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Resume

Emnet for denne athandling er kontrol af mekaniske systemer under en bevaegelse, der
kaldes en relativ ligevaegtskurve. En sadan bevaegelse er karakteriseret ved at hastighed-
en, i et koordinatsystem i legemet, er konstant. Et stift legeme, der roterer med konstant
hastighed omkring en af hovedakserne, er et eksempel pa en relativ ligeveegtskurve.

[ afhandlingen fokuseres pa sakaldte simple mekaniske kontrolsystemer pa Lie grup-
per. Denne klasse af systemer er defineret ved fglgende: konfigurationsmangfoldigheden
er en Lie gruppe, den totale energi er givet ved den kinetiske energi (d.v.s. ingen po-
tentiel energi) og den kinetiske energi samt kontrolkrafterne er invariante i en bestemt
betydning.

Afhandlingen indeholder to hovedresultater. Forst udledes tilstrackkelige betingelser,
af algebraisk karakter, under hvilke et simpelt mekanisk kontrolsystem pa en Lie gruppe
er lokalt kontrollerbart langs en relativ ligeveegtskurve. Disse betingelser omfatter de
velkendte betingelser for lokal kontrollerbarhed af et ligevaegtspunkt for et simpelt
mekanisk system pa en Lie gruppe. Dernaest preesenteres en ny kontrolalgoritme for
systemer med faerre kontrolkrafter end frihedsgrader. Forudsat nogle antagelser er op-
fyldt, beregner denne algoritme kontrolkraefter, der far systemet til at accelerere, decel-
erere eller stabiliseres langs en relativ ligeveegtskurve; valget af bevaegelse bestemmes af
fortegnet af en parameter i algoritmen. Algoritmen anvendes konkret pa et stift legeme
i planen samt en satellit med to kraftmomenter.






Abstract

The subject of this thesis is control of mechanical systems as they evolve along the
steady motions called relative equilibria. These trajectories are of interest in theory and
applications and have the characterizing property that the system’s body-fixed velocity
is constant. For example, constant-speed rotation about a principal axis is a relative
equilibrium of a rigid body in three dimensions.

We focus our study on simple mechanical control systems on Lie groups, i.e., me-
chanical systems with the following properties: the configuration manifold is a matrix
Lie group, the total energy is equal to the kinetic energy (i.e., no potential energy is
present), and the kinetic energy and control forces both satisfy an invariance condition.

The novel contributions of this thesis are twofold. First, we develop sufficient condi-
tions, algebraic in nature, that ensure that a simple mechanical control system on a Lie
group is locally controllable along a relative equilibrium. These conditions subsume the
well-known local controllability conditions for equilibrium points. Second, for systems
that have fewer controls than degrees of freedom, we present a novel algorithm to control
simple mechanical control systems on Lie groups along relative equilibria. Under some
assumptions, we design iterative small-amplitude control forces to accelerate along, de-
celerate along, and stabilize relative equilibria. The technical approach is based upon
perturbation analysis and the design of inversion primitives and composition methods.
We finally apply the algorithms to a planar rigid body and a satellite with two thrusters.
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Chapter 1

Introduction

Differential geometry applied to the analysis of mechanical systems and, in particular,
to nonlinear control of mechanical systems, provides a fruitful way to gain insight into
the intrinsic properties of the system, such as a number of control and controllability
properties. Control problems for mechanical systems are known to be challenging when
the number of independent control actuators is strictly less than the degrees of freedom
of the system.

The main focus of this work is motion control along relative equilibria for simple
mechanical control systems on Lie groups. A simple mechanical control system on a Lie
group is a mechanical system for which the configuration manifold is a matrix Lie group,
the kinetic energy and the control forces are invariant under the application of the group
action, and the total energy is equal to the kinetic energy. A relative equilibrium is a
steady motion for which the body-fixed velocity is constant when applying no control
forces. For example, the configuration of a satellite is the matrix Lie group SO(3) and
a steady motion about any of its principal axes is a relative equilibrium.

Using geometry, primarily Lie group theory, we develop novel results regarding local
controllability along relative equilibria for simple mechanical control systems on Lie
groups. Specifically, we obtain two sets of results. First, we establish a theorem giving
sufficient conditions, of algebraic nature, for a mechanical system on a Lie group to be
locally controllable along a relative equilibrium. Second, for simple mechanical control
systems on Lie groups with fewer control actuators than degrees of freedom, we design
an algorithm producing acceleration along, deceleration along, and stabilization of a
relative equilibrium using small-amplitude control forces.

In this chapter we start out with a short description of the history of the theory of
mechanical control systems. We then describe the main contributions of this thesis. We
end with a short outline of the thesis.

1.1 Geometry, Nonlinear Control, and Mechanics

Since Sir Isaac Newton published the ground-breaking “Philosophiae Naturalis Prin-
cipia Mathematica” in 1687, the mathematical theory of mechanics has continuously
attracted tremendous scientific interest. Remarkable breakthroughs were the introduc-
tion of Lagrangian mechanics in 1788 and Hamiltonian mechanics in 1833. The theory
of differential geometry was established in the beginning of the 20th century, but it was
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not until 1967 that the first book in English treating mechanics in a geometric manner
was published by Abraham and Marsden; for a later revised edition see |[1|. Another
classic text in the field is the work by Arnol’d [4] first published in English in 1978.
Geometric mechanics has since been an active field of research in both the Lagrangian
setting, using calculus of variations and Riemannian geometry, as well as the Hamilto-
nian setting, using symplectic geometry and Poisson geometry. A description of some
of the modern theory can be found in [31].

The use of geometry in nonlinear control began in the late 1970s and important early
contributions include [10], [18], [23], and [41|. The modern nonlinear control theory now
relies on concepts from differential geometry: the aim is to provide intrinsic descriptions
of various control theory concepts and to avoid arbitrary choices of coordinates. The
modern geometric approach to control theory is described in the books [3]| [21], [22],
[25], |34], and [39].

The paper [9] from 1977 by Brockett is one of the earliest accounts where the differ-
ential geometric link between mechanics and control theory is stressed. During the 1980s
there was only limited research activity on mechanical control theory; a prominent work
being a series of papers on control theory for Hamiltonian systems by van der Schaft,
see chapter 12 in the book [34| for an account of this theory. From around 1990 until
today, the field gained interest and since then much new insight has been gained and
sophisticated theoretical results have emerged. The books [6] and [13] describe some of
these approaches.

1.2 Contributions of this Thesis

The contributions of this thesis are twofold. The first contribution is a general result
providing sufficient conditions for a simple mechanical control system on a Lie group
to be locally controllable along a relative equilibrium. The second result is the design
of a control algorithm to compute control inputs to speed up a system along a relative
equilibrium. In other words, the first result is an existence result, whereas the second is
a constructive result. Though closely related in nature, the analysis leading to the two
results differs considerably.

Local Controllability along a Relative Equilibrium

In [19] a result giving sufficient conditions for small time local controllability of general
nonlinear control systems was conjectured. A stronger version of this result was later
proved in [41]. Finally in |5] this approach was extended to address local controllabil-
ity problems along an uncontrolled reference trajectory. This latter work contains the
strongest known theorems providing sufficient conditions for local controllability along
trajectories.

In [29] the main theorem of [41] was used to give local controllability results for
mechanical control systems whose Lagrangian is kinetic energy, given by a Rieman-
nian metric, minus potential energy. In [11], these results were used to give sufficient
conditions for local controllability results for simple mechanical control systems on Lie
groups. In particular, sufficient conditions for a system to be locally accessible at zero
velocity, locally configuration accessible, small-time local controllable at zero velocity,
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and small-time local configuration controllable are given. These results are all for zero
initial velocity. The sufficient conditions involves only algebraic analysis of the fixed
input vectors defining the control directions and are much simpler to verify than the
general conditions in |41].

In Chapter 4 we apply the results in [5] to prove a new proposition regarding local
controllability along a relative equilibrium for a simple mechanical control system on
a Lie group. As for the zero velocity results the sufficient conditions to ensure local
controllability along a relative equilibrium are algebraic. To be more precise the sufficient
conditions requires examining the space of symmetric products and the space of Lie
brackets of the fixed input vector fields defining the control directions. In the special
case when the relative equilibrium in fact is an equilibrium the result reduce to the
proposition in [11| regarding small-time local controllability at zero velocity.

Motion Control Algorithm along a Relative Equilibrium

In the design of controls for a mechanical system the number of control forces is an
important factor. If the system has as many control actuators as degrees of freedom it
is called fully actuated; otherwise it is called underactuated. The motivation for studying
underactuated systems is twofold; it gives rise to other design possibilities than a fully
actuated system and it is appropriate in the situation of an actuator failure, meaning
that such an analysis improves robustness to actuator failures which, e.g., is crucial in
case the system is an a hazardous invironment such as outer space for a satellite.

Extensive research has focused on underactuated mechanical systems, especially in
the context of controlled Lagrangians and Hamiltonians, e.g., see |7|, |36], and subse-
quent works. In [11] motion control algorithms to reconfigure and exponentially stabilize
simple mechanical systems on Lie groups using small amplitude periodic forcing are pro-
posed. These algorithms are also applicable, under some conditions, in the case there
are fewer actuators than degrees of freedom. The constructive approach is the same
as in [27] and |28] where it is applied to a class of kinematic systems on Lie groups.
The method is similar to that applied in [38] and [37] to different classes of mechanical
systems. The results of [11] was later in [32] extended to include the more general class
of mechanical systems where the configuration manifold has a principal bundle structure
and the kinetic energy is given by a Riemannian metric. Another approach to motion
planning of mechanical systems is to use oscillatory controls combined with an analysis
using averaging theory, see for example [17], [42], and [44].

Less research has been done on controlling systems along relative equilibria; a related
spin-up problem of a rolling ball is considered in [20]. In case the relative equilibrium is
aligned with one of the vectors defining the directions of control, the theory of kinematic
reductions can be applied to generate motion along a relative equilibrium. For an
account of the theory of kinematic reduction see [13| or the series of papers [12], [14],
and [33].

Using an approach resembling that of [11], Chapter 5 presents a new motion control
algorithm for an invariant class of underactuated simple mechanical control systems
on Lie groups. This motion algorithm produces control forces which make the system
accelerate along, decelerate along, and stabilize a relative equilibrium; which type of
motion is determined by the sign of a parameter in the algorithm. The main limitation
of the algorithm is that it only applies to n dimensional systems with n — 1 control
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forces. The results of Chapter 5 will be published in [35].

1.3 Outline of the Thesis

A short outline of the thesis is as follows:

Chapter 2: In this chapter we review the necessary elements from the theory of
differential geometry and Lie groups.

Chapter 3: Here we derive the equations of motion for the so called simple mechanical
systems on Lie groups. This is done using calculus of variations and Lie group theory.

Chapter 4: In this chapter we review elements of control theory and give a control
analysis of simple mechanical systems on Lie groups. Most importantly we provide a
new result giving sufficient conditions for a simple mechanical system on a Lie group to
be locally controllable along a relative equilibrium.

Chapter 5: This chapter is devoted to an exposition of control algorithms for simple
mechanical systems on Lie groups with fewer actuators than degrees of freedom. In
particular we design an algorithm which is able speed up a system along a relative
equilibrium; this is illustrated by applying the theory to two example systems.



Chapter 2

Lie Groups

The purpose of this chapter is to introduce some elements from differential geometry
necessary to understand the material presented later on. Most of this material can be
found in e.g. the books 8], [45] and |2]. The notation in this thesis follows most closely
the one in |2|, which is the notation most often used in geometric mechanics literature.
We start out by reviewing elements from differential geometry, without any proofs,
in order to introduce notation and clarify what is assumed knowledge of the reader. The
more thorough presentation of the theory starts by introducing Lie brackets. This is
followed by a section on general Lie groups including the important concept of the Lie
algebra corresponding to a Lie group. We end the chapter with a section on matrix Lie
groups which are the special case of Lie groups we will focus on after this chapter.

2.1 Preliminaries in Differential Geometry

A map f: R" — R™ is said to be analytic, or C¥, on an open set D C R" if f in
an open neighbourhood of every point in D is expressible as a convergent power series,
i.e. it’s Taylor series expansion around an arbitrary point in D converges in an open
neighbourhood of it.

A set M is said to be a locally Euclidean space of dimension n if M is a Hausdorff
topological space for which every point m € M has an open neighborhood U homeo-
morphic via x to an open subset of Euclidean space R", i.e. x : U — R"™. The pair
(U, z) is called a coordinate system or a chart. A differentiable structure of class C*,
k € NU{oo}U{w}, on a locally Euclidean space M is a collection of coordinate systems
{(Ua, x0) | @ € A} satistying

U Ve =0,
acA

and
To O xgl is C* for all a, 8 with U, N Ug # 0,

and the collection contains all coordinate systems enjoying this property. If & = oo
the space M, with this differentiable structure, is called a differentiable manifold or
just a manifold and if £ = w then M, with this differentiable structure, is called an
analytic manifold.
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The tangent space to M at m € M, denoted by 7,,M, is the vector space which
in a coordinate system (U, z) = (U,z!,...,2") it is given by

g

Let N denote a (analytic) manifold and let f : M — N, then f is said to be
smooth (analytic) if for local coordinate systems (U, x) around m € M and (V, y) around
f(m) € N the map yo foxz~! is smooth (analytic). If f is a smooth bijection with a
smooth inverse it is called a diffeomorphism. For the special case N = R we denote
the class of smooth functions on M by C*°(M). The tangent map of f at m € M is
the linear map

0

7...7—n
m ox

0
TmM = Span { %

Tmf : TmM — Tf(m)N,
defined by
T f(v)(g) =v(go f),

where v € T,,,M and g is a smooth function in a neighbourhood of f(m). The dual of
T,.f is the linear map

defined by
T f(a)(v) = a(T f(v)),

where o € T}‘(m)N and v € T, M.
Locally T, f is seen to be given by the Jacobian matrix as

0

dim(N)

_Zayiof 9
w e 0ud | Oy

=

, ied{l,....n}.
f(m)

For the special case N = R and f a smooth function the tangent map is denoted the
differential which for m € M and v € T,,M is defined

dfm(v) = v(f).

Thus we have df,, € T; M, where T M is the dual of T,,M, and in the coordinate
system (U, z) we get

T M =span{dz,,,...,dz}, }.

Let f : M — N be smooth. Then if f is injective and 7T, f is nonsingular for all
m € M the pair (M, f) is called a submanifold of N. If for py = f(m), m € M, T,f
has full rank for all p € P = f~!(py) then (P, 1), where i : P < M is the inclusion map,
is a submanifold and we have T,P = {v € T,M| T,,f(v) = 0}. Furthermore, if M and N
are analytic and f is an analytic map then P can be given the structure of an analytic
manifold.
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The sets
T™ = | ] T,.M, T°M = | 1M,

meM meM

can be given a natural differentiable structure induced by the differentiable struc-
ture {(Ua, ) | @ € A} for M. For TM it is the differential structure containing
{(TU,, ¢,) | @ € A} where ¢o(v) = (zo(m),d(x)),(v), ..., d(@"),(v)), for v € T},U,,
and for T*M it is the differentiable structure containing {(T*U,, 1) | @ € A} where
o (w) = (xa(m),w(%\m), . ,w(%\m)) forw € T} U,. TM and T*M are thus seen to
be manifolds of dimension 2n. Equipped with these differential structures the manifold
T'M is called the tangent bundle of M and the manifold 7" M is called the cotangent
bundle of M. We denote by 7 : TQ) — @ and 7 : T*Q) — (@ the natural projections
given by 7(v) = m, for v € T,,,M, and w(w) = m, for w € T} M.
The tangent map

Tf.:TM — TN,

is the map defined by T'f|r, v =T f-
In geometric mechanics the manifold describing the possible configurations of a me-
chanical system is called the configuration manifold of the system. The dimension of

the configuration manifold is called the degrees of freedom for the mechanical system.
A vector field X : M — TM on M is a lifting of M into T'M, that is

T(X) = ldM,

where idy; is the identity on M. In a local coordinate system (U, x) = (U, 2%, ..., 2") a

vector field X is given by

X(z) = Z Xi(z) a‘;.

If Xi(z) € C*(U), i € {1,...,n}, for every coordinate system X is called smooth or
C*. We denote by X(M) the set of smooth vector fields on M. If M is an analytic
manifold X is called analytic or C* if it in every coordinate system is analytic.

Let X € X(M) and let ®;X(m) be the solution to the differential equation
d

on M with &5 (m) = m, then ®;* is called the flow of X. The flow exist and is unique
by a translation of the fundamental existence and uniqueness theorem for first order
differential equations in R™ to the language of manifolds.

2.1.1 The Lie Bracket
We start by defining the Lie bracket of vector fields.

Definition 1. The Lie bracket of two smooth vector fields X and Y on a manifold M
is for f € C°(M) the vector field operating as

(X, YI(f) = X(Y(f)) = Y (X(S))-
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Locally X (z) = S0, X(7)2
expression for the Lie bracket as

2 and Y(z) = Y1, Y/(2)5%5 which gives the local

n

Y )0 oXi 0
0= S xw —z< ORI
Y oX7 1\
—”21 <X (z) = Yi(z )W (z )) AR (2.2)
If we write X = (X',..., X" T and Y = (Y!,...,Y™")T then (2.1) becomes
aYy 0X

X, Y](@) = 5 (@)X (@) - S-(@)Y (@),

where 2X(z) is the Jacobian of X. If X and Y are smooth [X,Y] is clearly seen to be

smooth.
The following is a straightforward result (though the Jacobi identity is tedious to
prove) of the definition.

Proposition 2. Let M be a manifold. The Lie bracket [-,-] : X(M) x X(M) — X(M)

is bilinear, skew-symmetric, i.e. [X,Y] = —[Y, X|, and satisfies the Jacobi identity
(X, Y], Z]+ [[Z, X]. Y] + [[Y, Z], X] = 0,

for X,Y, Z € X(M).

A connection between composition of integral curves and the Lie bracket of the vector
fields is given by the following proposition.

Proposition 3. Let X and Y be smooth vector fields on a manifold M > m. Then we
have that the Lie bracket can be computed as

% 3 (Ta i @5 (Y (@ (m))).

Proof. Let X and Y be given in the coordinate chart (U, z) by X (z) = (X(x),..., X"(2))T
and Y(x) = (Y(z),...,Y"(z))T. Then we get, when using Taylor expansions and leav-
ing out all terms of order O(#?) and O(s?), the following

(X, Y](m) =

4 (mrwety @)

- < < ol (@f)

_ % y % By OX 0 Y (z + X ()

_ % y % B OX, (z + tX (x) + sY (z) + st%(f>X ()

_ % y (i _ (z +tX (2) + sY () +st2—§(x)X (z) —tX(2) — St%—f(f”)y(f”))
= P 0)x(@) - L)
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This proposition also provides a convenient method for calculating the Lie bracket
of vector fields in a coordinate free way.

We conclude this section by a proposition which will be needed in the following
section in connection with so called left-invariant vector fields.

Proposition 4. Let M and N be manifolds and let ¢ : M — N be smooth. Assume
that X, X, € X(M) and Y,Y; € X(N) satisfies Tpo X =Y o ¢ and Tpo X; = Y] 0 ¢.
Then we have T'¢ o [X, X1| = [Y, Y] 0 ¢.

Proof. Let m € M and f € C*°(N). By use of the definition of the tangent map and
the Lie bracket we get

= X(m)(Xy(f o ¢)) Xi(m)(X(f o 9))

= X(m)((T¢ o X1)(f)) = Xa(m)((T'¢ 0 X)(f))
= X(m)(Yi(f) 0 ¢) = Xa(m)(Y(f) © 9)

= Tno(X(m))(Y1(f)) = Tno(Xa(m)) (Y (f))

m))
=Y oo(m)(Y1(f)) — Yioo(m)(Y([))
and the result has been obtained. O

2.2 Lie Groups

We start this section with the definition of a Lie group.

Definition 5. A Lie group is a differentiable manifold G which is endowed with a
group structure such that the the product map G x G — G, (x,y) — zy, and the inverse
map G — G, x + a1, are C*®. If in addition G is an analytic manifold and the product
map and the inverse map are analytic G is called an analytic Lie group.

In this chapter we will use e € G to denote the identity element of G.
For g,h € G left translation by g and right translation by g, denoted L, and R,
respectively, are defined by

Ly(h) = gh, Ry(h) = hyg.
A left-invariant vector field X on a Lie group G is a vector field satisfying
X(gh) = ThLe(X(h)),

for all g,h € G. We denote by L(G) the space of all left-invariant vector fields on G
which is seen to be a vector space.

Proposition 6. Let G be a Lie group and X € L(G). Then X is C*.

Proof. Let G be a Lie group. Let X € £(G) and g € G, then X (g) = T.L,(X(e)). Let
(W, q1) be a coordinate system around g. Let (V) qo) be a coordinate system around
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e and (U, q1) be a coordinate system around g which satisty (J,c;; Ly(V) € W. Such
charts exist: let (Vp, go) be a chart around e and o : G X G — G the product map, then
(U,q1) and (V, qo) with U x V = (W x V) No~ (W) satisfies the condition since U and
V are open and g € U and e € V. Let ¢ : ¢1(U) x qo(V) — ¢1(W) be the coordinate
expression for the product map in these charts. Let ¢(¢) be a smooth curve on V' with
$(0) = e and $(0) = X (e) then we have that X(g) in coordinates for T,q,(W) is given
by

d
Ty (X (9)) = Tyq1(TeLy(X (€))) = Ty ar Lyo(t)
t=0
d _
=Tym (5 o L(QI(g)vQO(¢(t)))) = Tigi(9).a0(e) (0, Teqo(X (€)))-
=0
Since ¢ is smooth its Jacobian T4, 4,)¢ is a smooth function of ¢; and ¢y and thus X
depends smoothly on ¢ in coordinates and it is therefore smooth. O

Remark 7. If G is an analytic Lie group we can replace the word “smooth” with
“analytic” in the proof of Proposition 6. Therefore we get that a left-invariant vector
field on an analytic Lie group is analytic. °

Proposition 6 gives the following result.
Corollary 8. Let G be a Lie group. If X, Y € L(G) then [X,Y] € L(G).

Proof. This is a direct consequence of the definition of a left-invariant vector field and
Propositions 4 and 6. 0

Let g € G, £ € T.G, and ()1 : T.G — X(G) be the map defined by
€1(g) = TeLy(§),
which since
€u(gh) = TeLgn(§) = ThLg(TeLn(§)) = ThLy(SL(h)),
is amap (); : T.G — L(G). Then we have.

Proposition 9. Let G be a Lie group. Then () : T.G — L(G) is an isomorphism with
inverse X — X (e).

Proof. Let §: L(G) — T.G denote the map X — X(e). Let X,Y € £(G) and assume
B(X) = B(Y) then

X(g9) =T.Ly(X(e)) = T.Ly(Y (e)) = Y(g),
for all g € G so 3 is injective. Let & € T.G then
B(&r) = &ele) =&,
so (3 is surjective and thus bijective and we see that 3 is the inverse of (-)r. O

Next we define a Lie algebra.
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Definition 10. Let V' be a vector space (over R) and let the map [-,-]y : V XV =V,
for all £,m,C €V, satisfy:

1. bilinearity,

2. skew Symmetry; i'e'; [5777]\/ = _[7775]\/;
3. the Jacobi identity, i.e.,

Hga 77]V> C]V + [[Ca 5]V>77]V + [[77, C]V, E]V = 0.

Then (V,[-,-]v) is called a Lie algebra.

Let (V, [, ]v) be a Lie algebra and W a nonempty subset of V. If (W, [-, ]y ), where
[-,lw is the restriction of [-, -]y to W, is a Lie algebra it is called a Lie subalgebra of
(V,[-,-]v). Given a subset S C V the Lie algebra generated by S is the smallest Lie
subalgebra of (V, [-,]y) containing S.

From Corollary 8 we have that we can make the following definition.

Definition 11. Let G be a Lie group. For & n € T.G define the bracket [-,-] : T.G X
T.G - T.G by

[€,m] = €, me](e).

By construction this bracket inherits the properties of the Lie bracket for vector
fields; see Proposition 2. Therefore we have the following.

Corollary 12. Let G be a Lie group. Then (T.G,|-,]) is a Lie algebra.

Definition 13. Let G be a Lie group. Then we denote the corresponding Lie algebra
(T6G7 [7 ]) by g.

We will denote [-,-] by [-,:]g when risk of confusing the bracket of a Lie algebra
corresponding to a Lie group with the Lie bracket of vector fields on g.

Proposition 14. For g,h € G and X € L(G) we have
Ly} (h) = 7' (Lgh),
for |t| <o for some § > 0.

Proof. From the existence and uniqueness theorem for differential equations (see e.g.
|15]) we know there exists a 6 > 0 such that ®(h) and ®X(L,h) are defined.
We have L,®g (h) = & (L,h) = L,h and

%Lgcpff(h) — Tox Lo (X (@F () = X (L& (),
S (Lyh) = X (@ (L))

Since L,®;X(h) and ®;*(L,h) satisfy the same differential equation and are equal for
t = 0 we know from the existence and uniqueness theorem for differential equations that
they are equal for all |¢] < 6. O
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This gives the next useful corollary.

Corollary 15. For a Lie group G > g and X € L(G) we have

;) 41, (9) = 5, (9) @3 (e),
for |t1] < & and |ta] < & for some § > 0.

Proof. This is an immediate consequence of the group property of flows (®;Xo®X = &% )

and Proposition 14 with 2 = e and g = ®X(g). O
Proposition 14 leads to the following result on left-invariant vector fields.

Proposition 16. A left-invariant vector field X on a Lie group is complete, i.e., the
flow ®X is defined for all t € R.

Proof. From the existence and uniqueness theorem for differential equations we know
that there exist a neighborhood V of e and a § > 0 such that ®;*(g) is defined for g € V
and |t| < 0. From Proposition 14 we have that ®X(g) is defined for g € Ly(V) and
[t| < & for all h € G. Thus ®X(g) is defined for all g € G for |[t| < § but because of the
group property of the flow this means that 6 = oc. O

Since left-invariant vector fields are complete we can make the following definition.

Definition 17. For a Lie group G we define the map exp : g — G by
exp(§) = B (e),

for & € g.

This map is called the exponential map for reasons which will become clear later.
From the definition we see that we have exp(tf) = &% (e) = - (e) for t € R and
thus exp(t§) is the integral curve of £, which at ¢t = 0 is e and has tangent . From
Proposition 14 we have that L, exp(t£) = ®*(g) so this is the integral curve of &;, which
at t = 0 is equal to g and has tangent £1(g).

Proposition 18. For a Lie group G and & € g the map t — exp(t§), t € R, is a
1-parameter subgroup of G, i.e., exp(0&) = e and exp((t; + t2)&) = exp(t1€) exp(t2€).

Proof. We immediately get exp(0€) = ®§"(e) = e and exp((t; +12)€) = exp(t,€) exp(ta€)
is a consequence of Corollary 15. U

The next result gives the smoothness properties of the exponential map.

Proposition 19. Let G be a Lie group. The exponential map exp : g — G is C* and
we have Ty exp = id,.

Proof. Consider the smooth complete vector field on G x g given by X (g,&) = (£.(9),0).

Since X is smooth so is ®F. Let 7 : G x g — G be the projection onto G. Then

exp(€) = 7o (e, £) is a composition of smooth maps and it is therefore smooth.
Since & = %}t:o i (e) = %‘t:o exp(t&) = Tyexp(&) we have T exp = id,,.
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Remark 20. Let G be an analytic Lie group. Due to the Remark 7 we can replace the
word “smooth” with “analytic” in the proof of Proposition 19. Therefore we get that the
exponential map is analytic for an analytic Lie group. °

Proposition 19, together with the inverse function theorem, shows that in a neigh-
borhood U C G of e and a neighborhood V' C g of 0 there exist a C*> (C%) inverse,
denoted log, to exp, i.e., log(exp(§)) = £ and exp(log(g)) = g for £ € V and g € U. The
coordinates in the chart (U,log) are the so called exponential coordinates of the first
kind.

Proposition 21. Let G and H be Lie groups. Let ¢ : G — H be a Lie group homo-
morphism, i.e. ¢ is smooth and ¢(ab) = ¢(a)p(b) for a,b € G. Then, for & € g we
have

olexp(t6)) = exp (H(T.6(6)) ).

Proof. Since ¢ is a homomorphism we have Ly o ¢ = ¢ o L, for g € G. This fact is
used in the following

d
E(b(eXp(té ) = Texp(te)® (EL(exD(tE))) = Texp(re)® (T Lexp(ie) (€))

= T.¢ 0 Lexpie) (§) = TeLexp(te) © #(€)
= T Ly(exp(ie)) (Te0(€)) = (T.0(€)) . (¢(exp(t€))).

Since exp(tT.¢(€)) satisfies the same differential equation and the initial conditions are
the same for ¢ = 0 the result follows. O

For a Lie group G and g € G the inner automorphism [, : G — G is given by
I, = LsoR,+ = R,10L,. Tt is easily checked that this in fact is a homomorphism. Since
Ry and Ly are diffeomorphisms 1, is a diffeomorphism with inverse /;" = L" o Rg_,l1 —
Ly10Ry;=1,-1. Since I, is a homomorphism we have 1.1, : g — g. We denote by Ad
the adjoint map given by

Ad, =T,1,.
From Proposition 21 we get the following result.
Corollary 22. For a Lie group G, g € G, and £ € g, we have
I, exp(t€) = exp(tAdy(&)).

Another result relating the bracket [-, -] to the adjoint map and the exponential map
is the following.

Proposition 23. Let G be a Lie group. Then for £,n € g we have

d
= — A )
[§>77] dt — dOXP(tf)(n)
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Proof. Let g € G, v € T,G and v = T.L,~1(v) € g. This means that v = v.(g).
From Proposition 14 with & = e and g replaced with ®7%(g) we get ®* o B (g) =
P72 (g)DE (e). Using this we get

d
qu)fL (v) = ds

d ¢
~ s - L@ (e) ;" (e) = ds - Lgo Rc}fL (e)(q);m (e))

=TeLyg o Ryer ) (1) = Telg © Ryer ( (TeLyg1(v))
= TgRq)fL (e)(v).

d
(ID? o P (g) = —

L @fL
9 e

s=0

d

s=0

From this and Proposition 3 we get

€, n] = [€L,me](e)

d
dt
d
dt

= d 37 197
~ @, (Tyso o 0205 (6))))

<T6R<I>i% 0 © Lotr (77))

t=0

d
=0 <T¢§L(e>R¢iﬁ<e>(TechfL(e)("))) Tt

d

Adq)fL (e) (77) = &

t=0

Adexp(tﬁ) (77) :

t=0

For a Lie group G and &, n € g we define the adjoint operator ade : g — g as

ade(n) = [&, 7).

The dual of ade is the map ad; : g — g defined for §,7 € g and a € g* by ad¢(a)(n) =
a(ade(n)). In a given basis for g the matrix representation of adg is the transpose of the
matrix representation for ade.

The definition of the adjoint operator leads to the following result regarding the
relation between Ad,, ade, and exp.

Proposition 24. Let G be a Lie group and £ € g. Then Ad is a group homomorphism
and it satisfies

Adexp(e) = exp(ade).
Proof. Let g,h € G. Then from the definition of Ad we get
Adgh = Te]gh == Te[g e} ]h == Te[g (¢] Te]h = Adg e} Adh,

so Ad is a group homomorphism.
Using Proposition 23 and the fact that exp and Ad are homomorphisms we get

d d d

g M dex(ee) (n) = & Adexp((s+t)e) (1) = i Adexp(se) (Adexp(ie) (1))

= adg (Adexp(tf) (77)) :
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Since g is a vector space and adg is linear this shows that

dx dk
gt Mo (1) = adf (Adexp(e) (1)) = x| Adewun(n) = adg ().
t=0

Thus formally a Taylor expansion gives
Adexp(t{) = eXp(adtﬁ)'

Since [Jadg|| < 2[[¢]] < oo we have that exp(ade) converges for all €. O

2.3 Matrix Lie Groups

The class of Lie groups we will consider in the remainder of this thesis is that of matrix
Lie groups. Therefore we start by defining some of the classical matrix Lie groups.

2.3.1 Some Classical Matrix Lie Groups

For a vector space V' 3 v we use in the following the natural identification of 7,V with
V itself. Since R™" is a Banach space and Gl(n) is an open subset of R"*" we will in
this section use the differential D instead of the tangent map when convenient.

The General Linear Group Gl(n)
For A, B € R™™ we have det(AB) = det(A) det(B), and det(e) = 1, so the space
Gl(n) ={X € R"™"| det(X) # 0},

equipped with the matrix product is a group. This group is called the general linear
group. Since det : R"*" — R is a continuous function GIl(n) becomes a manifold as
the open subset of R”z, identified with R™*", where the determinant is non-zero. Since
(AB);; = >_p_, AiBy; and the entries of A™! is a rational function of the entries of
A both the matrix product and the inverse map are analytic and thus GI(n) with the
matrix product can be given the structure of an analytic Lie group. A subgroup of Gl(n)
which is also a submanifold of Gi(n), hence a Lie group, is called a matrix Lie group.
Since det is continuous there is a neighborhood U C R™" of e such that det(U) > 0
and thus U C Gl(n) which shows that

T.Gl(n) = T.U = R™" =: gl(n).

The Special Linear Group SI(n)
Since det : Gl(n) — R\ {0} is a homomorphism the space
Sl(n) ={X € Gl(n)| det(X) =1},

is a subgroup of GIl(n). This group is called the special linear group. Define the map
F : Gl(n) - R\ {0} by FI(X) = det(X). Let A € Gl(n), a = det(A), then F(x) =
L,o F oL (X) giving

DF(X)=D(LyoFoLs1)(X)=aDF(A'X)DL,(X).
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Since L, is a diffeomorphism we thus get choosing A = X
Rank(DF (X)) = Rank(DF(e)),

and thus the rank i constant. We therefore get that Si(n) = F~!(1) is a submanifold of
Gl(n). Since Sl(n) is a subgroup of Gi(n), and F' is analytic, it is therefore an analytic
matrix Lie group.

The Orthogonal Group O(n)

Define the analytic map H : Gl(n) — Gl(n) according to H(X) = XTX. Since H is a
homomorphism the space

O(n) ={X € Gl(n)| X*X = e},

is a group. This group is denoted the orthogonal group. Let A € Gl(n), then H(X) =
Rao-10L,-r0HoRs(X) giving

DH(X)=DRa-1(Lg-r0Ho Ruy(X))DL-7(H o Ro(X))DH(XA)DRA(X).
Since L, and R, are diffeomorphisms we get when choosing A = X!
Rank(DF (X)) = Rank(DF(e)),

so the rank is constant. We therefore have that O(n) = H~'(e) is an analytic submani-
fold of GI(n) and since it is a subgroup of GI(n) it is an analytic matrix Lie group. Let
¢ € T.Gl(n), then

d
dt
d

T.H() = H(®" (e))

t=0

3| (@)

_(4
- \dt,_,

=+

<I>§L<e>)T

01(0)) (@ ) + 0 o) (

t=0

Thus we have
T.0(n) = {A e R™" A+ AT = 0} =:0(n).

This also shows that dim(O(n)) = n(n — 1).

The Special Orthogonal Group SO(n)
Let
SO(n) = Sl(n) NO(n).

Since SO(n) = (F x H)7*(1, e) we know from the previous discussions that SO(n) is an
analytic matrix Lie group. This group is called the special orthogonal group. Since for
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A € O(n) we have det(A) = £1 and since the determinant is continuous we can choose
a neighborhood V' C O(n) of e where we must have det(V) = 1 and thus V' C SO(n).
Therefore T,50(n) = T,V = T,0O(n) =: so(n).

For n = 3 Rodrigues’ formula gives, with & € so(3), that

z 72

exp(2) = id + sin(||z]|)— + (1 — cos(||x!|>>wa

]
with the isomorphism * : R? — s0(3) given by &y = z xy, =,y € R?, where X is the cross
product and || - || is the Euclidean norm in R3. If R € SO(3) then for trace(R) # —1 we
have

¢
2sin(¢)

where ¢ € (—m, ) satisfies 2 cos(¢) = trace(R) — 1. For a derivation of exp and log on
SO(3) see, e.g., [13].

log(R) = (R—R"),

The Special Euclidean Group SFE(n)
The subset of Sl(n + 1)

st ={[4 1] cmeres

01><n

A€ SO(n), ve ]R"} ,

is a subgroup of Sl(n + 1) since

Al (% A2 V| A1A2 A1U2+’U1
01><n 1 len 1 B 01><n 1 ‘

It is a analytic manifold since it can be identified with the analytic product manifold
SO(n) x R™ and it becomes a submanifold of Gi(n + 1) by inclusion. Thus it is an
analytic matrix Lie group; it is called the special Euclidean group. It is seen that we
have

risen = {4 emorvn

A€ so(n), ve R”} =:se(n).

By construction SE(n) is isomorphic (meaning there is a group homomorphism between
the sets as groups which is a diffeomorphism between the sets as manifolds) to SO(n) x
R™ with product (Ry,v1)(Ra,v2) = (R1Rs, Ryv,+v1) for (Ry,v1), (Ra,v2) € SO(n) xR™.

Explicit formulas for the exponential and the logarithm, in the case of SFE(3), can
be found in, e.g., [13].

Some Useful Formulas for Matrix Lie Groups

Since the product on a matrix Lie group is just the ordinary matrix product we easily
obtain the following result.

Lemma 25. Let G > g be a matriz Lie group and £ € g. Then

TeLy(€) = g&, T.Ry(&) = &y, Adg(&) = gég™".
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Proof. By straightforward calculations we get

d d
T,Ly(€) = —| L, —| g®(e) = g&.
e Ly (€) &hogﬂd &hﬂt@)gﬁ
TR = 1| Raf(e)= 1| o8 (e)g=¢g
Y dt|,_, "' dt|,_, '
d

905 (e)g ™" = g&g™ !
t=0

Ad(O) =TI (©) = T| 1,89 = &

t=0
U

With this result we are able to give an exact formula for the exponential map for a
matrix Lie group.

Proposition 26. Let G be a matriz Lie group and £ € g. Then
exp(ﬁ) = Z Ha

i.e., exp is the matriz exponential.

Proof. exp(€) = % (e) is the unique solution to the differential equation g==¢(9) =
T.Ly(&) = g€, g(0) = e, but the solution to this problem is y -, (ti, which is the
matrix exponential. O

This result enables us to show a result which greatly simplifies the calculation of the
bracket for the Lie algebra of a matrix Lie group.

Proposition 27. Let G be a matriz Lie group. Then for £,n € g we have
(€, n] = &n —nE,

i.e., [-,] is the matriz commutator.

Proof. From Proposition 23, Lemma 25, and Proposition 26 we get

d

d
i, Amw@mﬂz—— exp(t§)nexp(—t§) = {n —né.

€,n] = i,

0

2.3.2 The Magnus Expansion and the Baker-Campbell-Hausdorff
Formula

We start out by proving some results needed to give the first terms in the Magnus series
and the Baker-Campbell-Hausdorff formula.

Lemma 28. For Q, H € R™" and k € N the differential of the map Q — QF operates
as
k—1
DQk H Qk—n—l
1= (oo Jodima,

where (;) = WLJ), s the binomial coefficient.
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Proof. The expression QadpH = (adp,H)Q + adyy™ H is obviously true for n = 0. By
induction we get

Qadi ™ H = Qadp(adq H)
= (adp(ado H))Q + adiy ™ (ado H)
= (adgt H)Q + adg ™ H,

and therefore it must be true for all n € N.
The expression DQF(H) = SF70 (n+1)( dg H)QF"=1 is seen to be true for k = 1 and
the proof proceeds by induction assuming the validity of it for k

DQFYH) = D(Q - QF)(H)
= DQ(H) - Q"+ Q- DO*(H)

k
=HQ +Q- ) (n N 1) (ad H)QF— "1
n=0

k—1

k n n —n—

=HQ +)° (n N 1) ((adp H)Q + adp™ H) QF !
0

k-1 k
k
+;(n+1)( Z( ) H)
k k
k+1\k—n k+1\n+1
+;(n+1)k+l( Z(n+1)k+1( H)
k
k+1
— nHQk—n
;(Hl)( )
So if the expression holds for k it will also hold for k£ + 1. O

With this lemma we are able to prove the following proposition.

Proposition 29. Let G be a matriz Lie group. For Q) € g we have
To(R oexp) = i ;ad]’C
Q\{lexp(—Q) i (k’ + 1)| Q>
which converges for all Q) € g.

Proof. Let H € Tog = g. Using Lemma 25 we get

Toexp(H) = To(Rexp(a) © Rexp(—0) © exp)(H)
= T Rexp(6) (To (Rexp(~52) 0 exp) ) (H)
= TQ(ReXp(—Q) © exp)( )exp( )
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We therefore calculate T exp(H). By the definition of the tangent map of the expo-
nential map we get using Lemma 28

i (n+ 1)1

> 1 =1
= dr H —Q

;(n—i—l)'(a © );u

which gives the desired expression. Since the linear operator adg is bounded, |ladg|| <

2[|Q||, and since the series >~ mxk, x € R, has infinite radius of convergence the

series > ﬁadg converges for all Q) € g. O
The next proposition concerns the inverse of the linear operator T exp.

Proposition 30. Let G be a matriz Lie group. For ) € g the linear map To(Rexp(—q) ©
exp) : g — g is bijective if and only if no eigenvalue of the operator adq is of the form
2lmy/—1 for a nonzero integer [. If this is the case we have for ||Q| <

—1
(TQ(Rexp(—Q) o eXp)) = Hadlgl 5
k=0
where by, = % —— are the Bernoulli numbers .
=0
Proof. Since Y2, mxk = %, r € R, the eigenvalues for To(Rexp(—q) © €xp) =
Yoo ﬁadé will be p = GA;I, where A is an eigenvalue for adg. This means that

if and only if no eigenvalue of adg is of the form 2im/—1 then all eigenvalues for
To(Rexp(—0) © exp) will be nonzero which is equivalent to it being invertible. By the
definition of the Bernoulli numbers S5 %adg, will be the inverse of > 5o ﬁadg,

and since the radius of convergence for > 77 %a* is 27 the series Y o Zadf, will

converge for |ladg|| < 27 but since [ladg|| < 2||€2|| this means that the series converges
for ||Q]] < 7. O
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The first Bernoulli numbers can be calculated to be by = 1, b; = —%, and bogy1 =0
for k € N.

Proposition 31. Let G be an analytic matriz Lie group and let £ : [0,t*] — g, t* > 0, be
piecewise smooth. Then there exists § > 0 such that for |e| < 0 the differential equation
on G

g= ng(t), g(O) =6 (23)

has, for t € [0,t*], the solution

o0 = < [ elss =t [l [ emyarias + o).

Proof. Let (U,log), e € U, be a chart with exponential coordinates. Since equation (2.3)
depends continuously on e there exists § > 0 such that for |e| < ¢ the solution to (2.3)
stays in U for t € [0,t*]. Since the differential equation (2.3) depends analytically on
€ so will the solution g(#) meaning in particular that in the chart (U, log) the solution
is analytic, i.e. g(t) = exp(x(t)) where x(t) = > 277, a;(t). Inserting g(t) = exp(z(t))
into the differential equation (2.3) gives

exp(z(t))ed(t) = g(t)
= oy exp(&(1))
= Tt (Rexp(~a(t)) © €xp)(&(t)) exp(z(t)).

By Proposition 30 we can ensure by possibly choosing d smaller that T}, (Rexp(_x(t))oexp)
is invertible for ¢ € [0,¢*]. Thus we get

i(t) = (To) (Rexp(—a(t)) © GXP))_1 (eAdexp(aey (E(1)))
= (Tay (Rexp(—s(tyy 0 €xD)) " (e exp(ada)(€(2))).

Inserting x(t) = Y272, ¢/;(t) on both sides of this equation and using Proposition 30
shows that

which gives the result. O

The differential equation

&(t) = (Tue)(Rexp(—a(t)) © eXP))_l(f(t)),

is called the Magnus equation after W. Magnus who first treated it in 1954, see [30].
The Magnus equation gives the solution g(¢) = exp(z(t)) to g = £(t)g. The expansion
of z(t) in terms of integrals of repeated Lie brackets, as in Proposition 31, is called the
Magnus expansion.
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Corollary 32. Let G be an analytic matriz Lie group and let n,( € g. Then there exists
d > 0 such that for |e| < § we have

exp(en) exp(eC) = exp (e(n + ¢) + €*3[n, (] + O(e%)).

Proof. We use Proposition 31 with t* = 2 and

This gives

But we have

and thus

2
/0 E(r)dr =+,

K[&(s%[&(ﬂdﬂds =/01[n, /Osﬁ(f)df]ds+/12[<,/085(T)d7]ds

:/0 [nmS]dSJr/l [¢,n+((s—1)]ds
= [¢,n],

which gives the result when inserted in Proposition 31. U

and

The full Taylor expansion of log(exp(en) exp(e()) is given recursively by the so called
Baker-Campbell-Hausdorff formula, see e.g. |43].



Chapter 3

Simple Mechanical Control Systems on
Lie Groups

The subject of this chapter is simple mechanical control systems on Lie groups which
is the particular class of mechanical systems we will focus on in the remainder of this
thesis.

We start by introducing some concepts from the theory of calculus of variations, since
the approach leading to the equations of motions for mechanical systems, in particular
the equations of motion for simple mechanical systems on Lie groups, is of a variational
nature. We then derive the forced Euler-Lagrange equations, which are the equations of
motion for a forced mechanical system, and the Euler-Poincaré equations which, along
with the kinematic equations, are the equations of motion for a mechanical system when
the configuration manifold is a Lie group. We define simple mechanical control systems
on Lie groups which are a special class of mechanical systems, with a Lie group as
configuration manifold, and we give the Euler-Poincaré equations for this special case.
We end the chapter with some examples of simple mechanical systems on Lie groups.

A more exhaustive treatment of the material covered in this chapter can be found,
e.g, in [6],[13], and [31].

3.1 Elements of Calculus of Variations
We start with a standard definition from calculus of variations.

Definition 33. Let Q) be a manifold and q : [a,b] — Q, a,b € R, b > a, a smooth curve
on Q. A wvariation of the curve q : [a,b] — Q is a smooth map (t,€) — q¢.(t) € Q,
e €le,d],d>0,c<0, satisfying

1. qo(t) = q(t).
2. q.(a) = q(a) and g.(b) = q(b) for all € € [c,d].
The corresponding infinitesimal variation is given by

d

de|._,

dq(t) qc(t) € Ty Q.
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For a smooth function L : T'Q) — R the vartation of the functional I(q) = f; L(q(t))dt
1s defined as

b
| [

and the functional derivative of L, ‘;—2 :TQ — T*Q, is the bundle map over idg, t.e.,

b
5 [ L =

T o ‘;—5 =1idg o7, given by

b b
5 / L(g(t))dt = / i—j(q@))-aqu)dt,

iof it exists.

Figure 3.1: The curve ¢(t) and a variation g.(t) of it (left). The infinitesimal variation
dq(t), of q(t), given by g.(t) (right).

From Definition 33 we see that § f; L(q(t))dt also depends on the choice of variation
¢e(t). This is not the case for % which is intrinsically defined.

We have the following result regarding the coordinate expression for the functional
derivative of L.

Proposition 34. Let QQ be an n-dimensional manifold and (U, q) a coordinate chart on
Q. Let L : TQ — R be a smooth function. Then % exists and we have in T'U

6L, .. ~~(OL, . doL, . ;
E(CLQ) => (a—qi(q,Q) T (CLQ)) dq’,

i=1
where (q,q) are the natural coordinates on TU corresponding to the coordinates q for U.

Proof. Since we want to calculate a local expression for ‘;—s we may assume for simplicity
that ¢(t) € U for t € [a,b]. Since U is open we can choose |¢| small enough to ensure
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¢c([a,b]) C U. Thus we get

5 / Lig(t), ()t =

To ensure that we have that ‘;—5 is defined globally we must check that this local

expression for % behaves correctly under a change of coordinates.

Let (V, q) be a coordinate chart for @ with U NV # (). From the chain rule we have

. oG o057 o
7 = Z aqkq = a((]]‘i - aZi'

Thus we get using the chain rule on L(q, ¢) = L(G(q), 4(¢,q))

OL = OLO§ <~ OLOF
oqt ; o¢i 04t ; o1 Oqt’

" (d oL o " 0L 0%
-+ — .
) - (dt aqy) ;1 I 0q'0q* 1

]: .]7

giving

i (5

The second part of is similarly calculated using the chain rule
Z 8L 8q3 Z 8_[/8@7
¢ 9¢' = g7 O¢’

OL 0§ <~ OL 0*§
Z d§7 g ]2 @aqia—qkq .

Combining these we get

s o o (a o
dt 94 dtog 0@ )

Since 7 o ‘;—q idg o 7 and since 5 L under a change of coordinates behaves as a one form

we have that fsg : TQ — T*@Q indeed is a bundle map over idg.

O
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3.2 The Euler-Poincaré Equations

We start with the definition of the Lagrange-d’Alembert principle.

Definition 35. Let Q be a manifold, q : [a,b] — Q a smooth curve on Q, and F :
[a,b] x TQ — T*Q a bundle map over idg. Then q is said to satisfy the Lagrange-
d’Alembert principle if for every variation q.(t) of q(t) with corresponding infinitesimal
variation 6q(t) we have

b b
5 / L(§(t))dt + / F(t,q(t)) - dq(t)dt = 0.

It can be shown, see e.g. [16], that Newtons equations of motion are equivalent to
the Lagrange-d’Alembert principle where F' is the resultant force and L =T — V is the
so-called Lagrangian consisting of the kinetic energy 7" minus the potential energy V.

Proposition 36 (Forced Euler-Lagrange equations). Let @) be an n-dimensional mani-
fold, q : [a,b] — Q a smooth curve on Q, and F : [a,b] x TQ — T*Q a bundle map over
idg. The Lagrange-d’Alembert principle is satisfied if and only if

oL

5—q(€2(t)) + F(t,4(t) =0, (3.1)

which in a coordinate system (U, q) is equivalent to q(t) satisfying

d oL, . oL ) .
107 ——(q,q) — 97 ——(q0.9) = Fi(t,q.q), ie€{l,...,n} (3.2)

Proof. From Definition 33 we have

5 / L(4(t))dt + / F(td()) - bq(t)dt = / (i—j(q@))wt,q(t»)~5q<t>dt.

From Definition 35 and the fundamental lemma of the calculus of variations, see, e.g.,
[24], we thus obtain equation (3.1). Equation (3.2) is a direct consequence of Proposi-
tion 34 and equation (3.1). O

Equation 3.2 is referred to as the forced Euler-Lagrange equations. If F' = 0 equa-
tions (3.2) are the well known Euler-Lagrange equations, see ,e.g., [4].
Using the chain rule the forced Euler-Lagrange equations can be written

O*L .. 0L oL

— ——=F
o' ogog o~

which when written out completely is

& & 82L i - aL
T ] =F} ' 1,...

where ¢ = (¢',...,q"), F = (F\,..., F,).
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Let G denote a Lie group. Then a Lagrangian L : TG — R is called left-invariant
if L(g,9) = L(Ln(9),T,Ln(g)), g € T,G, for all g,h € G. For a matrix Lie group this
means that

L(g,9) = L(Ly-1(9), TyLy-1(9)) = L(e,g7"'9) = L(e, &) = 1(€),
where & :=T,L,1(g) = g~'g € T.G = g. L is called the restriction of L to g.

Proposition 37 (The Euler-Poincaré equations). Let G be a matriz Lie group and
L :TG — R a left invariant Lagrangian and [ its restriction to g. For a curve g(t) € G
define the curve £(t) € g by

E(t) = g(t) " g(1). (3.3)

Let the force F : R x G — T*G be given by F(t,g) = T;Ly1f(t) = f(t)g~" where
f(t) € g* is the body-fized force. Then g(t) satisfies the Lagrange-d’Alembert principle
if and only if £(t) satisfies the Euler-Poincaré equations

d 9l dl
—— =ad;— t). 3.4
S a5+ 1) (3.4)
Proof. Let g(t) € G be a curve in G and g¢.(t) a variation of g(¢). This gives a variation
E(t) = ge(t)1gc(t) € g of £(t). The infinitesimal variation of g(t) is given by dg(t) =

£|._ 9c(t) € Ty»G and the infinitesimal variation of £(t) is given by

d

6&(t) = de| .

If we define n(t) = g~ '(t)dg(t) € g we get

d

&(t) € 0.
se) =i = | (a075.0) - (w0 5| alt)

= —go(t) 09 (t)go(t) " go(t) + 90( )~5g(t) + go(t) " g0(t)g0(t)g(t) — go(t) og(t)
= —g(t)""og(t)g(t)"g(t) + g(t)"1g(t)g(t) "' dg(t)

= {(E)n(t) —n(t)E()

= aden(t).

This means that we have

0&(t) = adeyn(t) +n(t)

where 7)(t) € g vanishes at the endpoints. Since F'-dg = fg~'dg = f - n we therefore
have that the Lagrange-d’Alembert equations

5 / Lig(t), g(t))dt + / F(t.g(t)) - Sg(t)dt = 0

5 / H(E())dt + / £#) - n(#)dt =0 (3.5)

are equivalent to
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using variations 6§ (t) = adeyyn(t) + 7(t) and where 1) vanishes at the endpoints. Calcu-

lating
5 / (€(t)dt = / Eéé( )t

/gé(()—l-adg n(t)dt
:/ab<_%§_é @ + 5éad§(t ())dt—l—[gé ()}b

b/ d ol . 0l
= /a <_E(5_§ + adg(t)(s—é_) ﬂ(t)dt,

and inserting this expression into equation (3.5) the result is a consequence of the fun-
damental lemma from the calculus of variations, see, e.g., [24]. O

Equation (3.3) is referred to as the kinematic equations for obvious reasons. Together
the kinematic equations (3.3) and the Euler-Poincaré equations (3.4) give the equation
of motion for a forced mechanical system on a Lie group.

Definition 38. A simple mechanical control system on a Lie group is a mechan-
tcal system described by the following:

1. the configuration manifold G is a matriz Lie group, with Lie algebra g,

2. the total enerqgy is equal to the kinetic energy which is given by an inertia tensor
I:g—g"

3. a set of body-fired vectors {fi,...,fm} C ¢° and u : R — R™, bounded and
measurable, defining the resultant body-fized force according to f(t) = >, fiui(t).

= (G,L,{f1,..., fm}) denotes this mechanical control system.

For simple mechanical control systems on Lie groups we have.

Proposition 39. Let ¥ = (G,1,{f1,..., fm}) be a simple mechanical control system,
then the equations of motion for this system are

g=g-¢, (3.6)
I = adiIE + ) fou(t). (3.7)
i=1
Proof. This follows directly from Proposition 37 noticing that {(§) = 11(¢) - € and using
Proposition 34 giving the functional derivative as gé = g—é = I¢&. O

We define the symmetric product (-:-) : g X g — g by

(€:n) = —H—l(adgﬂn + ad;I¢),



3.3 Examples 29

which is seen to be bilinear and symmetric. Using the symmetric product the Euler-
Poincaré equations (3.7) can be written

E=—HE O+ buy(t),
=1

where b; =171 f;, fori € {1,...,m}.

A relative equilibrium for ¥ is a curve t — ggexp(t&.) € G, for go € G and
& € @, that is a solution to the dynamics (3.6), (3.7) for zero input w. It is easy to
see that ¢ — ggexp(t&.) is a relative equilibrium if and only if (& @ &e) = 0. It is
convenient to call relative equilibrium both the curve ¢t — ggexp(t{,.) and the vector

gre .

f2

A
i
X

) T

Figure 3.2: The planar rigid body with two forces applied at a point a distance A from
the center of mass CM. ¥, denotes an inertial reference frame. (6, x,y) € S x R? denotes
the configuration of the body. The body reference frame (not depicted) is aligned with
the direction of application of f; and fs.

3.3 Examples

Example 1 (Underactuated planar rigid body). Consider a rigid body moving in the
plane without friction, see figure 3.2. This is, e.g., a model of a hovercraft when disre-
garding friction.

The configuration space for this system is the matrix Lie group SE(2), with Lie
algebra se(2). Since SE(2) is isomorphic to SO(2) x R? and SO(2) is isomorphic to
S C C\ {0}, equipped with the product induced from the Lie group C\ {0}, SE(2) is
isomorphic to S x R?, with product

(e, (w1, 90)) (€™, (22, y2)) = (") (RE("™ (22 + iy2)) + 1), IM(e™ (w2 + iy2)) + 1)),
where i = /—1. The diffeomorphism giving this isomorphism is for (6, (z,y)) € S x R?

cos(d) —sin(f) =
P = |sin(f) cos(f) y| € SE(2).
0 0 1
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If we take (0, 2,y,w,v1,v5) € T(S x R?) = (S x R?) x R? and define the vector space
isomorphism = : R — se(2) given by

—

w 0 —w un
v = |lw 0 w9,
Vg 0 0 O

we thus have a diffeomorphism between SFE(2) x se(2) and (S x R?) x R3. The Lie
bracket on R? induced by ~ gives

0 0 O
ad(wmlm)T = (%) 0 —w
—v; w 0
With controls as in the figure we have
Ji=e, Ja=—hei +e;,

where h is the distance from the center of mass to the control forces. Denote by m the
mass of the body and by J the moment of inertia about its center of mass. Since the
kinetic energy is 3m(v + v3) 4+ 5Jw? the inertia tensor is I = diag(.J,m, m) and the
equations of motion become, using proposition 39

' 0 —w vy Jw = —huy
P=Plw 0 wvof, mu; = mwuvs + Uq
0 0 O mis = —MmMwvy + Usy

The kinematic equation can be rewritten to

0=w
& = cos(f)v, — sin(f)vy

Y = sin(f)v; + cos(6)v,

on S x R2.
We see that the vectors

§=e, § = ey + Pes,

where «, § € R, are relative equilibria for the system.

Example 2 (Satellite with two thrusters). Consider a satellite, i.e., a rigid body floating
in space, subject to a torque around the first and second principal axes, see figure 3.3.

The configuration manifold for a rigid body is the matrix Lie group G = SO(3) with
Lie algebra g = s0(3). The isomorphism = : R — s0(3) given by Ty := x x y, x,y € R3,
that is,
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A
\/

e

=

N
%v
fi

Figure 3.3: The satellite with two thrusters.

is a Lie algebra isomorphism between R3 with the cross product and so(3) with the
matrix commutator; thus ad, = z. With forces as in figure 3.3 the control forces are

fi=en, Ja = e
Using proposition 39 then gives that the dynamics of this system is given by
R = RQ,
IO = (JQ) x Q+ equy(t) + equs(t),

where R € SO(3), Q € R?, and J = diag(Jy, Jo, J3), J; being the moment of inertia
around the ith principal axis.
A vector along any of the principal axes is seen to be a relative equilibrium.

f

Figure 3.4: A schematic of the underwater vehicle.

Example 3 (Underwater vehicle in Ideal Fluid). Consider a rigid body submerged in
an incompressible, irrotational, and inviscid fluid. The configuration manifold for this
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system is SE(3). The motion of this system is Hamiltonian, see e.g. [26], meaning that
the theory in this chapter can be applied. Let g € SE(3) and £ € se(3) be given by

_|Rp _ﬁv

where ,v € R? and 7 : s0(3) — R3 is the isomorphism given in the previous example.
The kinematic equation (3.6) then reduces to

R = RQ,
p = Ruv.

The kinetic energy for this system is given by 1Q7JQ+ 10" Mo, where J = diag(J, J2, J3)
is the inertia matrix and M = diag(m;, mz, m3) comprises the added masses, which
describes the inertia added to the system due to the fact that moving the body also
means moving some of the surrounding fluid. This means that I = diag(J, M) and since

Q 0

ad(Qﬂ)) = f)\ Q

)

the Euler-Poincaré equations (3.7) for this system are

IO = (JQ) x Q + (Mv) x v+ fq,
Mo = (Mv) x Q + f,,

where f = (fq, f,) € se(3)* is the resultant body-fixed force. With forces as in figure 3.4
we have

1= eu, fa = —hes + es, f3 = hea + e.
Any vector £ € se(3) of the form
§:a€i+ﬁei+3, 1€ {1,2,3},

where a, § € R, is seen to be a relative equilibrium.



Chapter 4

Elements of Controllability Theory

In this chapter we present some elements from controllability theory in order to do a
controllability analysis of simple mechanical control systems on Lie groups.

We begin by introducing some concepts from the theory of controllability of affine
control systems and present some of the strongest theorems available regarding local
controllability properties of these systems. We then review control results for simple
mechanical control systems on Lie groups and prove an additional result regarding local
controllability along a relative equilibrium for a simple mechanical system on a Lie
group; this result is new and one of the main contributions of this thesis. We end by
applying the theory to three example systems and thus provide a controllability analysis
of these systems.

Standard references in nonlinear control theory include [21], [34], and [40].

4.1 Controllability of Affine Control Systems

Let @ denote a smooth manifold and consider the affine control system on () given by

i=X(q)+ > _ Yilqu, (4.1)
j=1
where X,Y7,...,Y,, are C° vector fields on ) and the controls uy, ..., u,, are bounded

and measurable functions defined for some time interval [0, 77, 7" > 0.
Let Lie(X,Y1,...,Y,,) denote the Lie algebra generated by the elements of {X,Y7,...,Y,,}.
The system (4.1) is said to satisfy the Lie algebra rank condition (LARC) at ¢ € Q
if Lie(X,Yy,...,Y)(q) = T,Q.
Let ¢y € (Q and let W C @ be a neighborhood of ¢y. For T" > 0 we define
R& (90, T) = {@: € Q| there exists a solution (¢, u)(t) of the system (4.1)

such that ¢(0) = qo, ¢(t) € W for t € [0,T], and ¢(T) = ¢},
and

RW (G, <T)= U RQ do,t

t€[0,7]

Then we have the following definition.
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Figure 4.1: (left) locally accessible at go. (right) small-time locally controllable (STLC)
at qp.

Definition 40. The system (4.1) is called locally accessible at qy € Q if there exists
T > 0 such that Rg(qo, < t) contains a nonempty open set of Q for all neighborhoods
W of qo for all t € (0,T]. If the system is locally accessible for all qo € Q it is said to
be locally accessible.

Let qo € Q satisfy X(qo) = 0. Then the system (4.1) is said to be small-time
locally controllable (STLC) at qy € Q if it is locally accessible at qo and qo belongs to
the interior of R$y (qo, < t) for all t € (0, 7).

We have the following theorem regarding local accessibility.

Theorem 41. Consider the system (4.1). It is locally accessible at qo € Q if the LARC
15 satisfied at qo. Conversely if the system is locally accessible then the LARC s satisfied
in an open and dense subset of ().

The proof of this can be found in, e.g., [34].

Let Br(X,Y7,...,Y},,) denote the smallest subset of Lie(X,Y,...,Y,,) which con-
tains {X,Y7,...,Y,,} and is closed under the operation of taking brackets of its el-
ements, i.e. if By, By € Br(X,Yy,...,Y,,) then [By, By] € Br(X,Yy,...,Y,,). For
B € Br(X,Y,...,Y,,) we define §°(B) to be the number of times X occurs in B
and 0’(B), j € {1,...,m}, the number of times Y; occurs in B. A Lie bracket
B € Br(X,Yy,...,Y,,) is said to be bad if §°(B) is odd and §*(B),...,0™(B) are
even; otherwise it is said to be good. For § € [0,1] define the order of a bracket
B € Br(X,Y1,...,Y,,) as the number

8o(B) = 06°(B +25J

Remark 42. The above definitions can be made more precise using the notion of a free
Lie algebra. We have chosen to avoid the notion of a free algebra in this chapter for
simplicity of the presentation. °

This enables us to state one of the strongest results regarding STLC of a system. A
weaker version of this result was first conjectured in [19].

Theorem 43 (Sussmann [41]). Consider the system (4.1) and a point qo € Q) satisfying
X(q0) = 0. Assume that the LARC is satisfied at qo. Assume there exists a 6 € [0, 1],
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giving the order &y, such that every bad Lie bracket B € Br(X,Y1,...,Y)(q) is a linear
combination of lower order good Lie brackets from Br(X, Y1, ..., Y,.)(qo).
Then the system is STLC at qq.

Figure 4.2: Locally controllability along the trajectory go(t).

Let go(t) be the solution of (4.1) for u = 0 satisfying ¢5(0) = ¢o for gy € Q. Then the
system is said to be locally controllable along the trajectory ¢y(t) if there exists
T > 0 such that ¢y(¢) lies in the interior of R (qo,t) for all ¢ € (0,7T]. This reduces to
STLC when qq is an equilibrium point.

We have the following result regarding local controllability along a trajectory.

Theorem 44 (Bianchini and Stefani [5]). Consider the system (4.1) and a point qy €
Q. Assume that the LARC 1is satisfied at qy. Take as weight 6 = 0 giving the or-
der &g of a bracket. Assume that every Lie bracket B € Br(X,Yy,...,Y,)(q) with
6(B) = even, 1 € {1,...,m}, is a linear combination of lower order Lie brackets from
Br(X,Y1,...,Y)(q)-

Then the system is locally controllable along qo(t).

This theorem with ¢y being an equilibrium point for X is seen to be contained in
Theorem 43.
Another theorem is the following.

Theorem 45 (Bianchini and Stefani [5]). Consider the system (4.1) and a point gy € Q.
Assume that the LARC s satisfied at qo. Take as wetght 0 = 1 defining the order dg
of a bracket. Assume that every subspace of Lie(X,Y,...,Y;,) has constant rank along
Go(t). Assume furthermore that every bad Lie bracket B € Br(X, Y1, ..., Y)(q(t)) is
a linear combination of lower order good Lie brackets from Br(X, Yy, ..., Y,)(q(t)) at
each point qo(t) of the reference trajectory.

Then the system is locally controllable along qo(t).

Also this theorem is seen to be contained in Theorem 43 when ¢q is an equilibrium
point for X. Actually the main result in [5] contains the main result in |[41] which has
Theorem 43 as a corollary.

Remark 46. Theorem 45 is not in this exact form in [5] but is a consequence of Theorem
1.1 and Lemma 1.2 in [5] with [ = (1,...,1). o
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4.2 Controllability of Simple Mechanical Control Sys-
tems on Lie Groups

Let ¥ = (G,L {f1,..., fm}) be a simple mechanical control system on a Lie group. Then
we consider the Euler Poincare equations along with the kinematic equations
E=—HE O+ buy(t), (4.3)
i=1

as given in chapter 3. Let gy € G and & € g and let U C G be a neighborhood of gp.
For T' > 0 we define

RE(go, T) = {g1 € G| there exists a solution (g, u)(t) of the system (4.2)-(4.3)
such that ¢(0) =0, g(t) € U for t € [0,T], and g(T) = g1},

and

Re(90, < T) = |J RE(g0,t)

t€[0,T]
Then we have the following definition.

Definition 47. The system (4.2)-(4.3) is locally configuration accesstible at gy if
there exists T > 0 such that RY(go, < t) contains a nonempty open set of G for all
neighborhoods U of gy for all t € (0,T]. If go belongs to the interior of the open set the
system is called small-time locally configuration controllable (STLCC) at go. If the
system is locally configuration accessible (STLCC) for all gy € G it is said to be locally
configuration accesstible (small-time locally configuration controllable (STLCC)).

Let V' C G x g be a neighborhood of (go,&). Converting the definition of R¢)" from
the previous section to the system (4.2)-(4.3) gives

Reeng((90.€0). T) = {(91,&) € G x g| there exists a solution (g, u)(t) of the system (4.2)-(4.3)

such that (g,£)(0) = (90, %), (9,6)(t) € V for t € (0,77,
and (g,)(T) = (91,6)},

and

Reong((90. &), < T) U Reora((90. &) 1)

t€[0,7]
Then we have the following definition.

Definition 48. If the system system (4.2)-(4.3) is locally accessible at (go,0) and (go,0)
belongs to the interior of Rgxg((go,()),ﬁ t), for all t € (0,7, the system is called
small-time locally controllable (STLC) at gy and at zero velocity.

If the system (4.2)-(4.3) is STLC at go and at zero velocity for all go € G it is said
to be small-time locally controllable at zero velocity (STLC at zero velocity).
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A symmetric algebra is an algebra where the multiplication, denoted by (z,y) —
(r :y), satisfies (x : y) = (y : ). We denote by Sym(by,...,b,) the symmetric algebra
generated by the vectors by, ...,b, € g and the symmetric product (- : -) on g.

Proposition 49. Consider the system (4.2)-(4.3). The system satisfies the LARC if
the subspace defined by Sym(by, ..., by,) has full rank.

Proof. We calculate brackets. Let 1, € g be fixed. Exploiting the bilinearity of (- : )

gives H_f@%g)] | BH —0_ [(’; € ->} m

-l .
[ERIEPIRAI
B [<n(:)<>] |

Thus we have with 7n,{ € span{bi,...,b,} and & € g that for an arbitrary x €
Sym(by, ..., b,) there exists a X € Lie((g - &, —%(5 DT, (0,007, ...,(0,b,,)T) of the

form
X m |
K

This and equation (4.4) combined with the assumption that Sym(by,...,b,) has full
rank show that there must also exist a ¥ € Lie((g- &, —3(¢: €))7, (0,b1)7, ..., (0,b,)")

of the form
_ |9k
Y‘[o}'

Since g is nonsingular the Lie algebra rank condition is therefore satisfied. O

and

I
r———
o %
S~
=
=)
<
—_
|y
~ O
—_ 1

Let £ € g and denote by Pr(&,by,...,b,) the smallest subset of Sym(&, by, ..., b,,)
which contains {£,b1,...,b,} and is closed under the operation of taking symmetric
products of its elements, i.e., if 51, Sy € Pr(§, by, ..., by,) then (S; : So) € Pr(&,b1,...,bn).
For S € Pr(&,by,...,by) we define AY(S), i € {1,...,m}, to be the number of times
b; occurs in S. Similarly we define A°(S) to be the number of times & occurs in S.
A symmetric product S € Pr(&,by,...,by,) is said to be bad if A(S) is even for all
i € {1,...,m}; otherwise it is said to be good. We define the order of a symmetric
product S € Pr(§,bq,...,by,) to be the number

Ao(S) = ZN(S).

The following result is, as pointed out in [11], a direct consequence of the results in
[41] and [29] applied to the system (4.2)-(4.3).
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Theorem 50. Consider the system (4.2)-(4.3). Assume that every bad symmetric prod-

uct S € Pr(by,...,by) is a linear combination of lower order good symmetric products
from Pr(by, ..., by,). Then

1. The system is STLC' at zero velocity if the subspace defined by Sym(by, ..., by,) has
full rank.

2. The system is STLCC if the subspace defined by Lie(Sym(by, . .., b)) has full rank.

To prove a similar theorem regarding local controllability along a relative equilibrium
of (4.2)-(4.3) we first need two lemmas.

Lemma 51. Let G be a matrixz Lie group with corresponding Lie algebra g and let € € g.
Consider the vector fields

7, = [g'fl(f)] 7 Zy = [9'f2(€)} ’

on G x g, where fi, fo, 51,5 : g — g are differentiable. Then we have

70, %] = {9' (ady,(e)(f2(€)) + Df2(€)(S1(€)) — Dfr(§ )(52(5)))]
b D53(6)(51(§)) = DS1(£)(52(¢)) ’

where D is the differential.

Proof. Using Proposition 31 gives

o ([2]) - [roviian e,

€o o + Si(o)t + O(t?)
Using this, and doing Taylor expansions leaving out terms of order O(t?) and O(s?), the
result then follows as an application of Proposition 3. O
Define

A0(67b1>"-abm) = {gablw'wbm}?
Ai+1(£,b1, .. ,bm) = Ai(g,bl, . ,bm) U {(Ul . v2>,adv1(vg)\ V1, U2 € Ai(g,bl, . ,bm)}
A(€>bl>"-abm) = Am(€>b1>"'>bm)-

Then we have the following useful lemma

Lemma 52. Consider the system (4.2)-(4.3). Every bracket

pen(( 1 [ 1)

when evaluated is of the form

5 |9 (26
2 i i ’
where vj, c; € R, S; € Pr(&, by, ..., by) \ {&}, and fj(€) € A&, by, ..., by) if AY(S;) >0

and f; = 0 if AO( ) = 0. Furthermore if A°(S;) > 0 then f;(£) is homogeneous of order
AY(S;) — 1, dce., fi(al) = a®’(59) “L(€) for alla €R and all € € g.
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Proof. For f; : g — g smooth and S;(§) € Pr(—3(£ : &), b1,...,bn), i € {1,2}, we have

from Lemma 51

- f1(€) O] g (adge (f2(6)) + Df2(€)(S1) — Df1(€)(S2)
Hggl(g) ],{952(@ H _ [9 ( £1©) [;rl(g),SQ(g)] )] . (4.5)

where

[51(5)7 52(5)] :DS2(§)(51(5)) - DS1(5)(S2(5))

= Z So(§—entry # j replaced with Sh)
: (4.6)

— Z S1(€—entry # k replaced with Sy).
k

This shows that [S1(€), S2(§)] = >_; 8;S12;(§) where 3; € R and S19;(§) € Pr(§, b1, ..., b))\

{¢}-
Let

X:[_féa}, Y:m ief{l,...,m}

The statement is seen to be true for B € {X,Y7,...,Y,,}. We proceed by induction.
Assume it is true for 7y, Zs € Br(X,Y),...,Y,,). Thus

n=[ES A

Let ]{71 = AO(SM(é-)) and ]{32 = AO(SQ‘](g))

Since the bracket is bilinear we get using (4.5)

g <Zij (Mivzgady, e (f23(€)) + 200D f2;(€) (S1(€)) — Vliaszfli(ﬁ)(Sw(f))))]
> i @1i2;[S1(§), Sa;(€)] ’

where [S1:(£), S2;(§)] = >_, Br2ijiSi2ik and Bizijr € R and S1aiPr(€, by, ..., b)) \ {€}-
Because of equation (4.6) we have

AO(Slgijk) == k’l + ]{32 —1=: k‘

By definition we get Sio;jx € Pr(§, b1, ..., 0,)\{&} C A(E, b1, ..., byn) and ady,, ) (f2;(€)) €
A(g, bl, ey bm) Slmll&l‘ly we have by definition that DfQj (f)(Sh(g)) = Zk ﬁ21jikf21jik (g)
and Dfu(g)(szj(f)) = Zk 512ijkf12ijk(f) where By1i, B12i51 € R and f21jik(§)a f12ijk(f) S
A(E, by, .o b))

For k’l =0 or k‘g = 0 we have adfu(g)(fgj(g)) =0. If k’l,k‘g > 0 adfli(g)(fgj(f)) is
homogeneous of order (ky — 1) + (ke — 1) =k — 1.

For k1 <1 we have D f1;(£)(52;(€)) = 0. For k; > 1 D f1;(£)(S2;(§)) is homogeneous
of order (ky —1) =1+ ke =k — 1.

When k; < 1 we have D fy;(£)(S1;(€)) = 0. For ko > 1 D f5;(£)(51:(€)) is homoge-
neous of order (kg — 1) — 1+ k =k — 1.

If the statement is true for 7, Z; € Br(X, Y, ..., Y,,) it is therefore true for [ 7, Zs],
and since it is true for 7y, Zy € {X, Y1, ..., Y,,} it is therefore true for all Z € Br(X, Yy, ..., Y,,).

U

g (2 72#%(5))] |
D 2559;(§)

(21, Zs) =
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With these two lemmas we are able to prove the following result regarding local
controllability along a relative equilibrium.

Proposition 53. Consider the system (4.2)-(4.3). Let & satisfy (&e = &re) = 0. Assume
that Sym(by, ..., by) has full rank. Assume:

1. Every bad symmetric product S € Pr(by,...,by) is a linear combination of lower
order good symmetric products from Pr(by, ..., by).

2. Every symmetric product S € Pr(&e, b1, ..., by) \ {&e} s a linear combination of
equal and lower order good symmetric products from Pr(by, ..., by,).

3. Bvery bracket B € Br(&e, b1, ..., bm) \ {&e}s given by [+, -|g, with order given by &
is a linear combination of equal and lower order products from Pr(by, ..., by).

Then the system is locally controllable along (g,£)(t) = (go exp(t&re), &re) for all go € G.

Proof. Since we assume that Sym(by, . .., b,,) has full rank we know from Proposition 49
that the LARC is satisfied.

From Lemma 51 we have that for By, By € Br(—%(f £),by,...,by) that By, Bs,
and [By, By| when evaluated are

B, = Z 1351, By = Z 95, Bh Bz Z 12512,
where ay;, g;, ap2; € R and Sy, Soi, S10; € Pr(€,b1,...,b,). From Lemma 51 we also
get
A"(S19;) = A%(Sy;) + A%(Sg) — 1. (4.7)

We choose 6 = 1 meaning that for B € Br(—3(¢ : ), by, ..., by,) the order 6,(B) of B is
the total number of factors in B. Taking B € Br(—3(¢ : €), b1, ..., by)(&e), which when

evaluated is
B = Z OéiSj,

where ; € R and S; € Pr(§,by,...,b,), we get using (4.7) recursively

0 N 250(3) —51(B)+1 , if 250(3) —51(B)+1 >0
A8y = { 0 ., otherwise ’ (4.8)

where we recall that 6°(B) is the number of times —1(¢ : £) occurs in B. We recall that
we have defined the order of a product S € Pr(&e, by, ..., bn) as Ag(S) := Y700, AI(S).
Equation 4.8 can be rewritten to

51(B) = A"(S;) +2A¢(S;) — 1. (4.9)

Define

X:[__*q@gg)} Y:M, ie{l,...,m}
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Using Lemma 51 we get

=) ol = (g, %)
This means that

V S €Pr(by,...,by) 3 BEBr(X,Y,,...,Y,) s.t. B= [g} , (4.10)

we denote this bracket by Bg.
From Lemma 52 we have that every bracket B € Br(X,Y7,...,Y,,) when evaluated
is of the form

B =

g- (2 %E(O)] ’ (4.11)
Zi Q25

where Vi, Qi € R, Sy € Pl"(g,bl,. . .,bm), and fj S A(f,bl, .. ,bm) if AO(SZ) > 0
and f; = 0 if A%(S;) = 0. Using Lemma 51 recursively we furthermore have that by,
k € {1,...,m}, occurs the same number of times in S; as in f;, if A%(S;) > 0, and
§%(B) = A¥(S;).

Let B be a bad bracket and take £ = &,. Then there are two situations, here denoted
(a) and (b).

(&). AO(SQZ) > 0.

According to assumption 2 we have
Qg So; = g Q9595
J

where ay;; € R and S;; € Pr(by, ..., b,) is of equal and lower order as Sy; and according
to assumption 1 we can assume that Sy; is good.
According to assumptions 2 and 3 we have

> Aifi©) =D BeS,
i k

where . € R and Sy, € Pr(by,...,b,) is of equal and lower order as Sy; and according
to assumption 1 we can assume that Sij is good. Using Lemma 51 and (4.10) we get

[X, Bs,,] = {(}g Siﬂ '

Because of assumption 2 we have that

<§re : Slk) = Z alkislki

where aqp; € R and Sy € Pr(by, ..., by) is of equal and lower order as Sy, and because
of assumption 1 we can assume that Sy is good. Therefore
9-5Sw| _ _ix.p B
0 - _[ ) Slk] + Zalki Stk
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From the above we get

B— |f] : (Zk ﬁkslk):|
Zi]— a2ijS2ij

= Zﬁk ( X, Bs,,| + ZalmBsm> + ZOQUBSQW
ij

where Bs,,, Bg,,,, and Bg,,; are good since Six, Sii, and Sy are good.
We have from (4.9) that

01(B) = A%(Sa) + 28¢(52) — 1,
61(Bs,,) = A%(S1k) + 280(S1k) — 1 = 2A¢(Six) — 1,
61(Bsyy,) = A% (S1xi) + 280(Sis) — 1 = 200(S1ki) — 1,
01(Bs,,;) = A%(Saij) + 2080(Sai5) — 1 = 28¢(Sa;5) — 1.

Since Ag(S1x) < Ag(S2), Ao(Siki) < Ao(Sai), Ao(S2ij) < Ag(S2), and A°(Sy;) > 0 we
therefore get

51(lek) < 51(3)7

51(leki> < 51(3)7

(51(332”.) < 51(3)

Finally
01([X, Bs,]) = 14 01(Bs,,) = 280(51k) < 61(B),
But since B is bad 6;(B) is odd so we must have &;([X, Bg,,]) < d1(B).

By assumption we have Sy; € Pr(by,...,b,). From Lemma 52 we get

0
B = .
{ZZ a2i52i:|

Since 09(B) = A%(Sy), g € {1,...,m}, B bad means that Sy; is bad but then according
to assumption 1 we have that

0
B =
{sz Oé2ij52ij] '

where ay;; € R and Sy; € Pr(by,. .., by) is good of order Ag(Ss;;) < Ag(S2;). Thus we
get

B= Z Q2ij Bs,,;,
ij
where Bg,, is good, since §%(Bg,,;) = AY(Sa;), ¢ € {1,...,m}, and the order of Bg,, is
(51(352.3.) = 2A0(Sgij) —1< 51(3) = QA()(SQZ) — 1.
Since every bracket B € Br(X,Y7,...,Y},) is of the form 4.11 and since £(t) = &, we
get that every subspace of Lie(X,Y,...,Y,,) has constant rank along (go exp(&et), &re)
for all g9 € G. The result then follows as an application of Theorem 45. O
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Remark 54. For ¢, = 0 assumption 2 is automatically satisfied. From Lemma 52 we
have that f;(¢), in the proof of Proposition 53, is homogeneous of order k = A%(Sy;) —1
for AY(Sy;) > 0 and f; = 0 for A°(Sy;) = 0. Since

A(Sy) =26%B) — 6,(B) +1
= 0%(B) — 6y(B) + 1,

we have that if B is bad then A%(Sy;) = odd —even+1 = even. For A%(Sy;) > 0 we thus
have that k is odd and k > 0. This gives that for a bad bracket we have f;(0) = 0 and
therefore assumption 3 is superfluous in the case that &. = 0. Therefore when &, = 0
Proposition 53 can be simplified to statement 1 of Proposition 50. )

Proposition 53 has the following corollary which is useful in the analysis of a real
mechanical system since its assumptions are easy to verify .

Corollary 55. Consider the system (4.2)-(4.3). Let & satisfy (€ @ &) = 0. As-
sume that span{b;, (b; : b;) | 4,5 € {1,...,m}} is full rank and (&e @ b;), (b; : b;) €
span{by, ..., by}, fori € {1,...,m}.

Then the system is locally controllable along (g,&)(t) = (go exp(tre), &re) for all go €
G.

Consider now instead the Euler-Poincare equations only, without the kinematic equa-
tion. Then we prove two propositions regarding STLC of this system. The first result
shows what can be omitted in Proposition 53 when disregarding the kinematic equation.

Proposition 56. Consider the system (4.3). Let & satisfy (& @ ) = 0. Assume that
Sym(by, ..., by) has full rank. Assume:

1. Every bad symmetric product S € Pr(by,...,by) is a linear combination of lower
order good symmetric products from Pr(by, ..., by).

2. Every symmetric product S € Pr(&e, b1, ..., 0m) \ {&we} is a linear combination of
equal and lower order good symmetric products from Pr(by, ..., by,).

Then the system is STLC at &..

Proof. Since we assume that Sym(by, ..., b,,) has full rank we know from Proposition 49
that the LARC is satisfied.

For 51,85 € Pr(—1(¢: &), b1, ..., by) we have, due to the bilinearity of the symmetric
product, that

[S1,Ss] = Z So(§—entry # j replaced with Sy)

J

— Z S1(§—entry # j replaced with S5).

J

(
£),b1,...,by), which we extend linearly so™ : L—ie(—%@ 2E), by, by

e~

Since [b;, [—3(& : €),bj]] = (bi : b;) we have

VS €Pr(by,....,by) I BEBr(—L(e:6),by,...,by) st. S =B
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This B € Br(—2(¢: ), b1, ..., by) we denote Bg, i.e. Bg=Sfor S € Pr(by,...,bm).

Let S € Pr(&e, b1, ..., by), and now A°(S) denotes the number of times &, occurs in
S and A(S), i € {1,...,m}, the number of times b; occurs in S as before. From (4.12)
we have for By, By € Br(—35(¢: €),b1,...,bp)(&e) that

e~

A°([By, Bo)) = A°(By) + A°(By) — 1, (4.13)

where we define AY, i € {0,1,...,m}, on a sum of products with the same factors to be
A applied to one of these products.

We choose 6 = 1 meaning that for B € Br(—3( : £), by, ..., by,) the order &;(B) of
B is the total number of factors in B. Using (4.13) recursively gives for B € Br(—2(¢ :

€>abla~~~>bm)(§re) 2

~ 0 _ i 0 _
A(B) = { DB = 8i(B)+1 i 20°(B) ~6i(B) +1>0 (414
0 , otherwise
where we recall that 6°(B) is the number of times X = —1(¢ : &) occurs in B. We
recall that we have defined the order of a product S € Pr(&e, by, ..., b,) as Ag(S) =
S AV(S).

Let B € Br(—1(£:€),b1,...,bn)(&e) be a bad bracket of order &, (B). Then we have
from (4.12) that

B = Z @;S;, (4.15)

where ;; € R and S; € Pr(&e, by, ...,bm) \ {&e) is a bracket of order [. From (4.14) we
have

61(B) = A%S;) + 20 — 1.

Then there are two situations, here denoted (a) and (b).
(a). A%(S;) > 0.

According to assumption 2 equation (4.15) becomes
B= Z @ijSijy
ij

where ;; € R and S;; € Pr(by,...,b,) has order A¢(S;;) =" <. Then according to
assumption 1 we have

E = Zaijksijka
ijk
where o;j; € R and Sjj, € Pr(by, ..., by) is good of order Ag(S;;) = 1" <" <. Thus

we get

B = E :aijkBSijk7

ijk
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where By, , is good, since 0%(Bg,,, ) = AY(Syr), ¢ € {1,...,m}, and the order of By
is according to (4.14) 6,(Bs,;, ) = 21" — 1 < 01(B).

(b). A%(S;) = 0.
By assumption we have S; € Pr(by,...,b,). Since §%(B) = AY(S;), ¢ € {1,...,m}, B
bad means that S; is bad but then according to assumption 1 we have that equation 4.15
becomes

ijk

E = Z aijSija
ij
where o;; € R and S;; € Pr(by,...,by,) is good of order Ay(S;;) =1 < l. Thus we get
B = Z Oéistij,
ij

where Bg,, is good, since 69(Bs,,) = A%(S), ¢ € {1,...,m}, and the order of By, is
according to (4.14) 61(Bs,;) =2I' — 1 < 61(B).

The result then follows as an application of Theorem 43. O
Denote by inve, Sym(by,...,b,) the vector space spanned by the elements from
K(&e, b1, ..., by) C Pr(&e, by, ...,by) where

Ko(fre,bl, . ,bm) = Pr(bl, . .,bm),
Ki-i—l(greabla .. >bm) = Ki(grea b1> ey bm) U {<€re . 'U>| (S Ki(grea bla .. ~>bm)}>
K(greablu---abm> = Koo(greablu---abm)

Then we have the following result.

Proposition 57. Consider the system (4.3). Let &e satisfy (&e @ &e) = 0. As-
sume that the subspace inve Sym(by, ..., by) has full rank and that every bad product
in Pr(&e, b1, ..., bm) \ {&e} is a linear combination of lower order good products from

K(&e,b1,...,bm). Then the system is STLC at &e.

Proof. Equation (4.12) in the proof of Proposition 56 shows that

e~

(i, [=5(€ - €), b5 = (bi = b)),

and

—_—

[_%<£ 1 €), [_%<£ SINF 7[_%<£ 1), 0] (Ere) = (Gre s (Gre (ot (Gre 1 00) 1))

where —%(5 : &) appears on the left hand side the same number of times as &, appears
on the right hand side. This shows that the LARC is satisfied if inve, Sym(by, ..., by,)
has full rank. We also see from the above that for every S € K (e, b1, ..,b,) there
exists a bracket B € Br(—1(¢: €),by,...,by,) such that B =5, we denote this bracket
Bg. Since the number of times by, k € {1,...,m}, occurs in Bg is the same as in S, Bg
will be good if S is good.

Take 0 = 0 to define the order of a bracket B € Br(—%(£ : £), by, ..., by,), this means
that the order of a bracket B € Br(—3(£: £),b1,...,by) is the same as the order of the
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elements in the sum of products that B is composed of. Let B € Br(—%(g 2E), b1, b))
be a bad bracket. Then we have from the calculations in Proposition 56 that

é(fre) = Z ;S

where o; € R and S; € Pr(&e, b1, ..., bm) \ {&e} is bad and of order same order as B.
By assumption we have

E(fre) = ZO&US@‘,
ij

where a;; € R and S;; € K(&e, by, ..., by,) is good and of lower order than S;. Thus we
have

B = E aijBSij7
i

where Bg,. is good and of lower order than B.
The result thus again follows as an application of Theorem 43, but this time with
0 = 0. 0J

This proposition has the following corollary.

Corollary 58 (Linear controllability). Consider the system (4.3). Let & satisfy (&re :
&e) = 0. Assume that the space

Span{blu R bmv <£re : b1>, R <§re : bm)v <£re : <£re : b1>>7 R <§re : <£re : bm>>7 s }
has full rank. Then the system is STLC at .

From the theory of linear systems, see, e.g., [40]|, we know that in Corollary 58 we
only need to include products where &, appears less than or equal to n — 1 times, where
n is the number of degrees of freedom for the system.

4.3 Examples

Example 4 (Planar rigid body). Reconsider the planar rigid body as described in the
previous chapter. The configuration manifold is the matrix Lie group G = SFE(2) which
is isomorphic to S x R? 5 (6, z,y). m denotes the mass of the body, J its moment of
inertia, and h the distance from the center of mass to the control forces. The inertia
tensor has the representation I = diag(J,m,m). With controls as in Figure 3.2 we
therefore have

1 h 1
by = —eo, by = ——e; + —es,
m m

J
For (w,vy,v2)T € R? ~ se(2) the adjoint operator is given by
0 0 O

ad(wml,w)T: (%] 0 —w s
—U1 W 0



4.3 Examples 47

and the symmetric product is, for w, A € R and v,w € R?, given by

djw+5\v

o v =0 5]

where @ = [ 7]. This gives

2h h
(by 2 b1) =0, (b2 i ba) = T2 (br 2 ba) = el
Since (by : by), (by : be) € span{by,bo} and span{by,bs, (by : be)} has full rank we have
from Theorem 50 that the system is STLC at zero velocity.
The relative equilibrium e; satisfies

1 1
<€1 . b1> = 563, <€1 : b2> = —Eeg, (416)

meaning that the system does not satisfy the sufficient condition 2 of Proposition 53
which can therefore not be used to determine whether (4.2)-(4.3) for this system is
locally controllable for the relative equilibrium e;. Instead equations (4.16) show the
assumption of Corollary 58 is satisfied for &, = e; and (4.3) is therefore STLC for this
equilibrium.

The relative equilibrium aey 4+ (eg satisfies

h ah
<Oé€2 + 663 : b1> = 0, <Oé€2 + 563 . b2> = 6762 — 763,
so the condition 2 of Proposition 53 is satisfied if and only if &« = 0. Since (by : by), (bs : be) €
span{by, bo} and span{by, ba, (b : by)} has full rank we therefore know from Corollary 55
that (4.2)-(4.3) for this system is locally controllable for the relative equilibrium &, = ej.

Example 5 (Satellite with two thrusters). Reconsider the satellite with two thrusters
aligned with the first and second principal axes. The configuration manifold is the
matrix Lie group G = SO(3) and the equations of motion are given by (4.2)-(4.3).
From the previous chapter we know that for z € R? ~ s0(3) we have ad, = 7 and the
inertia tensor is given by I = diag(.Jy, J2, J3), where J; is the moment of inertia around
the 4th principal axis. Therefore the symmetric product (¢ : n) = —I7"(ad{In + ad; L),
&,m € R3~s50(3), is given by

(€:m) =T71(& x (In) +n x (L£)),

where X is the cross product.
With controls as in figure 3.3 we have

1 1
by = 7,0 by = 75
giving
Jy—J
<b1 : b1> = O, <b2 : b2> = 0, <b1 : b2> 2 !
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Thus (by : by), (ba : ba) € span{by,bs} and since span{by, ba, (by : by)} has full rank we
know from Theorem 50 that the system is STLC at zero velocity.
Since

Jy—

(e1:b1) =0, (€1 :by) = Tols es,

Jo — Jle
J1J3 3

<62 . b1> =

<62 . bg) = 0,

Proposition 53 can not be used to determine whether 4.2-4.3 for this system is locally
controllable along the relative equilibria (goexp(te;),e1) and (go exp(tez),e2). We see
instead that the assumption of Corollary 58 is satisfied so the Euler-Poincare equa-
tion (4.3) is STLC for the equilibria e; and e.

We have

Jip— J3
J1Ja

Js — Jo

<€3 : b1> = A €1,

€9, <63 . b2> =

so Corollary 55 gives that equations (4.2)-(4.3) for the system is locally controllable
along the relative equilibrium (go exp(tes),es), go € SO(3), since (by : by), (ba : by) €
span{by, by}, (e3: b1), (e3 : by) € span{by, by}, and span{by, b, (by : by)} has full rank.

Example 6 (Underwater vehicle in ideal fluid). We re-examine the underwater vehicle
in an ideal fluid as described in the previous chapter. The inertia tensor is given by
I = diag(J, M), where J = diag(.Jy, Jo, Jo) is the inertia matrix for the body and M =
diag(my, my, m3) includes added masses. Since, for Q,v € R3, we have

Qo0
d v) = |~ A
the symmetric product is given by
L [2xAD)+T x (JIQ) +v x (Mw) +w x (Muv)
) _ -1
(2 0): (Tw)) =T { Q x Mw) +T x (Mo) '

With forces as in figure 3.4 we have

1 h 1 h 1
bl — — €4, bg = ——€3 + —E€xs, bg — —€9 + —€g.
my J3 ms Ja m3

Calculating symmetric products gives

Moy — My h
b : b - 0 b . b = — —
< 1 1> ) < 1 2) Jamiimi €3 Js 2657
2h my — ms h
b . b — b . b e — —
{2 : ba) Jsmy 4 by bs) Jomims 2 J2m366’

2h 1 (h? h? 1 1
<b33b3>:J2m1€47 <bzib3>:jl<—————+—) €1.
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The space span{by, by, bz, (by : ba), (b1 : bs), (b : b3) } has full rank if

h2m1m2 + Jg(ml — mg) 7’é 0,
h2m1m3 + Jg(ml — m3) 7A 0,

1 1 1 1
Pl———)—-—+—#0
<J3 J2> 77’L?,—i_7n27£7

and since (by : by), (ba : by), (b3 : b3) € span{by,bs, b3} the system is therefore STLC at

zero velocity, according to Theorem 50, if this is satisfied.
Since

(ane; + PBreq 1 by) = 0,

h Jih 1 m mih 1
(aner + Breq t b)) = oy ( ! ) es + (— - ! ) es — [ : es + OK1H€67
3

Ty s Js  Jyma —
m 1 h  Jih 1 mah
et e b = (J277113 - 72) e <73 - J21J3) “T alm_2€5 - 61m31J266’

are not all in span{by, by, b3} Proposition 53 can not be used to determine whether
the system is locally controllable along (g, &)(t) = (go exp(t(aie1 + freq)), arer + Brey).
Since the (ajeq + Biey @ (z,y)) has no component in the e; direction the assumption of
Corollary 58 cannot be satisfied.

Similarly we have that

m 1 1
(ageq + Paes : by) = [ ( S —) e — Qip—=~,
ms

ngl Jg

Joh h moh
(ageq + Baes : by) = g (J12J3 - 71) er + B2 12J364’

1 m 1
(geg + Paes 1 bg) = [ (jl - Jmig) e1 + 042E€4,

are not in span{by, be, b3} and therefore Proposition 53 can not be used to determine
whether the system is locally controllable along the relative equilibrium ases 4+ fses.
Calculating

(qaes + Baes @ (azen + [Faes @ bo)) =
h(a%(Jlml(Jg - Jg) + ngl(Jg — Jg)) + /522J1m2(m2 - ml)) mgh(JQ — Jl — Jg)
27 e3 + ol €6,
3J1M1 msJiJ3

gives that

span{by, by, bs, (aaes + [aes : by), ((aea + Paes @ ba), (aes + [aes @ (anes + Paes @ o))}

generically has full rank if ay # 0. Thus the condition for Corollary 58 to be applied is
satisfied.
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Likewise, for the relative equilibrium ases + [G3eg, we get

1 m 1
(azes + Oseq 1 by) = 3 <— — > ) ey + O‘3ﬁ€57

Jy  Jomy )
(ases + e bo) = s [ 2 — L) e !
€g - = o — a—e
3€3 1+ Dsep @ by N\ Ty ) T G
Jsh h m-h
s =0 (315 = ) e e

which are not in span{by, by, b3} so also for this relative equilibrium the assumptions of
Proposition 53 are not satisfied. Since

span{b, be, bs, (azes + Psep 1 br), (azes + Paep = ba), (azes + Paes 1 (azes + Pseq : ba))}

generically has full rank for g3 # 0 this equilibrium point for the Euler-Poincare equa-
tions (4.3) is STLC according to Corollary 58.



Chapter 5

Control Algorithms along Relative
Equilibria

In this chapter we study control of underactuated mechanical systems on Lie groups. We
focus on the construction of an algorithm which, depending on the sign of a parameter,
generates small-amplitude control forces to accelerate along, decelerate along, or stabilize
a relative equilibrium of a system. Perturbation analysis and Lie group theory play a
crucial role in the analysis. The main limitation of the presented theory is that part of
the results are applicable only to n-dimensional systems with (n — 1) controls. Example
systems to which the theory applies are an underactuated planar rigid body and a
satellite with two thrusters.

This chapter is organized as follows. First, we review the mathematical model of
simple mechanical control systems on Lie groups and perform perturbation analysis for
small amplitude forcing and initial velocity close to a relative equilibrium and give a sim-
ilar result obtained in [11] for small initial velocity. Following we review the theory from
[11] regarding motion algorithms for small velocity. Based on the perturbation analysis
for the case when the initial velocity is close to a relative equilibrium we construct two
“inversion maps” and combine them into a “motion primitive.” After an application of
the motion primitive, the velocity has changed in the direction of a relative equilibrium,
while the configuration has changed as if the velocity was a relative equilibrium through-
out the execution of the primitive. Using this motion primitive iteratively we design an
algorithm which gives small-amplitude control forces which make the system accelerate
along or decelerate along a relative equilibrium or stabilizes the motion along a relative
equilibrium. We illustrate the approach by applying the algorithm to an underactuated
planar rigid body and the satellite with two thrusters.

5.1 Mathematical Model and Perturbation Analysis

We consider a simple mechanical control system on a matrix Lie group given by Y =
(G,L{f1,..., fm}). We let id denote the identity element and let A — e” denote the
matrix exponential of a square matrix A. With g € G and £ € g, g being the Lie algebra
corresponding to G, we have from chapter 3 that the equations of motion for this system
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are
9=9-¢ (5.1)

E=—3E: O+ buy(t), (5.2)
i=1
where b; = I7'f;, and the symmetric product (- :-) : g x g — g is given by
n:¢)= —H_l(adf]]IC + ad¢ln),

for n,C € g.

Recall that a relative equilibrium for X is a curve t — ggexp(té.) € G, for go € G
and &, € g, that is a solution to the dynamics (5.1), (5.2) for zero input u, i.e. e
satisfies (e 1 o) = 0. We call relative equilibrium both the curve ¢ — ggexp(t&,) and
the vector .

Given a relative equilibrium &, we define the linear map A, : g — g by A,n :=

—(&e i ), for all n € g.

Remark 59 (Simplifying convention). It is well known that g is an n-dimensional vector
space. In what follows, we make no distinction between g and R"™. This is done in order
to be able to express a vector in g as a column vector and thus being able to collect
vectors in a matrix and in order to represent a linear map on g as a matrix. This choice
of notation is not to be confused with the claim that the Lie algebra structure on g is
insignificant since this is far from being the case. °

We are interested in bounded control signals u € C°([0, 27|, R™) of the form
u(t) = eu' (t) + Eu(t), 0<e<x 1,

where u’ € C°([0,27],R™), i € {1,...,2}. Accordingly, we define
V()= bul(t), je{1,2},
=1

and equation (5.2) thus becomes

E=—3(E:6) + () + EV(1).

For f € C°([0,27],R") and o € R it will be convenient to make the definition

F= /Ot e f(s)ds,  F(t) = F ().

In what follows, s and 7 will be used as integration variables only.
In [11] the following perturbation result is obtained.

Theorem 60 (Perturbation analysis for small velocity). For 0 < ¢ < 1 and for inputs
of the form Y " biu;(t) = eb'(t) + €*b*(t), let (g9(t),£(t)) be the solutions of (5.1) and
(5.2). Let x(t) be the exponential coordinates of g(t) with initial condition g(0) = id.
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Also, assume that the initial velocity is £(0) = €€} + €262, where & and & are of order
O(1).
Then for t € [0,27] it holds that &(t,€) = €€ (t) + €2£2(t) + O(€®), with

§(t) = & + (1), B
E(t) = & — 38 &t — (& D) + (2 — 50T 55D (1),
and z(t,€) = ex' (t) + €2*(t) + O(€®), with

e (1) = bt + B0,
(1) = &t — Heb: )P + (b2 — F>) (1) — (61 D)) — Led + BT, bt + B1I(0).

Instead of the velocity being small, i.e. of order O(e), we let the velocity be of
arbitrary size but aligned with a relative equilibrium with a deviance of order O(e?).

Proposition 61 (Perturbation analysis for a relative equilibrium). Let ¥ be a simple
mechanical control system on a Lie group with a relative equilibrium &.. and corre-
sponding matric A,. For 0 < € < 1 and o > 0, let [0,27] > t — (g(£),&(t)) be
the solution to (5.1) and (5.2) with t — Y ;" byu;(t) = eb*(t) + €2b*(t) and from initial
velocity £(0) = o0& + €262, for & = O(1), and initial configuration g(0) = id. Let
h(t) := g(t) - exp(—to&) and let x(t) := log(h(t)) be the exponential coordinates of h.
Then, fort € [0,2x], it holds that £(t,€) = £0(t) + €€1(t) + €2E%(t) + O(€3) with

£(t) = ot
&t =1 <>
€)= 6 - 50 ) (1) + (),
e+ <>wzth
71(t) = Adaxpisoten (07 (5))(0)
(1) = Aldaptaote (TGN (1) — 3Adexpiaoc (BT ) ()(1)
+ Adesp(aota 127 (5)(1) = 3{Aduxptsog) (017 (5)), Adesrotan (017 (1) (5] (1)

and x(t,€) = ex'(t) +

Proof. Since the input is analytic in € so is the solution £() = Y- ) €/¢/(t). Inserting
the expansions for £ into equation (5.2) and collecting terms of same order we compute

£ = -1 ¢,

€= (&) + b (),

€= (€€ — (¢ &) + B
Inserting the initial condition then gives

€O(t) = Ugrm

gty =" (1),
E3(t) = e Mted — LT €N (1) + 027 (1)

1
2
= 7t — LU DY (8) + 027 (1),
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Since g is a solution to the kinematic equation (5.1), it follows that

h=¢-exp(—to&e) — g exp(—tow) - 0&e
=g & exp(—toée) — h -0
=h-(exp(toe) - & - exp(—toe) — &)
= h - (Adexp(togee) (§) — 06se)
=h- (Adoxp(wﬁre)((jgre + 651 + 6252 + 0(63)) - Ugre)
= h - Adexpio.) (€61 + €6% + O(€%)).

If we define ((t) := Adexptoe.e) (€61 + €2€% + O(€?)), then we have, according to Proposi-
tion 31, that

w(t) = () — 5[¢. J(t) + O(€). (5.3)
Using z = ex! + 222 + O(€®) we achieve the result on x' and z? by inserting the
expression for ¢ into equation (5.3). O

When comparing Proposition 61 with Proposition 60 we see that when ¢ = 0 Propo-
sition 61 simplifies to Proposition 60, with £} = 0, as expected. In both propositions
we see that £2(t) not is restricted to move in span{bi,...,b,} but new directions of

—s —5 O
motion are possible in particular due to the symmetric product term (b1 : ') (¢). It
is precisely this term we will utilize for generation of motion in the directions not lying
in span{by, ..., b, }.

5.2 Small Velocity Motion Algorithms

In this section we recapitulate the motion planning algorithms obtained in [11|. These
results are included in order to give a full perspective of what motion algorithms, giving
small-amplitude control forces, are available for simple mechanical control systems on Lie
groups. In these algorithms the velocity is small, that is, of order O(€) where 0 < € < 1
and the results are therefore built on Proposition 60.

As suggested by Theorem 50 the following assumption is needed.

Assumption 1. The subspace span{b;, (b; : b;) | 1,5 € {1,...,m}} is full rank and
(bi : b;) € span{by, ..., by}, fori € {1,...,m}.

Using this assumption the following theorem, having character of a lemma for the
proposed motion primitives, is proved.

Theorem 62. Let Assumption 1 hold and let n € g be arbitrary. Define the inputs
(bX(t),0%(t)) as follows:

1. Set N = sm(m — 1) and let P denote the ordered set of pairs {(j, k)] 1 < j <
k < m}. Identify the elements in P with the set {1,...,N}, and let a(j, k) be
the integer associated with the pair (j, k). For a € {1,...,N} define the scalar
functions

1

Valt) = NeT:

(asin(at) — (o + N)sin((o + N)t)).
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=

Figure 5.1: The constant velocity algorithm applied to the planar rigid body. The bullet
shaped objects illustrates the planar rigid body, the darker ones correspond to the body
at the beginning and the end of a primitive. Figure taken from |11] with permission.

2. By means of the pseudoinverse compute (m+ N) real numbers z; and z;, such that

m m—1 m
= Z,Zibz’ + Z Z zjk<bj : bk>'

i=1 j=1 k=j+1

3. Finally, set

m—1 m
> \/lzil(by = sign(zie)be)agi (1),
j=1 k=j5+1
1
bz(t):%Zzzb +— Z Z 2k (b + b;) + (by < bi)).
i=1 =1 k=j+1

Then b'(t) and b*(t) satisfy

(62 — 1t ﬁ)) (2m) = .
We will call this map (b'(t),b*(t)) = Inverse(n).
Using this theorem, the orthogonality properties of ¥,(t), and Theorem 60 the mo-

tion primitives Maintain-Velocity and Change-Velocity can be constructed and anal-
ysed according to the following.
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Proposition 63 (Maintain-Velocity motion primitive). Consider the system 5.1 and
5.2 with inputs of the form " biu(t) = eb'(t) + €b*(t), where 0 < € < 1. Let
Assumption 1 be satisfied. Let e =0, 0 < 0 < 1, and assume that

9(0) = 90,
5(0) - Ofref + U2§err0ra

for some go € G and Epet, Eerror € §- If we for t € [0, 27] take

(bl (t)’ b2(t)) = Inverse(ﬂ-<§ref . 5ref> - gerror)a

then we obtain

log(go_lg(27r)) = 2700 et + O Egrpor + O(0),
5(27‘-) = Ugref + 0(03)‘

We denote this motion primitive Maintain-Velocity(o, &er)-

Proposition 64 (Change-Velocity motion primitive). Consider the system 5.1 and
5.2 with inputs of the form ", biu(t) = eb'(t) + €b*(t), where 0 < € < 1. Let
Assumption 1 be satisfied. Let e = /o, 0 < 0 < 1, and assume that

9(0) = go,
£(0) = a&o,

for some gy € G and & € g. If we for t € [0, 2] take

(b (1), b%(t)) = Inverse(&hna — o).

for some &gnal € @, then we obtain

log(gg '9(2m)) = 70 (& + Enat) + O(0*?),
5(271-) = Ugﬁnal + 0(02)'

We denote this motion primitive Change-Velocity (o, &xpal)-

These two motion primitives are the basic ingredients in the following algorithm
which, by keeping a constant velocity, steers the system from one configuration with low
velocity (of order O(0?)) to another configuration with low velocity (of order O(c?)).

In the algorithm the function || : R — Z, defined by |z| = max{n € Z| n < z}, is
used.

Proposition 65 (Constant velocity algorithm). Consider the system 5.1 and 5.2 with
inputs of the form > bu;(t) = eb'(t) + €2b?(t), where 0 < e < 1. Let Assumption 1
be satisfied. Assume go, g1 € G satisfies that log(gy ' g1) is well defined. For 0 < o < 1
and (g,€)(0) = (go, O(c?)) define the algorithm

1: N = || log(gy g1/ (270)]

2: Enom = 10g(g5 '91)/ (210 N)
3: Change-Velocity(c, &nom)

4: forke{l,...,N —1} do
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5:  Maintain-Velocity(o, &uom)

6: end for

7: Change-Velocity(o,0).

Then the final configuration gg.a and the final velocity &qnar after an execution of the
algorithm satisfies

log(ginag1) = O(°?),
Einal = O(0).

We notice that the velocity throughout the duration of this algorithm is at most
of order O(c). Therefore the time it takes for this algorithm to reconfigure a body is
inherently of order O(2).

Since, after applying the constant velocity algorithm, the final velocity may be
nonzero the system will drift if not stabilized. The following algorithm is able to stabilize
the system exponentially if it is close enough to equilibrium.

Proposition 66 (Local exponential stabilization algorithm). Consider the system 5.1
and 5.2 with inputs of the form Y ;" biu;(t) = eb' (t) + €b*(t), where 0 < € < 1. Let
Assumption 1 be satisfied. For 0 < o < 1 assume that g(0) = go € G and £(0) =&y € g
satisfies ||(log(go), &o)|| < o. Let N € N. Define the algorithm

1: for k€ {0,1,...,N} do

2: t, = 4k
or = [[(log(g(t)), & ()]

4:  Change-Velocity(oy, —(log(g(tx)) + m&(tr))/(2moy))

5. Change-Velocity(oy,0)

6: end for

Then there exists a A > 0, independent of N, such that the final configuration gana and
the final velocity Egnal after an execution of the algorithm satisfies

|| (log(gﬁnal)> gﬁnal) || S || (lOg(gO)> 50) ||€_)\N.

In [11] an additional motion algorithm is constructed, called the “static interpolation
algorithm”, which steers the systems configuration through a sequence of points. This
algorithm is, with minor modifications, a repeated application of the constant velocity
algorithm between the points in the given sequence.

b

5.3 A Motion Algorithm along a Relative Equilibrium

For a simple mechanical control system ¥ = (G, 1,{f1, ..., fin}) with relative equilibrium
e and corresponding matrix A,., we present the following assumptions. First, we make
the standing assumption that & & span{b, ..., b}, otherwise the theory of kinematic
reductions |13] is readily applicable and the control problems we consider below are
trivial.

Assumption 2 (Lack of linear controllability). The subspace span{by, ..., by} is invari-
ant under the linear map Ap, that is, ( e : b;) € span{by, ..., by}, fori e {1,...,m}.

Assumption 3. (& : (b : b)) € span{by,...,b,}, for j,k € {1,...,m} and j # k.
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Assumption 4. The subspace span{by, ..., by, &} is invariant under the linear map
a'dgre'

Assumption 5. The subspace span{b,..., by} is invariant under the linear map adg,, .
If we define the matrix B := [bl e bm] € R™™ then Assumption 2 is equivalent to

the existence of a matrix Q € R™ ™ such that A,.B = BQ, and in turn e*~B = Be®.
Similarly Assumption 4 is equivalent to the existence of a matrix W e Rm+1)x(m+1)
such that ade, [B ére] = [B §re] W. For Assumption 5 this reduces to the existence
of a matrix M € R™*™ such that ad¢,, B = BM.

Given Q € R™™ define Fy, : C°([0, 27, R™) — {f € C*([0, 27],R™) | f(0) =0} by

Folul(t) ::/0 e@t=)y(s)ds.

Lemma 67 (Transformation of controls). The map Fg is invertible and its inverse
is given as follows: if w = Fplu], then u(t) = —Quw(t) + w(t). Additionally, as in
Assumption 2, let A, B and Q satisfy A.eB = BQ. If u € C°([0,27],R™) and w =
F,olul, 0 € R, then

Bu’(t) = Buw(t).

Proof. One-to-one correspondence between u and w is readily checked. We compute

t t
Bu’(t) = / e (t=9) By (s)ds = B/ 7?3y (s)ds = Bu(t). O
0 0

From this lemma we see that Assumption 2 ensures that there is a one-to-one cor-
respondence between Bu’ (t) and Bw(t). Without this assumption Bu’(t) would also
contain components not lying in span{bs, ..., b,} which we would not be able to steer
for all t € [0, 27].

The function [-] : R — Z defined by [z] = min{n € Z| n > z} is needed in the
following.

Definition 68 (Convenient forcing frequencies). Taker = [X]. For (i,h) € {1,...,m}x
{1,...,r}, select numbers a, in the set {0, ..., rm+3m(m—1)} as follows:

V=0, T:={1,....,rm+ sm(m —1)}

2: forhe{l,...,r} and{orie {1,...,m} do

g w:=min(Z); v:= Adexp(soe) (bi sin(ws))ds

0
4: if v € span(V) then oy, =0 else ayp, == w; T =7\ {w}; V :=VU{v} end if
5: end for

Define the n X rm matriz

27
Ao ::/Adexp(safre)(B [diag(sin(ans), o sin(as)) - diag(sin(ag,s), ..., sin(amrs))} )ds.
0

Neat, for (i,7) € {1,...,m}?, select numbers B;; as follows: for i < j take [;; €

----------

take B;; = Bji, and for i = j take 3;; = 0.
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Remark 69. In other words, the numbers «;; are selected sequentially in such a way as
to maximize the rank of A, ,. Note that, for i,j,k,0 € {1,...,m} and h € {1,...,7},
we have: (i) all nonzero «;j, are distinct, (ii) all nonzero oy, are distinct from all nonzero

Bjk, and (iil) f;; = B if and only if (4, 5) = (k,1) or (¢,7) = ([, k). o

Remark 70. If Assumption 5 is satisfied we know that Image(A, ) C span{bi, ..., by}
This means that we only need r = 1, and A, , reduces to

27
Aso = /Adexp(sogre)(Bdiag(sin(als), ., sin(ay,s))ds
0

2T
= B/ e* M diag(sin(ays), . . ., sin(a,s))ds,
0

where M € R"™ ™ is the matrix satisfying ad¢,, B = BM. °

Remark 71. The computations required by Definition 68 include checking that a vector
belongs to a subspace. In practical numerical implementations it is sufficient to verify
this condition up to a specified tolerance. It is convenient to choose this tolerance
comparable with the accuracy of the control algorithms. °

For 7 € R"™ ™ define X\ : R™*™ — R™*™ by
sign(Zjk)\/| Zjk| Jj <k,
)\]k(Z) = O , j = ]{j7
%\/ ‘Zk]‘ , j > k.

We are now able to obtain the following result.

Proposition 72 (speed inversion). Let X be a simple mechanical control system on
a Lie group with a relative equilibrium .. and corresponding matriz A.. and satisfying
Assumptions 1, 2 and 3. Let QQ € R™™ satisfy AeB = BQ. Letn € R", 0 € R, and
compute z € R™ and Z € R™*™ as the pseudoinverse solution to

nZZZu ZZ ik(b; ¢ b)), Zixr =0 forj > k.
i=1

Jj=1 k=j+1

Gwen r, a, Ay, and 3 as in Definition 68, let

Z)‘?k sin(B;kt), € {1,...,m},
k=1

and let 7y = (Y11, -+, Yinds - s Viry - - > Ymr) © b€ the unique solution to
Asay = _AdOXp(soire)(By(5>>(27r)7
Yin =0 if a; =0 for (i,h) € {1,....,m} x{1,...,r}.
Additionally, if we take

wjl(t) :yj(t)+27jl8in(ajlt)a ] € {1a"'>m}a
=1

H(t) = Fg[w'](t),

u
W) = £ (y 4 2),
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where x € R™ s the unique solution to

m—1 m o
By = Z Z /0 (6O'Are(27r_5) — [)w;(s)wli(s)ds (b; : bi)

j=1 k=j+1
m

Z /One(,Arem_s)(w}(s))?ds (bi 1 b)), (5.5)

i=1

+

N[

then b'(t) = Bu'(t) and b*(t) = Bu?(t) satisfy

(o2

B0 (21) + 07 (21) = 0, (5.6)
Adeptartr (01 (5))(27) = 0. (5.7

1
2

We call this map speed inversion(a,n) = (b'(t),b*(t)).

Proof. Existence and uniqueness of the solution to (5.5) is a consequence of Assump-
tions 3 and 1. Regarding existence and uniqueness of the solution to (5.4), Definition 68
ensures that

Adexp(safre) (By(s))(?ﬂ) € Image(AU,a)'

Since every nonzero column in A, , contributes to the rank of A, ,, the entries of ~y
corresponding to these will be unique. The remaining ~-values are defined to be 0.
Regarding the proof of equation (5.7), direct calculations show that

AdeXP(SU&e)(ﬁo(S))@W) = AdeXP(sa£re)(Bwl(3))(27T) = Asuy + Adexp(sofre)(By(S>>(27T) =0.

Regarding the proof of equation (5.6), from Lemma 67 we compute

F 50 = (3wt > w0
j=1 k=1
=23 D wlOuh) by b + D (w0 b b,
J=1 k=j+1 i=1

Since all nonzero a-values are distinct and are distinct from the [-values we have for
Jj<k
2m m 2m
/ wi (Owip(t)dt =Y Na(Z)Akg(Z) / sin(;:t) sin(Bggt)dt
0 0

l,qg=1
m

=" MDAy (2)85" 7 = N2\ (2)7 = Zi.

l,g=1
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By straightforward calculations we then obtain

L5 %Y (2r) + B (2r) (5.8)
2w 2w
% 0 g0 Are(2m—s) Zb_0>(8)dS+B/O 6UQ(27T—S)U2(S)dS
m—1 m
-y ) / w!(s)wh(s)ds(b; - be) (5.9)
j=1 k=j+1"0

- Z /0 7Eﬁ"’Are(%—s) — Dw; (s)wy(s)ds(b; : by) (5.10)
_%Z/o Ceratrny 7(5))*ds(b; : by) (5.11)

- i(Xi + 2)b; (5.12)

m—1 m m
== >N Zilby b+ mbi =1
j=1 k=j+1 i=1

0

If we look at the proof of this proposition the roles of Assumptions 1, 2, and 3 become
clear.

If we consider equation (5.8) for 0 = O(e), and disregard terms of order O(e), it
reduces to

_%@":ﬁ")"(%)m_f(%):— ’_ Z /0 ﬂw;(s)w,i(s)ds@j:bk)
1Y [ wirast ) + Ben)

Thus Assumption 1 ensures, for o = O(e), first of all that all the necessary directions to
span the full space are available and second of all that fozﬂ(w}(s))zds@j : b;), which can
only move in the positive direction of (b; : b;) and therefore complicates controllability,
belongs to the linearly controllable subspace which b?(t) = Bu?(t) can compensate for.

Assumption 3 then means that the term (5.10) will lie in span{by, ..., by} and thus
controlling the term (5.9) will mean controlling what is not in span{by,...,b,}. The
control u? can then, via term (5.12), compensate for the terms (5.10)—(5.11).

Assumption 2 means according to Lemma 67 that we can design w' (with w!(0) = 0)
and then calculate the corresponding w!. This simplifies considerably the control over
the term (5.9).

Remark 73. In the proof of Proposition 72 we see that the reason we need Definition 68
is to ensure that

Acr,o/V = _Adexp(saﬁre) (By(s)) (271-)7
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has a solution and that all the frequencies are different. If a solution can be found by
other means than using this definition, keeping the condition that the frequencies are
different, we can thus disregard it. This will in fact be the case in the examples we
consider. °

We now construct a different inversion map.

Proposition 74 (configuration inversion). Let ¥ be a simple mechanical control
system on a Lie group with a relative equilibrium & and corresponding matriz A
and satisfying Assumptions 2 and 4. Let Q € R™™ satisfy AjeB = BQ and W €
ROMDXn4D satisfy ade,, [B &e| = [B &e] W. If p € R™, 0 € R and

u(t) =0,
u?(t) = FC,_Q1 [w?] (1), w(t) =L I, Opr] e {’u] sin®(t),
then b(t) = Bul(t) and V*(t) = Bu?(t) satisfy

D) (27) + 07 (27) = 0,
Adesp(sote) (07 (5))(27) = B + 0z,

0

for some § € R. We denote this map configuration inversion(o, pu) = (b'(t),0%(t)) =

(0,%(2)).

Proof. For b'(t) = 0 we have, using Lemma 67, that
L@ BTy (2m) + 07 (2m) = B2 (27) = Bu?(2r) = 0.,

Since adg, &e = 0 we have that

W — |: W 0mx1:| ; /—V\V/ c ]Rmxm7

*1xm 0

which in turn gives

eWs _ {eWs 0m><1:|

*1xm 1

Thus we have

eWs |i Im Om><1:| e—Ws

Wsp—Ws 0,1
01><m 0

*1xm 0

Im 0m><1
*1xm O .
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This together with Assumption 4 and Lemma 67 enables us to compute

Adexp(sotee) (07 (8))(2m) = exp(soade, ) (Bw?(s)) (27)
[m

01><m

— exp(soade, ) ([B & [ ]w2<s>><2w>

=[5 e[, [uoien

1xm

I 0
_ 1 so m mx1 —so H 2
== [B &e} esoW {le 0 ] e—soW [0] sin”(s)(27)

—1[B &) { L 0”5“] m sin?(s) (2r)

*1xm

= B + 0&e.

If Assumption 5 is satisfied this result, and its proof, can be simplified.

Proposition 75 (configuration inversion). Let ¥ be a simple mechanical control
system on a Lie group with a relative equilibrium .. and corresponding matriz A.. and
satisfying Assumptions 2 and 5. Let Q, M € R"™ ™ satisfy AeB = B(Q and ade, B =
BM. If pe R", 0 € R and

u'(t) =0,
u*(t) = Frolw®(t), w?(t) = ze~ "M pusin®(t),
then b'(t) = Bu'(t) and b*(t) = Bu®(t) satisfy

o pu—

LT BT) (2) + 52 (27) =0,

a

Adexp(sat.e) (B (5))(27) = Bp.

We denote this map configuration inversion(o,u) = (b'(t),0%(t)) = (0,6%(t)).

Proof. For b'(t) = 0 we have, using Lemma 67 and w?(t) = Le=7M*;isin’(t), that
L@ 0 (2m) + 7 (2m) = B2 (2) = Bu?(2r) = 0.

Using Assumption 5 and Lemma 67 we compute

Adexp(soee) (02" (5))(27) = exp(soad,, ) (Bw?(s)) (2m) = BerMow?(s)(2r)
= 1 Busin®(s)(2m) = By.
U

The algorithm presented in this section requires the following additional assumption.

Assumption 6. The n dimensional system > has n—1 control forces, that is, m = n—1.
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Assumption 6 together with the standing assumption &, & span{bs, ..., b,,} implies
R™ = span{by, ..., by, &e }—thus Assumption 4 is trivially satisfied. These assumption
therefore gives that

(b ) =Y alybi+ affbee, ik €{1,...,m}
=1
where o}, € R, i € {0,1,...,m}. Therefore

m

<€re : <b] : bk>> = Z<€re : a;kbz + ajo‘kgre> = Za§k<€re : bz>
1=1

i=1

Thus Assumption 6 along with Assumption 2 (and the standing assumption &, ¢
span{b, ..., by,}) imply Assumption 3.

Since Assumption 6 gives R" = span{by,..., by, &e} every v € R™ can be written
v = Z:’;l vib; + vo&e and with this we define the projection operators Pg : R — R"
and P¢, : R" — R" by

Pe.. ( zm: v;b; + Vofre> = Vp&res Pp:=id — P,
=1

where id is the identity. Notice that, under Assumption 5, these projection operators
commute with adeg, —this is not the case under Assumption 4. This allows us to con-
struct the following motion primitive.

Proposition 76 (change speed motion primitive). Let ¥ be a simple mechanical con-
trol system on a Lie group with a relative equilibrium & and corresponding matriz A
and satisfying Assumptions 1, 2, and 6. For 0 < e < 1, assume that

g(O) = Yo eXp(€2Verror)a

5(0> = Ugre + 62£er1r01r7
for some gy € G, 0 € R, Verror, error € R™ With Verror = O(1) and epror = O(1). If we
take p € R and

(b (1), B2 () = speed_inversion(o, p&e — €274 E0) Lt € [0, 2],
; - | configuration inversion(o, ) ., te2m 4nl,

1 _
Bu = —Pg (Adexp(_gmgre) (PB(I/error) + = log (g(()) Lg(2m) exp(—QWafre)))) ,
then we obtain

9(4m) = g5 exp(€Viror),

£(47T> = (U _'_ €2p)£re + €2£:rror7
fOT some Vgrromggrror € R"™ with Pfre(ygrror) = 0(1)7 7DB(V;Jklrror) - 0(6)7 :ekrror - O(E) and
for

do = goexp <(47r0 + 27r62p)§re + 62735re (Verror)>.

*

We denote this control map by (0+€%p, g5, Vierors Elvor) = Change speed(e, 0, p, 9o, Verror, Eerror ) -
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Proof. Using Propositions 61 and 72 we compute

£(2m) = 0&e + € (€7 ¥ Eorror + plre — €7V  Eopror) + O(€%) = (0 + pe?)ée + O(€?),

and from this, Propositions 61 and 75 we have £(47) = (0 + pe?)&e + O(€?). Define
Jo,1/2 = Yo €Xp ((27ra + 62ﬂ)§re), Ve = Pey,(Verror), and vp := Pp(Veror), then we
achieve using Proposition 61 and Corollary 32

go_&/zg(%r) =exp (— (2m0 + eQD)fre)go_lg(O) exp(22?(2m) + O(€%)) exp(2m0&,e)
= exp ( — (270 + €2ﬁ)§re) exp(€2(D€e + vp)) exp(22?(2m) + O(€%)) exp(2moé,e)
= exp(—210&) exp(e’vp + O(e")) exp(e’2®(2m) + O(€%)) exp(2m0&,se)

= exp (Adesp(2r0g) (v + 2%(27)) + O(")).

From Propositions 61 and 72 we know that

1 -
*(2m) = = log (9(0) " g(2m) exp(=2m0¢.e)) + O(e).
The definition of g; and go /2 gives

go exp(—2m(o + €2p)§re)go_i/2 =
goexp((4mo + 272 p)&re + €20€1e) exp(—27 (0 + €2p)&se) exp(— (270 + ezﬂ)gre)go_l =
id.

Using these results, Propositions 61, 72, 75, and Corollary 32 we obtain

g(4n) = g(27) exp(2(Bp + 0&e) + O(€%)) exp (27r(0 + 62p)§re)
= gg exp ( —27(o + 62p)§re)g0_%/2g(27r) exp(2(Bp + 0&e) + O(€%)) exp (27T(O’ + 62p)§re)

= 305 (€Adasp(-an(oetpite) (Adsp( 2ot (V5 + 22(27)) + B+ 66e) + O(e"))
= (62 exp(—2m(o+e2p)ére) (Pﬁre (AdeXp 27r05re)(VB +x (27T))) + 5€re) + 0(63))
exp (€ (Pes, (Adep( 20t (V5 + 23(27)) + 80 ) + O(")).

O

With this motion primitive we are able to construct the following algorithm that
speeds up, slows down, or stabilizes, a system along a relative equilibrium.

Proposition 77 (speed control algorithm). Let ¥ be a simple mechanical control sys-
tem on a Lie group with a relative equilibrium .. and corresponding matriz Ay.. Assume
Y satisfies Assumptions 1, 2, and 6 and take 0 < e < 1. Let g(0), 9o, Verrors 05 Eerrors P
be as in Proposition 76 and let N € N.
Define the algorithm (04+€*Np, g5, Viivors Eror) =Speed_ control(e, o, p, N, go, Verror; Cerror)
by
90,1 ‘= 905 Verror,1 = Verror; 01 := O gerror,l = gerror;
forke{l,...,N} do

(ak+17 90,k+1, Verror,k+15 gerror,k—l-l) = Change_ Speed(ﬁ Ok, P5 90,k5 Verror,k» gerror,k>
end for

. * __ . * O . * PR .
gO - gO7N+1) Verror T VerrOf,N-i—l; gerror L gerror,N—i-l;
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The final configuration and velocity after the execution of this algorithm are

9(N4m) = g5 exp(€Virror)
§(N47T) = (O + €2Np)€re _l_ 625:1‘1"01“’
5* E Rn7 7Dﬁre(l/(;krror) = 0(1)7 PB(V:rror) = 0(6)7 N = 0(6)7 a’nd

*
H)here v error error

error?

N
gE]k = Jo €Xp ((UTﬁnal + %p€2NTﬁnal)€re + 62 Z Pfre(l/error,k)> .
k=1

Proof. From Proposition 76 we have o, = o + (k — 1)pe? so we immediately obtain
E(NAT) = ony1be + O(e3) = (0 + €Np)&e + O(e?). From Proposition 76 we have
g(N4m) = g5 exp(€*Vyo,) Where

N
gE]k = 9o (H €xXp <27T(20k + p€2)£re + 62P5re(yerror,k)>>
k=1
N
= goexp Z (27r(20'k + pet)re + 62'P§re(l/error7k)>>
k=

1

N
= Jo €Xp 2t N (20 + Np€2> gre + 62 Z Pfre(l/error,k)>
k=1

N
= go €XpP (UTﬁnal + %p€2NTﬁnal) gre + 62 Z 7Dﬁre(Verror,k)) .

k=1
From Proposition 76, its proof, and Proposition 61, we have that change speed gives
the map (Eerror by P8 Verrork), @)+ (Cerror kit PB(Verror k1), 0 + €2p) independent of gq
and Pﬁre(Verror,k>- Because (gerror,ka PB(Verror,k>> - 0(1) giVeS (gerror,k+17PB(Verror,k—l—l)) =
O(e) we obtain that Pg(Vegork) = O(€, k) = O(€), Pe,. (Verror) = O(1, k) = O(1), and
Eerrors = O(€, k) = O(e). O

Note that p > 0 speeds up the system along the relative equilibrium, p < 0 slows
down the system, and p = 0 stabilizes the system’s motion along the relative equilibrium.
We may select N = O(E%) in Proposition 77 so that the absolute change in velocity
along the relative equilibrium is of order O(1). Thus, it is possible to use the algorithm
speed_control to change the velocity along the relative equilibrium from a given value
to another independent of e.

5.3.1 Interlude Regarding the Assumptions

In this section we examine some possibilities for relaxing some of the assumptions needed
for the change speed motion primitive. It turns out that an alternative speed inver-
sion map can be created such that the assumption regarding the linearly controllable
subspace, i.e. Assumption 2, can be weakened. Also the m = n — 1 assumption, i.e.
Assumption 6, can be weakened, at least for m < 3. The replacing assumption seems to
be too strict though, but the analysis gives insight into the difficulties that arises when
removing the m = n — 1 assumption.

The objective of this section is to point out and clarify the difficulties that arises when
weakening the assumptions. The theory will not be applied to any example systems.
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Weakening the Assumption Concerning Linear Controllability

We define {b,11,...,0;} by span{by, ..., by, bms1, ..., 0} := span{by, e by (Ere 1 b1), o1
b))}, where by, ... by, by, ..., b are linearly independent, and let B := [bl o bl}.
Assumption 7 (Linear controllable subspace). The subspace span{by, ..., b} is invari-

ant under the linear map Ap, that is, (e : b;) € span{by,..., b}, forie {1,... 1}

Assumption 8. [ > m and (b, : b,) € span{by,...,b} for ¢ € {1,...,l}, v € {m+
1}, and (&t (b 1 b)) € span{by, ..., 0} for j ke {1,...,1}.

Assumption 7 means that there exists a matrix @ € R™! such that Areé = EQV
We define @) := [8; 8;3} where Q11 € R™™, Q5 € R™*U=m) 0y € RU=m>*m and
Q22 c R(l—m)x(l—m).

Given Q = | & 82, Qu € R™™, Qu, QF) € R™ (™), 9y € RIMX(-m) define
Lg:C([0,27],R") — {f € C'([0,27],R) | f(0) = 0} by

Llul(t) = / t eQt=)y(s5)ds,
0
and use this to define Fg : C°([0, 2], R™) — {f € C'([0,27],R™) | f(0) = 0} as

Falul(t) = [Ln 0] £5 || % |u] ).

Lemma 78 (Transformation of controls). The map .7-"@ is invertible and its inverse is
given as follows: if w = Fglu], then u(t) = —Quw(t)+ — Q12 fo (t=5)Q22 )y 10(s5)ds
Additionally, let Assumption 7 be satisfied, and let Are, B and Q satisfy AreB BQ
If u € C°([0, 27], R™), w = ]:UQ[ u], and z = [0 Ilf'mj|£0_é ngl} ], then

5. 0 | w(t
Bu (t):B[Z((t))]

Proof. One-to-one correspondence between u and w is readily checked. We compute

B = [t = B [[o%0 s Jusiis = Beg[[l5] ] 0 =

5[ w0
B 0

Notice that for o = O(e), 0 < e < 1, we get z(t) = O(e).
Proposition 79 (alternative speed inversion). Let ¥ be a simple mechanical control
system on a Lie group with a relative equilibrium & and corresponding matriz Ay and

satisfying Assumptions 1, 7 and 8. Let @ c R satisfy A,B = E@ Let n € R",
o € R, and compute z € R™ and Z € R™" as the pseudoinverse solution to

m
= E Zibi —
i=1

-1

3

> Zplbjby),  Zpp=0 forj >k

1 k=j+1

J

<€re :
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Gwen r, a, Ay, and (8 as in Definition 68, let
Z)‘?k sin(G;kt), j€{1,...,m},
k=1

and let v = (Y11, -+, Yinds - s Virs - - - Ymr) © be the unique solution to

AU,(X’V = _Adexp(soire)(By(s))(%r)a
Yin =0 if ay; =0 for (i,h) € {1,....,m} x{1,...,r}.

Additionally, if we take

(5.13)

wj(t) = y;(t) + Z%—k sin(agt), 7€ {l,...,m},
k=1
(t) [w'](t),
)L, || T ]w] @ (5.14)

-1
Q
01
2m _ ~r ~r #
/ coQ(2m—s) [15"8 ]e“Q (27—5) ] gp—0Q" (2m—1) [IO}) (x+1[2]), (5.15)
0

(

where x € R is the unique solution to

ut F

g
A=
u?

()
()

2m
=y 3 / (€7~ Dpul(s)ul(s)ds (b + [ e 0T (s)ds,
0

j=1 k=j+1
(5.16)
m m l-m
FO) = (i ()b b) +2) > wi()z ()b : beym)
i=1 =1 k=1
I—m l—m
+ Z (bjtm * bitm),
7=1 k=1
then b(t) = Bul(t) and V*(t) = Bu?(t) satisfy
—LET BT (2m) + 22 (2m) =, (5.17)
Adep(soen) (0 (5))(27) = 0. (5.18)

Proof. Existence and uniqueness of the solution to (5.16) is a consequence of Assump-
tions 1 and 8. Regarding existence and uniqueness of the solution to (5.13), Definition 68
ensures that

Adexp(soe,) (By(s))(2m) € Image(Ayq).

Since every nonzero column in A, , contributes to the rank of A, ,, the entries of ~
corresponding to these will be unique. The remaining ~-values are defined to be 0.



5.3 A Motion Algorithm along a Relative Equilibrium 69

Regarding the proof of equation (5.18), direct calculations show that

AdeXp(saﬁre)(ﬁU(s))(QW) = Adexr)(sa&e)(Bwl(S))(QW) = AU,(X’V + AdeXp(SJEre)(By(s))(QW) = 0.

Regarding the proof of equation (5.17), from Lemma 78 we compute

S

® 0t = O wit bj+Zz bivm : Zwk bk+ 2O bpsm)

=1 k=1
m—1 m
=23 3wl ){bj : bi) +Z bi)
=1 k=j+1
m l—m l—m l—m
23 S OAO )+ 3 3 AOHO )
=1 k=1 j=1 k=1
m—1 m
=2 Z wjl-(t)w,i(t) (bj : be) + f(1),
=1 k=j+1

where f(t) € span{by,...,b;}. Furthermore, if we write f(t) = E[ggg], fi:]0,27] —
R™, fy: [0,27] — R=™ then for 0 = O(e) we have fo(t) = O(e). This shows that in
this limit we have y = [OX(OE) }, for xo € R™.

Since all nonzero a-values are distinct and are distinct from the J-values we have for
j <k

/0 Ww;(t)w;(t)dtz > N Z)Mo(2) /0 Wsin(ﬁjlt) sin (gt )dt

> M2y (2)55 7 = M(Z) Mg (Z)7 = Zjse.

l,qg=1

From the theory of linear control systems, see e.g. [40], we know that when the system
T =0Qx+ [Ig)”}u, r € RY, uw € R™, is controllable, i.e. for o # 0, then for z(0) = 0 and
arbitrary x; € R the control

2w -1
u(t) _ |:I7n 0:|60Q(27r—t) (/ eaQ(27r—s) [181] [Im 0]€UQT(27r—s)d8) T
0

gives x(2m) = wy; in fact this control is of minimum norm among the controls giving
this end point. Using the pseudoinverse instead of the inverse and rearranging the terms
this is equation (5.15) with xy = x + [5} Since for 0 = O(¢e) we have xy = [OX(OE)], the
control (5.15) is also able to achieve the desired result in this limit without becoming
infinite. Notice that that b2°(27) = 2(2n).



70 Control Algorithms along Relative Equilibria

By straightforward calculations we then obtain

T

O oY (2r) + 0 (2n)

1
2

27 21 _
=— % / 7 Are(2m=9) <ﬁa : ﬁ0>(s)ds + B/ e7@m=5)92 (5)ds
0 0

3
L
I .

= ([ ubeubnstey 0+ [ et nudopulast - 0)

0

J=1 k=j+1
m 27 . .
— %Z/O 7T f(s)ds + B (x + [5])
j=1
j=1 k=j+1 i=1

O

From the proof of this proposition we see that replacing Assumption 2 with something
more general inevitably leads to order considerations since the algorithms in [11] are not
able to generate velocities above the order O(€), meaning that any new algorithm at
least needs to be able to start with ¢ = O(e). In this limit the linearly controllable
subspace is span{B,cA.B,...,0" 'A% !B} so we need to be able to guarantee that
every part of the error, which we need to correct with b2, is of the same or higher order
as the part of the controllable subspace it belongs to. Otherwise the control u? will
grow unbounded as ¢ — 0. In this analysis we could also have included the subspace
generated by the vectors in A% B but this would have complicated the analysis and is
therefore left out since the reason for this section is solely to point out some of the
complications that arises when weakening the assumptions. We could not have included
vectors from AX B, k > 2, since these would not suffice in the limit o = O(e).

Since configuration inversion, see Proposition 74, needs Assumption 2 this new
alternative speed inversion map can not be used in the construction of a replacement for
change speed, needing weaker assumptions, unless a version of configuration inversion
which uses Assumption 7 instead of 2 is constructed.

Removing the m =n — 1 Condition

If Assumptions 2 and 5 are satisfied then configuration inversion gives a way to
construct b?, while b' = 0, such that for any p € R™ we get

LT BTy (27) 4+ 0 (2m) = 0,
AdCXp(SC"ﬁre)(ﬁo—(s))(2ﬂ-) = B/’l’

This means that, when £(0) = &, + €2£2, we get

£(2m) = 0&pe + €2€oAr92n£§ + 0(63)7
log (9(0)~"g(2m) exp(—27m0&se)) = €Bu+ O().
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The limitation of configuration inversion is thus that it is only able to correct
errors in the configuration that are a result of motion in span{b,...,b,}. If we take
o= 0(e) we get

Adexp(soe) (B (5))(2) = B2(27) + O(e)

and therefore, when b' = 0, this problem cannot be avoided by any assumption. In the
previous section we therefore assume m = n — 1 such that R" = span{by, ..., b, e}
because we are not interested in how precisely the configuration behaves along ..

If we do not want to assume m = n—1 but instead seek to replace configuration inversion
with another scheme requiring weaker assumptions we thus need b' # 0 and the equa-
tions (which were satisfied by the controls given by configuration inversion) b' and
b? need to satisfy are

0 =" (27),
LB (2m) + 227 (2m),
0= Adexpeoen) (07 (5))(27),
V4 Vo = — 2 Adep(omern (B 01) (5))(27)
+ Adesp(sngn) P (5))(27) = H[Aduxpisoen) (B (5)), Adexpirat) (O (7)) (5)](27),

where v € span{by, ..., by, Umi1, .-, Up_1} and R™ = span{by, ..., by, Va1, -« -, Un_1, Ere }-
The value of vy € span{{.} is irrelevant. It is fairly apparent that the complexity of the
problem increases considerably when m # n — 1.

In the following Assumptions 2 and 5 are implied and the matrix M € R™*™ is the
one satisfying adg B = BM. To replace the m = n — 1 assumption we instead assume

A (R™) C span{by, ..., by, e}y (5.19)
adg,, (R") C span{by, ..., bn, &}, (5.20)
b, b] € span{by, ..., by, &}, 4,k €{1,...,m}, (5.21)

which is trivially satisfied for m = n — 1. Since it is still a strong assumption it is
therefore close to the m = n — 1 assumption in some sense. Assumptions 5.19-5.21
means that

[AdeXp(SU&e)(ﬁU(S))a AdeXp(Tofre)(ﬁJ(T))(S)](QW) € span{by, ..., bm; e

so the error produced by this term can be corrected by b? according to Proposition 75.
Define Pge yo 0 R" — R” to be the projection onto span{v,41,...,v,-1} given by

n—1
P(B,erert (Z a;b; + Z a;v; +an§re> = Z a;v;,

i=m—+1 i=m—+1

for a € R™. The assumptions (5.19)-(5.21) gives

Pl (Adexp@ogre)((ﬁg ) <s>><27r>)

= > [ et P b0

1<j<k<m
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which is “as nice as possible”. By choosing w?(t) = e "M (£sin*(t) + 25 (¢t — )t),
w,¢ € R™ we get

b_20(27T> — Be_UM27T§,
Adexp(sote) (7 (5))(27) = By,

and we can therefore choose i and ¢ such that the problem reduces to finding w! which
satisfies

0=>0l"(21) = Bw1(27r), (5.22)
0=—13" : 31 (27) +¥"(2w)

- D /27r (s)ds{b; : be), (5.23)

1<j<k<m

0 = Adexp(soe.) (07 (5))(27)

2T
_ B / My (5)ds, (5.24)
0

b+ Uy = — L Adep(aoe (BT D7) (5))(27)
+ Adexp(sotre) (02 (8))(27) = 2 [Adep(sote) BT (8))s Adexp(roe) (01 (7)) (5)](27)

/%/ s)dsdt Pep.e.p (b : 0x)) + Bw, (5.25)

1<]<k<m

where, for any w € R, we can choose p such that this is the result.
Define

;(t) = sin(jt), jEN,
or(t) = cos((m + k)t) — cos(kt), ke N,

and
27 t
M= [ [ wiatosi, ke,
0 0

which is nonzero. If we use
wgl'(t):wj()_‘_'yaJQSaj +Z(S]k¢k a j€{1>"'am}>
and choose a,...,a,, € N\ {1,...,m}, all distinct, such that the rank of

2
/0 €M diag (o (), - . B (5))ds

is maximal then we can choose Ya,,. .., %Va,, € R, such that (5.24) is satisfied. Then
for equation (5.23) and (5.25) (equation (5.22) is trivially satisfied) to be solved means

solving
27
/ wjl-(s)wi(s)ds:o, / / s)dsdt = Zj,
0
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for arbitrary Z;, € R, which reduces to finding 6 € R™*™ satistying

> 60 =0, 1<j<k<m, (5.26)
=1

Z(5jzAkz + 0ulNj1) = Zjk — Va; Mra; — YarNjoy, = Xjr,  1<j<k<m. (527)
=1

For m = 2 such a solution is 6 = diag(dy, d2) with

5 :5 _ X12 _ _5X12
! 2 A12—|—A21 87T ’

For m = 3 a diagonal solution 0 = diag(d;, ds, d3) is given by

01 Aot Ay 077 [Xo 1 2= % X2
O = Az 0 Ay Xiz| = = g —% 0 Xus
03 0 Azp Ags Xo3 20 =22 22| | Xos

A diagonal solution trivially satisfies (5.27). We can not expect to be able to find a
diagonal solution for m > 4 since we in this situation have m coefficients and %m(m —1)
equations to be solved but %m(m — 1) > m for m > 4. Whether there exists a solution
to equations (5.26)-(5.27) for m > 4 we leave as an open question.

The underwater vehicle example from the last chapter does not satisfy assump-
tions 5.19-5.21. We have not been able to come up with any examples, where m # n—1,
that satisfy assumption 5.19-5.21. These assumptions are simply still too strict. Thus
the main argument of this section is that weakening the assumptions, in particular the
m = n — 1 assumption, complicates the analysis considerably.

5.4 Examples

The usefulness of the theory is illustrated in the following examples.

Example 7 (Planar rigid body). Reconsider the rigid body moving in the plane as
described in the previous chapters. The configuration manifold is G = SE(2) ~ SxR? 5
(0, x,y). Let m denote the mass of the body, J its moment of inertia and h the distance
from the center of mass to the control forces. The symmetric product is, for w, A € R
and v,w € R?, given by

N A I

djw+5\v

where w = [8 _0“’]. With controls as in Figure 3.2 we have

1 h 1
by = —es, by = ——e; + —es,
m J m
which gives
2h h
<b1 : b1> = 07 <b2 : b2> = T €9, <b1 : b2> = ———e€3.

Jm Jm
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0 5 10 15

<
o

Figure 5.2: speed control applied to the planar rigid body with &, = e3, e = 0.1, and
p = 2 and with initial conditions (6, z,y)(0) = (—17,0,0), go = ¢(0), and (w, v1,v2)(0) =
0. The dotted curve corresponds to the motion of the center of mass and the ellipses
corresponds to the planar body at time equidistant instances.

Assumption 1 is immediately seen to be satisfied. It is straightforward to compute that
<63 . 63> = 0,

s0 & = e3 is a relative equilibrium. Choosing this relative equilibrium we have

Are = adgre =

o = O

0 0

0 0f,
00

and we have A,.B = BQ and adg, B = BM, M = (@, with

0 —hm
o=y |

According to Remark 70 we calculate A, , as

2
Apo = B/ e*Mdiag(sin(ay s), . . ., sin(am,s))ds
0
0 2w hm

zwlMa&‘%ﬂ.

Since A, . is independent of the frequencies a; and ay and the rank is constant for
o # 0 we may, according to remark 73, disregard Definition 68. Equation (5.4) is seen
to reduce to

which is satisfied if
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and we can for example choose

Il
=

g = 1, /6 - 3, 4!
The components of x are computed

2 2w

2 21
> xibi = / (€74 G — Dywi(s)wy(s)ds(by = by) + 5 Y [ e CT)(w](s))>ds(b; :
i=1 0

i=1 Y0

27( . T—S h 27( ag. T—S
:/0 (€M) — 1) <—J—m§re) wi (s)wy(s)ds + 5 g7 e 2m) <J—m€2) (ws

h 2
- /0 (wl(s))2ds e

h 2
== / (Ag1 sin(Ba) + 2 sin(ags))?ds ey
0

h
= EW()\M(ZV +73)es,

meaning that we have

Th(A21(Z2)* +13)
J )
Assumption 6 is immediately seen to be satisfied, so all the assumptions are met,
and therefore we can apply the speed control algorithm to speed up the system along
es. The result of the speed control algorithm applied to the planar rigid body can be
seen in Figure 5.2 and 5.3. In the implementation we have chosen ay = 1, § = 3, and
7 = 0.

X1 = x2 = 0.

Figure 5.3: speed control applied to the planar rigid body with &, = e3, € = 0.1,
and p = 2 and with initial conditions (0,z,y)(0) = (—3m,0,0), go = g¢(0), and
(w,v1,v2)(0) = 0. In the right figure the dashed curve corresponds to wu;(t) and the
solid curve corresponds to us(?).

Example 8 (Satellite with two thrusters). Consider a satellite with two thrusters
aligned with the first and second principal axes. The configuration manifold is G =
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SO(3) and the equations of motion are of the form (5.1) and (5.2) where the symmetric
product is given by

(€:m) =T71(& x (In) +n x (L£)),

where I = diag(Jy, J2, J3), J; being the moment of inertia along the ith principal axis,
and X is the cross product. We have that

<63 : 63) = 0,

so eg is a relative equilibrium. With controls as in figure 3.3 we have

1 1

so it is not possible to directly control the motion in the ez direction. With &, = e3 we
compute

0 &80
A= |80 0
0 0 0

It is straightforward to calculate that A,.B = B(@), with

0 Jo—J3
Q = |iJ3—J1 62 :| )

Ji

so Assumption 2 is satisfied. We have that

(b« by) = (by : by) =0, (b« ba) = 275k es

we see that Assumption 1 is fulfilled if J; # Js. Assumption 3 is satisfied because

Joy — Ji
e {by 1 by)) = : =0.
(f ( 1 2>> J1 s (63 63)
Since
aden =& x 1
we see that
J- J
adgrebl = jjbg, adfrebg = —jlbl,

so Assumption 5 is satisfied and we have ad¢,, B = BM with
0 —4
M = [ % OJz}

Assumption 6 is immediately seen to be met.
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0.37

530.25—

0.2

0 50 100

Figure 5.4: speed control applied to the satellite with two thrusters with &, = es,
e = 0.1, and p = 1 and with initial conditions £(0) = (0,0,0.2) and go = ¢(0). In the
right figure the dashed curve corresponds to u;(t) and the solid curve corresponds to
us(t)

Using Remark 70 we calculate A, , as

2T
Ao = B/ e*"Mdiag(sin(ays), . . ., sin(am,s))ds
0

5, /Ozn[cos(as) —j—;sin(as)] {sin(als) 0 )} ds

j—f sin(os)  cos(os) 0 sin(ags
aq sin(om) Jy azcos(om)
: a?—o2 J2  aZ—o2
= B2 SlIl(O'?T) [ Jo 011 cos(om) a2 sir21(o7r) = BHU,O&'
A a% —02? a% —02?

Finding a solution to

Aoy = _AdeXp(saﬁre) (By(s))(2m),

thus amounts to finding a solution to

A2(Z
Ho‘,o/y = Ho‘,(,@,ﬁ) {)\zEZ;] .

Since the rank of H,, is not full when o € N special care is to be taken for these
o-values according to Definition 68. For o = 3 we have that H, 345 has full rank but
Hs.o = 0 (since the a-values are different from () so using Definition 68 this situation
will be avoided. Since

5(0‘%2—022) 0

—1 [} —0o

Ho‘,aHm(,@ﬂ) = 1(60 ) B(a2—o?) | v
az(B?—o?)

we have, according to Remark 73, that we may in fact disregard Definition 68 and
instead take

Y

o (fl(zxﬁz__aaz )\12(2)
Blaz—o?) )\21(2)

a9 (62 —02)

= —H_lHo
Y oo’ Lo, (8,8) {)\21(2)
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as long as we ensure 3% — 02 # 0 and that oy, as, and 3 are different. In practical
implementations we only need % > ¢, for some ¢ > 0. During speed inversion
we have

0= o) 0, w= [ sl

which gives
112 2 J3—J1 2 2 2 Jo—J3 2 2 2
let 13 =m(o® ((£52) Qa2 +99) + (252) (Qar(2)? +93)
+viaq + veas + M2 (2)* 8% + A21(Z)262> :

where || - ||z is the norm on L%([0, 27],R?). We can thus in speed inversion choose
a1, ao, and 3, all different, as to minimize ||ul].
Calculating the value of x gives

2

2 2T 2
inbi _ / (e74em=5) _ Nwl(s)wi(s)ds(by : by) + : Z/ e7Are@m=3) (41 (5))2d s (b : by)
i=1 0 0

i=1

27
= / (e7Awe(2m=5) _ ) <Jij2‘§13 &e) wi (s)ws(s)ds
0
= ()’
so we have x = 0. The result of the speed control algorithm applied to this example

can be seen in Figure 5.4. In the implementation giving this figure we have chosen
a1, a, 3 € {1,...,5}, all different, as to minimize ||u'(|.



Chapter 6

Conclusion

In this thesis we have focused on control of simple mechanical control system on Lie
groups. In particular we have developed novel theory regarding local controllability
along a relative equilibrium and constructed an algorithm capable of speeding up an
invariant simple mechanical control system on a Lie group along a relative equilibrium.

In this chapter we will present a summary of this thesis and give some suggestions
to future directions of research.

6.1 Summary of Dissertation

In Chapter 2 we presented, in a rigorous manner, the necessary theory of Lie groups
needed to understand and analyse simple mechanical control systems on Lie groups. In
particular we presented some of the classical matrix Lie groups describing rigid bodies.

Chapter 3 was concerned with the derivation of the equations of motion for forced
mechanical systems, giving the forced Euler-Lagrange equations, and the equations of
motion for mechanical systems with a Lie group as configuration manifold. Simple
mechanical control systems is a special class of mechanical systems on Lie groups and
the equations of motions for this class were deduced. The theory was applied to three
example systems.

In Chapter 4 we focused on local controllability issues. We introduced some of the
strongest theorems regarding local controllability properties of affine control systems.
Previous controllability results for simple mechanical control systems on Lie groups were
presented. Using the presented controllability theorems we derived a novel result giving
sufficient conditions for a simple mechanical control system on a Lie group to be locally
controllable along a relative equilibrium. This result is one of the main contributions of
this thesis. The results were applied to give a controllability analysis of three example
systems.

Chapter 5 was devoted to the construction of a novel motion algorithm. We presented
the previous results regarding small amplitude control of simple mechanical systems in
order to give a better understanding of the perspective of the new algorithm. Per-
turbation analysis was used to construct two inversion maps and a motion primitive
was constructed as a composition of these maps. This motion primitive is the basis
of the constructed algorithm. Computing small-amplitude control forces, this motion
algorithm is capable of speeding up a simple mechanical control system on a Lie group
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along a relative equilibrium. The content of this chapter is the second main contribution
of this thesis and will be published in [35].

6.2 Future Directions

In the following we will give some suggestions to future research related to the main
contributions of this dissertation.

Local Controllability along a Relative Equilibrium

The novel result of chapter 4 gives sufficient conditions for a simple mechanical system
on a Lie group to be locally controllable along a relative equilibrium. The concept of
a relative equilibrium can be extended to simple mechanical control systems; these are
mechanical systems for which the kinetic energy is given by a Riemannian metric and
the Lagrangian is the kinetic energy minus the potential energy (which is a function of
the configuration only), see, e.g., [13]. The results of |29] are controllability results for
zero initial velocity (and therefore build upon the work of [41]) for simple mechanical
control systems and these results are then in [11] applied to simple mechanical control
systems on Lie groups. In this thesis we have worked the other way giving the local
controllability result based directly on the theory of [5]. It would be interesting to
investigate general results regarding local controllability along a relative equilibrium for
a simple mechanical control systems and hopefully obtain the result of chapter 4 as a
corollary of a more general result.

Motion Algorithms for Mechanical System

One of the main disadvantages of the new motion algorithm presented in chapter 5 are
the strict assumptions. In particular the assumption that the number of independent
control forces is n — 1 where n is the number of degrees of freedom for the system. As
illustrated in chapter 5 removing this particular condition complicates the analysis con-
siderably. An important feature of the proposed motion algorithm is that everything is
given explicitly meaning that it can be implemented in real time. It would be interest-
ing to examine the possibility of an implicit method not needing the n — 1 assumption.
One might hope that an implicit method utilizing the geometric structure of simple
mechanical control systems on Lie groups would produce a fast and efficient means to
circumvent the problem.

Another interesting challenge would be to generalize the results of chapter 5 to more
general mechanical systems. In the vein the work in [11] is generalized to a bigger class
of systems in [32|, one could attempt a similar generalization of the results in chapter 5.
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