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ResumeEmnet for denne afhandling er kontrol af mekaniske systemer under en bevægelse, derkaldes en relativ ligevægtskurve. En sådan bevægelse er karakteriseret ved at hastighed-en, i et koordinatsystem i legemet, er konstant. Et stift legeme, der roterer med konstanthastighed omkring en af hovedakserne, er et eksempel på en relativ ligevægtskurve.I afhandlingen fokuseres på såkaldte simple mekaniske kontrolsystemer på Lie grup-per. Denne klasse af systemer er de�neret ved følgende: kon�gurationsmangfoldighedener en Lie gruppe, den totale energi er givet ved den kinetiske energi (d.v.s. ingen po-tentiel energi) og den kinetiske energi samt kontrolkrafterne er invariante i en bestemtbetydning.Afhandlingen indeholder to hovedresultater. Først udledes tilstrækkelige betingelser,af algebraisk karakter, under hvilke et simpelt mekanisk kontrolsystem på en Lie gruppeer lokalt kontrollerbart langs en relativ ligevægtskurve. Disse betingelser omfatter develkendte betingelser for lokal kontrollerbarhed af et ligevægtspunkt for et simpeltmekanisk system på en Lie gruppe. Dernæst præsenteres en ny kontrolalgoritme forsystemer med færre kontrolkrafter end frihedsgrader. Forudsat nogle antagelser er op-fyldt, beregner denne algoritme kontrolkræfter, der får systemet til at a

elerere, de
el-erere eller stabiliseres langs en relativ ligevægtskurve; valget af bevægelse bestemmes affortegnet af en parameter i algoritmen. Algoritmen anvendes konkret på et stift legemei planen samt en satellit med to kraftmomenter.





Abstra
tThe subje
t of this thesis is 
ontrol of me
hani
al systems as they evolve along thesteady motions 
alled relative equilibria. These traje
tories are of interest in theory andappli
ations and have the 
hara
terizing property that the system's body-�xed velo
ityis 
onstant. For example, 
onstant-speed rotation about a prin
ipal axis is a relativeequilibrium of a rigid body in three dimensions.We fo
us our study on simple me
hani
al 
ontrol systems on Lie groups, i.e., me-
hani
al systems with the following properties: the 
on�guration manifold is a matrixLie group, the total energy is equal to the kineti
 energy (i.e., no potential energy ispresent), and the kineti
 energy and 
ontrol for
es both satisfy an invarian
e 
ondition.The novel 
ontributions of this thesis are twofold. First, we develop su�
ient 
ondi-tions, algebrai
 in nature, that ensure that a simple me
hani
al 
ontrol system on a Liegroup is lo
ally 
ontrollable along a relative equilibrium. These 
onditions subsume thewell-known lo
al 
ontrollability 
onditions for equilibrium points. Se
ond, for systemsthat have fewer 
ontrols than degrees of freedom, we present a novel algorithm to 
ontrolsimple me
hani
al 
ontrol systems on Lie groups along relative equilibria. Under someassumptions, we design iterative small-amplitude 
ontrol for
es to a

elerate along, de-
elerate along, and stabilize relative equilibria. The te
hni
al approa
h is based uponperturbation analysis and the design of inversion primitives and 
omposition methods.We �nally apply the algorithms to a planar rigid body and a satellite with two thrusters.
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Chapter 1Introdu
tionDi�erential geometry applied to the analysis of me
hani
al systems and, in parti
ular,to nonlinear 
ontrol of me
hani
al systems, provides a fruitful way to gain insight intothe intrinsi
 properties of the system, su
h as a number of 
ontrol and 
ontrollabilityproperties. Control problems for me
hani
al systems are known to be 
hallenging whenthe number of independent 
ontrol a
tuators is stri
tly less than the degrees of freedomof the system.The main fo
us of this work is motion 
ontrol along relative equilibria for simpleme
hani
al 
ontrol systems on Lie groups. A simple me
hani
al 
ontrol system on a Liegroup is a me
hani
al system for whi
h the 
on�guration manifold is a matrix Lie group,the kineti
 energy and the 
ontrol for
es are invariant under the appli
ation of the groupa
tion, and the total energy is equal to the kineti
 energy. A relative equilibrium is asteady motion for whi
h the body-�xed velo
ity is 
onstant when applying no 
ontrolfor
es. For example, the 
on�guration of a satellite is the matrix Lie group SO(3) anda steady motion about any of its prin
ipal axes is a relative equilibrium.Using geometry, primarily Lie group theory, we develop novel results regarding lo
al
ontrollability along relative equilibria for simple me
hani
al 
ontrol systems on Liegroups. Spe
i�
ally, we obtain two sets of results. First, we establish a theorem givingsu�
ient 
onditions, of algebrai
 nature, for a me
hani
al system on a Lie group to belo
ally 
ontrollable along a relative equilibrium. Se
ond, for simple me
hani
al 
ontrolsystems on Lie groups with fewer 
ontrol a
tuators than degrees of freedom, we designan algorithm produ
ing a

eleration along, de
eleration along, and stabilization of arelative equilibrium using small-amplitude 
ontrol for
es.In this 
hapter we start out with a short des
ription of the history of the theory ofme
hani
al 
ontrol systems. We then des
ribe the main 
ontributions of this thesis. Weend with a short outline of the thesis.1.1 Geometry, Nonlinear Control, and Me
hani
sSin
e Sir Isaa
 Newton published the ground-breaking �Philosophiae Naturalis Prin-
ipia Mathemati
a� in 1687, the mathemati
al theory of me
hani
s has 
ontinuouslyattra
ted tremendous s
ienti�
 interest. Remarkable breakthroughs were the introdu
-tion of Lagrangian me
hani
s in 1788 and Hamiltonian me
hani
s in 1833. The theoryof di�erential geometry was established in the beginning of the 20th 
entury, but it was



2 Introdu
tionnot until 1967 that the �rst book in English treating me
hani
s in a geometri
 mannerwas published by Abraham and Marsden; for a later revised edition see [1℄. Another
lassi
 text in the �eld is the work by Arnol'd [4℄ �rst published in English in 1978.Geometri
 me
hani
s has sin
e been an a
tive �eld of resear
h in both the Lagrangiansetting, using 
al
ulus of variations and Riemannian geometry, as well as the Hamilto-nian setting, using symple
ti
 geometry and Poisson geometry. A des
ription of someof the modern theory 
an be found in [31℄.The use of geometry in nonlinear 
ontrol began in the late 1970s and important early
ontributions in
lude [10℄, [18℄, [23℄, and [41℄. The modern nonlinear 
ontrol theory nowrelies on 
on
epts from di�erential geometry: the aim is to provide intrinsi
 des
riptionsof various 
ontrol theory 
on
epts and to avoid arbitrary 
hoi
es of 
oordinates. Themodern geometri
 approa
h to 
ontrol theory is des
ribed in the books [3℄ [21℄, [22℄,[25℄, [34℄, and [39℄.The paper [9℄ from 1977 by Bro
kett is one of the earliest a

ounts where the di�er-ential geometri
 link between me
hani
s and 
ontrol theory is stressed. During the 1980sthere was only limited resear
h a
tivity on me
hani
al 
ontrol theory; a prominent workbeing a series of papers on 
ontrol theory for Hamiltonian systems by van der S
haft,see 
hapter 12 in the book [34℄ for an a

ount of this theory. From around 1990 untiltoday, the �eld gained interest and sin
e then mu
h new insight has been gained andsophisti
ated theoreti
al results have emerged. The books [6℄ and [13℄ des
ribe some ofthese approa
hes.1.2 Contributions of this ThesisThe 
ontributions of this thesis are twofold. The �rst 
ontribution is a general resultproviding su�
ient 
onditions for a simple me
hani
al 
ontrol system on a Lie groupto be lo
ally 
ontrollable along a relative equilibrium. The se
ond result is the designof a 
ontrol algorithm to 
ompute 
ontrol inputs to speed up a system along a relativeequilibrium. In other words, the �rst result is an existen
e result, whereas the se
ond isa 
onstru
tive result. Though 
losely related in nature, the analysis leading to the tworesults di�ers 
onsiderably.Lo
al Controllability along a Relative EquilibriumIn [19℄ a result giving su�
ient 
onditions for small time lo
al 
ontrollability of generalnonlinear 
ontrol systems was 
onje
tured. A stronger version of this result was laterproved in [41℄. Finally in [5℄ this approa
h was extended to address lo
al 
ontrollabil-ity problems along an un
ontrolled referen
e traje
tory. This latter work 
ontains thestrongest known theorems providing su�
ient 
onditions for lo
al 
ontrollability alongtraje
tories.In [29℄ the main theorem of [41℄ was used to give lo
al 
ontrollability results forme
hani
al 
ontrol systems whose Lagrangian is kineti
 energy, given by a Rieman-nian metri
, minus potential energy. In [11℄, these results were used to give su�
ient
onditions for lo
al 
ontrollability results for simple me
hani
al 
ontrol systems on Liegroups. In parti
ular, su�
ient 
onditions for a system to be lo
ally a

essible at zerovelo
ity, lo
ally 
on�guration a

essible, small-time lo
al 
ontrollable at zero velo
ity,



1.2 Contributions of this Thesis 3and small-time lo
al 
on�guration 
ontrollable are given. These results are all for zeroinitial velo
ity. The su�
ient 
onditions involves only algebrai
 analysis of the �xedinput ve
tors de�ning the 
ontrol dire
tions and are mu
h simpler to verify than thegeneral 
onditions in [41℄.In Chapter 4 we apply the results in [5℄ to prove a new proposition regarding lo
al
ontrollability along a relative equilibrium for a simple me
hani
al 
ontrol system ona Lie group. As for the zero velo
ity results the su�
ient 
onditions to ensure lo
al
ontrollability along a relative equilibrium are algebrai
. To be more pre
ise the su�
ient
onditions requires examining the spa
e of symmetri
 produ
ts and the spa
e of Liebra
kets of the �xed input ve
tor �elds de�ning the 
ontrol dire
tions. In the spe
ial
ase when the relative equilibrium in fa
t is an equilibrium the result redu
e to theproposition in [11℄ regarding small-time lo
al 
ontrollability at zero velo
ity.Motion Control Algorithm along a Relative EquilibriumIn the design of 
ontrols for a me
hani
al system the number of 
ontrol for
es is animportant fa
tor. If the system has as many 
ontrol a
tuators as degrees of freedom itis 
alled fully a
tuated; otherwise it is 
alled undera
tuated. The motivation for studyingundera
tuated systems is twofold; it gives rise to other design possibilities than a fullya
tuated system and it is appropriate in the situation of an a
tuator failure, meaningthat su
h an analysis improves robustness to a
tuator failures whi
h, e.g., is 
ru
ial in
ase the system is an a hazardous invironment su
h as outer spa
e for a satellite.Extensive resear
h has fo
used on undera
tuated me
hani
al systems, espe
ially inthe 
ontext of 
ontrolled Lagrangians and Hamiltonians, e.g., see [7℄, [36℄, and subse-quent works. In [11℄ motion 
ontrol algorithms to re
on�gure and exponentially stabilizesimple me
hani
al systems on Lie groups using small amplitude periodi
 for
ing are pro-posed. These algorithms are also appli
able, under some 
onditions, in the 
ase thereare fewer a
tuators than degrees of freedom. The 
onstru
tive approa
h is the sameas in [27℄ and [28℄ where it is applied to a 
lass of kinemati
 systems on Lie groups.The method is similar to that applied in [38℄ and [37℄ to di�erent 
lasses of me
hani
alsystems. The results of [11℄ was later in [32℄ extended to in
lude the more general 
lassof me
hani
al systems where the 
on�guration manifold has a prin
ipal bundle stru
tureand the kineti
 energy is given by a Riemannian metri
. Another approa
h to motionplanning of me
hani
al systems is to use os
illatory 
ontrols 
ombined with an analysisusing averaging theory, see for example [17℄, [42℄, and [44℄.Less resear
h has been done on 
ontrolling systems along relative equilibria; a relatedspin-up problem of a rolling ball is 
onsidered in [20℄. In 
ase the relative equilibrium isaligned with one of the ve
tors de�ning the dire
tions of 
ontrol, the theory of kinemati
redu
tions 
an be applied to generate motion along a relative equilibrium. For ana

ount of the theory of kinemati
 redu
tion see [13℄ or the series of papers [12℄, [14℄,and [33℄.Using an approa
h resembling that of [11℄, Chapter 5 presents a new motion 
ontrolalgorithm for an invariant 
lass of undera
tuated simple me
hani
al 
ontrol systemson Lie groups. This motion algorithm produ
es 
ontrol for
es whi
h make the systema

elerate along, de
elerate along, and stabilize a relative equilibrium; whi
h type ofmotion is determined by the sign of a parameter in the algorithm. The main limitationof the algorithm is that it only applies to n dimensional systems with n − 1 
ontrol



4 Introdu
tionfor
es. The results of Chapter 5 will be published in [35℄.1.3 Outline of the ThesisA short outline of the thesis is as follows:Chapter 2: In this 
hapter we review the ne
essary elements from the theory ofdi�erential geometry and Lie groups.Chapter 3: Here we derive the equations of motion for the so 
alled simple me
hani
alsystems on Lie groups. This is done using 
al
ulus of variations and Lie group theory.Chapter 4: In this 
hapter we review elements of 
ontrol theory and give a 
ontrolanalysis of simple me
hani
al systems on Lie groups. Most importantly we provide anew result giving su�
ient 
onditions for a simple me
hani
al system on a Lie group tobe lo
ally 
ontrollable along a relative equilibrium.Chapter 5: This 
hapter is devoted to an exposition of 
ontrol algorithms for simpleme
hani
al systems on Lie groups with fewer a
tuators than degrees of freedom. Inparti
ular we design an algorithm whi
h is able speed up a system along a relativeequilibrium; this is illustrated by applying the theory to two example systems.



Chapter 2Lie GroupsThe purpose of this 
hapter is to introdu
e some elements from di�erential geometryne
essary to understand the material presented later on. Most of this material 
an befound in e.g. the books [8℄, [45℄ and [2℄. The notation in this thesis follows most 
loselythe one in [2℄, whi
h is the notation most often used in geometri
 me
hani
s literature.We start out by reviewing elements from di�erential geometry, without any proofs,in order to introdu
e notation and 
larify what is assumed knowledge of the reader. Themore thorough presentation of the theory starts by introdu
ing Lie bra
kets. This isfollowed by a se
tion on general Lie groups in
luding the important 
on
ept of the Liealgebra 
orresponding to a Lie group. We end the 
hapter with a se
tion on matrix Liegroups whi
h are the spe
ial 
ase of Lie groups we will fo
us on after this 
hapter.2.1 Preliminaries in Di�erential GeometryA map f : Rn → Rm is said to be analyti
, or Cω, on an open set D ⊂ Rn if f inan open neighbourhood of every point in D is expressible as a 
onvergent power series,i.e. it's Taylor series expansion around an arbitrary point in D 
onverges in an openneighbourhood of it.A set M is said to be a lo
ally Eu
lidean spa
e of dimension n if M is a Hausdor�topologi
al spa
e for whi
h every point m ∈ M has an open neighborhood U homeo-morphi
 via x to an open subset of Eu
lidean spa
e Rn, i.e. x : U → Rn. The pair
(U, x) is 
alled a 
oordinate system or a 
hart. A di�erentiable stru
ture of 
lass Ck,
k ∈ N∪{∞}∪{ω}, on a lo
ally Eu
lidean spa
e M is a 
olle
tion of 
oordinate systems
{(Uα, xα) | α ∈ A} satisfying

⋃

α∈A

Uα = M,and
xα ◦ x−1

β is Ck for all α, β with Uα ∩ Uβ 6= ∅,and the 
olle
tion 
ontains all 
oordinate systems enjoying this property. If k = ∞the spa
e M , with this di�erentiable stru
ture, is 
alled a di�erentiable manifold orjust a manifold and if k = ω then M , with this di�erentiable stru
ture, is 
alled ananalyti
 manifold.



6 Lie GroupsThe tangent spa
e to M at m ∈ M , denoted by TmM , is the ve
tor spa
e whi
hin a 
oordinate system (U, x) = (U, x1, . . . , xn) it is given by
TmM = span{ ∂

∂x1

∣∣∣∣
m

, . . . ,
∂

∂xn

∣∣∣∣
m

}
.Let N denote a (analyti
) manifold and let f : M → N , then f is said to besmooth (analyti
) if for lo
al 
oordinate systems (U, x) aroundm ∈M and (V, y) around

f(m) ∈ N the map y ◦ f ◦ x−1 is smooth (analyti
). If f is a smooth bije
tion with asmooth inverse it is 
alled a di�eomorphism. For the spe
ial 
ase N = R we denotethe 
lass of smooth fun
tions on M by C∞(M). The tangent map of f at m ∈ M isthe linear map
Tmf : TmM → Tf(m)N,de�ned by
Tmf(v)(g) = v(g ◦ f),where v ∈ TmM and g is a smooth fun
tion in a neighbourhood of f(m). The dual of

Tmf is the linear map
T ∗

mf : T ∗
f(m)N → T ∗

mM,de�ned by
T ∗

mf(α)(v) = α(Tmf(v)),where α ∈ T ∗
f(m)N and v ∈ TmM .Lo
ally Tmf is seen to be given by the Ja
obian matrix as
Tmf

(
∂

∂xj

∣∣∣∣
m

)
=

dim(N)∑

i=1

∂yi ◦ f
∂xj

∣∣∣∣
m

∂

∂yi

∣∣∣∣
f(m)

, i ∈ {1, . . . , n}.For the spe
ial 
ase N = R and f a smooth fun
tion the tangent map is denoted thedi�erential whi
h for m ∈M and v ∈ TmM is de�ned
dfm(v) = v(f).Thus we have dfm ∈ T ∗

mM , where T ∗
mM is the dual of TmM , and in the 
oordinatesystem (U, x) we get

T ∗
mM = span{dx1

m, . . . , dx
n
m

}
.Let f : M → N be smooth. Then if f is inje
tive and Tmf is nonsingular for all

m ∈ M the pair (M, f) is 
alled a submanifold of N . If for p0 = f(m), m ∈ M , Tpfhas full rank for all p ∈ P = f−1(p0) then (P, i), where i : P →֒ M is the in
lusion map,is a submanifold and we have TpP = {v ∈ TpM | Tpf(v) = 0}. Furthermore, ifM and Nare analyti
 and f is an analyti
 map then P 
an be given the stru
ture of an analyti
manifold.



2.1 Preliminaries in Di�erential Geometry 7The sets
TM =

⋃

m∈M

TmM, T ∗M =
⋃

m∈M

T ∗
mM,
an be given a natural di�erentiable stru
ture indu
ed by the di�erentiable stru
-ture {(Uα, xα) | α ∈ A} for M . For TM it is the di�erential stru
ture 
ontaining

{(TUα, φα) | α ∈ A} where φα(v) = (xα(m), d(x1
α)m(v), . . . , d(xn

α)m(v)), for v ∈ TmUα,and for T ∗M it is the di�erentiable stru
ture 
ontaining {(T ∗Uα, ψα) | α ∈ A} where
ψα(w) = (xα(m), w( ∂

∂x1
α
|m), . . . , w( ∂

∂xn
α
|m)) for w ∈ T ∗

mUα. TM and T ∗M are thus seen tobe manifolds of dimension 2n. Equipped with these di�erential stru
tures the manifold
TM is 
alled the tangent bundle ofM and the manifold T ∗M is 
alled the 
otangentbundle of M . We denote by τ : TQ → Q and π : T ∗Q → Q the natural proje
tionsgiven by τ(v) = m, for v ∈ TmM , and π(w) = m, for w ∈ T ∗

mM .The tangent map
Tf : TM → TN,is the map de�ned by Tf |TmM = Tmf .In geometri
 me
hani
s the manifold des
ribing the possible 
on�gurations of a me-
hani
al system is 
alled the 
on�guration manifold of the system. The dimension ofthe 
on�guration manifold is 
alled the degrees of freedom for the me
hani
al system.A ve
tor �eld X : M → TM on M is a lifting of M into TM , that is
τ(X) = idM ,where idM is the identity on M . In a lo
al 
oordinate system (U, x) = (U, x1, . . . , xn) ave
tor �eld X is given by

X(x) =
n∑

i=1

X i(x)
∂

∂xi
.If X i(x) ∈ C∞(U), i ∈ {1, . . . , n}, for every 
oordinate system X is 
alled smooth or

C∞. We denote by X(M) the set of smooth ve
tor �elds on M . If M is an analyti
manifold X is 
alled analyti
 or Cω if it in every 
oordinate system is analyti
.Let X ∈ X(M) and let ΦX
t (m) be the solution to the di�erential equation

d

dt
ΦX

t (m) = X(ΦX
t (m)),on M with ΦX

0 (m) = m, then ΦX
t is 
alled the �ow of X. The �ow exist and is uniqueby a translation of the fundamental existen
e and uniqueness theorem for �rst orderdi�erential equations in Rn to the language of manifolds.2.1.1 The Lie Bra
ketWe start by de�ning the Lie bra
ket of ve
tor �elds.De�nition 1. The Lie bra
ket of two smooth ve
tor �elds X and Y on a manifold Mis for f ∈ C∞(M) the ve
tor �eld operating as

[X, Y ](f) = X(Y (f)) − Y (X(f)).



8 Lie GroupsLo
ally X(x) =
∑n

i=1X
i(x) ∂

∂xi and Y (x) =
∑n

i=1 Y
j(x) ∂

∂xj whi
h gives the lo
alexpression for the Lie bra
ket as
[X, Y ](x) =

n∑

i,j=1

X i(x)
∂Y j

∂xi
(x)

∂

∂xj
−

n∑

i,j=1

Y j(x)
∂X i

∂xj
(x)

∂

∂xi
(2.1)

=
n∑

i,j=1

(
X i(x)

∂Y j

∂xi
(x) − Y i(x)

∂Xj

∂xi
(x)

)
∂

∂xj
. (2.2)If we write X = (X1, . . . , Xn)T and Y = (Y 1, . . . , Y n)T then (2.1) be
omes

[X, Y ](x) =
∂Y

∂x
(x)X(x) − ∂X

∂x
(x)Y (x),where ∂X

∂x
(x) is the Ja
obian of X. If X and Y are smooth [X, Y ] is 
learly seen to besmooth.The following is a straightforward result (though the Ja
obi identity is tedious toprove) of the de�nition.Proposition 2. Let M be a manifold. The Lie bra
ket [·, ·] : X(M) × X(M) → X(M)is bilinear, skew-symmetri
, i.e. [X, Y ] = −[Y,X], and satis�es the Ja
obi identity

[[X, Y ], Z] + [[Z,X], Y ] + [[Y, Z], X] = 0,for X, Y, Z ∈ X(M).A 
onne
tion between 
omposition of integral 
urves and the Lie bra
ket of the ve
tor�elds is given by the following proposition.Proposition 3. Let X and Y be smooth ve
tor �elds on a manifold M ∋ m. Then wehave that the Lie bra
ket 
an be 
omputed as
[X, Y ](m) =

d

dt

∣∣∣∣
t=0

(
TΦX

t (m)Φ
X
−t

(
Y (ΦX

t (m))
))
.Proof. LetX and Y be given in the 
oordinate 
hart (U, x) byX(x) = (X1(x), . . . , Xn(x))Tand Y (x) = (Y 1(x), . . . , Y n(x))T . Then we get, when using Taylor expansions and leav-ing out all terms of order O(t2) and O(s2), the following

d

dt

∣∣∣∣
t=0

(
TΦX

t (x)Φ
X
−tY (ΦX

t (x))
)

=
d

dt

∣∣∣∣
t=0

d

ds

∣∣∣∣
s=0

ΦX
−t ◦ ΦY

s (ΦX
t (x))

=
d

dt

∣∣∣∣
t=0

d

ds

∣∣∣∣
s=0

ΦX
−t ◦ ΦY

s (x+ tX(x))

=
d

dt

∣∣∣∣
t=0

d

ds

∣∣∣∣
s=0

ΦX
−t(x+ tX(x) + sY (x) + st

∂Y

∂x
(x)X(x))

=
d

dt

∣∣∣∣
t=0

d

ds

∣∣∣∣
s=0

(x+ tX(x) + sY (x) + st
∂Y

∂x
(x)X(x) − tX(x) − st

∂X

∂x
(x)Y (x))

=
∂Y

∂x
(x)X(x) − ∂X

∂x
(x)Y (x).



2.2 Lie Groups 9This proposition also provides a 
onvenient method for 
al
ulating the Lie bra
ketof ve
tor �elds in a 
oordinate free way.We 
on
lude this se
tion by a proposition whi
h will be needed in the followingse
tion in 
onne
tion with so 
alled left-invariant ve
tor �elds.Proposition 4. Let M and N be manifolds and let φ : M → N be smooth. Assumethat X,X1 ∈ X(M) and Y, Y1 ∈ X(N) satis�es Tφ ◦X = Y ◦ φ and Tφ ◦X1 = Y1 ◦ φ.Then we have Tφ ◦ [X,X1] = [Y, Y1] ◦ φ.Proof. Let m ∈ M and f ∈ C∞(N). By use of the de�nition of the tangent map andthe Lie bra
ket we get
Tmφ([X,X1](m))(f) = [X,X1](m)(f ◦ φ)

= X(m)(X1(f ◦ φ)) −X1(m)(X(f ◦ φ))

= X(m)((Tφ ◦X1)(f)) −X1(m)((Tφ ◦X)(f))

= X(m)(Y1(f) ◦ φ) −X1(m)(Y (f) ◦ φ)

= Tmφ(X(m))(Y1(f)) − Tmφ(X1(m))(Y (f))

= Y ◦ φ(m)(Y1(f)) − Y1 ◦ φ(m)(Y (f))

= [Y, Y1] ◦ φ(m)(f),and the result has been obtained.2.2 Lie GroupsWe start this se
tion with the de�nition of a Lie group.De�nition 5. A Lie group is a di�erentiable manifold G whi
h is endowed with agroup stru
ture su
h that the the produ
t map G×G→ G, (x, y) 7→ xy, and the inversemap G→ G, x 7→ x−1, are C∞. If in addition G is an analyti
 manifold and the produ
tmap and the inverse map are analyti
 G is 
alled an analyti
 Lie group.In this 
hapter we will use e ∈ G to denote the identity element of G.For g, h ∈ G left translation by g and right translation by g, denoted Lg and Rgrespe
tively, are de�ned by
Lg(h) = gh, Rg(h) = hg.A left-invariant ve
tor �eld X on a Lie group G is a ve
tor �eld satisfying

X(gh) = ThLg(X(h)),for all g, h ∈ G. We denote by L(G) the spa
e of all left-invariant ve
tor �elds on Gwhi
h is seen to be a ve
tor spa
e.Proposition 6. Let G be a Lie group and X ∈ L(G). Then X is C∞.Proof. Let G be a Lie group. Let X ∈ L(G) and g ∈ G, then X(g) = TeLg(X(e)). Let
(W, q1) be a 
oordinate system around g. Let (V, q0) be a 
oordinate system around
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e and (U, q1) be a 
oordinate system around g whi
h satisfy ⋃g∈U Lg(V ) ⊂ W . Su
h
harts exist: let (V0, q0) be a 
hart around e and σ : G×G→ G the produ
t map, then
(U, q1) and (V, q0) with U × V = (W × V0)∩ σ−1(W ) satis�es the 
ondition sin
e U and
V are open and g ∈ U and e ∈ V . Let ι : q1(U) × q0(V ) → q1(W ) be the 
oordinateexpression for the produ
t map in these 
harts. Let φ(t) be a smooth 
urve on V with
φ(0) = e and φ̇(0) = X(e) then we have that X(g) in 
oordinates for Tgq1(W ) is givenby

Tgq1(X(g)) = Tgq1(TeLg(X(e))) = Tgq1
d

dt

∣∣∣∣
t=0

Lgφ(t)

= Tgq1

(
d

dt

∣∣∣∣
t=0

q−1
1 ◦ ι(q1(g), q0(φ(t)))

)
= T(q1(g),q0(e))ι(0, Teq0(X(e))).Sin
e ι is smooth its Ja
obian T(q1,q0)ι is a smooth fun
tion of q1 and q0 and thus Xdepends smoothly on g in 
oordinates and it is therefore smooth.Remark 7. If G is an analyti
 Lie group we 
an repla
e the word �smooth� with�analyti
� in the proof of Proposition 6. Therefore we get that a left-invariant ve
tor�eld on an analyti
 Lie group is analyti
. •Proposition 6 gives the following result.Corollary 8. Let G be a Lie group. If X, Y ∈ L(G) then [X, Y ] ∈ L(G).Proof. This is a dire
t 
onsequen
e of the de�nition of a left-invariant ve
tor �eld andPropositions 4 and 6.Let g ∈ G, ξ ∈ TeG, and (·)L : TeG→ X(G) be the map de�ned by

ξL(g) = TeLg(ξ),whi
h sin
e
ξL(gh) = TeLgh(ξ) = ThLg(TeLh(ξ)) = ThLg(ξL(h)),is a map (·)L : TeG→ L(G). Then we have.Proposition 9. Let G be a Lie group. Then (·)L : TeG→ L(G) is an isomorphism withinverse X 7→ X(e).Proof. Let β : L(G) → TeG denote the map X 7→ X(e). Let X, Y ∈ L(G) and assume

β(X) = β(Y ) then
X(g) = TeLg(X(e)) = TeLg(Y (e)) = Y (g),for all g ∈ G so β is inje
tive. Let ξ ∈ TeG then

β(ξL) = ξL(e) = ξ,so β is surje
tive and thus bije
tive and we see that β is the inverse of (·)L.Next we de�ne a Lie algebra.



2.2 Lie Groups 11De�nition 10. Let V be a ve
tor spa
e (over R) and let the map [·, ·]V : V × V → V ,for all ξ, η, ζ ∈ V , satisfy:1. bilinearity,2. skew symmetry, i.e., [ξ, η]V = −[η, ξ]V ,3. the Ja
obi identity, i.e.,
[[ξ, η]V , ζ ]V + [[ζ, ξ]V , η]V + [[η, ζ ]V , ξ]V = 0.Then (V, [·, ·]V ) is 
alled a Lie algebra.Let (V, [·, ·]V ) be a Lie algebra and W a nonempty subset of V . If (W, [·, ·]W ), where

[·, ·]W is the restri
tion of [·, ·]V to W , is a Lie algebra it is 
alled a Lie subalgebra of
(V, [·, ·]V ). Given a subset S ⊂ V the Lie algebra generated by S is the smallest Liesubalgebra of (V, [·, ·]V ) 
ontaining S.From Corollary 8 we have that we 
an make the following de�nition.De�nition 11. Let G be a Lie group. For ξ, η ∈ TeG de�ne the bra
ket [·, ·] : TeG ×
TeG→ TeG by

[ξ, η] = [ξL, ηL](e).By 
onstru
tion this bra
ket inherits the properties of the Lie bra
ket for ve
tor�elds; see Proposition 2. Therefore we have the following.Corollary 12. Let G be a Lie group. Then (TeG, [·, ·]) is a Lie algebra.De�nition 13. Let G be a Lie group. Then we denote the 
orresponding Lie algebra
(TeG, [·, ·]) by g.We will denote [·, ·] by [·, ·]g when risk of 
onfusing the bra
ket of a Lie algebra
orresponding to a Lie group with the Lie bra
ket of ve
tor �elds on g.Proposition 14. For g, h ∈ G and X ∈ L(G) we have

LgΦ
X
t (h) = ΦX

t (Lgh),for |t| < δ for some δ > 0.Proof. From the existen
e and uniqueness theorem for di�erential equations (see e.g.[15℄) we know there exists a δ > 0 su
h that ΦX
t (h) and ΦX

t (Lgh) are de�ned.We have LgΦ
X
0 (h) = ΦX

0 (Lgh) = Lgh and
d

dt
LgΦ

X
t (h) = TΦX

t (h)Lg

(
X(ΦX

t (h))
)

= X(LgΦ
X
t (h)),

d

dt
ΦX

t (Lgh) = X(ΦX
t (Lgh)).Sin
e LgΦ

X
t (h) and ΦX

t (Lgh) satisfy the same di�erential equation and are equal for
t = 0 we know from the existen
e and uniqueness theorem for di�erential equations thatthey are equal for all |t| < δ.



12 Lie GroupsThis gives the next useful 
orollary.Corollary 15. For a Lie group G ∋ g and X ∈ L(G) we have
ΦX

t1+t2(g) = ΦX
t1 (g)Φ

X
t2 (e),for |t1| < δ and |t2| < δ for some δ > 0.Proof. This is an immediate 
onsequen
e of the group property of �ows (ΦX

t ◦ΦX
s = ΦX

t+s)and Proposition 14 with h = e and g = ΦX
t1

(g).Proposition 14 leads to the following result on left-invariant ve
tor �elds.Proposition 16. A left-invariant ve
tor �eld X on a Lie group is 
omplete, i.e., the�ow ΦX
t is de�ned for all t ∈ R.Proof. From the existen
e and uniqueness theorem for di�erential equations we knowthat there exist a neighborhood V of e and a δ > 0 su
h that ΦX

t (g) is de�ned for g ∈ Vand |t| < δ. From Proposition 14 we have that ΦX
t (g) is de�ned for g ∈ Lh(V ) and

|t| < δ for all h ∈ G. Thus ΦX
t (g) is de�ned for all g ∈ G for |t| < δ but be
ause of thegroup property of the �ow this means that δ = ∞.Sin
e left-invariant ve
tor �elds are 
omplete we 
an make the following de�nition.De�nition 17. For a Lie group G we de�ne the map exp : g → G by

exp(ξ) := ΦξL

1 (e),for ξ ∈ g.This map is 
alled the exponential map for reasons whi
h will be
ome 
lear later.From the de�nition we see that we have exp(tξ) = ΦtξL

1 (e) = ΦξL

t (e) for t ∈ R andthus exp(tξ) is the integral 
urve of ξL whi
h at t = 0 is e and has tangent ξ. FromProposition 14 we have that Lg exp(tξ) = ΦξL

t (g) so this is the integral 
urve of ξL whi
hat t = 0 is equal to g and has tangent ξL(g).Proposition 18. For a Lie group G and ξ ∈ g the map t 7→ exp(tξ), t ∈ R, is a1-parameter subgroup of G, i.e., exp(0ξ) = e and exp((t1 + t2)ξ) = exp(t1ξ) exp(t2ξ).Proof. We immediately get exp(0ξ) = ΦξL

0 (e) = e and exp((t1+t2)ξ) = exp(t1ξ) exp(t2ξ)is a 
onsequen
e of Corollary 15.The next result gives the smoothness properties of the exponential map.Proposition 19. Let G be a Lie group. The exponential map exp : g → G is C∞ andwe have T0 exp = idg.Proof. Consider the smooth 
omplete ve
tor �eld on G×g given by X(g, ξ) = (ξL(g), 0).Sin
e X is smooth so is ΦX
1 . Let π : G × g → G be the proje
tion onto G. Then

exp(ξ) = π ◦ ΦX
1 (e, ξ) is a 
omposition of smooth maps and it is therefore smooth.Sin
e ξ = d

dt

∣∣
t=0

ΦξL

t (e) = d
dt

∣∣
t=0

exp(tξ) = T0 exp(ξ) we have T0 exp = idg.



2.2 Lie Groups 13Remark 20. Let G be an analyti
 Lie group. Due to the Remark 7 we 
an repla
e theword �smooth� with �analyti
� in the proof of Proposition 19. Therefore we get that theexponential map is analyti
 for an analyti
 Lie group. •Proposition 19, together with the inverse fun
tion theorem, shows that in a neigh-borhood U ⊂ G of e and a neighborhood V ⊂ g of 0 there exist a C∞ (Cω) inverse,denoted log, to exp, i.e., log(exp(ξ)) = ξ and exp(log(g)) = g for ξ ∈ V and g ∈ U . The
oordinates in the 
hart (U, log) are the so 
alled exponential 
oordinates of the �rstkind.Proposition 21. Let G and H be Lie groups. Let φ : G → H be a Lie group homo-morphism, i.e. φ is smooth and φ(ab) = φ(a)φ(b) for a, b ∈ G. Then, for ξ ∈ g wehave
φ(exp(tξ)) = exp

(
t
(
Teφ(ξ)

))
.Proof. Sin
e φ is a homomorphism we have Lφ(g) ◦ φ = φ ◦ Lg for g ∈ G. This fa
t isused in the following

d

dt
φ(exp(tξ)) = Texp(tξ)φ

(
ξL(exp(tξ))

)
= Texp(tξ)φ

(
TeLexp(tξ)(ξ)

)

= Teφ ◦ Lexp(tξ)(ξ) = TeLexp(tξ) ◦ φ(ξ)

= TeLφ(exp(tξ))(Teφ(ξ)) = (Teφ(ξ))L

(
φ(exp(tξ))

)
.Sin
e exp(tTeφ(ξ)) satis�es the same di�erential equation and the initial 
onditions arethe same for t = 0 the result follows.For a Lie group G and g ∈ G the inner automorphism Ig : G → G is given by

Ig = Lg◦Rg−1 = Rg−1◦Lg. It is easily 
he
ked that this in fa
t is a homomorphism. Sin
e
Rg and Lg are di�eomorphisms Ig is a di�eomorphism with inverse I−1

g = L−1
g ◦R−1

g−1 =
Lg−1 ◦ Rg = Ig−1 . Sin
e Ig is a homomorphism we have TeIg : g → g. We denote by Adthe adjoint map given by

Adg := TeIg.From Proposition 21 we get the following result.Corollary 22. For a Lie group G, g ∈ G, and ξ ∈ g, we have
Ig exp(tξ) = exp(tAdg(ξ)).Another result relating the bra
ket [·, ·] to the adjoint map and the exponential mapis the following.Proposition 23. Let G be a Lie group. Then for ξ, η ∈ g we have
[ξ, η] =

d

dt

∣∣∣∣
t=0

Adexp(tξ)(η).



14 Lie GroupsProof. Let g ∈ G, v ∈ TgG and γ = TeLg−1(v) ∈ g. This means that v = γL(g).From Proposition 14 with h = e and g repla
ed with ΦγL
s (g) we get ΦξL

t ◦ ΦγL
s (g) =

ΦγL
s (g)ΦξL

t (e). Using this we get
TgΦ

ξL

t (v) =
d

ds

∣∣∣∣
s=0

ΦξL

t ◦ ΦγL
s (g) =

d

ds

∣∣∣∣
s=0

ΦγL
s (g)ΦξL

t (e)

=
d

ds

∣∣∣∣
s=0

LgΦ
γL
s (e)ΦξL

t (e) =
d

ds

∣∣∣∣
s=0

Lg ◦RΦ
ξL
t (e)

(ΦγL
s (e))

= TeLg ◦RΦ
ξL
t (e)

(γ) = TeLg ◦RΦ
ξL
t (e)

(TeLg−1(v))

= TgRΦ
ξL
t (e)

(v).From this and Proposition 3 we get
[ξ, η] = [ξL, ηL](e) =

d

dt

∣∣∣∣
t=0

(
T

Φ
ξL
t (e)

ΦξL

−t(ηL(ΦξL

t (e)))
)

=
d

dt

∣∣∣∣
t=0

(
T

Φ
ξL
t (e)

R
Φ

ξL
−t(e)

(TeLΦ
ξL
t (e)

(η))
)

=
d

dt

∣∣∣∣
t=0

(
TeRΦ

ξL
−t(e)

◦ L
Φ

ξL
t (e)

(η)
)

=
d

dt

∣∣∣∣
t=0

Ad
Φ

ξL
t (e)

(η) =
d

dt

∣∣∣∣
t=0

Adexp(tξ)(η).For a Lie group G and ξ, η ∈ g we de�ne the adjoint operator adξ : g → g as
adξ(η) := [ξ, η].The dual of adξ is the map ad∗

ξ : g → g de�ned for ξ, η ∈ g and α ∈ g∗ by adξ(α)(η) =
α(adξ(η)). In a given basis for g the matrix representation of ad∗

ξ is the transpose of thematrix representation for adξ.The de�nition of the adjoint operator leads to the following result regarding therelation between Adg, adξ, and exp.Proposition 24. Let G be a Lie group and ξ ∈ g. Then Ad is a group homomorphismand it satis�es
Adexp(ξ) = exp(adξ).Proof. Let g, h ∈ G. Then from the de�nition of Ad we get

Adgh = TeIgh = TeIg ◦ Ih = TeIg ◦ TeIh = Adg ◦ Adh,so Ad is a group homomorphism.Using Proposition 23 and the fa
t that exp and Ad are homomorphisms we get
d

dt
Adexp(tξ)(η) =

d

ds

∣∣∣∣
s=0

Adexp((s+t)ξ)(η) =
d

ds

∣∣∣∣
s=0

Adexp(sξ)(Adexp(tξ)(η))

= adξ(Adexp(tξ)(η)).



2.3 Matrix Lie Groups 15Sin
e g is a ve
tor spa
e and adξ is linear this shows that
dk

dtk
Adexp(tξ)(η) = adk

ξ(Adexp(tξ)(η)) ⇒
dk

dtk

∣∣∣∣
t=0

Adexp(tξ)(η) = adk
ξ (η).Thus formally a Taylor expansion gives

Adexp(tξ) = exp(adtξ).Sin
e ‖adξ‖ ≤ 2‖ξ‖ <∞ we have that exp(adξ) 
onverges for all ξ.2.3 Matrix Lie GroupsThe 
lass of Lie groups we will 
onsider in the remainder of this thesis is that of matrixLie groups. Therefore we start by de�ning some of the 
lassi
al matrix Lie groups.2.3.1 Some Classi
al Matrix Lie GroupsFor a ve
tor spa
e V ∋ v we use in the following the natural identi�
ation of TvV with
V itself. Sin
e Rn×n is a Bana
h spa
e and Gl(n) is an open subset of Rn×n we will inthis se
tion use the di�erential D instead of the tangent map when 
onvenient.The General Linear Group Gl(n)For A,B ∈ Rn×n we have det(AB) = det(A) det(B), and det(e) = 1, so the spa
e

Gl(n) = {X ∈ Rn×n| det(X) 6= 0},equipped with the matrix produ
t is a group. This group is 
alled the general lineargroup. Sin
e det : Rn×n → R is a 
ontinuous fun
tion Gl(n) be
omes a manifold asthe open subset of Rn2 , identi�ed with Rn×n, where the determinant is non-zero. Sin
e
(AB)ij =

∑n
k=1AikBkj and the entries of A−1 is a rational fun
tion of the entries of

A both the matrix produ
t and the inverse map are analyti
 and thus Gl(n) with thematrix produ
t 
an be given the stru
ture of an analyti
 Lie group. A subgroup of Gl(n)whi
h is also a submanifold of Gl(n), hen
e a Lie group, is 
alled a matrix Lie group.Sin
e det is 
ontinuous there is a neighborhood U ⊂ Rn×n of e su
h that det(U) > 0and thus U ⊂ Gl(n) whi
h shows that
TeGl(n) = TeU = Rn×n =: gl(n).The Spe
ial Linear Group Sl(n)Sin
e det : Gl(n) → R \ {0} is a homomorphism the spa
e
Sl(n) = {X ∈ Gl(n)| det(X) = 1},is a subgroup of Gl(n). This group is 
alled the spe
ial linear group. De�ne the map

F : Gl(n) → R \ {0} by F (X) = det(X). Let A ∈ Gl(n), a = det(A), then F (x) =
La ◦ F ◦ LA−1(X) giving

DF (X) = D(La ◦ F ◦ LA−1)(X) = aDF (A−1X)DLA−1(X).



16 Lie GroupsSin
e Lg is a di�eomorphism we thus get 
hoosing A = X

Rank(DF (X)) = Rank(DF (e)),and thus the rank i 
onstant. We therefore get that Sl(n) = F−1(1) is a submanifold of
Gl(n). Sin
e Sl(n) is a subgroup of Gl(n), and F is analyti
, it is therefore an analyti
matrix Lie group.The Orthogonal Group O(n)De�ne the analyti
 map H : Gl(n) → Gl(n) a

ording to H(X) = XTX. Sin
e H is ahomomorphism the spa
e

O(n) = {X ∈ Gl(n)| XTX = e},is a group. This group is denoted the orthogonal group. Let A ∈ Gl(n), then H(X) =
RA−1 ◦ LA−T ◦H ◦RA(X) giving

DH(X) = DRA−1(LA−T ◦H ◦RA(X))DLA−T (H ◦RA(X))DH(XA)DRA(X).Sin
e Lg and Rg are di�eomorphisms we get when 
hoosing A = X−1

Rank(DF (X)) = Rank(DF (e)),so the rank is 
onstant. We therefore have that O(n) = H−1(e) is an analyti
 submani-fold of Gl(n) and sin
e it is a subgroup of Gl(n) it is an analyti
 matrix Lie group. Let
ξ ∈ TeGl(n), then

TeH(ξ) =
d

dt

∣∣∣∣
t=0

H(ΦξL

t (e))

=
d

dt

∣∣∣∣
t=0

(
ΦξL

t (e)(ΦξL

t (e))T
)

=

(
d

dt

∣∣∣∣
t=0

ΦξL

t (e)

)
(ΦξL

0 (e))T + ΦξL

0 (e)

(
d

dt

∣∣∣∣
t=0

ΦξL

t (e)

)T

= ξ + ξT .Thus we have
TeO(n) = {A ∈ Rn×n| A + AT = 0} =: o(n).This also shows that dim(O(n)) = 1

2
n(n− 1).The Spe
ial Orthogonal Group SO(n)Let

SO(n) = Sl(n) ∩ O(n).Sin
e SO(n) = (F ×H)−1(1, e) we know from the previous dis
ussions that SO(n) is ananalyti
 matrix Lie group. This group is 
alled the spe
ial orthogonal group. Sin
e for
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A ∈ O(n) we have det(A) = ±1 and sin
e the determinant is 
ontinuous we 
an 
hoosea neighborhood V ⊂ O(n) of e where we must have det(V ) = 1 and thus V ⊂ SO(n).Therefore TeSO(n) = TeV = TeO(n) =: so(n).For n = 3 Rodrigues' formula gives, with x̂ ∈ so(3), that

exp(x̂) = id + sin(‖x‖) x̂

‖x‖ + (1 − cos(‖x‖)) x̂2

‖x‖2
,with the isomorphism ·̂ : R3 → so(3) given by x̂y = x×y, x, y ∈ R3, where × is the 
rossprodu
t and ‖ · ‖ is the Eu
lidean norm in R3. If R ∈ SO(3) then for trace(R) 6= −1 wehave

log(R) =
φ

2 sin(φ)
(R−RT ),where φ ∈ (−π, π) satis�es 2 cos(φ) = trace(R) − 1. For a derivation of exp and log on

SO(3) see, e.g., [13℄.The Spe
ial Eu
lidean Group SE(n)The subset of Sl(n+ 1)

SE(n) =

{[
A v

01×n 1

]
∈ R(n+1)×(n+1)

∣∣∣∣ A ∈ SO(n), v ∈ Rn

}
,is a subgroup of Sl(n+ 1) sin
e

[
A1 v1

01×n 1

] [
A2 v2

01×n 1

]
=

[
A1A2 A1v2 + v1

01×n 1

]
.It is a analyti
 manifold sin
e it 
an be identi�ed with the analyti
 produ
t manifold

SO(n) × Rn and it be
omes a submanifold of Gl(n + 1) by in
lusion. Thus it is ananalyti
 matrix Lie group; it is 
alled the spe
ial Eu
lidean group. It is seen that wehave
TeSE(n) =

{[
A v

01×n 0

]
∈ R(n+1)×(n+1)

∣∣∣∣ A ∈ so(n), v ∈ Rn

}
=: se(n).By 
onstru
tion SE(n) is isomorphi
 (meaning there is a group homomorphism betweenthe sets as groups whi
h is a di�eomorphism between the sets as manifolds) to SO(n)×

Rn with produ
t (R1, v1)(R2, v2) = (R1R2, R1vv +v1) for (R1, v1), (R2, v2) ∈ SO(n)×Rn.Expli
it formulas for the exponential and the logarithm, in the 
ase of SE(3), 
anbe found in, e.g., [13℄.Some Useful Formulas for Matrix Lie GroupsSin
e the produ
t on a matrix Lie group is just the ordinary matrix produ
t we easilyobtain the following result.Lemma 25. Let G ∋ g be a matrix Lie group and ξ ∈ g. Then
TeLg(ξ) = gξ, TeRg(ξ) = ξg, Adg(ξ) = gξg−1.



18 Lie GroupsProof. By straightforward 
al
ulations we get
TeLg(ξ) =

d

dt

∣∣∣∣
t=0

LgΦ
ξL

t (e) =
d

dt

∣∣∣∣
t=0

gΦξL

t (e) = gξ.

TeRg(ξ) =
d

dt

∣∣∣∣
t=0

RgΦ
ξL

t (e) =
d

dt

∣∣∣∣
t=0

ΦξL

t (e)g = ξg.

Adg(ξ) = TeIg(ξ) =
d

dt

∣∣∣∣
t=0

Ig(Φ
ξL(e)) =

d

dt

∣∣∣∣
t=0

gΦξL

t (e)g−1 = gξg−1.With this result we are able to give an exa
t formula for the exponential map for amatrix Lie group.Proposition 26. Let G be a matrix Lie group and ξ ∈ g. Then
exp(ξ) =

∞∑

k=0

ξk

k!
,i.e., exp is the matrix exponential.Proof. exp(ξ) = ΦξL

t (e) is the unique solution to the di�erential equation ġ = ξL(g) =

TeLg(ξ) = gξ, g(0) = e, but the solution to this problem is ∑∞
k=0

(tξ)k

k!
whi
h is thematrix exponential.This result enables us to show a result whi
h greatly simpli�es the 
al
ulation of thebra
ket for the Lie algebra of a matrix Lie group.Proposition 27. Let G be a matrix Lie group. Then for ξ, η ∈ g we have

[ξ, η] = ξη − ηξ,i.e., [·, ·] is the matrix 
ommutator.Proof. From Proposition 23, Lemma 25, and Proposition 26 we get
[ξ, η] =

d

dt

∣∣∣∣
t=0

Adexp(tξ)(η) =
d

dt

∣∣∣∣
t=0

exp(tξ)η exp(−tξ) = ξη − ηξ.

2.3.2 The Magnus Expansion and the Baker-Campbell-Hausdor�FormulaWe start out by proving some results needed to give the �rst terms in the Magnus seriesand the Baker-Campbell-Hausdor� formula.Lemma 28. For Ω, H ∈ Rn×n and k ∈ N the di�erential of the map Ω 7→ Ωk operatesas
DΩk(H) =

k−1∑

n=0

(
k

n+ 1

)
(adn

ΩH)Ωk−n−1,where (i
j

)
= i!

j!(i−j)!
is the binomial 
oe�
ient.



2.3 Matrix Lie Groups 19Proof. The expression Ωadn
ΩH = (adn

ΩH)Ω + adn+1
Ω H is obviously true for n = 0. Byindu
tion we get

Ωadn+1
Ω H = Ωadn

Ω(adΩH)

= (adn
Ω(adΩH))Ω + adn+1

Ω (adΩH)

= (adn+1
Ω H)Ω + adn+2

Ω H,and therefore it must be true for all n ∈ N.The expression DΩk(H) =
∑k−1

n=0

(
k

n+1

)
(adn

ΩH)Ωk−n−1 is seen to be true for k = 1 andthe proof pro
eeds by indu
tion assuming the validity of it for k
DΩk+1(H) = D(Ω · Ωk)(H)

= DΩ(H) · Ωk + Ω ·DΩk(H)

= HΩk + Ω ·
k−1∑

n=0

(
k

n + 1

)
(adn

ΩH)Ωk−n−1

= HΩk +

k−1∑

n=0

(
k

n+ 1

)(
(adn

ΩH)Ω + adn+1
Ω H

)
Ωk−n−1

= HΩk +
k−1∑

n=0

(
k

n+ 1

)
(adn

ΩH)Ωk−n +
k∑

n=1

(
k

n+ 1

)
(adn

ΩH)Ωk−n

= HΩk +
k∑

n=0

(
k + 1

n+ 1

)
k − n

k + 1
(adn

ΩH)Ωk−n +
k∑

n=1

(
k + 1

n+ 1

)
n + 1

k + 1
(adn

ΩH)Ωk−n

=

k∑

n=0

(
k + 1

n + 1

)
(adn

ΩH)Ωk−n.So if the expression holds for k it will also hold for k + 1.With this lemma we are able to prove the following proposition.Proposition 29. Let G be a matrix Lie group. For Ω ∈ g we have
TΩ(Rexp(−Ω) ◦ exp) =

∞∑

k=0

1

(k + 1)!
adk

Ω ,whi
h 
onverges for all Ω ∈ g.Proof. Let H ∈ TΩg = g. Using Lemma 25 we get
TΩ exp(H) = TΩ(Rexp(Ω) ◦Rexp(−Ω) ◦ exp)(H)

= TeRexp(Ω)(TΩ

(
Rexp(−Ω) ◦ exp)

)
(H)

= TΩ(Rexp(−Ω) ◦ exp)(H) exp(Ω).



20 Lie GroupsWe therefore 
al
ulate TΩ exp(H). By the de�nition of the tangent map of the expo-nential map we get using Lemma 28
TΩ exp(H) =

(
D

∞∑

k=0

1

k!
Ωk

)
(H)

=
∞∑

k=1

1

k!
(DΩk)(H)

=

∞∑

k=1

1

k!

k−1∑

n=0

(
k

n + 1

)
(adn

ΩH)Ωk−n−1

=
∞∑

k=1

k−1∑

n=0

1

(n + 1)!(k − n− 1)!
(adn

ΩH)Ωk−n−1.Putting l = k − n− 1 gives
TΩ exp(H) =

∞∑

n=0

∞∑

l=0

1

(n+ 1)!

1

l!
(adn

ΩH)Ωl

=
∞∑

n=0

1

(n + 1)!
(adn

ΩH)
∞∑

l=0

1

l!
Ωl

=

(
∞∑

n=0

1

(n + 1)!
adn

ΩH

)
exp(Ω),whi
h gives the desired expression. Sin
e the linear operator adΩ is bounded, ‖adΩ‖ ≤

2‖Ω‖, and sin
e the series ∑∞
k=0

1
(k+1)!

xk, x ∈ R, has in�nite radius of 
onvergen
e theseries ∑∞
n=0

1
(n+1)!

adn
Ω 
onverges for all Ω ∈ g.The next proposition 
on
erns the inverse of the linear operator TΩ exp.Proposition 30. Let G be a matrix Lie group. For Ω ∈ g the linear map TΩ(Rexp(−Ω) ◦

exp) : g → g is bije
tive if and only if no eigenvalue of the operator adΩ is of the form
2lπ

√
−1 for a nonzero integer l. If this is the 
ase we have for ‖Ω‖ < π

(
TΩ(Rexp(−Ω) ◦ exp)

)−1
=

∞∑

k=0

bk
k!

adk
Ω ,where bk = dk

dxk

∣∣∣
x=0

x
ex−1

are the Bernoulli numbers .Proof. Sin
e ∑∞
k=0

1
(k+1)!

xk = ex−1
x

, x ∈ R, the eigenvalues for TΩ(Rexp(−Ω) ◦ exp) =
∑∞

k=0
1

(k+1)!
adk

Ω will be µ = eλ−1
λ

, where λ is an eigenvalue for adΩ. This means thatif and only if no eigenvalue of adΩ is of the form 2lπ
√
−1 then all eigenvalues for

TΩ(Rexp(−Ω) ◦ exp) will be nonzero whi
h is equivalent to it being invertible. By thede�nition of the Bernoulli numbers ∑∞
k=0

bk

k!
adk

Ω will be the inverse of ∑∞
k=0

1
(k+1)!

adk
Ω,and sin
e the radius of 
onvergen
e for ∑∞

k=0
bk

k!
xk is 2π the series ∑∞

k=0
bk

k!
adk

Ω will
onverge for ‖adΩ‖ < 2π but sin
e ‖adΩ‖ ≤ 2‖Ω‖ this means that the series 
onvergesfor ‖Ω‖ < π.



2.3 Matrix Lie Groups 21The �rst Bernoulli numbers 
an be 
al
ulated to be b0 = 1, b1 = −1
2
, and b2k+1 = 0for k ∈ N.Proposition 31. Let G be an analyti
 matrix Lie group and let ξ : [0, t∗] → g, t∗ > 0, bepie
ewise smooth. Then there exists δ > 0 su
h that for |ǫ| < δ the di�erential equationon G

ġ = ǫgξ(t), g(0) = e, (2.3)has, for t ∈ [0, t∗], the solution
g(t) = exp

(
ǫ

∫ t

0

ξ(s)ds− ǫ2 1
2

∫ t

0

[ξ(s),

∫ s

0

ξ(τ)dτ ]ds + O(ǫ3)

)
.Proof. Let (U, log), e ∈ U , be a 
hart with exponential 
oordinates. Sin
e equation (2.3)depends 
ontinuously on ǫ there exists δ > 0 su
h that for |ǫ| < δ the solution to (2.3)stays in U for t ∈ [0, t∗]. Sin
e the di�erential equation (2.3) depends analyti
ally on

ǫ so will the solution g(t) meaning in parti
ular that in the 
hart (U, log) the solutionis analyti
, i.e. g(t) = exp(x(t)) where x(t) =
∑∞

j=1 ǫ
jxj(t). Inserting g(t) = exp(x(t))into the di�erential equation (2.3) gives

exp(x(t))ǫξ(t) = ġ(t)

= Tx(t) exp(ẋ(t))

= Tx(t)(Rexp(−x(t)) ◦ exp)(ẋ(t)) exp(x(t)).By Proposition 30 we 
an ensure by possibly 
hoosing δ smaller that Tx(t)(Rexp(−x(t))◦exp)is invertible for t ∈ [0, t∗]. Thus we get
ẋ(t) =

(
Tx(t)(Rexp(−x(t)) ◦ exp)

)−1(
ǫAdexp(x(t))(ξ(t))

)

=
(
Tx(t)(Rexp(−x(t)) ◦ exp)

)−1(
ǫ exp(adx(t))(ξ(t))

)
.Inserting x(t) =

∑∞
j=1 ǫ

jxj(t) on both sides of this equation and using Proposition 30shows that
ẋ1 = ξ(t),

ẋ2 = −1
2
[ξ(t), x1(t)],whi
h gives the result.The di�erential equation

ẋ(t) =
(
Tx(t)(Rexp(−x(t)) ◦ exp)

)−1
(ξ(t)),is 
alled the Magnus equation after W. Magnus who �rst treated it in 1954, see [30℄.The Magnus equation gives the solution g(t) = exp(x(t)) to ġ = ξ(t)g. The expansionof x(t) in terms of integrals of repeated Lie bra
kets, as in Proposition 31, is 
alled theMagnus expansion.



22 Lie GroupsCorollary 32. Let G be an analyti
 matrix Lie group and let η, ζ ∈ g. Then there exists
δ > 0 su
h that for |ǫ| < δ we have

exp(ǫη) exp(ǫζ) = exp
(
ǫ(η + ζ) + ǫ2 1

2
[η, ζ ] + O(ǫ3)

)
.Proof. We use Proposition 31 with t∗ = 2 and

ξ(t) =

{
η, t ∈ [0, 1)
ζ, t ∈ [1, 2]

.This gives
g(2) = exp(ǫη) exp(ǫζ).But we have

∫ s

0

ξ(τ)dτ =

{
ηs, s ∈ [0, 1)
η + ζ(s− 1), s ∈ [1, 2]

,and thus
∫ 2

0

ξ(τ)dτ = η + ζ,and
∫ 2

0

[ξ(s),

∫ s

0

ξ(τ)dτ ]ds =

∫ 1

0

[η,

∫ s

0

ξ(τ)dτ ]ds +

∫ 2

1

[ζ,

∫ s

0

ξ(τ)dτ ]ds

=

∫ 1

0

[η, ηs]ds+

∫ 2

1

[ζ, η + ζ(s− 1)]ds

= [ζ, η],whi
h gives the result when inserted in Proposition 31.The full Taylor expansion of log(exp(ǫη) exp(ǫζ)) is given re
ursively by the so 
alledBaker-Campbell-Hausdor� formula, see e.g. [43℄.



Chapter 3Simple Me
hani
al Control Systems onLie GroupsThe subje
t of this 
hapter is simple me
hani
al 
ontrol systems on Lie groups whi
his the parti
ular 
lass of me
hani
al systems we will fo
us on in the remainder of thisthesis.We start by introdu
ing some 
on
epts from the theory of 
al
ulus of variations, sin
ethe approa
h leading to the equations of motions for me
hani
al systems, in parti
ularthe equations of motion for simple me
hani
al systems on Lie groups, is of a variationalnature. We then derive the for
ed Euler-Lagrange equations, whi
h are the equations ofmotion for a for
ed me
hani
al system, and the Euler-Poin
aré equations whi
h, alongwith the kinemati
 equations, are the equations of motion for a me
hani
al system whenthe 
on�guration manifold is a Lie group. We de�ne simple me
hani
al 
ontrol systemson Lie groups whi
h are a spe
ial 
lass of me
hani
al systems, with a Lie group as
on�guration manifold, and we give the Euler-Poin
aré equations for this spe
ial 
ase.We end the 
hapter with some examples of simple me
hani
al systems on Lie groups.A more exhaustive treatment of the material 
overed in this 
hapter 
an be found,e.g, in [6℄,[13℄, and [31℄.3.1 Elements of Cal
ulus of VariationsWe start with a standard de�nition from 
al
ulus of variations.De�nition 33. Let Q be a manifold and q : [a, b] → Q, a, b ∈ R, b > a, a smooth 
urveon Q. A variation of the 
urve q : [a, b] → Q is a smooth map (t, ǫ) 7→ qǫ(t) ∈ Q,
ǫ ∈ [c, d], d > 0, c < 0, satisfying1. q0(t) = q(t).2. qǫ(a) = q(a) and qǫ(b) = q(b) for all ǫ ∈ [c, d].The 
orresponding in�nitesimal variation is given by

δq(t) =
d

dǫ

∣∣∣∣
ǫ=0

qǫ(t) ∈ Tq(t)Q.



24 Simple Me
hani
al Control Systems on Lie GroupsFor a smooth fun
tion L : TQ→ R the variation of the fun
tional I(q) =
∫ b

a
L(q̇(t))dtis de�ned as

δ

∫ b

a

L(q̇(t))dt =
d

dǫ

∣∣∣∣
ǫ=0

∫ b

a

L(q̇ǫ(t))dtand the fun
tional derivative of L, δL
δq

: TQ→ T ∗Q, is the bundle map over idQ, i.e.,
π ◦ δL

δq
= idQ ◦ τ , given by

δ

∫ b

a

L(q̇(t))dt =

∫ b

a

δL

δq
(q̇(t)) · δq(t)dt,if it exists.

PSfrag repla
ements q(t)

Q

qǫ(t)PSfrag repla
ements q(t)

Q

δq(t)

Figure 3.1: The 
urve q(t) and a variation qǫ(t) of it (left). The in�nitesimal variation
δq(t), of q(t), given by qǫ(t) (right).From De�nition 33 we see that δ ∫ b

a
L(q̇(t))dt also depends on the 
hoi
e of variation

qǫ(t). This is not the 
ase for δL
δq

whi
h is intrinsi
ally de�ned.We have the following result regarding the 
oordinate expression for the fun
tionalderivative of L.Proposition 34. Let Q be an n-dimensional manifold and (U, q) a 
oordinate 
hart on
Q. Let L : TQ→ R be a smooth fun
tion. Then δL

δq
exists and we have in TU

δL

δq
(q, q̇) =

n∑

i=1

(
∂L

∂qi
(q, q̇) − d

dt

∂L

∂q̇i
(q, q̇)

)
dqi,where (q, q̇) are the natural 
oordinates on TU 
orresponding to the 
oordinates q for U .Proof. Sin
e we want to 
al
ulate a lo
al expression for δL

δq
we may assume for simpli
itythat q(t) ∈ U for t ∈ [a, b]. Sin
e U is open we 
an 
hoose |ǫ| small enough to ensure
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qǫ([a, b]) ⊂ U . Thus we get

δ

∫ b

a

L(q(t), q̇(t))dt =
d

dǫ

∣∣∣∣
ǫ=0

∫ b

a

L(qǫ(t), q̇ǫ(t))dt

=

∫ b

a

(
∂L

∂q
(q(t), q̇(t)) · δq(t) +

∂L

∂q̇
(q(t), q̇(t)) · δ̇q(t)

)
dt

=

∫ b

a

(
∂L

∂q
(q(t), q̇(t)) − d

dt

∂L

∂q̇
(q(t), q̇(t))

)
· δq(t)dt

+

[
∂L

∂q̇
(q(t), q̇(t)) · δq(t)

]b

a

=

∫ b

a

(
∂L

∂q
(q(t), q̇(t)) − d

dt

∂L

∂q̇
(q(t), q̇(t))

)
· δq(t)dt

=:

∫ b

a

δL

δq
(q(t), q̇(t)) · δq(t)dt.To ensure that we have that δL

δq
is de�ned globally we must 
he
k that this lo
alexpression for δL

δq
behaves 
orre
tly under a 
hange of 
oordinates.Let (V, q̃) be a 
oordinate 
hart for Q with U ∩ V 6= ∅. From the 
hain rule we have

˙̃qj =

n∑

k=1

∂q̃j

∂qk
q̇k ⇒ ∂ ˙̃qj

∂q̇i
=
∂q̃j

∂qi
.Thus we get using the 
hain rule on L(q, q̇) = L̃(q̃(q), ˙̃q(q, q̇))

∂L

∂q̇i
=

n∑

j=1

∂L̃

∂ ˙̃qj

∂ ˙̃qj

∂q̇i
=

n∑

j=1

∂L̃

∂ ˙̃qj

∂q̃j

∂qi
,giving

d

dt

(
∂L

∂q̇i

)
=

n∑

j=1

(
d

dt

∂L̃

∂ ˙̃qj

)
∂q̃j

∂qi
+

n∑

j,k=1

∂L̃

∂ ˙̃qj

∂2q̃j

∂qi∂qk
q̇k.The se
ond part of δL

δq
is similarly 
al
ulated using the 
hain rule
∂L

∂qi
=

n∑

j=1

∂L̃

∂q̃j

∂q̃j

∂qi
+

n∑

j=1

∂L̃

∂ ˙̃qj

∂ ˙̃qj

∂qi

=

n∑

j=1

∂L̃

∂q̃j

∂q̃j

∂qi
+

n∑

j,k=1

∂L̃

∂ ˙̃qj

∂2q̃j

∂qi∂qk
q̇k.Combining these we get

d

dt

∂L

∂q̇i
− ∂L

∂qi
=

n∑

j=1

∂q̃j

∂qi

(
d

dt

∂L̃

∂ ˙̃qj
− ∂L̃

∂q̃j

)
.Sin
e π ◦ δL

δq
= idQ ◦ τ and sin
e δL

δq
under a 
hange of 
oordinates behaves as a one formwe have that δL

δq
: TQ→ T ∗Q indeed is a bundle map over idQ.



26 Simple Me
hani
al Control Systems on Lie Groups3.2 The Euler-Poin
aré EquationsWe start with the de�nition of the Lagrange-d'Alembert prin
iple.De�nition 35. Let Q be a manifold, q : [a, b] → Q a smooth 
urve on Q, and F :
[a, b] × TQ → T ∗Q a bundle map over idQ. Then q is said to satisfy the Lagrange-d'Alembert prin
iple if for every variation qǫ(t) of q(t) with 
orresponding in�nitesimalvariation δq(t) we have

δ

∫ b

a

L(q̇(t))dt+

∫ b

a

F (t, q̇(t)) · δq(t)dt = 0.It 
an be shown, see e.g. [16℄, that Newtons equations of motion are equivalent tothe Lagrange-d'Alembert prin
iple where F is the resultant for
e and L = T − V is theso-
alled Lagrangian 
onsisting of the kineti
 energy T minus the potential energy V .Proposition 36 (For
ed Euler-Lagrange equations). Let Q be an n-dimensional mani-fold, q : [a, b] → Q a smooth 
urve on Q, and F : [a, b]× TQ→ T ∗Q a bundle map over
idQ. The Lagrange-d'Alembert prin
iple is satis�ed if and only if

δL

δq
(q̇(t)) + F (t, q̇(t)) = 0, (3.1)whi
h in a 
oordinate system (U, q) is equivalent to q(t) satisfying

d

dt

∂L

∂q̇i
(q, q̇) − ∂L

∂qi
(q, q̇) = Fi(t, q, q̇), i ∈ {1, . . . , n}. (3.2)Proof. From De�nition 33 we have

δ

∫ b

a

L(q̇(t))dt+

∫ b

a

F (t, q̇(t)) · δq(t)dt =

∫ b

a

(
δL

δq
(q̇(t)) + F (t, q̇(t))

)
· δq(t)dt.From De�nition 35 and the fundamental lemma of the 
al
ulus of variations, see, e.g.,[24℄, we thus obtain equation (3.1). Equation (3.2) is a dire
t 
onsequen
e of Proposi-tion 34 and equation (3.1).Equation 3.2 is referred to as the for
ed Euler-Lagrange equations. If F = 0 equa-tions (3.2) are the well known Euler-Lagrange equations, see ,e.g., [4℄.Using the 
hain rule the for
ed Euler-Lagrange equations 
an be written

∂2L

∂q̇2
q̈ +

∂2L

∂q̇∂q
q̇ − ∂L

∂q
= F,whi
h when written out 
ompletely is

n∑

k=1

∂2L

∂q̇j∂q̇k
q̈k +

n∑

k=1

∂2L

∂q̇j∂qk
q̇k − ∂L

∂qj
= Fj , j ∈ {1, . . . , n},where q = (q1, . . . , qn), F = (F1, . . . , Fn).



3.2 The Euler-Poin
aré Equations 27Let G denote a Lie group. Then a Lagrangian L : TG → R is 
alled left-invariantif L(g, ġ) = L(Lh(g), TgLh(ġ)), ġ ∈ TgG, for all g, h ∈ G. For a matrix Lie group thismeans that
L(g, ġ) = L(Lg−1(g), TgLg−1(ġ)) = L(e, g−1ġ) = L(e, ξ) =: l(ξ),where ξ := TgLg−1(ġ) = g−1ġ ∈ TeG = g. l is 
alled the restri
tion of L to g.Proposition 37 (The Euler-Poin
aré equations). Let G be a matrix Lie group and

L : TG→ R a left invariant Lagrangian and l its restri
tion to g. For a 
urve g(t) ∈ Gde�ne the 
urve ξ(t) ∈ g by
ξ(t) = g(t)−1ġ(t). (3.3)Let the for
e F : R × G → T ∗G be given by F (t, g) = T ∗

gLg−1f(t) = f(t)g−1 where
f(t) ∈ g∗ is the body-�xed for
e. Then g(t) satis�es the Lagrange-d'Alembert prin
ipleif and only if ξ(t) satis�es the Euler-Poin
aré equations

d

dt

δl

δξ
= ad∗

ξ

δl

δξ
+ f(t). (3.4)Proof. Let g(t) ∈ G be a 
urve in G and gǫ(t) a variation of g(t). This gives a variation

ξǫ(t) = gǫ(t)
−1ġǫ(t) ∈ g of ξ(t). The in�nitesimal variation of g(t) is given by δg(t) =

d
dǫ

∣∣
ǫ=0

gǫ(t) ∈ Tg(t)G and the in�nitesimal variation of ξ(t) is given by
δξ(t) =

d

dǫ

∣∣∣∣
ǫ=0

ξǫ(t) ∈ g.If we de�ne η(t) = g−1(t)δg(t) ∈ g we get
δξ(t) − η̇(t) =

d

dǫ

∣∣∣∣
ǫ=0

(
gǫ(t)

−1ġǫ(t)
)
− d

dt

(
g0(t)

−1 d

dǫ

∣∣∣∣
ǫ=0

gǫ(t)

)

= −g0(t)
−1δg(t)g0(t)

−1ġ0(t) + g0(t)
−1δ̇g(t) + g0(t)

−1ġ0(t)g0(t)
−1δg(t) − g0(t)

−1δ̇g(t)

= −g(t)−1δg(t)g(t)−1ġ(t) + g(t)−1ġ(t)g(t)−1δg(t)

= ξ(t)η(t) − η(t)ξ(t)

= adξ(t)η(t).This means that we have
δξ(t) = adξ(t)η(t) + η̇(t)where η(t) ∈ g vanishes at the endpoints. Sin
e F · δg = fg−1δg = f · η we thereforehave that the Lagrange-d'Alembert equations

δ

∫ b

a

L(g(t), ġ(t))dt+

∫ b

a

F (t, g(t)) · δg(t)dt = 0are equivalent to
δ

∫ b

a

l(ξ(t))dt+

∫ b

a

f(t) · η(t)dt = 0 (3.5)



28 Simple Me
hani
al Control Systems on Lie Groupsusing variations δξ(t) = adξ(t)η(t) + η̇(t) and where η vanishes at the endpoints. Cal
u-lating
δ

∫ b

a

l(ξ(t))dt =

∫ b

a

δl

δξ
δξ(t)dt

=

∫ b

a

δl

δξ
(η̇(t) + adξ(t)η(t))dt

=

∫ b

a

(
− d

dt

δl

δξ
η(t) +

δl

δξ
adξ(t)η(t)

)
dt+

[
δl

δξ
η(t)

]b

a

=

∫ b

a

(
− d

dt

δl

δξ
+ ad∗

ξ(t)

δl

δξ

)
η(t)dt,and inserting this expression into equation (3.5) the result is a 
onsequen
e of the fun-damental lemma from the 
al
ulus of variations, see, e.g., [24℄.Equation (3.3) is referred to as the kinemati
 equations for obvious reasons. Togetherthe kinemati
 equations (3.3) and the Euler-Poin
aré equations (3.4) give the equationof motion for a for
ed me
hani
al system on a Lie group.De�nition 38. A simple me
hani
al 
ontrol system on a Lie group is a me
han-i
al system des
ribed by the following:1. the 
on�guration manifold G is a matrix Lie group, with Lie algebra g,2. the total energy is equal to the kineti
 energy whi
h is given by an inertia tensor

I : g → g∗,3. a set of body-�xed ve
tors {f1, . . . , fm} ⊂ g∗ and u : R → Rm, bounded andmeasurable, de�ning the resultant body-�xed for
e a

ording to f(t) =
∑m

i=1 fiui(t).
Σ = (G, I, {f1, . . . , fm}) denotes this me
hani
al 
ontrol system.For simple me
hani
al 
ontrol systems on Lie groups we have.Proposition 39. Let Σ = (G, I, {f1, . . . , fm}) be a simple me
hani
al 
ontrol system,then the equations of motion for this system are

ġ = g · ξ, (3.6)
Iξ̇ = ad∗

ξIξ +

m∑

i=1

fiui(t). (3.7)Proof. This follows dire
tly from Proposition 37 noti
ing that l(ξ) = 1
2
I(ξ) · ξ and usingProposition 34 giving the fun
tional derivative as δl

δξ
= ∂l

∂ξ
= Iξ.We de�ne the symmetri
 produ
t 〈· : ·〉 : g × g → g by

〈ξ : η〉 := −I−1(ad∗
ξIη + ad∗

ηIξ),



3.3 Examples 29whi
h is seen to be bilinear and symmetri
. Using the symmetri
 produ
t the Euler-Poin
aré equations (3.7) 
an be written
ξ̇ = −1

2
〈ξ : ξ〉 +

m∑

i=1

biui(t),where bi = I−1fi, for i ∈ {1, . . . , m}.A relative equilibrium for Σ is a 
urve t 7→ g0 exp(tξre) ∈ G, for g0 ∈ G and
ξre ∈ g, that is a solution to the dynami
s (3.6), (3.7) for zero input u. It is easy tosee that t 7→ g0 exp(tξre) is a relative equilibrium if and only if 〈ξre : ξre〉 = 0. It is
onvenient to 
all relative equilibrium both the 
urve t 7→ g0 exp(tξre) and the ve
tor
ξre. PSfrag repla
ements
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Figure 3.2: The planar rigid body with two for
es applied at a point a distan
e h fromthe 
enter of mass CM. Σs denotes an inertial referen
e frame. (θ, x, y) ∈ S×R2 denotesthe 
on�guration of the body. The body referen
e frame (not depi
ted) is aligned withthe dire
tion of appli
ation of f1 and f2.3.3 ExamplesExample 1 (Undera
tuated planar rigid body). Consider a rigid body moving in theplane without fri
tion, see �gure 3.2. This is, e.g., a model of a hover
raft when disre-garding fri
tion.The 
on�guration spa
e for this system is the matrix Lie group SE(2), with Liealgebra se(2). Sin
e SE(2) is isomorphi
 to SO(2) × R2 and SO(2) is isomorphi
 to
S ⊂ C \ {0}, equipped with the produ
t indu
ed from the Lie group C \ {0}, SE(2) isisomorphi
 to S × R2, with produ
t
(eiθ1 , (x1, y1))(e

iθ2 , (x2, y2)) = (ei(θ1+θ2), (RE(eiθ1(x2 + iy2)) + x1), IM(eiθ1(x2 + iy2)) + y1)),where i =
√
−1. The di�eomorphism giving this isomorphism is for (θ, (x, y)) ∈ S ×R2

P =




cos(θ) − sin(θ) x
sin(θ) cos(θ) y

0 0 1


 ∈ SE(2).



30 Simple Me
hani
al Control Systems on Lie GroupsIf we take (θ, x, y, ω, v1, v2) ∈ T (S × R2) = (S × R2) × R3 and de�ne the ve
tor spa
eisomorphism ·̂ : R3 → se(2) given bŷ


ω
v1

v2


 =




0 −ω v1

ω 0 v2

0 0 0


 ,we thus have a di�eomorphism between SE(2) × se(2) and (S × R2) × R3. The Liebra
ket on R3 indu
ed by ·̂ gives

ad(ω,v1,v2)T =




0 0 0
v2 0 −ω
−v1 ω 0


With 
ontrols as in the �gure we have

f1 = e2, f2 = −he1 + e3,where h is the distan
e from the 
enter of mass to the 
ontrol for
es. Denote by m themass of the body and by J the moment of inertia about its 
enter of mass. Sin
e thekineti
 energy is 1
2
m(v2

1 + v2
2) + 1

2
Jω2 the inertia tensor is I = diag(J,m,m) and theequations of motion be
ome, using proposition 39

Ṗ = P




0 −ω v1

ω 0 v2

0 0 0


 ,

Jω̇ = −hu2

mv̇1 = mωv2 + u1

mv̇2 = −mωv1 + u2The kinemati
 equation 
an be rewritten to
θ̇ = ω

ẋ = cos(θ)v1 − sin(θ)v2

ẏ = sin(θ)v1 + cos(θ)v2on S × R2.We see that the ve
tors
ξ = e1, ξ = αe2 + βe3,where α, β ∈ R, are relative equilibria for the system.Example 2 (Satellite with two thrusters). Consider a satellite, i.e., a rigid body �oatingin spa
e, subje
t to a torque around the �rst and se
ond prin
ipal axes, see �gure 3.3.The 
on�guration manifold for a rigid body is the matrix Lie group G = SO(3) withLie algebra g = so(3). The isomorphism ·̂ : R3 → so(3) given by x̂y := x× y, x, y ∈ R3,that is,

x̂ =




0 −x3 x2

x3 0 −x1

−x2 x1 0


 ,
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PSfrag repla
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Figure 3.3: The satellite with two thrusters.is a Lie algebra isomorphism between R3 with the 
ross produ
t and so(3) with thematrix 
ommutator; thus adx = x̂. With for
es as in �gure 3.3 the 
ontrol for
es are
f1 = e1, f2 = e2.Using proposition 39 then gives that the dynami
s of this system is given by

Ṙ = RΩ̂,

JΩ̇ = (JΩ) × Ω + e1u1(t) + e2u2(t),where R ∈ SO(3), Ω ∈ R3, and J = diag(J1, J2, J3), Ji being the moment of inertiaaround the ith prin
ipal axis.A ve
tor along any of the prin
ipal axes is seen to be a relative equilibrium.
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Figure 3.4: A s
hemati
 of the underwater vehi
le.Example 3 (Underwater vehi
le in Ideal Fluid). Consider a rigid body submerged inan in
ompressible, irrotational, and invis
id �uid. The 
on�guration manifold for this



32 Simple Me
hani
al Control Systems on Lie Groupssystem is SE(3). The motion of this system is Hamiltonian, see e.g. [26℄, meaning thatthe theory in this 
hapter 
an be applied. Let g ∈ SE(3) and ξ ∈ se(3) be given by
g =

[
R p
0 1

]
, ξ =

[
Ω̂ v
0 0

]
,where Ω, v ∈ R3 and ·̂ : so(3) → R3 is the isomorphism given in the previous example.The kinemati
 equation (3.6) then redu
es to

Ṙ = RΩ̂,

ṗ = Rv.The kineti
 energy for this system is given by 1
2
ΩT JΩ+ 1

2
vT Mv, where J = diag(J1, J2, J3)is the inertia matrix and M = diag(m1, m2, m3) 
omprises the added masses, whi
hdes
ribes the inertia added to the system due to the fa
t that moving the body alsomeans moving some of the surrounding �uid. This means that I = diag(J,M) and sin
e

ad(Ω,v) =

[
Ω̂ 0

v̂ Ω̂

]
,the Euler-Poin
aré equations (3.7) for this system are

JΩ̇ = (JΩ) × Ω + (Mv) × v + fΩ,

Mv̇ = (Mv) × Ω + fv,where f = (fΩ, fv) ∈ se(3)∗ is the resultant body-�xed for
e. With for
es as in �gure 3.4we have
f1 = e4, f2 = −he3 + e5, f3 = he2 + e6.Any ve
tor ξ ∈ se(3) of the form

ξ = αei + βei+3, i ∈ {1, 2, 3},where α, β ∈ R, is seen to be a relative equilibrium.



Chapter 4Elements of Controllability TheoryIn this 
hapter we present some elements from 
ontrollability theory in order to do a
ontrollability analysis of simple me
hani
al 
ontrol systems on Lie groups.We begin by introdu
ing some 
on
epts from the theory of 
ontrollability of a�ne
ontrol systems and present some of the strongest theorems available regarding lo
al
ontrollability properties of these systems. We then review 
ontrol results for simpleme
hani
al 
ontrol systems on Lie groups and prove an additional result regarding lo
al
ontrollability along a relative equilibrium for a simple me
hani
al system on a Liegroup; this result is new and one of the main 
ontributions of this thesis. We end byapplying the theory to three example systems and thus provide a 
ontrollability analysisof these systems.Standard referen
es in nonlinear 
ontrol theory in
lude [21℄, [34℄, and [40℄.4.1 Controllability of A�ne Control SystemsLet Q denote a smooth manifold and 
onsider the a�ne 
ontrol system on Q given by
q̇ = X(q) +

m∑

j=1

Yj(q)uj, (4.1)where X, Y1, . . . , Ym are C∞ ve
tor �elds on Q and the 
ontrols u1, . . . , um are boundedand measurable fun
tions de�ned for some time interval [0, T ], T > 0.Let Lie(X, Y1, . . . , Ym) denote the Lie algebra generated by the elements of {X, Y1, . . . , Ym}.The system (4.1) is said to satisfy the Lie algebra rank 
ondition (LARC) at q ∈ Qif Lie(X, Y1, . . . , Ym)(q) = TqQ.Let q0 ∈ Q and let W ⊂ Q be a neighborhood of q0. For T > 0 we de�ne
RW

Q (q0, T ) = {q1 ∈ Q| there exists a solution (q, u)(t) of the system (4.1)su
h that q(0) = q0, q(t) ∈W for t ∈ [0, T ], and q(T ) = q1},and
RW

Q (q0,≤ T ) =
⋃

t∈[0,T ]

RW
Q (q0, t).Then we have the following de�nition.
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ements

q0 RW
Q (q0,≤ T )

PSfrag repla
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q0

RW
Q (q0,≤ T )Figure 4.1: (left) lo
ally a

essible at q0. (right) small-time lo
ally 
ontrollable (STLC)at q0.De�nition 40. The system (4.1) is 
alled lo
ally a

essible at q0 ∈ Q if there exists

T > 0 su
h that RW
Q (q0,≤ t) 
ontains a nonempty open set of Q for all neighborhoods

W of q0 for all t ∈ (0, T ]. If the system is lo
ally a

essible for all q0 ∈ Q it is said tobe lo
ally a

essible.Let q0 ∈ Q satisfy X(q0) = 0. Then the system (4.1) is said to be small-timelo
ally 
ontrollable (STLC) at q0 ∈ Q if it is lo
ally a

essible at q0 and q0 belongs tothe interior of RW
Q (q0,≤ t) for all t ∈ (0, T ].We have the following theorem regarding lo
al a

essibility.Theorem 41. Consider the system (4.1). It is lo
ally a

essible at q0 ∈ Q if the LARCis satis�ed at q0. Conversely if the system is lo
ally a

essible then the LARC is satis�edin an open and dense subset of Q.The proof of this 
an be found in, e.g., [34℄.Let Br(X, Y1, . . . , Ym) denote the smallest subset of Lie(X, Y1, . . . , Ym) whi
h 
on-tains {X, Y1, . . . , Ym} and is 
losed under the operation of taking bra
kets of its el-ements, i.e. if B1, B2 ∈ Br(X, Y1, . . . , Ym) then [B1, B2] ∈ Br(X, Y1, . . . , Ym). For

B ∈ Br(X, Y1, . . . , Ym) we de�ne δ0(B) to be the number of times X o

urs in Band δj(B), j ∈ {1, . . . , m}, the number of times Yj o

urs in B. A Lie bra
ket
B ∈ Br(X, Y1, . . . , Ym) is said to be bad if δ0(B) is odd and δ1(B), . . . , δm(B) areeven; otherwise it is said to be good. For θ ∈ [0, 1] de�ne the order of a bra
ket
B ∈ Br(X, Y1, . . . , Ym) as the number

δθ(B) = θδ0(B) +
m∑

j=1

δj(B).Remark 42. The above de�nitions 
an be made more pre
ise using the notion of a freeLie algebra. We have 
hosen to avoid the notion of a free algebra in this 
hapter forsimpli
ity of the presentation. •This enables us to state one of the strongest results regarding STLC of a system. Aweaker version of this result was �rst 
onje
tured in [19℄.Theorem 43 (Sussmann [41℄). Consider the system (4.1) and a point q0 ∈ Q satisfying
X(q0) = 0. Assume that the LARC is satis�ed at q0. Assume there exists a θ ∈ [0, 1],



4.1 Controllability of A�ne Control Systems 35giving the order δθ, su
h that every bad Lie bra
ket B ∈ Br(X, Y1, . . . , Ym)(q0) is a linear
ombination of lower order good Lie bra
kets from Br(X, Y1, . . . , Ym)(q0).Then the system is STLC at q0.
PSfrag repla
ements
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Figure 4.2: Lo
ally 
ontrollability along the traje
tory q̂0(t).Let q̂0(t) be the solution of (4.1) for u = 0 satisfying q̂0(0) = q0 for q0 ∈ Q. Then thesystem is said to be lo
ally 
ontrollable along the traje
tory q̂0(t) if there exists
T > 0 su
h that q̂0(t) lies in the interior of RW

Q (q0, t) for all t ∈ (0, T ]. This redu
es toSTLC when q0 is an equilibrium point.We have the following result regarding lo
al 
ontrollability along a traje
tory.Theorem 44 (Bian
hini and Stefani [5℄). Consider the system (4.1) and a point q0 ∈
Q. Assume that the LARC is satis�ed at q0. Take as weight θ = 0 giving the or-der δθ of a bra
ket. Assume that every Lie bra
ket B ∈ Br(X, Y1, . . . , Ym)(q0) with
δi(B) = even, i ∈ {1, . . . , m}, is a linear 
ombination of lower order Lie bra
kets from
Br(X, Y1, . . . , Ym)(q0).Then the system is lo
ally 
ontrollable along q̂0(t).This theorem with q0 being an equilibrium point for X is seen to be 
ontained inTheorem 43.Another theorem is the following.Theorem 45 (Bian
hini and Stefani [5℄). Consider the system (4.1) and a point q0 ∈ Q.Assume that the LARC is satis�ed at q0. Take as weight θ = 1 de�ning the order δθof a bra
ket. Assume that every subspa
e of Lie(X, Y1, . . . , Ym) has 
onstant rank along
q̂0(t). Assume furthermore that every bad Lie bra
ket B ∈ Br(X, Y1, . . . , Ym)(q̂0(t)) isa linear 
ombination of lower order good Lie bra
kets from Br(X, Y1, . . . , Ym)(q̂0(t)) atea
h point q̂0(t) of the referen
e traje
tory.Then the system is lo
ally 
ontrollable along q̂0(t).Also this theorem is seen to be 
ontained in Theorem 43 when q0 is an equilibriumpoint for X. A
tually the main result in [5℄ 
ontains the main result in [41℄ whi
h hasTheorem 43 as a 
orollary.Remark 46. Theorem 45 is not in this exa
t form in [5℄ but is a 
onsequen
e of Theorem1.1 and Lemma 1.2 in [5℄ with l = (1, . . . , 1). •



36 Elements of Controllability Theory4.2 Controllability of Simple Me
hani
al Control Sys-tems on Lie GroupsLet Σ = (G, I, {f1, . . . , fm}) be a simple me
hani
al 
ontrol system on a Lie group. Thenwe 
onsider the Euler-Poin
are equations along with the kinemati
 equations
ġ = g · ξ, (4.2)
ξ̇ = −1

2
〈ξ : ξ〉 +

m∑

i=1

biui(t), (4.3)as given in 
hapter 3. Let g0 ∈ G and ξ0 ∈ g and let U ⊂ G be a neighborhood of g0.For T > 0 we de�ne
RU

G(g0, T ) = {g1 ∈ G| there exists a solution (g, u)(t) of the system (4.2)-(4.3)su
h that ġ(0) = 0, g(t) ∈ U for t ∈ [0, T ], and g(T ) = g1},and
RU

G(g0,≤ T ) =
⋃

t∈[0,T ]

RU
G(g0, t).Then we have the following de�nition.De�nition 47. The system (4.2)-(4.3) is lo
ally 
on�guration a

essible at g0 ifthere exists T > 0 su
h that RU

G(g0,≤ t) 
ontains a nonempty open set of G for allneighborhoods U of g0 for all t ∈ (0, T ]. If g0 belongs to the interior of the open set thesystem is 
alled small-time lo
ally 
on�guration 
ontrollable (STLCC) at g0. If thesystem is lo
ally 
on�guration a

essible (STLCC) for all g0 ∈ G it is said to be lo
ally
on�guration a

essible (small-time lo
ally 
on�guration 
ontrollable (STLCC)).Let V ⊂ G× g be a neighborhood of (g0, ξ0). Converting the de�nition of RW
Q fromthe previous se
tion to the system (4.2)-(4.3) gives

RV
G×g

(
(g0, ξ0), T

)
= {(g1, ξ1) ∈ G× g| there exists a solution (g, u)(t) of the system (4.2)-(4.3)su
h that (g, ξ)(0) = (g0, ξ0), (g, ξ)(t) ∈ V for t ∈ [0, T ],and (g, ξ)(T ) = (g1, ξ1)},and

RV
G×g

(
(g0, ξ0),≤ T

)
=
⋃

t∈[0,T ]

RV
G×g

(
(g0, ξ0), t

)
.Then we have the following de�nition.De�nition 48. If the system system (4.2)-(4.3) is lo
ally a

essible at (g0, 0) and (g0, 0)belongs to the interior of RV

G×g

(
(g0, 0),≤ t

), for all t ∈ (0, T ], the system is 
alledsmall-time lo
ally 
ontrollable (STLC) at g0 and at zero velo
ity.If the system (4.2)-(4.3) is STLC at g0 and at zero velo
ity for all g0 ∈ G it is saidto be small-time lo
ally 
ontrollable at zero velo
ity (STLC at zero velo
ity).



4.2 Controllability of Simple Me
hani
al Control Systems on Lie Groups 37A symmetri
 algebra is an algebra where the multipli
ation, denoted by (x, y) 7→
〈x : y〉, satis�es 〈x : y〉 = 〈y : x〉. We denote by Sym(b1, . . . , bm) the symmetri
 algebragenerated by the ve
tors b1, . . . , bm ∈ g and the symmetri
 produ
t 〈· : ·〉 on g.Proposition 49. Consider the system (4.2)-(4.3). The system satis�es the LARC ifthe subspa
e de�ned by Sym(b1, . . . , bm) has full rank.Proof. We 
al
ulate bra
kets. Let η, ζ ∈ g be �xed. Exploiting the bilinearity of 〈· : ·〉gives

[[
g · ξ

−1
2
〈ξ : ξ〉

]
,

[
0
η

]]
= 0 −

[
∗ g
0 −〈ξ : ·〉

] [
0
η

]

=

[
−g · η
〈ξ : η〉

]
, (4.4)and

[[
0
ζ

]
,

[[
g · ξ

−1
2
〈ξ : ξ〉

]
,

[
0
η

]]]
=

[
∗ 0
0 〈η : ·〉

] [
0
ζ

]

=

[
0

〈η : ζ〉

]
.Thus we have with η, ζ ∈ span{b1, . . . , bm} and ξ ∈ g that for an arbitrary κ ∈

Sym(b1, . . . , bm) there exists a X ∈ Lie((g · ξ,−1
2
〈ξ : ξ〉)T , (0, b1)

T , . . . , (0, bm)T ) of theform
X =

[
0
κ

]
.This and equation (4.4) 
ombined with the assumption that Sym(b1, . . . , bm) has fullrank show that there must also exist a Y ∈ Lie((g · ξ,−1

2
〈ξ : ξ〉)T , (0, b1)

T , . . . , (0, bm)T )of the form
Y =

[
g · κ

0

]
.Sin
e g is nonsingular the Lie algebra rank 
ondition is therefore satis�ed.Let ξ ∈ g and denote by Pr(ξ, b1, . . . , bm) the smallest subset of Sym(ξ, b1, . . . , bm)whi
h 
ontains {ξ, b1, . . . , bm} and is 
losed under the operation of taking symmetri
produ
ts of its elements, i.e., if S1, S2 ∈ Pr(ξ, b1, . . . , bm) then 〈S1 : S2〉 ∈ Pr(ξ, b1, . . . , bm).For S ∈ Pr(ξ, b1, . . . , bm) we de�ne ∆i(S), i ∈ {1, . . . , m}, to be the number of times

bi o

urs in S. Similarly we de�ne ∆0(S) to be the number of times ξ o

urs in S.A symmetri
 produ
t S ∈ Pr(ξ, b1, . . . , bm) is said to be bad if ∆i(S) is even for all
i ∈ {1, . . . , m}; otherwise it is said to be good. We de�ne the order of a symmetri
produ
t S ∈ Pr(ξ, b1, . . . , bm) to be the number

∆0(S) =
m∑

i=1

∆i(S).The following result is, as pointed out in [11℄, a dire
t 
onsequen
e of the results in[41℄ and [29℄ applied to the system (4.2)-(4.3).



38 Elements of Controllability TheoryTheorem 50. Consider the system (4.2)-(4.3). Assume that every bad symmetri
 prod-u
t S ∈ Pr(b1, . . . , bm) is a linear 
ombination of lower order good symmetri
 produ
tsfrom Pr(b1, . . . , bm). Then1. The system is STLC at zero velo
ity if the subspa
e de�ned by Sym(b1, . . . , bm) hasfull rank.2. The system is STLCC if the subspa
e de�ned by Lie(Sym(b1, . . . , bm)) has full rank.To prove a similar theorem regarding lo
al 
ontrollability along a relative equilibriumof (4.2)-(4.3) we �rst need two lemmas.Lemma 51. Let G be a matrix Lie group with 
orresponding Lie algebra g and let ξ ∈ g.Consider the ve
tor �elds
Z1 =

[
g · f1(ξ)
S1(ξ)

]
, Z2 =

[
g · f2(ξ)
S2(ξ)

]
,on G× g, where f1, f2, S1, S2 : g → g are di�erentiable. Then we have

[Z1, Z2] =

[
g ·
(
adf1(ξ)(f2(ξ)) +Df2(ξ)(S1(ξ)) −Df1(ξ)(S2(ξ))

)

DS2(ξ)(S1(ξ)) −DS1(ξ)(S2(ξ))

]
,where D is the di�erential.Proof. Using Proposition 31 gives

ΦXi

t

([
g0

ξ0

])
=

[
g0 exp(fi(ξ0)t+ O(t2))
ξ0 + Si(ξ0)t+ O(t2)

]
.Using this, and doing Taylor expansions leaving out terms of order O(t2) and O(s2), theresult then follows as an appli
ation of Proposition 3.De�ne

A0(ξ, b1, . . . , bm) = {ξ, b1, . . . , bm},
Ai+1(ξ, b1, . . . , bm) = Ai(ξ, b1, . . . , bm) ∪ {〈v1 : v2〉, adv1

(v2)| v1, v2 ∈ Ai(ξ, b1, . . . , bm)}
A(ξ, b1, . . . , bm) = A∞(ξ, b1, . . . , bm).Then we have the following useful lemmaLemma 52. Consider the system (4.2)-(4.3). Every bra
ket

B ∈ Br

([
g · ξ

−1
2
〈ξ : ξ〉

]
,

[
0
b1

]
, . . . ,

[
0
bm

])
,when evaluated is of the form

B =

[
g ·
(∑

j γjfj(ξ)
)

∑
i αiSi

]
,where γj, αi ∈ R, Si ∈ Pr(ξ, b1, . . . , bm) \ {ξ}, and fj(ξ) ∈ A(ξ, b1, . . . , bm) if ∆0(Si) > 0and fj = 0 if ∆0(Si) = 0. Furthermore if ∆0(Si) > 0 then fj(ξ) is homogeneous of order

∆0(Si) − 1, i.e., fj(aξ) = a∆0(Si)−1fj(ξ) for all a ∈ R and all ξ ∈ g.



4.2 Controllability of Simple Me
hani
al Control Systems on Lie Groups 39Proof. For fi : g → g smooth and Si(ξ) ∈ Pr(−1
2
〈ξ : ξ〉, b1, . . . , bm), i ∈ {1, 2}, we havefrom Lemma 51

[[
g · f1(ξ)
S1(ξ)

]
,

[
g · f2(ξ)
S2(ξ)

]]
=

[
g ·
(
adf1(ξ)(f2(ξ)) +Df2(ξ)(S1) −Df1(ξ)(S2)

)

[S1(ξ), S2(ξ)]

]
, (4.5)where

[S1(ξ), S2(ξ)] =DS2(ξ)(S1(ξ)) −DS1(ξ)(S2(ξ))

=
∑

j

S2(ξ−entry # j replaced with S1)

−
∑

k

S1(ξ−entry # k replaced with S2).

(4.6)This shows that [S1(ξ), S2(ξ)] =
∑

j βjS12j(ξ) where βj ∈ R and S12j(ξ) ∈ Pr(ξ, b1, . . . , bm)\
{ξ}.Let

X =

[
g · ξ

−1
2
〈ξ : ξ〉

]
, Yi =

[
0
bi

]
, i ∈ {1, . . . , m}.The statement is seen to be true for B ∈ {X, Y1, . . . , Ym}. We pro
eed by indu
tion.Assume it is true for Z1, Z2 ∈ Br(X, Y1, . . . , Ym). Thus

Z1 =

[
g · (∑i γ1if1i(ξ))∑

i α1iS1i(ξ)

]
, Z2 =

[
g ·
(∑

j γ2jf2j(ξ)
)

∑
j α2jS2j(ξ)

]
.Let k1 = ∆0(S1i(ξ)) and k2 = ∆0(S2j(ξ)).Sin
e the bra
ket is bilinear we get using (4.5)

[Z1, Z2] =

[
g ·
(∑

ij(γ1iγ2jadf1i(ξ)(f2j(ξ)) + γ2jα1iDf2j(ξ)(S1i(ξ)) − γ1iα2jDf1i(ξ)(S2j(ξ)))
)

∑
ij α1iα2j [S1i(ξ), S2j(ξ)]

]
,where [S1i(ξ), S2j(ξ)] =

∑
k β12ijkS12ijk and β12ijk ∈ R and S12ijkPr(ξ, b1, . . . , bm) \ {ξ}.Be
ause of equation (4.6) we have

∆0(S12ijk) = k1 + k2 − 1 =: k.By de�nition we get S12ijk ∈ Pr(ξ, b1, . . . , bm)\{ξ} ⊂ A(ξ, b1, . . . , bm) and adf1i(ξ)(f2j(ξ)) ∈
A(ξ, b1, . . . , bm). Similarly we have by de�nition thatDf2j(ξ)(S1i(ξ)) =

∑
k β21jikf21jik(ξ)and Df1i(ξ)(S2j(ξ)) =

∑
k β12ijkf12ijk(ξ) where β21jik, β12ijk ∈ R and f21jik(ξ), f12ijk(ξ) ∈

A(ξ, b1, . . . , bm).For k1 = 0 or k2 = 0 we have adf1i(ξ)(f2j(ξ)) = 0. If k1, k2 > 0 adf1i(ξ)(f2j(ξ)) ishomogeneous of order (k1 − 1) + (k2 − 1) = k − 1.For k1 ≤ 1 we have Df1i(ξ)(S2j(ξ)) = 0. For k1 > 1 Df1i(ξ)(S2j(ξ)) is homogeneousof order (k1 − 1) − 1 + k2 = k − 1.When k2 ≤ 1 we have Df2j(ξ)(S1i(ξ)) = 0. For k2 > 1 Df2j(ξ)(S1i(ξ)) is homoge-neous of order (k2 − 1) − 1 + k1 = k − 1.If the statement is true for Z1, Z2 ∈ Br(X, Y1, . . . , Ym) it is therefore true for [Z1, Z2],and sin
e it is true for Z1, Z2 ∈ {X, Y1, . . . , Ym} it is therefore true for allZ ∈ Br(X, Y1, . . . , Ym).



40 Elements of Controllability TheoryWith these two lemmas we are able to prove the following result regarding lo
al
ontrollability along a relative equilibrium.Proposition 53. Consider the system (4.2)-(4.3). Let ξre satisfy 〈ξre : ξre〉 = 0. Assumethat Sym(b1, . . . , bm) has full rank. Assume:1. Every bad symmetri
 produ
t S ∈ Pr(b1, . . . , bm) is a linear 
ombination of lowerorder good symmetri
 produ
ts from Pr(b1, . . . , bm).2. Every symmetri
 produ
t S ∈ Pr(ξre, b1, . . . , bm) \ {ξre} is a linear 
ombination ofequal and lower order good symmetri
 produ
ts from Pr(b1, . . . , bm).3. Every bra
ket B ∈ Br(ξre, b1, . . . , bm) \ {ξre}, given by [·, ·]g, with order given by δ0is a linear 
ombination of equal and lower order produ
ts from Pr(b1, . . . , bm).Then the system is lo
ally 
ontrollable along (g, ξ)(t) = (g0 exp(tξre), ξre) for all g0 ∈ G.Proof. Sin
e we assume that Sym(b1, . . . , bm) has full rank we know from Proposition 49that the LARC is satis�ed.From Lemma 51 we have that for B1, B2 ∈ Br(−1
2
〈ξ : ξ〉, b1, . . . , bm) that B1, B2,and [B1, B2] when evaluated are

B1 =
∑

i

α1iS1i, B2 =
∑

i

α2iS2i, [B1, B2] =
∑

i

α12iS12i,where α1i, α2i, α12i ∈ R and S1i, S2i, S12i ∈ Pr(ξ, b1, . . . , bm). From Lemma 51 we alsoget
∆0(S12i) = ∆0(S1j) + ∆0(S2k) − 1. (4.7)We 
hoose θ = 1 meaning that for B ∈ Br(−1

2
〈ξ : ξ〉, b1, . . . , bm) the order δ1(B) of B isthe total number of fa
tors in B. Taking B ∈ Br(−1

2
〈ξ : ξ〉, b1, . . . , bm)(ξre), whi
h whenevaluated is

B =
∑

i

αiSj,where αi ∈ R and Sj ∈ Pr(ξ, b1, . . . , bm), we get using (4.7) re
ursively
∆0(Sj) =

{
2δ0(B) − δ1(B) + 1 , if 2δ0(B) − δ1(B) + 1 > 0
0 , otherwise , (4.8)where we re
all that δ0(B) is the number of times −1

2
〈ξ : ξ〉 o

urs in B. We re
all thatwe have de�ned the order of a produ
t S ∈ Pr(ξre, b1, . . . , bm) as ∆0(S) :=

∑m
j=1 ∆j(S).Equation 4.8 
an be rewritten to

δ1(B) = ∆0(Sj) + 2∆0(Sj) − 1. (4.9)De�ne
X =

[
g · ξ

−1
2
〈ξ : ξ〉

]
, Y =

[
0
bi

]
, i ∈ {1, . . . , m}.



4.2 Controllability of Simple Me
hani
al Control Systems on Lie Groups 41Using Lemma 51 we get
[X, Yi] =

[
−g · bi
〈ξ : bi〉

]
, [Yi, [X, Yj]] =

[
0

〈bi : bj〉

]
.This means that

∀ S ∈ Pr(b1, . . . , bm) ∃ B ∈ Br(X, Y1, . . . , Ym) s.t. B =

[
0
S

]
, (4.10)we denote this bra
ket by BS.From Lemma 52 we have that every bra
ket B ∈ Br(X, Y1, . . . , Ym) when evaluatedis of the form

B =

[
g ·
(∑

j γjfj(ξ)
)

∑
i α2iS2i

]
, (4.11)where γj, α2i ∈ R, S2i ∈ Pr(ξ, b1, . . . , bm), and fj ∈ A(ξ, b1, . . . , bm) if ∆0(Si) > 0and fj = 0 if ∆0(Si) = 0. Using Lemma 51 re
ursively we furthermore have that bk,

k ∈ {1, . . . , m}, o

urs the same number of times in Si as in fj , if ∆0(Si) > 0, and
δk(B) = ∆k(Si).Let B be a bad bra
ket and take ξ = ξre. Then there are two situations, here denoted(a) and (b).(a). ∆0(S2i) > 0.A

ording to assumption 2 we have

α2iS2i =
∑

j

α2ijS2ij ,where α2ij ∈ R and Sij ∈ Pr(b1, . . . , bm) is of equal and lower order as S2i and a

ordingto assumption 1 we 
an assume that S2ij is good.A

ording to assumptions 2 and 3 we have
∑

j

γjfj(ξ) =
∑

k

βkS1k,where βk ∈ R and S1k ∈ Pr(b1, . . . , bm) is of equal and lower order as S2i and a

ordingto assumption 1 we 
an assume that S1k is good. Using Lemma 51 and (4.10) we get
[X,BS1k

] =

[
−g · S1k

〈ξ : S1k〉

]
.Be
ause of assumption 2 we have that

〈ξre : S1k〉 =
∑

i

α1kiS1kiwhere α1ki ∈ R and S1ki ∈ Pr(b1, . . . , bm) is of equal and lower order as S1k and be
auseof assumption 1 we 
an assume that S1ki is good. Therefore
[
g · S1k

0

]
= −[X,BS1k

] +
∑

i

α1kiBS1ki
.



42 Elements of Controllability TheoryFrom the above we get
B =

[
g · (∑k βkS1k)∑

ij α2ijS2ij

]

=
∑

k

βk

(
−[X,BS1k

] +
∑

i

α1kiBS1ki

)
+
∑

ij

α2ijBS2ij
,where BS1k

, BS1ki
, and BS2ij

are good sin
e S1k, S1ki, and S2ij are good.We have from (4.9) that
δ1(B) = ∆0(S2i) + 2∆0(S2i) − 1,

δ1(BS1k
) = ∆0(S1k) + 2∆0(S1k) − 1 = 2∆0(S1k) − 1,

δ1(BS1ki
) = ∆0(S1ki) + 2∆0(S1ki) − 1 = 2∆0(S1ki) − 1,

δ1(BS2ij
) = ∆0(S2ij) + 2∆0(S2ij) − 1 = 2∆0(S2ij) − 1.Sin
e ∆0(S1k) ≤ ∆0(S2i), ∆0(S1ki) ≤ ∆0(S2i), ∆0(S2ij) ≤ ∆0(S2i), and ∆0(S2i) > 0 wetherefore get

δ1(BS1k
) < δ1(B),

δ1(BS1ki
) < δ1(B),

δ1(BS2ij
) < δ1(B).Finally

δ1([X,BS1k
]) = 1 + δ1(BS1k

) = 2∆0(S1k) ≤ δ1(B),But sin
e B is bad δ1(B) is odd so we must have δ1([X,BS1k
]) < δ1(B).(b). ∆0(S2i) = 0.By assumption we have S2i ∈ Pr(b1, . . . , bm). From Lemma 52 we get

B =

[
0∑

i α2iS2i

]
.Sin
e δq(B) = ∆q(S2i), q ∈ {1, . . . , m}, B bad means that S2i is bad but then a

ordingto assumption 1 we have that

B =

[
0∑

ij α2ijS2ij

]
,where α2ij ∈ R and S2ij ∈ Pr(b1, . . . , bm) is good of order ∆0(S2ij) < ∆0(S2i). Thus weget

B =
∑

ij

α2ijBS2ij
,where BS2ij

is good, sin
e δq(BS2ij
) = ∆q(S2ij), q ∈ {1, . . . , m}, and the order of BS2ij

is
δ1(BSij

) = 2∆0(S2ij) − 1 < δ1(B) = 2∆0(S2i) − 1.Sin
e every bra
ket B ∈ Br(X, Y1, . . . , Ym) is of the form 4.11 and sin
e ξ(t) = ξre weget that every subspa
e of Lie(X, Y1, . . . , Ym) has 
onstant rank along (g0 exp(ξret), ξre)for all g0 ∈ G. The result then follows as an appli
ation of Theorem 45.



4.2 Controllability of Simple Me
hani
al Control Systems on Lie Groups 43Remark 54. For ξre = 0 assumption 2 is automati
ally satis�ed. From Lemma 52 wehave that fj(ξ), in the proof of Proposition 53, is homogeneous of order k = ∆0(S2i)−1for ∆0(S2i) > 0 and fj = 0 for ∆0(S2i) = 0. Sin
e
∆0(S2i) = 2δ0(B) − δ1(B) + 1

= δ0(B) − δ0(B) + 1,we have that if B is bad then ∆0(S2i) = odd−even+1 = even. For ∆0(S2i) > 0 we thushave that k is odd and k > 0. This gives that for a bad bra
ket we have fj(0) = 0 andtherefore assumption 3 is super�uous in the 
ase that ξre = 0. Therefore when ξre = 0Proposition 53 
an be simpli�ed to statement 1 of Proposition 50. •Proposition 53 has the following 
orollary whi
h is useful in the analysis of a realme
hani
al system sin
e its assumptions are easy to verify .Corollary 55. Consider the system (4.2)-(4.3). Let ξre satisfy 〈ξre : ξre〉 = 0. As-sume that span{bi, 〈bi : bj〉 | i, j ∈ {1, . . . , m}} is full rank and 〈ξre : bi〉, 〈bi : bi〉 ∈
span{b1, . . . , bm}, for i ∈ {1, . . . , m}.Then the system is lo
ally 
ontrollable along (g, ξ)(t) = (g0 exp(tξre), ξre) for all g0 ∈
G. Consider now instead the Euler-Poin
are equations only, without the kinemati
 equa-tion. Then we prove two propositions regarding STLC of this system. The �rst resultshows what 
an be omitted in Proposition 53 when disregarding the kinemati
 equation.Proposition 56. Consider the system (4.3). Let ξre satisfy 〈ξre : ξre〉 = 0. Assume that
Sym(b1, . . . , bm) has full rank. Assume:1. Every bad symmetri
 produ
t S ∈ Pr(b1, . . . , bm) is a linear 
ombination of lowerorder good symmetri
 produ
ts from Pr(b1, . . . , bm).2. Every symmetri
 produ
t S ∈ Pr(ξre, b1, . . . , bm) \ {ξre} is a linear 
ombination ofequal and lower order good symmetri
 produ
ts from Pr(b1, . . . , bm).Then the system is STLC at ξre.Proof. Sin
e we assume that Sym(b1, . . . , bm) has full rank we know from Proposition 49that the LARC is satis�ed.For S1, S2 ∈ Pr(−1

2
〈ξ : ξ〉, b1, . . . , bm) we have, due to the bilinearity of the symmetri
produ
t, that

[S1, S2] =
∑

j

S2(ξ−entry # j replaced with S1)

−
∑

j

S1(ξ−entry # j replaced with S2).
(4.12)Using this re
ursively we 
an de�ne the map ·̃ : Br(−1

2
〈ξ : ξ〉, b1, . . . , bm) → Sym(−1

2
〈ξ :

ξ〉, b1, . . . , bm), whi
h we extend linearly so ·̃ : Lie(−1
2
〈ξ : ξ〉, b1, . . . , bm) → Sym(ξ, b1, . . . , bm).Sin
e ˜[bi, [−1

2
〈ξ : ξ〉, bj]] = 〈bi : bj〉 we have

∀ S ∈ Pr(b1, . . . , bm) ∃ B ∈ Br(−1
2
〈ξ : ξ〉, b1, . . . , bm) s.t. S = B̃.



44 Elements of Controllability TheoryThis B ∈ Br(−1
2
〈ξ : ξ〉, b1, . . . , bm) we denote BS, i.e. B̃S = S for S ∈ Pr(b1, . . . , bm).Let S ∈ Pr(ξre, b1, . . . , bm), and now ∆0(S) denotes the number of times ξre o

urs in

S and ∆i(S), i ∈ {1, . . . , m}, the number of times bi o

urs in S as before. From (4.12)we have for B1, B2 ∈ Br(−1
2
〈ξ : ξ〉, b1, . . . , bm)(ξre) that

∆0( ˜[B1, B2]) = ∆0(B̃1) + ∆0(B̃2) − 1, (4.13)where we de�ne ∆i, i ∈ {0, 1, . . . , m}, on a sum of produ
ts with the same fa
tors to be
∆i applied to one of these produ
ts.We 
hoose θ = 1 meaning that for B ∈ Br(−1

2
〈ξ : ξ〉, b1, . . . , bm) the order δ1(B) of

B is the total number of fa
tors in B. Using (4.13) re
ursively gives for B ∈ Br(−1
2
〈ξ :

ξ〉, b1, . . . , bm)(ξre)
∆0(B̃) =

{
2δ0(B) − δ1(B) + 1 , if 2δ0(B) − δ1(B) + 1 > 0
0 , otherwise , (4.14)where we re
all that δ0(B) is the number of times X = −1

2
〈ξ : ξ〉 o

urs in B. Were
all that we have de�ned the order of a produ
t S ∈ Pr(ξre, b1, . . . , bm) as ∆0(S) :=∑m

j=1 ∆j(S).Let B ∈ Br(−1
2
〈ξ : ξ〉, b1, . . . , bm)(ξre) be a bad bra
ket of order δ1(B). Then we havefrom (4.12) that

B̃ =
∑

i

αiSi, (4.15)where αi ∈ R and Si ∈ Pr(ξre, b1, . . . , bm) \ {ξre} is a bra
ket of order l. From (4.14) wehave
δ1(B) = ∆0(Si) + 2l − 1.Then there are two situations, here denoted (a) and (b).(a). ∆0(Si) > 0.A

ording to assumption 2 equation (4.15) be
omes

B̃ =
∑

ij

αijSij ,where αij ∈ R and Sij ∈ Pr(b1, . . . , bm) has order ∆0(Sij) = l′ ≤ l. Then a

ording toassumption 1 we have
B̃ =

∑

ijk

αijkSijk,where αijk ∈ R and Sijk ∈ Pr(b1, . . . , bm) is good of order ∆0(Sijk) = l′′ ≤ l′ ≤ l. Thuswe get
B =

∑

ijk

αijkBSijk
,



4.2 Controllability of Simple Me
hani
al Control Systems on Lie Groups 45where BSijk
is good, sin
e δq(BSijk

) = ∆q(Sijk), q ∈ {1, . . . , m}, and the order of BSijkis a

ording to (4.14) δ1(BSijk
) = 2l′′ − 1 < δ1(B).(b). ∆0(Si) = 0.By assumption we have Si ∈ Pr(b1, . . . , bm). Sin
e δq(B) = ∆q(Si), q ∈ {1, . . . , m}, Bbad means that Si is bad but then a

ording to assumption 1 we have that equation 4.15be
omes

B̃ =
∑

ij

αijSij ,where αij ∈ R and Sij ∈ Pr(b1, . . . , bm) is good of order ∆0(Sij) = l′ < l. Thus we get
B =

∑

ij

αijBSij
,where BSij

is good, sin
e δq(BSij
) = ∆q(Sij), q ∈ {1, . . . , m}, and the order of BSij

isa

ording to (4.14) δ1(BSij
) = 2l′ − 1 < δ1(B).The result then follows as an appli
ation of Theorem 43.Denote by invξreSym(b1, . . . , bm) the ve
tor spa
e spanned by the elements from

K(ξre, b1, . . . , bm) ⊂ Pr(ξre, b1, . . . , bm) where
K0(ξre, b1, . . . , bm) = Pr(b1, . . . , bm),

Ki+1(ξre, b1, . . . , bm) = Ki(ξre, b1, . . . , bm) ∪ {〈ξre : v〉| v ∈ Ki(ξre, b1, . . . , bm)},
K(ξre, b1, . . . , bm) = K∞(ξre, b1, . . . , bm)Then we have the following result.Proposition 57. Consider the system (4.3). Let ξre satisfy 〈ξre : ξre〉 = 0. As-sume that the subspa
e invξreSym(b1, . . . , bm) has full rank and that every bad produ
tin Pr(ξre, b1, . . . , bm) \ {ξre} is a linear 
ombination of lower order good produ
ts from

K(ξre, b1, . . . , bm). Then the system is STLC at ξre.Proof. Equation (4.12) in the proof of Proposition 56 shows that
˜[bi, [−1
2
〈ξ : ξ〉, bj]] = 〈bi : bj〉,and

˜[−1
2
〈ξ : ξ〉, [−1

2
〈ξ : ξ〉, [. . . , [−1

2
〈ξ : ξ〉, bi] . . .]]](ξre) = 〈ξre : 〈ξre : 〈. . . : 〈ξre : bi〉 . . .〉〉〉where −1

2
〈ξ : ξ〉 appears on the left hand side the same number of times as ξre appearson the right hand side. This shows that the LARC is satis�ed if invξreSym(b1, . . . , bm)has full rank. We also see from the above that for every S ∈ K(ξre, b1, . . . , bm) thereexists a bra
ket B ∈ Br(−1

2
〈ξ : ξ〉, b1, . . . , bm) su
h that B̃ = S, we denote this bra
ket

BS. Sin
e the number of times bk, k ∈ {1, . . . , m}, o

urs in BS is the same as in S, BSwill be good if S is good.Take θ = 0 to de�ne the order of a bra
ket B ∈ Br(−1
2
〈ξ : ξ〉, b1, . . . , bm), this meansthat the order of a bra
ket B ∈ Br(−1

2
〈ξ : ξ〉, b1, . . . , bm) is the same as the order of the
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ts that B̃ is 
omposed of. Let B ∈ Br(−1
2
〈ξ : ξ〉, b1, . . . , bm)be a bad bra
ket. Then we have from the 
al
ulations in Proposition 56 that

B̃(ξre) =
∑

i

αiSiwhere αi ∈ R and Si ∈ Pr(ξre, b1, . . . , bm) \ {ξre} is bad and of order same order as B.By assumption we have
B̃(ξre) =

∑

ij

αijSij,where αij ∈ R and Sij ∈ K(ξre, b1, . . . , bm) is good and of lower order than Si. Thus wehave
B =

∑

ij

αijBSij
,where BSij

is good and of lower order than B.The result thus again follows as an appli
ation of Theorem 43, but this time with
θ = 0.This proposition has the following 
orollary.Corollary 58 (Linear 
ontrollability). Consider the system (4.3). Let ξre satisfy 〈ξre :
ξre〉 = 0. Assume that the spa
e

span{b1, . . . , bm, 〈ξre : b1〉, . . . , 〈ξre : bm〉, 〈ξre : 〈ξre : b1〉〉, . . . , 〈ξre : 〈ξre : bm〉〉, . . .}has full rank. Then the system is STLC at ξre.From the theory of linear systems, see, e.g., [40℄, we know that in Corollary 58 weonly need to in
lude produ
ts where ξre appears less than or equal to n−1 times, where
n is the number of degrees of freedom for the system.4.3 ExamplesExample 4 (Planar rigid body). Re
onsider the planar rigid body as des
ribed in theprevious 
hapter. The 
on�guration manifold is the matrix Lie group G = SE(2) whi
his isomorphi
 to S × R2 ∋ (θ, x, y). m denotes the mass of the body, J its moment ofinertia, and h the distan
e from the 
enter of mass to the 
ontrol for
es. The inertiatensor has the representation I = diag(J,m,m). With 
ontrols as in Figure 3.2 wetherefore have

b1 =
1

m
e2, b2 = −h

J
e1 +

1

m
e3,For (ω, v1, v2)

T ∈ R3 ≃ se(2) the adjoint operator is given by
ad(ω,v1,v2)T =




0 0 0
v2 0 −ω
−v1 ω 0


 ,



4.3 Examples 47and the symmetri
 produ
t is, for ω, λ ∈ R and v, w ∈ R2, given by
〈(ω, v) : (λ, w)〉 =

[
0

ω̂w + λ̂v

]
,where ω̂ =

[
0 −ω
ω 0

]. This gives
〈b1 : b1〉 = 0, 〈b2 : b2〉 =

2h

Jm
e2, 〈b1 : b2〉 = − h

Jm
e3.Sin
e 〈b1 : b1〉, 〈b2 : b2〉 ∈ span{b1, b2} and span{b1, b2, 〈b1 : b2〉} has full rank we havefrom Theorem 50 that the system is STLC at zero velo
ity.The relative equilibrium e1 satis�es

〈e1 : b1〉 =
1

m
e3, 〈e1 : b2〉 = − 1

m
e2, (4.16)meaning that the system does not satisfy the su�
ient 
ondition 2 of Proposition 53whi
h 
an therefore not be used to determine whether (4.2)-(4.3) for this system islo
ally 
ontrollable for the relative equilibrium e1. Instead equations (4.16) show theassumption of Corollary 58 is satis�ed for ξre = e1 and (4.3) is therefore STLC for thisequilibrium.The relative equilibrium αe2 + βe3 satis�es

〈αe2 + βe3 : b1〉 = 0, 〈αe2 + βe3 : b2〉 =
βh

J
e2 −

αh

J
e3,so the 
ondition 2 of Proposition 53 is satis�ed if and only if α = 0. Sin
e 〈b1 : b1〉, 〈b2 : b2〉 ∈

span{b1, b2} and span{b1, b2, 〈b1 : b2〉} has full rank we therefore know from Corollary 55that (4.2)-(4.3) for this system is lo
ally 
ontrollable for the relative equilibrium ξre = e3.Example 5 (Satellite with two thrusters). Re
onsider the satellite with two thrustersaligned with the �rst and se
ond prin
ipal axes. The 
on�guration manifold is thematrix Lie group G = SO(3) and the equations of motion are given by (4.2)-(4.3).From the previous 
hapter we know that for x ∈ R3 ≃ so(3) we have adx = x̂ and theinertia tensor is given by I = diag(J1, J2, J3), where Ji is the moment of inertia aroundthe ith prin
ipal axis. Therefore the symmetri
 produ
t 〈ξ : η〉 = −I−1(ad∗
ξIη + ad∗

ηIξ),
ξ, η ∈ R3 ≃ so(3), is given by

〈ξ : η〉 = I−1
(
ξ × (Iη) + η × (Iξ)

)
,where × is the 
ross produ
t.With 
ontrols as in �gure 3.3 we have

b1 =
1

J1
e1, b2 =

1

J2
e2,giving

〈b1 : b1〉 = 0, 〈b2 : b2〉 = 0, 〈b1 : b2〉 =
J2 − J1

J1J2J3
e3.



48 Elements of Controllability TheoryThus 〈b1 : b1〉, 〈b2 : b2〉 ∈ span{b1, b2} and sin
e span{b1, b2, 〈b1 : b2〉} has full rank weknow from Theorem 50 that the system is STLC at zero velo
ity.Sin
e
〈e1 : b1〉 = 0, 〈e1 : b2〉 =

J2 − J1

J2J3
e3,

〈e2 : b1〉 =
J2 − J1

J1J3
e3, 〈e2 : b2〉 = 0,Proposition 53 
an not be used to determine whether 4.2-4.3 for this system is lo
ally
ontrollable along the relative equilibria (g0 exp(te1), e1) and (g0 exp(te2), e2). We seeinstead that the assumption of Corollary 58 is satis�ed so the Euler-Poin
are equa-tion (4.3) is STLC for the equilibria e1 and e2.We have

〈e3 : b1〉 =
J1 − J3

J1J2

e2, 〈e3 : b2〉 =
J3 − J2

J1J2

e1,so Corollary 55 gives that equations (4.2)-(4.3) for the system is lo
ally 
ontrollablealong the relative equilibrium (g0 exp(te3), e3), g0 ∈ SO(3), sin
e 〈b1 : b1〉, 〈b2 : b2〉 ∈
span{b1, b2}, 〈e3 : b1〉, 〈e3 : b2〉 ∈ span{b1, b2}, and span{b1, b2, 〈b1 : b2〉} has full rank.Example 6 (Underwater vehi
le in ideal �uid). We re-examine the underwater vehi
lein an ideal �uid as des
ribed in the previous 
hapter. The inertia tensor is given by
I = diag(J,M), where J = diag(J1, J2, J2) is the inertia matrix for the body and M =
diag(m1, m2, m3) in
ludes added masses. Sin
e, for Ω, v ∈ R3, we have

ad(Ω,v) =

[
Ω̂ 0

v̂ Ω̂

]
,the symmetri
 produ
t is given by

〈(Ω, v) : (Γ, w)〉 = I−1

[
Ω × (JΓ) + Γ × (JΩ) + v × (Mw) + w × (Mv)

Ω × (Mw) + Γ × (Mv)

]
.With for
es as in �gure 3.4 we have

b1 =
1

m1
e4, b2 = − h

J3
e3 +

1

m3
e5, b3 =

h

J2
e2 +

1

m3
e6.Cal
ulating symmetri
 produ
ts gives

〈b1 : b1〉 = 0, 〈b1 : b2〉 =
m2 −m1

J3m1m2
e3 −

h

J3m2
e5,

〈b2 : b2〉 =
2h

J3m1
e4, 〈b1 : b3〉 =

m1 −m3

J2m1m3
e2 −

h

J2m3
e6,

〈b3 : b3〉 =
2h

J2m1
e4, 〈b2 : b3〉 =

1

J1

(
h2

J3
− h2

J2
− 1

m3
+

1

m2

)
e1.



4.3 Examples 49The spa
e span{b1, b2, b3, 〈b1 : b2〉, 〈b1 : b3〉, 〈b2 : b3〉} has full rank if
h2m1m2 + J3(m1 −m2) 6= 0,

h2m1m3 + J2(m1 −m3) 6= 0,

h2

(
1

J3
− 1

J2

)
− 1

m3
+

1

m2
6= 0,and sin
e 〈b1 : b1〉, 〈b2 : b2〉, 〈b3 : b3〉 ∈ span{b1, b2, b3} the system is therefore STLC atzero velo
ity, a

ording to Theorem 50, if this is satis�ed.Sin
e

〈α1e1 + β1e4 : b1〉 = 0,

〈α1e1 + β1e4 : b2〉 = α1

(
h

J2
− J1h

J2J3

)
e2 + β1

(
1

J3
− m1

J3m2

)
e3 − β1

m1h

m2J3
e5 + α1

1

m3
e6,

〈α1e1 + β1e4 : b3〉 = β1

(
m1

J2m3

− 1

J2

)
e2 + α1

(
h

J3

− J1h

J2J3

)
e3 − α1

1

m2

e5 − β1
m1h

m3J2

e6,are not all in span{b1, b2, b3} Proposition 53 
an not be used to determine whetherthe system is lo
ally 
ontrollable along (g, ξ)(t) = (g0 exp(t(α1e1 + β1e4)), α1e1 + β1e4).Sin
e the 〈α1e1 + β1e4 : (x, y)〉 has no 
omponent in the e1 dire
tion the assumption ofCorollary 58 
annot be satis�ed.Similarly we have that
〈α2e2 + β2e5 : b1〉 = β2

(
m2

J3m1
− 1

J3

)
e3 − α2

1

m3
e6,

〈α2e2 + β2e5 : b2〉 = α2

(
J2h

J1J3

− h

J1

)
e1 + β2

m2h

m1J3

e4,

〈α2e2 + β2e5 : b3〉 = β2

(
1

J1
− m2

J1m3

)
e1 + α2

1

m1
e4,are not in span{b1, b2, b3} and therefore Proposition 53 
an not be used to determinewhether the system is lo
ally 
ontrollable along the relative equilibrium α2e2 + β2e5.Cal
ulating

〈α2e2 + β2e5 : 〈α2e2 + β2e5 : b2〉〉 =

h(α2
2(J1m1(J3 − J2) + J2m1(J2 − J3)) + β2

2J1m2(m2 −m1))

J2
3J1m1

e3 + α2β2
m2h(J2 − J1 − J3)

m3J1J3
e6,gives that

span{b1, b2, b3, 〈α2e2 + β2e5 : b1〉, 〈α2e2 + β2e5 : b2〉, 〈α2e2 + β2e5 : 〈α2e2 + β2e5 : b2〉〉}generi
ally has full rank if α2 6= 0. Thus the 
ondition for Corollary 58 to be applied issatis�ed.



50 Elements of Controllability TheoryLikewise, for the relative equilibrium α3e3 + β3e6, we get
〈α3e3 + β3e6 : b1〉 = β3

(
1

J2
− m3

J2m1

)
e2 + α3

1

m2
e5,

〈α3e3 + β3e6 : b2〉 = β3

(
m3

J1m2

− 1

J1

)
e1 − α3

1

m1

e4,

〈α3e3 + β3e6 : b3〉 = α3

(
J3h

J1J2
− h

J1

)
e1 + β3

m3h

m1J2
e4,whi
h are not in span{b1, b2, b3} so also for this relative equilibrium the assumptions ofProposition 53 are not satis�ed. Sin
e

span{b1, b2, b3, 〈α3e3 + β3e6 : b1〉, 〈α3e3 + β3e6 : b2〉, 〈α3e3 + β3e6 : 〈α3e3 + β3e6 : b2〉〉}generi
ally has full rank for β3 6= 0 this equilibrium point for the Euler-Poin
are equa-tions (4.3) is STLC a

ording to Corollary 58.



Chapter 5Control Algorithms along RelativeEquilibriaIn this 
hapter we study 
ontrol of undera
tuated me
hani
al systems on Lie groups. Wefo
us on the 
onstru
tion of an algorithm whi
h, depending on the sign of a parameter,generates small-amplitude 
ontrol for
es to a

elerate along, de
elerate along, or stabilizea relative equilibrium of a system. Perturbation analysis and Lie group theory play a
ru
ial role in the analysis. The main limitation of the presented theory is that part ofthe results are appli
able only to n-dimensional systems with (n−1) 
ontrols. Examplesystems to whi
h the theory applies are an undera
tuated planar rigid body and asatellite with two thrusters.This 
hapter is organized as follows. First, we review the mathemati
al model ofsimple me
hani
al 
ontrol systems on Lie groups and perform perturbation analysis forsmall amplitude for
ing and initial velo
ity 
lose to a relative equilibrium and give a sim-ilar result obtained in [11℄ for small initial velo
ity. Following we review the theory from[11℄ regarding motion algorithms for small velo
ity. Based on the perturbation analysisfor the 
ase when the initial velo
ity is 
lose to a relative equilibrium we 
onstru
t two�inversion maps� and 
ombine them into a �motion primitive.� After an appli
ation ofthe motion primitive, the velo
ity has 
hanged in the dire
tion of a relative equilibrium,while the 
on�guration has 
hanged as if the velo
ity was a relative equilibrium through-out the exe
ution of the primitive. Using this motion primitive iteratively we design analgorithm whi
h gives small-amplitude 
ontrol for
es whi
h make the system a

eleratealong or de
elerate along a relative equilibrium or stabilizes the motion along a relativeequilibrium. We illustrate the approa
h by applying the algorithm to an undera
tuatedplanar rigid body and the satellite with two thrusters.
5.1 Mathemati
al Model and Perturbation AnalysisWe 
onsider a simple me
hani
al 
ontrol system on a matrix Lie group given by Σ =
(G, I, {f1, . . . , fm}). We let id denote the identity element and let A 7→ eA denote thematrix exponential of a square matrix A. With g ∈ G and ξ ∈ g, g being the Lie algebra
orresponding to G, we have from 
hapter 3 that the equations of motion for this system



52 Control Algorithms along Relative Equilibriaare
ġ = g · ξ, (5.1)
ξ̇ = −1

2
〈ξ : ξ〉 +

m∑

i=1

biui(t), (5.2)where bi = I−1fi, and the symmetri
 produ
t 〈· : ·〉 : g × g → g is given by
〈η : ζ〉 = −I−1(ad∗

ηIζ + ad∗
ζIη),for η, ζ ∈ g.Re
all that a relative equilibrium for Σ is a 
urve t 7→ g0 exp(tξre) ∈ G, for g0 ∈ Gand ξre ∈ g, that is a solution to the dynami
s (5.1), (5.2) for zero input u, i.e. ξresatis�es 〈ξre : ξre〉 = 0. We 
all relative equilibrium both the 
urve t 7→ g0 exp(tξre) andthe ve
tor ξre.Given a relative equilibrium ξre, we de�ne the linear map Are : g → g by Areη :=

−〈ξre : η〉, for all η ∈ g.Remark 59 (Simplifying 
onvention). It is well known that g is an n-dimensional ve
torspa
e. In what follows, we make no distin
tion between g and Rn. This is done in orderto be able to express a ve
tor in g as a 
olumn ve
tor and thus being able to 
olle
tve
tors in a matrix and in order to represent a linear map on g as a matrix. This 
hoi
eof notation is not to be 
onfused with the 
laim that the Lie algebra stru
ture on g isinsigni�
ant sin
e this is far from being the 
ase. •We are interested in bounded 
ontrol signals u ∈ C0([0, 2π],Rm) of the form
u(t) = ǫu1(t) + ǫ2u2(t), 0 < ǫ≪ 1,where ui ∈ C0([0, 2π],Rm), i ∈ {1, . . . , 2}. A

ordingly, we de�ne

bj(t) :=
m∑

i=1

biu
j
i (t), j ∈ {1, 2},and equation (5.2) thus be
omes

ξ̇ = −1
2
〈ξ : ξ〉 + ǫb1(t) + ǫ2b2(t).For f ∈ C0([0, 2π],Rn) and σ ∈ R it will be 
onvenient to make the de�nition

f
σ
(t) :=

∫ t

0

eσAre(t−s)f(s)ds, f(t) := f
0
(t).In what follows, s and τ will be used as integration variables only.In [11℄ the following perturbation result is obtained.Theorem 60 (Perturbation analysis for small velo
ity). For 0 < ǫ ≪ 1 and for inputsof the form ∑m

i=1 biui(t) = ǫb1(t) + ǫ2b2(t), let (g(t), ξ(t)) be the solutions of (5.1) and(5.2). Let x(t) be the exponential 
oordinates of g(t) with initial 
ondition g(0) = id.



5.1 Mathemati
al Model and Perturbation Analysis 53Also, assume that the initial velo
ity is ξ(0) = ǫξ1
0 + ǫ2ξ2

0, where ξ1
0 and ξ2

0 are of order
O(1).Then for t ∈ [0, 2π] it holds that ξ(t, ǫ) = ǫξ1(t) + ǫ2ξ2(t) + O(ǫ3), with

ξ1(t) = ξ1
0 + b1(t),

ξ2(t) = ξ2
0 − 1

2
〈ξ1

0 : ξ1
0〉t− 〈ξ1

0 : b1(t)〉 +
(
b2 − 1

2
〈b1 : b1〉

)
(t),and x(t, ǫ) = ǫx1(t) + ǫ2x2(t) + O(ǫ3), with

x1(t) = ξ1
0t+ b1(t),

x2(t) = ξ2
0t− 1

4
〈ξ1

0 : ξ1
0〉t2 +

(
b2 − 1

2
〈b1 : b1〉

)
(t) − 〈ξ1

0 : b1(t)〉 − 1
2
[ξ1

0 + b1, ξ1
0t+ b1](t).Instead of the velo
ity being small, i.e. of order O(ǫ), we let the velo
ity be ofarbitrary size but aligned with a relative equilibrium with a devian
e of order O(ǫ2).Proposition 61 (Perturbation analysis for a relative equilibrium). Let Σ be a simpleme
hani
al 
ontrol system on a Lie group with a relative equilibrium ξre and 
orre-sponding matrix Are. For 0 < ǫ ≪ 1 and σ > 0, let [0, 2π] ∋ t 7→ (g(t), ξ(t)) bethe solution to (5.1) and (5.2) with t 7→ ∑m

i biui(t) = ǫb1(t) + ǫ2b2(t) and from initialvelo
ity ξ(0) = σξre + ǫ2ξ2
0, for ξ2

0 = O(1), and initial 
on�guration g(0) = id. Let
h(t) := g(t) · exp(−tσξre) and let x(t) := log(h(t)) be the exponential 
oordinates of h.Then, for t ∈ [0, 2π], it holds that ξ(t, ǫ) = ξ0(t) + ǫξ1(t) + ǫ2ξ2(t) + O(ǫ3) with

ξ0(t) = σξre,
ξ1(t) = b1

σ
(t),

ξ2(t) = eσAretξ2
0 − 1

2
〈b1σ

: b1
σ〉

σ

(t) + b2
σ
(t),and x(t, ǫ) = ǫx1(t) + ǫ2x2(t) + O(ǫ3) with

x1(t) = Adexp(sσξre)(b1σ
(s))(t),

x2(t) = Adexp(sσξre)(eσAresξ2
0)(t) − 1

2
Adexp(sσξre)(〈b1σ

: b1
σ〉

σ

(s))(t)

+ Adexp(sσξre)(b2σ
(s))(t) − 1

2
[Adexp(sσξre)(b1σ

(s)),Adexp(τσξre)(b1σ
(τ))(s)](t).Proof. Sin
e the input is analyti
 in ǫ so is the solution ξ(t) =

∑+∞
j=0 ǫ

jξj(t). Insertingthe expansions for ξ into equation (5.2) and 
olle
ting terms of same order we 
ompute
ξ̇0 = −1

2
〈ξ0 : ξ0〉,

ξ̇1 = −〈ξ0 : ξ1〉 + b1(t),

ξ̇2 = −〈ξ0 : ξ2〉 − 1
2
〈ξ1 : ξ1〉 + b2(t).Inserting the initial 
ondition then gives

ξ0(t) = σξre,
ξ1(t) = b1

σ
(t),

ξ2(t) = eσAretξ2
0 − 1

2
〈ξ1 : ξ1〉σ(t) + b2

σ
(t)

= eσAretξ2
0 − 1

2
〈b1σ

: b1
σ〉

σ

(t) + b2
σ
(t).



54 Control Algorithms along Relative EquilibriaSin
e g is a solution to the kinemati
 equation (5.1), it follows that
ḣ = ġ · exp(−tσξre) − g · exp(−tσξre) · σξre

= g · ξ · exp(−tσξre) − h · σξre
= h · (exp(tσξre) · ξ · exp(−tσξre) − σξre)
= h · (Adexp(tσξre)(ξ) − σξre)
= h ·

(
Adexp(tσξre)(σξre + ǫξ1 + ǫ2ξ2 + O(ǫ3)) − σξre)

= h · Adexp(tσξre)(ǫξ1 + ǫ2ξ2 + O(ǫ3)).If we de�ne ζ(t) := Adexp(tσξre)(ǫξ1 + ǫ2ξ2 +O(ǫ3)), then we have, a

ording to Proposi-tion 31, that
x(t) = ζ(t) − 1

2
[ζ, ζ](t) + O(ǫ3). (5.3)Using x = ǫx1 + ǫ2x2 + O(ǫ3) we a
hieve the result on x1 and x2 by inserting theexpression for ζ into equation (5.3).When 
omparing Proposition 61 with Proposition 60 we see that when σ = 0 Propo-sition 61 simpli�es to Proposition 60, with ξ1

0 = 0, as expe
ted. In both propositionswe see that ξ2(t) not is restri
ted to move in span{b1, . . . , bm} but new dire
tions ofmotion are possible in parti
ular due to the symmetri
 produ
t term 〈b1σ
: b1

σ〉
σ

(t). Itis pre
isely this term we will utilize for generation of motion in the dire
tions not lyingin span{b1, . . . , bm}.5.2 Small Velo
ity Motion AlgorithmsIn this se
tion we re
apitulate the motion planning algorithms obtained in [11℄. Theseresults are in
luded in order to give a full perspe
tive of what motion algorithms, givingsmall-amplitude 
ontrol for
es, are available for simple me
hani
al 
ontrol systems on Liegroups. In these algorithms the velo
ity is small, that is, of order O(ǫ) where 0 < ǫ≪ 1and the results are therefore built on Proposition 60.As suggested by Theorem 50 the following assumption is needed.Assumption 1. The subspa
e span{bi, 〈bi : bj〉 | i, j ∈ {1, . . . , m}} is full rank and
〈bi : bi〉 ∈ span{b1, . . . , bm}, for i ∈ {1, . . . , m}.Using this assumption the following theorem, having 
hara
ter of a lemma for theproposed motion primitives, is proved.Theorem 62. Let Assumption 1 hold and let η ∈ g be arbitrary. De�ne the inputs
(b1(t), b2(t)) as follows:1. Set N = 1

2
m(m − 1) and let P denote the ordered set of pairs {(j, k)| 1 ≤ j <

k ≤ m}. Identify the elements in P with the set {1, . . . , N}, and let a(j, k) bethe integer asso
iated with the pair (j, k). For α ∈ {1, . . . , N} de�ne the s
alarfun
tions
ψα(t) =

1√
2π

(α sin(αt) − (α +N) sin((α +N)t)).
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Figure 5.1: The 
onstant velo
ity algorithm applied to the planar rigid body. The bulletshaped obje
ts illustrates the planar rigid body, the darker ones 
orrespond to the bodyat the beginning and the end of a primitive. Figure taken from [11℄ with permission.2. By means of the pseudoinverse 
ompute (m+N) real numbers zi and zjk su
h that
η =

m∑

i=1

zibi +

m−1∑

j=1

m∑

k=j+1

zjk〈bj : bk〉.3. Finally, set
b1(t) =

m−1∑

j=1

m∑

k=j+1

√
|zjk|(bj − sign(zjk)bk)ψa(j,k)(t),

b2(t) =
1

2π

m∑

i=1

zibi +
1

4π

m−1∑

j=1

m∑

k=j+1

|zjk|(〈bj : bj〉 + 〈bk : bk〉).Then b1(t) and b2(t) satisfy
(
b2 − 1

2
〈b1 : b1〉

)
(2π) = η.We will 
all this map (b1(t), b2(t)) = Inverse(η).Using this theorem, the orthogonality properties of ψα(t), and Theorem 60 the mo-tion primitives Maintain-Velocity and Change-Velocity 
an be 
onstru
ted and anal-ysed a

ording to the following.



56 Control Algorithms along Relative EquilibriaProposition 63 (Maintain-Velocity motion primitive). Consider the system 5.1 and5.2 with inputs of the form ∑m
i=1 biui(t) = ǫb1(t) + ǫ2b2(t), where 0 < ǫ ≪ 1. LetAssumption 1 be satis�ed. Let ǫ = σ, 0 < σ ≪ 1, and assume that
g(0) = g0,

ξ(0) = σξref + σ2ξerror,for some g0 ∈ G and ξref, ξerror ∈ g. If we for t ∈ [0, 2π] take
(b1(t), b2(t)) = Inverse(π〈ξref : ξref〉 − ξerror),then we obtain
log(g−1

0 g(2π)) = 2πσξref + πσ2ξerror + O(σ3),

ξ(2π) = σξref + O(σ3).We denote this motion primitive Maintain-Velocity(σ, ξref).Proposition 64 (Change-Velocity motion primitive). Consider the system 5.1 and5.2 with inputs of the form ∑m
i=1 biui(t) = ǫb1(t) + ǫ2b2(t), where 0 < ǫ ≪ 1. LetAssumption 1 be satis�ed. Let ǫ =

√
σ, 0 < σ ≪ 1, and assume that
g(0) = g0,

ξ(0) = σξ0,for some g0 ∈ G and ξ0 ∈ g. If we for t ∈ [0, 2π] take
(b1(t), b2(t)) = Inverse(ξ�nal − ξ0),for some ξ�nal ∈ g, then we obtain

log(g−1
0 g(2π)) = πσ(ξ0 + ξ�nal) + O(σ3/2),

ξ(2π) = σξ�nal + O(σ2).We denote this motion primitive Change-Velocity(σ, ξ�nal).These two motion primitives are the basi
 ingredients in the following algorithmwhi
h, by keeping a 
onstant velo
ity, steers the system from one 
on�guration with lowvelo
ity (of order O(σ2)) to another 
on�guration with low velo
ity (of order O(σ2)).In the algorithm the fun
tion ⌊·⌋ : R → Z, de�ned by ⌊x⌋ = max{n ∈ Z| n ≤ x}, isused.Proposition 65 (Constant velo
ity algorithm). Consider the system 5.1 and 5.2 withinputs of the form ∑m
i=1 biui(t) = ǫb1(t) + ǫ2b2(t), where 0 < ǫ ≪ 1. Let Assumption 1be satis�ed. Assume g0, g1 ∈ G satis�es that log(g−1

0 g1) is well de�ned. For 0 < σ ≪ 1and (g, ξ)(0) = (g0,O(σ2)) de�ne the algorithm1: N =
⌊
‖ log(g−1

0 g1)‖/(2πσ)
⌋2: ξnom = log(g−1

0 g1)/(2πσN)3: Change-Velocity(σ, ξnom)4: for k ∈ {1, . . . , N − 1} do



5.3 A Motion Algorithm along a Relative Equilibrium 575: Maintain-Velocity(σ, ξnom)6: end for7: Change-Velocity(σ, 0).Then the �nal 
on�guration g�nal and the �nal velo
ity ξ�nal after an exe
ution of thealgorithm satis�es
log(g−1�nalg1) = O(σ3/2),

ξ�nal = O(σ2).We noti
e that the velo
ity throughout the duration of this algorithm is at mostof order O(σ). Therefore the time it takes for this algorithm to re
on�gure a body isinherently of order O( 1
σ
).Sin
e, after applying the 
onstant velo
ity algorithm, the �nal velo
ity may benonzero the system will drift if not stabilized. The following algorithm is able to stabilizethe system exponentially if it is 
lose enough to equilibrium.Proposition 66 (Lo
al exponential stabilization algorithm). Consider the system 5.1and 5.2 with inputs of the form ∑m

i=1 biui(t) = ǫb1(t) + ǫ2b2(t), where 0 < ǫ ≪ 1. LetAssumption 1 be satis�ed. For 0 < σ ≪ 1 assume that g(0) = g0 ∈ G and ξ(0) = ξ0 ∈ gsatis�es ‖(log(g0), ξ0)‖ ≤ σ. Let N ∈ N. De�ne the algorithm1: for k ∈ {0, 1, . . . , N} do2: tk = 4kπ3: σk = ‖(log(g(tk)), ξ(tk))‖4: Change-Velocity(σk,−(log(g(tk)) + πξ(tk))/(2πσk))5: Change-Velocity(σk, 0)6: end forThen there exists a λ > 0, independent of N , su
h that the �nal 
on�guration g�nal andthe �nal velo
ity ξ�nal after an exe
ution of the algorithm satis�es
‖(log(g�nal), ξ�nal)‖ ≤ ‖(log(g0), ξ0)‖e−λN .In [11℄ an additional motion algorithm is 
onstru
ted, 
alled the �stati
 interpolationalgorithm�, whi
h steers the systems 
on�guration through a sequen
e of points. Thisalgorithm is, with minor modi�
ations, a repeated appli
ation of the 
onstant velo
ityalgorithm between the points in the given sequen
e.5.3 A Motion Algorithm along a Relative EquilibriumFor a simple me
hani
al 
ontrol system Σ = (G, I, {f1, . . . , fm}) with relative equilibrium

ξre and 
orresponding matrix Are, we present the following assumptions. First, we makethe standing assumption that ξre 6∈ span{b1, . . . , bm}, otherwise the theory of kinemati
redu
tions [13℄ is readily appli
able and the 
ontrol problems we 
onsider below aretrivial.Assumption 2 (La
k of linear 
ontrollability). The subspa
e span{b1, . . . , bm} is invari-ant under the linear map Are, that is, 〈ξre : bi〉 ∈ span{b1, . . . , bm}, for i ∈ {1, . . . , m}.Assumption 3. 〈ξre : 〈bj : bk〉〉 ∈ span{b1, . . . , bm}, for j, k ∈ {1, . . . , m} and j 6= k.



58 Control Algorithms along Relative EquilibriaAssumption 4. The subspa
e span{b1, . . . , bm, ξre} is invariant under the linear map
adξre.Assumption 5. The subspa
e span{b1, . . . , bm} is invariant under the linear map adξre.If we de�ne the matrix B :=

[
b1 · · · bm

]
∈ Rn×m, then Assumption 2 is equivalent tothe existen
e of a matrix Q ∈ Rm×m su
h that AreB = BQ, and in turn eAreB = BeQ.Similarly Assumption 4 is equivalent to the existen
e of a matrix W ∈ R(m+1)×(m+1)su
h that adξre [B ξre] =

[
B ξre]W . For Assumption 5 this redu
es to the existen
eof a matrix M ∈ Rm×m su
h that adξreB = BM .Given Q ∈ Rm×m, de�ne FQ : C0([0, 2π],Rm) → {f ∈ C1([0, 2π],Rm) | f(0) = 0} by
FQ[u](t) :=

∫ t

0

eQ(t−s)u(s)ds.Lemma 67 (Transformation of 
ontrols). The map FQ is invertible and its inverseis given as follows: if w = FQ[u], then u(t) = −Qw(t) + ẇ(t). Additionally, as inAssumption 2, let Are, B and Q satisfy AreB = BQ. If u ∈ C0([0, 2π],Rm) and w =
FσQ[u], σ ∈ R, then

Bu
σ
(t) = Bw(t).Proof. One-to-one 
orresponden
e between u and w is readily 
he
ked. We 
ompute

Bu
σ
(t) =

∫ t

0

eσAre(t−s)Bu(s)ds = B

∫ t

0

eσQ(t−s)u(s)ds = Bw(t).From this lemma we see that Assumption 2 ensures that there is a one-to-one 
or-responden
e between Bu
σ
(t) and Bw(t). Without this assumption Buσ

(t) would also
ontain 
omponents not lying in span{b1, . . . , bm} whi
h we would not be able to steerfor all t ∈ [0, 2π].The fun
tion ⌈·⌉ : R → Z de�ned by ⌈x⌉ = min{n ∈ Z| n ≥ x} is needed in thefollowing.De�nition 68 (Convenient for
ing frequen
ies). Take r = ⌈ n
m
⌉. For (i, h) ∈ {1, . . . , m}×

{1, . . . , r}, sele
t numbers αih in the set {0, . . . , rm+1
2
m(m−1)} as follows:1: V := ∅; I := {1, . . . , rm+ 1

2
m(m− 1)}2: for h ∈ {1, . . . , r} and for i ∈ {1, . . . , m} do3: ω := min(I); v :=

∫ 2π

0

Adexp(sσξre)(bi sin(ωs))ds4: if v ∈ span(V) then αih := 0 else αih := ω; I := I \ {ω}; V := V ∪{v} end if5: end forDe�ne the n× rm matrix
Aσ,α :=

∫ 2π

0

Adexp(sσξre)(B[diag(sin(α11s), . . . , sin(αm1s)) · · · diag(sin(α1rs), . . . , sin(αmrs))
]
)ds.Next, for (i, j) ∈ {1, . . . , m}2, sele
t numbers βij as follows: for i < j take βij ∈

{1, . . . , rm+ 1
2
m(m− 1)} \ {αkh}(k,h)∈{1,...,m}×{1,...,r} all having distin
t values, for i > jtake βij = βji, and for i = j take βij = 0.



5.3 A Motion Algorithm along a Relative Equilibrium 59Remark 69. In other words, the numbers αij are sele
ted sequentially in su
h a way asto maximize the rank of Aσ,α. Note that, for i, j, k, l ∈ {1, . . . , m} and h ∈ {1, . . . , r},we have: (i) all nonzero αih are distin
t, (ii) all nonzero αih are distin
t from all nonzero
βjk, and (iii) βij = βkl if and only if (i, j) = (k, l) or (i, j) = (l, k). •Remark 70. If Assumption 5 is satis�ed we know that Image(Aσ,α) ⊂ span{b1, . . . , bm}.This means that we only need r = 1, and Aσ,α redu
es to

Aσ,α =

∫ 2π

0

Adexp(sσξre)(Bdiag(sin(α1s), . . . , sin(αms))ds

= B

∫ 2π

0

esσMdiag(sin(α1s), . . . , sin(αms))ds,where M ∈ Rm×m is the matrix satisfying adξreB = BM . •Remark 71. The 
omputations required by De�nition 68 in
lude 
he
king that a ve
torbelongs to a subspa
e. In pra
ti
al numeri
al implementations it is su�
ient to verifythis 
ondition up to a spe
i�ed toleran
e. It is 
onvenient to 
hoose this toleran
e
omparable with the a

ura
y of the 
ontrol algorithms. •For Z ∈ Rm×m de�ne λ : Rm×m → Rm×m by
λjk(Z) :=





sign(Zjk)
√

|Zjk| , j < k,
0 , j = k,
1
π

√
|Zkj| , j > k.We are now able to obtain the following result.Proposition 72 (speed_inversion). Let Σ be a simple me
hani
al 
ontrol system ona Lie group with a relative equilibrium ξre and 
orresponding matrix Are and satisfyingAssumptions 1, 2 and 3. Let Q ∈ Rm×m satisfy AreB = BQ. Let η ∈ Rn, σ ∈ R, and
ompute z ∈ Rm and Z ∈ Rm×m as the pseudoinverse solution to

η =

m∑

i=1

zibi −
m−1∑

j=1

m∑

k=j+1

Zjk〈bj : bk〉, Zjk = 0 for j ≥ k.Given r, α, Aσ,α, and β as in De�nition 68, let
yj(t) :=

m∑

k=1

λjk(Z) sin(βjkt), j ∈ {1, . . . , m},and let γ = (γ11, . . . , γm1, . . . , γ1r, . . . , γmr)
T be the unique solution to

Aσ,αγ = −Adexp(sσξre)(By(s))(2π),

γih = 0 if αih = 0 for (i, h) ∈ {1, . . . , m} × {1, . . . , r}.
(5.4)Additionally, if we take

w1
j (t) = yj(t) +

r∑

l=1

γjl sin(αjlt), j ∈ {1, . . . , m},

u1(t) = F−1
σQ [w1](t),

u2(t) = 1
2π
eσQ(t−2π)(χ+ z),



60 Control Algorithms along Relative Equilibriawhere χ ∈ Rm is the unique solution to
Bχ =

m−1∑

j=1

m∑

k=j+1

∫ 2π

0

(eσAre(2π−s) − I)w1
j (s)w

1
k(s)ds 〈bj : bk〉

+ 1
2

m∑

i=1

∫ 2π

0

eσAre(2π−s)(w1
i (s))

2ds 〈bi : bi〉, (5.5)then b1(t) = Bu1(t) and b2(t) = Bu2(t) satisfy
−1

2
〈b1σ

: b1
σ〉

σ

(2π) + b2
σ
(2π) = η, (5.6)

Adexp(sσξre)(b1σ
(s))(2π) = 0. (5.7)We 
all this map speed_inversion(σ, η) = (b1(t), b2(t)).Proof. Existen
e and uniqueness of the solution to (5.5) is a 
onsequen
e of Assump-tions 3 and 1. Regarding existen
e and uniqueness of the solution to (5.4), De�nition 68ensures that

Adexp(sσξre)(By(s))(2π) ∈ Image(Aσ,α).Sin
e every nonzero 
olumn in Aσ,α 
ontributes to the rank of Aσ,α, the entries of γ
orresponding to these will be unique. The remaining γ-values are de�ned to be 0.Regarding the proof of equation (5.7), dire
t 
al
ulations show that
Adexp(sσξre)(b1σ

(s))(2π) = Adexp(sσξre)(Bw1(s))(2π) = Aσ,αγ + Adexp(sσξre)(By(s))(2π) = 0.Regarding the proof of equation (5.6), from Lemma 67 we 
ompute
〈bσ : b

σ〉(t) = 〈
m∑

j=1

w1
j (t)bj :

m∑

k=1

w1
k(t)bk〉

= 2

m−1∑

j=1

m∑

k=j+1

w1
j (t)w

1
k(t)〈bj : bk〉 +

m∑

i=1

(w1
i (t))

2〈bi : bi〉.Sin
e all nonzero α-values are distin
t and are distin
t from the β-values we have for
j < k

∫ 2π

0

w1
j (t)w

1
k(t)dt =

m∑

l,q=1

λjl(Z)λkq(Z)

∫ 2π

0

sin(βjlt) sin(βkqt)dt

=

m∑

l,q=1

λjl(Z)λkq(Z)δ
βjl

βkq
π = λjk(Z)λkj(Z)π = Zjk.



5.3 A Motion Algorithm along a Relative Equilibrium 61By straightforward 
al
ulations we then obtain
−1

2
〈b1σ

: b1
σ〉

σ

(2π) + b2
σ
(2π) (5.8)

= − 1
2

∫ 2π

0

eσAre(2π−s)〈b1σ
: b1

σ〉(s)ds+B

∫ 2π

0

eσQ(2π−s)u2(s)ds

= −
m−1∑

j=1

m∑

k=j+1

∫ 2π

0

w1
j (s)w

1
k(s)ds〈bj : bk〉 (5.9)

−
m−1∑

j=1

m∑

k=j+1

∫ 2π

0

(eσAre(2π−s) − I)w1
j (s)w

1
k(s)ds〈bj : bk〉 (5.10)

− 1
2

m∑

j=1

∫ 2π

0

eσAre(2π−s)(w1
j (s))

2ds〈bj : bj〉 (5.11)
+

m∑

i=1

(χi + zi)bi (5.12)
= −

m−1∑

j=1

m∑

k=j+1

Zjk〈bj : bk〉 +

m∑

i=1

zibi = η.If we look at the proof of this proposition the roles of Assumptions 1, 2, and 3 be
ome
lear.If we 
onsider equation (5.8) for σ = O(ǫ), and disregard terms of order O(ǫ), itredu
es to
−1

2
〈b1σ

: b1
σ〉

σ

(2π) + b2
σ
(2π) = −

m−1∑

j=1

m∑

k=j+1

∫ 2π

0

w1
j (s)w

1
k(s)ds〈bj : bk〉

− 1
2

m∑

j=1

∫ 2π

0

(w1
j (s))

2ds〈bj : bj〉 +Bu2(2π).Thus Assumption 1 ensures, for σ = O(ǫ), �rst of all that all the ne
essary dire
tions tospan the full spa
e are available and se
ond of all that ∫ 2π

0
(w1

j (s))
2ds〈bj : bj〉, whi
h 
anonly move in the positive dire
tion of 〈bj : bj〉 and therefore 
ompli
ates 
ontrollability,belongs to the linearly 
ontrollable subspa
e whi
h b2(t) = Bu2(t) 
an 
ompensate for.Assumption 3 then means that the term (5.10) will lie in span{b1, . . . , bm} and thus
ontrolling the term (5.9) will mean 
ontrolling what is not in span{b1, . . . , bm}. The
ontrol u2 
an then, via term (5.12), 
ompensate for the terms (5.10)-(5.11).Assumption 2 means a

ording to Lemma 67 that we 
an design w1 (with w1(0) = 0)and then 
al
ulate the 
orresponding u1. This simpli�es 
onsiderably the 
ontrol overthe term (5.9).Remark 73. In the proof of Proposition 72 we see that the reason we need De�nition 68is to ensure that

Aσ,αγ = −Adexp(sσξre)(By(s))(2π),



62 Control Algorithms along Relative Equilibriahas a solution and that all the frequen
ies are di�erent. If a solution 
an be found byother means than using this de�nition, keeping the 
ondition that the frequen
ies aredi�erent, we 
an thus disregard it. This will in fa
t be the 
ase in the examples we
onsider. •We now 
onstru
t a di�erent inversion map.Proposition 74 (configuration_inversion). Let Σ be a simple me
hani
al 
ontrolsystem on a Lie group with a relative equilibrium ξre and 
orresponding matrix Areand satisfying Assumptions 2 and 4. Let Q ∈ Rm×m satisfy AreB = BQ and W ∈
R(m+1)×(m+1) satisfy adξre [B ξre] =

[
B ξre]W . If µ ∈ Rm, σ ∈ R and

u1(t) = 0,

u2(t) = F−1
σQ [w2](t), w2(t) = 1

π

[
Im 0m×1

]
e−σWt

[
µ
0

]
sin2(t),then b1(t) = Bu1(t) and b2(t) = Bu2(t) satisfy

−1
2
〈b1σ

: b1
σ〉

σ

(2π) + b2
σ
(2π) = 0,

Adexp(sσξre)(b2σ
(s))(2π) = Bµ+ δξre,for some δ ∈ R. We denote this map configuration_inversion(σ, µ) = (b1(t), b2(t)) =

(0, b2(t)).Proof. For b1(t) = 0 we have, using Lemma 67, that
−1

2
〈b1σ

: b1
σ〉

σ

(2π) + b2
σ
(2π) = b2

σ
(2π) = Bw2(2π) = 0.Sin
e adξreξre = 0 we have that

W =

[
W̃ 0m×1

∗1×m 0

]
, W̃ ∈ Rm×m,whi
h in turn gives

eWs =

[
e

fWs 0m×1

∗1×m 1

]
.Thus we have

eWs

[
Im 0m×1

01×m 0

]
e−Ws =

[
e

fWse−
fWs 0m×1

∗1×m 0

]

=

[
Im 0m×1

∗1×m 0

]
.



5.3 A Motion Algorithm along a Relative Equilibrium 63This together with Assumption 4 and Lemma 67 enables us to 
ompute
Adexp(sσξre)(b2σ

(s))(2π) = exp(sσadξre)(Bw2(s))(2π)

= exp(sσadξre)([B ξre] [ Im
01×m

]
w2(s))(2π)

=
[
B ξre] eσWs

[
Im

01×m

]
w2(s)(2π)

= 1
π

[
B ξre] esσW

[
Im 0m×1

01×m 0

]
e−sσW

[
µ
0

]
sin2(s)(2π)

= 1
π

[
B ξre] [ Im 0m×1

∗1×m 0

] [
µ
0

]
sin2(s)(2π)

= Bµ+ δξre.If Assumption 5 is satis�ed this result, and its proof, 
an be simpli�ed.Proposition 75 (configuration_inversion). Let Σ be a simple me
hani
al 
ontrolsystem on a Lie group with a relative equilibrium ξre and 
orresponding matrix Are andsatisfying Assumptions 2 and 5. Let Q,M ∈ Rm×m satisfy AreB = BQ and adξreB =
BM . If µ ∈ Rm, σ ∈ R and

u1(t) = 0,

u2(t) = F−1
σQ [w2](t), w2(t) = 1

π
e−σMtµ sin2(t),then b1(t) = Bu1(t) and b2(t) = Bu2(t) satisfy

−1
2
〈b1σ

: b1
σ〉

σ

(2π) + b2
σ
(2π) = 0,

Adexp(sσξre)(b2σ
(s))(2π) = Bµ.We denote this map configuration_inversion(σ, µ) = (b1(t), b2(t)) = (0, b2(t)).Proof. For b1(t) = 0 we have, using Lemma 67 and w2(t) = 1

π
e−σMtµ sin2(t), that

−1
2
〈b1σ

: b1
σ〉

σ

(2π) + b2
σ
(2π) = b2

σ
(2π) = Bw2(2π) = 0.Using Assumption 5 and Lemma 67 we 
ompute

Adexp(sσξre)(b2σ
(s))(2π) = exp(sσadξre)(Bw2(s))(2π) = BeσMsw2(s)(2π)

= 1
π
Bµ sin2(s)(2π) = Bµ.The algorithm presented in this se
tion requires the following additional assumption.Assumption 6. The n dimensional system Σ has n−1 
ontrol for
es, that is, m = n−1.



64 Control Algorithms along Relative EquilibriaAssumption 6 together with the standing assumption ξre 6∈ span{b1, . . . , bm} implies
Rn = span{b1, . . . , bm, ξre}�thus Assumption 4 is trivially satis�ed. These assumptiontherefore gives that

〈bj : bk〉 =
m∑

i=1

αi
jkbi + α0

jkξre, j, k ∈ {1, . . . , m}where αi
jk ∈ R, i ∈ {0, 1, . . . , m}. Therefore

〈ξre : 〈bj : bk〉〉 =

m∑

i=1

〈ξre : αi
jkbi + α0

jkξre〉 =

m∑

i=1

αi
jk〈ξre : bi〉.Thus Assumption 6 along with Assumption 2 (and the standing assumption ξre 6∈

span{b1, . . . , bm}) imply Assumption 3.Sin
e Assumption 6 gives Rn = span{b1, . . . , bm, ξre} every ν ∈ Rn 
an be written
ν =

∑m
i=1 νibi + ν0ξre and with this we de�ne the proje
tion operators PB : Rn → Rnand Pξre : Rn → Rn by

Pξre( m∑

i=1

νibi + ν0ξre) := ν0ξre, PB := id −Pξre ,where id is the identity. Noti
e that, under Assumption 5, these proje
tion operators
ommute with adξre�this is not the 
ase under Assumption 4. This allows us to 
on-stru
t the following motion primitive.Proposition 76 (change_speed motion primitive). Let Σ be a simple me
hani
al 
on-trol system on a Lie group with a relative equilibrium ξre and 
orresponding matrix Areand satisfying Assumptions 1, 2, and 6. For 0 < ǫ≪ 1, assume that
g(0) = g0 exp(ǫ2νerror),
ξ(0) = σξre + ǫ2ξerror,for some g0 ∈ G, σ ∈ R, νerror, ξerror ∈ Rn with νerror = O(1) and ξerror = O(1). If wetake ρ ∈ R and

(b1(t), b2(t)) =

{
speed_inversion(σ, ρξre − e2πσAreξerror) , t ∈ [0, 2π],
configuration_inversion(σ, µ) , t ∈ [2π, 4π],

Bµ = −PB

(
Adexp(−2πσξre)(PB(νerror) +

1

ǫ2
log
(
g(0)−1g(2π) exp(−2πσξre)))) ,then we obtain

g(4π) = g∗0 exp(ǫ2ν∗error),
ξ(4π) = (σ + ǫ2ρ)ξre + ǫ2ξ∗error,for some ν∗error, ξ∗error ∈ Rn with Pξre(ν∗error) = O(1), PB(ν∗error) = O(ǫ), ξ∗error = O(ǫ) andfor

g∗0 = g0 exp
(
(4πσ + 2πǫ2ρ)ξre + ǫ2Pξre(νerror)).We denote this 
ontrol map by (σ+ǫ2ρ, g∗0, ν

∗error, ξ∗error) = change_speed(ǫ, σ, ρ, g0, νerror, ξerror).



5.3 A Motion Algorithm along a Relative Equilibrium 65Proof. Using Propositions 61 and 72 we 
ompute
ξ(2π) = σξre + ǫ2

(
eσAre2πξerror + ρξre − eσAre2πξerror)+ O(ǫ3) = (σ + ρǫ2)ξre + O(ǫ3),and from this, Propositions 61 and 75 we have ξ(4π) = (σ + ρǫ2)ξre + O(ǫ3). De�ne

g0,1/2 := g0 exp
(
(2πσ + ǫ2ν̃)ξre), ν̃ξre := Pξre(νerror), and νB := PB(νerror), then wea
hieve using Proposition 61 and Corollary 32

g−1
0,1/2g(2π) = exp

(
− (2πσ + ǫ2ν̃)ξre)g−1

0 g(0) exp(ǫ2x2(2π) + O(ǫ3)) exp(2πσξre)
= exp

(
− (2πσ + ǫ2ν̃)ξre) exp(ǫ2(ν̃ξre + νB)) exp(ǫ2x2(2π) + O(ǫ3)) exp(2πσξre)

= exp(−2πσξre) exp(ǫ2νB + O(ǫ4)) exp(ǫ2x2(2π) + O(ǫ3)) exp(2πσξre)
= exp

(
ǫ2Adexp(−2πσξre)(νB + x2(2π)) + O(ǫ3)

)
.From Propositions 61 and 72 we know that

x2(2π) =
1

ǫ2
log
(
g(0)−1g(2π) exp(−2πσξre))+ O(ǫ).The de�nition of g∗0 and g0,1/2 gives

g∗0 exp(−2π(σ + ǫ2ρ)ξre)g−1
0,1/2 =

g0 exp((4πσ + 2πǫ2ρ)ξre + ǫ2ν̃ξre) exp(−2π(σ + ǫ2ρ)ξre) exp(−(2πσ + ǫ2ν̃)ξre)g−1
0 =

id.Using these results, Propositions 61, 72, 75, and Corollary 32 we obtain
g(4π) = g(2π) exp(ǫ2(Bµ+ δξre) + O(ǫ3)) exp

(
2π(σ + ǫ2ρ)ξre)

= g∗0 exp
(
− 2π(σ + ǫ2ρ)ξre)g−1

0,1/2g(2π) exp(ǫ2(Bµ+ δξre) + O(ǫ3)) exp
(
2π(σ + ǫ2ρ)ξre)

= g∗0 exp
(
ǫ2Adexp(−2π(σ+ǫ2ρ)ξre)(Adexp(−2πσξre)(νB + x2(2π)) +Bµ+ δξre)+ O(ǫ3)

)

= g∗0 exp
(
ǫ2Adexp(−2π(σ+ǫ2ρ)ξre)(Pξre(Adexp(−2πσξre)(νB + x2(2π))

)
+ δξre)+ O(ǫ3)

)

= g∗0 exp
(
ǫ2
(
Pξre(Adexp(−2πσξre)(νB + x2(2π))

)
+ δξre)+ O(ǫ3)

)
.With this motion primitive we are able to 
onstru
t the following algorithm thatspeeds up, slows down, or stabilizes, a system along a relative equilibrium.Proposition 77 (speed_control algorithm). Let Σ be a simple me
hani
al 
ontrol sys-tem on a Lie group with a relative equilibrium ξre and 
orresponding matrix Are. Assume

Σ satis�es Assumptions 1, 2, and 6 and take 0 < ǫ≪ 1. Let g(0), g0, νerror, σ, ξerror, ρbe as in Proposition 76 and let N ∈ N.De�ne the algorithm (σ+ǫ2Nρ, g∗0, ν
∗error, ξ∗error)=speed_control(ǫ, σ, ρ,N, g0, νerror, ξerror)by1: g0,1 := g0; νerror,1 := νerror; σ1 := σ; ξerror,1 := ξerror;2: for k ∈ {1, . . . , N} do3: (σk+1, g0,k+1, νerror,k+1, ξerror,k+1) := change_speed(ǫ, σk, ρ, g0,k, νerror,k, ξerror,k)4: end for5: g∗0 = g0,N+1; ν∗error := νerror,N+1; ξ∗error := ξerror,N+1;



66 Control Algorithms along Relative EquilibriaThe �nal 
on�guration and velo
ity after the exe
ution of this algorithm are
g(N4π) = g∗0 exp(ǫ2ν∗error),
ξ(N4π) = (σ + ǫ2Nρ)ξre + ǫ2ξ∗error,where ν∗error, ξ∗error ∈ Rn, Pξre(ν∗error) = O(1), PB(ν∗error) = O(ǫ), ξ∗error = O(ǫ), and

g∗0 = g0 exp

((
σT�nal + 1

2
ρǫ2NT�nal)ξre + ǫ2

N∑

k=1

Pξre(νerror,k)) .Proof. From Proposition 76 we have σk = σ + (k − 1)ρǫ2 so we immediately obtain
ξ(N4π) = σN+1ξre + O(ǫ3) = (σ + ǫ2Nρ)ξre + O(ǫ3). From Proposition 76 we have
g(N4π) = g∗0 exp(ǫ2ν∗error) where

g∗0 = g0

(
N∏

k=1

exp
(
2π(2σk + ρǫ2)ξre + ǫ2Pξre(νerror,k)))

= g0 exp

(
N∑

k=1

(
2π(2σk + ρǫ2)ξre + ǫ2Pξre(νerror,k)))

= g0 exp

(
2πN

(
2σ +Nρǫ2

)
ξre + ǫ2

N∑

k=1

Pξre(νerror,k))
= g0 exp

(
(
σT�nal + 1

2
ρǫ2NT�nal) ξre + ǫ2

N∑

k=1

Pξre(νerror,k)) .From Proposition 76, its proof, and Proposition 61, we have that change_speed givesthe map (ξerror,k,PB(νerror,k), σ) 7→ (ξerror,k+1,PB(νerror,k+1), σ + ǫ2ρ) independent of g0and Pξre(νerror,k). Be
ause (ξerror,k,PB(νerror,k)) = O(1) gives (ξerror,k+1,PB(νerror,k+1)) =
O(ǫ) we obtain that PB(νerror,k) = O(ǫ, k) = O(ǫ), Pξre(νerror,k) = O(1, k) = O(1), and
ξerror,k = O(ǫ, k) = O(ǫ).Note that ρ > 0 speeds up the system along the relative equilibrium, ρ < 0 slowsdown the system, and ρ = 0 stabilizes the system's motion along the relative equilibrium.We may sele
t N = O( 1

ǫ2
) in Proposition 77 so that the absolute 
hange in velo
ityalong the relative equilibrium is of order O(1). Thus, it is possible to use the algorithm

speed_control to 
hange the velo
ity along the relative equilibrium from a given valueto another independent of ǫ.5.3.1 Interlude Regarding the AssumptionsIn this se
tion we examine some possibilities for relaxing some of the assumptions neededfor the change_speed motion primitive. It turns out that an alternative speed inver-sion map 
an be 
reated su
h that the assumption regarding the linearly 
ontrollablesubspa
e, i.e. Assumption 2, 
an be weakened. Also the m = n − 1 assumption, i.e.Assumption 6, 
an be weakened, at least for m ≤ 3. The repla
ing assumption seems tobe too stri
t though, but the analysis gives insight into the di�
ulties that arises whenremoving the m = n− 1 assumption.The obje
tive of this se
tion is to point out and 
larify the di�
ulties that arises whenweakening the assumptions. The theory will not be applied to any example systems.



5.3 A Motion Algorithm along a Relative Equilibrium 67Weakening the Assumption Con
erning Linear ControllabilityWe de�ne {bm+1, . . . , bl} by span{b1, . . . , bm, bm+1, . . . , bl} := span{b1, . . . , bm, 〈ξre : b1〉, . . . , 〈ξre :

bm〉}, where b1, . . . , bm, bm+1, . . . , bl are linearly independent, and let B̃ :=
[
b1 . . . bl

].Assumption 7 (Linear 
ontrollable subspa
e). The subspa
e span{b1, . . . , bl} is invari-ant under the linear map Are, that is, 〈ξre : bi〉 ∈ span{b1, . . . , bl}, for i ∈ {1, . . . , l}.Assumption 8. l > m and 〈bq : bv〉 ∈ span{b1, . . . , bl} for q ∈ {1, . . . , l}, v ∈ {m +
1, . . . , l}, and 〈ξre : 〈bj : bk〉〉 ∈ span{b1, . . . , bl} for j, k ∈ {1, . . . , l}.Assumption 7 means that there exists a matrix Q̃ ∈ Rl×l su
h that AreB̃ = B̃Q̃.We de�ne Q̃ :=

[
Q11 Q12

Q21 Q22

] where Q11 ∈ Rm×m, Q12 ∈ Rm×(l−m), Q21 ∈ R(l−m)×m, and
Q22 ∈ R(l−m)×(l−m).Given Q̃ :=

[
Q11 Q12

Q21 Q22

], Q11 ∈ Rm×m, Q12, Q
T
21 ∈ Rm×(l−m), Q22 ∈ R(l−m)×(l−m), de�ne

L eQ : C0([0, 2π],Rl) → {f ∈ C1([0, 2π],Rl) | f(0) = 0} by
L eQ[u](t) :=

∫ t

0

e
eQ(t−s)u(s)ds,and use this to de�ne F eQ : C0([0, 2π],Rm) → {f ∈ C1([0, 2π],Rm) | f(0) = 0} as

F eQ[u](t) :=
[
Im 0

]
L eQ

[[
Im

0

]
u
]
(t).Lemma 78 (Transformation of 
ontrols). The map F eQ is invertible and its inverse isgiven as follows: if w = F eQ[u], then u(t) = −Q11w(t)+ẇ(t)−Q12

∫ t

0
e(t−s)Q22Q21w(s)ds.Additionally, let Assumption 7 be satis�ed, and let Are, B̃ and Q̃ satisfy AreB̃ = B̃Q̃.If u ∈ C0([0, 2π],Rm), w = Fσ eQ[u], and z =

[
0 Il−m

]
Lσ eQ

[[
Im

0

]
u
], then

Bu
σ
(t) = B̃

[
w(t)
z(t)

]
.Proof. One-to-one 
orresponden
e between u and w is readily 
he
ked. We 
ompute

Bu
σ
(t) =

∫ t

0

eσAre(t−s)Bu(s)ds = B̃

∫ t

0

eσ eQ(t−s)
[

Im

0

]
u(s)ds = B̃Lσ eQ

[[
Im

0

]
u
]
(t) =

B̃
[

w(t)
z(t)

].Noti
e that for σ = O(ǫ), 0 < ǫ≪ 1, we get z(t) = O(ǫ).Proposition 79 (alternative speed inversion). Let Σ be a simple me
hani
al 
ontrolsystem on a Lie group with a relative equilibrium ξre and 
orresponding matrix Are andsatisfying Assumptions 1, 7 and 8. Let Q̃ ∈ Rl×l satisfy AreB̃ = B̃Q̃. Let η ∈ Rn,
σ ∈ R, and 
ompute z̃ ∈ Rm and Z ∈ Rn×n as the pseudoinverse solution to

η =

m∑

i=1

z̃ibi −
m−1∑

j=1

m∑

k=j+1

Zjk〈bj : bk〉, Zjk = 0 for j ≥ k.



68 Control Algorithms along Relative EquilibriaGiven r, α, Aσ,α, and β as in De�nition 68, let
yj(t) :=

m∑

k=1

λjk(Z) sin(βjkt), j ∈ {1, . . . , m},and let γ = (γ11, . . . , γm1, . . . , γ1r, . . . , γmr)
T be the unique solution to

Aσ,αγ = −Adexp(sσξre)(By(s))(2π),

γih = 0 if αih = 0 for (i, h) ∈ {1, . . . , m} × {1, . . . , r}.
(5.13)Additionally, if we take

w1
j (t) = yj(t) +

r∑

k=1

γjk sin(αjkt), j ∈ {1, . . . , m},

u1(t) = F−1

σ eQ
[w1](t),

z1(t) =
[

0 Il−m

]
Lσ eQ

[[
Im

0

]
u1
]
(t) (5.14)

u2(t) =

(∫ 2π

0

eσ eQ(2π−s)
[

Im 0
0 0

]
eσ eQT (2π−s)dse−σ eQT (2π−t)

[
Im

0

])#(
χ+

[
z̃
0

])
, (5.15)where χ ∈ Rl is the unique solution to

B̃χ =
m−1∑

j=1

m∑

k=j+1

∫ 2π

0

(eσAre(2π−s) − I)w1
j (s)w

1
k(s)ds 〈bj : bk〉 +

∫ 2π

0

eσAre(2π−s)f(s)ds,(5.16)
f(t) =

m∑

i=1

(w1
i (t))

2〈bi : bi〉 + 2
m∑

j=1

l−m∑

k=1

w1
j (t)z

1
k(t)〈bj : bk+m〉

+
l−m∑

j=1

l−m∑

k=1

z1
j (t)z

1
k(t)〈bj+m : bk+m〉,then b1(t) = Bu1(t) and b2(t) = Bu2(t) satisfy

−1
2
〈b1σ

: b1
σ〉

σ

(2π) + b2
σ
(2π) = η, (5.17)

Adexp(sσξre)(b1σ
(s))(2π) = 0. (5.18)Proof. Existen
e and uniqueness of the solution to (5.16) is a 
onsequen
e of Assump-tions 1 and 8. Regarding existen
e and uniqueness of the solution to (5.13), De�nition 68ensures that

Adexp(sσξre)(By(s))(2π) ∈ Image(Aσ,α).Sin
e every nonzero 
olumn in Aσ,α 
ontributes to the rank of Aσ,α, the entries of γ
orresponding to these will be unique. The remaining γ-values are de�ned to be 0.



5.3 A Motion Algorithm along a Relative Equilibrium 69Regarding the proof of equation (5.18), dire
t 
al
ulations show that
Adexp(sσξre)(b1σ

(s))(2π) = Adexp(sσξre)(Bw1(s))(2π) = Aσ,αγ + Adexp(sσξre)(By(s))(2π) = 0.Regarding the proof of equation (5.17), from Lemma 78 we 
ompute
〈bσ : b

σ〉(t) = 〈
m∑

j=1

w1
j (t)bj +

l−m∑

j=1

z1
j (t)bj+m :

m∑

k=1

w1
k(t)bk +

l−m∑

k=1

z1
k(t)bk+m〉

= 2

m−1∑

j=1

m∑

k=j+1

w1
j (t)w

1
k(t)〈bj : bk〉 +

m∑

i=1

(w1
i (t))

2〈bi : bi〉

+ 2
m∑

j=1

l−m∑

k=1

w1
j (t)z

1
k(t)〈bj : bk+m〉 +

l−m∑

j=1

l−m∑

k=1

z1
j (t)z

1
k(t)〈bj+m : bk+m〉

= 2

m−1∑

j=1

m∑

k=j+1

w1
j (t)w

1
k(t)〈bj : bk〉 + f(t),where f(t) ∈ span{b1, . . . , bl}. Furthermore, if we write f(t) = B̃

[ f1(t)
f2(t)

], f1 : [0, 2π] →
Rm, f2 : [0, 2π] → Rl−m, then for σ = O(ǫ) we have f2(t) = O(ǫ). This shows that inthis limit we have χ =

[ χ0

O(ǫ)

], for χ0 ∈ Rm.Sin
e all nonzero α-values are distin
t and are distin
t from the β-values we have for
j < k

∫ 2π

0

w1
j (t)w

1
k(t)dt =

m∑

l,q=1

λjl(Z)λkq(Z)

∫ 2π

0

sin(βjlt) sin(βkqt)dt

=
m∑

l,q=1

λjl(Z)λkq(Z)δ
βjl

βkq
π = λjk(Z)λkj(Z)π = Zjk.From the theory of linear 
ontrol systems, see e.g. [40℄, we know that when the system

ẋ = σQx+
[

Im

0

]
u, x ∈ Rl, u ∈ Rm, is 
ontrollable, i.e. for σ 6= 0, then for x(0) = 0 andarbitrary xf ∈ Rl the 
ontrol

u(t) =
[

Im 0
]
eσQ(2π−t)

(∫ 2π

0

eσQ(2π−s)
[

Im

0

][
Im 0

]
eσQT (2π−s)ds

)−1

xfgives x(2π) = xf ; in fa
t this 
ontrol is of minimum norm among the 
ontrols givingthis end point. Using the pseudoinverse instead of the inverse and rearranging the termsthis is equation (5.15) with xf = χ +
[

z̃
0

]. Sin
e for σ = O(ǫ) we have χ =
[ χ0

O(ǫ)

], the
ontrol (5.15) is also able to a
hieve the desired result in this limit without be
omingin�nite. Noti
e that that b2σ
(2π) = x(2π).



70 Control Algorithms along Relative EquilibriaBy straightforward 
al
ulations we then obtain
−1

2
〈b1σ

: b1
σ〉

σ

(2π) + b2
σ
(2π)

= − 1
2

∫ 2π

0

eσAre(2π−s)〈b1σ
: b1

σ〉(s)ds+ B̃

∫ 2π

0

eσ eQ(2π−s)u2(s)ds

= −
m−1∑

j=1

m∑

k=j+1

(∫ 2π

0

w1
j (s)w

1
k(s)ds〈bj : bk〉 +

∫ 2π

0

(eσAre(2π−s) − I)w1
j (s)w

1
k(s)ds〈bj : bk〉

)

− 1
2

m∑

j=1

∫ 2π

0

eσAre(2π−s)f(s)ds+ B̃
(
χ+

[
z̃
0

])

= −
m−1∑

j=1

m∑

k=j+1

Zjk〈bj : bk〉 +

m∑

i=1

z̃ibi = η.

From the proof of this proposition we see that repla
ing Assumption 2 with somethingmore general inevitably leads to order 
onsiderations sin
e the algorithms in [11℄ are notable to generate velo
ities above the order O(ǫ), meaning that any new algorithm atleast needs to be able to start with σ = O(ǫ). In this limit the linearly 
ontrollablesubspa
e is span{B, σAreB, . . . , σn−1An−1re B} so we need to be able to guarantee thatevery part of the error, whi
h we need to 
orre
t with b2, is of the same or higher orderas the part of the 
ontrollable subspa
e it belongs to. Otherwise the 
ontrol u2 willgrow unbounded as σ → 0. In this analysis we 
ould also have in
luded the subspa
egenerated by the ve
tors in A2reB but this would have 
ompli
ated the analysis and istherefore left out sin
e the reason for this se
tion is solely to point out some of the
ompli
ations that arises when weakening the assumptions. We 
ould not have in
ludedve
tors from AkreB, k > 2, sin
e these would not su�
e in the limit σ = O(ǫ).Sin
e configuration_inversion, see Proposition 74, needs Assumption 2 this newalternative speed inversion map 
an not be used in the 
onstru
tion of a repla
ement for
change_speed, needing weaker assumptions, unless a version of configuration_inversionwhi
h uses Assumption 7 instead of 2 is 
onstru
ted.Removing the m = n− 1 ConditionIf Assumptions 2 and 5 are satis�ed then configuration_inversion gives a way to
onstru
t b2, while b1 = 0, su
h that for any µ ∈ Rm we get

−1
2
〈b1σ

: b1
σ〉

σ

(2π) + b2
σ
(2π) = 0,

Adexp(sσξre)(b2σ
(s))(2π) = Bµ.This means that, when ξ(0) = σξre + ǫ2ξ2

0 , we get
ξ(2π) = σξre + ǫ2eσAre2πξ2

0 + O(ǫ3),

log
(
g(0)−1g(2π) exp(−2πσξre)) = ǫ2Bµ+ O(ǫ3).



5.3 A Motion Algorithm along a Relative Equilibrium 71The limitation of configuration_inversion is thus that it is only able to 
orre
terrors in the 
on�guration that are a result of motion in span{b1, . . . , bm}. If we take
σ = O(ǫ) we get

Adexp(sσξre)(b2σ
(s))(2π) = b2(2π) + O(ǫ)and therefore, when b1 = 0, this problem 
annot be avoided by any assumption. In theprevious se
tion we therefore assume m = n − 1 su
h that Rn = span{b1, . . . , bm, ξre}be
ause we are not interested in how pre
isely the 
on�guration behaves along ξre.If we do not want to assumem = n−1 but instead seek to repla
e configuration_inversionwith another s
heme requiring weaker assumptions we thus need b1 6= 0 and the equa-tions (whi
h were satis�ed by the 
ontrols given by configuration_inversion) b1 and

b2 need to satisfy are
0 = b1

σ
(2π),

0 = −1
2
〈b1σ

: b1
σ〉

σ

(2π) + b2
σ
(2π),

0 = Adexp(sσξre)(b1σ
(s))(2π),

ν + ν0 = −1
2
Adexp(sσξre)(〈b1σ

: b1
σ〉

σ

(s))(2π)

+ Adexp(sσξre)(b2σ
(s))(2π) − 1

2
[Adexp(sσξre)(b1σ

(s)),Adexp(τσξre)(b1σ
(τ))(s)](2π),where ν ∈ span{b1, . . . , bm, vm+1, . . . , vn−1} and Rn = span{b1, . . . , bm, vm+1, . . . , vn−1, ξre}.The value of ν0 ∈ span{ξre} is irrelevant. It is fairly apparent that the 
omplexity of theproblem in
reases 
onsiderably when m 6= n− 1.In the following Assumptions 2 and 5 are implied and the matrix M ∈ Rm×m is theone satisfying adξreB = BM . To repla
e the m = n− 1 assumption we instead assume

Are(Rn) ⊂ span{b1, . . . , bm, ξre}, (5.19)
adξre(Rn) ⊂ span{b1, . . . , bm, ξre}, (5.20)

[bj , bk] ∈ span{b1, . . . , bm, ξre}, j, k ∈ {1, . . . , m}, (5.21)whi
h is trivially satis�ed for m = n − 1. Sin
e it is still a strong assumption it istherefore 
lose to the m = n − 1 assumption in some sense. Assumptions 5.19-5.21means that
[Adexp(sσξre)(b1σ

(s)),Adexp(τσξre)(b1σ
(τ))(s)](2π) ∈ span{b1, . . . , bm, ξre},so the error produ
ed by this term 
an be 
orre
ted by b2 a

ording to Proposition 75.De�ne P{B,ξre}⊥ : Rn → Rn to be the proje
tion onto span{vm+1, . . . , vn−1} given by

P{B,ξre}⊥ ( m∑

i=1

aibi +

n−1∑

i=m+1

aivi + anξre) =

n−1∑

i=m+1

aivi,for a ∈ Rn. The assumptions (5.19)-(5.21) gives
P{B,ξre}⊥ (Adexp(sσξre)(〈b1σ

: b1
σ〉

σ

(s))(2π)

)

=
∑

1≤j<k≤m

∫ 2π

0

∫ t

0

w1
j (s)w

1
k(s)dsdt P{B,ξre}⊥(〈bj : bk〉),
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h is �as ni
e as possible�. By 
hoosing w2(t) = e−σMt
(

µ
π

sin2(t) + 3ς
4π2 (t − 4π

3
)t
),

µ, ς ∈ Rm, we get
b2

σ
(2π) = Be−σM2πς,

Adexp(sσξre)(b2σ
(s))(2π) = Bµ,and we 
an therefore 
hoose µ and ς su
h that the problem redu
es to �nding w1 whi
hsatis�es

0 = b1
σ
(2π) = Bw1(2π), (5.22)

0 = −1
2
〈b1σ

: b1
σ〉

σ

(2π) + b2
σ
(2π)

= −
∑

1≤j<k≤m

∫ 2π

0

w1
j (s)w

1
k(s)ds〈bj : bk〉, (5.23)

0 = Adexp(sσξre)(b1σ
(s))(2π)

= B

∫ 2π

0

esσMw1(s)ds, (5.24)
ν + ν0 = −1

2
Adexp(sσξre)(〈b1σ

: b1
σ〉

σ

(s))(2π)

+ Adexp(sσξre)(b2σ
(s))(2π) − 1

2
[Adexp(sσξre)(b1σ

(s)),Adexp(τσξre)(b1σ
(τ))(s)](2π)

=
∑

1≤j<k≤m

∫ 2π

0

∫ t

0

w1
j (s)w

1
k(s)dsdt P{B,ξre}⊥(〈bj : bk〉) +Bω, (5.25)where, for any ω ∈ Rm, we 
an 
hoose µ su
h that this is the result.De�ne

ψj(t) = sin(jt), j ∈ N,

φk(t) = cos((m+ k)t) − cos(kt), k ∈ N,and
Λjk =

∫ 2π

0

∫ t

0

ψj(s)φk(s)dsdt, j, k ∈ N,whi
h is nonzero. If we use
w1

j (t) = ψj(t) + γαj
φαj

(t) +
m∑

k=1

δjkφk(t), j ∈ {1, . . . , m},and 
hoose α1, . . . , αm ∈ N \ {1, . . . , m}, all distin
t, su
h that the rank of
∫ 2π

0

esσMdiag(φα1
(s), . . . , φαm

(s))ds,is maximal then we 
an 
hoose γα1
, . . . , γαm

∈ R, su
h that (5.24) is satis�ed. Thenfor equation (5.23) and (5.25) (equation (5.22) is trivially satis�ed) to be solved meanssolving
∫ 2π

0

w1
j (s)w

1
k(s)ds = 0,

∫ 2π

0

∫ t

0

w1
j (s)w

1
k(s)dsdt = Zjk,



5.4 Examples 73for arbitrary Zjk ∈ R, whi
h redu
es to �nding δ ∈ Rm×m satisfying
m∑

l=1

δjlδkl = 0, 1 ≤ j < k ≤ m, (5.26)
m∑

l=1

(δjlΛkl + δklΛjl) = Zjk − γαj
Λkαj

− γαk
Λjαk

=: Xjk, 1 ≤ j < k ≤ m. (5.27)For m = 2 su
h a solution is δ = diag(δ1, δ2) with
δ1 = δ2 =

X12

Λ12 + Λ21

= −5X12

8π
.For m = 3 a diagonal solution δ = diag(δ1, δ2, δ3) is given by



δ1
δ2
δ3


 =




Λ21 Λ12 0
Λ31 0 Λ13

0 Λ32 Λ23



−1 

X12

X13

X23


 =

1

π




12
5

−28
9

8
9

60
7

−80
9

160
63

20 −560
27

200
27





X12

X13

X23


 .A diagonal solution trivially satis�es (5.27). We 
an not expe
t to be able to �nd adiagonal solution for m ≥ 4 sin
e we in this situation have m 
oe�
ients and 1

2
m(m−1)equations to be solved but 1

2
m(m− 1) > m for m ≥ 4. Whether there exists a solutionto equations (5.26)-(5.27) for m ≥ 4 we leave as an open question.The underwater vehi
le example from the last 
hapter does not satisfy assump-tions 5.19-5.21. We have not been able to 
ome up with any examples, where m 6= n−1,that satisfy assumption 5.19-5.21. These assumptions are simply still too stri
t. Thusthe main argument of this se
tion is that weakening the assumptions, in parti
ular the

m = n− 1 assumption, 
ompli
ates the analysis 
onsiderably.5.4 ExamplesThe usefulness of the theory is illustrated in the following examples.Example 7 (Planar rigid body). Re
onsider the rigid body moving in the plane asdes
ribed in the previous 
hapters. The 
on�guration manifold isG = SE(2) ≃ S×R2 ∋
(θ, x, y). Let m denote the mass of the body, J its moment of inertia and h the distan
efrom the 
enter of mass to the 
ontrol for
es. The symmetri
 produ
t is, for ω, λ ∈ Rand v, w ∈ R2, given by

〈(ω, v) : (λ, w)〉 =

[
0

ω̂w + λ̂v

]
,where ω̂ =

[
0 −ω
ω 0

]. With 
ontrols as in Figure 3.2 we have
b1 =

1

m
e2, b2 = −h

J
e1 +

1

m
e3,whi
h gives

〈b1 : b1〉 = 0, 〈b2 : b2〉 =
2h

Jm
e2, 〈b1 : b2〉 = − h

Jm
e3.
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Figure 5.2: speed_control applied to the planar rigid body with ξre = e3, ǫ = 0.1, and
ρ = 2 and with initial 
onditions (θ, x, y)(0) = (−1

2
π, 0, 0), g0 = g(0), and (ω, v1, v2)(0) =

0. The dotted 
urve 
orresponds to the motion of the 
enter of mass and the ellipses
orresponds to the planar body at time equidistant instan
es.Assumption 1 is immediately seen to be satis�ed. It is straightforward to 
ompute that
〈e3 : e3〉 = 0,so ξre = e3 is a relative equilibrium. Choosing this relative equilibrium we have

Are = adξre =




0 0 0
1 0 0
0 0 0


 ,and we have AreB = BQ and adξreB = BM , M = Q, with

Q =

[
0 −hm

J

0 0

]
,A

ording to Remark 70 we 
al
ulate Aσ,α as

Aσ,α = B

∫ 2π

0

esσMdiag(sin(α1s), . . . , sin(αms))ds

=
[
b1 b2

]
σ

[
0 2π

α2

hm
J

0 0

]
.Sin
e Aσ,α is independent of the frequen
ies α1 and α2 and the rank is 
onstant for

σ 6= 0 we may, a

ording to remark 73, disregard De�nition 68. Equation (5.4) is seento redu
e to
Aσ,αγ = −Aσ,(β,β)

[
λ12(Z)
λ21(Z)

]
,whi
h is satis�ed if

γ2 = −α2λ21(Z)

β
,



5.4 Examples 75and we 
an for example 
hoose
α2 = 1, β = 3, γ1 = 0.The 
omponents of χ are 
omputed

2∑

i=1

χibi =

∫ 2π

0

(eσAre(2π−s) − I)w1
1(s)w

1
2(s)ds〈b1 : b2〉 + 1

2

2∑

i=1

∫ 2π

0

eσAre(2π−s)(w1
i (s))

2ds〈bi : bi〉

=

∫ 2π

0

(eσAre(2π−s) − I)

(
− h

Jm
ξre)w1

1(s)w
1
2(s)ds+ 1

2

∫ 2π

0

eσAre(2π−s)

(
2h

Jm
e2

)
(w1

2(s))
2ds

=
h

Jm

∫ 2π

0

(w1
2(s))

2ds e2

=
h

Jm

∫ 2π

0

(λ21 sin(βa) + γ2 sin(α2s))
2ds e2

=
h

Jm
π(λ21(Z)2 + γ2

2)e2,meaning that we have
χ1 =

πh(λ21(Z)2 + γ2
2)

J
, χ2 = 0.Assumption 6 is immediately seen to be satis�ed, so all the assumptions are met,and therefore we 
an apply the speed_control algorithm to speed up the system along

e3. The result of the speed_control algorithm applied to the planar rigid body 
an beseen in Figure 5.2 and 5.3. In the implementation we have 
hosen α2 = 1, β = 3, and
γ1 = 0.
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PSfrag repla
ementsu
tFigure 5.3: speed_control applied to the planar rigid body with ξre = e3, ǫ = 0.1,and ρ = 2 and with initial 
onditions (θ, x, y)(0) = (−1

2
π, 0, 0), g0 = g(0), and

(ω, v1, v2)(0) = 0. In the right �gure the dashed 
urve 
orresponds to u1(t) and thesolid 
urve 
orresponds to u2(t).Example 8 (Satellite with two thrusters). Consider a satellite with two thrustersaligned with the �rst and se
ond prin
ipal axes. The 
on�guration manifold is G =



76 Control Algorithms along Relative Equilibria
SO(3) and the equations of motion are of the form (5.1) and (5.2) where the symmetri
produ
t is given by

〈ξ : η〉 = I−1
(
ξ × (Iη) + η × (Iξ)

)
,where I = diag(J1, J2, J3), Ji being the moment of inertia along the ith prin
ipal axis,and × is the 
ross produ
t. We have that

〈e3 : e3〉 = 0,so e3 is a relative equilibrium. With 
ontrols as in �gure 3.3 we have
b1 =

1

J1
e1, b2 =

1

J2
e2,so it is not possible to dire
tly 
ontrol the motion in the e3 dire
tion. With ξre = e3 we
ompute

Are =




0 J2−J3

J1

0
J3−J1

J2

0 0

0 0 0


 .It is straightforward to 
al
ulate that AreB = BQ, with

Q =

[
0 J2−J3

J2

J3−J1

J1

0

]
,so Assumption 2 is satis�ed. We have that

〈b1 : b1〉 = 〈b2 : b2〉 = 0, 〈b1 : b2〉 = J2−J1

J1J2J3

e3we see that Assumption 1 is ful�lled if J1 6= J2. Assumption 3 is satis�ed be
ause
〈ξre : 〈b1 : b2〉〉 =

J2 − J1

J1J2J3

〈e3 : e3〉 = 0.Sin
e
adξη = ξ × ηwe see that

adξreb1 =
J2

J1
b2, adξreb2 = −J1

J2
b1,so Assumption 5 is satis�ed and we have adξreB = BM with

M =

[
0 −J1

J2

J2

J1

0

]Assumption 6 is immediately seen to be met.
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PSfrag repla
ementsu
tFigure 5.4: speed_control applied to the satellite with two thrusters with ξre = e3,

ǫ = 0.1, and ρ = 1 and with initial 
onditions ξ(0) = (0, 0, 0.2) and g0 = g(0). In theright �gure the dashed 
urve 
orresponds to u1(t) and the solid 
urve 
orresponds to
u2(t)Using Remark 70 we 
al
ulate Aσ,α as

Aσ,α = B

∫ 2π

0

esσMdiag(sin(α1s), . . . , sin(αms))ds

= B

∫ 2π

0

[
cos(σs) −J1

J2

sin(σs)
J2

J1

sin(σs) cos(σs)

] [
sin(α1s) 0

0 sin(α2s)

]
ds

= B2 sin(σπ)

[
α1 sin(σπ)

α2

1
−σ2

J1

J2

α2 cos(σπ)

α2

2
−σ2

−J2

J1

α1 cos(σπ)
α2

1
−σ2

α2 sin(σπ)
α2

2
−σ2

]
=: BHσ,α.Finding a solution to

Aσ,αγ = −Adexp(sσξre)(By(s))(2π),thus amounts to �nding a solution to
Hσ,αγ = Hσ,(β,β)

[
λ12(Z)
λ21(Z)

]
.Sin
e the rank of Hσ,α is not full when σ ∈ N spe
ial 
are is to be taken for these

σ-values a

ording to De�nition 68. For σ = β we have that Hσ,(β,β) has full rank but
Hσ,α = 0 (sin
e the α-values are di�erent from β) so using De�nition 68 this situationwill be avoided. Sin
e

H−1
σ,αHσ,(β,β) =

[
β(α2

1
−σ2)

α1(β2−σ2)
0

0
β(α2

2
−σ2)

α2(β2−σ2)

]
,we have, a

ording to Remark 73, that we may in fa
t disregard De�nition 68 andinstead take

γ = −H−1
σ,αHσ,(β,β)

[
λ12(Z)
λ21(Z)

]
= −

[
β(α2

1
−σ2)

α1(β2−σ2)
λ12(Z)

β(α2

2
−σ2)

α2(β2−σ2)
λ21(Z)

]
,



78 Control Algorithms along Relative Equilibriaas long as we ensure β2 − σ2 6= 0 and that α1, α2, and β are di�erent. In pra
ti
alimplementations we only need β
|β2−σ2|

> c, for some c > 0. During speed_inversionwe have
u1(t) = −σQw1(t) + ẇ1(t), w1(t) =

[
λ12(Z) sin(βt) + γ1 sin(α1t)
λ21(Z) sin(βt) + γ2 sin(α2t)

]whi
h gives
‖u1‖2

2 = π

(
σ2

((
J3−J1

J1

)2

(λ12(Z)2 + γ2
1) +

(
J2−J3

J2

)2

(λ21(Z)2 + γ2
2)

)

+ γ2
1α

2
1 + γ2

2α
2
2 + λ12(Z)2β2 + λ21(Z)2β2

)
,where ‖ · ‖2 is the norm on L2([0, 2π],R2). We 
an thus in speed_inversion 
hoose

α1, α2, and β, all di�erent, as to minimize ‖u1‖2.Cal
ulating the value of χ gives
2∑

i=1

χibi =

∫ 2π

0

(eσAre(2π−s) − I)w1
1(s)w

1
2(s)ds〈b1 : b2〉 + 1

2

2∑

i=1

∫ 2π

0

eσAre(2π−s)(w1
i (s))

2ds〈bi : bi〉

=

∫ 2π

0

(eσAre(2π−s) − I)
(

J2−J1

J1J2J3

ξre)w1
1(s)w

1
2(s)ds

= 0,so we have χ = 0. The result of the speed_control algorithm applied to this example
an be seen in Figure 5.4. In the implementation giving this �gure we have 
hosen
α1, α2, β ∈ {1, . . . , 5}, all di�erent, as to minimize ‖u1‖2.



Chapter 6Con
lusionIn this thesis we have fo
used on 
ontrol of simple me
hani
al 
ontrol system on Liegroups. In parti
ular we have developed novel theory regarding lo
al 
ontrollabilityalong a relative equilibrium and 
onstru
ted an algorithm 
apable of speeding up aninvariant simple me
hani
al 
ontrol system on a Lie group along a relative equilibrium.In this 
hapter we will present a summary of this thesis and give some suggestionsto future dire
tions of resear
h.6.1 Summary of DissertationIn Chapter 2 we presented, in a rigorous manner, the ne
essary theory of Lie groupsneeded to understand and analyse simple me
hani
al 
ontrol systems on Lie groups. Inparti
ular we presented some of the 
lassi
al matrix Lie groups des
ribing rigid bodies.Chapter 3 was 
on
erned with the derivation of the equations of motion for for
edme
hani
al systems, giving the for
ed Euler-Lagrange equations, and the equations ofmotion for me
hani
al systems with a Lie group as 
on�guration manifold. Simpleme
hani
al 
ontrol systems is a spe
ial 
lass of me
hani
al systems on Lie groups andthe equations of motions for this 
lass were dedu
ed. The theory was applied to threeexample systems.In Chapter 4 we fo
used on lo
al 
ontrollability issues. We introdu
ed some of thestrongest theorems regarding lo
al 
ontrollability properties of a�ne 
ontrol systems.Previous 
ontrollability results for simple me
hani
al 
ontrol systems on Lie groups werepresented. Using the presented 
ontrollability theorems we derived a novel result givingsu�
ient 
onditions for a simple me
hani
al 
ontrol system on a Lie group to be lo
ally
ontrollable along a relative equilibrium. This result is one of the main 
ontributions ofthis thesis. The results were applied to give a 
ontrollability analysis of three examplesystems.Chapter 5 was devoted to the 
onstru
tion of a novel motion algorithm. We presentedthe previous results regarding small amplitude 
ontrol of simple me
hani
al systems inorder to give a better understanding of the perspe
tive of the new algorithm. Per-turbation analysis was used to 
onstru
t two inversion maps and a motion primitivewas 
onstru
ted as a 
omposition of these maps. This motion primitive is the basisof the 
onstru
ted algorithm. Computing small-amplitude 
ontrol for
es, this motionalgorithm is 
apable of speeding up a simple me
hani
al 
ontrol system on a Lie group



80 Con
lusionalong a relative equilibrium. The 
ontent of this 
hapter is the se
ond main 
ontributionof this thesis and will be published in [35℄.6.2 Future Dire
tionsIn the following we will give some suggestions to future resear
h related to the main
ontributions of this dissertation.Lo
al Controllability along a Relative EquilibriumThe novel result of 
hapter 4 gives su�
ient 
onditions for a simple me
hani
al systemon a Lie group to be lo
ally 
ontrollable along a relative equilibrium. The 
on
ept ofa relative equilibrium 
an be extended to simple me
hani
al 
ontrol systems; these areme
hani
al systems for whi
h the kineti
 energy is given by a Riemannian metri
 andthe Lagrangian is the kineti
 energy minus the potential energy (whi
h is a fun
tion ofthe 
on�guration only), see, e.g., [13℄. The results of [29℄ are 
ontrollability results forzero initial velo
ity (and therefore build upon the work of [41℄) for simple me
hani
al
ontrol systems and these results are then in [11℄ applied to simple me
hani
al 
ontrolsystems on Lie groups. In this thesis we have worked the other way giving the lo
al
ontrollability result based dire
tly on the theory of [5℄. It would be interesting toinvestigate general results regarding lo
al 
ontrollability along a relative equilibrium fora simple me
hani
al 
ontrol systems and hopefully obtain the result of 
hapter 4 as a
orollary of a more general result.Motion Algorithms for Me
hani
al SystemOne of the main disadvantages of the new motion algorithm presented in 
hapter 5 arethe stri
t assumptions. In parti
ular the assumption that the number of independent
ontrol for
es is n− 1 where n is the number of degrees of freedom for the system. Asillustrated in 
hapter 5 removing this parti
ular 
ondition 
ompli
ates the analysis 
on-siderably. An important feature of the proposed motion algorithm is that everything isgiven expli
itly meaning that it 
an be implemented in real time. It would be interest-ing to examine the possibility of an impli
it method not needing the n− 1 assumption.One might hope that an impli
it method utilizing the geometri
 stru
ture of simpleme
hani
al 
ontrol systems on Lie groups would produ
e a fast and e�
ient means to
ir
umvent the problem.Another interesting 
hallenge would be to generalize the results of 
hapter 5 to moregeneral me
hani
al systems. In the vein the work in [11℄ is generalized to a bigger 
lassof systems in [32℄, one 
ould attempt a similar generalization of the results in 
hapter 5.
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