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Abstract

This thesis addresses problems of optimization to be solved collectively (distributely, we
say) by groups of networked agents having limited communication and computation ca-
pabilities. The focus is on two paradigmatic problems, average consensus and coverage
control. The former consists in computing the average of values which are priory known
to the agents, while the latter consists in optimally deploying robotic agents in a given
environment. Their solution is possible thanks to iterative algorithms which exploit the
available communications among agents, described by a graph.

Research has been very intense in latest years on these problems, due to strong ap-
plicative motivations: these algorithms are crucial for the design of networks of sensors,
and for the coordinated motion of groups of unmanned vehicles. Namely, the ultimate goal
of these algorithms is to make such artificial networks able to self-organize and perform
specific tasks without a centralized supervision.

In the thesis networks have been considered, which allow only communication in pairs,
or limited to messages belonging to a discrete alphabet. Several novel algorithms for the
solution of the above optimization problems are proposed: they are proved to lead the
agents to the desired solution, and their performance is studied. The mathematical tools
required for the analysis are novel, or need to be used in a non-standard way. They are
drawn from very different branches of pure and applied mathematics: spectral graph the-
ory, Markov chains, combinatorics, linear algebra, set-valued analysis, convex and discrete
geometry, topology of hyper-spaces of sets.
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General introduction

Problems overview

In the latest years, the applied mathematics community has witnessed an increasing inter-
est for studying control, estimation and algorithmic problems over networks. A common
feature of these problems is the fact that there is a fundamental constraint on the in-
formation flow: data and capabilities are distributed across a possibly large number of
agents, which communicate among each other through some communication network. A
quite large variety of different engineering problems do fit in this general setting. Concrete
specifications can be obtained by choosing the common goal, the agents internal model,
the communication network. Such problems are mostly new to the engineering community
and give to the applied mathematician the way of posing and solving interesting mathe-
matical problems. This thesis aims at contributing to this emerging field, focusing on two
prototypical problems: the consensus and coverage problems. Both of them are special
cases of optimization problems in a distributed system of agents.

Hence, we shall introduce distributed optimization, consensus, and coverage problems.
In general, an optimization problem can be written as

min
θ∈Θ

f(θ). (1)

A distributed optimization problem (for N agents) is an optimization problem in which
f(θ) depends on a vector of functions (fi(θ))Ni=1. Each function fi is local to agent i, in
the sense that it can be computed by the agent i using the available information. Since
communication among the agents is limited to a communication graph, these optimization
problems can not be solved by usual algorithms, but need iterative procedures involving
some sort of information spreading. Typical theoretical results include proving the con-
vergence of the proposed algorithms and estimating its speed of convergence.

Let us now introduce an important family of problems. The function f is said [66] to
be separable if

f(θ) =

N
∑

i=1

fi(θ). (2)

These functions are attracting a special attention [79, 66, 71, 70] because, in spite of their
simple structure, include important examples. The problems studied in this thesis fall in
this framework.
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2 General introduction

The average consensus problem

Suppose we have a directed graph G = (V,E), with nodes set V = {1, . . . , N} and edges set
E ⊂ V × V , and a real quantity xi for every node i ∈ V . The average consensus problem
consists of computing the average xave = N−1

∑N
i=1 xi in an iterative and distributed

way, exchanging information among nodes exclusively along the available edges in E . The
average consensus problem can be seen as the quadratic minimization problem relative
to the function f(θ) in (2), obtained by choosing fi(θ) = (xi − θ)2. Then the minimum
(1) is achieved for θ = xave. This problem appears in the control community since the
early 80’s (decentralized computation [85], load balancing [32]) and, more recently, has
attracted much attention [73, 24] for a variety of possible applications:

(i) data fusion [89, 13] in sensors networks;

(ii) clocks synchronization [58, 16];

(iii) coordinated control of mobile autonomous agents.

In the latter case, we want a group of self-propelled agents to complete a task involving
coordinated motion, without any external supervision. Examples of tasks include going
to a rendezvous point, aligning velocities, and reaching or keeping a spacial disposition
(formation). Early works on the subject include [86, 53], and more recent works include
[61, 62, 28, 50], while an accessible introduction can be found in [63]. Two recent books
[81, 11] are available on the subject.

Moreover, related problems have been studied in the probability [26] and computer
science [75] communities since the 70’s, as well as by game theorists in the context of
coordination games[91, 64].

The average consensus problem is especially attractive for an applied mathematician
because, while it is suitable to a variety of applications, its simplicity allows a rather deep
theoretical understanding.

The coverage problem

Coverage control has the goal of optimizing the deployment, that is the spatial configura-
tion, of a group of robots in a given environment [11]. The optimization problem can be
written in terms of a cost function, depending on the agents’ positions. In this form, the
problem has been recently solved in a distributed way [29].

In this thesis, a novel approach to the problem is taken. We aim at the optimization
of a partition of the given environment, each portion of which is assigned to one agent.
Optimality is then defined with respect to how well the agents can control their own
regions. To be more formal, let the environment to apportion be Q, a compact subset of
R

d, and let the variable θ = {θi}N
i=1 belong to a space of partitions of Q into subregions,

assigned to each agent. Let φ be a measure on Q, and Cd(θi) denote the centroid of the
region θi. Then if we define

fi(θ) =

∫

θi

‖y − Cd (θi)‖2dφ,
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we have written the coverage control problem as a distributed optimization problem.

To solve the problem, we design iterative algorithms which, starting from an initial
partition, at each time step update the partition according to some local rule. The goal is
to make the sequence of partitions converge to an optimal one. Among possible algorithms,
we shall prefer those which require the least communication effort.

Mathematical tools

The spectrum of mathematics which are involved in these problems is extremely wide,
depending on the variety of problems. Example giving, the specific case of the coverage
problem studied in Chapter 6 has required techniques from convex geometry and analysis.
Since the emerging field of distributed control and optimization lies at the crossing of
control, optimization, computer science and information theory, many mathematical tools
come from these fields. Classical optimization methods are obviously a reference. Besides,
we will happen to use results from stability and feedback control of dynamical systems,
both in classical settings and in the context of switching systems.

Other mathematical tools, like graph theory, are specifically relevant for distributed
system. Indeed, since the potential communication are effectively depicted using a graph,
many aspects of graph theory are relevant. Most interest has been devoted to spectral
graph theory: interesting connections have been found between the eigenvalues of the ad-
jacency matrix of the graph and the performance of various algorithms. An important
role is played by discrete mathematics and combinatorics, for various reasons. First, as
a background for graph theory, and second, because of the application to digital proces-
sors, which inherently deal with finite sets of inputs and outputs. An example is the
family of symbolic dynamics induced by quantization, that we are going to study along
Chapters 2 and 3. Probabilistic tools, mostly about Markov chains, are of the greatest
importance. This happens because in most cases the performance of the algorithms is
evaluated on random instances, and several proposed algorithms are themselves random-
ized. Moreover, consensus problems have a natural connection with the classical problem
of the random walk on a graph.

Finally, we want to stress the interplay between computer simulations, useful to provide
experimental evidences about the algorithms, and the rigorous analysis which is offered
by mathematics. The role of mathematician in dealing with such delicate issues is crucial,
and appreciated by the engineering community.

Statement of contributions

Our contribution in this emerging field has been focused on the design and analysis of
distributed algorithm to solve the problems of consensus and coverage under severe com-
munication limitations. As we said, available links between agents are usually described as
a graph. Most precedent literature has assumed the communication channels between the
agents to be analog, permanent, reliable, and able to transmit information instantaneously
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and correctly. Our contribution has been in designing and analyzing algorithmic solutions
for cases in which the above assumptions do not hold.

The results of the thesis have been mostly published, or submitted for publication, in
conferences proceedings [19, 18, 20, 21, 40, 38] or journals [41, 23]: note however that the
content of the thesis is wider and contains further results and insights. Note moreover that
some work of mine, done in preparation to my master’s thesis, has appeared in [30]. The
latter paper deals with multi-agent systems from the perspective of mathematical physics
and modeling, rather than of control, and its content is not included in this thesis.

Part I: Digital consensus

This research has been done in collaboration with Ruggero Carli, Fabio Fagnani, Thomas
Taylor (Arizona State University), and Sandro Zampieri. My stay at the University of
Padova in fall 2006 has been the occasion to start working on this topic.

All literature on the consensus problem, until year 2006, assumed the agents to be
able to communicate with their neighbors in the graph through an ideal communication
channel: instantaneous, reliable, and able to transmit real numbers. Relaxing these as-
sumption to consider digital channels, able to send quantized information, have given rise
to the research exposed in Part I of the thesis. The material is organized as follows. In
Chapter 1 we survey the state of the art about average consensus algorithms, with no claim
of completeness, but rather in view of presenting our results. Moreover, we introduce the
quantization constraint: the messages the agents can send belong to a discrete space, and
are obtained as the image of the agent state through a map, called the quantizer. Several
quantizers are introduced, and we preliminarily discuss their properties and impact on
consensus algorithms.

In the following chapters, three specific problems are considered.

(i) Chapter 2. Deterministic algorithms for average consensus over networks with time-
invariant topology and digital channels. Deterministic time-invariant consensus al-
gorithms have been studied in many papers, starting from the pioneering work [85].
In this chapter we consider the constraint of having a digital communication with
messages belonging to a countable set, and we propose a novel update rule for the
agents’ states. Such update rule has the advantages of simplicity and of preserving
the average through iterations, but due to the quantization, consensus can not be
approached with arbitrary precision. We study the committed steady state error, as
well as the speed of convergence of the algorithm, as functions of the communication
graph. Understanding how the properties scale with N has been a major concern.
Due to the non-linearity of the system, most results are obtained by a bounded error
model, which is studied with both a worst-case and a probabilistic approach. Most
results appeared in [18, 20, 21, 41].

(ii) Chapter 3. Randomized “Gossip” algorithms for consensus, using pairwise digital
communication. At least since [9], people have studied algorithms in which only
random subsets of the edges are used, or available, at each time step. Namely,
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the attention has been focused on communication in pairs. Indeed, pairwise com-
munication can be easier to establish in an hazardous environment, and algorithm
using pairwise communication have shown to be effective in reducing the amount of
communication required for convergence. In the chapter we study average consensus
problems in which communication, besides being quantized, is constrained to happen
between pairs of agents. We consider two different update rules, and the advantage
of using a randomized quantizer instead of a deterministic one. This is done by a
detailed probabilistic analysis of the convergence of such algorithms, and of their
performance in terms of achievable precision. Roughly the same set of results is
exposed in [40, 23].

(iii) Chapter 4. Efficient quantization techniques. Assuming a static topology and the
use of a saturated quantizer with finite range, we propose a more elaborated coding-
decoding scheme, which is able to drive the systems to converge with arbitrary
precision to average consensus at exponential speed, at the price of using minimal
additional memory and computational resources for coding and decoding. The result
appeared in [19], and is presented here and in the report [22] in a slightly refined
version, together with encouraging simulations.

Finally, Chapter 5 is devoted to comment on the obtained results, and point out perspec-
tive research in this field.

Part II: partitions optimization with pairwise communication.

This research has been developed in collaboration with Francesco Bullo and Ruggero Carli,
during my stay as a visiting scholar at the University of California at Santa Barbara in
spring 2008.

Part II of the thesis undertakes the solution of coverage problems for convex envi-
ronments under the constraint of pairwise communication, thanks to a novel approach to
coverage problems. In previous literature [29, 11], a coverage algorithm is described as
a dynamical system of the robots positions: in our approach, the state space consists of
the partitions of the given environment into subregions. The convergence properties of
the gossip algorithm are established through two results of independent interest. First,
describing the properties of a suitable space of partitions, and the continuity of certain
geometric maps. Second, proving a LaSalle invariance principle for switching maps on
metric spaces. While the framework is set, and convergence is proven, for an environment
of any dimension (Chapter 6), a special attention is devoted to the one dimensional case
(Chapter 7). Indeed the latter enjoys a fruitful connection with the average consensus
problem. A brief account of these results has appeared in [38], and a more extended
report is available in [39].

Perspectives

The research presented above is rich in potential developments, as the whole field of control
with limited communication: see Chapter 5 and Chapter 8 for a concise account of open
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problems and research perspectives on consensus and coverage problems, respectively. We
wish to present here two open problems, which we consider of strategic interest, and
which we are going to address in the next future. First, in the consensus problem, the
constraint of quantized communication has been applied, in the current literature, with
an assumption of reliability of the channel. It is thus apparent the interest of relaxing this
assumption, and providing algorithms able to assure convergence to consensus in presence
of digital noisy channels. Second, the novel approach to coverage problems, by means of
dynamical systems of the partitions, is promising of wider application: in more general
environments (non-convex or discrete), and using more general cost functions.
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Digital consensus
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Chapter 1

Average consensus algorithms and

network models

This first chapter, besides giving some technical preliminaries, introduces the consensus
problems on networks of digital links, which are studied in Chapters 2, 3 and 4.

After introducing some standard notations in Section 1.1, in Section 1.2 we lay down
the graph theoretical framework which takes into account the network structure, together
with some relevant result. Then, in Section 1.3 we introduce the consensus problem,
and overview the state-of-the-art algorithms for solving it on networks allowing perfect
transmission of information. Section 1.4 discusses the way to model a network of digital
or digital noisy links, introducing some relevant quantizers, and proposing a framework to
adapt the ”ideal case” algorithms to more general networks model. Such adaptation has
been introduced by the author in [18]: from Section 1.4 on, the contents of the thesis are
novel.

1.1 Notations

The symbols N, Z, R, C denote the natural, integer, real and complex numbers, respec-
tively. The symbols Z≥0, R>0, R≥0 denote the nonnegative integers, and the positive and
nonnegative reals, respectively. If x ∈ C, then |x| denotes its absolute value, whereas if A
is a set, |A| denotes its cardinality. The notations b·c and d·e are used to denote the floor
and ceiling maps from R to Z.

Given N ∈ N, 1N ∈ R
N is a vector having all entries equal to 1, and IN is the identity

matrix of dimension N . Given a matrix M ∈ R
m×n, M∗ denotes its conjugate transpose.

Given a subspace V of R
N , V ⊥ denotes the subspace orthogonal to V . The matrix

ΩN = I − N−11N1∗
N represents the operator projecting on the space span{1N}⊥, where

span{v} = {x ∈ X | x = λv, λ ∈ R} is the subspace spanned by a vector v. When sizes can
be inferred from the context, the subscripts are dropped. Given a matrix M ∈ R

N×N ,
diag(M) means a diagonal matrix with the same diagonal elements of the matrix M .
Given a vector m ∈ R

N , diag(m) means a diagonal matrix having the components of m
as diagonal elements. Given a vector x ∈ R

N with ‖x‖ and ‖x‖∞ we denote respectively

9



10 Chapter 1. Average consensus algorithms and network models

the Euclidean norm and the sup-norm. Accordingly, given a matrix M ∈ R
N×N , with

‖M‖ and ‖M‖∞ we denote the induced operator norms.
P and E denote the probability of a given event and its mathematical expectation.
To compare the asymptotic behavior of two functions f, g : N → R, we use the nota-

tions:

• f = o(g) if limn→∞
f(n)
g(n) = 0;

• f � g if limn→∞
f(n)
g(n) = 1;

• f = Θ(g) if there exist N0 ∈ N and k1, k2 positive real numbers, such that k1|g(n)| ≤
f(n) ≤ k2|g(n)| for all n ≥ N0;

• f = O(g) if there exist N0 ∈ N and a positive real number k, such that f(n) ≤
k|g(n)| for all n ≥ N0;

• f = Ω(g) if there exist N0 ∈ N and a positive real number k, such that f(n) ≥ kg(n)
for all n ≥ N0.

1.2 Graph and matrix theory

Matrices

A matrix M ∈ R
N×N is said to be normal if A∗ A = AA∗. A normal matrix is always

diagonalizable, namely a matrix is normal if and only if it can be diagonalized by a unitary
matrix. A matrix M ∈ R

N×N is said to be nonnegative if Mij ≥ 0 for all i and j. A matrix
M is said to be stochastic if it is nonnegative and the sums along each row are equal to 1.
Moreover a matrix M is said to be doubly stochastic if it is stochastic and also the sums
along each column are equal to 1. Given a matrix M ∈ R

N×N , let σ(M) denote the set
of eigenvalues of M and ρ(M) the spectral radius of M : ρ(M) = max{|λ| : λ ∈ σ(M)}.
When the matrix M is stochastic, ρ(M) = 1, and thus it is worth to define the essential
spectral radius as

ρess(M) =

{

1 if dim ker(M − I) > 1
max{|λ| : λ ∈ σ(M) \ {1}} if dim ker(M − I) = 1 ,

(1.1)

Graphs

Communication links among agents are modeled by a directed graph G = (V,E) where
V = {1, . . . , N} is the set of vertices and E is a subset of V × V . The cardinality of V is
said to be the order of the graph. An element of E is said to be a (directed) edge. Any
(i, i) ∈ E is called a self loop. A path in G consists of a sequence of vertices i1i2 . . . . . . ir
such that (i`, i`+1) ∈ E for every ` = 1, . . . , r−1; i1 (resp. ir) is said to be the initial (resp.
terminal) vertex of the path. A vertex i is said to be connected to a vertex j if there exists
a path with initial vertex i and terminal vertex j. A graph is said to be undirected (or
symmetric) if (i, j) ∈ E implies that (j, i) ∈ E. A directed graph is said to be (weakly)
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connected if, given any pair of vertices i and j, either i is connected to j or j is connected
to i. A directed graph is said to be strongly connected if, given any pair of vertices i and
j, i is connected to j. On an undirected graph, these two notions coincide, and we just
talk about connectivity. A graph is said to be fully connected or complete if E = V × V.
Given G1 = (V,E1) and G2 = (V,E2), we say that G1 ⊂ G2 if E1 ⊂ E2.

The adjacency matrix of G, denoted by AG or just A, is a {0, 1}-valued matrix indexed
by the elements in V defined by letting Aij = 1 if and only if (j, i) ∈ E and j 6= i. Define
the in-degree of a vertex i as

∑

j Aij and the out-degree of a vertex j as
∑

i Aij . A graph
is said to be d-regular if the in-degree and the out-degree of all its nodes is equal to d. In
an undirected graph the in-degree and the out-degree are equal, and we just talk of degree
of a node.

Given a graph G, denote the in-degree of node i ∈ V by di, and DG = diag (d1, . . . , dN ).
Then, the Laplacian matrix of the graph G is defined as LG = DG − AG . Such matrix, and
its eigenvalues, are of the greatest importance to understand the properties of graph G
and of algorithms based on it. For a general treatment, we refer the reader to [25].

Given a nonnegative matrix M ∈ R
N×N , we can define an induced graph GM = (V,EM )

by putting an edge (j, i) in EM ⊂ (V × V ) if Mij > 0. Given a graph G on V , a matrix
M is said to be adapted or compatible with G if GM ⊂ G.

1.2.1 Examples

We describe here some relevant families of graphs, which are used later as examples.

Example 1.1 (Abelian Cayley graphs and matrices) An interesting class of graphs
are the Cayley graphs defined on Abelian groups [4]. Let G be any finite Abelian group of
order |G| = N , whose operation is denoted by +, and let S be a subset of G. The Cayley
graph G(G,S) is the directed graph with vertex set G and arc set

E = {(g, h) ∈ G × G : h − g ∈ S} .

A notion of Cayley structure can also be introduced for matrices. A matrix M ∈ R
G×G

is said to be a Cayley matrix over the group G if

Mi,j = Mi+h,j+h ∀ i, j, h ∈ G .

This means that a generating vector π ∈ R
N exists such that Mi,j = π(i − j).

Note that the adjacency matrix of a Cayley graph is a Cayley matrix, defined on the same
group. Cayley matrices enjoy many properties: among others, they are normal. Moreover,
it is possible to write their spectrum explicitly [24].

We now list some important examples of Cayley graphs

Example 1.2 (Circulant graphs) If G = ZN , the cyclic group of order N , then the
Cayley graph G(G,S) is said to be circulant, and the Cayley matrix M is said to be a
circulant matrix [33].
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Example 1.3 (Tori and ring graphs) Let G = Z
d
n, and let ei be the vector of length

d having the i-th entry equal to 1 and the other entries equal to 0. The Cayley graphs
G(G, {ei}i=1,...,d) and G(G, {ei}i=1,...,d ∪{−ei}i=1,...,d) are called the directed and undirected
d-dimensional torus graphs, respectively. The important special cases when d = 1 are
circulant graphs, and we refer to them as rings.

The graph which is obtained removing one edge from an undirected ring is called a line
graph.

Example 1.4 (Hypercube graphs) The n-dimensional hypercube graph, the Cayley
graph G(Zn

2 , {ei}i=1,...,n), is the graph obtained drawing the edges of a n-dimensional hy-
percube. It has N = 2n nodes which can be identified with the binary words of length n.
Two nodes are neighbors if the corresponding binary words differ in only one component.
Thus the graph is undirected and every node has degree n.

Example 1.5 (Random geometric graphs) A random geometric graph of order N is
obtained through the following probabilistic construction. Consider N random points in
the unit square, independently drawn and uniformly distributed. Then, two vertices have
an edge between them, if their Euclidean distance is below a threshold R. Two examples
are in Figure 1.1.

The random geometric graph is commonly used to model wireless networks [49]. Of
special interest are families of random geometric graphs of increasing order, in which R
depends on N . Among them, the choice R = Θ(

√

log N/N ), for N → ∞, has attracted
special attention, as it is able to assure connectivity of the graph with probability going to
1 as N goes to infinity, while keeping low the number of edges. For a complete treatment
of random geometric graphs, see [76].
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Figure 1.1: Two sample random geometric graphs, generated with N = 20 and R = 0.3
and R = 0.5, respectively.
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1.3 Average consensus problems and algorithms

The average consensus problem is the problem of driving the states of a set of dynamical
systems to a final common state which corresponds to the average of initial states of
each system. In a broader sense, a consensus problem requires to drive the states to any
common state.

This mathematical problem can be seen as the simplest example of coordination task.
In facts, it can be used to model both the control of multiple autonomous vehicles which
all have to be driven to the centroid of the initial positions (rendezvous), and to model the
decentralized estimation of a quantity from multiple measures coming from distributed
sensors. For this combination of simplicity and significance it is of great interest to the
applied mathematician. In the latest years, algorithms to solve consensus problems have
attracted a lot of interest. Several algorithms for average consensus have been proposed
in the literature: among the vast literature, we refer the reader to [73] [24] and references
therein. The difficulty of the problem resides in the communication constraints which are
given to the agents, represented by a graph: nodes are agents and edges are available
communication links. Let us now be more precise in stating the problem. First, with
the aim on giving more emphasis to the role of communication, than to the dynamics of
single agents, we restrict ourselves to sets of identical discrete-time linear systems, whose
coupling is described by a graph.

Let there be a graph of agents G = (V,E), with V = {1, . . . , N}. We assume that
only if (j, i) ∈ E, j can transmit information about its state to i. Let there also be N
systems, one for each agent, whose dynamics are described, for t ∈ N0, by the following
discrete-time state equations

xi(t + 1) = xi(t) + ui(t) i = 1, . . . , N

where xi(t) ∈ R is the state of the i-th system/agent, and ui(t) ∈ R is the control input.
More compactly we can write

x(t + 1) = x(t) + u(t) (1.2)

where x(t), u(t) ∈ R
N .

Definition 1.1 (The consensus problem) Given the system (1.2), the consensus prob-
lem consists in designing a sequence of control inputs u(t) yielding the consensus of the
states, namely

(i) if x(0) = λ1 with λ ∈ R, then x(t) = x(0) for all t ∈ N.

(ii) it exists α ∈ R such that

lim
t→+∞

x(t) = α1. (1.3)

If we require α = xave(0), we have the average consensus problem.
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The important case we restrict to, and which has been mostly studied in literature, is
a static linear feedback

u(t) = Kx(t) K ∈ R
N×N (1.4)

In such case the system (1.2) is given by the following closed loop system

x(t + 1) = (I + K)x(t). (1.5)

The matrix I + K is commonly called a Perron matrix, and denoted by P . The problem
of designing the controller thus reduces to find a matrix K adapted to G.

Methods for design are already clear in the literature [24].

Proposition 1.1 The consensus problem for system (1.5) is solved if and only if the
following condition holds.

(i) The only eigenvalue of I + K on the unit circle is 1;

(ii) the eigenvalue 1 has algebraic multiplicity one (namely it is a simple root of the
characteristic polynomial of I + K), and 1 is its eigenvector;

(iii) all the other eigenvalues are strictly inside the unit circle.

In the sequel we will restrict to matrices K such that I + K is a nonnegative matrix, that
is a matrix with all elements nonnegative. Proposition 1.1 then implies that I + K has to
be a stochastic matrix. Moreover,

lim
t→∞

(I + K)t = 1v∗

where v ∈ R
N is the unique probability vector such that v∗(I + K) = v∗. This implies

that
lim
t→∞

x(t) = v∗x(0)1.

In the special case when v = N−11 we obtain that the consensus is achieved at the average
of the initial conditions. In this case, P = I + K is a doubly stochastic matrix and K is
said to be an average consensus controller.

The following assumption on P guarantees that K is an average consensus controller.
We are going to use it during Chapters 2 and 4.

Assumption 1.1 P is a doubly stochastic matrix such that Pii > 0, for all i ∈ {1, . . . , N},
and GP is strongly connected.

We collect here some facts about such matrix P , which are easy to check or conse-
quences of the Perron-Frobenius Theorem [44].

Lemma 1.2 Let P satisfy Assumption 1.1 and let Ω = I − N−111∗. Then the following
facts hold.

• The eigenvalues of P are bounded in modulus by 1.
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• There is only one eigenvalue of modulus 1. It is simple, and equal to 1. The corre-
sponding eigenvector is 1.

• limt→∞ P t = N−111∗.

• ΩP has the same eigenvalues and eigenvectors system as P , except that the eigen-
value 1 is replaced by 0. This implies that

lim
t→∞

ΩP t = 0.

• PΩ = ΩP and Ω2 = Ω.

• ‖PΩ‖ < 1.

The lemma implies convergence to the average consensus.

Proposition 1.3 (Average consensus) Let x(t) evolve following (1.5), and P satisfy
Assumption 1.1. Then limt→∞ x(t) = xave(0)1.

Conversely, the following result [24] characterizes those graphs G for which the average
consensus problem is solvable, in the sense that an average consensus controller compatible
with G can be found.

Proposition 1.4 (Solvability of average consensus) Let G be a directed graph con-
taining all self-loops. The following conditions are equivalent:

(i) The average consensus problem is solvable on G.

(ii) G is strongly connected.

Furthermore, if the above conditions are satisfied, any K such that I+K is doubly stochas-
tic and GI+K = G, solves the average consensus problem.

For the analysis of consensus algorithms, it is useful to introduce some quantities,
depending on the state x(t).

Definition 1.2 (Consensus figures) Let x(t) be the state of a system evolving through
a consensus algorithm. Then we define the disagreement vector

y(t) = x(t) − xave(t),

the scalar bias
z(t) = |xave(t) − xave(0)|,

and the total disagreement
ȳ(t) = x(t) − xave(0).

Remark that
y(t) = Ωx(t).

Moreover, let

d(t) =
1√
N

‖y(t)‖.
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Thus the latter quantity represents the normalized distance of the state x(t) from the
average of the states.

Whenever an algorithm drives a system to consensus, limt→∞ y(t) = 0. It is thus
interesting to evaluate the rate of convergence of the algorithm, that we define as

R = sup
x(0)

lim sup
t→∞

d(t)1/t. (1.6)

For the linear algorithm (1.5), we have the following result [24].

Proposition 1.5 (Rate of convergence) Let x(t) follow (1.5). Then the rate of con-
vergence is a function of P . Namely,

R(P ) = ρess(P ).

1.3.1 How to construct a Perron matrix

Restricting to Perron matrices satisfying Assumption 1.1, we are left with the problem of,
given a strongly connected graph, designing one such matrix, adapted to it. Proposition 1.4
assures that this can be done: the interest is then in making an optimal choice with respect
to some performance parameter. The more natural and investigated index is the rate of
convergence R(P ), which reduces to studying ρess(P ). This problem is well known in the
literature [8], since it correspond to designing the fastest mixing Markov chain on the given
graph. An account of this optimization problem, from the point of view of consensus, can
be found in [24].

The problem, though well known, is not simple: example giving, there are many
degrees of freedom (one for each edge). For this reason, we list here some of the most
natural restrictions which can be imposed to the matrix P to obtain a simpler problem.
This exposition is also preliminary to discuss specific optimization problems, later in the
exposition.

(i) Given a graph G, for any gain γ ∈ (0, 1) we can use a weighted Laplacian Perron
matrix

P = I − γD−1LG .

This choice leaves the gain parameter free for optimization. This construction does
not give a doubly stochastic matrix unless

∑

i6=j

d−1
i Aij = 1 ∀ j ∈ V,

which is true if G is symmetric or regular.

(ii) if G is d-regular, we can set γ = d
d+1 in (i), obtaining a uniform Perron matrix

P = 1
d+1(I + AG), which is doubly stochastic.
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(iii) Posing dM = maxi∈V di, we can define a Maximum degree Perron matrix as

P =

(

1 − 1

dM + 1
D

)

I +
1

dM + 1
A,

which is doubly stochastic when the out-degree of each node equals its in-degree.

1.3.2 Scaling of performance

We introduce here an important issue for the analysis of consensus algorithm, that of
how performance scales with increasing the number of agents. To see this, we consider
sequences of graphs of increasing size, and the speed of convergence as the performance
index. E.g., for N ∈ N, consider ring graphs on N nodes, and uniform weights matrices PN

adapted to them. A natural question is: does ρess(PN ) depend on N? From the properties
of circulant matrices [33] it comes out that

ρess(PN ) =

(

1

2
+

1

2
cos

2π

N

)
1

2

� 1 − π2

2

1

N
for N → ∞.

Then the rate of convergence goes to 1 as N goes to infinity, at polynomial speed. Such
increase of the spectral radius is much more general, as we can see from the following
result regarding Cayley graphs.

Lemma 1.6 ([24]) Let G be a finite Abelian group of order N and S ⊂ G. Let G(G,S)
be the Cayley graph associated with G and S, and P any matrix adapted to it. If |S| = ν,
then ρess(P ) = 1 − CN−2/ν, where C > 0 is a constant independent of G and S.

From the point of view of consensus, it means that the convergence rate degrades as N
grows, at a polynomial speed. Note that there are families of graphs which do not show
this dependence. Indeed, the dependence on N can be logarithmical, as for the hypercube
graphs (2.21), or there can be no such dependence. Indeed, there are sequences of graphs
such that the matrices adapted to them have the essential spectral radius bounded away
from 1, uniformly in N . The easiest example are the complete graphs, while other examples
are the so called expander graphs. A fact similar to Lemma 1.6 is conjectured to hold for
many classes of graphs, like (random) geometric graphs and planar grids or tessellations.
A complete understanding of which classes of graphs show such dependence of N is still
an open problem, which is not going to be further addressed here.

1.3.3 Gossip algorithms

Besides the static linear controller considered in the previous sections, more refined algo-
rithms have been proposed in the literature. Restricting to linear algorithms, interesting
cases are obtained using at each time step only a subset of the links. Sufficient and
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necessary conditions for convergence are known, both if the choices of the subsets are
deterministic [65], and if they are stochastic [36].

Particularly interesting is the so called (symmetric) gossip algorithm: at every time
instant a randomly chosen pair of agents communicates, and they average their states.
Such algorithm, brought to wide audience by [9], has many appealing features: it reduces
the number of communications with respect to deterministic algorithms and avoids data
collision. Let us describe such algorithm in more detail. Assume we are given an undirected
graph G = (V, E), E ⊂ {(i, j) : i, j ∈ V }. At each time step, one edge (i, j) is randomly
selected in E with probability W (i,j) such that

∑

(i,j)∈E W (i,j) = 1. Let W be the matrix

with entries Wij = W (i,j). The two agents connected by the selected edge average their
states according to

xi(t + 1) =
1

2
xi(t) +

1

2
xj(t)

xj(t + 1) =
1

2
xj(t) +

1

2
xi(t) (1.7)

while

xh(t + 1) = xh(t) if h 6= i, j. (1.8)

Let Eij = (ei − ej)(ei − ej)
∗ and

P (t) = I − 1

2
Eij (1.9)

where ei = [0, . . . , 0, 1, 0, . . . , 0]∗ is a N × 1 unit vector with the i-th component equal to
1, then (1.7) and (1.8) can be written in a vector form as

x(t + 1) = P (t)x(t). (1.10)

Note that P (t) is a symmetric doubly stochastic matrix, and then (1.10) preserves the
average of states. It is known [36] that, if the graph G is connected and each edge (i, j) ∈ E
can be selected with a strictly positive probability W (i,j), then (1.10) reaches, almost
surely, the average consensus, that is

lim
t→∞

x(t) = xave1,

for every initial condition x(0).

1.4 Networks of digital links

Most of the literature on the consensus problem assumes that the communication chan-
nels between the nodes allows to communicate real numbers with no errors. In practical
applications this can be an unrealistic assumption: the communication is in most cases
digital and the channel is noisy. There can be strict bandwidth constraints, as well as
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communication delays, and packet losses due to interferences and erasures. These limita-
tions are mostly likely to be significant for a network communicating in a wireless fashion,
which is nowadays a typical choice.

In the thesis, we are going to concentrate on modeling the links as instantaneous and
lossless digital channels. This choice forces a quantization on the real numbers that agents
have to transmit, but keeps aside the issues of delays and packet losses.

1.4.1 Quantizers

The first design issue is how to quantize the states, that is how to map the continuous
space of states into a discrete alphabet of messages. Given X ⊆ R

ν , we call quantizer a
map q : X → S, where S is a finite or countable set. If we have a vector x ∈ XN , with a
slight abuse of notation, we will use the notation q(x) ∈ SN to denote the vector such that
q(x)i = q(xi). Many quantizers have been proposed in the vast literature on the subject
[68]. In this thesis, we concentrate on uniform quantizers, that is quantizers such that the
measure of q−1(s) is equal for all s ∈ S.

Deterministic quantizer

The first quantizer we consider is the deterministic quantizer with countable alphabet.
Let qd : R → Z be the mapping sending z ∈ R into its nearest integer, namely,

qd(z) = n ∈ Z ⇔ z ∈ [n − 1/2, n + 1/2[, if z ≥ 0
z ∈ ]n − 1/2, n + 1/2], if z < 0.

(1.11)

It enjoys the property that, for all z ∈ R,

|z − qd(z)| ≤ 1

2
.

Most results in Chapters 2 and 3 are about systems of agents which communicate using
qd.

Truncation quantizer

Similar to the latter is the truncation quantizer

qT (z) = bzc. (1.12)

The analysis of systems based on qT is often similar to qd, taking into account that the
quantization error can be bounded as

|z − qd(z)| ≤ 1.

For this reason, the quantizer qT will be treated briefly in the sequel.
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Probabilistic quantizer

The probabilistic quantizer qp : R → Z is defined as follows. For any x ∈ R, qp(x) is a
random variable on Z defined by

qp(x) =

{

bxc with probability dxe − x
dxe with probability x − bxc. (1.13)

The following lemma discusses two important properties of the probabilistic quantizer.

Lemma 1.7 For every x ∈ R, it holds that

E [qp(x)] = x. (1.14)

Moreover

E

[

(x − qp(x))2
]

≤ 1

4
. (1.15)

Proof: Equation (1.14) is immediate and (1.15) follows from computing

E

[

(x − qp(x))2
]

= xbxc + xdxe − bxcdxe − x2 ≤ 1

4
.

The quantizers defined above map R into Z and have quantization bins of length 1.
More general quantizers, having as quantization step a positive real number ε, can be
obtained from q : R → Z by defining q(ε)(x) = εq(x/ε). Hence, the general case can be
simply recovered by a suitable scaling, and our choice is not restrictive.

1.4.2 Consensus on non ideal networks

We can make the framework (1.4) more general if we assume that the agents can not
directly access their neighbors’ states, but can obtain estimates or approximations of
them. Let x̂i

j(t) be the estimate that agent i has of the state of agent j, at time t. The
control input ui(t) assumes the following form

ui(t) =
N
∑

j=1

Kij x̂
i
j(t). (1.16)

Due to the possibility that x̂i
j(t) 6= xj(t), such a control is not in general guaranteed

to yield convergence to consensus, nor to preserve the average of states. This general
framework is suitable for several specialization.

(i) If the agents communicate via a reliable instantaneous analog channel, we can just
assume that x̂i

j(t) = xj(t), and thus the algorithm reduces to (1.4).
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(ii) If the agents communicate via a digital channel, we can set x̂i
j(t) = q(xj(t)). Then

x(t + 1) = x(t) + Kq(x(t)). (1.17)

This update rule appeared for the first time in [18] and is studied deeply in Chapter 2.
It shares with the linear ideal case (1.4) the important property of preserving the
average of states, in spite of the additional constraint of quantization.

Proposition 1.8 (Average preservation) Let x(t) evolve following (1.17) and
P = I + K satisfy Assumption 1.1. Then xave(t) = xave(0) for all t ∈ N.

Proof: Since P is doubly stochastic, we have that

xave(t + 1) = N−11∗x(t + 1)

= N−11∗x(t) + N−11∗ (P − I) q(x(t))

= N−11∗x(t) = xave(t).

(iii) An important case is when the states are communicated with an additive noise, only
depending on the source agent j: thus x̂i

j(t) = xj(t) + nj(t) for all i neighbor to j.
This case of broadcasting noise has been studied in [88, 18, 80]. The main application
of such additive noise is modeling the effects of quantization, namely, the quantiza-
tion error x − q(x). If q = qp, then the error x − qp(x) naturally enjoys statistical
properties, expressed in Lemma 1.7. If instead q = qd, no statistical property holds
for the error, and the bound |x − qd(x)| ≤ 1

2 is the only a priori information on it.
However, for the analysis purposes, it can be sensible to assume such error to be a
random variable which has zero mean, and the interval [−1/2, 1/2] as support: then
its variance is bounded by 1/4. Provided suitable independence assumptions, the
same probabilistic model, which (roughly speaking) consists in assuming q(x) = x+n,
can be used for the analysis of both the probabilistic and the deterministic quan-
tizer. However, the significance of the model is different in the two cases. For the
probabilistic quantizer, the model is a priori correct: it forgets the exact definition
of the quantizer, focusing on its statistics. Instead, for the deterministic quantizer
there is no a priori guarantee of correctness, since the model assumes a deterministic
quantity to be random: the validation of the model can only come from an a pos-
teriori comparison with experimental results. Such a twofold analysis is going to be
carried on in Chapters 2 and 3, and has appeared elsewhere in the literature, with
various levels of consciousness [2, 54, 80].

(iv) If the agents communicate via an analog channel, subject to an additive channel
noise, we can set x̂i

j(t) = xj(t)+ni
j(t), where ni

j(t) represents the added noise. ni
j(t)

are assumed to be independent random variables with zero mean. This setting is
most natural whenever the neighbors states are sensed, rather than communicated.
For this reason, it has been studied in [80], and in [18]. It is also attracting attention
for the analysis of digital communication over noisy channels [17].
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Remark 1.1 (Naive quantization) In a naive approach, one which is not guided by
the control theoretical framework (1.16), could suggest that the agents apply to received
data the same linear algorithm as in the ideal case, so that the states evolve following

xi(t + 1) = Pii xi(t) +
∑

j 6=i

Pij q(xj(t)). (1.18)

Differently from (1.16), the system (1.18) does not guarantee that xave(t + 1) = xave(t),
that is the average of the states is not preserved. This drawback, which has been remarked
for the first time in [89], is due to the loss of symmetry between neighbors in the use of
information. Moreover, the dynamical system (1.18), besides not preserving the average
of states, shows in simulations poor convergence properties [18]. For these reasons, we do
not discuss it any longer.

1.4.3 Related works

The effects of quantization in feedback control problems have been widely studied in the
past mainly in the stabilization problem. We refer to the survey [68] for an introduction.

Granularity effects different from quantized communication have been tackled in few
papers on the consensus problems [35], [55]. In [55], the authors study systems having (and
transmitting) integer-valued states and propose a class of gossip algorithms which preserve
the average of states and are guaranteed to converge up to one quantization bin. Similar
problems have been studied by computer scientists, in the context of load balancing. Our
setting is different: we study the real-valued consensus problem under the assumption that
communications are quantized, and we assume an ideal noiseless digital channel. This
problem has first been posed in the final section of [89]. While the work of this thesis was
in progress, some papers have considered consensus with quantized communication [69],
[3, 2], [54]. The recently appeared technical report [69] studies a deterministic quantization
scheme, not preserving the average, in which the agents can only store quantized data.
Several results are obtained on the error between the convergence value and the initial
average, and on the speed of convergence. The papers [3, 2] actually deal with quantized
communication, using the probabilistic quantizer. Their scheme achieves almost surely a
consensus at a quantization level, but the average is preserved in expectation only. The
probabilistic quantizer also appears in [87], and, with an equivalent definition, in [54],
where it is used with time dependent consensus gains.



Chapter 2

Static quantization and fixed

topology

This chapter contains an extended analysis of the average consensus algorithm appeared in
[18, 20, 21] and in [41], which features a uniform quantizer to encode the messages among
agents, and a time invariant communication graph. Thanks to a suitably designed update,
this algorithm is able to overcome the drawbacks of a naive treatment of quantization, and
to guarantee that the agents states get eventually close to the desired average, at a speed
which is roughly the same as in the ideal case. Since, as we shall see, the algorithm
preserves the average of the initial condition, its performance is defined in terms of the
distance of the states from the average. A special attention is given to the scalability
in the number of agents N of such performance, and this crucial issue is studied in the
context special sequences of graphs.

2.1 The algorithm

We have seen in Chapter 1 that, assuming ideal communication between agents connected
by a directed graph, the average consensus is solved by the algorithm

xi(t + 1) =

N
∑

j=1

Pijxj(t),

where xi(t) ∈ R is the state of the i-th agent at the time t, provided that Assumption 1.1
holds. More compactly we can write

x(t + 1) = Px(t), (2.1)

where x(t) is the column vector whose entries xi(t) represent the agents states.
In presence of quantized communication, following the framework (1.16), we propose

the algorithm

x(t + 1) = x(t) + (P − I) qd(x(t)). (2.2)

23
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or a corresponding algorithm with the probabilistic quantizer

x(t + 1) = x(t) + (P − I) qp(x(t)). (2.3)

As stated in Proposition 1.8, algorithms (2.2) and (2.3) preserve the average of the initial
conditions, that is xave(t) = xave(0) for all t ≥ 0.

The algorithms (2.2) and (2.3), because of the quantization effects, are not expected
to converge in the sense (1.3). What we can hope is for the agents to reach states which
are close to the average xave(0). To measure this asymptotic disagreement, we introduce
the performance index

d∞(P, x(0)) = lim sup
t→∞

1√
N

||y(t)||,

where y(t) = Ωx(t), as in Definition 1.2. We can get rid of the initial condition by
considering

d∞(P ) = sup
x(0)

d(P, x(0)). (2.4)

Clearly d∞(P ) depends on the matrix P and, via P , on the communication topology. The
analysis problems we would like to address are:

(i) given a matrix P , evaluate how big d∞(P ) is;

(ii) given a sequence of matrices PN , adapted to graphs of increasing size N ,
estimate how d∞(PN ) depends on N .

Moreover, we are interested in the following design problem:

given a communication topology, find the matrix P , adapted to the topology,
which minimizes d∞(P ).

With respect to the linear iteration (2.1), the quantization effects introduce nonlin-
earities which make the states evolution hard to analyze. Indeed, we are able to carry
on such an analysis only in very specific examples, in Section 2.1.1. To overcome these
limitations, instead of studying the exact evolution of the algorithm, we model the effect
of quantization as disturbances of the linear system (2.1). This leads to a worst-case anal-
ysis and a probabilistic model. The worst-case analysis is obtained by a bounded error
model, maximizing d∞(P ) over all possible realizations of the communication errors. This
is done in Section 2.2 where we prove in general the convergence to a neighborhood of the
average, obtaining upper bounds on its size. These bounds are independent of the initial
condition but depend on the diffusion matrix. The worst-case analysis is significant for
both qd and qp, but its results are intrinsically conservative: we are going to show that,
on a sequence of matrices PN adapted to hypercube graphs of order N , d∞(PN ) grows
as the logarithm of N . Such behavior is in disagreement with the experimental evidence
displayed in Section 2.4.

For this reason, in Section 2.3 we propose an alternative method and develop a prob-
abilistic analysis, modeling the quantization error as additive random noise affecting the
received data. As discussed in Section 1.4.2, the significance of the probabilistic analysis
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is a priori guaranteed when the quantizer map is qp. Interestingly, simulations show that
the probabilistic analysis is very close to the experimental evidence for the deterministic
map as well.

A classical mean squared analysis for the asymptotic error can be carried on in the
probabilistic model. It comes out that, under mild assumptions, the expected behavior
depends only on the assumed distribution of the errors and on the spectrum of P , and
does not depend on N . We shall comment on this discrepancy later in the chapter.

2.1.1 Deterministic analysis

We start with a remark about the best performance achievable by (2.2). It is clear that,
when all states lie in the same quantization interval, namely qd(xi(T )) = Q for all i,
differences are not perceivable and states do not evolve. Therefore the best the algorithm
can assure is that the system reaches such an equilibrium in which qd(xi(t)) = Q for all
i and for all t ≥ T . This implies both that |yi(t)| ≤ 1 for all i and for all t ≥ T , and
that d∞ ≤ 1/2. Obtaining such a performance is not trivial: simulations show that the
error from the agreement can actually be bigger. However, it is worth noting that the
states of the agents subject to (2.2) are bounded. In particular one can see, by convexity
arguments, that for any node i ∈ V and for all t ≥ 0,

xi(t) ∈
[

min
j∈V

{qd(xj(0))} −
1

2
, max

j∈V
{qd(xj(0))} +

1

2

]

. (2.5)

This simple result is of some applicative interest from the point of view of quantizer’s
design. Indeed it implies that, although the quantizer has in principle a countably infinite
range space, only a finite number of symbols is going to be actually used by the algorithm,
and such number has an upper bound which depends on the initial condition only.

On the other hand, (2.5) is a very weak result from the point of view of convergence,
since we can hope that in general the disagreement decreases as time goes on and, more-
over, that the asymptotic disagreement does not depend on the initial conditions, but just
possibly on P . We consider now two examples in which the evolution of the system can
be studied explicitly, the complete graph and the directed ring graph.

Example 2.1 (Complete graph) If the communication graph is complete and the com-
munication is not quantized, the average consensus problem can be solved in one step
taking P = 1

N 11∗. We now compute the performance degradation due to quantization.
The system is in this case

x(t + 1) = x(t) − qd(x(t)) + N−111∗qd(x(t)). (2.6)
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We have that, for t ≥ 1,

|yi(t)| =

∣

∣

∣

∣

∣

∣

xi(t) −
1

N

N
∑

j=1

xj(0)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

xi(t) −
1

N

N
∑

j=1

xj(t − 1)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

xi(t − 1) − q (xi(t − 1)) +
1

N

N
∑

j=1

q (xj(t − 1) − 1

N

N
∑

j=1

xj(t − 1)

∣

∣

∣

∣

∣

∣

≤ |xi(t − 1) − q (xi(t − 1))| + 1

N

N
∑

j=1

|q (xj(t − 1) − xj(t − 1)|

=
1

2
+

1

N

N

2
= 1.

This implies that

d∞(N−111∗) ≤ 1. (2.7)

Example 2.2 (Directed ring) Now we consider a more interesting example, the di-
rected ring graph of Example 1.3 with a uniform Perron matrix: each agent communicates
with only one neighbor and evolves following

xi(t + 1) = xi(t) +
1

2
[qd(xi+1(t)) − qd(xi(t))] i = 1, . . . , N, (2.8)

where summation of the indexes is to be intended mod N . The evolution of (2.8) can be
studied exactly by means of a symbolic dynamics approach1. This analysis is definitively
not trivial, but permits us to characterize precisely the evolution of (2.8) and to obtain a
strong result. Indeed, we show in Appendix 2.A that there exists T ∈ N such that

|xi(t) − xj(t)| ≤ 1 ∀ i, j ∀ t > T.

It follows that

d∞(P ) ≤ 1/2.

2.2 Bounded error model

An exact analysis of the dynamics of system (2.2), as we did in the previous two examples,
is not feasible for general graphs. In this section we undertake a worst-case analysis which
can instead be applied to the general case. We start by observing that (2.2) can be
rewritten in the following way

x(t + 1) = Px(t) + (P − I)(qd(x(t)) − x(t)). (2.9)

1A similar analysis can be done for qT , leading to analogous results, whereas a similar symbolic dynamics
can not be defined for qp.
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Notice that ‖qd(x(t))−x(t)‖∞ ≤ 1/2. In order to carry out a worst-case analysis of (2.9),
we introduce the following bounded error model 2

{

xw(t + 1) = Pxw(t) + (P − I)e(t), xw(0) = x(0)
yw(t) = Ωxw(t)

(2.10)

where e(t) ∈ R
N is such that ‖e(t)‖∞ ≤ 1/2 for all t ≥ 0. Notice that in this case e(t)

is no more a quantization error, but instead represents an unknown bounded disturbance.
Clearly, when e(t) = qd(x(t))− x(t) it turns out that xw(t) = x(t) and yw(t) = y(t) for all
t ≥ 0.

We define now a performance index for (2.10), considering the worst asymptotic dis-
agreement, worst with respect to all the possible choices of the time sequence of the vectors
e(t). To be more precise, let us introduce

E∞ = {{e(·)}∞t=0 | ‖e(t)‖∞ ≤ 1

2
, ∀ t ≥ 0}, (2.11)

namely the set of all the sequences of N -dimensional vectors having sup norm less than
1/2. Then, for the system (2.10), we define

dw
∞(P, xw(0)) = sup

E∞
lim sup

t→∞

1√
N

||yw(t)||. (2.12)

Note that limt→∞ ΩP t = 0. This implies that the asymptotic behavior of yw(t) is in-
dependent of the initial condition xw(0) and hence this is the case also for the quantity
dw
∞(P, xw(0)). Thus, from now on we denote dw

∞(P, xw(0)) simply by dw
∞(P ). As a pre-

liminary remark, note that

d∞(P ) ≤ dw
∞(P ).

The following result provides a general bound for dw
∞.

Proposition 2.1 Let P be a matrix satisfying Assumption 1.1. Then

dw
∞(P ) ≤ 1

1 − ‖PΩ‖ . (2.13)

Proof: Consider now yw(t). Standard algebraic tools, and Lemma 1.2, yield

yw(t) = ΩP tx(0) + Ω

t−1
∑

s=0

P s(I − P )e(t − s − 1)

= (PΩ)ty(0) +

t−1
∑

s=0

(PΩ)s(I − P )e(t − s − 1).

2A similar bounded error model can be set for the system (2.3) as well, taking ‖e(t)‖∞ ≤ 1. All results
in the sequel follows with obvious changes. However, since for (2.3) the probabilistic model (2.18) has a
stronger significance, we do not further detail its worst-case analysis.
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Now we have that

‖yw(t)‖ = ‖(PΩ)tyw(0) +
t−1
∑

s=0

(PΩ)s(I − P )e(t − s − 1)‖

≤ ‖(PΩ)t‖ ‖yw(0)‖ + ‖I − P‖
t−1
∑

s=0

‖(PΩ)‖s‖e(t − s − 1)‖

= ‖(PΩ)t‖ ‖yw(0)‖ +
√

N
1 − ‖PΩ‖t

1 − ‖PΩ‖

where in the last inequality we used the facts that ‖I − P‖ ≤ 2 and ‖e(t)‖ ≤
√

N/2 for
all t ≥ 0. By letting t → ∞ we obtain (2.13).

Note that, if P is normal, we have that ‖PΩ‖ = ρess(P ) and hence (2.13) becomes

dw(P ) ≤ 1

1 − ρess(P )
.

However, when P is a normal matrix the bound on dw
∞(P ) can be improved as stated in

the next proposition.

Proposition 2.2 If P is a normal matrix satisfying Assumption 1.1, then

dw
∞(P ) ≤ 1

2

∞
∑

s=0

ρ(P s(I − P )). (2.14)

Proof: Starting from the expression of yw(t) provided along the proof of Proposi-
tion 2.1 we can write that

‖yw(t)‖ ≤ ‖(PΩ)tyw(0)‖ + ‖
t−1
∑

s=0

(PΩ)s(I − P )e(t − s − 1)‖

≤ ‖(PΩ)tyw(0)‖ +

√
N

2
‖(PΩ)s(I − P )‖

Since P is normal we have that ‖(PΩ)s(I − P )‖ = ρ((PΩ)s(I − P )) = ρ(P s(I − P )). By
letting t → ∞ in the last inequality, we obtain (2.14).

Note that, from the sub-multiplicative inequality ‖(PΩ)s(I − P )‖ ≤ ‖PΩ‖s ‖I − P‖, it
follows immediately that 1

2

∑∞
s=0 ρ(P s(I−P )) ≤ 1

1−ρess(P ) . Then the bound (2.14) is indeed

an improvement of the bound (2.13).

Example 2.3 (Complete graph) Let P = 1
N 11∗. Hence 1

1−‖PΩ‖ = 1. This is an

alternative way to prove (2.7). However, since
(

1
N 11∗)k = 1

N 11∗ for all k > 0, it follows
immediately that 1

2

∑∞
s=0 ρ(P s(I − P )) = 1

2 and this represents a refinement of (2.7). We
conclude that d∞( 1

N 11∗) ≤ 1
2 .
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To further improve the bound (2.14) requires some more work. Given c ∈ C and
r ∈ R such that r ≥ 0, we denote by

Bc,r = {z ∈ C | ‖z − c‖ ≤ r}

the closed ball of complex numbers of radius r and centered in c. The proof of the following
result is deferred to the Appendix 2.B.

Proposition 2.3 Let P be a normal matrix satisfying the Assumption 1.1. Let R be such
that 0 < R < 1 and σ(P ) ⊆ B1−R,R and let ρ̄ = ρess(P ) denote the essential spectral radius
of P . Then

∞
∑

s=0

ρ(P s(I − P )) ≤ 1

1 − R
+

√

8R

(1 − R)(1 − ρ̄)
. (2.15)

Remark that the given bound depends on R and ρ̄ only, which are functions of the
spectrum of P . Let us illustrate it with an example.

Example 2.4 (Directed ring) Consider the directed ring graph introduced in Exam-
ple 2.2 and the evolution law given by (2.8). In this case P is the circulant matrix

P =















1
2

1
2 0 0 · · · 0 0 0

0 1
2

1
2 0 · · · 0 0 0

0 0 1
2

1
2 · · · 0 0 0

...
...

...
... · · · ...

...
...

1
2 0 0 0 · · · 0 0 1

2















.

We know from Corollary 2.15 that d∞(P ) ≤ 1
2 . Let us compare this fact with the bound

in Proposition 2.1. Since ρess(P ) = 1 − π2

2
1

N2 + o
(

1
N2

)

and since each circulant matrix is
a normal matrix we have that 1

1−‖PΩ‖ = 1
1−ρess(P ) = Θ

(

N2
)

. Observe now that all the

eigenvalues of P are inside the ball B 1

2
, 1
2

. Hence we obtain that 1
1−R+

√

8R
(1−R)(1−ρ̄) = Θ(N).

This means that the bound (2.15) improves the bound proposed in (2.13). Moreover, by
numerical experiments one can check that 1

2

∑∞
s=0 ρ(P s(I−P )) = Θ(N): the bound (2.15)

is tight.

If P is symmetric we can provide a stronger result.

Proposition 2.4 Let P be a symmetric stochastic matrix satisfying Assumption 1.1. Let
R be such that 0 < R < 1 and σ(P ) ⊆ B1−R,R and let ρ̄ = ρess(P ) denote the essential
spectral radius of P . Then,

+∞
∑

s=0

ρ (P s(I − P )) ≤ 3

2
+

1

1 − R
+

1

2
log

(

1

1 − ρ̄

)

. (2.16)



30 Chapter 2. Static quantization and fixed topology

Proof: Assume that σ(P ) = {λ0 = 1, λ1, . . . , λN−1}. Note that (σ(P ) \ {1}) ⊆
[1 − 2R, ρ̄]. We want to upper bound ρ(P s(I − P )) = maxN−1

k=1 |λs
k(1 − λk)|. To do this,

consider the function f(x) = |xs(1−x)|. It is continuous in [−1, 1], positive and decreasing
in [−1, 0], it vanishes in x = 0 and in x = 1 and has a local maximum in x = xM = s

1+s ,

with f(xM ) = ( s
1+s)

s( 1
1+s). We need to evaluate maxx∈[1−2R,ρ̄] f(x).

First observe that there exists s̄, only depending on the value 1− 2R, such that for all
s > s̄ we have f(1− 2R) < ( s

1+s)
s( 1

1+s) and then the global maximum of f(x) is assumed
at x = xM if xM ≤ ρ̄. Since xM tends to 1 as s goes to infinity, it happens that, when
s > ρ̄

1−ρ̄ , xM (s) > ρ̄. In conclusion we have that

max
x∈[1−2R,ρ̄]

f(x) =







2R|1 − 2R|s, if 0 ≤ s ≤ s̄;
( s
1+s)

s( 1
1+s), if s̄ < s ≤ s∗;

ρ̄s(1 − ρ̄), if s∗ < s < ∞.

where s∗ = b ρ̄
1−ρ̄c. Hence we can write

t−1
∑

s=0

ρ(P s(I − P ))

≤
s̄
∑

s=0

2R|1 − 2R|s +

s∗
∑

s=s̄+1

(

s

1 + s

)s( 1

1 + s

)

+

t−1
∑

s=s∗+1

ρ̄s(1 − ρ̄).

Notice now that
s̄
∑

s=0

2R|1 − 2R|s ≤ 1

1 − R
,

and that
t−1
∑

s=s∗+1

ρ̄s(1 − ρ̄) = ρ̄s∗+1 − ρ̄t ≤ 1.

Notice finally that, since
∑m

i=1 1/i ≤ 1 + ln m we can argue that

s∗
∑

s=s̄+1

(

s

1 + s

)s( 1

1 + s

)

≤
s∗
∑

s=0

(

1

2

)(

1

1 + s

)

≤ 1

2
(1 + log(s∗ + 1))

≤ 1

2
+

1

2
log

(

ρ̄

1 − ρ̄
+ 1

)

=
1

2
+

1

2
log

(

1

1 − ρ̄

)

.

Putting together these three inequalities we obtain (2.16).
The significance of the result can be seen with an example.

Example 2.5 (Undirected ring) In this example we consider the circulant matrix

P =















1
3

1
3 0 0 · · · 0 0 1

3
1
3

1
3

1
3 0 · · · 0 0 0

0 1
3

1
3

1
3 · · · 0 0 0

...
...

...
... · · · ...

...
...

1
3 0 0 0 · · · 0 1

3
1
3















.
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Simulations, shown in Figure 2.3, suggest that d∞(P ) be uniformly bounded on N . Con-

sider the bound (2.13): since ρess(P ) � 1 − 4
3

π2

N2 we obtain that 1
1−‖PΩ‖ = 1

1−ρess(P ) =

Θ(N2). On the other hand, observe that all the eigenvalues of P are greater than −1
3 .

Hence R = 2/3, and then 3
2 + 1

1−R + 1
2 log

(

1
1−ρess(P )

)

= Θ(log N). Moreover, numerically

it is possible to observe that also 1
2

∑∞
s=0 ρ(P s(I−P )) grows logarithmically, meaning that

asymptotically in N , (2.16) is tight.

The bound (2.14) is in many cases logarithmical in N . Let us consider a sequence of
Cayley Perron matrices PN with their diagonal elements bounded away from zero, uni-
formly in N , and adapted to a Cayley graphs of constant degree. Then, from Lemma 1.6,
we argue that

1

1 − R
+ log

√

1

1 − ρess(PN )
= Ω(log N).

We can not argue from this fact the stronger claim that dw
∞(PN ) = Ω(log N), but we can

provide another sequence enjoying such property.

Theorem 2.5 Let there be a sequence of hypercube graphs of size N = 2n, and a sequence
of uniform Perron matrices PN adapted to them. Then

dw
∞(PN ) =

n

2
=

log2 N

2
.

Consider an hypercube graph and the uniform Perron matrix adapted to it. First we
give the following preliminary result.

Lemma 2.6 Let P be a uniform Perron matrix adapted to an hypercube graph. Then

∞
∑

s=0

ρ(P s(I − P )) = n = log2 N. (2.17)

Proof: From [31], the eigenvalues of P are, for k ∈ {0, . . . , n}, λk = 1 − 2k
n+1 , with

multiplicity pk =
(

n
k

)

. Then,

∞
∑

s=0

ρ(P s(I − P )) =

∞
∑

s=0

ρess(P
s)ρ(I − P )

=
∞
∑

s=0

(

1 − 2

n + 1

)s(

2 − 2

n + 1

)

= n.

We are able now to provide the proof of Theorem 2.5.
Proof: First we rewrite the expression of dw

∞(P ). Since P is symmetric, it is diago-
nalizable by an orthogonal matrix, and we can write that P =

∑N−1
h=0 λhqhq∗h where
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qh are orthonormal. These facts are true also for P s(I − P ). Moreover we have that
ρ (P s(I − P )) = ||P s(I − P )||. We define

y(f)
w (t) =

t−1
∑

s=0

P s(I − P )e(t − s − 1),

and we know from the proof of Proposition 2.1 that

lim sup
t→∞

‖yw(t)‖ = lim sup
t→∞

‖y(f)
w (t)‖.

Then,

‖y(f)
w (t)‖2 = ‖

t−1
∑

s=0

P s(I − P )e(t − s − 1)‖2

= ‖
t−1
∑

s=0

N−1
∑

h=0

λs
h(1 − λh)qhq∗he(t − s − 1)‖2

= ‖
N−1
∑

h=0

qh(1 − λh)

t−1
∑

s=0

λs
hq∗he(t − s − 1)‖2

=
N−1
∑

h=0

[

(1 − λh)
t−1
∑

s=0

λs
hq∗he(t − s − 1)

]2

.

From the proof of Proposition 2.1, [dw
∞(P )]2 = maxE∞ lim supt→∞

1
N ‖y(f)

w (t)‖2.

Now we start using combinatorial tools. Indeed the vertices of the hypercube, as well
as the eigenvalues and eigenvectors of P , can be indexed by the subsets of {1 . . . , n} .
subsets of {1 . . . , n}.
With this indexing, for each I ⊆ {1 . . . n} the corresponding eigenvalue is λI = 1 − 2|I|

n+1

and the eigenvector is the 2n−dimensional vector q(I), such that its J−th component is

equal to q
(I)
J = 2−n/2(−1)|I∩J |.

Let T ∈ N and consider the sequence of vectors {e(t)}t∈Z≥0
such that the J-th component

of the vector e(t) is equal to 1
2(−1)T−1−r(−1)|J |, where r is the remainder in the Euclidean

division of t over T . Observe that e(t + T ) = e(t) for all t ≥ 0. Observe, moreover, that
e(t) is an eigenvector of P corresponding to the eigenvalue 1−n

1+n for all t ≥ 0. Hence we
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have that

1

N
‖y(f)

w (T )‖2 =
1

N

N−1
∑

h=0

[

(1 − λh)

T−1
∑

s=0

λs
hq∗he(T − s − 1)

]2

=
1

2n





(

1 − 1 − n

n + 1

) T−1
∑

s=0

(

1 − n

n + 1

)s

2−
n
2

∑

J⊆{1,...,n}
(−1)|J |

1

2
(−1)s(−1)|J |





2

=
1

4n

[

n

n + 1

T−1
∑

s=0

(

n − 1

n + 1

)s

2n

]2

=
n2

(n + 1)2







1 −
(

n−1
n+1

)T

1 − n−1
n+1







2

=
n2

4

[

1 −
(

n − 1

n + 1

)T
]2

.

Assume now that T is even. By recalling that e(t + T ) = e(t) for all t ≥ 0, for t = kT
where k ∈ N, it turns out that

1

N
‖y(f)

w (kT )‖2 =
n2

4

[

1 −
(

n − 1

n + 1

)T
]2 k−1
∑

u=0

(

1 − n

1 + n

)uT

=

=
n2

4

[

1 −
(

n − 1

n + 1

)T
]2






1 −
(

n−1
n+1

)kT

1 −
(

n−1
n+1

)T







2

=
n2

4

[

1 −
(

n − 1

n + 1

)kT
]2

.

Letting k → ∞ we obtain that, for the particular sequence considered,

lim
k→∞

1

N
‖y(f)

w (kT )‖2 =
n2

4

Therefore we have proved that

lim sup
t→∞

1

N
‖y(f)

w (t)‖2 ≥ n2

4

and hence [dw
∞(P )]2 ≥ n2

4 . Now, Lemma 2.6 implies that [dw
∞(P )]2 ≤ n2

4 , and then the
claim follows.

Theorem 2.5 is not in accordance with the evidence of simulations in Section 2.4, which
do not show any significant dependence of d∞ on N . This discrepancy confirms the interest
for a probabilistic model of the quantization error.
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2.3 Probabilistic model

In the previous section we have shown that the bounded error model does not seem to
really capture the behavior of the quantized system (2.2) nor of (2.3). In particular
the upper bound to the performance we have found seems to be quite conservative. In
this section we undertake a probabilistic approach, modeling the quantization error as a
random variable. We carry on a classical mean square analysis and we show that it is
quite close to simulations of the real quantized system.

For all i ∈ V and t ∈ Z≥0, let ni(t) be random variables such that

• ni(t) are uncorrelated, that is E [ni(t)nj(τ)] = 0 if i 6= j or t 6= τ

• ni(t) ∈ [−1/2, 1/2]

• E[ni(t)] = 0

Remark that E[ni(t)
2] ≤ 1

4 . Let n(t) be the random vector whose components are ni(t)
and consider the probabilistic model

{

xr(t + 1) = Pxr(t) + (P − I)n(t),
xr(0) = x(0)

(2.18)

and the variable yr(t) = Ωxr(t). We define

dr
∞(P, xr(0)) = lim sup

t→∞

√

1

N
E[‖yr(t)‖2].

Like for the model in Section 2.2, we have that dr
∞(P, xr(0)) is independent of the initial

condition xr(0). Hence, in the sequel we denote dr
∞(P, xr(0)) with the symbol dr

∞(P ).
The following result is the main one of this section.

Theorem 2.7 Let P be a matrix satisfying Assumption 1.1. Then

[dr
∞(P )]2 ≤ 1

4N
tr
[

(I − P )(I − P̃ P̃ ∗)−1(I − P )∗
]

.

where P̃ = PΩ. In particular, if P is normal, and σ(P ) = {1, λ1, . . . , λN−1} denotes the
spectrum of P , we have that

[dr
∞(P )]2 ≤ 1

4N

N−1
∑

i=1

|1 − λi|2
1 − |λi|2

. (2.19)

Proof: Define Σyy(t) = E[yr(t)yr(t)
∗], and remark that 1

N E[||yr(t)||2] = 1
N tr Σyy(t).

Using the facts that Ωk = Ω for all positive integer k and Ω(P − I) = P − I, it is easy to
see that yr satisfies the following recursive equation

yr(t + 1) = P̃ yr(t) + (P − I)n(t).
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Now, thanks to the hypotheses on ni(t),

Σyy(t + 1) = E[yr(t + 1)yr(t + 1)∗]

= E[P̃ yr(t)yr(t)
∗P̃ ∗] + (I − P )E[n(t)n(t)∗](I − P )∗

≤ P̃ Σyy(t) P̃ ∗ +
1

4
(I − P )(I − P )∗,

where we used the bound on the variance. Then a simple recursion gives

Σyy(t) ≤ P̃ t Σyy(0) (P̃ ∗)t +
1

4

t−1
∑

s=0

P̃ s(I − P )(I − P )∗(P̃ ∗)s.

Since P satisfies Assumption 1.1, from Lemma 1.2, ρess(P
∗P ) < 1. Moreover we have that

ρ(P̃ ) = ρess(P ) < 1 and ρ(P̃ ∗P̃ ) = ρess(P
∗P ) < 1. Using the linearity and cyclic property

of the trace,

tr Σyy(t) = tr
[

P̃ t Σyy(0) (P̃ ∗)t
]

+ tr

[

1

4

t−1
∑

s=0

(PP ∗ − (P + P ∗) + I)(P̃ P̃ ∗)s
]

= tr
[

P̃ t Σyy(0) (P̃ ∗)t
]

+
1

4
tr
[

(PP ∗ − (P + P ∗) + I)(I − (P̃ P̃ ∗)t)(I − P̃ P̃ ∗)−1
]

.

and hence

lim
t→∞

tr Σyy(t) ≤
1

4
tr
[

(PP ∗ − (P + P ∗) + I)(I − P̃ P̃ ∗)−1
]

.

If moreover P is normal, we can find a unitary matrix O of eigenvectors and a diagonal
matrix of eigenvalues Λ, such that P = OΛO∗. This implies

tr
[

(PP ∗ − (P + P ∗) + I)(1 − P̃ P̃ ∗)−1
]

=

N−1
∑

i=1

|1 − λi|2
1 − |λi|2

.

Remark that if we could assume the random variable ni(t) to have a common variance
(or a common bound on it) σ2, the above result would become

[dr
∞(P )]2 =

σ2

N
tr
[

(I − P )(I − P̃ P̃ ∗)−1(I − P )∗
]

.

We shall not comment further on this more restrictive setting, which has been treated in
[41].

From now on we restrict to the case in which P is normal. Note that the expression
for the mean square error of formula (2.19) is the product of two terms,

dr
∞(P ) =

1

4
Φ(P )
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where

Φ(P ) =
1

N

N−1
∑

i=1

|1 − λi|2
1 − |λi|2

,

is a functional3 of the matrix P , depending only on its spectral structure.

In the sequel of this section, we focus on the functional Φ: we compute it for some
topologies, and we discuss how it depends on N for sequences of matrices of increasing
size.

We start by observing that, if ρess(P ) ≤ B < 1 then Φ(P ) ≤ N−1
N

4
1−B2 . This implies

that, given a sequence of matrices of increasing size, if their essential spectral radiuses
are uniformly bounded away from 1, then the functional cost Φ(P ) is uniformly bounded
in N . This fact is true also for the worst case bound dw

∞ as from Proposition 2.1. The
interesting fact is that the performance index Φ(P ) can exhibit the same behavior even
when the essential spectral radiuses are not bounded away from 1.

Let us start with some examples.

Example 2.6 (Complete graph) In this case it is easy to compute that

Φ(N−111∗) =
N − 1

N
.

Example 2.7 (Directed ring) Consider the matrix P defines in Example 2.4. In this
case Φ(P ) can be exactly computed. We have

Φ(PN ) =
1

N

N−1
∑

h=1

(1 − λh)(1 − λ∗
h)

1 − λhλ∗
h

=
1

N

N−1
∑

h=1

(1 − (1/2 + 1/2 ei 2π
N

h))(1 − (1/2 + 1/2 e−i 2π
N

h))

1 − (1/2 + 1/2 ei 2π
N

h)(1/2 + 1/2 e−i 2π
N

h)

=
1

N

N−1
∑

h=1

1/2(1 − cos(2π
N h))

1/2(1 − cos(2π
N h))

=
N − 1

N
.

Example 2.8 (Undirected ring) Consider the undirected ring graph and the matrix P
introduced in Example 2.5. The eigenvalues of P are

λh =
1

3
+

2

3
cos (

2π

N
h) h = 0, . . . , N − 1,

and we have

Φ(PN ) =
1

N

N−1
∑

h=1

1 − λh

1 + λh
=

1

N

N−1
∑

h=1

1 − cos (2π
N h)

2 + cos (2π
N h)

.

3Remarkably, the functional Φ(P ) also arises, with a rather different meaning, in [34], as a cost functional
depending on the transient of the algorithm (2.1) over graphs with ideal communication.
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In this case it is difficult to work out the computation explicitly. However, it is possible to
compute the limit for N → ∞, since the summation can be interpreted as Riemann sum

relative to the function f(x) =
1 − cos(x)

2 + cos(x)
. We thus obtain

lim
N→∞

Φ(PN ) =
1

2π

∫ 2π

0

1 − cos(x)

2 + cos(x)
dx =

√
3 − 1. (2.20)

Example 2.9 (Hypercube) Consider the hypercube graph and the uniform Perron ma-
trix P = 1

n+1(I + A). From [31], P has n + 1 distinct eigenvalues, which are, for
k ∈ {0, . . . , n},

λk = 1 − 2k

n + 1
, (2.21)

with multiplicity pk =
(n
k

)

. We have that

Φ(P ) =
1

N

N−1
∑

i=1

|1 − λi|2
1 − |λi|2

=
1

2n

n
∑

k=1

(

2k
n+1

)2

1 −
(

n+1−2k
n+1

)2

(

n

k

)

=
1

2n

n
∑

k=1

k

n + 1 − k

(

n

k

)

=
1

2n

n
∑

k=1

(

n

k − 1

)

=
2n − 1

2n
=

N − 1

N
.

Hence,

Φ(P ) =
N − 1

N
.

Remark 2.1 While in the previous section the hypercube provided the negative example
for the worst-case behavior, the probabilistic analysis is in agreement with the evidence
showed in the simulations. This highlights the differences between the bounded error
model and the probabilistic model: with the same assumptions on P the two worst-case
analysis and the mean-square analysis give different results.

The above cases are encompassed by the following general result, which was conjectured
in [41], and has been recently proved by Federica Garin and Enrico Lovisari [45].

Theorem 2.8 Let N = nd, and P be the uniform Perron matrix adapted to the d−dimensional

directed torus. Then, Φ(P ) =
nd − 1

nd
.
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Proof: We can see P as the (linear) map P : R
Zd

n → R
Zd

n defined by

(Px)a1,...,ad
=

1

d + 1
xa1,...,ad

+
d
∑

j=1

1

d + 1
xa1,...,aj−1,...,ad

Since Φ(P ) =
1

nd

∑

λ∈σ(P )
λ6=1

|1 − λ|2
1 − |λ|2 , where σ(P ) is the spectrum of P , we start from the

knowledge of the eigenvalues of P ,

σ(P ) = {λa : a ∈ Z
d
n} where λa =

1

d + 1
(1 + ωa1 + · · · + ωad), ω = ei2π/n

(considered with their multiplicities).

The key idea of the proof is to partition σ(P ) in disjoint subsets such that within

any subset |λ| is constant and moreover, for any such subset O,
∑

λ∈O
|1−λ|2
1−|λ|2 = |O|. The

partition is going to be the orbits under the action of a suitably defined group.

Define the (linear) map g : Z
d
n → Z

d
n given by

g(a1, . . . , ad) = (a2 − a1, a3 − a1, . . . , ad − a1,−a1)

Remark that g is, you can see it as the composition of the embedding of Z
d
n in Z

d+1
n

(inserting a 0 in the last position), the substraction of the first entry to all entries, and
the projection of Z

d+1
n onto Z

d
n by removing the first entry, as follows:











a1

a2
...

ad











7−→















a1

a2
...

ad

0















7−→















0
a2 − a1

...
ad − a1

−a1















7−→











a2 − a1
...

ad − a1

−a1











Computing the successive powers of g, we obtain two useful facts:

(i) gd+1 is the identity: indeed

g2(a1, . . . , ad) = (a3 − a2, a4 − a2, . . . , ad−1 − a2, ad − a2,−a2, a1 − a2)

g3(a1, . . . , ad) = (a4 − a3, a5 − a3, . . . , ad − a3,−a3, a2 − a3, a1 − a3)

. . .

gd−1(a1, . . . , ad) = (ad − ad−1,−ad−1, a1 − ad−1, . . . , ad−2 − ad−1)

gd(a1, . . . , ad) = (−ad, a1 − ad, . . . , ad−1 − ad)

gd+1(a1, . . . , ad) = (a1, . . . , ad)

(ii) ∀a = (a1, . . . , ad) ∈ Z
d
n and ∀k ∈ {1, . . . , d}, λgk(a) = ω−akλa. Then, |λgk(a)| = λa.
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These two facts allow to prove that

d
∑

k=0

λgk(a) =

d
∑

k=0

ω−akλa = λa(1 + ω−a1 + · · · + ω−ad)

= λa(d + 1)λ∗
a = (d + 1)|λa|2,

and deduce that

d
∑

k=0

|1 − λgk(a)|2
1 − |λgk(a)|2

=
d
∑

k=0

1 + |λgk(a)|2 − 2Re(λgk(a))

1 − |λgk(a)|2

=
d + 1 + (d + 1)|λa|2 − 2

∑d
k=0 Re(λgk(a))

1 − |λa|2

=
d + 1 + (d + 1)|λa|2 − 2(d + 1)λ2

a

1 − |λa|2
= d + 1 ∀a ∈ Z

d
n.

Let G be the cyclic group G = {1, g, g2, . . . , gd}, and denote by Oa the orbit of a ∈ Z
d
n

under the action of G, i.e. Oa = {a, g(a), g2(a), . . . , gd(a)}. It is well known that the orbits
are all disjoint. Moreover, notice that for each orbit O, if you choose any element a ∈ O,
then

∑

λ∈O

|1 − λ|2
1 − |λ|2 =

∑

a∈O

1

|G|

d
∑

k=0

|1 − λgk(a)|2
1 − |λgk(a)|2

=
|O|
|G|

d
∑

k=0

|1 − λgk(a)|2
1 − |λgk(a)|2

=
|O|
|G| (d + 1) = |O|

Finally notice that the eigenvalue 1 = λ0 and O0 = {0}. So we can conclude:

Φ(P ) =
1

nd

∑

λ∈σ(P )
λ6=1

|1 − λ|2
1 − |λ|2

=
1

nd

∑

a∈Z
d
n

λ6=0

|1 − λa|2
1 − |λa|2

=
1

nd

∑

O∈Zd
n/G

O 6=O0

|O|

=
1

nd
(|Zd

n| − 1).
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We thus have a class of graphs for which Φ(P ) does not diverge when N goes to infinity,
while ρess(P ) does. Moreover, numerical computations demonstrate that the same is true
for sequences of random geometric graphs of increasing size. A theoretical proof of this
fact is still missing.

After these examples, we look for some more general condition.

Proposition 2.9 Let Bc,r be the closed ball of complex numbers with center c and radius
r, and let P satisfy Assumption 1.1. Then it exists 0 < R < 1 such that σ(P ) ⊆ B1−R,R,
and

Φ(P ) ≤ R

1 − R
. (2.22)

Proof: The existence of such R is a direct consequence of Lemma 1.2. It means that
the spectrum is contained in a disc of radius R internally tangent in 1 to the unit disc of
the complex plane.

Then, we need to prove (2.22). Every eigenvalue λ ∈ B1−R,R, is such that

λ = (1 − r) + r eiθ

with θ ∈ [0, 2π[ and 0 ≤ r ≤ R. Moreover, if λ 6= 0, then θ > 0, and

|1 − λ|2
1 − |λ|2 =

|r − reiθ|2
1 − |1 − r + r eiθ|2

=
r2|1 − eiθ|2

1 − (1 − r)2 − 2r(1 − r) cos θ − r2

=
r22(1 − cos θ)

2r(1 − r)(1 − cos θ)

=
r

1 − r
≤ R

1 − R
∀λ 6= 0.

This yields the result.

Note that the bound (2.22) depends only on R and does not depend on the essential
spectral radius of the matrix P , while the worst-case bounds provided in Proposition 2.3
and in Proposition 2.4 did. The following result takes advantage of this remark.

Corollary 2.10 Let P satisfy Assumption 1.1, and let p = mini Pii. Then

Φ(P ) ≤ 1 − p

p
. (2.23)

Proof: Lemma 1.2 and Gershgorin Theorem imply that

σ(P ) ⊆
⋃

i

BPii,1−Pii
⊆ Bp,1−p.
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The above result has the following interpretation. If in a family of matrices PN we
have that mini (PN )ii is lower bounded uniformly in N , then (2.23) gives a uniform bound
to the asymptotic displacement. This is a useful hint to construct sequences of matrices
whose performance scales well with N . It would be enough to prescribe that the agents
assign a minimum weight to their own values. Such a condition has appeared elsewhere
in the literature to guarantee robustness of consensus algorithms [69].

2.4 Simulations and conclusion

In this section we compare the evolution in time and the performance of the deterministic
quantization algorithm (2.2), of the probabilistic quantization algorithm (2.3), and of the
probabilistic model (2.18) (with noises sampled uniformly in (−1/2, 1/2)), which has been
defined for analysis purposes. Indeed, one of the goals of this section is to validate the
models we introduced in the theoretical analysis.

2.4.1 Speed of convergence

Figure 2.1 shows an example of the time evolution of the three algorithms above, com-
paring them with the ideal communication algorithm (1.5). It is evident that, as long
as the disagreement is far from the size of the quantization step, there is no significant
difference between the algorithms, and they converge exponentially with the same rate.
Instead, when the quantization step and the disagreement value become comparable, the
quantization effects become prevalent.

2.4.2 Dependence on γ

We have seen in Section 1.3.1 that the matrix P can be chosen in a way to minimize
the convergence rate of the ideal communication algorithm. On the other hand, from
the results above in this chapter, it appears the possibility of optimizing the achievable
performance d∞(P ), or at least Φ(P ) which is a good description of d∞(P ). A natural
question is then to ask whether these two optimization problems are independent, or
rather there is some trade-off between speed and achievable precision. It comes out that
the latter is the case.

To give an example of this, we focus on the special case of weights dependent on a
gain parameter γ, representing the confidence given to received information. Let us then
consider weighted Laplacian Perron matrices

Pγ = I + γD−1LG ,

and undirected ring graphs. Simulations are shown in Figure 2.2, and moreover we can
readily extend the computations in Example 2.8 to prove the following fact.

Proposition 2.11 Let G be an undirected ring, and Pγ = I + γD−1LG . Then

lim
N→∞

Φ(Pγ) =
1√

1 − γ
− 1.
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Figure 2.1: Disagreement d(t) for algorithms (2.2), (2.3), (2.18) and (1.5). Random geo-
metric graph on 20 nodes, maximum degree weights.

Let us comment on these figures. If γ > 1/2, that is, agents are very confident in
the incoming information, then the performance worsen unboundedly as γ tends to 1. If
instead γ < 1/2, that is, agents are less confident in the incoming information, then we
have good convergence results, similar to the case γ = 1/2. However, we do not see in
simulations the error going to zero as γ goes to zero, as suggested by the probabilistic
analysis. The reason is clear: with quantized communication we can have no warranty, in
general, of having the asymptotic states closer than 1 in the infinite-norm. This highlights
that the probabilistic approach is not significant when we are already so near to the
consensus.

The experimental results are according to what can be proven in a parametric study
of the simplest communication configuration, when the system is made of only two com-
municating agents.

Example 2.10 Suppose N = 2, x = (x1, x2) and

P =

(

1 − γ γ
γ 1 − γ

)

.
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Figure 2.2: Dependence of the performance d∞ on γ for a directed ring. Plot shows average
and worst case of 25 simulations with random initial conditions.

Then using (2.14) it’s easy to compute that

d∞(P ) ≤



















1

2

γ

1 − γ
if γ ≥ 1/2

1

2
if γ ≤ 1/2.

It is interesting to remark that the obtained bound is tight for γ → 1 and for γ ≤ 1/2.
Indeed, we can check that the system has a periodic point of period 2 such that x =

((1−γ)A,A)T with A = 1
2−γ

⌊

1
2

2−γ
1−γ

⌋

. The amplitude of this cycle is x2−x1 =
⌊

1
2

2−γ
1−γ

⌋

γ
2−γ

and this is asymptotically equivalent to 1
1−γ for γ → 1. Moreover, as already remarked in

general, the states can differ by one at equilibrium points, and this gives the tightness for
small γ.

Now we can show the optimization trade-off between ρess(P ) and d∞(P ). Indeed, it is
shown in [24] that, if P is as in Proposition 2.11, then the optimal ρess(P ) is achieved for

γ =
2

3 − cos 2π
N

.

Then, for the undirected ring the optimal γ goes to 1 for N going to infinity. But Proposi-
tion 2.11 implies that such a choice is not compatible with achieving a prescribed precision.
As a consequence, a non trivial trade-offs between speed of convergence and limit behavior
is apparent.



44 Chapter 2. Static quantization and fixed topology

To conclude, we have observed that, at least on some families of graphs, one can not
use the gains to optimize, given the graph, the achievable precision without trading-off
the speed of convergence. If instead one could design the network topology, then choosing
a graph with a large spectral gap would imply a low essential spectral radius of P , and
then both a fast convergence and good precision.

2.4.3 Dependence on N

Simulations are performed to investigate the dependence on N of d∞, for algorithms (2.2),
(2.3) and (2.18). All plots are obtained averaging the outcome of the algorithms, which
have been run from 25 random initial conditions, sampled from a uniform distribution in
[−100, 100], for each value of N . To have a range of significant examples, we consider four
different topologies, which we have already shown to be significant:

(i) the undirected ring with uniform weights (Figure 2.3);

(ii) the undirected torus with uniform weights (Figure 2.4);

(iii) the hypercube with uniform weights (Figure 2.5);

(iv) the random geometric graph, where the threshold has been chosen as R =
√

5 log N/(N),
with maximum degree weights (Figure 2.6, in this case we averaged also with respect
to different realizations of the graph).
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Figure 2.3: Performance of the undirected rings.
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Figure 2.4: Scaling of performance of the undirected torus graphs.
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Figure 2.5: Scaling of performance of the hypercube graphs.
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Figure 2.6: Scaling of performance of random geometric graphs.

From our simulations we can draw several remarks. Even though the theoretical re-
sults suggest that the performance could worsen with increasing N , simulations show a
nicer behavior. In all the considered cases, the errors d∞(P ) are small, compared to the
quantization step, and not increasing with N . Hence, we argue that the worst-case anal-
ysis, which predicts dw

∞(P ) to be logarithmical in N for the hypercube, is too pessimistic.
This can be understood looking at the proof of this fact: the sequence of quantization
errors which gives the worst effect is one extreme event. Then, it is not likely to be seen
in simulations, which show typical behaviors. Instead, the probabilistic approach finds an
a posteriori justification in its better agreement with simulations.

2.4.4 Conclusions

In this chapter we studied the effects of a uniform quantization on the average consensus
problem, and, starting from the well-known linear diffusion algorithm, we proposed a
simple and effective adaptation which is able to preserve the average of states and to drive
the system reasonably near to the consensus. A special attention has been given to the
scalability in N of the performance, which is a crucial issue for applications in which the
number of agents is huge. In this direction we obtained several favorable results, which
we applied to sequences of graphs with regularity. In particular, we showed how the
convergence properties of the algorithm depend on the spectrum of a matrix defining the
system: this gives deep theoretical insights, and also leads to useful design suggestion, as
in Corollary 2.10.

An exact analysis of the nonlinear dynamics of the whole system has been performed



2.A. Analysis of the Example 2.2 47

in one special case, and general convergence results have been obtained by a worst-case
analysis and by a probabilistic model. The relationship between worst-case and proba-
bilistic models deserves some more comment. Indeed, the worst-case model points out
a dependence of the performance from the number of agents, which is a bad news for
the applications. The probabilistic model, instead, assuming a probabilistic structure on
the quantization errors, does not show this dependence. However, such dependence is
not apparent from simulations. We argue from this difference that the poor worst-case
performance is due to few bad realizations of the errors, which have a small probability in
the probabilistic model, and do not happen in the actual quantized system.

Appendices

Here we include some long proofs which we have skipped during the chapter.

2.A Analysis of the Example 2.2

Here we construct and study the symbolic dynamics underlying the system (2.8). To
start, we need the following technical lemma. Let b·c and d·e denote the floor and ceiling
operators from R to Z.

Lemma 2.12 Given α, β ∈ N and x ∈ R, it holds

bxc =

⌊bαxc
α

⌋

(2.24)

qd(x) = bx + 1/2c =

⌈

1

2

⌊b2βxc
β

⌋⌉

. (2.25)

Proof: We first prove (2.24). Let m = bxc. So

m ≤ x < m + 1

αm ≤ αx < αm + α.

Hence, we can find s ∈ N, 0 ≤ s ≤ α− 1 such that αm + s ≤ αx < αm + s + 1. This yields

bαxc = αm + s and
⌊

bαxc
α

⌋

= m.

Then we prove equation (2.25). The equality qd(x) = bx + 1/2c is clear from the
definition of qd(x). To prove the second equality, let h = b2xc. Then h ≤ 2x < h+1, from
which follows that

h

2
+

1

2
=

h + 1

2
≤ x + 1/2 <

h + 2

2
=

h

2
+ 1.

From this inequality it follows that bx + 1/2c = dh
2 e. This, with (2.24), implies (2.25).



48 Chapter 2. Static quantization and fixed topology

We define ni(t) = b2xi(t)c. Simple properties of floor and ceiling operators, together

with the above lemma, allow us to remark that qd(xi(t)) =
⌈

ni(t)
2

⌉

and to derive from (2.8)

that

xi(t + 1) = xi(t) −
1

2
qd(xi(t)) +

1

2
qd(xi+1(t))

b2xi(t + 1)c = b2xi(t)c + qd(xi+1(t)) − qd(xi(t))

ni(t + 1) = ni(t) +

⌈

ni+1(t)

2

⌉

−
⌈

ni(t)

2

⌉

ni(t + 1) =

⌊

ni(t)

2

⌋

+

⌈

ni+1(t)

2

⌉

.

We have thus found an iterative system involving only the symbolic signals ni(t):

ni(t + 1) = g1(ni(t), ni+1(t)) ∀ i ∈ {1, . . . , N} (2.26)

where g1(h, k) =

⌊

h

2

⌋

+

⌈

k

2

⌉

.

Since ni(t) = b2xi(t)c, the asymptotic analysis of (2.26) allows us to obtain information
about the asymptotic of xi(t) up to quantization errors equal to 1.

We now start the analysis of system (2.26). Define the following quantities: m(t) =
min1≤i≤N ni(t), M(t) = max1≤i≤N ni(t), D(t) = M(t) − m(t). From the form of (2.26)
one can easily remark that m(t) can not decrease and M(t) can not increase. Hence D(t)
is not increasing.

A much stronger result about the monotonicity of D(t) is the content of the following
lemma.

Lemma 2.13 If D(t0) ≥ 2, there exists T ∈ N such that D(t0 + T ) < D(t0).

Proof: Let Im(t) = {j ∈ ZN s.t. nj(t) = m(t)}. The idea of the proof is to show
that the cardinality of the set Im(t) eventually decreases if D(t) ≥ 2.

Notice first that, for h, k ∈ Z, g1(h + 2, k + 2) = g(h, k) + 2. Hence, by an appropriate
translation of the initial condition, we can always restrict ourselves to the case m(t0) ∈
{0, 1}.

Case m(t0) = 0. Notice that

g1(h, k) > 0 ∀h ≥ 0, k > 0, g1(h, 0) > 0 ∀h ≥ 2 .

This easily implies that Im(t) is not increasing. Now, since D(t0) ≥ 2, we can find
j0 ∈ Im(t0) and two integers U > 0 and W ≥ 0 such that

nj0−W−1(t0) > 1

nj0−v(t0) = 1 0 < v ≤ W

nj0+u(t0) = 0 0 ≤ u < U

nj0+U (t0) > 0.
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After W time steps,

nj0−W−1(t0 + W ) > 1

nj0−u(t0 + W ) = 0 W − U + 1 ≤ u ≤ W

nj0+W−U(t0 + W ) > 0.

At the following time step, one 0 will then disappear

nj0−W−1(t0 + W + 1) > 0

nj0−u(t0 + W + 1) = 0 W − U + 2 ≤ u ≤ W

nj0+W−U−1(t0 + W + 1) > 0.

This implies that |Im(t0 + W + 1)| < |Im(t0)|.
Case m(t0) = 1 . Notice that

g1(h, k) > 1 ∀h ≥ 2, k ≥ 1, g1(1, k) > 1 ∀k ≥ 3 .

This easily implies that |Im(t)| is again not increasing. Now, since D(t0) ≥ 2, we can find
j0 ∈ Im(t0) and an integer W ≥ 0 such that

nj0(t0) = 1

nj0+w(t0) = 2 1 ≤ w ≤ W

nj0+W+1(t0) > 2.

The evolution of the above configuration yields, after W instant steps

nj0(t0 + W ) = 1

nj0+1(t0 + W ) > 2.

The next step, we obtain nj0(t0 + W + 1) > 1. Therefore, |Im(t0 + W + 1)| < |Im(t0)|.
In both cases we have proven that |Im(t)| strictly decreases in finite number of steps.

A straightforward induction principle then implies that a finite T ∈ N exists such that
m(t0 + T ) > m(t0). This proves the result.

The interesting consequence of this lemma is the following result.

Theorem 2.14 Let n(t) evolve following (2.26). Then, there exists T ∈ N and h ∈ Z

such that, for all t > T , it holds that D(t) < 2 and one of the following condition is met

(i) ni(t) = h, ∀i;

(ii) {ni(t) : i = 0, . . . N} = {2h − 1, 2h} and each ni(t) is constant in time;

(iii) {ni(t) : i = 0, . . . N} = {2h, 2h + 1} and each ni(t) is periodic in time of period N .

Moreover, for all t ∈ N,
∑N

i=1 ni(t) =
∑N

i=1 ni(0).
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Proof: From Lemma 2.13, it follows that a finite T ∈ N can be found, such that
D(t) < 2 for all t > T . Once we reach his condition, there are two possibilities: either
the ni(t) are all equal or they differ by 1. In the first case, the system remains constant
(case (i)). In the second case, it follows from the way g is defined that if the lowest
state is odd, the evolution is constant (case (ii)), while if the lowest one is even, the state
evolution is a leftward shift (case (iii)). This is periodic of period N (and possibly also of
some divisor of N).

We can now go back to the original system

Corollary 2.15 For system (2.8), there exists T ∈ N such that

|xi(t) − xj(t)| ≤ 1 ∀ i, j ∀ t > T, (2.27)

and hence d∞(P ) ≤ 1/2.

Proof: Immediate consequence of Theorem 2.14, considering the relation ni(t) =
b2xi(t)c.
Remark that (2.27) is satisfied while the system has reached a non consensus fixed point
or a periodic point.

Remark 2.2 Using the quantizer qT instead of qd would induce a symbolic dynamics
evolving via

g5(h, k) =

⌈

h

2

⌉

+

⌊

k

2

⌋

,

which can be studied in an analogous way, leading to a result similar to Theorem 2.14

2.B Proof of Proposition 2.3

Proof: To upper bound
∑∞

s=0 ρ(P s(I−P )), we estimate ρ(P s(I−P )) = maxN−1
k=1 |λs

k(1−
λk)| for all s. In order to do so we consider the function f : C → R defined as f(z) =
zs(1 − z). Let us consider the closed balls B1−R,R and B0,ρ̄. By Gershgorin’s Theorem
we have that σ(P ) ⊆ B1−R,R. By the definition of essential spectral radius it holds that
σ(P ) \ {1} ⊆ B0,ρ̄. Hence σ(P ) \ {1} ⊆ B0,ρ̄ ∩ B1−R,R. Let A = B1−R,R ∩ B0,ρ̄. Clearly

N−1
max
k=1

|λs
k(1 − λk)| ≤ max

z ∈A
|f(z)|.

Since f is an analytic function and A is a compact set, from the Maximum Modulus
Principle it follows that

N−1
max
k=1

|λs
k(1 − λk)| ≤ max

z ∈∂A
|f(z)|,

where ∂A denotes the boundary of A.
Consider now the curves γ : [0, 2π] → C,

γ(t) = 1 − R + Rejt,
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and θ : [0, 2π] → C,
θ(t) = ρ̄ejt,

which represent, respectively, the boundaries of B1−R,R and of B0,ρ̄. In the following, since
|f(z)| = |f(z∗)|, we consider γ and θ only on the interval [0, π].
By calculating the intersection between γ and θ one can see that ∂A = γ̃ ∪ θ̃ where

γ̃ =

{

z = zx + izy ∈ γ : zx ≤ 1 − 2R + ρ̄2

2(1 − R)

}

and

θ̃ =

{

z = zx + izy ∈ θ : zx ≥ 1 − 2R + ρ̄2

2(1 − R)

}

.

We then perform the optimization on these two sets separately. Consider |f(z)| on γ̃.
By straightforward calculations one can show that

|f(γ(t))|2 = 2R2(1 − cos t) [1 − 2R(1 − R)(1 − cos t)]s .

Now let x = R cos t + 1 − R. In order to analyze the behavior of |f(γ(t))|2 we introduce
the following auxiliary function

F (x) = 2R(1 − x) [1 − 2(1 − R)(1 − x)]s .

A straightforward calculation shows that studying |f(z)|2 on γ̃ is equivalent to study F

on the interval I =
[

1 − 2R, 1−2R+ρ̄2

2(1−R)

]

. Since

F ′(x) = 2R [1 − 2(1 − R)(1 − x)]s−1 [−1 + 2(1 − R)(s + 1)(1 − x)] ,

we have that F ′(x) = 0 for x equal to x1 = 1 − 1
2(1−R) and x2 = 1 − 1

2(1−R)(s+1) , and

that F is monotone increasing in [x1, x2] and monotone decreasing for [x2,+∞). Note
that 1 − 1

2(1−R) ≤ 1 − 2R for all R > 0. Hence F , restricted to I, has a maximum in

1 − 2R if x2 ≤ 1 − 2R, in x2 if 1 − 2R ≤ x2 ≤ 1−2R+ρ̄2

2(1−R) , in 1−ρ̄2

2R(1−R) if x2 ≥ 1−ρ̄2

2R(1−R) . We

have that x2 ≤ 1 − 2R ⇔ s ≤ (1−2R)2

4R(1−R) , 1 − 2R ≤ x2 ≤ 1−2R+ρ̄2

2(1−R) ⇔ (1−2R)2

4R(1−R) < s < ρ̄2

1−ρ̄2 ,

x2 ≥ 1−ρ̄2

2R(1−R) ⇔ s ≥ ρ̄2

1−ρ̄2 . Let s̄ = b (1−2R)2

4R(1−R)c and s∗ = b ρ̄2

1−ρ̄2 c. Then

max
x∈I

F (x) =











4R2 (1 − 2R)2s if s ≤ s̄
R

1−R
ss

(s+1)s+1 if s̄ + 1 ≤ s ≤ s∗

R
1−R ρ̄2s

(

1 − ρ̄2
)

if s ≥ s∗ + 1.

Let us now consider |f(z)|2 on θ̃. By simple algebraic manipulations one can see that

|f(θ(t))|2 = ρ̄2s
(

1 + ρ̄2 − 2ρ̄ cos t
)

Note that |f(θ(t))|2 is monotone increasing for t ∈ [0, π] and hence it reaches its maximum

on θ̃ when cos t = 1−2R+ρ̄2

2(1−R) , that is at the intersection with γ̃.
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Therefore we can conclude that

N−1
max
k=1

|λs
k(1 − λk)| ≤















2R |1 − 2R|s if s ≤ s̄
√

R
1−R

ss

(s+1)s+1 if s̄ + 1 ≤ s ≤ s∗
√

R
1−R ρ̄2s (1 − ρ̄2) if s ≥ s∗ + 1.

Hence we can write

t−1
∑

s=0

ρ(P s(I − P ))

≤
s̄
∑

s=0

2R |1 − 2R|s +

s∗
∑

s=s̄+1

√

R

1 − R

ss

(s + 1)s+1
+

t−1
∑

s=s∗+1

√

R

1 − R
ρ̄2s (1 − ρ̄2).

Notice now that
s̄
∑

s=0

2R |1 − 2R|s ≤ 2R

1 − |1 − 2R| ≤
1

1 − R
.

and that

t−1
∑

s=s∗+1

√

R

1 − R
ρ̄2s (1 − ρ̄2) ≤

√

R

1 − R

√

1 − ρ̄2

∞
∑

s=0

ρ̄s

=

√

R(1 − ρ̄2)

(1 − R)(1 − ρ̄)2

≤
√

2R

(1 − R)(1 − ρ̄)
.

Notice finally that, since
∑m

i=1

√

1
i+1 ≤ 2

√
m + 1, we can argue that

s∗
∑

s=s̄+1

√

R

1 − R

ss

(s + 1)s+1
≤
√

R

1 − R

s∗
∑

s=1

√

1

2

√

1

1 + s

≤
√

4R

2(1 − R)(1 − ρ̄2)

≤
√

2R

(1 − R)(1 − ρ̄)
.

Putting together these three inequalities we obtain (2.15).



Chapter 3

Quantized gossip

The goal of this chapter is to analyze the effects of quantization on the (symmetric) gossip
algorithm (see Section 1.3.3 and [9]), or, equivalently, the opportunity of using a gossip
communication when quantization of the messages is imposed. The agents’ states are
assumed to be real numbers, while the sent messages are integer numbers: we consider both
a deterministic uniform quantizer and a probabilistic uniform quantizer, which are defined
rigorously in Section 3.1. To perform the states update, we introduce two alternative
strategies, the partially quantized strategy and the globally quantized strategy, depending
on whether the systems use exact information regarding their own state, or not, to update
their states. We analyze these strategies both with the deterministic quantizer and with
the probabilistic quantizer.

Through both analytical results and simulations, we investigate two design questions:
wether the agents should use the deterministic or the probabilistic quantizer, and wether
they should use, or not, exact information regarding their own states in the update.

Our results are obtained by two different techniques. For the partially quantized strat-
egy with probabilistic quantization, we give a mean squared error analysis and convergence
is proved for time going to infinity. In the three other cases, we study a Markov chain sym-
bolic dynamics, obtaining results of convergence in finite time. Such a fact is remarkable,
since it underlines the discrete nature of the problem, in spite of the state space being
continuous. We show that the globally quantized strategy, both using the deterministic
quantizer and the probabilistic quantizer, ensures that, almost surely, the consensus is
reached in a finite time. The drawback of this strategy is that it does not preserve the
average of the initial conditions. On the other hand, the partially quantized strategy pre-
serves the initial average at each iteration of the algorithm, but does not guarantee that
an exact consensus is reached. However, we prove that the states get as close to consensus
as the size of quantization steps.

The chapter is organized as follows. In Section 3.1 we formulate the problem. In
particular we introduce the partially quantized strategy and the globally quantized strategy.
In Section 3.2 and in Section 3.3, we analyze these two strategies assuming, respectively,
that the systems quantize the information by means of deterministic quantizers and by
means of probabilistic quantizers. Finally in Section 3.4 we gather out our conclusions.

53
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A former version of this work appeared as [40] and a complete version, containing most
of the material, as [23].

Recall the definition of the standard gossip algorithm (1.10). In this chapter, we make
the following assumption.

Assumption 3.1 The graph G = (V, E) is a undirected connected graph and, at every
time instant t ≥ 0, each edge (i, j) ∈ E can be selected with a strictly positive probability
W (i,j).

3.1 Problem statement

Note that the gossip algorithm (1.10) relies upon a crucial assumption: each agent trans-
mits to its neighboring agents the precise value of its state. Here we assume that the
communication network is constituted of digital links. This prevents the agents from hav-
ing a precise knowledge about the state of the other agents. Indeed, through a digital
channel, the i-th agent can only send to its neighbors symbolic data: using this data, the
neighbors of the i-th agent can build an estimate of the i-th agent’s state. We denote
this estimate by x̂i(t), and let x̂(t) = [x̂1(t), . . . , x̂N (t)]∗ . Here, the estimate is simply
the received symbol, computed via the deterministic quantizer (1.11) or the probabilistic
quantizer (1.13).

We introduce two updating rules for the states, which use quantized information. In
the first strategy, if (i, j) is the edge selected at the t-th iteration, i and j, in order to
update its state, use only the estimates of their states, as follows,

xi(t + 1) =
1

2
x̂i(t) +

1

2
x̂j(t)

xj(t + 1) =
1

2
x̂j(t) +

1

2
x̂i(t), (3.1)

or, equivalently in vector form, by recalling the definition of P (t) in (1.9),

x(t + 1) = P (t)x̂(t). (3.2)

To define the second strategy, we remark that (1.7) can be written as

xi(t + 1) = xi(t) −
1

2
xi(t) +

1

2
xj(t)

xj(t + 1) = xj(t) −
1

2
xj(t) +

1

2
xi(t).

We then propose the following updating rule, where the agents use also perfect information
regarding their own states,

xi(t + 1) = xi(t) −
1

2
x̂i(t) +

1

2
x̂j(t)

xj(t + 1) = xj(t) −
1

2
x̂j(t) +

1

2
x̂i(t), (3.3)
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or, equivalently in vector form,

x(t + 1) = x(t) + (P (t) − I)x̂(t). (3.4)

We call the law (3.2) globally quantized and the law (3.4) partially quantized.
It is important to remark that, since P (t) is a doubly stochastic matrix for all t ≥ 0,

Proposition 1.8 can be invoked to assure that the partially quantized law (3.3) preserves
the initial state average.

We proceed with our analysis of these two rules by assuming first that x̂i(t) = qd(xi(t)),
i.e., the information transmitted is quantized by means of deterministic quantizer, and then
by assuming that x̂i(t) = qp(xi(t)), i.e., the information transmitted is quantized by means
of probabilistic quantizer.

3.2 Gossip algorithms with deterministic quantizers

In this section we assume that the information exchanged between the agents is quantized
by means of the deterministic quantizer qd described in (1.11), namely x̂i(t) = qd(xi(t)). In
this context, we separately analyze the partially and globally quantized strategies, starting
from the first one.

3.2.1 Partially quantized strategy

Consider the partially quantized strategy

xi(t + 1) = xi(t) −
1

2
qd(xi(t)) +

1

2
qd(xj(t))

xj(t + 1) = xj(t) −
1

2
qd(xj(t)) +

1

2
qd(xi(t)), (3.5)

Recalling Definition 1.2, we let

y(t) =

(

I − 1

N
11∗
)

x(t), (3.6)

and remark that y(t) = x(t) − 1
N 11∗x(0). As well, we let

d(t) =
1√
N

‖y(t)‖2, (3.7)

Such quantity represents the normalized distance of the state x(t) from the average of the
states.

As an example we report in Figure 3.1 the result of simulations relative to a connected
random geometric graph. Such graph has been drawn placing N = 50 nodes uniformly at
random inside the unit square and connecting two nodes whenever the distance between
them is less that R = 0.3. The initial condition xi(0) is randomly chosen inside the interval
[−100, 100] for all 1 ≤ i ≤ N . Note that d(t) does not converge to 0, meaning that the
average consensus is not reached, but the values get very close to the initial average.



56 Chapter 3. Quantized gossip
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Figure 3.1: Behavior of d for a connected random graph with N = 50 in case of determin-
istic quantizers and of partially quantized strategy.

In the following we give a proof of this fact, quantifying the distance from consensus
that the states of the agents asymptotically achieve. This will be done exploiting a natural
symbolic dynamics interpretation of the states dynamics, similarly to what we have done
in Appendix 2.A, and extending the results in [55]. We define ni(t) = b2xi(t)c for all
i ∈ V , and let n(t) = [n1(t), . . . , nN (t)]∗. Simple properties of floor and ceiling operators,

together with Lemma 2.12, allow us to remark that qd(xi(t)) =
⌈

ni(t)
2

⌉

and that

xi(t + 1) = xi(t) −
1

2
qd(xi(t)) +

1

2
qd(xj(t))

b2xi(t + 1)c = b2xi(t)c − qd(xi(t)) + qd(xj(t)),

from which we can obtain that

ni(t + 1) = ni(t) −
⌈

ni(t)

2

⌉

+

⌈

nj(t)

2

⌉

=

⌊

ni(t)

2

⌋

+

⌈

nj(t)

2

⌉

.

We have thus found an iterative system involving only the symbolic signals ni(t). When
the edge (i, j) is selected, i and j adjourn their states following the pair dynamics

(ni(t + 1), nj(t + 1)) = g2(ni(t), nj(t)) (3.8)
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where g : Z × Z → Z × Z is

g2(h, k) =

(⌊

h

2

⌋

+

⌈

k

2

⌉

,

⌊

k

2

⌋

+

⌈

h

2

⌉)

.

Notice that g is symmetric in the arguments, in the sense that if g2(h, k) = (η, χ), then
g2(k, h) = (χ, η). The analysis of the evolution of (3.8) then allows us to obtain information
about the asymptotics of xi(t), since ni(t) = b2xi(t)c. Before stating the main result
regarding the convergence properties of (3.8), we define the following set

R =
{

r ∈ Z
N : ∃α ∈ Z s. t. r − α1 ∈ {0, 1}N

}

. (3.9)

We have the following result.

Theorem 3.1 Let n(t) evolve according to (3.8). For every fixed initial condition n(0) ∈
Z, almost surely there exists Tcon ∈ N such that n(t) ∈ R for all t ≥ Tcon.

Proof: The proof is based [72] on verifying the following three facts:

(i) the set R, defined in (3.9), is an invariant subset for the evolution described by (3.8);

(ii) n(t) is a Markov process on a finite number of states;

(iii) there is a positive probability for n(t) to reach a state in R in a finite number of
steps.

Let us now check them in order.

(i) Let h ∈ Z. Observe that

g2 (h, h + 1) =

{

(h + 1, h) if h is even
(h, h + 1) if h is odd

This implies that R is an invariant subset for the dynamics described by (3.8).

(ii) Markovianity immediately follows from the fact that subsequent random choices of
the edges are independent. We prove now that the states are finite. To this aim let
(h′, k′) = g2(h, k). By the structure of g, it is easy to see that

max
{

h′, k′} ≤ max {h, k} min {h, k} ≤ min
{

h′, k′} .

Therefore we have that m(n(t)) ≥ m(n(0)) and M(n(t)) ≤ M(n(0)). This implies
that the cardinality of the set of the states is upper bounded by (M(n(0))−m(n(0))+
1)N .

(iii) First define
m(t) = min

1≤i≤N
ni(t) (3.10)

M(t) = max
1≤i≤N

ni(t), (3.11)



58 Chapter 3. Quantized gossip

and,
D(t) = M(t) − m(t).

The proof of (iii) is based on the following strong result about the monotonicity of
D(t): if D(t) ≥ 2, then there exists τ ∈ N such that

P[D(t + τ) < D(t)] > 0. (3.12)

Now we prove (3.12).

Let I(t) = {j ∈ V s.t. nj(t) = m(t)} . We start by proving that |I(t)|, i.e., the
cardinality of I(t), does not increase and that, if D(t) ≥ 2, then there is a positive
probability that it decreases within a finite number of time steps. Notice first that,
for h, k ∈ Z, g2(h + 2, k + 2) = g2(h, k) + 2. Hence, by an appropriate translation
of the initial condition, we can always restrict ourselves to the case m(t) ∈ {0, 1} ,
which of course is easier to handle.
Case m(t) = 0. In this case it is possible for a nonzero state to decrease to 0, but
only in the case of a swap between 0 and 1. This assures that |I(t)| is nonincreasing.
Let S(t) denote the set of nodes which have value m(t)+2 or larger. Since D(t) ≥ 2
then S(t) is non empty at time t. Now let (v1, v2, . . . , vp−1, vp) be a shortest path
between I(t) and S(t). Such a path exists since G is connected. Note that v1 ∈ I(t)
and vp ∈ S(t) and that {v2, . . . , vp−1} could be an empty set; in this case a shortest
path between I(t) and S(t) has length 1. Moreover note also that all the nodes
in the path except v1 and vp have value 1 at time t, otherwise (v1, v2, . . . , vp−1, vp)
would not be a shortest path. Since each edge of the communication graph has a
positive probability of being selected in any time, there is also a positive probability
that in the p−1 time units following t the edges of this path are selected sequentially,
starting with the edge (v1, v2). At the last step of this sequence we have that the
values of vp−1 and vp are updated. By observing again, that the pair of value (0, 1)
is transformed by (3.8) into the pair (1, 0) we have that the value of vp−1, when the
edge (vp−1, vp) is selected, is equal to 0. This update, for the form of (3.8), causes
the value of both nodes to be strictly greater than 0. Therefore, this proves that
|I(t + p − 1)| < |I(t)| with positive probability. Clearly, if |I(t)| = 1 then we have
also that D(t + p − 1) < D(t) with positive probability.
Case m(t) = 1. In this case no state can decrease to 1, and thus |I(t)| is not
increasing. Let I(t), S(t) and (v1, v2, . . . , vp−1, vp) be defined as in the previous case.
Obviously in this case all the nodes v2, . . . , vp−1 in the path have value equal to 2.
Moreover observe that also the sequence of edges (vp−1, vp), (vp−2, vp−1), . . . ,(v2, v3),
(v1, v2) has positive probability of being selected in the p − 1 time units following
t. At the last step of this sequence of edges, the values of v1 and v2 are updated.
Clearly the value of v1 is equal to 1. Since the value of vp at time t is greater or
equal to 3, and since the pair (2, 3) is transformed by (3.8) into (3, 2), we have that
the value of v2 when the edge (v1, v2) is selected, is greater or equal to 3. This
update, for (3.8), causes the value of both nodes to be strictly greater than 1. Hence
|I(t + p − 1)| < |I(t)| with positive probability. Again, if |I(t)| = 1 then we have
also that D(t + p − 1) < D(t) with positive probability.
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Consider now the following sequence of times t0 = t, t1, t2, . . .. For each i ≥ 0, if
|I(t)| > 1, then we let ti+1 to be the first time for which there is a positive probability
that |I(ti+1)| < |I(ti)|. Let now k ∈ N be such that |I(tk)| = 1. Then we have that
D(tk+1) < D(tk). This ensures the validity of (3.12).

The proof of the fact (iii) follows directly from (3.12). Indeed, let n̄ /∈ R, then, from
a repeated application of (3.12) it follows that, there exists a path connecting n̄ to
a state n̄′ = [n̄′

1, . . . , n̄
′
N ], such that max {n̄′

1, . . . , n̄
′
N} − min {n̄′

1, . . . , n̄
′
N} < 2, that

is, n̄′ ∈ R.

This proves the thesis.
We can go back to the original system, and prove the following result.

Corollary 3.2 Consider the algorithm (3.5). Then, almost surely, there exists Tcon ∈ N

such that
|xi(t) − xj(t)| ≤ 1 ∀ i, j ∀ t ≥ Tcon. (3.13)

and hence,
‖x(t) − xave1‖∞ ≤ 1.

Proof: The proof is an immediate consequence of Theorem 3.1 and of the relation
ni(t) = b2xi(t)c, which assure that the states belong to two consecutive quantization bins.

Remark 3.1 Note that the quantizer qT , instead of qd, would induce a dynamics

g6(h, k) =

(⌊

k

2

⌋

+

⌈

h

2

⌉

,

⌊

h

2

⌋

+

⌈

k

2

⌉)

,

which can be studied similarly.

Remark 3.2 It is worth noting that Theorem 3.1 is an extension of Lemma 3 and The-
orem 1 in [55]. In [55] the authors introduced a class of quantized gossip algorithms,
satisfying the following assumptions. Let (i, j) be the edge selected at time t and let ni(t)
and nj(t) the values at time t of node i and of node j respectively. If ni(t) = nj(t) then
ni(t + 1) = ni(t) and nj(t + 1) = nj(t). Otherwise, defined Dij = |ni(t) − nj(t)|, the
method used to update the values has to satisfy the following three properties:

(P1) ni(t + 1) + nj(t + 1) = ni(t) + nj(t),

(P2) if Dij(t) > 1 then Dij(t + 1) < Dij(t), and

(P3) if Dij(t) = 1 and (without loss of generality) ni(t) < nj(t), then ni(t + 1) = nj(t)
and nj(t + 1) = ni(t). Such update is called swap.

Now we substitute the property (P3) either with the property

(P3’) if Dij(t) = 1 and (without loss of generality) ni(t) < nj(t), then, if ni(t) is odd, then
ni(t+1) = nj(t) and nj(t+1) = ni(t), otherwise if ni(t) is even then ni(t+1) = ni(t)
and nj(t + 1) = nj(t)
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or with the property

(P3”) if Dij(t) = 1 and (without loss of generality) ni(t) < nj(t), then, if ni(t) is even then
ni(t+1) = nj(t) and nj(t+1) = ni(t), otherwise if ni(t) is odd then ni(t+1) = ni(t)
and nj(t + 1) = nj(t).

If we consider the class of algorithms satisfying (P1), (P2), (P3’) or satisfying (P1),
(P2), (P3”), it is possible to prove that Lemma 3 and Theorem 1 stated in [55] hold
true also for this class. The proofs are analogous to that of Theorem 3.1 provided above.
Moreover it is easy to see that the algorithm (3.8) satisfies the properties (P1), (P2), (P3’).
This represents an alternative way to prove Theorem 3.1.

3.2.2 Globally quantized strategy

In this subsection we consider the globally quantized strategy

xi(t + 1) =
1

2
qd(xi(t)) +

1

2
qd(xj(t))

xj(t + 1) =
1

2
qd(xj(t)) +

1

2
qd(xi(t)), (3.14)

We underline immediately that the fact that (3.14) uses only quantized information and
not perfect information combined with quantized information as in (3.5) makes the analysis
of (3.5) slightly easier than the analysis of (3.14).
Remarkably, we show in this subsection that the law (3.5) drives, almost surely, the systems
to exact consensus at an integer value. Unfortunately, the initial average of states is not
preserved in general. Again, the analysis of this algorithm can be performed efficiently by
means of the symbolic dynamics previously introduced.

Let again ni(t) = b2xi(t)c for all i ∈ V . From (3.14) and the fact that qd(xi(t)) =
⌈

ni(t)
2

⌉

we obtain
(ni(t + 1), nj(t + 1)) = (g3(ni(t), nj(t)), g3(ni(t), nj(t))) (3.15)

where g3 : Z × Z → Z is defined as

g3(h, k) =

⌈

h

2

⌉

+

⌈

k

2

⌉

.

Define
A = {y ∈ Z

N : ∃α ∈ Z such that y = 2α1}. (3.16)

We have the following result.

Theorem 3.3 Let n(t) evolve according to (3.15). For every fixed initial condition n(0),
almost surely there exists Tcon ∈ N such that n(t) ∈ A for all t ≥ Tcon.

Proof: As for the proof of Theorem 3.1, it will be sufficient to verify the following
three facts:

(i) each element in the set A is invariant for the evolution described by (3.15);
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(ii) n(t) is a Markov process on a finite number of states;

(iii) there is a positive probability for n(t) to reach a state in A in a finite number of
steps.

Let us now check them in order.

(i) is trivial.

(ii) Markovianity immediately follows from the fact that subsequent random choices of
the edges are independent. To prove that the states are finite, define m(t) and M(t)
as in (3.10) and (3.11). Let p, q ∈ Z with p ≤ q. Then, from the structure of g3 we
have that p ≤ g3(p, q) ≤ q + rq where rq denotes the remainder in the division of q
by 2. It follows that

m(0) ≤ ni(t) ≤ M(0) + rM(0) ∀i ∈ V ∀t ≥ 0 . (3.17)

This yields (ii).

(iii) Let us fix t = t0, and assume that n(t0) /∈ A. We prove that there exists τ ∈ N

such that P [n(t0 + τ) ∈ A] > 0. We start by observing that, from the assumption
of having a connected graph, there exists (h, k) ∈ E such that nh(t0) = m(t0),
nk(t0) = q and g2(m(t0), q) > m(t0). Indeed, two cases are given when n(t0) /∈ A.

• If m(t0) < M(t0), then it suffices to consider an edge (h, k) such that nh(t0) =
m(t0) and nk(t0) = q > m(t0), which gives g3(m(t0), p) > m(t0). Note that
such an edge exists from the hypothesis of having a connected graph;

• if m(t0) = M(t0), necessarily we have that m(t0) and M(t0) are odd; then
g2(m(t0),m(t0)) > m(t0).

We define now Ia(t) = {i ∈ V : ni(t) = a}. The above discussion implies that
|Im(t0)(t0 +1)| < |Im(t0)(t0)| with the positive probability of choosing the edge (h, k)
and hence that there is also a positive probability that at some finite time t′ > t0,
|Im(t0)(t

′)| = 0, that is m(t′) > m(t0). Iterating this argument and recalling that
(see (3.17)) M(t) ≤ M(t0) + rM(t0) for all t ≥ t0, it follows that there exists τ ∈ N

such that P [n(t0 + τ) ∈ A] > 0.

This proves the thesis.
We can now go back to the original system. The following corollary follows immediately
from the definition of n(t).

Corollary 3.4 Let x(t) evolve according to (3.14). Then almost surely there exists Tcon ∈
N and α ∈ Z such that xi(t) = α for all i ∈ V and for all t ≥ Tcon.

We have already underlined the fact that this strategy does not preserve the initial
average, in general. Providing some probabilistic estimation of the distance of the consen-
sus point from the initial average is a challenging problem: we limits our analysis to the
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following simulation. In Figure 3.2 we plot the variable z that is defined as follows. In the
globally quantized strategy we have that, almost surely limt→∞ = α1 for some random
integer α. Let z = |α−1/N1∗x(0)|. In words, z represents the distance from the consensus
point to which the globally quantized strategy leads the systems and the average of the
initial condition. We have depicted the value of z for a family of random geometric graphs
[76] of increasing size from N = 10 up to N = 80. The initial condition xi(0) is chosen
randomly inside the interval [−100, 100] for all 1 ≤ i ≤ N. Moreover for each N , z is

10 20 30 40 50 60 70 80
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z

Figure 3.2: Behavior of z for a family of random geometric graphs in case of deterministic
quantizers and of globally quantized strategy.

computed as the mean of 100 trials. We can see that the value of z is increasing in N and
assumes values that are not negligible with respect to the quantization step size.

Remark 3.3 Using the quantizer qT instead of qd would induce a dynamics

g7(h, k) =

⌊

h

2

⌋

+

⌈

k

2

⌉

,

which can be studied in an analogous way.

3.2.3 Speed of convergence

Providing some insights on the speed of convergence of (3.5) and of (3.14) is quite hard
in general. In Figure 3.3 and Figure 3.4 we report, respectively, a comparison between
the partially quantized strategy (3.5) and the gossip algorithm with exchange of perfect
information (1.7) and between the globally quantized strategy (3.14) and again the gossip
algorithm with exchange of perfect information (1.7). The simulations are made on the
same random geometric graphs considered in Figure 3.1, and the initial conditions are
randomly chosen inside the interval [−100, 100].
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For both strategies we plotted the behavior of the variable d(t) defined in (3.7).

From the Figure 3.3 and Figure 3.4 we can infer that the speed of convergence toward
the steady state of the quantized strategies (3.14) and (3.5) is similar to the one of the
gossip algorithm with perfect exchange of information. This numerical evidence is not
completely understood yet, but some interesting preliminary results appear in [40].
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Figure 3.3: Behavior of d, when using the partially quantized strategy, for a connected
random geometric graph with N = 50. Note that since the partially quantized strategy
does not converge to a consensus, d(t) does not go to 0.

Remark 3.4 If, depending on the application, one can not relax the convergence require-
ment, we could suggest the following heuristic solution to the consensus problem, which
combines the positive features of both strategies,

x(t + 1) = Pqd(x(t)) + ε(t)(x(t) − qd(x(t))),

where ε(t), t ≥ 0, is a nonnegative sequence such that ε(t) ≤ 1, ∀ t ≥ 0 and limt→∞ ε(t) =
0.

3.3 Gossip algorithms with probabilistic quantizers

In this section we assume that the information exchanged between the systems is quantized
by means of the probabilistic quantizer qp described in (1.13), namely x̂i(t) = qp(xi(t)).
We recall the statistics of qp, as illustrated in Lemma 1.7. Moreover, we make the following
natural assumption
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Figure 3.4: Behavior of d, when using the globally quantized strategy, for a connected
random geometric graph with N = 50. In this case, accordingly to the theoretical result
stated in Corollary 3.4, d(t) tends to 0.

Assumption 3.2 Given the values xi(t) for all i ∈ V , the random variables qp(xi(t)),
as i varies, form an independent set. Moreover, for every i 6= j, given xi(t), qp(xi(t)) is
independent from xj(t).

As before, we will now separately analyze the partially and globally quantized strate-
gies.

3.3.1 Partially quantized strategy

The algorithm for partially quantized strategy, when the edge (i, j) is chosen, can be
written as

xi(t + 1) = xi(t) −
1

2
qp(xi(t)) +

1

2
qp(xj(t))

xj(t + 1) = xj(t) −
1

2
qp(xj(t)) +

1

2
qp(xi(t)). (3.18)

Similarly to the partially quantized strategy via deterministic quantizers (3.5), also (3.18)
does not reach the consensus in general. Again we report a simulation showing this fact.
In Figure 3.5 the behavior of the quantity d(t), defined in (3.7), is depicted for the same
connected random geometric graph considered in Figure 3.1. Note that the quantity d(t)
stays visibly away from 0, meaning that the average consensus is not reached.



3.3. Gossip algorithms with probabilistic quantizers 65

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

t

d

Figure 3.5: Behavior of d for a connected random geometric graph with N = 50.

The analysis of (3.18) is more complicate than for the corresponding law (3.5). This
is mainly due to the lack of convexity properties which were used in the analysis of (3.5).
The following example shows this type of difficulty.

Example 3.1 Consider (3.5) and assume that the edge (i, j) has been selected at time t.
Without loss of generality assume that xi(t) ≤ xj(t). Then, by convexity arguments, we
have that bxi(t)c ≤ xi(t + 1), xj(t + 1) ≤ dxj(t)e. This is no longer true for (3.18). As a
numerical example assume that xi(t) = 3.4 and xj(t) = 3.6. Then with probability 1/4
we will have that qp(xi(t)) = 4 and qp(xj(t)) = 3. In this case, by (3.18), we have that
xi(t + 1) = 2.9 and that xj(t + 1) = 4.1. Hence, xi(t + 1), xj(t + 1) do not belong to the
interval [bxi(t)c, dxj(t)e].
For this reason, we do not develop a symbolic analysis for this algorithm, and we do not
prove convergence in finite time. By simulations we can see that (3.18) does not drive the
states of the systems inside the same bin of quantization, as the corresponding strategy
(3.5) using deterministic quantizers. In Figure 3.6, we depict the behavior of the quantity

s(t) = max
1≤ i,j ≤N

|xi(t) − xj(t)|.

for the same random geometric graph considered in Figure 3.5. In this simulation we
assume that the initial condition xi(0) is randomly chosen inside the interval [−10, 10].
Note that s asymptotically oscillates around 2. Interesting results on (3.18), in terms of
both the asymptotic distance from the initial average and the speed of convergence, can
be provided by a mean-square analysis. In the sequel of this subsection, we assume that
the initial condition x(0) satisfies the following condition.
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Figure 3.6: Behavior of s for a connected random geometric graph with N = 50.

Assumption 3.3 The initial condition x(0) is a random variable such that E[x(0)] = 0
and E [x(0)x∗(0)] = σ2

0I for some σ2
0 > 0.

We start by observing that (3.18) can be rewritten as

x(t + 1) = P (t)x(t) + (P (t) − I) (qp(x(t)) − x(t)) (3.19)

Define
e(t) = qp(x(t)) − x(t).

the quantization error and recall the definition of y(t) given in (3.6). From (3.19), using
the fact that P (t) is symmetric and stochastic, we easily obtain the following recursive
relation in terms of the variables e(t) and y(t):

y(t + 1) = P (t)y(t) + (P (t) − I)e(t). (3.20)

In order to perform an asymptotic analysis of (3.20) it is convenient to introduce the
following matrices. Let

Σyy(t) = E [y(t)y∗(t)] , Σee(t) = E [e(t)e(t)∗] , Σye(t) = E [y(t)e(t)∗] .

Equation (3.20) leads to the following recursive equation in terms of the above matrices

Σyy(t + 1) = E [P (t)Σyy(t)P (t)] + E [P (t)Σye(t)(P (t) − I)]+

+ E
[

(P (t) − I)Σ∗
yeP (t)

]

+ (P (t) − I) Σee(t) (P (t) − I) . (3.21)

From the fact that x(0) is a random variable satisfying Assumption 3.3, it immediately
follows that

Σyy(0) = σ2
0

(

I − N−1 11∗) . (3.22)

The following proposition states some correlation properties of the variables y and e.
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Proposition 3.5 Consider the variables y(t) and e(t) above defined. Then

E [e(t)] = 0 and Σee(t) = diag
{

σ2
1(t), . . . , σ

2
N (t)

}

(3.23)

where σ2
i (t) = E

[

e2
i (t)
]

is such that σ2
i (t) ≤ 1/4 for all 1 ≤ i ≤ N and for all t ≥ 0.

Moreover

Σye(t) = 0, (3.24)

for all t ≥ 0.

Proof: Using Lemma 1.7, we have that

E [ei(t)] = E [ E [qp(xi(t)) − xi(t)|xi(t)]]

= E [ E [qp(xi(t))|xi(t)] − xi(t)]

= E [xi(t) − xi(t)]

= 0. (3.25)

Moreover, for i 6= j, using Assumption 3.2,

E [ei(t)ej(t)] = E [E [ei(t)ej(t) |xi(t), xj(t)]]

= E [E [ei(t) |xi(t), xj(t)] E [ej(t) |xi(t), xj(t)]]

= E [E [ei(t) |xi(t)] E [ej(t) |xj(t)]]

= 0 (3.26)

If i = j, using again Lemma 1.7, we have that

E
[

e2
i (t)
]

= E

[

(qp(xi(t)) − xi(t))
2
]

= E

[

E

[

(qp(xi(t)) − xi(t))
2 |xi(t)

]]

≤ E

[

1

4

]

=
1

4
(3.27)

An argument similar than the one above used to prove that E [ei(t)ej(t)] = 0 allows to
prove that E [xi(t)ej(t)] = 0 for any i 6= j. This easily yields (3.24).

From the above properties we have that (3.21) can be rewritten as

Σyy(t + 1) = E [P (t)Σyy(t)P (t)] + E [(P (t) − I) Σee(t) (P (t) − I)] . (3.28)

To estimate the asymptotic distance from the initial average, we introduce the cost function

J(W ) = lim sup
t→∞

√

1

N
E[‖y(t)‖2]. (3.29)
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The cost depends on the selection probabilities W , and, thanks to the above definitions,
can be computed as

J(W ) = lim sup
t→∞

√

1

N
tr {Σyy(t)}. (3.30)

We can rewrite the evolution law (3.28) as

Σyy(t + 1) = A(Σyy(t)) + B(Σee(t)),

where A and B are linear operators from R
N×N to itself. Namely, given a matrix M ,

A(M) = E [P (t)MP (t)] and B(M) = E [(P (t) − I) M (P (t) − I)] .

It is useful to remark that A is actually the evolution on Σyy for the gossip algorithm
[9], in the absence of quantization error, while B can be regarded as a disturbance due
to the quantization error. From [37], we know that in the case of no quantization the
system converges almost surely to consensus. This implies that A is an asymptotically
stable operator when restricted to the subspace S = {M ∈ R

N×N : 1∗M1 = 0}. Since
1∗B(M)1 = 0 for any matrix M and Σyy(0) ∈ S, we have that Σyy(t) ∈ S for all t ≥ 0.
As a consequence Σyy(t) converges for t → +∞ and in the definition of J(W ) in (3.30)
lim sup can be replaced by lim.

It is actually a general fact that, in most cases, systems with quantization can be
regarded as disturbed versions of non-quantized systems. This approach has been taken
in [40], to show that the speed of convergence of gossip consensus algorithms is essentially
the same with or without quantization, as long as the states are far from consensus.

Providing an expression for J(W ) is quite hard in general. We then try to simplify the
problem by introducing the following auxiliary system

Σ̄(t + 1) = E
[

P (t)Σ̄(t)P (t)
]

+
1

4
E

[

(P (t) − I)2
]

, (3.31)

where Σ̄(0) = Σyy(0), and the following cost function

J̄ = lim sup
t→∞

√

1

N
tr{Σ̄(t)}.

In principle, J̄ should depend on W , too. However, we are going to prove that this is not
the case. We have the following comparison result.

Proposition 3.6 Consider the cost functions J(W ) and J̄ . We have that

J(W ) ≤ J̄ .

Proof: To prove the statement we show, by induction on t, that Σ̄(t) ≥ Σyy(t) for
all t ≥ 0, where the inequality is meant in matricial sense, that is, Σ̄(t) − Σyy(t) is a
semidefinite positive matrix.



3.3. Gossip algorithms with probabilistic quantizers 69

Since Σ̄(0) = Σyy(0) the assertion is true for t = 0. Assume now that Σ̄(t) ≥ Σyy(t) is
true for a generic t. We have that

Σ̄(t + 1) − Σyy(t + 1)

= E
[

P (t)Σ̄(t)P (t)
]

+
1

4
E

[

(P (t) − I)2
]

− (E [P (t)Σyy(t)P (t)] + E [(P (t) − I) Σee(t) (P (t) − I)])

= E
[

P (t)(Σ̄(t) − Σyy(t))P (t)
]

+ E

[

(P (t) − I)

(

1

4
I − Σee(t)

)

(P (t) − I)

]

.

Since by inductive hypothesis Σ̄(t) ≥ Σyy(t) and since by Proposition 3.5 we know that
Σee(t) ≤ 1

4I for all t ≥ 0, we have that Σ̄(t + 1) − Σyy(t + 1) ≥ 0.
Observe now that, since P (t)2 = P (t) we obtain that E[(I − P (t))2] = I − E[P (t)].

From this fact we obtain the following result.

Proposition 3.7 Given the above definitions and (3.28),

lim
t→∞

Σ̄(t) =
1

4

(

I − 1

N
11∗
)

.

Proof: Define the matrix B̄ = E[(I − P (t))2] Since Σ̄yy(0) ∈ S, and A is asymptoti-
cally stable if restricted to the subspace S, then

lim
t→∞

Σ̄(t) =

+∞
∑

t=0

A(t)(B̄).

This is the only fixed point of the iteration law (3.31). Thus we are left to prove that
Σ∗ = 1

4

(

I − 1
N 11∗) is a fixed point, that is Σ∗ = A(Σ∗) + B̄. This is true, because

A(Σ∗) + B̄ =
1

4
E

[

P (t)

(

I − 1

N
11∗
)

P (t)

]

+
1

4
(I − E[P (t)])

=
1

4

{

E
[

P (t)2
]

− 1

N
11∗ + I − E[P (t)]

}

=
1

4

{

I − 1

N
11∗
}

.

Corollary 3.8 For every probability matrix W we have that J(W ) ≤ 1
2 .

Proof: From the above proposition we can argue that J̄ = 1
2

√

N−1
N , and since

J(W ) ≤ J̄ , we can conclude.
From these theorems we draw a strong conclusion about the convergence of the algorithm.
In spite of missing consensus in the strict sense, the asymptotical mean squared error of
the algorithm is smaller than the size of the quantization bin, and has a bound which does
not depend on the number of the agents, nor on the topology of the graph, nor on the
probability of the edges selection.
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3.3.2 Globally quantized strategy

The algorithm for the globally quantized strategy, when the edge (i, j) is chosen, can be
written as

xi(t + 1) =
1

2
qp(xi(t)) +

1

2
qp(xj(t))

xj(t + 1) =
1

2
qp(xj(t)) +

1

2
qp(xi(t)). (3.32)

Below we prove that the law (3.32), as the law (3.14), drives almost surely the systems
to exact consensus at an integer value. Moreover, we show by simulations, that the
consensus point, even if (3.32) does not preserve the average of the state, is rather close
to the average of the initial condition. This represents a significant improvement with
respect to the strategy (3.14), that, as seen in Figure 3.2, leads to a consensus point whose
distance from the average of the initial condition, is not negligible in general.

With the globally quantized strategy (3.32), like with (3.18), we have to deal with two
sorts of randomness, since the interacting pair is randomly selected, and the quantization
map is itself random. This makes the analysis of (3.32) more complicate than the analysis
of (3.14). However, again, we are able to prove the convergence by a symbolic dynamics
approach.

Let again ni(t) = b2xi(t)c for all i ∈ V and let n(t) = [n1(t), . . . , nN (t)]∗. Before
finding a recursive equation for n(t), we need to introduce the following random variable.
Let

Tall = inf {t : at time t every node in V has been selected at least once}
Tall is an integer random variable which is almost surely finite, because nodes are selected
with positive probability. Note that, from (3.32), xi(t) ∈ {a, a + 1/2} for some integer
number a, for all t ≥ Tall. This allows us to disregard the evolution before Tall and to
analyze, for t > Tall, the symbolic dynamics as follows. For t ≥ Tall, by recalling how the
probabilistic quantizer works, we have that

qp(xi(t)) =











ni(t)
2 if ni(t) is even

dni(t)
2 e with probability 1/2

bni(t)
2 c with probability 1/2

if ni(t) is odd

Let ξ1 and ξ2 be two independent Bernoulli random variables with parameter 1/2 and
define g4 : Z × Z → Z by

g4(h, k) =

⌈

h

2

⌉

+

⌈

k

2

⌉

− ξ1rh − ξ2rk,

where rh denotes the remainder of the division of h by 2. If, at time instant t, the edge
(i, j) is selected, then

(ni(t + 1), nj(t + 1)) = (g4(ni(t), nj(t)), g4(ni(t), nj(t))) . (3.33)

The following result characterizes the convergence properties of (3.33). Recall the defini-
tion of the set A in (3.16).
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Theorem 3.9 Let n(t) evolve according to (3.33). For every fixed initial condition n(0),
almost surely there exists Tcon ∈ N such that n(t) ∈ A for all t ≥ Tcon.

Proof: The proof is quite similar to the proof of Theorem 3.3 and Theorem 3.1, and
it is based on proving the following three facts:

(i) each element in the set A is invariant for the evolution described by (3.33);

(ii) n(t) is a Markov process on a finite number of states;

(iii) there is a positive probability for n(t) to reach a state in A in a finite number of
steps.

Let us now check them in order.

(i) is trivial.

(ii) Markovianity immediately follows from the fact that subsequent random choices of
the edges are independent and from (3.33). To prove that the states are finite, define
m(t) and M(t) as in (3.10) and (3.11). Let h ∈ Z. Then, from the structure of g4

we have that

• g4(h, h) = h if h is even;

• h − 1 ≤ g4(h, h) ≤ h + 1 if h is odd.

The above two properties imply that m(0) − rm(0) ≤ ni(t) ≤ M(0) + rM(0) for all
i ∈ V and for all t ≥ 0, This yields (ii).

(iii) Observe that

g4(h, k) = g3(h, k) − ξ1rh − ξ2rk,

where g3 is the map defining the evolution of (3.15). Hence

P [g4(h, k) = g3(h, k)] ≥ 1

4
.

This fact, combined with the fact (iii) proved along the proof of Theorem 3.3, ensures
that, also for (3.33), there is a positive probability of reaching a state in A in a finite
time.

The above theorem and the previous remarks about Tall lead to the following claim about
the original system.

Corollary 3.10 Let x(t) evolve following (3.32). Then almost surely there exists Tcon ∈ N

and α ∈ Z such that xi(t) = α for all i ∈ V and for all t ≥ Tcon.
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As for (3.14), it is an open problem to provide a theoretical estimation of the distance
between the consensus point to which (3.32) leads the systems, and the average of the
initial condition. We limit our analysis to the following simulations. In Figure 3.7 we plot
the variable z = |c − 1/N1∗x(0)|, where c is such that limt→∞ x(t) = c1, as a function
of N . The variable z represents the distance between the consensus point to which the
globally quantized strategy leads the systems and the average of the initial condition.
We plot the value of z for a family of random geometric graphs of increasing size from
N = 10 up to N = 80. The initial condition xi(0) is chosen randomly inside the interval
[−100, 100] for all 1 ≤ i ≤ N. Moreover for each N , the plotted z is the average of 100

10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

N

z

Figure 3.7: Behavior of z for a family of random geometric graphs when considering the
globally quantized strategy using probabilistic quantizers.

trials. In Figure 3.8 we provide a comparison between (3.14) and (3.32). The globally
quantized strategy using probabilistic quantizers, differently from the globally quantized
strategy using deterministic quantizers, seems to reach the consensus very close to the
average of the initial condition.

3.4 Conclusion and open questions

In this chapter we studied the gossip algorithm for the consensus problem with quantized
communication. In order to face the effects due to the quantization (both deterministic and
probabilistic) we proposed here two updating rules: the globally quantized strategy and
the partially quantized strategy. In the former the nodes use only quantized information
in order to update their state. In the latter they have access also to exact information
regarding their own state. We summarize our results in Table 3.1.

We have seen that the partially quantized strategy, with both the deterministic and
probabilistic quantizers, does not reach the consensus in general, but maintains the average
of the state at each iteration and drives all the states very close to the average of the
initial condition. On the other hand, we have shown that the globally strategy leads
almost surely to a consensus which, however, does not coincide with the average of the
initial condition. We have provided some simulations characterizing the distance between
the consensus point and the initial average. While using the deterministic quantizer this
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Figure 3.8: Comparison in terms of z between the ”deterministic” and the ”probabilistic”
strategy, for a family of random geometric graphs.

Table 3.1: Summary of results
Globally Quant. Partially Quant.

qd
Finite time conv. to consensus

Larger error

Finite time conv. to

N−1/2‖x − xave1‖2 ≤ 1/2
Average preserved

qp
Finite time conv. to consensus

Smaller error

Asympt. conv. to

N−1/2
√

E[‖x − xave1‖2
2] ≤ 1/2

Average preserved

distance turns out to be not negligible, using the probabilistic quantizer the consensus
is reached surprisingly very close to the average of the initial condition. Providing some
theoretical insights on this fact will be the object of future research.

Few words are in order to comment on the generality of the results obtained for the
probabilistic quantizer qp. Theorem 3.10 indeed does not use any statistical property of
the quantizer, and not even its definition, except the fact that for all a ∈ Z,

qp(a + 1/2) =

{

a + 1 with probability p
a with probability 1 − p

,

with p = 1/2. Then the result holds, with the same proof, for every quantizer q, which
maps x ∈ R into q(x) ∈ {bxc, dxe}, and satisfying the above condition, with p ∈ (0, 1). On
the other hand, the results in Section 3.3.1 are based on the statistics of the quantization
error and does not use any other feature of the quantizer: they thus hold for any quantizer



74 Chapter 3. Quantized gossip

having the same statistics. The unbiasedness of the quantizer is essential to such analysis.
It is easy to see that the probabilistic quantizer qp is the only unbiased quantizer in the
above family, and then it is the only which allows both the analyses. This justifies a
posteriori our choice of the probabilistic quantizer.

For simplicity reasons we have chosen, defining the update rules (3.2) and (3.4), to
consider consensus weights equal to 1/2. Hence, although we believe that the case we
studied already shows the significant features of the problem, it is natural to ask whether
our results can be extended to general choices of weights. Such extension is likely to be
possible, after solving some technical difficulties. Let us consider, for instance, equation
(3.4). Such an update rule can be extended considering an update matrix P (t) = I−εEij,
instead of (1.9). We conjectured in [40] that the so defined algorithm converges for ε
a rational number in (0, 1/2]. This fact has been proved for ε ∈ (0, 1/2] in the pair of
forthcoming papers [56, 57].

Finally, another issue which deserves further attention is the speed of convergence
of the presented algorithms. Indeed, the non-quantized gossip algorithm [9] is known to
asymptotically converge (in a mean squared sense) at exponential speed, with a rate which
depends on the matrix W. It is thus natural to conjecture that the convergence of the quan-
tized version will be roughly exponential, as long as the differences states are much larger
than the quantization step. Preliminary results in this sense are in [40] and in Section 3.3.
However, the granularity effects eventually comes out in the convergence, making the sys-
tems converge in finite time to some limit point. Giving a rigorous clarification of this
question is an interesting open problem.



Chapter 4

Efficient quantization

This chapter presents a consensus strategy in which the systems can exchange information
through a strongly connected digital communication network. We present and discuss an
efficient encoding/decoding strategy, based on the so called zooming-in/zooming-out quan-
tization method [10, 84, 68], with theoretical and simulation results on its performance.
The algorithm and the main convergence result were presented, in slightly different way,
in [19]. See also the report [22].

4.1 Encoding-decoding schemes

Let us assume to have a strongly connected graph G and an average consensus controller
K. In the extended communication framework (1.16), the control input ui(t) of agent i
has the following form

ui(t) =

N
∑

j=1

Kij x̂
i
j(t) , (4.1)

where x̂i
j is the estimate of the state xj which has been built by the agent i.

The point now is to describe how the estimates are built. In Chapters 2 and 3, we
have assumed that the estimate is just the transmitted message. Now, instead, we look
for a less trivial way of constructing estimates.

Suppose that the j-th agent sends to the i-th agent, through a digital channel, at
each time instant t, a symbol sij(t) belonging to a finite or countable alphabet Sij, called
the transmission alphabet. It is assumed that the channel is reliable, that is each symbol
transmitted is received without error. In general, the structure of the coder by which
the j-th agent produces the symbol to be sent to the i-th agent can be described by the
following equations

{

ξij(t + 1) = Fij(ξij(t), sij(t))
sij(t) = Qij(ξij(t), xj(t))

(4.2)

where sij(t) ∈ Sij , ξij(t) ∈ Ξij, Qij : Ξij × R → Sij, and Fij : Ξ × Sij → Ξij. The

75
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decoder, run by agent i, is the system

{

ξij(t + 1) = Fij(ξij(t), sij(t))
x̂i

j(t) = Hij(ξij(t), sij(t)),
(4.3)

where Hij : Ξij × Sij → R.
The set Ξij serves as state space for the coder/decoder, whereas the maps Fij , Qij ,Hij

represent, respectively, the coder/decoder dynamics, the quantizer function, and the de-
coder function. Coder and decoder are jointly initialized at ξij(0) = ξ0.
In general, one may have different encoders at agent j, according to the various agents
the agent j wants to send its data. For the sake of simplicity, we assume in the sequel
that each system uses the same encoder for all data transmissions. Thus, each agent j
broadcasts the same symbol sj(t) to all its neighbors. In this case every agent receiving
data from j obtains the same estimate of xj(t), which we shall denote by x̂j(t). In this
way, by letting Fj = Fij ,Hj = Hij, Qj = Qij and Ξj = Ξij , the previous coder/decoder
couple can be represented by the following state estimator with memory







ξj(t + 1) = Fj(ξj(t), sj(t))
sj(t) = Qj(ξj(t), xj(t))
x̂j(t) = Hj(ξj(t), sj(t))

(4.4)

Moreover (4.1) assumes the following form

ui(t) =
N
∑

j=1

Kij x̂j(t), (4.5)

and the system evolution is

x(t + 1) = x(t) + Kx̂(t). (4.6)

It is worth observing that the controller (4.5) preserves the average of the state x(t)
at each time step, since Proposition 1.8 applies.

Remark 4.1 (Need for synchrony) Remark that, from the point of view of the im-
plementation, both agent j and its neighbors have to run identical copies of the system
ξj(t). This clearly implies an intrinsical weakness of the scheme with respect to failures:
if messages are lost, the synchrony of these copies is lost as well, and the algorithm does
not work.

In change of this potential drawback, the scheme has very interesting convergence prop-
erties.

4.2 Zooming-in zooming-out strategy

Our strategy is inspired by the quantized stabilization technique proposed in [10], which is
called zooming-in/zooming-out strategy. In this case the information exchanged between



4.2. Zooming-in zooming-out strategy 77

the agents is quantized by scalar uniform quantizers which assume values in a finite set,
and can be described as follows. For m ∈ N define the set of quantization levels

Sm = {−1 +
2` − 1

m
| ` ∈ {1, . . . ,m}}∪{−1, 1}.

The corresponding uniform quantizer q(m) : R → Sm is as follows. Let x ∈ R then

q(m)(x) = −1 +
2` − 1

m

if ` ∈ {1, . . . ,m} satisfies −1 + 2(`−1)
m ≤ x ≤ −1 + 2`

m , otherwise q(m)(x) = 1 if x > 1 and

q(m)(x) = −1 if x < −1.
It is easy to see that the quantizer q(m) enjoys the following property.

Lemma 4.1 (Quantization error) Given z ∈ R and l ∈ R>0 such that |z| ≤ l, it holds

|z − lq(m)
(z

l

)

| ≤ l

m
. (4.7)

Let m ∈ N, kin ∈ ]0, 1[, and kout ∈ ]1,+∞[. The zooming-in/zooming-out encoder/decoder,
with parameters m,kin, kout, is defined by the alphabet S = Sm, the state space Ξj =
R × R>0, such that ξj(t) = (x̂j(t), lj(t)), and the dynamics

x̂j(0) = 0

x̂j(t + 1) = x̂j(t) + lj(t + 1)sj(t + 1) ∀ t ≥ 0,

and

lj(0) = l0 ∈ R

lj(1) = l0

lj(t + 1) =

{

kinlj(t) if |sj(t)| < 1

koutlj(t) if |sj(t)| = 1
∀ t > 0.

The sent symbol is

sj(t) = q(m)

(

xj(t) − x̂j(t − 1)

lj(t)

)

∀ t > 0.

Let us comment on such definition. Remark that the first component of the coder/decoder
state contains x̂(t), the estimate of x(t). The transmitted messages contain a quantized
version of the estimation error xj(t) − x̂j(t − 1) scaled by the factor lj(t). Accordingly,
the second component of the coder/decoder state, lj , is referred to as the scaling factor :
it increases when |xj(t) − x̂j(t − 1)| > lj(t) (“zooming out step”) and decreases when
|xj(t) − x̂j(t − 1)| ≤ lj(t) (“zooming in step”).

We can now prove the main theorem of this chapter.
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Theorem 4.2 (Convergence) Consider the system (4.6) with the zooming coding. Let

ρ be the essential spectral radius of I + K. Suppose that ρ < kin < 1, m ≥ (4+3kin)
√

N
kin(kin−ρ) and

that l0 > 2(ρ+2)‖x(0)‖
kin− 3

√
N

m

. Then, for any initial condition x(0) ∈ R
N ,

lim
t→+∞

x(t) = lim
t→+∞

x̂(t) = xave1,

and the convergence is exponential, with rate not bigger than kin.

Proof: Let us rewrite the overall system as the coupling of the three dynamical systems
on R

N ,

lj(0) = l0 ∀j ∈ V

lj(1) = l0 ∀j ∈ V

lj(t + 1) =

{

kinlj(t) if |xj(t + 1) − x̂j(t)| < 1

koutlj(t) if |xj(t + 1) − x̂j(t)| ≥ 1
∀j ∈ V, t ∈ N

x(0) = x0

x(t + 1) = x(t) + Kx̂(t) ∀t ∈ Z≥0

x̂j(0) = 0 ∀j ∈ V

x̂j(t + 1) = x̂j(t) + lj(t + 1)q(m)

(

xj(t + 1) − x̂j(t)

lj(t + 1)

)

∀j ∈ V, t ∈ Z≥0.

Their coupling implies that the following facts are equivalent:

(i) lim
t→+∞

l(t) = 0;

(ii) lim
t→+∞

x(t) = xave1;

(iii) lim
t→+∞

(x̂(t) − x(t)) = 0.

The idea of the proof is the following: we show that under the assumptions there always
happen zooming in steps. This implies l(t) = kt−1

in l01 and implies in turn convergence to
average consensus.

By definition, there are only zooming in steps if

|xj(t + 1) − x̂j(t)| < lj(t + 1) ∀i ∈ V, t ∈ Z≥0 (4.8)

or equivalently if

|xj(t + 1) − x̂j(t)| < kt
inl0 ∀i ∈ V, t ∈ Z≥0. (4.9)
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Let us define ỹ(t) = Kx(t) and e(t) = x(t) − x̂(t), and remark that (4.9) is equivalent
to

|ỹ(t) − (K − I)e(t)| < kt
inl0, (4.10)

where the inequality is meant componentwise.
To prove this fact, we proceed by strong induction over t, proving that for all t ∈ Z≥0

‖ỹ(t)‖ ≤ kt
inl0 (4.11)

‖ỹ(t) − (K − I)e(t)‖ ≤ kt
inl0. (4.12)

Since ‖ỹ(t)− (K − I)e(t)‖∞ ≤ ‖ỹ(t)− (K − I)e(t)‖, the inequality (4.12) implies (4.9) and
then convergence.

Let us thus check the validity of Equations (4.11) and (4.12) for t = 0, t = 1, and for
a general t + 1, with t ∈ N, given it true for all t′ < t. We shall use the recursion

ỹ(t + 1) = (I + K)ỹ(t) − K2e(t),

as well as Lemma 4.1, which implies ‖e(t)‖ ≤
√

N
m l0.

Using triangle and submultiplicative inequality of norms, and ‖I + K‖ = ρ, ‖K‖ ≤ 2,
and ‖K − I‖ ≤ 3, we get that

t = 0. (4.11) holds if ‖Kx0‖ < l0, and (4.12) holds if ‖x0‖∞ < l0.

t = 1. (4.12) holds if

2(2 + ρ)‖x0‖ + 3

√
N

m
l0 < kinl0, (4.13)

and (4.11) holds if
‖Kx0‖ < kinl0. (4.14)

t > 1. Assuming (4.11) and (4.12) true for time steps t and t − 1, we obtain that (4.12)
holds for the time step t + 1 if

ρkt
in + 4

√
N

m
kt−1
in l0 + 3

√
N

m
kt
inl0 < kt+1

in l0,

that is if

ρkin + 4

√
N

m
+ 3

√
N

m
kin < k2

in. (4.15)

Instead, (4.11) holds if

ρkin + 4

√
N

m
< k2

in. (4.16)

The system of conditions (4.13)-(4.14)-(4.15)-(4.16) is satisfied when the assumptions of
the theorem hold.
This result is quite conservative in proving convergence, since it guarantees that since the
beginning only zooming in steps happen. This is clearly restrictive, since there is no need
for l(t) to be monotonic to converge to zero.
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4.3 Simulation results

In this section we show by simulations the properties of the algorithm in terms of (speed
of) convergence, as it depends on the parameters of the method, kin, kout,m, and on the
topology of the graph. Indeed, the convergence result we obtained, Theorem 4.2, gives
sufficient conditions on the parameters, depending on ρ, and on N , and thus on the graph.
Convergence is possible, provided the conditions, at exponential speed, with rate kin > ρ.
Simulations are worth of interest, since they demonstrate that convergence is possible also
outside the scope of Theorem 4.2, and with a speed which can be faster than the linear
algorithm with ideal communication (1.5).

Roughly speaking, we can identify two different regimes for the evolution of the algo-
rithm, depending on the zooming-in rate kin which is enforced. If kin > ρ, the zooming-in
follows the natural contraction rate of the system, and according to the spirit of the proof
of Theorem 4.2, eventually (almost) only zooming-in steps happen, and the rate of con-
vergence is (no better than) kin. The choice of kout plays essentially no role. If instead
kin < ρ, the state does not contract fast enough for a stationary sequence of zooming-ins to
establish. Then, zooming-in and zooming-out steps alternate in a complicated way, leading
anyhow to consensus, with an evolution which depends on both kin and kout: the conver-
gence can be faster than in the ideal case. Such phenomenon is rather surprising at a first
glance, but we can explain it intuitively if we consider that the zooming-in/zooming-out
algorithm takes advantage of the use of memory, and thus the sent messages are actually
more informative.

Most of the simulations regard ring graphs, because concentrating on a simple example
of a poorly connected graph helps to highlight the features of the algorithm. Weights of
matrices P have been chosen according to a maximum degree rule, as explained at page 17.
Hence a ring of N = 20 nodes induces a matrix whose essential spectral radius is ρ =
0.9673. The initial conditions have been generated according to a gaussian distribution,
and all simulations with 20 nodes start from the same initial condition.

The transition between the two regimes is explored in Figure 4.1, confirming the role
of ρ. Instead, Figures 4.2 and 4.2 consider the role of the number of quantization levels
m. In the kin > ρ regime, at least m = 3 is required for convergence, and increasing m
leads to improve the rate, approaching kin. In the kin < ρ regime, m = 1 is enough for
convergence, and increasing m leads to slightly improve the rate. Since |Sm| = m+2, then
5 and 3 symbols are sufficient for convergence, respectively. If, taking advantage of the
synchrony, one encodes the middle level, which is zero whenever m is odd, as a no-signal,
the required number of level can be obtained with only two bits (one bit, respectively).

The scaling properties of the algorithm are a main point of interest. Figure 4.4 consid-
ers how the performance of the algorithm (with fixed parameters) degrades as N increases,
in a sequence of ring graphs. The plot shows that m need not to depend on N as required
Theorem 4.2. Instead, Figure 4.5 considers two cases in which the zooming factors kin and
kout are depends on the graph, in such a way to keep the evolution in the same regime, in
spite of the growth of N .

Not to restrict ourselves to ring graphs, we show some simulations regarding random
geometric graphs in Figure 4.6. The plots show how the performance depends on the
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Figure 4.1: Ring graph. Dependence on kin: remark the threshold ρ = 0.9673. N = 20,
m = 6, kout = 2.

topology of the geometric graph: different samples have different spectral radiuses, and
then different convergence rates in the ideal case. Instead, in most cases the zooming
algorithm is in the kin < ρ regime, and then the performance is roughly independent of
the sample. This suggests that in this regime the algorithm is little sensitive to the spectral
radius, and rises the question of which is a significant graph theoretic index.

4.4 Conclusions

With theoretical and experimental results we showed that using the zooming scheme the
average consensus problem can be efficiently solved although the agents can send only
quantized information. Indeed the systems converge to average consensus at exponential
speed, with a convergence rate which can be chosen as small as the convergence rate of
consensus with perfect exchange of information, provided the number of quantization levels
is large enough. Though the theoretical results are quite conservative the efficiency of these
methods is apparent from simulations, which show the method to converge outside the
scope of current results, and converge at a rate faster than the ideal algorithm. Improving
the theoretical analysis is thus a major concern, especially about the issue of scalability
in the number of agents. We shall note that recently [6] a modification of the presented
zooming algorithm has been proved to converge under a different condition.

We have already underlined in Remark 4.1 that the algorithm requires the states
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Figure 4.2: Ring graph, in the kin > ρ regime. N = 20, kin = 0.97, kout = 2.

estimates to be shared among neighbors. This implies that the algorithm is not suitable,
in the present form, for implementation on a digital noisy channel, unless we allow a
feedback on the channel state. A natural development of this research is thus designing
algorithms to solve the average consensus problem at exponential speed over a network of
digital noisy channels.
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Chapter 5

Perspectives on the consensus

problem

During this first part we have studied the average consensus problems over networks of dig-
ital links. We have shown that quantized information can be effectively used in consensus
algorithms. If we use uniform static quantizers, convergence to average consensus can not
be achieved with arbitrary precision. This can be due either to a corruption of the average,
or to a lack of convergence. These phenomena have been studied, in Chapters 2 and 6,
for algorithms involving synchronous and gossip communication. Abstracting from the
many results obtained, a general observation is that the use of a randomized quantizer
can improve the performance. If instead we design efficient quantization techniques, as in
Chapter 4, we can obtain similar performance as in the ideal case, at the price of using
additional memory and computational resources.

This research is open to many potential developments: we list here some of the most
interesting and promising.

(i) Functionals of P . It is well known that the speed of convergence of the linear ideal
consensus algorithm depends on the spectral radius of P . It comes out from the
results of this thesis (2.19), that the asymptotic performance of the algorithms with
quantized communication depends in a more elaborated way on the eigenvalues of
P. Such functionals of P are of great interest both theoretically and in practice,
to compare the relative advantages of different topologies. A recent work consider-
ing various functionals of P is [46]. Up to now they have been studied on Cayley
topologies: extending this study to more general graphs, e.g., random geometric
graphs, would be very interesting. Moreover, it would be interesting to study the
optimization of Φ(P ), for a given topology, as a function of the edge weights.

(ii) Speed of convergence. Most of our attention has been given to the degradation of the
asymptotical performance. However, since in practice the algorithms are supposed to
run for a finite time, it is important to have results about the speed of convergence of
the algorithms with quantization, or about their performance after a finite horizon
of time. A general intuition, expressed in the literature and confirmed from the
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results presented here, is that the speed of convergence of the quantized algorithms
is roughly the same as of the ideal case, in the sense that the overall error decreases
exponentially in time, until the achievable precision is reached: later, there is no
further improvement. However, giving clear analytical results on this point is an
open question, in spite of various attempts in the literature [55, 3, 40, 23, 93].

(iii) High performance quantized algorithms. The zooming in-zooming out scheme of
Chapter 4 is able to solve the average consensus problem at exponential speed,
with a convergence rate which can be chosen as small as the convergence rate of
consensus with ideal exchange of information, or even smaller (in simulations). We
would like to extend these results to avoid, if possible, the technical limitation of
the dependence of the required number of levels on the number of agents, and to
understand the potential improvements, with respect to the ideal case, which can
come from encoding/decoding schemes with memory.

(iv) Digital noisy channels. All the digital channels we have considered are lossless,
reliable and without delay. Relaxing these assumptions, and providing algorithms
to solve the average consensus problem at exponential speed over a network of digital
noisy channels [17], is probably the greatest open issue at the moment.

(v) Applications. Consensus algorithms are not only interesting in themselves, but also
as a step towards more ambitious goals of coordinated control and optimization:
estimation [87, 90, 13, 42], Kalman filtering [15], coverage (Chapters 6 and 7), opti-
mization [71].
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Chapter 6

Gossip coverage optimization:

dynamical systems on the space of

partitions

Introduction

Motivation and scope

This chapter deals with distributed coverage control and partitioning policies for networks
of robots. Coverage control has the goal of optimizing the configuration of a group of
robots, or agents, in a given environment: the optimization problem is expressed in terms
of a cost function, depending on the agents’ positions.

Statement of contributions

First, we describe coverage control algorithms in a novel way. Classically, the state space
for the coverage algorithms are the agent positions: based on their positions, the agents
apportion the environment into regions, which are assigned to each agent. In our approach,
the agents positions are no longer the main concern: the state space is a space of partitions
of the given environment. We discuss important properties of such a space, namely its
compactness with respect to a suitable metric, and the continuity of several functions
defined on it.

Second, as key motivating application, we devise a novel algorithm for coverage opti-
mization, a “gossip” algorithm, in which only one pair of agents communicates per time
step. We do this, because we know that reducing the communication burden is a crit-
ical issue for coverage control: indeed pairwise communication can be more effective in
practical situations if connections between agents are not guaranteed to be fully reliable.

Third, we provide convergence theorems which extend the LaSalle invariance principle
to a special class of set-valued maps on metric spaces. Applying these extensions of the
LaSalle invariance principle and the properties of the state of partitions, we are able to
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give conditions for the proposed algorithm to converge to the critical points of a natural
cost functional.

Related works

Coverage control problems have been recently solved in a distributed way in [29], which
set up the classical agent-based approach. A broad discussion about coverage control
is presented in [11, 63]; other related works include [1] on sensor-based algorithms, [52]
on dynamic coverage, [47] on estimation of stochastic spatial fields, [74] on equitable
partitioning policies, and [92, 12, 78] on nonconvex environments. The pairwise “gossip”
approach to agents communication has been already considered for the consensus problem
in recent works [9, 65].

Chapter structure

The chapter is structured as follows. In Section 6.1 we formally describe the coverage
control problem, we introduce the space of partitions and we review the classic results,
in our perspective. In Section 6.2 we present our algorithm. The convergence of the
algorithm is stated in Section 6.2.3, and proved in Section 6.5.1. The proof is based on a
LaSalle invariance principle for switching maps, proved in Section 6.3. To verify that the
invariance principle can be applied to the proposed algorithm, it is necessary to study the
space of partitions. A suitable metric is introduced on it, so that the space is proved to
be compact, in Section 6.4, and several functions and maps defined on it are proved to be
continuous, in Section 6.5.

Notation

Given a subset Q of the Euclidean space R
d, we let interior(A) denote its interior, A

denote its closure, and ∂A denote its boundary. Given two sets X and Y , a set-valued
map, denoted by f : X ⇒ Y , associates to an element of X a subset of Y .

6.1 Coverage optimization via multicenter functions

We are given a group of robots (also called agents) with limited communication and
sensing capabilities, and an environment, and we want the agents to deploy in the area in
an optimal way. The optimality is described by a suitable cost function to be minimized.
The environment is apportioned into smaller regions, each assigned to an agent. The
partition, and the agents configuration, are iteratively updated in a way to minimize a
cost functional, which depends on the current partition and the agents’ positions.

6.1.1 Partitions and multicenter optimization

In this and following sections partitions are defined as follows.
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Definition 6.1 (Partition) Let Q be a compact convex subset of R
d with non-empty

interior. An N -partition of Q, denoted by v = {vi}N
i=1, is a collection of N subsets of Q

with the following properties:

(i) each set vi, i ∈ {1, . . . , N}, is closed, has non-empty interior, and its boundary has
measure1 zero;

(ii) interior(vi) ∩ interior(vj) is empty whenever i 6= j; and

(iii) ∪i∈{1,...,N} vi = Q.

We let VN denote the set of N -partitions of Q.

Let p = (p1, . . . , pN ) ∈ QN denote the position of N agents in the environment Q.
Given any v ∈ VN and almost any2 p ∈ QN , each agent is naturally in one-to-one cor-
respondence with an element of v; specifically we sometime refer to vi as the dominance
region of agent i ∈ {1, . . . , N}.

Given a bounded measurable positive function φ : Q → R>0, called a density function,
define the multicenter function Hmulticenter : VN × QN → R>0 by

Hmulticenter(v, p) =
N
∑

i=1

∫

vi

‖pi − q‖2φ(q)dq. (6.1)

We aim to minimize this function with respect to both the partition v and the locations
p.

Remark 6.1 (Locational optimization) The function Hmulticenter has the following in-
terpretation. Given an agent at location pi, assume that ‖pi − q‖2 is the cost incurred by
agent i to “service” an event taking place at point q. Events take place inside the envi-
ronment Q with likelihood φ. Accordingly, the multicenter function Hmulticenter quantifies
how well the environment Q is partitioned and how well the agents are placed inside Q.
This and related optimal sensor placement problems are studied in locational and geomet-
ric optimization, spatial resource allocation, quantization theory, clustering analysis, and
statistical pattern recognition; see [11, Chapter 2] and references therein. �

Among all the possible ways of partitioning a subset of R
d, there is one which is worth

of special attention. Define the set of partly coincident locations SN = {p ∈ QN | pi =
pj for some i, j ∈ {1, . . . , N}, i 6= j}. Given p ∈ QN \ SN , the Voronoi partition of
Q generated by p, denoted by V (p), is the collection of the Voronoi regions {Vi(p)}N

i=1,
defined by

Vi(p) = {q ∈ Q | ‖q − pi‖ ≤ ‖q − pj‖ for all j 6= i}. (6.2)

In other words, the Voronoi partition is a map V : QN \ SN → VN . The regions Vi(p),
i ∈ {1, . . . , N}, are convex and, if Q is a polytope, they are polytopes. Now, given two
distinct points q1 and q2 in R

d, define the (q1; q2)-bisector half-space by

Hbisector(q1; q2) = {q ∈ R
d | ‖q − q1‖ ≤ ‖q − q2‖}. (6.3)

1As measure we mean the Lebesgue measure in R
d.

2That is, for every p ∈ QN but a set of measure zero.
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In other words, Hbisector(q1; q2) is the closed half-space containing q1 whose boundary
is the hyperplane bisecting3 the segment from q1 to q2. Note that Hbisector(q1; q2) 6=
Hbisector(q2; q1) and that Voronoi partition of Q satisfies

Vi(p1, . . . , pn) = Q∩
(

∩j 6=i Hbisector(pi; pj)
)

.

Each region equipped with a density function possesses a point of special interest,
called the centroid. The centroid of a measurable set A ⊂ Q with non-empty interior is
the point in A defined by

Cd(A) =
(

∫

A
φ(q)dq

)−1
∫

A
qφ(q)dq. (6.4)

With a slight notational abuse, given v ∈ VN , we let

Cd(v) = (Cd(v1), . . . ,Cd(vN )) ∈ QN

be the vector of regions centroids. Voronoi partitions and centroids have the following
optimality properties.

Proposition 6.1 (Properties of Hmulticenter) For any partition v ∈ VN and any point
set p ∈ QN \ SN ,

Hmulticenter(V (p), p) ≤ Hmulticenter(v, p), (6.5)

Hmulticenter(v,Cd(v)) ≤ Hmulticenter(v, p). (6.6)

Furthermore, inequality (6.5) is strict if any entry of V (p) differs from the corresponding
entry of v by a set with non-empty interior, and inequality (6.6) is strict if Cd(v) differs
from p.

These statements are proved in [11, Propositions 2.14 and 2.15]. These results motivate
the following definition: A partition v∗ ∈ VN is a centroidal Voronoi partition if v∗ =
V (Cd(v∗)).

Additionally, it is of interest to consider two variations of the multicenter function. We
define HVoronoi : QN \ SN → R≥0 and Hcentroid : VN → R≥0 by

HVoronoi(p) = Hmulticenter(V (p), p) =

N
∑

i=1

∫

Vi(p)
‖q − pi‖2φ(q)dq, (6.7)

Hcentroid(v) = Hmulticenter(v,Cd(v)) =

N
∑

i=1

∫

vi

‖q − Cd(vi)‖2φ(q)dq. (6.8)

The function Hcentroid is novel here, plays a key role in later developments and has the
following property that is an immediate consequence of Proposition 6.1. Given a partition
v with Cd(v) /∈ SN ,

Hcentroid(V (Cd(v))) ≤ Hcentroid(v), (6.9)

and this inequality is strict if any entry of V (Cd(v)) differs from the corresponding entry
of v by a set with non-empty interior.

3A hyperplane bisects a segment if it is perpendicular to and passes through the midpoint of the segment.
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6.1.2 Distributed coverage control and its limitations

Given a group of robots with limited inter-robot communication, the objective of coverage
control algorithms is to move the robots in order to minimize Hmulticenter. To formalize
the notion of limited communication, we introduce a useful graph. The Delaunay graph
associated to the distinct positions p ∈ QN \ SN is the undirected graph with node set
{pi}N

i=1 and with the following edges: (pi, pj) is an edge if and only if Vi(p)∩Vj(p) is
non-empty. In other words, two agents are neighbors if and only if their corresponding
Voronoi regions intersect, see Figure 6.1.

Figure 6.1: The Voronoi partition and the corresponding Delaunay graph

The distributed coverage algorithm studied in [29], and originally introduced by Lloyd
[59], is described as follows. At each discrete time instant t ∈ Z≥0, each agent i performs
the following tasks: (i) it transmits its position and receives the positions of its neighbors
in the Delaunay graph; (ii) it computes its Voronoi region with the information received;
(iii) it computes the centroid of its Voronoi region; and (iv) it moves to the centroid. In
mathematical terms, we have

p(t + 1) = Cd(V (p(t))). (6.10)

Because of the smoothness of the various maps, compactness of Q, and monotonicity
properties in Proposition 6.1, one can show that the solutions of (6.10) converge asymp-
totically to the set of the centroidal Voronoi partitions. Note that this distributed coverage
algorithm requires the robotic network to have the following three properties:

(i) each agent can talk with all its neighbors in the Delaunay graph;

(ii) the agents are synchronized and they all talk at the same time; and

(iii) each communication link is fully reliable and features no transmission delay.

Delaunay graphs have the following undesirable properties: for worst-case robot positions,
a node might have N − 1 neighbors and the distance between two neighbors may be
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arbitrarily large. In short summary, synchronized reliable communication along all edges
of a Delaunay graph is a strong requirement.

In this chapter we are interested in reducing the synchronization and communication
requirements of distributed coverage algorithms. In particular, is it possible to optimize
agents positions and environment partition with asynchronous, unreliable, delayed com-
munication? What if the communication model is that of gossiping agents, that is, a
model in which only a pair of robots can communicate at any time? How do we overcome
the limitation that Voronoi partitions generated by moving agents can not be computed
with only asynchronous pairwise communication. Giving such a question an affirmative
answer is the object of this chapter.

6.2 Partitions-based gossip coverage algorithm

We give here a general description of our approach. In the partitions-based approach,
the position of the robot essentially plays no role anymore and we instead describe how
to update the dominance regions. Designing coverage algorithms as dynamical systems
on partitions has an important advantage: we do not restrict our attention to Voronoi
partitions. However, algorithms based on Voronoi partitions can also be treated in our
approach.

Example 6.1 (Lloyd algorithm in the partitions-based approach) The distributed
coverage algorithm (6.10) changes the agents locations so as to incrementally minimize the
function HVoronoi, while the partition of the environment is a function of the agent posi-
tions. We change this perspective and take a dual approach: we consider as a coverage
algorithm an algorithm that evolves partitions. From this partitions-based viewpoint, the
distributed coverage algorithm is rather an iterated map on VN and the cost function to
be incrementally minimized is Hcentroid rather than HVoronoi. Equation (6.10) is rewritten
as

v(t + 1) = V (Cd(v(t))). (6.11)

The solutions of (6.11) converge asymptotically to the set of the centroidal Voronoi par-
titions. This result, which comes obviously from the analogous fact about the dynamical
system (6.10), can be re-obtained using the techniques developed in the present chapter.
In this sense our approach extends the one in [29]. �

6.2.1 The partitions-based gossip coverage algorithm

In this section we present the partitions-based gossip coverage algorithm that, at each
iteration, requires only a pair of adjacent regions to communicate and change. Before
presenting the algorithm, we adopt the following convention: we allow communication
between adjacent regions. The following definition generalizes the notion of Delaunay
graph to graphs between partitions.

Definition 6.2 (Adjacency graph generated by a partition) The adjacency graph4

4This graph is called the dual graph in the theory of planar graphs.
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associated to the partition v ∈ VN is the undirected graph with node set v and with the
edge set E(v) defined as follows: (vi, vj) is an edge if and only if the two regions vi and vj

are adjacent in the sense that interior(vi)∩ interior(vj) is non-empty.

Recalling the notion of bisector half-space from equation (6.3), the partitions-based
gossip coverage algorithm is stated as follows.

At each time t ∈ Z≥0, each agent i maintains the dominance region vi(t); the
collection v(t) = {v1(t), . . . , vN (t)} is an N -partition of Q and it is initialized
arbitrarily. At each t ∈ Z≥0 a communicating pair is selected, say (i, j) ∈
E(v(t)). Every agent k 6∈ {i, j} sets vk(t + 1) := vk(t), whereas agents i and j
perform the following tasks:

1: agent i transmits to agent j its dominance region vi(t) and vice-versa
2: both agents compute the centroids Cd(vi(t)) and Cd(vj(t))
3: if Cd(vi(t)) = Cd(vj(t)) then
4: vi(t + 1) := vi(t) and vj(t + 1) := vj(t)
5: else
6: vi(t + 1) :=

(

vi(t)∪ vj(t)
)

∩Hbisector

(

Cd(vi(t)); Cd(vj(t))
)

vj(t + 1) :=
(

vi(t)∪ vj(t)
)

∩Hbisector

(

Cd(vj(t)); Cd(vi(t))
)

7: end if

In other words, when two agents with distinct centroids communicate, they update their
regions as follows: the union of the two regions is divided by the hyperplane bisecting the
segment between the two centroids; see Figure 6.2. As a consequence, {vi(t+1), vj(t+1)}
is a partition of the set vi(t)∪ vj(t) and, if the centroids Cd(vi(t)), Cd(vj(t)) are distinct,
it is the Voronoi partition of that set generated by the centroids.

To establish that the algorithm is well-posed, it is essential to guarantee that the
sequence of collections v(t) generated by the algorithm is an N -partition at all times t,
that is, satisfies the three properties in Definition 6.1. The proof of this fact is postponed
to Lemma 6.15.

For any pair (i, j) ∈ {1, . . . , N}2, we define the map Tij : VN → VN by v̄ = Tij(v),
where

v̄i =
(

vi ∪ vj

)

∩Hbisector

(

Cd(vi); Cd(vj)
)

,

v̄j =
(

vi ∪ vj

)

∩Hbisector

(

Cd(vj); Cd(vi)
)

,

v̄k = vk, for all k 6∈ {i, j},

if Cd(vi(t)) 6= Cd(vj(t)), and v̄ = v otherwise. Note that Tij is defined for any two regions
i, j not necessarily adjacent. The dynamical system on the space of partitions is therefore
described by

v(t + 1) = Tij(v(t)), for some (i, j) ∈ E(v(t)), (6.12)

together with a rule describing what edge is selected at each time. It is also useful to
consider the family of maps defined by all edges (i, j) ∈ E(v) and introduce the set-valued
map T : VN ⇒ VN defined by T (v) = {Tij(v) | (i, j) ∈ E(v)}. Then the evolution under
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Figure 6.2: One iteration of the partitions-based gossip algorithm. Step 1: a pair of
adjacent region is selected and their centroids are computed. Step 2: the bisector half-
space is computed. Step 3: the resulting regions are computed.
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Figure 6.3: Illustration of Example 6.2 about the lack of continuity of the map T12.
In the first row, the first three figures show a sequence of partitions {v1(t), v2(t)}t∈N

whose limiting partition (v1(∞), v2(∞)), in the fourth figure, is given by two concentric
sets. In the second row, the first three figures show the sequence {T (v1(t), v2(t))}t∈N; the
fourth figure shows T12(v1(∞), v2(∞)) that is equal to (v1(∞), v2(∞)) assuming that the
environment has uniform density. Equation (6.14) is now easily verified.

the gossip coverage control algorithm is one of the solutions to the non-deterministic set-
valued dynamical system

v(t + 1) ∈ T (v(t)). (6.13)

In the following sections we analyze the dynamical system described by equation (6.12)
or (6.13).

6.2.2 Designing a continuous algorithm

The maps Tij and T do not satisfy certain continuity properties, as illustrated by the
following example.

Example 6.2 For N = 2, consider the map T12 and a sequence of partitions {v1(t), v2(t)}t∈N,
with the properties that limt→∞ v1(t) = v1(∞), limt→∞ v2(t) = v2(∞), and Cd(v1(∞)) =
Cd(v2(∞)). These properties imply that T12(v1(∞), v2(∞)) = {v1(∞), v2(∞)}. Now, if at
each time t the partition T12(v1(t), v2(t)) differs from the partition {v1(t), v2(t)} by regions
of finite area (as for example depicted in Figure 6.3), then

lim
t→∞

T12(v1(t), v2(t)) 6= T12

(

lim
t→∞

v1(t), lim
t→∞

v2(t)
)

= {v1(∞), v2(∞)}. (6.14)

�

Similar discontinuities arise also for sequences of partitions in which two regions become
adjacent, or loose adjacency, in the limit, as illustrated in Figure 6.4.

We need continuity properties in our convergence analysis and, therefore, our analysis
begins by introducing a minor modification of T that instead does have these properties.
For any pair i, j, i 6= j, we introduce a new map T δ

ij, parameterized by the positive
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Figure 6.4: Illustration of the lack of continuity of the map T12. In the first row, the
first three figures show a sequence of partitions {v1(t), v2(t)}t∈N whose limiting partition
(v1(∞), v2(∞)), in the fourth figure, is given by two disconnected sets. In the second
row, the first three figures show the sequence {T (v1(t), v2(t))}t∈N; the fourth figure shows
T12(v1(∞), v2(∞)), which is equal to (v1(∞), v2(∞)) assuming that the environment has
uniform density. Equation (6.14) is now easily verified.

real number δ, that is a smoothed version of Tij . To design the map T δ
ij we need some

geometric notions. Given v = (v1, . . . , vN ) ∈ VN , consider two regions vi and vj such that
Cd(vi) 6= Cd(vj). Define the set Ri by

Ri = vi ∩Hbisector(Cd(vj); Cd(vi)) = {q ∈ vi | ‖q − Cd(vi)‖ ≥ ‖q − Cd(vj)‖},

and similarly Rj = vj ∩Hbisector(Cd(vi); Cd(vj)). Let γ⊥ be the hyperplane bisecting the
segment from Cd(vi) to Cd(vj), that is,

γ⊥ = ∂Hbisector(Cd(vi); Cd(vj)) = {q ∈ Q | ‖q − Cd(vj)‖ = ‖q − Cd(vi)‖}.

For each q ∈ Ri ∪ Rj there exists only one hyperplane γ parallel to γ⊥ such that q ∈ γ;
we denote this hyperplane as γq. Consider now two points, p̄i ∈ Ri and p̄j ∈ Rj, such
that

p̄i ∈ argmax
q∈interior (Ri)

min
y∈γ⊥

‖q − y‖, and p̄j ∈ argmax
q∈interior (Rj)

min
y∈γ⊥

‖q − y‖.

Given two subsets A and B of Q, we define

dist(A,B) = inf
(a,b)∈A×B

‖a − b‖.

Pick δ > 0 and define

β(vi, vj) = satδ (‖Cd(vi) − Cd(vj)‖) · (1 − satδ(dist(interior(vi), interior(vj)))) ,

where satδ : R≥0 → [0, 1] is defined by satδ(x) = x/δ if x ∈ [0, δ] and satδ(x) = 1 if x > δ.
Remark that β(vi, vj) ∈ [0, 1]Let

R̃i = {q ∈ Ri | dist(p̄i, γq) ≤ β(vi, vj) dist(p̄i, γ⊥)},
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and

R̃j = {q ∈ Rj | dist(p̄j , γq) ≤ β(vi, vj) dist(p̄j, γ⊥)}.
Finally, we define the map T δ

ij : VN → VN by v̄ = T δ
ij(v), where

v̄i =
(

vi \ interior(R̃i)
)

∪ R̃j ,

v̄j =
(

vj \ interior(R̃j)
)

∪ R̃i,

v̄k = vk, for all k 6∈ {i, j},

if Cd(vi(t)) 6= Cd(vj(t)), and v̄ = v otherwise. Define the set-valued map T δ : VN ⇒ VN

by

T δ = {T δ
ij(v) | (i, j) ∈ {1, . . . , N}2, i 6= j}. (6.15)

As we discussed for the map T , the map T δ is well-posed; the proof of this fact is postponed
to Lemma 6.16. The map T δ is illustrated in Figure 6.5 and in the following remark.

Remark 6.2 (Properties of the continuous algorithm) (i) Given v ∈ VN con-
sider the two regions vi and vj. If β(vi, vj) = 1, namely, if the distance between
the regions vi and vj is zero (vi and vj are adjacent) and the distance between
Cd(vi) and Cd(vj) is larger than δ, then T δ

ij(v) = Tij(v), that is, the map T δ
ij reduces

to the map Tij introduced in the previous section.

Additionally, if β(vi, vj) = 0, namely, either Cd(vi) and Cd(vj) coincide or the
distance between vi and vj is larger than δ, then T δ

ij(v) = v, that is, the map T δ
ij

leaves the regions unchanged.

(ii) When δ is very small, the map T δ is very similar to the map T presented in the
previous section.

(iii) The map T δ has some continuity properties; we present this formal statement in
Lemma 6.16.

(iv) It is worth noting that the “smoothed map” T δ can be seen not only as a mathemat-
ical stratagem, but also as an implementation of the coverage algorithm for agents
having arbitrarily small, but finite, communication ranges and moving inside their
regions �

6.2.3 Analysis and convergence results

Before stating the main convergence results of the present chapter we introduce the fol-
lowing definition.

Definition 6.3 A partition v ∈ VN is said to be a mixed equal-centroidal and centroidal-
Voronoi partition if, for all (i, j) ∈ G(v), either Cd(vi) = Cd(vj) or (vi, vj) is a centroidal
Voronoi partition of vi ∪ vj .
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Figure 6.5: Demonstration of the update rule T δ for a pair of close but not adjacent
regions.
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Denoting by M the set of mixed equal-centroidal and centroidal Voronoi partitions, we
can equivalently write

M = {v ∈ VN | v = Tij ∀i, j ∈ {1, . . . , N}, j 6= i}. (6.16)

Lemma 6.2 Given a partition v ∈ VN , if (vi, vj) is not a centroidal Voronoi partition of
vi ∪ vj , then it exists k ∈ {1, . . . , N} such that (k, j) ∈ E(v) and (vk, vj) is not a centroidal
Voronoi partition of vk ∪ vj.

Proof: If (i, j) ∈ E(v) there is nothing to prove. Let us then assume (i, j) /∈ E(v).
Let q ∈ vi be closer to Cd(vj) than to Cd(vi), and let j′ ∈ {1, . . . , N} be such that Cd(vj′)
is the closest centroid to q. If (i, j′) ∈ E(v), we are done. Assume then that (i, j′) /∈ E(v).
Then, there is an interposing region, say vk, adjacent to vj and different from vi. By
convexity of Q, we can find q′ ∈ vk on the segment joining q and Cd(vj′). Then, by
construction, q′ is closer to Cd(vj′) than to any other centroid of regions. This concludes
the proof.

Remark 6.3 The above lemma means that forcing a partition, pairwise along the edges
its adjacency graph, to be centroidal Voronoi, guarantees the same between all pairs of
regions. We conclude that the set of the centroidal Voronoi partitions in VN is a subset
of M. �

Now, we are ready to provide sufficient conditions for convergence of the algorithm
defined in (6.15).

Theorem 6.3 (Worst case convergence) Let δ > 0, v(0) ∈ VN , and v(t+1) ∈ T δ(v(t))
for t ∈ N. Assume that it exists D ∈ N such that for each pair (i, j) ∈ {1, . . . , N}2, i 6= j,
and for each time t ∈ N, there exists t̄ ≤ t + D such that

v(t̄ + 1) = T δ
ij(v(t̄)).

Then, all trajectories v(t) converge to the set of the mixed equal-centroidal and centroidal-
Voronoi partitions.

6.2.4 Simulation results and implementation remarks

We have extensively simulated the partitions-based gossip coverage algorithm described
by (6.12), assuming that at each iteration, an edge is randomly chosen among all the edges
belonging to the current set of edges of the adjacency graph. From these simulations, the
effectiveness of the algorithm above introduced appears evident; all solutions converge to
a partition belonging to the set of the centroidal Voronoi partitions (Figure 6.6). Indeed,
modulo the event of regions having the very same centroid, Theorem 6.3 proves convergence
to centroidal Voronoi partitions, as for the synchronous algorithm (6.10). In simulations
such negative event does not display in generic conditions.

It is worth to remark that, although the algorithm allows the regions to be non convex,
and even not connected, we have convergence to Voronoi regions, which are convex, and
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connected. Moreover, from the point of view of the applications, a connected region can
be covered by an agent in a more natural way. These reasons suggest keeping the regions
connected when applying the algorithm. Although we do not have theoretical results in
this sense, we simulated a modification of the algorithm T which keeps the dominance
regions connected: during the update step, every connected component is traded between
the interacting regions only if this can be done without loosing connectivity. Simulations,
in Figure 6.7, show that such an algorithm, if applied to partition a convex polygonal
2-dimensional area, leads to centroidal Voronoi partitions as well.

For the purpose of this article, simulations have been implemented as a Matlab pro-
gram, using the General Polygon Clipping C language library to perform operations on
polygons. Relevant issues for implementation, in simulations, as well as in actual robots,
include the need for dealing with numerical rounding errors and the possibility for the
polygons to have, in principle, a large number of vertices. Indeed, if we assume that every
robot knows Q and φ, the information to be exchanged in pairs is the regions geome-
try, which can be summarized as a list of ordered lists of vertices. Thus an increase in
their number affects both the computation and the communication burden on the agents.
However, in practice the regions rarely get complicated shapes.

6.3 LaSalle invariance principle for set-valued maps

In this section we consider discrete-time continuous-space set-valued dynamical system
defined on metric spaces. Our goal is to provide some extensions of the classical LaSalle
Invariance Principle [60]; we refer the interested reader to [5, 51, 82] for recent Lasalle
invariance principles for switched continuous-time and hybrid systems, respectively. We
start by reviewing some notions including set-valued dynamical systems, closedness prop-
erties, Lyapunov function, and weak positive invariance [60].

Consider a metric space (X, d), where X is a set and d a metric on X. A set-valued
map defined on (X, d) is a map T : X ⇒ X which associates to each point in X a subset in
X, with the property that T (x) 6= ∅ for all x ∈ X. Note that a map from X to X can be
interpreted as a singleton-valued map. An evolution of the dynamical system determined
by T over X is any sequence {xm}m∈N0

⊂ X with the property that

xm+1 ∈ T (xm), m ∈ N0.

In other words, given any initial x0 ∈ X, a trajectory of T is computed by recursively
setting xm+1 equal to an arbitrary element in T (xm). An algorithm is therefore a nonde-
terministic discrete-time dynamical system.

Next, we introduce a notion of continuity for set-valued maps. A set valued map T is
closed at x ∈ X if for all pairs of convergent sequences xk → x and x′

k → x′ such that
x′

k ∈ T (xk), one has that x′ ∈ T (x). An algorithm is closed on W ⊂ X if it is closed at w,
for all w ∈ W . In particular, every continuous map T : X → X is closed on X. A set C
is weakly positively invariant with respect to T if, for any x0 ∈ C, there exists x ∈ T (x0)
such that x ∈ C. Let U : X → R. We say that U is a Lyapunov function for T on W if (i)
U is continuous on W and (ii) U(w′) ≤ U(w) for all w′ ∈ T (w) and all w ∈ W . We are
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Figure 6.6: Simulations for algorithm T . The figure shows snapshots of a time evolution
of the partitions, for t = 0, 5, 20, 25, 50, 80, 150. The density function φ is uniform. In
consequence of this, the algorithm makes the regions converge towards an even partition
of the given environment. Remark that the dominance regions can loose connectivity
during the evolution.
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Figure 6.7: Simulations for algorithm T modified to keep regions connected. The figure
shows snapshots of a time evolution of the partitions, for t = 0, 5, 25, 50, 150. The density
function φ is uniform. In consequence of this, the algorithm makes the regions converge
towards an even partition of the given environment. Remark that the dominance regions
are not convex during the evolution, but are constrained to be connected.
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ready now to state the following result which extends on one hand the LaSalle invariance
principle to set-valued maps defined on metric spaces, and, on the other hand, the Global
Convergence Theorem in [60] to more general Lyapunov functions. Its proof follows the
lines of the proof of Theorem C.1 in [27], and is thus omitted.

Lemma 6.4 Let (X, d) be a given metric space. Let W ⊆ X be such that its closure W
is compact. Let T be a closed set-valued map on W and let U be a Liapunov function for
T on W . Let w0 ∈ W , and assume the sequence {wn |n ∈ N0} defined via wn+1 ∈ T (wn)
is in W . Then there exists c ∈ R such that

wn → M ∩ U−1(c),

where M is the largest weakly positively invariant set contained in

{x ∈ X | ∃ y ∈ T (x) such that U(y) = U(x)} ∩ W}.

In our chapter, given the metric space (X, d) and W ⊆ X, we deal with a particular
set valued map T : W → 2W , which is defined by a collection of singleton-valued maps
T1, . . . , Tm : W → W . Specifically, given w ∈ W ,

T (w) = {T1(w), . . . , Tm(w)} .

The following result provides an useful characterization of the closedness of this kind of
set-valued maps, reducing it to the continuity of ordinary maps.

Lemma 6.5 Let (X, d) be a given metric space. Let W ⊆ X be such that its closure W is
compact. Let T1, . . . , Tm : W → W be a finite collection of continuous functions. Define
the set-valued map T : W → 2W by

T (w) = {T1(w), . . . , Tm(w)} .

Then the map T is closed on W .

Proof: Let wn → w and w′
n → w′ be a pair of convergent sequences in W , such that

w′
n ∈ T (wn). We want to prove that the continuity of the maps T1, . . . , Tm implies also

w′ ∈ T (w).

We start by observing, that, by hypothesis, for all n ∈ N0 there exists in ∈ {1, . . . ,m}
such that w′

n = Tin(wn). Then, since the set {1, . . . ,m} is finite, there exists ī ∈
{1, . . . ,m} such that ī appears infinitely many times in the sequence {in}n∈N. Consider
the subsequences {wnl

} ⊆ {wn} and {w′
nl
} ⊆ {w′

n}, such that w′
nl

= Tī(wnl
). Clearly,

we have that wnl
→ w and w′

nl
→ w′, where from the continuity of Tī it follows that

w′ = Tī(w). Thus w′ ∈ T (w) and the claim is proved.

Theorem 6.6 is a stronger version of Lemma 6.4, for a particular class of ”switching”
maps.



106 Chapter 6. Gossip coverage optimization

Theorem 6.6 Let (X, d) be a given metric space. Let W ⊆ X be such that its closure W
is compact. Let T1, . . . , Tm : W → W be a finite collection of continuous functions. Define
the set-valued map T : W ⇒ W by

T (w) = {T1(w), . . . , Tm(w)} ,

and let U : X → R be a Liapunov function for T on W . Assume that, if w′ ∈ T (w)
and U(w′) = U(w) then w′ = w. Let w0 ∈ W , and consider the sequence {wn|n ∈ N0}
defined via wn+1 ∈ T (wn). Assume that there exists D ∈ N such that, for any n ∈ N0

and j ∈ {1, . . . ,m}, there exists n̄ ∈ [n, n + D] such that xn̄+1 = Tj(xn̄).
Then there exists c ∈ R such that

xn → K ∩ U−1(c),

where K is the largest weakly positively invariant set contained in

{x ∈ X | U(y) = U(x) ∀ y ∈ T (x)} ∩ W.

Proof: Let M be the largest weakly positively invariant set contained in

{x ∈ X | ∃ y ∈ T (x) such that U(y) = U(x)} ∩ W.

Since T is closed by Lemma 6.5, the assumptions of Lemma 6.4 are met; hence there exists
c ∈ R such that U(wn) → c and wn → M ∩ U−1(c).

Let Ω(wn) ⊆ W denote the ω-limit set of the sequence {wn|n ∈ N0}. To prove the
statement of the theorem we need to show that Ω(wn) ⊆ K ∩ U−1(c). We proceed by
contradiction. To this aim let w̄ ∈ M ∩ U−1(c) \ K ∩ U−1(c) and let {wnh

|h ∈ N0} be a
subsequence such that wnh

→ w̄. Without loss of generality, assume that there exists j′,
1 ≤ j′ < m, such that U (Ti(w̄)) = U (w̄) if 1 ≤ i ≤ j′, and U (Ti(w̄)) 6= U(w̄), if j′ + 1 ≤
i ≤ m. By hypothesis this implies also that Ti(w̄) = w̄, if 1 ≤ i ≤ j′, and Ti(w̄) 6= w̄, if
j′ + 1 ≤ i ≤ m. By the continuity of the maps Ti we can argue that there exists δ ∈ R>0

such that, if j′ + 1 ≤ i ≤ m then Ti(w) 6= w for all w ∈ Bδ(w̄) = {w ∈ W : d(w, w̄) ≤ δ}.
Let now

γ = min
j′+1≤i≤m

{

min
w∈Bδ(w̄)

{U (w) − U (Ti(w))}
}

.

By hypothesis we have that, if j′ + 1 ≤ i ≤ m then U (Ti(w)) < U (w) for all w ∈ Bδ.
Hence, since Bδ(w̄) is closed, and U and the maps Ti are continuous, we can deduce that
γ > 0. Consider now the set {Ti}i=1,...,j′; this is a collection of continuous maps having
w̄ as fixed point. Then, there exists a suitable ε ∈ R>0 such that, given any D-upla
(j1, . . . , jD) ∈ {1, . . . j′}D, we have that Tj1 ◦ Tj2 ◦ Tj3 ◦ . . . ◦ TjD

(w) ∈ Bδ(w̄) for all
w ∈ Bε(w̄) = {w ∈ W | d(w, w̄) ≤ ε}.

Let now h̄ such that the element wnh̄
in the subsequence {wnh

|h ∈ N0} satisfies
d
(

wnh̄
, w̄
)

< ε and U(wnh̄
) − c < γ. Let

s = min{t ∈ [1,D] | ∃j ∈
{

j′ + 1, . . . ,m
}

such that wnh̄+t+1 = Tj

(

wnh̄+t

)

}

Observe that U
(

wnh̄+s

)

− c < δ and U
(

wnh̄+s

)

− U
(

Tj

(

wnh̄+s

))

≥ δ implying that
U
(

Tj

(

wnh̄+s

))

< c. This is a contradiction.
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6.4 The set of partitions

Motivated by the results in Section 6.3, we introduce a metric structure on the set of
partitions; specifically, we show how the set of partitions, endowed with a suitable metric,
is a compact metric space. Additionally, we show the continuity properties of certain
maps. In this section, and only in this section, the assumptions on Q are relaxed to give
more general results: we assume that Q ⊂ R

d is compact and connected and has non-empty
interior.

Recall that a metric space is a set S endowed with a scalar function of S × S, called
a metric, that satisfies the following properties: non-negativity, identity of indiscernibles,
symmetry, and triangle inequality.

Metric structure of the set of closed subsets

Let C denote the set of the closed subsets of Q. We want to introduce a suitable metric
and topology on C; since the cost functions defined in Section 6.1 are insensitive to sets of
zero measure, we look for a metric with the same property.

Let λ be the Lebesgue measure of a subset of R
d. Given two subsets A,B ∈ C, define

their symmetric difference by A∆B = (A ∪ B) \ (A ∩ B) and their symmetric distance
d∆ : C × C → R≥0 by

d∆(A,B) = λ(A∆B).

In other words, the symmetric distance is the measure of the symmetric difference of the
two sets. Given these definitions, it is useful to identify sets that differ by a set of measure
zero. More formally, let us write A ∼ B whenever λ(A∆B) = 0, and remark that ∼ is an
equivalence relationship. In what follows we will study the quotient set of closed subsets
C∗ = C/ ∼. The next result is the main result of this section.

Theorem 6.7 (Compactness of C∗) The pair (C∗, d∆) is a metric space. Moreover,
with the topology induced by the metric d∆, the set C∗ is compact.

Proof: It is easy to verify that d∆ is a metric on C∗. Instead, proving the compactness
of the space is not trivial. First, we introduce a definition of convergence in C, according
to [67], which is not based on the metric d∆. Given a sequence of sets {En}n∈N, define

lim inf
n→∞

En

= {x ∈ Q such that if U is an open subset of Q and x ∈ U, then U ∩ En 6= ∅
for all but finitely many n} ,

lim sup
n→∞

En

= {x ∈ Q such that if U is an open subset of Q and x ∈ U, then U ∩ En 6= ∅
for infinitely many n} .

We say that limn→∞ En = E whenever lim infn→∞ En = lim supn→∞ En = E. It is known
(e.g., see [67, Theorem 0.8]) that C, with this definition of convergence, is a compact
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metric space. Thus, also C∗, equipped with the quotient topology, is compact. It is almost
immediate to check that, if limn→∞ En = E, then limn→∞ λ(En∆E) = 0. In other words,
convergence as previously defined implies convergence in the topology induced by the d∆

metric. From this we argue that (C∗, d∆) is compact as well.

We now present some other properties of certain closed subsets. A set C ∈ C is regularly
closed if (interior(C)) = C. Given a closed set C ∈ C, let interior(C) be its regularization.

Lemma 6.8 Let A and B be closed subsets of Q, that is, A,B ∈ C.

(i) If d∆(A,B) = 0, then interior(A) = interior(B).

(ii) If d∆(A,B) = 0 and A,B are regularly closed, then A = B.

Proof: First, we prove (i). From the assumption, there exists a set M , having
λ(M) = 0, such that (B \ A) ⊂ M . Then B ⊂ (A∪M). This implies interior(B) ⊂
interior(A∪M) = interior (A), because if there be a point belonging to interior(A∪M)
and not to interior (A), then there be a whole open ball contained in the former, and then
their measure should differ. The same argument applied to A \ B completes the proof of
(i). Statement (ii) is an immediate consequence.

Remark 6.4 (The set of regularly closed subsets) Since using a quotient space can
be little intuitive, one would like to identify one representative in each class, and thus find
a subspace of C, which can be identified with C∗. In view of Lemma 6.8(ii), a natural
candidate is the set of regularly closed subsets. To show the identification is correct,
one can prove that, if C ∈ C, then λ(C∆interior (C)) = 0. This would imply that the
regularization of any closed set belongs to its class. Since (C∆interior (C)) ⊂ ∂C, the
claim is true if the set C had zero-measure boundary. However, this is not always the case
for closed sets. Actually, the regularization of a closed set can differ from it by a set of
finite measure. One can find [7] an open set A such that interior (A) = A and λ(∂A) > 0.
Thus, if we let C = A, then C∆interior (C) = C \ interior (C) = ∂A, which has finite
measure. Then the desired identification fails for general closed sets. �

Metric structure of the set of partitions

Let us now introduce a metric structure on the space of partitions. The space of partitions
VN , introduced in Section 6.1, is mapped by the canonical projection into a V∗

N , whose
components belong to C∗. The metric d∆ naturally extends to a metric on the product
space (C∗)N and on V∗

N as follows. The symmetric distance on partitions d∆ : VN ×VN →
R≥0 is defined by

d∆(u, v) =
N
∑

i=1

d∆(ui, vi), (6.17)

where u = {ui}N
i=1 and v = {vi}N

i=1 are any two N -partitions. The compactness of the
space of partitions is then a simple consequence of Theorem 6.7.
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Corollary 6.9 (Metric structure and compactness of V∗
N) The pair (V∗

N , d∆) is a
metric space. Moreover, with the topology induced by the metric d∆, the closure of V∗

N is
a compact set.

In the rest of the chapter, V∗
N and VN are treated as one and the same: one may think

to VN as the space of the actual dynamics for the robots, and V∗
N as a space which is

introduced for analysis purposes. Note that, thanks to the definition of VN , V∗
N can as

well be depicted as a space of “partitions” made of regularly closed sets, representing the
actual regions. Indeed, the identification between equivalence classes and regularly closed
representatives, which can not be done (Remark 6.4) for general closed sets, can be done
for sets satisfying the assumptions in Definition 6.1.

It can be checked5 that all scalar functions of C or VN , that we use in this chapter, are
independent of the representative which is chosen, but only depends on the equivalence
class, that is, the functions are defined up to sets of measure zero. Thus, not only a
sequence in VN is mapped into a sequence in V∗

N , but the dynamics in VN induces a
dynamics in V∗

N ; it is the latter dynamics that we are able to study. Some additional
useful equivalence properties are stated as follows.

Corollary 6.10 If u and v are two N -partitions with d∆(u, v) = 0, then

(i) the adjacency graph of u is equal to the adjacency graph of v;

(ii) u and v have the same regularization; and

(iii) if each set in u and v is regularly closed, then u = v.

6.5 Continuity of relevant functions and maps

Recall that the compact connected set Q is equipped with a bounded measurable positive
function φ : Q → R>0, and that the centroid of any subset of Q is computed with
respect to φ, see equation (6.4). Define the diameter of Q and the infinity norm of φ by
diam(Q) = {‖x − y‖ | x, y ∈ Q} and ‖φ‖∞ = maxx∈Q φ(x), respectively.

Lemma 6.11 The centroid map Cd : C∗ \ {∅} → Q, defined in equation (6.4), is contin-
uous. Namely, given A,A′ ∈ C∗ such that λ(A ∩ A′) > 0,

‖Cd(A) − Cd(A′)‖ ≤ 3
√

d diam(Q) ‖φ‖∞
∫

A∩A′ φ(x)dx
d∆(A,A′). (6.18)

Proof: Let pi = (Cd(A))i and p′i = (Cd(A′))i be the i-th component of the two
centroids. Let xi be the i-th component of a generic point x ∈ Q. To keep the notation

5In some cases, this is obvious. We work out explicitly the non-obvious examples later in this section.
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short, let dφ denote φ(x)dx. Then

|pi − p′i| =

∣

∣

∣

∣

∫

A xidφ
∫

A dφ
−
∫

A′ xidφ
∫

A′ dφ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

A xidφ
∫

A′ dφ −
∫

A′ xidφ
∫

A dφ
∫

A dφ
∫

A′ dφ

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

(

∫

A\A′ xidφ −
∫

A‘\A xidφ
)

∫

A′∩A dφ
∫

A dφ
∫

A′ dφ
−

(

∫

A\A′ dφ −
∫

A′\A dφ
)

∫

A′∩A xidφ
∫

A dφ
∫

A′ dφ

+

∫

A\A′ xidφ
∫

A′\A dφ −
∫

A′\A xidφ
∫

A\A′ dφ
∫

A dφ
∫

A′ dφ

∣

∣

∣

∣

∣

≤

∣

∣

∣

(

∫

A\A′ xidφ −
∫

A‘\A xidφ
)∣

∣

∣

∫

A′∩A dφ
∫

A dφ
∫

A′ dφ
+

∣

∣

∣

(

∫

A\A′ dφ −
∫

A′\A dφ
)∣

∣

∣

∫

A′∩A xidφ
∫

A dφ
∫

A′ dφ

+

∣

∣

∣

∣

∣

∫

A\A′ xidφ
∫

A′\A dφ −
∫

A′\A xidφ
∫

A\A′ dφ
∫

A dφ
∫

A′ dφ

∣

∣

∣

∣

∣

. (6.19)

We consider the denominator and write

∫

A
dφ

∫

A′
dφ =

(

∫

A∩A′
dφ +

∫

A\A′
dφ

) (

∫

A′∩A
dφ +

∫

A′\A
dφ

)

=

(∫

A∩A′
dφ

)2

+

∫

A∩A′
dφ

∫

A∆A′
dφ +

∫

A\A′
dφ

∫

A′\A
dφ.

Since the summands are all positive, each of them is smaller than their sum. Using this
expansion, we upper bound each of the three summands in (6.19). The first term in (6.19)
is upper bounded as follows:

∣

∣

∣

∫

A′\A xidφ −
∫

A\A′ xidφ
∣

∣

∣

∫

A′∩A dφ
(∫

A∩A′ dφ
)2 ≤

∫

A∆A′ |xi|dφ
∫

A∩A′ dφ
≤ diam(Q) ‖φ‖∞

∫

A∩A′ dφ
λ(A∆A′),

where we have assumed, without loss of generality, that Q contains the origin. The second
term can be bounded similarly, and we upper bound the third term as follows:

∣

∣

∣

∫

A\A′ xidφ
∫

A′\A φdx −
∫

A′\A xidφ
∫

A\A′ φdx
∣

∣

∣

∫

A∩A′ dφ
∫

A∆A′ dφ
≤
∫

A∆A′ dφ
∫

A∆A′ |xi|dφ
∫

A∩A′ dφ
∫

A∆A′ dφ

≤
∫

A∆A′ |xi|dφ
∫

A∩A′ dφ

≤ diam(Q) ‖φ‖∞
∫

A∩A′ dφ
λ(A∆A′).

Finally, we obtain |pi−p′i| ≤
3 diam(Q)‖φ‖∞
∫

A∩A′ dφ
λ(A∆A′), from which the claim follows, since

Q ⊂ R
d.
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Lemma 6.12 The multicenter function Hcentroid : VN → R≥0, defined in equation (6.8),
is Lipschitz continuous.

Proof: Let u, v be two N -partitions. Then

|Hcentroid(u)−Hcentroid(v)|

=

∣

∣

∣

∣

∣

N
∑

i=1

∫

ui

‖x − Cd(ui)‖2φ(x)dx −
N
∑

i=1

∫

vi

‖y − Cd(vi)‖2φ(y)dy

∣

∣

∣

∣

∣

≤
N
∑

i=1

∣

∣

∣

∣

∫

ui

‖x − Cd(ui)‖2φ(x)dx −
∫

vi

‖y − Cd(vi)‖2φ(y)dy

∣

∣

∣

∣

≤
N
∑

i=1

(∣

∣

∣

∣

∣

∫

ui\vi

‖x − Cd(ui)‖2φ(x)dx −
∫

vi\ui

‖x − Cd(vi)‖2φ(x)dx

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

ui∩vi

(‖x − Cd(ui)‖2 − ‖x − Cd(vi)‖2)φ(x)dx

∣

∣

∣

∣

)

≤
N
∑

i=1

(

∣

∣

∣

∣

∣

∫

ui\vi

‖x − Cd(ui)‖2φ(x)dx

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫

vi\ui

‖x − Cd(vi)‖φ(x)dx

∣

∣

∣

∣

∣

+

∫

ui∩vi

|‖x − Cd(ui)‖2 − ‖x − Cd(vi)‖2|φ(x)dx

)

≤
N
∑

i=1

(

diam(Q)2
∫

ui∆vi

φ(x)dx +

∫

ui∩vi

2 diam(Q)‖Cd(ui) − Cd(vi)‖dφ

)

.

In the last inequality we used the following fact:

∣

∣‖x − Cd(vi)‖2−‖x − Cd(vj)‖2
∣

∣

≤ (‖x − Cd(vi)‖ + ‖x − Cd(vj)‖) |‖x − Cd(vi)‖ − ‖x − Cd(vj)‖|
≤ 2 diam(Q)‖Cd(vi) − Cd(vj)‖.

Then using (6.18), we obtain

N
∑

i=1

[

diam(Q)2‖φ‖∞ d∆(ui, vi) + 2diam(Q)‖Cd(vi) − Cd(ui)‖
∫

ui∩vi

dφ

]

≤
N
∑

i=1

[

diam(Q)2‖φ‖∞d∆(ui, vi) + 6
√

d diam(Q)2‖φ‖∞d∆(ui, vi)
]

,

and, finally,

|Hcentroid(u) −Hcentroid(v)| ≤ diam(Q)2(6
√

d + 1) ‖φ‖∞ d∆(u, v).

This bound implies Lipschitz continuity.
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Before we have studied the continuity of cost functions. From now on, we focus on the
evolution maps. The following result is straightforward.

Lemma 6.13 (Properties of boundary) Let A,B subsets of a metric space. The fol-
lowing three properties hold:

(i) ∂(A∪B) ⊂ (∂A∪ ∂B);

(ii) ∂(A∩B) ⊂ (∂A∪ ∂B);

(iii) ∂(A \ B) ⊂ (∂A∪ ∂B).

Lemma 6.14 The Voronoi map V : QN \ SN → VN , defined in equation (6.2), is contin-
uous.

Proof: For simplicity, we discuss the two dimensional case. We first prove the
continuity when N = 2: let p1 and p2 be points in Q. Let 2l = ‖p1 − p2‖. Since p1 6= p2,
l > 0. Up to isometries, we can assume that, in the Euclidean plane (x, y), p1 = (−l, 0) and
p2 = (l, 0). Let d1 and d2 be the distances from the origin of points p1 and p2, respectively.
It is clear that the two Voronoi regions of p1 and p2 are separated by the locus of points
{x ∈ Q | ‖x−p1‖ = ‖x−p2‖}, that is the vertical axis. Now, we assume that the positions
of p1 and p2 are perturbed by a quantity less than or equal to δ, with 0 < δ < l. By
effect of the perturbation, the axis separating the two Voronoi regions is perturbed, but
it is contained in the locus of points Y1 2(δ) = {x ∈ Q | |‖x − p1‖ − ‖x − p2‖| ≤ 2δ}.
By definition, this is the set comprised between the two branches of the hyperbola whose

equation is x2

δ2 − y2

l2−δ2 = 1. By elementary geometric considerations, the area of this region
can be upper bounded by

λ(Y12(δ)) ≤ 2 δ 2 diam(Q) + 4diam(Q)2
δ/l

√

1 − δ2

l2

≤ 4 diam(Q)
(

1 +
diam(Q)

l

)

δ.

This bound implies the continuity. The case in which N > 2 follows because, moving all
points by at most δ, the change in all the regions is upper bounded by

⋃

1≤i,j≤N Yij(δ),

which vanishes zero as δ → 0+.

Lemma 6.15 Let A,B be closed subsets of Q, having non empty and disjoint interiors,
and Cd(A) 6= Cd(B). Then the map

(A,B) 7→ (A ∪ B ∩Hbisector(Cd (A),Cd (B)), A ∪ B ∩Hbisector(Cd (B),Cd (A)))

is continuous in C∗, and the images have non-empty and disjoint interiors, and zero-
measure boundaries.
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Proof: The result contains several claims which deserve to be checked. Let A′ and
B′ in C∗ be the images of A and B. First, we need to prove that A′ 6= ∅ and B′ 6= ∅.
This is a corollary of the following claim. Let CC(A) be the convex hull of the points
of A, and let x ∈ CC(A) and y ∈ A∪B. Then it exists v, a vertex of CC(A), such that
‖v − x‖ < ‖v − y‖.

The fact that the images have non-empty interior can be proved as follows. Let x be
an internal point of A. Then, either it is an interior point of A′ or B′, or x lies on the
splitting axis. In the latter case, a point can be found in a neighborhood of x which is
internal to A′.

The interiors are disjoint because x ∈ interior(A′) if and only if x ∈ interior(A∪B)
and ‖x − Cd(A)‖ < ‖x − Cd(B)‖. Thus clearly x /∈ interior(B′).

Since the images are obtained by intersecting the given sets with an half-space, which
has zero-measure boundary, Lemma 6.13 implies that the boundaries of the images have
zero measure, as well.

Since continuity is claimed in the quotient set, we need to check that the map does
not depend on the representatives. Let us then take two other representatives, C ∼ A and
D ∼ B. Then there exist two zero-measure sets M and L such that C ⊂ (A∪M) and
D ⊂ (B ∪L′). Since the centroids do not depend on zero-measure sets, the images of C
and D are C ′ ⊂ (A′ ∪M ∪L) and D′ ⊂ (B′ ∪M ∪L). The reverse argument, as in the
proof of Lemma6.8, yields the claim.

Let us now discuss the continuity of the map. Let Ã and B̃ be two sets in C, and
Ã′, B̃′ their images. We aim to upper bound the distance d∆(Ã′, A′) + d∆(B̃′, B′). To do
this, we combine the bounds which give continuity in the proofs of Lemmas 6.11 6.12 6.14.
The difference of the images depends on the difference of the two argument regions both
directly and via the induced difference between the centroids. Recalling the proof of
Lemma 6.14, let δ be a bound on how much the two centroids are displaced. Then the
region Y (δ) = {x ∈ Q | |‖x − Cd(A)‖ − ‖x − Cd(B)‖| ≤ 2δ} has to be included in the
upper bound on the difference in the images. Combining these considerations we get

d∆(Ã′, A′) + d∆(B̃′, B′)

≤
(

d∆(Ã, A) + d∆(B̃,B)
)

+ λ
(

Y (max{‖Cd(A) − Cd(Ã)‖, ‖Cd(B) − Cd(B̃)‖})
)

≤
(

1 + 12
√

ddiam(Q)2‖φ‖∞
(

1 +
diam(Q)

‖Cd(A) − Cd(B)‖

)

∫

A∩ Ã φdx +
∫

B ∩ B̃ φdx
∫

A∩ Ã φdx
∫

B ∩ B̃ φdx

)

×
(

d∆(Ã, A) + d∆(B̃,B)
)

.

The bound implies continuity.

Lemma 6.16 For all δ > 0, (i, j) ∈ {1, . . . , N}2, the map T δ
ij : VN → VN , defined in

Section 6.2.2, is well-posed and continuous.

Proof: We have to establish three facts: (i) the image of the map is in VN ; (ii) the
map is defined up to sets of measure zero; and (iii) the map is continuous. Adopting the
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notations of Section 6.2.2, for example, we let v ∈ VN and v̄ = T δ
ij(v), we check these

claims as follows.

(i) For all i, the set v̄i is obviously closed, and by Lemma 6.13 λ(∂vi) = 0. For any
pair i, j 6= i, similarly to Lemma 6.15, interior(v̄i)∩ interior(v̄j) = ∅, and since
v̄i ∪ v̄j = vi ∪ vj, the collection of sets v̄ covers Q.

(ii) The map is defined up to sets of measure zero. Indeed, the bisector half-space is
by definition insensitive to sets of zero measure, and so are p̄i and β, thanks to
Lemma 6.8.

(iii) We use the following fact: let A,B,C and A′, B′, C ′ sets with B ⊂ A, C ∩A = ∅
and B′ ⊂ A′, C ′ ∩A′ = ∅, then

[

((A \ B)∪C)∆((A′ \ B′)∪C ′)
]

⊂
[

(A∆A′)∪(B∆B′)∪(C∆C ′)
]

.

This implies that

[

v̄i∆v̄′i
]

⊂ [(vi∆v′i)∪(R̃i∆R̃′
i)∪(R̃j∆R̃′

j)].

Thus, we have to check that R̃i and R̃j depend continuously on vi and vj. But this
fact is a simple consequence of R̃j being a subset of Rj , which depends continuously
on v, by Lemma 6.15.

6.5.1 Convergence proofs

We are now almost ready to complete the proof of the convergence result presented in
Section 6.2.3. The following result clarifies the relationship between Hcentroid and T δ.

Lemma 6.17 Let v ∈ VN . Then Hcentroid(Tij(v)) ≤ Hcentroid(v), and moreover Hcentroid(Tij(v)) =
Hcentroid(v) if and only if Tij(v) = v. The same hold if Tij is replaced by T δ

ij .

We do not give the details of the proof: the result is a simple consequence of how the
maps Tij and T δ

ij have been defined, using (6.9) and Proposition 6.1.
Theorem 6.3 then follows putting pieces together.
Proof: [Proof of Theorem 6.3] The goal is to apply Theorem 6.6 to the sequence v(t)

with v(0) ∈ VN and v(t + 1) ∈ T δ(v(t)), for all t ∈ N0. Note that from Lemma 6.16, the
system evolves, through continuous mappings, in VN , which by Corollary 6.9 is subset of
a compact metric space. The result follows because Hcentroid is a Liapunov function for
the system, meeting the assumptions of Theorem 6.6, thanks to Lemmas 6.12 and 6.17.



Chapter 7

Gossip in one dimensional

partitions

In this chapter we study gossip partition optimization problems in one dimensional do-
mains. With respect to the general case, the one dimensional case enjoys many properties
which allow to make an easier and more complete analysis, which includes encouraging
results on the speed of convergence of the algorithm. We are not surprised to obtain
such results in the one dimensional case only, since also the evaluation of the speed of
convergence of the Lloyd deployment (6.11) algorithm is an open question in higher di-
mensions [62].

7.1 Special properties

The first simplification is that, up to isometries and rescaling, we can assume that the
domain to apportion be the unit interval [0, 1]. Moreover, we are going to show that we
do not need to consider the most general space of partitions, but only partitions of [0, 1]
in N intervals. Let us consider the set of such partitions,

UN = {{[ui, ui+1]} | 0 = u0 ≤ u1, . . . ,≤ ui ≤ ui+1 ≤ . . . ,≤ uN = 1}, (7.1)

with the understanding that the region [ui−1, ui] is assigned to agent i ∈ {1, . . . , N}. It is
clear that UN is a subset of VN , and that the Voronoi partitions belong to UN . Indeed,
the map V : [0, 1]N → UN maps p ∈ [0, 1]N into u = V (p) such that

ui =
pi + pi+1

2
∀i ∈ {1, . . . , N − 1}.

Then UN is a natural candidate as a state space for a partition optimization algorithm.
The metric structure of UN is described by the following result.

Proposition 7.1 Let d1 : UN × UN → R be

d1(u, u′) =

N−1
∑

i=1

|ui − u′
i|.

115
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Then d1 is a metric on UN , equivalent to d∆. Moreover UN is compact.

Proof: Given two partitions v, v′ ∈ UN ,

dH(v, v′) =

N
∑

i=1

max{|vi−1 − v′i−1|, |vi − v′i|},

d1(v, v′) =
N
∑

i=1

|vi − v′i|,

d∆(v, v′) =

N
∑

i=1

min{|vi−1 − v′i−1| + |vi − v′i|, vi − vi−1 + v′i − v′i−1}.

From these formulas it is clear that

d1(v, v′) ≤ dH(v, v′) ≤ 2d1(v, v′),

and

d∆(v, v′) ≤ 2d1(v, v′).

Then the Hausdorff metric dH and the metric d1 are equivalent, while the above bounds
leave the possibility that the topology induced by d∆ be coarser. However, the intervals
are convex sets, and we know from [48] that in such a case the symmetric difference and
Hausdorff metrics induce the same topology. We can also see this if we remark that

min{|vi−1 − v′i−1| + |vi − v′i|, vi − vi−1 + v′i − v′i−1} = |vi−1 − v′i−1| + |vi − v′i|

whenever [vi−1, vi]∩[v′i−1, v
′
i] 6= ∅, and this condition is eventually true for subsequent

element of a converging sequence of partitions.

Since we have shown that UN is isomorphic to a subset of VN , the compactness of UN

follows from UN being closed.

Remark 7.1 Remark that u ∈ UN can also be seen as a vector (ui)
N−1
i=1 . This natural

mapping into a subset of [0, 1]N−1 is an isomorphism, and this identification will be used
in the sequel.

Remark 7.2 (Centroid map) The centroid map Cd, restricted to the intervals, has the
simple form

Cd([a, b]) =

∫ b
a xφ(x)dx
∫ b
a φ(x)dx

. (7.2)

The map is well defined and continuous if a < b. The ill-definition of the map Cd for sets
of zero measure con be resolved defining, for a ∈ [0, 1], Cd([a, a]) = a. Such extension is
clearly continuous.
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Remark 7.3 (Cost function) The cost function is

Hcentroid(v) =

N
∑

i=1

∫ vi

vi−1

|x − Cd([vi−1, vi])|2φ(x)dx. (7.3)

We proved in Lemma 6.12 that Hcentroid is Lipschitz continuous. A stronger result can
be proved in one dimension.

Proposition 7.2 Hcentroid is differentiable in UN , and its derivatives are, for j = 1, . . . , N ,

∂Hcentroid

∂vj
= 2φ(vj) (Cd([vj , vj+1]) − Cd([vj−1, vj ]))

(

vj −
Cd([vj , vj+1]) + Cd([vj−1, vj ])

2

)

.

Proof: Recall the standard formula

d

dx

∫ β(x)

α(x)
f(x, y)dy =

∫ β(x)

α(x)

∂ f(x, y)

∂x
dy +

dβ(x)

dx
f(x, β(x)) − dα(x)

dx
f(x, α(x)).

Using this formula, from (7.2) we compute the derivatives

∂ Cd([vi−1, vi])

∂vi
=

φ(vi)
∫ vi

vi−1
φ(x)dx

(vi − Cd([vi−1, vi]))

and

∂

∂vi

∫ vi

vi−1

(x − Cd([vi−1, vi]))
2 φ(x)dx

=

∫ vi

vi−1

∂

∂vi
(x − Cd([vi−1, vi]))

2 φ(x)dx + φ(vi) (vi − Cd([vi−1, vi]))
2

= φ(vi) (vi − Cd([vi−1, vi]))
2 .

Since vj is the extremum of two consecutive intervals,

∂Hcentroid

∂vj
= φ(vj)

[

(vj − Cd(vj−1, vj))
2 − (vj − Cd(vj , vj+1))

2
]

= φ(vj) (Cd([vj , vj+1]) − Cd([vj−1, vj ]))

(

vj −
Cd([vj , vj+1]) + Cd([vj−1, vj ])

2

)

.

Remark 7.4 Since Hcentroid is continuous and positive on the compact UN , it attains
a positive global minimum. Moreover, the critical points of Hcentroid are exactly the
centroidal Voronoi partitions.
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Gossip on a line graph

An important reason for the simplicity of the one dimensional case lies in the topology of
the adjacency graphs.

Remark 7.5 (Adjacency graph) If u ∈ UN , then G(u) is the line graph of N nodes.

As a consequence of this, the pairwise algorithm (6.12), applied to partitions in UN ,
always features a map Ti i+1. For this reason, we simplify the notation, defining the map
Ti : UN → UN such that v′ = Ti(v) is given by

v′i =
Cd([vi−1, vi]) + Cd([vi, vi+1])

2
,

v′k = vk if k 6= i.

Correspondingly, the set-valued map T : UN ⇒ UN is such that v is mapped into
{Ti(v)}N

i=1, and we shall consider coverage algorithm generating a sequence of partitions
{v(t)}t∈N0

belonging UN : if agent i and i + 1 interact at time t,

v(t + 1) = Ti(v(t)).

Clearly, the maps Ti are continuous on UN , and then, by Lemma 6.5, T is a closed
map. Moreover, the application of T preserves the communication graph. In force of the
above remarks, Theorem 6.3 applies to sequences generated by T from v(0) ∈ UN , and
then T drives the system to centroidal Voronoi partitions, that are the critical points of
Hcentroid.

Remark 7.6 Whereas in the higher dimensional case the evolution of the partitions under
a gossip algorithm can not be restricted to convex sets, thanks to the special properties
of the one dimensional case we have been able to define a dynamics involving intervals,
which enjoy the property of being convex.

7.2 Uniform density: equitable partitioning and average

consensus

Formulas in the above sections are much simpler when the density is uniform, and stronger
results can be obtained. Let us then assume in the sequel that φ is constant, and namely,
with no further loss of generality, φ(x) = 1. The map T is such that v′ = Ti(v) is given by

v′i =
vi−i + 2vi + vi+1

4
.

Proposition 7.3 If φ(x) = 1, then

Hcentroid(v) =
N
∑

i=1

∫ vi

vi−1

(

vi−1 + vi

2
− x

)2

dx

=
1

12
(vi − vi−1)

3, (7.4)
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and Hcentroid is a convex function.

Proof: Specializing Proposition 7.2 or differentiating (7.4) we easily obtain

∂Hcentroid

∂vj
=

vj+1 − vj−1

2

(

vj −
vj−1 + vj+1

2

)

for j = 1, . . . , N − 1,

∂2Hcentroid

∂v2
j

=
vj+1 − vj−1

2
for j = 1, . . . , N − 1,

∂2Hcentroid

∂vj∂vj+1
= −vj+1 − vj

2
for j = 1, . . . , N − 2,

∂2Hcentroid

∂vj∂vj−1
= −vj − vj−1

2
for j = 2, . . . , N − 1.

The second derivatives can be arranged in an Hessian matrix H ∈ R
N−1×N−1, which

turns out to be symmetric and tridiagonal, with diagonal entries di = 1
2(vj+1 − vj−1), for

i = 1, . . . , N −1, and super-diagonal entries si = −1
2(vj+1−vj), for i = 1, . . . , N −2. Since

|si|+ |si−1| ≤ di, from Gershgorin Theorem we deduce that its eigenvalues are all positive.
Then Hcentroid is a convex function.

Some more remarks are in order.

Remark 7.7 (i) The critical points of Hcentroid are such that vj =
vj+1+vj−1

2 ∀j ∈
{1, . . . , N − 1}. Remark that this corresponds to the configuration with equispaced

points v∗i = i−1
N , and Hcentroid(v∗) = 1

12
12

N2 . Such a partition is called equitable [74].

(ii) UN is the intersection of an (N − 1)-hypercube and of N − 1 half-spaces, and then
a convex set. Then, since Hcentroid is a convex function, the critical point is the
(unique) global minimum.

(iii) Since φ(x) = 1, the configurations with equispaced points are the centroidal Voronoi
partitions of [0, 1]. Indeed, v∗ = Ti(v

∗) for all i ∈ {1, . . . , N}.

Motivated by the form of the critical points of Hcentroid, we can also suggest a different
algorithm, defined by the map T∞

i : UN → UN , such that v′ = T∞
i (v) is

v′i =
vi−1 + vi+1

2
v′k = vk for k 6= i .

It is clear that also T∞
i is continuous for all i, and then the set-valued map T∞ : UN ⇒

UN , such that T∞(v) = {T∞
i (v)}i=1,...,N , is closed. Moreover, Hcentroid is a Liapunov

function for T∞. Then we can conclude that Theorem 6.3 applies also to sequences
generated by T∞.
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Coverage and consensus

Further insights can be obtained if we remark that the one dimensional deployment prob-
lem with uniform density can be cast into a consensus problem. This allows to find stronger
convergence results, and some extra information about the speed of convergence of the
algorithm.

Remark 7.8 (Coverage as optimization on the simplex) Let Σ be the (N−1)-dimensional
standard simplex. Let f1 : UN → Σ be such that x = f1(u) is the vector of components
xi = ui − un−1, for i = {1, . . . , N}. Then f1 is one-to-one and onto. As a consequence,
for any φ, every one-dimensional coverage algorithm is equivalent to an optimization al-
gorithm evolving on the simplex.

In the case φ(x) ≡ 1, the optimization goal is to reach an equispaced distribution on
[0, 1], that is, on the simplex, to make every xi reach the value 1/N . This is exactly an
average consensus problem. Average consensus problems, which have been studied in the
Part I of the thesis, can be solved by pairwise communication, with either a determinis-
tic [65] or a randomized [9] communication schedule.

Now we explicitly show that the proposed deployment algorithms correspond on the
simplex to average consensus algorithms, which can be studied thanks to the tools recently
developed in [24, 36].

Synchronous Lloyd algorithm

We start with the synchronous algorithm (6.11). In the simplex, it induces the map
E : ΣN−1 → ΣN−1, with x′ = E(x) given by

x′
1 =

3x1 + x2

4

x′
i =

xi−1 + 2xi + xi+1

4
for all i = 2, . . . , N − 1

x′
N =

xN−1 + 3xN

4

We can write
x(t + 1) = E x(t), (7.5)

where E is a suitable tridiagonal symmetric matrix.

Proposition 7.4 Let x(t) evolve following (7.5). Then limt→∞ x(t) = x∗, with x∗
i = 1/N

for all i = 1, . . . , N.

Proof: Let an augmented tridiagonal Toepliz matrix be a matrix

ATrid+(a, b) =

















b + a a 0 . . . 0

a b a . . .
...

... . . . . . . . . .
...

0 . . . a b a
0 . . . 0 a b + a

















.
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According to [14], the matrix ATrid+(a, b) has eigenvalues b + 2a cos lπ
N , for l = 0, . . . , N−1.

Then, E = ATrid+(1/4, 1/2) has eigenvalues

1

2
+

1

2
cos

lπ

N
l = 0, . . . , N − 1.

This implies [24] the claim.
We can define1 the rate of convergence of such a consensus algorithm as

Rsynch =
1

N
sup
x(0)

lim sup
t→∞

(

‖x(t) − x∗‖2
)1/t

.

The rate, from Proposition 1.5, is equal to the square of the second largest (in modulus)
eigenvalue of E, that is

Rsynch =
1

4

(

1 + cos
π

N

)2
� 1 − π2

2N2
, for N → ∞.

Pairwise gossip algorithm

The same rewriting can be done for the two pairwise algorithms proposed above, T and
T∞. Indeed, the application of Ti and T∞

i can be read on the simplex as follows. Let
v′ = Ti(v). Correspondingly, on the simplex we have x′ = Si(x) with

x′
i =

3xi + xi+1

4

x′
i+1 =

xi + 3xi+1

4
x′

k = xk otherwise .

Similarly, denoting v′′ = T∞
i (v), we have on the simplex x′′ = S∞

i (x) with

x′′
i = x′′

i+1 =
xi + xi+1

2
,

while all other components are unchanged.
From now on, we concentrate on the algorithm S∞: the algorithm S can be analyzed in

a similar fashion. The evolution law of S∞ can be rewritten more compactly as x(t+1) =
A(t)x(t). At each time step A(t) ∈ {Ai}N−1

i=1 , where Ai is the N -dimensional matrix

Ai =

























1 0 0 0 0 0 0 0
0 ... 0 0 0 0 0 0
0 0 1/2 1/2 0 0 0 0
0 0 1/2 1/2 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 ... 0 0
0 0 0 0 0 0 ... 0
0 0 0 0 0 0 0 1

























,

1This definition differs by a square from the one in Chapter 1.
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in which the block

(

1/2 1/2
1/2 1/2

)

appears on the diagonal in position i, i + 1.

This allows to prove strong convergence results on the gossip coverage algorithms in
dimension one.

Theorem 7.5 Let u(0) ∈ UN and u(t + 1) ∈ T (u(t)) for all t ∈ N0. Assume φ ≡ 1. Then
u(t) converges exponentially to the only centroidal Voronoi partition, if and only if, for all
i ∈ {1, . . . , N}, u(t + 1) = Ti(u(t)) for infinitely many t.

Proof: Since the underlying topology is the line graph, Proposition 2 of [65] implies
that the system S makes x(t) converge to x∗ if and only if every edge is activated an
infinite number of times.

Moreover, we consider a randomized schedule, in which each pair of adjacent regions
is randomly selected with probability pi at every time step t ≥ 0, that is

P [A(t) = Ai] = pi. (7.6)

Theorem 7.6 Let u(0) ∈ UN and u(t + 1) ∈ T (u(t)) for all t ∈ N0. Assume φ ≡ 1.
Assume there exists p̄, 0 < p̄ < 1, such that, for all i ∈ {1, . . . , N},

P [u(t + 1) = Ti(u(t))] ≥ p̄.

Then u(t) converges almost surely to the only centroidal Voronoi partition.

Proof: It is easy to check that E[A(t)] is a doubly stochastic and irreducible matrix,
and every Ai has positive diagonal. Hence, we can argue the result applying Corol-
lary 3.2 in [36].

For simplicity, let us assume in the sequel that pi = 1
N−1 for all i ∈ {1, . . . , N}. Then

E[A(t)] = I +
1

2

1

N − 1
ATrid+(1,−2).

Following [36], we develop a mean squared error analysis of the probabilistic algorithm to
study its speed of convergence. Let us define the speed of convergence of the randomized
algorithm as

R = sup
x(0)

lim sup
t→∞

E

[

1

N
‖x(t) − x∗‖2

]1/t

.

Then we can prove the following result.

Theorem 7.7 For the algorithm T∞ with a randomized schedule (7.6) and pi = 1
N−1 ,

1 − 2

N − 1

(

1 − cos
π

N

)

≤ RT∞ ≤ 1 − 1

N − 1

(

1 − cos
π

N

)

.

Then RT∞ = 1 − Θ(N−3) for N → ∞.
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Proof: The proof is based on Proposition 4.4 in [36]. If we denote by ρ(M) the
second largest in modulus eigenvalue of the matrix M , then a randomized algorithm has
a rate R estimated by

ρ(E[A(t)])2 ≤ R ≤ ρ(E[A(t)2]).

Since in this case A2
i = Ai, the bounds become

ρ(E[A(t)])2 ≤ R ≤ ρ(E[A(t)]).

Then we compute, using [14] as above, ρ(E[A(t)]) = 1− 1
N−1

(

1 − cos π
N

)

, and we conclude.

A similar analysis leads to a similar conclusion about T .

Theorem 7.8 The algorithm T , with a randomized schedule (7.6) and pi = 1
N−1 , con-

verges almost surely to the centroidal Voronoi partition, and its rate of convergence is
estimated as

1 − 1

N − 1

(

1 − cos
π

N

)

≤ RT ≤ 1 − 1

N − 1

3

4

(

1 − cos
π

N

)

.

Then RT = 1 − Θ(N−3) for N → ∞.

Remark 7.9 The speed of convergence of T and T∞ has the same order in N , but T is not
faster than T∞. It is also interesting to compare these results with the rate of convergence
of the synchronous deterministic deployment algorithm Rsynch, which degrades for N → ∞
as O(N2). It is clear that the loss of performance is limited to one power of N , which is
due to the pairwise communication schedule.

It is then interesting to compare the algorithms in terms of the required number of com-
munication rounds needed to converge, the so called total communication complexity [61].
For a given algorithm whose rate of convergence is R, we define

TCC =
# active edges per time step

1 − R
.

It comes out that, for N large enough,

TCCsynch =
2N2

π2
(N − 1),

2
N2

π2
(N − 1) ≤ TCCT ≤ 8

3

N2

π2
(N − 1),

N2

π2
(N − 1) ≤ TCCT∞ ≤ 2

N2

π2
(N − 1),

and then
TCCT∞ ≤ TCCsynch ≤ TCCT .

We conclude that, from the point of view of the communication complexity, the gossip
algorithms have the same order in N as the synchronous algorithm, and T∞ improves the
constants.
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7.3 Robots motion protocols

An important reason of interest in the partitions based approach is the following. Since
the actual position of the agents plays essentially no role, agents do not need to always
stay at the centroid. We are going to show that this allows to consider agent models
in which the agents have very short communication radiuses. In this section we sketch
some robot motion protocols which assure the robots to communicate, so that pairwise
communications are effective for the deployment task. In the natural application, agents
have a continuous time dynamics in the domain: as a limit model we can consider the
agents as point particles, and able to communicate when they collide. When a pair of
agents collides and communicates, the algorithm makes one step. In the one dimensional
case, it is easy to design movement strategies for the agents such that the requirements of
the convergence theorems are met. We present two such different strategies.

(i) The simplest idea is the following one. Let us think to the agents as moving with
a continuous time dynamics on the segment [0, 1] at (common) constant speed c.
Each agent k has a target region [vk−1, vk]. When two of them, say i and i + 1,
collide, they communicate, so that the updated state of the system is v+ = Ti(v),
and they invert their directions. Then the agent i will collide with agent i + 1 and
i − 1 alternately. It is clear that in a (continuous) time equal to 2/c all agents have
communicated with both neighbors: then this scheme satisfies Theorem 6.3. This
movement strategy has two additional good properties. The first one is a natural
robustness to agents failures. The second one lies in the fact that the agents can
self-initialize their assigned regions in a very natural way. When agent i and i + 1
meet for the first time, say in position x ∈ (0, 1), they set vi(0) = x. At their second
meeting, they will have already initialized vi−1(0) and vi+1(0) respectively.

We conclude that this scheme is effective for deployment of agents in a one-dimensional
environment, with arbitrary initial conditions. We can compare it with the algorithm
in [83]. In that work, the authors design an algorithm for agents on a ring to achieve
both deployment and synchronization of their dynamics. For the algorithm in [83],
only a local convergence result is proven, whereas the algorithm we proposed above
does converge for any initial condition, but does not guarantee synchronization of
the dynamics.

(ii) Scheme (i) allows the agents to possibly travel outside their regions. If, depending
on the application, this shall be avoided, one can devise the following modification
of the scheme (i). When an agent reaches the border of its region, it stops there until
its neighbor comes to collide and communicate. Then, they adjourn their states as
in the scheme (i), and move away. This implementation keeps the agents inside their
regions, but is not intrinsically robust to agents failures.

The key point which allows the design of the above strategies is that the communication
graph is time invariant and known to the agents. These facts are no longer true in higher
dimensions, and this makes the design of agents strategies much harder. Such a problem
will be the object of further research.



Chapter 8

Perspective on partitions

optimization

The novel approach to coverage control which has been introduced in this thesis, and
presented in [38], is based on considering algorithms evolving partitions, rather than robots
positions. This naturally brings the need of dealing with a space of partitions, which has
been a technical challenge. Moreover, the novel partitions-based approach, and the gossip
paradigm, appear very promising of extensions and applications. We list here some of the
most significant.

(i) Algorithmical improvements. The specific algorithm, and the convergence proof, that
we have given in Chapter 6, leave the possibility of getting stuck in non-Voronoi par-
tition, due to coincident centroids. A possible solution to this could be an algorithm
in which, when two interacting regions share the same centroid, instead of keeping
the regions unchanged as T δ does, the union of the two regions is split following some
other rule. This proposal seems to be able to avoid the cul-de-sacs due to coincident
centroids, but its analysis looks difficult due to continuity issues.

(ii) Extension to different objective functions. We expect that the results can be ex-
tended, non trivially, to consider more general multi-center [11] function, including,
e.g, Weber or disk-covering problems.

(iii) Extension to non-convex environments. Parts of our analysis hold with the weaker
assumption of Q being compact: this encourages to apply the partition-based ap-
proach to non-convex environments. About the coverage of non-convex environ-
ments, much research is in progress [43], [77]: a natural extension would be based
on computing distances in Q as the geodesic distances.

(iv) Discrete partitioning. We would like to apply these ideas to optimize partition
of environments other than subsets of R

d,for instance discrete objects like graphs.
Besides the theoretical interest, this would be an important step towards an effective
implementation on actual robots.

125
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(v) Ad-hoc motion planning. The abstraction from the agents positions opens the pos-
sibility of designing motion strategies (see Chapter 7) for the agents, which allow
them to communicate in spite of extremely short communication radiuses, and to
perform other tasks (patrolling, target servicing) at the same time.
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