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Abstract

Recent years have witnessed great advancements in the sciences and technology of autonomy,
robotics and networking. This dissertation develops concepts and algorithms for dynamic
vehicle routing (DVR), that is, for the automatic planning of optimal multi-vehicle routes
to provide service to demands (or more generally to perform tasks) that are generated
over time by an exogenous process. We consider a rich variety of scenarios relevant for
robotic applications. We begin by reviewing some of the approaches available to tackle
DVR problems. Next, we study different multi-vehicle scenarios based on different models
for demands (in particular, demands with time constraints, demands with different priority
levels, and demands that must be transported from a pick-up to a delivery location). The
performance criterion used in these scenarios is either the expected waiting time of the
demands or the fraction of demands serviced successfully. In each specific DVR scenario
we adopt a rigorous technical approach, which we call algorithmic queueing theory and
which relies upon methods from queueing theory, combinatorial optimization, and stochastic
geometry. Algorithmic queueing theory consists of three basics steps: 1) queueing model of
the DVR problem and analysis of its structure; 2) establishment of fundamental limitations
on performance, independent of algorithms; and 3) design of algorithms that are either
optimal or constant-factor away from optimal.

In the second part of the dissertation, we address problems concerning the implementa-
tion of routing policies in large-scale robotic networks, such as adaptivity and decentralized
computation. We first present distributed algorithms for environment partitioning, and then
we apply them to devise routing policies for DVR problems that (i) are spatially distributed,
scalable to large networks, and adaptive to network changes, and (ii) have remarkably good
performance guarantees.

The technical approach developed in this dissertation is applicable to a wide variety of
DVR problems: several possible extensions are discussed throughout the thesis.
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Chapter 1

Introduction

This thesis presents a joint algorithmic and queueing approach to the design of cooperative
control and task allocation strategies for networks of uninhabited vehicles and robots. The
approach enables groups of robots to complete tasks in uncertain and dynamically changing
environments, where new task requests are generated in real-time. Applications include
surveillance and monitoring missions, as well as transportation networks and automated
material handling.

As a motivating example, consider the following scenario: a sensor network is deployed in
order to detect suspicious activity in a region of interest. (Alternatively, the sensor network
is replaced by a a high-altitude sensor-rich aircraft loitering over the region.) In addition to
the sensor network, a team of unmanned aerial vehicles (UAVs) is available and each UAV
is equipped with close-range high-resolution on-board sensors. Whenever a sensor detects
a potential event, a request for close-range observation by one of the UAVs is generated. In
response to this request, a UAV visits the location to gather close-range information and
investigate the cause of the alarm. Each request for close-range observation might include
priority levels or time windows during which the inspection must occur and it might require
an on-site service time. In summary, from a control algorithmic viewpoint, each time a new
request arises, the UAVs need to decide which vehicle will inspect that location and along
which route. Thus, the problem is to design algorithms that enable real-time task allocation
and vehicle routing.

Accordingly, this thesis presents allocation and routing algorithms that typically blend
ideas from receding-horizon resource allocation, distributed optimization, combinatorics and
control. The key novelty in our approach is the simultaneous introduction of stochastic,
combinatorial and queueing aspects in the distributed coordination of robotic networks.

1.1 Static and Dynamic Vehicle Routing

In the recent past, considerable efforts have been devoted to the problem of how to coop-
eratively assign and schedule demands for service that are defined over an extended geo-
graphical area [69, 89, 2, 11, 6]. In these papers, the main focus is in developing distributed
algorithms that operate with knowledge about the demand locations and with limited com-
munication between robots. However, the underlying mathematical model is static, in that
no new demands arrive over time, and fits within the framework of the static vehicle routing
problem (see [99] for a thorough introduction to this problem), whereby: (i) a team of m
vehicles is required to service a set of n demands in a 2-dimensional space; (ii) each demand
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Figure 1-1: An illustration of dynamic routing problems for a robotic system. Panel #1:
demands are generated. Panel #2: vehicles are assigned to demands and select routes.
Panel #3: the DVR problem is how to recompute partitions and routes when new demands
appear.

requires a certain amount of on-site service; (iii) the goal is to compute a set of routes that
optimizes the cost of servicing (according to some quality of service metric) the demands.
In general, most of the available literature on routing for robotic networks focuses on static
environments and does not properly account for scenarios in which dynamic, stochastic and
adversarial events take place.

The problem of planning routes through service demands that arrive during a mission
execution is known as the “dynamic vehicle routing problem” (abbreviated as the DVR
problem in the operations research literature). There are two key differences between static
and dynamic vehicle routing problems. First, planning algorithms should actually provide
policies (in contrast to pre-planned routes) that prescribe how the routes should evolve as a
function of those inputs that evolve in real-time. Second, dynamic demands (i.e., demands
that arrive and vary over time) add queueing phenomena to the combinatorial nature of
vehicle routing. In such a dynamic setting, it is natural to focus on steady-state performance
instead of optimizing the performance for a single task. Additionally, system stability in
terms of the number of waiting demands is an issue to be addressed.

1.2 Algorithmic Approaches to DVR Problems

Broadly speaking, there are three main approaches available in the literature to tackle
DVR problems. The first approach is to simply re-optimize every time a new event takes
place; we call this approach “one-step sequential optimization”. In the second approach,
called “online algorithms”, routing policies are designed to minimize the worst-case ratio
between their performance and the performance of an optimal offline algorithm which has
a priori knowledge of the entire input sequence. In the third approach, which we call
“algorithmic queueing theory”, the routing problem is embedded within the framework of
queueing theory and routing policies are designed to minimize typical queueing-theoretical
cost functions such as the expected waiting time in the system for the demands. In this
section we review the three aforementioned approaches and we motivate our choice to use
a queueing-theoretical framework to study DVR problems for robotic networks.

1.2.1 One-Step Sequential Optimization

A naive approach to DVR is to re-optimize every time a new demand arrives, by using an
algorithm that is optimal for the corresponding static vehicle routing problem. However,
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10 0.5

(a) A new demand arrives at x = 1.

10 0.5

(b) A new demand arrives at x = 0 just before the
vehicle reaches x = 0.5.

10 0.5

(c) The vehicle re-optimizes its route and reverses
its motion.

10 0.50.33

(d) A new demand arrives at x = 1 and the vehicle
after re-optimizing reverses its motion

Figure 1-2: Example where re-optimization causes a vehicle to travel forever without pro-
viding service to any demand. The vehicle is represented by a blue chevron object, a newly
arrived demand is represented by a black circle, and old demands are represented by grey
circles.

this approach can lead to highly undesirable behaviors as the following example shows.
Assume that a unit-velocity vehicle provides service along a line segment of unit length
(see Figure 1-2(a)). New demands arrive either at endpoint x = 0 or at endpoint x = 1.
Assume that the objective is to minimize the average waiting time of the demands (as it
is common in the DVR literature); hence a re-optimization algorithm provides a route that
minimizes

∑n
j=1Wj , where n is the number of outstanding demands at that time, and Wj

is the waiting time for the jth demand. Assume that at time 0 the vehicle is at x = 0
and a new demand arrives at x = 1. Hence, the vehicle travels immediately toward that
demand. Assume that just before reaching x = 1/2 a new demand arrives at x = 0. It is
easy to show that the optimal strategy is to reverse motion and provide service first to the
demand at x = 0. However, assume that just before reaching x = 1/3 a new demand arrives
at x = 1. It is easy to show that the optimal strategy is to reverse motion and provide
service first to the demands at x = 1. In general, let k, n be positive integers and let
εk = k/(2k+ 1). Assume that just before time t2n−1 = 1/2 +

∑n−1
k=1(1− 2εk) a new demand

arrives at x = 0, and that just before time t2n = t2n−1 + 1/2− εn a new demand arrives at
x = 1. (Assume that at time t0 = 0 the vehicle is at x = 0 and a new demand arrives at
x = 1.) It is possible to show that at each new arrival the optimal strategy ensuing from a
re-optimization algorithm is to reverse motion before one of the two endpoints is reached.
Note that limn→+∞ tn = +∞, hence the vehicle will travel forever without servicing any
demand!

This example therefore illustrates the pitfalls of the straightforward application of static
routing and sequential re-optimization algorithms to dynamic problems. Broadly speaking,
we argue that DVR problems require tailored routing algorithms with provable performance
guarantees. There are currently two main algorithmic approaches that allow both a rigorous
synthesis and an analysis of routing algorithms for DVR problems; we review these two
approaches next.
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1.2.2 Online Algorithms

An online algorithm is one that operates based on input information given up to the current
time. Thus, these algorithms are designed to operate in scenarios where the entire input
is not known at the outset, and new pieces of the input should be incorporated as they
become available. The distinctive feature of the online algorithm approach is the method
that is used to evaluate the performance of online algorithms, which is called competitive
analysis [88]. In competitive analysis, the performance of an online algorithm is compared
to the performance of a corresponding offline algorithm (i.e., an algorithm that has a priori
knowledge of the entire input) in the worst case scenario. Specifically, an online algorithm
is c-competitive if its cost on any problem instance is at most c times the cost of an optimal
offline algorithm:

Costonline(I) ≤ c Costoptimal offline(I), ∀ problem instances I.

In the recent past, dynamic vehicle routing problems have been studied in this frame-
work, under the name of the online traveling repairman problem [56, 49, 52].

While the online algorithm approach applied to DVR has led to numerous results and
interesting insights, it leaves some questions unanswered, especially in the context of robotic
networks. First, competitive analysis is a worst-case analysis, hence, the results are often
overly pessimistic for normal problem instances. Moreover, in many applications there is
some probabilistic problem structure (e.g., spatial distribution of future demands), that
can be advantageously exploited by the vehicles. In online algorithms, this additional
information is not taken into account. Second, competitive analysis is used to bound the
performance relative to the optimal offline algorithm, and thus it does not give an absolute
measure of performance. In other words, an optimal online algorithm is an algorithm
with minimum “cost of causality” in the worst-case scenario, but not necessarily with the
minimum worst-case cost. Finally, many important real-world constraints for DVR, such
as time windows, priorities, and pick-up/delivery locations “have so far proved to be too
complex to be considered in the online framework” [45, page 206]. Some of these drawbacks
have been recently addressed by [100], where a combined stochastic and online approach is
proposed for a general class of combinatorial optimization problems and is analyzed under
some technical assumptions.

This discussion motivates an alternative approach for DVR in the context of robotic
networks, based on probabilistic modeling, and average-case analysis.

1.2.3 Algorithmic Queueing Theory

Algorithmic queueing theory embeds the dynamic vehicle routing problem within the frame-
work of queueing theory and overcomes most of the limitations of the online algorithm ap-
proach; in particular, it allows to take into account several real-world constraints, such as
time constraints and priorities. We call this approach algorithmic queueing theory since its
objective is to synthesize an efficient control policy, whereas in traditional queueing theory
the objective is usually to analyze the performance of a specific policy. Here, an efficient
policy is one whose expected performance is either optimal or optimal within a constant
factor.1 Algorithmic queueing theory consists of the following steps:

1The expected performance of a policy is the expected value of the performance over all possible inputs
(i.e., demand arrival sequences). A policy performs within a constant factor κ of the optimal if the ratio
between the policy’s expected performance and the optimal expected performance is upper bounded by κ.

18



1. queueing model of the robotic system and analysis of its structure;

2. establishment of fundamental limitations on performance, independent of algorithms;
and

3. design of algorithms that are either optimal or constant-factor away from optimal,
possibly in specific asymptotic regimes.

Finally, the proposed algorithms are evaluated via numerical, statistical, and experimental
studies, including Monte Carlo comparisons with alternative approaches.

In order to make the model tractable, demands are usually considered “statistically
independent” and their arrival process is assumed stationary (with possibly unknown pa-
rameters). Because these assumptions can be unrealistic in some scenarios, this approach
has its own limitations. Pioneering work in this context is that of Bertsimas and Van
Ryzin [14, 15, 16], who introduced queueing methods to solve the simplest DVR problem
(a vehicle moves along straight lines and visits demands whose time of arrival, location and
on-site service are stochastic; information about demand location is communicated to the
vehicle upon demand arrival); see also the earlier related work [84].

One of the fundamental contributions of this thesis is to show that algorithmic queue-
ing theory, despite the aforementioned disadvantages, is a very useful framework for the
design of routing algorithms for robotic networks and a valuable complement to the online
algorithm approach.

1.3 Contributions of the Thesis

The objective of this thesis is to develop a joint algorithmic and queueing approach to
the design of cooperative control and task allocation strategies for networks of uninhabited
vehicles required to operate in dynamic and uncertain environments. By leveraging on
the algorithmic queueing theory approach introduced in [14, 15, 16] and integrating ideas
from dynamics, combinatorial optimization, probability theory, and distributed algorithms,
we develop a systematic approach to tackle complex dynamic routing problems for robotic
networks. The power of algorithmic queueing theory stems from the wide spectrum of
aspects, critical to the routing of robotic networks, for which it enables a rigorous study;
specific examples taken from this thesis include complex models for the demands such as
time constraints, service priorities, and pick-up/delivery locations, and problems concerning
robotic implementation such as adaptivity and decentralized computation.

It is important to emphasize that many of the routing policies proposed in this thesis
can not be analyzed by using standard techniques in queueing theory (this is due to the
fact the the travel times introduce correlations among the service times for the demands);
hence in this dissertation we also introduce novel analysis techniques that merge ideas from
control theory and combinatorics and that are interesting in their own right.

This thesis is divided into two parts. The first part, which includes chapters 3, 4, and 5,
deals with the application of algorithmic queueing theory to DVR problems with complex
demand models. The second part includes chapters 6 and 7, and deals with the study of
vehicle routing policies that are specifically tailored to large-scale robotic networks. The
contributions of each chapter can be summarized as follows.

Chapter 2: Preliminaries. In this chapter we first introduce some notation. Then, we
review some basic results in probability theory, computational geometry, locational
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optimization and combinatorics on which we will rely throughout the thesis. Finally,
we review the m-vehicle Dynamic Traveling Repairman Problem, which paved the
way for the algorithmic queueing theory approach.

Chapter 3: DVR with Stochastic Time Constraints. In this chapter we study time-
constrained DVR problems where demands have deadlines on their waiting times.
Surprisingly, little is known about time-constrained versions of DVR problems, despite
their practical relevance. The purpose of this chapter is to fill this gap. Specifically,
we study the following problem: m vehicles operating in a bounded environment and
traveling with bounded velocity must service demands whose time of arrival, location
and on-site service are stochastic; moreover, once a demand arrives, it remains active
for a (possibly stochastic) amount of time, and then expires. An active demand is
successfully serviced when one of the vehicles visits its location before its deadline
and provides the required on-site service. The aim is to find the minimum number of
vehicles needed to ensure that the long-time fraction of demands that are successfully
serviced is larger than a desired value φd ∈ (0, 1), and to determine the policy the
vehicles should execute to ensure that such objective is attained. Our contributions
are threefold. First, we carefully formulate this problem by also taking into account
the possible types of available information (e.g., the deadlines). In setting up the
problem, we prove some ergodicity results that are interesting in their own right.
Second, by using a variety of techniques from geometric probability, we establish a
lower bound on the optimal number of vehicles for a given level of service quality
(i.e., φd). In deriving the lower bound, we introduce a novel type of facility location
problem, which we call the m-Location Problem with Impatient Customers (m-LPIC),
and for which we provide some analysis and algorithms. Third, we analyze two service
policies: we (i) show that one of the proposed policies is optimal in light load (i.e.,
when the arrival rate is small); (ii) derive an analytical upper bound on the number
of vehicles needed by one of the two policies to achieve a given service quality; (iii)
find that if the on-site service requirement is “negligible”, the minimum number of
vehicles is O(

√
λ), where λ is the arrival rate for the demands; (iv) prove that one

of the proposed policies is within a small factor of the optimal when φd is close to
one, the system is in heavy load (i.e., the arrival rate is large), and the deadlines are
deterministic.

Chapter 4: DVR with Priority Classes. In this chapter we study a DVR problem in
which there are multiple priority classes of service demands. Demands belonging to
multiple priority classes arrive in the environment randomly over time and require
a random amount of on-site service that is characteristic of the class. To service a
demand, one of m vehicles must travel to the demand location and remain there for
the required on-site service time. The quality of service provided to each class is
given by the expected delay between the arrival of a demand in the class, and that
demand’s service completion. The goal is to design a routing policy for the service
vehicles which minimizes a convex combination of the delays for each class. This
problem has important applications in areas such as UAV surveillance, where targets
are given different priority levels based on their urgency or potential importance [11].
First, we derive a lower bound on the achievable values of the convex combination
of delays. Second, we propose a novel policy, which we call SQ policy, in which each
class of demands is served separately from the others. We show that in heavy load
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the policy performs within a constant factor 2n2 of the lower bound, where n is the
number of classes. Thus, the constant factor is independent of the number of vehicles,
the arrival rates of demands, the on-site service times, and the convex combination
coefficients. Finally, we present an improvement on the SQ policy in which classes
of similar priority are merged together. We also perform extensive simulations and
introduce an effective heuristic improvement called the tube heuristic.

Chapter 5: DVR in Transportation Systems. Transportation on demand (TOD) sys-
tems, where users generate requests for transportation from a pick-up point to a deliv-
ery point, are already very popular and are expected to increase in usage dramatically
as the inconvenience of privately-owned cars in metropolitan areas becomes excessive.
Routing service vehicles through customers is usually accomplished with heuristic
algorithms. In this chapter we study TOD systems in the form of a unit-capacity,
multiple-vehicle dynamic pick-up and delivery problem, whereby pick-up requests ar-
rive according to a Poisson process and are randomly located according to a general
probability density. Corresponding delivery locations are also randomly distributed
according to a general probability density, and a number of unit-capacity vehicles must
transport demands from their pick-up locations to their delivery locations. First, we
derive insightful fundamental bounds on the steady-state waiting times for the de-
mands, and then we devise constant-factor optimal dynamic routing policies that rely
on the repeated solution of traveling salesman and bipartite matching problems.

Chapter 6: Spatially Distributed Algorithms for Environment Partitioning. The
best previously known control policies for DVR problems rely on centralized task as-
signment and are not robust against changes in the environment, in particular changes
in load conditions; therefore, they are of limited applicability in scenarios involving
ad hoc networks of autonomous vehicles operating in a time-varying environment.
In this chapter, by blending ideas from algebraic topology and control theory, we
devise spatially distributed algorithms for environment partitioning that will be piv-
otal to design distributed routing policies for DVR problems. The application of the
algorithms developed in this chapter to DVR problems is discussed in chapter 7.

The distributed partitioning algorithms we present in this chapter are indeed useful
beyond their application to DVR problems, since they allow a mobile robotic network
to equitably share the workload among its members in a wide variety of scenarios.

Chapter 7: Adaptive and Distributed Algorithms for DVR. In this chapter we lever-
age on the spatially distributed algorithms developed in chapter 6 to obtain adaptive
and distributed algorithms for DVR problems, in particular for the m-vehicle Dynamic
Traveling Repairman Problem (m-DTRP).

Specifically, the contributions of this chapter are as follows. First, we present a new
class of unbiased policies for the 1-DTRP. In particular, we propose the Divide &
Conquer (DC) policy, whose performance depends on a design parameter r ∈ N. If
r → +∞, the policy is (i) provably optimal both in light- and in heavy-load conditions,
and (ii) adaptive with respect to changes in the load conditions and in the statistics of
the on-site service requirement; if, instead, r = 1, the policy is (i) provably optimal in
light-load conditions and within a factor 2 of the optimal in heavy-load conditions, and
(ii) adaptive with respect to all problem data, in particular, and perhaps surprisingly,
it does not require any knowledge about the demand generation process. Moreover,
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by applying ideas of receding-horizon control to dynamic vehicle routing problems, we
introduce the Receding Horizon (RH) policy, that also does not require any knowledge
about the demand generation process; we show that the RH policy is optimal in light-
load and stable in any load condition, and we heuristically argue that its performance
is close to optimal in heavy-load conditions (in particular, we heuristically argue
that the RH policy is the best available unbiased and adaptive policy for the 1-
DTRP). Second, we show that specific partitioning policies, whereby the environment
is partitioned among the vehicles and each vehicle follows a certain set of rules in its
own region, are optimal in heavy-load conditions. Finally, by combining the DC policy
with the spatially distributed algorithms for environment partitioning developed in
chapter 6, we design a routing policy for the m-DTRP (called m-DC policy) that (i) is
spatially distributed, scalable to large networks, and adaptive to network changes, (ii)
is within a constant-factor of the optimal performance in heavy-load conditions (in
particular, it is optimal when demands are uniformly dispersed over the environment
or when the average on-site service time requirement is negligible) and stabilizes the
system in any load condition. Here, by network changes we mean changes in the
number of vehicles, in the arrival rate of demands, and in the characterization of the
on-site service requirement.

Chapter 8: Conclusion In this final chapter we draw our conclusions, and present some
ideas for future research.
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Chapter 2

Preliminaries

In this chapter we first introduce some notation. Then, we review some basic results in
probability theory, computational geometry, locational optimization and combinatorics on
which we will rely throughout this thesis. Concepts that, instead, are specific to single
chapters will be presented at the beginning of those chapters. Finally, we review the m-
vehicle Dynamic Traveling Repairman Problem, which paved the way for the algorithmic
queueing theory approach.

2.1 Notation

We let N0, N, R, R≥0, and R>0 denote the set of nonnegative integers, the set of positive
integers, the set of real numbers, the set of nonnegative reals number, and the set of positive
reals numbers, respectively. Let ‖·‖ denote the Euclidean norm. Let E be a compact, convex
subset of Rd, d ∈ N. We denote the boundary of E as ∂E and the Lebesgue measure of E as
|E|. We define the diameter of E as: diam(E) .= sup{||p− q|| | p, q ∈ E}. The distance from
a point x to a set S is defined as dist(x,S) .= infp∈S ‖x− p‖. We define Im

.= {1, 2, . . . ,m}.
Let G = (g1, . . . , gm) ⊂ Em denote the location of m points.

For h, g : N → R≥0, we say that h ∈ O(g) (resp., h ∈ Ω(g)) if there exist n0 ∈ N and
K ∈ R>0 (resp., k ∈ R>0) such that h(n) ≤ Kg(n) for all n ≥ n0 (resp., h(n) ≥ kg(n) for
all n ≥ n0). If h ∈ O(g) and h ∈ Ω(g), then we use the notation h ∈ Θ(g).

2.2 Some Basic Definitions and Facts in Probability Theory

If X and Y are two random variables defined on the same probability space, then X is almost
surely larger than Y if and only if P [X ≥ Y ] = 1; X is surely larger than Y if and only if
X(ω) ≥ Y (ω) for all samples ω ∈ Ω, with Ω being the sample space. A sequence of random
variables {Yj ; j ∈ N0} converges almost surely to a random variable Y if and only if the event
{ω ∈ Ω : limj→+∞ Yj(ω) = Y (ω)}, where Ω is the sample space, has probability 1. For any
nonnegative, real-valued random variable Y , one can show that E [Y ] =

∫ +∞
0 P [Y > y] dy.

Suppose h(·) is a convex function and Y is a random variable, then Jensen’s inequality states
that E [h(Y )] > h(E [Y ]), provided both expectations exist. Finally, if X is an integrable
random variable (i.e., a random variable satisfying E [|X|] < +∞) and Y is any random
variable, not necessarily integrable, on the same probability space, then E [X] = E [E [X|Y ]].
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2.3 Computational Geometry

2.3.1 Partitions

Let E ⊂ Rd be a bounded, convex set. An m-partition of E (where m ∈ N) is a collection
of m closed subsets {Ek}mk=1 with disjoint interiors, whose union is E . A partition {Ek}mk=1

is convex if each Ek is convex.

2.3.2 Equitable partitions

Given a measurable function f : E → R>0, an m-partition {Ek}mk=1 is equitable with respect
to f if

∫
Ek f(x) dx =

∫
E f(x) dx/m for all k ∈ {1, . . . ,m}. Similarly, given two measurable

functions fj : E → R>0, j ∈ {1, 2}, an m-partition {Ek}mk=1 is simultaneously equitable with
respect to f1 and f2 if

∫
Ek fj(x) dx =

∫
E fj(x) dx/m for all k ∈ {1, . . . ,m} and j ∈ {1, 2}.

Theorem 12 in [17] and Corollary 3 in [85] show that, given two measurable functions
fj : E → R>0, j ∈ {1, 2}, there always exists an m-partition of E that is simultaneously
equitable with respect to f1 and f2 and where the subsets Ek are convex.

2.3.3 Voronoi diagrams and power diagrams

We refer the reader to [72] and [48] for comprehensive treatments, respectively, of Voronoi
diagrams and power diagrams, which are special types of partitions. Assume, first, that G
is an ordered set of distinct points in E . The Voronoi diagram V(G) = (V1(G), . . . , Vm(G))
of E generated by points G = (g1, . . . , gm) is defined by

Vi(G) = {x ∈ E| ‖x− gi‖ ≤ ‖x− gj‖, ∀j 6= i, j ∈ Im}. (2.1)

We refer to G as the set of generators of V(G), and to Vi(G) as the Voronoi cell or region
of dominance of the ith generator. For gi, gj ∈ G, i 6= j, we define the bisector between gi
and gj as b(gi, gj) = {x ∈ E| ‖x−gi‖ = ‖x−gj‖}. The face b(gi, gj) bisects the line segment
joining gi and gj , and this line segment is orthogonal to the face (Perpendicular Bisector
Property). The bisector divides E into two convex subsets, and leads to the definition of
the set D(gi, gj) = {x ∈ E| ‖x − gi‖ ≤ ‖x − gj‖}; we refer to D(gi, gj) as the dominance
region of gi over gj . Then, the Voronoi partition V(G) can be equivalently defined as
Vi(G) =

⋂
j∈Im\{i}D(gi, gj). This second definition clearly shows that each Voronoi cell is

a convex set. Indeed, a Voronoi diagram of E is a convex partition of E (see Figure 2-1(a)).
The Voronoi diagram of an ordered set of possibly coincident points is not well-defined. We
define

Γcoinc = {(g1, . . . , gm) ∈ Em | gi = gj for some i 6= j ∈ {1, . . . ,m}}. (2.2)

Assume, now, that each point gi ∈ G has assigned an individual weight wi ∈ R, i ∈ Im;
let W = (w1, . . . , wm). We define the power distance

dP (x, gi;wi)
.= ‖x− gi‖2 − wi. (2.3)

We refer to the pair (gi, wi) as a power point. We define

GW
.=
(

(g1, w1), . . . , (gm, wm)
)
.

Two power points (gi, wi) and (gj , wj) are coincident if gi = gj and wi = wj . Assume, first,
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that GW is an ordered set of distinct power points. Similarly as before, the power diagram
V(GW ) = (V1(GW ), . . . , Vm(GW )) of E generated by power points

(
(g1, w1), . . . , (gm, wm)

)
is defined by

Vi(GW ) = {x ∈ E| ‖x− gi‖2 − wi ≤ ‖x− gj‖2 − wj , ∀j 6= i, j ∈ Im}. (2.4)

We refer to GW as the set of power generators of V(GW ), and to Vi(GW ) as the power cell
or region of dominance of the ith power generator; moreover we call gi and wi, respectively,
the position and the weight of the power generator (gi, wi). Notice that, when all weights
are the same, the power diagram of E coincides with the Voronoi diagram of E . As before,
power diagrams can be defined as intersection of convex sets; thus, a power diagram is, as
well, a convex partition of E . Indeed, power diagrams are the generalized Voronoi diagrams
that have the strongest similarities to the original diagrams [8]. There are some differences,
though. First, a power cell might be empty. Second, gi might not be in its power cell (see
Figure 2-1(b)). Finally, the bisector of (gi, wi) and (gj , wj), i 6= j, is

b
(

(gi, wi), (gj , wj)
)

= {x ∈ E| (gj − gi)Tx =
1
2

(‖gj‖2 − ‖gi‖2 + wi − wj)}. (2.5)

Hence, b
(

(gi, wi), (gj , wj)
)

is a face orthogonal to the line segment gi gj and passing through
the point g∗ij given by

g∗ij =
‖gj‖2 − ‖gi‖2 + wi − wj

2‖gj − gi‖2
(gj − gi);

this last property means that, by changing weights, it is possible to arbitrarily move the bi-
sector between the positions of two power generators, while still preserving the orthogonality
constraint.

The power diagram of an ordered set of possibly coincident power points is not well-
defined. We define

Γcoinc =
{
GW ∈ (E × R)m | gi = gj and wi = wj for some i 6= j ∈ {1, . . . ,m}

}
. (2.6)

Notice that we used the same symbol as in equation (2.2): the meaning will be clear from
the context.

For simplicity, we will refer to Vi(G) (Vi(GW )) as Vi. When the two Voronoi (power)
cells Vi and Vj are adjacent (i.e., they share a face), gi ((gi, wi)) is called a Voronoi (power)
neighbor of gj ((gj , wj)), and vice-versa. The set of indices of the Voronoi (power) neighbors
of gi ((gi, wi)) is denoted by Ni. We also define the (i, j)-face as ∆ij

.= Vi ∩ Vj .

2.3.4 The continuous multi-median problem

Given a set E ⊂ Rd and a vector G = (g1, . . . , gm) of m distinct points in E , the expected
distance between a random point x, generated according to a probability density function
f , and the closest point in G is given by

Hm(G, E) .= E
[

min
k∈{1,...,m}

‖gk − x‖
]

=
m∑
k=1

∫
Vk(G)

‖gk − x‖f(x) dx,
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Figure 2-1: Voronoi diagrams and power diagrams.

where V(G) = (V1(G), . . . , Vm(G)) is the Voronoi partition of the set E generated by the
points G. The function Hm is known in the locational optimization literature as the con-
tinuous Weber function or the continuous multi-median function; see [1, 39] and references
therein.

The m-median of the set E , with respect to the measure induced by f , is the global
minimizer

G∗m(E) = arg min
G∈Em

Hm(G, E).

We let H∗m(E) = Hm(G∗m(E), E) be the global minimum of Hm. It is straightforward to
show that the map G 7→ H1(G, E) is differentiable and strictly convex on E . Therefore, it
is a simple computational task to compute G∗1(E). It is convenient to refer to G∗1(E) as the
median of E . On the other hand, when m > 1, the map G 7→ Hm(G, E) is differentiable
(whenever (g1, . . . , gm) are distinct) but not convex, thus making the solution of the con-
tinuous m-median problem hard in the general case. It is known [1, 65] that the discrete
version of the m-median problem is NP-hard for d ≥ 2. The set of critical points of Hm

contains all configurations (g1, . . . , gm) with the property that each point gk is the generator
of the Voronoi cell Vk(G) as well as the median of Vk(G) (we refer to such Voronoi diagrams
as median Voronoi diagrams); in particular, the global minimum of Hm must be one of
these configurations.

2.4 Combinatorics

2.4.1 The traveling salesman problem in the Euclidean plane

The Euclidean Traveling Salesman Problem (for short, TSP) is formulated as follows: given
a set Q of n points in Rd, find a minimum-length tour (i.e., a cycle that visits all nodes
exactly once) of Q; the length of a tour is the sum of all Euclidean distances on the tour. Let

26



TSP(Q) denote the minimum length of a tour through all the points in Q; by convention,
TSP(∅) = 0. Assume that the locations of the n points are random variables independently
and identically distributed in a compact set E ; in [96] it is shown that there exists a constant
βTSP,d such that

lim
n→+∞

E [TSP(Q)]
n1−1/d

= βTSP,d

∫
E
f̄1−1/d(x) dx, (2.7)

where f̄ is the density of the absolutely continuous part of the point distribution. For
the case d = 2, the constant βTSP,2 has been estimated numerically as βTSP,2 ' 0.7120 ±
0.0002 [83]. The constant βTSP,3 has been estimated numerically as βTSP,3 ≈ 0.6979 ±
0.0002, [83]. In this thesis we will refer to βTSP,2 and βTSP,3 simply as βTSP: the meaning
will be clear from the context. Notice that the limit in equation (2.7) holds for all compact
sets: the shape of the set only affects the convergence rate. According to [58], if E is a
“fairly compact and fairly convex” set in the plane, then equation (2.7) provides a “good”
estimate of the expected TSP tour length for values of n as low as 15.

Remarkably, the asymptotic average cost of the stochastic TSP for uniform point distri-
butions is an upper bound on the asymptotic average cost for general point distributions:
i.e.,

lim
n→+∞

E [TSP(Q)]
n1−1/d

≤ βTSP,d|E|1/d,

where |E| is the hypervolume of E ; this follows directly from an application of Jensen’s
inequality to the concave function g(x) = x1− 1

d , x ∈ R≥0 and d ∈ N, in the right hand side
of (2.7) ∫

E
f̄1−1/d(x) dx ≤ |E|1/d

(∫
E
f̄(x) dx

)1− 1
d

≤ |E|1/d.

Finally, for any bounded environment E , the following (deterministic) bound holds on
the length of the TSP tour, uniformly on n [96]:

TSP(Q) ≤ βE,d |E|1/d n1−1/d, (2.8)

where |E| is the hypervolume of E and βE,d is a constant generally larger than βTSP,d. We
will refer to βE,d as the characteristic constant of E .

2.4.2 The bipartite matching problem

Let Q be a set of points X1, . . . , Xn, Y1, . . . , Yn that are i.i.d. in a compact set E ⊂ Rd,
d ≥ 3, and distributed according to a density f . Let BM(Q) = minσ

∑n
i=1 ‖Xi − Yσ(i)‖

denote the optimal bipartite matching of the X and Y points, where σ ranges over all
permutations of the integers 1, 2, . . . , n. In [38] it is shown that there exists a constant βM,d

such that
lim

n→+∞

E [BM(Q)]
n1−1/d

= βM,d

∫
E
f̄1−1/d(x) dx. (2.9)

The constant βM,3 has been estimated numerically as βM,3 ≈ 0.7080± 0.0002, [47]. In this
thesis we will refer to βM,3 simply as βM.
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2.4.3 Tools for solving TSPs

The decision version of the TSP belongs to the class of NP-complete problems, which
suggests that there is no general algorithm capable of finding the optimal tour in an amount
of time polynomial in the size of the input. Even though the exact optimal solution of a
large TSP can be very hard to compute, several exact and heuristic algorithms and software
tools are available for the numerical solution of TSPs.

The most advanced TSP solver to date is arguably concorde [3]. Polynomial-time
algorithms are available for constant-factor approximations of TSP solutions, among which
we mention Christofides’ [29]. On a more theoretical side, Arora [4] proved the existence
of polynomial-time approximation schemes for the TSP, providing a (1 + ε) constant-factor
approximation for any ε > 0.

A modified version of the Lin-Kernighan heuristic [61] is implemented in linkern; this
powerful solver yields approximations in the order of 5% of the optimal tour cost very
quickly for many instances. For example, in our numerical experiments on a machine with
a 2GHz Intel Core Duo processor, approximations of random TSPs with 10,000 points
typically required about twenty seconds of CPU time.1

In this thesis, we will present algorithms that require on-line solutions of possibly large
TSPs. Practical implementations of the algorithms will rely on heuristics, such as Lin-
Kernighan’s or Christofides’. If a constant-factor approximation algorithm is used, the
effect on the asymptotic performance guarantees of our algorithms can be simply modeled
as a scaling of the constant βTSP,d.

2.5 Algorithmic Queueing Theory for DVR

Algorithmic queueing theory embeds DVR problems within the framework of queueing
theory and consists of three main steps: (i) queueing model of the DVR problem, (ii) es-
tablishment of fundamental limitations on performance; and (iii) design of algorithms that
enjoy performance guarantees. In this section we review the pioneering work of Bertsimas
and Van Ryzin [14, 15, 16], who introduced queueing methods to solve the simplest DVR
problem: a vehicle moves along straight lines and visits demands whose time of arrival, loca-
tion and on-site service are stochastic; information about demand location is communicated
to the vehicle upon demand arrival. This problem is called the m-vehicle Dynamic Travel-
ing Repairman Problem, and its analysis paved the way for the development of algorithmic
queueing theory.

2.5.1 A basic queueing model for DVR

Consider m vehicles free to move, traveling at a constant velocity v, within a compact,
convex environment E ⊂ R2 (in chapter 5 we will also consider the case E ⊂ R3). The
vehicles are identical, and have unlimited range and demand servicing capacity. Demands
are generated according to a homogeneous (i.e., time-invariant) spatio-temporal Poisson
process2, with time intensity λ ∈ R>0, and spatial density f : E → R>0. In other words,

1Both concorde and linkern are freely available for academic research use at
www.tsp.gatech.edu/concorde/index.html.

2There are three main reasons behind the choice of modeling the demand arrival process with a Poisson
process: First, the system we deal with is a spatial queueing system, and the arrival process to a queueing
system is often well approximated by a Poisson process (see, e.g., [58]). Second, the Poisson process leads
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demands arrive to E according to a Poisson process with intensity λ, and their locations {Xj ;
j ∈ N0} are i.i.d. (i.e., independent and identically distributed) and distributed according
to a density f whose support is E . A demand’s location becomes known (is realized) at its
arrival epoch; thus, at time t we know with certainty the locations of demands that arrived
prior to time t, but future demand locations form an i.i.d. sequence. The density f satisfies:

P [Xj ∈ S] =
∫
S
f(x) dx ∀S ⊆ E , and

∫
E
f(x) dx = 1.

We assume that the number of initial outstanding demands is a random variable with finite
first and second moments.

Each demand j (demands are labeled in an increasing order with respect to time of
arrival) requires an on-site service time sj ≥ 0 that is i.i.d. and generally distributed with
finite first and second moments denoted by s̄ and s2 (we also assume s̄ > 0). A realized
demand is removed from the system after one of the vehicles has completed its on-site
service. We define the load factor % .= λs̄/m.

The system time of demand j, denoted by Tj , is defined as the elapsed time between the
arrival of demand j and the time one of the vehicles completes its service. The waiting time
of demand j, Wj , is defined by Wj = Tj − sj . The steady-state system time is defined by
T
.= lim supj→∞ E [Tj ]. A policy for routing the vehicles is said to be stable if the expected

number of demands in the system is uniformly bounded at all times. A necessary condition
for the existence of a stable policy is that % < 1. When we refer to light-load conditions, we
consider the case %→ 0+, in the sense that λ→ 0+; when we refer to heavy-load conditions,
we consider the case %→ 1−, in the sense that λ→ (m/s̄)−.

Let P be the set of all causal, stable, and stationary routing policies and T π be the
system time of a particular policy π ∈ P. The problem is to find a policy π∗ ∈ P (if one
exists) such that

T π∗ = inf
π∈P

T π
.= T
∗
.

This problem is known as the m-vehicle Dynamic Traveling Repairman Problem (m-
DTRP), and has been introduced and studied by Bertsimas and Van Ryzin in [14, 15, 16].

In general, it is difficult to characterize the optimal achievable performance T ∗ and to
compute the optimal policy π∗ for arbitrary values of the problem parameters λ, m, etc. It
is instead possible and useful to consider particular ranges of parameter values. Specifically,
in [14, 15, 16, 108], lower bounds for the optimal steady-state system time are derived for
the light-load case (i.e., %→ 0+), and for the heavy-load case (i.e., %→ 1−). Subsequently,
policies are designed for these two limiting regimes, and their performance is compared to
the lower bounds.

2.5.2 Lower bounds on the optimal system time

For the light-load case, a tight lower bound on the system time is derived in [15]. In the
light-load case, the lower bound on the system time is strongly related to the solution of
the m-median problem:

T
∗ ≥ 1

v
H∗m(E) + s̄, as %→ 0+. (2.10)

to a model that is analytically tractable. Third, the Poisson process, being “the most random” way to
distribute events in time, leads to useful “worst-case” scenario evaluations (worst-case with respect to the
possible types of arrival processes).

29



The bound is tight: there exist policies whose system times, in the limit %→ 0+, attain this
bound; we present such asymptotically optimal policies for the light-load case in section
2.5.3.

Two lower bounds exist for the heavy-load case [16, 108]. To present them, we need two
definitions.

Definition 2.5.0.1. Let X be the location of a randomly chosen demand and W be its
waiting time. A policy π is said to be

1. spatially unbiased if for every pair of sets S1, S2 ⊆ E

E [W |X ∈ S1] = E [W |X ∈ S2]; and

2. spatially biased if there exists sets S1, S2 ⊆ E such that

E [W |X ∈ S1] > E [W |X ∈ S2].

Within the class in P of spatially-unbiased policies the optimal system time T ∗U is lower
bounded by

T
∗
U ≥

β2
TSP

2
λ
[∫
E f

1/2(x)dx
]2

m2 v2 (1− %)2
as %→ 1−. (2.11)

Within the class in P of spatially-biased policies the optimal system time T
∗
B is lower

bounded by

T
∗
B ≥

β2
TSP

2
λ
[∫
E f

2/3(x)dx
]3

m2 v2 (1− %)2
as %→ 1−. (2.12)

Both bounds (2.11) and (2.12) are tight: there exist policies whose system times, in the limit
% → 1−, attain these bounds; therefore the inequalities in (2.11) and (2.12) should indeed
be replaced by equalities. We present asymptotically optimal policies for the heavy-load
case in section 2.5.3. It is shown in [16] that the lower bound in equation (2.12) is always
lower than or equal to the lower bound in equation (2.11) for all densities f .

We conclude with some remarks.

Remark 2.5.1. In equations (2.11) and (2.12), the right-hand side approaches +∞ as
% → 1−. Thus, one should more formally write the inequalities with T

∗(1 − %)2 on the
left-hand side, so that the right-hand side is finite. However, this makes the presentation
less readable, and thus in this thesis we adhere to the less formal but more transparent style
of equations (2.11) and (2.12). (This is the style generally used in the literature on the
DTRP, see, e.g., [16] Section 4.)

Remark 2.5.2. It is possible to show (see [16], Proposition 1) that a uniform spatial density
function leads to the worst possible performance and that any deviation from uniformity
in the demand distribution will strictly lower the optimal mean system time in both the
unbiased and biased case. Additionally, allowing biased service results in a strict reduction
of the optimal expected system time for any non-uniform density f . Finally, when the
density is uniform there is nothing to be gained by providing biased service.

Remark 2.5.3. In this thesis we assume that the vehicles have full knowledge about the
spatial demand distribution f . In practice, the vehicles might use an empirical distribution
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function for the demand locations (which might be computed either through a centralized
algorithm or through a distributed algorithm). Since the demand locations are i.i.d., the
empirical distribution will converge to the true distribution, and therefore after a transient
(whose length depends on the arrival rate λ) the vehicles will provide a system time that
agrees with the bounds derived under the assumption that f is known by the vehicles.

2.5.3 Centralized and ad hoc policies

In this section, we present centralized, ad hoc policies that are either optimal in light load
or optimal in heavy load. We say that a policy is ad hoc if it performs “well” only for
a limited range of values of %. In light load, the SQM policy, described below, provides
optimal performance (i.e., lim%→0+ T SQM/T

∗ = 1):

The m Stochastic Queue Median (SQM) Policy [15] — Locate one vehicle
at each of the m median locations for the environment E . When demands arrive,
assign them to the vehicle corresponding to the nearest median location. Have
each vehicle service its respective demands in First-Come, First-Served (FCFS)
order returning to its median after each service is completed.

This policy, although optimal in light load, has two characteristics that limit its application
to robotic networks: First, it quickly becomes unstable as the load increases, i.e., there
exists %c < 1 such that for all % > %c the system time T SQM is infinite (hence, this policy
is ad hoc). Second, a central entity needs to compute the m-median locations and assign
them to the vehicles (hence, it is centralized).

In heavy load, the UTSP policy, described below, provides optimal unbiased performance
(i.e., lim%→1− TUTSP/T

∗
U = 1):

The Unbiased TSP (UTSP) Policy [16] — Let r be a fixed positive, large
integer. From a central point in the interior of E , subdivide the service region
into r wedges E1, . . . , Er such that

∫
Ek f(x)dx = 1/r, k ∈ {1, . . . , r}. Within each

subregion, form sets of size n/r (n is a design parameter). As sets are formed,
deposit them in a queue and service them FCFS with the first available vehicle
by forming a TSP on the set and following it in an arbitrary direction. Optimize
over n (see [16] for details).

It is possible to show that, as %→ 1−,

TUTSP ≤
(

1 +
m

r

) β2
TSP

2
λ
[∫
E f

1/2(x)dx
]2

m2 v2 (1− %)2
; (2.13)

thus, letting r →∞, the lower bound in equation (2.11) is achieved.
In [16] the authors present an optimal biased policy. This policy, called Biased TSP

(BTSP) Policy, relies on an even finer partition of the environment, requires f to be piece-
wise constant, and also depends on a parameter n.

Although both the UTSP and the BTSP policies are optimal within their respective
classes, they have two characteristics that limit their application to robotic networks: First,
in the UTSP policy, to ensure stability, n should be chosen so that (see [16], page 961)

n >
λ2β2

TSP

[∫
E f

1/2(x) dx
]2

m2 v2 (1− %)2
;
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therefore, to ensure stability over a wide range of values of %, the system designer is forced to
select a large value for n. However, if during the execution of the policy the load factor turns
out to be only moderate, demands have to wait for an excessively large set to be formed,
and the overall system performance deteriorates significantly. Similar considerations hold
for the BTSP policy. Hence, these two policies are ad hoc. Second, both policies require
a centralized data structure (the demands’ queue is shared by the vehicles); hence, both
policies are centralized.

32



Part I
DVR with complex demand models
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Chapter 3

DVR with Stochastic Time
Constraints

The routing of robotic vehicles is often dynamic and time-constrained, in the sense that
demands have (possibly stochastic) deadlines on their waiting times. Surveillance missions
by teams of unmanned aerial vehicles are a first clear example; in this case, demands are
targets whose potential hazard has to be assessed. Should the vehicles take too long to reach
the location of the demand, the latter may have escaped and be hard to track. Automatic
delivery of time-critical payloads by mobile robotic networks provides a second example.
Other examples include transportation-on-demand systems, automated refuse collection
trucks, etc.

Routing problems with both a dynamic and a stochastic component have been exten-
sively studied in the last 20 years both in the literature on online algorithms [56, 49] and
in the literature on queueing systems (under the name of Dynamic Traveling Repairman
Problem, see section 2.5); however, little is known about time-constrained versions of DVR
problems, despite their practical relevance. The purpose of this chapter is to fill this gap.
Specifically, by using an algorithmic queueing theory approach, we study the following
problem, which we call the Dynamic Vehicle Routing Problem with Stochastic Time Con-
straints (DVRPSTC): m vehicles operating in a bounded environment and traveling with
bounded velocity must service demands whose time of arrival, location and on-site service
are stochastic; moreover, once a demand arrives, it remains active for a possibly stochastic
and demand-dependant amount of time, and then expires. An active demand is success-
fully serviced when one of the vehicles visits its location before its deadline and provide
the required on-site service. The aim is to find the minimum number of vehicles needed to
ensure that the long-time fraction of demands that are successfully serviced is larger than a
desired value φd ∈ (0, 1), and to determine the policy the vehicles should execute to ensure
that such objective is attained.

Some of the characteristics of the DVRPSTC have been studied in isolation in the
literature. When there is no dynamic component, and all problem data are known with
certainty, the DVRPSTC is closely related to the well-known Vehicle Routing Problem with
Time Windows (VPRTW). The VRPTW has been the subject of intensive research efforts
for both heuristic and exact optimization approaches (see, for example, [94, 36, 99, 20, 21]).
Indeed, the VRPTW is NP-hard; even finding a feasible solution to the VRPTW when
the number of vehicles is fixed is itself an NP-complete problem [86]. Chapter 7 in [99]
provides a comprehensive survey on exact (exponential-time) solution techniques. Because
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of the difficulty of the VRPTW and its wide applicability to real-life situations, many
heuristic solution techniques capable of producing high-quality solutions in limited time
have been proposed; a recent thorough survey on heuristics for the VRPTW can be found
in [20, 21]. The static and deterministic version of the DVRPSTC is also related to the
multiple traveling salesman problem with time windows, which deals with finding optimal
routes for a fleet of vehicles in order to serve a set of locations; lower and upper bounds for
the minimum number of vehicles needed to serve all the locations are found in [68].

When there is no spatial component, i.e., all demands arrive at a specific facility, the
DVRPSTC becomes a queueing problem with impatient (or reneging) customers. Many
papers have studied such queuing problems, especially for their connection with the multi-
million call center industry. Pioneering works include [54] and [34], while more recent
analysis can be found in [95, 9, 19, 60]. In the last few years, there has been a growing
interest in asymptotic analysis [102, 109, 103, 104]. Finally, the DVRPSTC is also related
to coverage problems of both static [107, 50] and mobile [33, 18] sensor networks.

The contributions of this chapter are the following. First, we carefully formulate the
problem by also taking into account the possible types of available information (e.g., the
deadlines). In setting up the problem, we prove some ergodicity results that are interesting
in their own right. Second, by using a variety of techniques from geometric probability,
we establish a lower bound on the optimal number of vehicles for a given level of service
quality (i.e., φd). In deriving the lower bound, we introduce a novel type of facility location
problem, which we call the m-Location Problem with Impatient Customers (m-LPIC), and
for which we provide some analysis and algorithms. Third, we analyze two service policies:
we (i) show that one of the proposed policies is optimal in light load; (ii) derive an analytical
upper bound on the number of vehicles needed by one of the two policies to achieve a given
service quality; (iii) find that if the on-site service requirement is “negligible”, the minimum
number of vehicles is O(

√
λ), where λ is the arrival rate for the demands; (iv) prove that

one of the proposed policies is within a small factor of the optimal when φd is close to one,
the system is in heavy load, and the deadlines are deterministic. The significance of our
results stems from two facts: First, the structural insights into the DVRPSTC provide the
system designer with essential information to build business and strategic planning models
regarding, e.g., fleet sizing and depot locations. Second, our analysis provides directions
and guidelines to route the robotic vehicles once the system is deployed.

The work in this chapter is based on the conference paper [78] and the journal article
[77].

3.1 Regenerative Processes and Stopping Times

In this section, we describe some known concepts about regenerative processes and stopping
times, on which we will rely extensively later in this chapter.

3.1.1 Regenerative processes

Intuitively, a stochastic process {X(t); t ∈ T}, where T = N0 or T = R≥0, is said to be
regenerative if it can be split into independent and identically distributed (i.i.d.) cycles, or,
in other words, if an imbedded renewal process can be found.

More formally, define a renewal sequence to be a sequence {Yj ; j ∈ N} of i.i.d. positive
random variables, and let Sn

.= Y1 + . . . + Yn, n ∈ N, and S0 = 0. A stochastic process
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{X(t); t ∈ T} is said to be regenerative (see [7], page 169) if there exists a T-valued renewal
sequence {Yj ; j ∈ N} with the following property: for each n ∈ N0, the post-Sn process

θSnX
.= (Yn+1, Yn+2, . . . , {X(Sn + t); t ∈ T})

is independent of Y1, . . . , Yn (the cycles) and its distribution does not depend upon n. We
call {Sn; n ∈ N0} the imbedded renewal process and refer to the Sn’s as the regeneration
points.

The power of the concept of regenerative processes lies in the existence of a limiting
distribution under conditions that are very mild and easy to verify. We next provide some
results about discrete-time (i.e. T = N0) regenerative processes, and about a particular class
of continuous-time (i.e. T = R≥0) regenerative processes, namely the class of cumulative
processes.

Limit theorems for discrete-time regenerative processes

In this case we consider T = N0; in particular, the cycles are integer-valued. Before pro-
ceeding, we need the following definition. A discrete probability distribution fk, k ∈ N0,
is said to be periodic (see [97]) if there exists an integer p > 1 such that all fk’s, except,
perhaps, fp, f2p, f3p, . . . , vanish. Often, it is easy to check if a distribution is non-periodic:

Lemma 3.1.1 (Lemma 2 in [97]). A discrete probability distribution fk, k ∈ N0, is non-
periodic if f1 > 0.

Consider a regenerative process {Xj ; j ∈ N0}, with renewal sequence {Yj ; j ∈ N}, and
let Y = Y1 be the first regeneration cycle. The stationary version {X∗j ; j ∈ N0} of the
regenerative process {Xj ; j ∈ N0} is defined by (see [97])

P
[
X∗j ∈ A

]
=

1
E [Y ]

+∞∑
k=0

P [Xj+k ∈ A|Y > k] · P [Y > k], (3.1)

for every j ∈ N0 and every Borel set A.

Theorem 3.1.2 (Adapted from theorem 2 in [97]). Let {Xj ; j ∈ N0} be a nonnegative
regenerative process with first regeneration cycle Y , with E [Y ] < +∞. Then, the station-
ary process given by (3.1) is well defined and has a proper distribution function, which is
independent of n. Moreover,

(i) E [X∗0 ] = E
[∑Y−1

j=0 Xj

]
/E [Y ];

(ii) if fk = P [Y = k], k ∈ N0, is non-periodic, then for every Borel set A,

lim
j→+∞

P [Xj ∈ A] = P [X∗0 ∈ A].

Limit theorems for cumulative processes

Let h : [a, b]→ R be a function and Ξ be the set of partitions ξ: a = x0 < x1 < . . . < xn = b
of the interval [a, b]. Letting

Vh(ξ) =
n∑
k=1

|h(xi)− h(xi−1)|, ξ ∈ Ξ,
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then h is of bounded variation if

Vh(a, b) .= sup
ξ∈Ξ

Vh(ξ) < +∞.

We refer to Vh(a, b) as the total variation of h in the interval [a, b]. It is immediate to prove
the following.

Lemma 3.1.3. If h : [a, b]→ R is monotonic, then h is of bounded variation and

Vh(a, b) = |h(b)− h(a)|.

A continuous-time stochastic process {X(t); t ∈ R≥0} is of bounded variation on [0, t],
t ∈ R>0, if almost all (i.e., except for a set of measure zero) paths are of bounded variation on
[0, t]. An immediate consequence of lemma 3.1.3 is that every process with increasing paths
is of bounded variation on every interval [0, t]. The total variation process {X̃(t); t ∈ R≥0}
associated to the process {X(t); t ∈ R≥0} is defined as follows (see [93, page 262]): X̃(t)
maps every path of process {X(t); t ∈ R≥0} to its total variation in [0, t] (X̃(t) is defined
as identically zero when a path in [0, t] is of unbounded variation).

A particular class of continuous-time regenerative processes is represented by the class
of cumulative processes. A regenerative process {X(t); t ∈ R≥0} is said to be cumulative
relative to the imbedded renewal process {Sn; n ∈ N0} if (see [93, page 262])

(C1) {X(Sn+1)−X(Sn); n ∈ N0} is a sequence of i.i.d. random variables,

(C2) {X(t); t ∈ R≥0} is of bounded variation on every interval [0, t],

(C3) {X̃(Sn+1)− X̃(Sn); n ∈ N0}, is a sequence of i.i.d. random variables (X̃(S0) is taken
equal to zero).

Finally, define
κ̃1

.= E
[
X̃(S1)

]
. (3.2)

Theorem 3.1.4 (adapted from [93], page 262, and [92], theorem 7). If {X(t); t ∈ R≥0} is
a cumulative process relative to the imbedded renewal process {Sn; n ∈ N0}, if X(0) is finite
with probability one, if E [S1] < +∞, and if κ̃1 < +∞, then

lim
t→+∞

X(t)
t

=
E [X(S1)−X(S0)]

E [S1]
,

almost surely.

3.1.2 Stopping times and Wald’s lemma

Let {Fn; n ∈ N0} be a filtration, i.e., a nondecreasing family of σ-fields. A random variable
X is a stopping time with respect to a filtration {Fn; n ∈ N0} if

{X = n} ∈ Fn, for all n ∈ N0.

In other words, for X to be a stopping time, it should be possible to decide whether or not
{X = n} has occurred on the basis of the knowledge of Fn. An important result about
stopping times is represented by the following lemma.
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Lemma 3.1.5 (Wald’s lemma (adapted from proposition A10.2 in [7])). Let X be an
almost surely finite stopping time with respect to {Fn; n ∈ N0}. Further, let A1, A2, . . . be
i.i.d. random variables such that, for any n, An is Fn-measurable and An+1, An+2, . . . are
independent of Fn, and let µ = E [A1]. Then, if A1 ≥ 0, it holds:

E
[∑X

k=1 Ak

]
= µE [X].

3.2 Problem Setup

In this section, we set up the problem we study in this chapter.

3.2.1 The model

Let the workspace E ⊂ R2 be a compact, convex set. A total of m holonomic vehicles
operate in E ; the vehicles are free to move, traveling at a maximum velocity v, within E . The
vehicles are identical, have unlimited range and demand servicing capacity; moreover, each
vehicle is associated with a depot whose location is at gk ∈ E , k ∈ {1, . . . ,m}. Demands
are generated according to a homogeneous (i.e., time-invariant) spatio-temporal Poisson
process, with time intensity λ ∈ R>0, and uniform spatial density over E . In other words,
demands arrive to E according to a Poisson process with intensity λ, and their locations
{Xj ; j ∈ N0} are i.i.d. and distributed according to a uniform density whose support is E ;
moreover, the locations are independent of demands’ arrival times and of vehicles’ positions.
Let {tj ; j ∈ N0} denote the sequence of arrival times of demands; we assume that t0 = 0,
and that the first arrival finds the system empty. Let N(t), t ∈ R≥0, denote the number
of arrivals in [0, t], i.e., N(t) = max{j ∈ N0|tj ≤ t}. Each demand j requires a stochastic
amount of on-site service time sj . A vehicle provides on-site service by staying at the
demand’s location for the entire on-site service time. On-site service is not-interruptible:
once a vehicle starts the service, neither the vehicle can interrupt the service nor the demand
can leave the system before service completion. We assume that the nonnegative on-site
service times {sj ; j ∈ N0} are i.i.d. and generally distributed according to a distribution
function FS(s) with first moment s̄ and maximum value smax ≥ 0.

Each demand j waits for the beginning of its service no longer than a stochastic patience
time Pj . We assume that the nonnegative patience times {Pj ; j ∈ N0} are i.i.d and generally
distributed according to a distribution function FP (p) with first moment P̄ and maximum
value pmax > 0; moreover, we assume that P [Pj = 0] = 0, and that the patience times
are independent of demands’ arrival times, demands’ locations, and vehicles’ positions. A
vehicle can start the on-site service for the jth demand only within the stochastic time
window [tj , tj +Pj). If the on-site service for the jth demand is not started before the time
instant tj +Pj , then the jth demand is considered lost; in other words, such demand leaves
the system and never returns. If, instead, the on-site service for the jth demand is started
before the time instant tj + Pj , then the demand is considered successfully serviced (recall
our assumption that on-site service is not interruptible); we call such demand a successful
demand. The waiting time of demand j, denoted by Wj , is the elapsed time between the
arrival of demand j and the time either one of the vehicles starts its service or such demand
departs from the system due to impatience, whichever happens first. Hence, the jth demand
is considered serviced if and only if Wj < Pj . Finally, let {tsj ; j ∈ N0} denote the sequence
of arrival times of successful demands; note that the sequence {tsj ; j ∈ N0} is a thinning of
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{tj ; j ∈ N0}. Let N s(t), t ∈ R≥0, denote the number of arrivals in [0, t] that will eventually
be serviced, i.e., N s(t) = max{j ∈ N0|tsj ≤ t}.

An instance of the problem is represented by the data vector I = {E , v, λ, FS(s), FP (p)};
the number m of vehicles and their routing policy are, instead, decision variables.

3.2.2 Information structure and control policies

We first describe the information on which a control policy can rely. We identify four types
of information.

Arrival time and Location : we assume that the information on arrivals and locations
of demands is immediately available to control policies.

On-site service : the on-site service requirement of demands may either (i) be available,
(ii) or may be available only through prior statistics, or (iii) may not be available to
control policies.

Patience time : the patience time of demands may either (i) be available, (ii) or may be
available only through prior statistics, or (iii) may not be available to control policies;
however, we assume that pmax (or at least an upper bound on it) is always known.

Departure notification : the information that a demand leaves the system due to impa-
tience may or may not be available to control policies (if the patience time is available,
such information is clearly available).

Hence, several information structures are relevant. The least informative case is when on-
site service requirements, patience times and departure notifications are not available; the
most informative case is when on-site service requirements and patience times are available.

We next define the notion of outstanding demand for different information structures. If
departure notifications are available, a demand is considered outstanding if (i) no vehicle has
yet reached its location, (ii) the demand is still in the system. When departure notifications
are not available, a demand is considered outstanding if (i) the elapsed time from its arrival
is less than pmax (note that pmax is always known by the vehicles), and (ii) no vehicle has
yet reached its location. Note that, in absence of departure notifications, a vehicle will
sometimes reach locations of demands that are no longer in the system.

Given an instance I and a particular information structure, let P be the set of all
causal, stationary, and work-conserving policies. A policy is said to be work-conserving if
(i) when a vehicle has no outstanding (in the above sense) demands to service, it moves
rectilinearly to (or remains at) its depot location, (ii) when there are outstanding demands,
there is at least one vehicle providing service to at least one of them (either on-site or
by traveling). Property (i) is a technical condition needed to ensure that the underlying
stochastic processes are regenerative, while property (ii) is a standard assumption needed
to avoid pathological situations. The system is said to be idling if all vehicles are at their
depot locations and there are no outstanding demands. We assume that initially all vehicles
are at their depots.

We will show in section 3.3 that under any policy belonging to P the stochastic process
{N s(t)/t; t ∈ R≥0} converges almost surely to a constant ; hence we define the arrival rate
of successful demands under a particular policy π ∈ P as

λsπ
.= lim
t→+∞

N s(t)
t

,
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where the limit is an almost-sure limit. We, then, define the success factor of a policy π ∈ P
as

φπ
.=
λsπ
λ

= lim
t→+∞

N s(t)
N(t)

. (3.3)

From its definition, φπ represents the fraction of demands that are successfully serviced;
in particular, φπ ∈ [0, 1], and the larger φπ, the larger the fraction of successfully serviced
demands.

3.2.3 Problem definition

Given an instance I, a particular information structure, and a desired success factor φd ∈
(0, 1), the problem is to determine a vehicle routing policy π∗ that guarantees a success
factor at least as large as φd with the minimum possible number of vehicles. Formally, we
study the following optimization problem OPT :

OPT : min
π∈P

|π|

subject to φπ ≥ φd,
(3.4)

where |π| is the number of vehicles used by π. We let m∗ denote the solution to the
optimization problem OPT .

A particular issue that we will address in this chapter is how the solution to the opti-
mization problem OPT scales with the arrival rate λ. Formally, consider an information
structure and a desired success factor φd ∈ (0, 1); moreover, let I(λ) be a problem instance
where the arrival rate λ is a variable parameter, and let P(λ) be the corresponding set of
admissible policies, parameterized by λ. The solution to the optimization problem OPT is
said to be Ω(g(λ)), where g(λ) : R>0 → R>0, if

lim inf
λ→+∞

m∗(λ)
g(λ)

≥ c, c ∈ R>0.

Similarly, the solution to the optimization problem OPT is said to be O(g(λ)), where
g(λ) : R>0 → R>0, if

lim sup
λ→+∞

m∗(λ)
g(λ)

≤ c, c ∈ R≥0.

The solution to the optimization problem OPT is said to be Θ(g(λ)), where g(λ) : R>0 →
R>0, if it is both Ω(g(λ)) and O(g(λ)).

3.3 Ergodicity, Acceptance Probabilities, and Limit Theo-
rems

A demand that finds the system idling faces a situation probabilistically identical to that of
the first demand. Hence, in our model, all of the relevant stochastic processes (e.g., N s(t)/t)
are regenerative, and the regeneration points are the time instants in which an arrival finds
the system idling.

With the above discussion in mind, consider the following quantities.

• Let {Ci; i ∈ N} be the sequence of successive busy cycles: a busy cycle is the duration
between two successive arrival epochs of demands finding the system idling. The Ci’s
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are i.i.d. random variables on R≥0.

• Let {Bi; i ∈ N} be the sequence of successive busy periods: the busy period is the
part of the busy cycle during which at least one vehicle is providing service (either
by traveling or on-site) to a demand, or it is moving to its depot. The Bi’s are i.i.d.
random variables on R≥0.

• Let {Li; i ∈ N} (or {Lsi ; i ∈ N}) be the number of demands arrived in the system
(or successfully serviced) during the ith busy period, including the one initializing it.
The Li’s (or Lsi ’s) are i.i.d. random variables on N.

In what follows, we use the imbedded renewal processes:{
Γ0 = 0,
Γi = Γi−1 + Ci, i ≥ 1.

(on R≥0)

{
Λ0 = 0,
Λi = Λi−1 + Li, i ≥ 1.

(on N0)

In order to apply the results on regenerative processes, we first have to prove the finite-
ness of busy cycles.

Lemma 3.3.1 (Finiteness of busy cycles). Given an instance I, an information structure,
and a policy belonging to P, we have

E [C1] < +∞.

Proof. From the definitions we have E [C1] = E [B1]+(1/λ), where B1 is the part of the first
regeneration cycle during which the vehicles continuously work, i.e., there is at least one
outstanding demand, or there is at least one vehicle moving to its depot. Note that, if there
are no arrivals during a time interval of length pmax + smax + diam(E)/v, all vehicles will
surely be at their depots after that time interval; in fact, in such a case, by our definition
of work-conserving policy, the last demand is visited no later than pmax, and therefore the
last demand is serviced no later than pmax + smax and all vehicles will be at their depots no
later than pmax + smax + diam(E)/v. Hence, we obtain the inequality, for b ∈ R≥0,

P
[
B1 ≥ b+pmax+smax+ diam(E)

v

]
= P

[
B1 ≥ b+pmax+smax+ diam(E)

v |B1 ≥ b
]

P [B1 ≥ b]

+ P
[
B1 ≥ b+ pmax + smax + diam(E)

v |B1 < b
]

︸ ︷︷ ︸
=0

P [B1 < b]

≤ P
[
at least one arrival in

[
b, b+ pmax + smax + diam(E)

v

)]
P [B1 ≥ b]

=

(
1− exp

(
−λ
(
pmax + smax +

diam(E)
v

)))
P [B1 ≥ b].

(3.5)
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Then, we can bound E [B1] according to

E [B1] =
∫ +∞

0
P [B1 ≥ b] db =

∫ pmax+smax+diam(E)/v

0
P [B1 ≥ b] db

+
∞∑
k=1

∫ (k+1)(pmax+smax+diam(E)/v)

k(pmax+smax+diam(E)/v)
P [B1 ≥ b] db

=
∫ pmax+smax+diam(E)/v

0
P [B1 ≥ b] db

+
∞∑
k=1

∫ pmax+smax+diam(E)/v

0
P [B1 ≥ b+ k (pmax + smax + diam(E)/v)] db

≤
∫ pmax+smax+diam(E)/v

0
P [B1 ≥ b] db

+
∞∑
k=1

∫ pmax+smax+diam(E)/v

0
(1− exp(−λ (pmax + smax + diam(E)/v)))k P [B1 ≥ b] db

< +∞.

Thus, we have E [C1] < +∞.

A simple relation between C1 and L1 is provided by the following lemma.

Lemma 3.3.2. Given an instance I, a particular information structure, and a policy be-
longing to P, we have

E [L1] = λE [C1].

Proof. Let Aj , j ∈ N, be the jth interarrival time (the sequence {Aj ; j ∈ N} is clearly
i.i.d.), and note that (recall that the demand initializing C1 is included in L1, see Figure
3-1)

C1 = A1 + . . .+AL1 .

The idea is to use Wald’s lemma, with L1 acting as a stopping time for the sequence
{Aj ; j ∈ N} (see Figure 3-1). In the remainder of the proof we show that the assumptions
of Wald’s lemma are satisfied.

A2

B1= U*(4)

C1 = A1+A2+A3+A4 

A1 A3 A4

Figure 3-1: A cycle with L1 = 4.

Define Fn, n ∈ N, as the filtration generated by the random variables {Aj}nj=1, {sj}n−1
j=0 ,

{Pj}n−1
j=0 , and {Xj}n−1

j=0 . Note that An+1, An+2, . . . are independent of Fn.
Consider, n, n ∈ N, arrivals to the system and let U∗(n) be the time instant at which

the last vehicle reaches its depot, provided that no new demand arrives during the service
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of such n demands. Note that we can write (see again Figure 3-1)

L1 = inf{j ∈ N|A1 + . . .+Aj > U∗(j)};

since the event {L1 = n} belongs to Fn, L1 can be viewed as a stopping time with respect
to the filtration Fn. L1 is an almost surely finite stopping time. In fact, by using equation
(3.5) we can write

lim
k→+∞

P [B1 ≥ k(pmax + smax + diam(E)/v)]≤ lim
k→+∞

(1−exp(−λ(pmax + smax + diam(E)/v)))k

= 0,

i.e. B1 is almost surely finite; hence L1 is almost surely finite. Hence the assumptions of
Wald’s lemma are satisfied and the claim follows.

Since the busy cycles are finite, we can use the theory of regenerative processes to prove
some fundamental limit theorems. We start with the following theorem about the almost
sure convergence to a constant of the stochastic process {N s(t)/t; t ∈ R≥0}.

Theorem 3.3.3 (Ergodic theorem). Given an instance I, a particular information struc-
ture, and a policy belonging to P, the stochastic process {N s(t)/t; t ∈ R≥0} converges almost
surely to a constant, in particular

lim
t→+∞

N s(t)
t

=
E [Ls1]
E [C1]

, almost surely.

Proof. From the previous discussion, the stochastic process {N s(t)/t; t ∈ R≥0} is regenera-
tive relative to the continuous-time renewal process {Γi; i ∈ N0}. To apply theorem 3.1.4, we
first have to show that {N s(t); t ∈ R≥0} is a cumulative process with respect to {Γi; i ∈ N0}.
Indeed, from the definitions, the sequence {N s(Γi+1)−N s(Γi); i ∈ N0} is a sequence of inde-
pendent, identically distributed random variables; moreover, {N s(t); t ∈ R≥0} is of bounded
variation on every interval [0, t], since its paths are increasing. Finally, since

Ñ s(Γi+1)− Ñ s(Γi) = N s(Γi+1)−N s(Γ0)−N s(Γi) +N s(Γ0) = N s(Γi+1)−N s(Γi),

for every i ∈ N0, we conclude that the sequence {Ñ s(Γi+1) − Ñ s(Γi); i ∈ N} is also a
sequence of independent, identically distributed random variables.

Since {N s(t); t ∈ R≥0} has increasing paths and {N s(t); t ∈ R≥0} is a thinning of
{N(t); t ∈ R≥0}, and by applying lemma 3.3.2, we obtain

κ̃1 = E
[
Ñ s(Γ1)− Ñ s(Γ0)

]
= E [N s(Γ1)−N s(Γ0)]

≤ E [N s(Γ1)] ≤ E [N(Γ1)] = E [L1 + 1] = λE [C1] + 1 < +∞.

Since {N s(t); t ∈ R≥0} is a cumulative process with respect to {Γi; i ∈ N0}, E [Γ1] =
E [C1] < +∞, and κ̃1 < +∞, we can apply theorem 3.1.4 and obtain

lim
t→+∞

N s(t)
t

=
E [N s(Γ1)−N s(Γ0)]

E [Γ1]
;

by noting that E [N s(Γ1)−N s(Γ0)] = E [Ls1] we obtain the claim.
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It is natural to wonder if the optimization problem OPT in equation (3.4) can be
restated in terms of acceptance probabilities, in other words, if the equality

φπ
?= lim

j→∞
Pπ [Wj < Pj ]

holds, where Pπ [Wj < Pj ] is the probability, under a policy π, that the jth demand is
serviced. The following theorem provides an affirmative answer. The usefulness of such
result stems from two facts: (i) on a theoretical level, formulating the problem in terms
of time-averages or limiting probabilities is equivalent, (ii) on a practical level, in some
cases it might be easier to characterize φπ, while in other cases it might be easier to study
limj→∞ Pπ [Wj < Pj ].

Theorem 3.3.4 (Well-posedness). Given an instance I, a particular information structure,
and a policy π belonging to P, the following equality holds:

φπ = lim
j→∞

Pπ [Wj < Pj ], almost surely,

where φπ is defined in equation (3.3).

Proof. In this proof, to keep the notation simple, we avoid the usage of the subscript π. Let
Isj be the indicator random variable

Isj =
{

1 if Wj < Pj ,
0 if Wj = Pj ,

i.e., Isj equals one if the jth demand is successfully serviced. From the previous discussion,
the stochastic process {Isj ; j ∈ N0} is regenerative relative to the discrete-time renewal pro-
cess {Λi; i ∈ N0}, and it is nonnegative. By lemma 3.3.1 and lemma 3.3.2, the expectation of
L1, which is the first regeneration cycle, is finite. Moreover, it clearly holds P [L1 = 1] > 0,
hence by lemma 3.1.1 the distribution of L1 is non-periodic. Let {Is,∗j ; j ∈ N0} be the
stationary version of {Isj ; j ∈ N0}. Then, by applying theorem 3.1.2 part (ii), by noting
that Ĩs,∗0 is an indicator random variable and thus P

[
Is,∗0 = 1

]
= E

[
Is,∗0

]
, and by finally

applying theorem 3.1.2 part (i), we obtain the series of equalities

lim
j→+∞

P
[
Isj = 1

]
= P

[
Is,∗0 = 1

]
= E

[
Is,∗0

]
=

E
[∑L1−1

j=0 Isj

]
E [L1]

;

since E
[∑L1−1

j=0 Isj

]
= E [Ls1], and limj→+∞ P

[
Isj = 1

]
= limj→+∞ P [Wj < Pj ], we get

lim
j→+∞

P [Wj < Pj ] =
E [Ls1]
E [L1]

.

By lemma 3.3.2, E [L1] = λE [C1], hence we obtain, almost surely,

lim
j→+∞

P [Wj < Pj ] =
E [Ls1]
λE [C1]

=
1
λ

lim
t→+∞

N s(t)
t

= φ,

where the second equality follows from theorem 3.3.3, and the third equality follows from
the definition of φ in equation (3.3).
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In the next three sections we provide lower bounds for the solution to the optimization
problem OPT , we analyze two service policies, and we compare their performance to the
lower bounds. Our strategy is to derive lower bounds that are valid under the most infor-
mative information structures, and present and analyze policies for the least informative
information structure. Such approach will allow to find scaling laws for the solution to the
optimization problem OPT , which are valid under each information structure; in particu-
lar, and perhaps surprisingly, we will find that, when the on-site service time is negligible,
the optimal number of vehicles m∗ is Θ(

√
λ) under any information structure and for any

problem instance.

3.4 Light Load Lower Bound

In this section, we present a lower bound for the optimization problem OPT that holds
under any information structure. This lower bound is intimately related to a novel type of
facility location problem, for which we will provide some analysis and algorithms later in
this section.

3.4.1 Lower bound

Let G = (g1, . . . , gm) and define

Rm(G, E) .=
1
|E|

∫
E

(
1− FP

(
min

k∈{1,...,m}

‖x− gk‖
v

))
dx. (3.6)

Theorem 3.4.1. Given an instance I, an information structure, and a desired success
factor φd ∈ (0, 1), the solution to the minimization problem OPT is lower bounded by the
solution to the minimization problem

min
m∈N

m

subject to sup
G∈Em

Rm(G, E) ≥ φd.
(3.7)

Proof. Consider a policy π ∈ P, and assume that m vehicles execute such policy. In the
remainder of the proof, to keep the notation simple, we avoid the usage of the subscript π.
Consider the jth demand, and let g̃k be the position of the kth vehicle when such demand
arrives. Let G̃ = (g̃1, . . . , g̃m). Obviously, the waiting time of demand j is at least as large
as the minimum travel time between its position and the closest vehicle’s position, i.e.,
Wj ≥ mink∈{1,...,m} ‖Xj − g̃k‖/v. The vehicles are located in the workspace according to
some generally unknown cumulative distribution function that depends on the policy; we
denote such distribution function as F : Em → [0, 1]. Then, the acceptance probability
for demand j can be bounded according to (recall that Xj and Pj are, by assumption,
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independent of G̃)

P [Wj < Pj ] ≤ P
[
mink∈{1,...,m}

‖Xj−g̃k‖
v < Pj

]
=
∫
Em

P
[
mink∈{1,...,m}

‖Xj−gk‖
v < Pj | G̃ = G

]
dF (G)

≤
∫
Em

sup
G∈Em

P
[
mink∈{1,...,m}

‖Xj−gk‖
v < Pj

]
dF (G)

= sup
G∈Em

P
[
mink∈{1,...,m}

‖Xj−gk‖
v < Pj

]
= sup
G∈Em

1
|E|

∫
E
P
[
mink∈{1,...,m}

‖Xj−gk‖
v < Pj |Xj = xj

]
dxj

= sup
G∈Em

1
|E|

∫
E

(
1− FP

(
min

k∈{1,...,m}

‖xj − gk‖
v

))
dxj .

Hence, we have φ = limj→+∞ P [Wj < Pj ] ≤ supG∈Em Rm(G, E), and a necessary condition
for φ to be at least as large as φd is that supG∈Em Rm(G, E) ≥ φd.

In section 3.5, we will present a policy that only requires the knowledge of FP and is
optimal in light load, i.e., in the limit %→ 0+. As a matter of fact, in equation (3.7) we have
implicitly introduced a novel type of facility location problem, which is worthy a definition.

Definition 3.4.1.1 (The m-location problem with impatient customers (m-LPIC)). Given
a compact, convex set E ⊂ R2, a cumulative distribution function FP : R → [0, 1], a
constant v > 0, and an integer m ∈ N, the m-location problem with impatient customers is
the optimization problem:

R∗m(E) .= sup
G∈Em

Rm(G, E).

Note that in definition 3.4.1.1, slightly generalizing our model, we did not assume
FP (0) = 0. Next, we provide some analysis and algorithms for the m-LPIC.

3.4.2 Analysis and algorithms for the m-LPIC

In this section we study in some detail the m-location problem with impatient customers.
In particular, we study (i) conditions under which a maximizer exists, (ii) a gradient-ascent
law for the optimization of the objective function Rm (defined in equation (3.6)), and (iii)
the concavity of the problem for the case m = 1. We begin with the following theorem,
which shows that a maximizer for the m-LPIC exists in most practical scenarios.

Theorem 3.4.2 (Existence of a maximizer). Assume that FP is piecewise differentiable on
R≥0 with a finite number of (jump) discontinuities; then, Rm(G, E) has a global maximum.

Proof. The claim is a direct consequence of theorem 2.2 in [32]. By using the monotonicity
of FP , we can write Rm as:

Rm(G, E) = 1− 1
|E|

∫
Em

FP

(
min

k∈{1,...,m}

‖x− gk‖
v

)
dx

= 1 +
1
|E|

∫
Em

max
k∈{1,...,m}

−FP
(
‖x− gk‖

v

)
dx︸ ︷︷ ︸

.
=Lm(G,E)

.
(3.8)
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Since the function −FP is non-increasing and piecewise differentiable with a finite number
of jump discontinuities, part (i) of theorem 2.2 in [32] shows that Lm(G, E) (and hence
Rm(G, E)) is globally Lipschitz on Em. Therefore, Rm(G, E) is continuous on a compact set
(since E is compact), and, by the extreme value theorem, it has a global maximum.

It is also possible to state a differentiability result, which will be the basis for a gradient-
ascent algorithm for the m-LPIC.

Theorem 3.4.3 (Differentiability of Rm(G, E)). Assume that FP is differentiable on R≥0

with derivative equal to fP ; then Rm(G, E) (defined in equation (3.6)) is continuously dif-
ferentiable on Em \ Γcoinc, where for each j ∈ {1, . . . ,m}

∂ Rm
∂gj

(G, E) =
1

v |E|

∫
Vj(G)

fP (‖x− gj‖/v)
x− gj
‖x− gj‖

dx,

where V(G) = (V1(G), · · · , Vm(G)) is the Voronoi diagram generated by G = (g1, . . . , gm).

Proof. By following the same arguments used in the proof of theorem 3.4.2, one can show
that part (ii) of theorem 2.2 in [32] is applicable, and the claim is an immediate consequence.

Remark 3.4.4. By using the results in part (ii) of theorem 2.2 in [32] , theorem 3.4.5 can
be extended to the case where FP is piecewise differentiable on R≥0 with a finite number of
(jump) discontinuities; however, the expression for the gradient is quite cumbersome and is
omitted.

By using theorem 3.4.3 we can readily set up a gradient-ascent law to maximize the
locational optimization function Rm. Specifically, assume that FP is differentiable on R≥0;
then, consider the following continuous gradient-ascent law defined over the set Em (a
discrete version can be similarly stated), where j ∈ {1, . . . ,m}:

ġj(t) =


∂Rm
∂gj

(G(t), E) if G(t) ∈ Em \ Γcoinc and gj(t) ∈ int(E),

prE
(
∂Rm
∂gj

(G(t), E)
)

if G(t) ∈ Em \ Γcoinc and gj(t) ∈ ∂E ,
0 otherwise;

t ∈ R≥0,

(3.9)
where the dot represents differentiation with respect to t, int(E) is the interior of E ,
prE(∂Rm/∂gj) is the orthogonal projection onto E of ∂Rm/∂gj , and we assume that the
Voronoi diagram is updated continuously. The vector field is discontinuous, so we under-
stand the solutions in the Krasovskii’s sense; see [55], [42]. The convergence properties of
the gradient-ascent law in equation (3.9) are summarized by the following theorem.

Theorem 3.4.5 (Convergence of gradient ascent (3.9)). Assume that FP is differentiable
on R≥0; then, for each initial condition G(0) ∈ Em \ Γcoinc, the Krasovskii solution that
exactly satisfies (3.9) monotonically optimizes Rm(G, E) and asymptotically converges to
the union of Γcoinc and the set of critical points of Rm(G, E).

Proof. The proof of this theorem is very similar to the proof of theorem 4.1 in [59]. By
the definition of (3.9), the domain is strongly invariant for the closed-loop system, i.e., any
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trajectory starting in Em remains in the domain. Along any Krasovskii solution of the
system that exactly satisfies (3.9), we have outside Γcoinc

dRm
dt

(G(t), E) =
m∑
j=1

∂Rm
∂gj

ġj ≥ 0;

in particular, dRm/dt is zero only if the solution is at a critical point of Rm on the domain
Em \ Γcoinc. Therefore, while the solution is outside Γcoinc, the function Rm is optimized.
If the solution does not reach Γcoinc, then the application of the LaSalle Invariance prin-
ciple with the function −Rm guarantees that it will reach the set of critical points of Rm.
Otherwise, the solution reaches Γcoinc and stays in it. This concludes the proof.

Hence, under the assumption that FP is differentiable on R≥0, theorems 3.4.2 and 3.4.5
imply that Rm(G, E) has a global maximum, which can be computed, at least locally, with
the gradient-ascent (3.9).

The gradient ascent law (3.9) is not guaranteed to find a global maximum. Indeed, the
m-LPIC is related to the m-median problem (see section 2.3.4), where the objective is to
minimize E

[
mink∈{1,...,m} ‖x− gk‖

]
, and whose discrete version is NP-hard [1]. Since the

m-LPIC can coincide with the m-median problem (for example, when the distribution FP
is uniform and pmax > diam(E)/v), we conclude that the discrete version of the m-LPIC is,
in general, NP-hard.

A possible variant of the gradient ascent (3.9) consists in setting ġj = 0, when G ∈ Γcoinc,
only for the points that are co-located; if the points are co-located, the Voronoi diagram
is computed by considering the co-located points as a single point. Such variant is still
guaranteed to asymptotically converge to the union of Γcoinc and the set of critical points of
Rm(G, E); moreover, it is amenable to distributed implementation, since the gradient ascent
law is then distributed over the dual of the Voronoi diagram, i.e., over the Delaunay graph.
This last feature is especially useful when a large network of robotic vehicles is employed.

The simultaneous application of the existence theorem 3.4.2 and the convergence the-
orem 3.4.5 requires that FP is differentiable on R≥0. Indeed any cumulative distribution
function can be approximated with arbitrary accuracy by means of a differentiable function
which is also monotone, and bounded between 0 and 1 [35]. Therefore, we argue that a
reasonably good solution to the m-LPIC can be computed in most practical scenarios.

Finally, we show in theorem 3.4.6 that if FP is a convex function on R≥0, and m is
equal to 1, the function Rm(G, E) is concave, and therefore it is a simple computational
task to compute its global maximum, provided it exists (its existence is guaranteed under
the assumptions of theorem 3.4.2).

Theorem 3.4.6 (Concavity of Rm(G, E)). Assume that FP is a convex function on R≥0,
and that m = 1; then Rm(G, E) is a concave function.
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Proof. Let y1 and y2 be elements of E and consider an arbitrary µ ∈ [0, 1]; we have

R1(µy1 + (1− µ)y2, E) =
∫
E

(
1− FP

(
‖x− µy1 − (1− µ)y2‖

v

))
1
|E|

dx

=
∫
E

(
1− FP

(
‖µ(x− y1) + (1− µ)(x− y2)‖

v

))
1
|E|

dx

≥
∫
E

(
1− FP

(
µ ‖(x− y1)‖+ (1− µ) ‖(x− y2)‖

v

))
1
|E|

dx

≥
∫
E

(
1−

(
µFP

(
‖(x− y1)‖

v

)
+ (1− µ)FP

(
‖(x− y2)‖

v

)))
1
|E|

dx

= µR1(y1, E) + (1− µ)R1(y2, E),
(3.10)

and the claim is proven.

3.5 An Optimal Light Load Policy

In this section we propose and analyze a policy that requires the least amount of information
and is optimal in light load; this result holds for any instance I in which FP satisfies the
(mild) assumptions of theorem 3.4.2.

3.5.1 The policy

The Nearest-Depot Assignment (NDA) policy is described in algorithm 1 (note that this
policy only requires the knowledge of FP ; moreover, it is required that Rm(G, E) has a
global maximum).

Algorithm 1: Nearest-Depot Assignment (NDA) Policy
Assumes: m service vehicles.
Let G .= arg maxG̃∈Em Rm(G̃, E) (if there are multiple maxima, pick one arbitrarily),1

and let gk be the location of the depot for the kth vehicle, k ∈ {1, . . . ,m}.
Assign a newly arrived demand to the vehicle whose depot is the nearest to that2

demand’s location, and let Qk be the set of outstanding (in the sense of section
3.2.2) demands assigned to vehicle k.
foreach k do3

if the set Qk is empty then4

Move to gk if the vehicle is not at its depot, otherwise stop.5

else6

Visit demands in Qk in first-come, first-served order, by taking the shortest7

path to a demand location.
Repeat.8

Let m∗NDA be the minimum number of vehicles required by the NDA policy to provide
a success factor larger than or equal to φd. Next theorem shows on a theoretical level the
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optimality of the NDA policy in light load, and on a practical level how to compute m∗NDA

for low values of λ. Recall that by light-load condition we refer to the case %→ 0+, in the
sense that λ→ 0+.

Theorem 3.5.1 (Optimality of NDA policy). Consider an instance I with FP satisfying
the assumptions of theorem 3.4.2, and any of the possible information structures. Then, for
almost all values of φd ∈ (0, 1) (i.e., except for a set of measure zero) the NDA policy is
optimal in light load, i.e.,

lim sup
λ→0+

m∗NDA(λ)
m∗(λ)

= 1.

Proof. Define the countable set R .= {R∗m(E) |m ∈ N}; by definition of R∗m(E), we have
infR ≥ 0, and supR ≤ 1. Consider any desired success factor φd ∈ (0, 1) \ R; note
that R is a countable set, hence its measure is zero (in other words, we are leaving out a
zero-measure set of possible success factors).

Assume that m vehicles execute the NDA policy, where m is the solution to the min-
imization problem (3.7). (Note that m is independent of λ.) Consider any λ ∈ R>0, and
define the event:

Ej
.= {all vehicles at their depots at the arrival epoch of the jth demand};

the acceptance probability for demand j satisfies the inequality:

P [Wj < Pj ] ≥ P [Wj < Pj |Ej ] · P [Ej ].

Assume that tj− tj−1, j ∈ N, is larger than pmax + smax + diam(E)/v; then, the jth demand
finds, surely, all vehicles idling at their depots. Hence, we can lower bound P [Ej ], j ∈ N,
according to:

P [Ej ] ≥ P [tj − tj−1 > pmax + smax + diam(E)/v] = exp(−λ(pmax + smax + diam(E)/v));

note that this bound is independent of j. Conditioning on the event Ej , all vehicles are at
their depots, and therefore

P [Wj < Pj |Ej ] = P
[
mink∈{1,...,m}

‖Xj−gk‖
v < Pj

]
= Rm(G, E) = R∗m(E).

Hence, we obtain, for every λ ∈ R>0,

lim
j→+∞

P [Wj < Pj ] ≥ R∗m(E) exp(−λ(pmax + smax + diam(E)/v)).

From the definition of m (see equation (3.7)), and from the fact that φd ∈ (0, 1) \R (hence
R∗m(E) = φd is impossible), it follows that R∗m(E) > φd. Thus, we conclude that, given m

vehicles, there exists Λ > 0 such that φNDA(λ) ≥ φd for all λ < Λ. Therefore, there exists
Λ > 0 such that m ≥ m∗NDA(λ) for all λ < Λ; hence, by applying theorem 3.4.1, we obtain
lim supλ→0+

m∗NDA(λ)

m∗(λ) ≤ lim supλ→0+
m
m = 1. This concludes the proof.

3.5.2 Discussion and simulations

It is natural to wonder if φd → 1− implies m∗ → +∞; we now have the tools to show
that, in general, this is not the case. Consider any of the possible information structures;
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Figure 3-2: Left Figure: Approximate values for R∗m (the bars indicate the range of values
obtained by maximizing Rm). Right Figure: Experimental values of φNDA. The desired
success factor is φd = 0.9.

moreover, let I be an instance where FP satisfies the assumptions of theorem 3.4.2, and
the support of FP is [diam(E)/v, +∞). It is easy to see that R∗1(E) = 1; then, by using
the same arguments as those in the proof of theorem 3.5.1, one can show that there exists
Λ > 0 such that for all λ < Λ it holds m∗ = 1, for any φd ∈ (0 , 1). This example shows
that, in general, φd → 1− does not imply that m∗ → +∞.

We next provide some simulation results for the NDA policy. We consider patience times
that are uniformly distributed in the interval [0, 1.6]; moreover, the arrival rate is λ = 5, the
workspace is the unit square, the vehicles’ velocity is v = 1, and smax = 0 (i.e., there is no
on-site service requirement). Finally, we consider a desired success factor φd = 0.9. To find
a lower bound on the required number of vehicles, we solve the optimization problem (3.7);
in particular, starting from m = 1, we compute R∗m(E) until R∗m(E) ≥ φd. The solution to
the m-LPIC, i.e., the value R∗m(E), is approximately computed for each m by performing
the gradient-ascent law (3.9) starting from 10 random initial conditions. In Figure 3-2, the
left figure shows the range of values that are obtained by maximizing Rm, for several values
of m. It can be noted that for each m the range of values is rather small, in other words the
function Rm appears to have maxima whose values are close to each other. From the left
figure we estimate (recall that we are using approximate values for R∗m(E)) a lower bound
on the required number of vehicles equal to 7. The right figure shows experimental values of
φNDA as a function of the number of agents m. It can be noted that the minimum number
of vehicles required by the NDA policy to ensure a success factor at least as large as φd is 8,
in almost perfect accordance with theorem 3.5.1 (recall that theorem 3.5.1 formally holds
only in the limit λ→ 0+).

3.6 A Policy for Moderate and Heavy Loads

In this section we propose and analyze a policy that is well defined for any information
structure and for any instance I, however it is particularly tailored for the least informative
case and is most effective in moderate and heavy loads. The Batch (B) policy is described
in algorithm 2.

3.6.1 Analysis of the policy

Next theorem provides an upper bound on the minimum number of vehicles required by the
Batch policy to achieve a success factor larger than or equal to φd, under the assumption
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Algorithm 2: Batch (B) Policy
Assumes: m service vehicles.
Partition E into m equal area regions Ek, k ∈ {1, . . . ,m}, and assign one vehicle to1

each region.
Assign a newly arrived demand that falls in Ek to the vehicle responsible for region2

k, and let Qk be the set of locations of outstanding (in the sense of section 3.2.2)
demands assigned to vehicle k.
foreach vehicle-region pair k do3

if the set Qk is empty then4

Move to the median (the “depot”) of Ek if the vehicle is not there, otherwise5

stop.
else6

Compute a TSP tour through all demands in Qk and vehicle’s current7

position.
Travel along the TSP tour, by skipping demands that are no longer8

outstanding.
Repeat.9

smax = 0, and assuming the least informative information structure.

Theorem 3.6.1 (Vehicles required by Batch policy). Given an instance I with smax = 0,
the least informative information structure, and a desired success factor φd ∈ (0, 1), the
Batch policy guarantees a success factor at least as large as φd if the number of vehicles is
equal to or larger than:

m̃
.=min

{
m
∣∣∣ sup
θ∈R>0

(1−FP (θ))(1− 2g(m)/θ)≥φd
}
, (3.11)

where

g(m) .=
1
2

(
β̄2

v2
|E| λ

m2
+

√
β̄4

v4
|E|2 λ

2

m4
+ 8

β̄2

v2
|E| 1

m

)
,

and where β̄ is a constant that depends on the shape of the service regions.

Proof. In the Batch policy each region has equal area, and contains a single vehicle. Thus,
the m vehicle problem in a workspace of area |E| has been turned into m independent single-
vehicle problems, each in a region of area |E|/m, and with Poisson arrivals with rates λ/m.
In particular, the well-posedness theorem 3.3.4 holds within each region. The strategy of
the proof is then as follows: assuming that m vehicles execute the Batch policy, in part
1) we lower bound the limiting acceptance probability within each region; in other words,
we lower bound limjk→+∞ P [Wjk < Pjk ], where jk is the jth demand that falls in region
k. Then, in part 2), we lower bound the limiting acceptance probability within the entire
workspace, and we conclude the proof.

Part 1): Acceptance probability within a region. Consider a region k, k ∈ {1, . . . ,m}.
For simplicity of notation, we shall omit the label k (e.g., instead of jk, we simply use j to
denote the jth demand that falls in region k). We refer to the time instant in which the
vehicle assigned to the region computes the ith, i ∈ N0, TSP tour as the epoch i of the
policy; for i ∈ N, we refer to the time interval between epoch (i − 1) and the time instant
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in which the vehicle visits the last demand along the (i− 1)th TSP tour (possibly skipping
some demands) as the ith busy period, and we denote its length with Bi; similarly, we refer
to the time interval between epoch (i− 1) and epoch i as the ith busy cycle. Let ni, i ∈ N,
be the number of demands arrived during the ith busy period; we let n0 = 0 (see Figure
3-3).

Epoch i

ni new arrivals

Epoch i -1

Bi

Figure 3-3: Definition of epoch and busy period for the Batch policy.

The number of demands’ locations visited during the (i + 1)th busy period, i ∈ N0,
is almost surely no larger than max(ni, 1); in particular, it may happen that during the
ith busy period there are no arrivals, and thus the vehicle waits for a new demand and
immediately provides service to it (recall, also, that the arrival process to each region is
Poisson, and thus the probability of “bulk” arrivals is zero). Define β̄ .= maxk∈{1,...,m} βE,k,
where βE,k is the characteristic constant of region k (see equation (2.8)); by the deterministic
inequality for a TSP tour through n points (see equation (2.8)), we have (recall that the
area of the region is |E|/m, and that smax = 0)

Bi+1≤
β̄

v

√
|E|
m

√
max(ni, 1) + 1, almost surely; (3.12)

the +1 is needed to take into consideration the vehicle’s starting position. By simple
inductive arguments, it is immediate to show that both E [ni] and E

[√
ni
]

are finite; hence,
by taking expectation in equation (3.12), and by applying Jensen’s inequality for concave
functions in the form E

[√
X
]
≤
√

E [X], we get

E [Bi+1] ≤ β̄

v

√
|E|
m

√
E [max(ni, 1)] + 1 ≤ β̄

v

√
|E|
m

√
E [ni] + 2.

By applying the law of iterated expectation, it is easy to show that the expected number
of demands that arrive in the region during the ith busy period, i.e., E [ni], is equal to
(λ/m) E [Bi]. Then, we obtain the following recurrence relation

E [Bi+1] ≤ β̄

v

√
|E|
m

√
λ

m
E [Bi] + 2.

This recurrence relation allows to find an upper bound on lim supi→+∞ E [Bi]; indeed, it is
easy to show that lim supi→+∞ E [Bi] ≤ g(m). We are now in a position to lower bound
the limiting acceptance probability in region k. Consider, in steady state, a random tagged
demand; let Ŵ be its waiting time, and P̂ be its patience time. Moreover, let Î be the epoch
that immediately follows the arrival of the tagged demand. By the law of total probability,
we have, for any θ ∈ R>0,

P
[
Ŵ < P̂

]
≥ P

[
Ŵ < P̂ |BÎ +BÎ+1 < θ

]
P
[
BÎ +BÎ+1 < θ

]
.
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Since, from the definition of the Batch policy, Ŵ ≤ BÎ +BÎ+1 surely, we have

P
[
Ŵ < P̂ |BÎ +BÎ+1 < θ

]
≥ P

[
θ < P̂ |BÎ +BÎ+1 < θ

]
= P

[
θ < P̂

]
= 1− FP (θ);

in the previous chain of inequalities, the removal of the conditioning on the event {BÎ +
BÎ+1 < θ} is possible since, under the least informative information structure, the value of
BÎ + BÎ+1 does not provide any information on the value of P̂ . Then, by collecting the
previous results and applying Markov’s inequality, we obtain

P
[
Ŵ < P̂

]
≥ (1− FP (θ)) P

[
BÎ +BÎ+1 < θ

]
≥ (1− FP (θ))

(
1−

E
[
BÎ
]

+ E
[
BÎ+1

]
θ

)
≥ (1− FP (θ)) (1− 2g(m)/θ).

(3.13)

Since the previous chain of inequalities holds for all θ ∈ R>0, we obtain P
[
Ŵ < P̂

]
≥

supθ∈R>0
(1 − FP (θ)) (1 − 2 g(m)/θ). Hence, we conclude that within region k it holds

limj→+∞ P [Wj < Pj ] ≥ supθ∈R>0
(1− FP (θ)) (1− 2 g(m)/θ).

Part 2): Acceptance probability within the entire environment. From part 1), we have
limjk→+∞ P [Wjk < Pjk ] ≥ supθ∈R>0

(1 − FP (θ)) (1 − 2 g(m)/θ), k ∈ {1, . . . ,m}. Note that
this lower bound holds uniformly across the m regions. Hence, it is immediate to conclude
that the same lower bound holds for the overall system. Since limm→+∞ g(m) = 0, it is
clear that it is always possible to choose m so that φB ≥ φd (recall that P [Pj = 0] = 0);
in particular, a sufficient number of vehicles is given by the solution to the minimization
problem in equation (3.11), and the theorem is proven.

The upper bound in equation (3.11) is valid under the least informative information
structure, and a fortiori it is valid under any information structure. Hence, theorem 3.6.1
is valid under any information structure.

3.6.2 On the constant β̄ and the use of asymptotics

To compute m̃ in equation (3.11), one needs to know, at least approximately, the value
of β̄; it is possible to show that when each region is approximately square-shaped, the
value of β̄ is approximately equal to

√
2 [96, page 765]. Furthermore, when λ is “large”,

one could reasonably use the asymptotic value βTSP ' 0.712 (see Section 2.4.1) to bound
Bi+1; it is then possible to show (the proof only requires minor modifications in the proof
of theorem 3.6.1) that when λ is “large” one can replace g(m) in equation (3.11) with
g̃(m) .= β2

TSPλ|E|/(v2m2).
Using theorem 3.6.1, we next show a scaling law for the minimum number of vehicles.

3.6.3 Scaling law for the minimum number of vehicles

The scaling of the minimum number of vehicles with respect to λ is characterized by the
following theorem.

Theorem 3.6.2 (Scaling law). When smax = 0 the solution to the optimization problem
OPT is O(

√
λ) under any information structure.
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Proof. Define Θ .= {θ ∈ R>0| 1 − FP (θ) > 0}; under the assumptions, the set Θ is not
empty; moreover, we have 0 < sup Θ < +∞. Let θ̄ = (1/2) sup Θ. Then, we have

sup
θ∈R>0

(1− FP (θ)) (1− 2 g(m; λ)/θ) ≥ (1− FP (θ̄)) (1− 2 g(m; λ)/θ̄) .= h(m; λ),

where we have made the dependency on λ explicit. Define (note that 1− FP (θ̄) > 0)

m(λ) .=
⌈√

λ
√
|E| β̄

v
√
δ

⌉
, where δ =

(
1− η φd

1− FP (θ̄)

)
θ̄

2
, η > 1.

It is straightforward to show that there exists Λ such that for all λ > Λ it holds h(m(λ); λ) ≥
φd. Hence we have, for λ > Λ, m̃(λ) ≤ m(λ), where m̃(λ) is defined in theorem 3.6.1. Since
m∗(λ) ≤ m̃(λ), we immediately obtain

lim sup
λ→+∞

m∗(λ)√
λ
≤ lim sup

λ→+∞

m̃(λ)√
λ
≤
√
|E| β̄
v
√
δ
.

Since the Batch policy is well-defined for any information structure, we conclude that when
smax = 0 the solution to the optimization problem OPT is O(

√
λ) under any information

structure.

3.6.4 Simulations

We consider patience times that assume either the value 0.8 with 50% probability, or the
value 1.6 with the remaining 50% probability; in other words, there are two types of de-
mands, and one type is significantly more impatient than the other one. The arrival rate
is λ = 200, the workspace is the unit square, the vehicles’ velocity is v = 1, and smax = 0.
Finally, we consider a desired success factor φd = 0.9. By solving the minimization problem
in equation (3.11) (with g̃(m) instead of g(m) since λ is “large”), we find m̃ = 36. Figure
3-4 shows experimental values of φB as a function of the number of agents m. It can be
noted that when m = m̃ the experimental success factor φB is larger than φd, in accordance
with theorem 3.6.1. However, it is also possible to observe that the Batch policy is able to
guarantee a success factor larger than φd with a number of vehicles as low as 27; this is
expected, since the techniques used in the proof of theorem 3.6.1 (e.g., Markov’s inequality)
lead to a conservative result.
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Figure 3-4: Experimental values of φB. The desired success factor is φd = 0.9.
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3.7 Performance of the Batch Policy with Time Windows

In this section we consider the special case where (i) the on-site service time is negligible,
i.e., smax = 0, (ii) almost all demands are required to be serviced before expiring, i.e.,
φd → 1−, (iii) the system is heavily congested, i.e., λ → +∞, and (iv) the deadlines are
deterministic, i.e., the patience times are deterministic time windows. In this case it is
possible to show that the Batch policy is within a small factor of the optimum in heavy
load. Specifically, we have the following result.

Theorem 3.7.1. Assume an instance I with smax = 0 and deterministic patience times
(i.e., FP (p) is a step function with a single step of magnitude 1), the least informative
information structure, and a desired success factor φd ≈ 1. Then the Batch policy has a
constant factor guarantee:

lim sup
λ→∞

m∗B(λ)
m∗(λ)

≤ 3.78, (3.14)

where m∗B is the minimum number of vehicles required by the Batch policy to provide a
success factor larger than or equal to φd. In particular, for λ large enough, m∗B is upper
bounded by

m̃(λ) .=

⌈
√
λ
(
βTSP

√
2

pmax
+ δ
)⌉

(3.15)

where δ is an arbitrarily small constant.

The proof of theorem 3.7.1 relies on arguments similar to those presented in the proof
of theorem 3.6.1. The details can be found in the journal article [77].

3.8 On the Assumptions of the Model

In light of our analysis and results, we discuss the assumptions we made in setting up the
problem.

Poisson arrivals : The assumption of Poisson arrivals is exploited in section 3.3 (where the
i.i.d. property of the inter-arrival intervals is necessary to establish the regenerative
nature of the relevant processes), in equation (3.12) (where we need the property
that the probability of bulk arrivals is zero), and whenever we compute the expected
number of arrivals in a time interval t. Hence, we conclude that the light-load lower
bound holds for every possible arrival process; moreover, the ergodic theorem 3.3.3
and the limit theorem 3.3.4 hold under the more general assumption that the arrival
process is a renewal process. The analysis of the Batch policy carries over with minor
modifications to the case of non-arithmetic, renewal arrival processes (bulk arrivals
can be easily included in equation (3.12); moreover, Blackwell’s theorem gives a simple
expression for the expected number of arrivals in a certain time interval).

Uniform demand distribution As can be easily checked, the ergodic theorem 3.3.3 and
the limit theorem 3.3.4 hold regardless of the type of demand distribution, hence they
hold also when the spatial distribution for demand locations is not uniform. The light-
load lower bound and its subsequent analysis carry over with minor modification to
the case of non-uniform demand distribution; the only difference is that now the term
1/|E| (which is the spatial density in the uniform case) should be replaced with the
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density of the general demand distribution. The analysis of the Batch policy holds,
with no modifications, also in the case of non-uniform demand distribution (however,
in heavy load, the term β̄

√
|E|/m should be replaced with βTSP

∫
E
√
f̄(x) dx, where

f is the density of the demand distribution).

Extension to higher dimensions All of the results extend easily to subsets E of Rd for
arbitrary dimension d; in the interest of brevity, we do not discuss the details.

Depots The assumption that a vehicle returns to its depot if it has no demands to service
ensures that all the relevant processes are regenerative. If, in some applications, this
assumption is not met, one should look for an equivalent condition that still ensures
the existence of regeneration points.

Surely-finite patience and service times Finiteness of patience and service times is
exploited heavily throughout the chapter, most importantly to establish the ergodic
theorem 3.3.3 and the limit theorem 3.3.4; hence, such assumption can be hardly
removed. However, surely-finite patience and service times are probably an adequate
model in practice.

Other assumptions The assumption P [Pj = 0] = 0 can be relaxed, with the under-
standing that, if P [Pj = 0] > 0, the desired success factor should lie in the interval
(0, 1− P [Pj = 0]).

3.9 Conclusion

In this chapter we studied a dynamic vehicle routing problem where demands have stochastic
deadlines on their waiting times. There are numerous important extensions open for further
research. First, in this chapter we found a lower bound for the most informative case and we
characterized two service policies that require the least amount of information; it would be
very interesting to find lower bounds and study policies that are specific to each particular
information structure. Second, our lower bound does not capture the dependency on λ and
thus it is generally highly inaccurate for large values of the arrival rate. Third, we believe
that the analysis of the Batch policy is very conservative and might be improved. All these
problems provide nontrivial challenges and might require techniques significantly different
from those presented in this chapter.
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Chapter 4

DVR with Priorities

In this chapter we explore another typical aspect of routing problems for robotic vehicles,
namely prioritizing among demands. Priority queueing is indeed a classical problem in
queueing theory [53]. In the simplest setup, customers arrive at a single server sequentially
over time. Each customer is a member of either the high-priority, or the low-priority class.
High priority customers and low priority customers form separate queues. The goal is
to provide the highest possible quality of service to the high priority queue (Q1) while
maintaining stability of the low priority queue (Q2). That is, the goal is to minimize the
expected system time for high-priority customers while keeping the length of the low-priority
queue finite. When both the customer inter-arrival times and the customer service times
are distributed exponentially, the preemptive priority policy is known to be optimal [53]:

When Q1 is nonempty, serve high priority customers; when Q1 is empty, serve
low-priority customers. If a high priority customer arrives while serving Q2,
then preempt service and immediately begin serving the high-priority customer.

A more general two-class queueing problem is to minimize a convex combination of the
system times for high- and low-priority customers

c T 1 + (1− c)T 2, where c ∈ (0, 1).

In this case an optimal policy can be created by using a mixed policy that spends fraction c
of the time serving Q1 as the high-priority queue, and fraction (1− c) serving Q2 as though
it is the high-priority queue [30]. The set of achievable system times has also been studied
in the more general setting of queueing networks [13].

In this chapter we consider an n-class, m-service-vehicle spatial queueing problem, called
dynamic vehicle routing with priority classes. Demands for service arrive sequentially over
time in a compact environment E in the plane. Each demand is a member of one of n
priority classes. Upon arrival, each demand assumes a location in E , and requires a class-
dependent amount of on-site service time. To service a demand, one of the m vehicles must
travel to the demand location and perform the on-site service. If we specify a policy by
which the vehicles serve demands, then the expected service time for demands of class α,
denoted Tα, is the expected amount of time between a demand’s arrival and its service
completion. Then, given convex combination coefficients c1, . . . , cn > 0, the goal is to find
the vehicle routing policy that minimizes c1 T 1 + · · ·+ cn Tn. By increasing the coefficients
for certain classes, a higher priority level can be given to their demands. This problem has
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important applications in areas such as UAV surveillance, where targets are given different
priority levels based on their urgency or potential importance [11].

The main contribution of this chapter is to introduce dynamic vehicle routing with
priority classes. We derive a lower bound on the achievable values of the convex combination
of system times, and propose a novel policy in which each class of demands is served
separately from the others. We show that in heavy load the policy performs within a
constant factor 2n2 of the lower bound. Thus, the constant factor is independent of the
number of vehicles, the arrival rates of demands, the on-site service times, and the convex
combination coefficients. To establish the constant factor, we proceed in a similar manner
as in section 3.6 and develop a system of nonlinear inequality-based recursive equations
on the expected number of outstanding demands. We then utilize a novel proof technique
to upper bound the limiting number of outstanding demands, which relies on constructing
a set of linear equality-based recursive equations to bound trajectories. We present an
improvement on the policy in which classes of similar priority are merged together. We also
perform extensive simulations and introduce an effective heuristic improvement called the
tube heuristic.

The chapter is organized as follows. In section 4.1 we formalize the problem and in
section 4.2 we derive a lower bound on the achievable system time. In section 4.3 we
introduce and analyze the Separate Queues policy, and present the improvements given by
queue merging and the tube heuristic. Finally, in section 4.4 we present simulation results
and in section 4.5 we draw our conclusions.

The work in this chapter was performed in collaboration with Stephen L. Smith, and is
based on the journal article [91] and the preliminary conference papers [82, 90].

4.1 Problem Statement

In this section we formalize the dynamic vehicle routing problem with priority classes.

4.1.1 Problem statement

Consider a compact environment E in the plane with area |E|. The environment contains
m vehicles, each with maximum speed v. Demands of type α ∈ {1, . . . , n} (also called
α-demands) arrive in the environment according to a Poisson process with rate λα. Upon
arrival, demands assume an independently and uniformly distributed location in E . An α-
demand is serviced when the vehicle spends an on-site service time at the demand location,
which is generally distributed with finite mean s̄α.

Consider the arrival of the jth α-demand. The system time for the jth demand, Tj,α, is
the time elapsed between its arrival and its service completion. The wait time is defined as
Wj,α = Tj,α− sj,α, where sj,α is the on-site service time required by demand j. A policy for
routing the vehicles is said to be stable if the expected number of demands in the system
for each class is bounded uniformly at all times. A necessary condition for the existence of
a stable policy is

%
.=

1
m

n∑
α=1

λαs̄α < 1. (4.1)

As discussed in section 2.5, it is in general difficult to study a queueing system for all values
of % ∈ [0, 1), and a common technique is to focus on the limiting regimes of %→ 1−, referred
to as the heavy-load regime, and %→ 0+, referred to as the light-load regime.
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Figure 4-1: A depiction of the problem for two vehicles and three priority classes. Left
figure: One vehicle is moving to a class 1 demand, and the other to a class 2 demand.
Right figure: The bottom vehicle has serviced the class 1 demand and is moving to a class
2 demand. A new class 3 demand has arrived.

Given a stable policy π the steady-state system time is defined as

T π,α
.= lim
j→+∞

E [Tj,α],

and the steady-state waiting time is W π,α
.= T π,α − s̄α. Thus, for a stable policy π, the

average system time per demand is

T π =
1
Λ

n∑
α=1

λαT π,α,

where Λ .=
∑n

α=1 λα. The average system time per demand is the standard cost functional
for queueing systems with multiple classes of demands. Notice that we can write T π =∑n

α=1 cαT π,α with cα = λα/Λ. Thus, we can model priority among classes by allowing any
convex combination of T 1, . . . , Tn. If cα > λα/Λ, then the system time of α-demands is
being weighted more heavily than in the average case. Thus, the quantity cαΛ/λα gives the
priority of α demands compared to that given in the average system time case. Without
loss of generality we can assume that priority classes are labeled so that

c1

λ1
≥ c2

λ2
≥ · · · ≥ cn

λn
, (4.2)

implying that if α < β for some α, β ∈ {1, . . . , n}, then the priority of α-demands is at
least as high as that of β-demands. With these definitions, we are now ready to state our
problem.

Problem Statement: Let P be the set of all causal, stable and stationary
policies for dynamic vehicle routing with priority classes. Given the coefficients
cα > 0, α ∈ {1, . . . , n}, with

∑n
α=1 cα = 1, and satisfying expression (4.2),

let T π
.=
∑n

α=1 cαT π,α be the cost of policy π ∈ P. Then, the problem is to
determine a vehicle routing policy π∗, if one exists, such that

T π∗ = inf
π∈P

T π. (4.3)

We let T ∗ denote the right-hand side of equation (4.3). A policy π for which T π/T
∗
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is bounded has a constant-factor guarantee. If lim sup%→1− T π/T
∗ = ϑ < +∞, then the

policy π has a heavy-load constant-factor guarantee of ϑ. In this chapter we focus on the
heavy-load regime, and look for policies with a heavy-load constant-factor guarantee that
is independent of the number of vehicles, the arrival rates of demands, the on-site service
times, and the convex combination coefficients. In the light-load regime, existing policies
for the dynamic traveling repairman can be used, as is summarized in the following remark.

Remark 4.1.1 (Light-load regime). In light load, % → 0+, optimal policies have been
developed for the dynamic traveling repairman problem (i.e., the single-class dynamic vehicle
routing problem, see section 2.5). In fact, by following the proof in [15], one can show that
the SQM policy, described in section 2.5.3, is an optimal policy for dynamic vehicle routing
with priority classes. The proof of this statement is rather straightforward, and we refer
interested readers to [15] for details. •

4.2 Lower Bound in Heavy Load

In this section we present two lower bounds on the system time in equation (4.3). The first
holds only in heavy load (i.e., as % → 1−), while the second (less tight) bound holds for
all %.

Theorem 4.2.1 (Heavy-load lower bound). For every routing policy π,

T π ≥
β2

TSP|E|
2m2v2(1− %)2

n∑
α=1

cα + 2
n∑

j=α+1

cj

λα as %→ 1−, (4.4)

where c1, . . . , cn satisfy expression (4.2).

Proof. Consider a tagged demand j of type α, and let us quantify its total service require-
ment. The demand requires on-site service time sj,α. Let us denote by dj,α the distance
from the location of the demand served prior to j, to j’s location. In order to compute a
lower bound on the wait time, we will allow “remote” servicing of some of the demands. For
an α-demand j that can be serviced remotely, the travel distance dj,α is zero (i.e., a service
vehicle can service the jth α-demand from any location by simply stopping for the on-site
service time sj,α). Thus, the waiting time for the modified remote servicing problem pro-
vides a lower bound on the waiting time for the problem of interest. To formalize this idea,
we introduce the variables rα ∈ {0, 1} for each α ∈ {1, . . . , n}. If rα = 0, then α-demands
can be serviced remotely. If rα = 1, then α-demands must be serviced on location. We
assume that rα = 1 for at least one α ∈ {1, . . . , n}. Thus, the total service requirement
of α-demand j is rα dj,α/v + sj,α, where v is the service vehicle speed. The steady-state
expected service requirement is rα d̄α/v + s̄α, where d̄α

.= limj→+∞ E [dj,α]. In order to
maintain stability of the system we must require

1
m

n∑
α=1

λα

(
rαd̄α
v

+ s̄α

)
< 1. (4.5)

Applying the definition of % in equation (4.1), we write inequality (4.5) as

n∑
α=1

rαλαd̄α < (1− %)mv. (4.6)
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W2

W1 = Ψλ1

W1λ1 + W2λ2 = Ψ(λ1 + λ2)2

W1

Figure 4-2: The feasible region of the linear program for 2 queues. When class 1 is of higher
priority, the solution is given by the corner. Otherwise, the solution is −∞.

For a stable policy π, let Nα represent the steady-state expected number of unserviced
α-demands. Then, the expected total number of outstanding demands that require on-site
service (i.e., cannot be serviced remotely) is given by

∑n
i=1 riN i. We now apply a result

from the dynamic traveling repairman problem (see [108], page 23) which states that in
heavy load (%→ 1−), if the steady-state number of outstanding demands is N , then a lower
bound on expected travel distance between demands is (βTSP/

√
2)
√
|E|/N . Applying this

result we have that

d̄α ≥
βTSP√

2

√
|E|∑
i riN i

.= d̄, (4.7)

for each α ∈ {1, . . . , n}. Combining inequalities (4.6) and (4.7),∑
α rαλα

mv(1− %)
<

1
d̄
.

Applying the definition of d̄, squaring both sides, and rearranging we obtain

β2
TSP

2
|E|(
∑

α rαλα)2

m2v2(1− %)2
<
∑
α

rαNα.

From Little’s law, Nα = λαWα for each α ∈ {1, . . . , n}, and thus

∑
α

rαλαWα >
β2

TSP

2
|E|

m2v2(1− %)2

(∑
α

rαλα

)2

. (4.8)

Recalling that Wα = Tα − s̄α and rα ∈ {0, 1} for each α ∈ {1, . . . , n}, we see that expres-
sion (4.8) gives us 2n− 1 constraints on the feasible values of T π,1, . . . , T π,n. Hence, a lower
bound on T ∗ can be found by minimizing

∑n
α=1 cαWα subject to the constraints in expres-

sion (4.8). We can lower bound the solution to the optimization problem by minimizing the
cost function subject to only a subset of the 2n − 1 constraints. In particular, consider the
following linear program
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minimize
n∑

α=1

cαWα,

subject to


λ1 0 0 · · · 0
λ1 λ2 0 · · · 0
...

...
. . . 0

λ1 λ2 λ3 · · · λn



W 1

W 2
...

Wn

 ≥ Ψ


λ2

1

(λ1 + λ2)2

...
(λ1 + · · ·+ λn)2

 ,
where

Ψ .=
β2

TSP

2
|E|

m2v2(1− %)2
.

The above problem is feasible (see Figure 4-2), it has only one basic feasible solution, and it
is of the form: minimize cTW subject to AW ≥ b. Thus, either the problem is unbounded,
or the solution W∗ is given by the basic feasible solution. To establish boundedness we
consider the dual problem: maximize bTy subject to ATy = c and y ≥ 0. By the Duality
Theorem of Linear Programming [64], if the dual is feasible, then the minimization problem
is bounded. To check feasibility of the dual, we solve for ATy = c, with y ≥ 0, to obtain

yα =
cα
λα
− cα+1

λα+1
≥ 0 for all α ∈ {1, . . . , n− 1},

yn =
cn
λn
≥ 0.

Thus, the dual is feasible if and only if the priority classes are labeled as in expression (4.2).
When expression (4.2) is satisfied, the minimization problem is bounded, and its solution
(W ∗1, . . . ,W

∗
n) is given by

W
∗
α =

Ψ
λα

(
(λ1 + · · ·+ λα)2 − (λ1 + · · ·+ λα−1)2

)
= Ψ

λα + 2
α−1∑
j=1

λj

 .

(In fact, this is the solution of the full optimization problem with 2n − 1 constraints. This
fact can be verified, somewhat tediously, by writing the dual of the full problem and directly
computing its solution. To shorten the presentation we omit the direct computation and
use the above technique.) The optimal value of the cost function, and thus the lower bound
on T

∗, is given by

n∑
α=1

cαW
∗
α = Ψ

n∑
α=1

cα

λα + 2
α−1∑
j=1

λj

 = Ψ
n∑

α=1

cα + 2
n∑

j=α+1

cj

λα.

Applying the definition of Ψ we obtain the desired result.

Remark 4.2.2 (Lower bound for all % ∈ [0, 1)). With slight modifications, it is possible
to obtain a less tight lower bound valid for all values of %. In the above derivation, the
assumption that % → 1− is used only in inequality (4.7). It is possible to use, instead, a
lower bound valid for all % ∈ [0, 1) (see [15]):

d̄α ≥ γ

√
|E|∑

α rαNα +m/2
,
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where γ = 2/(3
√

2π) ≈ 0.266. Using this bound we obtain the same linear program as in
the proof of Theorem 4.2.1, with the difference that Ψ is now a function given by

Ψ(x) .=
γ2|E|

m2v2(1− %)2
x− m

2
.

Following the procedure in the proof of Theorem 4.2.1

W
∗
1 =

γ2|E|
m2v2(1− %)2

λ1 −
m

2λ1

W
∗
α =

γ2|E|
m2v2(1− %)2

λα + 2
α−1∑
j=1

λj

 ,

for each α ∈ {2, . . . , n}. Finally, for every policy π, T π,α ≥W
∗
α + s̄α, and thus

T π ≥
γ2|E|

m2v2(1− %)2

n∑
α=1

cα + 2
n∑

j=α+1

cj

λα

− mc1

2λ1
+

n∑
α=1

cαs̄α, (4.9)

for all % ∈ [0, 1) under the labeling in expression (4.2). •

In the remainder of the chapter we design a policy and establish a constant-factor
guarantee relative to the heavy-load lower bound.

4.3 Separate Queues Policy

In this section we introduce and analyze the Separate Queues (SQ) policy. We show that
this policy is within a factor 2n2 of the lower bound in heavy load.

To present the SQ policy we need some notation. We assume vehicle k ∈ {1, . . . ,m} has
a service region Ek ⊆ E , such that {Ek}mk=1 forms a partition of the environment E . In general
the partition could be time varying, but for the description of the SQ policy this will not
be required. We assume that information on outstanding demands of type α ∈ {1, . . . , n}
in region Ek at time t is summarized as a finite set of demand positions Qk,α(t). Demands
of type α with location in Ek are inserted in the set Qk,α as soon as they are generated.
Removal from the set Qk,α requires that service vehicle k moves to the demand location, and
provides the on-site service. The SQ policy is described in Algorithm 3. In this algorithm,
the probability distribution p gives a set of parameters which will be used to optimize
performance. Without loss of generality, we avoid pathological situations by restricting
each pα to be positive (if pα = 0 for some class α, then the average system time per demand
is trivially unbounded).

Figure 4-3 shows an illustrative example of the SQ policy. In the first two frames the
vehicle is servicing only class 1 (circle shaped) demands, whereas in the third frame, the
vehicle is servicing class 2 (diamond shaped) demands.

4.3.1 Stability analysis of the SQ policy in heavy load

In this section we analyze the SQ policy in heavy load, i.e., as % → 1−. In the SQ policy
each region Ek has equal area, and contains a single vehicle. Thus, the m vehicle problem in
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Algorithm 3: Separate Queues (SQ) Policy
Optimize: algorithm performance over probability distribution p = [p1, . . . , pn],

where pα > 0 for each α ∈ {1, . . . , n}.
Partition E into m equal area regions and assign one vehicle to each region.1

foreach vehicle-region pair k do2

if the set ∪αQk,α is empty then3

Move vehicle toward the median of its own region until a demand arrives.4

else5

Select Q ∈ {Qk,1, . . . , Qk,n} according to p.6

if Q is empty then7

Reselect until Q is nonempty.8

Compute TSP tour through all demands in Q.9

Service Q following the TSP tour, starting at the demand closest to the10

vehicle’s current position.
Repeat.11

Figure 4-3: A representative simulation of the SQ policy for one vehicle and two priority
classes. Circle shaped demands are high priority, and diamond shaped are low priority. The
vehicle is marked by a chevron shaped object and TSP tour is shown in a solid line. The left
figure shows the vehicle computing a tour through class 1 demands. The center figure shows
the vehicle part-way through the class 1 tour and some newly arrived class 2 demands. The
right figure shows the vehicle after completing the class 1 tour and computing a new tour
through all class 2 demands.
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a region of area |E| has been turned into m independent single-vehicle problems, each in a
region of area |E|/m, with arrival rates λα/m. To determine the performance of the policy
we need only study the performance in a single region k. For simplicity of notation we
omit the label k. We refer to the time instant ti in which the vehicle computes a new TSP
tour as the epoch i of the policy; we refer to the time interval between epoch i and epoch
i + 1 as the ith iteration and we will refer to its length as Ci. Finally, let Nα(ti)

.= Nα,i,
α ∈ {1, . . . , n}, be the number of outstanding α-demands at beginning of iteration i.

The following straightforward lemma, similar to Lemma 1 in [73], will be essential in
deriving our main results.

Lemma 4.3.1 (Number of outstanding demands). In heavy load (i.e., % → 1−), after a
transient, the number of demands serviced in a single tour of the vehicle in the SQ policy is
very large with high probability (i.e., the number of demands tends to +∞ with probability
that tends to 1, as % approaches 1−).

Proof. Consider the case where the vehicle moves with infinite velocity (i.e., v → +∞);
then the system is reduced to an M/G/1 queue (i.e., a queue with exponentially distributed
inter-arrival times, generally distributed service times, and a single server; we refer the
reader to [53] for more details). The infinite-velocity system has fewer demands (for every
α ∈ {1, . . . , n}) waiting in queue. A known result on M/G/1 queues [106] states that, after
transients, the total number of demands, as % → 1−, is very large with high probability.
Thus, in the SQ policy, the number of demands in all n classes is very large with high
probability. In particular, this implies that, after a transient, the number of demands is
very large with high probability at the instances when the vehicle starts a new tour.

Let TSj be the event that Qj is selected for service at iteration i of the SQ policy. By
the total probability law

E [Nα,i+1] =
n∑
j=1

pjE [Nα,i+1 |TSj ], α ∈ {1, . . . , n},

where the conditioning is with respect to the task being performed during iteration i. During
iteration i of the policy, demands arrive according to independent Poisson processes. Call
Nnew
α,i the number of α-demands (α ∈ {1, . . . , n}) newly arrived during iteration i; then, by

definition of the SQ policy

E [Nα,i+1 |TSj ] =

E
[
Nnew
α,i |TSj

]
, if α = j

E [Nα,i |TSj ] + E
[
Nnew
α,i |TSj

]
, otherwise.

By the law of iterated expectation, we have E
[
Nnew
α,i |TSj

]
= (λα/m)E [Ci |TSj ], where

Ci is the length (duration) of the ith iteration. Moreover, since the number of demands
outstanding at the beginning of iteration i is independent of the task that will be chosen,
we have E [Nα,i |TSj ] = E [Nα,i]. Thus we obtain

E [Nα,i+1 |TSj ] =

{
λα
m E [Ci |TSj ], if α = j

E [Nα,i] + λα
m E [Ci |TSj ], otherwise.

Therefore, we are left with computing the conditional expected values of Ci. The length
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of Ci is given by the time needed by the vehicle to travel along the TSP tour plus the time
spent to service demands. Assuming i large enough, lemma (4.3.1) holds, and we can apply
equation (2.7) to estimate from the quantities E [Nα,i], α ∈ {1, . . . , n}, the length of the
expected TSP tour at iteration i (see the proof of theorem 7.2.2 and especially equation (7.4)
in chapter 7 for a rigorous justification of this statement). Conditioning on TSj (when only
demands of type j are serviced), we have

E [Ci |TSj ] ≤
βTSP

√
|E|/m
v

E
[√

Nj,i |TSj
]

+ E
[∑Nj,i

k=1 sj,k |TSj
]

≤
βTSP

√
|E|/m
v

√
E [Nj,i] + E [Nj,i]s̄j ,

where we have

• applied equation (2.7);

• applied Jensen’s inequality for concave functions, in the form E
[√

X
]
≤
√

E [X];

• removed the conditioning on TSj , since the random variables Nα,i are independent
from future events, and in particular from the choice of the task at iteration i; and

• used the crucial fact that the on-site service times are independent from the number
of outstanding demands.

Collecting the above results (and using the shorthand X̄ to indicate E [X], where X is
any random variable), we have

N̄α,i+1 ≤ (1− pα)N̄α,i +
n∑
j=1

pj
λα
m

[
βTSP

√
|E|√

mv

√
N̄j,i + N̄j,is̄j

]
, (4.10)

for each α ∈ {1, . . . , n}. The n inequalities above describe a system of recursive relations
that describe an upper bound on N̄α,i, α ∈ {1, . . . , n}. The following theorem bounds the
values to which they converge.

Theorem 4.3.2 (Steady-state queue length). For every set of initial conditions {N̄α,0}α∈{1,...,n},
the trajectories i 7→ N̄α,i, α ∈ {1, . . . , n}, resulting from inequalities (4.10), satisfy

lim sup
i→+∞

N̄α,i ≤
β2

TSP|E|
m3v2(1− %)2

λα
pα

 n∑
j=1

√
λjpj

2

, as %→ 1−.

Proof. Define qj
.= 1− pj and let λ̂α denote the arrival rate in region Ek. Thus λ̂α

.= λα/m
for each α ∈ {1, . . . , n}. Let x(i) .= (N̄1,i, N̄2,i, . . . , N̄n,i) ∈ Rn and define two matrices

A
.=


λ̂1p1s̄1 + q1 λ̂1p2s̄2 . . . λ̂1pns̄n
λ̂2p1s̄1 λ̂2p2s̄2 + q2 . . . λ̂2pns̄n

...
. . .

...
λ̂np1s̄1 λ̂np2s̄2 . . . λ̂npns̄n + qn

 ,
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and

B
.=
βTSP

√
|E|√

mv


λ̂1p1 λ̂1p2 . . . λ̂1pn
λ̂2p1 λ̂2p2 . . . λ̂2pn

...
. . .

...
λ̂np1 λ̂np2 . . . λ̂npn

 .
Then, letting the relation “≤” in Rn denote the product order of n copies of R (in other
words, for v, w ∈ Rn, the relation v ≤ w is interpreted component-wise), inequalities (4.10)
can be written as

x(i+ 1) ≤ Ax(i) +B


√
x1(i)√
x2(i)
...√
xn(i)

 .= f(x(i)), (4.11)

where f : Rn
≥0 → Rn

≥0, and xj(i), j ∈ {1, . . . , n}, are the components of vector x(i). We
refer to the discrete system in inequality (4.11) as System-X. Next we define two auxiliary
systems, System-Y and System-Z. The initial conditions of these two systems will be set
equal to x(0), and we will use their trajectories to bound the trajectories of original system
(i.e., System-X). We define System-Y as

y(i+ 1) = f(y(i)). (4.12)

System-Y is, therefore, equal to System-X, with the exception that we replaced the inequal-
ity with an equality.

Pick, now, any ε > 0. From Young’s inequality

√
a ≤ 1

4ε
+ εa, for all a ∈ R≥0. (4.13)

Hence, for i 7→ y(i) ∈ Rn
≥0, the equation (4.12) becomes

y(i+ 1) ≤ Ay(i) +B
( 1

4ε
1n + ε y(i)

)
=
(
A+ εB

)
y(i) +

1
4ε
B1n,

where 1n is the vector (1, 1, . . . , 1)T ∈ Rn. Next, define System-Z as

z(i+ 1) =
(
A+ εB

)
z(i) +

1
4ε
B1n

.= g(z(i)). (4.14)

The proof now proceeds as follows. First, we show that the initial conditions x(0) =
y(0) = z(0), imply that

x(i) ≤ y(i) ≤ z(i), for all i ≥ 0. (4.15)

Second, we show that the trajectories of System-Z are bounded; this fact, together with
expression (4.15), implies that also trajectories of System-Y and System-X are bounded.
Third, and last, we will compute lim supi→+∞ y(i); this quantity, together with expres-
sion (4.15), will yield the desired result.

Let us consider the first issue. We have y(1) = f(y(0)) and z(1) = g(z(0)). By
definition of System-Y and System-Z, it holds that z(0) = y(0), and thus g(z(0)) =
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g(y(0)) ≥ f(y(0)), where the last inequality follows from inequality (4.13) and by defi-
nition of f and g. Therefore, we get y(1) ≤ z(1). Then, we have y(2) = f(y(1)) and
z(2) = g(z(1)). Since z(1), y(1) ∈ Rn

≥0, and the elements in matrices A and B are all
non-negative, then y(1) ≤ z(1) implies g(y(1)) ≤ g(z(1)). Using similar arguments, we can
write z(2) ≥ g(y(1)) ≥ f(y(1)) = y(2); therefore, we get y(2) ≤ z(2). Then, it is immediate
by induction that y(i) ≤ z(i) for all i ≥ 0.

Similarly, by definition of System-Y, it holds that x(0) = y(0), and thus x(1) ≤
f(x(0)) = f(y(0)) = y(1). Then, we get x(1) ≤ y(1). Since x(1), y(1) ∈ Rn

≥0, the elements
in matrices A and B are nonnegative, and by the monotonicity of

√
·, then x(1) ≤ y(1)

implies f(x(1)) ≤ f(y(1)). Therefore, we can write x(2) ≤ f(x(1)) ≤ f(y(1)) = y(2); thus,
we get x(2) ≤ y(2). Then, it is immediate to show by induction that x(i) ≤ y(i) for all
i ≥ 0, and expression (4.15) holds.

We now turn our attention to the second issue, namely boundedness of trajectories for
System-Z (in equation (4.14)). Notice that System-Z is a discrete-time linear system. The
eigenvalues of A are characterized in the following lemma.

Lemma 4.3.3. The eigenvalues of A are real and have magnitude strictly less than 1 (i.e.,
A is a stable matrix).

Proof. Let w ∈ Cn be an eigenvector of A, and µ ∈ C be the corresponding eigenvalue. Then
we have Aw = µw. Define r .= (p1s̄1, p2s̄2, . . . , pns̄n). Then the n eigenvalue equations are

λ̂j w · r + qjwj = µwj , j ∈ {1, . . . , n}, (4.16)

where w · r is the scalar product of vectors w and r, and wj is the jth component of w.
There are two possible cases. The first case is that w·r = 0. (Note that since each pα > 0,

this case can only occur if s̄α = 0 for some α ∈ {1, . . . , n}.) In this case, equation (4.16)
becomes qj wj = µwj , for all j. Since w 6= 0, there exists j∗ such that w∗j 6= 0; thus, we
have µ = qj∗ . Since qj∗ ∈ R and 0 < qj∗ < 1, we have that µ is real and |µ| < 1.

Assume, now, that w · r 6= 0. This implies that µ 6= qj and wj 6= 0 for all j, thus we can
write, for all j,

wj =
λ̂j

µ− qj
w · r, (4.17)

and hence

wj =
λ̂j

λ̂1

µ− q1

µ− qj
w1.

Therefore, (4.17) can be rewritten as

n∑
j=1

rj λ̂j
µ− qj

= 1. (4.18)

Equation (4.18) implies that the eigenvalues are real. To see this, write µ = a+ ib, where i
is the imaginary unit: then

n∑
j=1

rj λ̂j
a+ ib− qj

=
n∑
j=1

rj λ̂j [(a− qj)− ib]
(a− qj)2 + b2

.
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Thus equation (4.18) implies

b
n∑
j=1

rj λ̂j
(a− qj)2 + b2︸ ︷︷ ︸

>0

= 0,

that is, b = 0. Equation (4.18) also implies that the eigenvalues (that are real) have
magnitude strictly less than 1. Indeed, assume, by contradiction, that µ ≥ 1. Then we have
µ− qj ≥ 1− qj > 0 (recall that the eigenvalues are real and 0 < qj < 1) and we can write

n∑
j=1

rj λ̂j
µ− qj

≤
n∑
j=1

rj λ̂j
1− qj

=
n∑
j=1

s̄j λ̂j = % < 1,

which is a contradiction. Assume, again by contradiction, that µ ≤ −1. In this case we
trivially get another contradiction

∑n
j=1 rj λ̂j/(µ− qj) < 0, since µ− qj < 0.

Hence, A ∈ Rn×n has eigenvalues strictly inside the unit disk, and since the eigenvalues
of a matrix depend continuously on the matrix entries, there exists a sufficiently small ε > 0
such that the matrix A+ εB has eigenvalues strictly inside the unit disk. Accordingly, each
solution i 7→ z(i) ∈ Rn

≥0 of System-Z converges exponentially fast to the unique equilibrium
point

z∗ =
(
In −A− εB

)−1 1
4ε
B1n. (4.19)

Combining expression (4.15) with the previous statement, we see that the solutions i 7→ x(i)
and i 7→ y(i) are bounded. Thus

lim sup
i→+∞

x(i) ≤ lim sup
i→+∞

y(i) < +∞. (4.20)

Finally, we turn our attention to the third issue, namely the computation of y .=
lim supi→+∞ y(i). Taking the lim sup of the left- and right-hand sides of equation (4.12),
and noting that

lim sup
i→+∞

√
yα(i) =

√
lim sup
i→+∞

yα(i) for α ∈ {1, 2, . . . , n},

since x 7→
√
x is continuous and strictly monotone increasing on R>0, we obtain that

yα = (1− pα)yα + λ̂α

n∑
j=1

pj

(
βTSP

√
|E|√

mv

√
yj + s̄jyj

)
.

Rearranging we obtain

pαyα = λ̂α

n∑
j=1

pj

(
βTSP

√
|E|√

mv

√
yj + s̄jyj

)
. (4.21)
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Dividing pαyα by p1y1 (recall that by Algorithm 3 each pα is positive) we obtain

yα =
λ̂αp1

λ̂1pα
y1. (4.22)

Combining equations (4.21) and (4.22), we obtain

p1y1 = % p1y1 +
βTSP

√
|E|√

mv

√
p1λ̂1y1

n∑
j=1

√
λ̂jpj

Thus, recalling that λ̂α = λα/m, we obtain

yα =
β2

TSP|E|
m3v2(1− %)2

λα
pα

 n∑
j=1

√
λjpj

2

.

Noting that from inequality (4.20), lim supi→+∞ N̄α,i ≤ yα, we obtain the desired result.

4.3.2 System time of the SQ policy in heavy load

From Theorem 4.3.2, and using Little’s law, the system time of α-demands under the SQ
policy satisfies

Tα ≤
m

λα
lim sup
i→+∞

N̄α,i

≤
β2

TSP|E|
m2v2(1− %)2

1
pα

 n∑
j=1

√
λjpj

2

,

where we have neglected s̄α, since as %→ 1− the constant s̄α becomes negligible compared
to the average system time, which scales as (1− %)−2.

Thus, the system time of the SQ policy satisfies

T SQ ≤
β2

TSP|E|
m2v2(1− %)2

n∑
α=1

cα
pα

(
n∑
i=1

√
λipi

)2

, as %→ 1−. (4.23)

With this expression we prove our main result on the performance of the SQ policy.

Theorem 4.3.4 (SQ policy performance). As % → 1−, the system time of the SQ policy
is within a factor 2n2 of the optimal system time. This factor is independent of the arrival
rates λ1, . . . , λn, coefficients c1, . . . , cn, service times s̄1, . . . , s̄n, and the number of vehicles
m.

Proof. We would like to compare the performance of this policy with the lower bound. To
do this, consider setting

pα
.= cα for each α ∈ {1, . . . , n}.
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Defining Ψ .= β2
TSP|E|/(m2v2(1− %)2), inequality (4.23) can be written as

T SQ ≤ Ψn

(
n∑
i=1

√
ciλi

)2

.

Next, the lower bound in inequality (4.4) is

T
∗ ≥ Ψ

2

n∑
i=1

ci + 2
n∑

j=i+1

cj

λi ≥
Ψ
2

n∑
i=1

(ciλi) .

Thus, comparing the upper and lower bounds

T SQ

T
∗ ≤ 2n

(∑n
i=1

√
ciλi

)2∑n
i=1 (ciλi)

. (4.24)

Letting xi
.=
√
ciλi, and x .= [x1, . . . , xn], the numerator of the fraction in inequality (4.24)

is ‖x‖21, and the denominator is ‖x‖22. But the one- and two-norms of a vector x ∈ Rn

satisfy ‖x‖1 ≤
√
n‖x‖2. Thus,

T SQ

T
∗ ≤ 2n

(
‖x‖1
‖x‖2

)2

≤ 2n2, as %→ 1−,

and the policy is a 2n2-factor approximation.

Remark 4.3.5 (Relation to RP policy in [90]). For n = 2 the SQ policy is within a factor
of 8 of the optimal. This improves on the factor of 12 obtained for the Randomized Priority
(RP) policy in [90]. However, it appears that the RP policy bound is not tight, since for two
classes, simulations indicate it performs no worse than the SQ policy. •

4.3.3 Separate Queues policy with queue merging

In this section we propose a modification the SQ policy based on queue merging. Queue
merging is guaranteed to never increase the upper bound on the expected system time, and
in certain instances it significantly decreases the upper bound. The modification can be
used when we have a modest number of classes (fewer than, say, 20), which encompasses
most applications of interest.

To motivate the modification, consider the case when all classes have equal priority
(i.e., c1/λ1 = · · · = cn/λn), and we use the probability assignment pα = cα for each class α.
Then, the upper bound for the Separate Queues policy in inequality (4.23) becomes

Ψn(λ1 + · · ·+ λn),

where Ψ .= β2
TSP|E|/(m2v2(1− %)2).

On the other hand, if we ignore priorities, merge the n classes into a single class, and run
the SQ policy on the merged class (i.e., at each iteration, service all outstanding demands
in E via the TSP tour), then the upper bound becomes

Ψ(λ1 + · · ·+ λn).
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Thus, there is a factor of n separating the two upper bounds. This is due to the fact that
the basic SQ policy services each of the n classes separately, even when they have the same
priority.

The above discussion motivates the addition of queue merging to the SQ policy. We
define a merge configuration to be a partition of n classes {1, . . . , n} into ` sets S1, . . . , S`,
where ` ∈ {1, . . . , n}. The upper bound for a merge configuration {S1, . . . , S`} is

Ψ`

∑̀
i

√∑
α∈Si

cα
∑
β∈Si

λβ

2

. (4.25)

The SQ-policy with merging can be summarized as follows:

Separate Queues with Merging Policy

Find the merge configuration {S1, . . . , S`} which minimizes equation (4.25).1

Run the Separate Queues policy on ` classes, where class i has arrival rate
∑

α∈Si λα2

and convex combination coefficient
∑

α∈Si cα.

Now, to minimize equation (4.25) in step 1 of the SQ with Merging policy, one must
search over all possible partitions of a set of n elements. The number of partitions is given
by the Bell Number Bn which is defined recursively as Bn =

∑n−1
k=0 Bk

(
n−1
k

)
. Thus, the

search becomes infeasible for more than 10 classes.
If the search space is too large, then one can limit the search to all partitions such

that if i < j, then each class in Si has higher priority than all classes in Sj . This is the
set of partitions in which only adjacent classes are merged. For n classes, there are 2n−1

such merge configurations, which is significantly less than the Bell number Bn, but is still
infeasible for more than, say, 20 classes.

4.3.4 The Tube heuristic for improving performance

We now introduce a simple heuristic improvement for the SQ policy that can be used for
implementation. The heuristic improvement is as follows:

Tube Heuristic: When following the tour in step 10 of the SQ policy, service
all newly arrived demands that lie within distance ε > 0 of the tour.

The idea behind the heuristic is to utilize the fact that some newly arrived demands will
be “close” to the demands in the current service batch, and thus can be serviced with
minimal additional travel cost. Analysis of the tube heuristic is complicated by the fact
that it introduces correlation between demand locations. A similar difficulty arises when
attempting to analyze the nearest neighbor policy [14]. However, we can demonstrate the
effectiveness of this heuristic through simulations.

The parameter ε should be chosen such that the total tour length is not increased by
more than, say, 10%. A rough calculation shows that the area of the “tube” of width 2ε
centered around a tour that passes through the card(Q) demands in Q has area upper
bounded by 2εβTSP

√
card(Q)|E|. While following the tour, a vehicle will deviate to service

no more than 2εβTSP

√
card(Q)/|E|(N̄1 + · · ·+ N̄n) demands. Finally, since the vehicle will

have to travel no more than 2ε to service each demand in the “tube,” we see that ε should
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Figure 4-4: The tube heuristic for two classes of demands with c = 0.8, λ2 = 6λ1, and
several different load factors %. The system time at ε = 0 corresponds to the basic SQ
policy.

scale as

ε ∼

√
ϕ|E|

N̄1 + · · ·+ N̄n
,

where N̄α is expected number of α-demands in the environment, and ϕ is the fractional
increase in tour length (e.g., 10%).

Figure 4-4 shows numerical results for the Tube Heuristic for a single unit speed vehicle
in a square environment with side length 50. The simulation is performed for two classes
of demands with c = 0.8, λ2 = 6λ1, and several different load factors %. Each experimental
data point represents the average of the steady state system time of ten runs, where each
run consists of 200 iterations of the SQ policy. To ensure convergence to steady state
and avoid effects due to the transient response, only the last 50 iterations in each run are
used to calculate the system time. The basic policy is shown in left-most data points (i.e.,
ε = 0). Figure 4-4 demonstrates that as the load factor increases, the value of ε should be
chosen smaller in order to achieve the best performance. Table 4.1 shows the improvement
in expected system time when using the tube heuristic. For the load factors considered,
the heuristic decreases the system time by a factor of approximately 2. One should note
that the heuristic is difficult to accurately simulate for high load factors. This is due to
the additional computations required to determine if a newly arrived demand lies within
a distance ε of the current tour. A more sophisticated implementation of tube heuristic is
to define an εα for each α ∈ {1, . . . , n}, where the magnitude of εα is proportional to its
priority, and thus proportional to the probability pα.

4.4 Simulations and Discussion

In this section we discuss, through the use of simulations, the performance of the SQ policy
with the probability assignment pα

.= cα, for each α ∈ {1, . . . , n}. In particular, we study
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Load factor % System time Best ε System time with best ε Heuristic improvement

0.14 358 (34) 5 183 (11) 0.51 (0.16)
0.28 496 (61) 4 244 (25) 0.49 (0.23)
0.42 774 (78) 3 384 (26) 0.50 (0.17)
0.56 1330 (84) 2 706 (52) 0.53 (0.14)
0.70 3380 (357) 1 1770 (121) 0.52 (0.17)

Table 4.1: A comparison between the expected system time of the basic SQ policy, and the
SQ policy with the tube heuristic. The values in brackets give the standard deviation of
the corresponding table entry.

(i) the tightness of the upper bound in inequality (4.23), (ii) conditions for which the
gap between the lower bound in inequality (4.4) and the upper bound in inequality (4.23)
is maximized, (iii) the suboptimality of the probability assignment pα = cα, and (iv) the
difference in performance between the SQ policy and a policy that merges all classes together
irrespective of priorities. Simulations of the SQ policy were performed using linkern (see
section 2.4.3) as a solver to generate approximations to the optimal TSP tour.

4.4.1 Tightness of the upper bound

We consider one vehicle, four classes of demands, and several values of the load factor
%. For each value of % we perform 100 runs. In each run we uniformly randomly gener-
ate arrival rates λ1, . . . , λn, convex combination coefficients c1, . . . , cn, and on-site service
times s̄1, . . . , s̄n, and normalize the values such that the constraints

∑n
α=1 λαs̄α = % and∑n

α=1 cα = 1 are satisfied. In each run we iterate the SQ policy 4000 times, and compute
the steady-state expected system time by considering the number of demands in the last
1000 iterations. For each value of % we compute the ratio χ between the expected system
time and the theoretical upper bound in inequality (4.23). Table 4.2 reports the ratio,
its standard deviation, and its minimum and maximum values for each % value. One can
see that the upper bound provides a reasonable approximation for load factors as low as
% = 0.75.

Load factor (%) E [χ] σχ maxχ minχ

0.75 0.803 0.092 1.093 0.354
0.8 0.778 0.108 0.943 0.256
0.85 0.773 0.111 1.150 0.417
0.9 0.733 0.159 1.162 0.203
0.95 0.716 0.131 0.890 0.257

Table 4.2: Ratio χ between experimental results and upper bound for various values of %.

4.4.2 Maximum deviation from lower bound

In Theorem 4.3.4 we showed that the SQ policy performs within a factor of 2n2 of the
lower bound for all initial conditions. The ratio between the upper bound inequality (4.23)
and the lower bound in inequality (4.4) can be made arbitrarily close to 2n2 by choosing
λ1 � λ2 � · · · � λn and c1 � c2 � · · · � cn, with λαcα = a, for each α ∈ {1, . . . , n} and
for some positive constant a. In these “unfavorable conditions”, the upper bound is equal
to Bn3a and the lower bound is approximately Bna/2.
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Figure 4-5: Experimental results for the SQ policy in worst-case conditions plotted on a
log-log scale; % = 0.85 and λ1 = 1.

It is also of interest to consider the actual deviation of the experimental performance
from the lower bound in the unfavorable conditions described above. We simulated the SQ
policy for % = 0.85 and for several values of n, with parameter values of λn = bλn−1 =
b2λn−2 = · · · = bn−1λ1 and c1 = bc2 = · · · = bn−1cn, where b = 2. Figure 4-5 (plotted
on a log-log scale) shows that the ratio between the actual performance and the lower
bound (averaged over 10 simulation runs) increases as nη, where η ≈ 1.25 according to a
least square fit. The figure also shows that the ratio between the analytic upper bound
and the lower bound increases as nη, where η ≈ 1.61 according to a least square fit. For
completeness, the figure also shows the worst-case ratio between the upper bound and lower
bound, which increases as n2. These experimental results suggest that the upper bound is
somewhat conservative.

4.4.3 Suboptimality of the approximate probability assignment

To prove theorem 4.3.4 we used the probability assignment

pα
.= cα for each α ∈ {1, . . . , n}. (4.26)

However, one would like to select [p1, . . . , pn] .= p that minimizes the right-hand side of
inequality (4.23). The minimization of the right-hand side of inequality (4.23) is a con-
strained multi-variable nonlinear optimization problem over p, that is, in n dimensions.
Thus, for a general n class problem, solving the optimization problem is difficult. However,
for two classes of demands the optimization is over a single variable p1 (with the constraint
that p2 = 1 − p1), and it can be readily solved. A comparison of optimized upper bound,
denoted upbdopt, with the upper bound obtained using the probability assignment in equa-
tion (4.26), denoted upbdc, is shown in Figure 4-6. In this figure the ratio of upper bounds
is bounded by two.

For n > 2 we approximate the solution of the optimization problem as follows. For each
value of n we perform 1000 runs. In each run we randomly generate λ1, . . . , λn, c1, . . . , cn,
and five sets of initial probability assignments p1, . . . ,p5. From each initial probability
assignment we use a line search to locally optimize the probability assignment. We take
the ratio between upbdc and the least upper bound upbdlocal opt obtained from the five
locally optimized probability assignments. We also record the maximum variation in the
five locally optimized upper bounds. This is summarized in Table 4.3. The second column
shows the largest ratio obtained over the 1000 runs. The third column shows the largest
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Figure 4-6: The ratios upbdc/upbdopt for 2 classes of demands.

Number of classes (n) upbdc/upbdlocal opt Max. % variation in ratio

3 1.60 0.12
4 1.51 0.04
5 1.51 0.08
6 1.74 0.02
7 1.88 0.08
8 1.63 0.15

Table 4.3: Ratio of upper bound with pα = cα for each α ∈ {1, . . . , n} and the upper bound
with a locally optimized probability assignment.
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Figure 4-7: Ratio of experimental system times between Complete Merge policy and SQ
policy as a function of λ2, with n = 2, λ1 = 1, c = 0.995 and % = 0.9.

% variation in the 1000 runs. The assignment in equation (4.26) seems to perform within
a factor of two of the optimized assignment, and the optimization appears to converge to
values close to a global optimum since all five random conditions converge to values that
are within ∼ 0.1% of each other on every run.

4.4.4 The Complete Merge policy

As described in Section 4.3.3, a naive policy for our problem is to ignore priorities, merge
all classes into a single class, and repeatedly form TSP tours through all outstanding de-
mands. We call this policy the Complete Merge (CM) policy. In this section we briefly
verify by simulation that the performance of the Complete Merge policy can be very poor
when compared to that of the SQ policy. In addition, the poor performance occurs under
conditions of interest for most applications—when low priority demands arrive much more
frequently than high priority demands.

To upper bound the performance of the Complete Merge policy, define the total arrival
rate Λ .=

∑n
α=1 λα and total mean on-site service S̄ .=

∑n
α=1 s̄α. Using the upper bounds

in [14], we immediately obtain that TCM ≤
β2

TSP|E|Λ
m2v2(1−%)2 . Thus, the ratio of upper bounds

can be made arbitrarily large by choosing λ1 � λ2 � · · · � λn and c1 � c2 � · · · � cn.
This suggests that the ratio between the system time of the CM policy and that of the SQ
policy, TCM/T SQ, can be made very large. Figure 4-7 shows the experimentally obtained
ratio between the system time of the Complete Merge policy and that of the SQ policy
(averaged over 10 simulation runs), and verifies that the above choice of arrival rates and
convex combination coefficients results in large performance ratios.

4.5 Conclusion

In this chapter we introduced a dynamic vehicle routing problem with priority classes.
We believe that it may be possible to improve the lower bound and remove, or reduce,
the constant factor’s dependence on the number of classes. For future work it would be
interesting to combine the aspects of multi-class vehicle routing with problems in which
demands require teams of vehicles for their service. Also, it would be interesting to extend
the results in this chapter to the case of non-uniform demand densities (possibly class
dependent).
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Chapter 5

DVR in Transportation Systems

In this chapter we apply the algorithmic queueing theory approach to rigorously study
dynamic transportation-on-demand (TOD) systems, where users dynamically formulate
requests for transportation from a pick-up point to a delivery point. Typical examples
of TOD systems are cab-services and dial-a-ride transportation services for the elderly
and the disabled. Furthermore, radically new types of TOD systems are being developed,
including mobility-on-demand systems (MOD) [67], which will provide stacks and racks of
light electric vehicles at closely spaced intervals throughout a city: when a person wants
to go somewhere, he simply walks to the nearest rack, swipes a card to pick up a vehicle,
drives it to the rack nearest to his destination, and drops it off. MOD systems will enable
convenient point-to-point travel within urban areas and very high vehicle utilization rates,
and will extend availability to those who cannot or do not want to own their own vehicles.
Large-scale systems employing traditional, non-electric bicycles have already demonstrated
the feasibility of mobility-on-demand in several cities throughout Europe, e.g., Paris, Lyon,
Milano, Trento, Zurich and so on [66].

The fundamental problem in transportation-on-demand systems is to route the vehicles
with the objective that customers’ inconvenience (e.g., in terms of waiting time) is min-
imized. (In the case of MOD systems, we assume the cars can autonomously drive from
a delivery location to the next pick-up location -autonomous driving is an active research
topic, see for example [24, 23]-.) The static version of this problem, where all requests are
known before the routing process begins, is known in the operations research community
as the one-to-one Pick-up and Delivery (PD) problem. Several exact and heuristic rout-
ing algorithms have been proposed for this problem (see [31] for an authoritative survey).
Few rigorous studies exist instead for the dynamic counterpart of the one-to-one PD prob-
lem, which often is treated as a sequencing of static subproblems. Dynamic one-to-one
PD problems can be divided into three main categories [12]: (i) Dynamic Stacker Crane
Problem (where the vehicles have unit capacity), (ii) Dynamic Vehicle Routing Problem
with Pick-ups and Deliveries (where the vehicles can transport more than one request), and
(iii) Dynamic Dial-a-Ride Problem (where additional constraints such as time windows are
considered). Excellent surveys on heuristics, metaheuristics and online algorithms for Dy-
namic one-to-one PD problems can be found in [12] and [74]. Even though these algorithms
are quite effective in addressing Dynamic one-to-one PD problems (or, in other words, dy-
namic TOD and MOD systems), alone they do not answer critical questions such as: given
a certain number of vehicles, what are the fundamental limitations of performance? Is it
possible to characterize optimal routing policies? How do customer inconvenience levels
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scale down as the number of vehicles increases (in other words, what is the marginal benefit
of one more vehicle)? How should one pre-position vehicles when there are no outstanding
demands?

To the best of our knowledge, the only analytical studies for Dynamic one-to-one PD
problems are [101] and [98]. Specifically, in [101] the authors consider the uncapacitated
multiple vehicle case of this problem, and provide lower and upper bounds on the achievable
performance. In the same vein, in [98] the authors study the unit-capacity single vehicle
case of this problem, again providing bounds on the achievable performance. The results
in [101] and [98] are interesting and insightful, however they are not directly applicable to
transportation-on-demand systems, since such systems are characterized by multiple and
capacitated vehicles.

In this chapter, by employing an algorithmic queueing theory approach, we rigorously
study routing problems for dynamic transportation-on-demand systems, where pick-up re-
quests arrive according to a Poisson process and are randomly located according to a gen-
eral probability density. Corresponding delivery locations are also randomly distributed
according to a general probability density, and a fleet of unit-capacity vehicles must trans-
port demands from their pick-up locations to their delivery locations. The objective is to
minimize the expected waiting time for the demands. We assume that the vehicles have
single-integrator dynamics and that the environment is a bounded, convex subset within
the three-dimensional Euclidean space. These two assumptions are made mainly to ease
the exposition: we will in fact argue that the results derived in this chapter for this rather
artificial but analytically convenient setting hold also for the more realistic setting where
vehicles have differential constraints and operate within a two-dimensional manifold (e.g.,
planar kinematic vehicles with bounded curvature). The contributions of this chapter are:
First, we carefully formulate the problem. Second, we establish lower bounds on the ex-
pected waiting time in terms of the number of vehicles and other problem’s characteristics
(e.g., arrival rate of the demands). Finally, we rigorously study a vehicle routing policy
whose performance exhibits the same growth rate (in terms of the traffic congestion) as the
lower bound.

5.1 Problem Statement

In this section we present a simple yet insightful model for TOD and MOD systems, which
fits within the algorithmic queueing theory framework.

5.1.1 The problem

A total of m vehicles operate in a compact, convex environment E ⊂ R3. The vehicles are
free to move, traveling at a maximum velocity v, within the environment E . The vehicles are
identical, have unlimited range and are of unit capacity (i.e., they can transport one demand
at a time). Each vehicle is associated with a depot whose location is gk ∈ E , k ∈ {1, . . . ,m}.
Demands are generated according to a homogeneous (i.e., time-invariant) Poisson process,
with time intensity λ ∈ R>0. A newly arrived demand has an associated pick-up location
which is independent and identically distributed (i.i.d.) in E according to a density fP.
(Note that while a uniform distribution can be a reasonable model for TOD systems, it
is not for a MOD system, where pick-ups only happen at specific locations throughout a
city.) Each demand must be transported from its pick-up location to its delivery location.
The delivery locations are also i.i.d. in E according to a density fD. In this chapter we
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will assume that fP = fD = f . We will also pose the following technical conditions on f
(identical to the ones in [15]):

1. The density f is K-Lipschitz, i.e., |f(x)− f(y)| ≤ K ‖x− y‖, ∀x, y ∈ E .

2. The density f is bounded below and above, i.e., 0 < f ≤ f(x) ≤ f <∞, ∀x ∈ E .

We denote the travel time between the pick-up location of demand j and its delivery
location as sj . A realized demand is removed from the system after one of the vehicles
has brought it to its delivery location. Because the sites are generated independently, the
expected travel time for demand j is

E [sj ] =
1
v

∫
x,y∈E

‖y − x‖ f(x)f(y) dx dy .= s̄.

We define the load factor % .= λs̄/m.
The system time of demand j, denoted by Tj , is defined as the elapsed time between the

arrival of demand j and the time one of the vehicles completes its service (i.e., it delivers
the demand to its delivery location). The waiting time of demand j, Wj , is defined by
Wj = Tj − sj . The steady-state system time is defined by T .= lim supj→∞ E [Tj ]; moreover,
we let W .= T − s̄. A policy for routing the vehicles is said to be stable if the expected
number of demands in the system is uniformly bounded at all times. A necessary condition
for the existence of a stable policy is that % < 1; we shall assume % < 1 throughout this
chapter. When we refer to light-load conditions, we consider the case %→ 0+, in the sense
that λ → 0+; when we refer to heavy-load conditions, we consider the case % → 1−, in the
sense that λ→ [m/s̄]−.

Let P be the set of all causal, stable, and stationary policies with the additional (tech-
nical) property that decisions occur only at service completion epochs, except for vehicles
waiting idle at the depot locations. Letting T π denote the system time of a particular policy
π ∈ P, the problem is to find a policy π∗ (if one exists) such that

T π∗ = inf
π∈P

T π.

We let T ∗ denote the infimum of the right hand side above.
We call this problem the Dynamic Pick-up Delivery Problem with m vehicles of unit

capacity (DPDP/m/1).

5.1.2 Discussion

A related problem has been previously studied in [98]. In that paper, the DPDP/m/1 is
analyzed under the following assumptions: (i) there is only one vehicle (i.e., m = 1), (ii)
the distribution of pick-up and delivery locations is uniform (i.e., f = 1/|E|, where |E| is
the area of E), and E ⊂ R2. First, the authors find a policy that is optimal in light load;
then, they derive a lower bound on the system time of the order (1 − %)−2, and propose a
sectoring policy whose bound on the system time is of the order (1−%)−3. Finally, they use
simulation to analyze other policies. Note that the lower bound is of the order (1 − %)−2,
while the growth rate of the sectoring policy is of the order (1− %)−3; therefore, as %→ 1−,
the lower bound and the bound for the sectoring policy are arbitrarily far apart.
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In this chapter we consider the unit-capacity dynamic Pick-up and Delivery problem in
the setting of multiple vehicles with single-integrator dynamics, and arbitrary spatial distri-
bution of demands in three-dimensional environments. Our key contribution is that we are
able to find lower bounds and policies that have the same growth rate. As mentioned in the
introduction, we assume single-integrator dynamics and a three-dimensional environment
mostly for analytical convenience: we will argue that the results in this chapter hold also
for planar vehicles with differential constraints on their motion.

As in chapters 3 and 4, we will focus the analysis on two limiting regimes, namely
% → 0+ (light load) and % → 1− (heavy load). We conclude this section by mentioning
three major limitations of the DPDP/m/1: (i) the vehicles can freely travel in E , i.e., there
are no “street constraints”, (ii) the delivery locations are independent of pick-up locations,
and (iii) the densities fP and fD are equal.

5.2 Lower Bounds

In this section we present two lower bounds: the first one is most useful as % → 0+, while
the second one holds as %→ 1−.

5.2.1 A light load lower bound

A lower bound that is most useful when %→ 0+ is the following.

Theorem 5.2.1. The optimal expected time spent in the system by a demand is lower
bounded by

T
∗ ≥ 1

v
H∗m(E) + s̄. (5.1)

Proof. The proof is rather straightforward. Assume that we can place the vehicles in the
best a-priori positions, i.e., at the locations G∗m(E), where, as in chapter 2,

G∗m(E) = arg min
(g1,...,gm)∈Em

E
[
mink∈{1,...,m} ‖gk − x‖

]
.

The expectation is over demand pick-up sites, i.e., f . By definition, the locations G∗m(E)
minimize the expected distance between the pick-up site of a newly arrived demand and
the closest vehicle.

Clearly, the expected travel time for the vehicle assigned to a newly arrived demand
to reach the corresponding pick-up site is at least as large as H∗m(E)/v = Hm(G∗m(E), E)/v
(see chapter 2 for the definition of Hm). By adding to this the expected time to transfer
the demand from its pick-up to its delivery location we obtain the claim.

5.2.2 A heavy load lower bound

In this section we present a lower bound that holds as % → 1−; specifically, we will find
a heavy-load lower bound for the class of unbiased policies within P (see section 2.5.2 for
the definition of unbiased policy). To derive this bound we make heavy usage of the proof
techniques developed in [15].
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The expected number of outstanding pick-up sites in an arbitrary region S of the envi-
ronment can be expressed as

NP(S) = λ(S)W (S) = λ

∫
S
f(x)dx W = NP

∫
S
f(x)dx, (5.2)

where in the first equality we have applied Little’s theorem (see [44]) and W (S) = W
because we are considering unbiased policies.

Because of equation (5.2), and because f is Lipschitz, given a ball

B (x, z) .=
{
x′ ∈ E |

∥∥x′ − x∥∥ ≤ z}
we have

NP(B (x, z)) = NPf(x)V3 z
3 +NP o(z3), (5.3)

where V3 = 4π/3 is the volume of a unit ball in R3.

In what follows, to ease the exposition, we assume that there is a single depot g0 ∈ E .
Let Z be the steady-state distance from a vehicle (at the completion epoch of its demand)
to the closest outstanding pick-up location, or the depot if closer. We now show a technical
lemma, which relates the expected distance E [Z] to the number of outstanding pick-up
locations.

Lemma 5.2.2. For any unbiased policy in P

lim
NP→∞

N
1/3
P E [Z] ≥ (3/4)4/3

3
√
π

∫
E
f2/3(x) dx.

Proof. We first condition on the event that a randomly tagged demand is delivered at the
location XD = x. Let us fix a neighborhood D(NP) = {x′ | ‖x′ − g0‖ ≤ c−1/3(x)}, where
c(x) = NP V3 f(x). There are two possible cases.

Case 1: x /∈ D(NP). For z sufficiently small, i.e., such that B (x, z) does not contain the
depot,

P [Z ≤ z|XD = x] = P
[
n+

P (B(x, z)) > 0
]
≤ N+

P (B(x, z)),

where n+
P is the number of outstanding pick-up sites in the ball B (x, z) at the delivery time

of the current demand and N
+
P is its expectation. The inequality above holds because n+

P

is a non-negative, integer-valued random variable.

For Poisson arrival processes, it holds N+
P (S) = NP(S) (this is a consequence of the

PASTA property, see [105]), and recalling equation (5.3) we obtain

N
+
P (B(x, z)) = NPf(x)V3 z

3 +NP o(z3).
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Hence, we can write

E [Z |XD = x] ≥
∫ c−1/3(x)

0
P [Z > z|XD = x]dz

≥
∫ c−1/3(x)

0
1−NPf(x)V3 z

3−NP o(z3) dz

=
∫ c−1/3(x)

0
1− c(x) z3 −NP o(z3) dz

=
3
4
[
NPV3 f(x)

]−1/3 − o(N−1/3
P ).

Case 2: x ∈ D(NP). In this case we consider the trivial lower bound P [Z > z|XD = x] ≥
0.

We now remove the conditioning on the current delivery site, and we obtain (recall that
by assumption f is bounded below by f , and thus

∫
D(N) dz ≤ O(1/N))

E [Z] =
∫
E

E [Z |XD = x]f(x)dx

≥
[
NPV3

]−1/3 3
4

[∫
E−D(NP)

f−1/3(x)f(x)dx

]
− o(N−1/3

P )

≥
[
NPV3

]−1/3 3
4

[∫
E
f2/3(x)dx− f−1/3f

∫
D(NP)

dx

]
− o(N−1/3

P )

=
[
NPV3

]−1/3 3
4

[∫
E
f2/3(x)dx

]
− o(N−1/3

P ).

Multiplying by N1/3
P and taking the limit as NP →∞, we obtain the claim.

We are now in a position to prove the main results of this section.

Theorem 5.2.3 (Heavy-load lower bound). Within the class of unbiased policies in P

lim
%→1−

T
∗(1− %)3 ≥ γ3

3

λ2

m3v3

[∫
E
f2/3(x) dx

]3

where γ3 ≥ (3/4)4/3/ 3
√
π.

Proof. Let E [D] denote the steady-state expected distance traveled empty between the
delivery site of a randomly tagged demand and the pick-up site of the next demand to be
serviced by the same vehicle. A necessary condition for stability is that

s̄+
E [D]
v
≤ m

λ
. (5.4)

Since, by definition, E [Z] ≤ E [D], equation (5.4) implies

λ

m

E [Z]
v
≤ 1− %.
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By multiplying both sides by N1/3
P and raising to the 3rd power we obtain

NP(1− %)3 ≥ λ3[N1/3
P E [Z]]3

m3v3
.

Applying Little’s Law, i.e. NP = λW , we get

T (1− %)3 ≥W (1− %)3 ≥ λ2[N1/3E [Z]]3

m3v3
.

Taking the limit as % → 1− we trivially have that NP → ∞, hence we can apply
lemma 5.2.2 and obtain the claim.

5.2.3 Lower bounds with other vehicle’s models

It is significant to mention that the order of the lower bounds derived in this section
holds for a number of problems in R2 where service vehicles have more complex dynam-
ics. Consider, for example, Dubins vehicles, which are planar vehicles constrained to move
along paths of bounded curvature, without reversing direction and maintaining a constant
speed. A Dubins vehicle at position x (with minimum turning radius ρ) has a reachable set
BDubins(x, z) with area z3/3ρ for small distances z, regardless of heading (see [41]). In the
heavy load case, to obtain a result similar to theorem 5.2.3, we simply rewrite equation (5.3)
as NP (BDubins(x, z)) = NPf(x) z3/3ρ+NP o(z3) and re-apply the analysis of lemma 5.2.2.

5.3 Light Load Policies

In this section we briefly describe a policy that achieves asymptotic optimality in the light-
load limit. This policy is very similar to the SQM policy discussed in section 2.5.3. For an
instance of the problem, we consider the placement of m depots at the m-median of E , i.e.,
at G∗m(E). Each depot will correspond to a queue, and is assigned a service vehicle.

The m Stochastic Queue Median Policy with Pick-ups (SQMP) —
Upon arrival, a demand is assigned to the depot closest to its pick-up loca-
tion. The depot’s vehicle services its demands in first-come first-served order,
returning to the depot after each delivery, and waiting there if its queue is empty.

Each of the m resulting queues forms an M/G/1 queue with time intensity λk > 0,
such that

∑m
k=1 λk = λ. By applying the Pollaczek-Khinchin formula for the M/G/1

queue [44], we see that the time spent waiting for the vehicle to service other demands
goes to zero as λk → 0+, and the system time for demands serviced by the kth vehicle tends
to E [‖g∗k − x‖]/v + s̄k, where s̄k is the expected pickup-to-delivery distance conditioned on
the depot. When we remove the conditioning with respect to the depot and take λ → 0+,
we find that the expected waiting time under this policy approaches exactly

T SQMP →
1
v
H∗m(E) + s̄,

showing the tightness of the lower bound.
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5.4 Heavy Load Policies

Before presenting and analyzing a policy that is particularly effective in heavy load, we
define the concept of bipartite matching tour.

5.4.1 Bipartite matching tour

Let X0, X1, . . . , Xn, Y1, . . . , Yn be points in Rd. The point X0 will represent the initial
location of a vehicle, the points X = {X1, . . . , Xn} will be pick-up locations and the points
Y = {Y1, . . . , Yn} will be the corresponding delivery locations. A bipartite matching tour
is essentially an approximation of a shortest length tour through the points X0,X ,Y with
the constraint that when a vehicle visits a pick-up point, the next point to be visited is
the corresponding delivery point (such a tour is know in the literature as the stacker crane
tour).

The bipartite matching tour is constructed as follows. First we add n directed edges
Xi → Yi that connect pick-up locations to the corresponding delivery locations. Second, we
find a bipartite matching for the X and Y locations. By adding the n edges of the bipartite
matching to the n pick-up to delivery edges Xi → Yi we obtain one or more tours, which we
call secondary tours. Finally, we find a TSP tour (which we call the primary tour) across
the locations X0, X1, . . . , Xn and we add the corresponding edges. A bipartite matching
tour is then as follows: we start at X0, and follow the primary tour until the first location
in X is reached, say Xj . Then, we follow the secondary tour starting at Xj until we reach
again Xj . We resume the primary tour and follow it until we find the next unvisited point
in X , say Xk. The procedure is iterated in this way until we reach X0 again (see Figure
5-1). This concept was originally introduced in [108].

P1

P3

P2

D1

D2

D3

DPT

Figure 5-1: A bipartite matching tour. The square represents the current location of the
vehicle. P1, P2, P3 are pick-up locations and D1, D2, D3 are the corresponding delivery
locations. Solid arrows show links between pick-up and delivery sites. Dotted arrows show
links obtained by the bipartite matching between delivery and pick-up sites. Finally, dashed
arrows show the primary tour (TSP) through pick-up sites. The bipartite matching tour is:
DPT → P1 → D1 → P2 → D2 → P1 → P2 → P3 → D3 → P3 → DPT .
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5.4.2 The randomized batch policy

In this section we present an unbiased service policy, which we call Randomized Batch
policy (RB).

The Randomized Batch policy (RB) — Each newly arrived demand is
assigned with probability pk = 1/m to the vehicle k, k ∈ {1, . . . ,m}. Then, for
each vehicle k: Let Qk be the set of outstanding demands waiting for service.
If Qk = ∅, move to gk (the depot). If, instead, Qk 6= ∅, compute a bipartite
matching tour through the current vehicle position and all demands in Qk and
service all demands by following such tour. Repeat.

5.4.3 Analysis

The performance of the RB policy in heavy load is characterized by the following theorem.

Theorem 5.4.1 (Performance of RB policy in heavy load). As % → 1−, the system time
for the RB policy satisfies

TRB ≤
λ2 (βTSP + βM)3

(∫
E f

2/3(x) dx
)3

v3m2 (1− %)3
(5.5)

The proof of Theorem 5.4.1 requires techniques very similar to those employed in the
analysis of the SQ policy in section 4.3; however, we include it for completeness. We start
with the following lemma, similar to lemma 4.3.1, characterizing the number of outstanding
demands in heavy load.

Lemma 5.4.2 (Number of demands in heavy load). In heavy load (i.e., % → 1−), after a
transient, the number of demands serviced in a single tour is very large with high probability
(i.e., the number of demands tends to +∞ with probability that tends to 1, as % approaches
1−).

Proof. The proof is virtually identical to that of lemma 4.3.1 and it is omitted.

In this policy, each vehicle sees a demand arrival process which is Poisson with rate
λ/m and operates within the entire workspace E . Thus, the m-vehicle problem has been
turned into m independent and (statistically) identical single-vehicle problems, each with a
Poisson arrival process with rate λ/m. As a consequence, we have

E [T |demand assigned to vehicle j] = E [T | demand assigned to vehicle k],

and

TRB =
m∑
k=1

1
m

E [T |demand assigned to vehicle k]

= E [T |demand assigned to vehicle 1].

(5.6)

Therefore it is enough to study the system time for the demands assigned to vehicle 1. For
simplicity of notation we omit the label 1 in what follows.

Lemma 5.4.2 has two implications. First, since the number of demands is very large
at the time instants when the vehicle starts a new bipartite matching tour, we can apply
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equation (2.7) to estimate the average length of the TSP tour and equation (2.9) to estimate
the average length of the bipartite matching (see the proof of theorem 7.2.2 and especially
equation (7.4) in chapter 7 for a rigorous justification of this statement). Second, since
Q 6= ∅ with high probability, the policy operates with the condition Q = ∅ always false.

We refer to the time instant ti, i ≥ 0, in which the vehicle starts a new bipartite
matching tour as the epoch i of the policy; we refer to the time interval between epoch i
and epoch i+ 1 as the ith iteration. Let ni be the number of outstanding demands serviced
during iteration i. Finally, let Ci be the time interval between the time instant the vehicle
starts to service demands during iteration i and the time instant the vehicle starts to service
demands during next iteration i + 1. Demands arrive according to a Poisson process with
rate λ̂ .= λ/m; then, we have E [ni+1] = λ̂E [Ci]. The time interval Ci is equal to the time
to traverse the bipartite matching tour through the ni demands, which in turn is the sum
of three components:

1. the time to traverse the edges of the TSP tour;

2. the time to traverse the edges of the bipartite matching;

3. the ni travel times from pick-up locations to delivery locations.

Assume that i is large enough (say, i ≥ ī) so that, according to Lemma 5.4.2, the number of
outstanding demands is large. Then, the expected time to traverse the bipartite matching
tour through the ni demands can be upper bounded as (with a slight abuse of notation, we
call the length of the TSP tour through ni demands TSP(ni), and we denote the length of
the bipartite matching through ni pick-ups and deliveries as BM(ni))

E [Ci] =
1
v

E [TSP(ni + 1)]+
1
v

E [BM(ni)]+E
[∑ni

j=1 sj

]
≤ E [ni]

2/3 βTSP + βM

v

∫
E
f2/3(x) dx+ E [ni] s̄+O(1),

(5.7)

where we use equations (2.7) and (2.9), and we apply Jensen’s inequality for concave func-
tions in the form E

[
X2/3

]
≤ E [X]2/3.

Then, we obtain the following recurrence relation (where we define n̄i
.= E [ni]):

n̄i+1 = λ̂E [Ci]

≤ λ̂
(
n̄

2/3
i

βTSP + βM

v

∫
E
f2/3(x) dx+ n̄is̄+O(1)

)
.

(5.8)

The above inequality describes a system of recurrence relations that allows us to find
an upper bound on lim supi→+∞ n̄i. The following lemma bounds the value to which the
limit lim supi→+∞ n̄i converges.

Lemma 5.4.3 (Steady state number of demands). In heavy load, for every initial condition
n̄1, the trajectory i 7→ n̄i satisfies

n̄
.= lim sup

i→+∞
n̄i ≤

λ3(βTSP + βM)3
(∫
E f

2/3(x) dx
)3

v3m3 (1− %)3
.

Proof. By Lemma 5.4.2, ni tends to +∞ with probability that tends to 1, as % approaches
1−; then, after a transient, the term O(1) is negligible compared to the other terms in the
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right hand side of equation (5.8), and therefore it can be ignored (its inclusion in the proof
is conceptually straightforward, but makes the analysis cumbersome).

Next we define two auxiliary systems, System-Y and System-Z. We define System-Y
(with state y ∈ R) as

y(i+ 1) = λ̂
(
y(i)2/3βTSP + βM

v

∫
E
f2/3(x) dx+ y(i)s̄

)
. (5.9)

System-Y is obtained by replacing the inequality in equation (5.8) with an equality. Pick,
now, any ε > 0. From Young’s inequality

a =
a (p ε)α

(p ε)α
≤
(
a (p ε)α

)p 1
p

+
( 1

(p ε)α
)q 1
q
,

where a ∈ R≥0, p, q ∈ R>0, 1/p + 1/q = 1 and α, ε ∈ R>0. By letting a = y2/3, p = 3/2,
q = 3 and α = 2/3 we obtain:

y2/3 ≤ ε y +
4

27 ε2
.

By applying the above inequality in equation (5.9) we obtain

y(i+ 1) ≤λ̂
(
s̄+ ε

βTSP + βM

v

∫
E
f2/3(x) dx

)
y(i) +

4 λ̂
27 ε2

βTSP + βM

v

∫
E
f2/3(x) dx︸ ︷︷ ︸

=O(1) λ̂/ε2

.

(5.10)

Next, define System-Z as

z(i+ 1) =λ̂
(
s̄+ ε

βTSP + βM

v

∫
E
f2/3(x) dx

)
z(i) +O(1)

λ̂

ε2
. (5.11)

It is immediate to show that if n̄ī ≤ y(̄i) ≤ z(̄i), then

n̄i ≤ y(i) ≤ z(i), for all i ≥ ī. (5.12)

(Note that System-Y and System-Z are virtual systems for which we can arbitrarily pick the
initial conditions.) The proof now proceeds as follows. First, we show that the trajectories of
System-Z are bounded; this fact, together with equation (5.12), implies that also trajectories
of variables n̄i and y(i) are bounded. Then, we will compute lim supi→+∞ y(i); this quantity,
together with equation (5.12), will yield the desired result.

Let us consider the first issue, namely boundedness of trajectories for System-Z (de-
scribed in equation (5.11)). System-Z is a discrete-time linear system and can be rewritten
in compact form as

z(i+ 1) =
(
%+ ε b

)
z(i) +O(1)

λ̂

ε2
,

where % = λ̂s̄ and b = λ̂(βTSP + βM)
∫
E f

2/3(x) dx/v. Since, by assumption, % < 1, there
exists a sufficiently small ε > 0 such that % + ε b < 1. Accordingly, having selected a
sufficiently small ε, each solution i 7→ z(i) ∈ R≥0 of System-Z converges exponentially fast
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to the unique equilibrium point

z∗(ε) =
(

1− %− ε b
)−1

O(1)
λ̂

ε2
. (5.13)

Combining equation (5.12) with the previous statement, we see that the solutions i 7→ n̄i
and i 7→ y(i) are bounded. Thus

lim sup
i→+∞

n̄i ≤ lim sup
i→+∞

y(i) < +∞. (5.14)

Finally, we turn our attention to the computation of y .= lim supi→+∞ y(i). Taking the
lim sup of the left- and right-hand sides of equation (5.9), and noting that

lim sup
i→+∞

y2/3(i) =
(

lim sup
i→+∞

y(i)
)2/3

,

since x→ x2/3 is continuous and strictly monotone increasing on R>0, we obtain that

y = y2/3 λ̂
βTSP + βM

v

∫
E
f2/3(x) dx+ y %; (5.15)

rearranging we obtain

y =
λ̂3(βTSP + βM)3

(∫
E f

2/3(x) dx
)3

v3 (1− %)3
.

Noting that from equation (5.14) lim supi→+∞ n̄i ≤ y, we obtain the desired result.

We are now in a position to prove Theorem 5.4.1.

Proof of Theorem 5.4.1. Define C .= lim supi→∞ E [Ci]; then we have, by using the upper
bound on E [Ci] in equation (5.7) (neglecting O(1) terms),

C
.= lim sup

i→∞
E [Ci]

≤
(
n̄2/3βTSP + βM

v

∫
E
f2/3(x) dx+ n̄ s̄

)

≤
λ2(βTSP + βM)3

(∫
E f

2/3(x) dx
)3

v3m2 (1− %)2
+
λ2 % (βTSP + βM)3

(∫
E f

2/3(x) dx
)3

v3m2 (1− %)3
.

Hence, in the limit %→ 1−, we have

C ≤
λ2 (βTSP + βM)3

(∫
E f

2/3(x) dx
)3

v3m2 (1− %)3
.

The expected steady-state system time of a random demand, TRB, is then upper
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bounded, as %→ 1−, by

TRB ≤
1
2
C +

1
2
s̄ n̄

≤ 1
2
C +

1
2

λ2 (βTSP + βM)3
(∫
E f

2/3(x) dx
)3

v3m2 (1− %)3
,

(5.16)

where we used the fact that, as %→ 1−, the travel time along the bipartite matching tour
is negligible compared to the pick-up to delivery transfer times. Collecting the results we
obtain the claim.

5.4.4 RB policy for Dubins vehicles in R2

The RB policy, with some modifications, can be adapted to handle the case where vehicles
have more complex dynamics. Consider, for example, Dubins vehicles in R2. We can
adapt the concept of bipartite matching tour as follows. Assume there are n outstanding
demands. First, we find a Dubins TSP tour (i.e. a TSP tour that respects the differential
constraint of a Dubins vehicle) through the pick-up sites and the vehicle’s current location.
In [87], an algorithm is proposed to construct such a tour, based on a tiling of the plane
into 2n “beads”, geometric shapes adapted to the Dubins dynamics (see [87] for a rigorous
description of a bead tiling). The algorithm returns a tour whose length is of order n2/3.
Note that the Dubins TSP induces a heading constraint for the pick-up sites. Second, we
consider again a bead tiling of the plane into 2n beads, and we find a minimum length,
maximum cardinality bipartite matching from delivery sites to bead entrance points. The
assignment induces heading constraints for delivery sites, and by combining theorems 4.1
and 4.8 in [87] the length of this matching is of order n2/3. We then find a minimum length,
maximum cardinality bipartite matching from bead entrance points to pick-up sites. By
combining again theorems 4.1 and 4.8 in [87], the length of this matching is of order n2/3.
At this stage, each entrance point is associated with one delivery point and with one pick-
up point, hence we have found a bipartite matching from delivery points to pick-up points
whose length is of order n2/3. Finally, we find minimum length paths from the pick-up sites
to their corresponding delivery sites with constrained heading. Since the sum of the lengths
of the Dubins TSP and of the (Dubins) bipartite matching is of the order n2/3, the analysis
in the proof of theorem 5.4.1 holds, and a theorem analogous to theorem 5.4.1 can be stated
for Dubins vehicles in R2.

5.4.5 Comparison with the lower bound

With theorem 5.4.1 we can readily prove that the steady-state system time under the RB
policy differs from the heavy-load lower bound in theorem 5.2.3 by a known constant factor;
specifically, the system time under the RB policy has the same growth rate of the lower
bound (this is not the case in the work [98]).

Theorem 5.4.4. Let T ∗ be the optimal system time within the class of unbiased policies in
P; then

TRB

T
∗ ≤ m

(βTSP + βM)3

γ3
3

, as %→ 1−.
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5.5 Simulation

In this section we present simulation results for the RB policy. We mention that we also
studied by simulation several other unbiased policies (e.g., policies for which the demand
assignment is not random but follows more advance criteria), however the performance of
these policies was similar to that of the RB policy, and so they will not be discussed.

In all simulations we assumed the environment E to be the three-dimensional unit cube
[0, 1]3 and the spatial demand density f to be uniform over E . For each set of parameters
(e.g., %, m etc.) we generated 20 instances by simulation, and computed the mean demand
system time.

Simulations of the RB policy were performed using linkern as a solver to generate
approximations to the optimal TSP tour. A Python implementation of the Kuhn-Munkres
assignment algorithm [70] was used to generate Euclidean bipartite matchings.

In Figure 5-2(a) we show the dependance of the system time TRB on the load factor %
with a number of vehicles m = 3. We consider values of % ∈ [0.6, 0.75], which correspond
to a moderate/heavy load. One can observe that the experimental results are within the
theoretical lower and upper bounds (even though these bounds formally hold only in the
limit %→ 1−); moreover, one can observe that the performance of the RB policy is signifi-
cantly better than what is predicted by the upper bound; hence we believe that the upper
bound in theorem 5.4.1 is rather conservative. We also study how TRB scales with m. To
this end, we set the load factor % = 0.6 and we simulate the RB policy with m = 1, 2, 3, 4, 5.
Note that, by fixing %, we are implicitly letting λ be a function of m, since, by definition,
λ = %m/s̄. Hence, by increasing m while keeping % fixed the upper bound in theorem 5.4.1
stays constant, while the lower bound in theorem 5.2.3 scales as 1/m. Figure 5-2(b) reports
the value of TRB for each value of m and shows that TRB stays constant. Hence, recalling
our previous discussion, we argue that the RB policy indeed scales as 1/m2.
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Figure 5-2: Performance of RB policy and comparison with upper and lower bounds. Left
figure: TRB versus %. Right figure: scaling of TRB with respect to m.

5.6 Conclusion

In this chapter we studied a dynamic pick-up delivery problem with multiple vehicles of unit
capacity and we argued that this is a reasonable model for TOD and MOD systems. This
chapter leaves numerous important extensions open for further research. An open issue is
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that while the lower bound scales with the number of vehicles as O(1/m3), the upper bound
on the RB policy scales as O(1/m2). Hence, the optimal scaling of the system time with
respect to the number of vehicles is between O(1/m3) and O(1/m2), but the exact value
is still unknown. It is of strong economic interest to precisely characterize such optimal
scaling; this goal would require a tighter lower bound (we conjecture, however, that the
scaling O(1/m3) is indeed correct) and/or devising a policy with a better scaling in terms
of m. Furthermore, our initial motivation was to study TOD and MOD systems, for which
fP and fD might indeed be drastically different (even with different support). Hence it is
of interest to extend the analysis in this chapter to the case fP 6= fD.
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Part II
Modes of implementation for DVR algo-
rithms
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Chapter 6

Spatially Distributed Algorithms
for Environment Partitioning

The best previously known control policies for the m-vehicle Dynamic Traveling Repairman
Problem (discussed in section 2.5) rely on centralized task assignment and are not robust
against changes in the environment, in particular changes in load conditions; therefore, they
are of limited applicability in scenarios involving ad hoc networks of autonomous agents op-
erating in a time-varying environment. In this chapter we present spatially distributed
algorithms for environment partitioning, which will be pivotal to design adaptive and dis-
tributed routing policies for DVR problems. The application of the algorithms developed
in this chapter to DVR problems will be discussed in chapter 7.

Indeed, the distributed partitioning algorithms we present here are of interest in their
own right, since they allow a mobile robotic network to share the workload among its
members in many scenarios of interest, beyond vehicle routing. Hence, in this chapter we
present the problem and the corresponding algorithms in a setting more general than that
of DVR.

From an abstract viewpoint, mobile robots can be interpreted as resources to be shared
among customers. In surveillance and exploration missions, customers are points of interest
to be visited; in transportation and distribution applications, customers are people demand-
ing some service (e.g., utility repair) or goods; in logistics tasks, customers could be troops in
the battlefield. Finally, consider a possible architecture for networks of autonomous agents
performing distributed sensing: a set of n cheap sensing devices (sensing nodes), distributed
in the environment, provides sensor measurements, while m sophisticated agents (cluster
heads) collect information from the sensing nodes and transmit it (possibly after some com-
putation) to the outside world. In this case, the sensing nodes represent customers, while
the agents, acting as cluster heads, represent resources to be allocated.

The most widely applied strategy for workload sharing among resources is to equalize
the total workload assigned to each resource. While, in principle, several strategies are able
to guarantee workload-balancing in multi-agent systems, equitable partitioning policies are
predominant [15, 10, 62, 26]. A partitioning policy is an algorithm that, as a function of
the number m of agents and, possibly, of their position and other information, partitions a
bounded environment E ⊂ Rd into m openly disjoint regions Ei, for i ∈ {1, . . . ,m}. In the
resource allocation problem, each agent i is assigned to subregion Ei, and each customer in
Ei receives service by the agent assigned to Ei. Accordingly, if we model the workload for
subregion S ⊆ E as fS

.=
∫
S f(x) dx, where f(x) is a measure over E , then the workload for
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agent i is fEi . Given this preface, load-balancing calls for equalizing the workload fEi in the
m subregions or, in equivalent words, to compute an equitable partition of the environment
E (i.e., a partition where fEi = fE/m, for all i).

Equitable partitioning policies are predominant for three main reasons: (i) efficiency,
(ii) ease of design and (iii) ease of analysis. Equitable partitioning policies are, therefore,
ubiquitous in multi-agent system applications. To date, nevertheless, to the best of our
knowledge, all equitable partitioning policies inherently assume a centralized computation
of the environment partition. This fact is in sharp contrast with the desire of a fully
distributed architecture for a multi-agent system.

The contributions of this chapter are as follows. First, we design provably correct,
spatially-distributed, and adaptive policies that allow a team of agents to achieve a convex
and equitable partition of a convex environment. Our approach is related to the classic
Lloyd algorithm from vector quantization theory [63, 25], and exploits the unique features
of power diagrams, a generalization of Voronoi diagrams (see [57] for another interesting
application of power diagrams in mobile sensor networks). Then, we provide extensions
of our algorithms to take into account secondary objectives, as for example, control on
the shapes of the subregions. Our motivation, here, is that equitable partitions in which
subregions are thin slices are, in most applications, impractical: in the case of vehicle
routing, for example, a thin slice partition might be fuel inefficient.

Finally, we mention that our algorithms, although motivated in the context of multi-
agent systems, are a novel contribution to the field of computational geometry. In particular
we address, using a dynamical system framework, the well-studied equitable convex partition
problem (see [27] and references therein); moreover, our results provide new insights in the
geometry of Voronoi diagrams and power diagrams.

This chapter is organized as follows. In section 6.1 we provide the necessary tools
from calculus, degree theory and geometry. Section 6.2 contains the problem formulation,
while in section 6.3 we present preliminary algorithms for equitable partitioning based on
leader-election, and we discuss their limitations. Section 6.4 is the core of the chapter: we
first prove some existence results for power diagrams, and then we design provably correct,
spatially-distributed, and adaptive equitable partitioning policies that do not require any
leader election. In section 6.5 we extend the algorithms developed in section 6.4 to take into
account secondary objectives. Section 6.6 contains simulations results. Finally, in section
6.7, we draw our conclusions.

The work in this chapter was performed in collaboration with Alessandro Arsie, and is
based on the journal article [75] and the preliminary conference papers [80, 76].

6.1 Background

In this section, we introduce some notation (that complements the notation introduced in
chapter 2) and briefly review some concepts from calculus, degree theory and geometry, on
which we will rely extensively later in this chapter.

6.1.1 Notation

Given a vector space V, let F(V) be the collection of finite subsets of V. Accordingly, F(Rd)
is the collection of finite point sets in Rd. Let G(Rd) be the set of undirected graphs whose
vertex set is an element of F(Rd) (we assume the reader is familiar with the standard notions
of graph theory as defined, for instance, in [37, Chapter 1]).
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We define the saturation function sata,b(x), with a < b, as:

sata,b(x) =


1 if x > b
(x− a)/(b− a) if a ≤ x ≤ b
0 otherwise

(6.1)

6.1.2 Variation of an integral function due to a domain change.

The following result is related to classic divergence theorems [28]. Let Ω = Ω(y) ⊂ E be
a region that depends smoothly on a real parameter y ∈ R and that has a well-defined
boundary ∂Ω(y) for all y. Let h be a density function over E . Then

d

dy

∫
Ω(y)

h(x) dx =
∫
∂Ω(y)

(dx
dy
· n(x)

)
h(x) dx, (6.2)

where v · w denotes the scalar product between vectors v and w, where n(x) is the unit
outward normal to ∂Ω(y), and where dx/dy denotes the derivative of the boundary points
with respect to y.

6.1.3 A basic result in degree theory

In this section, we state some results in degree theory that will be useful in the remainder
of the chapter. For a thorough introduction to the theory of degree we refer the reader to
[46].

Let us just recall the simplest definition of degree of a map g. Let g : X → Y be a
smooth map between connected compact manifolds X and Y of the same dimension, and
let p ∈ Y be a regular value for g (regular values abound due to Sard’s lemma). Since X
is compact, g−1(p) = {x1, . . . , xn} is a finite set of points and since p is a regular value,
it means that gUi : Ui → g(Ui) is a local diffeomorphism, where Ui is a suitable open
neighborhood of xi. Diffeomorphisms can be either orientation preserving or orientation
reversing. Let d+ be the number of points xi in g−1(p) at which g is orientation preserving
(i.e. det(Jac(g)) > 0, where Jac(g) is the Jacobian matrix of g) and d− be the number
of points in g−1(p) at which g is orientation reversing (i.e. det(Jac(g)) < 0). Since X is
connected, it can be proved that the number d+− d− is independent of the choice of p ∈ Y
and one defines deg(g) .= d+ − d−. The degree can be also defined for a continuous map
g : X → Y among connected oriented topological manifolds of the same dimensions, this
time using homology groups or the local homology groups at each point in g−1(p) whenever
the set g−1(p) is finite. For more details see [46].

The following result will be fundamental to prove some existence theorems and it is a
direct consequence of the theory of degree of continuous maps among spheres.

Theorem 6.1.1. Let g : Bm → Bm be a continuous map from a closed m-ball to itself. Call
Sm−1 the boundary of Bm, namely the (m − 1)-sphere and assume that gSm−1 : Sm−1 →
Sm−1 is a map with deg(g) 6= 0. Then g is onto Bm.

Proof. Since g as a map from Sm−1 to Sm−1 is different from zero, then the map gSm−1

is onto the sphere. If g is not onto Bm, then it is homotopic to a map Bm → Sm−1, and
then gSm−1 : Sm−1 → Sm−1 is homotopic to the trivial map (since it extends to the ball).
Therefore gSm−1 : Sm−1 → Sm−1 has zero degree, contrary to the assumption that it has
degree different from zero.
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In the sequel we will need also the following result.

Lemma 6.1.2. Let g : Sm → Sm a continuous bijective map from the m-dimensional sphere
to itself (m ≥ 1). Then deg(g) = ±1.

Proof. The map g is a continuous bijective map from a compact space to a Hausdorff space,
and therefore it is a homeomorphism. Now, a homeomorphism g : Sm → Sm has degree ±1
(see, for instance, [46, Page 136]).

6.1.4 Proximity graphs and spatially-distributed control policies for robotic
networks

Next, we shall present some relevant concepts on proximity graph functions and spatially-
distributed control policies; we refer the reader to [32] for a more detailed discussion. A
proximity graph function G : F(Rd) → G(Rd) associates to a point set PS ∈ F(Rd) an
undirected graph with vertex set PS and edge set ESG(PS), where ESG : F(Rd) 7→ F(Rd ×
Rd) has the property that ESG(PS) ⊂ PS × PS \ diag(PS × PS) for any PS. Here,
diag(PS ×PS) = {(p, p) ∈ PS ×PS| p ∈ PS}. In other words, the edge set of a proximity
graph depends on the location of its vertices. To each proximity graph function, one can
associate the set of neighbors map NG : Rd × F(Rd)→ F(Rd), defined by

NG(p,PS) = {q ∈ PS| (p, q) ∈ ESG(PS ∪ {p})}.

Two examples of proximity graph functions are:

(i) the Delaunay graph G 7→ GV(G) = (G, ESGV
(G)) has edge set

ESGV
(G) = {(gi, gj) ∈ G×G \ diag(G×G)| Vi(G) ∩ Vj(G) 6= ∅},

where Vi(G) is the ith cell in the Voronoi diagram V(G);

(ii) the power-Delaunay graph GW 7→ GP(GW ) = (GW , ESGP
(GW )) has edge set

ESGP
(GW ) =

{(
gi, wi), (gj , wj)

)
∈ GW×GW \diag(GW×GW )| Vi(GW )∩Vj(GW ) 6= ∅

}
,

where Vi(GW ) is the ith cell in the power diagram V(GW ).

We are now in a position to discuss spatially-distributed algorithms for robotic networks
in formal terms. Let P (t) = (p1(t), . . . , pm(t)) ∈ Em be the ordered set of positions of m
agents in a robotic network. We denote the state of each agent i ∈ Im at time t as
xi(t) ∈ Rq (xi(t) can include the position of agent i as well as other information). With
a slight abuse of notation, let us denote by Ii(t) the information available to agent i at
time t. The information vector Ii(t) is a subset of x(t) .= (x1(t), . . . , xm(t)) of the form
Ii(t) = {xi1(t), . . . , xik(t)}, k ≤ m. We assume that Ii(t) always includes xi(t). Let G be
a proximity graph function defined over P (t) (respectively over PW (t) if we also consider
a weight wi(t) for each robot i ∈ Im

.= {1, . . . ,m}); we define INGi (t) as the information
vector with the property xi(t) ∈ INGi (t), and, for j 6= i,

xj(t) ∈ INGi (t)⇔ pj(t) ∈ NG(pi(t), P (t))(
⇔ (pj(t), wj(t)) ∈ NG

(
(pi(t), wi(t)), PW (t)

)
, respectively

)
.

(6.3)
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In words, the information vector INGi (t) coincides with the states of the neighbors (as induced
by G) of agent i together with the state of agent i itself.

Let µ(t) = (µ1(I1(t)), . . . , µm(Im(t)) be a feedback control policy for the robotic network.
The policy µ is spatially distributed over G if for each agent i ∈ Im and for all t

µi(Ii(t)) = µi

(
I
NG
i (t)

)
.

In other words, through information about its neighbors (as induced by G), each agent i
has sufficient information to compute the control µi.

6.2 Problem Formulation

In this section we state the problem in a rather general setting. We will show in chapter
7 how to apply the distributed partitioning algorithms devised in this chapter to DVR
problems.

A total of m identical mobile agents provide service in a compact, convex service region
E ⊆ Rd. Let f be a measure whose bounded support is E (in other words, f is not zero only
on E); for any set S, we define the workload for region S as fS

.=
∫
S f(x) dx. The measure

f models service requests, and might represent, for example, the density of customers over
E , or, in a stochastic setting, their arrival rate. Given the measure f , a partition {Ei}i of
the environment E is equitable if fEi = fEj for all i, j ∈ Im.

A partitioning policy is an algorithm that, as a function of the number m of agents and,
possibly, of their position and other information, partitions a bounded environment E into
m openly disjoint subregions Ei, i ∈ Im. Then, each agent i is assigned to subregion Ei,
and each service request in Ei receives service from the agent assigned to Ei. We refer to
subregion Ei as the region of dominance of agent i. Given a measure f and a partitioning
policy, m agents are in a convex equipartition configuration with respect to f if the associated
partition is equitable and convex.

In this chapter we study the following problem: find a spatially-distributed (in the sense
discussed in Section 6.1) equitable partitioning policy that allows m mobile agents to achieve
a convex equipartition configuration (with respect to f). Moreover, we consider the issue
of convergence to equitable partitions with some special properties, e.g., where subregions
have shapes similar to those of regular polygons.

6.3 Leader-Election Policies

We first describe two simple algorithms that provide equitable partitions. A first possibility
is to “sweep” E from a point in the interior of E using an arbitrary starting ray until
fE1 = fE/m, continuing the sweep until fE2 = fE/m, etc. A second possibility is to slice, in
a similar fashion, E . The resulting equitable partitions are depicted in Figure 6-1.

Then, a possible solution could be to (i) run a distributed leader election algorithm
over the graph associated to some proximity graph function G (e.g., the Delaunay graph);
(ii) let each agent send its state xi(t) to the leader; (iii) let the leader execute either the
sweeping or the slicing algorithms described above; finally, (iv) let the leader broadcast
subregion’s assignments to all other agents. Such conceptually simple solution, however, can
be impractical in scenarios where the density f changes over time, or agents can fail, since
at every parameter’s change a new time-consuming leader election is needed. Moreover,
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(a) Sweeping E (b) Slicing E

Figure 6-1: Equitable partitions by sweeping and slicing (assuming a uniform measure f).

the sweeping and the slicing algorithms provide long and skinny subregions that are not
suitable in most applications of interest (e.g., vehicle routing).

We now present spatially-distributed algorithms, based on the concept of power dia-
grams, that solve both issues at once.

6.4 Spatially-Distributed Gradient-Descent Law for Equitable
Partitioning

We start this section with an existence theorem for equitable power diagrams.

6.4.1 On the existence of equitable power diagrams

The key advantage of power diagrams is that an equitable power diagram always exists for
any f (notice that in general, when f is non-constant, an equitable Voronoi diagram may
fail to exist, as we will show in section 6.4.5). Indeed, as shown in the next theorem, an
equitable power diagram (with respect to any f) exists for any vector of distinct points
G = (g1, . . . , gm) in E .

Theorem 6.4.1. Let E be a bounded, connected domain in R2, and f be a measure on E.
Let G = (g1, . . . , gm) be the positions of 1 ≤ m <∞ distinct points in E. Then, there exist
weights wi, i ∈ Im, such that the power points

(
(g1, w1), . . . , (gm, wm)

)
generate a power

diagram that is equitable with respect to f . Moreover, given a vector of weights W ∗ that
yields an equitable partition, the set of all vectors of weights yielding an equitable partition
is W∗t

.= {W ∗ + t[1, . . . , 1]}, with t ∈ R.

Proof. It is not restrictive to assume that fE = 1 (i.e., we normalize the measure of E), since
E is bounded. The strategy of the proof is to use a topological argument to force existence.

First, we construct a weight space. For simplicity of notation, let D be the diameter of
E (i.e., D = diam(E)), and consider the cube C .= [−D,D]m. This is the weight space and
we consider weight vectors W taking value in C. Second, consider the standard m-simplex
of measures fE1 , . . . , fEm (where E1, . . . , Em are the power cells). This can be realized in Rm

as the subset of defined by
∑m

i=1 fEi = 1 with the condition fEi ≥ 0. Let us call this set
“the measure simplex A” (notice that it is (m− 1)-dimensional).
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There is a map g : C → A associating, according to the power distance, a weight vector
W with the corresponding vector of measures (fE1 , . . . , fEm). Since the points in G are
assumed to be distinct, this map is continuous.

We will now use induction on m, starting with the base case m = 3 (the statement
for m = 1 and m = 2 is trivially checked). We study in detail the case for m = 3, where
visualization is easier, in order to make the proof more transparent. When m = 3, the weight
space C is a three dimensional cube with vertices v0 = [−D,−D,−D], v1 = [D,−D,−D],
v2 = [−D,D,−D], v3 = [−D,−D,D], v4 = [D,−D,D], v5 = [−D,D,D], v6 = [D,D,−D]
and v7 = [D,D,D]. The measure simplex A is, instead, a triangle with vertices u1, u2, u3

that correspond to the cases fE1 = 1, fE2 = 0, fE3 = 0, fE1 = 0, fE2 = 1, fE3 = 0, and
fE1 = 0, fE2 = 0, fE3 = 1, respectively. Moreover, call e1, e2 and e3 the edges opposite to the
vertices u1, u2, u3 respectively. The edges ei are, therefore, given by the condition {fEi = 0}
(see Figure 6-2).

v5

v3

v1

v6

v0 = (-D,-D,-D)

v2

V4

α v7 u2 =  fε1
=0,fε2

=1,fε3
=0[ ]

u3

e 3 
:  

  f ε
3

=0
{

}
u1

[ fε1
=1,fε2

=0,fε3
=0 ]

= e2 :    fε2
=0{ }

p0

e1 :    fε
1 =0

{
}

f

Γ

=

  fε1
=0,fε2

=0,fε3
=1 ][

Figure 6-2: Construction used for the proof of existence of equitable power diagrams.

Let us return to the map g : C → A. The map g sends v0 to the unique point p0 of
A corresponding to the measures of usual Voronoi cells (since the weights are all equal).
Observe that only the differences among the weights change the vector (fE1 , fE2 , fE3), i.e.,
if all weights are increased by the same quantity, the vector (fE1 , fE2 , fE3) does not change.
In particular, the image of the diagonal v0v7 is exactly the point for which the measures
are those of a Voronoi partition. Now let us understand what are the “fibers” of g, that is
to say, the loci where g is constant. Since the measures of the regions of dominance do not
change if the differences among the weights are kept constant, then the fibers of g in the
weight space C are given by the equations w1 − w2 = c1 and w2 − w3 = c2. Rearranging
these equations, it is immediate to see that w1 = w3 + c1 + c2, w2 = w3 + c2 and w3 = w3,
therefore taking w3 as parameter we see that the fibers of g are straight lines parallel to
the main diagonal v0v7. Therefore we can conclude that if a particular weight vector W ∗

yields a specific measure vector f∗ = (fE1 , fE2 , fE3), then all the weight vectors of the form
W ∗+ t[1, . . . , 1], t ∈ R, will give rise to the same area vector f∗. On the weight space C let
us define the following equivalence relation: w ≡ w′ if and only if they are on a line parallel
to the main diagonal v0v7. Map g : C → A induces a continuous map (still called g by abuse
of notation) from C/ ≡ to A having the same image. Let us identify C/ ≡. Any line in the
cube parallel to the main diagonal v0v7 is entirely determined by its intersections with the
three faces F3 = {w3 = −D} ∩ C, F2 = {w2 = −D} ∩ C and F1 = {w1 = −D} ∩ C. Call F
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the union of these faces. We therefore have a continuous map g : F → A that has the same
image of the original g; besides, the induced map g : F → A is injective by construction,
since each fiber intersects F in only one point.

Observe that F is homeomorphic to B2, the 2-dimensional ball, like A itself. Up to
homeomorphisms, therefore, the map g : F → A can be viewed as a map (again called g
by abuse of notation), g : B2 → B2. Consider the closed loop α given by v2v5, v5v3, v3v4,
v4v1, v1v6, v6v2 with this orientation (see Figure 6-2). This loop is the boundary of F and
we think of it also as the boundary of B2. Taking into account the continuity of g, it is easy
to see that g maps α onto the boundary of A. For example, while we move on the edges
v2v5 and v5v3, that are characterized by having w1 = −D, the corresponding point on the
measure simplex moves on the edge e1.

Moreover, since g is injective by construction, the inverse image of any point in the
boundary of A is just one element of α. Identifying the boundary of A with S1 (up to
homeomorphisms) and the loop α with S1 (up to homeomorphisms) we have a bijective
continuous map gS1 : S1 → S1. By lemma 6.1.2 deg(f) = ±1 and therefore g is onto A,
using theorem 6.1.1.

We now move to the inductive step, i.e., we suppose that we have proved that the map
g is surjective for m− 1 generators1 and we show how to use this to show that the map is
surjective for m generators.

If we have m generators, the weight space is given by an m dimensional cube C =
[−D,D]m, in complete analogy with the case of 3 generators. The m simplex of the areas
A is again defined as a set {(fE1 , . . . , fEm) ∈ Rm} such that fEi ≥ 0 for i ∈ {1, . . . ,m} and∑m

i=1 fEi = 1. Notice that A is homeomorphic to the (m − 1)-dimensional ball Bm−1. As
before we have a continuous map g : C → A. It is easy to see that g is constant on the sets
of the form Wt

.= {{W + t(1, . . . , 1)} ∩ C, t ∈ R}, that is whenever two sets of weights
differ by a common quantity, they are mapped to the same point in A. Moreover, fixing a
point p ∈ A we have that g−1(p) is given just by a set of the form Wt for a suitable W .
Indeed, assume this is not the case, then the vector of measures (fE1 , . . . , fEm) is obtained
via g using two sets of weights: W 1 .= (w1

1, . . . w
1
m) and W 2 .= (w2

1, . . . w
2
m), and W 1 and W 2

do not belong to the sameWt, namely it is not possible to obtain W 2 as W 1 +t(1, . . . , 1) for
a suitable t. This means that the vector difference W 2 −W 1 is not a multiple of (1, . . . , 1).
Therefore, there exists a nonempty set of indexes J , such that w2

j −w1
j ≥ w2

k−w1
k, whenever

j ∈ J and for all k ∈ {1, . . .m} and such that the previous inequality is strict for at least one
k∗. Now among the indexes in J , there exists at least one of them, call it j∗, such that the
generator j∗ is a neighbor of generator k∗, due to the fact that the domain E is connected.
But since w2

j∗ − w1
j∗ > w2

k∗ − w1
k∗ , and w2

j∗ − w1
j∗ ≥ w2

k − w1
k for all k ∈ {1, . . . ,m}, this

implies that the measure fEj∗ corresponding to the choice of weights W 2 is strictly greater
that fEj∗ corresponding to the choice of weights W 1. This proves that g−1(p) is given only
by sets of the form Wt.

We introduce an equivalence relation on C, declaring that two sets of weights W 1 and
W 2 are equivalent if and only if they belong to the same Wt. Let us call ≡ this equivalence
relation. It is immediate to see that g descends to a map, still called g by abuse of notation,
g : C/ ≡→ A and that g is now injective. It is easy also to identify C/ ≡ with the union of
the (m−1)-dimensional faces of C given by F = ∪mi=1(C ∩{wi = −D}). In this way we get a
continuous injective map g : F → A that has the same image as the original g. Notice also
that F is homeomorphic to the closed (m− 1)-dimensional ball, so up to homeomorphism

1For short, henceforth we will refer to a power generator simply as a generator.
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g can be viewed as a map g : Bm−1 → Bm−1.
We want to prove that the map g∂F , given by the restriction of g to ∂F is onto ∂A. To

see this, consider one of the (m− 2)-dimensional faces ∂Ai of ∂A, which is identified by the
condition fEi = 0. Consider the face Fi in F , where Fi is given by Fi

.= C ∩{wi = −D}. We
claim that the Si

.= ∂Fi ∩ ∂F is mapped onto ∂Ai by g. Observe that the Si is described
by the following equations Si = ∪j 6=i({wi = −D,wj = D} ∩ F), so Si is exactly equivalent
to a set of type F for m − 1 generators. Moreover observe that ∂Ai can also be identified
with the measure simplex for m−1 generators. By inductive hypothesis therefore, the map
g : Si → ∂Ai is surjective, and therefore also the map g∂F is onto ∂A. Since g∂F is a
bijective continuos map among (m − 2)-dimensional spheres, (up to homeomorphism), it
has degree ±1 by lemma 6.1.2. Finally we conclude that g is onto A, using again theorem
6.1.1.

Some remarks are in order.

Remark 6.4.2. The above theorem holds for any bounded, connected domain in Rd. Thus,
the case of a compact, convex subset of Rd is included as a special case. Moreover, it holds
for any measure f absolutely continuous with respect to the Lebesgue measure, and for any
vector of distinct points in E.

Remark 6.4.3. In the proof of the above theorem, we actually proved that for any measure
vector {fEi}i=1,...m in A, there exists a weight vector W ∈ C realizing it through the map g.
This could be useful in some applications.

Remark 6.4.4. Since all vectors of weights inWt yield exactly the same power diagram, we
conclude that the positions of the generators uniquely induce an equitable power diagram.

6.4.2 State, region of dominance, and locational optimization

The first step is to define the state for each agent i. We let xi(t) be the power generator
(gi(t), wi(t)) ∈ E×R, which is an artificial variable locally controlled by agent i. Henceforth,
we assume that E is a compact, convex subset of R2. We, then, define the region of
dominance for agent i as the power cell Vi = Vi(GW ), where GW =

(
(g1, w1), . . . , (gm, wm)

)
.

We refer to the partition into regions of dominance induced by the set of generators GW as
V(GW ).

In light of theorem 6.4.1, the key idea is to enable the weights of the generators to
follow a spatially-distributed gradient descent law (while maintaining the positions of the
generators fixed) such that an equitable partition is reached. Assume, henceforth, that the
positions of the generators are distinct, i.e., gi 6= gj for i 6= j. Define the set

S
.=
{

(w1, . . . , wm) ∈ Rm | fVi > 0 ∀i ∈ Im
}
. (6.4)

Set S contains all possible vectors of weights such that no region of dominance has measure
equal to zero.

We introduce the locational optimization function HV : S 7→ R>0:

HV (W ) .=
m∑
i=1

(∫
Vi(W )

f(x)dx
)−1

=
m∑
i=1

f−1
Vi(W ), (6.5)
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where W .= (w1, . . . , wm).

Lemma 6.4.5. A vector of weights that yields an equitable power diagram is a global min-
imum of HV .

Proof. Consider the relaxation of our minimization problem:

min
x1,...,xm

m∑
i=1

x−1
i ; s.t.

m∑
i=1

xi = a > 0, xi > 0, i ∈ Im,

where the linear equality constraint follows from the fact that

m∑
i=1

∫
Vi(W )

f(x)dx =
∫
E
f(x) dx .= a,

and where the constant a is greater than zero since f is a measure whose bounded support
is E . By Lagrange multiplier arguments, it is immediate to show that the global minimum
for the relaxation is xi = a/m for all i. Since theorem 6.4.1 establishes that there exists a
vector of weights in S that yields an equitable power diagram, we conclude that this vector
is a global minimum of HV .

6.4.3 Smoothness and gradient of HV

We now analyze the smoothness properties of HV . In the following, let γij
.= ‖gj − gi‖.

Theorem 6.4.6. Assume that the positions of the generators are distinct, i.e., gi 6= gj for
i 6= j. Given a measure f , the function HV is continuously differentiable on S, where for
each i ∈ {1, . . . ,m}

∂HV

∂ wi
=
∑
j∈Ni

1
2γij

( 1
f2
Vj

− 1
f2
Vi

)∫
∆ij

f(x) dx, (6.6)

where Ni denotes the set of indices of the power neighbors of (gi, wi) (see section 2.3.3).
Furthermore, the critical points of HV are vectors of weights that yield an equitable power
diagram.

Proof. By assumption, gi 6= gj for i 6= j, thus the power diagram is well defined. Since the
motion of a weight wi affects only power cell Vi and its neighboring cells Vj for j ∈ Ni, we
have

∂HV

∂wi
= − 1

f2
Vi

∂fVi
∂wi

−
∑
j∈Ni

1
f2
Vj

∂fVj
∂wi

. (6.7)

Now, the result in equation (6.2) provides the means to analyze the variation of an
integral function due to a domain change. Since the boundary of Vi satisfies ∂Vi = ∪j∆ij ∪
Bi, where ∆ij = ∆ji is the edge between Vi and Vj , and Bi is the boundary between Vi and
E (if any, otherwise Bi = ∅), we have

∂fVi
∂wi

=
∑
j∈Ni

∫
∆ij

( ∂x
∂wi
· nij(x)

)
f(x) dx+

∫
Bi

( ∂x
∂wi
· nij(x)

)
f(x) dx︸ ︷︷ ︸

=0

,
(6.8)
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where we defined nij as the unit normal to ∆ij outward of Vi (therefore we have nji = −nij).
The second term is trivially equal to zero if Bi = ∅; it is also equal to zero if Bi 6= ∅, since
the integrand is zero almost everywhere. Similarly,

∂fVj
∂wi

=
∫

∆ij

( ∂x
∂wi
· nji(x)

)
f(x) dx. (6.9)

To evaluate the scalar product between the boundary points and the unit outward
normal to the border in equation (6.8) and in equation (6.9), we differentiate equation (2.5)
with respect to wi at every point x ∈ ∆ij ; we get

∂x

∂wi
· (gj − gi) =

1
2
. (6.10)

From equation (2.5) we have nij = (gj− gi) /‖gj−gi‖, and the desired explicit expressions
for the scalar products in equation (6.8) and in equation (6.9) follow immediately (recalling
that nji = −nij).

Collecting the above results, we get the partial derivative with respect to wi. The proof
of the characterization of the critical points is an immediate consequence of the expression
for the gradient of HV ; we omit it in the interest of brevity.

Remark 6.4.7. The computation of the gradient in theorem 6.4.6 is spatially-distributed
over the power-Delaunay graph, since it depends only on information from the agents with
neighboring power cells.

Example 6.4.8 (Gradient of HV for uniform measure). The gradient of HV simplifies
considerably when f is constant. In such case, it is straightforward to verify that (assuming
that f is normalized)

∂HV

∂ wi
=

1
2|E|

∑
j∈Ni

δij
γij

( 1
|Vj |2

− 1
|Vi|2

)
, (6.11)

where δij is the length of the border ∆ij.

6.4.4 Spatially-distributed algorithm for equitable partitioning

Consider the set U .=
{

(w1, . . . , wm) ∈ Rm |
∑m

i=1wi = 0
}

. Since adding an identical value
to every weight leaves all power cells unchanged, there is no loss of generality in restricting
the weights to U ; let Ω .= S ∩ U . Assume that the generators’ weights obey a first order
dynamical behavior described by

ẇi = ui.

Consider HV an objective function to be minimized and impose that the weight wi follows
the gradient descent given by (6.6). In more precise terms, we set up the following control
law defined over the set Ω

ui = −∂HV

∂wi
(W ), (6.12)

where we assume that the partition V(W ) = {V1(W ), . . . , Vm(W )} is continuously updated.
One can prove the following result.
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Theorem 6.4.9. Assume that the positions of the generators are distinct, i.e. gi 6= gj for
i 6= j. Consider the gradient vector field on Ω defined by equation (6.12). Then generators’
weights starting at t = 0 at W (0) ∈ Ω, and evolving under (6.12) remain in Ω and converge
asymptotically to a critical point of HV , i.e., to a vector of weights yielding an equitable
power diagram.

Proof. We first prove that generators’ weights evolving under (6.12) remain in Ω and con-
verge asymptotically to the set of critical points of HV . By assumption, gi 6= gj for i 6= j,
thus the power diagram is well defined. First, we prove that set Ω is positively invariant
with respect to (6.12). Recall that Ω = S∩U . Noticing that control law (6.12) is a gradient
descent law, we have

f−1
Vi(W (t)) ≤ HV (W (t)) ≤ HV (W (0)), i ∈ Im, t ≥ 0.

Since the measures of the power cells depend continuously on the weights, we conclude that
the measures of all power cells will be bounded away from zero; thus, the weights will belong
to S for all t ≥ 0, that is, W (t) ∈ S ∀t ≥ 0. Moreover, the sum of the weights is invariant
under control law (6.12). Indeed,

∂
∑m

i=1wi
∂t

= −
m∑
i=1

∂HV

∂wi
= −

m∑
i=1

∑
j∈Ni

1
2γij

( 1
f2
Vj

− 1
f2
Vi

)∫
∆ij

f(x) dx = 0,

since γij = γji, ∆ij = ∆ji, and j ∈ Ni ⇔ i ∈ Nj . Thus, we have W (t) ∈ U ∀t ≥ 0. Since
W (t) ∈ S ∀t ≥ 0 and W (t) ∈ U ∀t ≥ 0, we conclude that W (t) ∈ S ∩ U = Ω, ∀t ≥ 0, that
is, set Ω is positively invariant.

Second, HV : Ω → R≥0 is clearly non-increasing along system trajectories, that is,
ḢV ≤ 0 in Ω.

Third, all trajectories with initial conditions in Ω are bounded. Indeed, we have already
shown that

∑m
i=1wi = 0 along system trajectories. This implies that weights remain within

a bounded set: If, by contradiction, a weight could become arbitrarily positive large, another
weight would become arbitrarily negative large (since the sum of weights is constant), and
the measure of at least one power cell would vanish, which contradicts the fact that S is
positively invariant.

Finally, by theorem 6.4.6, HV is continuously differentiable in Ω. Hence, by invoking
the LaSalle invariance principle (see, for instance, [25]), under the descent flow (6.12),
weights will converge asymptotically to the set of critical points of HV , that is not empty
as confirmed by theorem 6.4.1.

Indeed, by theorem 6.4.1, we know that all vectors of weights yielding an equitable
power diagram differ by a common translation. Thus, the largest invariant set of HV in Ω
contains only one point. This implies that limt→∞W (t) exists and it is equal to a vector of
weights that yields an equitable power diagram.

Some remarks are in order.

Remark 6.4.10. By theorem 6.4.9, for any set of generators’ distinct positions, conver-
gence to an equitable power diagram is global with respect to Ω. Indeed, there is a very
natural choice for the initial values of the weights. Assuming that at t = 0 agents are in E
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and in distinct positions, each agent initializes its weight to zero. Then, the initial partition
is a Voronoi tessellation; since f is positive on E, each initial cell has nonzero measure,
and therefore W (0) ∈ Ω (the sum of the initial weights is clearly zero).

Remark 6.4.11. The partial derivative of HV with respect to the ith weight only requires
information from the agents with neighboring power cells. Therefore, the gradient descent
law (6.12) is indeed a spatially-distributed control law over the power-Delaunay graph. We
mention that, in a power diagram, each power generator has an average number of neighbors
less than or equal to six [8]; therefore, the computation of gradient (6.12) is scalable with
the number of agents.

Remark 6.4.12. The focus here is on equitable partitions. Notice, however, that it is easy
to extend the previous algorithm to obtain a spatially-distributed (again over the power-
Delaunay graph) control law that provides any desired measure vector {fEi}i. In particular,
assume that we desire a partition such that

fEi = βifE ,

where βi ∈ (0, 1),
∑m

j=1 βj = 1. If we redefine HV : S 7→ R>0 as

HV (W ) .=
m∑
i=1

β2
i

fVi(W )
,

then, following the same steps as before, it is possible to show that, under control law

ẇi = −∂HV

∂wi
(W ) =

∑
j∈Ni

1
2γij

(
β2
j

f2
Vj

− β2
i

f2
Vi

)∫
∆ij

f(x) dx,

the solution converges to a vector of weights that yields a power diagram with the property
fEi = βifE (whose existence is guaranteed by Remark 6.4.3).

Remark 6.4.13. Define the set Γ .= Em \Γcoinc (where Γcoinc is defined in equation (2.2)).
It is of interest to define and characterize the vector-valued function W ∗ : Γ 7→ Ω that
associates to each non-degenerate vector of generators’ positions a set of weights such that
the corresponding power diagram is equitable. Precisely, we define W ∗(G) as W ∗(G) .=
limt→∞W (t), where W (t) = (w1(t), . . . , wm(t)) is the solution of the differential equation,
with fixed vector of generators’ positions G,

ẇi(t) = −∂HV

∂wi
(W (t)), wi(0) = 0, i ∈ Im.

By theorem 6.4.9, W ∗(G) is a well-defined quantity (since the limit exists) and corre-
sponds to an equitable power diagram. The next lemma characterizes W ∗(G).

Lemma 6.4.14. The function W ∗ is continuous on Γ.

Proof. See Appendix.

6.4.5 On the use of power diagrams

A natural question that arises is whether a similar result can be obtained by using Voronoi
diagrams (of which power diagrams are a generalization). The answer is positive if we
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constrain f to be constant over E , but it is negative for general measures f , as we briefly
discuss next.

Indeed, when f is constant over E , an equitable Voronoi diagram always exists. We
prove this result in a slightly more general setup.

Definition 6.4.14.1 (Unimodal Property). Let E ⊂ Rd be a bounded, measurable set (not
necessarily convex). We say that E enjoys the Unimodal Property if there exists a unit
vector v ∈ Rd such that the following holds. For each s ∈ R, define the slice Es .= {x ∈
E , v · x = s}, and call ψ(s) .= md−1(Es) the (d− 1)-dimensional Lebesgue measure of the
slice. Then, the function ψ is unimodal. In other words, ψ attains its global maximum at a
point s̄, is increasing on (−∞, s̄], and decreasing on [s̄,∞).

The Unimodal Property (notice that every compact, convex set enjoys such property)
turns out to be a sufficient condition for the existence of equitable Voronoi diagrams for
bounded measurable sets (with respect to constant f).

Theorem 6.4.15. If E ⊂ Rd is any bounded measurable set satisfying the Unimodal Prop-
erty and f is constant on E, then for every m ≥ 1 there exists an equitable Voronoi diagram
with m (Voronoi) generators.

Proof. See Appendix.

Then, an equitable Voronoi diagram can be achieved by using a gradient descent law
conceptually similar to the one discussed previously (the details are presented in [79]). We
emphasize that the existence result on equitable Voronoi diagrams seems to be new in the
rich literature on Voronoi tessellations.

While an equitable Voronoi diagram always exists when f is constant over E , in general,
for non-constant f , an equitable Voronoi diagram fails to exist, as the following counterex-
ample shows.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.5
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1.5
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2.5
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P2 =(2/10,1/3)

P1 =(3/20,17/6)

P3 =(8/10,1/3)

P4 =(17/20,17/6)

L1 L2 L3 L4 L5

f

L

Figure 6-3: Example of non-existence of an equitable Voronoi diagram on a line. The above
tessellation is an equitable partition, but not a Voronoi diagram.

Example 6.4.16 (Existence problem on a line). Consider a one-dimensional Voronoi di-
agram. In this case a Voronoi cell is a half line or a line segment (called a Voronoi line),
and Voronoi vertices are end points of Voronoi lines. It is easy to notice that the boundary
point between two adjacent Voronoi lines is the mid-point of the generators of those Voronoi
lines. Consider the measure f in Figure 6-3, whose support is the interval [0, 1]. Assume
m = 5. Let bi (i = 1, . . . , 4) be the position of the ith rightmost boundary point and gi be
the position of the ith rightmost generator (i = 1, . . . , 5). It is easy to verify that the only
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admissible configuration for the boundary points in order to obtain an equitable Voronoi
diagram is the one depicted in Figure 6-3. Now, by the Perpendicular Bisector Property,
we require: {

g3 − b2 = b2 − g2

g4 − b3 = b3 − g3

Therefore, we would require g4−g2 = 2(b3−b2) = 1.2; this is impossible, since g2 ∈ [0.1, 0.2]
and g4 ∈ [0.8, 0.9].

6.5 Distributed Algorithms for Equitable Partitions with Spe-
cial Properties

The gradient descent law (6.12), although effective in providing convex equitable partitions,
can yield long and “skinny” subregions. In this section, we provide spatially-distributed
algorithms to obtain convex equitable partitions with special properties. The key idea is
that, to obtain an equitable power diagram, changing the weights, while maintaining the
generators fixed, is sufficient. Thus, we can use the degrees of freedom given by the positions
of the generators to optimize secondary cost functionals. Specifically, we now assume that
both generators’ weights and their positions obey a first order dynamical behavior{

ẇi = uwi ,
ġi = ugi .

Define the set

S̃
.=
{(

(g1, w1), . . . , (gm, wm)
)
∈ (E × R)m | gi 6= gj for all i 6= j, and fVi > 0 ∀i ∈ Im

}
.

(6.13)
The primary objective is to achieve a convex equitable partition and is captured, similarly
as before, by the cost function H̃V : S̃ 7→ R>0

H̃V (GW ) .=
m∑
i=1

f−1
Vi(GW ).

We have the following

Theorem 6.5.1. Given a measure f , the function H̃V is continuously differentiable on S̃,
where for each i ∈ {1, . . . ,m}

∂H̃V

∂ gi
=
∑
j∈Ni

( 1
f2
Vj

− 1
f2
Vi

)∫
∆ij

(x− gi)
γij

f(x) dx,

∂H̃V

∂ wi
=
∑
j∈Ni

( 1
f2
Vj

− 1
f2
Vi

)∫
∆ij

1
2γij

f(x) dx.

(6.14)

Furthermore, the critical points of H̃V are generators’ positions and weights with the prop-
erty that all power cells have measure equal to fE/m.

Proof. The proof of this theorem is very similar to the proof of theorem 6.4.6; we omit
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it in the interest of brevity (the derivation of the partial derivative ∂H̃V
∂ gi

can be found in
[80]).

Notice that the computation of the gradient in theorem 6.5.1 is spatially distributed
over the power-Delaunay graph. For short, we define the vectors v±∂H̃i

.= ±∂H̃V
∂gi

.
Three possible secondary objectives are discussed in the remainder of this section.

6.5.1 Obtaining power diagrams similar to centroidal power diagrams

Define the mass and the centroid of the power cell Vi, i ∈ Im, as

MVi =
∫
Vi

f(x) dx, CVi =
1
MVi

∫
Vi

xf(x) dx.

In this section we are interested in the situation where gi = CVi , for all i ∈ Im. We call
such a power diagram a centroidal power diagram. The main motivation to study centroidal
power diagrams is that, as it will be discussed in Section 6.5.3, the corresponding cells,
under certain conditions, are similar in shape to regular polygons.

A natural candidate control law to try to obtain a centroidal and equitable power dia-
gram (or at least a good approximation of it) is to let the positions of the generators move
toward the centroids of the corresponding regions of dominance, when this motion does not
increase the disagreement between the measures of the cells (i.e., it does not make the time
derivative of H̃V positive).

First we introduce a C∞ saturation function as follows:

Θ(x) .=

{
0 for x ≤ 0 ,
exp
(
− 1

(βx)2

)
for x > 0, β ∈ R>0.

Moreover, we define the vector vC,gi
.= CVi−gi. Then, we set up the following control law de-

fined over the set S̃, where we assume that the partition V(GW ) = {V1(GW ), . . . , Vm(GW )}
is continuously updated,

ẇi = −∂H̃V

∂wi
,

ġi =
2
π

arctan

[
‖v−∂H̃i‖

2

α

]
Θ(vC,gi · v−∂H̃i) vC,gi , α ∈ R>0.

(6.15)

In other words, gi moves toward the centroid of its cell if and only if this motion is
compatible with the minimization of H̃V . In particular, the term arctan

(
‖v−∂H̃i‖

2/α
)

is

needed to make the right hand side of (6.15) C1, while the term Θ(vC,gi · v−∂H̃i) is needed
to make the right hand side of (6.15) compatible with the minimization of H̃V . To prove
that the vector field is C1 it is simply sufficient to observe that it is the composition and
product of C1 functions. Furthermore, the compatibility condition of the flow (6.15) with
the minimization of H̃V stems from the fact that ġi = 0 as long as vC,gi · v−∂H̃i ≤ 0, due
to the presence of Θ(·). Notice that the computation of the right hand side of (6.15) is
spatially distributed over the power-Delaunay graph.

As in many algorithms that involve the update of generators of Voronoi diagrams, it
is possible that under control law (6.15) there exists a time t∗ and i, j ∈ Im such that
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gi(t∗) = gj(t∗). In such a case, either the power diagram is not defined (when wi(t∗) =
wj(t∗)), or there is an empty cell (wi(t∗) 6= wj(t∗)), and there is no obvious way to specify
the behavior of control law (6.15) for these singularity points. Then, to make the set S̃
positively invariant, we have to slightly modify the update equation for the positions of the
generators. The idea is to stop the positions of two generators when they are close and on
a collision course.

Define, for ∆ ∈ R>0, the set

Mi(G,∆) .= {gj ∈ G | ‖gi − gj‖ ≤ ∆, gj 6= gi}.

In other words, Mi is the set of generators’ positions within an (Euclidean) distance ∆ from
gi. For δ ∈ R>0, δ < ∆, define the gain function ψ(ρ, ϑ) : [0,∆]× [0, 2π] 7→ R≥0 (see Figure
6-4):

ψ(ρ, ϑ) =


ρ−δ
∆−δ if δ < ρ ≤ ∆ and 0 ≤ ϑ < π,
ρ−δ
∆−δ (1 + sinϑ)− sinϑ if δ < ρ ≤ ∆ and π ≤ ϑ ≤ 2π,
0 if ρ ≤ δ and 0 ≤ ϑ < π,
−ρ
δ sinϑ if ρ ≤ δ and π ≤ ϑ ≤ 2π,

(6.16)

It is easy to see that ψ(·) is a continuous function on [0,∆] × [0, 2π] and it is globally
Lipschitz there. Function ψ(·) has the following motivation. Let ρ be equal to ‖gj − gi‖,
and let vx be a vector such that the tern {vx, (gj − gi), vx× (gj − gi)} is an orthogonal basis
of R3, co-orientied with the standard basis. In the Figure 6-4, vx corresponds to the x axis
and gj − gi corresponds to the y axis. Then the angle ϑij is the angle between vx and vC,gi ,
where 0 ≤ ϑij ≤ 2π. If ρ ≤ δ and 0 ≤ ϑij < π, then gi is close to gj and it is on a collision
course, thus we set the gain to zero. Similar considerations hold for the other three cases;
for example, if ρ ≤ δ and π < ϑij < 2π, the generators are close, but they are not on a
collision course, thus the gain is positive.

ϑij

Zero gain

z

x

y

Figure 6-4: Gain function used to avoid that the positions of two power generators can
coincide.
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Thus, we modify control law (6.15) as follows:

ẇi = −∂H̃V

∂wi

.= ucent,w
i ,

ġi =
2
π

arctan

[
‖v−∂H̃i‖

2

α

]
Θ(vC,gi · v−∂H̃i) vC,gi

∏
gj∈Mi(G,∆)

ψ
(
‖gj − gi‖, ϑij

)
.= ucent,g

i .

(6.17)

If Mi(G,∆) is the empty set, then we have an empty product, whose numerical value is 1.
Notice that the right hand side of (6.17) is Lipschitz continuous, since it is a product of C1

functions and Lipschitz continuous functions, and it can be still computed in a spatially-
distributed way (in fact, it only depends on generators that are neighbors in the power
diagram, and whose positions are within a distance ∆). One can prove the following result.

Theorem 6.5.2. Consider the vector field on S̃ defined by equation (6.17). Then gen-
erators’ positions and weights starting at t = 0 at GW (0) ∈ S̃, and evolving under (6.17)
remain in S̃ and converge asymptotically to the set of critical points of the primary objective
function H̃V (i.e., to the set of vectors of generators’ positions and weights that yield an
equitable power diagram).

Proof. The proof is virtually identical to the one of theorem 6.4.9, and we omit it in the
interest of brevity. We only notice that H̃V is non-increasing along system trajectories

˙̃HV =
m∑
i=1

∂H̃V

∂gi
· ġi +

∂H̃V

∂wi
ẇi =

m∑
i=1

∂H̃V

∂gi
· ġi︸ ︷︷ ︸

≤0

−
(∂H̃V

∂wi

)2
≤ 0.

Moreover, the components of the vector field (6.17) for the position of each generator are
either zero or point toward E (since the centroid of a cell must be within E); therefore, each
generator will remain within the compact set E .

6.5.2 Obtaining power diagrams “close” to Voronoi diagrams

In some applications it could be preferable to have power diagrams as close as possible
to Voronoi diagrams (e.g., in DVR problems, see chapter 7). This issue is of particular
interest for the setting with non-uniform density, when an equitable Voronoi diagram could
fail to exist. The objective of obtaining a power diagram close to a Voronoi diagram can
be translated into the minimization of the function K : Rm → R≥0:

K(W ) .=
1
2

m∑
i=1

w2
i ;

when wi = 0 for all i ∈ Im, we have K = 0 and the corresponding power diagram coincides
with a Voronoi diagram. To include the minimization of the secondary objective K, it is
natural to consider, instead of (6.12), the following update law for the weights:

ẇi = −∂HV

∂wi
− ∂K

∂wi
= −∂HV

∂wi
− wi. (6.18)
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However, HV is no longer a valid Lyapunov function for system (6.18). The idea, then, is
to let the positions of the generators move so that ∂H̃V

∂gi
· ġi − ∂H̃V

∂wi
∂K
∂wi

= 0. In other words,
the dynamics of generators’ positions are used to compensate the effect of the term −wi
(present in the weights’ dynamics) on the time derivative of H̃V .

Thus, we set up the following control law, with ε1, ε2 and ε3 positive small constants,
ε2 > ε1,

ẇi = −∂H̃V

∂wi
− wisatε1,ε2

(
‖v∂H̃i‖

)
sat0,ε3

(
dist(gi, ∂Vi)

)
,

ġi = wi
∂H̃V

∂wi

v∂H̃i
‖ v∂H̃i‖

2
satε1,ε2

(
‖v∂H̃i‖

)
sat0,ε3

(
dist(gi, ∂Vi)

)
.

(6.19)

The gain satε1,ε2
(
‖v∂H̃i‖

)
is needed to make the right hand side of (6.19) Lipschitz con-

tinuous, while the gain sat0,ε3

(
dist(gi, ∂Vi)

)
avoids that generators’ positions can leave the

environment. Notice that the computation of the right hand side of (6.19) is spatially
distributed over the power-Delaunay graph.

As before, it is possible that under control law (6.19) there exists a time t∗ and i, j ∈ Im
such that gi(t∗) = gj(t∗). Thus, similarly as before, we modify the update equations (6.19)
as follows

ẇi = −∂H̃V

∂wi
− wisatε1,ε2

(
‖v∂H̃i‖

)
sat0,ε3

(
dist(gi, ∂Vi)

)
·

∏
gj∈Mi(G,∆)

ψ
(
‖gj − gi‖, ϑij

)
.= uvor,w

i ,

ġi = wi
∂H̃V

∂wi

v∂H̃i
‖ v∂H̃i‖

2
satε1,ε2

(
‖v∂H̃i‖

)
sat0,ε3

(
dist(gi, ∂Vi)

)
·

∏
gj∈Mi(G,∆)

ψ
(
‖gj − gi‖, ϑij

)
.= uvor,g

i ,

(6.20)

where ϑij is defined as in Section 6.5.1, with wi
∂H̃V
∂wi

v∂H̃i replacing vC,gi .
One can prove the following result.

Theorem 6.5.3. Consider the vector field on S̃ defined by equation (6.20). Then gen-
erators’ positions and weights starting at t = 0 at GW (0) ∈ S̃, and evolving under (6.20)
remain in S̃ and converge asymptotically to the set of critical points of the primary objective
function H̃V (i.e., to the set of vectors of generators’ positions and weights that yield an
equitable power diagram).

Proof. Consider H̃V as a Lyapunov function candidate. First, we prove that set S̃ is posi-
tively invariant with respect to (6.20). Indeed, by definition of (6.20), we have gi 6= gj for
i 6= j for all t ≥ 0 (therefore, the power diagram is always well defined). Moreover, it is
straightforward to see that ˙̃HV ≤ 0. Therefore, it holds

f−1
Vi(GW (t)) ≤ H̃V (GW (t)) ≤ H̃V (GW (0)), i ∈ Im, t ≥ 0.

Since the measures of the power cells depend continuously on generators’ positions and
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weights, we conclude that the measures of all power cells will be bounded away from zero.
Finally, since ġi = 0 on the boundary of E for all i ∈ Im, each generator will remain within
the compact set E . Thus, generators’ positions and weights will belong to S̃ for all t ≥ 0,
that is, GW (t) ∈ S̃ ∀t ≥ 0.

Second, as shown before, H̃V : S̃ → R≥0 is non-increasing along system trajectories, i.e.,
˙̃HV (GW ) ≤ 0 in S̃.

Third, all trajectories with initial conditions in S̃ are bounded. Indeed, we have already
shown that each generator remains within the compact set E under control law (6.20). As
far as the weights are concerned, we start by noticing that the time derivative of the sum
of the weights is

∂
∑m

i=1wi
∂t

= −
m∑
i=1

wisatε1,ε2
(
‖v∂H̃i‖

)
sat0,ε3

(
dist(gi, ∂Vi)

) ∏
gj∈Mi(G,∆)

ψ
(
‖gj − gi‖, ϑij

)
,

since, similarly as in the proof of theorem 6.4.9,
∑m

i=1
∂H̃V
∂wi

= 0. Moreover, the magnitude
of the difference between any two weights is bounded by a constant, that is,

|wi − wj | ≤ α for all i, j ∈ Im; (6.21)

if, by contradiction, the magnitude of the difference between any two weights could become
arbitrarily large, the measure of at least one power cell would vanish, since the positions of
the generators are confined within E . Assume, by the sake of contradiction, that weights’
trajectories are unbounded. This means that

∀R > 0 ∃t ≥ 0 and ∃ j ∈ Im such that |wj(t)| ≥ R.

For simplicity, assume that wi(0) = 0 for all i ∈ Im (the extension to arbitrary initial
conditions in S̃ is straightforward). Choose R = 2mα and let t2 be the time instant such
that |wj(t2)| = R, for some j ∈ Im. Without loss of generality, assume that wj(t2) > 0.
Because of constraint (6.21), we have

∑m
i=1wi(t2) ≥ α

2m(3m + 1). Let t1 be the last time
before t2 such that wj(t) = mα; because of continuity of trajectories, t1 is well-defined.
Then, because of constraint (6.21), we have (i)

∑m
i=1wi(t1) ≤ α

2m(3m− 1) <
∑m

i=1wi(t2),

and (ii) ∂
Pm
i=1 wi(t)
∂t ≤ 0 for t ∈ [t1, t2] (since wj(t) ≥ mα for all t ∈ [t1, t2] and equation

(6.21) imply mini∈Im wi(t) > 0 for all t ∈ [t1, t2]); thus, we get a contradiction.
Finally, by theorem 6.5.1, H̃V is continuously differentiable in S̃. Hence, by invoking

the LaSalle invariance principle (see, for instance, [25]), under the descent flow (6.20),
generators’ positions and weights will converge asymptotically to the set of critical points
of H̃V , that is not empty by theorem 6.4.1.

6.5.3 Obtaining cells similar to regular polygons

In many applications, it is preferable to avoid long and thin subregions. For example, in
applications where a mobile agent has to service demands distributed in its own subregion,
the maximum travel distance is minimized when the subregion is a circle. Thus, it is of
interest to have subregions whose shapes show circular symmetry, i.e., that are similar to
regular polygons.

Define, now, the distortion function LV : (E × R)m \ Γcoinc 7→ R≥0:
∑m

i=1

∫
Vi
‖x −

gi‖2f(x)dx (where Vi is the ith cell in the corresponding power diagram). In [71] it is
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shown that, when m is large, for the centroidal Voronoi diagram (i.e., centroidal power
diagram with equal weights) that minimizes LV , all cells are approximately congruent to a
regular hexagon, i.e., to a polygon with considerable circular symmetry (see Section 6.6 for
a more in-depth discussion about circular symmetry).

Indeed, it is possible to obtain a power diagram that is close to a centroidal Voronoi
diagram by combining control laws (6.17) and (6.20). In particular, we set up the following
(spatially-distributed) control law:

ẇi =ucent,w
i + uvor,w

i ,

ġi =ucent,g
i + uvor,g

i .
(6.22)

Combining the results of theorem 6.5.2 and theorem 6.5.3, we argue that with control
law (6.22) it is possible to obtain equitable power diagrams with cells similar to regular
polygons, i.e. that show circular symmetry.

6.6 Simulations and Discussion

In this section we verify through simulation the effectiveness of the optimization for the
secondary objectives. For brevity, we discuss only control law (6.22). We introduce two
criteria to judge, respectively, closeness to a Voronoi diagram, and circular symmetry of a
partition.

6.6.1 Closeness to Voronoi diagrams

In a Voronoi diagram, the intersection between the bisector of two neighboring generators gi
and gj and the line segment joining gi and gj is the midpoint gvor

ij
.= (gi+gj)/2. Then, if we

define gpow
ij as the intersection, in a power diagram, between the bisector of two neighboring

generators (gi, wi) and (gj , wj) and the line segment joining their positions gi and gj , a
possible way to measure the distance η of a power diagram from a Voronoi diagram is the
following:

η
.=

1
2N

m∑
i=1

∑
j∈Ni

‖gpow
ij − gvor

ij ‖
0.5 γij

, (6.23)

where N is the number of neighboring relationships and, as before, γij = ‖gj − gi‖. Clearly,
if the power diagram is also a Voronoi diagram (i.e., if all weights are equal), we have η = 0.
We will also refer to η as the Voronoi defect of a power diagram.

6.6.2 Circular symmetry of a partition

A quantitative manifestation of circular symmetry is the well-known isoperimetric inequality
which states that among all planar objects of a given perimeter, the circle encloses the
largest area. More precisely, given a planar region V with perimeter pV and area |V |, then
p2
V − 4π|V | ≥ 0, and equality holds if and only if V is a circle. Then, we can define the

isoperimetric ratio as follows: QV = 4π|V |
p2
V

; by the isoperimetric inequality, QV ≤ 1, with
equality only for circles. Interestingly, for a regular n-gon the isoperimetric ratio Qn is
Qn = π

n tan π
n

, which converges to 1 for n → ∞. Accordingly, given a partition {Ei}mi=1,
we define, as a measure for the circular symmetry of the partition, the isoperimetric ratio
Q{Ei}mi=1

.= 1
m

∑m
i=1QEi .
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Table 6.1: Performance of control law (6.22).
f E [ε] max ε E [η] max η E [QV ] minQV

unif 3.8 10−3 0.16 0.01 0.03 0.73 0.66
gauss 8.9 10−2 0.15 0.02 0.04 0.75 0.69

6.6.3 Simulation results

We simulate ten agents providing service in the unit square E . Agents’ initial positions are
independently and uniformly distributed over E , and all weights are initialized to zero. Time
is discretized with a step dt = 0.01, and each simulation run consists of 800 iterations (thus,
the final time is T = 8). Define the area error ε as ε .= (fimax − fimin)/(fE/m), evaluated
at time T = 8; in the definition of ε, fimax is the measure of the region of dominance with
maximum measure and fimin is the measure of the region of dominance with minimum
measure.

First, we consider a measure f uniform over E , in particular f ≡ 1. Therefore, we have
fE = 1 and agents should reach a partition in which each region of dominance has measure
equal to 0.1. For this case, we run 50 simulations.

Then, we consider a measure f that follows a gaussian distribution, namely f(x, y) =
e−5((x−0.8)2+(y−0.8)2), (x, y) ∈ E , whose peak is at the north-east corner of the unit square.
Therefore, we have fE ≈ 0.336, and agents should reach a partition in which each region of
dominance has measure equal to 0.0336. For this case, we run 20 simulations.

Table 6.1 summarizes simulation results for the uniform f (f=unif) and the gaussian
f (f=gauss). Expectation and worst case values of area error ε, Voronoi defect η, and
isoperimetric ratio QV are with respect to 50 runs for uniform f , and 20 runs for gaussian
f . Notice that for both measures, after 800 iterations, (i) the worst case area error is no more
than 16%, (ii) the worst case η is very close to 0, and, finally, (iii) cells have, approximately,
the circular symmetry of squares (since Q4 ≈ 0.78). Therefore, convergence to a convex
equitable partition with the desired properties (i.e., closeness to Voronoi diagrams and
circular symmetry) seems to be robust. Figure 6-5 shows the typical equitable partitions
that are achieved with control law (6.22) with 10 agents.

6.7 Conclusion

In this chapter we presented provably correct, spatially-distributed algorithms that allow a
team of agents to achieve a convex and equitable partition of a convex environment. These
algorithms could find applications in many problems, including dynamic vehicle routing
(as we will show in the next chapter), and wireless networks. All the algorithms that we
proposed are synchronous: a possible line of future research would be to devise similar
algorithms that are amenable to asynchronous implementation. Implementation on a real
robotic network would also be important to assess closed-loop robustness and feasibility.

Appendix

Proof of theorem 6.4.15. The proof mainly relies on [22]. Let v be the unit vector considered
in the definition of the Unimodal Property. Then, there exist unique values s0 < s1 < . . . <
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(0,1)

(0,0) (1,0)

(a) Typical equitable partition of E for f(x, y) = 1.

(0,1)

(0,0) (1,0)

(b) Typical equitable partition of E for f(x, y) =

e−5((x−0.8)2+(y−0.8)2).

Figure 6-5: Typical equitable partitions achieved by using control law (6.22). The yellow
squares represent the position of the generators, while the blue circles represent the cen-
troids. Notice how each bisector intersects the line segment joining the two corresponding
power neighbors almost at the midpoint; hence both partitions are very close to Voronoi
partitions. Compare with Figure 6-1.

sm such that s0 = inf{s; Es 6= ∅}, sm = sup{s; Es 6= ∅}, and

f{x∈E; v·x≤sk} =
k

m
fE , k = 1, . . . ,m− 1. (6.24)

Consider the intervals Ii
.= [si−1, si], i ∈ {1, . . . ,m}. We claim that one can choose points

gi = tiv ∈ Rd, i ∈ {1, . . . ,m}, such that ti ∈ Ii and the corresponding Voronoi diagram is

Vi = {x ∈ E ; ‖x− gi‖ = min
k
‖x− gk‖}

= {x ∈ E ; v · x ∈ [si−1, si]}.
(6.25)

Together, equation (6.24) and equation (6.25) yield the desired result.

Since, by assumption, E enjoys the Unimodal Property, there exists an index κ ∈
{1, . . . ,m} such that the length of the intervals Ii = [si−1, si] decreases as i ranges from 1
to κ, then increases as i ranges from κ to m. Let Iκ = [sκ−1, sκ] be the smallest of these
intervals, and define

tκ
.=
sκ−1 + sκ

2
∈ Iκ.

By induction, for i increasing from κ to m − 1, define ti+1 be the symmetric to ti with
respect to si, so that

ti+1 = 2si − ti i = κ, κ+ 1, . . . ,m− 1.

Since the length of Ii+1 is larger than the length of Ii, we have

ti ∈ Ii ⇒ ti+1 ∈ Ii+1. (6.26)
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Similarly, for i decreasing from κ to 1, we define

ti−1 = 2si−1 − ti, i = κ, κ− 1, . . . , 2.

Since the interval Ii−1 is now larger than the interval Ii, we have

ti ∈ Ii ⇒ ti−1 ∈ Ii−1. (6.27)

Equations (6.26)-(6.27) imply ti ∈ Ii for all i = 1, . . . ,m. Hence the second equality in
equation (6.25) holds.

We now specialize the theorem to the case when E is convex.

Corollary 6.7.1. Let E ⊂ Rd be a compact, convex set, and f be constant on E. Then for
every m ≥ 1 there exist points g1, . . . , gm all in the interior of E, such that the corresponding
Voronoi diagram is equitable.

Proof. Notice that every compact convex set enjoys the Unimodal Property, with an arbi-
trary choice of the unit vector v. By compactness, there exist points a, b ∈ E such that
‖b−a‖ = maxz,z′∈E ‖z− z′‖. By a translation of coordinates, we can assume a = 0. Choose
v
.= b/‖b‖. Then the previous construction yields an equitable Voronoi diagram generated

by m points gi = tiv all in the interior of E .

Proof of Lemma 6.4.14. By theorem 6.4.9 and by its very definition W ∗(G) is the zero of
the vector field −∂HV

∂wi
(W (t)). Now let us denote with

K(W,G)=̇− ∂HV

∂wi
(W ),

the corresponding continuous function, viewed as a function of two independent set of vari-
ables, namely the weights (w1, . . . , wn) = W and the non-degenerate vector of generators’
positions G. In order to prove that the assignment G 7→ W ∗(G) is continuous, notice that
by theorem 6.4.6 the function K(W,G) is identically zero when restricted to the graph of
W ∗, namely K(W ∗(G), G) = 0. The function W ∗ is continuous iff it is continuous in each
of its argument. Fix, first, a generator gi /∈ ∂Γ and consider for any v ∈ R2, the variation
(g1, . . . , gi−1, gi + hv, gi+1, . . . , gm). Since gi /∈ ∂Γ, there always exists an ε > 0, depending
on gi and v, such that for any h with 0 ≤ h < ε, (g1, . . . , gi−1, gi + hv, gi+1, . . . , gm) ∈ Γ.
Now K(W ∗(g1, . . . , gi−1, gi + hv, gi+1, . . . , gm), (g1, . . . , gi−1, gi + hv, gi+1, . . . , gm)) = 0 for
any 0 ≤ h < ε by definition. Therefore, taking the limit for h → 0+, we still get zero. On
the other hand, since K is continuous, we can take the limit inside K and we get

K( lim
h→0+

W ∗(g1, . . . , gi−1, gi + hv, gi+1, . . . ), (g1, . . . , gi−1, gi, gi+1, . . . )) = 0.

Therefore, we have that

lim
h→0+

W ∗(g1, . . . , gi−1, gi + hv, gi+1, . . . , gm) = W ∗(g1, . . . , gi−1, gi, gi+1, . . . , gm),

by the uniqueness in Ω of the value of W ∗ for which, given G, the function K vanishes.
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Chapter 7

Adaptive and Distributed
Algorithms for DVR

In this chapter we leverage on the spatially-distributed algorithms developed in chapter
6 to obtain adaptive and distributed algorithms for DVR problems, in particular for the
m-vehicle Dynamic Traveling Repairman Problem. In fact, to the best of our knowledge,
all known control policies for the m-DTRP rely on centralized task assignment and are
not robust against changes in the environment. This is clearly undesirable for applications
involving large-scale robotic networks.

In many applications it is desirable to provide spatially-unbiased service, i.e., the same
quality of service to all outstanding demands independently of their locations; e.g., in the
UAV example discussed in the introduction, outstanding “threats” at the periphery of
E should receive the same quality of service as the outstanding “threats” in the middle
of E . However, in light load, when most of the time the vehicles are idling, it is more
reasonable to consider spatially-biased policies that aim at positioning the vehicles in the
best a priori locations, i.e., at the locations that minimize the expected distance to the
next demand. Accordingly, in this chapter we focus on policies for the m-DTRP that are
constrained to provide spatially-unbiased service in heavy load, but can provide spatially-
biased service in light load. With a slight abuse, we refer to policies satisfying this constraint
as unbiased policies. The objective then is to devise adaptive, spatially-distributed, scalable
unbiased policies with provable performance guarantees, that rely only on local exchange
of information between neighboring vehicles, and do not require explicit knowledge of the
global structure of the network.

Specifically, the contributions of this chapter are as follows. First, we present a new
class of policies for the 1-DTRP that are adaptive (e.g., to the load conditions) and sat-
isfy the aforementioned constraint about unbiased service. In particular, we propose the
Divide & Conquer (DC) policy, whose performance depends on a design parameter r ∈ N.
If r → +∞, the policy is (i) provably optimal both in light- and in heavy-load conditions,
and (ii) adaptive with respect to changes in the load conditions and in the statistics of the
on-site service requirement; if, instead, r = 1, the policy is (i) provably optimal in light-load
conditions and within a factor 2 of the optimal performance in heavy-load conditions, and
(ii) adaptive with respect to all problem data, in particular, and perhaps surprisingly, it
does not require any knowledge about the demand generation process. Moreover, by ap-
plying ideas of receding-horizon control to dynamic vehicle routing problems, we introduce
the Receding Horizon (RH) policy, that also does not require any knowledge about the
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Table 7.1: Adaptive policies for the 1-DTRP
Properties DC Policy, DC Policy RH Policy UTSP Policy,

r →∞ r = 1 r →∞
Light-load performance optimal optimal optimal not optimal
Heavy-load performance optimal within 100% within 100% optimal

of the optimum of the optimum∗

Adaptive yes, except for f yes yes no

Table 7.2: Distributed and adaptive policies for the m-DTRP
Properties m-DC Policy, m-RH Policy UTSP Policy,

r →∞ r →∞
Light-load performance “locally” optimal “locally” optimal not optimal
Heavy-load performance optimal for uniform f , within 100% of optimal unbiased optimal

for uniform f∗,†,
optimal for any f when s̄ = 0, within 100% of optimal unbiased

for any f when s̄ = 0∗,†,
within m of optimal unbiased within 2m of optimal unbiased

in general† in general∗,†

Adaptive yes, except for f yes, except for f no
Distributed yes yes no

demand generation process; we show that the RH policy is optimal in light load and stable
in any load condition, and we heuristically argue that its performance is close to optimal
in heavy-load conditions (in particular, we heuristically argue that the RH policy is the
best available unbiased and adaptive policy for the 1-DTRP). Second, we show that spe-
cific partitioning policies, whereby the environment is partitioned among the vehicles and
each vehicle follows a certain set of rules within its own region, are optimal in heavy-load
conditions. Finally, by combining the DC policy with the spatially-distributed algorithms
for environment partitioning developed in chapter 6, we design a routing policy for the
m-DTRP (called m-DC policy) that (i) is spatially distributed, scalable to large networks,
and adaptive to network changes, (ii) is within a constant factor of the optimal unbiased
performance in heavy-load conditions (in particular, it is optimal when demands are uni-
formly dispersed over the environment or when the average on-site service time s̄ is zero)
and stabilizes the system in any load condition. Here, by network changes we mean changes
in the number of vehicles, in the arrival rate of demands, and in the characterization of the
on-site service requirement. Tables 7.1 and 7.2 provide a synoptic view about the main
properties of the routing policies that we propose and analyze in this chapter; our policies
are compared with the best spatially-unbiased policy available in the literature, i.e., the
UTSP policy with r →∞ [16]. (In Tables 7.1 and 7.2 an asterisk ∗ signals that the result
is heuristic, a dagger † means that the spatially-unbiased constraint might be violated in
heavy load, f denotes the spatial probability density for the demands’ locations, and m is
the number of vehicles.)

This chapter is structured as follows. In section 7.1 we discuss our strategy to devise
adaptive and distributed policies for the m-DTRP. In sections 7.2 and 7.3 we present and
analyze, respectively, the Divide & Conquer policy and the Receding Horizon policy. In
section 7.4, building upon the two previous policies for the 1-DTRP, we discuss partitioning
policies and we design spatially-distributed algorithms for the m-DTRP. In section 7.5 we
discuss the particular case when the on-site service time is zero, and in section 7.6 we present
results from numerical experiments. Finally, in section 7.7, we draw some conclusions; in
particular, we argue that the results of this chapter extend to a variety of DVR problems
with complex demand models.
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The work in this chapter is based on the journal article [81] and the preliminary confer-
ence paper [79].

7.1 Toward Adaptive, Distributed, Scalable Control Policies
for the m-DTRP

A candidate adaptive, distributed, scalable control policy for the m-DTRP is the simple
Nearest Neighbor (NN) policy: at each service completion epoch, each vehicle chooses to
visit next the closest unserviced demand, if any, otherwise it stops at the current position.
Because of the dependencies among the travel inter-demand distances, the analysis of the
NN policy is difficult and no rigorous results have been obtained so far [14]; in particular,
there are no rigorous results about its stability properties. Simulation experiments show
that the NN policy performs like a biased policy in any load, and is not optimal neither
in the light-load case nor in the heavy-load case. In particular, when f is uniform, in
light load the steady-state system time under the NN policy is 40% larger than the steady-
state system time under the (optimal) SQM policy, while in heavy load the steady-state
system time under the NN policy is 50% larger than the steady-state system time under the
(optimal) Biased TSP policy [14, 16]. Therefore, the NN policy lacks provable performance
guarantees (in particular about stability), is biased in any load, and does not seem to achieve
optimal performance neither in light load nor in heavy load.

The key idea that we will pursue in this chapter is that of partitioning policies, which
were already introduced in chapter 6. The following definition of partitioning policy is
conceptually identical to the one in section 6.2, but it emphasizes which single-vehicle
policy is used in each subregion.

Definition 7.1.0.1. Given a policy π for the 1-DTRP and m vehicles, a π-partitioning
policy is a family of multi-vehicle policies such that

1. the environment E is partitioned into m openly disjoint subregions Ek, k ∈ {1, . . . ,m},
whose union is E,

2. one vehicle is assigned to each subregion (thus, there is a one-to-one correspondence
between vehicles and subregions),

3. each vehicle executes the single-vehicle policy π to service demands that fall within its
own subregion.

Note that definition 7.1.0.1 does not specify how the environment is actually partitioned,
therefore definition 7.1.0.1 describes a family of policies (one for each partitioning strategy)
for the m-DTRP. The SQM policy, which is optimal in light load, is indeed a partitioning
policy whereby E is partitioned according to a median Voronoi diagram that “minimizes”
Hm, and each vehicle executes inside its own Voronoi cell the single-vehicle policy “service
FCFS and return to the assigned median after each service completion”. Moreover, in
section 7.4, we will prove that in heavy load, given a single-vehicle, optimal unbiased policy
π∗ and m vehicles, there exists an unbiased π∗-partitioning policy that is optimal.

The above discussion leads to the following strategy: First, for the 1-DTRP, we design
unbiased and adaptive control policies with provable performance guarantees. Then, by
using the spatially-distributed algorithms for environment partitioning developed in chapter
6, we extend these single-vehicle policies to spatially-distributed multi-vehicle policies.
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7.2 The Single-Vehicle Divide & Conquer Policy

In this section we introduce an unbiased and adaptive control policy for the 1-DTRP, which
we call the Divide & Conquer (DC) policy (see section 2.5 for the definition of the DTRP
problem). We describe the Divide & Conquer (DC) policy in Algorithm 5, where Q is the set
of outstanding demands waiting for service and p is the current position of the vehicle. An

Algorithm 5: Divide & Conquer (DC) Policy
Assumes: An r-partition {Ek}rk=1 of E that is simultaneously equitable with respect

to f and f1/2.
if Q = ∅ then1

Let G̃∗1 be the point minimizing the sum of distances to demands serviced in the2

past (the initial condition for G̃∗1 is a random point in E); if p 6= G̃∗1, move to G̃∗1,
otherwise stop.

else3

k ← ko (k0 is uniformly randomly chosen in the set {1, . . . , r}).4

repeat5

Move to the median of subregion Ek.6

Compute a TSP tour through all demands in subregion Ek. Service all7

demands by following the TSP tour, starting at a random demand on the
TSP tour.
k ← k + 1 modulo r.8

until Q = ∅9

Repeat.10

r-partition that is simultaneously equitable with respect to f and f1/2 is indeed guaranteed
to exist (see discussion on equitable partitions in section 2.3.2). The number of subregions
r is a design parameter whose choice will be discussed after the analysis of the policy. One
should note that G̃∗1 (which is defined in Algorithm 5) is indeed the empirical median. Next,
we characterize the DC policy. One can easily show that the DC policy is unbiased.

7.2.1 Analysis of the DC policy in light load

We first study the light-load case (i.e., %→ 0+).

Theorem 7.2.1 (Performance of DC policy in light load). As %→ 0+, for every r, the DC
policy is asymptotically optimal, that is,

TDC(r)→ T
∗
, as %→ 0+.

Proof. Using arguments similar to those in [73], consider generic initial conditions in E for
the vehicle’s position and for the positions of the outstanding demand (denote the initial
number of demands with n0). Under the DC policy, an upper bound to the time C0

needed to service all of the initial demands and move to the empirical median G̃∗1 is: C0 ≤
(n0 + 1) diam(E)/v +

∑n0
j=1 sj . Thus, we have E [C0] ≤ E [n0](diam(E)/v + s̄) + diam(E)/v.

Given the time interval C0 = t, t ∈ R≥0, the probability that no new demand arrives
during such time interval is P [N(C0) = 0|C0 = t] = exp(−λt), where N(t) is the counting
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variable associated to a Poisson process with rate λ. Hence, by applying the law of total
probability and Jensen’s inequality for convex functions

P [N(C0) = 0] =
∫ ∞

0
P [N(C0) = 0|C0 = t]fC0(t) dt

=
∫ ∞

0
exp(−λt)fC0(t) dt ≥ exp

(
−λ
∫ ∞

0
tfC0(t) dt

)
= exp

(
−λE [C0]

)
≥ exp

(
−λE [n0](diam(E)/v + s̄)− λ diam(E)/v

)
,

(7.1)

where fC0 is the density function of random variable C0. Since, by assumption, E [n0] <∞
and % → 0+ (i.e., λ → 0+), we obtain P [N(C0) = 0] → 1− as % → 0+. As a consequence,
after an initial transient, all demands will be generated with the vehicle at the empirical
median G̃∗1 and with an empty demand queue, with probability 1. Then, in light load, the
DC policy becomes identical to the light-load routing policy presented in [5]; since such
routing policy is optimal, in light load, for the 1-DTRP [5], we obtain the desired result
(the proof in [5] basically shows that G̃∗1 → G∗1(E)).

7.2.2 Analysis of the DC policy in heavy load

Next, we consider the DC policy in heavy load, i.e., when %→ 1−. The performance of the
DC policy in heavy load is characterized by the following theorem.

Theorem 7.2.2 (Performance of DC policy in heavy load). As % → 1−, the system time
for the DC policy satisfies

TDC(r) ≤
(

1 +
1
r

) β2
TSP,2

2

λ
[∫
E f

1/2(x) dx
]2

v2 (1− %)2
, (7.2)

where r is the number of subregions.

Contrary to the UTSP policy (see section 2.5.3 for its description), the DC policy does
not define a

∑
GI/G/1 queue (a queue is denoted

∑
GI/G/1 if its input process is the

superposition of r independent renewal processes). Therefore, to prove theorem 7.2.2 we use
non-standard techniques. The proof of theorem 7.2.2 builds on a number of intermediate
results; we start with the following lemma, similar to Lemma 1 in [73] and lemma 4.3.1,
characterizing the number of outstanding demands in heavy load.

Lemma 7.2.3 (Number of outstanding demands in heavy load for DC policy). In heavy
load (i.e., % → 1−), after a transient, the number of demands serviced in a single tour of
the vehicle in the DC policy is very large with high probability (i.e., the number of demands
tends to +∞ with probability that tends to 1, as % approaches 1−).

Proof. Consider the case where the vehicle moves with infinite velocity (i.e., v → +∞);
then the system is reduced to an M/G/1 queue (i.e., a queue with exponentially distributed
inter-arrival times, generally distributed service times, and a single server). The infinite-
velocity system has fewer demands waiting in queue. A known result on M/G/1 queues
[106] states that, after transients, the total number of demands, as % → 1−, is very large
with high probability. Due to the way E is partitioned, the number of outstanding demands
in each subregion is also very large with high probability. In particular, after transients,
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the number of demands is very large with high probability at the time instants when the
vehicle starts a new TSP tour.

Lemma 7.2.3 has two implications. First, since the number of demands is very large
at the time instants when the vehicle starts a new TSP tour, we can apply equation (2.7)
to estimate the average length of a TSP tour. Second, since Q 6= ∅ with high probability,
the DC policy, in heavy load, reduces to lines 5-9 of Algorithm 5 with the condition Q = ∅
always false.

We refer to the time instant ti, i ≥ 0, in which the vehicle starts a new TSP tour in
subregion 1 as the epoch i of the policy; we refer to the time interval between epoch i and
epoch i + 1 as the ith iteration. Let nki , k ∈ {1, . . . , r}, be the number of outstanding
demands serviced in subregion k during iteration i. Finally, let Cki be the time interval
between the time instant the vehicle starts to service demands in subregion k during iteration
i and the time instant the vehicle starts to service demands in the same subregion k during
next iteration i + 1. Demands arrive in subregion Ek according to a Poisson process with
rate λ̂ .= λ/r, where we use the fact that the partition {Ek}rk=1 is equitable with respect to
f ; then, we have E

[
nki+1

]
= λ̂E

[
Cki
]
. The time interval Cki is the sum of three components:

1. the time for the r travels from the end of one TSP tour to the start of next one;

2. the time to perform r TSP tours;

3. the time to provide on-site service while performing the r TSP tours.

The first component is trivially upper bounded by 2 diam(E)/v · r. Given that a de-
mand falls in subregion Ek, the conditional density for its location (whose support is Ek)
is f(x)/

(∫
Ek f(x) dx

)
. By equation (2.7), we have that the expected length of a TSP tour

though n demands distributed according to the density f(x)/
(∫
Ek f(x) dx

)
satisfies (with

a slight abuse of notation, we call such length TSP(n))

lim
n→+∞

E [TSP(n)]√
n

= βTSP

(∫
Ek

√
f(x)∫

Ek f(x) dx
dx

)
= βTSP

√
r

∫
E f

1/2(x) dx
r

.= β, (7.3)

where we have exploited the fact that, by definition of the DC policy, the partition {Ek}rk=1 is
simultaneously equitable with respect to f and f1/2. Pick now an arbitrarily small ζ > 0. By
equation (7.3), there exists an ñ ∈ N such that for all n > ñ it holds E [TSP(n)] ≤ (β+ζ)

√
n.

Then, the expected length of a TSP tour through nki demands (with a slight abuse of
notation, we call such length TSP(nki )) can be upper bounded as

E
[
TSP(nki )

]
=

+∞∑
n=0

E
[
TSP(nki ) |nki = n

]
P
[
nki = n

]
≤

+∞∑
n=ñ+1

(β + ζ)
√
nP
[
nki = n

]
+

ñ∑
n=0

ñ diam(E) P
[
nki = n

]
≤ (β + ζ) E

[√
nki

]
+ ñ diam(E) P

[
nki ≤ ñ

]
≤ (β + ζ)

√
E
[
nki
]

+ ñ diam(E) P
[
nki ≤ ñ

]
,

(7.4)
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where in the first equality we have used the law of total expectation, and in the last inequal-
ity we have applied Jensen’s inequality for concave functions in the form E

[√
X
]
≤
√

E [X].
By lemma 7.2.3, there exists %̄ ∈ (0, 1) such that for all % ∈ [%̄, 1) there exists an integer
ī(%) (possibly dependent on %) such that P

[
nki ≤ ñ

]
< 1/ñ. Consider any % ∈ [%̄, 1) and

assume that i ≥ ī(%), then

E
[
TSP(nki )

]
≤ (β + ζ)

√
E
[
nki
]

+ diam(E), for i ≥ ī(%) and % ∈ [%̄, 1).

Finally, since on-site service times are independent of the number of outstanding de-
mands, the expected on-site service requirement for nki demands is s̄E

[
nki
]
.

Then, we obtain the following recurrence relation (where we define n̄ki
.= E

[
nki
]
):

n̄ki+1 = λ̂E
[
Cki
]

≤ λ̂
(

diam(E)
3 r
v

+
β + ζ

v

r∑
j=k

√
n̄ji +

β + ζ

v

k−1∑
j=1

√
n̄ji+1 + s̄

r∑
j=k

n̄ji + s̄

k−1∑
j=1

n̄ji+1

)
,

(7.5)

where k ∈ {1, . . . , r}, i ≥ ī(%), and % ∈ [%̄, 1).

The r inequalities above describe a system of recurrence relations that allows us to find
an upper bound on lim supi→+∞ n̄

k
i . The following lemma bounds the values to which the

limits lim supi→+∞ n̄
k
i converge.

Lemma 7.2.4 (Steady state number of demands for DC policy). In heavy load, for every
set of initial conditions {n̄k1}k∈{1,...,r}, the trajectories i 7→ n̄ki , k ∈ {1, . . . , r}, satisfy

n̄k
.= lim sup

i→+∞
n̄ki ≤ β2

TSP

λ2
[∫
E f

1/2(x) dx
]2

r v2 (1− %)2
.

Proof. Define the constants: β̃ .= β + ζ and a .= diam(E) 3 r/v. Henceforth we assume that
% ∈ [%̄, 1) and that i ≥ ī(%), and we simply denote ī(%) as ī. Next we define two auxiliary
systems, System-Y and System-Z, whose trajectories will be used to bound the trajectories
i 7→ n̄ki . We define System-Y (with state y(i) ∈ Rr) as

yk(i+ 1) = λ̂ a+ λ̂

(
r∑
j=k

(
s̄ yj(i) +

β̃

v

√
yj(i)

)
+
k−1∑
j=1

(
s̄yj(i+ 1) +

β̃

v

√
yj(i+ 1)

))
, for i ≥ ī,

yk (̄i) = n̄kī ,

(7.6)

where k ∈ {1, . . . , r}. System-Y is obtained by replacing the inequality in equation (7.5)
with an equality. Pick, now, any ε > 0. From Young’s inequality

√
w ≤ 1

4ε
+ εw, for all w ∈ R≥0.
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By applying Young’s inequality in equation (7.6) we obtain

yk(i+ 1) ≤ λ̂

(
s̄+ ε

β̃

v

)(
r∑
j=k

yj(i) +
k−1∑
j=1

yj(i+ 1)

)
+ λ̂

(
r β̃

4vε
+ a

)
, k ∈ {1, . . . , r}. (7.7)

Next, define System-Z (with state z(i) ∈ Rr) as

zk(i+ 1) = λ̂

(
s̄+ ε

β̃

v

)(
r∑
j=k

zj(i) +
k−1∑
j=1

zj(i+ 1)

)
+ λ̂

(
r β̃

4vε
+ a

)
, for i ≥ ī,

zk (̄i) = n̄kī ,

(7.8)

where k ∈ {1, . . . , r}. The proof now proceeds as follows. First, we show that the condition
n̄k
ī

= yk (̄i) = zk (̄i) for all k implies that

n̄ki ≤ yk(i) ≤ zk(i), for all k and for all i ≥ ī. (7.9)

Second, we show that the trajectories of System-Z are bounded; this fact, together with
equation (7.9), implies that also trajectories of variables n̄ki and yk(i) are bounded. Third,
and last, we will compute lim supi→+∞ yk(i); this quantity, together with equation (7.9),
will yield the desired result.

We prove the first fact by induction on i, i.e., we prove that if n̄ki ≤ yk(i) ≤ zk(i) for all
k ∈ {1, . . . , r}, then n̄ki+1 ≤ yk(i+ 1) ≤ zk(i+ 1) for all k ∈ {1, . . . , r}, where i ≥ ī. Indeed,
it is immediate to show that, under the assumptions, it holds: n̄1

i+1 ≤ y1(i+ 1) ≤ z1(i+ 1);
moreover, it is easy to show that, under the assumptions, and if n̄ji+1 ≤ yj(i+ 1) ≤ zj(i+ 1)
for all j ≤ k < r, then n̄k+1

i+1 ≤ yk+1(i + 1) ≤ zk+1(i + 1). The inductive step then follows
immediately.

We now turn our attention to the second issue, namely boundedness of trajectories for
System-Z (described in equation (7.8)). Define δ .= λ̂(s̄+ε β̃/v). System-Z is a discrete-time
system and can be rewritten (by adding and subtracting zk−1(i) in the second term between
parentheses in equation (7.8), when k > 1) as

zk(i+ 1) =

 δ
∑r

j=1 zj(i) + λ̂
(
r β̃
4vε + a

)
, for k = 1,(

1 + δ
)
zk−1(i+ 1)− δ zk−1(i), for k ∈ {2, . . . , r}.

By using the above equation and by simple induction arguments, it is possible to show that
System-Z can be written in canonical form as

zk(i+1) = (1+δ)k−1

(
δ

r∑
j=1

zj(i)+λ̂
(
r β̃

4vε
+a
))
−
k−1∑
j=1

δ(1+δ)k−j−1zj(i), k ∈ {1, . . . , r}.

Hence, System-Z can be written in compact form as

z(i+ 1) =
(
A+B(ε)

)
z(i) + c(ε),

where A is a matrix in Rr×r and is independent of ε, B(ε) ∈ Rr×r and each element of B(ε),
say b(ε)kj , has the property limε→0+ b(ε)kj = 0 for all k, j ∈ {1, . . . , r}, and c(ε) ∈ Rr×1

128



(notice that c(ε) is well defined for every ε > 0). It is easy to see that the entries of matrix
A are

akj =

{
%̂
[
(1 + %̂)k−1 − (1 + %̂)k−j−1

]
, for 1 ≤ j ≤ k − 1,

%̂(1 + %̂)k−1, otherwise,

where %̂ .= λ̂s̄. Notice that, since %̂ > 0, we have |akj | = akj for all k and j. Then, for each
k ∈ {1, . . . , r}, we have

r∑
j=1

|akj | =
r∑
j=1

akj = r%̂ (1 + %̂)k−1 − %̂
k−1∑
j=1

(1 + %̂)k−j−1 = (1 + %̂)k−1 (r%̂− 1)︸ ︷︷ ︸
<0

+1 < 1,

since %̂ = λs̄/r and % = λs̄ < 1 by assumption. Therefore, the L∞-induced norm of matrix
A satisfies: ‖A‖∞ = maxk

∑r
j=1 |akj | < 1. Since any induced norm ‖ · ‖ satisfies the

inequality ρ(A) ≤ ‖A‖, where ρ(A) is the spectral radius of A, we conclude that A ∈ Rr×r

has eigenvalues strictly inside the unit disk (i.e., A is a stable matrix). Since the eigenvalues
of a matrix depend continuously on the matrix entries, there exists a sufficiently small ε > 0
such that the matrix A + B(ε) has eigenvalues strictly inside the unit disk. Accordingly,
having selected a sufficiently small ε, the solution i 7→ z(i) ∈ Rr

≥0 of System-Z converges
exponentially fast to the unique equilibrium point

z∗(ε) =
(
Ir −A−B(ε)

)−1
c(ε), (7.10)

where Ir is the identity matrix of size r. Combining equation (7.9) with the previous
statement, we see that the solutions i 7→ n̄(i) (where n̄(i) .= (n̄1

i , . . . , n̄
r
i )) and i 7→ y(i) are

bounded. Thus
lim sup
i→+∞

n̄(i) ≤ lim sup
i→+∞

y(i) < +∞. (7.11)

Finally, we turn our attention to the third issue, namely the computation of y .=
lim supi→+∞ y(i). Taking the lim sup of the left- and right-hand sides of equation (7.6),
and noting that

lim sup
i→+∞

√
yj(i) =

√
lim sup
i→+∞

yj(i), for j ∈ {1, . . . , r},

since
√
· is continuous and strictly monotone increasing on R>0, we obtain that

yk = λ̂ a+ λ̂

r∑
j=1

(
s̄ yj +

β̃

v

√
yj

)
; (7.12)

therefore we have yk = yj for all k, j ∈ {1, . . . , r}. Substituting in equation (7.12) and
solving for yk we obtain

yk =
1
4

(
λβ̃

v (1− %)
+

√
λ2β̃2

v2 (1− %)2
+

4λ̂a
1− %

)2

.

Recalling that this analysis holds for every % ∈ [%̄, 1), by taking % arbitrarily close to 1 we
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obtain

yk =
λ2β̃2

v2 (1− %)2
as %→ 1−. (7.13)

(Formally, we should have written lim%→1− yk (1− %)2 = λ2β̃2/v2, however, as discussed in
Remark 2.5.1, we prefer to adhere to the less formal but more transparent style of equation
(7.13)).

Noting that from equation (7.11) lim supi→+∞ n̄
k
i ≤ yk, and recalling that

β̃ = βTSP

∫
E
f1/2(x) dx/

√
r + ζ

where ζ is an arbitrarily small constant, we obtain the desired result.

We are now in a position to prove theorem 7.2.2

Proof of theorem 7.2.2. Define C̄k .= lim supi→∞ E
[
Cki
]
; then we have, by using the upper

bound on E
[
Cki
]

in equation (7.5) and neglecting constant terms,

C̄k
.= lim sup

i→∞
E
[
Cki
]
≤ β̃

v

r∑
j=1

√
n̄j + s̄

r∑
j=1

n̄j ≤ r λ β̃ β

v2 (1− %)
+

r % λ β2

v2 (1− %)2
.

Hence, in the limit %→ 1−, we have

C̄k ≤ r λ β2

v2 (1− %)2
=
λβ2

TSP

[∫
E f

1/2(x) dx
]2

v2 (1− %)2
.

Consider a random demand that arrives in subregion k. Its expected steady-state system
time, T k, will be upper bounded, as %→ 1−, by

T
k ≤ 1

2
C̄k +

1
2
s̄ n̄k ≤ 1

2
C̄k +

1
2

λβ2

v2 (1− %)2
,

where we used the fact that, as % → 1−, the travel time along a TSP tour is negligible
compared to the on-site service time requirement. Unconditioning, we obtain the claim

TDC(r) ≤
(

1 +
1
r

) λβ2
TSP

[∫
E f

1/2(x) dx
]2

2v2 (1− %)2
.

7.2.3 Discussion

The DC policy is optimal in light load (theorem 7.2.1); moreover, if we let r → ∞, the
DC policy achieves the heavy-load lower bound (2.11) for unbiased policies (theorem 7.2.2).
Therefore the DC policy is both optimal in light load and arbitrarily close to optimality in
heavy load, and stabilizes the system in every load condition (since it stabilizes the system
in the limit % → 1−). Notice that with r = 10 the DC policy is already guaranteed to be
within 10% of the optimal (for unbiased policies) performance in heavy load.
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If one chooses r > 1, the computation of a simultaneously equitable r-partition of E
requires the knowledge of f . Hence, if r → +∞, the policy is (i) provably optimal in both
light and heavy load, and (ii) adaptive with respect to arrival rate λ, expected on-site service
s̄, and vehicle’s velocity v. If, instead, r = 1, the policy is (i) provably optimal in light load
and within a factor 2 of the optimal performance in heavy load, and (ii) adaptive with
respect to arrival rate λ, expected on-site service s̄, vehicle’s velocity v, and spatial density
f ; in other words, when r = 1, the DC policy adapts to all problem data. (These results
should be compared with the discussion in section 2.5.3 about the non-adaptive nature of
the UTSP policy, which, for example, might become unstable if λ increases.)

An approximate algorithm to compute, with arbitrarily small error, an r-partition that is
simultaneously equitable with respect to two measures can be found in [17] (specifically, see
discussion on page 621); in the particular case when the density f is uniform, the problem of
finding an r-partition that is simultaneously equitable with respect to f and f1/2 becomes
trivial. Given a simultaneously equitable r-partition of E , the subregions can be indexed
using the following procedure: (i) a TSP tour through the medians of the subregions is
computed, (ii) subregions are indexed according to the order induced by this TSP tour. In
practice, the DC policy would be implemented by allowing the vehicle to skip subregions
where no demand is present (the “shortcuts” were not included in the presentation of the
DC policy to make its analysis easier).

Note that if we assume that f is known (as it must be the case for the implementation
of the DC policy with r > 1), then instead of using the empirical median G̃∗1 one should
directly use the exact median G∗1(E) (which is the solution of a strictly convex problem).

The DC policy requires on-line solutions of possibly large TSPs and, therefore, practical
implementations of this policy should rely on heuristics for TSPs, such as Lin-Kernighan’s
or Christofides’ (see section 2.4.3). We will further discuss computation times in section
7.6.

Finally, the DC policy with r = 1 is similar to the generation policy presented in [73];
in particular, the generation policy has the same performance guarantees of the DC policy
with r = 1. However, the generation policy is analyzed only for the case of uniform spatial
density f , and its implementation does require the knowledge of f (while, as discussed
before, the DC policy with r = 1 adapts to all problem data, including f). The part of
Algorithm 5 in lines 5-9 is similar to the PART-TSP policy presented in [108]; however,
the PART-TSP policy is only informally analyzed by assuming steady-state conditions, in
particular no proof of stability and convergence is provided.

In the next section we present and analyze another single-vehicle policy, the Reced-
ing Horizon (RH) policy, that applies ideas of receding-horizon control to dynamic vehicle
routing problems.

7.3 The Single-Vehicle Receding Horizon Policy

We describe the Receding Horizon (RH) policy in Algorithm 6, where Q is the set of out-
standing demands waiting for service and p is the current position of the vehicle; moreover,
given a tour T of Q, a fragment of T is a connected subgraph of T . If Q 6= ∅, the vehicle
selects a random η-fragment of the TSP tour through the demands in Q (i.e., a fragment
of length η TSP(Q) of such tour); note that the horizon is not fixed, but it is adjusted
according to the cost of servicing the outstanding demands. In general, the performance of
the system will depend on the choice of the parameter η, which will be discussed after the
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Algorithm 6: Receding Horizon (RH) Policy
input: Scalar η ∈ (0, 1)
if Q = ∅ then1

Let G̃∗1 be the point minimizing the sum of distances to demands serviced in the2

past (the initial condition for G̃∗1 is a random point in E); if p 6= G̃∗1, move to G̃∗1,
otherwise stop.

else3

repeat4

Compute the TSP tour through all demands in Q.5

Uniformly randomly choose, independently from the past, a fragment of6

length η TSP(Q) of such TSP tour.
Service the selected fragment starting from the endpoint closest to the7

current position.
until Q = ∅8

Repeat.9

analysis of the policy. One can easily show that the RH policy is unbiased.

7.3.1 Stability and performance of the RH policy

The RH policy is attractive since it can be implemented without any knowledge of the
underlying demand generation process (in particular, without any knowledge of f). On the
other hand, an important caveat of receding horizon control is that closed-loop stability is
not guaranteed in general. In this section, we study the stability of the RH policy and we
discuss its performance.

Stability of the RH policy

In general, the stability properties of receding horizon controllers deteriorate as the horizon
becomes shorter; remarkably, the RH policy is stable in every load for every 0 < η < 1.

Theorem 7.3.1. As %→ 1−, the system time for the RH policy satisfies

TRH(η) ≤
λβ2
E,2|E|

v2 (1− %)2
, for all η ∈ (0, 1),

where |E| is the area of E and βE,2 is the constant appearing in equation (2.8).

Proof. By following the same arguments as in lemma 7.2.3, it is easy to show that under the
RH policy, after a transient, the number of demands at the instants when a new TSP tour
is computed is very large with high probability. Then, in heavy load, we have Q 6= ∅ with
high probability, and the RH policy reduces to lines 4-8 with the condition Q = ∅ always
false.

We refer to the time instant ti, i ≥ 0, in which the vehicle computes a new TSP tour as
the epoch i of the policy; we refer to the time interval between epoch i and epoch i+1 as the
ith iteration and we refer to its length as the cost Ci. Let ni be the number of outstanding
demands at epoch i; with a slight abuse of notation, we denote by TSP(ni) the length of
the TSP tour through the outstanding demands at epoch i.
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Since an η-fragment is randomly chosen, the expected number of demands left unserviced
during iteration i is (1− η) E [ni]; then,

E [ni+1] = λE [Ci]︸ ︷︷ ︸
newly arrived demands

+ (1− η) E [ni]︸ ︷︷ ︸
demands left unserviced during iteration i

.

The expected number of demands that receive service during iteration i is η E [ni]. Moreover,
the time to reach the starting endpoint of the selected fragment is bounded by diam(E)/v.
Then, the expected time length of iteration i can be upper bounded as

E [Ci] ≤ diam(E)/v+
η

v
E [TSP(ni)]+ s̄ ηE [ni] ≤ diam(E)/v+

η

v
βE,2

√
|E|
√

E [ni]+ s̄ ηE [ni],

(7.14)
where we have applied the deterministic bound in equation (2.8) and Jensen’s inequality
for concave functions. Therefore, we obtain

E [ni+1] ≤ λ diam(E)/v + λ
η

v
βE,2

√
|E|
√

E [ni] + % η E [ni] + (1− η) E [ni].

By using the same techniques as in the proof of lemma 7.2.4 (in particular, the eigenvalue
of the “bounding” discrete-time linear system is µ = 1−η (1−%), whose magnitude is strictly
less than one for all η ∈ (0, 1)), it is possible to show that

n̄
.= lim sup

i→∞
E [ni] ≤

1
4

(
λβE,2

√
|E|

v (1− %)
+

√
λ2β2

E,2|E|
v2 (1− %)2

+
4λ diam(E)
v η (1− %)

)2

, for all η ∈ (0, 1).

Define C̄
.= lim supi→+∞ E [Ci]. Consider a random demand in steady state; the

expected number of iterations before such demand is scheduled for service is given by∑+∞
p=0 p η(1 − η)p. Hence, the expected steady-state system time of such demand, T , will

be upper bounded for all η ∈ (0, 1) by

T ≤ 1
2
C̄ +

1
2
s̄ η n̄+ C̄

+∞∑
p=0

p η(1− η)p ≤
λβ2
E,2|E|

v2 (1− %)2
, as %→ 1−,

where we used the fact that, as % → 1−, the travel time along an η-fragment is negligible
compared to the on-site service time requirement. This concludes the proof.

Since, by theorem 7.3.1, the RH policy stabilizes the system in the limit %→ 1−, it also
stabilizes the system for every load factor %.

Performance of the RH policy

In light load, the RH policy becomes identical to the DC policy, and therefore it is optimal
(see theorem 7.2.1). For the case % → 1−, because of the dependencies that arise among
demands’ locations, we were unable to obtain rigorous upper bounds on the system time
that are well matched by numerical experiments. However, we now present an heuristic
analysis of the RH policy that provides interesting insights on its behavior and suggests
bounds on its heavy-load system time that are well matched by simulation results.
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The service of an η-fragment introduces dependencies among the locations of the de-
mands that are left unserviced; therefore, even though the number of demands, as %→ 1−,
becomes large with probability 1, the result in equation (2.7) (that requires a set of inde-
pendently distributed demands) formally does not hold. However, due to the randomized
selection of the η-fragments, it is quite natural to conjecture that equation (2.7) still pro-
vides a good estimate on the average lengths of the TSP tours that are computed. The
rationale behind this conjecture is the following: When η is close to 1, most of the outstand-
ing demands are serviced during one iteration, and the next TSP tour is mostly through
newly arrived demands, that are independent by the assumptions on the demand generation
process; when, instead, η is close to zero, the randomized selection of short fragments only
introduce “negligible” correlations.

The above observations motivate us to use βTSP

∫
E f

1/2(x) dx (as it would be dictated
by equation (2.7)) in equation (7.14), instead of βE,2

√
|E| (as it is dictated by equation

(2.8)). Then, by repeating the same steps as in the proof of theorem 7.2.2, lemma 7.2.4,
and theorem 7.3.1, we would obtain the following result for all η ∈ (0, 1)

TRH(η) ≤
λβ2

TSP

[∫
E f

1/2(x) dx
]2

v2 (1− %)2
, as %→ 1−. (7.15)

The upper bound in equation (7.15) is generally tighter1 than the upper bound in theorem
7.3.1, but unlike the upper bound in theorem 7.3.1 it has not been established formally.
Simulation results (see section 7.6) indeed confirm the upper bound in equation (7.15).

Finally, note that when η is close to zero, the RH policy is conceptually similar to the
DC policy with r →∞, so we also speculate that in heavy load the performance of the RH
policy improves as the horizon becomes shorter. Simulation results (see section 7.6) indeed
confirm this behavior.

7.3.2 Discussion

The RH policy is optimal in light load and stabilizes the system in every load condition
(these two statements have been established rigorously). The implementation of the RH
policy does not require the knowledge of λ, s̄, v and f . Therefore, the RH policy adapts to
arrival rate λ, expected on-site service s̄, vehicle’s velocity v, and spatial density f ; in other
words, the RH policy adapts to all problem data.

In section 7.2 we saw that also the DC policy with r = 1 adapts to all problem data.
Simulation results (see section 7.6) show that in heavy load the RH policy with a short
horizon η (say, η ≈ 0.2) performs better than the DC policy with r = 1 (the light-load
behavior is clearly the same). Therefore, to date, the best available policy for the 1-DTRP
that is unbiased and adapts to all problem data seems to be the RH policy with η ≈ 0.2.

It is natural to wonder how the RH policy performs if the η-fragment is not selected
randomly, but it is instead selected according to the rule: Find the fragment of length
ηTSP(Q) that maximizes the number of reached demands. In other words, the vehicle now
looks for a maximum-reward η-fragment. Clearly, theorem 7.3.1 still applies. Simulation
results (see [79]) show that this spatially-biased variant of the RH policy appears to perform
better than an optimal unbiased policy but not as well as an optimal biased policy.

1Notice that by Jensen’s inequality for concave functions
R
E f

1/2(x) dx ≤
p
|E|

hR
E f(x) dx

i1/2

=
p
|E|
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As for the DC policy, the RH policy requires on-line solutions of possibly large TSPs
and, therefore, practical implementations of this policy should also rely on heuristics for
TSPs, such as Lin-Kernighan’s or Christofides’. We will further discuss computation times
in section 7.6.

7.4 Adaptive and Distributed Policies for the m-DTRP

In this section we extend the previous single-vehicle policies to the multi-vehicle case. First,
we prove that in heavy load, given a single-vehicle, optimal unbiased policy π∗ and m
vehicles, there exists an unbiased π∗-partitioning policy that is optimal. This result and the
optimality of the SQM policy (which is a partitioning policy that is optimal in light load)
lead us to propose, for the multi-vehicle case, partitioning policies that use the DC policy or
the RH policy as single-vehicle policies. By combining the spatially-distributed partitioning
algorithms devised in chapter 6 with the results of this chapter we readily obtain adaptive
routing policies amenable to distributed implementation.

7.4.1 Optimality of partitioning policies in heavy load

The following theorem shows the optimality of a specific type of partitioning policy.

Theorem 7.4.1. As % → 1−, given a single-vehicle, optimal unbiased policy π∗ and m
vehicles, a π∗-partitioning policy using an m-partition which is simultaneously equitable
with respect to f and f1/2 is an optimal unbiased policy for the m-DTRP.

Proof. Let π∗ be an optimal unbiased policy (e.g., the DC policy with r →∞). Construct
an m-partition {Ek}mk=1 of E that is simultaneously equitable with respect to f and f1/2

(such partition is guaranteed to exist as discussed in section 2.3.2); assign one vehicle to each
subregion. Each vehicle executes the single-vehicle unbiased policy π∗ to service demands
that fall within its own subregion. The probability that a demand falls in subregion Ek is
equal to

∫
Ek f(x) dx = 1/m. Notice that the arrival rate λk in subregion Ek is reduced by

a factor
∫
Ek f(x) dx, i.e., λk = λ

∫
Ek f(x) dx = λ/m; therefore, the load factor in subregion

Ek (where only one vehicle provides service) is %k = λks̄ = λs̄/m = % < 1, in particular
the necessary condition for stability is satisfied in every subregion. Finally, given that a
demand falls in subregion Ek, the conditional density for its location (whose support is Ek)
is f(x)/

(∫
Ek f(x) dx

)
= mf(x). Then, by the law of total expectation we have

T =
m∑
k=1

(∫
Ek
f(x) dx

β2
TSP,2

2
λk

v2 (1− %k)2

[∫
Ek

√
f(x)∫

Ek f(x) dx
dx

]2)

=
m∑
k=1

(
1
m

β2
TSP,2

2
λ

v2 (1− %)2

[∫
Ek
f1/2(x) dx

]2
)

=
β2

TSP,2

2
λ
[∫
E f

1/2(x) dx
]2

m2 v2 (1− %)2
, as %→ 1−.

(7.16)

Thus, the bound in equation (2.11) is achieved. We finally show that such multi-vehicle
policy is indeed unbiased. In fact, assume steady-state conditions, and let X be the location
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of a randomly chosen demand, T be its system time and S be an arbitrary subset of E ;
then, by the law of total expectation we have

E [T |X ∈ S] = E
[
E [T |X ∈ S ∩ Ek] |X ∈ S

]
.

Since π∗ is unbiased, it must hold E [T |X ∈ S ∩ Ek] = E [T |X ∈ Ek]; moreover, from the
previous analysis, we have E [T |X ∈ Ek] = T π∗ , which is a constant independent of Ek.
Hence, we finally obtain E [T |X ∈ S] = T π∗ . The claim then follows from the fact that S
was chosen arbitrarily.

Remark 7.4.2. Some remarks are in order.

1. Theorem 7.4.1 proves Conjecture 1 (made only for uniform spatial densities f) in [15].

2. A similar result can be proven for biased policies; in this case the m-partition should
be simultaneously equitable with respect to f and f2/3.

3. The proof of theorem 7.4.1 relies on m-partitions that are simultaneously equitable
with respect to f and f1/2. We next show in theorem 7.4.3 that a π∗-partitioning
policy using an m-partition which is equitable with respect to f1/2 may be unstable;
moreover, we show in theorem 7.4.4 that, in general, a π∗-partitioning policy using an
m-partition which is equitable with respect to f does not achieve the optimal unbiased
performance, however it is always within a factor m of it.

Theorem 7.4.3. Given a single-vehicle policy π and m vehicles, a π-partitioning policy
using an m-partition which is equitable with respect to f1/2 may be unstable for values of %
strictly less than one.

Proof. The arrival rate in subregion Ek, k ∈ {1, . . . ,m}, is λk = λ
∫
Ek f(x) dx, and there-

fore the load factor in subregion Ek (where only one vehicle provides service) is %k =
λ
∫
Ek f(x) dx s̄. In general, an m-partition that is equitable with respect to f1/2 is not

equitable with respect to f . If this is the case, there exists k̄ ∈ {1, . . . ,m} and ε > 0 such
that

∫
Ek̄
f(x) dx = 1/m + ε; then, %k̄ = % + ελs̄ = % (1 + εm). Hence, for every value of %

such that 1/(1 + εm) ≤ % < 1, such multi-vehicle policy is unstable (since in subregion Ek̄
we have %k̄ ≥ 1), even though the load factor % is strictly less than one.

Theorem 7.4.4. Let π be a single-vehicle unbiased policy such that in heavy load T π/T
∗
U ≤

γ. As % → 1−, given the policy π and m vehicles, a π-partitioning policy using an m-
partition which is equitable with respect to f does not achieve, in general, the optimal unbi-
ased performance, however it is always within a factor γ m of it.

Proof. Let π be an unbiased policy. The environment E in partitioned into m subregions
Ek, k ∈ {1, . . . ,m}, such that

∫
Ek f(x) dx = 1/m for all k, and one vehicle is assigned to

each subregion. Each vehicle executes the single-vehicle policy π to service demands that
fall within its own subregion. Similarly to the proof of theorem 7.4.1 we have, by the law
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of total expectation,

T ≥
m∑
k=1

(∫
Ek
f(x) dx

β2
TSP,2

2
λk

v2 (1− %k)2

[∫
Ek

√
f(x)∫

Ek f(x) dx
dx

]2)

=
m∑
k=1

(
1
m

β2
TSP,2

2
λ

v2 (1− %)2

[∫
Ek
f1/2(x) dx

]2
)

as %→ 1−.

(7.17)

Define the vector

z =

(∫
E1
f1/2(x) dx,

∫
E2
f1/2(x) dx, . . . ,

∫
Em
f1/2(x) dx

)
∈ Rm;

we will denote by ‖z‖2 and ‖z‖1 the 2-norm and the 1-norm, respectively, of vector z. Notice
that ‖z‖1 =

∫
E f

1/2(x) dx. Since ‖z‖1 ≤
√
m‖z‖2 for any vector z ∈ Rm, equation (7.17)

becomes

T ≥ 1
m

β2
TSP,2

2
λ

v2 (1− %)2
‖z‖22 ≥

1
m

β2
TSP,2

2
λ

v2 (1− %)2

‖z‖21
m

=
β2

TSP,2

2
λ
[∫
E f

1/2(x) dx
]2

m2 v2 (1− %)2
= T

∗
U, as %→ 1−,

where T ∗U is the optimal unbiased performance. In general, an m-partition that is equitable
with respect to f is not equitable with respect to f1/2; therefore, in general, the inequality
‖z‖1 ≤

√
m‖z‖2 is strict and T is larger than the optimal unbiased performance.

On the other hand, ‖z‖2 ≤ ‖z‖1 for any vector z ∈ Rm, therefore by using the same
reasoning as in equation (7.17) we obtain

T ≤ 1
m

γ
β2

TSP,2

2
λ

v2 (1− %)2
‖z‖22 ≤

1
m

γ
β2

TSP,2

2
λ

v2 (1− %)2
‖z‖21

= γ
β2

TSP,2

2
λ
[∫
E f

1/2(x) dx
]2

mv2 (1− %)2
= γ mT ∗U, as %→ 1−,

where, again, T ∗U is the optimal unbiased performance.

Note that in this case the resulting multi-vehicle policy might be biased.

Remark 7.4.5. A similar result holds for biased policies: in this case the 3-norm is the
relevant norm to use.

7.4.2 Distributed policies for the m-DTRP and discussion

The optimality of the SQM policy and theorem 7.4.1 suggest the following distributed
multi-vehicle version of the DC policy:

1. the vehicles compute in a distributed way an m-median of E that induces a Voronoi
partition that is equitable with respect to f and f1/2,
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2. the vehicles assign themselves to the subregions (thus, there is a one-to-one corre-
spondence between vehicles and subregions),

3. each vehicle executes the single-vehicle DC policy to service demands that fall within
its own subregion, by using the median of the subregion instead of G̃∗1.

(In an identical way, we can obtain a multi-vehicle version of the RH policy.)
If there exists, given E and f , an m-median of E that induces a Voronoi partition that

is equitable with respect to f and f1/2, then the above policy is optimal both in light load
and arbitrarily close to optimality in heavy load, and stabilizes the system in every load
condition. There are two main issues with the above policy, namely (i) existence of an
m-median of E that induces a Voronoi partition that is equitable with respect to f and
f1/2, and (ii) how to compute it in a distributed way. In section 6.4.5, we showed that
for some choices of E and f a median Voronoi diagram that is equitable with respect to
f and f1/2 fails to exist. On the other hand, in chapter 6, we presented a synchronous,
spatially-distributed partitioning algorithm that, for any possible choice of E and f , provides
a partition of E that is equitable with respect to f and represents a “good” approximation of
a median Voronoi diagram (see section 6.5.3; in particular, the motion toward the centroid
should be replaced with a motion toward the median). Furthermore, if an m-median of E
that induces a Voronoi partition that is equitable with respect to f exists, the algorithm
will locally converge to it. Accordingly, we define the multi-vehicle Divide & Conquer policy
as follows

Algorithm 7: Multi-Vehicle DC (m-DC) Policy

Each vehicle k ∈ {1, . . . ,m} locally controls a power generator (gk, wk) (which is an1

artificial variable, in other words gk does not coincide in general with the position of
the vehicle). Vehicle k is assigned to the corresponding power cell k.
The vehicles run the spatially-distributed partitioning algorithm defined as a set of2

differential equations in (6.22) (replacing the motion toward the centroid with a
motion toward the median), by using as input measure f .
Simultaneously, each vehicle executes the single-vehicle DC policy inside its own3

subregion.

According to theorem 7.4.4 the m-DC policy is within a factor (1+1/r)m of the optimal
unbiased performance in heavy load (since the algorithm in equation (6.22) always provides
a partition of E that is equitable with respect to f), and stabilizes the system in every load
condition. In general, the m-DC policy is only suboptimal in light load; note, however, that
the computation of the global minimum of the Weber function Hm (which is non-convex for
m > 1) is difficult for m > 1 (it is NP-hard for the discrete version of the problem); therefore,
for m > 1, suboptimality has also to be expected from any practical implementation of the
SQM policy. If an m-median of E that induces a Voronoi partition that is equitable with
respect to f exists, the partitioning algorithm used by the m-DC will locally converge to it,
thus we say that the m-DC policy is “locally” optimal in light load.

Note that, when the density is uniform, a partition that is equitable with respect to f is
also equitable with respect to f1/2; therefore, when the density is uniform the m-DC policy
(with r → +∞) is an optimal unbiased policy in heavy load (see theorem 7.4.1).

The m-DC policy adapts to arrival rate λ, expected on-site service s̄, and vehicle’s
velocity v; however, it requires the knowledge of f . The key feature of the partitioning
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algorithm in equation (6.22) is that it is spatially-distributed ; therefore, the m-DC policy is
indeed a spatially-distributed control policy.

The multi-vehicle version of the RH policy (which we call m-RH policy) can be defined
in an identical way. Its properties are summarized in Table 7.2.

7.5 On the Case with Zero On-Site Service Time

In the formulation of the m-DTRP we assumed that s̄ > 0 (see section 2.5.1). However,
it is of interest to also study the case s̄ = 0, since in some applications the on-site service
time might actually be zero (or negligible). We show that, perhaps surprisingly, when s̄ = 0
a π∗-partitioning policy using an m-partition which is equitable with respect to f1/2 is an
optimal unbiased policy for the m-DTRP. Hence, when s̄ = 0, optimality does not require
simultaneous equitability, a considerable simplification.

Specifically, when s̄ = 0, the light-load regime is defined as λ → 0+, while the heavy-
load regime is defined as λ → +∞. Then, it is quite straightforward to verify that all the
performance bounds in sections 2.5, 7.2, and 7.3 hold by simply substituting % = 0, and by
formally changing the limits %→ 0+ and %→ 1− with λ→ 0+ and λ→ +∞. For example,
equation (2.11) reads

T
∗
U ≥

β2
TSP,2

2
λ
[∫
E f

1/2(x)dx
]2

m2 v2
as λ→ +∞,

and equation (7.2) reads

TDC(r) ≤
(

1 +
1
r

) β2
TSP,2

2

λ
[∫
E f

1/2(x) dx
]2

v2
as λ→ +∞,

where r is the number of subregions. The major difference is about which type of partition
one should use in heavy load (i.e., when λ is large). We have the following result (which
can be easily generalized to the case where the single-vehicle unbiased policy π is within a
factor γ ≥ 1 of the optimal unbiased performance).

Theorem 7.5.1. Assume s̄ = 0. As λ → +∞, given a single-vehicle, optimal unbiased
policy π∗ and m vehicles, a π∗-partitioning policy using an m-partition which is equitable
with respect to f1/2 is an optimal unbiased policy for the m-DTRP.

Proof. The proof is very similar to the one of theorem 7.4.1. Let π∗ be an optimal unbiased
policy (e.g., the DC policy with r → ∞). Construct an m-partition {Ek}mk=1 of E that
is equitable with respect to f1/2; thus

∫
Ek f

1/2(x) dx =
∫
E f

1/2(x) dx/m . Notice that the
arrival rate λk in subregion Ek is reduced by a factor

∫
Ek f(x) dx, i.e., λk = λ

∫
Ek f(x) dx.

Moreover, given that a demand falls in subregion Ek, the conditional density for its location
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(whose support is Ek) is f(x)/
(∫
Ek f(x) dx

)
. By the law of total expectation we have

T =
m∑
k=1

(∫
Ek
f(x) dx

β2
TSP,2

2

λ
∫
Ek f(x) dx

v2

[∫
Ek

√
f(x)∫

Ek f(x) dx
dx

]2)

=
m∑
k=1

(∫
Ek
f(x) dx

β2
TSP,2

2
λ

v2

[∫
E f

1/2(x) dx
m

]2)

=
β2

TSP,2

2
λ
[∫
E f

1/2(x) dx
]2

m2 v2
, as λ→ +∞,

(7.18)

where in the last equality we have used the fact that
∑m

k=1

∫
Ek f(x) dx = 1. Thus, the

bound in equation (2.11) is achieved. We finally show that such multi-vehicle policy is
indeed unbiased. In fact, assume steady-state conditions, and let X be the location of a
randomly chosen demand, T be its system time and S be an arbitrary subset of E ; then, by
the law of total expectation we have

E [T |X ∈ S] = E
[
E [T |X ∈ S ∩ Ek] |X ∈ S

]
.

Since π∗ is unbiased, it must hold

E [T |X ∈ S ∩ Ek] = E [T |X ∈ Ek] = β2
TSP,2 λ

(∫
E
f1/2(x) dx

)2

/(2m2 v2),

which is a constant independent of Ek. The claim then follows from the fact that S was
chosen arbitrarily.

Theorem 7.5.1 is very important from a practical viewpoint, since it means that when
s̄ = 0 optimality does not require simultaneous equitability. In light of theorem 7.5.1,
when s̄ = 0 the m-DC policy should be defined in the same way of Algorithm 7, with the
exception that the partitioning algorithm in equation (6.22) should partition E according to
f1/2 (instead of f). Since the partitioning algorithm in equation (6.22) is then guaranteed
to converge to a partition that is equitable with respect to f1/2, we conclude that when
s̄ = 0 the spatially-distributed m-DC policy (with the modification that equitability should
be with respect to f1/2, and with r → +∞) is an optimal unbiased policy in heavy load for
any density f .

7.6 Simulation Experiments

In this section we discuss, through the use of simulations, the heavy-load behavior of both
the DC and the RH policy, and we comment on their relative performance.

All simulations are performed on a machine with a 2.4GHz Intel Core Duo processor
and 4GB of RAM. The code is written in MatlabR©7.4 with external calls to the program
linkern, for which we set a running time bound of one second. In all simulations we
consider a circular environment E = {(x, y) ∈ R2 |x2 +y2 ≤ 1/π} (hence, the area of E is 1),
a vehicle’s velocity v = 1, and an on-site service time uniformly distributed in the interval
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Table 7.3: Computation times for DC policy
% r = 1 r = 16

|TSP | Time |TSP | Time
0.9 ' 200 points ' 0.3s ' 20 points ' 0.03s
0.93 ' 400 points ' 0.8s ' 60 points ' 0.1s
0.95 ' 800 points ' 1.1s ' 70 points ' 0.15s
0.97 ' 2250 points ' 1.7s ' 200 points ' 0.3s
0.99 ' 21000 points ' 5s ' 1300 points ' 1.3s

[0, 1] (thus s̄ = 0.5). The spatial density f : E → R>0 used in the simulation experiments is

f(x) =
{

1−δ
ε , x ∈ E1,
δ

1−ε , x ∈ E2,

where E1 = {(x, y) ∈ R2 |x2 + y2 ≤ ε/π}, E2 = E \ E1, and ε, δ ∈ (0, 1). If 1− δ = ε, then
the density f is uniform; if, instead, 1− δ > ε, then the density f has a peak in subregion
E1. In all simulation experiments, we set ε = 0.1.

7.6.1 Heavy-load performance of the DC policy

We first consider a uniform spatial density, i.e., δ = 1−ε = 0.9. We consider 5 values of the
load factor, namely % = 0.9, 0.93, 0.95, 0.97, 0.99. Circles in the left-hand figure of Figure
7-1 represent the ratios between the experimental system time TDC(1) (i.e., r = 1 in the
DC policy) and T ∗U (whose expression is given in equation (2.11)), for the different values of
%. We then repeat the simulation process by executing the DC policy with r = 16. Squares
in the left-hand figure of Figure 7-1 represent the ratios between the experimental system
time TDC(16) (i.e., r = 16 in the DC policy) and T

∗
U, for the different values of %. It can

be observed that for r = 1 the ratios TDC(1)/T ∗U decrease as % approaches one and tend
to 2, in accordance with the upper bound in theorem 7.2.2 (in fact, 1 + 1/r = 2 in this
case). Similarly, for r = 16 the ratios TDC(16)/T ∗U decrease as % approaches one and tend
to (1 + 1/16) ≈ 1.06, in accordance again with the upper bound in theorem 7.2.2. These
results confirm the theoretical analysis in section 7.2 and suggest that the upper bound (7.2)
is indeed tight for the various values of r. Note that for all values of % the experimental
system time is larger than the upper bound; this is due to one or a combination of the
following reasons: First, the upper bound formally holds only in the limit %→ 1−. Second,
we are using an approximate solution for the optimal TSP.

In Table 7.3 we show for both r = 1 and r = 16 the average number of points (denoted
by |TSP |) through which a TSP tour is computed and the average time required for such
computation. Specifically, the computation time includes (i) the time to read the points
from an input file, (ii) the TSP computation time, and (iii) the time to save the tour on a
file. Recall that we implemented the DC policy by using linkern as a solver to generate
approximations to the optimal TSP tour, and we set a running time bound of one second
for this solver. One can observe that the computation times are rather small even for
values of % very close to one; moreover, since the experimental results are very close to
the theoretical bounds, we argue that linkern (with a running time bound of one second)
computes TSP tours very close to the optimal ones. Hence, we conclude that the DC policy
can be effectively implemented in real-word applications by using linkern as a subroutine.
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Figure 7-1: Left Figure: Ratio between experimental system time under the DC policy
and T

∗
U (whose expression is given in equation (2.11)) in the case of uniform density (i.e.,

δ = 0.9). Right Figure: Ratio between experimental system time under the DC policy and
T
∗
U in the case of non-uniform density (δ = 0.6). Circles correspond to the DC policy with

r = 1, while squares correspond to the DC policy with r = 16.

The same set of simulations is performed for a non-uniform spatial density; in particular
we consider δ = 0.6, i.e., a peak in the small subregion E1. Note that in this case a
simultaneously equitable partition can be trivially obtained by using radial cuts. Results
are shown in the right-hand figure of Figure 7-1. Circles represent the ratios between the
experimental system time and T ∗U for r = 1, while squares represent the ratios between the
experimental system time and T ∗U for r = 16. As before, the results are in accordance with
the upper bound in theorem 7.2.2.

Finally, from Figure 7-1 it can be observed that as % → 1− the DC policy with r = 16
performs better than the DC policy with r = 1, precisely by a factor 2 in accordance with
the upper bound in theorem 7.2.2. On the other hand, for moderate values of %, say % ≈ 0.9,
the DC policy with r = 1 performs better than the DC policy with r = 16. This result is
expected since for moderate values of % and “large” values of r the number of demands in
each subregion is low, and therefore equation (2.7) is no longer applicable (while it is still
applicable for r = 1). The computation times are very similar to those shown in Table 7.3
and therefore they are omitted.

7.6.2 Heavy-load performance of the RH policy

We first consider a uniform spatial density. We consider 3 values of the load factor, namely
% = 0.95, 0.97, 0.99, and 7 values of η, namely η = 0.1, 0.2, 0.3, 0.7, 0.8, 0.9, 1. Formally, the
RH policy is not defined for η = 1, however, by setting η = 1 in the definition of the RH
policy, we simply obtain the DC policy with r = 1. The left-hand figure of Figure 7-2
shows the ratios between the experimental system time TRH(η) and T

∗
U (whose expression

is given in equation (2.11)) for each pair (%, η). The same set of simulations is performed
for a non-uniform spatial density; in particular we consider δ = 0.6. Results are shown in
the right-hand figure of Figure 7-2. The results confirm that the system time TRH follows
the 1/(1 − %)2 growth predicted by theorem 7.3.1. In section 7.3 we argued that in heavy
load TRH(η) ≤ 2T ∗U (see equation (7.15)) for all η ∈ (0, 1); from Figure 7-2, it can be
observed that as % approaches one this asymptotic bound seems to be confirmed, both for
a uniform f and a non-uniform f . We also argued in section 7.3 that the performance of
the RH policy should improve as the horizon becomes shorter: this is indeed the case, in
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Figure 7-2: Left Figure: Ratio between experimental system time under the RH policy
and T

∗
U (whose expression is given in equation (2.11)) in the case of uniform density (i.e.,

δ = 0.9). Right Figure: Ratio between experimental system time under the RH policy and
T
∗
U in the case of non-uniform density (δ = 0.6).

particular simulation results show that optimal performance is achieved for η ≈ 0.2. Finally,
the computation times for the RH policy with any η are very similar to those of the DC
policy with r = 1 and therefore they are omitted.

7.6.3 Comparison between DC policy and RH policy

The RH policy should be compared with the version of the DC policy that is also adaptive
with respect to f , i.e., with the DC policy with r = 1. Indeed, as observed before, the
DC policy with r = 1 is the same as the RH policy when we set η = 1. Therefore, we can
compare the two policies by looking at Figure 7-2. One should note that the RH policy with
η ≈ 0.2 performs consistently better than the DC policy with r = 1 (which, again, is the
same as the RH policy with η = 1), in particular it decreases the system time by ≈ 20%.

7.6.4 Performance of the multi-vehicle DC policy

In this section we study, through the use of simulations, the behavior of the m-DC policy; we
focus, in particular, on the heavy-load scenario. When the density f is uniform, a partition
that is equitable with respect to f is also equitable with respect to f1/2. By following the
same arguments as in equation (7.16) one can show that in heavy load the steady-state
system time within the entire environment follows the same behavior of the steady-state
system time within each subregion. Hence, when f is uniform and the system is in heavy
load the simulation results for the m-DC policy are virtually identical to the simulation
results for the 1-DC policy (presented above), and therefore they are omitted.

When the density f is not uniform, a partition that is equitable with respect to f is not
necessarily equitable with respect to f1/2. Theorem 7.4.4, however, guarantees that the m-
DC policy in heavy load is within a factor (1+1/r)m of the optimal unbiased performance.
We verify this result through simulation experiments. We consider a square environment
E = {(x, y) ∈ R2 | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1} (hence, the area of E is 1), vehicles’ velocity v = 1,
and an on-site service time uniformly distributed in the interval [0, 1] (thus s̄ = 0.5). The
spatial density used in the simulations is:

f(x) =
{

3, x ∈ E1,
1/3, x ∈ E2,
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where E1 = {(x, y) ∈ R2 | 0.5 ≤ x ≤ 1, 0.5 ≤ y ≤ 1} and E2 = E \ E1. We consider a load
factor % = 0.9 and 4 values for the number m of vehicles, namely m = 2, 4, 6, 8. Within each
subregion, we simulate the DC policy with r = 1, which has a constant factor guarantee
equal to 2 (see theorem 7.2.2). The circles in Figure 7-3 represent the ratios between the
experimental system time Tm-DC and T

∗
U, for the different values of m. The squares in

Figure 7-3 represent the upper bounds for such ratios, which, according to theorem 7.4.4,
are equal to 2m. The simulation results show that the ratios Tm-DC/T

∗
U seem not to increase

linearly with m, or, in other words, that the upper bound in theorem 7.4.4 is conservative.
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Figure 7-3: The circles represent the ratios between the experimental system times under
the m-DC policy (with r = 1) and T

∗
U; the squares represent the theoretical upper bounds

on these ratios. The load factor is % = 0.9.

7.7 Conclusion

The focus of this chapter was on the m-DTRP. Note, however, that in many DVR prob-
lems (e.g., DVR with stochastic time constraints and DVR with priorities, see chapters 3
and 4) partitioning policies provide “good” performance. Hence, we argue that combining
the spatially-distributed partitioning algorithms of chapter 6 with appropriate partitioning
policies and single-vehicle routing policies yields adaptive and distributed algorithms for a
wide variety of DVR problems. The approach presented in this chapter is therefore rather
general and not specifically tailored to the m-DTRP.

This chapter leaves numerous important extensions open for further research. A first
line of research is to devise spatially-distributed algorithms that provide simultaneously
equitable partitions; such algorithms would make the m-DC policy (with r → +∞) optimal
for any density f . Second, finding an unbiased policy for the 1-DTRP that is optimal
in heavy load and does not rely on the knowledge of f is both practically important and
theoretically interesting. Finally, it is also of interest to design optimal or near-optimal
policies that are biased in heavy load and that are adaptive and distributed (recall that
allowing biased service results in a strict reduction of the optimal system time for any
non-uniform density f).
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Chapter 8

Conclusions

The algorithmic queueing theory approach developed in this dissertation provides a new
way of studying robotic systems in dynamically changing environments. This approach
consists of three basics steps: 1) queueing model of the robotic system and analysis of
its structure; 2) establishment of fundamental limitations on performance, independent of
algorithms; and 3) design of algorithms that are either optimal or constant-factor away from
optimal. We have argued how algorithmic queueing theory overcomes many limitations of
existing approaches to dynamic vehicle routing problems, most notably the online algorithm
approach. A key results that we have achieved by adopting the algorithmic queueing theory
approach is a systematic method for lifting single-vehicle routing policies to distributed
multi-vehicle routing policies with provable performance guarantees.

In the following, we first summarize the results presented in each chapter; collectively,
chapters 3 through 7 provide examples of applications of algorithmic queueing theory, and
at the same time they contribute to its development. We conclude by presenting some
directions for future research.

8.1 Summary

In chapter 3 we studied a dynamic vehicle routing problem where demands have stochastic
deadlines on their waiting times. After a careful formulation of the problem, we established a
lower bound on the optimal number of vehicles. In deriving such lower bound, we introduced
a novel type of facility location problem, and we provided some analysis and algorithms for
it. Then, we analyzed and characterized two service policies; in particular, one of the two
policies is optimal in light load, while the other one is within a small factor of the optimum
in heavy load and under some additional assumptions. Finally, we discussed scaling laws
for the number of vehicles.

In chapter 4 we introduced a dynamic vehicle routing problem with priority classes. We
captured the priority levels of classes by writing the system time as a convex combination
of the system time of each class. We determined a lower bound on the achievable values of
the convex combination of the class system times. We then presented the Separate Queues
policy and showed that it performs within a constant factor of the lower bound, which
depends only on the number of the classes.

In chapter 5 we studied a dynamic pick-up delivery problem with multiple vehicles of
unit capacity and we argued that this is a reasonable model for transportation-on-demand
and mobility-on-demand systems. We first presented a policy that is optimal in light load;
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then we studied the Randomized Batch policy and showed that it performs within a constant
factor of the optimal performance.

In chapter 6 we presented provably correct, spatially-distributed control policies that
allow a team of vehicles to achieve a convex and equitable partition of a convex environ-
ment. We also considered the issue of achieving convex and equitable partitions with special
properties (e.g., close to Voronoi diagrams). These algorithms can find applications in many
problems, including dynamic vehicle routing (as shown in chapter 7), and wireless networks.

Finally, in chapter 7 our goal was to design unbiased policies for the m-DTRP that (i) are
adaptive (in particular do not require the knowledge of the arrival rate λ and the statistics
of the on-site service time), (ii) enjoy provable performance guarantees (in particular, are
provably stable under any load condition), and (iii) are spatially-distributed. To achieve this
goal, we introduced two new policies for the 1-DTRP, namely the Divide & Conquer policy
and the Receding Horizon policy, which were subsequently extended to the multi-vehicle
case through the idea of partitioning policies. The focus of chapter 7 was on the m-DTRP;
however, we argued that combining the spatially distributed partitioning algorithms of
chapter 6 with appropriate partitioning policies and single-vehicle routing policies yields
adaptive and distributed algorithms for a wide variety of DVR problems.

8.2 Future Directions

In this dissertation we have studied dynamic task-assignment and scheduling problems for
robotic networks, by using an algorithmic queueing theory approach. This research has
provided rigorous answers to many questions in this field, but it has also raised a number
of new ones. Some of them have been discussed at the end of each chapter. In this section
we outline some additional directions for future research.

DVR in moderate loads Most of the results presented in this dissertation hold in the
asymptotic regimes % → 0+ (where the problem basically becomes one of locational
optimization) and %→ 1− (where the “border effects”, e.g., the shape of the environ-
ment, become negligible). Specifically, while stability properties have been rigorously
established under any load condition (see, e.g., the analysis of the policies in chapter
7), tight performance guarantees only hold in those asymptotic regimes. Addressing
optimality of performance in the intermediate regime would be very important both
on a theoretical and on a practical level. Unfortunately, the analysis techniques pre-
sented in this dissertation might not be sufficient to fulfill this objective. While new
analysis tools are being developed, Monte Carlo simulations might provide preliminary
insights.

Different performance criterions In this thesis, we have mainly considered as optimal-
ity criterion the steady-state expected waiting time. It is also of interest to consider
formulations that take into account second-order moments and large-deviation proba-
bilities, as in some applications (e.g., surveillance of protected environments) it might
be important to limit variability.

Realistic vehicle dynamics and environments In most of the scenarios we have con-
sidered omni-directional vehicles with first order dynamics. More realistic dynamical
models will have to be taken into account for practical application to UAVs or other
systems. A possibility is to integrate the results presented in this thesis with the
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results in [87], where bounds on the Traveling Salesman Problem for vehicles with
motion constraints are derived. A preliminary step in this direction can be found in
[51]. Also, the environment E is usually assumed to be a convex set. This assumption
might be satisfied in UAV applications, but is highly unrealistic, for instance, in an
urban setting. The inclusion of obstacles or other realistic features in the description
of E requires novel methods to integrate queueing theory, computational geometry,
and motion planning.

Extensions to other DVR problems There are many other additional key problems in
robotic systems that could benefit from being studied under the algorithmic queuing
theory framework. Examples include search and rescue missions, force protection,
map maintenance, and pursuit-evasion.

DVR and game theory The main approach to devise distributed multi-vehicle routing
policies was to combine spatially-distributed partitioning algorithms with appropriate
partitioning policies and single-vehicle routing policies. Although this approach is
rather powerful, it is not the only possible solution. An alternative solution might be
to reformulate the dynamic routing problems studied in this thesis within the theory
of non-cooperative games, which appears to be an effective framework for the design of
distributed motion coordination algorithms. A possible starting point is the work in
[6], where a game-theoretical formulation of a static vehicle-target assignment problem
is presented.

Convergence rates of distributed partitioning algorithms The distributed partition-
ing algorithms presented in chapter 6 have guarantees on their steady-state closed-loop
performance, but lack a rigorous characterization of their convergence rates. On the
other hand, an understanding of their transient behavior is necessary for real-world
applications. Hence, it is of interest to develop bounds on their convergence rates. To
tackle this challenging problem, one might try to build upon the analysis techniques
developed in [40], where bounds on the convergence rate of the Lloyd algorithm are
derived.

Partitioning algorithms with minimal information exchange In [43], the authors
propose a distributed partitioning algorithm that converges to a multi-median Voronoi
diagram and only requires asynchronous pairwise (so-called gossip) communication.
An interesting problem would be to devise distributed algorithms for equitable parti-
tioning that provide partitions close to a median Voronoi diagram and that rely on the
gossip communication model. In general, an important direction for future research
is to devise distributed algorithms for equitable partitioning that require the minimal
amount of information exchange.

Partitioning algorithms for structured environments An important extension for the
partitioning algorithms presented in chapter 6 is to consider the setting of structured
environments (ranging from simple nonconvex polygons to more realistic ground envi-
ronments). Such extension add several challenges, including connectivity maintenance
for the robotic network.
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