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Abstract

Pursuit Strategies for Autonomous Vehicles

by

Shaunak Dattaprasad Bopardikar

Surveillance and continuous monitoring of the environment to provide security

and protection against malicious mobile adversaries has attained utmost significance

ever since ancient times. Assigning humans this task runs the risk of fatigue due to

monotony and deception of the human. Recent growth in autonomous vehicle tech-

nology demonstrates tremendous potential worthy of delegation of these monotonous

yet critical tasks. This assignment requires design of strategies, or a set of motion

laws for these mobile autonomous vehicles that are both effective and efficient in

mitigating adversarial threats, with provable correctness as a certificate of guarantee.

This thesis addresses design of strategies for one or many autonomous vehicles to

pursue one or many targets via two prototype scenarios. The first scenario involves a

single adversary and we design provably effective pursuit strategies under constraints

on sensing as well as motion of the vehicles. Our approach towards the design of

pursuer formations and the strategies has been partly inspired by ecological studies

in predation. The second scenario involves multiple targets that sequentially arrive

in a region and have predictable motion. We design provably efficient strategies

and placements for the pursuing vehicles to reach them all. We borrow ideas from

geometry, probability theory and stochastic processes, estimation and localization,

combinatorial and receding-horizon optimization and convex analysis to establish our

results.
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Chapter 1

Introduction

Imagine going back in time to your childhood days, when games such as hide-

and-seek or tag were a part of every evening’s play. When you were the seeker, you

surely would have designed ingenious ways to seek out your hiding friends. Or when

you were the person wishing to tag your friend, then quick calculations would be

running through your mind as to how to progressively advance towards your evading

opponent. Unknowingly, you would have also established some “theorems”, such as

the faster you can move than your opponent, the quicker you would be tagging him or

her. Designing pursuit strategies is not much different from these familiar childhood

games, except that there is an increase in the level of complexity of the calculations.

Technological advances have led to the development of mobile robots that are

equipped with high-precision sensors and computational resources to enable them to

perform complex missions. One such complex mission for these robots is to detect,

track and get close to or capture, one or many adversarial mobile robots. From

the security point of view, there is a need to design effective as well as efficient

strategies for the detecting robot(s) to capture the adversary. Although these missions

arise primarily in surveillance applications such as border protection and security,
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these methods can be applied to civilian tasks such as search-and-rescue operations

or towards collision avoidance among vehicles, and also in video games. Strategies

to pursue targets moving in fixed directions and with fixed speed find industrial

applications in robotic pick-and-place operations.

1.1 Pursuit Problems: A Brief History

The problems addressed in this thesis fall into the category of Pursuit-evasion

which belong to the classic Theory of Games. A typical pursuit-evasion formulation

is as follows [8]: given a system that is controlled by one or many pursuers and one

or many evaders, a target set to which the system needs to be steered, determine the

controls that the pursuers need to apply in order to steer the system to the target

set in minimum time. Games of this type are known in the literature as games of

degree. A classic method to solve these games, i.e., obtain the optimal controls for

the pursuers and the evaders, is to solve the Hamilton-Jacobi-Bellman-Isaacs (HJBI)

equation, which is a partial differential equation in the state variables and time. In

general, for a non-linear system model and with constraints on the control inputs,

the HJBI equation is difficult to solve in closed-form. Recently, [62] has presented

an iterative approach based on limited look-ahead and successive improvements of

a sub-optimal solution to determine optimal controls in multi-pursuer and evader

problems. Additionally, numerous techniques to approximate the solutions to the

HJBI equations have been proposed in [68, 9, 44] to cite a few. A computational

approach based on evolution of forward reachability sets has been proposed in [30].

Another class of pursuit-evasion games that address the fundamental question of

whether the target set can be reached are games of kind. These are games in which

the goal is to design controls for the pursuers that ensure that capture takes place in

finite time, as opposed to minimum time. A folklore game of kind is the classic Lion
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and Man problem posed as follows.

A lion and a man in a closed arena have equal maximum speeds. What tactics

should the lion employ to be sure of his meal?

This problem was proposed by Rado and formally in [64]. For the case of capture

with zero radius, it was shown that the man can avoid getting captured. However,

for finite non-zero capture distance, [88] and more recently, [4] have presented lion

strategies that lead to capture for a class of environments and from a set of favorable

initial locations. Another classic pursuit game is the Homicidal Chauffeur game in

which a faster pursuer that is constrained to move on trajectories with bounded

curvature seeks to capture a slower evader which has simple motion [51].

When the environment in which the game is being played is complex, e.g., non-

convex, a traditional method is to discretize the environment into simpler regions.

Each simple region is a node of an underlying graph and we connect two nodes

whenever two simple regions are neighbors. This approach was introduced in [76],

and deterministic pursuit strategies were proposed in [2]. More recently, randomized

strategies, where the solution is a probability distribution over a set of deterministic

strategies have been addressed in [1, 52, 53, 98]. When there exist sensing constraints

on the pursuers, the problem becomes related to optimal search [95, 6]. Another

formulation in this context is visibility-based pursuit-evasion [97, 46], wherein the

pursuers are assumed to be equipped with visibility (line-of-sight) sensors and the

goal is to detect arbitrarily fast moving evaders.

1.2 Multiple Targets and Vehicle Routing

In this thesis, we also address the case in which there are multiple targets, slower

than a pursuer. Treating this scenario as a game of degree tells us that in some
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finite time, which can be computed as a function of the initial distances, the pursuer

captures all of the targets. The more challenging version of this problem is, in what

order should the pursuer capture the targets so that the time taken to capture all

of them is minimized? This is a difficult problem, belonging to the class of NP-hard

problems in combinatorial optimization [58]. The NP-hard class of problems are those

for which there does not exist any algorithm that can solve them with time complexity

that grows at most as a polynomial in the size of the problem, which in our case is

the number of targets.

However, if the motion of the targets has a certain structure, then one can design

efficient algorithms to determine the order of capture. For example, if the targets are

assumed to be translating, i.e., move with fixed speed in a given direction, then one

can design an approximation scheme to determine the optimal sequence in which the

targets much be captured [47].

If the targets were to arrive sequentially via a stochastic process in a region, and if

they were to have predictable motion, then this problem amounts to a version of the

dynamic vehicle routing problem. Vehicle routing refers to planning optimal vehicle

routes for providing service to a given set of customers. In contrast, Dynamic Vehicle

Routing (DVR) considers scenarios in which not all customer information is known

a priori, and thus routes must be re-planned as new customer information becomes

available. An early DVR problem is the Dynamic Traveling Repairperson Problem

(DTRP) [13], in which customers, or demands arrive sequentially in a region and a

service vehicle seeks to serve them by reaching each demand location. In [13], the

authors propose a policy that is optimal in the case of low arrival rate, and several

policies within a constant factor of the optimal in the case of high arrival rate. In

[14], they also study multiple service vehicles, and vehicles with finite service capacity.

In [75], a single policy is proposed which is optimal for the case of low arrival rate

and performs within a constant factor of the best known policy for the case of high
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arrival rate. Recently, there has been an upswing in versions of DVR such as in [93]

where different classes of demands have been considered; and in [78] which addresses

the case of demand impatience. In [79], decentralized policies are developed for the

multiple service vehicle versions, and in [92], a dynamic team-forming variation of the

Dynamic Traveling Repairperson problem is addressed.

Vehicle routing with objects moving on straight lines was introduced in [29], in

which a fixed number of objects move in the negative y direction with fixed speed, and

the motion of the service vehicle is constrained to be parallel to either the x or the y

axis. For a version of this problem wherein the vehicle has arbitrary motion, termed

as the translational Traveling Salesperson Problem, a polynomial-time approximation

scheme has been proposed in [47] to catch all objects in minimum time. Another

variation of this problem with object motion on piece-wise straight line paths, and

with different but finite object speeds has been addressed in [7]. Other variants of the

Euclidean Traveling Salesperson Problem in which the points are allowed to move in

different directions have been addressed in [48].

1.3 Statement of Contributions

In this thesis, we develop strategies, i.e., a set of rules for one or many vehicles

termed as pursuers in order to capture one or many targets. We consider two types of

target motions, which divides this thesis into two parts. In the first part, we assume

that there is a single evading target and it moves adversarially, to avoid getting

captured. We address pursuit games of kind under challenges such as limited sensing

abilities and motion constraints. We follow an algorithmic approach in which the

pursuers are specified what action to take under different conditions. For multiple

pursuer problems, the design of the pursuer formations are inspired from formations

observed in ecology. The distinguishing feature of this thesis is the characterization of
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conditions on the problem parameters under which our strategies provide guaranteed

capture. We exploit geometry in the problem and our analysis techniques rely on

showing that under certain favorable conditions, an appropriate cost function such as

the distance between the pursuers and the evader decreases to the capture distance.

In the second part, we address the case when targets appear via a spatio-temporal

stochastic process and upon arrival, move in a fixed direction with fixed speed. In

this setting, we address problems such as where should one place the vehicles so that

the average time taken to capture a target when it arrives is minimized?; and if the

targets arrive at a high rate, what strategies should a pursuer follow so that the

average number of targets in the environment does not grow unbounded? We use

elements of convex analysis, stochastic processes and receding-horizon optimization

in our analysis.

More specifically, the following are the contributions of this thesis:

Chapter 2 – Strategies under Sensing Limitations: We address discrete-

time pursuit-evasion games in the plane where every player has identical sensing

and motion ranges restricted to closed discs of given sensing and stepping radii. A

single evader is initially located inside a bounded subset of the environment and does

not move until detected. We propose a Sweep-Pursuit-Capture pursuer strategy to

capture the evader and apply it to two variants of the game: the first involves a single

pursuer and an evader in a bounded convex environment and the second involves

multiple pursuers and an evader in a boundaryless environment. In the first game,

we give a sufficient condition on the ratio of sensing to stepping radius of the players

that guarantees capture. In the second, we determine the minimum probability of

capture, which is a function of a novel pursuer formation and independent of the initial

evader location. The Sweep and Pursuit phases reduce both games to previously-

studied problems with unlimited range sensing, and capture is achieved using available

strategies. We obtain novel upper bounds on the capture time and present simulation
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studies that address the performance of the strategies under sensing errors, different

ratios of sensing to stepping radius, greater evader speed and different number of

pursuers.

The work in this chapter is based on the journal article [19] and the conference

articles [18] and [17].

Chapter 3 – Pursuit with Minimal Sensing Information: We address

problems on pursuit using minimal information from the measurements. Based on

the established Grow-Intersect estimation algorithm, we design pursuit strategies for

(i) range-based sensing and (ii) bearing sensing formulations. For both formulations,

we show that if the speed ratio of the evader to the pursuer is less than a certain

threshold, then from any initial location, the pursuer can reduce the distance to the

evader to a specified non-zero distance in finite time. Due to minimal information

about the evader’s location, at every instant, either the localization error increases

but with reduction in the distance, or the localization error can be reduced but at

the cost of increasing the distance to the evader. The central theme in the analysis

of these problems is that at every alternate time instant, the distance to the evader

strictly decreases if the speed ratio is less than a certain threshold.

The work in this chapter is based on the conference article [20].

Chapter 4 – Strategies under Motion Constraints: We address a pursuit-

evasion problem involving an unbounded planar environment, a single evader and

multiple pursuers moving along curves of bounded curvature. The problem amounts

to a multi-agent version of the classic Homicidal Chauffeur problem; we identify pa-

rameter ranges in which a single pursuer is not sufficient to guarantee evader capture.

We propose a novel multi-phase cooperative strategy in which the pursuers move

in specific formations and confine the evader to a bounded region. The proposed

strategy is inspired by hunting and foraging behaviors of various fish species. We
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characterize the required number of pursuers for which our strategy is guaranteed to

lead to confinement.

The work in this chapter is based on the journal article [21] and the conference

article [16].

Chapter 5 – Pursuing Sequentially-arriving and Translating Targets:

We introduce a problem in which targets (or demands) arrive stochastically on a

line segment, and upon arrival, move with a fixed velocity perpendicular to the seg-

ment. We design a receding horizon service policy for a pursuer, which is a simple

vehicle with speed greater than that of the demands, based on the translational min-

imum Hamiltonian path (TMHP). We consider Poisson demand arrivals, uniformly

distributed along the segment. For a fixed segment width and fixed vehicle speed,

the problem is governed by two parameters; the demand speed and the arrival rate.

We establish a necessary condition on the arrival rate in terms of the demand speed

for the existence of any stabilizing policy. We derive a sufficient condition on the

arrival rate in terms of the demand speed that ensures stability of the TMHP-based

policy. When the demand speed tends to the vehicle speed, every stabilizing policy

must service the demands in the first-come-first-served (FCFS) order; and of all such

policies, the TMHP-based policy minimizes the expected time before a demand is

serviced. When the demand speed tends to zero, the sufficient condition on the ar-

rival rate for stability of the TMHP-based policy is within a constant factor of the

necessary condition for stability of any policy. Finally, when the arrival rate tends to

zero for a fixed demand speed, the TMHP-based policy minimizes the expected time

before a demand is serviced. We numerically validate our analysis and empirically

characterize the region in the parameter space for which the TMHP-based policy is

stable.

The work in this chapter is based on the journal article [24] and the conference

articles [23] and [91].
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Chapter 6 – Vehicle Placement to Intercept Moving Targets: We address

the problem of pursuing sequentially-arriving and translating targets posed above. We

now consider the case when the arrival rate tends to zero, and the targets arrive as

per a specified spatial probability density function on the line segment. We address

the problem of optimally placing vehicles having simple motion in order to intercept

a mobile target that arrives stochastically on a line segment. The optimality of

vehicle placement is measured through a cost function, associated with intercepting

the target. We consider both single and multiple vehicle scenarios. For the single

vehicle case, we assume that the target either moves with fixed speed and in fixed

direction or it moves to maximize the vertical height or intercept time. We show that

each of the corresponding cost functions are convex, have smooth gradients and have

unique minimizing locations, and so the optimal vehicle placement is obtained by any

standard gradient-based optimization technique. For the multiple vehicle case, we

assume that the target moves with fixed speed and in fixed direction. We present

a partitioning and gradient-based algorithm in discrete time and we characterize

conditions under which this algorithm asymptotically leads the vehicles to a set of

critical configurations of the cost function.

The work in this chapter is based on the conference article [22].

1.4 Organization of this Thesis

This thesis is divided into two parts. Problems on pursuit and evasion are ad-

dressed in Chapters 2, 3 and 4. Chapter 2 considers pursuit-evasion games in which

the evader and one or more pursuers have a limited range sensing ability. Chapter 3

considers pursuit problems that require minimalist sensing abilities for the pursuer.

Chapter 4 addresses a pursuit problem in which multiple motion-constrained pursuers

try to encircle a single slower-but-agile evader.
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The second part of this thesis addresses a problem on designing pursuit strate-

gies to efficiently capture multiple sequentially-arriving and translating targets. This

problem is introduced and analyzed in Chapter 5. An extension of this problem that

addresses vehicle placement is presented in Chapter 6. Finally, conclusions and future

directions for this work are presented in Chapter 7.
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Chapter 2

Pursuit under Sensing Limitations

2.1 Introduction

In this chapter, we study discrete-time pursuit-evasion games in which there are

one or many pursuers and a single evader. Each player has identical speeds and sensing

ability which is restricted to a disc, i.e., a pursuer can detect an evader perfectly

and vice-versa only if the two are within a specified distance of each other. Our

set-up is one of discrete-time-alternate-moves - the evader and the pursuer(s) move

alternately with discrete steps. In this formulation, capture implies that the evader

and the pursuer (some pursuer) meet at the same location after a finite time. This

formulation is therefore equivalent to the continuous time formulation with capture

within a non-zero radius.

Relevant Literature

Continuous time versions been studied in [50, 63, 72] to cite a few. Recently,

discrete-time versions of the game has received significant attention. [88] has derived

sufficient conditions and a strategy for a single pursuer to capture an evader in a semi-
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open environment. This strategy has been extended in [57] to the case of multiple

pursuers in an unbounded environment, to capture a single evader which is inside their

convex hull. [5] and [3] propose strategies so that the pursuer can reduce the distance

between itself and the evader to a finite, non-zero amount after finite time steps. The

game has also been studied in different types of bounded environments, e.g., circular

environment [5], curved environments [61]. Visibility-based pursuit evasion has been

studied in [46, 15] and in polygonal environments [52].

In the context of sensing limitations, in continuous time formulations, [40] deals

with a version of visibility limited to an angle, instead of the entire region. [89]

considers a successive pursuit of multiple evaders by a single faster pursuer in the

plane with sensing range limited to a finite disc. [54] addresses the version of the

Lion and Man problem in [88] for the case when the pursuer is equipped with a sensor

that measures only the bearing angle (heading) of the evader’s location with respect

to the pursuer. [27] proposes a multi-phase pursuit strategy for groups of pursuers

with limited range sensing and has demonstrated its capture properties in bounded

environments via simulation without formal proof. In discrete time formulations, [53]

considers the problem on a graph, with the visibility of the pursuer limited to nodes

adjacent to the current node of a pursuer. A framework which uses probabilistic

models for sensing devices for the agents is described in [49] and [100].

Contributions

We address the case of limited range sensing capability: a pursuer and an evader

can sense each other only if the distance between them is less than or equal to a given

sensing radius. We consider the discrete-time version with one or many pursuers and

a single evader in a planar environment. The motion of each player is constrained to

a stepping disc around it. The evader is initially located inside a bounded subset of

the environment, which we term as the field. The players can leave the field but not

the environment. The evader follows a reactive rabbit model, i.e., does not move until
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it senses a pursuer [53]. We present an algorithmic approach in the form of a Sweep-

Pursuit-Capture strategy for the pursuer to capture the evader. We demonstrate this

strategy using two variants of the pursuit-evasion game: the first involves a single

pursuer and the evader in a bounded convex environment while the second considers

multiple cooperating pursuers to capture the evader in a boundaryless environment.

In the first game, the pursuer sweeps the environment in a definite path until

the evader is sensed, which must necessarily happen in finite time. This is analogous

to the spanning-tree based coverage presented in [37]. We then establish how a

Greedy strategy of moving towards the last-sensed location of the evader, eventually

reduces the present problem to a previously-studied one with unlimited sensing. The

convexity assumption on the environment is required because otherwise, due to the

limited sensing range, there exist environments similar to those considered in [52] and

an evader strategy, such that the evader does not get detected again. Finally, we show

how capture is achieved using the established Lion strategy [88]. Our contributions

are as follows: First, we present an analysis which provides a novel upper bound on

the time required for the pursuit phase to terminate. Second, we obtain a sufficient

condition on the ratio of sensing to stepping radius of the players for capture to take

place in a given environment. Finally, we show that this condition is tight in the

sense that if it is violated, then there exist sufficiently large environments, an evader

strategy and initial positions for the players, that lead to evasion against the Greedy

strategy.

The second game is played with at least five cooperative pursuers in a bound-

aryless environment and the field is a bounded region known to the pursuers. Our

contributions are as follows: First, we design a novel pursuer formation and a ran-

domized Sweep strategy for the pursuers to search the field. They succeed when

they detect the evader inside a special capture region, which we characterize for the

pursuer formation. We show that using our Sweep strategy, the pursuers succeed
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with a certain probability which is a function of the pursuer formation and indepen-

dent of the initial evader location. Next, we propose a cooperative pursuit strategy

for the pursuers to confine the evader within their sensing discs. We show that using

this pursuit strategy, the present problem is reduced to a previously-studied one with

unlimited sensing. Finally, we show how capture is achieved using the established

Planes strategy [57]. We obtain novel upper bounds on the time for each phase in

our strategy. Also, we present a simulation-based study of the performance of the

strategies under sensing errors, different ratios of sensing to stepping radius, greater

evader speed and different number of pursuers.

Ecological Motivation

The inspiration for the cooperative strategy proposed in this paper has been de-

rived from aspects of animal behavior. It is well known that predators hunt as a

conjoined group, when it is less efficient to hunt alone. This behavior is also observed

when the prey is large or can move as fast as the predators [74]. Further, predators

show an inclination towards specialized behavior by maintaining a fixed formation

during search and capture of preys [38]. Such specializations suggest that there may

be configurations that are preferred during group hunting. Also, in the presence of

sensing limitations, groups tend to maintain spacing between each other that is reg-

ulated by their sensory capabilities [77]. These facts give us additional hints towards

designing capture-conducive predator formations. In this context, our analysis sheds

light on how the maximum group size of the predators varies with prey availability

and with the prey’s nutrition value in the present set-up.

Organization of this Chapter

This chapter is organized as follows: the problem’s mathematical model and as-

sumptions are presented in Section 2.2. The individual phases of the sweep-pursuit-

capture strategies and the corresponding main results for both the problems are pre-

15



sented in Section 2.3. The proofs of the results are presented in Section 2.4. Sim-

ulation results are presented in Section 2.5. Finally, in Section 2.6, we study the

relationship between pursuer group sizes and evader availability and its nutrition

value in our set-up.

2.2 Problem Set-up

We assume a discrete-time model with alternate motion of the evader and the

pursuers: the evader moving first. We assume that the players can sense each other

precisely only if the distance between them is less than or equal to the sensing radius

rsens. Further, we assume that at each time instant, the players take measurements

of each other before and after the evader’s move, as shown in Figure 2.1. Define

Eφ := E ∪ φ, where E ⊆ R
2 denotes the environment and φ is the null element. The

null element will be used to denote a lack of measurement in our limited range sensing

model. Let G ⊂ E denote the field, i.e., the region that initially contains the evader.

The evader follows a reactive rabbit model - moves only after being detected for the

first time. We assume that the pursuers know the field G and the environment E .

The goal of the pursuer(s) is to capture the evader, i.e., a pursuer and the evader

are at the same position at some finite time. Evasion is said to occur if the pursuer

cannot capture the evader. We describe the Sweep-Pursuit-Capture strategy for the

following problems:

2.2.1 Single Pursuer Problem

We have a bounded convex environment E ⊂ R
2 and the field G = E . Let e[t] and

p[t] denote the absolute positions of the evader and the pursuer respectively, at time
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Figure 2.1. A snapshot of each time instant τ ∈ {1, 2, . . .} in our alternate motion

model. The players take measurements before and after the evader’s move.

t ∈ Z≥0. The discrete-time equations of motion are

e[t] = e[t− 1] + ue
(

e[t− 1], {ye
bef[τ ]}t

τ=1, {ye
aft[τ ]}t−1

τ=1

)

,

p[t] = p[t− 1] + up
(

p[t− 1], {yp
bef[τ ]}t

τ=1, {yp
aft[τ ]}t

τ=1

)

,

(2.1)

where at the τ -th time instant, ye
bef[τ ], y

e
aft[τ ] ∈ Eφ are the measurements of the pur-

suer’s position taken by the evader before and after the evader’s move, as shown in

Figure 2.1. The parentheses notation {yp
bef[τ ]}t

τ=1 denotes the set

{yp
bef[1], yp

bef[2], . . . , yp
bef[t]}. Due to limited range sensing model, for τ ∈ {1, . . . , t}, we

define

ye
bef[τ ] =







p[τ − 1], if ‖p[τ − 1] − e[τ − 1]‖ ≤ rsens,

φ, otherwise.

(2.2)

For notational convenience, we define {yp
aft[τ ]}t−1

τ=1 = φ for the initial time t = 1. For

t ≥ 2 and for τ ∈ {1, . . . , t− 1}, we have

ye
aft[τ ] =







p[τ − 1], if ‖p[τ − 1] − e[τ ]‖ ≤ rsens,

φ, otherwise.

(2.3)

Similarly, at the τ -th time instant , yp
bef[τ ], y

p
aft[τ ] ∈ Eφ are the measurements of the

evader’s position taken by the pursuer before and after the evader’s move respectively,
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as shown in Figure 2.1. Due to limited range sensing model, for τ ∈ {1, . . . , t}, we

have

yp
bef[τ ] =







e[τ − 1], if ‖e[τ − 1] − p[τ − 1]‖ ≤ rsens,

φ, otherwise.

(2.4)

For τ ∈ {1, . . . , t}, we have

yp
aft[τ ] =







e[τ ], if ‖e[τ ] − p[τ − 1]‖ ≤ rsens,

φ, otherwise.

(2.5)

The functions ue : E × Eφ × · · · × Eφ
︸ ︷︷ ︸

2t − 1 times

→ E and up : E × Eφ × · · · × Eφ
︸ ︷︷ ︸

2t times

→ E are termed

as strategies for the evader and pursuer respectively. The apparent lack of symmetry

between the number of arguments in the strategies of the evader and the pursuer is

due to the alternate motion model. We assume that both players can move with a

maximum step size of rstep, that is,

‖ue‖ ≤ rstep, ‖up‖ ≤ rstep. (2.6)

The sensing radius, rsens, is κ times the motion radius, rstep. We assume κ is greater

than 1, i.e., both players can sense further than they can move. From the reactive

rabbit model for the evader, we have ue = 0 until the evader is detected. After this

happens, the single pursuer problem consists of determining up that guarantees capture

for any evader strategy, ue. This problem is described by two key parameters: the

ratio of sensing to stepping radius κ and the ratio of the diameter of the environment

to the stepping radius diam(E)/rstep.

2.2.2 Multiple Pursuer Problem

We have a total of N ≥ 5 pursuers that can communicate among themselves the

location of a sensed evader as well as their own position with respect to a fixed, global
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reference frame. The environment E is R
2 and the field G is a bounded subset of R

2.

Define R
2
φ := R

2 ∪ φ. Let pj [t] denote the absolute positions of the j-th pursuer at

time t for every j ∈ {1, . . . , N}. Analogous to (2.1), the discrete-time equations of

motion are

e[t] = e[t− 1] + ue
(

e[t− 1], {ye
bef[τ ]}t

τ=1, {ye
aft[τ ]}t−1

τ=1

)

,

pj [t] = pj [t− 1] + upj

({

{pj[τ ]}N
j=1

}t−1

τ=1
,
{
yp

bef[τ ]
}t

τ=1
,
{
yp

aft[τ ]
}t

τ=1

)

,

(2.7)

where at the τ -th time instant, ye
bef[τ ], y

e
aft[τ ] ∈ R

2
φ × · · · × R

2
φ

︸ ︷︷ ︸

N times

denote the sets of

measurements of the pursuers’ positions taken by the evader before and after its

move. Similarly, yp
bef[τ ], y

p
aft[τ ] ∈ R

2
φ are the measurements of the evader’s position

taken by the pursuers before and after the evader’s move. The measurements are

given by expressions analogous to (2.2)-(2.5). Akin to the single pursuer problem, the

functions ue : R
2×R

2
φ × · · · × R

2
φ

︸ ︷︷ ︸

(2t − 1)N times

→ R
2 and upj : R

2
φ × · · · × R

2
φ

︸ ︷︷ ︸

(t − 1)N times

×R
2
φ × · · · × R

2
φ

︸ ︷︷ ︸

2t times

→ R
2

for every j ∈ {1, . . . , N}, are strategies for the evader and pursuers respectively. The

constraint on the maximum step size, given by (2.6), holds for the evader and every

pursuer. Due to the reactive rabbit model for the evader, ue = 0 until it is detected

by the pursuers for the first time.

The multiple pursuer problem consists of designing a pursuer formation and a cor-

responding strategy that guarantees capture of the evader. This problem is described

by the following key parameters: the ratio of sensing to stepping radius of the players

κ, the ratio of the diameter of the field to the stepping radius diam(G)/rstep, and the

number of pursuers N .

2.3 Strategies and Main Results

In this section, we describe the Sweep-Pursuit-Capture strategies for both the

problems and the corresponding main results. The proofs are presented in Section 2.4.
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We first introduce the following weak notion of capture.

Definition 2.3.1 (Trap) The evader is trapped within the sensing radius (resp.

radii) of the pursuer (resp. pursuers) if for any evader strategy ue, the motion disc of

the evader is completely contained within the sensing disc of the pursuer (resp. union

of the sensing discs of the pursuers) after a finite time.

To be specific, the evader is trapped at time instant Ttrap if for any evader strategy,

yp
bef[Ttrap] = e[Ttrap − 1], and yp

aft[Ttrap] = e[Ttrap].

The idea behind our Sweep-Pursuit-Capture strategies is to detect the evader and

pursue it so as to trap it. Next, we show that the evader remains trapped for all

subsequent time instants and that capture is achieved by using strategies that were

developed for the unlimited range sensing version of the respective game. This prin-

ciple applies to both versions of the problem.

2.3.1 Single Pursuer Problem

We first present each phase of the strategy for the single pursuer problem.

Sweep Phase - Sweep Strategy

Let diam(E) denote the diameter of E . The Sweep strategy for the pursuer is

to move with maximum step size along a path, as shown in Figure 2.2 such that the

union of the sensing discs of the pursuer at the end of each step until the end of this

phase contains E . We term such a path a sweeping path for E . Let tsweep denote the

time taken for this strategy to terminate. We have the following result.
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Lemma 2.3.2 (Sweep strategy) In the single pursuer problem with parameters κ

and diam(E)/rstep, the time tsweep taken by the Sweep is at most

⌈

diam(E)
/

2κrstep

⌉

(⌈diam(E)/rstep⌉ + ⌈κ⌉) steps.

p

diam(E)

Figure 2.2. A sweeping path to detect the evader in the Single pursuer problem using

the Sweep strategy.

Pursuit Phase - Greedy Strategy

Once the evader is detected, the Greedy strategy for the pursuer is to move

towards the last sensed position of the evader with maximum step size. This strategy

has the property that the pursuer senses the evader’s position at every successive

time instant. Let ttrap denote the trapping time, i.e., the time taken by the pursuer to

trap the evader after detecting it. We now present our main result for the Greedy

strategy.

Theorem 2.3.3 (Greedy strategy) In the single pursuer problem with parameters

κ and

diam(E)/rstep, if κ >
√

2 + 2 cosβc, where

βc :=

√
3

4κ

⌈
diam(E)

2κrstep

⌉−1

arctan
1

8κ
, (2.8)

then the Greedy strategy has the following properties:
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1. the pursuer traps the evader within its sensing radius, and

2. the trapping time ttrap satisfies

ttrap ≤
(⌈

log(
√

κ2 − sin2 βc − cosβc − 1) − log(κ− 1)

log(1 − (1 − cosβc)/κ)

⌉

+ 1

)⌈
diam(E)

2κrstep

⌉

. (2.9)

Furthermore, if κ > 2, then as (diam(E)/rstep) → +∞, ttrap ∈ O
(
(diam(E)/rstep)

3).

Theorem 2.3.3 is tight in the sense that if the condition on κ is violated then there

exist sufficiently large environments, an evader strategy and initial positions for the

players, that lead to evasion against the Greedy pursuer strategy. This is described

by the following result.

Proposition 2.3.4 (Evasion) Given a single pursuer problem with parameters κ

and diam(E)/rstep such that κ ≤ √
2 + 2 cosβc, where βc is given by (2.8), and E

contains a circle of radius rstep/
√

4 − κ2, then there exist an evasion strategy and

initial positions of the players for which the pursuer’s Greedy strategy fails to trap

the evader.

Figure 2.3 illustrates this evasion strategy under the conditions required by Proposi-

tion 2.3.4.

Capture Phase - Lion Strategy

Once the evader is trapped within the sensing range of the pursuer, the pursuer

employs the Lion strategy from [88] to complete the capture. For the sake of com-

pleteness, we now give a brief description of the Lion strategy, adapted to the present

problem setting.

The Lion strategy can be applied to this phase as follows:
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e[t + 1]

ρ

Ω

e[t]

p[t]

Figure 2.3. Illustrating evasion. The dotted circles are the player’s motion discs and

the solid circle is the pursuer’s sensing disc. e[t] and p[t] are on the circle Ω described

in Proposition 2.3.4 such that ‖e[t]− p[t]‖ = rstep. Evader chooses to move to e[t+ 1]

on Ω with full step size.

1. Prior to its (t+1)-th move, the pursuer constructs the line joining e[t] and p[t],

as shown in Figure 2.4. Let this line intersect the boundary of the environment

at a point X[t] such that p[t] lies between e[t] and X[t].

2. The pursuer then also constructs the line joining e[t+ 1] and X[t]. It moves to

the intersection of this line with the circle centered at p[t] and of radius rstep.

Of the two possible intersection points, the pursuer selects the one closer to

e[t+ 1].

This construction guarantees that the intersection point X[t] remains the same as

the point X[tsweep + ttrap], for every t ≥ tsweep + ttrap, where tsweep + ttrap is the time

at the end of the pursuit phase. Denoting by tcap the time taken by the pursuer to

capture the evader after trapping it, we have the following result.

Theorem 2.3.5 (Lion strategy [88]) In the single pursuer problem with param-

eters κ and diam(E)/rstep, after trapping the evader within the sensing radius and
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X [t](≡ X [tsweep + ttrap])

E

e[t]

p[t + 1]e[t + 1]

p[t]

Figure 2.4. Single pursuer problem: Using the Lion strategy to capture the evader.

The dotted circles represent the motion discs of the players.

using the Lion strategy,

1. the distance, ‖p[t] − e[t]‖, is a non-increasing function of time,

2. the pursuer captures the evader,

3. tcap is at most

⌈(
diam(E)

rstep

)2
⌉

steps.

Thus, our problem with limited sensing is solved because once the evader is

trapped within the pursuer’s sensing radius, it remains trapped until capture, from

part (i) of Theorem 2.3.5. We have also obtained an upper bound on the total time

to capture, i.e., tsweep + ttrap + tcap.

2.3.2 Multiple Pursuer Problem

This section describes the sweep-pursuit-capture strategy for multiple pursuers

and the corresponding results. We assume that κ ≥ 4 and N ≥ 5. We define the

following formation for multiple pursuers.
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Definition 2.3.6 (Trapping Chain) A group of N ≥ 5 pursuers {p1, . . . , pN} are

said to be in a trapping chain formation if

1. p2, . . . , pN−1 are placed counterclockwise on a semi-circle with diameter equal to

‖p2 − pN−1‖,

2. for all j ∈ {1, . . . , N − 1}

‖pj − pj+1‖ = rstep
√

4κ2 − 25, and,

3. p1, p2, pN−1, pN are on the vertices of a rectangle such that the polygon with

vertices {p1, . . . , pN}, in that order, is convex (cf. Figure 2.5).

p4

p6

p7

p8 p9

l

p3

p2 p1

p5

Figure 2.5. A trapping chain formation for N = 9 pursuers. The circles around the

pursuers denote their sensing ranges. The lightly shaded region denotes the capture

region and the darkly shaded region along with the lightly shaded one denotes the

extended capture region.

We now describe the Sweep-Pursuit-Capture strategy for the multiple pursuer prob-

lem.
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Sweep Phase - Sweep Strategy

The pursuers begin by placing themselves in a trapping chain formation. We

define the capture region S for a trapping chain by

S =
⋃

j∈{3,...,N−2}
Bpj

(rsens) ∩ C̊o{p2, . . . , pN−1},

where Bpj
(rsens) ⊂ R

2 denotes the sensing disc of pursuer pj and C̊o{p2, . . . , pN−1} ⊂

R
2 denotes the interior of the convex hull of {p2, . . . , pN−1}. The lightly shaded region

in Figure 2.5 is the proposed capture region, S, for the trapping chain. In the sweep

phase, pursuers wish to detect the evader within the capture region. We consider a

square region of length equal to diameter of the region G, diam(G) that contains the

field G. The pursuers sweep this square region in the direction of the normal to p1pN ,

outward with respect to the convex hull of the pursuers. For a trapping chain shown

in Figure 2.5, we define the effective length l as

l := ‖p1 − pN‖ − 2rsens = rstep

(√
4κ2 − 25

sin( π
2(N−3)

)
− 2κ

)

. (2.10)

As the pursuers move in the direction described earlier, they clear a rectangular strip

of length diam(G) and width l + 4rsens. The Sweep strategy for the pursuers is as

follows.

1. Choose the first rectangular strip at a random distance l0 from one edge of

the square region containing G and sweep it length-wise. The distance l0 is a

uniform random variable taking values in the interval [−2rsens, l+ 2rsens]. Here,

negative l0 implies that some of the pursuers may begin sweeping from outside

the region G.

2. Form a sweeping path for the square region and sweep along adjacent strips as

shown in Figure 2.6.
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The shaded region in Figure 2.6 refers to the area that would fall in the proposed

capture region S. Now we are interested in determining the probability that an evader

falls in the shaded region in Figure 2.6. That is given by the following result.

l

l0

diam(G)

2rsens

Figure 2.6. Multiple pursuer problem: Sweep strategy. The shaded region represents

the region swept by the capture region of the trapping chain.

Theorem 2.3.7 (Sweep strategy) In the multiple pursuer problem with parame-

ters κ, diam(G)/rstep and N , for any probability distribution for the initial position

of the evader with support on G, using the Sweep strategy,

1. the probability P of detecting the evader inside S for a group of pursuers in a

trapping chain, satisfies

P ≥ l

l + 4rsens
≥ 1 − 2πκ

(√
4κ2 − 25(N − 3) + 2πκ

) , and

2. the time tsweep taken by the Sweep strategy to terminate satisfies

tsweep ≤
⌈diam(G)

rstep

( π/2√
4κ2 − 25(N − 3) + πκ

)⌉

×
⌈diam(G)

rstep
+ 2

√
4κ2 − 25N

⌉

.
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Remark 2.3.8 The minimum probability P of the pursuers detecting the evader in-

side the capture region by using the Sweep strategy is independent of the evader’s

location in G. This means that the best that the evader can do in the present frame-

work is to locate itself initially with a uniform probability in G.

We will see that the pursuers win when the evader is detected in S by the pursuers.

Otherwise, there exists a path for the evader such that it can avoid being captured

indefinitely.

Pursuit Phase - Circumcenter Strategy

If the evader is detected within the proposed capture region at time tsweep, the

pursuers need to ensure that they trap the evader within their sensing ranges. Before

we describe the strategy for the pursuit phase, consider the following possibility: if the

evader steps into the darkly shaded region of the sensing range of p2 (or of pN−1), then

p2 (resp. pN−1) can use the Greedy strategy (ref. Section 2.3.1). By moving towards

the evader, the evader’s motion disc gets contained inside that pursuer’s sensing disc

and thus the evader gets trapped. This motivates us to define an extended capture

region Se for the trapping chain by

Se =
⋃

j∈{2,...,N−1}
Bpj

(rsens) ∩ C̊o{p2, . . . , pN−1}.

The darkly shaded region along with the lightly shaded region in Figure 2.5 is the

extended capture region Se for the trapping chain.

We now present the following pursuit strategy. At each time step t ≥ tsweep,

1. While e[t+1] /∈ Se[t], the pursuers p2, . . . , pN−1 move towards the circumcenter 1

1The circumcenter of a triangle is the unique point in the plane which is equidistant from all of
its three vertices.
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O of the triangle formed by p2[tsweep], e[tsweep] and pN−1[tsweep] with maximum

step. Pursuers p1 and pN move parallel to p2 and pN−1 respectively.

2. Otherwise, one of the pursuers which senses the evader directly, makes a Greedy

move (ref. Section 2.3.1) towards the evader and the others move parallel to

that pursuer with the maximum step.

One such move is shown in Figure 2.7. In case (i) of the strategy, note that the

pursuers may not sense the evader in every subsequent move. But they will encircle

the evader by “closing” the trapping chain around it and then shrink the enclosed

region around the evader. We thus have the following result.

p5[tsweep]

e[tsweep]

p1[tsweep]p2[tsweep]

p3[tsweep]

p6[tsweep]

p7[tsweep]

p8[tsweep] p9[tsweep]

p4[tsweep]

O

Figure 2.7. Multiple pursuer problem: Circumcenter strategy. At time tsweep, the

evader position is sensed by p4. Pursuers p2, . . . , p8 move towards O, the circumcenter

of triangle formed by p2, e and p8. p1 and p9 move parallel to p2 and p8 respectively.

The circles around the pursuers represent their sensing discs.

Theorem 2.3.9 (Circumcenter strategy) In the multiple pursuer problem with

parameters κ, diam(G)/rstep and N , starting from a trapping chain formation, if the
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evader is detected with e[tsweep] ∈ S[tsweep], then using the Circumcenter strategy,

1. the pursuers trap the evader within their sensing radii,

2. the trapping time ttrap satisfies

ttrap ≤
√

4κ2 − 25N
(

1 +
1

2 sinφ

)

,

where

φ(κ) =
π

4
− arctan

( κ√
3κ2 − 25

)

, and

3. at that time, the evader is inside the pursuers’ convex hull in such a way that

B rstep

2

(e[tsweep + ttrap]) ⊂ Co{p1, . . . , pN}[tsweep + ttrap], (2.11)

where the notation Br(a) refers to the closed disc of radius r centered at point

a in the plane.

The Circumcenter strategy guarantees trapping of the evader even without

pursuers p1 and pN . But in that case, the inclusion in (2.11), which will be required

to establish an upper bound on the time for the capture phase that follows, is not

guaranteed.

The Capture Phase - Planes Strategy

Once the evader is trapped within the sensing ranges of the pursuers, the pursuers

use the Planes strategy from [57] to capture the evader. Before stating our results,

we reproduce this strategy for completeness.

Let the time at the end of the pursuit phase be tsweep+ttrap and the evader be inside

the convex hull of the pursuers as in (2.11) (cf. Figure 2.8(a)). For t ≥ tsweep + ttrap

and for every pursuer pj:
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• Draw the line hj [t+1] through e[t+1], parallel to the line joining e[t] and pj[t],

as shown in Figure 2.8(b).

• Move to the point closest to e[t + 1] on the line hj[t + 1] with maximum step

size.

e

p2

p1
p4

p3

(a) Evader inside

pursuers’ convex

hull

pj[t + 1]

pj[t]

e[t]

e[t + 1]

hj[t + 1]

(b) Planes strat-

egy. Illustrating a

pursuer move.

Figure 2.8. Algorithm Planes

Theorem 2.3.9 shows that use of the Circumcenter strategy in the pursuit phase

leads to the evader being trapped and inside the convex hull of the pursuers. Now

capture follows from the following theorem, which was partly inspired by the results

on the Planes strategy in [57].

Theorem 2.3.10 (Planes strategy) In the multiple pursuer problem with param-

eters κ, diam(G)/rstep and N , let the evader be trapped inside the convex hull of the

pursuers such that property (2.11) is satisfied. If every pursuer follows the Planes

strategy, then

1. the distances, ‖pj[t] − e[t]‖ for every j ∈ {1, . . . , N}, are non-increasing func-

tions of time,

2. the pursuers capture the evader and
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3. the time tcap taken in the capture phase is at most 18κ
√

4κ2 − 25N .

Item (i) of Theorem 2.3.10 implies that once the evader is trapped within the

sensing ranges of the pursuers, it remains trapped within their sensing ranges at the

end of every pursuer move. The capture is now complete and we obtained a novel

upper bound on the total time to capture, i.e., tsweep + ttrap + tcap.

2.4 Proofs of the Results

In this section, we formally prove the main results.

2.4.1 Single Pursuer Problem

Proof of Lemma 2.3.2: To determine an upper bound for tsweep, consider placing E

inside a square region of length diam(E) and the pursuer moving along a hypothet-

ical sweeping path for the square region, as shown in Figure 2.9. It is straightfor-

ward to show that to achieve coverage, this hypothetical sweeping path is between

strips of width 2κrstep, parallel to the side. selection of width for the There are

⌈(diam(E)/2κrstep)⌉ such strips and it takes at most ⌈diam(E)/rstep⌉ + ⌈κ⌉ steps to

sweep one strip completely and be positioned to sweep through a neighboring strip

of this hypothetical sweeping path.

To prove Theorem 2.3.3, we need some preliminary definitions and results which

we present now. In what follows, the notation ∠ABC refers to the smaller of the two

angles between segments AB and BC.

Definition 2.4.1 (Deviation and evasion angles) Given evader and pursuer at

positions e[τ ], p[τ ], for τ ∈ {t, t+ 1}, define the deviation angle α[t] and the evasion
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diam(E)

p 2rstep

√

κ2 − 1
4

Figure 2.9. A hypothetical sweeping path to determine upper bound on number of

steps to detect the evader.

angle β[t] by:

α[t] := ∠e[t+ 1]p[t+ 1]e[t],

β[t] := α[t] + ∠p[t+ 1]e[t+ 1]e[t].

These angles are illustrated in Figure 2.10. The following result follows trivially.

Proposition 2.4.2 When the pursuer uses the Greedy strategy, for every instant

of time t,

|β[t]| ≥ |α[t]|. (2.12)

Note that equality in (2.12) only holds when the evader moves away from the pursuer

along the line p[t]e[t].

It can be deduced that when the pursuer employs the Greedy strategy, the

distance between the pursuer and evader is a non-increasing function of time. We

now define a geometric construction which is useful in the proof.
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s[t + 1]

s[t]
p[t + 1]

α[t]

e[t + 1]

β[t]

e[t]

rstep
rstep

p[t]

Figure 2.10. Relation between the deviation angle α[t] and the evasion angle β[t].

The dotted circles represent the motion discs of the players. The circle centered at

p[t] (shown partially here) is the pursuer’s sensing range.

Definition 2.4.3 (Cone sector sequence) Let t0 denote the time at the end of the

sweep phase. Given a time instant k ∈ Z≥0, the sequence Ck of cone sectors Ck,i for

i ∈ Z≥0 is defined as follows:

1. Define the cone sector Ck,0 with p[tk] as its vertex, angle bisector defined by the

segment e[tk]p[tk] and extended to a point X beyond e[tk] such that Lcone :=

‖p[tk] − X‖ = 2κrstep, as shown in Figure 2.11. Let the segment Y Z be of

length rstep

2
and perpendicular to the segment p[tk]X with X as its midpoint.

Accordingly, let θ := ∠Y p[tk]Z = 2 arctan(1/8κ) be the cone angle.

2. For k, i ≥ 0, denote by t∗ the time when the evader leaves the cone sector Ck,i.

There are two possibilities:

(a) the pursuer first constructs a new cone sector Ck,i+1 which is a translation

of Ck,i having vertex at p[t∗]. This is illustrated in Figure 2.12.
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(b) If the evader is not inside Ck,i+1, then we denote tk+1 := t∗. The pursuer

constructs a new cone sector sequence Ck+1.

Lcone := 2κrstep

e[t0]
X

rstep
2

Y

Z

p[t0]
θ

Figure 2.11. Construction of cone C0,0. Choose X on the line e[t0]p[t0] such that

‖p[t0] −X‖ = 2κrstep. Y Z has length rstep/2 and is perpendicular to segment p[t0]X

with X as its midpoint. θ is the cone angle.

Ck,i+1
p

e

Ck,i

p′
e′

Figure 2.12. Construction of cone sector Ck,i+1. Translate cone sector Ck,i to have its

vertex at p′.

The cone sector sequence described above has the following property.

Proposition 2.4.4 (Cone sector sequence) Given a cone sector sequence Ck, the

maximum number of steps M∗ for which the evader can remain inside it without being

captured satisfies

M∗ =
4κ√

3

⌈
diam(E)

2κrstep

⌉

. (2.13)

Proof: We compute an upper bound on the number of steps a pursuer stays

in any cone sector while using the Greedy strategy. From the definition of a cone

sector, this is also an upper bound on the number of steps the evader can remain inside
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a cone sector. Construct a rectangle with length Lcone and width rstep/2 such that it

contains a cone sector, as shown in Figure 2.13. Orient a frame of reference such that

its X axis is parallel to the angle bisector of the cone sector. Let p[tk]−P1 − · · ·−P5

denote the path as a result of the pursuer’s Greedy strategy while in the cone sector

Ck,0.

We now construct a path with step size equal to rstep at each time instant, whose

length is greater than or equal to that of any such greedy pursuer paths. Select a

point P ′
1 between A and B such that ‖p[tk] − P ′

1‖ = rstep. Then select another point

P ′
2 on between C and D such that ‖P ′

1 − P ′
2‖ = rstep. Of the two possible points,

select that point which is farther from p[tk] as P ′
2. Selecting odd P ′

i ’s between A and

B and even P ′
i ’s between A and B until it is not possible to select any more of the

P ′
i ’s on segments AB and CD. This is illustrated in Figure 2.13. This construction

leads to the property that the X coordinates of the P ′
i ’s are smaller than those of the

corresponding Pi’s. Thus the number of P ′
i ’s is greater than or equal to the number

of Pi’s. Thus, the path p[tk] − P ′
1 − · · · − P ′

5 has its length at least equal to that of

p[tk] − P1 − · · · − P5. Since the length of segment AB is Lcone, the number of steps

of such a path is at most equal to Lcone divided by the difference in X coordinates

of any two consecutive P ′
i ’s, i.e., ⌈(2/

√
3)Lcone/rstep⌉. Since E has a finite diameter,

there can be at most ⌈diam(E)/Lcone⌉ cone sectors in any cone sector sequence. Thus,

the upper bound (2.13) is established.

We now state two additional results needed to prove Theorem 2.3.3.

Proposition 2.4.5 (Maximum evasion angle) If the pursuer uses the Greedy

strategy and if (κ2 − 1)r2
step ≥ s2[t], where s[t] = ‖p[t] − e[t]‖, then define

βmax[t] := arccos

(
(κ2 − 1)r2

step − s2[t]

2s[t]rstep

)

. (2.14)

If at some time t, β[t] ≥ βmax[t], then the pursuer moves towards e[t + 1] and traps
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P1
rstep
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Lcone

rstep

P ′
1

P ′
2

P ′
3

P ′
4

P ′
5

P ′
6

P ′
7

A B

CD

p[tk] P2

P3
P4

X

Figure 2.13. Upper bound on the number of steps a pursuer can be inside a cone

sector. The cone sector Ck,0 is illustrated here. The dotted path shows a hypothetical

pursuer path that takes the maximum number of steps before leaving a cone sector.

the evader.

This result is obtained by applying the cosine rule to △p[t]e[t]e[t+1], where the nota-

tion △ABC stands for triangle formed by points A,B and C, as shown in Figure 2.14.

.

κrstep

e[t]

e[t + 1]

p[t] s[t]

rstep
βmax[t]

Figure 2.14. Constraint on maximum evasion angle. The dotted circle represent the

evader’s motion disc. The circle centered at p[t] (shown partially here) is the pursuer’s

sensing range.

Lemma 2.4.6 (Constraint on maximum evasion angle) For the evader to move

out of a cone sector sequence Ck, described in Definition 2.4.3, there exists a time in-
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stant t ∈ [tk, tk+1[ (ref. Definition 2.4.3) such that

|β[t]| > θ

2M∗ =: βc, (2.15)

where M∗ is defined in Proposition 2.4.4.

Proof: For the evader to move out of the cone sector sequence Ck, the sum of

the angles of deviation for the pursuer must exceed half of the cone angle θ, i.e.,

tk+1∑

t=tk

|α[t]| > θ

2
.

Geometrically, this condition implies that the angle between the vectors e[tk+1] −

p[tk+1] and e[tk] − p[tk] must be at least θ
2
. This is illustrated in Figure 2.15. From

Proposition 2.4.2, it implies that

tk+1∑

t=tk

|β[t]| > θ

2
.

Equation (2.15) now follows from the fact that tk+1 − tk ≤ M∗, for every k, since

there exists a maximum number of time steps M∗ for which the evader can remain

inside any cone sector sequence, as derived in Proposition 2.4.4.

p[tk + 2]

β[tk + 1]

p[tk] e[tk]

e[tk + 1]

e[tk + 2]

α[tk] β[tk]

Ck

α[tk + 1]

p[tk + 1]

Figure 2.15. Illustrating Lemma 2.4.6. This is a case of the evader moving out of the

cone sector sequence Ck by moving out of Ck,0.

We are now ready to prove Theorem 2.3.3.
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Proof of Theorem 2.3.3: Two cases need to be considered:

(i) Evader does not move out of a cone sector sequence: Capture follows from the

construction of the cone sector sequence and from Proposition 2.4.4.

(ii) Evader moves out of a cone sector sequence: In this case, we seek to show

that the evader cannot keep moving out of an arbitrarily large number of cone sector

sequences. If the evader leaves the cone sector sequence Ck, then for some τ ∈

{tk, . . . , tk+1 − 1}, β[τ ] > βc. Applying the cosine rule to △p[τ ]e[τ ]e[τ + 1], we obtain

s2[τ + 1] = r2
step + (s[τ ] − rstep)

2 + 2rstep(s[τ ] − rstep) cosβ[τ ],

=⇒ s2[τ ] − s2[τ + 1] = 2rstep(s[τ ] − rstep)(1 − cosβ[τ ]).

Using equation (2.15) and since

s[τ ] + s[τ + 1] ≤ 2κrstep,

we obtain

s[τ + 1] − rstep ≤
(

1 − (1 − cos( θ
2M∗

))

κ

)

(s[τ ] − rstep). (2.16)

Defining χk := s[tk] − rstep, we conclude that

χk+1 ≤ s[τ + 1] − rstep ≤
(

1 − (1 − cos( θ
2M∗

))

κ

)

(s[τ ] − rstep)

≤
(

1 − (1 − cos( θ
2M∗

))

κ

)

χk, (2.17)

where the first and third inequalities follow from the fact that distance s[t] is non-

increasing in the Greedy strategy and the second inequality follows from equa-

tion (2.16). Recall that κ > 1 by assumption and hence the term in the parenthesis

is positive and strictly less than 1. Thus, χk → 0 asymptotically, i.e., the distance

between the pursuer and evader tends to rstep asymptotically. Moreover, for κ > 2,

the distance reduces to (κ − 1)rstep after a finite time. Thus, the motion disc of

the evader will become completely contained within the sensing disc of the pursuer.

Hence, the result follows.
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The case of κ = 2: We have seen that the distance s[t] between the pursuer

and evader tends asymptotically to rstep. From Proposition 2.4.5, we obtain that as

s[t] → rstep, the angle βmax → 0. So, after some finite time,

βmax <
θ

2M∗ =: βc.

Thus, the evader becomes confined to the present cone sector sequence according to

Lemma 2.4.6 and from Proposition 2.4.4, and we can see from part (i) of this proof

that the pursuer traps the evader within its sensing radius.

If κ < 2: We have seen that at each time step t, there is a maximum value βmax[t]

of the evasion angle β[t], so that the evader’s next step e[t+ 1] is not in the pursuer’s

sensing disc centered at p[t]. This is shown in Figure 2.16. The key idea of this part

of the proof is that if we ensure that for all subsequent times after a certain time t∗,

βmax[t] is less than the minimum value βc (cf. Lemma 2.4.6) needed for the evader to

leave a cone sector sequence, then the evader is forced to remain inside a final cone

sector sequence and trapping follows from part (i). In previous cases, we have seen

e′[t∗]

γ(1 + δ)

rstep

γ

κrstep

rstep

e′[t∗ + 1]

e[t∗ + 1]

e[t∗]p[t∗]

Figure 2.16. Illustrating parameters in Equation (2.18). e′[t∗] is a point such that

‖p[t∗]−e′[t∗]‖ = rstep. γ is the value of the maximum evasion angle if the evader were

at e′[t∗]. The circle of radius κrstep around the pursuer (shown partially here) is the

pursuer’s sensing disc which the dotted circle around e[t∗] is the evader’s motion disc.

that the Greedy strategy reduces the distance s[t] asymptotically to rstep. Thus
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after a finite time t∗, s[t∗] attains a value such that the maximum evasion angle is less

than or equal to (1 + δ)γ, where γ is the maximum evasion angle if the evader is at

e′[t∗], which satisfies ‖p[t∗] − e′[t∗]‖ = rstep and δ is a given positive number. At this

time instant tfinal, let the pursuer construct a new cone sector sequence, Cfinal. So, if

(1 + δ)γM∗ =
θ

2
, (2.18)

where M∗ and θ are defined in Proposition 2.4.4 and in the definition of a cone

respectively, then for some τ ∈ {tfinal, . . . , tfinal + M∗}, β[τ ] ≥ (1 + δ)γ = βc for the

evader to leave Cfinal. This means that the evader is forced to step inside the sensing

disc of the pursuer or to remain inside the final cone Cfinal. In both cases, the pursuer

traps the evader within its sensing radius. From equation (2.18),

γ <
θ

2M∗ = βc.

Applying the cosine rule to △p[t]e′[t]e′[t+ 1],

κ =
√

2 + 2 cos γ >
√

2 + 2 cosβc.

Thus, we have shown that if κ >
√

2 + 2 cosβc, then the pursuer’s Greedy strategy

guarantees that the evader is trapped.

Computing an upper bound on the trapping time: We have seen that when the

pursuer uses the Greedy strategy, the evader cannot leave an arbitrarily large num-

ber of cone sector sequences. Thus, to compute an upper bound on the trapping

time, we compute an upper bound on the number of cone sector sequences that the

evader can leave. We have seen that using the Greedy strategy, βmax ≤ βc after

finite time. From (2.14), we can determine that distance sc for which βmax = βc, so

that subsequently, the evader is confined to the final cone sequence:

sc = (

√

κ2 − sin2 βc − cos βc)rstep.

If k is the final cone sequence index, then using equation (2.17),

sc − rstep ≤ χk ≤ ηχk−1 ≤ · · · ≤ ηk(κ− 1)rstep,
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where η = 1 − (1 − cos(θ/2M∗))/κ and the worst-case χ0 = (κ − 1)rstep. Upon

simplifying, we obtain

k ≤
⌈

log(
√

κ2 − sin2 βc − cosβc − 1) − log(κ− 1)

log(η)

⌉

.

The result now follows from the fact that for the case of κ < 2, we construct an extra

final cone sequence and the maximum number of steps in each cone sequence can be

at most M∗. The asymptotic result follows by routine simplifications.

Proof of Proposition 2.3.4: We prove this result by determining a set of initial condi-

tions and an evader strategy that leads to evasion. Suppose at time t, the pursuer and

the evader are on a circle Ω with radius ρ = rstep/
√

4 − κ2, such that ‖e[t]−p[t]‖ = rstep

as shown in Figure 2.3. The evader is not trapped as its motion disc is not completely

contained inside the pursuer’s sensing disc. An evader strategy is to choose a point

e[t + 1] on Ω such that ‖e[t] − e[t + 1]‖ = rstep. Since ρ = rstep/
√

4 − κ2, e[t + 1]

lies outside the pursuer’s sensing disc before its move at time t+ 1. By the Greedy

strategy, p[t + 1] = e[t]. Thus, ‖e[t + 1] − p[t + 1]‖ = rstep and the evader can avoid

getting trapped.

2.4.2 Multiple Pursuer Problem

We first state a property of the effective length of the trapping chain.

Proposition 2.4.7 The effective length of the trapping chain satisfies

2(
√

4κ2 − 25(N − 3) − πκ)

π
<

l

rstep
<

√
4κ2 − 25N − 2κ.

Proof: The left hand side of the inequality follows from the fact that the cir-

cumference of the circle passing through the vertices of the trapping chain is greater

than the sum of the distances of neighboring vertices. The right hand side follows

from repeated use of the triangle inequality.
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Proof of Theorem 2.3.7: Let the evader be located at a point Ye ∈ G and let its

distance from the edge AB be y, as shown in Figure 2.17. Note that the distance of

the evader from the edge AD does not play any role in what follows. The main idea

behind this proof is as follows: Ye would lie in the shaded region in Figure 2.17 if

l0 + 2rsens < y or l0 − 2rsens > y. This is equivalent to choosing a length equal to the

effective length l of the trapping chain from a total length l + 4rsens, if we let l0 take

a uniformly random value from [−2rsens, l + 2rsens]. Thus, the probability of success

for the pursuers is at least the ratio of l to l + 4rsens.

To be more specific, let the spatial probability density of the Y coordinate of the

evader inside G be p(y). Thus,
∫ diamG
0

p(y)dy = 1. The probability that the evader is

detected inside the capture region S is given by

P (e ∈ S) =

∫ l+2rsens

−2rsens

P (e ∈ S|l0 = k)P (l0 = k)dl0,

where k ∈ [−2rsens, l + 2rsens]. Assuming the pursuers have no information about the

evader’s location inside G, l0 is chosen uniformly randomly from [−2rsens, l + 2rsens].

Hence, we have

P (e ∈ S) ≥
∫ l+2rsens

−2rsens

P (e ∈ S|l0 = k)
1

l + 4rsens
dl0

=
1

l + 4rsens

∫ l+2rsens

−2rsens

( n−1∑

j=0

∫ l0+2rsens+j(l+2rsens)+l

l0+2rsens+j(l+2rsens)

p(y)dy

+

∫ diamG

l0+2rsens+n(l+4rsens)+l

p(y)dy
)

dl0,

where n := ⌈diamG/(l + 4rsens)⌉ is the number of times the pursuers sweep to clear

the entire environment. Since the variables l0 and y are independent (cf. Figure 2.18

for the region of integration), changing the order of integration gives

P (e ∈ S) ≥ 1

l + 4rsens

n−1∑

j=0

∫ (j+1)(l0+4rsens)

j(l0+4rsens)

p(y)f(y, l)dy

=
1

l + 4rsens

∫ n(l0+4rsens)

0

p(y)f(y, l)dy,
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where

f(y, l) :=







∫ y−2rsens

−2rsens
dl0 +

∫ l+2rsens

y+2rsens
dl0, for y ≤ l,

∫ y−2rsens

y−2rsens−l
dl0, otherwise.

In both cases, f(y, l) = l. Thus, the minimum probability of success is l/(l + 4rsens),

since
∫ n(l0+4rsens)

0
p(y)dy =

∫ diamG
0

p(y)dy +
∫ n(l0+4rsens)

diamG p(y)dy, and p(y) = 0 outside

of G. The second inequality in part (i) follows by use of the left hand inequality in

Proposition 2.4.7. The reason why this is a lower bound on the required probability is

that if the pursuers had some information about the evader’s location, then they could

choose l0 randomly from a smaller interval than the current one and thus increase the

probability of detecting the evader in the capture region.

From the Sweep strategy, the width of each strip swept is l + 4rsens. So the

maximum number of strips after which the sweep phase terminates is ⌈diam(G)/(l+

4rsens)⌉. It takes at most (diam(G)+ 2(l+2rsens))/rstep time steps for the pursuers to

clear a strip followed by aligning themselves parallel to the adjacent strip. The result

now follows using Proposition 2.4.7.

l

l0

diam(G)

2rsensYe
y

A B

CD

Figure 2.17. Illustrating the proof of Theorem 2.3.7.
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(−2rsens, 0) (l + 2rsens, 0)

(l + 2rsens, l + 4rsens)

(2rsens, 0)

(0, 0)

l

l0

y

Figure 2.18. The region of integration in determining P (e ∈ S) in the proof of

Theorem 2.3.7. Fix a value of l0 in the interval (−2rsens, l + 2rsens) to get the values

of y that correspond to P (e ∈ S).

To prove Theorem 2.3.9, we first establish the following properties of a trapping

chain. In what follows, given points a, b, c ∈ R
2, the notation dist(a, bc) is the distance

of point a from the line bc.

Lemma 2.4.8 (Trapping chain properties) If e[t] ∈ S[t], then the following state-

ments hold:

1. If dist(e[t], pj [t]pj+1[t]) >
3
2
rstep, for all j ∈ {1, . . . , N − 1}, then the evader

cannot step outside Co{p1[t], . . . , pN [t]} at time t+ 1 by crossing pj[t]pj+1[t].

2. If dist(e[t], pj[t]pj+1[t]) ≤ 3
2
rstep or dist(e[t+ 1], pj[t]pj+1[t]) ≤ 3

2
rstep, for some

j ∈ {1, . . . , N − 1}, then the evader is trapped within the sensing radii of

pursuer pj or pj+1 or of both pj and pj+1.
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3. There exists a φ > 0, independent of N , such that for every point

q ∈ ⋃j∈{3,...,⌊N
2
⌋+1} Bpj

(rsens) ∩ C̊o{p2, . . . , pN−1},

∠qp2pN−1 > φ,

Proof: Parts (i) and (ii) follow from the definitions of trapping within sensing

radii and from the construction of the trapping chain. For part (iii), we can see that

for j∗ = ⌊N
2
⌋ + 1 if q (in the specified set) is the point of intersection of the tangent

from p2 to the sensing disc of pj∗ , then the angle ∠qp2pN−1 is minimized. This follows

from the fact that the line p2pj∗ is parallel to p3−pj∗−1. This angle is minimum when

N = 5. Thus, given a κ ≥ 4, from trigonometry, we obtain

φ =
π

4
− arctan

( κ√
3κ2 − 25

)

.

The use of the Circumcenter strategy in the pursuit phase and the geometry

of the trapping chain gives us the following result.

Lemma 2.4.9 If the evader is trapped within the union of the sensing radii of pur-

suers at time ttrap, for every j ∈ {1, . . . , N − 1}, then

dist(e[ttrap], pj [ttrap]pj+1[ttrap]) >
rstep
2
.

Proof: Let the evader be trapped at time ttrap in the sensing radii of the pursuers.

From part (ii) of Lemma 2.4.8, at time ttrap − 1 and for every j ∈ {1, . . . , N − 1},

dist(e[ttrap − 1], pj[ttrap − 1]pj+1[ttrap − 1]) >
3

2
rstep.

Thus, immaterial of where the evader decides to step, its distance from pj [ttrap −

1]pj+1[ttrap − 1] is greater than rstep

2
. Two cases are possible:
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(a) the evader steps inside the sensing disc of some pursuer pj: There are two

further possibilities. If dist(e[ttrap], pj[ttrap−1]pj+1[ttrap−1]) ≤ 3
2
rstep, then the evader

is trapped by part (ii) of Lemma 2.4.8 and the present lemma is proven. Else, we

have dist(e[ttrap], pj[ttrap − 1]pj+1[ttrap − 1]) > 3
2
rstep. Now, even in the case when pj

uses part (ii) of the Circumcenter strategy,

dist(e[ttrap], pj[ttrap]pj+1[ttrap]) >
rstep

2
, for every j ∈ {1, . . . , N − 1}.

(b) the evader steps outside the sensing disc of every pursuer: In a trapping

chain, the overlap between the sensing discs of any two neighboring pursuers has the

property that length of the common chord of these discs is greater than 3
2
rstep. This

means that even if any two neighboring pursuers pj and pj+1 happen to move parallel

to each other, we have dist(e[ttrap], pj[ttrap]pj+1[ttrap]) >
rstep

2
.

We now present the proof of Theorem 2.3.9.

Proof of Theorem 2.3.9:

We first look at a case in which dist(e[tsweep], pj [tsweep]pj+1[tsweep]) ≤ 3
2
rstep for some

j ∈ {1, . . . , N − 1}. In this case, the evader is already trapped within the sensing

radii of the pursuers, from part (ii) of Lemma 2.4.8 and the result holds.

Now let dist(e[tsweep], pj[tsweep]pj+1[tsweep]) >
3
2
rstep, for every j ∈ {1, . . . , N − 1}.

There are two possibilities: if e[t+1] ∈ Se[t], for any t ≥ tsweep, then there is a pursuer

pj for which ye[t + 1] = e[t + 1]. This pursuer uses part (ii) of the Circumcenter

strategy and the evader is trapped within the sensing radius of pj. Part (iii) of the

result follows using Lemma 2.4.9.

So, let e[tsweep + 1] /∈ S[tsweep]. Now, the pursuers compute the circumcenter O of

△p2[tsweep]e[tsweep]pN−1[tsweep]. Lemma 2.4.8 implies that the evader cannot step out

of the pursuers’ convex hull by crossing line pj[t]pj+1[t], for any j ∈ {1, . . . , N − 1}.

Thus, it suffices to show that the evader cannot leave the pursuers’ convex hull by
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crossing line p1[t]pN [t]. In fact, we show that at the end of every pursuer move, the

evader remains on the same side of p2pN−1 until it gets trapped. We argue this as

follows. As illustrated in Figure 2.19, any point on lines p2[tsweep]O and pN−1[tsweep]O

is reached faster by p2 and pN−1 respectively than by the evader. Thus, the motion

of the evader is confined to the convex hull of {O, p2, . . . , pN−1}, which reduces to the

point O in a number of time steps upper bounded by

max
j∈{2,...,N−1}

⌈‖pj [tsweep] − O‖
rstep

⌉

,

which is essentially the time taken by the furthest pursuer to reach O. Thus,

ttrap ≤ R + l + 2κrstep
rstep

,

where R denotes the circumradius of △p2[tsweep]e[tsweep]pN−1[tsweep]. From elementary

geometry, at time tsweep we have

R =
‖p2 − e‖‖pN−1 − e‖‖p2 − pN−1‖

4 Area(△p2epN−1)
,≤ l + 2κrstep

2 sin∠ep2pN−1
,≤ l + 2κrstep

2 sinφ
,

where the second and third inequalities follow from part (iii) of Lemma 2.4.8. Thus,

part (ii) of the theorem follows from the use of right hand inequality in Proposi-

tion 2.4.7.

To prove part (iii), recall that pursuers p1 and pN move parallel to p2 and pN−1,

respectively. Since the evader remains inside the convex hull of pursuers p2, . . . , pN−1,

the distance of the evader from line p1pN is always greater than rstep

2
, until it gets

trapped. From this fact and Lemma 2.4.9, part (iii) now follows.

Proof of Theorem 2.3.10: Part (i) follows from the Planes strategy. Thus, once the

evader is trapped, it remains trapped at all successive time instants when the pursuers

use the Planes strategy. Thus, the problem is reduced to one with unlimited sensing

for the pursuers. To show that the algorithm leads to capture in finite time, we refer

the reader to [57].
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e[tsweep]

p1[tsweep]p2[tsweep]
p3[tsweep]

p4[tsweep]

p5[tsweep]

p6[tsweep]

p7[tsweep]
p8[tsweep] p9[tsweep]

O

Figure 2.19. A move of the Circumcenter strategy. The evader is confined to the

shaded region. The circles around the pursuers represent their sensing discs.

We now determine an upper bound on the time taken for the capture phase in

terms of the trapping chain parameters. Referring back to the proof of correctness

of the Planes strategy, since the evader is in the convex hull of the pursuers, let

vj denote vectors of magnitude rstep in the direction of pj[ttrap] − e[ttrap]. We now

wish to seek a lower bound on the radius ǫ of the largest circle centered at the origin

that can be inscribed inside the convex hull of the vectors vj . This is equivalent

to determining what is the largest of the angles ∠pi[ttrap]e[ttrap]pj [ttrap]. Due to the

property (2.11) and to the fact that the distance between any two adjacent pursuers in

the trapping chain is non-increasing during the Circumcenter strategy, the angle

∠pi[ttrap]e[ttrap]pj [ttrap] is the greatest when i and j are adjacent and the evader is

equidistant from both of them and at a distance of rstep

2
from pi[ttrap]pj[ttrap]. This

is shown in Figure 2.20. This gives, ǫ = rstep
rstep/2

κrstep
= rstep

2κ
. Now, following [57], we

observe that there exist three pursuers which contain the evader within their convex

hull at the end of the pursuit phase, such that the sum of the distances of these

pursuers to the evader decreases by at least ǫ
3

at the end of every pursuer move.
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The result now follows from the fact that the distance between any one of the three

pursuers and the evader is at most l+2κrstep at the end of the pursuit phase and the

use of the right hand side inequality in Proposition 2.4.7.

e

rstep
2

pjpi

Figure 2.20. Illustrating proof of Theorem 2.3.10. Given the evader to be at a distance

greater than rstep

2
from the line pipj, the angle ∠pi[ttrap]e[ttrap]pj [ttrap] is the greatest

when the evader is equidistant from both of them

2.5 Simulation Results

We now present simulation studies to investigate the robustness of the algorithms

to sensing errors. We study the performance of the algorithms in several cases such

as different sensing to stepping radius ratio and faster evader. We also study the case

of different number of pursuers in the multiple pursuer problem. All simulations were

run using MATLABR©.

In the context of sensing errors, we assume two types of error models:

Gaussian errors: We assume zero-mean additive Gaussian measurement errors in

the position of the evader with a standard deviation given by

σj [t] = ǫ‖pj[t] − e[t]‖,

for some constant ǫ ≥ 0. This means that the uncertainty in the location of the evader

increases with its distance from a pursuer. The evader is defined to be captured if
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the probability of the evader being inside the motion disc of the pursuer before the

pursuer’s move is more than a certain threshold. In other words, for some t and for

some pursuer pj ,

Bσj [t](y
p
bef[t]) ⊂ Brstep

(pj[t− 1]),

where Bσj [t](y
p
bef[t]) denotes the circular region of radius σj [t] centered at yp

bef[t].

Non-Gaussian errors: The measured distance is given by (1 + ǫ∗)‖pj[t] − e[t]‖,

where ǫ∗ is a random variable uniformly distributed in the interval [−ǫ, ǫ], where

ǫ ≥ 0 is the specified error parameter. With respect to angular measurements, if θa is

the actual angular location of the evader with respect to a local reference frame of a

pursuer, then the measured angular location is given by θa + ǫθ, where ǫθ is a random

variable uniformly distributed in the interval [−∆θ,∆θ], where the value of ∆θ was

chosen to be 1 degree. The evader is captured in this model if yp
bef[t] ∈ Brstep

(pj[t−1]).

2.5.1 Single Pursuer Problem

Under the considered noisy sensor models:

• The Sweep strategy remains unchanged. It terminates when an evader mea-

surement is available.

• For the Greedy and Lion strategies, the pursuer uses the noisy measurements

of the evader position instead of the true position e[t] to compute its next

position.

For the evader’s motion, we assume that it moves away from the pursuer with some

randomization, while avoiding the boundary. Specifically,

• if the evader is not close to the boundary of the environment, then it chooses

to move to a point on its motion circle, selected uniformly randomly in a sector
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with angle 0.2 radians. This sector is placed symmetrically along the line e[t]p[t]

and away from the pursuer.

• If the boundary is visible to the evader, then it chooses to move to a point

e[t + 1] on its motion circle such that ∠e[t + 1]e[t]p[t] = π − 0.2. Of the two

points possible, the evader chooses that point which is further away from the

boundary. In other words, when the evader reaches the boundary, it chooses to

move to a point that is away from the pursuer as well as not very close to the

boundary.

For our simulations, the environment is a circle with diameter 40 units. We assume

κ = 5 units and rstep = 1 unit. The initial position of the evader was chosen uniformly

randomly in the environment. An upper limit of 2, 000 time steps was set to decide

whether the strategy terminated in a success.

The following is a summary of our findings:

(i) Performance of the strategy with noisy measurements: The plots of probability

of success of the strategy and average capture times after detection (given that the

strategy terminates with capture) for both noise models versus the respective error

parameters ǫ are shown in Figure 2.21. We observe a similar trend in the performance

of the strategy in both noise models.

(ii) Different sensing to stepping radius ratios: We repeated the simulations for

the cases of the ratio of sensing to stepping ratio κ = 7 and κ = 10. We present the

variation of probability of success in the Gaussian noise model in Figure 2.22.

(iii) Faster evader : We repeated the simulations for the case of faster evader.

Assuming no noise, we present the variation of the probability of success in the top

part of Figure 2.23. We observe that when the evader is at least 3/2 times that of

the pursuer, the proposed pursuer strategy is not efficient.
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Figure 2.21. Effect of measurement noise in the single pursuer problem. For a partic-

ular evader strategy, we study how the capture probability and average capture time

given that the strategy succeeds, vary with the noise parameter ǫ, under Gaussian

and Non-gaussian error models. In the top figure, an interval of ±0.1 (not shown to

preserve clarity) about the probability estimates is the 95% confidence interval given

by
[

P (ǫ) − 2
√

0.25
n
, P (ǫ) + 2

√
0.25
n

]

, where n = 100 is the number of trials [101]. In

the bottom figure, the vertical bars give a 95% confidence interval about the average

capture time T (ǫ) which is given by
[

T (ǫ) − 2
√

SD(ǫ)
nP (ǫ)

, T (ǫ) + 2
√

SD(ǫ)
nP (ǫ)

]

, where SD(ǫ)

is the standard deviation in the capture time, P (ǫ) is the estimated probability of

success and n = 100 is the number of trials [101].

2.5.2 Multiple Pursuer Problem

Under the considered noise models:
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Figure 2.22. Effect of varying the sensing to stepping radius ratio κ in the single pur-

suer problem. For a particular evader strategy, we study how the capture probability

varies for κ = 7 and κ = 10 with the noise parameter ǫ, under Gaussian noise model.

The error bars are in accordance with Figure 2.21.

• The Sweep strategy remains unchanged. It terminates when an evader mea-

surement is available.

• For the Circumcenter and Planes strategies, the team of pursuers use the

average of the available evader measurements ỹt-1[t− 1] and ỹt-1[t], to compute

their next positions.

For the sake of simulations, we assume N = 7 pursuers with κ = 5 units and

rstep = 1 unit. We assume a square field of edge length 100 units, where the evader

is initially placed at a uniformly randomly selected location. Upon detection, we

assume that the evader moves away from the closest pursuer with some randomization.
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Figure 2.23. Performance of Sweep-Pursuit-Capture strategy against a faster evader.

For a particular evader strategy, we study how the capture probability varies for

higher evader speeds, assuming no measurement noise. The top figure presents the

single pursuer case and the bottom figure presents the multiple pursuer case. The

error bars are in accordance with Figure 2.21.

Specifically, it moves to a point on its motion circle, selected uniformly randomly in

a sector of angle equal to 0.2 radians. This sector has its vertex at e[t] and angle

bisector parallel to the line e[tsweep]O, where tsweep is the time when the evader is

detected and O is the circumcenter of the triangle p2[tsweep], p6[tsweep] and e[tsweep].

We study how the average capture time after detection varies with ǫ. An upper limit

of 1000 time steps was set to decide whether the strategy terminated in a failure.

The following is a summary of our findings:

(i) Performance of the strategy with noisy measurements: The plots of probability

of success of the strategy and average capture times after detection (given that the
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strategy terminates with capture) for both noise models versus the respective error

parameters ǫ are shown in Figure 2.24. We observe a similar trend in the performance

of the strategy in both noise models.
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Figure 2.24. Effect of measurement noise in the multiple pursuer problem. For a

particular evader strategy, we study how the capture probability (top figure) and

average capture time (bottom figure) given that the strategy succeeds, vary with the

noise parameter ǫ, under Gaussian and Non-gaussian error models. The error bars

are in accordance with Figure 2.21.

(ii) Different number of pursuers: We repeated the simulations for the cases of

the number of pursuers N = 10 and N = 15. We present the variation of probability

of success in the Gaussian noise model in Figure 2.25.

(iii) Faster evader : We repeated the simulations for the case of faster evader.

Assuming no noise, we present the variation of the probability of success in the

bottom part of Figure 2.23. We observe that when the evader is at least 1.8 times
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Figure 2.25. Effect of varying the number of pursuers N in the multiple pursuer

problem. For a particular evader strategy, we study how the capture probability

varies for N = 10 and N = 15 with the noise parameter ǫ, under Gaussian noise

model. The error bars are in accordance with Figure 2.21.

that of the pursuers, the proposed pursuer strategy is not efficient.

2.6 Biological Interpretations

Our analysis in the previous sections can shed light on the trade-offs that predators

face when deciding upon the group size. Based on our results from Section 2.3.2, we

now study how the group size of the pursuers varies with the evader availability in

the multiple pursuer problem.

For simplicity, we assume a square field where the evader is initially located and
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denote by δ := 1/diam2(G), the evader density. From the results in Section 2.3.2,

an upper bound on the total time taken by the pursuers in all three phases of the

strategy is given by

1

δ(aN + b)
+

cN√
δ(aN + b)

+ kN,

where a := 2r2
step

√
4κ2 − 25/π, b := (2πκ − 6

√
4κ2 − 25)/π, c := 2rstep

√
4κ2 − 25

and k :=
√

4κ2 − 25(1 + 1/ sinφ) + 18κ
√

4κ2 − 25 are constants independent of the

number of predators N or the evader density δ.

From part (i) of Theorem 2.3.7, we observe that when all other variables are kept

constant, the lower bound on successful detection probability of the Sweep strategy

increases with N . However, a higher N results into a greater time to capture the

evader. This suggests a trade-off on the group size N which we analyze as follows.

Let ν denote the nutritional content of the evader. We quantify the energy spent

by each pursuer as the time taken to capture the evader. The energy gain from the

pursuit is quantified as the amount of nutrition each participating pursuer receives

from the evader. For a self-sustaining pursuit, we must have that the energy gained

by each pursuer is at least equal to the energy spent during the hunt. Thus,

ν

N
≥ 1

δ(aN + b)
+

cN√
δ(aN + b)

+ kN.

From this relation, we observe that for a given value of δ, there exists an upper limit

on the number of pursuers in the group for which it is advantageous for the pursuers

to engage in a pursuit with the prospect of gaining energy. A plot of the upper limit

on the group size N versus the evader density δ is shown in Figure 2.26.

This analysis shows that for higher values of δ, a larger number of pursuers can

be accommodated in the trapping chain. This is consistent with observations in the

biology literature by Caraco and Wolf [28] that have reported higher group size in

foraging lions during the wet season (prey abundance), than in the dry season, (prey

scarcity). Further, from our analysis, it also follows that for a given evader density,
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the higher the prey nutrition value ν, the higher is the upper limit on the number of

pursuers in the trapping chain. This is consistent with the observations reported by

Griffiths [43] regarding how the size of hunting packs relate to the size of the prey

relative to that of the predators.
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Figure 2.26. Plot of maximum group size of pursuers that can be sustained versus

the evader density δ, for κ = 5, rstep = 1, ν = 10000.

Summary

We have addressed discrete-time pursuit-evasion problems in the plane with sens-

ing capabilities restricted to a finite disc. We considered two variants of the pursuit-

evasion in discrete-time. The first involved a single pursuer and an evader in a

bounded convex environment. The second was a formation design problem for multi-

ple communicating pursuers to capture a single evader in a boundaryless environment.

In both problems, the evader was initially located inside a bounded subset of the en-
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vironment and moved only when detected.

We proposed a Sweep-Pursuit-Capture strategy for both problems. In the first

problem, we gave sufficient conditions on the range of values taken by the ratio of

sensing to stepping radius of the players so that the strategy of moving towards the

last-sensed evader position lead to the evader being trapped within the pursuer’s

sensing disc and finally to capture. We also gave conditions under which there exist

locations from which the evader can escape. In the second problem, we showed that

the pursuers capture the evader with a certain probability that is independent of

the initial evader location in a bounded region. We gave novel upper bounds on the

total time taken to capture for both problems. We also presented simulation studies

that suggest robustness with respect to sensing errors. Based on the upper bound on

the capture time, we provided an upper bound on the pursuer group size for which

the pursuit would be advantageous from the point of view of gaining energy. Our

conclusions are consistent with observations reported in ecology literature.
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Chapter 3

Pursuit with Minimalist Sensing

3.1 Introduction

Often pursuit strategies do not make use of the entire available information. For

example, the Greedy strategy from Chapter 2 requires only the bearing (relative

heading) information of the evader location with respect to the pursuer. This moti-

vates the question of whether it is possible to use only a part of the sensor information,

such as bearing or relative distance and speeds, and still achieve capture. This would

lead to design of sensors that provide a particular and relevant information more

accurately rather than the entire data, and thus give rise to an efficient allocation

and specialization of the system. In this chapter, we design pursuit strategies for

problems in which only a part of the sensing information is needed.

The Grow-Intersect Algorithm and Related Work

At the heart of the problems presented in this chapter is Algorithm 1, which has

been well-known in literature as the Grow-Intersect algorithm [87, 32], illustrated in

Figure 3.1.
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Algorithm 1: The Grow-Intersect algorithm

Assumes: The set Ê[t] that contains the evader at time t, and evader’s

maximum speed v .

Grow Ê[t] by an amount v in every possible direction.1:

Intersect the grown set with measurement y[t+ 1].2:

Output: The set Ê[t+ 1] at time t+ 1.3:

Estimate

Measurement

Grown Estimate

New Estimate

Figure 3.1. The Grow-Intersect Algorithm

Reducing sensor requirements to achieve certain tasks such as counting vertices

in a polygonal environment or even capturing evaders has been considered in [96,

102]. With respect to pursuit under sensing constraints, [39] deals with a version of

pursuer’s visibility limited to a cone. [53] considers a graph environment, with the

visibility limited to adjacent nodes, while [54] addresses a version of the Lion and

Man problem in which the pursuer has only bearing information about the evader’s

location. [84] addresses the case in which the pursuer only knows an approximate

location of the evader. [83] and [59] present a solution to the game under bounded

measurement uncertainty in sensing the evader.

Other areas of research related to the problem we address, are target tracking and

localization. Using distance-only measurements, [104] determines optimal motions

for multiple mobile sensors to minimize the error in the posterior estimate of the

target position. Using the Fisher Information Matrix, [94] characterizes a condition
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for local system observability of tracking a moving target in a plane with range-only

measurements.

Contributions

We address discrete-time pursuit-evasion games played in the unbounded plane,

between a pursuer and an evader. The pursuer wishes to reduce the distance between

itself and the evader to 1 unit. We assume simple, first-order motion kinematics for

both players. We normalize the speed of the pursuer unity and thus the evader’s step

size is upper bounded by v < 1. With respect to measurements, the pursuer is able

to measure its distance from the evader before as well as after the evader’s move,

while the evader is assumed to have complete information of the pursuer’s location.

In continuous time, this is analogous to the pursuer being equipped with a sensor

that measures the distance to the evader as well as the rate of change of this distance.

[85] presents an example of one such sensor.

We present a pursuit strategy inspired by the Grow-Intersect algorithm and show

that: (i) if the maximum evader step size v < 0.5, then the pursuer captures the

evader in finite time, (ii) for the game played in R
3: if v < 0.5, then two identical,

cooperative pursuers capture the evader in finite time, and (iii) we provide upper

bounds on the time taken to capture the evader in parts (i) and (ii). Finally, we

present simulation studies in the planar case to address: (i) the case of v ∈ [0.5, 1[,

(ii) the effect of additive, zero-mean Gaussian noise with variance proportional to the

square of the distance between the evader and the pursuer on the outcome of the

game, and (iii) a game with simultaneous moves.

We then consider a version of this problem in which the pursuer is equipped with a

bearing-only sensor, i.e., it can detect the line through itself on which the evader lies,

but without the orientation sense. An example of one such sensor is the emergency

locator transmitter. We show that if the evader’s speed is less than one-fourth of that
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of the pursuer, then our pursuit strategy leads to capture. We provide upper bounds

on time taken to capture for both the formulations.

Organization

The problem formulation is described in Section 3.2. The capture strategy and

main result is presented in Section 3.3. A cooperative pursuit version of this game is

presented in Section 3.4. The proofs of the main results in Sections 3.3 and 3.4 are

presented in Section 3.5. Simulations that address the case of evader speed v ∈ [0.5, 1[

and sensor noise are presented in Section 3.6. A version of the present game with

simultaneous moves and a simulation study of the application of a modified capture

strategy are presented in Section 3.6.3. The bearing-only formulation is presented in

Section 3.7.

3.2 Problem Set-up

We assume a discrete-time model with alternate motion of the evader and the

pursuer. The game is played in the unbounded plane. We assume simple, first-order

motion kinematics for both players. The pursuer can move with a step size of at

most 1 unit while the evader can move with a step size of v < 1. The pursuer is

equipped with a range-only sensor that measures its distance from the evader. The

evader is assumed to know exact information of the pursuer’s location. Further, we

assume that at each time instant, the players take measurements before and after the

pursuer’s move. Thus a sequence of the game consists of the following: (i) the evader

moves, (ii) players take measurements, (iii) the pursuer moves, (iv) the players take

measurements. This is shown in Figure 3.2. Capture is defined when the evader is

not greater than a unit distance from the pursuer.

Let e[t] ∈ R
2 and p[t] ∈ R

2 denote the positions of the evader and the pursuer
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Measure Measure

Evader: p[t− 1]

Pursuer: ybef[t] Pursuer: yaft[t]

Evader: p[t]

Evader moves to e[t] Pursuer moves to p[t]

At time t ≥ 1

Figure 3.2. A sequence at each time instant t ∈ {1, 2, . . .} in our alternate motion

model. The players take measurements before and after the pursuer’s move.

respectively, at time t ∈ Z≥1. The discrete-time equations of motion are

e[t] = e[t− 1] + ue(e[t− 1], {p[τ ]}t−1
τ=0),

p[t] = p[t− 1] + up(p[t− 1], ybef[t], yaft[t]), (3.1)

where {p[τ ]}t−1
τ=1 denotes the set {p[0], p[1], . . . , p[t − 1]}. For the pursuer, at the tth

time instant , ybef[t], yaft[t] ∈ R≥0 are the distances of the evader’s position from the

pursuer before and after the evader’s move respectively. Thus, ybef[t] = ‖e[t]−p[t−1]‖

and yaft[t] = ‖e[t] − p[t]‖. The functions ue : R
2 × R

2 × · · · × R
2

︸ ︷︷ ︸

t times

→ R
2 and up :

R
2 × R × R → R

2 are termed as strategies for the evader and pursuer respectively.

Notice that in this formulation, we allow the evader the access to the entire history

of the pursuer’s motion, while we allow the pursuer the access to only two of the

most recent evader measurements. The lack of symmetry between the number of

arguments in strategies of the evader and the pursuer is due to the alternate motion

model and due to the assumptions on the measurement models of the players.

Since the step sizes of each player are bounded, we have

‖ue‖ ≤ v, and ‖up‖ ≤ 1, (3.2)
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where v < 1. Capture takes place when for some Tcap ∈ Z≥0,

‖e[Tcap] − p[Tcap − 1]‖ ≤ 1 or ‖e[Tcap] − p[Tcap]‖ ≤ 1. (3.3)

The problem is to determine a pursuer strategy up that guarantees capture for any

evader strategy ue.

Remark 3.2.1 (Continuous-time analogy) Such a model arises when one dis-

cretizes the continuous time pursuit-evasion game in which the pursuer is equipped

with a sensor that continuously measures the distance to the evader as well as the rate

of change of this distance.

3.3 The Capture Strategy and Main Result

In this section, we describe our capture strategy and the corresponding main

result. Our capture strategy has two phases: Initialization and Pursuit. These are

described as follows.

3.3.1 Initialization phase

This phase lasts for only the first sequence. In the first sequence,

1. The evader moves to e[1].

2. The pursuer gets the measurement ybef[1] and it constructs ∂Bybef[1](p[0]) which

is a circle of radius ybef[1] around the point p[0].

3. The pursuer randomly selects a direction to move and moves along it with unit

step size.
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4. The pursuer gets the measurement yaft[1] and it constructs ∂Byaft [1](p[1]) and

computes the estimate

Ê[1] := ∂Byaft [1](p[1]) ∩ ∂Bybef[1](p[0]). (3.4)

Since Ê[1] is an intersection of two non-concentric circles described in the right hand

side of (3.4), we have the following result.

Proposition 3.3.1 (Initialization) Ê[1] = (êa[1], êb[1]) ∈ R
2 × R

2 is an estimate

of e[1].

If êa[1] = êb[1], then the pursuer has accurately determined e[1]. In general, the

pursuer is unable to distinguish between the two estimates.

3.3.2 Pursuit phase

We now present our pursuit strategy.

Until the evader is not captured, at time t ≥ 2,

1. the pursuer selects a point ê[t− 1] ∈ Ê[t− 1] at random and moves towards it

with full step size. Thus,

p[t] = p[t− 1] +
ê[t− 1] − p[t− 1]

‖ê[t− 1] − p[t− 1]‖ . (3.5)

2. The pursuer updates the estimate of the evader’s position using

Ê[t] := ∂Bybef[t](p[t− 1]) ∩
(

Ê[t− 1] ⊕ Bv(0)
)

∩ ∂Byaft [t](p[t]), (3.6)

where Bv(0) ⊂ R
2 denotes the closed circular region of radius v around the

origin 0 ∈ R
2 and the operation ⊕ denotes the Minkowski sum in the plane.
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p[t− 1]
p[t]

ê[t]

êb[t− 1]

êa[t− 1]

Figure 3.3. An instance of the pursuit strategy. The dotted circles have radii equal

to v and denote the region where the evader can step at time t. This figure illustrates

the case when the pursuer moves towards êa[t − 1] while the evader was actually at

êb[t− 1] and consequently exactly localizes the evader at time t.

An instance of this strategy is shown in Figure 3.3. A simple induction argument

gives the following result, the proof of which is presented in Section 3.5.

Lemma 3.3.2 (Evader estimate) At every time instant t ∈ Z≥1,

1. The evader’s position e[t] ∈ Ê[t], where Ê[t] is recursively defined using (3.4)

and (3.6).

2. The set Ê[t] contains at most two points (êa[t], êb[t]) ∈ R
2 × R

2. Further,

‖êa[t] − p[t]‖ = ‖êb[t] − p[t]‖, for every t.

We now present the main result of this section.

Theorem 3.3.3 (Capture in R
2) If v < 0.5, then a single pursuer captures the

evader using our capture strategy and in at most ⌈(‖e[0]−p[0]‖+(1+2v))/(2(1−2v))⌉
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time steps.

Remark 3.3.4 (Single pursuer in R
3) In R

3, it is not clear whether it is possible

to guarantee capture with a single pursuer using the proposed strategy. At each time

instant t, the set of evader estimates Ê[t] in general contains more than just two

points. This motivates the use of another cooperative pursuer in R
3, which we address

in the next section.

3.4 Cooperative Pursuit in R
3

We now present the pursuit problem in R
3 played with two cooperative pursuers.

3.4.1 Problem Statement and Notation

The problem formulation is almost identical to the planar case except that now

we have two identical pursuers which move simultaneously at their turn. The game

is played in R
3. Akin to (3.1), the equations of motion are given by

e[t] = e[t− 1] + ue(e[t− 1], {p[τ ]}t−1
τ=0),

pi[t] = pi[t− 1] + upi(pi[t− 1], yi
bef[t], y

i
aft[t]),

where for the ith pursuer, pi[t] ∈ R
3 denotes its position at time t, yi

bef[t], y
i
aft[t] ∈ R≥0

are the distances of the evader from it before and after the evader’s move respectively

and upi is its strategy. The strategies satisfy (3.2) and capture is defined when for

some i ∈ {1, 2}, (3.3) is satisfied.

The problem is to design pursuer strategies upi that guarantee capture for any

evader strategy.
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3.4.2 Capture Strategy and Main result

We present our solution to the cooperative pursuit game played in R
3. Again, our

capture strategy has two phases: Initialization and Pursuit. These are described as

follows.

Initialization phase

This phase lasts for only the first sequence. In the first sequence,

1. The evader moves to e[1].

2. For i = {1, 2}, pursuer pi gets the measurement yi
bef[1] and it constructs

∂Byi
bef

[1](pi[0]), i.e., the surface of a sphere of radius yi
bef[1] around pi[0].

3. Pursuer pi selects a direction to move ensuring that p1[1] 6= p2[1] and moves

along it with unit step size.

4. Each pursuer pi gets the measurement yaft[1] and it constructs ∂Byaft [1](pi[1])

and computes the estimate

Ê[1] :=
⋂

i∈{1,2}

(

∂Byaft [1](pi[1]) ∩ ∂Byi
bef

[1](pi[0])
)

. (3.7)

For each i ∈ {1, 2}, the term in the outer parentheses in (3.7) is an intersection of

the surfaces of two spheres in R
3 and hence is a circle. Hence, Ê[1] is an intersection

of two non-concentric circles and thus contains at most two points.

Pursuit phase

We now present our pursuit strategy.

Until the evader is not captured, at time t ≥ 2,
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(i) If Ê[t − 1] contains only one point ê[t − 1], then the pursuer closer to it, say

p1 moves towards it with full step size. The other pursuer p2 moves:

a) towards ê[t− 1] with maximum step size, if the three points ê[t− 1], p1[t − 1]

and p2[t− 1] are not collinear.

b) anywhere inside except on the axis of a cone with vertex at p2[t−1], with e[t−

1]− p2[t− 1] as the axis and with half-angle equal to arcsin (v/‖e[t− 1] − p2[t− 1]‖),

with maximum step size, if the points ê[t − 1], p1[t − 1] and p2[t − 1] are collinear.

Refer to Figure 3.6 for an illustration.

In case both pursuers are equidistant, then pursuer p1 is the one that moves

directly towards the evader. Otherwise, for i = {1, 2}, each pursuer pi is assigned a

unique point êi[t− 1] in Ê[t− 1] and it moves towards it with full step size. Thus,

pi[t] = pi[t− 1] +
êi[t− 1] − pi[t− 1]

‖êi[t− 1] − pi[t− 1]‖ . (3.8)

(ii) The pursuer updates the estimate of the evader’s position using

Ê[t] :=
(

Ê[t− 1] ⊕ Bv(0)
) ⋂

i∈{1,2}

(

∂Byi
aft

[t](pi[t]) ∩ ∂Byi
bef

[t](pi[t− 1])
)

. (3.9)

where Bv(0) ⊂ R
2 denotes the closed sphere of radius v around the origin 0 ∈ R

2 and

the operation ⊕ denotes the Minkowski sum in R
3.

An instance of this strategy is shown in Figure 3.4. Akin to Lemma 3.3.2 in the

single pursuer problem, we have the following result.

Lemma 3.4.1 (Evader estimate) At every time instant t ∈ Z≥1,

1. Using the proposed cooperative pursuit strategy, both pursuers are at distinct

locations in R
3.

2. The set Ê[t] contains at most two points (ê1[t], ê1[t]) ∈ R
3 × R

3. Further, for

each i ∈ {1, 2}, ‖ê1[t] − pi[t]‖ = ‖ê2[t] − pi[t]‖, for every t.
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p1[t− 1]

p2[t− 1]

C2

C1

p1[t]

p2[t]
ê2[t− 1]

ê1[t− 1]

Figure 3.4. An instance of the cooperative pursuit in R
3. The dotted circles have

radii equal to v and denote the region where the evader can step at time t. Circles C1

and C2 (shown as ellipses here) are the intersections of the two spheres (not shown

to preserve clarity) associated with each measurement for each pursuer. The lightly

shaded dots is the set Ê[t].

3. The evader’s position e[t] ∈ Ê[t], where Ê[t] is recursively defined using (3.7)

and (3.9).

We now present the main result of this section.

Theorem 3.4.2 (Capture in R
3) If v < 0.5, then two pursuers capture the evader

using the cooperative capture strategy and in at most ⌈(‖e[0]−p1[0]‖+‖e[0]−p2[0]‖+

2(1 + 2v))/(1 − 2v)⌉ time steps.

3.5 Proofs of the Main Results

In this section, we present the proofs of the main results presented in Sections 3.3

and 3.4.
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3.5.1 Single pursuer in R
2

We begin by proving Lemma 3.3.2.

Proof of Lemma 3.3.2:

We prove parts (i) using mathematical induction. Proposition 3.3.1 serves as the

base of induction. Now assume e[t − 1] ∈ Ê[t − 1]. Since the evader’s step size is

upper bounded by v, e[t] ∈ Ê[t − 1] ⊕ Bv(0). From the definition of a sequence (ref.

Section 3.2), e[t] is contained in both ∂Bybef[t](p[t − 1]) and ∂Byaft [t](p[t]). Thus, e[t]

is contained in the intersection of these three quantities and part (i) follows via the

principle of induction.

By part (i) of this lemma, since both ∂Bybef[t](p[t − 1]) and ∂Byaft [t](p[t]) contain

e[t], their intersection is non-empty and can contain at most two points due to the

fact that they are non-concentric circles. The final statement follows from the fact

that the intersection points of two circles are equidistant from their centers.

We also have the following useful result.

Lemma 3.5.1 For every t ∈ Z≥2, ‖êa[t] − êb[t]‖ ≤ 2v, where êa[t] and êb[t] are

elements of the evader estimate set Ê[t].

Proof: At time t, let the pursuer choose to move towards êa[t] while executing

part (i) of the pursuit strategy. From Lemma 3.3.2, Ê[t + 1] contains at most two

points, êa[t+1] and êb[t+ 1] and e[t+ 1] ∈ Ê[t]⊕Bv(0), which implies that e[t+ 1] ∈

Bv(êa[t]) ∪ Bv(êb[t]). From geometry, the points êa[t+ 1] and êb[t+ 1] can be distinct

only if both are contained inside Bv(êa[t]). Thus, the result follows.

The last two lines of the proof of Lemma 3.5.1 lead to a useful corollary.
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Corollary 3.5.2 At the end of any sequence at time t ∈ Z≥2, if the evader estimates

êa[t] and êb[t] are distinct, then they must be contained inside Bv(ê[t − 1]), where

ê[t− 1] is the point the pursuer goes toward at the time step t.

At each instant t ∈ Z≥2, recall that yaft[t] := ‖e[t] − p[t]‖ = ‖êa[t] − p[t]‖ =

‖êb[t] − p[t]‖. We have the following useful result.

Lemma 3.5.3 If v < 0.5, then at every instant t ∈ Z≥2 for which yaft[t] > 1, yaft[t+

1] < yaft[t] + v.

Proof: There are two possibilities: either Ê[t] contains only one point, i.e.,

e(t) or Ê[t] = (êa[t], êb[t]). In the first case, the pursuer moves towards e[t] and on

applying the triangle inequality, we have yaft[t+1] ≤ yaft[t]− (1− v) < yaft[t]+ v, and

the proposition is verified. In the second case, let us assume that the pursuer moves

towards êa[t]. There are two possibilities now. If the evader was at êa[t] at time t,

then the result is verified to be true since this possibility is exactly similar to the

first case. But if the evader was at êb[t] at time t, then observe that since yaft[t] > 1,

p[t + 1] will lie somewhere between p[t] and êa[t]. This is shown in Figure 3.5. By

triangle inequality,

yaft[t+ 1] = ‖e[t+ 1] − p[t+ 1]‖ ≤ ‖êb[t] − p[t+ 1]‖ + ‖e[t+ 1] − e[t]‖.

Since v < 0.5 and yaft[t] > 1, ‖êb[t] − p[t + 1]‖ < ‖êb[t] − p[t]‖ =: yaft[t]. Thus, the

result follows since ‖e[t+ 1] − e[t]‖ ≤ v.

We present another important result.

Lemma 3.5.4 For every time step t ∈ Z≥2, if v < 0.5 and as long as the evader is

not captured,

yaft[t+ 2] < yaft[t] − (1 − 2v).
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êa[t]

p[t]
p[t + 1]

e[t + 1]

êb[t]

Figure 3.5. Illustration of a case in Lemma 3.5.3. The evader is at êb[t] and the

pursuer moves towards êa[t].

Proof: At any time t ∈ Z≥2, there are two main possibilities:

(i) êa[t] = êb[t] = e[t]: In this case, the pursuer moves towards e[t] at time t + 1.

Thus, by the triangle inequality at this step,

yaft[t+ 1] ≤ yaft[t] − (1 − v). (3.10)

At time t+ 1, there are two further cases,

1) If êa[t+1] 6= êb[t+1], then by Lemma 3.5.3, we have, yaft[t+2] < yaft[t+1]+v.

This combined with (3.10) gives,

yaft[t+ 2] < yaft[t+ 1] + v < yaft[t] − (1 − 2v).

Thus, the lemma holds for this case.

2) If êa[t+ 1] = êb[t+ 1], then akin to (3.10), we have,

yaft[t+ 2] ≤ yaft[t+ 1] − (1 − v) < yaft[t] − 2(1 − v) < yaft[t] − (1 − 2v).

Thus, the lemma holds for this case.

(ii) êa[t] 6= êb[t]: Let the pursuer choose to move towards êa[t] at time t+1. Then,

there are two further possibilities.

1) êa[t+ 1] 6= êb[t+ 1]: From Corollary 3.5.2, we know that êa[t+ 1] and êb[t+ 1]
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are contained in Bv(êa[t]). So by triangle inequality,

yaft[t+ 1] ≤ yaft[t] − (1 − v). (3.11)

At time step t+2, independent of which point in Ê[t+1] the pursuer decides to move

toward, by Lemma 3.5.3, yaft[t+ 2] < yaft[t+ 1] + v. Combining this with (3.11), we

get,

yaft[t+ 2] ≤ yaft[t+ 1] − (1 − v) + v < yaft[t] − (1 − 2v).

Thus, the lemma holds for this case.

2) êa[t + 1] = êb[t + 1] = e[t + 1]: Applying Lemma 3.5.3 at time step t + 1, we

get yaft[t+ 1] < yaft[t] + v. Before its move at time t+ 2, the pursuer knows the exact

location e[t + 1]. So at the end of time step t + 2, by applying triangle inequality,

akin to (3.10), we have,

yaft[t+ 2] ≤ yaft[t+ 1] − (1 − v) < yaft[t] − (1 − 2v).

Thus, the lemma holds for this case.

We have verified that this lemma holds for all the possibilities.

The proof of Theorem 3.3.3 is almost immediate due to Lemma 3.5.4.

Proof of Theorem 3.3.3: If v < 0.5, then Lemma 3.5.4 states that for every time step

t ≥ 2 and as long as yaft[t] > 1, the distance yaft[t] strictly decreases by a positive

quantity 1−2v after every two time steps. Thus, after at most (yaft[2]−1)/(2(1−2v))

time steps, we obtain yaft[t] ≤ 1, i.e., the evader is captured.

For the expression of the upper bound on the capture time, we seek an upper

bound on yaft[2]. In the initialization phase, it is possible that the pursuer and evader

both move in a direction away from each other. Thus, y1[1] ≤ ‖e[0]− p[0]‖+ (1 + v).

This can also take place at time step t = 2, since Lemma 3.5.3 does not hold at time

step t = 1. Thus, yaft[2] ≤ y1[1]+(1+v). Thus, a conservative upper bound on yaft[2]

is ‖e[0] − p[0]‖ + 2(1 + v). The result now follows.
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3.5.2 Cooperative Pursuit in R
3

We begin by proving Lemma 3.4.1.

Proof of Lemma 3.4.1: Observe that for each i, the set ∂Byi
aft

[t](pi[t])∩∂Byi
bef

[t](pi[t−1])

is a circle with pi[t] located on its axis, i.e., the line passing through its center and

perpendicular to the plane containing the circle. Thus, for each time instant t, the

points in Ê[t] are equidistant from both pursuers.

We prove parts (i) and (ii) by mathematical induction. The lemma holds at time

t = 1, as a consequence of the Initialization phase. Now assume that at some time t,

the pursuers are at distinct locations and there are at most two points in Ê[t]. Then

there are two possibilities:

1) There are two distinct points ê1[t] and ê2[t] in Ê[t]: If the four points p1[t], ê1[t],

p2[t], ê2[t] are co-planar, then ê1[t] and ê2[t] lie on opposite sides of the line joining p1[t]

and p2[t]. By the pursuit strategy, since each pursuer moves towards its respective

ê[t], the points p1[t+ 1] and p2[t+ 1] also lie on opposite sides of the line joining p1[t]

and p2[t] and thus are distinct. If p1[t], ê1[t], p2[t], ê2[t] are not co-planar, then the line

joining p1[t] and ê1[t] and the line joining p2[t] and ê2[t] are skew in R
3. Thus, any

point on the first line is distinct from any on the second.

2) ê1[t] = ê2[t] = e[t]: If e[t], p1[t] and p2[t] are not collinear, then by part (a) of

item (i) in the pursuit strategy, the points p1[t+ 1] and p2[t+ 1] are distinct. If they

are collinear, then the axis of the cone described in part (b) of item (i) of the pursuit

strategy is the line l passing through e[t], p1[t] and p2[t]. The pursuer closer to the

evader, say p1 moves towards e[t] and hence is still on the line l, while p2 moves to a

point not contained in l and thus p1[t+ 1] and p2[t+ 1] are distinct.

Thus, the pursuers are at distinct locations at time t + 1. For part (ii), observe

that at time instant t, pursuer p2 does not move towards p1[t − 1]. This means that
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the axes (defined in the first line of this proof) of the two circles ∂Byi
aft

[t+1](pi[t +

1]) ∩ ∂Byi
bef

[t+1](pi[t]) are never parallel to each other. Thus, their intersection and

hence Ê[t + 1] contains at most two points. Thus, the result holds by mathematical

induction.

Proof of item (iii) is on similar lines as that of item (i) of Lemma 3.3.2.

p2[t]

p2[t + 1]

e[t + 1]

p1[t + 1]

e[t]p1[t]

Figure 3.6. Illustration of case 2 in Lemma 3.4.1. The shaded region is the cone

described in part (b) of item (i) of the Pursuit phase.

Lemma 3.5.5 For every t ∈ Z≥2, ‖ê1[t] − ê2[t]‖ ≤ 2v, where ê1[t] and ê1[t] are

elements of the evader estimate set Ê[t].

Proof: Let the evader be located at ê1[t−1] at time t−1. p1 moves towards ê1[t−

1] and hence e[t] must be contained in
(

∂By1
aft

[t](p1[t])∩∂By1
bef

[t−1](p1[t−1])
)
⋂Bv(ê1[t−

1]) ⊂ Bv(ê1[t − 1]), which is a circle. The intersection points of this circle with the

other circle due to p2, must be contained inside Bv(ê1[t − 1]) and thus the result

follows.

Next, we observe that Lemma 3.5.3 holds for the cooperative pursuit strategy as

well. This follows from Lemma 3.5.5 and the fact that only the triangle inequality was

being used in the proof of Lemma 3.5.3. The only extra technicality is the possibility

of occurrence of case 2 as in the proof of Lemma 3.4.1 (refer Figure 3.6). However, a

simple calculation reveals that Lemma 3.5.3 still holds due to the motion as per part

(b) of item (i) in the Pursuit strategy.

We now present a useful result.
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Lemma 3.5.6 For every time step t ∈ Z≥2, if v < 0.5 and as long as the evader is

not captured,

y1
aft[t+ 1] + y2

aft[t+ 1] < y1
aft[t] + y2

aft[t] − (1 − 2v).

Proof: At any instant t, by Lemma 3.4.1, it is clear that the evader is in Ê[t],

which contains at most two points, ê1[t], ê2[t]. Let the evader be located at ê1[t].

Then, by triangle inequality

y1
aft[t+ 1] = ‖e[t+ 1] − p1[t+ 1]‖ ≤ ‖e[t] − p1[t]‖ − (1 − v) = y1

aft[t] − (1 − v).

From Lemma 3.5.3, we have y2
aft[t+1] < y2

aft[t]+v. Thus, adding the two inequalities,

we get the required result.

Proof of Theorem 3.4.2: If v < 0.5 and if both y1
aft[t] and y2

aft[t] are greater than 1 for

t ∈ Z≥2, then by Lemma 3.5.6, their sum y1
aft[t]+y

2
aft[t] strictly decreases by a positive

quantity (1−2v) at every instant of time. Thus, after at most ⌈(y1
2[2]+y2

2[2]−2)/(1−

2v)⌉ time steps, y1
aft[t] + y2

aft[t] ≤ 2, which means either y1
aft[t] ≤ 1 or y2

aft[t] ≤ 1, i.e.,

the evader is captured.

For the expression of the upper bound on the capture time, we seek an upper

bound on y1
2[2] + y2

2[2]. On similar lines to the proof of Theorem 3.3.3, we have

yi
2[2] ≤ ‖e[0] − pi[0]‖ + 2(1 + v). Thus, the result follows.

3.6 Simulation Studies

We now present simulation studies that address (i) the case of evader speed v ∈

[0.5, 1[; (ii) the case of the pursuer measurements being corrupted with additive, zero-

mean Gaussian noise, with variance proportional to the square of the distance to the
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evader, and (iii) a version of this game with simultaneous moves. All simulations were

run using MATLABR©.

3.6.1 The case of v ∈ [0.5, 1[

We ran simulations for ‖e[0]−p[0]‖ = 20, 30 and 40 units. An upper limit of 1000

time steps was set to decide whether the capture strategy terminated into capture or

evasion.

It is unclear as to what is the optimal evader strategy in this problem. This is

because if the evader decides to always move directly away from the pursuer with

full step (i.e., greedy move), then it would reduce the uncertainty in its position for

the pursuer. If it does not make a greedy move, then the distance from the pursuer

may reduce. So we adopt the following reasonable evader strategy for simulations -

with full step, move to a point selected uniformly randomly in a sector with angle 0.2

radians. This sector is placed symmetrically along the line e[t]p[t] and away from the

pursuer.

The plots of probability of success of the strategy versus the evader speed v are

presented in Figure 3.7.

3.6.2 Noisy measurements

We assume that the pursuer measurements are corrupted with zero-mean, additive

Gaussian noise whose variance proportional to the square of the distance to the evader.

This implies σbef[t] = ǫ‖e[t]−p[t−1]‖ and σaft[t] = ǫ‖e[t]−p[t]‖, where ǫ > 0 is the noise

parameter. Thus, in the notation of Section 3.2, ybef[t] ∼ N (‖e[t] − p[t− 1]‖, σbef[t])

and yaft[t] ∼ N (‖e[t]−p[t]‖, σaft[t]), where given a, b ≥ 0, N (a, b) denotes the Gaussian

distribution with mean a and standard deviation b.
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(c) Initial distance: 40 units

Figure 3.7. Estimate of capture probability versus evader step size v. The vertical

bars give a 95% confidence interval about the probability estimate P (v) which is given

by
[

P (v) − 2
√

0.25
n
, P (v) + 2

√
0.25
n

]

, where n = 100 is the number of trials [101]. For

a particular evader strategy, we study how the capture strategy performs for evader

step size v ∈ [0.5, 1[.

Since it is unclear as to what is the optimal evader strategy in this problem, we

adopted the evader strategy in Section 3.6.1. We ran simulations for β = 0.2, 0.3 and

0.4 units. The initial distance was set to 20 units. An upper limit of 2000 time steps

was set to decide whether the capture strategy terminated into capture or evasion.

The plots of probability of success of the strategy versus the noise parameter ǫ are

presented in Figure 3.8.
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(a) Evader step size: v = 0.2
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(b) Evader step size: v = 0.3
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(c) Evader step size: v = 0.4

Figure 3.8. Estimate of capture probability versus noise parameter ǫ. The vertical

bars give a 95% confidence interval about the probability estimate P (ǫ) computed as

described in Figure 3.7. For a particular evader strategy, we study how the capture

strategy performs under noisy measurements.

3.6.3 A Game with Simultaneous Moves: Simulation Study

We now consider a discrete-time version of the game in the plane in which the

pursuer and the evader move simultaneously. In this version, at each instant of time,

each player gets only one measurement of its opponent. This is equivalent to a

game in which the pursuer receives only the distance to the evader at each instant in

continuous time. Thus, (3.1) becomes

e[t] = e[t− 1] + ue(e[t− 1], {p[τ ]}t−1
τ=0),

p[t] = p[t− 1] + up(p[t− 1], y[t− 1]),

(3.12)
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(c) Initial distance: 40 units

Figure 3.9. Estimate of capture probability versus evader step size v, in the game

with simultaneous moves. The vertical bars give a 95% confidence interval about

the probability estimate P (v), computed as described in Figure 3.7. For a particular

evader strategy, we study the performance of a modified capture strategy presented

in Section 3.6.3.

We modify the capture strategy in Section 3.3 as follows.

Initialization phase: The following happens simultaneously for only the first time

step:

(i) The evader moves to e[1].

(ii) The pursuer randomly selects a direction to move and moves along it with

unit step size.
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(iii) The pursuer gets the measurement y[1] and the evader estimate is given by

Ê[1] := ∂By[1](p[1]).

Pursuit Phase: Until the evader is not captured, at time t ≥ 2,

(i) If Ê[t− 1] is a circle, then denote any point in it as ê[t− 1]. Otherwise, denote

as ê[t− 1] a point chosen uniformly randomly from one of the end points of the arcs

in Ê[t− 1]. The pursuer moves towards ê[t− 1] with full step size.

(ii) The pursuer updates the estimate of the evader’s position using

Ê[t] :=
(

Ê[t− 1] ⊕ Bv(0)
)

∩ ∂By[t](p[t]).

p[t]p[t− 1]

Figure 3.10. Illustration of the pursuit strategy in the game with simultaneous moves.

The dotted line is the estimate Ê[t − 1]. The bean-shaped region around it is its

Minkowski sum with Bv(0) and the darkly shaded arc is the estimate Ê[t].

The strategy is illustrated in Figure 3.10. Since it is unclear as to what is the

optimal evader strategy in this problem, we adopted the same evader strategy as in

Section 3.6.1. We ran simulations for ‖e[0] − p[0]‖ = 20, 30 and 40 units. An upper

limit of 5000 time steps was set to decide whether the capture strategy terminated
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into capture or evasion. The plots of probability of success of the strategy versus the

evader step size v are presented in Figure 3.9.

3.7 Bearing-only Formulation

In this section, we present another formulation in which the pursuer is equipped

with a sensor that determines only the line that contains their positions. The equa-

tions of motion are identical to equation (3.12). The measurement y[τ ] is the straight

line passing through the pursuer and the evader at time τ . The sensing model as-

sumed is different from bearing-only sensors in literature. In bearing-only sensors,

the uncertainty associated with the evader’s position is a semi-infinite line whereas

that in the present scenario is an infinite line. Hence, although the evader is slower,

a simple greedy strategy would fail as the pursuer would not know how it is to the

evader.

3.7.1 The Capture Strategy and Main Result

We now present our capture strategy and the main result of this paper. Our

strategy is as follows: Until the evader is captured and localized,

1. For t = 2k + 1, where k = 0, 1, 2, . . . , the pursuer moves to a point p[2k + 1]

such that

p[2k + 1] − p[2k] ⊥ y[2k], and ‖p[2k + 1] − p[2k]‖ = v + fp[2k],

where fp[2k] ∈]0, 1 − v], for k = 0, 1, . . . , is as per the pursuer’s choice.
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2. The pursuer computes the set Ê[t] recursively as follows.

Ê[0] = y[0],

Ê[t] =
(

Ê[t− 1] ⊕ Bv(0)
)

∩ y[t],

where Bv(0) ⊂ R
2 denotes the closed circular region of radius v around the

origin 0 ∈ R
2 and the operation ⊕ denotes the Minkowski sum in the plane.

3. For t = 2k, where k = 1, 2, . . . , the pursuer moves toward the furthest point

from it inside Ê[t− 1], with maximum step size.

4. The pursuer repeats item 2 of this strategy.

The strategy is illustrated for at time instants 0, 1 and 2 in Figure 3.11. From the

definition of Ê[t] for t ≥ 1, it can be shown that Ê[t] is a line segment and thus a

compact set. Thus, the points in Ê[t] closest to and furthest from p[t] exist. In the

event that there exist two points which are furthest from p[t], the pursuer selects any

one among them at step (iii).

y[0]

p[0]

e[0]

(a) At time 0

e[1]

p[1]

y[1]

Ê[0] ⊕ Bv(0)

(b) At time 1

e[2]

Ê[1] ⊕ Bv(0)
p[1]

y[2]

(c) At time 2

Figure 3.11. Illustration of the capture strategy for the bearing-only formulation at

time instants 0, 1 and 2.

This strategy gives us the following result.
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Theorem 3.7.1 (Capture with bearing-only sensor) If v < 0.25, then the pro-

posed pursuit strategy along with the choice of fp[2k] = v, for every k ∈ {0, 1, 2, . . .}

leads to

1. simultaneous localization and capture of the evader.

2. The number of time steps required upper bounded by

3
√

‖p[0] − e[0]‖2 + 4v2

1 − 4v
+ 2.

3. simultaneous localization and capture state maintained with periodicity of at

most two time instants following the first time it is simultaneously localized and

captured.

Remark 3.7.2 (General strategy) It turns out that the choice of fp[2k] = v has

an inherent limitation that v needs to be no greater that 0.5, due to the move in step

(i). In general, one can choose smaller values of fp for step (i) and we were able

to show that a sufficiently small value of fp and a modification of step (iii), leads to

capture under the same condition on v as given by Theorem 3.7.1. However, we are

not able to comment upon the time taken for capture and whether property (iii) would

be guaranteed.

We present and prove some intermediate results before proving the main result.

Lemma 3.7.3 For t ≥ 1, let d[t] denote the distance between p[t] and the point

furthest to it in Ê[t]. The following statements are true:

1. For odd time instants t ≥ 1, d[t] ≤ d[t− 1] + 3v.

87



2. At even time instants t ≥ 1, the evader is localized and captured if d[t−1] ≤ 3/2

and v < 1/4.

3. At even time instants t ≥ 1, if d[t− 1] > 3/2, then d[t] ≤ d[t− 1] − (1 − v).

Proof: The proofs are based on application of the triangle inequality. Let

ef [t] ∈ Ê[t] denote the furthest point from p[t] at time instant t.

1. At odd time instants t, applying triangle inequality to △p[t]p[t− 1]ef [t− 1], as

shown in Figure 3.12 we obtain,

‖p[t] − ef [t]‖ ≤ d[t− 1] + 2v.

Since the evader’s maximum step size is upper bounded by v, from geometry

d[t] ≤ ‖p[t] − ef [t− 1]‖ + v. Combining these two inequalities, we obtain part

(i). Observe that for odd time instants t ≥ 1, p[t] /∈ Ê[t].

p[t]

y[t]

Ê[t− 1] ⊕ Bv(0)
2v

p[t− 1]

ef [t− 1]

Figure 3.12. Illustration of proof of item (i) in Lemma 3.7.3. The broken line segment

is Ê[t− 1].

2. Let the positions of the players at the end of time t−1 be as shown in Figure 3.13.

As per the strategy, the pursuer moves towards ef [t − 1] with unit step. Let

ec[t− 1] denote the point inside Ê[t− 1] that is closest to p[t− 1]. We observe

that for all possible positions of the evader, ‖ec[t − 1] − p[t]‖ ≤ 2/3, where the

right hand side value is due to the property of similar triangles. Equality occurs

in the above inequality only if ef [t− 1] = A, as shown in Figure 3.13.

Thus, we obtain that d[t] = max{‖ec[t − 1] − p[t]‖ + v, d[t − 1] − 1 + v} =

max{2/3 + v, 1/2 + v} < 1, if v < 1/4. This proves the result.
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p[t− 1]

p[t]

y[t− 1]

Ê[t− 1] ⊕ Bv(0)

A

2v
ec[t− 1]ec[t− 1]

ef [t− 1]

Figure 3.13. Illustration of proof of item (ii) in Lemma 3.7.3. The broken line segment

is Ê[t−2], the dark solid line segment is Ê[t−1]. The two circular arcs about p[t−1]

have radii 1 and 3/2 units respectively. Point A is the point of intersection of circle

with unit radius around p[t−1] and the straight portion of the boundary of the shaded

region as shown. ec[t−1] and ef [t−1] are the closest and furthest points respectively

inside Ê[t− 1] from p[t− 1].

3. d[t−1] > 3
2
: This implies that the evader was not captured at time t−1. Thus,

pursuer moves towards ef [t−1] with maximum step size. As in the previous case,

we have d[t] = max{‖ec[t−1]−p[t]‖+ v, d[t−1]−1+ v}. However, the present

case is feasible only if angle ∠ef [t− 1]p[t− 1]p[t− 2] > arccos(2v), as shown in

Figure 3.14. This implies that the second argument in the max function for d[t]

dominates the first because under that inequality, ‖ec[t− 1]− p[t]‖ < 1/2. This

proves the required result.

A combination of parts (i) and (iii) of Lemma 3.7.3 leads to the following corollary.

Corollary 3.7.4 Let t = 2k + 1 for some k ∈ {0, 1, 2, . . .}. If d[2k + 1] > 3/2, then

d[2k + 3] ≤ d[2k + 1] − (1 − 4v).

We are now ready to prove Theorem 3.7.1
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2v

p[t− 1]

A

p[t]

p[t− 2]

y[t− 1]

Ê[t− 1] ⊕ Bv(0)

ef [t− 1]

ec[t− 1]

Figure 3.14. Illustration of proof of item (iii) in Lemma 3.7.3. The broken line segment

is Ê[t−2], the dark solid line segment is Ê[t−1]. The two circular arcs about p[t−1]

have radii 1 and 3/2 units respectively. Point A is the point of intersection of circle

with unit radius around p[t − 1] and the straight portion of the boundary of the

shaded region as shown. ec[t − 1] and ef [t − 1] are the closest and furthest points

respectively inside Ê[t − 1] from p[t − 1]. This case is geometrically possible only

when the intersection of Ê[t− 1] and Ê[t− 2] (possibly extended) does not lie inside

the smaller circle as shown, i.e., the angle ∠ef [t− 1]p[t− 1]p[t− 2] > arccos 2v.

Proof of Theorem 3.7.1:

1. Given any finite initial distance between the pursuer and evader, there exists a

finite value for d[1]. If v < 1/4, then by Corollary 3.7.4, after a finite number

of time steps, we obtain for some k∗ ∈ {0, 1, 2, . . .}, d[2k∗ + 1] ≤ 3/2. At time

instant 2k∗ + 2, applying item (ii) of Lemma 3.7.3, capture is ensured.

2. To compute an upper bound on the time taken to capture, we need to compute

an upper bound on the number k∗ in part (i) of this proof. Given any initial

positions p[0] and e[0], by trigonometry we obtain

d[1] ≤ 3

2

√

‖p[0] − e[0]‖2 + 4v2.
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Thus, an upper bound for k∗ is given by

k∗ ≤ 3

2

√

‖p[0] − e[0]‖2 + 4v2

1 − 4v
.

Part (ii) of the theorem now follows.

3. This case is illustrated in Figure 3.15. Let the pursuer capture the evader at

time 2k∗+2. At time 2k∗+3, by part (i) of Lemma 3.7.3, we obtain d[2k∗+3] ≤

d[2k∗ + 2] + 3v. The evader is captured again at time 2k∗ + 4 if conditions of

part (ii) of Lemma 3.7.3 hold. If they do not hold, then applying part (iii) of

Lemma 3.7.3, d[2k∗ + 4] ≤ d[2k∗ + 3] − (1 − v) ≤ d[2k∗ + 2] − (1 − 4v) < 1.

Thus, part (iii) stands proved.

Summary

Inspired by the Grow-Intersect algorithm, we addressed discrete-time pursuit-

evasion games in the plane in which the pursuer is equipped with (i) a range-only

sensor that measures its distance from the evader, or with (ii) a bearing-only sensor

that gives only the line containing the pursuer and the evader . We proposed pursuit

strategies and showed that if the evader’s speed is less than a critical value, then

capture is achieved. We also provided upper bounds on the capture times. Simulation

studies suggest good performance of the pursuit strategies for higher evader speeds

as well as under noisy scenarios.
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Ê[t∗]

p[t∗ + 1]

2v

p[t∗]

(a) At time t∗ := 2k∗, the evader is si-

multaneously localized and captured.

p[t∗ + 1]
y[t∗ + 1]

Ê[t∗] ⊕ Bv(0)

p[t∗]

(b) At time t∗ + 1. The pursuer checks whether

the evader is still localized and captured.

Ê[t∗ + 1] ⊕ Bv(0)

p[t∗]
y[t∗ + 1]

p[t∗ + 2]

p[t∗ + 1]

(c) At time t∗ + 2, capture occurs again.

Figure 3.15. Illustration of part (iii) of the proof of Theorem 3.7.1.
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Chapter 4

Pursuit under Motion Constraints

4.1 Introduction

In this chapter, we address a pursuit-evasion game of kind between a slower but

agile evader and multiple faster but motion-constrained pursuers. We propose a

cooperative pursuit strategy in order to achieve capture via confining the evader in a

bounded region through which the evader cannot escape without being captured.

Related Literature

The Homicidal Chauffeur game, proposed originally in [51], involves a pursuer

who wants to overrun an evader, both moving with fixed speeds. The pursuer has

greater speed but has constraints on its turning radius, while the evader can make

arbitrarily sharp turns. The evader is said to be captured when the distance between

the pursuer and evader becomes less than a specified capture radius. The pursuer

moves at fixed speed along planar paths with bounded curvature. The evader moves

with a fixed speed lower than that of the pursuer and governed by a simple first-

order-integrator dynamics. [51] gave a condition on the game parameters, i.e., the
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speed ratio between the players and the ratio of the capture radius to the minimum

turning radius of the pursuer, such that the evader can evade indefinitely. Numerous

variations of this problem have been studied, e.g., capture inside a cone sector [42],

effects of stochastic noise [73] and a version without a priori assignment of the role

of pursuer or evader [41] to cite a few.

Recent research attention has focused on cooperative control strategies for detec-

tion of targets. [66] have addressed the problem of cooperative rendezvous in which

multiple UAVs are to arrive simultaneously at their targets. [82] have presented a

cooperative target search using online learning and computing guidance trajectories

for the agents. Recently, [99] have presented cooperative motion planning methods

for first-order mobile sensing agents to detect a moving target that lies in a known

initial region. [65] have proposed guaranteed strategies to search for mobile evaders

in a plane. Recently, [55] and [11] have proposed schemes for agents with first-order

dynamics to capture a target by arriving on a circle with specified radius around it.

Contributions

Based on the analysis of the Homicidal Chauffeur game, we identify regimes for

the game parameters, i.e., the evader/pursuer speed ratio and the ratio of the capture

radius to the pursuer’s minimum turning radius, for which there exists a strategy for

the evader to avoid capture. This motivates a multiple pursuer formulation of the

game. We seek to confine the evader within a bounded region, for which we propose

a multiple pursuer formation and a novel multi-phase, cooperative strategy for the

pursuers. During all phases, the pursuers move in a specific formation, whereby some

pursuer plays the role of “leader” and all other pursuers play the role of “followers.”

The strategy is partly decentralized, in the sense that it suffices to specify only the

motion of the leader in each phase. For the followers, the only information required

is the motion of the neighboring pursuer and the evader position. In the initial pre-

align and align phases of the strategy, the leader pursuer moves in such a way that
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the evader lies at a required distance directly ahead of the leader pursuer, while the

followers move so as to maintain a straight line formation. In the remaining swerve,

encircle and close phases, the pursuers get into a “daisy-chain” formation and

move to approach, encircle and finally close the chain around the evader. Independent

of the evader motion, the final closed daisy-chain formation confines the evader within

a bounded region, from which there exists no evader trajectory avoiding capture.

Thus, given (i) the evader/pursuer speed ratio which is less than unity and (ii) the

ratio of the capture radius to the pursuers’ minimum turning radius, we characterize

the required number of pursuers for which confinement is guaranteed.

Ecological Motivation

The inspiration for our strategy comes from certain aspects of fish behavior. [38]

reported that in Cedar Key, Florida, USA, individual “driver” dolphins herd slower,

more agile prey in circles as well as towards the tightly-grouped “barrier” dolphins.

[81] reported a herd of killer whales imposing confinement on pantropical spotted

dolphins. The whales cut out up to three dolphins from a school and proceeded

to take turns chasing a single dolphin and keeping it within a confined area. The

strategy proposed in this chapter bears similarities with foraging strategies observed

recently among dolphins [12], as shown in Figure 4.1.

Figure 4.1. Cooperative multi-stage foraging observed among dolphins [12].
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Organization of this Chapter

This chapter is organized as follows. The mathematical model and assumptions

are presented in Section 4.2. The daisy-chain formation, the confinement strategy

and the main analysis result are presented in Section 4.3. Section 4.4 contains proofs

of some intermediate and the main results.

4.2 Problem Set-up

Our cooperative Homicidal Chauffeur game is played in an unbounded, planar

environment between a single evader and multiple pursuers. The pursuers have iden-

tical motion abilities and possess greater speed than that of the evader. However, the

evader can make arbitrarily sharp turns, while the pursuers are Dubins vehicles [34],

i.e., fixed-speed non-holonomic vehicles constrained to move along paths of bounded

curvature. We assume that the instantaneous position and velocity of the evader is

available to all pursuers.

Let e(t) and pk(t), for k ∈ {1, . . . , N}, denote the positions of the evader and

the k-th pursuer in R
2 at time t, as shown in Figure 4.2. Let ve and vp denote the

speeds of the evader and of all pursuers, respectively. Given a minimum turning

radius ρ > 0, the equations of motion are

ṗk,x(t) = vp cos θp,k(t), ėx(t)= ve cos θe(t),

ṗk,y(t) = vp sin θp,k(t), ėy(t) = ve sin θe(t), (4.1)

θ̇p,k =
vp

ρ
upk,

where θe(t) (resp. θp,k(t)) is the angle between the velocity vector of the evader (resp.

of the k-th pursuer) measured counterclockwise from a reference horizontal axis [51].

The control input for the evader is θe(t) : [0,∞[ → [0, 2π], which we assume is a
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measurable function of time. upk ∈ [−1, 1], is the control applied by the k-th pursuer.

We define the evader/pursuer speed ratio v := ve/vp and assume v < 1. Given a

Figure 4.2. Intermediate variables in the Homicidal Chauffeur game: Lk is the dis-

tance between the evader and the k-th pursuer; φk ∈ [0, π] is the unsigned angle

between the k-th pursuer’s velocity vector and the vector e− pk. The shaded region

is the pursuer’s capture disc.

capture radius c > 0, the evader is said to be captured if, at some time t and for some

k, the evader is at a distance of at most c units from pursuer pk. In what follows,

without loss of generality, we set the capture radius c and the pursuers speed ve to 1.

In summary, our cooperative Homicidal Chauffeur game is described by the number

of pursuers N ∈ N, the minimum turning radius ρ ∈ R>0, and the evader/pursuers

speed ratio v ∈ ]0, 1[.

In the case of a single pursuer and single evader, it can be shown in that for

ρ ≥ 5/2, there exists an evasion policy if the evader/pursuer speed ratio satisfies

v ≥ vmin(ρ), where vmin : [5/2,+∞[ → ]0, 1[ is the unique solution to

1

x
=
√

1 − vmin(x)2 + vmin(x) arcsin(vmin(x)) − 1,

[51]. This motivates our cooperative version of the Homicidal Chauffeur game. The

use of a game-theoretic approach to determine capture strategies involves solving the

Hamilton-Jacobi-Bellman-Isaacs equation, which is difficult to solve in the present
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context. Therefore, taking motivation from biology, we introduce the notion of evader

confinement as follows.

Definition 4.2.1 (Confinement) The evader is said to be confined to a bounded re-

gion G ⊂ R
2 at time t∗ if e(t∗) ∈ G and there exist pursuer trajectories pk : [t∗,+∞[ →

R
2 solutions to equation (4.1) such that the evader cannot leave G without being cap-

tured. A set of functions {upk}, for k ∈ {1, . . . , N}, leading to evader confinement is

termed as a confinement strategy.

In our cooperative Homicidal Chauffeur game with the evader/pursuer speed ratio v <

1, we seek deterministic multiple-pursuer strategies that guarantee evader confinement

given any value of the pursuer’s minimum turning radius ρ > 0.

4.3 A Confinement Strategy

In this section, we design a cooperative strategy for evader confinement and state

our main analysis result. We begin by proposing two useful pursuer formations. We

denote the velocity vector of the k-th pursuer by vp,k.

Definition 4.3.1 (Line formation) The set {p1, . . . , pN , vp,1, . . . , vp,N} is in a line

formation if

(i) p1, . . . , pN are on a straight line with the velocity vectors vp,1, . . . , vp,N parallel

to one-another, and

(ii) For every k ∈ {1, . . . , N − 2}, ‖pk − pk+1‖ = ‖pk+1 − pk+2‖ > 0.

Figure 4.3 shows an example of a line formation. In what follows, we refer to pursuer

p1 as the leader, unless specified otherwise. A line formation has the property that,
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Figure 4.3. A pursuer line formation with N = 5 pursuers.

if all pursuers start in a line formation and use identical control inputs, then they

remain in a line formation.

Definition 4.3.2 (Daisy-chain formation) Given sip > 0, the set

{p1, . . . , pN , vp,1, . . . , vp,N} is said to be in a daisy-chain formation at time t if, for

every k ∈ {2, . . . , N}, pursuer pk can attain at time t+sip, the position and orientation

at time t of pursuer pk−1. Formally, for every k ∈ {2, . . . , N}, there exists a solution

η : [t, t+ sip] → R
2 to equation (4.1) satisfying

η(t) = pk, η̇(t) = vp,k,

η(t+ sip) = pk−1, η̇(t+ sip) = vp,k−1.

The quantity sip in Definition 4.3.2 is also the inter-pursuer separation distance, since

the pursuers’ speed is normalized to unity. Figure 4.4 shows an example of a daisy-

chain formation. A daisy-chain formation has the property that any time instant,

a path taken by the leader pursuer can be exactly traversed by the k-th follower

pursuer, for every k ∈ {2, . . . , N}, in the daisy-chain after a time delay of (k− 1)sip.

Next, we characterize a possible evader motion. For q ∈ R
2, let Br(q) ⊂ R

2 denote

the closed ball of radius r centered at q. Given {pk−1, pk, vp,k − 1, vp,k} in a daisy-chain

formation at time t with inter-pursuer separation sip, let Ck−1,k
left (t) and Ck−1,k

right (t) be

curves which are tangent to Bc(η(τ)) for every t ∈ [t, t+ sip]. Here, η is a curve

described in Definition 4.3.2. Then, the evader is said to move between pk−1 and pk if

e(t) ∈ Ck−1,k
left (t) and e(t+ τ) ∈ Ck−1,k

right (t) or if e(t) ∈ Ck−1,k
right (t) and e(t+ τ ) ∈ Ck−1,k

left (t),

99



Figure 4.4. A daisy-chain formation with inter-pursuer separation sip. The curve

between two consecutive pursuers is an example of a solution η as described in Defi-

nition 4.3.2. The discs around the pursuers represent their capture discs.

for some τ < sip. Figure 4.5 shows an example of such an evader trajectory.

Figure 4.5. An example of the evader moving between pursuers p3 and p4. The dotted

line between curves C3,4
left(t) and C3,4

right(t) shows one possible evader trajectory.

Given the pursuers’ minimum turning radius ρ, for the evader/pursuers speed

ratio v, we define the critical inter-pursuer separation as

s∗ip(v, ρ) := max{2, ρ · Θ(v, ρ)}, where (4.2)

Θ(v, ρ) :=

√

(1 + ρ)2

v2ρ2
− 1 − arctan

√

(1 + ρ)2

v2ρ2
− 1 −

√

1

v2
− 1 + arctan

√

1

v2
− 1.

The quantity s∗ip(v, ρ) has the following property.

Lemma 4.3.3 (Critical inter-pursuer separation) If {pk−1, pk, vp,k − 1, vp,k} are

in a daisy-chain formation and the separation sip ≤ s∗ip(v, ρ), then the evader cannot

not move between pk−1 and pk without being captured.
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Finally, we define two useful notions. First, a point q ∈ R
2 is said to be aligned

with {pk, vp,k} if the velocity vector vp,k is parallel to (q− pk). Second, a daisy-chain

formation with separation sip is said to be closed if there exists some k ∈ {2, . . . , N}

and a path of length no more than sip that leads the leader pursuer to the position

and orientation of the k-th pursuer. More specifically, a daisy-chain formation with

separation sip is closed if for some k ∈ {2, . . . , N}, there exists a tk ≤ s∗ip(v, ρ) and a

solution η : [0, tk] → R
2 to equation (4.1) satisfying

η(0) = p1, η̇(0) = vp,1,

η(tk) = pk, η̇(tk) = vp,k.

We now present our confinement strategy. The pursuers begin in a line formation

such that the distance between every two consecutive pursuers is s∗ip(v, ρ). Pursuer

p1 is elected as leader of the line formation. We describe the strategy in the following

five phases:

[Phase 1: Pre-align] The aim of the pre-align phase is to ensure that the

evader becomes aligned with {p1, vp,1} after some finite time, and that all the pursuers

are in a line formation with the same initial separation s∗ip(v, ρ). If the pursuers

are already in this configuration, then proceed to Phase 2. Otherwise, pursuer p1

performs the following maneuver: p1 moves sufficiently far from the evader and turns

on a tightest circle until the evader gets aligned with {p1, vp,1}. All other pursuers

move using identical control inputs to maintain the line formation.

More specifically, let lp be the minimum of the roots of the quadratic equation:

(γ(lp + 2πρ) + vρ+ ρ)2 = (lp − L0 cosψ0)
2 + (ρ− L0 sinψ0)

2, (4.3)

where ψ0 is the angle between vp,1(0) and (e(0)− p1(0)) and L0 := ‖p1(0)− e(0)‖. p1

moves on a straight line path of length lp and then moves on a circle of radius ρ and

center on the side not containing e(0) of the line along vp,1(lp). If φ0 = 0 or π, then
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the center of the circle of radius ρ can be chosen to be on either side of the line along

vp,1(lp).

Lemma 4.4.1 shows that this phase terminates in finite time with the evader

aligned with p1 and at a distance greater than vρ.

γ(
l p

+
2π
ρ)

p1(0)
L0

e(0)

p1(lp)

vp,1(lp)

vρ

ρ

lp
φ0

Figure 4.6. The Pre-Align phase: the bold line shows the trajectory followed by p1.

[Phase 2: Align] The aim of the align phase is to bring pursuer p1 within

distance vρ of the evader, that is, to achieve ‖e − p1‖ ≤ vρ, while maintaining the

evader aligned with {p1, vp,1} (this property was achieved by the pre-align phase).

During the align phase each pursuer pk, k ∈ {1, . . . , N}, moves according to

upk(θe, e, θp,1, p1) =
ρv

‖p1 − e‖ sin(θe − θp,1). (4.4)

We will show later that at the end of this phase, ‖p1 − e‖ ≤ vρ, e is aligned with

{p1, vp,1}, and all pursuers are in a line formation, see Figure 4.7.

[Phase 3: Swerve] This phase has two aims. First, the pursuers move into a

straight-line daisy-chain formation with separation s∗ip(v, ρ). Second, once the daisy-

chain is formed, a new pursuer is elected as leader based on the relative position of

the evader. These two steps are described as follows:
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lal

p2 p3p1

e

vρvp,1

Figure 4.7. End of the align phase (beginning of the swerve phase); all pursuers

are on a line formation. lal denotes the line defining the line formation at the end of

the align phase.

(i) Form daisy-chain: Each pursuer pk, k ∈ {1, . . . , N}, moves with maximal

angular velocity |upk| = 1 until all the pursuers are in a straight-line daisy-chain

formation, as shown in Figure 4.8. This straight line through the pursuer positions

is denoted by lsw. The pursuers turn counterclockwise (resp. clockwise) if all other

pursuers are on the right (resp. left) side of pursuer p1 in the line formation.

Figure 4.8. Forming a straight-line daisy-chain in the swerve phase. Starting from

the configuration in Figure 4.7, the pursuers have turned counterclockwise and are

now on the line lsw with headings along lsw.

(ii) Re-elect leader: Compute the angle φk(pk, vp,k, e), for k ∈ {1, . . . , N}, ac-

cording to the definition in Figure 4.2. If there exists k for which |φk| ≥ π
2

(see

Figure 4.9), then set l := max
{
k ∈ {1, . . . , N}| |φk| ≥ π

2

}
, discard from considera-

tion the motion of the pursuers p1, . . . , pl−1, and select pursuer pl as the leader for

the remaining daisy-chain formation. Otherwise, if |φk| < π
2

for all k ∈ {1, . . . , N},
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then set l = 1, retain p1 as the leader, and move pl straight until φl = π/2. Note that

although the re-election is presented in a centralized way, there exist decentralized

ways for the re-election, e.g., communicate φk with nearest neighbor, and then decide

whether to stay in the daisy-chain or not.

We shall show later that with a sufficiently large number of pursuers, at the end

of this step, there are more than one pursuer in the remaining daisy-chain formation.

Figure 4.9. Election of the leader and the end of the swerve phase (beginning of the

encircle phase). All pursuers in front of pl do not play any role in the subsequent

phases.

[Phase 4: Encircle] The aim of the encircle phase is to move to pursuers

towards a closed shape and enclose the evader inside it. This is achieved via an

alternating sequence of turn and move straight maneuvers. The strategy for the

leader pl is as follows:

(i) Turn: The pursuer pl moves on a circular arc of appropriate radius and angle

if the evader is “sufficiently behind” it. Specifically, if |Ll cosφl| ≥ ρ and φl ≥ π/2,

then pl moves on the circle with radius R := max{Ll sin φl, ρ} and with center in the

half-plane that (i) is formed by the line along vp,l, and (ii) contains the evader. This

maneuver lasts for a time interval ∆t := R arctan(
√

1 − v2/v).
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(ii) Move straight: If the evader is not “sufficiently behind” pursuer pl, then pl

moves on a straight line to ensure that the evader gets “sufficiently behind” it, i.e.,

moves with up,l = 0, until |Ll cosφl| ≥ ρ and φl ≥ π/2.

The remaining pursuers follow the path of pl, as shown in Figure 4.10. The

encircle phase ends when the velocity vector vp,l has rotated by at least 3π/2 with

respect to its orientation at the start of the encircle phase.

Figure 4.10. End of the encircle phase (beginning of the close phase). The leader

pl keeps the evader on the same side of its velocity vector with the alternating turn-

move straight maneuvers, until its velocity vector rotates by at least 3π/2.

[Phase 5: Close] The aim of the close phase is to close the daisy-chain around

the evader in two steps:

(i) Pursuer pl moves straight until it lies on the path between two pursuers in the

daisy-chain, (cf. Figure 4.11).

(ii) Next, pursuer pl moves on a circle C1 of radius ρ centered at O1, where O1 is

on the same side of the line along vp,l as the evader. Then, it determines the location

of center O2 of circle C2 of radius ρ which is tangent to C1 and either lsw or the path

followed by pl. Of the two possible locations for O2, it selects the one which is further
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away from location of pl at the end of part (i). Pursuer pl moves along C2 after

reaching the tangency point until it closes the daisy-chain. This path is illustrated in

Figure 4.11.

Figure 4.11. Maneuvers in the close phase for pursuer pl. Step (i): move straight

to intersect the daisy-chain. Step (ii): moves on the shortest path to close the daisy-

chain.

This five-phase strategy gives us our main result.

Theorem 4.3.4 (Confinement) Consider a cooperative Homicidal Chauffeur game

with parameters N ∈ N, ρ > 0, and v < 1. The proposed five-phase strategy guaran-

tees evader confinement if the number of pursuers satisfies

N ≥ Nmin(v, ρ) := ⌈ρ(3+vπ)/s∗ip(v, ρ)⌉+
⌈2(1 + v)ρ

s∗ip(v, ρ)

(

Kimax

(4 + vπ

1 − v

)

+
imax

1 − v
+2π

)⌉

,

where K := 1 + (1/v)
√

(1 + v)/(1 − v), s∗ip(v, ρ) is as per equation (4.2) and the

maximum number of turns in the encircle phase is

imax := ⌈3π/(2 arctan(
√

1 − v2/v))⌉.
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Remark 4.3.5 (Asymptotic properties) In the limit as v → 1−, Nmin(v, ρ) →

+∞, as is expected. Moreover, for v very close to 1 and ρ → +∞, there exist

constants c > 0 and ρ0 > 0 such that Nmin(ρ) ≤ cρ, ∀ρ ≥ ρ0.

Remark 4.3.6 (From Confinement to Capture) Once the evader is confined in

a region, one can achieve capture by means of additional pursuers placed in a line

formation with spacing equal to twice the capture radius. These additional pursuers

can then “sweep” through the region of confinement thus resulting into capture. This is

illustrated in Figure 4.12. The additional number of agents required for this operation

is proportional to the diameter of the confinement region, which by Remark 4.3.5, is

proportional to the minimum turning radius.

e

Additional pursuers

Figure 4.12. From confinement to capture using additional pursuers.

4.4 Proofs of the Main Results

In this section, we prove the main result from Section 4.3 along with certain

intermediate results.
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Proof of Lemma 4.3.3: Consider evader motion in a reference frame attached to the

center O of the circle of radius ρ through pursuers pk−1 and pk and rotating with

angular speed 1
ρ

in the direction of pursuer motion, as shown in Figure 4.13. The

pursuers are stationary in this frame while the evader experiences an angular velocity

of 1/ρ in the opposite direction. Let r(t), θ(t) denote the evader’s polar coordinates,

with r(0) = ρ. θ(t) is measured with respect to pk−1 −O. Let αe(t) ∈ [−π
2
, π

2
] denote

the angle made by the evader’s velocity in the ground frame with vector N − e(t),

where N is a point such that e(t) −O ‖ N − e(t).

We determine the separation s∗ip(v, ρ) which ensures that there does not exist any

evader escape trajectory from arcs pk−1pk to PQ, without entering any capture ball

when pursuers pk−1 and pk are placed on a circle of radius ρ as shown in Figure 4.13.

The equations of motion for the evader in the present reference frame are

ṙ(t) = v cosαe(t),

θ̇(t) = v sinαe(t)/r(t) + 1/ρ.

The evader motion that maximizes θ at each r is given by α∗
e = − arcsin vρ

r(t)
[65].

Substituting in the differential equation for r(t), we have

ṙ(t) = v
√

1 − v2ρ2/r2(t).

Integrating, r2 = (vt+ ρ
√

1 − v2)2 + v2ρ2. (4.5)

For the optimal evader motion considered, let T denote the time when r(T ) = ρ+ 1.

Solving for T ,

T =
√

(1 + ρ)2/v2 − ρ2 − ρ
√

1 − v2/v.

Substituting for r from equation (4.5) in

θ̇(t) = −v2ρ/r2 + 1/ρ,
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v

pk−1

pk

ρ

Q

O
θ(t)

r(t)

1
ρ

e
N

αe

s ∗ip (v, ρ)
P

Figure 4.13. Illustrating proof of Lemma 4.3.3. We determine the critical inter-

pursuer separation s∗ip(v, ρ) which ensures the evader cannot move between pk−1 and

pk, without getting captured. The shaded regions are the capture discs of pk−1 and

pk.

and on integrating, we obtain

θ(T ) − θ(0) = −
∫ T

0

v2ρdt

(vt+ ρ
√

1 − v2)2 + v2ρ2
+
T

ρ

=

√

(1 + ρ)2

v2ρ2
− 1 − arctan

√

(1 + ρ)2

v2ρ2
− 1

−
√

1

v2
− 1 + arctan

√

1

v2
− 1 =: Θ.

Thus, if the separation sip equals ρ ·Θ, then there exists no evader trajectory from arc

pk−1pk to arc PQ that avoids capture. Now, if ρ ·Θ ≤ 2, i.e., the capture balls of the

two pursuers intersect, it suffices to have an inter-pursuer separation equal to 2 units.

Further, it can be verified that given a value of v < 1, the quantity ρ · Θ decreases

monotonically with increasing ρ. This means that it suffices to design the inter-

pursuer separation assuming that the pursuers are moving on the circle of smallest

allowable radius. Thus, defining the critical separation s∗ip as per equation (4.2)

ensures that the evader cannot move between any two consecutive pursuers after the
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pursuers form a daisy-chain.

We now prove the following property of the Pre-Align phase.

Lemma 4.4.1 (Pre-Align phase) The Pre-Align phase terminates in finite time

with the evader aligned with p1 at a distance greater than vρ.

Proof: The total time taken by p1 to cover a distance lp followed by distance

of 2πρ is (lp + 2πρ). In that time, the evader’s reachability set is the dotted circle of

radius γ(lp + 2πρ), centered at e(0), as shown in Figure 4.6. Thus, to compute lp, we

impose the condition that the minimum distance between the evader’s reachability

set and the circular portion of the path of p1 must be vρ. Using elementary geometry,

the equation (4.3) for lp follows.

Lemma 4.4.2 (Align phase) The align phase terminates after a finite time with

the evader aligned with {p1, vp,1} and ‖p1 − e‖ ≤ vρ.

Proof: Consider the system as shown in Figure 4.2 with k = 1. Let α be the

angle between the global X axis and the vector e(t)− p1(t) and L1 := ‖e(t)− p1(t)‖.

In the reference frame of the pursuer, the equations of motion are [42]

L̇1 = ve cos(θe − α) − vp cos(θp,1 − α), (4.6)

α̇ =
1

L1
[ve sin(θe − α) − vp sin(θp,1 − α)], (4.7)

θ̇p,1 =
vpu

p1

ρ
. (4.8)

Define φ1 := α− θp,1 and compute

φ̇1 =
1

ρ

(
ρ

L1

(v sin(θe − θp,1 − φ1) + sin φ1) − up1

)

.

As a result of the pre-align phase, after evader is aligned with {p1, vp,1}, i.e., φ1 = 0,

pursuer p1 seeks to ensure that φ̇1 = 0, for all subsequent times. This is possible if
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up1 = ρv
L1

sin(θe − θp,1). Substituting for up1, existence of solutions to the system

governed by equations (4.6)-(4.8) is guaranteed due to the measurability assumption

on θe. The constraint on ‖up1‖ implies that the evader can be kept aligned with

{p1, vp,1} as long as L1(t) ≥ vρ. Further, observe that once φ1 = 0 and φ̇1 = 0,

L̇1 ≤ −(1 − v). Thus, L1 is reduced to vρ in finite time.

Lemma 4.4.3 (Swerve phase) (i) A sufficient number of pursuers which ensures

that after the leader re-election step, there are at least two pursuers in the remaining

daisy-chain formation is ⌈ρ(3 + vπ)/s∗ip(v, ρ)⌉ and,

(ii) Let dsw be the distance of the evader from the line lsw joining the pursuer

positions at the end of the swerve phase, (cf. Figure 4.8). Then, dsw ≤ ρ(3 +

vπ)/(1 − v).

Proof: In the swerve phase, let pursuer p1 move on the circle of radius ρ

centered at O as shown in Figure 4.14. The time taken for this phase is ρβ, where

β ∈ [0, π] is the angle between line lal and the vector vp,1 as shown in Figure 4.14. Let

dx (resp. dy) denote the magnitude of the component of the vector pl − e along (resp.

perpendicular to) lsw after re-election of the leader. To maximize dx, the evader must

move parallel to lsw. From trigonometry,

dx = vρβ + ‖vρ cosβ − ρ sin β‖ ≤ ρ(3 + vπ),

where the first term is the radius of the evader’s reachability set in time ρβ and

the second term in the right hand side equality is the x-component of the distance

between e and p′1. To ensure that at least two pursuers exist in the remaining daisy-

chain, it suffices to have the length of the original straight-line daisy-chain equal to

the upper bound on dx. This proves part (i).
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On similar lines, to maximize dy, the evader must move along the line perpendic-

ular to lsw. Thus, we obtain

dy = vρβ + ‖ρ(1 − cosβ) − vρ sin β‖ ≤ ρ(3 + vπ).

If there exists k for which |φk| ≥ π
2

(see Figure 4.9), then dsw = dy and part (ii) follows.

Otherwise, if |φk| < π
2

for all k ∈ {1, . . . , N}, then pursuer p1 (who is retained as the

leader) moves straight for a time interval of at most dx/(1 − v), which then gives,

dsw ≤ dy + dxv/(1 − v). The result follows from the upper bounds on dx and dy.

e

ρ

lsw

e′

p′1
dy

β

p1

ρ(1 − cos β) vp,l
γρ

lal

dx

O

Figure 4.14. Illustrating the proof of Lemma 4.4.3. The primed notation refers to

the positions of the players after the pursuers have formed a straight line daisy-chain.

The dotted circle shows the reachability set of the evader in time interval ρβ.

Lemma 4.4.4 (Encircle and Close phases) If the pursuers begin the encircle

phase at time t∗, then in the encircle and part (i) of the close phases, there exists

no evader trajectory such that the evader is aligned with {pl, vp,l} at any time t ≥ t∗.

To prove Lemma 4.4.4, we first introduce the following notation: let Σ(t∗) denote the

local coordinate system with origin at pl(t
∗) and with the positive Y axis along its

heading vp,l at time t∗, as shown in Figure 4.15. Define

V(pl(t
∗), vp,l(t

∗)) :=
{

(xΣ, yΣ) ∈ Σ(t∗)| xΣ ≥ 0, yΣ ≤ xΣ
√

1 − v2/v
}

.
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The set V possesses the following useful property.

Figure 4.15. Proof of Lemma 4.4.5. For θ = arctan(
√

1 − v2/v), the shaded region

denotes the set V(pl(t
∗), vp,l(t

∗)).

Lemma 4.4.5 (Property of V) Given a time instant t∗, let pursuer pl move with

up,l = 0 for all subsequent time instants. If e(t∗) ∈ V(pl(t
∗), vp,l(t

∗)), then there exists

no evader trajectory such that the evader is aligned with {pl, vp,l} at any time t ≥ t∗.

Proof: In the coordinate system Σ(t∗), denote the point e(t∗) by (xΣ, yΣ). Con-

struct the Apollonius circle [51] of the points pl(t
∗) and e(t∗), as shown in Figure 4.15.

This is the set of points that the evader can reach before pursuer pl does, assuming

that the pursuer does not possess turning constraints. The center OAp and radius rAp

of the Apollonius circle are OAp = 1
1−v2 (xΣ, xΣ tan θ) and rAp = vxΣ sec θ

1−v2 , respectively.

Now, let the pursuer pl move with up,l = 0 for all t ≥ t∗. In the reference frame Σ(t∗),

if rAp does not exceed the X coordinate of OAp, then the pursuer reaches any point

z on the Y axis before the evader can reach z. In other words, the evader cannot

align itself with {pl, vp,l} at any subsequent time. Thus, rAp ≤ xΣ/(1 − v2) implies

tan θ ≤
√

1 − v2/v.

Proof of Lemma 4.4.4: In the encircle phase, let t∗ be a time instant at which

pursuer pl is about to begin a move straight maneuver. It suffices to show that the
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evader is at a point e(t∗) contained in the set V(pl(t
∗), vp,l(t

∗)). Two cases need to be

considered:

Case 1: R := Ll sinφl. The angle through which pursuer pl turns in a turn

maneuver is arctan(
√

1 − v2/v) which is less than π/2. Figure 4.16 shows the positions

of pursuer pl and the evader just before a turn maneuver (at time instant tturn) and

just before the following move straight maneuver (at time instant t∗) in the encircle

phase. As per the strategy, we have t∗ = tturn + ∆t = tturn + R arctan(
√

1 − v2/v).

Thus, in the time interval ∆t, the evader’s reachability set is the dotted circle, having

radius upper bounded by R
√

1 − v2 as shown in Figure 4.16. By geometry, the

pursuer’s center of rotation O in the time interval ∆t is precisely at a distance of

R
√

1 − v2 from the boundary L defined in Figure 4.16, of the set V(pl(t
∗), vp,l(t

∗)).

Since arctan(
√

1 − v2/v) < π/2, it follows that the evader’s reachability set in time ∆t

and hence e(t∗) is contained in V(pl(t
∗), vp,l(t

∗)). Lemma 4.4.5 completes the proof.

Case 2: R = ρ. The proof of this case is on similar lines as that of case 1, with the

additional property that one need not consider that part of the evader’s reachability

set which lies on the opposite side of the daisy-chain.

L

ρ
R

arctan
√

1−v2

v

Xpl(t
∗)

O

e(tturn)

Y

pl(tturn)

Figure 4.16. Case 1 in the proof of Lemma 4.4.4. The dotted circle is the evader’s

reachability set in time R arctan
√

1 − v2/v. Pursuer pl begins the turn and move

straight maneuvers of the encircle phase at times tturn and t∗, respectively.
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Proof of Theorem 4.3.4: It suffices to show that all five phases terminate in finite

time. This partly follows from Lemmas 4.4.2 and 4.4.3. It remains to show that (a)

the encircle phase terminates in finite time and, (b) the evader is confined at the

end of the close phase.

To show (a), we determine an upper bound Tenc on the time taken by the encircle

phase. From Lemma 4.4.4, we deduce that in the encircle phase, the evader is

always the same side of the line along vp,l. Also, in each turn maneuver, pursuer pl

turns through an angle of at least arctan(
√

1 − v2/v)). Thus, the turn maneuver is

made at most imax := ⌈3π/(2 arctan(
√

1 − v2/v))⌉ times. This justifies the expression

for imax in this theorem.

Let t0 be the time instant at the end of the swerve phase and d0 := dsw, i.e.,

the distance of the evader from the line lsw at the end of the swerve phase. Let ti

denote the time instant when the pursuer begins the turn maneuver of the encircle

phase for the i-th time and let di denote the distance of the evader from the line along

vp,l at the time instant ti. We first determine an upper bound for di. Let pl begin

the turn maneuver at ti−1, as shown in Figure 4.17. An upper bound for ti − ti−1 is

vp,l(ti−1 + ∆t)

d
i−1 + ρ

√

1− γ 2

di−1
pl(ti−1)

pl(ti)

ρ

Evader’s reachability set in time ti − ti−1arctan
√

1−v2

v

e(ti−1)

Figure 4.17. Determining an upper bound on the interval between two successive

times in the encircle phase, when the pursuer uses the turn maneuver.
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obtained when the evader decides to move parallel to the line along vp,l(ti−1 + ∆t) in

the interval [ti−1, ti]. Thus,

ti − ti−1 ≤ di−1 arctan

√
1 − v2

v
+
ρ+ vdi−1 arctan

√
1−v2

v

1 − v
≤ di−1

v

√

1 + v

1 − v
+

ρ

1 − v
,

where the first term in the first expression is the time for which pl moves on a circular

path and the second is an upper bound on the time taken for the following move

straight maneuver, assuming that the evader moves parallel to v̄p,l(ti−1 + ∆t), (cf.

Figure 4.17). The next inequality follows by using the fact that arctan(x) ≤ x, and

upon simplification. An upper bound for di results when the evader moves normal to

the line along vp,l(ti−1 + ∆t) in the time interval [ti−1, ti]. Thus,

di ≤ di−1 + ρ
√

1 − v2 + v(ti − ti−1) ≤ di−1

(

1 +
1

v

√

1 + v

1 − v

)

+
ρ

1 − v

≤ Kdi−1 +
ρ

1 − v
≤ Ki

(

d0 +
ρ

1 − v

)

,

where the second step follows from the upper bound on ti − ti−1 and the fact that

sin x ≤ 1, and K := 1 + (1/v)
√

(1 + v)/(1 − v). The last inequality follows from

K > 2. Now, for i ∈ {1, . . . , imax} where imax equals ⌈3π/2(arctan(
√

1 − v2/v))⌉, the

time Tenc satisfies

Tenc ≤
imax∑

i=1

ti − ti−1 ≤
imax∑

i=1

di−1

v

√

1 + v

1 − v
+ imax

ρ

1 − v
.

Using the upper bounds for di−1, and for d0 (cf. part (ii) of Lemma 4.4.3),

Tenc ≤ Kimaxρ
(4 + vπ

1 − v

)

+
imaxρ

1 − v
.

Note that Tenc is also the distance covered by pursuer pl in the encircle phase. So

in part (i) of the close phase, pl covers a distance of at most Tenc. Thus, we have

shown that the encircle phase and part (i) of the close phase terminate in finite

time.

Pursuer pl travels a distance of at most 4πρ in part (ii) of the close phase before

the daisy-chain gets closed. Thus, the total distance traveled by pl in the encircle
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and close phases is at most 2Tenc + 4πρ. In the worst-case, to ensure closure of the

daisy-chain, consider the distance between pl(t0) and the point at which pursuer pl

intersects the daisy-chain. This distance can be at most v(2Tenc + 4πρ), which is the

distance covered by the evader if it moves with a fixed heading parallel to the line lsw

at the end of the swerve phase and in the direction opposite to the pursuers’ velocity

vectors at time t0. Thus, a sufficient number of pursuers that ensures confinement in

the encircle and close phases is given by

⌈2(1 + v)

s∗ip(v, ρ)

(

Kimaxρ
(4 + vπ

1 − v

)

+
ρimax

1 − v
+ 2πρ

)⌉

.

By Lemma 4.4.3, an additional ⌈ρ(3 + vπ)/s∗ip(v, ρ)⌉ pursuers are sufficient for the

leader re-election step in the swerve phase, and the result is proved. The evader is

confined since the pursuers form a closed daisy-chain around it.

Summary

We addressed a cooperative Homicidal Chauffeur game in which a single pursuer

is unable to capture an evader, given an arbitrary initial condition. We proposed

a multi-phase partly-decentralized pursuer strategy that involved role specialization

in the form of leader and followers, that guarantees confinement of an evader to a

bounded region. We characterized the number of pursuers for which our strategy is

guaranteed to lead to confinement.
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Part II: Predictably-moving

Targets
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Chapter 5

Pursuing Translating Targets in

Dynamic Environments

5.1 Introduction

So far we have addressed pursuit problems that involved a single evading target,

and we designed strategies for one or many pursuers to capture it, under various

sensing and motion constraints. We now focus our attention to designing strategies, or

policies, to capture multiple targets that possess predictable motion. In this chapter,

we introduce a problem involving multiple targets, referred to as demands, that arrive

sequentially on a line segment, and upon arrival translate in a known direction and

with known fixed speed. A single pursuer seeks to service the demands in a manner so

that the average number of demands in the environment does not grow unbounded.

The setup has similarities to the dynamic vehicle routing framework, with the novelty

that the demands in our problem are in motion, in particular, translating with known

speed.
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Contributions

We introduce a dynamic vehicle routing problem in which demands arrive via a

stochastic process on a line segment of fixed length, and upon arrival, translate with

a fixed velocity perpendicular to the segment. A service vehicle, modeled as a first-

order integrator having speed greater than that of the demands, seeks to serve these

mobile demands. The goal is to design stable service policies for the vehicle, i.e., the

expected time spent by a demand in the environment is finite. We propose a novel

receding horizon control policy for the vehicle that services the translating demands

as per a translational minimum Hamiltonian path (TMHP).

In this chapter, we analyze the problem when the demands are uniformly dis-

tributed along the segment and the demand arrival process is Poisson with rate λ.

For a fixed length W of the segment and the vehicle speed normalized to unity, the

problem is governed by two parameters; the demand speed v and the arrival rate λ.

Our results are as follows. First, we derive a necessary condition on λ in terms of v for

the existence of a stable service policy. Second, we analyze our novel TMHP-based

policy and derive a sufficient condition for λ in terms of v that ensures stability of the

policy. With respect to stability of the problem, we identify two asymptotic regimes:

(a) High speed regime: when the demands move as fast as the vehicle, i.e., v → 1−

(and therefore for stability, λ→ 0+); and (b) Low speed regime: when demand speed

tends to zero, i.e., v → 0+ (and so a sufficiently high λ may still ensure stability).

In the high speed regime, we show that: (i) for existence of a stabilizing policy, λ

must converge to zero as 1/
√

− log(1 − v), (ii) every stabilizing policy must service

the demands in the first-come-first-served (FCFS) order, and (iii) of all such policies,

the TMHP-based policy minimizes the expected time to service a demand. In the

low speed regime, we show that the sufficient condition on λ for the stability of the

TMHP-based policy is within a constant factor of the necessary condition on λ for

stability of any policy. Third, we identify another asymptotic regime, termed as the
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low arrival regime, in which the arrival rate λ → 0+ for a fixed demand speed. In

this low arrival regime, we establish that the TMHP-based policy is optimal in terms

of minimizing the expected time to service a demand. Fourth, for the analysis of the

TMHP-based policy, we study the classic FCFS policy in which demands are served

in the order in which they arrive. We determine necessary and sufficient conditions

on λ for the stability of the FCFS policy. Fifth and finally, we validate our analysis

with extensive simulations and provide an empirically accurate characterization of

the region in the parameter space of demand speed and arrival rate for which the

TMHP-based policy is stable.

A plot of the theoretically established necessary and sufficient conditions for sta-

bility in the v-λ parameter space is shown in Figure 5.1. The bottom figures are for

the asymptotic regimes of v → 0+, and v → 1−, respectively.

Organization

This chapter is organized as follows. A short review of results on optimal motion

and combinatorics is presented in Section 5.2. The problem formulation, the TMHP-

based policy, and the main results are presented in Section 5.3. The FCFS policy

is presented and analyzed in Section 5.4. Utilizing the results of Section 5.4, the

main results are proven in Section 5.5. Finally, simulation results are presented in

Section 5.6.

5.2 Preliminary Results

In this section, we provide some useful background results.
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Figure 5.1. A summary of stability regions for the TMHP-based policy and the FCFS

policy. Stable service policies exist only for the region under the solid black curve.

In the top figure, the solid black curve is due to part (i) of Theorem 5.3.1 and the

dashed blue curve is due to part (i) of Theorem 5.3.2. In the asymptotic regime shown

in the bottom left, the dashed blue curve is described in part (ii) of Theorem 5.3.2,

and is different than the one in the top figure. In the asymptotic regime shown in

the bottom right, the solid black curve is due to part (ii) of Theorem 5.3.1, and is

different from the solid black curve in the top figure.
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5.2.1 Constant bearing control

We will use the following result on catching a moving demand in minimum time.

Definition 5.2.1 (Constant bearing control) Given initial locations

p := (X, Y ) ∈ R
2 and q := (x, y) ∈ R

2 of the service vehicle and a demand, re-

spectively, with the demand moving in the positive y-direction with constant speed

v ∈ ]0, 1[, the motion of the service vehicle towards the point (x, y + vT ), where

T (p,q) :=

√

(1 − v2)(X − x)2 + (Y − y)2

1 − v2
− v(Y − y)

1 − v2
, (5.1)

with unit speed is defined as the constant bearing control.

Constant bearing control is illustrated in Figure 5.2 and characterized in the following

proposition.

Proposition 5.2.2 (Minimum time control, [51]) The constant bearing control

is the minimum time control for the service vehicle to reach the moving demand.

5.2.2 Euclidean and Translational minimum Hamiltonian path

(EMHP/TMHP) problems

Given a set of points in the plane, a Euclidean Hamiltonian path is a path that

visits each point exactly once. A Euclidean minimum Hamiltonian path (EMHP) is a

Euclidean Hamiltonian path that has minimum length. We also consider the problem

of determining a constrained EMHP which starts at a specified start point, visits a

set of points and terminates at a specified end point.

More specifically, the EMHP problem is as follows.
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C = (x, y + vT )

p = (X,Y )

q = (x, y)

W

(0, 0)

Figure 5.2. Constant bearing control. The vehicle moves towards the point C :=

(x, y + vT ), where x, y, v and T are as per Definition 5.2.1, to reach the demand.

Given n static points placed in R
2, determine the length of the shortest path which

visits each point exactly once.

An upper bound on the length of such a path for points in a unit square was

given by Few [36]. Here we extend Few’s bound to the case of points in a rectangular

region.

Lemma 5.2.3 (EMHP length) Given n points in a 1 × h rectangle in the plane,

where h ∈ R>0, there exists a path that starts from a unit length edge of the rectangle,

passes through each of the n points exactly once, and terminates on the opposite unit

length edge, having length upper bounded by

√
2hn+ h + 5/2.

Proof: Suppose the rectangular region is given by 0 ≤ x ≤ 1, 0 ≤ y ≤ h.

Let m be a positive integer (to be chosen later) and let the n points be denoted by

{q1, . . . ,qn}. We now construct two paths through the points. The first consists of

(a) the m + 1 lines y = 0, h/m, 2h/m, . . . , h; (b) the n shortest distances from each

of the n points to the nearest such line, each traveled twice, and (c) suitable portions
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of the lines x = 0, 0 ≤ y ≤ h, and x = 1, 0 ≤ y ≤ h. This is illustrated in Figure 5.3.

The length of this path is

l1 = m+ 1 + 2

n∑

i=1

d1(qi) + h,

where the notation d1(qi) denotes the shortest distance of point qi from the nearest

of the m + 1 lines. The second path is constructed similarly using the m lines y =

h/2m, 3h/2m, . . . , (2m−1)h/2m. This path also commences on y = h, passes through

the above m lines (visiting the points whenever they are at the shortest distance from

these m lines) and ends on y = 0. The length of this path is

l2 = (m+ 2) + 2

n∑

i=1

d2(qi) + h,

where the notation d2(qi) denotes the shortest distance of point qi from the nearest

of the new m lines.

Observe that d1(qi) + d2(qi) = h/2m. Hence,

l1 + l2 = 2m+ 3 + 2h+ hn/m.

Now choose m to be the integer nearest to
√

hn/2, so that n = 2(m + θ)2/h, where

|θ| ≤ 1. Thus,

l1 + l2 = 2m+ 3 + 2h+ 2(m+ θ)2/m

= 4(m+ θ) + 2h+ 3 + 2θ2/m

≤ 2
√

2hn+ 2h+ 5.

Thus, at least one of the two paths must have length upper bounded by
√

2hn+h+5/2.

Given a set Q of n points in R
2, the Euclidean Traveling Salesperson Problem

(ETSP) is to determine the shortest tour, i.e., a closed path that visits each point

exactly once. Let ETSP(Q) denote the length of the ETSP tour through Q. The

following is the classic result by Beardwood, Halton, and Hammersly [10].
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(0, h/m)

q1

q2

q3

q4

(1, 0)

(0, h)

(0, 0)

(0, 2h/m)

Figure 5.3. Illustration of the proof of Theorem 5.2.3. The dots indicate the locations

of the points inside a rectangle of size 1× h. The first of the two paths considered in

the proof through the points begins at (1, h) and follows the direction of the arrows,

visiting a point whenever it is within a distance of h/2m for a specific integer m from

the solid horizontal lines.

Theorem 5.2.4 (Asymptotic ETSP length, [10]) If a set Q of n points are dis-

tributed independently and uniformly in a compact region of area A, then there exists

a constant βTSP such that, almost surely,

lim
n→+∞

ETSP(Q)√
n

= βTSP

√
A. (5.2)

The constant βTSP has been estimated numerically as βTSP ≈ 0.7120 ± 0.0002, [80].

Next, we describe the TMHP problem which was proposed and solved in [47].

This problem is posed as follows.

Given initial coordinates; s of a start point, Q := {q1, . . . ,qn} of a set of
points, and f of a finish point, all moving with the same constant speed v
and in the same direction, determine a path that starts at time zero from
point s, visits all points in the set Q exactly once and ends at the finish
point, and the length LT,v(s,Q, f) of which is minimum.
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In what follows, we wish to determine the TMHP through points which translate

in the positive y direction. We also assume the speed of the service vehicle to be

normalized to unity, and hence consider the speed of the points v ∈ ]0, 1[. A solution

for the TMHP problem is the Convert-to-EMHP method:

1. For v ∈ ]0, 1[, define the conversion map cnvrtv : R
2 → R

2 by

cnvrtv(x, y) =
( x√

1 − v2
,

y

1 − v2

)

.

2. Compute the EMHP that starts at cnvrtv(s), passes through the set of points

given by

{cnvrtv(q1), . . . , cnvrtv(qn)} and ends at cnvrtv(f).

3. Move between any two demands using the constant bearing control.

For the Convert-to-EMHP method, the following result is established.

Lemma 5.2.5 (TMHP length, [47]) Let the initial coordinates s = (xs, ys) and

f = (xf , yf), and the speed of the points v ∈ ]0, 1[. The length of the TMHP is

LT,v(s,Q, f) = LE(cnvrtv(s), {cnvrtv(q1), . . . , cnvrtv(qn)}, cnvrtv(f)) +
v(yf − ys)

1 − v2
,

where LE(cnvrtv(s), {cnvrtv(q1), . . . , cnvrtv(qn)}, cnvrtv(f)) denotes the length of the

EMHP with starting point cnvrtv(s), passing through the set of points

{cnvrtv(q1), . . . , cnvrtv(qn)}, and ending at cnvrtv(f).

This lemma implies the following result: given a start point, a set of points and an

end point all of whom translate in the positive vertical direction at speed v ∈ ]0, 1[,

the order of the points followed by the optimal TMHP solution is the same as the

order of the points followed by the optimal EMHP solution through a set of static

locations equal to the locations of the moving points at initial time converted via the

map cnvrtv.
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5.3 Problem Formulation and the TMHP-based

Policy

In this section, we pose the dynamic vehicle routing problem with translating

demands and present the TMHP-based policy along with the main results.

5.3.1 Problem Statement

We consider a single service vehicle that seeks to service mobile demands that

arrive via a spatio-temporal process on a line segment with length W along the x-axis,

termed the generator. The vehicle is modeled as a first-order integrator with speed

upper bounded by one. The demands arrive uniformly distributed on the generator

via a temporal Poisson process with intensity λ > 0, and move with constant speed

v ∈ ]0, 1[ along the positive y-axis, as shown in Figure 5.4. We assume that once

the vehicle reaches a demand, the demand is served instantaneously. The vehicle is

assumed to have unlimited fuel and demand servicing capacity.

(X(t), Y (t))

v

W

(0, 0)

Figure 5.4. The problem set-up. The thick line segment is the generator of mobile

demands. The dark circle denotes a demand and the square denotes the service

vehicle.

We define the environment as E := [0,W ]×R≥0 ⊂ R
2, and let p(t) = [X(t), Y (t)]T

128



∈ E denote the position of the service vehicle at time t. Let Q(t) ⊂ E denote the

set of all demand locations at time t, and n(t) the cardinality of Q(t). Servicing of

a demand qi ∈ Q and removing it from the set Q occurs when the service vehicle

reaches the location of the demand. A static feedback control policy for the system

is a map P : E × F(E) → R
2, where F(E) is the set of finite subsets of E , assigning

a commanded velocity to the service vehicle as a function of the current state of the

system: ṗ(t) = P(p(t),Q(t)). Let Di denote the time that the ith demand spends

inside the set Q, that is, the delay between the generation of the ith demand and the

time it is serviced. The policy P is stable if under its action,

lim sup
i→+∞

E [Di] < +∞,

that is, the steady state expected delay is finite. Equivalently, the policy P is stable

if under its action,

lim sup
t→+∞

E [n(t)] < +∞,

that is, if the vehicle is able to service demands at a rate that is—on average—at

least as fast as the rate at which new demands arrive. In what follows, our goal is to

design stable control policies for the system.

To obtain further intuition into stability of a policy, consider the v-λ parameter

space. In the asymptotic regime of high speed, where v → 1−, the arrival rate λ must

tend to zero for stability, otherwise the service vehicle would have to move successively

further away from the generator in expected value, thus making the system unstable.

In the asymptotic region of low demand speed, where v → 0+, if λ → +∞, then we

expect the system to be unstable; while for a sufficiently low λ, we expect to be able

to stabilize the system. Thus, our goal is to characterize regions in the v-λ parameter

space in which one can never design any stable policy, as well as those in which our

policies are stable, with additional emphasis in the above two asymptotic regimes. In

addition, for the asymptotic regime of low arrival, where for a fixed speed v < 1, the
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arrival rate λ → 0+, stability is intuitive as demands arrive very rarely. Hence, in

this regime, we seek to minimize the steady state expected delay for a demand.

5.3.2 The TMHP-based policy

We now present a novel receding horizon service policy for the vehicle that is based

on the repeated computation of a translational minimum Hamiltonian path through

successive groups of outstanding demands. For a given arrival rate λ and demand

speed v ∈ ]0, 1[, let (X∗, Y ∗) denote the vehicle location in the environment that

minimizes the expected time to service a demand once it appears on the generator.

The expression for the optimal location (X∗, Y ∗) is postponed to Section 5.4.1. The

TMHP-based policy is summarized in Algorithm 2, and an iteration of the policy is

illustrated in Figure 5.5.

Algorithm 2: The TMHP-based policy

Assumes: The optimal location (X∗, Y ∗) ∈ E is given.

if no outstanding demands are present in E then1:

Move to the optimal position (X∗, Y ∗).2:

else3:

Service all outstanding demands by following a translational minimum4:

Hamiltonian path starting from the vehicle’s current location, and

terminating at the demand with the lowest y-coordinate.

Repeat.5:
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qlast

(X, Y )

qlast

qlast

Figure 5.5. An iteration of a receding horizon service policy. The vehicle shown

as a square serves all outstanding demands shown as black dots as per the TMHP

that begins at (X, Y ) and terminates at qlast which is the demand with the least

y-coordinate. The first figure shows a TMHP at the beginning of an iteration. The

second figure shows the vehicle servicing the demands through which the TMHP has

been computed while new demands arrive in the environment. The third figure shows

the vehicle repeating the policy for the set of new demands when it has completed

service of the demands present at the previous iteration.

5.3.3 Main Results

The following is a summary of our main results and the locations of their proofs

within the chapter. We begin with a necessary condition for stability, the proof of

which is presented in Section 5.5.1. This result is primarily due to Mr. Stephen L.

Smith.

Theorem 5.3.1 (Necessary condition for stability) The following are necessary

conditions for the existence of a stabilizing policy:

1. For v ∈ ]0, 1[,

λ ≤ 4

vW
.

2. For the asymptotic regime of high speed, where v → 1−, every stabilizing policy
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must serve the demands in the order in which they arrive and hence,

λ ≤ 3
√

2

W
√

− log(1 − v)
.

Then, we derive a sufficient condition for stability of the TMHP-based policy, the

proof of which is presented in Section 5.5.2. We introduce the following notation. Let

λFCFS(v,W ) :=







3

W

√

1 − v

1 + v
, for v ≤ v∗suf,√

12v

W
√

(1 + v)
(
Csuf − log

(
1−v

v

)) , otherwise,

where log(.) refers to the natural logarithm, Csuf = π/2 − log(0.5 ·
√

3/
√

2), and

v∗suf is the solution to
√

12v∗ − 3
√

(1 − v∗)(Csuf − log(1 − v∗) + log v∗) = 0, and is

approximately equal to 2/3.

Theorem 5.3.2 (Sufficient condition for stability) The following are sufficient

conditions for stability of the TMHP-based policy.

1. For v ∈ ]0, 1[,

λ < max

{
(1 − v2)3/2

2vW (1 + v)2
, λFCFS(v,W )

}

.

2. For the asymptotic regime of low speed where v → 0+,

λ <
1

β2
TSPvW

, where βTSP ≈ 0.7120.

A plot of the necessary and sufficient conditions is shown in Figure 5.1. In the

asymptotic regime of high speed, the sufficient condition from part (i) of Theo-

rem 5.3.2 simplifies to

λ <

√
6

W
√

− log(1 − v)
=: λ1−

suf,
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and the necessary condition established in part (ii) of Theorem 5.3.1 simplifies to

λ ≤ 3
√

2

W
√

− log(1 − v)
=: λ1−

nec.

In the asymptotic regime of low speed, the sufficient condition from part (ii) of Theo-

rem 5.3.2 is λ < 1/(β2
TSPvW ) =: λ0+

suf, and the necessary condition established in part

(i) of Theorem 5.3.1 is λ ≤ 4/(vW ) =: λ0+

nec.

Theorems 5.3.1 and 5.3.2 immediately lead to the following corollary.

Corollary 5.3.3 (Constant factor sufficient condition) In the asymptotic

regime of

1. high speed, which is the limit as v → 1−, the ratio λ1−

nec/λ
1−

suf →
√

3.

2. low speed, which is the limit as v → 0+, the ratio λ0+

nec/λ
0+

suf → 4β2
TSP ≈ 2.027.

Finally, we state the following optimality property of the TMHP-based policy, the

proof of which is presented in Section 5.5.2.

Theorem 5.3.4 (Optimality of TMHP-based policy) The TMHP-based policy

minimizes the expected time to service a demand in

1. the low arrival asymptotic regime, where λ→ 0+ for a fixed v ∈ ]0, 1[, and

2. the high speed asymptotic regime, where v → 1− (and therefore λ→ 0+).

In order to study the stability of the TMHP-based policy, we introduce and analyze

a first-come-first-served (FCFS) policy in the next section.
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5.4 The First-Come-First-Served (FCFS) Policy

In this section, we present the FCFS policy and establish some of its properties.

In the FCFS policy, the service vehicle uses constant bearing control and services

the demands in the order in which they arrive. If the environment contains no de-

mands, the vehicle moves to the location (X∗, Y ∗) which minimizes the expected time

to catch the next demand to arrive. This policy is summarized in Algorithm 3.

Algorithm 3: The FCFS policy

Assumes: The optimal location (X∗, Y ∗) ∈ E is given.

if no outstanding demands are present in E then1:

Move toward (X∗, Y ∗) until the next demand arrives.2:

else3:

Move using the constant bearing control to service the furthest demand4:

from the generator.

Repeat.5:

Figure 5.6 illustrates an instance of the FCFS policy. The following lemma estab-

lishes the relationship between the FCFS policy and the TMHP-based policy.

W

qi

(X, Y )

qi+2

qi+1

qi+3

Figure 5.6. The FCFS policy. The vehicle services the demands in the order of their

arrival in the environment, using the constant bearing control.
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Lemma 5.4.1 (Relation between TMHP-based and FCFS policies) Given

an arrival rate λ and a demand speed v, if the FCFS policy is stable, then the TMHP-

based policy is stable.

Proof: Consider an initial vehicle position and a set of outstanding demands, all

of which have lower y-coordinates than the vehicle. Let us compare the amount of time

required to service the outstanding demands using the TMHP-based policy with the

amount of time required for the FCFS policy. Both policies generate paths through all

outstanding demands, starting at the initial vehicle location, and terminating at the

outstanding demand with the lowest y-coordinate. By definition, the TMHP-based

policy generates the shortest such path. Thus, the TMHP-based policy will require

no more time to service all outstanding demands than the FCFS policy. Since this

holds at every iteration of the policy, the region of stability of TMHP-based policy

contains the region of stability for the FCFS policy.

In the following subsections, we analyze the FCFS policy. We then combine these

results with the above lemma to establish analogous results for the TMHP-based

policy.

The first question is, how do we compute the optimal position (X∗, Y ∗)? This

will be answered in the following subsection.

5.4.1 Optimal Vehicle Placement

In this subsection, we study the FCFS policy when v ∈ ]0, 1[ is fixed and λ→ 0+.

In this regime, stability is not an issue as demands arrive very rarely, and the problem

becomes one of optimally placing the service vehicle (i.e., determining (X∗, Y ∗) in the

statement of the FCFS policy).

We seek to place the vehicle at location that minimizes the expected time to
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service a demand once it appears on the generator. Demands appear at uniformly

random positions on the generator and the vehicle uses the constant bearing control to

reach the demand. Thus, the expected time to reach a demand generated at position

q = (x, 0) from vehicle position p = (X, Y ) is given by

E [T (p,q)] =
1

W (1 − v2)

∫ W

0

(√

(1 − v2)(X − x)2 + Y 2 − vY
)

dx. (5.3)

The following lemma characterizes the way in which this expectation varies with the

position p.

Lemma 5.4.2 (Properties of the expected time) The expected time

p 7→ E [T (p,q)] is convex in p, for all p ∈ [0,W ] × R>0. Additionally, there exists a

unique point p∗ := (W/2, Y ∗) ∈ R
2 that minimizes p 7→ E [T (p,q)].

Proof: Regarding the first statement, it suffices to show that the integrand in

equation (5.3), T (p, (x, 0)) is convex for all x. To do this we compute the Hessian of

T ((X, Y ), (x, 0)) with respect to X and Y . Thus, for Y > 0,





∂2T
∂X2

∂2T
∂X∂Y

∂2T
∂Y ∂X

∂2T
∂Y 2




 =

1
(

(1 − v2)(X − x)2 + Y 2
)3/2






Y 2 Y (X − x)

Y (X − x) (X − x)2




 .

The Hessian is positive semi-definite because its determinant is zero and its trace is

non-negative. This implies that T (p,q) is convex in p for each q = (x, 0), from which

the first statement follows.

Regarding the second statement, since demands are uniformly randomly generated

on the interval [0,W ], the optimal horizontal position is X∗ = W/2. Thus, it suffices

to show that Y 7→ E [T ((W/2, Y ),q)] is strictly convex. From the ∂2T/∂Y 2 term

of the Hessian we see that T (p,q) is strictly convex for all x 6= W/2. But, letting

p = (W/2, Y ) and q = (x, 0) we can write

E [T (p,q)] =
1

W (1 − v2)

∫

x∈[0,W ]\{W/2}
T (p,q)dx.

136



The integrand is strictly convex for all x ∈ [0,W ] \ {W/2}, implying that E [T (p,q)]

is strictly convex on the line X = W/2, and that the point (W/2, Y ∗) is the unique

minimizer.

Lemma 5.4.2 tells us that there exists a unique point p∗ := (X∗, Y ∗) which mini-

mizes the expected travel time. In addition, we know that X∗ = W/2. Obtaining a

closed form expression for Y ∗ does not appear to be possible. Computing the integral

in equation (5.3), with X = W/2, one can obtain

E [T (p,q)] =
Y

a

(

1

2

√

1 +
aW 2

4Y 2
− Y√

aW
log

(√

1 +
aW 2

4Y 2
−
√

aW 2

4Y 2

)

− v

)

,

where a = 1 − v2. For each value of v and W , this convex expression can be easily

numerically minimized over Y , to obtain Y ∗. A plot of Y ∗ as a function of v for

W = 1 is shown in Figure 5.7.

For the optimal position p∗, the expected delay between a demand’s arrival and

its service completion is

D∗ := E [T (p∗, (x, 0))].

Thus, a lower bound on the steady-state expected delay of any policy is D∗. We now

characterize the steady-state expected delay of the FCFS policy DFCFS, as λ tends to

zero.

Lemma 5.4.3 (FCFS optimality) Fix any v ∈ ]0, 1[. Then in the limit as λ→ 0+,

the FCFS policy minimizes the expected time to service a demand, i.e., DFCFS → D∗.

Proof: We have shown how to compute the position p∗ := (X∗, Y ∗) which

minimizes equation (5.3). Thus, if the vehicle is located at p∗, then the expected

time to service the demand is minimized. But, as λ → 0+, the probability that

demand i+ 1 arrives before the vehicle completes service of demand i and returns to

p∗ tends to zero. Thus, the FCFS policy is optimal as λ→ 0+.
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Figure 5.7. The optimal position Y ∗ of the service vehicle which minimizes the ex-

pected distance to a demand, as a function of v. In this plot, the generator has length

W = 1.

Remark 5.4.4 (Minimizing the worst-case time) Another metric that can be

used to determine the optimal placement (X∗, Y ∗) is the worst-case time to service

a demand. Using an argument identical to that in the proof of Lemma 5.4.3, it is

possible to show that for fixed v ∈ ]0, 1[, and as λ → 0+, the FCFS policy, with

(X∗, Y ∗) = (W/2, vW/2), minimizes the worst-case time to service a demand. �

5.4.2 A Necessary Condition for FCFS Stability

In the previous subsection, we studied the case of fixed v and λ → 0+. In this

subsection, we analyze the problem when λ > 0, and determine necessary conditions

on the magnitude of λ that ensure the FCFS policy remains stable. To establish

these conditions we utilize a standard result in queueing theory (cf. [56]) which states

that a necessary condition for the existence of a stabilizing policy is that λE [T ] ≤ 1,

where E [T ] is the expected time to service a demand (i.e., the travel time between
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demands). We begin with the following result.

Proposition 5.4.5 (Special case of equal speeds) For v = 1, there does not ex-

ist a stabilizing policy.

Proof: When v = 1, each demand and the service vehicle move at the same

speed. If a demand has a higher vertical position than the service vehicle, then

clearly the service vehicle cannot reach it. The same impossibility result holds if

the demand has the same vertical position and a distinct horizontal position as the

service vehicle. In summary, a demand can be reached only if the service vehicle is

above the demand. Next, note that the only policy that ensures that a demand’s

y-coordinate never exceeds that of the service vehicle (i.e., that all demands remain

below the service vehicle at all time) is the FCFS policy. In what follows, we prove the

proposition statement by computing the expected time to travel between demands

using the FCFS policy. First, consider a vehicle location p := (X, Y ) and a demand

location with initial location q := (x, y), the minimum time T in which the vehicle

can reach the demand is given by

T (p,q) =
(X − x)2 + (Y − y)2

2(Y − y)
, if Y > y, (5.4)

and is undefined if Y ≤ y. Second, assume there are many outstanding demands

below the service vehicle, and none above. Suppose the service vehicle completed the

service of demand i at time ti and position (xi(ti), yi(ti)). Let us compute the expected

time to reach demand i+1, with location (xi+1(ti), yi+1(ti)). Since arrivals are Poisson

it follows that yi(ti) > yi+1(ti). To simplify notation we define ∆x = |xi(ti)−xi+1(ti)|

and ∆y = yi(ti) − yi+1(ti). Then, from equation (5.4)

T (qi,qi+1) =
∆x2 + ∆y2

2∆y
=

1

2

(
∆x2

∆y
+ ∆y

)

.

Taking expectation and noting that ∆x and ∆y are independent,

E [T (qi,qi+1)] =
1

2

(

E [∆x2]E
[

1
∆y

]

+ E [∆y]
)

.
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Now, we note that E [∆y] = 1/λ, that E [∆x2] is a positive constant independent of

λ, and that

E

[
1

∆y

]

=

∫ +∞

y=0

1

y
λe−λydy = +∞.

Thus E [T (qi,qi+1)] = +∞, and for every λ > 0,

λE [T (qi,qi+1)] = +∞.

This means that the necessary condition for stability, i.e., λE [T (qi,qi+1)] ≤ 1, is

violated. Thus, there does not exist a stabilizing policy.

Next we look at the FCFS policy and give a necessary condition for its stability.

This lemma is primarily due to Mr. Stephen L. Smith.

Lemma 5.4.6 (Necessary stability condition for FCFS) A necessary condition

for the stability of the FCFS policy is

λ ≤







3

W
, for v ≤ v∗nec,

3
√

2v

W

√

(1 + v)
(

Cnec − log
(√

1−v2

v

)) , otherwise,

where log(.) refers to the natural logarithm, Cnec = 0.5 + log(2) − γ, where γ is the

Euler constant; and v∗nec is the solution to the equation 2v− (1+v)(Cnec−0.5 · log(1−

v2) + log v) = 0, and is approximately equal to 4/5.

Proof: Suppose the service vehicle completed the service of demand i at time

ti at position (xi(ti), yi(ti)), and demand i+ 1 is located at (xi+1(ti), yi+1(ti)). Define

∆x := |xi(ti) − xi+1(ti)| and ∆y := yi(ti) − yi+1(ti). For v ∈ ]0, 1[, the travel time

between demands is given by

T =
1

1 − v2

(√

(1 − v2)∆x2 + ∆y2 − v∆y
)

. (5.5)
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Observe that the function T is convex in ∆x and ∆y. Jensen’s inequality leads to

E [T ] ≥ 1

1 − v2

(√

(1 − v2)(E [∆x])2 + (E [∆y])2 − vE [∆y]
)

.

Substituting the expressions for the expected values, we obtain

E [T ] ≥ 1

1 − v2

(
√

(1 − v2)
W 2

9
+
v2

λ2
− v2

λ

)

.

From the necessary condition for stability, we must have

λE [T ] ≤ 1 ⇐⇒ λ
1

1 − v2

(
√

(1 − v2)W 2

9
+
v2

λ2
− v2

λ

)

≤ 1.

By simplifying, we obtain

λ ≤ 3

W
. (5.6)

This provides a good necessary condition for low v. Next, we obtain a much better

necessary condition for large v.

Since T is convex in ∆x, we apply Jensen’s inequality to equation (5.5) to obtain

E [T |∆y] ≥ 1

1 − v2

(√

(1 − v2)W 2/9 + ∆y2 − v∆y
)

, (5.7)

where E [∆x] = W/3. Now, the random variable ∆y is distributed exponentially with

parameter λ/v and probability density function

f(y) =
λ

v
e−λy/v.

Un-conditioning equation (5.7) on ∆y, we obtain

E [T ] =

∫ +∞

0

E [T |y]f(y)dy ≥ λ

v(1 − v2)

∫ +∞

0

(√

(1 − v2)W 2

9
+ y2 − vy

)

e−
λy

v dy.

(5.8)

The right hand side can be evaluated using the software MapleR© and equals

πW

2 · 3
√

1 − v2

[

H1

(
λW

√
1 − v2

3v

)

− Y1

(
λW

√
1 − v2

3v

)]

− v2

λ(1 − v2)
,

where H1 : R → R is the 1st order Struve function and Y1 : R → R is 1st order

Bessel function of the 2nd kind [69]. Using a Taylor series expansion of the function
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H1(z) − Y1(z) about z = 0, followed by a subsequent analysis of the higher order

terms, one can show that

H1(z) −Y1(z) ≥
1

π

(
2

z
+ Cnecz − z log(z)

)

, ∀z ≥ 0,

where log(.) refers to the natural logarithm, Cnec = 1/2 + log(2) − γ, and γ is the

Euler constant. This inequality implies that equation (5.8) can be written as

E [T ] ≥ v

λ(1 + v)
+
λW

18v

(

Cnec − log

(
λW

√
1 − v2

3v

))

,

where we have used the fact that

v

λ(1 − v)2
− v2

λ(1 − v2)
=

v

λ(1 + v)
.

To obtain a stability condition on λ we wish to remove λ from the log term. To do

this, note that from equation (5.6) we have λW/3 < 1, and thus

E [T ] ≥ v

λ(1 + v)
+
λW

18v

(

Cnec − log
Wλ

3
− log

W
√

1 − v2

3v

)

≥ v

λ(1 + v)
+
λW

18v

(

Cnec − log

(√
1 − v2

v

))

.

The necessary stability condition is λE [T ] ≤ 1, from which a necessary condition for

stability is

λ2W

18v

(

Cnec − log

(√
1 − v2

v

))

≤ 1 − v

1 + v
=

1

1 + v
.

Solving for λ when log(
√

1 − v2/v) < Cnec, we obtain that

λ ≤ 3
√

2v

W

√

(1 + v)
(

Cnec − log
(√

1−v2

v

)) , (5.9)

The condition Cnec > log(
√

1 − v2/v), implies that the above bound holds for all

v > 1/
√

1 + e2Cnec . We now have two bounds; equation (5.6) which holds for all

v ∈ ]0, 1[, and equation (5.9) which holds for v > 1/2. The final step is to determine

the values of v for which each bound is active. To do this, we set the right-hand

side of equation (5.6) equal to the right-hand side of equation (5.9) and denote the

solution by v∗nec. Thus, the necessary condition for stability is given by equation (5.6)

when v ≤ v∗nec, and by equation (5.9) when v > v∗nec.
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5.4.3 A Sufficient Condition for FCFS stability

In Section 5.4.2, we determined a necessary condition for stability of the FCFS

policy. In this subsection, we will derive the following sufficient condition on the

arrival rate that ensures stability for the FCFS policy. To establish this condition,

we utilize a standard result in queueing theory (cf. [56]) which states that a sufficient

condition for the existence of a stabilizing policy is that λE [T ] < 1, where E [T ] is

the expected time to service a demand (i.e., the travel time between demands).

Lemma 5.4.7 (Sufficient stability condition for FCFS) The FCFS policy is sta-

ble if

λ <







3

W

√

1 − v

1 + v
, for v ≤ v∗suf,

√
12v

W
√

(1 + v)
(
Csuf − log

(
1−v

v

)) , otherwise,

where log(.) refers to the natural logarithm, Csuf = π/2 − log(0.5 ·
√

3/
√

2), and

v∗suf is the solution to
√

12v∗ − 3
√

(1 − v∗)(Csuf − log(1 − v∗) + log v∗) = 0, and is

approximately equal to 2/3.

Proof: We begin with the expression for the travel time between two consecutive

demands using the constant bearing control (cf. Definition 5.2.1),

T =

√

(1 − v2)∆x2 + ∆y2

1 − v2
− v∆y

1 − v2
≤ |∆x|√

1 − v2
+

∆y

1 − v2
, (5.10)

where we used the inequality
√
a2 + b2 ≤ |a| + |b|. Taking expectation,

E [T ] ≤ W

3
√

1 − v2
+

v

λ(1 − v2)
,

since the demands are distributed uniformly in the x-direction and Poisson in the

y-direction. A sufficient condition for stability is

λE [T ] < 1 ⇐⇒ λ <
3

W

√

1 − v

1 + v
. (5.11)
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The upper bound on T given by equation (5.10) is very conservative except for

the case when v is very small. Alternatively, taking expected value of T conditioned

on ∆y, and applying Jensen’s inequality to the square-root part, we obtain

E [T |∆y] ≤ 1

1 − v2

(√

(1 − v2)W 2/6 + ∆y2 − v∆y
)

,

since E [∆x2] = W 2/6. Following steps which are similar to those between equa-

tion (5.7) and equation (5.8), we obtain

E [T ] ≤ πW

2 ·
√

6
√

1 − v2

[

H1

(
λW

√
1 − v2

√
6v

)

− Y1

(
λW

√
1 − v2

√
6v

)]

− v2

λ(1 − v2)
.

(5.12)

In [69], polynomial approximations have been provided for the Struve and Bessel

functions in the intervals [0, 3] and [3,+∞). We seek an upper bound for the right-

hand side of (5.12) when v is sufficiently large, i.e., when the argument of H1 and Y1

is small. From [69], we know that

H1(z) ≤
z

2
, Y1(z) ≥

2

π

(

J1(z) log
z

2
− 1

z

)

, and J1(z) ≤
z

2
, for 0 ≤ z ≤ 3,

where z := λW
√

1 − v2/(
√

6v), and J1 : R → R denotes the Bessel function of the

first kind. To obtain a lower bound on Y1(z), we observe that if 0 ≤ z ≤ 2, then due

to the log term in the above lower bound for Y1(z), we can substitute z/2 in place

of J1(z). Thus, we obtain

H1(z) ≤
z

2
, Y1(z) ≥

2

π

(
z

2
log

z

2
− 1

z

)

, for 0 ≤ z ≤ 2. (5.13)

Substituting into equation (5.12), we obtain

E [T ] ≤ πW

2 ·
√

6
√

1 − v2

[λW
√

1 − v2

2
√

6v
+

2

π

(
√

6v

λW
√

1 − v2

− λW
√

1 − v2

2
√

6v
log

λW
√

1 − v2

2
√

6v

)]

− v2

λ(1 − v2)
,

which yields

E [T ] ≤ λW 2

12v

(

π

2
− log

λW

3
− log

√
3
√

1 − v2

2
√

2v

)

− 1

λ(1 + v)
. (5.14)
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Now, let λ∗ be the least upper bound on λ for which the FCFS policy is unstable,

i.e., for every λ < λ∗, the FCFS policy is stable. To obtain λ∗, we need to solve

λ∗E [T ] = 1. Using equation (5.14), we can obtain a lower bound on λ∗ by simplifying

λ∗2W 2

12v

(

π

2
− log

λ∗W

3
− log

√
3
√

1 − v2

2
√

2v

)

− 1

1 + v
≥ 1.

From the condition given by equation (5.11), the second term in the parentheses

satisfies

λ∗W

3
>

√

1 − v

1 + v
.

Thus, we obtain,

λ∗ ≥
√

12v

W
√

(1 + v)
(
Csuf − log

(
1−v

v

)) ,

where Csuf = π/2 − log(0.5 ·
√

3/
√

2). Since λ < λ∗ implies stability, a sufficient

condition for stability is

λ <

√
12v

W
√

(1 + v)
(
Csuf − log

(
1−v

v

)) . (5.15)

To determine the value of the speed v∗suf beyond which this is a less conservative

condition than equation (5.11), we solve

√
12v∗suf

W

√

(1 + v∗suf)
(

C − log
(

1−v∗
suf

v∗
suf

)) =
3

W

√

1 − v∗suf

1 + v∗suf

.

For v > v∗suf, one can verify that the numerical value of the argument of the Struve and

Bessel functions is less than 2, and so the bounds given by equation (5.13) used in this

analysis are valid. Thus, a sufficient condition for stability is given by equation (5.11)

for v ≤ v∗suf, and by equation (5.15) for v > v∗suf.

Remark 5.4.8 (Tightness in low speed regime) As v → 0+, the sufficient con-

dition for FCFS stability becomes λ < 3/W , which is exactly equal to the necessary
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Figure 5.8. The necessary and sufficient conditions for the stability for the FCFS

policy. The dashed curve is the necessary condition for stability as established in

Lemma 5.4.6; while the solid curve is the sufficient condition for stability as estab-

lished in Lemma 5.4.7.

condition given by part (ii) of Lemma 5.4.6. Thus, the condition for stability is

asymptotically tight in this limiting regime.

Figure 5.8 shows a comparison of the necessary and sufficient stability conditions

for the FCFS policy. It should be noted that λ converges to 0+ extremely slowly as

v tends to 1−, and still satisfy the sufficient stability condition in Lemma 5.4.7. For

example, with v = 1 − 10−6, the FCFS policy can stabilize the system for an arrival

rate of 3/(5W ). �
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5.5 Proofs of the Main Results

In this section, we present the proofs of the main results which were presented in

Section 5.3.3.

5.5.1 Proof of Theorem 5.3.1

We first present the proof of part (i). We begin by looking at the distribution of

demands in the service region.

Lemma 5.5.1 (Distribution of outstanding demands) Suppose the generation

of demands commences at time 0 and no demands are serviced in the interval [0, t].

Let Q denote the set of all demands in [0,W ] × [0, vt] at time t. Then, given a

measurable compact region R of area A contained in [0,W ] × [0, vt],

P[|R ∩ Q| = n] =
e−λ̄A(λ̄A)n

n!
, where λ̄ := λ/(vW ).

Proof: Let R = [ℓ, ℓ+∆ℓ]×[h, h+∆h] be a rectangle contained in [0,W ]×[0, vt]

with area A = ∆ℓ∆h. Let us calculate the probability that at time t, |R ∩ Q| = n

(that is, the probability that R contains n points in Q). We have

P[|R ∩ Q| = n] =

∞∑

i=n

P

[

i demands arrived in

[
h

v
,
h+ ∆h

v

]]

×

P[n of i are generated in [ℓ, ℓ+ ∆ℓ]].

Since the generation process is temporally Poisson and spatially uniform the above

equation can be rewritten as

P[|R ∩ Q| = n] =

∞∑

i=n

P [i demands arrived in [0,∆h/v]] × P[n of i are in [0,∆ℓ]].

(5.16)
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Now we compute

P [i demands arrived in [0,∆h/v]] =
e−λ∆h/v(λ∆h/v)i

i!
,

and

P[n of i are in [0,∆ℓ]] =

(
i

n

)(
∆ℓ

W

)n(

1 − ∆ℓ

W

)i−n

,

so that, substituting these expressions and adopting the shorthands L := ∆ℓ/W and

H := ∆h/v, equation (5.16) becomes

P[|R ∩ Q| = n] = e−λHLn
∞∑

i=n

(λH)i

i!

(
i

n

)

(1 − L)i−n . (5.17)

Rewriting (λH)i as (λH)n(λH)i−n, and using the definition of binomial
(

i
n

)
= i!

n!(i−n)!
,

equation (5.17) reads

P[|R ∩ Q| = n] = e−λH (λLH)n

n!

∞∑

j=0

(λH(1 − L))j

j!
= e−λLH (λLH)n

n!
.

Finally, since LH = A/(vW ), we obtain

P[|R ∩ Q| = n] = e−λ̄A (λ̄A)n

n!
,

where λ̄ := λ/(vW ). Thus, the result is established for rectangles. However, every

measurable, compact region can be written as a countable union of rectangles, and

thus the result follows.

Remark 5.5.2 (Uniformly distributed demands) Lemma 5.5.1 shows us that

the number of demands in an unserviced region with area A is Poisson distributed

with parameter λA/(vW ), and conditioned on this number, the demands are dis-

tributed uniformly. �

Lemma 5.5.3 (Travel time bound) Consider the set Q of demands that are uni-

formly distributed in E at time t. Let Td be a random variable giving the minimum
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amount of time required to travel to a demand in Q from a vehicle position selected

a priori. Then

E [Td] ≥
1

2

√

vW

λ
.

Proof: Let p = (X, Y ) denote the vehicle location selected a priori. To obtain

a lower bound on the minimum travel time, we consider the best-case scenario, when

no demands have been serviced in the time interval [0, t], and when the set Q contains

many demands (i.e., t is very large). Consider a demand in Q with position (x, y) at

time t. Using Proposition 5.2.2, we can write the travel time T from p to q := (x, y)

implicitly as

T (p,q)2 = (X − x)2 + ((Y − y) − vT (p,q))2. (5.18)

Next, define the set ST as the collection of demands that can be reached from (X, Y )

in T or fewer time units. From equation (5.18) we see that when v < 1, the set ST is

a disk of radius T centered at (X, Y − vT ). That is,

ST := {(x, y) ∈ E | (X − x)2 + ((Y − vT ) − y)2 ≤ T 2},

where we have omitted the dependence of T on p and q. The area of the set ST ,

denoted area(ST ), is upper bounded by πT 2, and the area is equal to πT 2 if the

ST does not intersect a boundary of E . Now, by Lemma 5.5.1 the demands in an

unserviced region are uniformly randomly distributed with density λ̄ = λ/(vW ). Let

us compute the distribution of Td := minq∈Q T (p,q). For every vehicle position p

chosen before the generation of demands, the probability that Td > T is given by

P[Td > T ] = P[|ST ∩ Q| = 0] ≥ e−λ̄ area(ST ) ≥ e−λπT 2/(vW ).

Hence we have

E [Td] ≥
∫ +∞

0

P[Td > T ]dT ≥
∫ +∞

0

e−λπT 2/(vW )dT =

√
π

2
√

λπ/(vW )
=

1

2

√

vW

λ
.
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We can now prove part (i) of Theorem 5.3.1.

Proof: [Proof of part (i) of Theorem 5.3.1] A necessary condition for the stability

of any policy is

λE [T ] ≤ 1,

where E [T ] is the steady-state expected travel time between demands i and i + 1.

For every policy E [T ] ≥ E [Td] ≥ 1
2

√
vW
λ

. Thus, a necessary condition for stability is

that

λ
1

2

√

vW

λ
≤ 1 ⇐⇒ λ ≤ 4

vW
.

Remark 5.5.4 (Constant fraction service) A necessary condition for the exis-

tence of a policy which services a fraction c ∈ ]0, 1] of the demands is that

λ ≤ 4

c2vW
.

Thus, for a fixed v ∈ ]0, 1[ no policy can service a constant fraction of the demands

as λ → +∞. This follows because in order to service a fraction c we require that

cλE [Td] < 1.

In order to service a fraction c of the demands, we consider a subset of the gener-

ator having length cW , with the arrival rate on that subset being equal to cλ. The use

of the TMHP-based policy on this subset and with the arrival rate cλ gives a sufficient

condition for stability analogous to Theorem 5.3.2, but with an extra term of c2 in the

denominator. �

For the proof of part (ii) of Theorem 5.3.1, we first recall from Lemma 5.4.6 that

for stability of the FCFS policy, although λ must go to zero as v → 1−, it can go very
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slowly to 0. Specifically, λ goes to zero as

1
√

− log(1 − v)
.

This quantity goes to zero more slowly than any polynomial in (1 − v). We are now

ready to complete the proof of Theorem 5.3.1.

Proof: [Proof of part (ii) of Theorem 5.3.1] Observe that the condition on λ in

the statement of part (ii) is the expression given by the necessary condition for FCFS

stability in the asymptotic regime as v → 1−, from Lemma 5.4.6. Therefore, suppose

there is a policy P that does not serve demands FCFS, but can stabilize the system

with

λ = B(1 − v)p,

for some p > 0, and B > 0. Let ti be the first instant at which policy P deviates

from FCFS. Then, the demand served immediately after i is demand i + k for some

k > 1. When the vehicle reaches demand i+ k at time ti+1, demand i+ 1 has moved

above the vehicle. To ensure stability, demand i+ 1 must eventually be served. The

time to travel to demand i+ 1 from any demand i+ j, where j > 1, is

T (qi+j,qi+1) =

√
(

∆x√
1 − v2

)2

+

(
∆y

1 − v2

)2

+
v∆y

1 − v2

≥ ∆y

1 − v2
+

v∆y

1 − v2
=

∆y

1 − v
,

where ∆x and ∆y are now the minimum of the x and y distances from qi+j to the

qi+1. The random variable ∆y is Erlang distributed with shape j − 1 ≥ 1 and rate

λ, implying

P[∆y ≤ c] ≤ 1 − e−λc/v, for each c > 0, and in particular, for c = (1 − v)1/2−p.

Now, since λ = B(1 − v)p as v → 1−, almost surely ∆y > (1 − v)1/2−p. Thus

T (qi+j,qi+1) ≥ (1 − v)−(p+1/2),
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almost surely as v → 1−. Thus, the expected number of demands that arrive during

T (qi+j,qi+1) is

λT (qi+j ,qi+1) ≥ B(1 − v)p(1 − v)−(p+1/2) ≥ B(1 − v)−1/2 → +∞,

as v → 1−. This implies that almost surely the policy P becomes unstable when

it deviates from FCFS and that any deviation must occur with probability zero as

v → 1−. Thus, a necessary condition for a policy to be stabilizing with λ = B(1−v)p

is that, as v → 1−, the policy must serve demands in the order in which they arrive.

But this needs to hold for every p and, by letting p go to infinity, B(1−v)p converges

to zero for all v ∈ (0, 1]. Thus, a non-FCFS policy cannot stabilize the system no

matter how quickly λ → 0+ as v → 1−. Hence, as v → 1−, every stabilizing policy

must serve the demands in the order in which they arrive. Additionally, notice that

the definition of the FCFS policy is that it uses the minimum time control (i.e.,

constant bearing control) to move between demands, thus the expression in part (ii)

of Theorem 5.3.1 is a necessary condition for all stabilizing policies as v → 1−.

5.5.2 Proofs of Theorem 5.3.2 and Theorem 5.3.4

We first present the proof of Theorem 5.3.2. We begin with the proof of part (i).

Proof: [Proof of part (i) of Theorem 5.3.2] If there are any demands “above” the

vehicle initially, at the end of the first iteration of the TMHP-based policy, all out-

standing demands have their y-coordinates less than or equal to that of the vehicle,

and hence would be located “below” the vehicle as shown in the first of Figure 5.5.

Hence at the end of every iteration of the TMHP-based policy, all outstanding de-

mands would be located “below” the vehicle.

Let the vehicle be located at p(ti) = (X(ti), Y (ti)) and qlast denote the demand

with the least y-coordinate at time instant ti. Let |Q| denote the number of demands
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in the set Q. If there exists a non-empty set of unserviced demands Q below the

vehicle at time ti, then for k ∈ Z≥1, we have

Y (ti+1) = vLT,v(p(ti), {q1(ti), . . . ,qlast−1(ti)},qlast(ti)) + ylast(ti), w.p. P(|Q| = k),

where ylast(ti) is the y-coordinate of qlast(ti) and

LT,v(p(ti), {q1(ti), . . . ,qlast−1(ti)},qlast(ti)) is the time taken for the vehicle as per the

TMHP that begins at p(ti), serves all demands in Q other than qlast and ends at the

demand qlast.

We seek an upper bound for the length LT,v of the TMHP for which we use

the Convert-to-EMHP method (cf. Section 5.2.2). Invoking Lemma 5.2.5 for Q =

{q1, . . . ,qlast−1}, and writing Yi := Y (ti) for convenience, we have

LT,v(p(ti), {q1(ti), . . . ,qlast−1(ti)},qlast(ti))

= LE(cnvrtv(p(ti)), {cnvrtv(q1(ti)), . . . , cnvrtv(qlast−1(ti))}, cnvrtv(qlast(ti)))

+
v(ylast(ti) − Yi)

1 − v2

≤
√

2W (Yi − ylast(ti))|Q|
(1 − v2)3/2

+
Yi − ylast(ti)

1 + v
+

5W

2
√

1 − v2

≤
√

2WYi|Q|
(1 − v2)3/2

+
Yi

1 + v
+

5W

2
√

1 − v2
,

where the first inequality is obtained using Lemma 5.2.3, and the second inequality

follows since ylast(ti) ≥ 0.

If Q is empty at time ti, then the vehicle moves towards the optimal location

(X∗, Y ∗). When a new demand arrives, the vehicle moves towards it. If Yi ≤ W ,

then in the worst-case, the vehicle is very close to an endpoint of the generator and

the next demand arrives at the other endpoint. In this case, the vehicle moves with

a vertical velocity component equal to v and horizontal component equal to
√

1 − v2.

So in the worst-case, the vehicle is at a height vW/
√

1 − v2 at the beginning of the

next iteration. The other possibility is if Yi > W . In this case, to get an upper bound
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on the height of the vehicle at the next iteration, we consider the vehicle motion when

it first moves horizontally so that the x-coordinate equals that of the demand, and

then moves vertically down to meet the demand. This gives an upper bound on the

height of the vehicle at the next iteration as v(Yi−vW )/(1+v). Thus, if Q is empty,

then the sum of these two upper bounds is trivially an upper bound on the height of

the vehicle at the beginning of the next iteration. Thus, if Q is empty, then

Yi+1 ≤
vW√
1 − v2

+
v

1 + v
(Yi − vW ) ≤ vW√

1 − v2
+

vYi

1 + v
.

Conditioned on Yi, we have

E

[

Yi+1

∣
∣
∣Yi

]

≤
( vW√

1 − v2
+

vYi

1 + v

)

P(|Q| = 0|Yi)+

v
∞∑

k=1

(
√

2WYik

(1 − v2)3/2
+

Yi

1 + v
+

5W

2
√

1 − v2

)

P(|Q| = k|Yi) + E

[

ylast(ti)
∣
∣
∣Yi

]

.

It can be shown that E

[

ylast(ti)
∣
∣
∣Yi

]

≤ v/λ. Collecting the terms with vYi/(1 + v)

together and on further simplifying, we obtain

E

[

Yi+1

∣
∣
∣Yi

]

≤ vW√
1 − v2

P(|Q| = 0|Yi) +
vYi

1 + v

+
∞∑

k=1

(
√

2v2WYik

(1 − v2)3/2
+

5vW

2
√

1 − v2

)

P(|Q| = k|Yi) +
v

λ

≤ vW√
1 − v2

+
vYi

1 + v
+

√

2v2W

(1 − v2)3/2
E

[√

|Q|Yi

∣
∣
∣Yi

]

+
5vW

2
√

1 − v2

∞∑

k=1

P(|Q| = k|Yi) +
v

λ

≤ vYi

1 + v
+

√

2v2W

(1 − v2)3/2

√

YiE

[√

|Q|
∣
∣
∣Yi

]

+
7vW

2
√

1 − v2
+
v

λ
. (5.19)

Applying Jensen’s inequality to the conditional expectation in the second term in the

right hand side of equation (5.19), we have

E

[√

|Q|
∣
∣
∣Yi

]

≤
√

E

[

|Q|
∣
∣
∣Yi

]

=

√

λ
Yi

v
,
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where the equality follows since the arrival process is Poisson with rate λ and for a

time interval Yi/v. Substituting into equation (5.19), we obtain

E

[

Yi+1

∣
∣
∣Yi

]

≤
(

v

1 + v
+

√

2vλW

(1 − v2)3/2

)

Yi +
7vW

2
√

1 − v2
+
v

λ
.

Using the law of iterated expectation, we have

E [Yi+1] = E [E [Yi+1|Yi]] ≤
(

v

1 + v
+

√

2vλW

(1 − v2)3/2

)

E [Yi] +
7vW

2
√

1 − v2
+
v

λ
, (5.20)

which is a linear recurrence in E [Yi]. Thus, limi→+∞ E [Yi] is finite if

v

1 + v
+

√

2Wvλ

(1 − v2)3/2
< 1 ⇐⇒ λ <

(1 − v2)3/2

2Wv(1 + v)2
.

Thus, if λ satisfies the above condition, then expected number of demands in the

environment is finite and the TMHP-based policy is stable.

Finally, from Lemma 5.4.1, the region of stability for the FCFS policy is contained

in the region of stability for the TMHP-based policy. Thus, the TMHP-based policy

is stable for all arrival rates the FCFS policy is contained in the region of stability

for the TMHP policy. Thus, the TMHP-based policy is stable for all arrival rates

satisfying the bound in Lemma 5.4.7. This gives us the desired result.

Remark 5.5.5 (Upper bound on expected delay) Since equation (5.20) is a lin-

ear recurrence in E [Yi], we can easily obtain an upper bound for limi→+∞ E [Yi]. More-

over, we may upper bound the expected delay for a demand by

7W

2
√

1 − v2

(

1

1/(1 + v) −
√

2Wvλ/(1 − v2)3/2

)

. •

Proof: [Proof of part (ii) of Theorem 5.3.2] In this part, we make use of the

following two facts. First, as v → 0+, the length of the TMHP constrained to start

at the vehicle location and end at the lowest demand, is equal to the length of the

EMHP in the corresponding static instance under the map cnvrtv, as described in
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Lemma 5.2.5. Second, consider a set Q of n points which are uniformly distributed in

a region with finite area. Then, in the limit as n→ +∞, the length of a constrained

EMHP through Q tends to the length of the ETSP tour through Q.

More specifically, consider the ith iteration of the TMHP-based policy, and let

Yi > 0 be the position of the service vehicle. In the limit as λ→ +∞, the number of

outstanding demands in that iteration ni → +∞, and in addition, conditioned on ni,

the demands are uniformly distributed in the region [0,W ]×[0, Yi] (cf. Remark 5.5.2).

Now using the above two facts, we can apply Theorem 5.2.4 to obtain an expression

for the length of the TMHP constrained to start at the vehicle location and ending

at the lowest demand. As λ → +∞, the position of the vehicle at the end of the ith

iteration is given by

Yi+1 = vβTSP

√

niA = vβTSP

√

niYiW,

where A := YiW is the area of the region below the vehicle at the ith iteration. Thus,

conditioned on Yi being bounded away from 0, we have

E [Yi+1|Yi] = vβTSP

√

YiE
[√
Wni

]
≤ vβTSP

√

WYiE [ni],

where we have applied Jensen’s inequality. Using Lemma 5.5.1, E [ni] = WYiλ/(vW )

and thus

E [Yi+1|Yi] ≤ vβTSP

√

W 2Y 2
i

λ

vW
= βTSP

√
λvWYi.

Thus, the sufficient condition for stability of the TMHP-based policy as λ → +∞

(and thus v → 0+) is

λ <
1

β2
TSPvW

≈ 1.9726

vW
.

Finally, we present the proof of Theorem 5.3.4.

Proof: [Proof of Theorem 5.3.4] The proof of part (i) of Theorem 5.3.4 follows

from Lemma 5.4.3 and Lemma 5.4.1. The proof of part (ii) follows from part (ii) of
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Theorem 5.3.1 and Lemma 5.4.1 along with the fact that the TMHP-based policy

spends the minimum amount of time to travel between demands.

5.6 Simulations

In this section, we present a numerical study of the TMHP-based policy. We

numerically determine the region of stability of the TMHP-based policy, and compare

it with the theoretical results from the previous sections.

In the actual implementation of the TMHP-based policy, the computational com-

plexity increases undesirably as the values of the problem parameters (λ, v) approach

the instability region. Therefore, we adopt a different procedure to characterize the

stable/unstable region boundary, which is based upon the following central idea. For

a given value of (λ, v) and a sufficiently high value of the height of the vehicle, if

the policy is stable, then after one iteration of the policy, the vehicle’s height must

decrease. In particular, the following procedure was adopted.

1. For a collection of instructive pairs of the demand speed v and λ in the region

of interest, we set the generator width W = 1 and we set the initial height h0

of the environment of interest so that the expected number of demands in the

environment are 1000. Thus, h0 = 1000v/λ.

2. We repeated 10 times the following procedure. The vehicle is placed at the

height h0 and at a uniformly random location in the horizontal direction. A

Poisson distributed number n0 with parameter λ/v, of outstanding demands are

uniformly randomly placed in the environment (cf. Lemma 5.5.1). The vehicle

uses the TMHP-based policy to serve all outstanding demands and we store the

height h1 of the vehicle at the end of the single iteration of the policy. Finally,

we compute the average height h̄1 of the 10 iterations.
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3. If h̄1 ≤ h0, then the policy is deemed to be stable for the chosen value of (v, λ).

Otherwise the policy is deemed to be unstable.

The linkern1 solver was used to generate approximations to the TMHP at every

iteration of the policy. The linkern solver takes as an input an instance of the Eu-

clidean traveling salesperson problem. To transform the constrained EMHP problem

into an ETSP, we replace the distance between the start and end points with a large

negative number, ensuring that this edge is included in the linkern output.

The results of this numerical experiment are presented in Figure 5.9. For the

purpose of comparison, we overlay the plots for the theoretical curves, which were

presented in Figure 5.1. We observe that the numerically obtained stability boundary

for the TMHP-based policy falls between the necessary and the sufficient conditions

which were established in parts (i) of Theorems 5.3.1 and 5.3.2 respectively. Fur-

ther, although the sufficient condition characterized in part (ii) of Theorem 5.3.2, is

theoretically an approximation of the stability boundary in the asymptotic regime

of high arrival, our numerical results show that the condition serves as a very good

approximation to the stability boundary, for nearly the entire range of demand speeds.

Summary

We introduced a dynamic vehicle routing problem with translating demands. We

determined a necessary condition on the arrival rate of the demands for the existence

of a stabilizing policy. In the limit when the demands move as fast as the vehicle,

we showed that every stabilizing policy must service the demands in the FCFS order.

We proposed a novel receding horizon policy that services the moving demands as

per a translational minimum Hamiltonian path. In the asymptotic regime when

1The TSP solver linkern is freely available for academic research use at
http://www.tsp.gatech.edu/concorde.html.
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Figure 5.9. Numerically determined region of stability for the TMHP-based policy. A

lightly shaded (green-coloured) dot represents stability while a darkly shaded (blue-

coloured) dot represents instability. The uppermost (thick solid) curve is the necessary

condition for stability for any policy as derived in Theorem 5.3.1. The lowest (dashed)

curve is the sufficient condition for stability of the TMHP-based policy as established

by Theorem 5.3.2. The broken curve between the two curves is the sufficient stability

condition of the TMHP-based policy in the low speed regime as derived in part (ii)

of Theorem 5.3.2. The environment width is W = 1.
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the demands move as fast as the vehicle, we showed that the TMHP-based policy

minimizes the expected time to service a demand. We derived a sufficient condition

for stability of the TMHP-based policy, and showed that in the asymptotic regime of

low demand speed, the sufficient condition is within a constant factor of the necessary

condition for stability. In a third asymptotic regime when arrival rate tends to zero

for a fixed demand speed, we showed that the TMHP-based policy is optimal in

terms of minimizing the expected time to service a demand. Finally, a numerical

implementation, we observed that the sufficient condition for the asymptotic regime

of low demand speeds serves as a good approximation to the boundary of the stability

region for a significantly large interval of values of demand speed.
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Chapter 6

Vehicle Placement to Intercept

Moving Targets

6.1 Introduction

In chapter 5, we introduced a problem in which a single pursuer seeks to cap-

ture sequentially arriving and translating targets. For the case when the target (or

demand) arrival rate is low, we saw in Section 5.4.1 in Chapter 5 that the problem

becomes one of providing optimal coverage, i.e., where should the vehicle be placed so

that the expected time to reach a demand is minimized? In this chapter, we address

this placement problem for multiple pursuers and for general spatial arrival density

for the demands.

Contributions

We consider a line segment on which a mobile target appears via a known spatial

probability density and one or multiple vehicles seek to intercept it. The goal is to
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determine vehicle placements that minimize a cost function associated with the target

motion. This work is an extension of Section 5.4.1 in Chapter 5, where we introduced

the placement problem for target motion with fixed speed and in fixed direction, and

for a uniform target arrival density.

We address the following cases.

1. Single vehicle and targets that move with fixed speed and in fixed direction.

2. Single vehicle with the target seeking to maximize the vertical distance from

the line or the intercept time.

3. Multiple vehicles and targets that move with fixed speed and in fixed direction.

For the first two cases, we consider a class of cost functions and establish prop-

erties such as convexity, smoothness and the existence and uniqueness of a globally

minimizing vehicle location. Next, we derive expressions for the cost functions related

to both types of target motion. We show that the cost functions associated with the

target moving with fixed speed and in a fixed direction, and with the target seeking

to maximize the distance from the segment, fall in the class of cost functions that

we have analyzed. The cost function for target motion that maximizes the intercept

time is proportional to the continuous 1–median function.

For the third case, we first provide an algorithm to partition the line segment

among the vehicles and characterize its properties. With the expected intercept time

as the cost function, we propose a Lloyd descent algorithm in which every vehicle

computes its partition and moves along the gradient of the expected time computed

over its partition. We characterize conditions under which the vehicles asymptotically

reach a set of critical configurations. We also present simulations of the algorithm

with different probability densities, and with different numbers of vehicles.
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Related Work

In static environments, vehicle placement problems are analogous to geometric

location problems such as in [67], and in [103], where given a set of static points, the

goal is to find supply locations that minimize a cost function of the distance from

each point to its nearest supply location. For a single vehicle, the average distance

to a random point, generated according to a probability density function is given

by the Weber or the continuous 1–median function, for which there exists a global

minimizer as shown in [35], termed as the median. This property has been used in [13]

to minimize average time to reach targets when they appear via a stochastic arrival

process with very low arrival rates.

For the case of multiple distinct vehicle locations, the expected distance between a

random point generated according to a probability density and one of the locations is

known in literature as the continuous Weber or the continuous multi-median function,

e.g., see [33]. For more than one location, the multi-median function is non-convex,

and thus determining locations that minimize the multi-median function is hard in

the general case. It is of interest to characterize the set of critical points of the multi-

median function. In [31], the authors have characterized the set of critical points for

the problem of deploying a group of robots in a region to optimize a multi-median

cost function. This work has been extended in [86] to enable robots to approximate

the function from sensor measurements. More recently, [60] have presented a coverage

algorithm for vehicles in a river environment.

For scenarios that involve motion of targets, the cost for the vehicle is typically

a function of relative locations, speeds and motion constraints considered. For the

case when the targets appear uniformly on a segment and are constrained to move

perpendicular to the segment, we have derived the optimal placement for a single

vehicle [24]. If a target is allowed to move adversarially, then the optimal vehicle

motion is obtained by solving a min-max pursuit-evasion game [51], in which the
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target seeks to maximize while the vehicle seeks to minimize a certain cost function.

In the presence of constraints such as a wall in the playing space or non-zero capture

distance, optimal player motions with respect to the intercept time have been derived

in [51, 71].

Organization

This paper is organized as follows. The problem formulation and useful back-

ground results are presented in Section 6.2. Single vehicle scenarios are presented in

Section 6.3. The multiple vehicle scenario is addressed in Section 6.4.

6.2 Problem Formulation and Background

We first present the problem and some background results.

6.2.1 Problem statement

We consider vehicles with simple motion and speed upper bounded by unity. A

target arrives at a random position (x, 0) on the segment G := [0,W ] × {0}, termed

the generator, via a specified probability density function φ : [0,W ] → R≥0. We

assume that the density function φ is bounded, i.e., there exists an M > 0 such

that φ(x) ≤ M, ∀x ∈ [0,W ]. The target moves with bounded speed less than that

of the vehicles. It is intercepted or captured if a vehicle and the target are at the

same point. The goal is to determine vehicle placements that minimize a certain cost

function based on the maneuvering abilities of the target.

More specifically, we consider the following scenarios.
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Single vehicle case

The goal is to determine a vehicle location p∗ ∈ R × R≥0 so as to minimize

Cexp(p) :=

∫ W

0

C(p, x)φ(x)dx,

where C : R
2 → R≥0 is an appropriately defined cost of the vehicle position p. In

what follows, we seek to minimize the following different cost functions.

(i) Expected constrained travel time: We assume that the target arriving at (x, 0)

translates in the positive Y -direction with speed v < 1. From [24], the cost function

for this formulation is

T (p, x) =

√

(1 − v2)(X − x)2 + Y 2

1 − v2
− vY

1 − v2
, (6.1)

which is the time taken for the vehicle to intercept the constrained target.

(ii) Expected vertical height: The cost function for this formulation is the vertical

height H(p, x) which the target seeks to maximize before being intercepted.

(iii) Expected intercept time: The cost function for this formulation is the intercept

time Ti(p, x) which the target seeks to maximize.

Figure 6.1 illustrates the vertical height and intercept time.

Multiple vehicles case

We assume that the target translates in the positive Y -direction with speed v < 1.

As shown in Figure 6.2, given m ≥ 2 vehicles having complete communication, the

goal is to determine vehicle locations pi ∈ [0,W ]×R≥0, for every i ∈ {1, . . . , m}, that

minimize the expected constrained travel time given by

Texp(p1, . . . ,pm) :=

∫ W

0

min
i∈{1,...,m}

T (pi, x)φ(x)dx, (6.2)

where T (pi, x) is given by equation (6.1).
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H(p, x)

W

p

Ti(p, x)

I

(x, 0)

φ(x)

Figure 6.1. Intercepting a target that seeks to maximize either the vertical height H

or the time Ti until intercept (which is also the distance travelled by the vehicle.

φ(x)

p1

p3

q

W

v

p2

Figure 6.2. Intercepting a target that moves with fixed speed in the positive Y -

direction with multiple vehicles.

6.2.2 Background: Appolonius circle and Multiplicative

Voronoi partition

Given an ordered pair of distinct points {q1,q2} in a plane and a scalar λ ∈ [0, 1[,

the set CApp(q1,q2, λ) of all points w in the plane that satisfy ‖q2−w‖ = λ‖q1−w‖,

is known as the Appolonius circle. [51]. Define,

qint := (q2 + λq1)/(1 + λ), qext := (q2 − λq1)/(1 − λ).
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The following property is well known.

Proposition 6.2.1 (Appolonius circle center and radius) The Appolonius cir-

cle CApp is centered at the point (qint + qext)/2 and has radius ‖qint − qext‖/2.

Given two points q1 and q2 in a region, the multiplicative Voronoi partition [70]

of q1 (resp. q2) for the parameter λ is set of all points w that satisfy

‖q1 − w‖ ≤ λ‖q2 − w‖, (resp. ‖q1 − w‖ ≥ λ‖q2 −w‖).

6.2.3 Background: Pursuit-evasion in the plane

Given a pursuer and a slower evader (target), both with simple motion in the

plane, the optimal strategy [51] for the pursuer is to select its velocity vector based

on the target’s velocity vector so as to ensure

1. that the line joining the target to the pursuer remains parallel to the line joining

their initial locations, and

2. that the distance to the target monotonically decreases.

This strategy is a version of the classic proportional navigation guidance law [45].

We refer to this strategy as constant bearing control.

If the pursuer’s speed is unity and the evader’s speed is v < 1, then the Appolonius

circle is the boundary of the set of all points which the evader can reach without being

captured [51]. Letting the pursuer position (X, Y ) =: q1 and the evader position

(x, y) =: q2 and v =: λ, Proposition 6.2.1 yields the center and the radius of the

Appolonius circle as

O =
(x− v2X

1 − v2
,
y − v2Y

1 − v2

)

,

R =
v

1 − v2

√

(X − x)2 + (Y − y)2, (6.3)
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respectively. The Appolonius circle possesses the following geometrical fact given in

[51], illustrated in Figure 6.3.

Proposition 6.2.2 (Appolonius circle during pursuit) If the pursuer and the

evader both travel straight toward a point U on the Appolonius circle, then any new

such circle, obtained from a pair of simultaneous intermediate positions of the pursuer

and the evader, is tangent to the original circle at U, and is contained in the original

circle.

Appolonius Circle

R

O(X, Y )

U

(x, y)

Figure 6.3. The Appolonius circle for a pursuer at (X, Y ) moving with unit speed and

the evader at (x, y) moving with speed v < 1. The dotted circle is the Appolonius

circle with respect to the new positions of the players and is contained inside the

original one, by Proposition 6.2.2.

6.3 Single Vehicle Scenarios

We now analyze the single vehicle scenarios.
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6.3.1 A class of cost functions

We first analyze a class of cost functions. We will see that this form appears in

two distinct scenarios, the expected constrained travel time and the expected vertical

height.

We assume that the cost function is given by

Cexp(X, Y ) :=

∫ W

0

C(X, Y, x)φ(x)dx,

where the function C has the form

C(X, Y, x) := a
√

b(X − x)2 + Y 2 − cY, (6.4)

and a, b, and c are positive constants, with a > c.

The partial derivatives of Cexp(X, Y ) with respect to X and Y can be computed

as follows.

∂Cexp

∂X
= ab

∫ W

0

(X − x)φ(x)
√

b(X − x)2 + Y 2
dx, (6.5)

∂Cexp

∂Y
= aY

∫ W

0

φ(x)
√

b(X − x)2 + Y 2
dx− c. (6.6)

We have the following results.

Lemma 6.3.1 (Convexity of expected cost) The expected cost Cexp(X, Y ) is a

convex function of X and Y .

Proof: The Hessian of the function C with respect to X and Y , for Y > 0 is

given by

ab

(b(X − x)2 + Y 2)3/2






Y 2 −Y (X − x)

−Y (X − x) (X − x)2




 ≥ 0.

The Hessian is positive semi-definite, for Y > 0, and hence the quantity C(X, Y, x)

is a convex function of X and Y . Since the expectation operator preserves convexity

[25], the cost function Cexp is convex in X and Y .
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Lemma 6.3.2 (Existence of Minima) There exists a vehicle location (X∗, Y ∗) ∈

]0,W [×R>0 that minimizes the expected cost Cexp.

Proof: We show that a minima cannot lie on the boundary of the region [0,W ]×

R≥0. We begin by showing that Y ∗ exists and is finite. We take the limit of Cexp(X, Y )

as Y → +∞. Thus,

lim inf
Y →+∞

Cexp(X, Y ) ≥ lim inf
Y →+∞

(a− c)Y

∫ W

0

φ(x)dx = +∞,

since by assumption, a > c. Thus, Y ∗ exists and is finite.

Finally, to show that a minima lies in (0,W ) × R>0, we need to prove two state-

ments: (a) Y ∗ 6= 0, and (b) X∗ ∈]0,W [. We first show (a). For that, we consider the

partial derivative of the expected cost with respect to Y ,

∂Cexp

∂Y
= aY

∫ W

0

φ(x)
√

b(X − x)2 + Y 2
dx− c.

Let M > 0 be such that φ(x) ≤M , for every x ∈ [0,W ]. Observe that

∂Cexp

∂Y
≤MY a

∫ W

0

dx
√

b(X − x)2 + Y 2
− c.

which on simplifying yields,

∂Cexp

∂Y
≤ MY a√

b
(log(W +

√

W 2 + Y 2/b) − log(Y/
√
b)) − c.

Thus, lim supY →0+ ∂Cexp/∂Y ≤ −c. Thus, for Y near zero the gradient of Cexp points

in the negative Y -direction, implying that Y ∗ 6= 0.

To show (b), we first observe that for a given Y , in the limit as X → ±∞,

Cexp → +∞, and therefore X∗ must be bounded. Finally, the claim follows since

the partial derivative of Cexp with respect to X is strictly negative at X = 0 and is

strictly positive at X = W .

These statements coupled with the convexity of Cexp with respect to X and Y

imply the existence of a minima in the region ]0,W [×R>0.
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Next, we prove the following uniqueness result.

Lemma 6.3.3 (Uniqueness) There exists a unique vehicle location (X∗, Y ∗) that

minimizes the expected cost Cexp.

Proof: Let there be two locations (X1, Y1) and (X2, Y2) that minimize the

expected cost. From Lemma 6.3.1, since the expected cost Cexp is convex in X

and Y , a convex combination of (X1, Y1) and (X2, Y2) also minimizes the expected

time. Thus, the necessary conditions for minima are satisfied by (X̄(α), Ȳ (α)) :=

(αX1 + (1 − α)X2, αY1 + (1 − α)Y2), for every α ∈ [0, 1]. Thus,

∫ W

0

(X̄(α) − x)φ(x)
√

(bX̄(α) − x)2 + Ȳ (α)2
dx = 0,

∫ W

0

Ȳ (α)φ(x)
√

b(X̄(α) − x)2 + Ȳ (α)2
dx =

c

a
.

Since the above conditions hold for every α ∈ [0, 1], the partial derivatives of the

above conditions evaluated at α = 0, must equal zero. Thus, upon simplifying, we

obtain,

∫ W

0

(X2 − x)Y2(Y1 − Y2) − Y 2
2 (X1 −X2)

(b(X2 − x)2 + Y 2
2 )3/2

φ(x)dx = 0,

∫ W

0

(X2 − x)Y2(X1 −X2) − (Y1 − Y2)(X2 − x)2

(b(X2 − x)2 + Y 2
2 )3/2

φ(x)dx = 0,

where φ(x)/(b(X2 − x)2 + Y 2
2 )3/2 =: f(X2, Y2, x) is non-negative for Y2 > 0. Multi-

plying the first equation by (X1 − X2), the second by (Y1 − Y2), and on adding the

resulting equations, we obtain

∫ W

0

f(X2, Y2, x)(Y2(X1 −X2) − (X2 − x)(Y1 − Y2))
2dx = 0.

Now, if f is zero on any subset of G, then we can discard that subset on which f is

zero, and consider only the subset on which f is strictly positive. This implies that

Y2(X1 − X2) − (X2 − x)(Y1 − Y2) = 0, and this is true for every x. This is feasible

only if X1 −X2 = 0 and Y1 − Y2 = 0, thus completing the proof.
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We now present the main result for this section.

Theorem 6.3.4 (Minimizing expected cost) Starting from an initial location in

R×R>0 and by using a gradient optimization technique, the vehicle reaches the unique

point that minimizes the expected cost Cexp.

Proof: The gradient of Cexp with respect to X and Y is a continuous function

of X and Y in the region R × R>0. The function Cexp is convex in X and Y (cf.

Lemma 6.3.1) and has a unique minima in ]0,W [×R>0 (cf. Lemmas 6.3.2 and 6.3.3).

Thus, a gradient optimization technique [25] leads the vehicle to the unique global

minimizer of Cexp.

6.3.2 Optimal placement for constrained target motion

We now address the problem of minimizing the expected value of T , given by

equation (6.1). Comparing equation (6.1) with the definition of C in equation (6.4),

we have a := 1/(1 − v2), b := (1 − v2) and c := v/(1 − v2), and a > c. Thus, by

applying Theorem 6.3.4, the following result holds.

Theorem 6.3.5 (Minimizing expected time) Starting from an initial location in

R×R>0 and by using a gradient optimization technique, the vehicle reaches the unique

point that minimizes the expected constrained travel time Texp.

In general, it is difficult to provide closed form expressions for the vehicle location

that minimizes the expected time. A special case is described in Remark 6.3.6.

Remark 6.3.6 (The limiting case of v = 1) In this case, we can obtain closed

form expressions for the optimal placement by solving the necessary conditions, given
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by

X∗ =

∫ W

0

φ(x)xdx; Y ∗ =

√
∫ W

0

φ(x)(X∗ − x)2dx. �

6.3.3 Optimal placement for adversarial target

We now address the case when the target is an evader possessing adversarial

motion. We consider two types of cost functions that the evader tries to maximize;

the vertical height and the intercept time.

Minimizing the expected vertical height

Here we address the problem of minimizing the cost functionHexp. We first present

the solution to the differential game with payoff equal to the vertical height.

Since the pursuer’s optimal strategy is governed by the evader’s strategy, it suffices

to determine the optimal evader strategy. We propose the following strategy for the

evader.

Algorithm 4: Move towards top-most

Assumes: Pursuer at (X, Y ). Evader at (x, 0).

Find (cf. equation (6.3)) the Appolonius center and radius1:

O := (Ox, Oy) =
(x− v2X

1 − v2
,
−v2Y

1 − v2

)

,

R :=
v

1 − v2

√

(X − x)2 + Y 2.

Move towards the point (Ox, Oy +R) with speed v.2:

This strategy is illustrated in Figure 6.4. We obtain the following result, which is

immediate from Proposition 6.2.2.
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Appolonius Circle

(X, Y )

Im

(x, 0)

R

O

H

Figure 6.4. Move towards top-most strategy for the evader.

Lemma 6.3.7 (Move towards top-most is optimal) The strategy move towards

top-most is the evader’s optimal strategy and the resulting optimal vertical height of

the intercept point is

H(X, Y, x) =
v

1 − v2

√

(X − x)2 + Y 2 − v2Y

1 − v2
.

Comparing the expression for H given by Lemma 6.3.7 with the definition of C in

equation (6.4), we have a := v/(1 − v2), b := 1 and c := v2/(1 − v2), and a > c since

v < 1. Thus, by applying Theorem 6.3.4, we obtain the following result.

Theorem 6.3.8 (Minimizing expected height) Starting from an initial location

in R × R>0 and by using a gradient optimization technique, the vehicle reaches the

unique point that minimizes the expected height Hexp.

Minimizing the expected intercept time

Here we address the problem of minimizing the cost function Tiexp. In this formu-

lation, we assume that the evader is constrained to remain above or on the X-axis.
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Thus, the underlying differential game in this set up is the classic wall pursuit game,

originally proposed and solved in [51]. For the sake of completeness, we present the

main result.

Lemma 6.3.9 (Wall pursuit game) The evader strategy that maximizes the in-

tercept time is to move towards the furthest point of the Appolonius circle on the

X-axis.

This optimal evader strategy is illustrated in Figure 6.5.

Appolonius Circle

(X, Y )

(x, 0)

R

O

I

Figure 6.5. Illustrating Lemma 6.3.9.

We recall the following definition from [35]. Given a convex region S ⊂ R and a

density function ψ : S → R≥0, the median pmed is the unique global minimum of

∫

S
|p− z|ψ(z)dz.

We now present the main result of this section.

Theorem 6.3.10 (Optimal point is the median) The median point of the region

[0,W ]×{0} with the density function φ uniquely minimizes the expected intercept time.
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Proof: Using Lemma 6.3.9 and the Pythagoras theorem, we can write the

expression for the intercept time.

Ti(X, Y, x) =

√

R2 −
( vY

1 − v

)2

+

∣
∣
∣
∣

x− vX

1 − v
− x

∣
∣
∣
∣
,

where R is the radius of the Appolonius circle drawn at the initial instant. Substi-

tuting the expression for R and from the fact that placing the pursuer on the X-axis,

i.e., Y = 0, results into decreasing the intercept time Ti, we have

Tiexp(X) =
v2 + 3v

1 − v2

∫ W

0

|X − x|φ(x)dx,

which is minimized uniquely by the median of the region [0,W ]×{0} with the density

function φ.

6.4 A Multiple Vehicle Scenario

We now address the multi-vehicle placement problem.

6.4.1 Dominance region partition

We first introduce a partitioning procedure for the generator by defining the con-

cept of dominance region for each pair of vehicles.

Definition 6.4.1 (Pairwise dominance region) For i, j ∈ {1, . . . , m}, the pair-

wise dominance region Uij ⊆ [0,W ] of pi with respect to pj is the set of target locations

for which vehicle pi takes lesser time to intercept the target than pj:

Uij := {x ∈ [0,W ] | T (pi, x) ≤ T (pj , x)}.
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In what follows, we describe a procedure to determine Uij, which is summarized

in Algorithm 5. Without loss of generality, assume that Xi < Xj . If Yi = Yj, i.e.,

the vehicles are at the same distance from the generator, then Uij is the piece of G

that lies in the half-plane that is formed by the perpendicular bisector of the segment

joining pi and pj and which contains pi. Now if Yi < Yj, then we look for points

(x, 0) in G for which T (pi, x) ≤ T (pj , x). By setting (1 − v2) =: b, equation (6.1)

gives
√

b(Xi − x)2 + Y 2
i − vYi ≤

√

b(Xj − x)2 + Y 2
j − vYj. (6.7)

On simplifying, one can show that Eq. (6.7) is quadratic in x having real roots, which

provides at most two points for the boundary between Uij and Uji. To determine the

boundary points, consider the perpendicular bisector of the segment joining pi and

pj , as shown in Figure 6.6. We look for points A1 and A2 on this bisector such that

(Yi + Yj)/2

pj

A1

θ

ℓ

pi

A2

Perp. bisector

Figure 6.6. To determine pairwise dominance regions.

the distances of A1 and A2 from the real line is v times their respective distances from

the vehicles. This gives rise to the following quadratic equation in the variable ℓ

4(sin2 θ − v2)ℓ2 + 4(Yi + Yj) sin θℓ = −(Yi + Yj)
2 + v2‖pi − pj‖2,

where ℓ and θ := arctan2((Yi−Yj), (Xi−Xj))+π/2 are as shown in Figure 6.6. Let ℓ1

and ℓ2 be the roots of the above quadratic. Then the Y -coordinates of the candidate
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boundary points A1 and A2 are given by

[y1, y2]
T = [1, 1]T (Yi + Yj)/2 + [ℓ1, ℓ2]

T sin θ.

Now, A1 and A2 are both boundary points if and only if both have positive Y -

coordinates. It can be shown that there exists at least one among them which has

positive Y -coordinate. There arise two cases:

(i) If there are two candidate points A1 and A2 (as in Figure 6.6), then we look at

their corresponding X coordinates, (x1, x2) given by Step 7. For (x, 0) ∈ G∩ [x1, x2]×

{0}, we have T (pi, x) ≤ T (pj, x), and thus Uij is G ∩ [x1, x2] × {0}.

(ii) If there is only one candidate point A1, then we look at its X coordinates, x1

given by Step 9. By assumption Xi < Xj , and hence for (x, 0) ∈ G∩ [−∞, x1]×{0},

we have T (pi, x) ≤ T (pj, x) and thus Uij is G ∩ [−∞, x1] × {0}.

Thus, we have established the following property.

Proposition 6.4.2 (Pairwise dominance region) Given distinct locations pi =

(Xi, Yi), pj = (Xj, Yj), if a target arrives at (x, 0), where x ∈ Uij generated by

Algorithm 5, then T (pi, x) ≤ T (pj , x).

Let E be the region [0,W ] × R≥0, let P([0,W ]) denote the set of all subsets of

[0,W ] and let B(r) be the closed ball of radius r around the origin. The domain of a

set-valued map F : X ⇉ Z is the set of all q ∈ X such that F (q) 6= ∅. F is said to be

upper (resp. lower) semi-continuous in its domain if, for every q in its domain and for

every ǫ > 0, there exists a δ > 0 such that for every z ∈ q+B(δ), F (z) ⊂ F (q)+B(ǫ)

(resp. F (q) ⊂ F (z) + B(ǫ)). F is continuous in its domain if it is both upper and

lower semi-continuous.

The roots of equation (6.7) which is a quadratic in x, vary continuously with

pi and pj . Thus, the pairwise dominance region between pi and pj is a set valued
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function Uij : E2 \ Sij ⇉ P([0,W ])2, where Sij ⊂ E2 is the set of coincident locations

for pi and pj.

Proposition 6.4.3 (Continuity properties of Uij) For every distinct i and j in

the set {1, . . . , m}, the set valued map Uij is continuous in E2 \ Sij.

Similar to pairwise dominance regions, we introduce the concept of dominance

region Vi ∈ P([0,W ]) for the ith vehicle, for every i ∈ {1, . . . , m}, which is the set of

X-coordinates of target locations for which pi takes the minimum time to intercept

of all vehicles.

Assuming complete communication between vehicles, Algorithm 5 is extended to

determine the dominance region for a vehicle by (i) determining pairwise dominance

regions between vehicles and, (ii) taking intersection of all pairwise dominance regions,

as presented in Algorithm 6.

Algorithm 6: Dominance region

Assumes: Distinct locations {p1, . . . ,pm}.

foreach vehicle j ∈ {1, . . . , m} \ {i}, do1:

Determine Uij using Algorithm 5.2:

Vi =
⋂

j=1,...,m,j 6=i Uij .3:

Algorithm 6 has the following property.

Proposition 6.4.4 (Optimality of dominance regions) Given distinct vehicle

positions and a target arrival location,

1. the dominance regions generated by Algorithm 6 form a partition of the gener-

ator.
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2. The time taken to reach the target is minimized by the vehicle whose dominance

region contains the target arrival location.

Proof: Part (i) follows since the union of all dominance regions is the generator,

and any two dominance regions have disjoint interior. Part (ii) follows by Proposi-

tion 6.4.2, and is due to the fact that in Step 4 of Algorithm 6, we take the intersection

of all pairwise dominance regions for a vehicle.

It is possible for the dominance region of a vehicle to be empty. For instance, when

one of the vehicles is very far from the generating line (cf. first part of Figure 6.10).

However, one condition under which every vehicle has a non-empty dominance region

is when all vehicles have the same Y -coordinate. For a general set of locations,

Figure 6.7 illustrates a dominance region partition induced by three vehicles.

p3

p1

A2

A1

Perp. bisector

p2

p3

p1

p2

A1

Perp. bisector

p1

p2

p3

Perp. bisector

A1

p3

p1

p2

Figure 6.7. Dominance region partition induced by vehicles p1, p2 and p3.

Akin to Uij , we can also represent the dominance region partition for vehicle i as

a set-valued map Vi : Em \ Si ⇉ P([0,W ])2(m−1), where Si ⊂ Em is the set of vehicle

locations in which at least one other vehicle is coincident with pi.
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Proposition 6.4.5 (Continuity properties of Vi) For each vehicle i ∈ {1, . . . , m},

the set valued map Vi is continuous on its domain.

Proof: The domain of Vi is contained in the domain of Uij for every j 6= i. By

Proposition 6.4.3, for every j 6= i, the set-valued map Uij is upper semi-continuous in

E2. Thus, for every j 6= i, at every q in the domain of Vi and for every ǫ > 0, there

exist δij > 0 such that for every z ∈ q + B(δij), Uij(z) ⊂ Uij(q) + B(ǫ). Given an

ǫ > 0, by the choice of δi = min{δij, ∀j 6= i}, we obtain that for every z ∈ q + B(δi),

Vi(z) ⊂ Vi(q) +B(ǫ). Thus Vi is upper semi-continuous. Lower semi-continuity of Vi

is established similarly and the result follows.

6.4.2 Minimizing the expected constrained travel time

For distinct vehicle locations, equation (6.2) can be written as

Texp(p1, . . . ,pm) =

m∑

i=1

∫

Vi

T (pi, x)φ(x)dx, (6.8)

where Vi is the dominance region of the ith vehicle. We say that pj is a neighbor of

pi, i.e., j ∈ neigh(i), if Vi ∩ Vj is non-empty.

The next result gives a formula to compute the gradient for every vehicle.

Lemma 6.4.6 (Gradient computation) For all vehicle configurations such that

no two vehicles are at coincident locations, the gradient of the expected time with

respect to vehicle location pi is

∂Texp

∂pi
=

∫

Vi

∂T

∂pi
(pi, x)φ(x)dx.

Proof: We have,

∂Texp

∂pi
=

∂

∂pi

∫

Vi

T (pi, x)φ(x)dx+
∑

j neigh i

∂

∂pi

∫

Vj

T (pj , x)φ(x)dx,

181



Now, let Vi =
⋃

l=1,...,ni
[al, bl], for some finite integer ni. By Leibnitz’s Rule1,

∂

∂pi

∫

Vi

T (pi, x)φ(x)dx =

∫

Vi

∂T

∂pi
(pi, x)φ(x)dx+

ni∑

l=1

T (pi, bl)
∂bl
∂pi

− T (pi, al)
∂al

∂pi
.

Unless a1 = 0, or bni
= W (in which case the partial derivatives with respect to pi are

zero), for every l ∈ {1, . . . , ni}, there exist some j ∈ neigh(i) and some k ∈ neigh(i),

such that

∂

∂pi

∫

Vj

T (pj, x)φ(x)dx = −T (pj , bl)
∂bl
∂pi

, and,

∂

∂pi

∫

Vk

T (pk, x)φ(x)dx = T (pk, al)
∂al

∂pi
,

where we have made use of Leibnitz’s Rule. Due to the continuity of T at the boundary

points, we obtain

T (pj, bl) = T (pi, bl), T (pk, al) = T (pi, al),

and on summation,

∑

j neigh i

∂

∂pi

∫

Vj

T (pj , x)φ(x)dx+

ni∑

l=1

T (pi, bl)
∂bl
∂pi

− T (pi, al)
∂al

∂pi
= 0.

This completes the proof.

For z ∈ R
2, define the function sat : R

2 → R
2 as

sat(z) :=







z, if ‖z‖ ≤ 1,

z/‖z‖, otherwise.

Algorithm 7 presents a discrete-time Lloyd algorithm.

1Leibnitz’s Rule:

d

dz

∫ b

a

f(z, x)dx =

∫ b

a

df(z, x)

dz
dx + f(z, b)

db

dz
− f(z, a)

da

dz
.
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Algorithm 7: Lloyd descent for vehicle i

Assumes: Distinct initial locations {p1, . . . ,pm} ∈ Em

foreach time t ∈ N do1:

Compute Vi(t) by Algorithm 6 as a function of {p1(t), . . . ,pm(t)}2:

if Vi(t) is empty, then3:

Move in unit time to (Xi, Yi − min{1, Yi})4:

else5:

For τ ∈ [t, t+ 1], move according to6:

ṗi(τ) = − sat
(∫

Vi(t)

∂

∂pi
T (pi(τ), x)φ(x)dx

)

We now define the following vehicle configuration.

Definition 6.4.7 (Critical dominance region configuration) A set of locations

{p1, . . . ,pm} is a critical dominance region configuration if, for all i ∈ {1, . . . , m},

pi = argminz∈E

∫

Vi

T (z, x)φ(x)dx,

where {V1, . . . ,Vm} is the dominance region partition induced by {p1, . . . ,pm}.

A critical dominance region configuration is unstable under the action of the

discrete-time Lloyd descent if there exists a direction in which a small displacement

of a vehicle location leads to a trajectory for the vehicle that makes the vehicle move

away from the critical location.

The next result gives a simple condition to identify unstable critical dominance

region configuration.

Lemma 6.4.8 (Disconnected partitions are unstable) A critical dominance re-

gion configuration in which a vehicle has a disconnected dominance region partition
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is unstable.

Proof: We first prove the result for the case of two vehicles. Let {p∗
1,p

∗
2}

be a critical dominance region configuration in which p1 has its dominance region

disconnected. Let the dominance region partitions be

V1 = [A,B], V2 = [0, A] ∪ [B,W ].

Perturb p1 by a small distance δXin the positive X direction, as shown in Figure 6.8.

It can be shown by geometry that the dominance region partitions are given by

W

p∗2

p∗1
δX

δBδA0

A B

Figure 6.8. Illustrating instability of critical dominance region configuration having

a disconnected dominance region.

V1 = [A− δA,B − δB], V2 = [0, A− δA] ∪ [B − δB,W ],

where δA and δB are both positive and sufficiently small. Evaluating the partial

derivatives in X for p2,

(1 − v2)
∂

∂X
T2 =

∫ B−δB

A−δA

I2dx,

where I2(x,X2, Y2) := (X2 − x)φ(x)/
√

(1 − v2)(X2 − x)2 + Y 2
2 . This can be further

simplified as follows.

(1 − v2)
∂T2

∂X
=

∫ A

A−δA

I2dx+

∫ B

A

I2dx−
∫ b

B−δB

I2dx

=

∫ A

A−δA

I2dx−
∫ B

B−δB

I2dx, (6.9)
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as the sum of the first two terms is zero from the necessary condition for p∗
2 to be a

minimum. For sufficiently small δX, there exist δA and δB such that I2 > 0 on the

interval [0, A − δA] and I2 < 0 on the interval [B − δB,B], since X2 − x > 0 and

X2−x < 0 respectively on the two intervals. Thus, ∂T2/∂X > 0 when p1 is displaced

to (X1 + δX, Y1), which implies the direction of gradient descent in X is the negative

X direction for p2, and similarly is the positive X direction for p1. Thus, this critical

configuration is unstable.

In the case of m > 2 vehicles, let the dominance regions of p1 and p2 share at least

one point. Since both terms on the right hand side of equation (6.9) are positive, the

direction of gradient descent in X is the negative direction for p2 independent of the

fact whether the dominance regions of p1 and p2 share one or two common points.

We now state the main result of this section.

Theorem 6.4.9 (Convergence of Lloyd descent) Let γ : N → R
2m be the evo-

lution of the m vehicles according to Algorithm 7 and assume that no two vehicle

locations become coincident in finite time or asymptotically. The following statements

hold:

1. the expected travel time t 7→ Texp(γ(t)) is a non-increasing function of time;

2. if the dominance region Vi of any vehicle i is empty at some time, then Vi will

be non-empty within a finite time; and

3. if there exists a time t such that every dominance region is non-empty for all

times subsequent to t, then the vehicle locations converge to the set of critical

dominance region configurations.
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Proof: In every iteration of Algorithm 7, step 2: does not increase the ex-

pected time Texp due to the optimality of the dominance region partition, by Propo-

sition 6.4.4. Step 4: does not change the Texp as the associated dominance region

is empty. Finally, step 6: does not increase Texp as the vehicle is moving along the

gradient descent flow of Texp. Thus, the expected time is non-increasing under Algo-

rithm 7.

Part (ii) follows from the fact that whenever Vi = ∅ for vehicle i, due to step 4:,

vehicle i reaches the generator after finite time and therefore has a non-empty Vi.

To show part (iii), consider the discrete-time dynamical system given by the tuple

(X ,X0,A), where X = Em and X0 ∈ Em is the set of initial vehicle positions. For

non-empty Vi, let A : X×P([0,W ]) → X , be the flow map of the differential equation

at step 6: from time t to time t+ 1.

We now apply the discrete-time LaSalle Invariance Principle (Theorem 1.19 in

[26]), for which we verify the four assumptions as follows.

1. Existence of a positively invariant set: In our case, such a set is X itself since

every vehicle remains in E . This is because under the action of A, every vehicle

performs gradient descent over its partition, and since the cost function is convex,

gradient descent keeps each vehicle in E .

2. Existence of a non-increasing function along A: In our case, such a function is

Texp which is non-increasing along A, by part (i) of this theorem. Note that

3. All evolutions of (X ,X0,A) are bounded: Since gradient descent keeps the

X coordinates bounded in [0,W ], it remains to show that the Y -coordinates of all

vehicles remain bounded. Let us suppose the contrary. Then, there are two cases: (a)

at least one vehicle has its location bounded and at least one other vehicle, say vehicle

k moves so that Yk grows unbounded; or (b) all of the vehicles move so that their

Y -coordinates grow unbounded. In case (a), after finite time, the dominance region
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Vk becomes empty, thus contradicting the assumption of part (iii) of this theorem.

If case (b) occurs, then Texp grows unbounded, thus contradicting part (i) of this

theorem. Thus, all evolutions of (X ,X0,A) are bounded.

4. Texp and A are continuous: Continuity of Texp follows from Eq.s (6.1) and (6.8).

To verify continuity of A, note that whenever Vi is non-empty, by Proposition 6.4.5,

Vi is continuous with respect to vehicle locations. Thus, as long as Vi is non-empty,

A is continuous as the integrand is continuous with respect to vehicle locations, and

so is the region of integration Vi.

By LaSalle Invariance Principle, we obtain that the evolutions of (X ,X0,A) con-

verge to a set of the form T−1
exp(κ) ∩ M, where κ is a real constant and M is the

largest positively invariant set in {x ∈ X | Texp(A(x)) = Texp(x)}. Since Texp remains

constant under action of A for the set of critical dominance region configurations,

it is contained in a set of the form T−1
exp(κ) ∩M. If a set of vehicle positions is not

critical, then Texp strictly decreases under the action A, and therefore the set of ve-

hicle positions is not contained in a set of T−1
exp(κ) ∩M. Thus, the vehicle locations

converge to the set of critical dominance region configurations.

6.4.3 Simulations

We now present some simulations of Algorithm 7.

Examples of critical locations

We consider two vehicles, and a uniform probability density of target arrival, i.e.,

φ(x) = 1/W . From initial locations such as in the leftmost of Figure 6.9 wherein

both vehicles having the same X-coordinate of W/2, but different Y -coordinates,

the vehicles asymptotically approach a set of locations shown in the center figure.
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However, a small perturbation to the positions leads the vehicles to positions in the

rightmost figure. From most initial conditions, the vehicles converged to a critical

configuration as in the rightmost figure.

Non-uniform probability distribution

We consider three vehicles and the arrival probability density function,

φ(x) =







8
W 2x, if x ∈ [0,W/4],

2
W

− 8
3W 2 (x− W

4
), if x ∈]W/4,W ].

From most initial conditions, the vehicles converged to a critical configuration as

in right-most part of Figure 6.10.

6.5 Adversarial Target: An Insight

We now provide some insight into the case of multiple vehicles wherein the target

possesses adversarial motion, i.e., the goal of the target is to maximize a cost function

such as the vertical distance (or the intercept time). The underlying pursuit game is

similar to the classic two-cutter game [51].

Consider only two vehicles p1 and p2, and suppose the target arrives at q. In

order to maximize the vertical distance (resp. intercept time), the optimal strategy

for the target is as follows [51].

1. Compute the multiplicative Voronoi partitions (MVP) (cf. Section 6.2.3) with

respect to the pursuer locations p1 and p2.

2. Move towards the point with highest Y coordinate (resp. furthest point) in the

intersection of the MVPs of the evader with respect to both the pursuers.

188



Figure 6.9. Evolution of two vehicles under the discrete-time Lloyd descent algorithm,

for uniform arrival density. The vehicles first tend to an critical dominance region

configuration in the center figure. A perturbation to their positions makes them move

to a stable configuration as in the third figure.

Figure 6.10. Evolution of three vehicles under the discrete-time Lloyd descent algo-

rithm, for non-uniform arrival density as shown by the black triangle. Notice that

the blue vehicle has no dominance region to begin with. The vehicles tend to a stable

configuration.
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The strategy is illustrated in Figure 6.11. We partition the generator into three

regions:

• V1 (resp. V2): Set of all locations q for which the MVP of the target with

respect to pursuer p1 (resp. p2) is entirely contained in the MVP with respect

to pursuer p2 (resp. p1).

• V1,2 := G \ (V1 ∪ V2).

Figure 6.11 shows examples when the arrival location is in either V1 or in V1,2. In

I

p2
p1

q

(a) This figure illustrates q ∈ V1. The

optimal strategies with respect to the

vertical distance as the cost is for the

target at q and the vehicle p1 to move

towards I. Vehicle p2 need not move.

q

p1

I

p2

(b) This figure illustrates q ∈ V1,2. The

optimal strategies with respect to the

vertical distance as the cost is for the tar-

get at q and both the vehicles to move

towards I.

Figure 6.11. The partition of the generator for catching an adversarial target.

other words, the optimal pursuer strategy is to move pursuer pi as per the constant

bearing control if the target is in Vi, for some i ∈ {1, 2}, and to move both pursuers

if the target is in V1,2. Therefore, the average cost Cexp(p1,p2), such as the intercept

time or the vertical distance can be written as

Cexp =

2∑

i=1

∫

Vi

C(pi, x)φ(x)dx+

∫

V1,2

C(p1,p2, x)φ(x)dx. (6.10)

190



The main difference between equation (6.10) and equation (6.8) is the extra term

C(p1,p2, x). The gradient of the first term in equation (6.10) is similar to that in

Lemma 6.4.6. However, the second term C(p1,p2, x) is difficult to characterize in

the form of an analytical expression. The complexity of the calculation of terms

such as C(p1,p2, x) is expected to increase considerably as the number of vehicles is

increased. Thus, the problem with adversarial targets involving multiple vehicles is

presently open, and is a challenging future direction.

Summary

We addressed the problem of optimally placing vehicles having simple motion in

order to intercept a mobile target that arrives stochastically on a line segment. The

optimality of a vehicle placement is measured through a cost function, associated with

intercepting the target. For the single vehicle case, we determined optimal placements

when target motion was either constrained, i.e., with fixed speed and direction, or

adversarial. The cost functions considered were the vertical distance from the line

and the intercept time. For all the cases, we showed that the associated cost function

is convex, sufficiently smooth and has a unique global minima, which the vehicle

can reach by using a gradient-based optimization technique. For the multiple vehicle

scenario and with constrained motion targets, we presented a partition and gradient

based algorithm that takes the vehicles asymptotically to a set of critical locations of

the cost function.

Acknowledgments: The authors would like to thank Prof. Jorge Cortés from

University of California, San Diego for insightful discussions that lead to the proof of

Lemma 6.3.3.
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Algorithm 5: Pairwise dominance region

Assumes: Distinct pi = (Xi, Yi), pj = (Xj , Yj).

if Yi = Yj, then1:

Uij :=







[0, (Xi +Xj)/2], if Xi < Xj

[(Xi +Xj)/2,W ], if Xi > Xj2:

else3:

θ := arctan2(Yi − Yj, Xi −Xj) + π/24:

ℓ1,2 := two roots of 0 = 4(sin2(θ) − v2)ℓ25:

+4(Yi + Yj) sin(θ)ℓ+ (Yi + Yj)
2 − v2‖pi − pj‖2

6:

y1,2 := (Yi + Yj)/2 + sin(θ)ℓ1,27:

if y1 > 0 and y2 > 0 then8:

x1,2 := (Xi +Xj)/2 + cos(θ)ℓ1,29:

Uij :=







[0,W ] ∩ [x1, x2], if Yi < Yj

[0,W ]\]x1, x2[, if Yi ≥ Yj.

else10:

k := index in {1, 2} for which yk > 011:

x := (Xi +Xj)/2 + ℓk cos(θ)12:

Uij :=







[0,W ] ∩ ]−∞, x], if Xi < Xj

[0,W ] ∩ [x,+∞[, if Xi ≥ Xj
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Chapter 7

Conclusions and Future Directions

We have addressed pursuit strategies for (i) a single adversarial target, and (ii)

multiple, sequentially-arriving translating targets. For an adversarially moving target

and under various constraints on sensing and motion, we gave sufficient conditions

on parameters in every problem for which our strategies were provably effective. For

multiple, sequentially arriving translating targets, our strategies were also provably

efficient in terms of being close to fundamental limits of performance.

This thesis has focussed upon problem formulations that assume no noise in the

measurements or in the motion of the players. It is essential to know that under

ideal conditions, what strategies turn out to be effective and efficient. However,

uncertainties are part of every physical system and therefore need to be accounted

for in the analysis. For some problems, we have provided simulation-based studies for

certain commonly observed sensor noise models. To provide analytical rigor would

be an interesting direction of research. It is possible to extend the analysis for some

problems under assumptions such as bounded-but-unknown noise, which would be a

part of short term future goals.

Specifically, the following are detailed short-term future goals for the various prob-
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lems addressed in this thesis.

1. For pursuit under sensing limitations, it would be worthwhile to provide a better

upper bound on the time complexity of both the single as well as the multiple

pursuer problems. The effects of communication losses or errors in the multiple

pursuer problem, seem a promising direction. Another interesting direction

would be to consider alternate sensing models such as probabilistic detection,

or sensors with false alarms for the players.

2. For pursuit with minimalist sensing, the Grow-Intersect idea might prove to be

an effective tool to solve the continuous-time problem of pursuit with only dis-

tance measurements. Simulation results definitely provide a positive indication.

3. For pursuit with motion constraints, it would be of interest to design decentral-

ized pursuit strategies in which all pursuer play identical roles. Also of interest

would be the optimal number of pursuers for such strategies.

4. For pursuing multiple and sequentially arriving translating targets, an inter-

esting future direction is to have on-site service times for the demands. For

the case in which the on-site service times are independent and identically dis-

tributed with a known expected value, and the vehicle is permitted to move

with the demand upon reaching it, the results in this chapter could be extended

using similar analysis. More recently, in [90], we have addressed a version of the

present problem in which the goal for the vehicle is to maximize the fraction of

demands served before they reach a deadline, which is at a given distance from

the generator.

5. The placement problem for multiple pursuers to reach translating targets is a

natural extension of the previous problem. Variations of this problem such as

allowing the target to pick a direction and move, or actively evader a pursuer

are within the scope of short-term future goals.
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As part of long term goals, we envision addressing the general problem of pursuing

multiple, sequentially arriving targets that have partially predictable motion. Akin

to the approach presented in [62], we propose an heirarchical structure that comprises

of (i) solving a dynamically changing combinatorial assignment problem at a higher

level, and (ii) utilization of our set of pursuit strategies for engagement at the lower

level. The partial predictability in the motion of the targets can be exploited to

improve the solutions at both levels. The spatial arrival distribution of the targets

may not be known and thus, there needs to be a phase in which the pursuers learn

this distribution. This would lead to the fusion of tools from learning theory to this

heirarchical control structure.
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