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ResumeEmnet for denne afhandling er kontrol af mekaniske systemer under en bevægelse, derkaldes en relativ ligevægtskurve. En sådan bevægelse er karakteriseret ved at hastighed-en, i et koordinatsystem i legemet, er konstant. Et stift legeme, der roterer med konstanthastighed omkring en af hovedakserne, er et eksempel på en relativ ligevægtskurve.I afhandlingen fokuseres på såkaldte simple mekaniske kontrolsystemer på Lie grup-per. Denne klasse af systemer er de�neret ved følgende: kon�gurationsmangfoldighedener en Lie gruppe, den totale energi er givet ved den kinetiske energi (d.v.s. ingen po-tentiel energi) og den kinetiske energi samt kontrolkrafterne er invariante i en bestemtbetydning.Afhandlingen indeholder to hovedresultater. Først udledes tilstrækkelige betingelser,af algebraisk karakter, under hvilke et simpelt mekanisk kontrolsystem på en Lie gruppeer lokalt kontrollerbart langs en relativ ligevægtskurve. Disse betingelser omfatter develkendte betingelser for lokal kontrollerbarhed af et ligevægtspunkt for et simpeltmekanisk system på en Lie gruppe. Dernæst præsenteres en ny kontrolalgoritme forsystemer med færre kontrolkrafter end frihedsgrader. Forudsat nogle antagelser er op-fyldt, beregner denne algoritme kontrolkræfter, der får systemet til at aelerere, deel-erere eller stabiliseres langs en relativ ligevægtskurve; valget af bevægelse bestemmes affortegnet af en parameter i algoritmen. Algoritmen anvendes konkret på et stift legemei planen samt en satellit med to kraftmomenter.





AbstratThe subjet of this thesis is ontrol of mehanial systems as they evolve along thesteady motions alled relative equilibria. These trajetories are of interest in theory andappliations and have the haraterizing property that the system's body-�xed veloityis onstant. For example, onstant-speed rotation about a prinipal axis is a relativeequilibrium of a rigid body in three dimensions.We fous our study on simple mehanial ontrol systems on Lie groups, i.e., me-hanial systems with the following properties: the on�guration manifold is a matrixLie group, the total energy is equal to the kineti energy (i.e., no potential energy ispresent), and the kineti energy and ontrol fores both satisfy an invariane ondition.The novel ontributions of this thesis are twofold. First, we develop su�ient ondi-tions, algebrai in nature, that ensure that a simple mehanial ontrol system on a Liegroup is loally ontrollable along a relative equilibrium. These onditions subsume thewell-known loal ontrollability onditions for equilibrium points. Seond, for systemsthat have fewer ontrols than degrees of freedom, we present a novel algorithm to ontrolsimple mehanial ontrol systems on Lie groups along relative equilibria. Under someassumptions, we design iterative small-amplitude ontrol fores to aelerate along, de-elerate along, and stabilize relative equilibria. The tehnial approah is based uponperturbation analysis and the design of inversion primitives and omposition methods.We �nally apply the algorithms to a planar rigid body and a satellite with two thrusters.
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Chapter 1IntrodutionDi�erential geometry applied to the analysis of mehanial systems and, in partiular,to nonlinear ontrol of mehanial systems, provides a fruitful way to gain insight intothe intrinsi properties of the system, suh as a number of ontrol and ontrollabilityproperties. Control problems for mehanial systems are known to be hallenging whenthe number of independent ontrol atuators is stritly less than the degrees of freedomof the system.The main fous of this work is motion ontrol along relative equilibria for simplemehanial ontrol systems on Lie groups. A simple mehanial ontrol system on a Liegroup is a mehanial system for whih the on�guration manifold is a matrix Lie group,the kineti energy and the ontrol fores are invariant under the appliation of the groupation, and the total energy is equal to the kineti energy. A relative equilibrium is asteady motion for whih the body-�xed veloity is onstant when applying no ontrolfores. For example, the on�guration of a satellite is the matrix Lie group SO(3) anda steady motion about any of its prinipal axes is a relative equilibrium.Using geometry, primarily Lie group theory, we develop novel results regarding loalontrollability along relative equilibria for simple mehanial ontrol systems on Liegroups. Spei�ally, we obtain two sets of results. First, we establish a theorem givingsu�ient onditions, of algebrai nature, for a mehanial system on a Lie group to beloally ontrollable along a relative equilibrium. Seond, for simple mehanial ontrolsystems on Lie groups with fewer ontrol atuators than degrees of freedom, we designan algorithm produing aeleration along, deeleration along, and stabilization of arelative equilibrium using small-amplitude ontrol fores.In this hapter we start out with a short desription of the history of the theory ofmehanial ontrol systems. We then desribe the main ontributions of this thesis. Weend with a short outline of the thesis.1.1 Geometry, Nonlinear Control, and MehanisSine Sir Isaa Newton published the ground-breaking �Philosophiae Naturalis Prin-ipia Mathematia� in 1687, the mathematial theory of mehanis has ontinuouslyattrated tremendous sienti� interest. Remarkable breakthroughs were the introdu-tion of Lagrangian mehanis in 1788 and Hamiltonian mehanis in 1833. The theoryof di�erential geometry was established in the beginning of the 20th entury, but it was



2 Introdutionnot until 1967 that the �rst book in English treating mehanis in a geometri mannerwas published by Abraham and Marsden; for a later revised edition see [1℄. Anotherlassi text in the �eld is the work by Arnol'd [4℄ �rst published in English in 1978.Geometri mehanis has sine been an ative �eld of researh in both the Lagrangiansetting, using alulus of variations and Riemannian geometry, as well as the Hamilto-nian setting, using sympleti geometry and Poisson geometry. A desription of someof the modern theory an be found in [31℄.The use of geometry in nonlinear ontrol began in the late 1970s and important earlyontributions inlude [10℄, [18℄, [23℄, and [41℄. The modern nonlinear ontrol theory nowrelies on onepts from di�erential geometry: the aim is to provide intrinsi desriptionsof various ontrol theory onepts and to avoid arbitrary hoies of oordinates. Themodern geometri approah to ontrol theory is desribed in the books [3℄ [21℄, [22℄,[25℄, [34℄, and [39℄.The paper [9℄ from 1977 by Brokett is one of the earliest aounts where the di�er-ential geometri link between mehanis and ontrol theory is stressed. During the 1980sthere was only limited researh ativity on mehanial ontrol theory; a prominent workbeing a series of papers on ontrol theory for Hamiltonian systems by van der Shaft,see hapter 12 in the book [34℄ for an aount of this theory. From around 1990 untiltoday, the �eld gained interest and sine then muh new insight has been gained andsophistiated theoretial results have emerged. The books [6℄ and [13℄ desribe some ofthese approahes.1.2 Contributions of this ThesisThe ontributions of this thesis are twofold. The �rst ontribution is a general resultproviding su�ient onditions for a simple mehanial ontrol system on a Lie groupto be loally ontrollable along a relative equilibrium. The seond result is the designof a ontrol algorithm to ompute ontrol inputs to speed up a system along a relativeequilibrium. In other words, the �rst result is an existene result, whereas the seond isa onstrutive result. Though losely related in nature, the analysis leading to the tworesults di�ers onsiderably.Loal Controllability along a Relative EquilibriumIn [19℄ a result giving su�ient onditions for small time loal ontrollability of generalnonlinear ontrol systems was onjetured. A stronger version of this result was laterproved in [41℄. Finally in [5℄ this approah was extended to address loal ontrollabil-ity problems along an unontrolled referene trajetory. This latter work ontains thestrongest known theorems providing su�ient onditions for loal ontrollability alongtrajetories.In [29℄ the main theorem of [41℄ was used to give loal ontrollability results formehanial ontrol systems whose Lagrangian is kineti energy, given by a Rieman-nian metri, minus potential energy. In [11℄, these results were used to give su�ientonditions for loal ontrollability results for simple mehanial ontrol systems on Liegroups. In partiular, su�ient onditions for a system to be loally aessible at zeroveloity, loally on�guration aessible, small-time loal ontrollable at zero veloity,



1.2 Contributions of this Thesis 3and small-time loal on�guration ontrollable are given. These results are all for zeroinitial veloity. The su�ient onditions involves only algebrai analysis of the �xedinput vetors de�ning the ontrol diretions and are muh simpler to verify than thegeneral onditions in [41℄.In Chapter 4 we apply the results in [5℄ to prove a new proposition regarding loalontrollability along a relative equilibrium for a simple mehanial ontrol system ona Lie group. As for the zero veloity results the su�ient onditions to ensure loalontrollability along a relative equilibrium are algebrai. To be more preise the su�ientonditions requires examining the spae of symmetri produts and the spae of Liebrakets of the �xed input vetor �elds de�ning the ontrol diretions. In the speialase when the relative equilibrium in fat is an equilibrium the result redue to theproposition in [11℄ regarding small-time loal ontrollability at zero veloity.Motion Control Algorithm along a Relative EquilibriumIn the design of ontrols for a mehanial system the number of ontrol fores is animportant fator. If the system has as many ontrol atuators as degrees of freedom itis alled fully atuated; otherwise it is alled underatuated. The motivation for studyingunderatuated systems is twofold; it gives rise to other design possibilities than a fullyatuated system and it is appropriate in the situation of an atuator failure, meaningthat suh an analysis improves robustness to atuator failures whih, e.g., is ruial inase the system is an a hazardous invironment suh as outer spae for a satellite.Extensive researh has foused on underatuated mehanial systems, espeially inthe ontext of ontrolled Lagrangians and Hamiltonians, e.g., see [7℄, [36℄, and subse-quent works. In [11℄ motion ontrol algorithms to reon�gure and exponentially stabilizesimple mehanial systems on Lie groups using small amplitude periodi foring are pro-posed. These algorithms are also appliable, under some onditions, in the ase thereare fewer atuators than degrees of freedom. The onstrutive approah is the sameas in [27℄ and [28℄ where it is applied to a lass of kinemati systems on Lie groups.The method is similar to that applied in [38℄ and [37℄ to di�erent lasses of mehanialsystems. The results of [11℄ was later in [32℄ extended to inlude the more general lassof mehanial systems where the on�guration manifold has a prinipal bundle strutureand the kineti energy is given by a Riemannian metri. Another approah to motionplanning of mehanial systems is to use osillatory ontrols ombined with an analysisusing averaging theory, see for example [17℄, [42℄, and [44℄.Less researh has been done on ontrolling systems along relative equilibria; a relatedspin-up problem of a rolling ball is onsidered in [20℄. In ase the relative equilibrium isaligned with one of the vetors de�ning the diretions of ontrol, the theory of kinematiredutions an be applied to generate motion along a relative equilibrium. For anaount of the theory of kinemati redution see [13℄ or the series of papers [12℄, [14℄,and [33℄.Using an approah resembling that of [11℄, Chapter 5 presents a new motion ontrolalgorithm for an invariant lass of underatuated simple mehanial ontrol systemson Lie groups. This motion algorithm produes ontrol fores whih make the systemaelerate along, deelerate along, and stabilize a relative equilibrium; whih type ofmotion is determined by the sign of a parameter in the algorithm. The main limitationof the algorithm is that it only applies to n dimensional systems with n − 1 ontrol



4 Introdutionfores. The results of Chapter 5 will be published in [35℄.1.3 Outline of the ThesisA short outline of the thesis is as follows:Chapter 2: In this hapter we review the neessary elements from the theory ofdi�erential geometry and Lie groups.Chapter 3: Here we derive the equations of motion for the so alled simple mehanialsystems on Lie groups. This is done using alulus of variations and Lie group theory.Chapter 4: In this hapter we review elements of ontrol theory and give a ontrolanalysis of simple mehanial systems on Lie groups. Most importantly we provide anew result giving su�ient onditions for a simple mehanial system on a Lie group tobe loally ontrollable along a relative equilibrium.Chapter 5: This hapter is devoted to an exposition of ontrol algorithms for simplemehanial systems on Lie groups with fewer atuators than degrees of freedom. Inpartiular we design an algorithm whih is able speed up a system along a relativeequilibrium; this is illustrated by applying the theory to two example systems.



Chapter 2Lie GroupsThe purpose of this hapter is to introdue some elements from di�erential geometryneessary to understand the material presented later on. Most of this material an befound in e.g. the books [8℄, [45℄ and [2℄. The notation in this thesis follows most loselythe one in [2℄, whih is the notation most often used in geometri mehanis literature.We start out by reviewing elements from di�erential geometry, without any proofs,in order to introdue notation and larify what is assumed knowledge of the reader. Themore thorough presentation of the theory starts by introduing Lie brakets. This isfollowed by a setion on general Lie groups inluding the important onept of the Liealgebra orresponding to a Lie group. We end the hapter with a setion on matrix Liegroups whih are the speial ase of Lie groups we will fous on after this hapter.2.1 Preliminaries in Di�erential GeometryA map f : Rn → Rm is said to be analyti, or Cω, on an open set D ⊂ Rn if f inan open neighbourhood of every point in D is expressible as a onvergent power series,i.e. it's Taylor series expansion around an arbitrary point in D onverges in an openneighbourhood of it.A set M is said to be a loally Eulidean spae of dimension n if M is a Hausdor�topologial spae for whih every point m ∈ M has an open neighborhood U homeo-morphi via x to an open subset of Eulidean spae Rn, i.e. x : U → Rn. The pair
(U, x) is alled a oordinate system or a hart. A di�erentiable struture of lass Ck,
k ∈ N∪{∞}∪{ω}, on a loally Eulidean spae M is a olletion of oordinate systems
{(Uα, xα) | α ∈ A} satisfying

⋃

α∈A

Uα = M,and
xα ◦ x−1

β is Ck for all α, β with Uα ∩ Uβ 6= ∅,and the olletion ontains all oordinate systems enjoying this property. If k = ∞the spae M , with this di�erentiable struture, is alled a di�erentiable manifold orjust a manifold and if k = ω then M , with this di�erentiable struture, is alled ananalyti manifold.



6 Lie GroupsThe tangent spae to M at m ∈ M , denoted by TmM , is the vetor spae whihin a oordinate system (U, x) = (U, x1, . . . , xn) it is given by
TmM = span{ ∂

∂x1

∣∣∣∣
m

, . . . ,
∂

∂xn

∣∣∣∣
m

}
.Let N denote a (analyti) manifold and let f : M → N , then f is said to besmooth (analyti) if for loal oordinate systems (U, x) aroundm ∈M and (V, y) around

f(m) ∈ N the map y ◦ f ◦ x−1 is smooth (analyti). If f is a smooth bijetion with asmooth inverse it is alled a di�eomorphism. For the speial ase N = R we denotethe lass of smooth funtions on M by C∞(M). The tangent map of f at m ∈ M isthe linear map
Tmf : TmM → Tf(m)N,de�ned by
Tmf(v)(g) = v(g ◦ f),where v ∈ TmM and g is a smooth funtion in a neighbourhood of f(m). The dual of

Tmf is the linear map
T ∗

mf : T ∗
f(m)N → T ∗

mM,de�ned by
T ∗

mf(α)(v) = α(Tmf(v)),where α ∈ T ∗
f(m)N and v ∈ TmM .Loally Tmf is seen to be given by the Jaobian matrix as
Tmf

(
∂

∂xj

∣∣∣∣
m

)
=

dim(N)∑

i=1

∂yi ◦ f
∂xj

∣∣∣∣
m

∂

∂yi

∣∣∣∣
f(m)

, i ∈ {1, . . . , n}.For the speial ase N = R and f a smooth funtion the tangent map is denoted thedi�erential whih for m ∈M and v ∈ TmM is de�ned
dfm(v) = v(f).Thus we have dfm ∈ T ∗

mM , where T ∗
mM is the dual of TmM , and in the oordinatesystem (U, x) we get

T ∗
mM = span{dx1

m, . . . , dx
n
m

}
.Let f : M → N be smooth. Then if f is injetive and Tmf is nonsingular for all

m ∈ M the pair (M, f) is alled a submanifold of N . If for p0 = f(m), m ∈ M , Tpfhas full rank for all p ∈ P = f−1(p0) then (P, i), where i : P →֒ M is the inlusion map,is a submanifold and we have TpP = {v ∈ TpM | Tpf(v) = 0}. Furthermore, ifM and Nare analyti and f is an analyti map then P an be given the struture of an analytimanifold.



2.1 Preliminaries in Di�erential Geometry 7The sets
TM =

⋃

m∈M

TmM, T ∗M =
⋃

m∈M

T ∗
mM,an be given a natural di�erentiable struture indued by the di�erentiable stru-ture {(Uα, xα) | α ∈ A} for M . For TM it is the di�erential struture ontaining

{(TUα, φα) | α ∈ A} where φα(v) = (xα(m), d(x1
α)m(v), . . . , d(xn

α)m(v)), for v ∈ TmUα,and for T ∗M it is the di�erentiable struture ontaining {(T ∗Uα, ψα) | α ∈ A} where
ψα(w) = (xα(m), w( ∂

∂x1
α
|m), . . . , w( ∂

∂xn
α
|m)) for w ∈ T ∗

mUα. TM and T ∗M are thus seen tobe manifolds of dimension 2n. Equipped with these di�erential strutures the manifold
TM is alled the tangent bundle ofM and the manifold T ∗M is alled the otangentbundle of M . We denote by τ : TQ → Q and π : T ∗Q → Q the natural projetionsgiven by τ(v) = m, for v ∈ TmM , and π(w) = m, for w ∈ T ∗

mM .The tangent map
Tf : TM → TN,is the map de�ned by Tf |TmM = Tmf .In geometri mehanis the manifold desribing the possible on�gurations of a me-hanial system is alled the on�guration manifold of the system. The dimension ofthe on�guration manifold is alled the degrees of freedom for the mehanial system.A vetor �eld X : M → TM on M is a lifting of M into TM , that is
τ(X) = idM ,where idM is the identity on M . In a loal oordinate system (U, x) = (U, x1, . . . , xn) avetor �eld X is given by

X(x) =
n∑

i=1

X i(x)
∂

∂xi
.If X i(x) ∈ C∞(U), i ∈ {1, . . . , n}, for every oordinate system X is alled smooth or

C∞. We denote by X(M) the set of smooth vetor �elds on M . If M is an analytimanifold X is alled analyti or Cω if it in every oordinate system is analyti.Let X ∈ X(M) and let ΦX
t (m) be the solution to the di�erential equation

d

dt
ΦX

t (m) = X(ΦX
t (m)),on M with ΦX

0 (m) = m, then ΦX
t is alled the �ow of X. The �ow exist and is uniqueby a translation of the fundamental existene and uniqueness theorem for �rst orderdi�erential equations in Rn to the language of manifolds.2.1.1 The Lie BraketWe start by de�ning the Lie braket of vetor �elds.De�nition 1. The Lie braket of two smooth vetor �elds X and Y on a manifold Mis for f ∈ C∞(M) the vetor �eld operating as

[X, Y ](f) = X(Y (f)) − Y (X(f)).



8 Lie GroupsLoally X(x) =
∑n

i=1X
i(x) ∂

∂xi and Y (x) =
∑n

i=1 Y
j(x) ∂

∂xj whih gives the loalexpression for the Lie braket as
[X, Y ](x) =

n∑

i,j=1

X i(x)
∂Y j

∂xi
(x)

∂

∂xj
−

n∑

i,j=1

Y j(x)
∂X i

∂xj
(x)

∂

∂xi
(2.1)

=
n∑

i,j=1

(
X i(x)

∂Y j

∂xi
(x) − Y i(x)

∂Xj

∂xi
(x)

)
∂

∂xj
. (2.2)If we write X = (X1, . . . , Xn)T and Y = (Y 1, . . . , Y n)T then (2.1) beomes

[X, Y ](x) =
∂Y

∂x
(x)X(x) − ∂X

∂x
(x)Y (x),where ∂X

∂x
(x) is the Jaobian of X. If X and Y are smooth [X, Y ] is learly seen to besmooth.The following is a straightforward result (though the Jaobi identity is tedious toprove) of the de�nition.Proposition 2. Let M be a manifold. The Lie braket [·, ·] : X(M) × X(M) → X(M)is bilinear, skew-symmetri, i.e. [X, Y ] = −[Y,X], and satis�es the Jaobi identity

[[X, Y ], Z] + [[Z,X], Y ] + [[Y, Z], X] = 0,for X, Y, Z ∈ X(M).A onnetion between omposition of integral urves and the Lie braket of the vetor�elds is given by the following proposition.Proposition 3. Let X and Y be smooth vetor �elds on a manifold M ∋ m. Then wehave that the Lie braket an be omputed as
[X, Y ](m) =

d

dt

∣∣∣∣
t=0

(
TΦX

t (m)Φ
X
−t

(
Y (ΦX

t (m))
))
.Proof. LetX and Y be given in the oordinate hart (U, x) byX(x) = (X1(x), . . . , Xn(x))Tand Y (x) = (Y 1(x), . . . , Y n(x))T . Then we get, when using Taylor expansions and leav-ing out all terms of order O(t2) and O(s2), the following

d

dt

∣∣∣∣
t=0

(
TΦX

t (x)Φ
X
−tY (ΦX

t (x))
)

=
d

dt

∣∣∣∣
t=0

d

ds

∣∣∣∣
s=0

ΦX
−t ◦ ΦY

s (ΦX
t (x))

=
d

dt

∣∣∣∣
t=0

d

ds

∣∣∣∣
s=0

ΦX
−t ◦ ΦY

s (x+ tX(x))

=
d

dt

∣∣∣∣
t=0

d

ds

∣∣∣∣
s=0

ΦX
−t(x+ tX(x) + sY (x) + st

∂Y

∂x
(x)X(x))

=
d

dt

∣∣∣∣
t=0

d

ds

∣∣∣∣
s=0

(x+ tX(x) + sY (x) + st
∂Y

∂x
(x)X(x) − tX(x) − st

∂X

∂x
(x)Y (x))

=
∂Y

∂x
(x)X(x) − ∂X

∂x
(x)Y (x).



2.2 Lie Groups 9This proposition also provides a onvenient method for alulating the Lie braketof vetor �elds in a oordinate free way.We onlude this setion by a proposition whih will be needed in the followingsetion in onnetion with so alled left-invariant vetor �elds.Proposition 4. Let M and N be manifolds and let φ : M → N be smooth. Assumethat X,X1 ∈ X(M) and Y, Y1 ∈ X(N) satis�es Tφ ◦X = Y ◦ φ and Tφ ◦X1 = Y1 ◦ φ.Then we have Tφ ◦ [X,X1] = [Y, Y1] ◦ φ.Proof. Let m ∈ M and f ∈ C∞(N). By use of the de�nition of the tangent map andthe Lie braket we get
Tmφ([X,X1](m))(f) = [X,X1](m)(f ◦ φ)

= X(m)(X1(f ◦ φ)) −X1(m)(X(f ◦ φ))

= X(m)((Tφ ◦X1)(f)) −X1(m)((Tφ ◦X)(f))

= X(m)(Y1(f) ◦ φ) −X1(m)(Y (f) ◦ φ)

= Tmφ(X(m))(Y1(f)) − Tmφ(X1(m))(Y (f))

= Y ◦ φ(m)(Y1(f)) − Y1 ◦ φ(m)(Y (f))

= [Y, Y1] ◦ φ(m)(f),and the result has been obtained.2.2 Lie GroupsWe start this setion with the de�nition of a Lie group.De�nition 5. A Lie group is a di�erentiable manifold G whih is endowed with agroup struture suh that the the produt map G×G→ G, (x, y) 7→ xy, and the inversemap G→ G, x 7→ x−1, are C∞. If in addition G is an analyti manifold and the produtmap and the inverse map are analyti G is alled an analyti Lie group.In this hapter we will use e ∈ G to denote the identity element of G.For g, h ∈ G left translation by g and right translation by g, denoted Lg and Rgrespetively, are de�ned by
Lg(h) = gh, Rg(h) = hg.A left-invariant vetor �eld X on a Lie group G is a vetor �eld satisfying

X(gh) = ThLg(X(h)),for all g, h ∈ G. We denote by L(G) the spae of all left-invariant vetor �elds on Gwhih is seen to be a vetor spae.Proposition 6. Let G be a Lie group and X ∈ L(G). Then X is C∞.Proof. Let G be a Lie group. Let X ∈ L(G) and g ∈ G, then X(g) = TeLg(X(e)). Let
(W, q1) be a oordinate system around g. Let (V, q0) be a oordinate system around



10 Lie Groups
e and (U, q1) be a oordinate system around g whih satisfy ⋃g∈U Lg(V ) ⊂ W . Suhharts exist: let (V0, q0) be a hart around e and σ : G×G→ G the produt map, then
(U, q1) and (V, q0) with U × V = (W × V0)∩ σ−1(W ) satis�es the ondition sine U and
V are open and g ∈ U and e ∈ V . Let ι : q1(U) × q0(V ) → q1(W ) be the oordinateexpression for the produt map in these harts. Let φ(t) be a smooth urve on V with
φ(0) = e and φ̇(0) = X(e) then we have that X(g) in oordinates for Tgq1(W ) is givenby

Tgq1(X(g)) = Tgq1(TeLg(X(e))) = Tgq1
d

dt

∣∣∣∣
t=0

Lgφ(t)

= Tgq1

(
d

dt

∣∣∣∣
t=0

q−1
1 ◦ ι(q1(g), q0(φ(t)))

)
= T(q1(g),q0(e))ι(0, Teq0(X(e))).Sine ι is smooth its Jaobian T(q1,q0)ι is a smooth funtion of q1 and q0 and thus Xdepends smoothly on g in oordinates and it is therefore smooth.Remark 7. If G is an analyti Lie group we an replae the word �smooth� with�analyti� in the proof of Proposition 6. Therefore we get that a left-invariant vetor�eld on an analyti Lie group is analyti. •Proposition 6 gives the following result.Corollary 8. Let G be a Lie group. If X, Y ∈ L(G) then [X, Y ] ∈ L(G).Proof. This is a diret onsequene of the de�nition of a left-invariant vetor �eld andPropositions 4 and 6.Let g ∈ G, ξ ∈ TeG, and (·)L : TeG→ X(G) be the map de�ned by

ξL(g) = TeLg(ξ),whih sine
ξL(gh) = TeLgh(ξ) = ThLg(TeLh(ξ)) = ThLg(ξL(h)),is a map (·)L : TeG→ L(G). Then we have.Proposition 9. Let G be a Lie group. Then (·)L : TeG→ L(G) is an isomorphism withinverse X 7→ X(e).Proof. Let β : L(G) → TeG denote the map X 7→ X(e). Let X, Y ∈ L(G) and assume

β(X) = β(Y ) then
X(g) = TeLg(X(e)) = TeLg(Y (e)) = Y (g),for all g ∈ G so β is injetive. Let ξ ∈ TeG then

β(ξL) = ξL(e) = ξ,so β is surjetive and thus bijetive and we see that β is the inverse of (·)L.Next we de�ne a Lie algebra.



2.2 Lie Groups 11De�nition 10. Let V be a vetor spae (over R) and let the map [·, ·]V : V × V → V ,for all ξ, η, ζ ∈ V , satisfy:1. bilinearity,2. skew symmetry, i.e., [ξ, η]V = −[η, ξ]V ,3. the Jaobi identity, i.e.,
[[ξ, η]V , ζ ]V + [[ζ, ξ]V , η]V + [[η, ζ ]V , ξ]V = 0.Then (V, [·, ·]V ) is alled a Lie algebra.Let (V, [·, ·]V ) be a Lie algebra and W a nonempty subset of V . If (W, [·, ·]W ), where

[·, ·]W is the restrition of [·, ·]V to W , is a Lie algebra it is alled a Lie subalgebra of
(V, [·, ·]V ). Given a subset S ⊂ V the Lie algebra generated by S is the smallest Liesubalgebra of (V, [·, ·]V ) ontaining S.From Corollary 8 we have that we an make the following de�nition.De�nition 11. Let G be a Lie group. For ξ, η ∈ TeG de�ne the braket [·, ·] : TeG ×
TeG→ TeG by

[ξ, η] = [ξL, ηL](e).By onstrution this braket inherits the properties of the Lie braket for vetor�elds; see Proposition 2. Therefore we have the following.Corollary 12. Let G be a Lie group. Then (TeG, [·, ·]) is a Lie algebra.De�nition 13. Let G be a Lie group. Then we denote the orresponding Lie algebra
(TeG, [·, ·]) by g.We will denote [·, ·] by [·, ·]g when risk of onfusing the braket of a Lie algebraorresponding to a Lie group with the Lie braket of vetor �elds on g.Proposition 14. For g, h ∈ G and X ∈ L(G) we have

LgΦ
X
t (h) = ΦX

t (Lgh),for |t| < δ for some δ > 0.Proof. From the existene and uniqueness theorem for di�erential equations (see e.g.[15℄) we know there exists a δ > 0 suh that ΦX
t (h) and ΦX

t (Lgh) are de�ned.We have LgΦ
X
0 (h) = ΦX

0 (Lgh) = Lgh and
d

dt
LgΦ

X
t (h) = TΦX

t (h)Lg

(
X(ΦX

t (h))
)

= X(LgΦ
X
t (h)),

d

dt
ΦX

t (Lgh) = X(ΦX
t (Lgh)).Sine LgΦ

X
t (h) and ΦX

t (Lgh) satisfy the same di�erential equation and are equal for
t = 0 we know from the existene and uniqueness theorem for di�erential equations thatthey are equal for all |t| < δ.



12 Lie GroupsThis gives the next useful orollary.Corollary 15. For a Lie group G ∋ g and X ∈ L(G) we have
ΦX

t1+t2(g) = ΦX
t1 (g)Φ

X
t2 (e),for |t1| < δ and |t2| < δ for some δ > 0.Proof. This is an immediate onsequene of the group property of �ows (ΦX

t ◦ΦX
s = ΦX

t+s)and Proposition 14 with h = e and g = ΦX
t1

(g).Proposition 14 leads to the following result on left-invariant vetor �elds.Proposition 16. A left-invariant vetor �eld X on a Lie group is omplete, i.e., the�ow ΦX
t is de�ned for all t ∈ R.Proof. From the existene and uniqueness theorem for di�erential equations we knowthat there exist a neighborhood V of e and a δ > 0 suh that ΦX

t (g) is de�ned for g ∈ Vand |t| < δ. From Proposition 14 we have that ΦX
t (g) is de�ned for g ∈ Lh(V ) and

|t| < δ for all h ∈ G. Thus ΦX
t (g) is de�ned for all g ∈ G for |t| < δ but beause of thegroup property of the �ow this means that δ = ∞.Sine left-invariant vetor �elds are omplete we an make the following de�nition.De�nition 17. For a Lie group G we de�ne the map exp : g → G by

exp(ξ) := ΦξL

1 (e),for ξ ∈ g.This map is alled the exponential map for reasons whih will beome lear later.From the de�nition we see that we have exp(tξ) = ΦtξL

1 (e) = ΦξL

t (e) for t ∈ R andthus exp(tξ) is the integral urve of ξL whih at t = 0 is e and has tangent ξ. FromProposition 14 we have that Lg exp(tξ) = ΦξL

t (g) so this is the integral urve of ξL whihat t = 0 is equal to g and has tangent ξL(g).Proposition 18. For a Lie group G and ξ ∈ g the map t 7→ exp(tξ), t ∈ R, is a1-parameter subgroup of G, i.e., exp(0ξ) = e and exp((t1 + t2)ξ) = exp(t1ξ) exp(t2ξ).Proof. We immediately get exp(0ξ) = ΦξL

0 (e) = e and exp((t1+t2)ξ) = exp(t1ξ) exp(t2ξ)is a onsequene of Corollary 15.The next result gives the smoothness properties of the exponential map.Proposition 19. Let G be a Lie group. The exponential map exp : g → G is C∞ andwe have T0 exp = idg.Proof. Consider the smooth omplete vetor �eld on G×g given by X(g, ξ) = (ξL(g), 0).Sine X is smooth so is ΦX
1 . Let π : G × g → G be the projetion onto G. Then

exp(ξ) = π ◦ ΦX
1 (e, ξ) is a omposition of smooth maps and it is therefore smooth.Sine ξ = d

dt

∣∣
t=0

ΦξL

t (e) = d
dt

∣∣
t=0

exp(tξ) = T0 exp(ξ) we have T0 exp = idg.



2.2 Lie Groups 13Remark 20. Let G be an analyti Lie group. Due to the Remark 7 we an replae theword �smooth� with �analyti� in the proof of Proposition 19. Therefore we get that theexponential map is analyti for an analyti Lie group. •Proposition 19, together with the inverse funtion theorem, shows that in a neigh-borhood U ⊂ G of e and a neighborhood V ⊂ g of 0 there exist a C∞ (Cω) inverse,denoted log, to exp, i.e., log(exp(ξ)) = ξ and exp(log(g)) = g for ξ ∈ V and g ∈ U . Theoordinates in the hart (U, log) are the so alled exponential oordinates of the �rstkind.Proposition 21. Let G and H be Lie groups. Let φ : G → H be a Lie group homo-morphism, i.e. φ is smooth and φ(ab) = φ(a)φ(b) for a, b ∈ G. Then, for ξ ∈ g wehave
φ(exp(tξ)) = exp

(
t
(
Teφ(ξ)

))
.Proof. Sine φ is a homomorphism we have Lφ(g) ◦ φ = φ ◦ Lg for g ∈ G. This fat isused in the following

d

dt
φ(exp(tξ)) = Texp(tξ)φ

(
ξL(exp(tξ))

)
= Texp(tξ)φ

(
TeLexp(tξ)(ξ)

)

= Teφ ◦ Lexp(tξ)(ξ) = TeLexp(tξ) ◦ φ(ξ)

= TeLφ(exp(tξ))(Teφ(ξ)) = (Teφ(ξ))L

(
φ(exp(tξ))

)
.Sine exp(tTeφ(ξ)) satis�es the same di�erential equation and the initial onditions arethe same for t = 0 the result follows.For a Lie group G and g ∈ G the inner automorphism Ig : G → G is given by

Ig = Lg◦Rg−1 = Rg−1◦Lg. It is easily heked that this in fat is a homomorphism. Sine
Rg and Lg are di�eomorphisms Ig is a di�eomorphism with inverse I−1

g = L−1
g ◦R−1

g−1 =
Lg−1 ◦ Rg = Ig−1 . Sine Ig is a homomorphism we have TeIg : g → g. We denote by Adthe adjoint map given by

Adg := TeIg.From Proposition 21 we get the following result.Corollary 22. For a Lie group G, g ∈ G, and ξ ∈ g, we have
Ig exp(tξ) = exp(tAdg(ξ)).Another result relating the braket [·, ·] to the adjoint map and the exponential mapis the following.Proposition 23. Let G be a Lie group. Then for ξ, η ∈ g we have
[ξ, η] =

d

dt

∣∣∣∣
t=0

Adexp(tξ)(η).



14 Lie GroupsProof. Let g ∈ G, v ∈ TgG and γ = TeLg−1(v) ∈ g. This means that v = γL(g).From Proposition 14 with h = e and g replaed with ΦγL
s (g) we get ΦξL

t ◦ ΦγL
s (g) =

ΦγL
s (g)ΦξL

t (e). Using this we get
TgΦ

ξL

t (v) =
d

ds

∣∣∣∣
s=0

ΦξL

t ◦ ΦγL
s (g) =

d

ds

∣∣∣∣
s=0

ΦγL
s (g)ΦξL

t (e)

=
d

ds

∣∣∣∣
s=0

LgΦ
γL
s (e)ΦξL

t (e) =
d

ds

∣∣∣∣
s=0

Lg ◦RΦ
ξL
t (e)

(ΦγL
s (e))

= TeLg ◦RΦ
ξL
t (e)

(γ) = TeLg ◦RΦ
ξL
t (e)

(TeLg−1(v))

= TgRΦ
ξL
t (e)

(v).From this and Proposition 3 we get
[ξ, η] = [ξL, ηL](e) =

d

dt

∣∣∣∣
t=0

(
T

Φ
ξL
t (e)

ΦξL

−t(ηL(ΦξL

t (e)))
)

=
d

dt

∣∣∣∣
t=0

(
T

Φ
ξL
t (e)

R
Φ

ξL
−t(e)

(TeLΦ
ξL
t (e)

(η))
)

=
d

dt

∣∣∣∣
t=0

(
TeRΦ

ξL
−t(e)

◦ L
Φ

ξL
t (e)

(η)
)

=
d

dt

∣∣∣∣
t=0

Ad
Φ

ξL
t (e)

(η) =
d

dt

∣∣∣∣
t=0

Adexp(tξ)(η).For a Lie group G and ξ, η ∈ g we de�ne the adjoint operator adξ : g → g as
adξ(η) := [ξ, η].The dual of adξ is the map ad∗

ξ : g → g de�ned for ξ, η ∈ g and α ∈ g∗ by adξ(α)(η) =
α(adξ(η)). In a given basis for g the matrix representation of ad∗

ξ is the transpose of thematrix representation for adξ.The de�nition of the adjoint operator leads to the following result regarding therelation between Adg, adξ, and exp.Proposition 24. Let G be a Lie group and ξ ∈ g. Then Ad is a group homomorphismand it satis�es
Adexp(ξ) = exp(adξ).Proof. Let g, h ∈ G. Then from the de�nition of Ad we get

Adgh = TeIgh = TeIg ◦ Ih = TeIg ◦ TeIh = Adg ◦ Adh,so Ad is a group homomorphism.Using Proposition 23 and the fat that exp and Ad are homomorphisms we get
d

dt
Adexp(tξ)(η) =

d

ds

∣∣∣∣
s=0

Adexp((s+t)ξ)(η) =
d

ds

∣∣∣∣
s=0

Adexp(sξ)(Adexp(tξ)(η))

= adξ(Adexp(tξ)(η)).



2.3 Matrix Lie Groups 15Sine g is a vetor spae and adξ is linear this shows that
dk

dtk
Adexp(tξ)(η) = adk

ξ(Adexp(tξ)(η)) ⇒
dk

dtk

∣∣∣∣
t=0

Adexp(tξ)(η) = adk
ξ (η).Thus formally a Taylor expansion gives

Adexp(tξ) = exp(adtξ).Sine ‖adξ‖ ≤ 2‖ξ‖ <∞ we have that exp(adξ) onverges for all ξ.2.3 Matrix Lie GroupsThe lass of Lie groups we will onsider in the remainder of this thesis is that of matrixLie groups. Therefore we start by de�ning some of the lassial matrix Lie groups.2.3.1 Some Classial Matrix Lie GroupsFor a vetor spae V ∋ v we use in the following the natural identi�ation of TvV with
V itself. Sine Rn×n is a Banah spae and Gl(n) is an open subset of Rn×n we will inthis setion use the di�erential D instead of the tangent map when onvenient.The General Linear Group Gl(n)For A,B ∈ Rn×n we have det(AB) = det(A) det(B), and det(e) = 1, so the spae

Gl(n) = {X ∈ Rn×n| det(X) 6= 0},equipped with the matrix produt is a group. This group is alled the general lineargroup. Sine det : Rn×n → R is a ontinuous funtion Gl(n) beomes a manifold asthe open subset of Rn2 , identi�ed with Rn×n, where the determinant is non-zero. Sine
(AB)ij =

∑n
k=1AikBkj and the entries of A−1 is a rational funtion of the entries of

A both the matrix produt and the inverse map are analyti and thus Gl(n) with thematrix produt an be given the struture of an analyti Lie group. A subgroup of Gl(n)whih is also a submanifold of Gl(n), hene a Lie group, is alled a matrix Lie group.Sine det is ontinuous there is a neighborhood U ⊂ Rn×n of e suh that det(U) > 0and thus U ⊂ Gl(n) whih shows that
TeGl(n) = TeU = Rn×n =: gl(n).The Speial Linear Group Sl(n)Sine det : Gl(n) → R \ {0} is a homomorphism the spae
Sl(n) = {X ∈ Gl(n)| det(X) = 1},is a subgroup of Gl(n). This group is alled the speial linear group. De�ne the map

F : Gl(n) → R \ {0} by F (X) = det(X). Let A ∈ Gl(n), a = det(A), then F (x) =
La ◦ F ◦ LA−1(X) giving

DF (X) = D(La ◦ F ◦ LA−1)(X) = aDF (A−1X)DLA−1(X).



16 Lie GroupsSine Lg is a di�eomorphism we thus get hoosing A = X

Rank(DF (X)) = Rank(DF (e)),and thus the rank i onstant. We therefore get that Sl(n) = F−1(1) is a submanifold of
Gl(n). Sine Sl(n) is a subgroup of Gl(n), and F is analyti, it is therefore an analytimatrix Lie group.The Orthogonal Group O(n)De�ne the analyti map H : Gl(n) → Gl(n) aording to H(X) = XTX. Sine H is ahomomorphism the spae

O(n) = {X ∈ Gl(n)| XTX = e},is a group. This group is denoted the orthogonal group. Let A ∈ Gl(n), then H(X) =
RA−1 ◦ LA−T ◦H ◦RA(X) giving

DH(X) = DRA−1(LA−T ◦H ◦RA(X))DLA−T (H ◦RA(X))DH(XA)DRA(X).Sine Lg and Rg are di�eomorphisms we get when hoosing A = X−1

Rank(DF (X)) = Rank(DF (e)),so the rank is onstant. We therefore have that O(n) = H−1(e) is an analyti submani-fold of Gl(n) and sine it is a subgroup of Gl(n) it is an analyti matrix Lie group. Let
ξ ∈ TeGl(n), then

TeH(ξ) =
d

dt

∣∣∣∣
t=0

H(ΦξL

t (e))

=
d

dt

∣∣∣∣
t=0

(
ΦξL

t (e)(ΦξL

t (e))T
)

=

(
d

dt

∣∣∣∣
t=0

ΦξL

t (e)

)
(ΦξL

0 (e))T + ΦξL

0 (e)

(
d

dt

∣∣∣∣
t=0

ΦξL

t (e)

)T

= ξ + ξT .Thus we have
TeO(n) = {A ∈ Rn×n| A + AT = 0} =: o(n).This also shows that dim(O(n)) = 1

2
n(n− 1).The Speial Orthogonal Group SO(n)Let

SO(n) = Sl(n) ∩ O(n).Sine SO(n) = (F ×H)−1(1, e) we know from the previous disussions that SO(n) is ananalyti matrix Lie group. This group is alled the speial orthogonal group. Sine for
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A ∈ O(n) we have det(A) = ±1 and sine the determinant is ontinuous we an hoosea neighborhood V ⊂ O(n) of e where we must have det(V ) = 1 and thus V ⊂ SO(n).Therefore TeSO(n) = TeV = TeO(n) =: so(n).For n = 3 Rodrigues' formula gives, with x̂ ∈ so(3), that

exp(x̂) = id + sin(‖x‖) x̂

‖x‖ + (1 − cos(‖x‖)) x̂2

‖x‖2
,with the isomorphism ·̂ : R3 → so(3) given by x̂y = x×y, x, y ∈ R3, where × is the rossprodut and ‖ · ‖ is the Eulidean norm in R3. If R ∈ SO(3) then for trace(R) 6= −1 wehave

log(R) =
φ

2 sin(φ)
(R−RT ),where φ ∈ (−π, π) satis�es 2 cos(φ) = trace(R) − 1. For a derivation of exp and log on

SO(3) see, e.g., [13℄.The Speial Eulidean Group SE(n)The subset of Sl(n+ 1)

SE(n) =

{[
A v

01×n 1

]
∈ R(n+1)×(n+1)

∣∣∣∣ A ∈ SO(n), v ∈ Rn

}
,is a subgroup of Sl(n+ 1) sine

[
A1 v1

01×n 1

] [
A2 v2

01×n 1

]
=

[
A1A2 A1v2 + v1

01×n 1

]
.It is a analyti manifold sine it an be identi�ed with the analyti produt manifold

SO(n) × Rn and it beomes a submanifold of Gl(n + 1) by inlusion. Thus it is ananalyti matrix Lie group; it is alled the speial Eulidean group. It is seen that wehave
TeSE(n) =

{[
A v

01×n 0

]
∈ R(n+1)×(n+1)

∣∣∣∣ A ∈ so(n), v ∈ Rn

}
=: se(n).By onstrution SE(n) is isomorphi (meaning there is a group homomorphism betweenthe sets as groups whih is a di�eomorphism between the sets as manifolds) to SO(n)×

Rn with produt (R1, v1)(R2, v2) = (R1R2, R1vv +v1) for (R1, v1), (R2, v2) ∈ SO(n)×Rn.Expliit formulas for the exponential and the logarithm, in the ase of SE(3), anbe found in, e.g., [13℄.Some Useful Formulas for Matrix Lie GroupsSine the produt on a matrix Lie group is just the ordinary matrix produt we easilyobtain the following result.Lemma 25. Let G ∋ g be a matrix Lie group and ξ ∈ g. Then
TeLg(ξ) = gξ, TeRg(ξ) = ξg, Adg(ξ) = gξg−1.



18 Lie GroupsProof. By straightforward alulations we get
TeLg(ξ) =

d

dt

∣∣∣∣
t=0

LgΦ
ξL

t (e) =
d

dt

∣∣∣∣
t=0

gΦξL

t (e) = gξ.

TeRg(ξ) =
d

dt

∣∣∣∣
t=0

RgΦ
ξL

t (e) =
d

dt

∣∣∣∣
t=0

ΦξL

t (e)g = ξg.

Adg(ξ) = TeIg(ξ) =
d

dt

∣∣∣∣
t=0

Ig(Φ
ξL(e)) =

d

dt

∣∣∣∣
t=0

gΦξL

t (e)g−1 = gξg−1.With this result we are able to give an exat formula for the exponential map for amatrix Lie group.Proposition 26. Let G be a matrix Lie group and ξ ∈ g. Then
exp(ξ) =

∞∑

k=0

ξk

k!
,i.e., exp is the matrix exponential.Proof. exp(ξ) = ΦξL

t (e) is the unique solution to the di�erential equation ġ = ξL(g) =

TeLg(ξ) = gξ, g(0) = e, but the solution to this problem is ∑∞
k=0

(tξ)k

k!
whih is thematrix exponential.This result enables us to show a result whih greatly simpli�es the alulation of thebraket for the Lie algebra of a matrix Lie group.Proposition 27. Let G be a matrix Lie group. Then for ξ, η ∈ g we have

[ξ, η] = ξη − ηξ,i.e., [·, ·] is the matrix ommutator.Proof. From Proposition 23, Lemma 25, and Proposition 26 we get
[ξ, η] =

d

dt

∣∣∣∣
t=0

Adexp(tξ)(η) =
d

dt

∣∣∣∣
t=0

exp(tξ)η exp(−tξ) = ξη − ηξ.

2.3.2 The Magnus Expansion and the Baker-Campbell-Hausdor�FormulaWe start out by proving some results needed to give the �rst terms in the Magnus seriesand the Baker-Campbell-Hausdor� formula.Lemma 28. For Ω, H ∈ Rn×n and k ∈ N the di�erential of the map Ω 7→ Ωk operatesas
DΩk(H) =

k−1∑

n=0

(
k

n+ 1

)
(adn

ΩH)Ωk−n−1,where (i
j

)
= i!

j!(i−j)!
is the binomial oe�ient.



2.3 Matrix Lie Groups 19Proof. The expression Ωadn
ΩH = (adn

ΩH)Ω + adn+1
Ω H is obviously true for n = 0. Byindution we get

Ωadn+1
Ω H = Ωadn

Ω(adΩH)

= (adn
Ω(adΩH))Ω + adn+1

Ω (adΩH)

= (adn+1
Ω H)Ω + adn+2

Ω H,and therefore it must be true for all n ∈ N.The expression DΩk(H) =
∑k−1

n=0

(
k

n+1

)
(adn

ΩH)Ωk−n−1 is seen to be true for k = 1 andthe proof proeeds by indution assuming the validity of it for k
DΩk+1(H) = D(Ω · Ωk)(H)

= DΩ(H) · Ωk + Ω ·DΩk(H)

= HΩk + Ω ·
k−1∑

n=0

(
k

n + 1

)
(adn

ΩH)Ωk−n−1

= HΩk +

k−1∑

n=0

(
k

n+ 1

)(
(adn

ΩH)Ω + adn+1
Ω H

)
Ωk−n−1

= HΩk +
k−1∑

n=0

(
k

n+ 1

)
(adn

ΩH)Ωk−n +
k∑

n=1

(
k

n+ 1

)
(adn

ΩH)Ωk−n

= HΩk +
k∑

n=0

(
k + 1

n+ 1

)
k − n

k + 1
(adn

ΩH)Ωk−n +
k∑

n=1

(
k + 1

n+ 1

)
n + 1

k + 1
(adn

ΩH)Ωk−n

=

k∑

n=0

(
k + 1

n + 1

)
(adn

ΩH)Ωk−n.So if the expression holds for k it will also hold for k + 1.With this lemma we are able to prove the following proposition.Proposition 29. Let G be a matrix Lie group. For Ω ∈ g we have
TΩ(Rexp(−Ω) ◦ exp) =

∞∑

k=0

1

(k + 1)!
adk

Ω ,whih onverges for all Ω ∈ g.Proof. Let H ∈ TΩg = g. Using Lemma 25 we get
TΩ exp(H) = TΩ(Rexp(Ω) ◦Rexp(−Ω) ◦ exp)(H)

= TeRexp(Ω)(TΩ

(
Rexp(−Ω) ◦ exp)

)
(H)

= TΩ(Rexp(−Ω) ◦ exp)(H) exp(Ω).



20 Lie GroupsWe therefore alulate TΩ exp(H). By the de�nition of the tangent map of the expo-nential map we get using Lemma 28
TΩ exp(H) =

(
D

∞∑

k=0

1

k!
Ωk

)
(H)

=
∞∑

k=1

1

k!
(DΩk)(H)

=

∞∑

k=1

1

k!

k−1∑

n=0

(
k

n + 1

)
(adn

ΩH)Ωk−n−1

=
∞∑

k=1

k−1∑

n=0

1

(n + 1)!(k − n− 1)!
(adn

ΩH)Ωk−n−1.Putting l = k − n− 1 gives
TΩ exp(H) =

∞∑

n=0

∞∑

l=0

1

(n+ 1)!

1

l!
(adn

ΩH)Ωl

=
∞∑

n=0

1

(n + 1)!
(adn

ΩH)
∞∑

l=0

1

l!
Ωl

=

(
∞∑

n=0

1

(n + 1)!
adn

ΩH

)
exp(Ω),whih gives the desired expression. Sine the linear operator adΩ is bounded, ‖adΩ‖ ≤

2‖Ω‖, and sine the series ∑∞
k=0

1
(k+1)!

xk, x ∈ R, has in�nite radius of onvergene theseries ∑∞
n=0

1
(n+1)!

adn
Ω onverges for all Ω ∈ g.The next proposition onerns the inverse of the linear operator TΩ exp.Proposition 30. Let G be a matrix Lie group. For Ω ∈ g the linear map TΩ(Rexp(−Ω) ◦

exp) : g → g is bijetive if and only if no eigenvalue of the operator adΩ is of the form
2lπ

√
−1 for a nonzero integer l. If this is the ase we have for ‖Ω‖ < π

(
TΩ(Rexp(−Ω) ◦ exp)

)−1
=

∞∑

k=0

bk
k!

adk
Ω ,where bk = dk

dxk

∣∣∣
x=0

x
ex−1

are the Bernoulli numbers .Proof. Sine ∑∞
k=0

1
(k+1)!

xk = ex−1
x

, x ∈ R, the eigenvalues for TΩ(Rexp(−Ω) ◦ exp) =
∑∞

k=0
1

(k+1)!
adk

Ω will be µ = eλ−1
λ

, where λ is an eigenvalue for adΩ. This means thatif and only if no eigenvalue of adΩ is of the form 2lπ
√
−1 then all eigenvalues for

TΩ(Rexp(−Ω) ◦ exp) will be nonzero whih is equivalent to it being invertible. By thede�nition of the Bernoulli numbers ∑∞
k=0

bk

k!
adk

Ω will be the inverse of ∑∞
k=0

1
(k+1)!

adk
Ω,and sine the radius of onvergene for ∑∞

k=0
bk

k!
xk is 2π the series ∑∞

k=0
bk

k!
adk

Ω willonverge for ‖adΩ‖ < 2π but sine ‖adΩ‖ ≤ 2‖Ω‖ this means that the series onvergesfor ‖Ω‖ < π.



2.3 Matrix Lie Groups 21The �rst Bernoulli numbers an be alulated to be b0 = 1, b1 = −1
2
, and b2k+1 = 0for k ∈ N.Proposition 31. Let G be an analyti matrix Lie group and let ξ : [0, t∗] → g, t∗ > 0, bepieewise smooth. Then there exists δ > 0 suh that for |ǫ| < δ the di�erential equationon G

ġ = ǫgξ(t), g(0) = e, (2.3)has, for t ∈ [0, t∗], the solution
g(t) = exp

(
ǫ

∫ t

0

ξ(s)ds− ǫ2 1
2

∫ t

0

[ξ(s),

∫ s

0

ξ(τ)dτ ]ds + O(ǫ3)

)
.Proof. Let (U, log), e ∈ U , be a hart with exponential oordinates. Sine equation (2.3)depends ontinuously on ǫ there exists δ > 0 suh that for |ǫ| < δ the solution to (2.3)stays in U for t ∈ [0, t∗]. Sine the di�erential equation (2.3) depends analytially on

ǫ so will the solution g(t) meaning in partiular that in the hart (U, log) the solutionis analyti, i.e. g(t) = exp(x(t)) where x(t) =
∑∞

j=1 ǫ
jxj(t). Inserting g(t) = exp(x(t))into the di�erential equation (2.3) gives

exp(x(t))ǫξ(t) = ġ(t)

= Tx(t) exp(ẋ(t))

= Tx(t)(Rexp(−x(t)) ◦ exp)(ẋ(t)) exp(x(t)).By Proposition 30 we an ensure by possibly hoosing δ smaller that Tx(t)(Rexp(−x(t))◦exp)is invertible for t ∈ [0, t∗]. Thus we get
ẋ(t) =

(
Tx(t)(Rexp(−x(t)) ◦ exp)

)−1(
ǫAdexp(x(t))(ξ(t))

)

=
(
Tx(t)(Rexp(−x(t)) ◦ exp)

)−1(
ǫ exp(adx(t))(ξ(t))

)
.Inserting x(t) =

∑∞
j=1 ǫ

jxj(t) on both sides of this equation and using Proposition 30shows that
ẋ1 = ξ(t),

ẋ2 = −1
2
[ξ(t), x1(t)],whih gives the result.The di�erential equation

ẋ(t) =
(
Tx(t)(Rexp(−x(t)) ◦ exp)

)−1
(ξ(t)),is alled the Magnus equation after W. Magnus who �rst treated it in 1954, see [30℄.The Magnus equation gives the solution g(t) = exp(x(t)) to ġ = ξ(t)g. The expansionof x(t) in terms of integrals of repeated Lie brakets, as in Proposition 31, is alled theMagnus expansion.



22 Lie GroupsCorollary 32. Let G be an analyti matrix Lie group and let η, ζ ∈ g. Then there exists
δ > 0 suh that for |ǫ| < δ we have

exp(ǫη) exp(ǫζ) = exp
(
ǫ(η + ζ) + ǫ2 1

2
[η, ζ ] + O(ǫ3)

)
.Proof. We use Proposition 31 with t∗ = 2 and

ξ(t) =

{
η, t ∈ [0, 1)
ζ, t ∈ [1, 2]

.This gives
g(2) = exp(ǫη) exp(ǫζ).But we have

∫ s

0

ξ(τ)dτ =

{
ηs, s ∈ [0, 1)
η + ζ(s− 1), s ∈ [1, 2]

,and thus
∫ 2

0

ξ(τ)dτ = η + ζ,and
∫ 2

0

[ξ(s),

∫ s

0

ξ(τ)dτ ]ds =

∫ 1

0

[η,

∫ s

0

ξ(τ)dτ ]ds +

∫ 2

1

[ζ,

∫ s

0

ξ(τ)dτ ]ds

=

∫ 1

0

[η, ηs]ds+

∫ 2

1

[ζ, η + ζ(s− 1)]ds

= [ζ, η],whih gives the result when inserted in Proposition 31.The full Taylor expansion of log(exp(ǫη) exp(ǫζ)) is given reursively by the so alledBaker-Campbell-Hausdor� formula, see e.g. [43℄.



Chapter 3Simple Mehanial Control Systems onLie GroupsThe subjet of this hapter is simple mehanial ontrol systems on Lie groups whihis the partiular lass of mehanial systems we will fous on in the remainder of thisthesis.We start by introduing some onepts from the theory of alulus of variations, sinethe approah leading to the equations of motions for mehanial systems, in partiularthe equations of motion for simple mehanial systems on Lie groups, is of a variationalnature. We then derive the fored Euler-Lagrange equations, whih are the equations ofmotion for a fored mehanial system, and the Euler-Poinaré equations whih, alongwith the kinemati equations, are the equations of motion for a mehanial system whenthe on�guration manifold is a Lie group. We de�ne simple mehanial ontrol systemson Lie groups whih are a speial lass of mehanial systems, with a Lie group ason�guration manifold, and we give the Euler-Poinaré equations for this speial ase.We end the hapter with some examples of simple mehanial systems on Lie groups.A more exhaustive treatment of the material overed in this hapter an be found,e.g, in [6℄,[13℄, and [31℄.3.1 Elements of Calulus of VariationsWe start with a standard de�nition from alulus of variations.De�nition 33. Let Q be a manifold and q : [a, b] → Q, a, b ∈ R, b > a, a smooth urveon Q. A variation of the urve q : [a, b] → Q is a smooth map (t, ǫ) 7→ qǫ(t) ∈ Q,
ǫ ∈ [c, d], d > 0, c < 0, satisfying1. q0(t) = q(t).2. qǫ(a) = q(a) and qǫ(b) = q(b) for all ǫ ∈ [c, d].The orresponding in�nitesimal variation is given by

δq(t) =
d

dǫ

∣∣∣∣
ǫ=0

qǫ(t) ∈ Tq(t)Q.



24 Simple Mehanial Control Systems on Lie GroupsFor a smooth funtion L : TQ→ R the variation of the funtional I(q) =
∫ b

a
L(q̇(t))dtis de�ned as

δ

∫ b

a

L(q̇(t))dt =
d

dǫ

∣∣∣∣
ǫ=0

∫ b

a

L(q̇ǫ(t))dtand the funtional derivative of L, δL
δq

: TQ→ T ∗Q, is the bundle map over idQ, i.e.,
π ◦ δL

δq
= idQ ◦ τ , given by

δ

∫ b

a

L(q̇(t))dt =

∫ b

a

δL

δq
(q̇(t)) · δq(t)dt,if it exists.

PSfrag replaements q(t)

Q

qǫ(t)PSfrag replaements q(t)

Q

δq(t)

Figure 3.1: The urve q(t) and a variation qǫ(t) of it (left). The in�nitesimal variation
δq(t), of q(t), given by qǫ(t) (right).From De�nition 33 we see that δ ∫ b

a
L(q̇(t))dt also depends on the hoie of variation

qǫ(t). This is not the ase for δL
δq

whih is intrinsially de�ned.We have the following result regarding the oordinate expression for the funtionalderivative of L.Proposition 34. Let Q be an n-dimensional manifold and (U, q) a oordinate hart on
Q. Let L : TQ→ R be a smooth funtion. Then δL

δq
exists and we have in TU

δL

δq
(q, q̇) =

n∑

i=1

(
∂L

∂qi
(q, q̇) − d

dt

∂L

∂q̇i
(q, q̇)

)
dqi,where (q, q̇) are the natural oordinates on TU orresponding to the oordinates q for U .Proof. Sine we want to alulate a loal expression for δL

δq
we may assume for simpliitythat q(t) ∈ U for t ∈ [a, b]. Sine U is open we an hoose |ǫ| small enough to ensure
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qǫ([a, b]) ⊂ U . Thus we get

δ

∫ b

a

L(q(t), q̇(t))dt =
d

dǫ

∣∣∣∣
ǫ=0

∫ b

a

L(qǫ(t), q̇ǫ(t))dt

=

∫ b

a

(
∂L

∂q
(q(t), q̇(t)) · δq(t) +

∂L

∂q̇
(q(t), q̇(t)) · δ̇q(t)

)
dt

=

∫ b

a

(
∂L

∂q
(q(t), q̇(t)) − d

dt

∂L

∂q̇
(q(t), q̇(t))

)
· δq(t)dt

+

[
∂L

∂q̇
(q(t), q̇(t)) · δq(t)

]b

a

=

∫ b

a

(
∂L

∂q
(q(t), q̇(t)) − d

dt

∂L

∂q̇
(q(t), q̇(t))

)
· δq(t)dt

=:

∫ b

a

δL

δq
(q(t), q̇(t)) · δq(t)dt.To ensure that we have that δL

δq
is de�ned globally we must hek that this loalexpression for δL

δq
behaves orretly under a hange of oordinates.Let (V, q̃) be a oordinate hart for Q with U ∩ V 6= ∅. From the hain rule we have

˙̃qj =

n∑

k=1

∂q̃j

∂qk
q̇k ⇒ ∂ ˙̃qj

∂q̇i
=
∂q̃j

∂qi
.Thus we get using the hain rule on L(q, q̇) = L̃(q̃(q), ˙̃q(q, q̇))

∂L

∂q̇i
=

n∑

j=1

∂L̃

∂ ˙̃qj

∂ ˙̃qj

∂q̇i
=

n∑

j=1

∂L̃

∂ ˙̃qj

∂q̃j

∂qi
,giving

d

dt

(
∂L

∂q̇i

)
=

n∑

j=1

(
d

dt

∂L̃

∂ ˙̃qj

)
∂q̃j

∂qi
+

n∑

j,k=1

∂L̃

∂ ˙̃qj

∂2q̃j

∂qi∂qk
q̇k.The seond part of δL

δq
is similarly alulated using the hain rule
∂L

∂qi
=

n∑

j=1

∂L̃

∂q̃j

∂q̃j

∂qi
+

n∑

j=1

∂L̃

∂ ˙̃qj

∂ ˙̃qj

∂qi

=

n∑

j=1

∂L̃

∂q̃j

∂q̃j

∂qi
+

n∑

j,k=1

∂L̃

∂ ˙̃qj

∂2q̃j

∂qi∂qk
q̇k.Combining these we get

d

dt

∂L

∂q̇i
− ∂L

∂qi
=

n∑

j=1

∂q̃j

∂qi

(
d

dt

∂L̃

∂ ˙̃qj
− ∂L̃

∂q̃j

)
.Sine π ◦ δL

δq
= idQ ◦ τ and sine δL

δq
under a hange of oordinates behaves as a one formwe have that δL

δq
: TQ→ T ∗Q indeed is a bundle map over idQ.



26 Simple Mehanial Control Systems on Lie Groups3.2 The Euler-Poinaré EquationsWe start with the de�nition of the Lagrange-d'Alembert priniple.De�nition 35. Let Q be a manifold, q : [a, b] → Q a smooth urve on Q, and F :
[a, b] × TQ → T ∗Q a bundle map over idQ. Then q is said to satisfy the Lagrange-d'Alembert priniple if for every variation qǫ(t) of q(t) with orresponding in�nitesimalvariation δq(t) we have

δ

∫ b

a

L(q̇(t))dt+

∫ b

a

F (t, q̇(t)) · δq(t)dt = 0.It an be shown, see e.g. [16℄, that Newtons equations of motion are equivalent tothe Lagrange-d'Alembert priniple where F is the resultant fore and L = T − V is theso-alled Lagrangian onsisting of the kineti energy T minus the potential energy V .Proposition 36 (Fored Euler-Lagrange equations). Let Q be an n-dimensional mani-fold, q : [a, b] → Q a smooth urve on Q, and F : [a, b]× TQ→ T ∗Q a bundle map over
idQ. The Lagrange-d'Alembert priniple is satis�ed if and only if

δL

δq
(q̇(t)) + F (t, q̇(t)) = 0, (3.1)whih in a oordinate system (U, q) is equivalent to q(t) satisfying

d

dt

∂L

∂q̇i
(q, q̇) − ∂L

∂qi
(q, q̇) = Fi(t, q, q̇), i ∈ {1, . . . , n}. (3.2)Proof. From De�nition 33 we have

δ

∫ b

a

L(q̇(t))dt+

∫ b

a

F (t, q̇(t)) · δq(t)dt =

∫ b

a

(
δL

δq
(q̇(t)) + F (t, q̇(t))

)
· δq(t)dt.From De�nition 35 and the fundamental lemma of the alulus of variations, see, e.g.,[24℄, we thus obtain equation (3.1). Equation (3.2) is a diret onsequene of Proposi-tion 34 and equation (3.1).Equation 3.2 is referred to as the fored Euler-Lagrange equations. If F = 0 equa-tions (3.2) are the well known Euler-Lagrange equations, see ,e.g., [4℄.Using the hain rule the fored Euler-Lagrange equations an be written

∂2L

∂q̇2
q̈ +

∂2L

∂q̇∂q
q̇ − ∂L

∂q
= F,whih when written out ompletely is

n∑

k=1

∂2L

∂q̇j∂q̇k
q̈k +

n∑

k=1

∂2L

∂q̇j∂qk
q̇k − ∂L

∂qj
= Fj , j ∈ {1, . . . , n},where q = (q1, . . . , qn), F = (F1, . . . , Fn).



3.2 The Euler-Poinaré Equations 27Let G denote a Lie group. Then a Lagrangian L : TG → R is alled left-invariantif L(g, ġ) = L(Lh(g), TgLh(ġ)), ġ ∈ TgG, for all g, h ∈ G. For a matrix Lie group thismeans that
L(g, ġ) = L(Lg−1(g), TgLg−1(ġ)) = L(e, g−1ġ) = L(e, ξ) =: l(ξ),where ξ := TgLg−1(ġ) = g−1ġ ∈ TeG = g. l is alled the restrition of L to g.Proposition 37 (The Euler-Poinaré equations). Let G be a matrix Lie group and

L : TG→ R a left invariant Lagrangian and l its restrition to g. For a urve g(t) ∈ Gde�ne the urve ξ(t) ∈ g by
ξ(t) = g(t)−1ġ(t). (3.3)Let the fore F : R × G → T ∗G be given by F (t, g) = T ∗

gLg−1f(t) = f(t)g−1 where
f(t) ∈ g∗ is the body-�xed fore. Then g(t) satis�es the Lagrange-d'Alembert prinipleif and only if ξ(t) satis�es the Euler-Poinaré equations

d

dt

δl

δξ
= ad∗

ξ

δl

δξ
+ f(t). (3.4)Proof. Let g(t) ∈ G be a urve in G and gǫ(t) a variation of g(t). This gives a variation

ξǫ(t) = gǫ(t)
−1ġǫ(t) ∈ g of ξ(t). The in�nitesimal variation of g(t) is given by δg(t) =

d
dǫ

∣∣
ǫ=0

gǫ(t) ∈ Tg(t)G and the in�nitesimal variation of ξ(t) is given by
δξ(t) =

d

dǫ

∣∣∣∣
ǫ=0

ξǫ(t) ∈ g.If we de�ne η(t) = g−1(t)δg(t) ∈ g we get
δξ(t) − η̇(t) =

d

dǫ

∣∣∣∣
ǫ=0

(
gǫ(t)

−1ġǫ(t)
)
− d

dt

(
g0(t)

−1 d

dǫ

∣∣∣∣
ǫ=0

gǫ(t)

)

= −g0(t)
−1δg(t)g0(t)

−1ġ0(t) + g0(t)
−1δ̇g(t) + g0(t)

−1ġ0(t)g0(t)
−1δg(t) − g0(t)

−1δ̇g(t)

= −g(t)−1δg(t)g(t)−1ġ(t) + g(t)−1ġ(t)g(t)−1δg(t)

= ξ(t)η(t) − η(t)ξ(t)

= adξ(t)η(t).This means that we have
δξ(t) = adξ(t)η(t) + η̇(t)where η(t) ∈ g vanishes at the endpoints. Sine F · δg = fg−1δg = f · η we thereforehave that the Lagrange-d'Alembert equations

δ

∫ b

a

L(g(t), ġ(t))dt+

∫ b

a

F (t, g(t)) · δg(t)dt = 0are equivalent to
δ

∫ b

a

l(ξ(t))dt+

∫ b

a

f(t) · η(t)dt = 0 (3.5)



28 Simple Mehanial Control Systems on Lie Groupsusing variations δξ(t) = adξ(t)η(t) + η̇(t) and where η vanishes at the endpoints. Calu-lating
δ

∫ b

a

l(ξ(t))dt =

∫ b

a

δl

δξ
δξ(t)dt

=

∫ b

a

δl

δξ
(η̇(t) + adξ(t)η(t))dt

=

∫ b

a

(
− d

dt

δl

δξ
η(t) +

δl

δξ
adξ(t)η(t)

)
dt+

[
δl

δξ
η(t)

]b

a

=

∫ b

a

(
− d

dt

δl

δξ
+ ad∗

ξ(t)

δl

δξ

)
η(t)dt,and inserting this expression into equation (3.5) the result is a onsequene of the fun-damental lemma from the alulus of variations, see, e.g., [24℄.Equation (3.3) is referred to as the kinemati equations for obvious reasons. Togetherthe kinemati equations (3.3) and the Euler-Poinaré equations (3.4) give the equationof motion for a fored mehanial system on a Lie group.De�nition 38. A simple mehanial ontrol system on a Lie group is a mehan-ial system desribed by the following:1. the on�guration manifold G is a matrix Lie group, with Lie algebra g,2. the total energy is equal to the kineti energy whih is given by an inertia tensor

I : g → g∗,3. a set of body-�xed vetors {f1, . . . , fm} ⊂ g∗ and u : R → Rm, bounded andmeasurable, de�ning the resultant body-�xed fore aording to f(t) =
∑m

i=1 fiui(t).
Σ = (G, I, {f1, . . . , fm}) denotes this mehanial ontrol system.For simple mehanial ontrol systems on Lie groups we have.Proposition 39. Let Σ = (G, I, {f1, . . . , fm}) be a simple mehanial ontrol system,then the equations of motion for this system are

ġ = g · ξ, (3.6)
Iξ̇ = ad∗

ξIξ +

m∑

i=1

fiui(t). (3.7)Proof. This follows diretly from Proposition 37 notiing that l(ξ) = 1
2
I(ξ) · ξ and usingProposition 34 giving the funtional derivative as δl

δξ
= ∂l

∂ξ
= Iξ.We de�ne the symmetri produt 〈· : ·〉 : g × g → g by

〈ξ : η〉 := −I−1(ad∗
ξIη + ad∗

ηIξ),



3.3 Examples 29whih is seen to be bilinear and symmetri. Using the symmetri produt the Euler-Poinaré equations (3.7) an be written
ξ̇ = −1

2
〈ξ : ξ〉 +

m∑

i=1

biui(t),where bi = I−1fi, for i ∈ {1, . . . , m}.A relative equilibrium for Σ is a urve t 7→ g0 exp(tξre) ∈ G, for g0 ∈ G and
ξre ∈ g, that is a solution to the dynamis (3.6), (3.7) for zero input u. It is easy tosee that t 7→ g0 exp(tξre) is a relative equilibrium if and only if 〈ξre : ξre〉 = 0. It isonvenient to all relative equilibrium both the urve t 7→ g0 exp(tξre) and the vetor
ξre. PSfrag replaements
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Figure 3.2: The planar rigid body with two fores applied at a point a distane h fromthe enter of mass CM. Σs denotes an inertial referene frame. (θ, x, y) ∈ S×R2 denotesthe on�guration of the body. The body referene frame (not depited) is aligned withthe diretion of appliation of f1 and f2.3.3 ExamplesExample 1 (Underatuated planar rigid body). Consider a rigid body moving in theplane without frition, see �gure 3.2. This is, e.g., a model of a hoverraft when disre-garding frition.The on�guration spae for this system is the matrix Lie group SE(2), with Liealgebra se(2). Sine SE(2) is isomorphi to SO(2) × R2 and SO(2) is isomorphi to
S ⊂ C \ {0}, equipped with the produt indued from the Lie group C \ {0}, SE(2) isisomorphi to S × R2, with produt
(eiθ1 , (x1, y1))(e

iθ2 , (x2, y2)) = (ei(θ1+θ2), (RE(eiθ1(x2 + iy2)) + x1), IM(eiθ1(x2 + iy2)) + y1)),where i =
√
−1. The di�eomorphism giving this isomorphism is for (θ, (x, y)) ∈ S ×R2

P =




cos(θ) − sin(θ) x
sin(θ) cos(θ) y

0 0 1


 ∈ SE(2).



30 Simple Mehanial Control Systems on Lie GroupsIf we take (θ, x, y, ω, v1, v2) ∈ T (S × R2) = (S × R2) × R3 and de�ne the vetor spaeisomorphism ·̂ : R3 → se(2) given bŷ


ω
v1

v2


 =




0 −ω v1

ω 0 v2

0 0 0


 ,we thus have a di�eomorphism between SE(2) × se(2) and (S × R2) × R3. The Liebraket on R3 indued by ·̂ gives

ad(ω,v1,v2)T =




0 0 0
v2 0 −ω
−v1 ω 0


With ontrols as in the �gure we have

f1 = e2, f2 = −he1 + e3,where h is the distane from the enter of mass to the ontrol fores. Denote by m themass of the body and by J the moment of inertia about its enter of mass. Sine thekineti energy is 1
2
m(v2

1 + v2
2) + 1

2
Jω2 the inertia tensor is I = diag(J,m,m) and theequations of motion beome, using proposition 39

Ṗ = P




0 −ω v1

ω 0 v2

0 0 0


 ,

Jω̇ = −hu2

mv̇1 = mωv2 + u1

mv̇2 = −mωv1 + u2The kinemati equation an be rewritten to
θ̇ = ω

ẋ = cos(θ)v1 − sin(θ)v2

ẏ = sin(θ)v1 + cos(θ)v2on S × R2.We see that the vetors
ξ = e1, ξ = αe2 + βe3,where α, β ∈ R, are relative equilibria for the system.Example 2 (Satellite with two thrusters). Consider a satellite, i.e., a rigid body �oatingin spae, subjet to a torque around the �rst and seond prinipal axes, see �gure 3.3.The on�guration manifold for a rigid body is the matrix Lie group G = SO(3) withLie algebra g = so(3). The isomorphism ·̂ : R3 → so(3) given by x̂y := x× y, x, y ∈ R3,that is,

x̂ =




0 −x3 x2

x3 0 −x1

−x2 x1 0


 ,
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Figure 3.3: The satellite with two thrusters.is a Lie algebra isomorphism between R3 with the ross produt and so(3) with thematrix ommutator; thus adx = x̂. With fores as in �gure 3.3 the ontrol fores are
f1 = e1, f2 = e2.Using proposition 39 then gives that the dynamis of this system is given by

Ṙ = RΩ̂,

JΩ̇ = (JΩ) × Ω + e1u1(t) + e2u2(t),where R ∈ SO(3), Ω ∈ R3, and J = diag(J1, J2, J3), Ji being the moment of inertiaaround the ith prinipal axis.A vetor along any of the prinipal axes is seen to be a relative equilibrium.
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Figure 3.4: A shemati of the underwater vehile.Example 3 (Underwater vehile in Ideal Fluid). Consider a rigid body submerged inan inompressible, irrotational, and invisid �uid. The on�guration manifold for this



32 Simple Mehanial Control Systems on Lie Groupssystem is SE(3). The motion of this system is Hamiltonian, see e.g. [26℄, meaning thatthe theory in this hapter an be applied. Let g ∈ SE(3) and ξ ∈ se(3) be given by
g =

[
R p
0 1

]
, ξ =

[
Ω̂ v
0 0

]
,where Ω, v ∈ R3 and ·̂ : so(3) → R3 is the isomorphism given in the previous example.The kinemati equation (3.6) then redues to

Ṙ = RΩ̂,

ṗ = Rv.The kineti energy for this system is given by 1
2
ΩT JΩ+ 1

2
vT Mv, where J = diag(J1, J2, J3)is the inertia matrix and M = diag(m1, m2, m3) omprises the added masses, whihdesribes the inertia added to the system due to the fat that moving the body alsomeans moving some of the surrounding �uid. This means that I = diag(J,M) and sine

ad(Ω,v) =

[
Ω̂ 0

v̂ Ω̂

]
,the Euler-Poinaré equations (3.7) for this system are

JΩ̇ = (JΩ) × Ω + (Mv) × v + fΩ,

Mv̇ = (Mv) × Ω + fv,where f = (fΩ, fv) ∈ se(3)∗ is the resultant body-�xed fore. With fores as in �gure 3.4we have
f1 = e4, f2 = −he3 + e5, f3 = he2 + e6.Any vetor ξ ∈ se(3) of the form

ξ = αei + βei+3, i ∈ {1, 2, 3},where α, β ∈ R, is seen to be a relative equilibrium.



Chapter 4Elements of Controllability TheoryIn this hapter we present some elements from ontrollability theory in order to do aontrollability analysis of simple mehanial ontrol systems on Lie groups.We begin by introduing some onepts from the theory of ontrollability of a�neontrol systems and present some of the strongest theorems available regarding loalontrollability properties of these systems. We then review ontrol results for simplemehanial ontrol systems on Lie groups and prove an additional result regarding loalontrollability along a relative equilibrium for a simple mehanial system on a Liegroup; this result is new and one of the main ontributions of this thesis. We end byapplying the theory to three example systems and thus provide a ontrollability analysisof these systems.Standard referenes in nonlinear ontrol theory inlude [21℄, [34℄, and [40℄.4.1 Controllability of A�ne Control SystemsLet Q denote a smooth manifold and onsider the a�ne ontrol system on Q given by
q̇ = X(q) +

m∑

j=1

Yj(q)uj, (4.1)where X, Y1, . . . , Ym are C∞ vetor �elds on Q and the ontrols u1, . . . , um are boundedand measurable funtions de�ned for some time interval [0, T ], T > 0.Let Lie(X, Y1, . . . , Ym) denote the Lie algebra generated by the elements of {X, Y1, . . . , Ym}.The system (4.1) is said to satisfy the Lie algebra rank ondition (LARC) at q ∈ Qif Lie(X, Y1, . . . , Ym)(q) = TqQ.Let q0 ∈ Q and let W ⊂ Q be a neighborhood of q0. For T > 0 we de�ne
RW

Q (q0, T ) = {q1 ∈ Q| there exists a solution (q, u)(t) of the system (4.1)suh that q(0) = q0, q(t) ∈W for t ∈ [0, T ], and q(T ) = q1},and
RW

Q (q0,≤ T ) =
⋃

t∈[0,T ]

RW
Q (q0, t).Then we have the following de�nition.
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Q (q0,≤ T )Figure 4.1: (left) loally aessible at q0. (right) small-time loally ontrollable (STLC)at q0.De�nition 40. The system (4.1) is alled loally aessible at q0 ∈ Q if there exists

T > 0 suh that RW
Q (q0,≤ t) ontains a nonempty open set of Q for all neighborhoods

W of q0 for all t ∈ (0, T ]. If the system is loally aessible for all q0 ∈ Q it is said tobe loally aessible.Let q0 ∈ Q satisfy X(q0) = 0. Then the system (4.1) is said to be small-timeloally ontrollable (STLC) at q0 ∈ Q if it is loally aessible at q0 and q0 belongs tothe interior of RW
Q (q0,≤ t) for all t ∈ (0, T ].We have the following theorem regarding loal aessibility.Theorem 41. Consider the system (4.1). It is loally aessible at q0 ∈ Q if the LARCis satis�ed at q0. Conversely if the system is loally aessible then the LARC is satis�edin an open and dense subset of Q.The proof of this an be found in, e.g., [34℄.Let Br(X, Y1, . . . , Ym) denote the smallest subset of Lie(X, Y1, . . . , Ym) whih on-tains {X, Y1, . . . , Ym} and is losed under the operation of taking brakets of its el-ements, i.e. if B1, B2 ∈ Br(X, Y1, . . . , Ym) then [B1, B2] ∈ Br(X, Y1, . . . , Ym). For

B ∈ Br(X, Y1, . . . , Ym) we de�ne δ0(B) to be the number of times X ours in Band δj(B), j ∈ {1, . . . , m}, the number of times Yj ours in B. A Lie braket
B ∈ Br(X, Y1, . . . , Ym) is said to be bad if δ0(B) is odd and δ1(B), . . . , δm(B) areeven; otherwise it is said to be good. For θ ∈ [0, 1] de�ne the order of a braket
B ∈ Br(X, Y1, . . . , Ym) as the number

δθ(B) = θδ0(B) +
m∑

j=1

δj(B).Remark 42. The above de�nitions an be made more preise using the notion of a freeLie algebra. We have hosen to avoid the notion of a free algebra in this hapter forsimpliity of the presentation. •This enables us to state one of the strongest results regarding STLC of a system. Aweaker version of this result was �rst onjetured in [19℄.Theorem 43 (Sussmann [41℄). Consider the system (4.1) and a point q0 ∈ Q satisfying
X(q0) = 0. Assume that the LARC is satis�ed at q0. Assume there exists a θ ∈ [0, 1],



4.1 Controllability of A�ne Control Systems 35giving the order δθ, suh that every bad Lie braket B ∈ Br(X, Y1, . . . , Ym)(q0) is a linearombination of lower order good Lie brakets from Br(X, Y1, . . . , Ym)(q0).Then the system is STLC at q0.
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Figure 4.2: Loally ontrollability along the trajetory q̂0(t).Let q̂0(t) be the solution of (4.1) for u = 0 satisfying q̂0(0) = q0 for q0 ∈ Q. Then thesystem is said to be loally ontrollable along the trajetory q̂0(t) if there exists
T > 0 suh that q̂0(t) lies in the interior of RW

Q (q0, t) for all t ∈ (0, T ]. This redues toSTLC when q0 is an equilibrium point.We have the following result regarding loal ontrollability along a trajetory.Theorem 44 (Bianhini and Stefani [5℄). Consider the system (4.1) and a point q0 ∈
Q. Assume that the LARC is satis�ed at q0. Take as weight θ = 0 giving the or-der δθ of a braket. Assume that every Lie braket B ∈ Br(X, Y1, . . . , Ym)(q0) with
δi(B) = even, i ∈ {1, . . . , m}, is a linear ombination of lower order Lie brakets from
Br(X, Y1, . . . , Ym)(q0).Then the system is loally ontrollable along q̂0(t).This theorem with q0 being an equilibrium point for X is seen to be ontained inTheorem 43.Another theorem is the following.Theorem 45 (Bianhini and Stefani [5℄). Consider the system (4.1) and a point q0 ∈ Q.Assume that the LARC is satis�ed at q0. Take as weight θ = 1 de�ning the order δθof a braket. Assume that every subspae of Lie(X, Y1, . . . , Ym) has onstant rank along
q̂0(t). Assume furthermore that every bad Lie braket B ∈ Br(X, Y1, . . . , Ym)(q̂0(t)) isa linear ombination of lower order good Lie brakets from Br(X, Y1, . . . , Ym)(q̂0(t)) ateah point q̂0(t) of the referene trajetory.Then the system is loally ontrollable along q̂0(t).Also this theorem is seen to be ontained in Theorem 43 when q0 is an equilibriumpoint for X. Atually the main result in [5℄ ontains the main result in [41℄ whih hasTheorem 43 as a orollary.Remark 46. Theorem 45 is not in this exat form in [5℄ but is a onsequene of Theorem1.1 and Lemma 1.2 in [5℄ with l = (1, . . . , 1). •



36 Elements of Controllability Theory4.2 Controllability of Simple Mehanial Control Sys-tems on Lie GroupsLet Σ = (G, I, {f1, . . . , fm}) be a simple mehanial ontrol system on a Lie group. Thenwe onsider the Euler-Poinare equations along with the kinemati equations
ġ = g · ξ, (4.2)
ξ̇ = −1

2
〈ξ : ξ〉 +

m∑

i=1

biui(t), (4.3)as given in hapter 3. Let g0 ∈ G and ξ0 ∈ g and let U ⊂ G be a neighborhood of g0.For T > 0 we de�ne
RU

G(g0, T ) = {g1 ∈ G| there exists a solution (g, u)(t) of the system (4.2)-(4.3)suh that ġ(0) = 0, g(t) ∈ U for t ∈ [0, T ], and g(T ) = g1},and
RU

G(g0,≤ T ) =
⋃

t∈[0,T ]

RU
G(g0, t).Then we have the following de�nition.De�nition 47. The system (4.2)-(4.3) is loally on�guration aessible at g0 ifthere exists T > 0 suh that RU

G(g0,≤ t) ontains a nonempty open set of G for allneighborhoods U of g0 for all t ∈ (0, T ]. If g0 belongs to the interior of the open set thesystem is alled small-time loally on�guration ontrollable (STLCC) at g0. If thesystem is loally on�guration aessible (STLCC) for all g0 ∈ G it is said to be loallyon�guration aessible (small-time loally on�guration ontrollable (STLCC)).Let V ⊂ G× g be a neighborhood of (g0, ξ0). Converting the de�nition of RW
Q fromthe previous setion to the system (4.2)-(4.3) gives

RV
G×g

(
(g0, ξ0), T

)
= {(g1, ξ1) ∈ G× g| there exists a solution (g, u)(t) of the system (4.2)-(4.3)suh that (g, ξ)(0) = (g0, ξ0), (g, ξ)(t) ∈ V for t ∈ [0, T ],and (g, ξ)(T ) = (g1, ξ1)},and

RV
G×g

(
(g0, ξ0),≤ T

)
=
⋃

t∈[0,T ]

RV
G×g

(
(g0, ξ0), t

)
.Then we have the following de�nition.De�nition 48. If the system system (4.2)-(4.3) is loally aessible at (g0, 0) and (g0, 0)belongs to the interior of RV

G×g

(
(g0, 0),≤ t

), for all t ∈ (0, T ], the system is alledsmall-time loally ontrollable (STLC) at g0 and at zero veloity.If the system (4.2)-(4.3) is STLC at g0 and at zero veloity for all g0 ∈ G it is saidto be small-time loally ontrollable at zero veloity (STLC at zero veloity).



4.2 Controllability of Simple Mehanial Control Systems on Lie Groups 37A symmetri algebra is an algebra where the multipliation, denoted by (x, y) 7→
〈x : y〉, satis�es 〈x : y〉 = 〈y : x〉. We denote by Sym(b1, . . . , bm) the symmetri algebragenerated by the vetors b1, . . . , bm ∈ g and the symmetri produt 〈· : ·〉 on g.Proposition 49. Consider the system (4.2)-(4.3). The system satis�es the LARC ifthe subspae de�ned by Sym(b1, . . . , bm) has full rank.Proof. We alulate brakets. Let η, ζ ∈ g be �xed. Exploiting the bilinearity of 〈· : ·〉gives

[[
g · ξ

−1
2
〈ξ : ξ〉

]
,

[
0
η

]]
= 0 −

[
∗ g
0 −〈ξ : ·〉

] [
0
η

]

=

[
−g · η
〈ξ : η〉

]
, (4.4)and

[[
0
ζ

]
,

[[
g · ξ

−1
2
〈ξ : ξ〉

]
,

[
0
η

]]]
=

[
∗ 0
0 〈η : ·〉

] [
0
ζ

]

=

[
0

〈η : ζ〉

]
.Thus we have with η, ζ ∈ span{b1, . . . , bm} and ξ ∈ g that for an arbitrary κ ∈

Sym(b1, . . . , bm) there exists a X ∈ Lie((g · ξ,−1
2
〈ξ : ξ〉)T , (0, b1)

T , . . . , (0, bm)T ) of theform
X =

[
0
κ

]
.This and equation (4.4) ombined with the assumption that Sym(b1, . . . , bm) has fullrank show that there must also exist a Y ∈ Lie((g · ξ,−1

2
〈ξ : ξ〉)T , (0, b1)

T , . . . , (0, bm)T )of the form
Y =

[
g · κ

0

]
.Sine g is nonsingular the Lie algebra rank ondition is therefore satis�ed.Let ξ ∈ g and denote by Pr(ξ, b1, . . . , bm) the smallest subset of Sym(ξ, b1, . . . , bm)whih ontains {ξ, b1, . . . , bm} and is losed under the operation of taking symmetriproduts of its elements, i.e., if S1, S2 ∈ Pr(ξ, b1, . . . , bm) then 〈S1 : S2〉 ∈ Pr(ξ, b1, . . . , bm).For S ∈ Pr(ξ, b1, . . . , bm) we de�ne ∆i(S), i ∈ {1, . . . , m}, to be the number of times

bi ours in S. Similarly we de�ne ∆0(S) to be the number of times ξ ours in S.A symmetri produt S ∈ Pr(ξ, b1, . . . , bm) is said to be bad if ∆i(S) is even for all
i ∈ {1, . . . , m}; otherwise it is said to be good. We de�ne the order of a symmetriprodut S ∈ Pr(ξ, b1, . . . , bm) to be the number

∆0(S) =
m∑

i=1

∆i(S).The following result is, as pointed out in [11℄, a diret onsequene of the results in[41℄ and [29℄ applied to the system (4.2)-(4.3).



38 Elements of Controllability TheoryTheorem 50. Consider the system (4.2)-(4.3). Assume that every bad symmetri prod-ut S ∈ Pr(b1, . . . , bm) is a linear ombination of lower order good symmetri produtsfrom Pr(b1, . . . , bm). Then1. The system is STLC at zero veloity if the subspae de�ned by Sym(b1, . . . , bm) hasfull rank.2. The system is STLCC if the subspae de�ned by Lie(Sym(b1, . . . , bm)) has full rank.To prove a similar theorem regarding loal ontrollability along a relative equilibriumof (4.2)-(4.3) we �rst need two lemmas.Lemma 51. Let G be a matrix Lie group with orresponding Lie algebra g and let ξ ∈ g.Consider the vetor �elds
Z1 =

[
g · f1(ξ)
S1(ξ)

]
, Z2 =

[
g · f2(ξ)
S2(ξ)

]
,on G× g, where f1, f2, S1, S2 : g → g are di�erentiable. Then we have

[Z1, Z2] =

[
g ·
(
adf1(ξ)(f2(ξ)) +Df2(ξ)(S1(ξ)) −Df1(ξ)(S2(ξ))

)

DS2(ξ)(S1(ξ)) −DS1(ξ)(S2(ξ))

]
,where D is the di�erential.Proof. Using Proposition 31 gives

ΦXi

t

([
g0

ξ0

])
=

[
g0 exp(fi(ξ0)t+ O(t2))
ξ0 + Si(ξ0)t+ O(t2)

]
.Using this, and doing Taylor expansions leaving out terms of order O(t2) and O(s2), theresult then follows as an appliation of Proposition 3.De�ne

A0(ξ, b1, . . . , bm) = {ξ, b1, . . . , bm},
Ai+1(ξ, b1, . . . , bm) = Ai(ξ, b1, . . . , bm) ∪ {〈v1 : v2〉, adv1

(v2)| v1, v2 ∈ Ai(ξ, b1, . . . , bm)}
A(ξ, b1, . . . , bm) = A∞(ξ, b1, . . . , bm).Then we have the following useful lemmaLemma 52. Consider the system (4.2)-(4.3). Every braket

B ∈ Br

([
g · ξ

−1
2
〈ξ : ξ〉

]
,

[
0
b1

]
, . . . ,

[
0
bm

])
,when evaluated is of the form

B =

[
g ·
(∑

j γjfj(ξ)
)

∑
i αiSi

]
,where γj, αi ∈ R, Si ∈ Pr(ξ, b1, . . . , bm) \ {ξ}, and fj(ξ) ∈ A(ξ, b1, . . . , bm) if ∆0(Si) > 0and fj = 0 if ∆0(Si) = 0. Furthermore if ∆0(Si) > 0 then fj(ξ) is homogeneous of order

∆0(Si) − 1, i.e., fj(aξ) = a∆0(Si)−1fj(ξ) for all a ∈ R and all ξ ∈ g.



4.2 Controllability of Simple Mehanial Control Systems on Lie Groups 39Proof. For fi : g → g smooth and Si(ξ) ∈ Pr(−1
2
〈ξ : ξ〉, b1, . . . , bm), i ∈ {1, 2}, we havefrom Lemma 51

[[
g · f1(ξ)
S1(ξ)

]
,

[
g · f2(ξ)
S2(ξ)

]]
=

[
g ·
(
adf1(ξ)(f2(ξ)) +Df2(ξ)(S1) −Df1(ξ)(S2)

)

[S1(ξ), S2(ξ)]

]
, (4.5)where

[S1(ξ), S2(ξ)] =DS2(ξ)(S1(ξ)) −DS1(ξ)(S2(ξ))

=
∑

j

S2(ξ−entry # j replaced with S1)

−
∑

k

S1(ξ−entry # k replaced with S2).

(4.6)This shows that [S1(ξ), S2(ξ)] =
∑

j βjS12j(ξ) where βj ∈ R and S12j(ξ) ∈ Pr(ξ, b1, . . . , bm)\
{ξ}.Let

X =

[
g · ξ

−1
2
〈ξ : ξ〉

]
, Yi =

[
0
bi

]
, i ∈ {1, . . . , m}.The statement is seen to be true for B ∈ {X, Y1, . . . , Ym}. We proeed by indution.Assume it is true for Z1, Z2 ∈ Br(X, Y1, . . . , Ym). Thus

Z1 =

[
g · (∑i γ1if1i(ξ))∑

i α1iS1i(ξ)

]
, Z2 =

[
g ·
(∑

j γ2jf2j(ξ)
)

∑
j α2jS2j(ξ)

]
.Let k1 = ∆0(S1i(ξ)) and k2 = ∆0(S2j(ξ)).Sine the braket is bilinear we get using (4.5)

[Z1, Z2] =

[
g ·
(∑

ij(γ1iγ2jadf1i(ξ)(f2j(ξ)) + γ2jα1iDf2j(ξ)(S1i(ξ)) − γ1iα2jDf1i(ξ)(S2j(ξ)))
)

∑
ij α1iα2j [S1i(ξ), S2j(ξ)]

]
,where [S1i(ξ), S2j(ξ)] =

∑
k β12ijkS12ijk and β12ijk ∈ R and S12ijkPr(ξ, b1, . . . , bm) \ {ξ}.Beause of equation (4.6) we have

∆0(S12ijk) = k1 + k2 − 1 =: k.By de�nition we get S12ijk ∈ Pr(ξ, b1, . . . , bm)\{ξ} ⊂ A(ξ, b1, . . . , bm) and adf1i(ξ)(f2j(ξ)) ∈
A(ξ, b1, . . . , bm). Similarly we have by de�nition thatDf2j(ξ)(S1i(ξ)) =

∑
k β21jikf21jik(ξ)and Df1i(ξ)(S2j(ξ)) =

∑
k β12ijkf12ijk(ξ) where β21jik, β12ijk ∈ R and f21jik(ξ), f12ijk(ξ) ∈

A(ξ, b1, . . . , bm).For k1 = 0 or k2 = 0 we have adf1i(ξ)(f2j(ξ)) = 0. If k1, k2 > 0 adf1i(ξ)(f2j(ξ)) ishomogeneous of order (k1 − 1) + (k2 − 1) = k − 1.For k1 ≤ 1 we have Df1i(ξ)(S2j(ξ)) = 0. For k1 > 1 Df1i(ξ)(S2j(ξ)) is homogeneousof order (k1 − 1) − 1 + k2 = k − 1.When k2 ≤ 1 we have Df2j(ξ)(S1i(ξ)) = 0. For k2 > 1 Df2j(ξ)(S1i(ξ)) is homoge-neous of order (k2 − 1) − 1 + k1 = k − 1.If the statement is true for Z1, Z2 ∈ Br(X, Y1, . . . , Ym) it is therefore true for [Z1, Z2],and sine it is true for Z1, Z2 ∈ {X, Y1, . . . , Ym} it is therefore true for allZ ∈ Br(X, Y1, . . . , Ym).



40 Elements of Controllability TheoryWith these two lemmas we are able to prove the following result regarding loalontrollability along a relative equilibrium.Proposition 53. Consider the system (4.2)-(4.3). Let ξre satisfy 〈ξre : ξre〉 = 0. Assumethat Sym(b1, . . . , bm) has full rank. Assume:1. Every bad symmetri produt S ∈ Pr(b1, . . . , bm) is a linear ombination of lowerorder good symmetri produts from Pr(b1, . . . , bm).2. Every symmetri produt S ∈ Pr(ξre, b1, . . . , bm) \ {ξre} is a linear ombination ofequal and lower order good symmetri produts from Pr(b1, . . . , bm).3. Every braket B ∈ Br(ξre, b1, . . . , bm) \ {ξre}, given by [·, ·]g, with order given by δ0is a linear ombination of equal and lower order produts from Pr(b1, . . . , bm).Then the system is loally ontrollable along (g, ξ)(t) = (g0 exp(tξre), ξre) for all g0 ∈ G.Proof. Sine we assume that Sym(b1, . . . , bm) has full rank we know from Proposition 49that the LARC is satis�ed.From Lemma 51 we have that for B1, B2 ∈ Br(−1
2
〈ξ : ξ〉, b1, . . . , bm) that B1, B2,and [B1, B2] when evaluated are

B1 =
∑

i

α1iS1i, B2 =
∑

i

α2iS2i, [B1, B2] =
∑

i

α12iS12i,where α1i, α2i, α12i ∈ R and S1i, S2i, S12i ∈ Pr(ξ, b1, . . . , bm). From Lemma 51 we alsoget
∆0(S12i) = ∆0(S1j) + ∆0(S2k) − 1. (4.7)We hoose θ = 1 meaning that for B ∈ Br(−1

2
〈ξ : ξ〉, b1, . . . , bm) the order δ1(B) of B isthe total number of fators in B. Taking B ∈ Br(−1

2
〈ξ : ξ〉, b1, . . . , bm)(ξre), whih whenevaluated is

B =
∑

i

αiSj,where αi ∈ R and Sj ∈ Pr(ξ, b1, . . . , bm), we get using (4.7) reursively
∆0(Sj) =

{
2δ0(B) − δ1(B) + 1 , if 2δ0(B) − δ1(B) + 1 > 0
0 , otherwise , (4.8)where we reall that δ0(B) is the number of times −1

2
〈ξ : ξ〉 ours in B. We reall thatwe have de�ned the order of a produt S ∈ Pr(ξre, b1, . . . , bm) as ∆0(S) :=

∑m
j=1 ∆j(S).Equation 4.8 an be rewritten to

δ1(B) = ∆0(Sj) + 2∆0(Sj) − 1. (4.9)De�ne
X =

[
g · ξ

−1
2
〈ξ : ξ〉

]
, Y =

[
0
bi

]
, i ∈ {1, . . . , m}.



4.2 Controllability of Simple Mehanial Control Systems on Lie Groups 41Using Lemma 51 we get
[X, Yi] =

[
−g · bi
〈ξ : bi〉

]
, [Yi, [X, Yj]] =

[
0

〈bi : bj〉

]
.This means that

∀ S ∈ Pr(b1, . . . , bm) ∃ B ∈ Br(X, Y1, . . . , Ym) s.t. B =

[
0
S

]
, (4.10)we denote this braket by BS.From Lemma 52 we have that every braket B ∈ Br(X, Y1, . . . , Ym) when evaluatedis of the form

B =

[
g ·
(∑

j γjfj(ξ)
)

∑
i α2iS2i

]
, (4.11)where γj, α2i ∈ R, S2i ∈ Pr(ξ, b1, . . . , bm), and fj ∈ A(ξ, b1, . . . , bm) if ∆0(Si) > 0and fj = 0 if ∆0(Si) = 0. Using Lemma 51 reursively we furthermore have that bk,

k ∈ {1, . . . , m}, ours the same number of times in Si as in fj , if ∆0(Si) > 0, and
δk(B) = ∆k(Si).Let B be a bad braket and take ξ = ξre. Then there are two situations, here denoted(a) and (b).(a). ∆0(S2i) > 0.Aording to assumption 2 we have

α2iS2i =
∑

j

α2ijS2ij ,where α2ij ∈ R and Sij ∈ Pr(b1, . . . , bm) is of equal and lower order as S2i and aordingto assumption 1 we an assume that S2ij is good.Aording to assumptions 2 and 3 we have
∑

j

γjfj(ξ) =
∑

k

βkS1k,where βk ∈ R and S1k ∈ Pr(b1, . . . , bm) is of equal and lower order as S2i and aordingto assumption 1 we an assume that S1k is good. Using Lemma 51 and (4.10) we get
[X,BS1k

] =

[
−g · S1k

〈ξ : S1k〉

]
.Beause of assumption 2 we have that

〈ξre : S1k〉 =
∑

i

α1kiS1kiwhere α1ki ∈ R and S1ki ∈ Pr(b1, . . . , bm) is of equal and lower order as S1k and beauseof assumption 1 we an assume that S1ki is good. Therefore
[
g · S1k

0

]
= −[X,BS1k

] +
∑

i

α1kiBS1ki
.



42 Elements of Controllability TheoryFrom the above we get
B =

[
g · (∑k βkS1k)∑

ij α2ijS2ij

]

=
∑

k

βk

(
−[X,BS1k

] +
∑

i

α1kiBS1ki

)
+
∑

ij

α2ijBS2ij
,where BS1k

, BS1ki
, and BS2ij

are good sine S1k, S1ki, and S2ij are good.We have from (4.9) that
δ1(B) = ∆0(S2i) + 2∆0(S2i) − 1,

δ1(BS1k
) = ∆0(S1k) + 2∆0(S1k) − 1 = 2∆0(S1k) − 1,

δ1(BS1ki
) = ∆0(S1ki) + 2∆0(S1ki) − 1 = 2∆0(S1ki) − 1,

δ1(BS2ij
) = ∆0(S2ij) + 2∆0(S2ij) − 1 = 2∆0(S2ij) − 1.Sine ∆0(S1k) ≤ ∆0(S2i), ∆0(S1ki) ≤ ∆0(S2i), ∆0(S2ij) ≤ ∆0(S2i), and ∆0(S2i) > 0 wetherefore get

δ1(BS1k
) < δ1(B),

δ1(BS1ki
) < δ1(B),

δ1(BS2ij
) < δ1(B).Finally

δ1([X,BS1k
]) = 1 + δ1(BS1k

) = 2∆0(S1k) ≤ δ1(B),But sine B is bad δ1(B) is odd so we must have δ1([X,BS1k
]) < δ1(B).(b). ∆0(S2i) = 0.By assumption we have S2i ∈ Pr(b1, . . . , bm). From Lemma 52 we get

B =

[
0∑

i α2iS2i

]
.Sine δq(B) = ∆q(S2i), q ∈ {1, . . . , m}, B bad means that S2i is bad but then aordingto assumption 1 we have that

B =

[
0∑

ij α2ijS2ij

]
,where α2ij ∈ R and S2ij ∈ Pr(b1, . . . , bm) is good of order ∆0(S2ij) < ∆0(S2i). Thus weget

B =
∑

ij

α2ijBS2ij
,where BS2ij

is good, sine δq(BS2ij
) = ∆q(S2ij), q ∈ {1, . . . , m}, and the order of BS2ij

is
δ1(BSij

) = 2∆0(S2ij) − 1 < δ1(B) = 2∆0(S2i) − 1.Sine every braket B ∈ Br(X, Y1, . . . , Ym) is of the form 4.11 and sine ξ(t) = ξre weget that every subspae of Lie(X, Y1, . . . , Ym) has onstant rank along (g0 exp(ξret), ξre)for all g0 ∈ G. The result then follows as an appliation of Theorem 45.



4.2 Controllability of Simple Mehanial Control Systems on Lie Groups 43Remark 54. For ξre = 0 assumption 2 is automatially satis�ed. From Lemma 52 wehave that fj(ξ), in the proof of Proposition 53, is homogeneous of order k = ∆0(S2i)−1for ∆0(S2i) > 0 and fj = 0 for ∆0(S2i) = 0. Sine
∆0(S2i) = 2δ0(B) − δ1(B) + 1

= δ0(B) − δ0(B) + 1,we have that if B is bad then ∆0(S2i) = odd−even+1 = even. For ∆0(S2i) > 0 we thushave that k is odd and k > 0. This gives that for a bad braket we have fj(0) = 0 andtherefore assumption 3 is super�uous in the ase that ξre = 0. Therefore when ξre = 0Proposition 53 an be simpli�ed to statement 1 of Proposition 50. •Proposition 53 has the following orollary whih is useful in the analysis of a realmehanial system sine its assumptions are easy to verify .Corollary 55. Consider the system (4.2)-(4.3). Let ξre satisfy 〈ξre : ξre〉 = 0. As-sume that span{bi, 〈bi : bj〉 | i, j ∈ {1, . . . , m}} is full rank and 〈ξre : bi〉, 〈bi : bi〉 ∈
span{b1, . . . , bm}, for i ∈ {1, . . . , m}.Then the system is loally ontrollable along (g, ξ)(t) = (g0 exp(tξre), ξre) for all g0 ∈
G. Consider now instead the Euler-Poinare equations only, without the kinemati equa-tion. Then we prove two propositions regarding STLC of this system. The �rst resultshows what an be omitted in Proposition 53 when disregarding the kinemati equation.Proposition 56. Consider the system (4.3). Let ξre satisfy 〈ξre : ξre〉 = 0. Assume that
Sym(b1, . . . , bm) has full rank. Assume:1. Every bad symmetri produt S ∈ Pr(b1, . . . , bm) is a linear ombination of lowerorder good symmetri produts from Pr(b1, . . . , bm).2. Every symmetri produt S ∈ Pr(ξre, b1, . . . , bm) \ {ξre} is a linear ombination ofequal and lower order good symmetri produts from Pr(b1, . . . , bm).Then the system is STLC at ξre.Proof. Sine we assume that Sym(b1, . . . , bm) has full rank we know from Proposition 49that the LARC is satis�ed.For S1, S2 ∈ Pr(−1

2
〈ξ : ξ〉, b1, . . . , bm) we have, due to the bilinearity of the symmetriprodut, that

[S1, S2] =
∑

j

S2(ξ−entry # j replaced with S1)

−
∑

j

S1(ξ−entry # j replaced with S2).
(4.12)Using this reursively we an de�ne the map ·̃ : Br(−1

2
〈ξ : ξ〉, b1, . . . , bm) → Sym(−1

2
〈ξ :

ξ〉, b1, . . . , bm), whih we extend linearly so ·̃ : Lie(−1
2
〈ξ : ξ〉, b1, . . . , bm) → Sym(ξ, b1, . . . , bm).Sine ˜[bi, [−1

2
〈ξ : ξ〉, bj]] = 〈bi : bj〉 we have

∀ S ∈ Pr(b1, . . . , bm) ∃ B ∈ Br(−1
2
〈ξ : ξ〉, b1, . . . , bm) s.t. S = B̃.



44 Elements of Controllability TheoryThis B ∈ Br(−1
2
〈ξ : ξ〉, b1, . . . , bm) we denote BS, i.e. B̃S = S for S ∈ Pr(b1, . . . , bm).Let S ∈ Pr(ξre, b1, . . . , bm), and now ∆0(S) denotes the number of times ξre ours in

S and ∆i(S), i ∈ {1, . . . , m}, the number of times bi ours in S as before. From (4.12)we have for B1, B2 ∈ Br(−1
2
〈ξ : ξ〉, b1, . . . , bm)(ξre) that

∆0( ˜[B1, B2]) = ∆0(B̃1) + ∆0(B̃2) − 1, (4.13)where we de�ne ∆i, i ∈ {0, 1, . . . , m}, on a sum of produts with the same fators to be
∆i applied to one of these produts.We hoose θ = 1 meaning that for B ∈ Br(−1

2
〈ξ : ξ〉, b1, . . . , bm) the order δ1(B) of

B is the total number of fators in B. Using (4.13) reursively gives for B ∈ Br(−1
2
〈ξ :

ξ〉, b1, . . . , bm)(ξre)
∆0(B̃) =

{
2δ0(B) − δ1(B) + 1 , if 2δ0(B) − δ1(B) + 1 > 0
0 , otherwise , (4.14)where we reall that δ0(B) is the number of times X = −1

2
〈ξ : ξ〉 ours in B. Wereall that we have de�ned the order of a produt S ∈ Pr(ξre, b1, . . . , bm) as ∆0(S) :=∑m

j=1 ∆j(S).Let B ∈ Br(−1
2
〈ξ : ξ〉, b1, . . . , bm)(ξre) be a bad braket of order δ1(B). Then we havefrom (4.12) that

B̃ =
∑

i

αiSi, (4.15)where αi ∈ R and Si ∈ Pr(ξre, b1, . . . , bm) \ {ξre} is a braket of order l. From (4.14) wehave
δ1(B) = ∆0(Si) + 2l − 1.Then there are two situations, here denoted (a) and (b).(a). ∆0(Si) > 0.Aording to assumption 2 equation (4.15) beomes

B̃ =
∑

ij

αijSij ,where αij ∈ R and Sij ∈ Pr(b1, . . . , bm) has order ∆0(Sij) = l′ ≤ l. Then aording toassumption 1 we have
B̃ =

∑

ijk

αijkSijk,where αijk ∈ R and Sijk ∈ Pr(b1, . . . , bm) is good of order ∆0(Sijk) = l′′ ≤ l′ ≤ l. Thuswe get
B =

∑

ijk

αijkBSijk
,



4.2 Controllability of Simple Mehanial Control Systems on Lie Groups 45where BSijk
is good, sine δq(BSijk

) = ∆q(Sijk), q ∈ {1, . . . , m}, and the order of BSijkis aording to (4.14) δ1(BSijk
) = 2l′′ − 1 < δ1(B).(b). ∆0(Si) = 0.By assumption we have Si ∈ Pr(b1, . . . , bm). Sine δq(B) = ∆q(Si), q ∈ {1, . . . , m}, Bbad means that Si is bad but then aording to assumption 1 we have that equation 4.15beomes

B̃ =
∑

ij

αijSij ,where αij ∈ R and Sij ∈ Pr(b1, . . . , bm) is good of order ∆0(Sij) = l′ < l. Thus we get
B =

∑

ij

αijBSij
,where BSij

is good, sine δq(BSij
) = ∆q(Sij), q ∈ {1, . . . , m}, and the order of BSij

isaording to (4.14) δ1(BSij
) = 2l′ − 1 < δ1(B).The result then follows as an appliation of Theorem 43.Denote by invξreSym(b1, . . . , bm) the vetor spae spanned by the elements from

K(ξre, b1, . . . , bm) ⊂ Pr(ξre, b1, . . . , bm) where
K0(ξre, b1, . . . , bm) = Pr(b1, . . . , bm),

Ki+1(ξre, b1, . . . , bm) = Ki(ξre, b1, . . . , bm) ∪ {〈ξre : v〉| v ∈ Ki(ξre, b1, . . . , bm)},
K(ξre, b1, . . . , bm) = K∞(ξre, b1, . . . , bm)Then we have the following result.Proposition 57. Consider the system (4.3). Let ξre satisfy 〈ξre : ξre〉 = 0. As-sume that the subspae invξreSym(b1, . . . , bm) has full rank and that every bad produtin Pr(ξre, b1, . . . , bm) \ {ξre} is a linear ombination of lower order good produts from

K(ξre, b1, . . . , bm). Then the system is STLC at ξre.Proof. Equation (4.12) in the proof of Proposition 56 shows that
˜[bi, [−1
2
〈ξ : ξ〉, bj]] = 〈bi : bj〉,and

˜[−1
2
〈ξ : ξ〉, [−1

2
〈ξ : ξ〉, [. . . , [−1

2
〈ξ : ξ〉, bi] . . .]]](ξre) = 〈ξre : 〈ξre : 〈. . . : 〈ξre : bi〉 . . .〉〉〉where −1

2
〈ξ : ξ〉 appears on the left hand side the same number of times as ξre appearson the right hand side. This shows that the LARC is satis�ed if invξreSym(b1, . . . , bm)has full rank. We also see from the above that for every S ∈ K(ξre, b1, . . . , bm) thereexists a braket B ∈ Br(−1

2
〈ξ : ξ〉, b1, . . . , bm) suh that B̃ = S, we denote this braket

BS. Sine the number of times bk, k ∈ {1, . . . , m}, ours in BS is the same as in S, BSwill be good if S is good.Take θ = 0 to de�ne the order of a braket B ∈ Br(−1
2
〈ξ : ξ〉, b1, . . . , bm), this meansthat the order of a braket B ∈ Br(−1

2
〈ξ : ξ〉, b1, . . . , bm) is the same as the order of the



46 Elements of Controllability Theoryelements in the sum of produts that B̃ is omposed of. Let B ∈ Br(−1
2
〈ξ : ξ〉, b1, . . . , bm)be a bad braket. Then we have from the alulations in Proposition 56 that

B̃(ξre) =
∑

i

αiSiwhere αi ∈ R and Si ∈ Pr(ξre, b1, . . . , bm) \ {ξre} is bad and of order same order as B.By assumption we have
B̃(ξre) =

∑

ij

αijSij,where αij ∈ R and Sij ∈ K(ξre, b1, . . . , bm) is good and of lower order than Si. Thus wehave
B =

∑

ij

αijBSij
,where BSij

is good and of lower order than B.The result thus again follows as an appliation of Theorem 43, but this time with
θ = 0.This proposition has the following orollary.Corollary 58 (Linear ontrollability). Consider the system (4.3). Let ξre satisfy 〈ξre :
ξre〉 = 0. Assume that the spae

span{b1, . . . , bm, 〈ξre : b1〉, . . . , 〈ξre : bm〉, 〈ξre : 〈ξre : b1〉〉, . . . , 〈ξre : 〈ξre : bm〉〉, . . .}has full rank. Then the system is STLC at ξre.From the theory of linear systems, see, e.g., [40℄, we know that in Corollary 58 weonly need to inlude produts where ξre appears less than or equal to n−1 times, where
n is the number of degrees of freedom for the system.4.3 ExamplesExample 4 (Planar rigid body). Reonsider the planar rigid body as desribed in theprevious hapter. The on�guration manifold is the matrix Lie group G = SE(2) whihis isomorphi to S × R2 ∋ (θ, x, y). m denotes the mass of the body, J its moment ofinertia, and h the distane from the enter of mass to the ontrol fores. The inertiatensor has the representation I = diag(J,m,m). With ontrols as in Figure 3.2 wetherefore have

b1 =
1

m
e2, b2 = −h

J
e1 +

1

m
e3,For (ω, v1, v2)

T ∈ R3 ≃ se(2) the adjoint operator is given by
ad(ω,v1,v2)T =




0 0 0
v2 0 −ω
−v1 ω 0


 ,



4.3 Examples 47and the symmetri produt is, for ω, λ ∈ R and v, w ∈ R2, given by
〈(ω, v) : (λ, w)〉 =

[
0

ω̂w + λ̂v

]
,where ω̂ =

[
0 −ω
ω 0

]. This gives
〈b1 : b1〉 = 0, 〈b2 : b2〉 =

2h

Jm
e2, 〈b1 : b2〉 = − h

Jm
e3.Sine 〈b1 : b1〉, 〈b2 : b2〉 ∈ span{b1, b2} and span{b1, b2, 〈b1 : b2〉} has full rank we havefrom Theorem 50 that the system is STLC at zero veloity.The relative equilibrium e1 satis�es

〈e1 : b1〉 =
1

m
e3, 〈e1 : b2〉 = − 1

m
e2, (4.16)meaning that the system does not satisfy the su�ient ondition 2 of Proposition 53whih an therefore not be used to determine whether (4.2)-(4.3) for this system isloally ontrollable for the relative equilibrium e1. Instead equations (4.16) show theassumption of Corollary 58 is satis�ed for ξre = e1 and (4.3) is therefore STLC for thisequilibrium.The relative equilibrium αe2 + βe3 satis�es

〈αe2 + βe3 : b1〉 = 0, 〈αe2 + βe3 : b2〉 =
βh

J
e2 −

αh

J
e3,so the ondition 2 of Proposition 53 is satis�ed if and only if α = 0. Sine 〈b1 : b1〉, 〈b2 : b2〉 ∈

span{b1, b2} and span{b1, b2, 〈b1 : b2〉} has full rank we therefore know from Corollary 55that (4.2)-(4.3) for this system is loally ontrollable for the relative equilibrium ξre = e3.Example 5 (Satellite with two thrusters). Reonsider the satellite with two thrustersaligned with the �rst and seond prinipal axes. The on�guration manifold is thematrix Lie group G = SO(3) and the equations of motion are given by (4.2)-(4.3).From the previous hapter we know that for x ∈ R3 ≃ so(3) we have adx = x̂ and theinertia tensor is given by I = diag(J1, J2, J3), where Ji is the moment of inertia aroundthe ith prinipal axis. Therefore the symmetri produt 〈ξ : η〉 = −I−1(ad∗
ξIη + ad∗

ηIξ),
ξ, η ∈ R3 ≃ so(3), is given by

〈ξ : η〉 = I−1
(
ξ × (Iη) + η × (Iξ)

)
,where × is the ross produt.With ontrols as in �gure 3.3 we have

b1 =
1

J1
e1, b2 =

1

J2
e2,giving

〈b1 : b1〉 = 0, 〈b2 : b2〉 = 0, 〈b1 : b2〉 =
J2 − J1

J1J2J3
e3.



48 Elements of Controllability TheoryThus 〈b1 : b1〉, 〈b2 : b2〉 ∈ span{b1, b2} and sine span{b1, b2, 〈b1 : b2〉} has full rank weknow from Theorem 50 that the system is STLC at zero veloity.Sine
〈e1 : b1〉 = 0, 〈e1 : b2〉 =

J2 − J1

J2J3
e3,

〈e2 : b1〉 =
J2 − J1

J1J3
e3, 〈e2 : b2〉 = 0,Proposition 53 an not be used to determine whether 4.2-4.3 for this system is loallyontrollable along the relative equilibria (g0 exp(te1), e1) and (g0 exp(te2), e2). We seeinstead that the assumption of Corollary 58 is satis�ed so the Euler-Poinare equa-tion (4.3) is STLC for the equilibria e1 and e2.We have

〈e3 : b1〉 =
J1 − J3

J1J2

e2, 〈e3 : b2〉 =
J3 − J2

J1J2

e1,so Corollary 55 gives that equations (4.2)-(4.3) for the system is loally ontrollablealong the relative equilibrium (g0 exp(te3), e3), g0 ∈ SO(3), sine 〈b1 : b1〉, 〈b2 : b2〉 ∈
span{b1, b2}, 〈e3 : b1〉, 〈e3 : b2〉 ∈ span{b1, b2}, and span{b1, b2, 〈b1 : b2〉} has full rank.Example 6 (Underwater vehile in ideal �uid). We re-examine the underwater vehilein an ideal �uid as desribed in the previous hapter. The inertia tensor is given by
I = diag(J,M), where J = diag(J1, J2, J2) is the inertia matrix for the body and M =
diag(m1, m2, m3) inludes added masses. Sine, for Ω, v ∈ R3, we have

ad(Ω,v) =

[
Ω̂ 0

v̂ Ω̂

]
,the symmetri produt is given by

〈(Ω, v) : (Γ, w)〉 = I−1

[
Ω × (JΓ) + Γ × (JΩ) + v × (Mw) + w × (Mv)

Ω × (Mw) + Γ × (Mv)

]
.With fores as in �gure 3.4 we have

b1 =
1

m1
e4, b2 = − h

J3
e3 +

1

m3
e5, b3 =

h

J2
e2 +

1

m3
e6.Calulating symmetri produts gives

〈b1 : b1〉 = 0, 〈b1 : b2〉 =
m2 −m1

J3m1m2
e3 −

h

J3m2
e5,

〈b2 : b2〉 =
2h

J3m1
e4, 〈b1 : b3〉 =

m1 −m3

J2m1m3
e2 −

h

J2m3
e6,

〈b3 : b3〉 =
2h

J2m1
e4, 〈b2 : b3〉 =

1

J1

(
h2

J3
− h2

J2
− 1

m3
+

1

m2

)
e1.



4.3 Examples 49The spae span{b1, b2, b3, 〈b1 : b2〉, 〈b1 : b3〉, 〈b2 : b3〉} has full rank if
h2m1m2 + J3(m1 −m2) 6= 0,

h2m1m3 + J2(m1 −m3) 6= 0,

h2

(
1

J3
− 1

J2

)
− 1

m3
+

1

m2
6= 0,and sine 〈b1 : b1〉, 〈b2 : b2〉, 〈b3 : b3〉 ∈ span{b1, b2, b3} the system is therefore STLC atzero veloity, aording to Theorem 50, if this is satis�ed.Sine

〈α1e1 + β1e4 : b1〉 = 0,

〈α1e1 + β1e4 : b2〉 = α1

(
h

J2
− J1h

J2J3

)
e2 + β1

(
1

J3
− m1

J3m2

)
e3 − β1

m1h

m2J3
e5 + α1

1

m3
e6,

〈α1e1 + β1e4 : b3〉 = β1

(
m1

J2m3

− 1

J2

)
e2 + α1

(
h

J3

− J1h

J2J3

)
e3 − α1

1

m2

e5 − β1
m1h

m3J2

e6,are not all in span{b1, b2, b3} Proposition 53 an not be used to determine whetherthe system is loally ontrollable along (g, ξ)(t) = (g0 exp(t(α1e1 + β1e4)), α1e1 + β1e4).Sine the 〈α1e1 + β1e4 : (x, y)〉 has no omponent in the e1 diretion the assumption ofCorollary 58 annot be satis�ed.Similarly we have that
〈α2e2 + β2e5 : b1〉 = β2

(
m2

J3m1
− 1

J3

)
e3 − α2

1

m3
e6,

〈α2e2 + β2e5 : b2〉 = α2

(
J2h

J1J3

− h

J1

)
e1 + β2

m2h

m1J3

e4,

〈α2e2 + β2e5 : b3〉 = β2

(
1

J1
− m2

J1m3

)
e1 + α2

1

m1
e4,are not in span{b1, b2, b3} and therefore Proposition 53 an not be used to determinewhether the system is loally ontrollable along the relative equilibrium α2e2 + β2e5.Calulating

〈α2e2 + β2e5 : 〈α2e2 + β2e5 : b2〉〉 =

h(α2
2(J1m1(J3 − J2) + J2m1(J2 − J3)) + β2

2J1m2(m2 −m1))

J2
3J1m1

e3 + α2β2
m2h(J2 − J1 − J3)

m3J1J3
e6,gives that

span{b1, b2, b3, 〈α2e2 + β2e5 : b1〉, 〈α2e2 + β2e5 : b2〉, 〈α2e2 + β2e5 : 〈α2e2 + β2e5 : b2〉〉}generially has full rank if α2 6= 0. Thus the ondition for Corollary 58 to be applied issatis�ed.



50 Elements of Controllability TheoryLikewise, for the relative equilibrium α3e3 + β3e6, we get
〈α3e3 + β3e6 : b1〉 = β3

(
1

J2
− m3

J2m1

)
e2 + α3

1

m2
e5,

〈α3e3 + β3e6 : b2〉 = β3

(
m3

J1m2

− 1

J1

)
e1 − α3

1

m1

e4,

〈α3e3 + β3e6 : b3〉 = α3

(
J3h

J1J2
− h

J1

)
e1 + β3

m3h

m1J2
e4,whih are not in span{b1, b2, b3} so also for this relative equilibrium the assumptions ofProposition 53 are not satis�ed. Sine

span{b1, b2, b3, 〈α3e3 + β3e6 : b1〉, 〈α3e3 + β3e6 : b2〉, 〈α3e3 + β3e6 : 〈α3e3 + β3e6 : b2〉〉}generially has full rank for β3 6= 0 this equilibrium point for the Euler-Poinare equa-tions (4.3) is STLC aording to Corollary 58.



Chapter 5Control Algorithms along RelativeEquilibriaIn this hapter we study ontrol of underatuated mehanial systems on Lie groups. Wefous on the onstrution of an algorithm whih, depending on the sign of a parameter,generates small-amplitude ontrol fores to aelerate along, deelerate along, or stabilizea relative equilibrium of a system. Perturbation analysis and Lie group theory play aruial role in the analysis. The main limitation of the presented theory is that part ofthe results are appliable only to n-dimensional systems with (n−1) ontrols. Examplesystems to whih the theory applies are an underatuated planar rigid body and asatellite with two thrusters.This hapter is organized as follows. First, we review the mathematial model ofsimple mehanial ontrol systems on Lie groups and perform perturbation analysis forsmall amplitude foring and initial veloity lose to a relative equilibrium and give a sim-ilar result obtained in [11℄ for small initial veloity. Following we review the theory from[11℄ regarding motion algorithms for small veloity. Based on the perturbation analysisfor the ase when the initial veloity is lose to a relative equilibrium we onstrut two�inversion maps� and ombine them into a �motion primitive.� After an appliation ofthe motion primitive, the veloity has hanged in the diretion of a relative equilibrium,while the on�guration has hanged as if the veloity was a relative equilibrium through-out the exeution of the primitive. Using this motion primitive iteratively we design analgorithm whih gives small-amplitude ontrol fores whih make the system aeleratealong or deelerate along a relative equilibrium or stabilizes the motion along a relativeequilibrium. We illustrate the approah by applying the algorithm to an underatuatedplanar rigid body and the satellite with two thrusters.
5.1 Mathematial Model and Perturbation AnalysisWe onsider a simple mehanial ontrol system on a matrix Lie group given by Σ =
(G, I, {f1, . . . , fm}). We let id denote the identity element and let A 7→ eA denote thematrix exponential of a square matrix A. With g ∈ G and ξ ∈ g, g being the Lie algebraorresponding to G, we have from hapter 3 that the equations of motion for this system



52 Control Algorithms along Relative Equilibriaare
ġ = g · ξ, (5.1)
ξ̇ = −1

2
〈ξ : ξ〉 +

m∑

i=1

biui(t), (5.2)where bi = I−1fi, and the symmetri produt 〈· : ·〉 : g × g → g is given by
〈η : ζ〉 = −I−1(ad∗

ηIζ + ad∗
ζIη),for η, ζ ∈ g.Reall that a relative equilibrium for Σ is a urve t 7→ g0 exp(tξre) ∈ G, for g0 ∈ Gand ξre ∈ g, that is a solution to the dynamis (5.1), (5.2) for zero input u, i.e. ξresatis�es 〈ξre : ξre〉 = 0. We all relative equilibrium both the urve t 7→ g0 exp(tξre) andthe vetor ξre.Given a relative equilibrium ξre, we de�ne the linear map Are : g → g by Areη :=

−〈ξre : η〉, for all η ∈ g.Remark 59 (Simplifying onvention). It is well known that g is an n-dimensional vetorspae. In what follows, we make no distintion between g and Rn. This is done in orderto be able to express a vetor in g as a olumn vetor and thus being able to olletvetors in a matrix and in order to represent a linear map on g as a matrix. This hoieof notation is not to be onfused with the laim that the Lie algebra struture on g isinsigni�ant sine this is far from being the ase. •We are interested in bounded ontrol signals u ∈ C0([0, 2π],Rm) of the form
u(t) = ǫu1(t) + ǫ2u2(t), 0 < ǫ≪ 1,where ui ∈ C0([0, 2π],Rm), i ∈ {1, . . . , 2}. Aordingly, we de�ne

bj(t) :=
m∑

i=1

biu
j
i (t), j ∈ {1, 2},and equation (5.2) thus beomes

ξ̇ = −1
2
〈ξ : ξ〉 + ǫb1(t) + ǫ2b2(t).For f ∈ C0([0, 2π],Rn) and σ ∈ R it will be onvenient to make the de�nition

f
σ
(t) :=

∫ t

0

eσAre(t−s)f(s)ds, f(t) := f
0
(t).In what follows, s and τ will be used as integration variables only.In [11℄ the following perturbation result is obtained.Theorem 60 (Perturbation analysis for small veloity). For 0 < ǫ ≪ 1 and for inputsof the form ∑m

i=1 biui(t) = ǫb1(t) + ǫ2b2(t), let (g(t), ξ(t)) be the solutions of (5.1) and(5.2). Let x(t) be the exponential oordinates of g(t) with initial ondition g(0) = id.



5.1 Mathematial Model and Perturbation Analysis 53Also, assume that the initial veloity is ξ(0) = ǫξ1
0 + ǫ2ξ2

0, where ξ1
0 and ξ2

0 are of order
O(1).Then for t ∈ [0, 2π] it holds that ξ(t, ǫ) = ǫξ1(t) + ǫ2ξ2(t) + O(ǫ3), with

ξ1(t) = ξ1
0 + b1(t),

ξ2(t) = ξ2
0 − 1

2
〈ξ1

0 : ξ1
0〉t− 〈ξ1

0 : b1(t)〉 +
(
b2 − 1

2
〈b1 : b1〉

)
(t),and x(t, ǫ) = ǫx1(t) + ǫ2x2(t) + O(ǫ3), with

x1(t) = ξ1
0t+ b1(t),

x2(t) = ξ2
0t− 1

4
〈ξ1

0 : ξ1
0〉t2 +

(
b2 − 1

2
〈b1 : b1〉

)
(t) − 〈ξ1

0 : b1(t)〉 − 1
2
[ξ1

0 + b1, ξ1
0t+ b1](t).Instead of the veloity being small, i.e. of order O(ǫ), we let the veloity be ofarbitrary size but aligned with a relative equilibrium with a deviane of order O(ǫ2).Proposition 61 (Perturbation analysis for a relative equilibrium). Let Σ be a simplemehanial ontrol system on a Lie group with a relative equilibrium ξre and orre-sponding matrix Are. For 0 < ǫ ≪ 1 and σ > 0, let [0, 2π] ∋ t 7→ (g(t), ξ(t)) bethe solution to (5.1) and (5.2) with t 7→ ∑m

i biui(t) = ǫb1(t) + ǫ2b2(t) and from initialveloity ξ(0) = σξre + ǫ2ξ2
0, for ξ2

0 = O(1), and initial on�guration g(0) = id. Let
h(t) := g(t) · exp(−tσξre) and let x(t) := log(h(t)) be the exponential oordinates of h.Then, for t ∈ [0, 2π], it holds that ξ(t, ǫ) = ξ0(t) + ǫξ1(t) + ǫ2ξ2(t) + O(ǫ3) with

ξ0(t) = σξre,
ξ1(t) = b1

σ
(t),

ξ2(t) = eσAretξ2
0 − 1

2
〈b1σ

: b1
σ〉

σ

(t) + b2
σ
(t),and x(t, ǫ) = ǫx1(t) + ǫ2x2(t) + O(ǫ3) with

x1(t) = Adexp(sσξre)(b1σ
(s))(t),

x2(t) = Adexp(sσξre)(eσAresξ2
0)(t) − 1

2
Adexp(sσξre)(〈b1σ

: b1
σ〉

σ

(s))(t)

+ Adexp(sσξre)(b2σ
(s))(t) − 1

2
[Adexp(sσξre)(b1σ

(s)),Adexp(τσξre)(b1σ
(τ))(s)](t).Proof. Sine the input is analyti in ǫ so is the solution ξ(t) =

∑+∞
j=0 ǫ

jξj(t). Insertingthe expansions for ξ into equation (5.2) and olleting terms of same order we ompute
ξ̇0 = −1

2
〈ξ0 : ξ0〉,

ξ̇1 = −〈ξ0 : ξ1〉 + b1(t),

ξ̇2 = −〈ξ0 : ξ2〉 − 1
2
〈ξ1 : ξ1〉 + b2(t).Inserting the initial ondition then gives

ξ0(t) = σξre,
ξ1(t) = b1

σ
(t),

ξ2(t) = eσAretξ2
0 − 1

2
〈ξ1 : ξ1〉σ(t) + b2

σ
(t)

= eσAretξ2
0 − 1

2
〈b1σ

: b1
σ〉

σ

(t) + b2
σ
(t).



54 Control Algorithms along Relative EquilibriaSine g is a solution to the kinemati equation (5.1), it follows that
ḣ = ġ · exp(−tσξre) − g · exp(−tσξre) · σξre

= g · ξ · exp(−tσξre) − h · σξre
= h · (exp(tσξre) · ξ · exp(−tσξre) − σξre)
= h · (Adexp(tσξre)(ξ) − σξre)
= h ·

(
Adexp(tσξre)(σξre + ǫξ1 + ǫ2ξ2 + O(ǫ3)) − σξre)

= h · Adexp(tσξre)(ǫξ1 + ǫ2ξ2 + O(ǫ3)).If we de�ne ζ(t) := Adexp(tσξre)(ǫξ1 + ǫ2ξ2 +O(ǫ3)), then we have, aording to Proposi-tion 31, that
x(t) = ζ(t) − 1

2
[ζ, ζ](t) + O(ǫ3). (5.3)Using x = ǫx1 + ǫ2x2 + O(ǫ3) we ahieve the result on x1 and x2 by inserting theexpression for ζ into equation (5.3).When omparing Proposition 61 with Proposition 60 we see that when σ = 0 Propo-sition 61 simpli�es to Proposition 60, with ξ1

0 = 0, as expeted. In both propositionswe see that ξ2(t) not is restrited to move in span{b1, . . . , bm} but new diretions ofmotion are possible in partiular due to the symmetri produt term 〈b1σ
: b1

σ〉
σ

(t). Itis preisely this term we will utilize for generation of motion in the diretions not lyingin span{b1, . . . , bm}.5.2 Small Veloity Motion AlgorithmsIn this setion we reapitulate the motion planning algorithms obtained in [11℄. Theseresults are inluded in order to give a full perspetive of what motion algorithms, givingsmall-amplitude ontrol fores, are available for simple mehanial ontrol systems on Liegroups. In these algorithms the veloity is small, that is, of order O(ǫ) where 0 < ǫ≪ 1and the results are therefore built on Proposition 60.As suggested by Theorem 50 the following assumption is needed.Assumption 1. The subspae span{bi, 〈bi : bj〉 | i, j ∈ {1, . . . , m}} is full rank and
〈bi : bi〉 ∈ span{b1, . . . , bm}, for i ∈ {1, . . . , m}.Using this assumption the following theorem, having harater of a lemma for theproposed motion primitives, is proved.Theorem 62. Let Assumption 1 hold and let η ∈ g be arbitrary. De�ne the inputs
(b1(t), b2(t)) as follows:1. Set N = 1

2
m(m − 1) and let P denote the ordered set of pairs {(j, k)| 1 ≤ j <

k ≤ m}. Identify the elements in P with the set {1, . . . , N}, and let a(j, k) bethe integer assoiated with the pair (j, k). For α ∈ {1, . . . , N} de�ne the salarfuntions
ψα(t) =

1√
2π

(α sin(αt) − (α +N) sin((α +N)t)).
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Figure 5.1: The onstant veloity algorithm applied to the planar rigid body. The bulletshaped objets illustrates the planar rigid body, the darker ones orrespond to the bodyat the beginning and the end of a primitive. Figure taken from [11℄ with permission.2. By means of the pseudoinverse ompute (m+N) real numbers zi and zjk suh that
η =

m∑

i=1

zibi +

m−1∑

j=1

m∑

k=j+1

zjk〈bj : bk〉.3. Finally, set
b1(t) =

m−1∑

j=1

m∑

k=j+1

√
|zjk|(bj − sign(zjk)bk)ψa(j,k)(t),

b2(t) =
1

2π

m∑

i=1

zibi +
1

4π

m−1∑

j=1

m∑

k=j+1

|zjk|(〈bj : bj〉 + 〈bk : bk〉).Then b1(t) and b2(t) satisfy
(
b2 − 1

2
〈b1 : b1〉

)
(2π) = η.We will all this map (b1(t), b2(t)) = Inverse(η).Using this theorem, the orthogonality properties of ψα(t), and Theorem 60 the mo-tion primitives Maintain-Velocity and Change-Velocity an be onstruted and anal-ysed aording to the following.



56 Control Algorithms along Relative EquilibriaProposition 63 (Maintain-Velocity motion primitive). Consider the system 5.1 and5.2 with inputs of the form ∑m
i=1 biui(t) = ǫb1(t) + ǫ2b2(t), where 0 < ǫ ≪ 1. LetAssumption 1 be satis�ed. Let ǫ = σ, 0 < σ ≪ 1, and assume that
g(0) = g0,

ξ(0) = σξref + σ2ξerror,for some g0 ∈ G and ξref, ξerror ∈ g. If we for t ∈ [0, 2π] take
(b1(t), b2(t)) = Inverse(π〈ξref : ξref〉 − ξerror),then we obtain
log(g−1

0 g(2π)) = 2πσξref + πσ2ξerror + O(σ3),

ξ(2π) = σξref + O(σ3).We denote this motion primitive Maintain-Velocity(σ, ξref).Proposition 64 (Change-Velocity motion primitive). Consider the system 5.1 and5.2 with inputs of the form ∑m
i=1 biui(t) = ǫb1(t) + ǫ2b2(t), where 0 < ǫ ≪ 1. LetAssumption 1 be satis�ed. Let ǫ =

√
σ, 0 < σ ≪ 1, and assume that
g(0) = g0,

ξ(0) = σξ0,for some g0 ∈ G and ξ0 ∈ g. If we for t ∈ [0, 2π] take
(b1(t), b2(t)) = Inverse(ξ�nal − ξ0),for some ξ�nal ∈ g, then we obtain

log(g−1
0 g(2π)) = πσ(ξ0 + ξ�nal) + O(σ3/2),

ξ(2π) = σξ�nal + O(σ2).We denote this motion primitive Change-Velocity(σ, ξ�nal).These two motion primitives are the basi ingredients in the following algorithmwhih, by keeping a onstant veloity, steers the system from one on�guration with lowveloity (of order O(σ2)) to another on�guration with low veloity (of order O(σ2)).In the algorithm the funtion ⌊·⌋ : R → Z, de�ned by ⌊x⌋ = max{n ∈ Z| n ≤ x}, isused.Proposition 65 (Constant veloity algorithm). Consider the system 5.1 and 5.2 withinputs of the form ∑m
i=1 biui(t) = ǫb1(t) + ǫ2b2(t), where 0 < ǫ ≪ 1. Let Assumption 1be satis�ed. Assume g0, g1 ∈ G satis�es that log(g−1

0 g1) is well de�ned. For 0 < σ ≪ 1and (g, ξ)(0) = (g0,O(σ2)) de�ne the algorithm1: N =
⌊
‖ log(g−1

0 g1)‖/(2πσ)
⌋2: ξnom = log(g−1

0 g1)/(2πσN)3: Change-Velocity(σ, ξnom)4: for k ∈ {1, . . . , N − 1} do



5.3 A Motion Algorithm along a Relative Equilibrium 575: Maintain-Velocity(σ, ξnom)6: end for7: Change-Velocity(σ, 0).Then the �nal on�guration g�nal and the �nal veloity ξ�nal after an exeution of thealgorithm satis�es
log(g−1�nalg1) = O(σ3/2),

ξ�nal = O(σ2).We notie that the veloity throughout the duration of this algorithm is at mostof order O(σ). Therefore the time it takes for this algorithm to reon�gure a body isinherently of order O( 1
σ
).Sine, after applying the onstant veloity algorithm, the �nal veloity may benonzero the system will drift if not stabilized. The following algorithm is able to stabilizethe system exponentially if it is lose enough to equilibrium.Proposition 66 (Loal exponential stabilization algorithm). Consider the system 5.1and 5.2 with inputs of the form ∑m

i=1 biui(t) = ǫb1(t) + ǫ2b2(t), where 0 < ǫ ≪ 1. LetAssumption 1 be satis�ed. For 0 < σ ≪ 1 assume that g(0) = g0 ∈ G and ξ(0) = ξ0 ∈ gsatis�es ‖(log(g0), ξ0)‖ ≤ σ. Let N ∈ N. De�ne the algorithm1: for k ∈ {0, 1, . . . , N} do2: tk = 4kπ3: σk = ‖(log(g(tk)), ξ(tk))‖4: Change-Velocity(σk,−(log(g(tk)) + πξ(tk))/(2πσk))5: Change-Velocity(σk, 0)6: end forThen there exists a λ > 0, independent of N , suh that the �nal on�guration g�nal andthe �nal veloity ξ�nal after an exeution of the algorithm satis�es
‖(log(g�nal), ξ�nal)‖ ≤ ‖(log(g0), ξ0)‖e−λN .In [11℄ an additional motion algorithm is onstruted, alled the �stati interpolationalgorithm�, whih steers the systems on�guration through a sequene of points. Thisalgorithm is, with minor modi�ations, a repeated appliation of the onstant veloityalgorithm between the points in the given sequene.5.3 A Motion Algorithm along a Relative EquilibriumFor a simple mehanial ontrol system Σ = (G, I, {f1, . . . , fm}) with relative equilibrium

ξre and orresponding matrix Are, we present the following assumptions. First, we makethe standing assumption that ξre 6∈ span{b1, . . . , bm}, otherwise the theory of kinematiredutions [13℄ is readily appliable and the ontrol problems we onsider below aretrivial.Assumption 2 (Lak of linear ontrollability). The subspae span{b1, . . . , bm} is invari-ant under the linear map Are, that is, 〈ξre : bi〉 ∈ span{b1, . . . , bm}, for i ∈ {1, . . . , m}.Assumption 3. 〈ξre : 〈bj : bk〉〉 ∈ span{b1, . . . , bm}, for j, k ∈ {1, . . . , m} and j 6= k.



58 Control Algorithms along Relative EquilibriaAssumption 4. The subspae span{b1, . . . , bm, ξre} is invariant under the linear map
adξre.Assumption 5. The subspae span{b1, . . . , bm} is invariant under the linear map adξre.If we de�ne the matrix B :=

[
b1 · · · bm

]
∈ Rn×m, then Assumption 2 is equivalent tothe existene of a matrix Q ∈ Rm×m suh that AreB = BQ, and in turn eAreB = BeQ.Similarly Assumption 4 is equivalent to the existene of a matrix W ∈ R(m+1)×(m+1)suh that adξre [B ξre] =

[
B ξre]W . For Assumption 5 this redues to the existeneof a matrix M ∈ Rm×m suh that adξreB = BM .Given Q ∈ Rm×m, de�ne FQ : C0([0, 2π],Rm) → {f ∈ C1([0, 2π],Rm) | f(0) = 0} by
FQ[u](t) :=

∫ t

0

eQ(t−s)u(s)ds.Lemma 67 (Transformation of ontrols). The map FQ is invertible and its inverseis given as follows: if w = FQ[u], then u(t) = −Qw(t) + ẇ(t). Additionally, as inAssumption 2, let Are, B and Q satisfy AreB = BQ. If u ∈ C0([0, 2π],Rm) and w =
FσQ[u], σ ∈ R, then

Bu
σ
(t) = Bw(t).Proof. One-to-one orrespondene between u and w is readily heked. We ompute

Bu
σ
(t) =

∫ t

0

eσAre(t−s)Bu(s)ds = B

∫ t

0

eσQ(t−s)u(s)ds = Bw(t).From this lemma we see that Assumption 2 ensures that there is a one-to-one or-respondene between Bu
σ
(t) and Bw(t). Without this assumption Buσ

(t) would alsoontain omponents not lying in span{b1, . . . , bm} whih we would not be able to steerfor all t ∈ [0, 2π].The funtion ⌈·⌉ : R → Z de�ned by ⌈x⌉ = min{n ∈ Z| n ≥ x} is needed in thefollowing.De�nition 68 (Convenient foring frequenies). Take r = ⌈ n
m
⌉. For (i, h) ∈ {1, . . . , m}×

{1, . . . , r}, selet numbers αih in the set {0, . . . , rm+1
2
m(m−1)} as follows:1: V := ∅; I := {1, . . . , rm+ 1

2
m(m− 1)}2: for h ∈ {1, . . . , r} and for i ∈ {1, . . . , m} do3: ω := min(I); v :=

∫ 2π

0

Adexp(sσξre)(bi sin(ωs))ds4: if v ∈ span(V) then αih := 0 else αih := ω; I := I \ {ω}; V := V ∪{v} end if5: end forDe�ne the n× rm matrix
Aσ,α :=

∫ 2π

0

Adexp(sσξre)(B[diag(sin(α11s), . . . , sin(αm1s)) · · · diag(sin(α1rs), . . . , sin(αmrs))
]
)ds.Next, for (i, j) ∈ {1, . . . , m}2, selet numbers βij as follows: for i < j take βij ∈

{1, . . . , rm+ 1
2
m(m− 1)} \ {αkh}(k,h)∈{1,...,m}×{1,...,r} all having distint values, for i > jtake βij = βji, and for i = j take βij = 0.



5.3 A Motion Algorithm along a Relative Equilibrium 59Remark 69. In other words, the numbers αij are seleted sequentially in suh a way asto maximize the rank of Aσ,α. Note that, for i, j, k, l ∈ {1, . . . , m} and h ∈ {1, . . . , r},we have: (i) all nonzero αih are distint, (ii) all nonzero αih are distint from all nonzero
βjk, and (iii) βij = βkl if and only if (i, j) = (k, l) or (i, j) = (l, k). •Remark 70. If Assumption 5 is satis�ed we know that Image(Aσ,α) ⊂ span{b1, . . . , bm}.This means that we only need r = 1, and Aσ,α redues to

Aσ,α =

∫ 2π

0

Adexp(sσξre)(Bdiag(sin(α1s), . . . , sin(αms))ds

= B

∫ 2π

0

esσMdiag(sin(α1s), . . . , sin(αms))ds,where M ∈ Rm×m is the matrix satisfying adξreB = BM . •Remark 71. The omputations required by De�nition 68 inlude heking that a vetorbelongs to a subspae. In pratial numerial implementations it is su�ient to verifythis ondition up to a spei�ed tolerane. It is onvenient to hoose this toleraneomparable with the auray of the ontrol algorithms. •For Z ∈ Rm×m de�ne λ : Rm×m → Rm×m by
λjk(Z) :=





sign(Zjk)
√

|Zjk| , j < k,
0 , j = k,
1
π

√
|Zkj| , j > k.We are now able to obtain the following result.Proposition 72 (speed_inversion). Let Σ be a simple mehanial ontrol system ona Lie group with a relative equilibrium ξre and orresponding matrix Are and satisfyingAssumptions 1, 2 and 3. Let Q ∈ Rm×m satisfy AreB = BQ. Let η ∈ Rn, σ ∈ R, andompute z ∈ Rm and Z ∈ Rm×m as the pseudoinverse solution to

η =

m∑

i=1

zibi −
m−1∑

j=1

m∑

k=j+1

Zjk〈bj : bk〉, Zjk = 0 for j ≥ k.Given r, α, Aσ,α, and β as in De�nition 68, let
yj(t) :=

m∑

k=1

λjk(Z) sin(βjkt), j ∈ {1, . . . , m},and let γ = (γ11, . . . , γm1, . . . , γ1r, . . . , γmr)
T be the unique solution to

Aσ,αγ = −Adexp(sσξre)(By(s))(2π),

γih = 0 if αih = 0 for (i, h) ∈ {1, . . . , m} × {1, . . . , r}.
(5.4)Additionally, if we take

w1
j (t) = yj(t) +

r∑

l=1

γjl sin(αjlt), j ∈ {1, . . . , m},

u1(t) = F−1
σQ [w1](t),

u2(t) = 1
2π
eσQ(t−2π)(χ+ z),



60 Control Algorithms along Relative Equilibriawhere χ ∈ Rm is the unique solution to
Bχ =

m−1∑

j=1

m∑

k=j+1

∫ 2π

0

(eσAre(2π−s) − I)w1
j (s)w

1
k(s)ds 〈bj : bk〉

+ 1
2

m∑

i=1

∫ 2π

0

eσAre(2π−s)(w1
i (s))

2ds 〈bi : bi〉, (5.5)then b1(t) = Bu1(t) and b2(t) = Bu2(t) satisfy
−1

2
〈b1σ

: b1
σ〉

σ

(2π) + b2
σ
(2π) = η, (5.6)

Adexp(sσξre)(b1σ
(s))(2π) = 0. (5.7)We all this map speed_inversion(σ, η) = (b1(t), b2(t)).Proof. Existene and uniqueness of the solution to (5.5) is a onsequene of Assump-tions 3 and 1. Regarding existene and uniqueness of the solution to (5.4), De�nition 68ensures that

Adexp(sσξre)(By(s))(2π) ∈ Image(Aσ,α).Sine every nonzero olumn in Aσ,α ontributes to the rank of Aσ,α, the entries of γorresponding to these will be unique. The remaining γ-values are de�ned to be 0.Regarding the proof of equation (5.7), diret alulations show that
Adexp(sσξre)(b1σ

(s))(2π) = Adexp(sσξre)(Bw1(s))(2π) = Aσ,αγ + Adexp(sσξre)(By(s))(2π) = 0.Regarding the proof of equation (5.6), from Lemma 67 we ompute
〈bσ : b

σ〉(t) = 〈
m∑

j=1

w1
j (t)bj :

m∑

k=1

w1
k(t)bk〉

= 2

m−1∑

j=1

m∑

k=j+1

w1
j (t)w

1
k(t)〈bj : bk〉 +

m∑

i=1

(w1
i (t))

2〈bi : bi〉.Sine all nonzero α-values are distint and are distint from the β-values we have for
j < k

∫ 2π

0

w1
j (t)w

1
k(t)dt =

m∑

l,q=1

λjl(Z)λkq(Z)

∫ 2π

0

sin(βjlt) sin(βkqt)dt

=

m∑

l,q=1

λjl(Z)λkq(Z)δ
βjl

βkq
π = λjk(Z)λkj(Z)π = Zjk.



5.3 A Motion Algorithm along a Relative Equilibrium 61By straightforward alulations we then obtain
−1

2
〈b1σ

: b1
σ〉

σ

(2π) + b2
σ
(2π) (5.8)

= − 1
2

∫ 2π

0

eσAre(2π−s)〈b1σ
: b1

σ〉(s)ds+B

∫ 2π

0

eσQ(2π−s)u2(s)ds

= −
m−1∑

j=1

m∑

k=j+1

∫ 2π

0

w1
j (s)w

1
k(s)ds〈bj : bk〉 (5.9)

−
m−1∑

j=1

m∑

k=j+1

∫ 2π

0

(eσAre(2π−s) − I)w1
j (s)w

1
k(s)ds〈bj : bk〉 (5.10)

− 1
2

m∑

j=1

∫ 2π

0

eσAre(2π−s)(w1
j (s))

2ds〈bj : bj〉 (5.11)
+

m∑

i=1

(χi + zi)bi (5.12)
= −

m−1∑

j=1

m∑

k=j+1

Zjk〈bj : bk〉 +

m∑

i=1

zibi = η.If we look at the proof of this proposition the roles of Assumptions 1, 2, and 3 beomelear.If we onsider equation (5.8) for σ = O(ǫ), and disregard terms of order O(ǫ), itredues to
−1

2
〈b1σ

: b1
σ〉

σ

(2π) + b2
σ
(2π) = −

m−1∑

j=1

m∑

k=j+1

∫ 2π

0

w1
j (s)w

1
k(s)ds〈bj : bk〉

− 1
2

m∑

j=1

∫ 2π

0

(w1
j (s))

2ds〈bj : bj〉 +Bu2(2π).Thus Assumption 1 ensures, for σ = O(ǫ), �rst of all that all the neessary diretions tospan the full spae are available and seond of all that ∫ 2π

0
(w1

j (s))
2ds〈bj : bj〉, whih anonly move in the positive diretion of 〈bj : bj〉 and therefore ompliates ontrollability,belongs to the linearly ontrollable subspae whih b2(t) = Bu2(t) an ompensate for.Assumption 3 then means that the term (5.10) will lie in span{b1, . . . , bm} and thusontrolling the term (5.9) will mean ontrolling what is not in span{b1, . . . , bm}. Theontrol u2 an then, via term (5.12), ompensate for the terms (5.10)-(5.11).Assumption 2 means aording to Lemma 67 that we an design w1 (with w1(0) = 0)and then alulate the orresponding u1. This simpli�es onsiderably the ontrol overthe term (5.9).Remark 73. In the proof of Proposition 72 we see that the reason we need De�nition 68is to ensure that

Aσ,αγ = −Adexp(sσξre)(By(s))(2π),



62 Control Algorithms along Relative Equilibriahas a solution and that all the frequenies are di�erent. If a solution an be found byother means than using this de�nition, keeping the ondition that the frequenies aredi�erent, we an thus disregard it. This will in fat be the ase in the examples weonsider. •We now onstrut a di�erent inversion map.Proposition 74 (configuration_inversion). Let Σ be a simple mehanial ontrolsystem on a Lie group with a relative equilibrium ξre and orresponding matrix Areand satisfying Assumptions 2 and 4. Let Q ∈ Rm×m satisfy AreB = BQ and W ∈
R(m+1)×(m+1) satisfy adξre [B ξre] =

[
B ξre]W . If µ ∈ Rm, σ ∈ R and

u1(t) = 0,

u2(t) = F−1
σQ [w2](t), w2(t) = 1

π

[
Im 0m×1

]
e−σWt

[
µ
0

]
sin2(t),then b1(t) = Bu1(t) and b2(t) = Bu2(t) satisfy

−1
2
〈b1σ

: b1
σ〉

σ

(2π) + b2
σ
(2π) = 0,

Adexp(sσξre)(b2σ
(s))(2π) = Bµ+ δξre,for some δ ∈ R. We denote this map configuration_inversion(σ, µ) = (b1(t), b2(t)) =

(0, b2(t)).Proof. For b1(t) = 0 we have, using Lemma 67, that
−1

2
〈b1σ

: b1
σ〉

σ

(2π) + b2
σ
(2π) = b2

σ
(2π) = Bw2(2π) = 0.Sine adξreξre = 0 we have that

W =

[
W̃ 0m×1

∗1×m 0

]
, W̃ ∈ Rm×m,whih in turn gives

eWs =

[
e

fWs 0m×1

∗1×m 1

]
.Thus we have

eWs

[
Im 0m×1

01×m 0

]
e−Ws =

[
e

fWse−
fWs 0m×1

∗1×m 0

]

=

[
Im 0m×1

∗1×m 0

]
.



5.3 A Motion Algorithm along a Relative Equilibrium 63This together with Assumption 4 and Lemma 67 enables us to ompute
Adexp(sσξre)(b2σ

(s))(2π) = exp(sσadξre)(Bw2(s))(2π)

= exp(sσadξre)([B ξre] [ Im
01×m

]
w2(s))(2π)

=
[
B ξre] eσWs

[
Im

01×m

]
w2(s)(2π)

= 1
π

[
B ξre] esσW

[
Im 0m×1

01×m 0

]
e−sσW

[
µ
0

]
sin2(s)(2π)

= 1
π

[
B ξre] [ Im 0m×1

∗1×m 0

] [
µ
0

]
sin2(s)(2π)

= Bµ+ δξre.If Assumption 5 is satis�ed this result, and its proof, an be simpli�ed.Proposition 75 (configuration_inversion). Let Σ be a simple mehanial ontrolsystem on a Lie group with a relative equilibrium ξre and orresponding matrix Are andsatisfying Assumptions 2 and 5. Let Q,M ∈ Rm×m satisfy AreB = BQ and adξreB =
BM . If µ ∈ Rm, σ ∈ R and

u1(t) = 0,

u2(t) = F−1
σQ [w2](t), w2(t) = 1

π
e−σMtµ sin2(t),then b1(t) = Bu1(t) and b2(t) = Bu2(t) satisfy

−1
2
〈b1σ

: b1
σ〉

σ

(2π) + b2
σ
(2π) = 0,

Adexp(sσξre)(b2σ
(s))(2π) = Bµ.We denote this map configuration_inversion(σ, µ) = (b1(t), b2(t)) = (0, b2(t)).Proof. For b1(t) = 0 we have, using Lemma 67 and w2(t) = 1

π
e−σMtµ sin2(t), that

−1
2
〈b1σ

: b1
σ〉

σ

(2π) + b2
σ
(2π) = b2

σ
(2π) = Bw2(2π) = 0.Using Assumption 5 and Lemma 67 we ompute

Adexp(sσξre)(b2σ
(s))(2π) = exp(sσadξre)(Bw2(s))(2π) = BeσMsw2(s)(2π)

= 1
π
Bµ sin2(s)(2π) = Bµ.The algorithm presented in this setion requires the following additional assumption.Assumption 6. The n dimensional system Σ has n−1 ontrol fores, that is, m = n−1.



64 Control Algorithms along Relative EquilibriaAssumption 6 together with the standing assumption ξre 6∈ span{b1, . . . , bm} implies
Rn = span{b1, . . . , bm, ξre}�thus Assumption 4 is trivially satis�ed. These assumptiontherefore gives that

〈bj : bk〉 =
m∑

i=1

αi
jkbi + α0

jkξre, j, k ∈ {1, . . . , m}where αi
jk ∈ R, i ∈ {0, 1, . . . , m}. Therefore

〈ξre : 〈bj : bk〉〉 =

m∑

i=1

〈ξre : αi
jkbi + α0

jkξre〉 =

m∑

i=1

αi
jk〈ξre : bi〉.Thus Assumption 6 along with Assumption 2 (and the standing assumption ξre 6∈

span{b1, . . . , bm}) imply Assumption 3.Sine Assumption 6 gives Rn = span{b1, . . . , bm, ξre} every ν ∈ Rn an be written
ν =

∑m
i=1 νibi + ν0ξre and with this we de�ne the projetion operators PB : Rn → Rnand Pξre : Rn → Rn by

Pξre( m∑

i=1

νibi + ν0ξre) := ν0ξre, PB := id −Pξre ,where id is the identity. Notie that, under Assumption 5, these projetion operatorsommute with adξre�this is not the ase under Assumption 4. This allows us to on-strut the following motion primitive.Proposition 76 (change_speed motion primitive). Let Σ be a simple mehanial on-trol system on a Lie group with a relative equilibrium ξre and orresponding matrix Areand satisfying Assumptions 1, 2, and 6. For 0 < ǫ≪ 1, assume that
g(0) = g0 exp(ǫ2νerror),
ξ(0) = σξre + ǫ2ξerror,for some g0 ∈ G, σ ∈ R, νerror, ξerror ∈ Rn with νerror = O(1) and ξerror = O(1). If wetake ρ ∈ R and

(b1(t), b2(t)) =

{
speed_inversion(σ, ρξre − e2πσAreξerror) , t ∈ [0, 2π],
configuration_inversion(σ, µ) , t ∈ [2π, 4π],

Bµ = −PB

(
Adexp(−2πσξre)(PB(νerror) +

1

ǫ2
log
(
g(0)−1g(2π) exp(−2πσξre)))) ,then we obtain

g(4π) = g∗0 exp(ǫ2ν∗error),
ξ(4π) = (σ + ǫ2ρ)ξre + ǫ2ξ∗error,for some ν∗error, ξ∗error ∈ Rn with Pξre(ν∗error) = O(1), PB(ν∗error) = O(ǫ), ξ∗error = O(ǫ) andfor

g∗0 = g0 exp
(
(4πσ + 2πǫ2ρ)ξre + ǫ2Pξre(νerror)).We denote this ontrol map by (σ+ǫ2ρ, g∗0, ν

∗error, ξ∗error) = change_speed(ǫ, σ, ρ, g0, νerror, ξerror).



5.3 A Motion Algorithm along a Relative Equilibrium 65Proof. Using Propositions 61 and 72 we ompute
ξ(2π) = σξre + ǫ2

(
eσAre2πξerror + ρξre − eσAre2πξerror)+ O(ǫ3) = (σ + ρǫ2)ξre + O(ǫ3),and from this, Propositions 61 and 75 we have ξ(4π) = (σ + ρǫ2)ξre + O(ǫ3). De�ne

g0,1/2 := g0 exp
(
(2πσ + ǫ2ν̃)ξre), ν̃ξre := Pξre(νerror), and νB := PB(νerror), then weahieve using Proposition 61 and Corollary 32

g−1
0,1/2g(2π) = exp

(
− (2πσ + ǫ2ν̃)ξre)g−1

0 g(0) exp(ǫ2x2(2π) + O(ǫ3)) exp(2πσξre)
= exp

(
− (2πσ + ǫ2ν̃)ξre) exp(ǫ2(ν̃ξre + νB)) exp(ǫ2x2(2π) + O(ǫ3)) exp(2πσξre)

= exp(−2πσξre) exp(ǫ2νB + O(ǫ4)) exp(ǫ2x2(2π) + O(ǫ3)) exp(2πσξre)
= exp

(
ǫ2Adexp(−2πσξre)(νB + x2(2π)) + O(ǫ3)

)
.From Propositions 61 and 72 we know that

x2(2π) =
1

ǫ2
log
(
g(0)−1g(2π) exp(−2πσξre))+ O(ǫ).The de�nition of g∗0 and g0,1/2 gives

g∗0 exp(−2π(σ + ǫ2ρ)ξre)g−1
0,1/2 =

g0 exp((4πσ + 2πǫ2ρ)ξre + ǫ2ν̃ξre) exp(−2π(σ + ǫ2ρ)ξre) exp(−(2πσ + ǫ2ν̃)ξre)g−1
0 =

id.Using these results, Propositions 61, 72, 75, and Corollary 32 we obtain
g(4π) = g(2π) exp(ǫ2(Bµ+ δξre) + O(ǫ3)) exp

(
2π(σ + ǫ2ρ)ξre)

= g∗0 exp
(
− 2π(σ + ǫ2ρ)ξre)g−1

0,1/2g(2π) exp(ǫ2(Bµ+ δξre) + O(ǫ3)) exp
(
2π(σ + ǫ2ρ)ξre)

= g∗0 exp
(
ǫ2Adexp(−2π(σ+ǫ2ρ)ξre)(Adexp(−2πσξre)(νB + x2(2π)) +Bµ+ δξre)+ O(ǫ3)

)

= g∗0 exp
(
ǫ2Adexp(−2π(σ+ǫ2ρ)ξre)(Pξre(Adexp(−2πσξre)(νB + x2(2π))

)
+ δξre)+ O(ǫ3)

)

= g∗0 exp
(
ǫ2
(
Pξre(Adexp(−2πσξre)(νB + x2(2π))

)
+ δξre)+ O(ǫ3)

)
.With this motion primitive we are able to onstrut the following algorithm thatspeeds up, slows down, or stabilizes, a system along a relative equilibrium.Proposition 77 (speed_control algorithm). Let Σ be a simple mehanial ontrol sys-tem on a Lie group with a relative equilibrium ξre and orresponding matrix Are. Assume

Σ satis�es Assumptions 1, 2, and 6 and take 0 < ǫ≪ 1. Let g(0), g0, νerror, σ, ξerror, ρbe as in Proposition 76 and let N ∈ N.De�ne the algorithm (σ+ǫ2Nρ, g∗0, ν
∗error, ξ∗error)=speed_control(ǫ, σ, ρ,N, g0, νerror, ξerror)by1: g0,1 := g0; νerror,1 := νerror; σ1 := σ; ξerror,1 := ξerror;2: for k ∈ {1, . . . , N} do3: (σk+1, g0,k+1, νerror,k+1, ξerror,k+1) := change_speed(ǫ, σk, ρ, g0,k, νerror,k, ξerror,k)4: end for5: g∗0 = g0,N+1; ν∗error := νerror,N+1; ξ∗error := ξerror,N+1;



66 Control Algorithms along Relative EquilibriaThe �nal on�guration and veloity after the exeution of this algorithm are
g(N4π) = g∗0 exp(ǫ2ν∗error),
ξ(N4π) = (σ + ǫ2Nρ)ξre + ǫ2ξ∗error,where ν∗error, ξ∗error ∈ Rn, Pξre(ν∗error) = O(1), PB(ν∗error) = O(ǫ), ξ∗error = O(ǫ), and

g∗0 = g0 exp

((
σT�nal + 1

2
ρǫ2NT�nal)ξre + ǫ2

N∑

k=1

Pξre(νerror,k)) .Proof. From Proposition 76 we have σk = σ + (k − 1)ρǫ2 so we immediately obtain
ξ(N4π) = σN+1ξre + O(ǫ3) = (σ + ǫ2Nρ)ξre + O(ǫ3). From Proposition 76 we have
g(N4π) = g∗0 exp(ǫ2ν∗error) where

g∗0 = g0

(
N∏

k=1

exp
(
2π(2σk + ρǫ2)ξre + ǫ2Pξre(νerror,k)))

= g0 exp

(
N∑

k=1

(
2π(2σk + ρǫ2)ξre + ǫ2Pξre(νerror,k)))

= g0 exp

(
2πN

(
2σ +Nρǫ2

)
ξre + ǫ2

N∑

k=1

Pξre(νerror,k))
= g0 exp

(
(
σT�nal + 1

2
ρǫ2NT�nal) ξre + ǫ2

N∑

k=1

Pξre(νerror,k)) .From Proposition 76, its proof, and Proposition 61, we have that change_speed givesthe map (ξerror,k,PB(νerror,k), σ) 7→ (ξerror,k+1,PB(νerror,k+1), σ + ǫ2ρ) independent of g0and Pξre(νerror,k). Beause (ξerror,k,PB(νerror,k)) = O(1) gives (ξerror,k+1,PB(νerror,k+1)) =
O(ǫ) we obtain that PB(νerror,k) = O(ǫ, k) = O(ǫ), Pξre(νerror,k) = O(1, k) = O(1), and
ξerror,k = O(ǫ, k) = O(ǫ).Note that ρ > 0 speeds up the system along the relative equilibrium, ρ < 0 slowsdown the system, and ρ = 0 stabilizes the system's motion along the relative equilibrium.We may selet N = O( 1

ǫ2
) in Proposition 77 so that the absolute hange in veloityalong the relative equilibrium is of order O(1). Thus, it is possible to use the algorithm

speed_control to hange the veloity along the relative equilibrium from a given valueto another independent of ǫ.5.3.1 Interlude Regarding the AssumptionsIn this setion we examine some possibilities for relaxing some of the assumptions neededfor the change_speed motion primitive. It turns out that an alternative speed inver-sion map an be reated suh that the assumption regarding the linearly ontrollablesubspae, i.e. Assumption 2, an be weakened. Also the m = n − 1 assumption, i.e.Assumption 6, an be weakened, at least for m ≤ 3. The replaing assumption seems tobe too strit though, but the analysis gives insight into the di�ulties that arises whenremoving the m = n− 1 assumption.The objetive of this setion is to point out and larify the di�ulties that arises whenweakening the assumptions. The theory will not be applied to any example systems.



5.3 A Motion Algorithm along a Relative Equilibrium 67Weakening the Assumption Conerning Linear ControllabilityWe de�ne {bm+1, . . . , bl} by span{b1, . . . , bm, bm+1, . . . , bl} := span{b1, . . . , bm, 〈ξre : b1〉, . . . , 〈ξre :

bm〉}, where b1, . . . , bm, bm+1, . . . , bl are linearly independent, and let B̃ :=
[
b1 . . . bl

].Assumption 7 (Linear ontrollable subspae). The subspae span{b1, . . . , bl} is invari-ant under the linear map Are, that is, 〈ξre : bi〉 ∈ span{b1, . . . , bl}, for i ∈ {1, . . . , l}.Assumption 8. l > m and 〈bq : bv〉 ∈ span{b1, . . . , bl} for q ∈ {1, . . . , l}, v ∈ {m +
1, . . . , l}, and 〈ξre : 〈bj : bk〉〉 ∈ span{b1, . . . , bl} for j, k ∈ {1, . . . , l}.Assumption 7 means that there exists a matrix Q̃ ∈ Rl×l suh that AreB̃ = B̃Q̃.We de�ne Q̃ :=

[
Q11 Q12

Q21 Q22

] where Q11 ∈ Rm×m, Q12 ∈ Rm×(l−m), Q21 ∈ R(l−m)×m, and
Q22 ∈ R(l−m)×(l−m).Given Q̃ :=

[
Q11 Q12

Q21 Q22

], Q11 ∈ Rm×m, Q12, Q
T
21 ∈ Rm×(l−m), Q22 ∈ R(l−m)×(l−m), de�ne

L eQ : C0([0, 2π],Rl) → {f ∈ C1([0, 2π],Rl) | f(0) = 0} by
L eQ[u](t) :=

∫ t

0

e
eQ(t−s)u(s)ds,and use this to de�ne F eQ : C0([0, 2π],Rm) → {f ∈ C1([0, 2π],Rm) | f(0) = 0} as

F eQ[u](t) :=
[
Im 0

]
L eQ

[[
Im

0

]
u
]
(t).Lemma 78 (Transformation of ontrols). The map F eQ is invertible and its inverse isgiven as follows: if w = F eQ[u], then u(t) = −Q11w(t)+ẇ(t)−Q12

∫ t

0
e(t−s)Q22Q21w(s)ds.Additionally, let Assumption 7 be satis�ed, and let Are, B̃ and Q̃ satisfy AreB̃ = B̃Q̃.If u ∈ C0([0, 2π],Rm), w = Fσ eQ[u], and z =

[
0 Il−m

]
Lσ eQ

[[
Im

0

]
u
], then

Bu
σ
(t) = B̃

[
w(t)
z(t)

]
.Proof. One-to-one orrespondene between u and w is readily heked. We ompute

Bu
σ
(t) =

∫ t

0

eσAre(t−s)Bu(s)ds = B̃

∫ t

0

eσ eQ(t−s)
[

Im

0

]
u(s)ds = B̃Lσ eQ

[[
Im

0

]
u
]
(t) =

B̃
[

w(t)
z(t)

].Notie that for σ = O(ǫ), 0 < ǫ≪ 1, we get z(t) = O(ǫ).Proposition 79 (alternative speed inversion). Let Σ be a simple mehanial ontrolsystem on a Lie group with a relative equilibrium ξre and orresponding matrix Are andsatisfying Assumptions 1, 7 and 8. Let Q̃ ∈ Rl×l satisfy AreB̃ = B̃Q̃. Let η ∈ Rn,
σ ∈ R, and ompute z̃ ∈ Rm and Z ∈ Rn×n as the pseudoinverse solution to

η =

m∑

i=1

z̃ibi −
m−1∑

j=1

m∑

k=j+1

Zjk〈bj : bk〉, Zjk = 0 for j ≥ k.



68 Control Algorithms along Relative EquilibriaGiven r, α, Aσ,α, and β as in De�nition 68, let
yj(t) :=

m∑

k=1

λjk(Z) sin(βjkt), j ∈ {1, . . . , m},and let γ = (γ11, . . . , γm1, . . . , γ1r, . . . , γmr)
T be the unique solution to

Aσ,αγ = −Adexp(sσξre)(By(s))(2π),

γih = 0 if αih = 0 for (i, h) ∈ {1, . . . , m} × {1, . . . , r}.
(5.13)Additionally, if we take

w1
j (t) = yj(t) +

r∑

k=1

γjk sin(αjkt), j ∈ {1, . . . , m},

u1(t) = F−1

σ eQ
[w1](t),

z1(t) =
[

0 Il−m

]
Lσ eQ

[[
Im

0

]
u1
]
(t) (5.14)

u2(t) =

(∫ 2π

0

eσ eQ(2π−s)
[

Im 0
0 0

]
eσ eQT (2π−s)dse−σ eQT (2π−t)

[
Im

0

])#(
χ+

[
z̃
0

])
, (5.15)where χ ∈ Rl is the unique solution to

B̃χ =
m−1∑

j=1

m∑

k=j+1

∫ 2π

0

(eσAre(2π−s) − I)w1
j (s)w

1
k(s)ds 〈bj : bk〉 +

∫ 2π

0

eσAre(2π−s)f(s)ds,(5.16)
f(t) =

m∑

i=1

(w1
i (t))

2〈bi : bi〉 + 2
m∑

j=1

l−m∑

k=1

w1
j (t)z

1
k(t)〈bj : bk+m〉

+
l−m∑

j=1

l−m∑

k=1

z1
j (t)z

1
k(t)〈bj+m : bk+m〉,then b1(t) = Bu1(t) and b2(t) = Bu2(t) satisfy

−1
2
〈b1σ

: b1
σ〉

σ

(2π) + b2
σ
(2π) = η, (5.17)

Adexp(sσξre)(b1σ
(s))(2π) = 0. (5.18)Proof. Existene and uniqueness of the solution to (5.16) is a onsequene of Assump-tions 1 and 8. Regarding existene and uniqueness of the solution to (5.13), De�nition 68ensures that

Adexp(sσξre)(By(s))(2π) ∈ Image(Aσ,α).Sine every nonzero olumn in Aσ,α ontributes to the rank of Aσ,α, the entries of γorresponding to these will be unique. The remaining γ-values are de�ned to be 0.



5.3 A Motion Algorithm along a Relative Equilibrium 69Regarding the proof of equation (5.18), diret alulations show that
Adexp(sσξre)(b1σ

(s))(2π) = Adexp(sσξre)(Bw1(s))(2π) = Aσ,αγ + Adexp(sσξre)(By(s))(2π) = 0.Regarding the proof of equation (5.17), from Lemma 78 we ompute
〈bσ : b

σ〉(t) = 〈
m∑

j=1

w1
j (t)bj +

l−m∑

j=1

z1
j (t)bj+m :

m∑

k=1

w1
k(t)bk +

l−m∑

k=1

z1
k(t)bk+m〉

= 2

m−1∑

j=1

m∑

k=j+1

w1
j (t)w

1
k(t)〈bj : bk〉 +

m∑

i=1

(w1
i (t))

2〈bi : bi〉

+ 2
m∑

j=1

l−m∑

k=1

w1
j (t)z

1
k(t)〈bj : bk+m〉 +

l−m∑

j=1

l−m∑

k=1

z1
j (t)z

1
k(t)〈bj+m : bk+m〉

= 2

m−1∑

j=1

m∑

k=j+1

w1
j (t)w

1
k(t)〈bj : bk〉 + f(t),where f(t) ∈ span{b1, . . . , bl}. Furthermore, if we write f(t) = B̃

[ f1(t)
f2(t)

], f1 : [0, 2π] →
Rm, f2 : [0, 2π] → Rl−m, then for σ = O(ǫ) we have f2(t) = O(ǫ). This shows that inthis limit we have χ =

[ χ0

O(ǫ)

], for χ0 ∈ Rm.Sine all nonzero α-values are distint and are distint from the β-values we have for
j < k

∫ 2π

0

w1
j (t)w

1
k(t)dt =

m∑

l,q=1

λjl(Z)λkq(Z)

∫ 2π

0

sin(βjlt) sin(βkqt)dt

=
m∑

l,q=1

λjl(Z)λkq(Z)δ
βjl

βkq
π = λjk(Z)λkj(Z)π = Zjk.From the theory of linear ontrol systems, see e.g. [40℄, we know that when the system

ẋ = σQx+
[

Im

0

]
u, x ∈ Rl, u ∈ Rm, is ontrollable, i.e. for σ 6= 0, then for x(0) = 0 andarbitrary xf ∈ Rl the ontrol

u(t) =
[

Im 0
]
eσQ(2π−t)

(∫ 2π

0

eσQ(2π−s)
[

Im

0

][
Im 0

]
eσQT (2π−s)ds

)−1

xfgives x(2π) = xf ; in fat this ontrol is of minimum norm among the ontrols givingthis end point. Using the pseudoinverse instead of the inverse and rearranging the termsthis is equation (5.15) with xf = χ +
[

z̃
0

]. Sine for σ = O(ǫ) we have χ =
[ χ0

O(ǫ)

], theontrol (5.15) is also able to ahieve the desired result in this limit without beomingin�nite. Notie that that b2σ
(2π) = x(2π).



70 Control Algorithms along Relative EquilibriaBy straightforward alulations we then obtain
−1

2
〈b1σ

: b1
σ〉

σ

(2π) + b2
σ
(2π)

= − 1
2

∫ 2π

0

eσAre(2π−s)〈b1σ
: b1

σ〉(s)ds+ B̃

∫ 2π

0

eσ eQ(2π−s)u2(s)ds

= −
m−1∑

j=1

m∑

k=j+1

(∫ 2π

0

w1
j (s)w

1
k(s)ds〈bj : bk〉 +

∫ 2π

0

(eσAre(2π−s) − I)w1
j (s)w

1
k(s)ds〈bj : bk〉

)

− 1
2

m∑

j=1

∫ 2π

0

eσAre(2π−s)f(s)ds+ B̃
(
χ+

[
z̃
0

])

= −
m−1∑

j=1

m∑

k=j+1

Zjk〈bj : bk〉 +

m∑

i=1

z̃ibi = η.

From the proof of this proposition we see that replaing Assumption 2 with somethingmore general inevitably leads to order onsiderations sine the algorithms in [11℄ are notable to generate veloities above the order O(ǫ), meaning that any new algorithm atleast needs to be able to start with σ = O(ǫ). In this limit the linearly ontrollablesubspae is span{B, σAreB, . . . , σn−1An−1re B} so we need to be able to guarantee thatevery part of the error, whih we need to orret with b2, is of the same or higher orderas the part of the ontrollable subspae it belongs to. Otherwise the ontrol u2 willgrow unbounded as σ → 0. In this analysis we ould also have inluded the subspaegenerated by the vetors in A2reB but this would have ompliated the analysis and istherefore left out sine the reason for this setion is solely to point out some of theompliations that arises when weakening the assumptions. We ould not have inludedvetors from AkreB, k > 2, sine these would not su�e in the limit σ = O(ǫ).Sine configuration_inversion, see Proposition 74, needs Assumption 2 this newalternative speed inversion map an not be used in the onstrution of a replaement for
change_speed, needing weaker assumptions, unless a version of configuration_inversionwhih uses Assumption 7 instead of 2 is onstruted.Removing the m = n− 1 ConditionIf Assumptions 2 and 5 are satis�ed then configuration_inversion gives a way toonstrut b2, while b1 = 0, suh that for any µ ∈ Rm we get

−1
2
〈b1σ

: b1
σ〉

σ

(2π) + b2
σ
(2π) = 0,

Adexp(sσξre)(b2σ
(s))(2π) = Bµ.This means that, when ξ(0) = σξre + ǫ2ξ2

0 , we get
ξ(2π) = σξre + ǫ2eσAre2πξ2

0 + O(ǫ3),

log
(
g(0)−1g(2π) exp(−2πσξre)) = ǫ2Bµ+ O(ǫ3).



5.3 A Motion Algorithm along a Relative Equilibrium 71The limitation of configuration_inversion is thus that it is only able to orreterrors in the on�guration that are a result of motion in span{b1, . . . , bm}. If we take
σ = O(ǫ) we get

Adexp(sσξre)(b2σ
(s))(2π) = b2(2π) + O(ǫ)and therefore, when b1 = 0, this problem annot be avoided by any assumption. In theprevious setion we therefore assume m = n − 1 suh that Rn = span{b1, . . . , bm, ξre}beause we are not interested in how preisely the on�guration behaves along ξre.If we do not want to assumem = n−1 but instead seek to replae configuration_inversionwith another sheme requiring weaker assumptions we thus need b1 6= 0 and the equa-tions (whih were satis�ed by the ontrols given by configuration_inversion) b1 and

b2 need to satisfy are
0 = b1

σ
(2π),

0 = −1
2
〈b1σ

: b1
σ〉

σ

(2π) + b2
σ
(2π),

0 = Adexp(sσξre)(b1σ
(s))(2π),

ν + ν0 = −1
2
Adexp(sσξre)(〈b1σ

: b1
σ〉

σ

(s))(2π)

+ Adexp(sσξre)(b2σ
(s))(2π) − 1

2
[Adexp(sσξre)(b1σ

(s)),Adexp(τσξre)(b1σ
(τ))(s)](2π),where ν ∈ span{b1, . . . , bm, vm+1, . . . , vn−1} and Rn = span{b1, . . . , bm, vm+1, . . . , vn−1, ξre}.The value of ν0 ∈ span{ξre} is irrelevant. It is fairly apparent that the omplexity of theproblem inreases onsiderably when m 6= n− 1.In the following Assumptions 2 and 5 are implied and the matrix M ∈ Rm×m is theone satisfying adξreB = BM . To replae the m = n− 1 assumption we instead assume

Are(Rn) ⊂ span{b1, . . . , bm, ξre}, (5.19)
adξre(Rn) ⊂ span{b1, . . . , bm, ξre}, (5.20)

[bj , bk] ∈ span{b1, . . . , bm, ξre}, j, k ∈ {1, . . . , m}, (5.21)whih is trivially satis�ed for m = n − 1. Sine it is still a strong assumption it istherefore lose to the m = n − 1 assumption in some sense. Assumptions 5.19-5.21means that
[Adexp(sσξre)(b1σ

(s)),Adexp(τσξre)(b1σ
(τ))(s)](2π) ∈ span{b1, . . . , bm, ξre},so the error produed by this term an be orreted by b2 aording to Proposition 75.De�ne P{B,ξre}⊥ : Rn → Rn to be the projetion onto span{vm+1, . . . , vn−1} given by

P{B,ξre}⊥ ( m∑

i=1

aibi +

n−1∑

i=m+1

aivi + anξre) =

n−1∑

i=m+1

aivi,for a ∈ Rn. The assumptions (5.19)-(5.21) gives
P{B,ξre}⊥ (Adexp(sσξre)(〈b1σ

: b1
σ〉

σ

(s))(2π)

)

=
∑

1≤j<k≤m

∫ 2π

0

∫ t

0

w1
j (s)w

1
k(s)dsdt P{B,ξre}⊥(〈bj : bk〉),



72 Control Algorithms along Relative Equilibriawhih is �as nie as possible�. By hoosing w2(t) = e−σMt
(

µ
π

sin2(t) + 3ς
4π2 (t − 4π

3
)t
),

µ, ς ∈ Rm, we get
b2

σ
(2π) = Be−σM2πς,

Adexp(sσξre)(b2σ
(s))(2π) = Bµ,and we an therefore hoose µ and ς suh that the problem redues to �nding w1 whihsatis�es

0 = b1
σ
(2π) = Bw1(2π), (5.22)

0 = −1
2
〈b1σ

: b1
σ〉

σ

(2π) + b2
σ
(2π)

= −
∑

1≤j<k≤m

∫ 2π

0

w1
j (s)w

1
k(s)ds〈bj : bk〉, (5.23)

0 = Adexp(sσξre)(b1σ
(s))(2π)

= B

∫ 2π

0

esσMw1(s)ds, (5.24)
ν + ν0 = −1

2
Adexp(sσξre)(〈b1σ

: b1
σ〉

σ

(s))(2π)

+ Adexp(sσξre)(b2σ
(s))(2π) − 1

2
[Adexp(sσξre)(b1σ

(s)),Adexp(τσξre)(b1σ
(τ))(s)](2π)

=
∑

1≤j<k≤m

∫ 2π

0

∫ t

0

w1
j (s)w

1
k(s)dsdt P{B,ξre}⊥(〈bj : bk〉) +Bω, (5.25)where, for any ω ∈ Rm, we an hoose µ suh that this is the result.De�ne

ψj(t) = sin(jt), j ∈ N,

φk(t) = cos((m+ k)t) − cos(kt), k ∈ N,and
Λjk =

∫ 2π

0

∫ t

0

ψj(s)φk(s)dsdt, j, k ∈ N,whih is nonzero. If we use
w1

j (t) = ψj(t) + γαj
φαj

(t) +
m∑

k=1

δjkφk(t), j ∈ {1, . . . , m},and hoose α1, . . . , αm ∈ N \ {1, . . . , m}, all distint, suh that the rank of
∫ 2π

0

esσMdiag(φα1
(s), . . . , φαm

(s))ds,is maximal then we an hoose γα1
, . . . , γαm

∈ R, suh that (5.24) is satis�ed. Thenfor equation (5.23) and (5.25) (equation (5.22) is trivially satis�ed) to be solved meanssolving
∫ 2π

0

w1
j (s)w

1
k(s)ds = 0,

∫ 2π

0

∫ t

0

w1
j (s)w

1
k(s)dsdt = Zjk,



5.4 Examples 73for arbitrary Zjk ∈ R, whih redues to �nding δ ∈ Rm×m satisfying
m∑

l=1

δjlδkl = 0, 1 ≤ j < k ≤ m, (5.26)
m∑

l=1

(δjlΛkl + δklΛjl) = Zjk − γαj
Λkαj

− γαk
Λjαk

=: Xjk, 1 ≤ j < k ≤ m. (5.27)For m = 2 suh a solution is δ = diag(δ1, δ2) with
δ1 = δ2 =

X12

Λ12 + Λ21

= −5X12

8π
.For m = 3 a diagonal solution δ = diag(δ1, δ2, δ3) is given by



δ1
δ2
δ3


 =




Λ21 Λ12 0
Λ31 0 Λ13

0 Λ32 Λ23



−1 

X12

X13

X23


 =

1

π




12
5

−28
9

8
9

60
7

−80
9

160
63

20 −560
27

200
27





X12

X13

X23


 .A diagonal solution trivially satis�es (5.27). We an not expet to be able to �nd adiagonal solution for m ≥ 4 sine we in this situation have m oe�ients and 1

2
m(m−1)equations to be solved but 1

2
m(m− 1) > m for m ≥ 4. Whether there exists a solutionto equations (5.26)-(5.27) for m ≥ 4 we leave as an open question.The underwater vehile example from the last hapter does not satisfy assump-tions 5.19-5.21. We have not been able to ome up with any examples, where m 6= n−1,that satisfy assumption 5.19-5.21. These assumptions are simply still too strit. Thusthe main argument of this setion is that weakening the assumptions, in partiular the

m = n− 1 assumption, ompliates the analysis onsiderably.5.4 ExamplesThe usefulness of the theory is illustrated in the following examples.Example 7 (Planar rigid body). Reonsider the rigid body moving in the plane asdesribed in the previous hapters. The on�guration manifold isG = SE(2) ≃ S×R2 ∋
(θ, x, y). Let m denote the mass of the body, J its moment of inertia and h the distanefrom the enter of mass to the ontrol fores. The symmetri produt is, for ω, λ ∈ Rand v, w ∈ R2, given by

〈(ω, v) : (λ, w)〉 =

[
0

ω̂w + λ̂v

]
,where ω̂ =

[
0 −ω
ω 0

]. With ontrols as in Figure 3.2 we have
b1 =

1

m
e2, b2 = −h

J
e1 +

1

m
e3,whih gives

〈b1 : b1〉 = 0, 〈b2 : b2〉 =
2h

Jm
e2, 〈b1 : b2〉 = − h

Jm
e3.
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Figure 5.2: speed_control applied to the planar rigid body with ξre = e3, ǫ = 0.1, and
ρ = 2 and with initial onditions (θ, x, y)(0) = (−1

2
π, 0, 0), g0 = g(0), and (ω, v1, v2)(0) =

0. The dotted urve orresponds to the motion of the enter of mass and the ellipsesorresponds to the planar body at time equidistant instanes.Assumption 1 is immediately seen to be satis�ed. It is straightforward to ompute that
〈e3 : e3〉 = 0,so ξre = e3 is a relative equilibrium. Choosing this relative equilibrium we have

Are = adξre =




0 0 0
1 0 0
0 0 0


 ,and we have AreB = BQ and adξreB = BM , M = Q, with

Q =

[
0 −hm

J

0 0

]
,Aording to Remark 70 we alulate Aσ,α as

Aσ,α = B

∫ 2π

0

esσMdiag(sin(α1s), . . . , sin(αms))ds

=
[
b1 b2

]
σ

[
0 2π

α2

hm
J

0 0

]
.Sine Aσ,α is independent of the frequenies α1 and α2 and the rank is onstant for

σ 6= 0 we may, aording to remark 73, disregard De�nition 68. Equation (5.4) is seento redue to
Aσ,αγ = −Aσ,(β,β)

[
λ12(Z)
λ21(Z)

]
,whih is satis�ed if

γ2 = −α2λ21(Z)

β
,



5.4 Examples 75and we an for example hoose
α2 = 1, β = 3, γ1 = 0.The omponents of χ are omputed

2∑

i=1

χibi =

∫ 2π

0

(eσAre(2π−s) − I)w1
1(s)w

1
2(s)ds〈b1 : b2〉 + 1

2

2∑

i=1

∫ 2π

0

eσAre(2π−s)(w1
i (s))

2ds〈bi : bi〉

=

∫ 2π

0

(eσAre(2π−s) − I)

(
− h

Jm
ξre)w1

1(s)w
1
2(s)ds+ 1

2

∫ 2π

0

eσAre(2π−s)

(
2h

Jm
e2

)
(w1

2(s))
2ds

=
h

Jm

∫ 2π

0

(w1
2(s))

2ds e2

=
h

Jm

∫ 2π

0

(λ21 sin(βa) + γ2 sin(α2s))
2ds e2

=
h

Jm
π(λ21(Z)2 + γ2

2)e2,meaning that we have
χ1 =

πh(λ21(Z)2 + γ2
2)

J
, χ2 = 0.Assumption 6 is immediately seen to be satis�ed, so all the assumptions are met,and therefore we an apply the speed_control algorithm to speed up the system along

e3. The result of the speed_control algorithm applied to the planar rigid body an beseen in Figure 5.2 and 5.3. In the implementation we have hosen α2 = 1, β = 3, and
γ1 = 0.
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tFigure 5.3: speed_control applied to the planar rigid body with ξre = e3, ǫ = 0.1,and ρ = 2 and with initial onditions (θ, x, y)(0) = (−1

2
π, 0, 0), g0 = g(0), and

(ω, v1, v2)(0) = 0. In the right �gure the dashed urve orresponds to u1(t) and thesolid urve orresponds to u2(t).Example 8 (Satellite with two thrusters). Consider a satellite with two thrustersaligned with the �rst and seond prinipal axes. The on�guration manifold is G =
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SO(3) and the equations of motion are of the form (5.1) and (5.2) where the symmetriprodut is given by

〈ξ : η〉 = I−1
(
ξ × (Iη) + η × (Iξ)

)
,where I = diag(J1, J2, J3), Ji being the moment of inertia along the ith prinipal axis,and × is the ross produt. We have that

〈e3 : e3〉 = 0,so e3 is a relative equilibrium. With ontrols as in �gure 3.3 we have
b1 =

1

J1
e1, b2 =

1

J2
e2,so it is not possible to diretly ontrol the motion in the e3 diretion. With ξre = e3 weompute

Are =




0 J2−J3

J1

0
J3−J1

J2

0 0

0 0 0


 .It is straightforward to alulate that AreB = BQ, with

Q =

[
0 J2−J3

J2

J3−J1

J1

0

]
,so Assumption 2 is satis�ed. We have that

〈b1 : b1〉 = 〈b2 : b2〉 = 0, 〈b1 : b2〉 = J2−J1

J1J2J3

e3we see that Assumption 1 is ful�lled if J1 6= J2. Assumption 3 is satis�ed beause
〈ξre : 〈b1 : b2〉〉 =

J2 − J1

J1J2J3

〈e3 : e3〉 = 0.Sine
adξη = ξ × ηwe see that

adξreb1 =
J2

J1
b2, adξreb2 = −J1

J2
b1,so Assumption 5 is satis�ed and we have adξreB = BM with

M =

[
0 −J1

J2

J2

J1

0

]Assumption 6 is immediately seen to be met.
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tFigure 5.4: speed_control applied to the satellite with two thrusters with ξre = e3,

ǫ = 0.1, and ρ = 1 and with initial onditions ξ(0) = (0, 0, 0.2) and g0 = g(0). In theright �gure the dashed urve orresponds to u1(t) and the solid urve orresponds to
u2(t)Using Remark 70 we alulate Aσ,α as

Aσ,α = B

∫ 2π

0

esσMdiag(sin(α1s), . . . , sin(αms))ds

= B

∫ 2π

0

[
cos(σs) −J1

J2

sin(σs)
J2

J1

sin(σs) cos(σs)

] [
sin(α1s) 0

0 sin(α2s)

]
ds

= B2 sin(σπ)

[
α1 sin(σπ)

α2

1
−σ2

J1

J2

α2 cos(σπ)

α2

2
−σ2

−J2

J1

α1 cos(σπ)
α2

1
−σ2

α2 sin(σπ)
α2

2
−σ2

]
=: BHσ,α.Finding a solution to

Aσ,αγ = −Adexp(sσξre)(By(s))(2π),thus amounts to �nding a solution to
Hσ,αγ = Hσ,(β,β)

[
λ12(Z)
λ21(Z)

]
.Sine the rank of Hσ,α is not full when σ ∈ N speial are is to be taken for these

σ-values aording to De�nition 68. For σ = β we have that Hσ,(β,β) has full rank but
Hσ,α = 0 (sine the α-values are di�erent from β) so using De�nition 68 this situationwill be avoided. Sine

H−1
σ,αHσ,(β,β) =

[
β(α2

1
−σ2)

α1(β2−σ2)
0

0
β(α2

2
−σ2)

α2(β2−σ2)

]
,we have, aording to Remark 73, that we may in fat disregard De�nition 68 andinstead take

γ = −H−1
σ,αHσ,(β,β)

[
λ12(Z)
λ21(Z)

]
= −

[
β(α2

1
−σ2)

α1(β2−σ2)
λ12(Z)

β(α2

2
−σ2)

α2(β2−σ2)
λ21(Z)

]
,



78 Control Algorithms along Relative Equilibriaas long as we ensure β2 − σ2 6= 0 and that α1, α2, and β are di�erent. In pratialimplementations we only need β
|β2−σ2|

> c, for some c > 0. During speed_inversionwe have
u1(t) = −σQw1(t) + ẇ1(t), w1(t) =

[
λ12(Z) sin(βt) + γ1 sin(α1t)
λ21(Z) sin(βt) + γ2 sin(α2t)

]whih gives
‖u1‖2

2 = π

(
σ2

((
J3−J1

J1

)2

(λ12(Z)2 + γ2
1) +

(
J2−J3

J2

)2

(λ21(Z)2 + γ2
2)

)

+ γ2
1α

2
1 + γ2

2α
2
2 + λ12(Z)2β2 + λ21(Z)2β2

)
,where ‖ · ‖2 is the norm on L2([0, 2π],R2). We an thus in speed_inversion hoose

α1, α2, and β, all di�erent, as to minimize ‖u1‖2.Calulating the value of χ gives
2∑

i=1

χibi =

∫ 2π

0

(eσAre(2π−s) − I)w1
1(s)w

1
2(s)ds〈b1 : b2〉 + 1

2

2∑

i=1

∫ 2π

0

eσAre(2π−s)(w1
i (s))

2ds〈bi : bi〉

=

∫ 2π

0

(eσAre(2π−s) − I)
(

J2−J1

J1J2J3

ξre)w1
1(s)w

1
2(s)ds

= 0,so we have χ = 0. The result of the speed_control algorithm applied to this examplean be seen in Figure 5.4. In the implementation giving this �gure we have hosen
α1, α2, β ∈ {1, . . . , 5}, all di�erent, as to minimize ‖u1‖2.



Chapter 6ConlusionIn this thesis we have foused on ontrol of simple mehanial ontrol system on Liegroups. In partiular we have developed novel theory regarding loal ontrollabilityalong a relative equilibrium and onstruted an algorithm apable of speeding up aninvariant simple mehanial ontrol system on a Lie group along a relative equilibrium.In this hapter we will present a summary of this thesis and give some suggestionsto future diretions of researh.6.1 Summary of DissertationIn Chapter 2 we presented, in a rigorous manner, the neessary theory of Lie groupsneeded to understand and analyse simple mehanial ontrol systems on Lie groups. Inpartiular we presented some of the lassial matrix Lie groups desribing rigid bodies.Chapter 3 was onerned with the derivation of the equations of motion for foredmehanial systems, giving the fored Euler-Lagrange equations, and the equations ofmotion for mehanial systems with a Lie group as on�guration manifold. Simplemehanial ontrol systems is a speial lass of mehanial systems on Lie groups andthe equations of motions for this lass were dedued. The theory was applied to threeexample systems.In Chapter 4 we foused on loal ontrollability issues. We introdued some of thestrongest theorems regarding loal ontrollability properties of a�ne ontrol systems.Previous ontrollability results for simple mehanial ontrol systems on Lie groups werepresented. Using the presented ontrollability theorems we derived a novel result givingsu�ient onditions for a simple mehanial ontrol system on a Lie group to be loallyontrollable along a relative equilibrium. This result is one of the main ontributions ofthis thesis. The results were applied to give a ontrollability analysis of three examplesystems.Chapter 5 was devoted to the onstrution of a novel motion algorithm. We presentedthe previous results regarding small amplitude ontrol of simple mehanial systems inorder to give a better understanding of the perspetive of the new algorithm. Per-turbation analysis was used to onstrut two inversion maps and a motion primitivewas onstruted as a omposition of these maps. This motion primitive is the basisof the onstruted algorithm. Computing small-amplitude ontrol fores, this motionalgorithm is apable of speeding up a simple mehanial ontrol system on a Lie group



80 Conlusionalong a relative equilibrium. The ontent of this hapter is the seond main ontributionof this thesis and will be published in [35℄.6.2 Future DiretionsIn the following we will give some suggestions to future researh related to the mainontributions of this dissertation.Loal Controllability along a Relative EquilibriumThe novel result of hapter 4 gives su�ient onditions for a simple mehanial systemon a Lie group to be loally ontrollable along a relative equilibrium. The onept ofa relative equilibrium an be extended to simple mehanial ontrol systems; these aremehanial systems for whih the kineti energy is given by a Riemannian metri andthe Lagrangian is the kineti energy minus the potential energy (whih is a funtion ofthe on�guration only), see, e.g., [13℄. The results of [29℄ are ontrollability results forzero initial veloity (and therefore build upon the work of [41℄) for simple mehanialontrol systems and these results are then in [11℄ applied to simple mehanial ontrolsystems on Lie groups. In this thesis we have worked the other way giving the loalontrollability result based diretly on the theory of [5℄. It would be interesting toinvestigate general results regarding loal ontrollability along a relative equilibrium fora simple mehanial ontrol systems and hopefully obtain the result of hapter 4 as aorollary of a more general result.Motion Algorithms for Mehanial SystemOne of the main disadvantages of the new motion algorithm presented in hapter 5 arethe strit assumptions. In partiular the assumption that the number of independentontrol fores is n− 1 where n is the number of degrees of freedom for the system. Asillustrated in hapter 5 removing this partiular ondition ompliates the analysis on-siderably. An important feature of the proposed motion algorithm is that everything isgiven expliitly meaning that it an be implemented in real time. It would be interest-ing to examine the possibility of an impliit method not needing the n− 1 assumption.One might hope that an impliit method utilizing the geometri struture of simplemehanial ontrol systems on Lie groups would produe a fast and e�ient means toirumvent the problem.Another interesting hallenge would be to generalize the results of hapter 5 to moregeneral mehanial systems. In the vein the work in [11℄ is generalized to a bigger lassof systems in [32℄, one ould attempt a similar generalization of the results in hapter 5.
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