t̄) > p0|1(t̄) implies limN→∞ β0|1(t̄, 0, 0) = 0. As a

consequence, we have that limN→∞ β1|1(t̄, 0, 0) = 1 or equivalently that

limN→∞ p
(f)
w|1(N) = 0.
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To show equation (2.21), we consider the event the group is not giving the

decision at time t̄. We aim to show that the probability of this event goes to zero

as N →∞. Indeed we have that

P [T 6= t̄] = P [T > t̄] = 1−
(
p1|1(t̄, N) + p0|1(t̄, N)

)
,

and, hence, P [T > t̄] = 0 implies p1|1(t̄, N) + p0|1(t̄, N) = 1. Observe that

P [T > t̄] =

bN
2
c∑

j=0

(
N

2j

)(
2j

j

)
pi|1(t̄)jp0|i(t̄)

j
(

1− pi|1(t̄)− p0|i(t̄)
)N−2j

.

For simplicity of notation, let us denote x := p0|1(t̄) and y := p0|1(t̄). We distin-

guish two cases, (i) x 6= y and (ii) x = y.

Case x 6= y. We show that in this case there exists ε̄ > 0, depending only on

x and y, such that (
2j

j

)
xjyj < (x+ y − ε̄)2j , for all j ≥ 1. (2.22)

First of all observe that, since
(

2j
j

)
xjyj is just one term of the Newton binomial

expansion of (x+ y)2j, we know that
(

2j
j

)
xjyj < (x+ y)2j for all j ∈ N. Define

ε(j) := x+ y−
(

2j
j

)1/2j√
xy and observe that proving equation (2.22) is equivalent

to proving limj→∞ ε(j) > 0. Indeed if limj→∞ ε(j) > 0, then infj∈N ε(j) > 0 and

thereby we can define ε̄ := infj∈N ε(j). To prove the inequality limj→∞ ε(j) > 0,

let us compute limj→∞
(

2j
j

)1/(2j)
. By applying Stirling’s formula we can write

lim
j→∞

(
2j

j

)1/(2j)

= lim
j→∞

(√
2π2j

(
2j
e

)2j

2πj
(
j
e

)2j

)1/(2j)

=

(√
1

πj2
22j

)1/(2j)

= 2
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and, in turn, limj→∞ ε(j) = x+y−2
√
xy. Clearly, if x 6= y, then x+y−2

√
xy > 0.

Defining ε̄ := infj∈N ε(j), we can write

lim
N→∞

bN
2
c∑

j=0

(
N

2j

)(
2j

j

)
xjyj (1− x− y)N−2j

≤ lim
N→∞

bN
2
c∑

j=0

(
N

2j

)
(x+ y − ε̄)2j (1− x− y)N−2j

≤ lim
N→∞

N∑
j=0

(
N

j

)
(x+ y − ε̄)j (1− x− y)N−j

= lim
N→∞

(1− ε̄)N = 0,

which implies also limN→∞ P [T > t̄] = 0.

Case x = y. To study this case, let y = x+ ξ and let ξ → 0. In this case, the

probability of the decision time exceeding t̄ becomes

f(x,N, ξ) = P [T > t̄] =

bN
2
c∑

j=0

(
N

2j

)(
2j

j

)
xj(x+ ξ)j (1− 2x− ξ)N−2j .

Consider limξ→0 f(x,N, ξ). We have that

lim
ξ→0

f(x,N, ξ) =

bN
2
c∑

j=0

(
N

2j

)(
2j

j

)
x2j (1− 2x)N−2j

<

bN
2
c∑

j=0

(
N

2j

)
22jx2j (1− 2x)N−2j < 1,

where the first inequality follows from
(

2j
j

)
<
∑2j

l=0

(
2j
l

)
= 22j, and the second

inequality follows from

bN
2
c∑

j=0

(
N

2j

)
(2x)2j (1− 2x)N−2j <

N∑
2j=0

(
N

2j

)
(2x)2j (1− 2x)N−2j = 1.
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So limξ→0 f(x,N, ξ) exists, and since we know that also limN→∞ f(x,N, ξ) exists,

the limits are exchangeable in limN→∞ limξ→0 f(x,N, ξ) and

lim
N→∞

lim
ξ→0

f(x,N, ε) = lim
ξ→0

lim
N→∞

f(x,N, ξ) = 0.

This concludes the proof of equation (2.21).

Assume now that p1|1(t̄) > p0|1(t̄). We distinguish between the case where

p1|1(t̄) > 1
2

and the case where p0|1(t̄) < p1|1(t̄) ≤ 1
2
.

If p1|1(t̄) > 1
2
, then Lemma B.0.1 implies

lim
N→∞

N∑
j=dN/2e

(
N

j

)
pj1|1(t̄)

(
1− p1|1(t̄)

)N−j
= 1,

and, since limN→∞ β1|1(t̄, 0, 0) > limN→∞
∑N

j=dN/2e
(
N
j

)
pj1|1(t̄)

(
1− p1|1(t̄)

)N−j
, we

have also that limN→∞ β1|1(t̄, 0, 0) = 1.

The case p0|1(t̄) < p1|1(t̄) < 1
2

is more involved. We will see that in this case

limN→∞ β0|1(t̄, 0, 0) = 0. We start by observing that, from Lemma B.0.1,

lim
N→∞

N∑
j=dN

2
e

(
N

j

)
pj1|1(t̄)

(
[1− p1|1(t̄)

)N−j
= 0,

and in turn

lim
N→∞

β1|1(t̄, 0, 0) = lim
N→∞

bN
2
c∑

j=1

(
N

j

)
pj1|1(t̄)

×
( j−1∑
i=0

(
N − j
i

)
pi0|1(t̄)

[
1− p1|1(t̄)− p0|1(t̄)

]N−j−i)
.
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The above expression can be written as follows

lim
N→∞

β1|1(t̄, 0, 0) = lim
N→∞

N−2∑
h=1

( h∑
j=bh

2
c+1

(
N

j

)(
N − j
h− j

)
ph−j0|1 (t̄)pj1|1(t̄)

)

×
(

1−
(
p0|1(t̄)p1|1(t̄)

))N−h
= lim

N→∞

N−2∑
h=1

(
N

h

) h∑
j=bh2c+1

(
h

j

)
ph−j1|1 (t̄)pj0|1(t̄)

×
(

1− p1|1(t̄)− p0|1(t̄)

)N−h
where, for obtaining the second equality we used the fact

(
N
j

)(
N−j
h−j

)
=
(
N
h

)(
h
j

)
.

Similarly,

lim
N→∞

β0|1(t̄, 0, 0)

= lim
N→∞

N−2∑
h=1

(
N

h

) h∑
j=bh2c+1

(
h

j

)
ph−j0|1 (t̄)pj1|1(t̄)

(
1− p1|1(t̄)− p0|1(t̄)

)N−h
.

We prove now that limN→∞ β0|1(t̄, 0, 0) = 0. To do so we will show that there

exists ε̄ depending only on p0|1(t̄) and p1|1(t̄) such that

h∑
j=bh2c+1

(
h

j

)
ph−j0|1 (t̄)pj1|1(t̄) <

(
p0|1(t̄) + p1|1(t̄)− ε̄

)h
.

To do so, let

ε(h) = p0|1(t̄) + p1|1(t̄)− h

√√√√√ h∑
j=bh2c+1

(
h

j

)
ph−j0|1 (t̄)pj1|1(t̄).
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Because h is bounded, one can see that ε(h) > 0 as the sum inside the root is

always smaller than (p0|1(t̄) + p1|1(t̄))h. Also

lim
h→∞

ε(h) =

(
p0|1(t̄) + p1|1(t̄)

)1−
h

√∑h
j=bh2c+1

(
h
j

)
ph−j0|1 (t̄)pj1|1(t̄)

p0|1(t̄) + p1|1(t̄)


=

(
p0|1(t̄) + p1|1(t̄)

)1− h

√√√√∑h
j=bh2c+1

(
h
j

)
ph−j0|1 (t̄)pj1|1(t̄)(

p0|1(t̄) + p1|1(t̄)
)h


= p0|1(t̄) + p1|1(t̄),

as by Lemma B.0.1,

lim
h→∞

∑h
j=bh2c

(
h
j

)
ph−j0|1 (t̄)pj1|1(t̄)(

p0|1(t̄) + p1|1(t̄)
)h = 0.

Since by assumption, p0|1(t̄)+p1|1(t̄) > 0, we have that infh∈N ε(h) > 0. By letting

ε̄ := infh∈N ε(h), we conclude that

lim
N→∞

β0|1(t̄, 0, 0) ≤
N−2∑
h=1

(
N

h

)(
p1|1(t̄) + p0|1(t̄)− ε̄

)(
1− p1|1(t̄)− p0|1(t̄)

)N−h

≤
N∑
h=0

(
N

h

)(
p1|1(t̄) + p0|1(t̄)− ε̄

)(
1− p1|1(t̄)− p0|1(t̄)

)N−h
= (1− ε̄)N = 0.

This concludes the proof.

Remark 2.5.2 The earliest possible decision time t̄ defined in (2.17) is the best

performance that the fastest rule can achieve in terms of number of iterations

required to provide the final decision. �
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2.5.1 The majority rule for varying values of N

We consider now the majority rule, i.e., the counting rule with threshold q =

bN/2c + 1. We start with the following result about the accuracy. Recall that

pw|1 is the probability of wrong decision by a single SDM and that p
(m)
w|1 (N) is the

probability of wrong decision by a group of N SDMs implementing the majority

rule (assuming H1 is the correct hypothesis).

Proposition 2.5.3 (Accuracy under the majority rule) Consider the q out

of N SDA algorithm under Assumption 2.5. Assume q = bN/2c + 1, i.e., the

majority rule is adopted. Without loss of generality, assume H1 is the correct

hypothesis. Then the probability of error satisfies

p
(m)
w|1 (N) =

N∑
j=bN/2c+1

(
N

j

)
pjw|1

(
1− pw|1

)N−j
. (2.23)

According to (2.23), the following characterization follows:

1. if 0 ≤ pw|1 < 1/2, then p
(m)
w|1 (N) is a monotonic decreasing function of N

that approaches 0 asymptotically, that is,

p
(m)
w|1 (N) > p

(m)
w|1 (N + 2) and lim

N→∞
p

(m)
w|1 (N) = 0;

2. if 1/2 < pw|1 ≤ 1, then p
(m)
w|1 (N) is a monotonic increasing function of N

that approaches 1 asymptotically, that is,

p
(m)
w|1 (N) < p

(m)
w|1 (N + 2) and lim

N→∞
p

(m)
w|1 (N) = 1;
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3. if pw|1 = 1/2, then p
(m)
w|1 (N) = 1/2;

4. if pw|1 < 1/4, then

p
(m)
w|1 (N) =

(
N

dN
2
e

)
p
dN

2
e

w|1 + o
(
p
dN

2
e

w|1

)
=
√
N/(2π) (4pw|1)d

N
2
e+ o

(
(4pw|1)d

N
2
e
)
.

(2.24)

Proof: We start by observing that

t∑
s=1

p0|1(s;N, q = bN/2c+ 1) =
N∑

j=bN/2c+1

(
N

j

)
π0|1(t)j

(
1− π0|1(t)

)N−j
.

Since p
(m)
w|1 (N) =

∑∞
s=1 p0|1(s;N, q = bN/2c+ 1), taking the limit for t→∞ in the

above expression leads to

p
(m)
w|1 (N) =

N∑
j=dN

2
e

(
N

j

)
pjw|1

(
1− pw|1

)N−j
.

Facts (i), (ii), (iii) follow directly from Lemma B.0.1 in Appendix B applied

to equation (2.23). Equation (2.24) is a consequence of the Taylor expansion

of (2.23):

N∑
j=dN

2
e

(
N

j

)
pjw|1(1− pw|1)N−j =

N∑
j=dN

2
e

(
N

j

)
pjw|1(1− (N − j)pw|1 + o(pw|1))

=

(
N

dN
2
e

)
p
dN

2
e

w|1 + o
(
p
dN

2
e+1

w|1

)
.

Finally, Stirling’s Formula implies limN→∞
(
N
dN

2
e

)
=
√

2N/π 2N and, in turn, the

final expansion follows from 2N = 4dN/2e/2.
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We discuss now the expected time required by the collective SDA algorithm to

provide a decision when the majority rule is adopted. Our analysis is based again

on Assumption 2.5 and on the assumption that H1 is the correct hypothesis. We

distinguish four cases based on different properties that the probabilities of wrong

and correct decision of the single SDM might have:

(A1) the probability of correct decision is greater than the probability of wrong

decision, i.e., pc|1 > pw|1;

(A2) the probability of correct decision is equal to the probability of wrong deci-

sion, i.e., pc|1 = pw|1 = 1/2 and there exist t0 and t1 such that π0|1(t0) = 1/2

and π1|1(t1) = 1/2;

(A3) the probability of correct decision is equal to the probability of wrong de-

cision, i.e., pc|1 = pw|1 = 1/2 and there exists t1 such that π1|1(t1) = 1/2,

while π0|1(t) < 1/2 for all t ∈ N and limt→∞ π0|1(t) = 1/2;

(A4) the probability of correct decision is equal to the probability of wrong de-

cision, i.e., pc|1 = pw|1 = 1/2, and π0|1(t) < 1/2, π1|1(t) < 1/2 for all t ∈ N

and limt→∞ π0|1 = limt→∞ π1|1(t) = 1/2.

Note that, since Assumption 2.5 implies pc|1 + pw|1 = 1, the probability of

correct decision in case (A1) satisfies pc|1 > 1/2. Hence, in case (A1) and under
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Assumption 2.5, we define t< 1
2

:= max{t ∈ N | π1|1(t) < 1/2} and t> 1
2

:= min{t ∈

N | π1|1(t) > 1/2}.

Proposition 2.5.4 (Expected time under the majority rule) Consider the

q out of N SDA algorithm under Assumption 2.5. Assume q = bN/2c + 1, that

is, adopt the majority rule. Without loss of generality, assume H1 is the correct

hypothesis. Define the SDM properties (A1)-(A4) and the decision times t0, t1,

t< 1
2

and t> 1
2

as above. Then the expected decision time satisfies

lim
N→∞

E
[
T |H1, N, q = dN/2e

]
=



t< 1
2

+ t> 1
2

+ 1

2
, if SDM satisfies (A1),

t1 + t0
2

, if SDM satisfies (A2),

+∞, if SDM satisfies (A3) or (A4).

Proof: We start by proving the equality for case (A1). Since, in this case we

are assuming pc|1 > pw|1, the definitions of t< 1
2

and t> 1
2

implies that π1|1(t) = 1/2

for all t< 1
2
< t < t> 1

2
. Observe that

t∑
s=1

p1|1(s;N, q = bN/2c+ 1) =
N∑

h=bN2 c

(
N

h

)
πh1|1(t)

(
1− π1|1(t)

)N−h
.
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Hence Lemma B.0.1 implies

lim
N→∞

t∑
s=1

p1|1(s;N, q = bN/2c+ 1) =



0, if t ≤ t< 1
2
,

1, if t ≥ t> 1
2
,

1
2
, if t< 1

2
< t < t> 1

2
,

and, in turn, that

lim
N→∞

p1|1(t;N, q = bN/2c+ 1) =


1/2, if t = t< 1

2
+ 1 and t = t> 1

2
,

0, otherwise.

It follows

lim
N→∞

E [T |H1, N, q = bN/2c+ 1]

= lim
N→∞

∞∑
t=0

t
(
p0|1(t;N, q = bN/2c+ 1) + p1|1(t;N, q = bN/2c+ 1)

)
=

1

2

(
t< 1

2
+ 1 + t> 1

2

)
.

This concludes the proof of the equality for case (A1).

We consider now the case (A2). Reasoning similarly to the previous case we

have that

lim
N→∞

p1|1(t1;N, q = bN/2c+ 1) = 1/2and lim
N→∞

p0|1(t0;N, q = bN/2c+ 1) = 1/2,

from which it easily follows that limN→∞ E [T |H1, N, q = bN/2c+ 1] = 1
2

(t0 + t1).
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For case (A3), it suffices to note the following implication of Lemma B.0.1: if,

for a given i ∈ {0, 1}, we have πi|1(t) < 1/2 for all t ∈ N, then limN→∞ pi|1(t;N, q =

bN/2c + 1) = 0 for all t ∈ N. The analysis of the case (A4) is analogous to that

of case (A3).

Remark 2.5.5 The cases where pw|1 > pc|1 and where there exists t0 such that

π0|1(t0) = 1/2 while π1|1(t) < 1/2 for all t ∈ N and limt→∞ π1|1(t) = 1/2, can

be analyzed similarly to the cases (A1) and (A3). Moreover, the most recurrent

situation in applications is the one where there exists a time instant t such that

π1|1(t) < 1/2 and π1|1(t+1) > 1/2, which is equivalent to the above case (A1) with

t> 1
2

= t< 1
2
+1. In this situation we trivially have limN→∞ E [T |H1, N, q = dN/2e] =

t> 1
2
. �

2.5.2 Fixed N and varying q

We start with a simple result characterizing the expected decision time.

Proposition 2.5.6 Given a group of N SDMs running the q out of N SDA, for

j ∈ {0, 1},

E[T |Hj, N, q = 1] ≤ E[T |Hj, N, q = 2] ≤ · · · ≤ E[T |Hj, N, q = N ].

The above proposition states that the expected number of iterations required

to provide a decision constitutes a nondecreasing sequence for increasing value of
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q. Similar monotonicity results hold true also for pc|j(N, q), pw|j(N, q), pnd|j(N, q)

even though restricted only to bN/2c+ 1 ≤ q ≤ N .

Proposition 2.5.7 Given a group of N SDMs running the q out of N SDA, for

j ∈ {0, 1},

pc|j(N, q = bN/2c+ 1) ≥ pc|j(N, q = bN/2c+ 2) ≥ · · · ≥ pc|j(N, q = N),

pw|j(N, q = bN/2c+ 1) ≥ pw|j(N, q = bN/2c+ 2) ≥ · · · ≥ pw|j(N, q = N),

pnd|j(N, q = bN/2c+ 1) ≤ pnd|j(N, q = bN/2c+ 2) ≤ · · · ≤ pnd|j(N, q = N).

We believe that similar monotonic results hold true also for 1 ≤ q ≤ bN/2c. In

particular, here is our conjecture: if N is odd, the single SDM has the almost-sure

decision and the single SDM is more likely to provide the correct decision than

the wrong decision, that is, pc|j + pw|j = 1 and pc|j > pw|j, then

pc|j(N, q = 1) ≤ pc|j(N, q = 2) ≤ · · · ≤ pc|j(N, q = bN/2c+ 1),

pw|j(N, q = 1) ≥ pw|j(N, q = 2) ≥ · · · ≥ pw|j(N, q = bN/2c+ 1).

These chains of inequalities are numerically verified in some examples in Sec-

tion 2.6.
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2.6 Numerical analysis

The goal of this section is to numerically analyze the models and methods

described in previous sections. In all the examples, we assume that the sequential

binary test run by each SDMs is the classical sequential probability ratio test

(SPRT) developed in 1943 by Abraham Wald. To fix some notation, we start

by briefly reviewing the SPRT. Let X be a random variable with distribution

f(x; θ) and assume the goal is to test the null hypothesis H0 : θ = θ0 against the

alternative hypothesis H1 : θ = θ1. For i ∈ {1, . . . , N}, the i-th SDM takes the

observations xi(1), xi(2), x(3), . . . , which are assumed to be independent of each

other and from the observations taken by all the other SDMs. The log-likelihood

ratio associated to the observation xi(t) is

λi(t) = log
f(xi(t), θ1)

f(xi(t), θ0)
. (2.25)

Accordingly, let Λi(t) =
∑t

h=1 λi(h) denote the sum of the log-likelihoods up to

time instant t. The i-th SDM continues to sample as long as η0 < Λi(t) < η1,

where η0 and η1 are two pre-assigned thresholds; instead sampling is stopped the

first time this inequality is violated. If Λi(t) < η0, then the i-th SDM decides for

θ = θ0. If Λi(t) > η1, then the i-th SDM decides for θ = θ1.

To guarantee the homogeneity property we assume that all the SDMs have

the same thresholds η0 and η1. The threshold values are related to the accuracy
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of the SPRT as described in the classic Wald’s method [3]. We shortly review

this method next. Assume that, for the single SDM, we want to set the thresh-

olds η0 and η1 in such a way that the probabilities of misdetection (saying H0

when H1 is correct, i.e., P[say H0|H1]) and of false alarm (saying H1 when H0

is correct, i.e., P[say H1|H0]) are equal to some pre-assigned values pmisdetection

and pfalse alarm. Wald proved that the inequalities P[say H0 |H1] ≤ pmisdetection and

P[say H1 |H0] ≤ pfalse alarm are achieved when η0 and η1 satisfy η0 ≤ log pmisdetection

1−pfalse alarm

and η1 ≥ log 1−pmisdetection

pfalse alarm
. As customary, we adopt the equality sign in these in-

equalities for the design of η0 and η1. Specifically, in all our examples we assume

that pmisdetection = pfalse alarm = 0.1 and, in turn, that η1 = −η0 = log 9.

We provide numerical results for observations described by both discrete and

continuous random variables. In case X is a discrete random variable, we assume

that f(x; θ) is a binomial distribution

f(x; θ) =


(
n
x

)
θx(1− θ)n−x, if x ∈ {0, 1, . . . , n} ,

0, otherwise,

(2.26)

where n is a positive integer number. In case X is a continuous random variable,

we assume that f(x; θ) is a Gaussian distribution with mean θ and variance σ2

f(x; θ) =
1√

2πσ2
e−(x−θ)2/2σ2

. (2.27)

The key ingredient required for the applicability of Propositions 2.3.1 and 2.3.2
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is the knowledge of the probabilities
{
p0|0(t), p1|0(t)

}
t∈N and

{
p0|1(t), p1|1(t)

}
t∈N.

Given thresholds η0 and η1, then probabilities can be computed according to the

method described in the Appendix C (respectively Appendix C) for X discrete

(respectively X continuous) random variable.

We provide three sets of numerical results. Specifically, in Example 2.6.1 we

emphasize the tradeoff between accuracy and expected decision time as a func-

tion of the number of SDMs. In Example 2.6.2 we concentrate on the monotonic

behaviors that the q out of N SDA algorithm exhibits both when N is fixed and

q varies and when q is fixed and N varies. In Example 2.6.3 we compare the

fastest and the majority rule. Finally, Section 2.6.1 discusses drawing connec-

tions between the observations in Example 2.6.3 and the cognitive psychology

presentation introduced in Section 2.1.3.

Example 2.6.1 (Tradeoff between accuracy and expected decision time)

This example emphasizes the tradeoff between accuracy and expected decision time

as a function of the number of SDMs. We do that for the fastest and the majority

rules. We obtain our numerical results for odd sizes of group of SDMs ranging

from 1 to 61. In all our numerical examples, we compute the values of the thresh-

olds η0 and η1 according to Wald’s method by posing pmisdetection = pfalse alarm = 0.1

and, therefore, η1 = log 9 and η0 = − log 9.
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For a binomial distribution f(x; θ) as in (2.26), we provide our numerical

results under the following conditions: we set n = 5; we run our computations for

three different pairs (θ0, θ1); precisely we assume that θ0 = 0.5− ε and θ1 = 0.5+ ε

where ε ∈ {0.02, 0.05, 0.08}; and H1 : θ = θ1 is always the correct hypothesis. For

any pair (θ0, θ1) we perform the following three actions in order

1. we compute the probabilities
{
p0|1(t), p1|1(t)

}
t∈N according to the method de-

scribed in Appendix C;

2. we compute the probabilities
{
p0|1(t;N, q), p1|1(t;N, q)

}
t∈N for q = 1 and

q = bN/2c+ 1 according to the formulas reported in Proposition 2.3.1;

3. we compute probability of wrong decision and expected time for the group of

SDMs exploiting the formulas

pw|1(N, q) =
∞∑
t=1

p0|1(t;N, q); E[T |H1, N, q] =
∞∑
t=1

(p0|1(t;N, q)+p1|1(t;N, q))t.

According to Remark 2.2.7, since we consider only odd numbers N of SDMs,

since q ≤ dN/2e and since each SDM running the SPRT has the almost-sure

decisions property, then pw|1(N, q) +pc|1(N, q) = 1. In other words, the probability

of no-decision is equal to 0 and, hence, the accuracy of the SDA algorithms is

characterized only by the probability of wrong decision and the probability of correct

decision. In our analysis we select to compute the probability of wrong decision.
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For a Gaussian distribution f(x; θ, σ), we obtain our numerical results under

the following conditions: the two hypothesis are H0 : θ = 0 and H1 : θ = 1; we

run our computations for three different values of σ; precisely σ ∈ {0.5, 1, 2}; and

H1 : θ = 1 is always the correct hypothesis. To obtain pw|1(N, q) and E[T |H1, N, q]

for a given value of σ, we proceed similarly to the previous case with the only dif-

ference that
{
p0|1(t), p1|1(t)

}
t∈N are computed according to the procedure described

in Appendix C.

The results obtained for the fastest rule are depicted in Figure 2.2, while the

results obtained for the majority rule are reported in Figure 2.3.

Some remarks are now in order. We start with the fastest rule. A better

understanding of the plots in Figure 2.2 can be gained by specifying the values of

the earliest possible decision time t̄ defined in (2.17) and of the probabilities p1|1(t̄)

and p0|1(t̄). In our numerical analysis, for each pair (θ0, θ1) considered and for

both discrete and continuous measurements X, we had t̄ = 1 and p1|1(t̄) > p0|1(t̄).

As expected from Proposition 2.5.1, we can see that the fastest rule significantly

reduces the expected number of iterations required to provide a decision. Indeed, as

N increases, the expected decision time E[T |H1, N, q = 1] tends to 1. Moreover,

notice that p
(f)
w|1(N) approaches 0; this is in accordance with equation (2.18).

As far as the majority rule is concerned, the results established in Proposi-

tion 2.5.3 and in Proposition 2.5.4 are confirmed by the plots in Figure 2.3. In-
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deed, since for all the pairs (θ0, θ1) we have considered, we had pw|1 < 1/2, we can

see that, as expected from Proposition 2.5.3, the probability of wrong decision goes

to 0 exponentially fast and monotonically as a function of the size of the group

of the SDMs. Regarding the expected time, in all the cases, the expected decision

time E[T |H1, N, q = bN/2c + 1] quickly reaches a constant value. We numeri-

cally verified that these constant values corresponded to the values predicted by the

results reported in Proposition 2.5.4.

Example 2.6.2 (Monotonic behavior) In this example, we analyze the per-

formance of the general q out of N aggregation rule, as the number of SDMs N

is varied, and as the aggregation rule itself is varied. We obtained our numerical

results for odd values of N ranging from 1 to 35 and for values of q comprised

between 1 and bN/2c+ 1. Again we set the thresholds η0 and η1 equal to log(−9)

and log 9, respectively. In this example we consider only the Gaussian distribution

with σ = 1. The results obtained are depicted in Figure 2.4, where the following

monotonic behaviors appear evident:

1. for fixed N and increasing q, both the probability of correct decision and the

decision time increases;

2. for fixed q and increasing N , the probability of correct decision increases

while the decision time decreases.
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The fact that the decision time increases for fixed N and increasing q has been

established in Proposition 2.5.6. The fact that the probability of correct decision

increases for fixed N and increasing q validates the conjecture formulated at the

end of Section 2.5.2.

Example 2.6.3 (Fastest versus majority, at fixed group accuracy) As we

noted earlier, Figures 2.2-2.3 show that the majority rule increases remarkably

the accuracy of the group, while the fastest rule decreases remarkably the expected

number of iteration for the SDA to reach a decision. It is therefore reasonable to

pose the following question: if the local accuracies of the SDMs were set so that

the accuracy of the group is the same for both the fastest and the majority fusion

rule, which of the two rules requires a smaller number of observations to give a

decision. That is, at equal accuracy, which of the two rules is optimal as far as

decision time is concerned.

In order to answer this question, we use a bisection on the local SDM accura-

cies. We apply the numerical methods presented in Proposition 2.3.1 to find the

proper local thresholds that set the accuracy of the group to the desired value pw|1.

Different local accuracies are obtained for different fusion rules and this evaluation

needs to be repeated for each group size N .

In these simulations, we assume the random variable X is Gaussian with vari-
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ance σ = 2. The two hypotheses are H0 : θ = 0 and H1 : θ = 1. The numerical

results are shown in Figure 2.5 and discussed below.

As is clear from the plots, the strategy that gives the fastest decision with

the same accuracy varies with group size and desired accuracy. The left plot in

Figure 2.5 illustrates that, for very high desired group accuracy, the majority rule

is always optimal. As the accuracy requirement is relaxed, the fastest rule becomes

optimal for small groups. Moreover, the group size at which the switch between

optimal rules happens, varies for different accuracies. For example, the middle

and right plot in Figure 2.5 illustrate that while the switch happens at N = 5 for

a group accuracy p
(m)
w|1 = p

(f)
w|1 = 0.05 and at N = 9 for p

(m)
w|1 = p

(f)
w|1 = 0.1.

We summarize our observations about which rule is optimal (i.e., which rule

requires the least number of observations) as follows:

1. the optimal rule varies with the desired network accuracy, at fixed network

size;

2. the optimal rule varies with the desired network size, at fixed network accu-

racy; and

3. the change in optimality occurs at different network sizes for different accu-

racies.
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2.6.1 Decision making in cognitive psychology revisited

In this section we highlight some interesting relationships between our results

in sequential decision aggregation (SDA) and some recent observations about men-

tal behavior from the cognitive psychology literature. Starting with the literature

review in Subsection 2.1.3, our discussion here is based upon the following as-

sumptions:

1. SDA models multi-modal integration in cognitive information processing

(CIP),

2. the number of SDMs correspond to the number of sensory modalities in CIP,

3. the expected decision time in the SDA setup is analogous to the reaction

time in CIP, and

4. the decision probability in the SDA setup is analogous to the firing rate of

neurons in CIP.

Under these assumptions, we relate our SDA analysis to four recent observations

reported in the CIP literature. In short, the fastest and majority rules appear to

emulate behaviors that are similar to the ones manifested by the brain under vari-

ous conditions. These correspondences are summarized in Table 2.1 and described

in the following paragraphs.
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First, we look at the observation in CIP that multi-modal sites can exhibit

suppressive behaviors (first row in Table 2.1). We find that suppressive behavior

is not contradictory with the nature of such a site. Indeed, Proposition 2.5.1

describes situations where an increased group size degrades the decision accuracy

of a group using the fastest rule.

Second, we look at the observation in CIP that, for some high-intensity stimuli,

the firing rate of multi-modal integration sites is similar to the firing rate of

uni-modal integration sites (second row in Table 2.1). This similarity behavior

appears related to behaviors observed in Figure 2.5. The second and third plots

in Figure 2.5 illustrate how, in small groups with high individual accuracy and

relatively low group decision accuracy, the fastest rule is optimal. Since a multi-

model integration site implementing a fastest aggregation rule behaves similarly

to a uni-modal integration site, our result give a possible optimality interpretation

of the observed “multi-modal similar to uni-modal” behavior.

Third, we look at the observation in CIP that activation of multi-modal inte-

gration sites is often accompanied with an increase in the accuracy as compared to

the accuracy of a uni-sensory integration site (third and forth rows in Table 2.1).

The first plot in Figure 2.5 shows that when the required performance is a high

accuracy, the majority rule is better than the fastest. Indeed Proposition 2.5.3

proves that, for the majority rule, the accuracy monotonically increases with the
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group size, sometimes exponentially.

Fourth, we look at the observation in CIP that, even under the same type

of stimuli, the stimuli strength affects the additivity of the neuron firing, i.e.,

the suppressive, additive, sub-additive or super-additive behavior of the firing

rates. Additionally, scientists have observed that depending on the intensity of

the stimuli, various areas of the brain are activated when processing the same type

of stimuli [12, 13, 11, 17]. A possible explanation for these two observed behaviors

is that the brain processes information in a way that maintains optimality. Indeed,

our comparison in the middle and right parts of Figure 2.5 shows how the fastest

rule is optimal when individual SDMs are highly accurate (strong and intact

stimuli) and, vice versa, the majority rule is optimal when individual SDMs are

relatively inaccurate (weak and degraded stimuli).

We observed in the middle and right part of Figure 2.5 that, for high indi-

vidual accuracies, the fastest rule is more efficient than the majority rule. We

reach this conclusion by noting two observations: first, smaller group sizes require

higher local accuracies than larger group sizes in order to maintain the same group

accuracy; second, the fastest rule is optimal for small groups while the majority

rule is always optimal for larger groups.
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2.7 Conclusion

In this work, we presented a complete analysis of how a group of SDMs can

collectively reach a decision about the correctness of a hypothesis. We presented

a numerical method that made it possible to completely analyze and understand

interesting fusion rules of the individuals decisions. The analysis we presented

concentrated on two aggregation rules, but a similar analysis can be made to

understand other rules of interest. An important question we were able to answer

was the one relating the size of the group and the overall desired accuracy to the

optimal decision rules. We were able to show that no single rule is optimal for all

group sizes or for various desired group accuracy.
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Figure 2.2: Behavior of the probability of wrong decision and of the expected

number of iterations required to provide a decision as the number of SDMs in-

creases when the fastest rule is adopted. In Figure (a) we consider the binomial

distribution, in Figure (b) the Gaussian distribution.
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Figure 2.3: Behavior of the probability of wrong decision and of the expected

number of iterations required to provide a decision as the number of SDMs in-

creases when the majority rule is adopted. In Figure (a) we consider the binomial

distribution, in Figure (b) the Gaussian distribution.
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time (right figure) for the q out of N rule, plotted as a function of network size

N and accuracy threshold q.
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Figure 2.5: Expected decision time for the fastest and the majority rules versus

group size N , for various network accuracy levels.
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Chapter 3

Distributed Sequential

Algorithms for Regional Source

Localization

3.1 Introduction

We study in this chapter the problem of source localization, where a group of

sensors sense, transmit and process information with the objective of confining

the source location to a region inside a terrain of interest.
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3.1.1 Problem description and motivation

Formally, the problem is the following: A source at an unknown location in a

bounded region Q transmits a power signal. N sensors receive noisy and decayed

versions of the signal, and they can communicate and exchange measurements.

The environment Q is divided into M regions Wα, where α ∈ {1, . . . ,M}. The

objective of the sensors is to find which region contains the source.

We pose the problem as a multiple hypothesis testing problem, where hypoth-

esis Hα is true if the source lies in the region Wα. We assume no prior knowledge

about the location of the source and therefore model the source location as a uni-

formly distributed random variable over the environment Q; any prior information

about the source location can be incorporated in the location density function.

We adopt the log-normal fading model for the propagation of the received signal

power. The noise added to the log of the power is Gaussian with zero mean and

a known variance σ2.

3.1.2 Chapter contributions

The contributions of this chapter are three-fold.

First, we formulate the source localization problem in a novel multi-hypothesis

testing setting. We analyze properties of the Maximum A Posteriori (MAP) algo-
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rithm that requires the computation of a finite number of integrals which is to be

compared to the need to solve a non-linear, non-convex problem in the classical

source localization problem. We provide a proof of almost sure convergence of the

MAP solution asymptotically in the limit of a large number of measurements, a

step that tends to be missing in all of the work presented earlier in the source

localization literature.

Second, inspired by the proof of convergence of the MAP solution, we propose

and implement a distributed sequential regional localization algorithm: Sense,

Transmit & Test. This algorithm allows for sequential sensing, transmission and

testing at each processor. We allow each processor to have one or multiple regions

of responsibility and relate the probability of error for each processor in the case

of multiple regions to the probability of error in the case of a single region. We

also show that the test ends in a finite time under mild conditions on the sensor

locations.

Third, we illustrate the results of the Sense, Transmit & Test and show how

the expected decision time for a network increases with the required accuracy and

noise. We also provide numerical results illustrating how it is possible to increase

the level of localization accuracy at the expense of the expected decision time for

the network for a fixed decision accuracy.
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3.1.3 Chapter organization

The chapter proceeds as follows: we formulate the problem as a multi-hypothesis

testing problem in Section 3.2. We present a distributed algorithm to solve the

problem in Section 3.3. We present in Section 3.4 numerical results showing the

performance of the algorithm as various parameters are changed. We conclude in

Section 3.5.

3.1.4 Preliminary concepts

We present here a few preliminary concepts that will be useful in this chapter.

Lemma 3.1.1 (On the Dirac delta function) Let δD(x) be the Dirac delta func-

tion. Given a scalar function g : R→ R, let S be the set of scalar z where g(z) = 0.

If g is differentiable and g′(z) 6= 0 for z ∈ S, then

δD(g(x)) =
∑
z∈S

δD(x− z)

|g′(z)|
. (3.1)

Definition 3.1.2 (Partitions and Voronoi partitions) A partition

{W1, . . . ,WM} of a space Q is a collection of closed subsets of Q with the following

properties: each Wα has positive measure, each intersection Wα ∩Wβ has zero

measure, and ∪Mα=1Wα = Q.
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Given distinct positions {p1, . . . , pN} ∈ R2, the Voronoi partition {V1, . . . , VN}

of Q is defined by

Vi = {q ∈ Q | ‖q − pi‖ ≤ ‖q − pj‖,∀j 6= i}, for i ∈ {1, . . . , N}.

3.2 Source localization as multi-hypothesis test-

ing

We start this section by introducing the model and the problem definition.

3.2.1 Model and problem definition

Consider a compact connected environment Q ⊂ R2. Suppose that there

are N sensors placed at positions qi ∈ Q with i ∈ {1, . . . , N}, and that the

source located at an unknown location s ∈ Q transmits a signal whose power

undergoes lognormal shadowing summarized as follows. The average power loss

for an arbitrary Transmitter-Receiver separation is expressed as a function of

distance by using a path loss exponent ρ > 2. For reasons to be explained shortly,

we work with a slight modification of the traditionally used model. The adopted

model for the received power at a sensor i is Pi = Pd0
d0+‖qi−s‖ρ , where ρ indicates

the rate at which the power loss increases with distance. The nominal distance d0
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is chosen so that the received power in the vicinity of the source is almost equal

to the transmitted power P at the source. Note that while this model gets rid of

the singularity at the source, it converges to the same behavior as the classical

model used in communication literature Pi = P
‖qi−s‖ρ , when the distance ‖qi − s‖

is large. Here P is the power received at a unit distance from the source. The

received power becomes

lnPi = ln(Pd0)− ln(d0 + ‖qi − s‖ρ) + ni, (3.2)

where ni is the noise associated with sensor i, and all ni are independent and

identically distributed (i.i.d) Gaussian random variables with zero mean and

known variance σ2. The joint probability density function of the received power

Pr = [P1, . . . , PN ]T , conditioned on the source location y ∈ Q is

p(P1, . . . , PN |y) =
1

(2πσ2)N/2
exp
(
−

∑N
i=1

(
lnPi − ln( Pd0

d0+‖qi−y‖ρ )
)2

2σ2

)
. (3.3)

Problem 3.2.1 (MAP point localization problem) Compute the position

that maximizes the conditional density of the joint observations, that is compute

y∗ = argmax
y∈Q

p(P1, . . . , PN |y)P(y).

Problem 3.2.1 is a nonlinear nonconvex optimization problem. Attempts to solve

this problem, usually revert to relaxing the problem or approximating its solution

85



CHAPTER 3. SEQUENTIAL REGIONAL LOCALIZATION

without providing a convergence analysis. In this chapter we look for a regional

localization, so the conditioning on the exact position y in (3.3) is replaced by a

conditioning on the source being in a region Wi. The environment Q with area A

is divided into M regions {W1, . . . ,WM} with positive areas {A1, . . . , AM}. The

hypothesis Hα is true if and only if s ∈ Wα.

Problem 3.2.2 (MAP regional localization problem) Compute the hypoth-

esis Hα that maximizes the posterior of the joint observations, that is, compute

α∗ = argmax
α∈{1,...,M}

p(P1, . . . , PN |Hα)P(Hα). (3.4)

3.2.2 Regional posterior density

Assuming no prior knowledge about the location of the source, the density

describing s ∈ Q is

p(s) =


1/A, if s ∈ Q,

0, otherwise.

Definition 3.2.3 (Repeated measurements) The ith sensor takes k repeated

i.i.d. noisy measurements and computes the average of the logarithms of the mea-

surements

ln Pi(k) =
k∑
t=1

lnPi(l)

k
. (3.5)
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In the infinite measurement case, we write

ln Pi = lim
k→∞

k∑
t=1

lnPi(t)

k
.

and the variance limk→∞ σ
2(k) = 0.

Proposition 3.2.4 (Expressions for posteriors) In the case of k repeated mea-

surements, the regional posterior for sensor i about region Wα is

p(Pi(k)|Hα)P(Hα) =
1

A

∫
Wα

1

(2πσ2(k))1/2

× exp
(
−

(
ln Pi(k)− ln( Pd0

d0+||qi−y||ρ )
)2

2σ2(k)

)
dy,

and the joint regional posterior for sensors {1, . . . , N} about region Wα is

p(P1(k), . . . ,PN(k)|Hα)P(Hα) =
1

A

∫
Wα

dy

N∏
l=1

1

(2πσ2(k))1/2
exp
(
−

(
ln Pl(k)− ln( Pd0

d0+||ql−y||ρ
)
)2

2σ2(k)

)
.

Proof: Call z = ln Pi(k). We compute

p(z|Hα) =
d

dz

P(Z ≤ z,Hα)

P(Hα)
= A

d

dz

∫ z
−∞

∫
Wα

p(z|y)p(y)dydz

Aα

= A
d

dz

∫ z
−∞

∫
Wα

(
p(z|y)/A)dydz

Aα
=

∫
Wα

p(z|y)dy

Aα
.

Since z = ln Pi(k) =
∑k

t=1
lnPi(t)
k

, the conditional probability is

p(z|y) =
1

(2πσ2(k))1/2
exp
(
−

(
ln Pi(k)− ln( Pd0

d0+||qi−y||ρ )
)2

2σ2(k)

)
dy.
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The regional posterior is

p(Pi(k)|Hα)P(Hα) =

∫
Wα

1
(2πσ2(k))1/2

exp
(
−
“

ln Pi(k)−ln(
Pd0

d0+||qi−y||ρ
)
”2

2σ2(k)

)
dy

Aα
× Aα

A

=

∫
Wα

1
(2πσ2(k))1/2

· exp
(
−
“

ln Pi(k)−ln(
Pd0

d0+||qi−y||ρ
)
”2

2σ2(k)

)
dy

A
.

Equations for the joint regional posterior follow by independence of measure-

ments.

3.2.3 Geometric properties of regional source localization

In this section we derive geometric properties of the regional localization prob-

lem in the infinite measurements limit. These properties allow us to conclude the

following two results. First, for certain source locations, a single sensor suffices to

asymptotically detect the correct hypothesis. Second, for the asymptotic detec-

tion problem with two sensors, Voronoi partitions ensure zero probability of error.

These results should be viewed against the fact that for exact localization, even in

the noise-free case, at least three non-collinear sensors are needed for detection.

Remark 3.2.5 (Asymptotic density) For infinite measurement, the conditional
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probability density is

p(Pi|y) = lim
k→∞

1

(2πσ2(k))1/2
exp
(
−

(
ln Pi − ln( Pd0

d0+||qi−y||ρ )
)2

2σ2(k)

)
= δD

(
ln Pi − ln

Pd0

d0 + ‖qi − y‖ρ
)
. �

Before presenting the next result, we introduce two shorthands. First, given a

region W and a disk B, we call arclength(W ∩ ∂B) the sum of the length of the

arcs in the set W ∩ ∂B. Second, let B(q, r) denote the disk centered at q with

radius r.

Lemma 3.2.6 (The arc length property) The asymptotic regional posterior

for sensor i about region Wα is

p(Pi|Hα)P(Hα) =
d0 + rρi
Aρrρ−1

i

arclength
(
Wα ∩ ∂B(qi, ri)

)
,

where ri = ( P
Pi
− 1)ρ and, as usual, qi is the position of sensor i, d0 is the nominal

distance, ρ is the path loss exponent, and A is the environment area.

The proof of the lemma is given in the Appendix A. This lemma can be interpreted

as follows. The asymptotic average measurement Pi determines the circle of radius

ri centered in qi where the source lies. The posterior p(Pi|Hα)P(Hα) is used in

MAP algorithms and is proportional to the arclength.

Next, we consider the case in which M = N = 2, that is, there are only two

sensors and two regions of interest. In the following lemma, we show that Voronoi
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x
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s
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V1
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Figure 3.1: This figure shows two nodes q1 and q2, with a source s ∈ V1.

partitions ensure correct detection almost surely for two sensors implementing the

MAP estimation algorithm.

Lemma 3.2.7 (Optimality of Voronoi partitions) In an environment Q with

two sensors at distinct locations q1 and q2 ∈ Q, consider the regional localization

problem with Voronoi partition (V1, V2) generated by q1 and q2. In the limit of

infinite measurements, the MAP localization algorithm finds the region containing

s ∈ Q almost surely.

Proof: The result is a consequence of Lemma 3.2.6. The intersection of(
∂B(q1, r1)∩ ∂B(q2, r2)

)
where ri = ( P

Pi
−1)ρ for i ∈ {1, 2}, is a finite set with 2 el-

ements almost surely, i.e., as long as the source does not belong to the line through

q1 and q2. Accordingly, define s and s′ to be these two points. The joint conditional

probability, p(P1,P2|y) = p(P1|y)p(P2|y) = δD

(
ln P1−ln Pd0

d0+‖q1−y‖ρ

)
δD

(
ln P2−
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ln Pd0
d0+‖q2−y‖ρ

)
, is non-zero only at the two points s and s′. Therefore, by using

the total probability theorem, the asymptotic regional joint posterior for sensors

1 and 2 about region Vi, i ∈ {1, 2}, is

p(P1,P2|Hi)P(Hi) :=


0, if s, s′ /∈ Vi,

p(P1,P2), otherwise

Either s or s′ has to be the source. Assume s is the source, we will show that

if s ∈ V1, then the joint regional posterior can be positive only in V1. In fact,

s′ /∈ Q implies p(P1,P2|H2)P(H2) = 0 because p(P1,P2|y) = 0 for all y ∈ V2.

If on the other hand s′ ∈ Q, then by the definition of s and s′, ‖q1 − s‖ =

‖q1 − s′‖ and ‖q2 − s‖ = ‖q2 − s′‖, and by the definition of Voronoi partitions

(Def. 3.1.2) we know that s ∈ V1 implies s′ ∈ V1. This completes the proof

that for Voronoi partitions in the two sensors case, p(P1,P2|Hi)P(Hi) is non-

zero only in the correct region. The two lemmas presented in this section have

interesting implications. Lemma 3.2.6 implies that, for certain source locations

and as the noise becomes smaller, the MAP estimation algorithm can determine

the correct region containing the source with a unique sensor. That is true when

the circle centered at a sensor location with radius ri is contained in the region

Wi. Lemma 3.2.7 on the other hand, gives one example where the selection of

Voronoi partitions makes it possible to locate the source with only two sensors.
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3.2.4 Asymptotic properties of regional source localization

We show here some properties of the MAP algorithm when applied to regional

source localization for a general number of sensors and regions. We start by

presenting a property of non-collinear sensors when applied to source localization

using measurements undergoing log-normal shadowing.

Lemma 3.2.8 (Three non-collinear sensors) For d0 > 0 and ρ > 0, given a

source s ∈ R2 and three non-collinear sensors q1, q2 and q3 ∈ R2, the only solution

for the equation
∑3

i=1

(
ln d0+‖z−qi‖ρ

d0+‖s−qi‖ρ

)2

= 0 is z = s.

Proof: In fact, it is easy to check that the sum is zero at z = s. Uniqueness

of this solution is verified by noting that the sum of the square terms is zero only

if all the summands are zero. Let q = (x, y) and qi = (qi1, qi2). The solution z = s

is unique if and only if the following system has a unique solution:−2(q11 − q21) −2(q12 − q22)

−2(q11 − q31) −2(q12 − q32)


x
y

 =

k1

k2

 , (3.6)

where k1 and k2 are known values determined by the measurements and the posi-

tions of the sensors. The system presented in Equation (3.6) has a unique solution

if and only if the system is consistent and the determinant of the matrix is non

zero, i.e., the three points are non-collinear. As usual, assume that N sensors

are at positions qi, i ∈ {1, . . . , N} and that the environment is partitioned into
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closed regions. For a region Wα, define the two scalar quantities

Uα = max
y∈Wα

i∈{1,...,N}

∣∣∣∣ln d0 + ‖y − qi‖ρ

d0 + ‖s− qi‖ρ

∣∣∣∣ , (3.7)

Lα = min
y∈Wα

N∑
i=1

(
ln
d0 + ‖y − qi‖ρ

d0 + ‖s− qi‖ρ

)2

. (3.8)

Both quantities are well posed because they are the maximum and minimum

value of a continuous function over a compact domain. Additionally, Uα is strictly

positive for all source locations s ∈ Q and Lα is strictly positive for all source

locations s ∈ Q \Wα. The latter statement follows from Lemma 3.2.8 and from

the fact that the distance from s to Wα is strictly positive for all s 6∈ Wα. Define

ηα =

√
U2
α +

Lα
2N
− Uα > 0, (3.9)

for all s 6∈ Wα. We state the following result on the magnitude of sums of powers.

Lemma 3.2.9 (On the posterior of a wrong hypothesis) Consider Lα, Uα

and ηα as defined in (3.7), (3.8) and (3.9). Assume the source s is outside Wα

and the noise ni satisfies |ni| ≤ ηα for all i ∈ {1, . . . , N} and α ∈ {1, . . . ,M}.

The following statements hold:

1. the joint measurement is lower bounded as

min
y∈Wα

N∑
i=1

(
ln
d0 + ‖y − qi‖ρ

d0 + ‖s− qi‖ρ
+ ni

)2

≥ 1

2
Lα, and
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2. the posterior probability for the wrong hypothesis α is upper bounded as

p(P1, . . . , PN |Hα)P(Hα) ≤
Aα exp

(
−Lα/4σ2

)
A(2πσ2)N/2

.

Proof: To prove the first statement, consider the expansion

(
ln
d0 + ‖y − qi‖ρ

d0 + ‖s− qi‖ρ
+ni

)2

=

(
ln
d0 + ‖y − qi‖ρ

d0 + ‖s− qi‖ρ

)2

+2

(
ln
d0 + ‖y − qi‖ρ

d0 + ‖s− qi‖ρ

)
ni+

N∑
i=1

n2
i .

By computing lower bounds for each term and substituting the definition of ηα,

we obtain

min
y∈Wα

N∑
i=1

(
ln
d0 + ‖y − qi‖ρ

d0 + ‖s− qi‖ρ
+ ni

)2

≥ Lα − 2NUαηα −Nη2
α

= Lα + 2NU2
α − 2NUα

√
U2
α +

Lα
2N
−N

(
U2
α +

Lα
2N

)
−NU2

α + 2NUα

√
U2
α +

Lα
2N

=
1

2
Lα.

The second statement follows directly from the first statement because of the

equality

lnPi − ln
Pd0

d0 + ‖y − qi‖ρ
= ln

d0 + ‖y − qi‖ρ

d0 + ‖s− qi‖ρ
+ ni,

and because of the fact that the surface integral of a function f is upper bounded

by the surface integral of the maximum value of f . We are now ready for the

convergence theorem. We introduce the standard function Q : R→ R>0 by

Q(x) =
1√
2π

∫ +∞

x

exp(−y2/2)dy.
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Theorem 3.2.10 (Elimination of wrong hypothesis) Consider sensors at

positions q1, . . . , qN . Let σ be the noise variance. If the source s /∈ Wα, then

P
[
p(P1, . . . , PN |Hα)P(Hα) ≤ εα(σ)

]
≥ µα(σ),

where

εα(σ) =
Aα exp(−Lα/4σ2)

A(2πσ2)N/2
, µα(σ) = (1− 2Q(ηα/σ))N .

Furthermore, in the k repeated measurement case, if at least 3 sensors are non-

collinear, then limk→∞ εα(σk) = 0+ and limk→∞ µα(σk) = 1−.

Proof: From Lemma 3.2.9, we compute

P
[
p(P1, . . . , PN |Hα)P(Hα) ≤ εα(σ)

]
≥ P

[
[n1, . . . , nN ]T ∈ [−ηα, ηα]N

]
=

N∏
i=1

(
1

2
− P[ni > ηα] +

1

2
− P[ni < −ηα]

)
=
(
1− 2Q(ηα/σ)

)N
.

The first inequality follows from the fact that Lemma 3.2.9 holds whenever all

|ni| ≤ ηα. The proofs of the two limits of limk→∞ εα(σk) and limk→∞ µα(σk) are

immediate when there are at least 3 non-collinear sensors. Indeed, if there are at

least 3 non-collinear sensors and if s /∈ Wα, then Lemma 3.2.8 applies and one

can show Lα > 0 and ηα > 0. This theorem states that, as σ → 0+, the joint

regional posterior

p(P1, . . . , PN |Hα)P(Hα) takes an arbitrarily small value with a probability that

goes arbitrarily close to 1 when Hα is not the correct hypothesis. This is so as
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Q(x) → 0 as x → ∞. To complement the Theorem 3.2.10, we prove below that

for the correct hypothesis, the probability density is lower bounded by a positive

term with probability one.

Theorem 3.2.11 (Strict positivity of correct hypothesis) Consider sensors

at positions q1, . . . , qN . Let σ be the noise variance. If the source s ∈ Wα, then

P [p(P1, . . . , PN |Hα)P(Hα) ≥ Ψ(σ)] ≥ Ω(σ),

where

Ψ(σ) = p(P1, . . . , PN)−
∑

α=1,...,M
α 6=α

Aα exp(−Lα/4σ2)

A(2πσ2)N/2
,

Ω(σ) =
∏

α=1,...,M
α 6=α

µα(σ) =
∏

α=1,...,M
α 6=α

(1− 2Q(ηα/σ))N .

Furthermore, in the k repeated measurement case, if at least 3 sensors are non-

collinear, then limk→∞Ψ(σk) = p(P1, . . . , PN) > 0 and limk→∞Ω(σk) = 1−.

Proof: The proof of this theorem follows directly from Theorem 3.2.10 and

from the total probability theorem. Call z = [P1, . . . , PN ]T . We know from the

total probability theorem that

p(z) =
M∑
α=1

p(z|Hα)P(Hα) = p(z|Hα)P(Hα) +
∑

α=1,...,M
α 6=α

p(z|Hα)P(Hα)
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and, in turn, that

p(z|Hα)P(Hα) = p(z)−
∑

α=1,...,M
α 6=α

p(z|Hα)P(Hα).

From Theorem 3.2.10

P

p(z|Hα)P(Hα) ≥ p(z)−
∑

α=1,...,M
α 6=α

εα(σ)


≥

∏
α=1,...,M
α 6=α

P
[
p(z|Hα)P(Hα) ≤ εα(σ)

]
≥

∏
α=1,...,M
α 6=α

µα(σ)

As limk→∞ σk = 0+, limk→∞Ψ(σk) = p(z) and

limk→∞Ω(σk) = 1−. Theorem 3.2.11 complements Theorem 3.2.10 in that is

shows that as limk→∞ σk = 0+, the largest regional posterior is the one associated

with the correct hypothesis.

Remark 3.2.12 (Almost sure convergence of MAP) Using a MAP algo-

rithm to solve the problem of regional localization, is assured to provide a correct

answer, almost surely, in the limit of a large number of measurements. This fol-

lows directly from Theorem 3.2.11 and Theorem 3.2.10.

3.3 Distributed sequential regional localization

In this section we assume that each sensor is a processor that can perform

computational tasks as well as communicate to other processors according to a
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specified communication graph. Each processor takes measurements and com-

putes a conditional posterior that it communicates to all its neighbors and then

makes a decision if a desired accuracy is reached. A group of regions is associated

with each processor. The processor will need to provide a decision about which

of these regions if any contains the source. We call such a group the regions of

responsibility of the processor. We do not assume any constraints on the assign-

ment of regions of responsibilities. We present the algorithm in Subsection 3.3.1

and describe its properties in Subsection 3.3.2.

3.3.1 Distributed algorithm based on sequential sensing,

communication and hypothesis testing

We present below a distributed algorithm where each processor decides whether

or not its region of responsibility contains the source. The algorithm, as presented,

has a predefined number of measurements that need to be taken by each processor.

For each processor i ∈ {1, . . . , N}, the set of neighbors Ni consists of the

processor itself along with the processors that can communicate with it. The ith

processor is responsible for a set Ri of Mi regions. We denote these Mi regions

by Wα for α ∈ Ri. The processor collects the measurements from its neighboring

processors, and calculates two posteriors for all regions Wα, α ∈ Ri. The first
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posterior corresponds to the hypothesis that the source is in Wα, the second

posterior corresponds to the hypothesis that the source is outside Wα. Once the

processor reaches a pre-defined level of confidence, it provides a decision about

whether or not Wα contains the source. The ith processor stops running its test

when it reaches a decision about all Wα, α ∈ Ri. The processor then sets its

decision to either yes, the source is in Wα, or no, no source is in ∪α∈RiWα. Each

processor continues to sense and transmit its measurements until all its neighbors

j ∈ Ni have reached a decision. We give here a formal description of the algorithm.

Algorithm : Sense, Transmit & Test

algorithm tolerance: 0 < ε� 1
2

network processors: i ∈ {1, . . . , N}

regions: Wα, α ∈ {1, . . . ,M}

state of processor i contains:

a-dcsni ∈ {yes source ∈Wα, no source ∈ ∪αWα, unknown},

for all j ∈ Ni : qj , a-stopj ∈ {false, true},

for all α ∈ Ri : Wα, r-stopα ∈ {false, true},

r-dcsnα ∈ {yes, no, unknown}

Processor i with set of neighbors Ni executes:

1: transmit qi to j ∈ Ni
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2: set k := 0 , a-stopi := false and a-dcsni := unknown

3: set r-stopα := false and r-dcsnα := unknown for α ∈ Ri

4: While ∃ j ∈ Ni with a-stopj == false do

5: update k := k + 1 and take measurement Pi(k)

6: compute ln Pi(k) =
∑k

t=1
ln Pi(t)

k

7: transmit ln Pi(k) to j ∈ Ni

8: store ln PNi(k) = {ln Pi(k)}∪{ln Pj(k) for all j ∈ Ni}

9: For all α ∈ Ri with r-stopα == false do

10: If p(PNi(k)|s ∈Wα)P(s ∈Wα) > (1− ε) p(PNi(k))

11: dcsnα := yes, r-stopα := true, a-dcsni := true

12: If p(PNi(k)|s /∈Wα)P(/∈Wα) > (1− ε) p(PNi(k))

13: r-dcsnα := no and r-stopα := true

14: End For

15: If r-stopα == true for all α ∈ Ri

16: a-stopi := true

17: If a-dcsni == unknown

18: a-dcsni := no

19: transmit a-stopi to all j ∈ Ni

20: return a-dcsni

21: End While
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3.3.2 Properties of Sense, Transmit & Test

We present below properties involving the accuracy and decision time of the Sense,

Transmit & Test algorithm.

Theorem 3.3.1 (Accuracy and decision time for Sense, Transmit & Test al-

gorithm) Assume that only one source exists in the environment Q, that each processor

has at least 2 neighboring processors with which it forms a non-collinear triplet, and that

each processor is assigned Mi regions. Given an accuracy ε ∈ (0, 1
2), the Sense, Transmit

& Test algorithm enjoys the following two properties:

1. the algorithm ends in a finite time, and

2. each processor i has a probability of error no larger than 2Miε if 2 ≤Mi ≤ 1 + 1
ε ,

and no larger than ε if Mi = 1.

Proof: It is well known [3, 5] that given two hypothesis H1 and H0 with known

posteriors, P (H1) and P (H0), a hypothesis test that ensures that the decision under

hypotheses H0 and H1 is correct with a probability greater than τ0 and τ1 respectively

is the following:

1. Calculate p(PNi(k)|H1)P(H1),p(PNi(k)|H0)P(H0)

2. if p(PNi (k)|H1)P(H1)

p(PNi (k)|H0)P(H0) ≥
τ1

1−τ1 decide in favor of H1,

3. if p(PNi (k)|H1)P(H1)

p(PNi (k)|H0)P(H0) ≤
1−τ0
τ0

, decide in favor of H1,
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4. otherwise repeat measurements and go to 1.

We show below that the Sense, Transmit & Test algorithm satisfies the description

above. Applying the total probability theorem we get

p(PNi |s /∈Wα)P(s /∈Wα) = p(PNi |y ∈ Q)P(s ∈ Q)− p(PNi |s ∈Wα)P(s ∈Wα)

= p(PNi)− p(PNi |s ∈Wα)P(s ∈Wα). (3.10)

Call (H1 := s ∈Wα) and (H0 := s /∈Wα). If we set τ0 = τ1 = (1−ε), and the thresholds

to accept a hypothesis H1, to be

p(PNi(k)|H1)P(H1) ≥ τ1p(PNi),

and the thresholds to reject a hypothesis to be

p(PNi(k)|H0)P(H0) ≥ τ0p(PNi),

then using Eq. (3.10), one can show that

p(PNi(k)|H1)P(H1) ≥ τ1 p(PNi) p(PNi(k)|H0)P(H0) ≤ (1− τ1)p(PNi)

⇒ p(PNi(k)|H1)P(H1)
p(PNi(k)|H0)P(H0)

≥ τ1

1− τ1
. (3.11)

Similarly, assuming H0 is correct, one can show that

p(PNi(k)|H0)P(H0) ≥ τ0 p(PNi)⇒
p(PNi(k)|H1)P(H1)
p(PNi(k)|H0)P(H0)

≤ 1− τ0

τ0
. (3.12)

Assuming H1 is correct, the probability of correct decision for the ith processor is no

smaller than τ1, for each of the regions Wα, α ∈ Ni. Similar result hold assuming H0 is

correct.
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The maximum number of errors that a processor can make in a decision is two:

a mis-detection and a false-alarm for Wα where α ∈ Ri. Alternatively all the other

combinations of choices result in at most one error, since the ith processor can declare

at most one hypothesis Hα to be correct for all α ∈ Ri.

The scenarios where the decision of the processor is erroneous are presented below:

1. If one of the regions Wα satisfies p(PNi(k)|H1)P(H1) ≥ τ1p(PNi), then for all

β ∈ Ri \ α, the following holds (from the complete probability theorem)

p(PNi(k)|s ∈Wβ)P(s ∈Wβ) < (1− τ1)p(PNi)

⇒p(PNi(k)|s /∈Wβ)P(s /∈Wβ) ≥ τ1 p(PNi) = τ0p(PNi). (3.13)

From Eqs. (3.12) and (3.13) it follows that the source can be detected in at most

one region Wα. It follows that at most one false alarm can happen, which might

or might not be accompanied with one mis-detection.

2. If none of the regions of responsibilities of the processor contain the source, then

the processor can make at most one mistake by having at most one false alarm.

To write a formal proof, we introduce pf and pm to be the probability of false alarm

and mis-detection, where pf corresponds to choosing yes while the correct decision is

no and mis-detection corresponds to choose no when the correct decision is yes for any

region Wα. Here that pf = pm = ε. A processor makes an error if it wrongly decides

yes/no on Wα for any α ∈ Ri. Following the analysis above, the probability of error
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for the ith processor is:

Pe <

(
Mi

1

)(
pmP (s /∈ ∪α∈RiWα) + (pf +

(
Mi − 1

1

)
pfpm)P (s ∈ ∪α∈RiWα)

)
≤ 2Miε,

if ε(Mi−1) ≤ 1. If the processor has only one region of responsibility, it is straightforward

to see that the processor has a probability of error no larger than ε.

We show now that the test ends after a finite number of measurements. For a region

Wα, processor needs to decide whether the source is in Wα (H1) or outside it (H0).

Without loss of generality, assume that H1 is correct for a region Wα. We know

from Theorem 3.2.10 that

lim
k→∞

p(PNi(k)|H0)P(H0) = 0+,

almost surely. We also know from Theorem 3.2.11 that

lim
k→∞

p(PNi(k)|H1)P(H1) = p(PNi(k)) > 0,

almost surely. This has the following implication

lim
k→∞

p(PNi(k)|H1)P(H1)
p(PNi(k))

= 1,

which implies that for all ε > 0, there exists 0 < K <∞, s.t.

|p(PNi(K)|H1)P(H1)− p(PNi(K))
p(PNi(K))

| < ε

⇐⇒ −p(PNi(K)|H1)P(H1) + p(PNi(K)) < ε p(PNi(K))

⇐⇒ p(PNi(K)|H1)P(H1) > (1− ε) p(PNi(K)).
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So for any 1
2 < τ < 1, there exists, almost surely, K <∞, s.t.

p(PNi(k)|H1)P(H1) > τ p(PNi(k)),

here τ = 1− ε, where 0 < ε < 1
2 .

Similarly one can prove that if H0 is correct, then there exists, almost surely, K <∞,

such that

p(PNi(k)|H0)P(H0) > τ p(PNi(k)).

To complete the proof, we cover the cases where the algorithm makes a wrong decision.

This is possible if the thresholds corresponding to a wrong decision are crossed at a time

K1 < K <∞.

This completes the proof that the Sense, Transmit & Test algorithm has a finite

decision time.

3.4 Numerical results

We present in this section three sets of simulations. The first two sets illustrate

some properties of the Sense, Transmit & Test algorithm, while the third presents a

modification of the algorithm that introduces an interesting extension of the work. In the

first simulations, there are as many regions as there are sensors, i.e., N = M = 10. We

start by presenting in Figure 3.2 a sample of the results obtained by the Sense, Transmit

& Test algorithm. The figure shows the positions of the processors (equipped with

sensors) as well as the partition of Q. As the partition, we adopt the Voronoi partition
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generated by the processors positions; each processor is responsible for its corresponding

Voronoi region. As stated in the caption, after 113 observations all decisions have been

made and the source has been correctly localized.

Figure 3.2: This picture illustrates an evolution of the output of the Sense, Trans-

mit & Test algorithm. At each instant a region is colored in white, light gray or

dark gray, indicating unknown, yes or no respectively. The output of the dis-

tributed algorithm is shown at times 0, 1, 3, 4, 6, 8, 11, 113 respectively. In this run

we ε = 0.01 and σ = 0.5 with N = M = 10.

We then present in Figure 3.3 a plot that shows how the expected number of obser-

vations needed to reach a decision varies with the accuracy ε in the algorithm. Clearly,

the probability of correct detection increases for decreasing values of ε.

In Figure 3.4 we show how the expected number of observations needed to reach a
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Figure 3.3: This plot shows the expected time it takes a network of 10 processors

implementing the Sense, Transmit & Test algorithm to reach a decision for a noise

standard of deviation σ = 0.1 when the probability of error ε varies. We show the

logarithm of the decision time. Note that the network decision time seems to grow

exponentially with the desired accuracy as is standard in sequential hypothesis

testing. The network is assumed to have reached a decision when all processors

have decided. The expected decision time is calculated over 1000 runs.

decision increases with the standard deviation of the noise.

Next, we report the second sets of simulations, where we have differing numbers of

regions and sensors. Specifically, we have N = 4 sensors and M = 16 regions. Figure 3.5

illustrates the evolution of the Sense, Transmit & Test algorithm in this case. The

overall accuracy for each processor is 0.9. This is achieved by setting ε = 0.1/8.

In this third set of simulations, we show the output of a modified, multi-resolution
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Figure 3.4: This plot shows the expected time it takes a network of 10 processors

implementing the Sense, Transmit & Test algorithm to reach a decision with a

probability of error no larger than ε = 0.01 as the noise standard of deviation σ

varies. The network is assumed to have reached a decision when all processors

have decided. The expected decision time is calculated over 100 runs.

version of the Sense, Transmit & Test algorithm. This multi-resolution version runs

over multiple stages, at each stage the environment under consideration is divided in

two regions. Observations are taken at each stage until one of the two regions is rejected

with an accuracy of 1 − ε. The rejected region is removed from the environment, and

the remaining region is again divided in two regions. Observations are transferred from

one stage to another and re-used to reach a decision about the more fine environment

division. A sample output of the modified algorithm is shown in Figure 3.6. In order

to reach the same precision in localization as that shown in Figure 3.5, we divide the
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Figure 3.5: This picture illustrates an evolution of the Sense, Transmit & Test

algorithm. At each instant a region is colored in white, light gray or dark gray,

indicating unknown, yes or no respectively. The output of the distributed algo-

rithm is shown at times 1, 4, 6, 7, 13, 131, 142, 202 respectively. In this run we set

ε = 0.1/8 and σ = 0.5 and N = 4 and M = 16.

regions 4 times. Note that the original Sense, Transmit & Test algorithm reached its

decision after an average of 290 observations whereas the multi-resolution algorithm did

so after an average of 100 observations. We calculated these values from 1000 Monte-

Carlo runs, that is with an error of ±3% to show a similar probability of error with the

same level of fineness. We leave a rigorous analysis of the multi-resolution algorithm to

future work.

We conclude with a general remark. The Sense, Transmit & Test algorithm pre-
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Figure 3.6: This picture illustrates an evolution of the modified version of the

Sense, Transmit & Test algorithm. The output is shown at times 7, 11, 71, 72

respectively. The rejected regions are shown in dark grey and the ones accepted

at each stage are shown in light grey. In this run we set ε = 0.1 and σ = 0.5 and

N = 4 and M = 2 at each set of tests.

sented in this work might at first glance look similar to sequential multiple hypothesis

testing algorithms by elimination such as the one presented in [49]. A closer comparison

of the two algorithms shows that while in this work at most 2M tests are run at each

sample, the hypothesis test by sequential elimination requires a number of tests of the

order 2M as it proceeds by a pairwise comparison over all hypothesis. Nonetheless, it

is worth mentioning that while the sequential elimination algorithm leads to a decision

as soon as all but one hypothesis is eliminated, we wait here until the last hypothesis

reaches the required certainty level. This can be seen in Figure 3.2 where all but one

hypothesis were canceled at the 11th observation, yet the algorithm did not end until the

113th observation when the last processor reached its required accuracy. The geometric

aspects and the properties associated with the regional localization problem made it
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possible to propose the simpler, yet less general, Sense, Transmit & Test algorithm.

3.5 Conclusion

In this work, we looked at the problem of source localization in a multiple hypothesis

testing setting. We based our formulation on the geometric properties of the MAP

algorithm when applied to regional localization. We proved that when measurements

are available from three or more non-collinear sensors, MAP based algorithms choose

the correct region almost surely in the limit of a large number of measurements. We

then presented a sequential distributed algorithm where each processor senses, transmits

and tests to provide a decision. We analyzed the algorithm and provided a measure of

its accuracy and showed that it ends in a finite time. We conclude this chapter by

numerically illustrating the algorithm’s performance.

There are two direct extensions for this work that we are considering. The first is

using an adaptive hierarchical methods based on quadtrees [50] to increase the level of

details in the choice of regions. The regions could be finely divided as fewer candidate

regions are left; an example of such adaptation is shown at the end of the chapter. It

would be interesting to study the trade off between the accuracy and the decision time

as a function of the fine-gridding of the regions.

The second is allowing the algorithm to stop as soon as a processor decides that its

region contains the source. As presented in this chapter, the algorithm has a proven
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accuracy performance based on the assumption that all processors reach their decisions

independently of each other, and although we assume only one source, a processor

will continue applying the Sense, Transmit & Test algorithm until it decides that its

region does not contain the source even if the source was detected by one of the other

processors. It will be interesting to see what happens to the accuracy if an individual

can broadcast a yes to everyone in the group, allowing them to stop. Alternatively, as

we showed in Figure 3.2, it is possible that only one hypothesis is left by elimination. It

will also be interesting to analyze, if possible, the accuracy of an algorithm that makes

use of such scenarios when they occur.
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Chapter 4

Gossip algorithm for a class of

environment partitioning

problems with separable rewards

and equitability constraints

4.1 Introduction

In this chapter we study a family of optimization problems that we call separable

optimization problems and show how distributed gossip based algorithms can be used

to solve this family of problems.
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Finding algorithms that allow a network of cooperative agents to perform a given

task has also been a topic of great value. Many problems might arise in such a setting:

The agents might not have the ability to fuse all the information in the network at one

place, the topology of the network itself might vary as some of the nodes might fail

suddenly, the topology might not be available to all nodes, and in many times, nodes

have limited computing ability. To deal with all these problems, distributed algorithms

are sought.

4.1.1 Chapter contribution

The major contribution of this chapter is that it introduces and implements a dis-

tributed peer-to-peer algorithm that solves regional optimization problems where the

objective is to find partitions that optimize a cost function while maintaining an equi-

tability constraint. The cost function has the property of depending (or being trans-

formable into a function that depends) separately on each region. The applications of

this family of problems are numerous. We study in this chapter four different problems

in details. We start with equitable partitioning problems and present a distributed

gossip algorithm that solves this problem. We then study three problems: we start

with the doubly equitable partitioning problem where the objective is to find partitions

that satisfy the equitability constraints under two different measures, we then study

the isoperimetric problem, where for a given area the sum of the isoperimetric ratio

(perimeters) of the partitions needs to be maximized (minimized) and finally we study
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an environment partitioning problem where the objective is to improve the performance

of a source localization algorithm. We present and implement an algorithm that solves

all these problems. For cases where some information might be missing, we introduce

an algorithm that we implement as a solution for the doubly equitable partitioning

problem. Our presented algorithms are general and can be used to solve any problem

belonging to a specific family of problems that we present.

4.1.2 Notations and definitions

We present below a set of notations that will be used throughout the chapter.

1. λ(W ) denotes the measure of a region W under a given density function λ(x).

λ(W ) =
∫∫
W

λ(x) dx,

where x ∈ Rd.

2. |W | denotes the area of the region W .

3. perim(W ) denotes the length of the boundary ∂W of the region W , i.e., the

perimeter of W .

4. P = {W : W ⊆ C} denotes the set whose elements are all possible polygons

included in C.

Definition 4.1.1 (Separability property) A function f(x1, . . . , xN ) : RN → R is

said to be separable, if it can be written as the sum of functions gi(xi) : R→ R, for all
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i ∈ {1, 2, . . . , N}. That is

f(x1, x2, . . . , xN ) =
N∑
i=1

gi(xi).

4.2 Problems of interest

We formally present in this section the four problems of interest. The first problem

we look at is motivated by load distribution problems. If we assume that the amount

of energy required to serve a region where a group of people are randomly distributed

is a function of the number of people in the region, and if we assume that agents

serving these regions have identical abilities, we would like to assign equal loads to

each agent. Such equal loading is mathematically equivalent to having regions of equal

measures with respect to a given distribution, which in this case is the distribution

of people or of objects that we intend to serve. These regions are called equitable in

the literature and have been the subject of interest for many scientists from different

backgrounds [37, 39, 40]. Finding partitions that satisfy this property has attracted

the attention of researchers in many disciplines, for example see [40, 41] and references

therein.

We start by giving a formal definition of equitable partitions.

Remark 4.2.1 (Definition of equitable partitions) Given an environment C, a

partition {W1, . . . ,WN} of C is said to be equitable under a measure λ : C → R≥0,

if it satisfies the following properties:
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1. ∪Ni=1Wi = C.

2. λ(Wi ∩Wj) = 0, ∀ i, j ∈ {1, . . . , N}.

3. λ(Wi) = λ(Wj),∀ i, j ∈ {1, . . . , N}.

Under the assumption of uniform load distribution, the measure λ(W ) corresponds to

the Lebesgue measure of W , and equitable regions in this case are regions of equal areas.

�

We present below the equitable partitioning problem.

Definition 4.2.2 (Equitable partitioning problem) Given N partitions

{W1. . . . ,WN}, the equitable partitioning problem consists of finding a set of partitions

{W ′1, . . . ,W ′N} such that the following holds:

• ∪Ni=1Wi = ∪Ni=1W
′
i ,

• λ(W ′i ∩W ′j) = 0 for all i, j ∈ {1, . . . , N},

• λ(Wi) = λ(Wj) for all i, j ∈ {1, . . . , N}.

Some applications require equitability of partitions with respect to more than one

measure. We present below the problem of doubly-equitable partitions.

Definition 4.2.3 (Doubly equitable partitioning problem) Given N partitions

{W1. . . . ,WN}, the doubly equitable partitioning problem consists of finding a set of

partitions {W ′1, . . . ,W ′N} such that the following holds:
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• ∪Ni=1Wi = ∪Ni=1W
′
i ,

• λ(W ′i ∩W ′j) = 0 for all i, j ∈ {1, . . . , N},

• γ(W ′i ∩W ′j) = 0 for all i, j ∈ {1, . . . , N},

• λ(Wi) = λ(Wj) for all i, j ∈ {1, . . . , N},

• γ(Wi) = γ(Wj) for all i, j ∈ {1, . . . , N}.

In addition to requiring equal load distributions many application require minimizing

the perimeters of regions. For example, in districting, ensuring privacy and security of

personal properties could in some cases require building fences around the regions. In

nature, honeycombs require a lot of energy from the bees to be built. This energy is

better spent on filling the combs with honey rather than producing the wax necessary

to build storage room for the honey. Seeking efficiency, bees solve the problem of

finding partitions that cover an area while minimizing the sums of the perimeters of

the partitions. It has been shown that the circle is the geometric shape that minimizes

the perimeter while covering a given area. Having multiple regions in the partition and

requiring avoidance of empty spaces between the partitions is a restriction that changes

the solution of the problem. We present below the isoperimetric problem which is the

second problem that we study in this chapter.

Definition 4.2.4 (Equitable isoperimetric problem) Given C, choose
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a partition {W1, . . . ,WN} of C that maximizes

N∑
j=1

4π|Wj |
H(Wj)2

,

subject to λ(Wi) = λ(Wj) for i, j ∈ {1, . . . , N}.

In 2001 Tales finally proved this conjecture in [43]. The existence of a hexagonal

tiling depends on the shape and size of the region C. It is easy to see that an optimal

solution for the equitable isoperimetric problem, is one where the hexagonal regions

have equal areas and perimeters.

We introduce below a problem inspired by the isoperimetric problem introduced

earlier.

Definition 4.2.5 (Minimal perimeter problem) Given an environment C, choose

a partition {W1, . . . ,WN} of C that minimizes

N∑
j=1

perim(Wj),

subject to λ(Wi) = λ(Wj) for i, j ∈ {1, . . . , N}.

The last problem we consider is inspired from regional localization. In this problem

we are looking to choose the partitions {W1, . . . ,WN} of an environment C so that the

performance of a localization algorithm is optimized. The algorithm whose performance

we are optimizing partitions the environment C into N regions and chooses one of the

regions which is more likely to contain a source s ∈ C that we are trying to localize.

We introduce below a heuristic measure of the performance of the algorithm [51].
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Definition 4.2.6 (Pointwise performance) Given a compact region C ⊂ R2 con-

taining a set of sensors positions {x1, . . . , xN}, an unknown position of a source in C is

modeled as a random variable s uniformly taking values in C, d0 > 0 and β ≥ 2, define

the smooth pointwise performance ` : C → R≥0 by

`(y) := Es

[
N∑
i=1

(
ln
d0 + ‖xi − y‖β

d0 + ‖xi − s‖β

)2
]
. (4.1)

The pointwise performance `(y) can be thought of as the measure of how far a point

y seems to be from the source s when a given localization algorithm is applied. The

higher the value of `(y) when s 6= y, the better the performance of the algorithm at y. A

measure for the worst case performance of the algorithm on C, can be thought of as the

joint contribution of the worst case pointwise performances of the algorithm on each of

the regions Wi. In addition to optimizing the performance of the algorithm, we require

that the answer provided by the algorithm, i.e., the chosen region, be informative in the

sense of limiting uncertainty in both x and y directions. We do so by associating a cost

to the diameter of the region W , diam(W ).

Definition 4.2.7 (Region diameter) The diameter of a region W is

diamW = max
p,q∈W

‖p− q‖∞.

For a polygon P , clearly

diamP = max
v,w∈V ertices(P )

‖v − w‖∞,
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Definition 4.2.8 (Square coverage problem) Given an environment C, choose a

partition {W1, . . . ,WN} of C that minimizes

N∑
j=1

diam(Wj), subject to λ(Wi) = λ(Wj),

for i, j ∈ {1, . . . , N}.

We are now ready to present the informative partitioning problem for optimal re-

gional localization.

Definition 4.2.9 (Informative partitioning problem) Given an environment C and

a pointwise performance function ` : C → R≥0 as in Definition 4.2.6, and a number

ξ ∈ [0, 1], choose a partition {W1, . . . ,WN} of C that maximizes

N∑
j=1

(
ξ min
y∈Wj

`(y)− (1− ξ)diam(Wj)
)
,

subject to λ(Wi) = λ(Wj) for i, j ∈ {1, . . . , N}.

In these problems, the optimization variable is the environment partition. The space of

partitions is not a Euclidean space. For example, partitions with polygonal regions may

have an arbitrary number of polygonal vertices. It is possible to introduce a topology

and a metric on the space of partitions; see [52].
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4.3 Distributed gossip algorithms for environ-

ment partitioning

In this section we present algorithms that solve the various environment partitioning

problems that we presented so far. We search for optimal partitioning over polygons.

The algorithm updates the regions in a pairwise manner. At each communication round,

a pair of regions Wi and Wj is chosen, their union W = Wi∪Wj is calculated and a new

pair of regions W+
i and W+

j is chosen so that the objective function is optimized. Since

we are interested in searching over partitions obtained by polygons, it is justifiable to

limit the search for partitions to ones obtained by maps that split regions by intersecting

them with half-planes. This allows us to change the optimization problem from one

where the variables are the partitions, to one where the optimization variable is a real

number θ, and where a real number c is used to meet the constraints.

We introduce the gossip algorithm presented in [36] as a distributed algorithm that

solves the consensus problem. Gossip algorithms play a crucial role in the implementa-

tion of our proposed solution. We also show how gossip algorithms can be used to exploit

properties of some optimization problems. We present below the consensus problem,

followed by the gossip algorithm.

Definition 4.3.1 (Consensus problem) Consider a connected graph G = (V,E),

where the vertex set V contains N nodes and E is the edge set. Let the N × 1 vec-

tor A(0) denote the initial state vector, where the ith entry Ai(0) corresponds to the
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initial states associated with the ith node. The consensus problem consists of finding

Aave =
∑N

i=1Ai(0)/N .

One distributed algorithm that solves the problem in Definition 4.3.1 is given below.

Algorithm 4.3.2 (Gossip algorithm for consensus problem) Denote by A(g) the

algorithm described as follows. Denote by gij the probability that node i contacts its

neighbor j. If this happens at a time k, the two nodes set their current values to the

average of their states. Ai(k + 1) = Aj(k + 1) = Ai(k)+Aj(k)
2 . Let A(k) denote the value

of the vector of the states at the end of time k, then A(k) = M(k)A(k − 1), where with

probability 1
N gij the random matrix M(k) has in its ijth entry Mij = I− (ei−ej)(ei−ej)T

2 ,

where ei = [0 . . . 0 1 0 . . . 0]T is an N × 1 unit vector with the ith component equal to 1.

Consensus problem: Distributed gossip algorithm

Network: nodes {1, . . . , N} with connected communication graph G = (V,E)

State of sensor i is xi

For a predefined number of loops

1: choose randomly i, j ∈ {1, . . . , N} s.t. (i, j) ∈ E

2: calculate {x′i, x′j} = {(xi + xj)/2, (xi + xj)/2}

3: Return: x+
i = x′i and x+

j = x′j; {x1, . . . , xN} = {x1, . . . , xN}+

The algorithm proposed in Algorithm 4.3.2 as a solution to the problem in Defini-
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tion 4.3.1 has the following properties [36].

Lemma 4.3.3 (Properties of gossip algorithms) Define the matrix g with compo-

nents gij to be the adjacency matrix associated with the graph G = (V,E) with N nodes,

the matrix D to be the diagonal matrix with entries Di =
∑N

j=1[gij + gji], the matrix

G to be the matrix G := I − 1
2ND + g+gT

2N and the real number λ2(G) to be the second

largest eigenvalue of a matrix G. Let A(t) to be the vector whose components are the

states at time t of the N nodes. Define Aave =
∑N

i=1
A(0)
N . After a number of commu-

nication rounds N ≥ Ncritical = 3 log ε−1

log λ2(G) , the gossip algorithm is guaranteed to satisfy

Pr
(
‖A(t)−Aave1‖
‖A(0)‖ ≥ ε

)
≤ ε, i.e., the gossip algorithm is guaranteed ε-convergence with a

probability of at least 1− ε.

The proof of the lemma is provided in [36]. We are interested in reaching equitable

partitions. In order to do that we look at the problem of reaching equitable partitions

as a consensus problem where the states are the areas of the regions. We use the gossip

algorithm proposed as a solution to the consensus problem to solve the equitability

problem.

Definition 4.3.4 (Equitably-splitting map) A map Me : P × P → P × P is

equitably-splitting if Me(Wi,Wj) = {W ′i ,W ′j}, implies that the following hold:

1. W ′i ∪W ′j = Wi ∪Wj,

2. λ(W ′i ∩W ′j) = 0,
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3. λ(W ′i ) = λ(W ′j).

Such a map can be achieved using a bisection as will be shown shortly. Now that we

presented the necessary maps and algorithms, we present the gossip algorithm to solve

the equitable partitioning problem.

Algorithm 4.3.5 (Gossip algorithm for equitable partitioning) We adopt the gos-

sip algorithm presented earlier to solve the equitable partitioning problem.

Equitable partitioning: Distributed gossip algorithm

Network: Regions {W1, . . . ,WN} with dual communication graph G = (V,E), where

(i, j) ∈ E ⇐⇒ Wi ∩Wj 6= φ

State i is wi := {Wi}

1: for k = 1 : Ncritical

2: choose randomly i, j ∈ {1, . . . , R} s.t. (i, j) ∈ E

3: calculate (W ′i ,W
′
j) =Me(Wi,Wj)

4: Wi := W ′i and Wj := W ′j;

5: Return: {W1, . . . ,WN}

Lemma 4.3.6 (Properties of gossip algorithms for equitable partitioning) The

properties of the gossip algorithm when applied to solve the equitable partitioning prob-

lem are the same as the properties presented in Lemma 4.3.3 of the gossip algorithm
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when applied to solve the consensus problem.

We define the equitably splitting map below. As a function of the intercept c ∈ R

and the angle θ ∈ [0, π[, define the half-plane H(c, θ) by

H(c, θ) := {[x y]T ∈ R2 | cos(θ)x+ sin(θ)y + c ≥ 0}. (4.2)

We are now ready to introduce the notion of equitably-splitting line maps.

Definition 4.3.7 (Equitably-splitting line map) A map Mh : P × P → P × P is

an equitably splitting line map if the exists an angle θ, and a corresponding intercept

c(θ) ∈ R, such that the following properties hold. Denoting Mh(Wi,Wj) = {W ′i ,W ′j)},

we have

1. λ(W ′i ∩W ′j) = 0,

2. W ′i (θ) = {Wi ∪Wj} ∩H(c(θ), θ) and W ′j(θ) = {Wi ∪Wj} \W ′i (θ),

3. λ(W ′i (θ)) = λ(W ′j(θ)).

Given the angle θ, a bisection algorithm can be employed to calculate the intercept c(θ)

leading to an equitable splitting.

Using the separability property presented in Definition 4.1.1 of the optimization

function, we solve the optimization problems by solving a sequence of pairwise opti-

mization problems. Each pairwise optimization consists of optimally choosing Wi and

Wj to maximize

f(Wi) + f(Wj),
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s.t. λ(Wi) = λ(Wj). The pairwise optimization problem to be solved is chosen via

a gossip algorithm. We write the constrained pairwise optimization problem as an

optimization problem over two variables. The first variable θ is the actual optimization

parameter, while the second variable c(θ), is used to satisfy the optimization constraint.

We present below a family of optimization problems that we call the separable ob-

jective and equitably constrained problem.

Definition 4.3.8 (Separable objective function and equitably constrained prob-

lem) Given an environment C and an objective function f(W1, . . . ,WN ) =
∑N

i=1 gi(Wi),

choose a partition {W1, . . . ,WN} of C that maximizes

f(W1, . . . ,WN ),

subject to λ(Wi) = λ(Wj) for i, j ∈ {1, . . . , N}.

Lemma 4.3.9 The problems presented in Definitions 4.2.4, 4.2.5, 4.2.8 and 4.2.9 fall

under the family of problems presented in Definition 4.3.8. In addition under the as-

sumption that the environment C is available to all nodes, the doubly equitable problem

presented in Definition 4.2.3, is also a member of the separable objective and equitably

constrained family of optimization problems.

Proof: It is trivial that the problems presented in Definitions 4.2.4, 4.2.5, 4.2.8

and 4.2.9 belong to the family of the unifying problem presented in Definition 4.3.8. The

only non trivial problem is the doubly equitable problem presented in Definition 4.2.3.
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In fact in this case, we add to the doubly equitable partitioning problem, the assumption

that the environment C is available to all regions. In this case we can write the problem

in the form in Definition 4.3.8. Since {W1, . . . ,WN} is a partition of C, then for any

measure γ, the following is true:

γ(C) = γ(∪Ni=1Wi) =
N∑
i=1

γ(Wi) = K.

And since in the doubly equitable problem, we are looking for partitions that set

γ(Wi) = γ(Wj)

for all i, j ∈ {1, . . . , N}, the the problem is equivalent to finding partitions {W1, . . . ,WN}

such that

γ(Wi) = γ(Wj) =
γ(C)
N

=
K

N
.

So we can writing the problem as follows: Choose a partition {W1, . . . ,WN} of C that

minimizes
N∑
i=1

(
γ(Wi)−

K

N

)2

,

subject to λ(Wi) = λ(Wj) for i, j ∈ {1, 2, . . . , N}. This problem is obviously the same

as maximizing

−
N∑
i=1

(
γ(Wi)−

K

N

)2

,

subject to λ(Wi) = λ(Wj) for i, j ∈ {1, 2, . . . , N}. This concludes the proof that the dou-

bly equitable partitioning problem belongs to the family of problems in Definition 4.3.8.
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The bisection gossip algorithm presented below is used to solve the family of optimiza-

tion problem presented in Definition 4.3.8 where the objective function satisfies the

separability property and the constraint is an equitability constraint.

Algorithm 4.3.10 (Bisection gossip algorithms) In what follows, we restrict the

partitions to be generated by half-planes. We denote by θgrid the set of values that the

search angle θ can take

θgrid = {θ ∈ [0, π] | θ =
2πk
θmax

, where k ∈ {0, . . . , θmax}}.

The distributed bisection gossip algorithm is presented as follows.

Bisection Gossip Algorithm # 1 Equitable and separable optimization problems:

Distributed bisection gossip algorithm

Network: Regions {W1, . . . ,WN} with dual communication graph G = (V,E), where

(i, j) ∈ E ⇐⇒ Wi ∩Wj 6= φ

Initialization: equitable partitions, possibly as computed by Algorithm 4.3.5

At each communication round

1: choose randomly i, j ∈ {1, . . . , R} such that (i, j) ∈ E

2: compute Rij(θ0) = f(Wi) + f(Wj) ∈ R

3: set W+
i (θ0) := Wi and W+

j (θ0) := Wj

{ θ0 is fictitious angle corresponding to no change in the partition. }

4: For all θ ∈ θgrid
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5: (W+
i (θ),W+

j (θ)) :=Mh(Wi,Wj)

6: compute Rij(θ) := f(W+
i (θ)) + f(W+

j (θ))

7: θ∗ = arg maxθ∈{θ0∪θgrid}Rij(θ)

8: W+
i := W+

i (θ∗) and W+
j := W+

j (θ∗)

For doubly equitable problems where the information about the whole environment

is not available, that is when the only information available to a node is about the

neighboring region with which it is communicating, we use the following algorithm.

Bisection Gossip Algorithm # 2 Doubly equitable problems: Distributed bisection

gossip algorithm

Network: Regions {W1, . . . ,WN} with dual communication graph G = (V,E), where

(i, j) ∈ E ⇐⇒ Wi ∩Wj 6= φ

Calculate equitable partitions with respect to λ as computed by Algorithm 4.3.5

At each communication round

1: choose randomly i, j ∈ {1, . . . , N} such that (i, j) ∈ E

2: compute Rij(θ0) = (γ(Wi)− γ(Wj))2 ∈ R+

3: set W+
i (θ0) := Wi and W+

j (θ0) := Wj

{ θ0 is fictitious angle corresponding to no change in the partition. }

4: For all θ ∈ θgrid

5: (W+
i (θ),W+

j (θ)) :=Mh(Wi,Wj)
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6: compute Rij(θ) := (γ(W+
i (θ))− γ(W+

j (θ)))2

7: θ∗ = arg minθ∈{θ0∪θgrid}Rij(θ)

8: W+
i := W+

i (θ∗) and W+
j := W+

j (θ∗)

Before we present a property describing the behavior of our bisection gossip algo-

rithm, we assume that the environment C is discretized.

Remark 4.3.11 (Discrete environments) The environment C is discretized by a

fixed grid. The number of points of the grid is chosen to be grid = kR, where k ∈ N

and N is the number of nodes in the environment.

Proposition 4.3.12 (Properties of the bisection gossip algorithm #1) Γline is

the set of fixed points of the map obtained by the bisection gossip algorithm map ap-

plied on a discretized environment C. The reward function is evaluated on the grid

points. Along each evolution of the algorithm, the reward function is monotonically

non-decreasing, and the algorithm’s solution approaches the set Γline.

Proof: In a discretized environment C, the sets of equitable partitions is finite. As

the algorithm evolves, new states are chosen from a finite set of partitions. Since the

algorithm only allows increases in the reward function, the reward function is monoton-

ically non-decreasing and since the partitions only stop changing when no improvement

on the reward function is possible among the accessible finite set of partitions, it follows

that the algorithm stops changing only when Γline is reached.
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Figure 4.1: This figure shows a sample of the behavior of the reward function as the

partitions are updated for each communication round when the bisection gossip

algorithm #1 is applied to a problem from the family of optimization problems

presented in Definition 4.3.8.

Proposition 4.3.13 (Properties of the bisection gossip algorithm #2) Define Γline

to be the set of fixed points of the map obtained by the bisection gossip algorithm map

applied on a discretized environment C. The reward function is evaluated on the grid

points. Along each evolution of the algorithm, the algorithm’s solution approaches the

set Γline.

The proof of this proposition is identical to the one presented in Proposition 4.3.12, the

only difference is that in this case no claim is made about the monotonicity and of the

reward function and its property of being non-decreasing.
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4.4 Simulations of various environment partition-

ing problems

In this section we show simulation results illustrating the application of the bisection

gossip algorithm to various environment partitioning problems. We will first show how

our algorithm starting from a random partitioning of the environment can achieve an

equitable partitioning. Unless otherwise noted, we will assume that the density over

which the measure of the regions is calculated is uniform. In most of our simulations

we assume uniform density, and the Lebesgue measure (except when noted otherwise).

In Figure 4.1 we show the non-decreasing monotonic property of the value of the

reward function for a series of communication rounds. The algorithm applied is the

bisection gossip algorithm #1. In Figures 4.2a and 4.2b we show how the partitions

of the environment evolves from non equitable to equitable partitions under the gossip

algorithm for equitable partitioning presented in Alg 4.3.5. Notice that with no further

constraint than equitability of the partitions, we might obtain regions that are not

convex. In Figure 4.3b we show the resulting partitions starting from the partitions

in Figure 4.3a when the bisection gossip algorithm #2 is used to solved the doubly

equitable problem. In these figures the measures are the Lebesgue measure (area of the

region in 2D) and the Hausdorff measure (the perimeter of the region in 2D). While

the final value of the areas is pre-determined by the problem (|C|/N), various doubly

equitable partitions could result in various perimeters of the regions. As is clear in
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the figures, the resulting partitions have equal areas and equal perimeters, but the

regions could have had a smaller perimeter. The doubly equitable partitioning problem

associates no cost with the length of the perimeter, or the diameter of the regions, or

the isoperimetric ratio of the regions. This explains the results.

In Figures 4.4a and 4.4b, we show the optimal partitions obtained by applying

the bisection gossip algorithm presented in Alg 4.3.10 to the informative partitioning

problem presented in Definition 4.2.9. When all the weight is given to the performance

of the localization algorithm, we end up with regions that provide little information

about the position of the source in the x or y direction, as shown in Figure 4.4a. If on

the other hand we add a cost associated with the diameter of the region, we end up

with regions such as in Figure 4.4b that are informative in limiting the uncertainty of

the position of the source in both the x and y direction.

Figure 4.5b shows the regions obtained when solving the isoperimetric problem pre-

sented in Definition 4.2.9 when applying Alg 4.3.10 starting from the partitions in

Figure 4.5a. Remember that the existence of a hexagonal tiling depends on the shape

and size of the region C, as well as on the number of partitions chosen.

In Figure 4.6a we show the solution to the square coverage optimization problem pre-

sented in Definition 4.2.8 starting from the partitions in Figure 4.5a. This corresponds

to the informative regional localization problem where ξ = 0. Figure 4.6b presents the

solution to the minimal perimeter problem presented in Definition 4.2.5 where Alg 4.3.10

is applied to solve the problem, starting again from the partitions in Figure 4.5a.
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(a) Initial non equitable

partitions

(b) Equitable partitions

Figure 4.2: This figure shows a network of 10 nodes starting from random parti-

tions in Figure 4.2a resulting in equitable partitions in Figure 4.2b after applying

the algorithm.

Finally, in Figure 4.7 we show the resulting partitions for the minimal perimeter

equitable partitions, when the distribution is given by

λ(x, y) = exp{−1
2

((x− 0.9)2 + (y − 0.9)2)},

and the measure of a region W , is then given by

λ(W ) =
∫∫
W

dx dy λ(x, y).

Note that in this figure, the regions do not have equal areas, in fact the regions around

the density peak (0.9, 0.9) (lightly shaded region) are smaller in area than the ones far

from the density peak (darker regions).
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(a) Initial non equitable

partitions

(b) Doubly equitable

partitions

Figure 4.3: This figure shows a network of 10 nodes starting from random parti-

tions in Figure 4.2a resulting in equitable partitions in Figure 4.2b after applying

the algorithm.

4.5 Conclusion

In this work, we studied environment partitioning under various settings. In all of

our problems, the variable of optimization were the partitions. We provide an algorithm

that solves a class of these optimization problems as long as the term to be optimized

satisfies the separability property. We implement our algorithm and find equitable

partitions, optimal equitable partitions that maximize the sum of isoperimetric ratios of

each partition, optimal partitions that minimize the sum of the perimeters of partitions

as well as optimal partitions that minimize the sums of all the diameters of partitions

and optimize general cost functions. For various density functions, various regions were

obtained.
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(a) Informative optimal

regional partitions ξ =

1

(b) Informative optimal

regional partitions ξ =

0.5

Figure 4.4: Figure 4.4a shows the partitions obtained from solving the optimiza-

tion problem in Definition 4.2.9 when ξ = 1. Figure 4.4b shows the partitions

obtained when ξ = 0.5.
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(a) Initial non equal

area partitions

(b) Optimal partitions

for the isoperimetric

problem

Figure 4.5: This figure shows a network of 10 nodes that cooperatively partition

the environment into regions that solve the isoperimetric problem presented in

Definition 4.2.9.

The algorithm can be used for a wide range of density function, and we illustrate

this ability of managing various densities by showing the results obtained by applying

our algorithm to solve the minimal perimeter problem when the density associated with

the points in the region is Gaussian. An interesting extension to this work is to allow

randomization in the choice of partition, following similar methods to those presented

in annealing literature, where the algorithm is allowed to take sub-optimal steps (choose

sub-optimal partitions in this case) with a non zero probability. For certain problems,

such an approach makes it possible to have global convergence properties that are not

otherwise achievable in optimization problems of the type studied in this chapter.
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(a) Informative optimal

regional partitions ξ =

0

(b) Minimal Perimeter

Figure 4.6: Figure 4.6a shows the partitions obtained from solving the optimiza-

tion problem in Definition 4.2.9 when ξ = 0 (or equivalently the square coverage

problem). Figure 4.6b shows a network of 10 nodes that cooperatively partition

the environment into regions that solve the minimal perimeter problem presented

in Definition 4.2.5.
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0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.7: This figure shows the optimal partitions for minimal perimeter when

the density function is λ(x, y) = exp{−1
2
((x− 0.9)2 + (y − 0.9)2)}.
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Chapter 5

Conclusion and future direction

Whether our objective is to understand interactions between various individuals or

simply decide on the best information processing scheme to follow, it is important to

properly formulate the problem and the interaction between the final decisions reached

by a group of individual; and since it is rarely, if ever, optimal to wait for every individual

in the group to cast its vote or opinion before information processing starts, we found

it important to study scenarios where information was sequentially processed both at

the individual and the fusion center levels. With that in mind, we studied in this thesis

distributed sequential decision making in groups.
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5.1 Summary

In Chapter 2 we presented a framework in which we modeled sequential decision

making in a group of sequential decision makers. One major difference with the problem

analyzed in the literature is the sequential aspect of decision aggregation presented in

this model. We were able to deal with that problem by proposing a numerical method

that tracks the change in the count of decision as a function of time. We then analyzed

specific rules and ran scalability analysis for large group sizes. The work presented in

this chapter lays ground to many interesting questions and suggested future extensions.

In Chapter 3 we studied the problem of regional source localization where informa-

tion was processed as soon as it is received. We presented the problem in a setting

that made it possible to prove that algorithms can be found that have almost sure

convergence. We then used sequential hypothesis testing theory to design a distributed

sequential localization algorithm where each individual is able to confirm that its region

contains or does not contain a source from its own information in addition to informa-

tion it gathers from its neighbors. We showed that each individual satisfies a pre-defined

accuracy requirements and that the test ends in a finite time.

In Chapter 4 we studied the problem of optimal regional partitioning where the

setting presented in Chapter 3 guided the proposition of various optimization problems

that we classified under as ”separable optimization problems”. We were then proposed

optimization algorithms that solve problems that belong to this family.

In Chapter 5 we presented summaries of the results and future directions for the
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work presented here.

5.2 Open reserach directions

The problems studied in this thesis had underlying assumptions that can be relaxed

to cover more general or more realistic scenarios.

Interacting sequential decision makers In the sequential decision making prob-

lem, a crucial condition for the derivation as presented was the independence of decisions

between the individuals, this makes it hard to study a very interesting extension of the

problem, where individuals are allowed to communicate among each other. Allowing

communication between the individuals makes the problem useful in a wide range of

applications ranging from social studies, to neuroscience and even systems biology, as

it allows us to understand the probable steady states of a network with a group of

interacting individuals, or the effects that neurons might have on one another’s firing.

Understanding such interactions will be useful in understanding how stochastic switch-

ing in cells will be affected in an environment where cells are competing for resources.

We think that the idea of aggregating states can be further explored to understand

such networks, and on the individual level interesting models where each individual

can maintain its own opinion with a certain probability or might adopt the choice of

the network with a complementary probability, will keep the conditional independence

(conditioning here will be on the current state of the network) between the individual
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decisions, allowing therefore a Markov Chain model to capture the evolution of the state

of the network under various scenarios. This is an on-going work.

Multiple sources localization In the regional localization problem, we studied

the problem with a single source. Extending the problem to cover the multiple sources

case remains an open problem. A key point needed for convergence of the localization

algorithm was the uniqueness of the solution under the condition of sufficient data in

the noise-free measurement case. In the case of multiple sources it is not clear whether

such a notion of sufficiency exists, i.e., it remains an open question whether or not there

is a configuration of data obtained from a number of sensors that will uniquely define the

number and positions of the sources even in the noise free case. We think that pursuing

this problem and then proposing localization algorithms that solve the problem in the

presence of noise is a very interesting problem.

Moving sources In both the regional localization and the sequential decision mak-

ing problems, we studied cases where the hypothesis are fixed. It will be interesting to

account for time change in the hypothesis and analyze how the algorithms and the anal-

ysis get affected by such a change. In the regional localization problem, this corresponds

to a moving source. Methods that study the problem of quickest change detection such

as cumulative sums could be a good place to start in answering these questions.

Stochastic switching in groups of cells An exciting direction of some of the work

presented in this thesis is the analysis of stochastic switching in cells. This extension

makes great use of the scenario of interacting individuals. The problem is briefly stated
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here. Under stressful conditions, a group of cells take actions that preserve their DNA

until the stress is removed. The behavior of the cell is a stochastic switching between

two or more states, where each state has functional characteristics that improves the

chances of DNA survival for the group. One caveat is that the states to which cells

can switch are energy absorbing, so given the limitations on the energy available for a

group, there will be a ”peer aversion” like behavior by the group of cells. This aversion

will be affected by the counters of the cells that switch to ”energy expensive” states.

We believe, that studying this problem and proposing numerical tools that allows the

analysis and understanding of the behavior of the cells is of great use to the control as

well as the systems biology communities and this will be part of our future directions.
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Appendix A

Proof of Arc length property

In the interest of completeness, we include this proof. We plan not to include
this proof in the final version of the manuscript.

In keeping with Remark 3.2.5, consider the situation where

p(Pi|y ∈ Wj)P(y ∈ Wj) =
1

A

∫
Wj

δD

(
lnPi − ln

Pd0

d0 + ‖qi − y‖ρ

)
dy.

Let qi = [qi1, qi2] and q2 = [q21, q22].
Define f : R× R× R×Q→ R to be

f(q21, q22, Pi, qi) = lnPi − lnPd0 + ln(d0 + ((qi1 − q21)2 + (qi2 − q22)2)ρ/2),

then

p(lnPi|Hj)P(Hj) =
1

A

∫
Wj

δD(f(q21, q22, Pi, qi))∂q22∂q21.

Let
H(a,Wj) := {y2 ∈ R | given a ∈ R, [a, y2] ∈ Wj}

Define h : R× R×Q→ R to be

h(a, Pi, qi) =

∫
H(a,Wj)

δD

(
lnPi − ln

Pd0

d0 + ‖qi − y‖ρ

)
∂q22

=

∫
H(a,Wj)

δD (f(a, q22, Pi, qi)) ∂q22. (A.1)
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Since

∂

∂q22

f(q21, q22, Pi, qi) = f ′(q21, q22, Pi, qi) =
ρ

2
· 2 · (−1) · (qi2 − y2)

((qi1 − q21)2 + (qi2 − q22)2)
ρ
2
−1

d0 + ((qi1 − q21)2 + (qi2 − q22)2)
ρ
2

If we fix q21 = a, we can solve for q22(a) such that,

f(a, q22(a), Pi, qi) = 0.

In fact

f(a, q22(a), Pi, qi) = 0⇔ lnPi − ln
Pd0

d0 + ((qi1 − a)2 + (qi2 − q22(a))2)
ρ
2

= 0

⇔ (qi1 − a)2 + (qi2 − q22(a))2 =

(
P − Pi
Pi

d0

) 2
ρ

= r2
i , (A.2)

where ri =
(

( P
Pi
− 1)d0

) 1
ρ
. Observe H(a,Wj) has at most two elements satisfying

equation (A.2)

q1
22(a) = qi2 −

√
r2
i − (qi1 − a)2 (A.3)

or,

q2
22(a) = qi2 +

√
r2
i − (qi1 − a)2, (A.4)

whenever r2
i ≥ (qi1 − a)2. Using properties of the dirac delta function, and sub-

stituting with q1
22(a) and q2

22(a) obtained in (A.3) and (A.4), (A.1) becomes:

h(a, Pi, qi) =

∫
H(a,j)

δD(f(a, q22, Pi), qi)∂q22,

takes the values

h(a, Pi, qi) =



∫
H(a,Wj)

δD(q22−q122(a))

|f ′(a,q22,Pi,qi)|∂q22

if q1
22(a) ∈ H(a,Wj) but q2

22(a) /∈ H(a,Wj)∫
H(a,Wj)

δD(y−q222(a))

|f ′(a,q22,Pi,qi)|∂q22

if q2
22(a) ∈ H(a,Wj) but q1

22(a) /∈ H(a,Wj)∫
H(a,Wj)

δD(q22−q122(a))

|f ′(a,q22,Pi,qi)| +
δD(q22−q222(a))

|f ′(a,q22,Pi,qi)|∂q22

if both q1
22(a) and q2

22(a) ∈ H(a,Wj)
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Define I1(a,Wj), the indicator function satisfying

I1(a,Wj) =

{
1 if q1

21(a) ∈ H(a,Wj)
0 otherwise

Similarly define I2(a,Wj), the indicator function satisfying

I2(a,Wj) =

{
1 if q2

22(a) ∈ H(a,Wj)
0 otherwise

Then (A.1) becomes

h(a, Pi, qi) =
1

|f ′(a, q1
22(a), Pi, qi)|

I1(a,Wj) +
1

|f ′(a, q2
22(a), Pi, qi)|

I2(a,Wj).

By substituting from (A.3), we get

1

|f ′(a, q22(a), Pi, qi)|
=

d0 + ((qi1 − a)2 + r2
i − (qi1 − a)2)

ρ
2

ρ
√
r2
i − (qi1 − a)2 ((qi1 − a)2 + r2

i − (qi1 − a)2)
ρ
2
−1

=
d0 + rρi

ρ
√
r2
i − (qi1 − a)2

1

rρ−2
i

=
d0 + rρi
ρrρ−2

i

· 1√
r2
i − (qi1 − a)2

Let Cj := {x ∈ R | (q11, qi2 −
√
r2
i − (qi1 − q11)2) ∈ Wj} and C ′j := {x ∈

R | (q11, qi2 +
√
r2
i − (qi1 − q11)2) ∈ Wj}. Note that

q11 ∈ Cj ⇒ I1(q11,Wj) = 1,

and
q11 ∈ C ′j ⇒ I2(q11,Wj) = 1.

Then,

p(Pi|y ∈ Wj)P(y ∈ Wj)

=
1

A

∫
Cj
S
C′j
h(q21, Pi, qi)∂q21 =

1

A

(∫
Cj
h(q21, Pi, qi)∂q21 +

∫
C′j
h(q21, Pi, qi)∂q21

)
=

1

A

∫
Cj

1

|f ′(q21, q1
22(q21), Pi, qi)|

∂q21 +
1

A

∫
C′j

1

|f ′(q21, q2
22(q21), Pi, qi)|

∂q21. (A.5)
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Write

Cj =
s⋃

α=1

Aα , with
⋂
α

Aα = ∅ , and Aα = [a1α , a2α ], (A.6)

C ′j =
s′⋃
α=1

A′α , with
⋂
α

A′α = ∅ , and A′α = [a′1α , a
′
2α ]. (A.7)

Equation (A.5) can then be written as the sum

A · p(Pi|y ∈ Wj)P(y ∈ Wj) =
s∑

α=1

∫
Aα

1

|f ′(q21, q1
22(q21), Pi, qi)|

∂q21

+
s′∑
α=1

∫
A′α

1

|f ′(q21, q2
22(q21), Pi, qi)|

q21.

A · p(Pi|y ∈ Wj)P(y ∈ Wj)

=
s∑

α=1

∫ a1α

a2α

1

|f ′(q21, q1
22(q21), Pi, qi)|

∂q21 +
s′∑
α=1

∫ a′2α

a′1α

1

|f ′(q21, q2
22(q21), Pi, qi)|

∂q21

=
s∑

α=1

∫ a1α

a2α

d0 + rρi
ρrρ−2

i

· 1√
r2
i − (qi1 − q21)2

∂q21

+
s′∑
α=1

∫ a′1α

a′2α

d0 + rρi
ρrρ−2

i

· 1√
r2
i − (qi1 − q21)2

∂q21

=
s∑

α=1

d0 + rρi
ρrρ−2

i

· arctan
qi1 − a√

r2
i − (qi1 − q21)2

∣∣∣∣a2α

a1α

+
s′∑
α=1

d0 + rρi
ρrρ−2

i

· arctan
qi1 − q21√

r2
i − (qi1 − q21)2

∣∣∣∣a′2α
a′1α

Note that [53]

arctan
qi1 − a√

r2
i − (qi1 − a)2

= arctan
qi1 − a√

(qi1 − a)2 + (qi2 − q22(a))2 − (qi1 − a)2

= arctan
qi1 − a

qi2 − q22(a)
=
π

2
− arctan

qi2 − q22(a)

qi1 − a
.
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The conditional regional posterior becomes after simplifications,

p(Pi|y ∈ Wj)P(y ∈ Wj)

=
d0 + rρi
Aρrρ−2

i

·
s∑

α=1

(
π

2
− arctan

qi2 − q22(a2α)

qi1 − a2α

− π

2
+ arctan

qi2 − q22(a1α)

qi1 − a1α

)

+
d0 + rρi
Aρrρ−2

i

s′∑
α=1

(
π

2
− arctan

qi2 − q22(a′2α)

qi1 − a′2α
− π

2
+ arctan

qi2 − q22(a′1α)

qi1 − a′1α

)

=
d0 + rρi
Aρrρ−1

i

(
s∑

α=1

arclengthα +
s′∑
α=1

arclength′α

)
,

where arclengthα and arclength′α are the angles of the arcs in S(Wj, ri, qi) described
on distinct supports as in (A.6) and (A.7) when applicable.
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Appendix B

Asymptotic and monotonicity

results on combinatorial sums

Some of the results provided for the fastest rule and for the majority rule
are based on the following properties of the binomial expansion (x + y)N =∑N

j=0

(
N
j

)
xjyN−j.

Lemma B.0.1 (Properties of half binomial expansions) For an odd num-

ber N ∈ \, and for real numbers c ∈ R and x ∈ R satisfying 0 < c ≤ 1 and

0 ≤ x ≤ c/2, define

S(N ; c, x) =

bN/2c∑
j=0

(
N

j

)
xj(c− x)N−j

and

S(N ; c, x) =
N∑

j=dN/2e

(
N

j

)
xj(c− x)N−j.

The following statements hold true:
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1. if 0 ≤ x < c/2, then, taking limits over odd values of N ,

lim
N→∞

S(N ; c, x)

cN
= 1 and lim

N→∞

S(N ; c, x)

cN
= 0;

2. if x = c/2, then

S(N ; c, x) = S(N ; c, x) =
cN

2
;

3. if c = 1 and 0 ≤ x < 1/2, then

S(N + 2; 1, x) < S(N ; 1, x) and S(N + 2; 1, x) > S(N ; 1, x).

Proof: To prove statement 1, we start with the obvious equality cN = (c−x+

x)N = S(N ; c, x)+S(N ; c, x). Therefore, it suffices to show that limN→∞
S(N ;c,x)

cN
=

0. Define the shorthand h(j) :=
(
N
j

)
xj(c− x)N−j and observe

h(j)

h(j + 1)
=

N !
j!(N−j)!x

j(c− x)N−j

N !
(j+1)!(N−j−1)!

xj+1(c− x)N−j−1
=

j + 1

N − j
c− x
x

.

It is straightforward to see that h(j)
h(j+1)

> 1 ⇐⇒ cj − xN + c − x > 0 ⇐⇒
j > xN

c
− (c−x)

c
. Moreover, if j > N

2
and 0 ≤ x < c

2
, then j − xN

c
+ c−x

c
>

N
2
− xN

c
+ c−x

c
≥ N

2
− N

2
+ c−x

c
> 0. Here, the second inequality follows from the

fact that −xN
c
≥ −N

2
if 0 ≤ x < c

2
. In other words, if j > N

2
and 0 ≤ x < c

2
, then

h(j)
h(j+1)

> 1. This result implies the following chain of inequalities f (dN/2e) >
f (dN/2e+ 1) > · · · > h(N) providing the following bound on S(N ; c, x)

S(N ; c, x) =

∑N
j=dN/2e

(
N
j

)
xj(c− x)N−j

cN
<
dN/2e

(
N
dN/2e

)
xdN/2e(c− x)bN/2c

cN
.

Since
(

N
dN/2e

)
< 2N , we can write

S(N ; c, x) < dN/2e 2NxdN/2e(c− x)bN/2c

cN
= dN/2e

(
2x

c

)dN/2e(
2(c− x)

c

)bN/2c
= dN/2e

(
2x

c

)(
2x

c

)bN/2c(
2(c− x)

c

)bN/2c
.
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Let α = 2x
c

and β = 2
(
c−x
c

)
and consider α · β = 4x(c−x)

c2
. One can easily show

that α · β < 1 since 4cx− 4x2 − c2 = −(c− 2x)2 < 0. The proof of statement 1 is
completed by noting

lim
N→∞

S(N ; c, x) < lim
N→∞

dN/2e
(

2x

c

)
(α · β)bN/2c = 0.

The proof of the statement 2 is straightforward. In fact it follows from
the symmetry of the expressions when x = c

2
, and from the obvious equality∑N

j=0

(
N
j

)
xj(c− x)N−j = cN .

Regarding statement 3, we prove here only that S(N + 2; 1, x) < S(N ; 1, x)
for 0 ≤ x < 1/2. The proof of S(N + 2; 1, x) > S(N ; 1, x) is analogous. Adopting
the shorthand

f(N, x) :=
N∑

i=dN
2
e

(
N

i

)
xi(1− x)N−i,

we claim that the assumption 0 < x < 1/2 implies

∆(N, x) := f(N + 2, x)− f(N, x) < 0.

To establish this claim, it is useful to analyze the derivative of ∆ with respect to
x. We compute

∂f

∂x
(N, x) =

N−1∑
i=dN/2e

i

(
N

i

)
xi−1(1−x)N−i−

N−1∑
i=dN/2e

(N−i)
(
N

i

)
xi(1−x)N−i−1+NxN−1.

(B.1)
The first sum

∑N−1
i=dN/2e i

(
N
i

)
xi−1(1−x)N−i in the right-hand side of (B.1) is equal

to (
N

dN/2e

)⌈N
2

⌉
xdN/2e−1 (1− x)N−dN/2e +

N−1∑
i=dN/2e+1

i

(
N

i

)
xi−1(1− x)N−i.

Moreover, exploiting the identity (i+ 1)
(
N
i+1

)
= (N − i)

(
N
i

)
,

N−1∑
i=dN/2e+1

i

(
N

i

)
xi−1(1− x)N−i =

N−2∑
i=dN/2e

(i+ 1)

(
N

i+ 1

)
xi(1− x)N−i−1

=
N−2∑

i=dN/2e

(N − i)
(
N

i

)
xi(1− x)N−i−1.
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The second sum in the right-hand side of (B.1) can be rewritten as

N−1∑
i=dN/2e

(N − i)
(
N

i

)
xi(1− x)N−i−1 =

N−2∑
i=dN/2e

(N − i)
(
N

i

)
xi(1− x)N−i−1 +NxN−1.

Now, many terms of the two sums cancel each other out and one can easily see
that

∂f

∂x
(N, x) =

(
N

dN/2e

)
dN/2exdN/2e−1 (1− x)N−dN/2e

=

(
N

dN/2e

)
dN/2e (x (1− x))dN/2e−1 ,

where the last equality relies upon the identity N −dN/2e = bN/2c = dN/2e− 1.
Similarly, we have

∂f

∂x
(N + 2, x) =

(
N + 2

dN/2e+ 1

)
(dN/2e+ 1) (x (1− x))dN/2e .

Hence

∂∆

∂x
(N, x) = (x (1− x))dN/2e−1

((
N + 2

dN/2e+ 1

)
(dN/2e+ 1)x(1− x)

−
(

N

dN/2e

)
dN/2e

)
.

Straightforward manipulations show that(
N + 2

dN/2e+ 1

)
(dN/2e+ 1) = 4

N + 2

N + 1
dN/2e

(
N

dN/2e

)
,

and, in turn,

∂∆

∂x
(N, x) =

(
N

dN/2e

)⌈
N

2

⌉
(x (1− x))dN/2e−1

[
4
N + 2

N + 1
x(1− x)− 1

]
=: g(N, x)

[
4
N + 2

N + 1
x(1− x)− 1

]
,

where the last equality defines the function g(N, x). Observe that x > 0 implies
g(N, x) > 0 and, otherwise, x = 0 implies g(N, x) = 0. Moreover, for all N ,
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we have that f(N, 1/2) = 1/2 and f(N, 0) = 0 and in turn that ∆(N, 1/2) =
∆(N, 0) = 0. Additionally

∂∆

∂x
(N, 1/2) = g(N, 1/2)

(
N + 2

N + 1
− 1

)
> 0

and
∂∆

∂x
(N, 0) = 0 and

∂∆

∂x
(N, 0+) = g(N, 0+)

(
0+ − 1

)
< 0.

The roots of the polynomial x 7→ 4N+2
N+1

x(1 − x) − 1 are 1
2

(
1±

√
1

N+2

)
, which

means that the polynomial has one root inside the interval (0, 1/2) and one inside
the interval (1/2, 1). Considering all these facts together, we conclude that the
function x 7→ ∆(N, x) is strictly negative in (0, 1/2) and hence that f(N + 2, x)−
f(N, x) < 0.

Computation of the decision probabilities for a single SDM applying
the SPRT test

In this appendix we discuss how to compute the probabilities{
pnd|0

}
∪
{
p0|0(t), p1|0(t)

}
t∈N and

{
pnd|1

}
∪
{
p0|1(t), p1|1(t)

}
t∈N (B.2)

for a single SDM applying the classical sequential probability ratio test (SPRT).
For a short description of the SPRT test and for the relevant notation, we refer
the reader to Section 2.6. We consider here observations drawn from both discrete
and continuous distributions.
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Discrete distributions of the

Koopman-Darmois-Pitman form

This subsection review the procedure proposed in [7] for a certain class of
discrete distributions. Specifically, [7] provides a recursive method to compute
the exact values of the probabilities (B.2); the method can be applied to a broad
class of discrete distributions, precisely whenever the observations are modeled as
a discrete random variable of the Koopman-Darmois-Pitman form.

With the same notation as in Section 2.6, let X be a discrete random variable
of the Koopman-Darmois-Pitman form; that is

f(x, θ) =

{
h(x) exp(B(θ)Z(x)− A(θ)), if x ∈ Z,
0, if x /∈ Z,

where h(x), Z(x) and A(θ) are known functions and where Z is a subset of the
integer numbers Z. In this section we shall assume that Z(x) = x. Bernoulli,
binomial, geometric, negative binomial and Poisson distributions are some widely
used distributions of the Koopman-Darmois-Pitman form satisfying the condition
Z(x) = x. For distributions of this form, the likelihood associated with the t-th
observation x(t) is given by

λ(t) = (B(θ1)−B(θ0))x(t)− (A(θ1)− A(θ0)).

Let η0, η1 be the pre-assigned thresholds. Then, one can see that sampling will
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continue as long as

η0 + t(A(θ1)− A(θ0))

B(θ1)−B(θ0))
<

t∑
i=1

x(i) <
η1 + t(A(θ1)− A(θ0))

B(θ1)−B(θ0))
(C.1)

for B(θ1) − B(θ0) > 0; if B(θ1) − B(θ0) < 0 the inequalities would be reversed.

Observe that
∑t

i=1 x(i) is an integer number. Now let η̄
(t)
0 be the smallest integer

greater than {η0 + t(A(θ1)− A(θ0))} /(B(θ1) − B(θ0)) and let η̄
(t)
1 be the largest

integer smaller than {η1 + t(A(θ1)− A(θ0))} /(B(θ1)−B(θ0)). Sampling will con-

tinue as long as η̄
(t)
0 ≤ X (t) ≤ η̄

(t)
1 where X (t) =

∑t
i=1 x(i). Now suppose that,

for any ` ∈ [η̄
(t)
0 , η̄

(t)
1 ] the probability P[X (t) = `] is known. Then we have

P[X (t+ 1) = `|Hi] =

η̄
(t)
1∑

j=η̄
(t)
0

f(`− j; θi)P[X (t) = j|Hi],

and

pi|1(t+ 1) =

η̄
(t)
1∑

j=η̄
(t)
0

∞∑
r=η̄

(t)
1 −j+1

P[X (t) = j|Hi]f(r; θi),

p0|i(t+ 1) =

η̄
(t)
1∑

j=η̄
(t)
0

η̄
(t)
0 −j−1∑
r=−∞

P[X (t) = j|Hi]f(r; θi).

Starting with P[X (0) = 1], it is possible to compute recursively all the quantities{
pi|j(t)

}∞
t=1

and P[X (t) = `], for any t ∈ N, ` ∈ [η̄
(t)
0 , η̄

(t)
1 ], and

{
pi|j(t)

}∞
t=1

.
Moreover, if the set Z is finite, then the number of required computations is
finite.

Computation of accuracy and decision time for pre-assigned thresholds

η0 and η1: continuous distributions

In this section we assume that X is a continuous random variable with den-
sity function given by f(x, θ). As in the previous subsection, given two pre-
assigned thresholds η0 and η1, the goal is to compute the probabilities pi|j(t) =
P[sayHi|Hj, T = t], for i, j ∈ {1, 2} and t ∈ N.
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We start with two definitions. Let fλ,θi and fΛ(t),θi denote, respectively, the
density function of the log-likelihood function λ and of the random variable Λ(t),
under the assumption that Hi is the correct hypothesis. Assume that, for a given
t ∈ N, the density function fΛ(t),θi is known. Then we have

fΛ(t),θi(s) =

∫ η1

η0

fλ,θi(s− x)fΛ(t),θi(x)dx, s ∈ (η0, η1) ,

pi|1(t) =

∫ η1

η0

(∫ ∞
η1−x

fλ,θi(z)dz

)
fΛ(t),θi(x)dx,

and

p0|i(t) =

∫ η1

η0

(∫ η0−x

−∞
fλ,θi(z)dz

)
fΛ(t),θi(x)dx.

In what follows we propose a method to compute these quantities based on a
uniform discretization of the functions λ and Λ. Interestingly, we will see how the
classic SPRT algorithm can be conveniently approximated by a suitable absorbing
Markov chain and how, through this approximation, the probabilities

{
pi|j(t)

}∞
t=1

,
i, j ∈ {1, 2}, can be efficiently computed. Next we describe our discretization
approach.

First, let δ ∈ R>0, η̄0 = bη0
δ
cδ and η̄1 = dη1

δ
eδ. Second, for n = dη1

δ
e−bη0

δ
c+ 1,

introduce the sets

S = {s1, . . . , sn} and Γ = {γ−n+2, γ−n+3, . . . , γ−1, γ0, γ1, . . . , γn−3, γn−2} ,

where si = η̄0 + (i− 1)δ, for i ∈ {1, . . . , n}, and γi = iδ, for

i ∈ {−n+ 2,−n+ 3, . . . , n− 3, n− 2} .

Third, let λ̄ (resp. Λ̄) denote a discrete random variable (resp. a stochastic pro-
cess) taking values in Γ (resp. in S). Basically λ̄ and Λ̄ represent the discretization
of Λ and λ, respectively. To characterize λ̄, we assume that

P
[
λ̄ = iδ

]
= P

[
iδ − δ

2
≤ λ ≤ iδ +

δ

2

]
, i ∈ {−n+ 3, . . . , n− 3} ,

P
[
λ̄ = (−n+ 2)δ

]
= P

[
λ ≤ (−n+ 2)δ +

δ

2

]
and

P
[
λ̄ = (n− 2)δ

]
= P

[
λ ≥ (n− 2)δ − δ

2

]
.
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From now on, for the sake of simplicity, we shall denote P
[
λ̄ = iδ

]
by pi. Moreover

we adopt the convention that, given si ∈ S and γj ∈ Γ, we have that si + γj := η̄0

whenever either i = 1 or i + j − 1 ≤ 1, and si + γj := η̄1 whenever either i = n
or i + j − 1 ≥ n. In this way si + γj is always an element of S. Next we set
Λ̄(t) :=

∑t
h=1 λ̄(h).

To describe the evolution of the stochastic process Λ̄, define the row vector
π(t) = [π1(t), . . . , πn(t)]T ∈ R1×n whose i-th component πi(t) is the probability
that Λ̄ equals si at time t, that is, πi(t) = P

[
Λ̄(t) = si

]
. The evolution of π(t) is

described by the absorbing Markov chain (S, A, π(0)) where

• S is the set of states with s1 and sn as absorbing states;

• A = [aij] is the transition matrix: aij denote the probability to move from
state si to state sj and satisfy, according to our previous definitions and
conventions,

– a11 = ann = 1; a1i = anj = 0, for i ∈ {2, . . . , n} and j ∈
{1, . . . , n− 1};

– ai1 =
∑−h+1

s=−n+2 ps and ain =
∑n−2

s=1 ps, h ∈ {2, . . . , n− 1};
– aij = pj−i i, j ∈ {2, . . . , n− 1};

• π(0) is the initial condition and has the property that P[Λ̄(0) = 0] = 1.

In compact form we write π(t) = π(0)At.
The benefits of approximating the classic SPRT algorithm with an absorbing

Markov chain (S, A, π(0)) are summarized in the next Proposition. Before stating
it, we provide some useful definitions. First, let Q ∈ R(n−2)×(n−2) be the matrix
obtained by deleting the first and the last rows and columns of A. Observe that
I−Q is an invertible matrix and that its inverse F := (I−Q)−1 is typically known
in the literature as the fundamental matrix of the absorbing matrix A. Second let
A

(1)
2:n−1 and A

(n)
2:n−1 denote, respectively, the first and the last column of the matrix

A without the first and the last component, i.e., A
(1)
2:n−1 := [a2,1, . . . , an−1,1]T and

A
(n)
2:n−1 := [a2,n, . . . , an−1,n]T . Finally, let eb η0

δ
c+1 and 1n−2 denote, respectively, the

vector of the canonical basis of Rn−2 having 1 in the (bη0
δ
c + 1)-th position and

the (n− 2)-dimensional vector having all the components equal to 1 respectively.

Proposition C.0.2 (SPRT as a Markov Chain) Consider the classic SPRT

test. Assume that we model it through the absorbing Markov chain (S, A, π(0))

described above. Then the following statements hold:
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1. p0|j(t) = π1(t)− π1(t− 1) and p1|j(t) = πn(t)− πn(t− 1), for t ∈ N;

2. P[say H0|Hj] = eTb η0
δ
c+1
Nā1 and P[say H0|Hj] = eTb η0

δ
c+1
Nān; and

3. E[T |Hj] = eTb η0
δ
c+1
F1n−2.
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