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Abstract

A Theory of Collective Cell Migration and

the Design of Stochastic Surveillance Strategies

by

Mishel George

In nature, complex emergent behavior arises in groups of biological entities often as

a result of simple local interactions between neighbors in space or on a network. In such

cases, scientific inquiry is typically aimed at inferring these local rules. Conversely, in

teams of robots, the goal is to create decentralized control laws which results in efficient

global behavior. These behaviors are designed for tasks such as maintaining formation

control, performing effective coverage control or persistently monitoring an environment.

With this in mind, we consider the following: 1> the emergence of collective cell mi-

gration from local contact and mechanical feedback and 2> the design of unpredictable

surveillance strategies for teams of robots.

Collective cell migration is an essential part of tissue and organ morphogenesis during

embryonic development, as well as of various disease processes, such as cancer. The vast

majority of theoretical descriptions of collective cell behavior focus on large numbers

of cells, but fail to accurately capture the dynamics of small groups of cells. Here we

introduce a low-dimensional theoretical description that successfully describes single cell

migration, cell collisions, collective dynamics in small groups of cells, and force propaga-

tion during sheet expansion, all within a common theoretical framework. We also explain

the counter-intuitive observation that pairs of cells repel each other upon collision while

they coordinate their motion in larger clusters.

Conventional monitoring strategies used by teams of robots are deterministic in nature

ix



making it possible for intelligent intruders who study the motion of the patrolling agent

to compromise the patrol route. This problem can be solved by designing random walkers

on graphs which naturally incorporate unpredictability. Within this framework, we study

and provide the first analytic expression for the first meeting time of multiple random

walkers, in terms of their transition matrices. We also study two problems related to

maximizing unpredictability: given graph and visit frequency constraints, 1> maximize

the entropy rate generated by a Markov chain, and 2> maximize the return time entropy

associated with the Markov chain, where the return time entropy is the weighted average

over all graph nodes of the entropy of the first return times of the Markov chain.
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Chapter 1

Introduction

Achieving the tight coordination observed in schools of fish [3] and flocks of birds [4]

is possible in teams of robots due to advancements made in the field of multi-agent

control [5, 6]. Groups of biological entities possess impressive dynamic capabilities based

on purely localized interactions, and hence provide inspiration for decentralized decision-

making schemes in robotic teams [7]. Even in the absence of knowledge concerning

the global states of the system, biological networks have evolved local behaviors which

translate robustly to global behaviors [8]. Theoretical descriptions of biological networks

often try to demystify this emergence of global synchronized behavior by suggesting

relatively simple local laws [9]. The objective in robotic teams when studied from this

point of view is no different: design local control laws for each agent, wherein each

agent possesses information limited to its own states and that of neighboring agents,

that translate to a desired global behavior [10]. Thus, the study of emergent behavior

in biological networks, while being of independent interest, also benefits the robotics

community [11] and vice-versa the design of local control laws for robotic agents can

shed light on how coordination in colonies of insects or groups of migrating animals

might arise [12].

Collective motion in nature is observed across a breadth of length scales from clusters

of macromolecules [13] to colonies of cells [14] and groups of humans [15]. Inspired by the

1



Introduction Chapter 1

coordinated behavior observed in swarms of insects [16, 17], algorithms and heuristics

designed for large teams of robots are called swarming algorithms or swarming behaviors,

especially when the emphasis is on emergent behavior. While formation control is one

of the many complex tasks that a group of robotic agents might need to achieve, robotic

teams are designed with tasks in mind such as environmental monitoring [18], search and

rescue [19] and intruder detection [20].

In this thesis, we study problems in coordinated biological and robotic behaviors: on

one hand, we seek to unify collective behaviors observed across multiple cell types and on

the other hand, we seek to design persistent surveillance strategies for groups of robots.

In the remainder of this chapter, a broad literature survey of each one of these fronts

of research is described.

1.1 Literature relevant to collective cell migration

In this section, we present a literature survey of collective migration in groups of

animal cells.

Collective migration in vivo: From embryonic development to tissue regeneration

and wound healing, many processes of tissue (re)organization involve the coordinated

migration of cells [21]. While some large scale migration processes involve the move-

ments of hundreds of cells (e.g., neural crest cell migration [22]), many migratory events

in developmental and disease processes involve small groups (∼ 5-50) of cells [21, 23],

including border cell migration [14] or lateral line formation [24]. Importantly, there is

increasing evidence that cancer invasion and metastases rely on the migration of small

clusters of cells rather than individual cells [25]. Despite the existing amount of informa-

tion regarding the different migratory processes and their molecular control [26, 27, 28],
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it is unclear how these different collective behaviors arise from the physical interactions

among migrating cells, and how to connect the known individual behaviors of cells to

their collective behavior in groups of different cell numbers.

Self-propelled particle models: When it comes to modeling collective behaviors

in nature, two seminal pieces of work come to mind: the first widely-known flocking

simulation published by Reynolds [29] and the statistical physics type approach by Vicsek

et al. [9] which is now widely referred to as the “Vicsek Model”. The standard Vicsek

model consists of self-propelled particles (SPPs) with discrete-time evolution of their

headings governed by the law that each agent computes an average of the headings of its

neighbors with additive noise. Though the original objective of this model was to study

second-order transition from order to disorder in the flocking behavior observed in the

agents, this simple notion of agents trying to align velocities through local averaging laws

spawned several models of collective motion in both biological [30, 31, 32] and physical

systems [33, 34, 35].

Review of existing theoretical descriptions: Most experimental studies concern-

ing the physical aspects of collective cellular movements have focused on the migration

of thousands of cells, such as in in vitro wound healing assays [36, 37, 38, 39]. Accord-

ingly, theoretical descriptions of these phenomena have been centered in the limit of very

large numbers of cells, using both discrete approaches based on self-propelled particles

(SPP) [40, 41, 42, 43, 44] and continuum theories [45, 43]. SPP and continuum phe-

nomenological descriptions have provided important insights into the generic behaviors

of collective cellular movements at length scales much larger than cell size and have been

effective at providing scaling laws which describe such collective behaviors [45, 43].
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1.2 Literature relevant to stochastic surveillance strate-

gies

Here we present a broad literature review of surveillance strategies and Markov chains

on graphs, which are essential tools in the design of unpredictable surveillance strategies.

Topic-specific literature can be found in the chapters concerning stochastic surveillance

strategies.

1.2.1 Multi-robot patrolling strategies

Some of the first work in multi-robot patrolling was done by Machado et al. [46], where

several architectures for multi-agent patrolling are proposed and performance criteria

specified. In particular, the architectures were split between centralized and decentralized

strategies, and the delay between consecutive visits to nodes, termed the ’idleness’, plays

a key role in the design of both types of architectures. This notion of minimizing idleness

was also studied using reinforcement learning methods in [47]. Interestingly, idleness

has also been used to design a pheromone based swarm algorithm, where the evaporation

of pheromones creates an oriented gradient following the chronology of cell visits [48].

Work by Elmaliach et al. [49] computes minimal cost cycles that visits all the points in

the graph. Further, the proposed solution guarantees that each point is covered at the

same optimal uniform frequency.

Stochastic vehicle routing strategies have the desirable property that an intruder can

not predictably plan a path to avoid surveillance agents. The authors in [20, 50] use

Markov chain Monte Carlo methods to design such surveillance strategies. A thorough

study examining a range of strategies on the spectrum between purely random and purely

deterministic is conducted in [51]. It was found that while deterministic strategies per-
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form better against random attackers, introducing unpredictability increased the capture

rate of intelligent attackers. Minimum hitting time Markov chains have been used in the

design of stochastic surveillance strategies in [52] where a novel convex program formula-

tion of the problem is considered. The notion of group hitting time for multiple random

walkers is used in optimizing transition matrices for multiple agents in [53]. Further,

Markov chains have been used in conjunction with specific notions of intelligent intrud-

ers to design stochastic strategies [54]. In [55] the mean hitting time in conjunction with

multiple parallel instances of the CUSUM algorithm is used to devise a policy which en-

sures quickest average time to detection of anomalies. Finally, the work in [56] formulates

an efficient algorithm based on Markov chains named PATROLGRAPH* which allows

for effective extension to the multi-agent case.

1.2.2 Random walks on graphs

In the setup we consider for robotic surveillance, we model the environment as a

graph and design random walks on this graph. Hence, we briefly review metrics related

to random walks on graphs that are relevant to the design of robotic strategies, namely,

speed of traversal and unpredictability in path. A relevant notion of speed of traversal

of random walks on graphs is the mean hitting time which is the average time taken by

a single random walker to travel between nodes of a graph. The hitting times of a finite

irreducible Markov chain first appeared in [57], however, it was rediscovered for finite

reversible Markov chains in [58]. Several bounds have been obtained for the hitting time

for various graph topologies [59, 60]. Many closed-form formulations exist to compute the

hitting time for a single random walker [59, 61, 52]. Another related notion that measures

speed of traversal is that of the cover time which is the expected time taken by random

walkers to hit every node on the graph [58, 62]. Markov chains are excellent tools for
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introducing unpredictability into the motion of surveillance agents. A standard notion of

unpredictability for discrete-time Markov chains is the entropy generated at each timestep

called the entropy rate of a Markov chain [63]. Prior work has studied maximizing the

entropy of discrete-time Markovian evolutions in various contexts [64, 65, 66]. Ekroot

et al. studied the entropy of Markov trajectories in [67], i.e., the entropy of paths with

specified initial and final states.

While the design of surveillance algorithms studied in this thesis are not directly

inspired by biological behavior, the tools utilized in the design of these strategies, i.e.,

Markov chains on graphs, are used in the design of emergent behaviors in robotic swarms.

More specifically, Markov chains on graphs have been utilized in the design of guidance

schemes for large swarms [68, 69, 70] and finding solutions to task assignment problems

in heterogeneous swarms of robots [71]. More broadly, random walks on networks appear

in many areas of research: they are used to describe effective resistance in electrical

networks [72, 73], for link-prediction and information propagation in social networks [74,

75], and in designing search algorithms on networks [76, 77].

1.3 Contribution and organization

There are several contributions of this thesis. In what follows, we detail the contri-

butions of each chapter.

Chapter 2: We introduce a theoretical description that successfully describes the

motion of groups of cells of arbitrary numbers, from single cell motion to the collective

migration of small groups of cells and sheet migrations. First, we derive a novel theo-

retical description of the collective dynamics of groups of cells by balancing the forces

in the system and specifying the dynamics of traction forces (or cell polarization) for

individual cells, accounting for both contact inhibition of locomotion and force-induced
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repolarization. Second, we show that small groups of cells (3 or more cells) display coher-

ent collective behavior despite their effective repulsion during the collision of cells pairs,

with persistence times that depend on the group size. Third, we find an optimal size

for small groups of cells that maximizes the persistence of their coherent motion; this

quantity depends on cellular adhesion and strength of traction forces generated. Fourth,

we show that groups of identical cells can display coherent collective behavior or dispersal

behavior by changing their confinement.

The theoretical description presented in the chapter, albeit 1-D in nature, is the

first of its kind to successfully capture the motion of cells from an individual entity

through to small groups and colonies. This description is obtained from understanding:(1)

the essential dynamics of single cell motion, i.e., random diffusive motion due to the

generation of sporadic ruffling protrusions which decay with a well-defined time-scale,

and, (2) the essential interactions between cells, i.e, the fact that protrusions collapse on

contact with other cells and protrusions are generated in response to pulling forces with

the same characteristic time-scale and an additional force-scale. With this in mind, the

chapter also details how experimental inquiry could be structured to test other predictions

borne of this theoretical description. The most exciting contribution of this chapter is

insight into a long-standing paradox with the cell migration community: how do groups

of cells migrate collectively when experiments on pairs of cells indicate that cells repel

each other upon contact?

In addition, we make a set of predictions: for single cells, the diffusion constant of

cellular movements quadriatically depend on the cell’s traction force; for pairs of cells,

the dynamics of contact-based repolarization are strongly based on the ratio of adhesion

strength to traction force and the ratio of traction repolarization time to mechanical

relaxation time.

Chapter 3: There are several key contributions in this chapter. First, we provide
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a set of necessary and sufficient conditions which characterize when the meeting times

between a single pursuer and a single evader is finite for two arbitrary random walks

modeled as Markov chains. To the best of our knowledge the bounds in the literature

were obtained for meeting times between ergodic Markov chains where the meeting times

are guaranteed to be finite. However we extend the notion to generic transition matrices

as opposed to equal neighbor models which are studied in many works, and we discuss at

length when the meeting times are finite based on the existence of walks of equal length

to common nodes. Second, we provide a closed-form solution to the meeting time of two

independent Markov chains by utilizing the Kronecker product of the transition matrices.

Both these results are obtained using a technical approach which takes advantage of the

properties of Kronecker products of graphs. We further use this closed-form expression

to perform comparisons with existing bounds in the literature. Indeed we see that the

bounds are very conservative for most graphs. Third, we provide a set of sufficient

conditions in terms of the absorbing classes of the pursuer and evader chains which

guarantee finite meeting times. Fourth, we extend the treatment to multiple pursuers

and multiple evaders. Finally, we obtain conditions for the meeting times between two

continuous-time Markov chains to be finite and provide closed-form results for this case,

and further extend it to multiple pursuer and evader groups when dictated by multiple

transition rate matrices.

To the best of our knowledge, this chapter provides the first closed-form solutions for

the computation of the meeting time between two Markov chains for both discrete-time

and continuous-time time indices. Two closely related references are as follows: first, a

system of equations for computing meeting times for independent identical random walks

on graphs with irreducible transition matrices, where the transition matrices are limited

to equal-neighbor weights, were obtained using Laplace transform techniques in [78].

Second, Kronecker products and vectorization techniques have been used to compute the
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Simrank of information networks which has interpretations in terms of meeting times [79].

Our work is different in several ways. First, we consider absolutely generic transition

matrices which need not be identical. Second, we present expressions here which are

valid for reducible transition matrices. Third, we present meeting time expressions for

the case of multiple pursuers which would correspond to multiple infecting particles

in [78]. Finally, we provide insight into when meeting times are finite by connecting this

notion to the existence of walks on the Kronecker graph.

Chapter 4: This chapter makes contribution to Markov chain theory as well as to

robotic surveillance. First, we show that the novel problem of entropy rate maximization

subject to the fact that it is a random walk on a graph with n nodes and constraints on

the visit frequency to each node is well-defined and is strictly convex. We show that the

unique global solution is indeed an irreducible Markov chain. The irreducibility property

implies that the solution has a well-defined stationary distribution identical to that posed

in the stationary distribution constraint.

Second, as the main contribution of the chapter, we provide an iterative algorithm

with rigorous convergence guarantees to compute an n-dimensional vector, called the so-

called maxentropic vector. In turn, as a function of this maxentropic vector, we provide

a closed-form formula for the maximum entropy rate Markov chain, referred to as the

maxentropic Markov chain with visit frequency constraints. In other words, we compute

maxentropic chains with arbitrary stationary distributions on a graph with n nodes using

an n-dimensional vector instead of optimizing transition matrices in Rn×n.

Third, we establish various additional results, including (i) the reversibility of max-

entropic Markov chains with prescribed stationary distributions, (ii) a formula for the

maximum entropy rate subject to the constraints, and (iii) an equiprobable path prop-

erty, which, prior to this work, was only known to hold for the maximal entropy random

walk [65]. Additionally, for a few special choices of the constraints, we are able to char-
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acterize interesting special cases. For example, we show that the equal neighbor random

walk on a graph is equal to the maxentropic Markov chain with visit frequency at each

node proportional to the degree of the node.

Fourth, we conduct a careful comparison between our proposed procedure and stan-

dard SDP methods across a range of graph topologies. Specifically, we conduct a worst-

case complexity analysis of our procedure and compare it with interior point methods

used to solve semidefinite programming formulations of the entropy rate maximization

problem. Empirically and analytically, we show that our proposed procedure has signif-

icantly lower runtime than an SDP method to solve the optimization problem.

Finally, we demonstrate some example realizations of these maxentropic chains in

robotic scenarios. A key simulation-based result is that maxentropic Markov chains per-

form better than minimum hitting time Markov chains for the important case of so-called

intelligent waiting intruders with short attack durations. We also conduct simulations on

a partitioned graph with multiple surveillance agents and find that this result appears to

hold for the multi-agent case as well.

Chapter 5: In this chapter, we propose a new metric that measures the unpredictabil-

ity of the Markov chains over a directed graph with travel times. This novel formulation

is of interest in the general study of Markov chains as well as for its applications to

robotic surveillance. The main contributions of this chapter are sixfold.

First, we introduce and analyze a discrete-time delayed linear system for the return

time probabilities of the Markov chains. This system incorporates integer-valued travel

times on the directed graph. Second, we propose to characterize the unpredictability

of a Markov chain by the return time entropy and formulate an entropy maximization

problem. Third, we prove the well-posedness of the return time entropy maximization

problem, i.e., the objective function is continuous over a compact set and thus admits a

global maximum. For the case of unitary travel times, we derive an upper bound for the
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return time entropy and solve the problem analytically for the complete graph. Fourth,

we compare the return time entropy with the entropy rate of Markov chains; specifically,

we prove that the return time entropy is lower bounded by the entropy rate and upper

bounded by the number of nodes times the entropy rate. Fifth, in order to compute

Markov chains with maximum return time entropy numerically, we truncate the return

time entropy and show that the truncated entropy is asymptotically equivalent to both

the original objective and the practically useful conditional return time entropy. We also

characterize the gradient of the truncated return time entropy and use it to implement a

gradient projection method. Sixth, we apply our solution to different prototypical robotic

surveillance scenarios and test cases and show that, for a model of rational intruder, the

Markov chain with maximum return time entropy outperforms several existing Markov

chains.

Each chapter includes an organization subsection which details the structure. As one

might expect the mathematical notation used in describing the theory of cell migration

is different from that of designing surveillance strategies. In the chapters on stochastic

surveillance strategies (chapters 3, 4, 5), we use consistent mathematical notation which

shall be built up over the course of those chapters.
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Chapter 2

Connecting Single Cell to Collective
Cell Migration

2.1 Introduction

2.1.1 Problem motivation

We seek a minimal theoretical description accounting for key phenomenological ob-

servations regarding cell-cell interactions. To this end, we first describe literature which

specifically deals with cell-cell contact and single out two crucial phenomenon which are

observed in multiple experiments. We then describe cells as particles and introduce pair-

wise physical interactions accounting for these phenomenon in a one-dimensional setting

(Fig. 2.1A). While minimal, the 1D geometry has proven very useful to study collective

cell migration at the experimental level [80, 1, 81], as it simplifies the system considerably

while preserving the essential features of collective cell migration.

2.1.2 Relevant cell-cell interactions

During cell-cell contact, individual cells show very characteristic behaviors. Studies

on the kinematics and physical interactions between two colliding cells have revealed that
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cells retract their lamellipodium upon frontal contact with another cell, a phenomenon

known as Contact Inhibition of Locomotion (CIL) [82, 83, 22, 84]. Studies of CIL have

shown that cell pairs display an effective repulsion upon collision [84, 1, 80, 83] that is

at odds with known coherent collective behavior of groups of cells both in vitro and in

vivo [21, 23]. Recent experiments have shown that cells can display both CIL in collisions

between cell pairs and the formation of coherently moving cells when in larger groups [1],

suggesting that the same underlying mechanism of physical interaction between cells

can give rise to both behaviors. In addition to CIL, recent in vitro studies indicate

that cells repolarize away from pulling forces transmitted through cadherin-mediated

cell adhesion and stabilize a lamellipodium in the opposite direction to the externally

applied force [85, 86]. This Force-Induced Repolarization (FIR) establishes a mechanical

feedback of cadherin-dependent adhesion forces from neighboring cells on the dynamics

of cell polarization and traction forces. Both CIL and FIR play a major role in collective

cell migration [87, 88, 83], as they couple cellular spatial configurations to the dynamics

of cell traction forces via cell-cell contacts.

Discrete SPP models inspired by flocking or schooling behavior of animal groups can

reproduce coherent collective cell behavior through local velocity alignment rules [42, 43].

These models have been shown to successfully reproduce important features of large scale

collective cell behavior, but do not explain important features of the dynamics of small

groups of cells in which the specific characteristics of cellular interactions, including

behaviors such as CIL or FIR, may play an important role. In general, SPP models

can be used to describe the dynamics of small groups of cells and study the effects of

important cell behaviors and parameters. Indeed, models of SPP have started to explore

the role of CIL in the collective dynamics of cells in 2D, but either focus on large 2D

monolayers or do not account for FIR [89, 90, 91]. It remains unclear how cell behaviors

such as CIL and FIR contribute to collective cell migration, especially for small groups
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of cells, such as those observed in developing embryos or during cancer metastasis.

2.1.3 Organization

The rest of this chapter is organized as follows. In section 2.2, we derive a set of

stochastic differential equations which model the behavior of cells in 1D. In section 2.3,

we simulate the system for groups of varying sizes and describe the observed results. In

section 2.4, we describe numerical methods and statistical quantities used to characterize

the behavior of groups of cells. In section 2.5, we compare the results obtained from

simulations to existing experimental observations. Finally, in section 2.6 we summarize

the findings of this chapter.

2.2 Theoretical Description

We introduce one of the main contributions of the chapter which is a set of stochastic

differential equations describing the dynamics of motion of individual cells as well as their

contact-based interactions.

2.2.1 Particle-based description of single cell movements

In order to control their movements, cells regulate the forces they apply on their

surroundings. A given cell generates a traction force ~T that causes its movement. Both

dissipative processes inside the cell and friction with the substrate lead to a friction force

opposing the cell movement which, in its most basic form, reads −ξ~v, with ξ being an

effective friction coefficient and ~v the cell velocity. For the specific case of a single cell,

it is instructive to consider also the effect of an external force ~Fext, as previously done

experimentally by applying a controlled force with optical or magnetic tweezers [85, 86].
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Neglecting inertial terms, force balance on the cell reads

ξ~v = ~T + ~Fext , (2.1)

and specifies the cell velocity ~v that results from the forces in the system. While the

external force in Eq. 2.1 is given and fixed, traction forces are generated by lamellipodial

protrusions and therefore controlled by their dynamics. The direction of lamellipodial

extension, and consequently the direction of the traction force ~T , depends on the direction

of cell polarization as dictated by the intracellular localization of polarization factors such

as RhoA, Cdc42 and Rac [26, 92]. In the absence of instructive external cues (biochemical

or mechanical), cells constantly produce lamellipodial ruffles in random directions [92,

93, 94] that decay over a timescale τT (protrusion lifetime), which characterizes the

persistence of traction along a specific spatial direction (Fig. 2.1B). The timescale τT

accounts here for the time necessary to repolarize the cell at a molecular level (i.e.,

changing the molecular polarity of the cell) and physically (rebuilding the lamellipodium),

and is therefore associated with the cell (traction) repolarization time. Accounting for

FIR due to an externally applied force [85, 86], the dynamics of traction forces can be

written as

τT
d~T

dt
= −~T − TM F̂ext + TR η̂ , (2.2)

where F̂ext ≡ ~Fext/|~Fext| is the direction of the applied external force, TR is the character-

istic force scale of individual lamellipodial ruffling and η̂ is a random unit vector, denoting

a delta-correlated white noise with unit variance, namely < ηi(t)ηj(t
′) >= δijδ(t − t′).

The force scale TM represents the maximal force that a lamellipodium stabilized by the

presence of an external cue can generate (Fig. 2.1B). While we do not consider the effect

of external biochemical cues in this study, including them is straightforward.
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Figure 2.1: Description of the system, interaction forces and phenomenolog-
ical cell behaviors. (A) Schematic representation of cells moving along a 1D strip
(top) and particle-based representation of the system (bottom). Cells can be sub-
ject to adhesion forces (orange), excluded volume repulsion forces (blue) and friction
forces (green), as well as generate traction forces (red). (B) Pairwise interaction forces
fij between cells as a function of their relative distance. Schematic representation of
CIL (C) and FIR (D), leading to an effective repulsion between cells. (E) Schematic
representation of neighbor-enabled repolarization (NER). (F) Schematic representa-
tion of lamellipodial ruffling (right) and a stable lamellipodium (left). (G) Schematic
representation of cellular configurations during collisions and the associated values of
the contact matrix Cij for each configuration and cell.
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2.2.2 Systems with multiple cells

In a system with N cells (from N = 2 to N → ∞), cells apply forces on each other

that affect their dynamics at different levels. Considering the forces that cells apply on

each other, force balance on cell i reads

ξ~vi = ~Ti +
∑
j 6=i

~fji , (2.3)

where ~fji = FA f(rji)r̂ji is the force that cell j applies on cell i. From the perspective of

cell i, ~fji is thus an external force along the direction r̂ji = (~rj − ~ri)/(|~rj − ~ri|), where

~ri and ~rj are the cells’ positions. In contrast to the constant external force considered

above for the one cell case, the magnitude of the intracellular forces changes with the

cells’ configuration and we assume it depends only on the distance rji = |~rj−~ri| between

the cells. More specifically, it is characterized by a repulsive region, accounting for

volume exclusion, and an attractive part, accounting for cell adhesion, with a attractive

force FA specifying the adhesion strength of the contact between two cells (Fig. 2.1C

and Methods). We account for the finite size of the cell `c by setting a cutoff in the

pairwise interaction force between cells at rji = `c (f(r) = 0 if r > `c) that prevents cell

interactions if separated by more than the cell size (Methods).

Beyond the direct effect that forces from neighboring cells have on the motion of

a given cell (Eq. 2.3), these forces also act as cues for cell repolarization and, as a

consequence, affect the dynamics of the traction force exerted by the cell. As described

above for a single cell, we account for FIR in the dynamics of traction forces, namely

τT
d~Ti
dt

= −~Ti − TM
∑
j 6=i

Cij Θ [f(rji)] r̂ji + TR η̂i , (2.4)

where Θ(·) is the Heaviside function and allows only pulling forces to cause FIR. In
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addition to FIR, it is necessary to account for the effect of CIL (and other contact

or exclusion effects) on traction forces when cells come into contact (Fig. 2.1D-F). We

phenomenologically account for these processes using a contact matrix Cij which we

describe in details below.

When two cells collide, the observed lamellipodial retraction characteristic of CIL

can be mathematically accounted for by expressing the contact matrix Cij as Cij =

(1 − r̂ji · T̂i)/2 (Fig. 2.1G). In 1D, Cij is simply a Boolean matrix with zero values for

configurations in which the lamellipodium frontally contacts the other cell, leading to

lamellipodial retraction, and a value of one otherwise, allowing the formation of the

lamellipodium (Fig. 2.1D,G and Eq. 2.4). Importantly, while we phenomenologically ac-

count for the observed retraction of the lamellipodium upon collision, we do not impose a

repolarization of the lamellipodium away from the contact. We find that this repolariza-

tion, commonly associated with CIL [83, 22], occurs naturally within our description as a

consequence of FIR (Fig. 2.1D,E), which causes tractions to repolarize away from pulling

forces established between cells upon collision, as suggested in recent experiments [87, 88].

When N > 2, some cells may be contacted on all sides by other cells (Fig. 2.1A,E)

and, according to CIL, these cells would not be able to generate any stable lamellipodium.

However, experimental data from 1D cell clusters and 2D wound healing experiments sug-

gests that cells contacted on all sides can generate cryptic (stable) lamellipodia [1, 95, 96].

In wound healing experiments, cells just behind the wound edge (second cell layer) gener-

ate stable lamellipodia in the same direction as that of already polarized cells at the lead-

ing edge. 3D imaging of cells in such expanding monolayers suggests that upon polariza-

tion, cells undergo shape changes that open spaces at their rear end, enabling neighboring

trailing cells to protrude lamellipodia [96]. This effect, which we call Neighbor-Enabled

Repolarization (NER), does not specify the direction of cell repolarization. It instead

permits a cell i to protrude a cryptic lamellipodium if the neighboring cell j is polarized
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away from cell i (Fig. 2.1E,G). While NER can be simply due to shape changes upon

cell polarization, other biochemical mechanisms can effectively generate the same effect,

as recently proposed [95, 88, 97]. We mathematically account for NER and CIL in the

contact matrix Cij (Fig. 2.1G) which, for 1D systems with arbitrary number of cells, can

be written as

Cij =
1− r̂ji · T̂i

2

[
1 +

∑
k 6=j,k 6=i

[(
1− r̂ji · T̂k

2

)
|~Tk|
TM
− 1

]]
. (2.5)

The movement of each cell in a system with N cells is governed by Eqs. 2.3, 2.4

and 2.5. Combining these equations and normalizing lengths with the cell size `c, forces

with the adhesion force scale FA, and time with the timescale τM = ξ`c/σ associated

with mechanical relaxation, we obtain three dimensionless parameters that control the

dynamical regimes of the system, namely TM/FA, TR/FA and τT/τM . The parameters

TM/FA and TR/FA compare the relative strengths of traction forces generated by stable

lamellipodia and lamellipodial ruffling to adhesion forces, respectively. Finally, the ratio

τT/τM compares the repolarization timescale τT to the time scale τM that a cell requires

to reach mechanical equilibrium.

2.3 Simulation Results

We study the cellular movements in systems of N cells by numerically solving Eqs. 2.3,

2.4 and 2.5 (Methods), as analytical solutions are difficult to obtain due to the highly

non-linear nature of the dynamics.
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2.3.1 Single cell movements

In the absence of any external cues (~Fext = 0), the cellular movements resulting from

integrating Eqs. 2.1 and 2.2 are ballistic at short time scales (t < τT ), with average ve-

locity TR/ξ, and diffusive at timescales longer than the traction persistence time scale

τT , with diffusion constant D given by D = T 2
RτT/ξ

2. The timescale of velocity auto-

correlation decay is τT , indicating that τT is indeed the persistence timescale of cellular

motion. In the presence of an external pulling force (mechanical cue; ~Fext 6= 0), the cell

polarizes away from the pulling force and, at time scales longer than τT , it generates a

traction force −TM F̂ext opposing the external force (Eq. 2.2). Force balance (Eq. 2.1)

shows that the average velocity of the cell is ~v = −(TM/ξ)(1− |~Fext|/TM)F̂ext, indicating

that the cell moves away from the pulling force at a speed that decreases linearly with

the applied pulling force, with a maximal velocity TM/ξ and a stall force TM , analogous

to molecular motors.

2.3.2 Collisions between two cells (N = 2)

Most cell-cell collision experiments measure the repolarization probabilities of two

colliding cells at a fixed time after collision and for all possible initial cell-cell configu-

rations before collision, namely front-front (F-F) and front-back (F-B) collisions [1, 80]

(Fig. 2.2). Simulations of cell collisions indicate that cell repolarization is always faster

in F-F collisions for any value of the different parameters in the system (Fig. 2.2A,B). In

F-B collisions, the trailing cell (F-B) engages in a frontal collision with the leading cell

(F-B), which is contacted at its back end, and always repolarizes faster than the leading

cell, as observed experimentally [1]. When the force of adhesion is larger than the forces

produced by stable lamellipodia (FA > TM), cells remain attached to each other after

collision (Fig. 2.2E), with traction forces oriented away from each other (Fig. 2.2A,C). In
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contrast, when traction forces are larger than adhesion forces (TM > FA), cells separate

shortly after collision and move away from each other (Fig. 2.2B,D), with separation

times being similar to the repolarization time scale τT (Fig. 2.2E). These configuration-

dependent behaviors arise from the combined action of CIL and FIR, which depend on

the mechanical state of each cell configuration.

Comparing published experimental data of repolarization probabilities in 1D collisions

between NRK-52E cell pairs [1] to our theoretical predictions (Fig. 2.2F and Methods), we

find that the minimal discrepancy is obtained for TM/TR ' 2− 3 and TA/TR ' 0.8− 1.1,

indicating that NRK-52E cells generate stable traction forces TM two to three times

larger than adhesion forces FA and that ruffling forces (TR) alone are strong enough to

separate the cells (TA/TR ' 0.8− 1.1).

2.3.3 Small groups of cells (2 < N ∼ 10)

To characterize the collective behavior of small groups of cells (or cell trains), we

first simulate compact groups of identically polarized cells and study their persistence.

When traction forces are larger than adhesive forces (TM > FA), the initially coherent

train starts losing its persistence over a timescale τT , with cells at the trailing end repo-

larizing and detaching from the train (Fig. 2.3A). In contrast, when cell-cell adhesion is

larger than traction (FA > TM), coherent cell trains with persistent average cell polar-

ization exist (Fig. 2.3B) over timescales that depend on the number of cells in the train

(Fig. 2.3C). We observe an optimal train size for each ratio TM/FA that maximizes the

persistence time τp of the train, which can become orders of magnitude larger than τT

(Fig. 2.3C). This optimal train size increases for increasing adhesion strength relative to

the cell traction forces (Fig. 2.3D). Despite the existence of CIL, persistent trains with

coherent polarization can exist because of NER. Importantly, the trailing cell in the train
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Figure 2.2: Collision dynamics between two cells. Cell repolarization probabil-
ities (A,B) and average trajectories (C,D) of colliding cells after F-F (triangles) and
F-B collisions for both trailing (F-B, squares) and leading (F-B, circles) cells, and
high (A,C; TM/TR = 1, FA/TR = 10) and low (B,D; TM/TR = 10, FA/TR = 1) adhe-
sion levels. Red and blue in (A,C) lines correspond to τT /τM = 1 and τT /τM = 10
respectively. Color code in (C,D) shows ensemble average of cell polarization during
collision. Width of trajectory represents cell size `c. The value of τT /τM = 1 in pan-
els (C,D). (E) Cell separation time (normalized to τM ) for the different parameters
in the problem. Cell separation times increase sharply, indicating that cells essen-
tially remain attached, when FA > TM . (F) Comparison of theoretical predictions to
experimental data in [1]. The measured discrepancy δ (Methods) between the exper-
imental data and the theoretical predictions is shown (color coded) for varying values
of TM/TR and FA/TR. Minimal values of discrepancy were found for TM/TR ' 2− 3
and FA/TR ' 0.8− 1.1. The value of τT /τM = 1 in panels (E,F).
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Figure 2.3: Persistence and dynamics of cell trains. (A, B) Position kymo-
graph of 10-cell trains for low (A; TM/FA = 0.2) and high (B; TM/FA = 0.8) ad-
hesion levels. (C) Average persistence time of trains for varying adhesion levels:
TM/FA = 0.2, 0.25, 0.8 (red, blue and black, respectively). (D) Optimal train (clus-
ter) size as a function of TM/FA. The value of τT /τM = 10 and FA/TR = 10
in panels A,B,C,D. (E, F) Dynamics of train formation as a function of density
(confinement) and τT /τM for high (E; TM/FA = 0.5, FA/TR = 10) and low (F;
TM/FA = 2, FA/TR = 10) adhesion levels.

always repolarizes away from the average train polarization because of CIL and is dragged

forward by the collective train motion (Fig. 2.3D), as observed experimentally [1].

Beyond small groups of fixed number of cells, we study the collective behavior of

cells moving along a 1D strip with periodic boundary conditions (ring geometry). In this

case, the behavior of the system depends on the average cell density ρ ≡ N`c/L (with

L being the perimeter of the ring), which parameterizes cellular confinement. If the

adhesion strength between cells is much larger than the traction forces exerted by stably

polarized cells (FA > TM), then either one or several groups of cells that move coherently
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dominate the system for almost any value of initial density (Fig. 2.3E). In contrast, for

small values of cell adhesion strength (FA < TM), we find cell dispersal behavior at low

densities, with cells covering the entire length of the track and maximizing their average

distance from each other (Fig. 2.3F), a result that could explain cell dispersal behaviors

observed in vivo [98, 99]. Even in these low adhesion conditions, cells can form coherent

trains at large densities. These trains are dynamic structures, with cells being added

and removed from the train, but keeping a finite size. This is because at large densities

the typical time scale of adding a new cell to a train can be shorter than the time scale

τT for cells to repolarize and separate from the train. The transition between dispersal

and coherent train formation occurs by solely changing the cell density, even if no cell

parameters (traction, adhesion, polarization time, etc.) are changed. This indicates that

a given cell type can display both dispersal behavior and coherent train formation at

different densities (confinement conditions), as suggested in recent experiments [100].

2.3.4 Large cell colonies (N� 10)

We study large colonies of strongly adhesive cells (FA > TM) in 1D, as this situation

mirrors sheet migration in 2D wound healing experiments. Cells are initialized in a con-

figuration where they are attached to each other and have random polarizations. In all

cases, cells at the edge develop polarizations away from the colony and start pulling on it.

A polarization wave that propagates from the edge to the interior of the cell colony trans-

fers the forces generated at the edge to cells deep in the colony (Fig. 2.4A). If the buildup

of intercellular forces within the colony exceeds the maximal adhesion force between cells,

the colony breaks, with the highest probability of breakage occurring where the inter-

cellular forces are maximal on average (Fig. 2.4B). The possibility of colony breakage

occurs because cells inside the colony can develop cryptic lamellipodia, contributing to a
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Figure 2.4: Expansion of large cell colonies. (A, C) Ensemble average intercel-
lular force kymographs of expanding cell colonies in the absence (A) and presence
(C) of cell proliferation. (B) Probability of colony breakage in the absence of cell
proliferation as a function of the distance from the edge of the colony. (D) Spatial
profile of traction forces from the edge of the colony in the presence of cell prolif-
eration. (E) Ensemble average cell proliferation kymograph showing spatiotemporal
variations during colony expansion. (F) Intercellular force kymograph from a single
simulation run. (G) Ensemble spatial autocorrelation of intercellular force which can
be fitted to an exponential with a characteristic length of 2.8lc. In all cases the value
of TM/FA = 0.25, FA/TR = 10 and τT /τM = 0.1.

collective buildup of forces that must be sustained by adhesion at cell-cell junctions. If

cryptic lamellipodia did not exist, only cells at the edge would generate traction forces

and this would not lead to sufficient forces at cell-cell junctions to cause colony breakage

(for strongly adhering cells, i.e., FA > TM). While both cryptic lamellipodia and the

generation of traction forces inside the cell colony have been experimentally observed,

colony breakage has not been reported. This can be for a number of reasons that we

discuss in the Discussion section below.

All results above were obtained in the absence of cell proliferation. Since cell pro-
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liferation is present in most experiments on colony expansion [38, 101], we study the

role of cell proliferation in the propagation of intracellular forces within the colony. To

this end, we simulate the dynamics of the colony as described above, but allowing cells

to divide if the separation between them becomes larger than a critical length `d (the

results described below do not qualitatively depend on the choice of `d). We find that

proliferation prevents the buildup of large intercellular forces deep in the colony, en-

abling it to continuously grow (Fig. 2.4C). This effect is equivalent to a fluidization of

the cell colony at time scales larger than proliferation times [102]. Both the traction

(Fig. 2.4D) and proliferation (Fig. 2.4E) spatial profiles decay over just a few cell sizes

from the edge of the colony, as observed experimentally [38]. The penetration (decay)

length scale of intercellular forces and proliferation are considerably larger than that of

traction forces, in agreement with experimental observations [101]. Importantly, as pre-

viously observed in the expansion of 2D cell monolayers [38], intercellular forces display

large spatial heterogeneities (Fig. 2.4F). While these inhomogeneities are averaged out

when performing ensemble averages over many simulations (Fig. 2.4A,C), they become

apparent for single simulation runs (Fig. 2.4F). Calculation of the spatial autocorrelation

function (Fig. 2.4G) and its associated autocorrelation length (Methods) indicate that

the heterogeneities in intercellular forces span a few cell sizes, with the specific size of

the inhomogeneities depending on the parameters of the system.

2.4 Methods

We describe the methods used to conduct simulations of cell movements described by

the theoretical description derived in section 2.2. We also describe statistical quantities

used to describe various features of the simulated collective behaviors.
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2.4.1 Particle-based simulations

Cells are simulated with an intercellular force consisting of a repulsive core up to

`c/2 and an attractive region between `c/2 and `c (Fig. 2.1B). The exact functional form

used is

f(rji) =


c
(

lc
2rij
− l3c

8r3ij

)
when 0 < rij < 3lc/4,

c
(

lc
2rij
− l3c

8r3ij

)
Ψ(rij/lc − 3/4, 1/4) when 3lc/4 ≤ rij < lc,

0, when lc ≤ rij,

where

Ψ(x, a) =


e
−
(

1
(1−(x/a−1)2)

)
when |x| < a,

0 otherwise

is a bump function which is smooth at a, hence guaranteeing that f(rji) is smooth when

rji = lc. The constant c is chosen such that max0<rji≤lcf(rji) = 1. Eq. 2.3 is solved using

an explicit Euler scheme, and the stochastic differential equation associated with the

generation of traction, Eq. 2.4, is solved using the Euler-Maruyama method [103]. The

timesteps of simulation were chosen adaptively based on the parameters of the system.

All simulations were performed with custom computer codes.

2.4.2 Simulations of collisions between two cells

Repolarization probabilities (Fig. 2.2A,B) were obtained by computing repolariza-

tion times in 25000 instances of collisions in a 1D box of length 100`c. The repolarization

time is computed as the difference between the instant at which a cell is within `c dis-

tance of the other cell, and the instant at which it switches direction, as defined by a

change in sign of its traction. To guarantee that repolarization was not transient, the
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direction of traction was tracked for a time τT after switching direction and only events

in which the sign of traction did not revert were taken into account. Trajectories are

mean displacements over 25000 instances of collisions, starting with tractions TM/2 for

head-on collisions and tractions 3TM/4, TM/4 for rear-end collisions. Since we average

many simulations for each set of parameters (ensemble average), error bars associated

to simulation results are very small and not shown; simulation results are plotted as

continuous or dashed lines (Fig. 2.2A,B,C).

The average separation times for each combination of TM/TR and FA/TR (Fig. 2.2E)

were computed as the ensemble average (N = 104) of the time required for two cells to

separate. Cells were randomly initialized at a distance between 0.4lc and 0.6lc and the

simulations were terminated after 104τM timesteps. If cells were still attached at that

point, their separation time was set to 104τM .

To calculate the difference between experimental data from Ref. [1] and theoretical

predictions (Fig. 2.2F), we first simulated 2500 instances of F-F, F-B, F-B collisions

between two cells for different values of the parameters TM/TR and FA/TR (and fixed

τT/τM = 0.1) and obtain the cumulative repolarization probabilities P sim
F-F (t), P sim

F-B (t) and

P sim
F-B(t) as a function of these parameters (using the same procedure as described above;

Fig. 2.2A,B). The superscript sim refers to the fact that values were obtained from sim-

ulation. While in our simulations the cumulative repolarization probabilities depend on

time, the experimental data from Ref. [1] reports the repolarization probability 2 hours

after cells collided. Since neither of the timescales τT or τM are explicitly known for

NRK-52E cells [1], the comparison of our simulation results to the experimental data re-

quires comparing simultaneously at least two collision types, as for a single collision type

it is always possible to find a time in the predicted cumulative repolarization probability

that matches the experimental value of the repolarization probability. When comparing

simulations and experimental data for two or more collision types simultaneously, there
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are enough constraints to make the comparison meaningful. For this reason, we com-

pare simultaneously the three collision types (F-F, F-B, F-B) and define the measure of

discrepancy between experimental and theoretical values, δ, as

δ(FA/TR, TM/TR) =

min
t

√
1

3

{
(P exp

F-F − P sim
F-F (t))2

(P exp
F-F + P sim

F-F (t))2
+

(P exp
F-B − P sim

F-B(t))2

(P exp
F-B + P sim

F-B(t))2
+

(P exp
F-B − P sim

F-B (t))2

(P exp
F-B + P sim

F-B (t))2

}
,

where the values P exp
F-F , P exp

F-B and P exp
F-B are the probabilities of repolarization 2 hours after

collision, for each type of collision, reported in Desai et al. [1], namely: P exp
F-F ' 0.87,

P exp
F-B ' 0.18 and P exp

F-B ' 0.59. The measure δ finds the time for which the discrepancy

between theory and experiments is minimal and reports, for each value of the parameters

TM/TR and FA/TR, such discrepancy δ, which is shown in Fig. 2.2F.

2.4.3 Simulations of groups of cells

To obtain position kymographs and train persistence times, the cells were initialized

with identical tractions TM spaced at a distance of 0.5`c. The persistence time τp corre-

sponds to the time until either breakage or repolarization of the train occurs, i.e., when

the distance between adjacent cells in the group becomes larger than `c, or the time at

which the cluster reverses direction, namely
∑

i
~Ti < 0. The position kymographs and

persistence times correspond to ensemble averages obtained from 104 runs. Dynamic

train formation is computed by simulating N cells in a 1-D box of length 102`c with peri-

odic boundary conditions (equivalent to a ring geometry). The fraction of cells in trains

were determined as the cells existing in clusters of length greater than 2 cells as compared

to the total number of cells. The system was simulated for times 103 max{τT , τM} and

was repeated for 10000 instances. Train fractions were obtained as ensemble averages of
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the ratio of the mean number of cells in trains to the total number of cells.

2.4.4 Simulations of cell colonies

In all cases, 102 cells were initialized in close proximity, with the distance between

neighboring cells randomly chosen between 0.4`c and 0.6`c. To quantify colony breakage,

the cell position where the distance to neighboring cells exceeds `c is noted as the point of

breakage. Breakage probabilities are breakage frequencies from 104 runs. Cell division is

modeled as the inclusion of a new cell at the midpoint of the segment joining the centers

of two adjacent cells whose distance has exceeded 0.75`c. The newly formed cell starts

with no traction. The parameter TM/FA is chosen as 0.25 to mimic colony expansion

in cell types with high adhesion (e.g., MDCK cells). Intercellular forces (Fig. 2.4A,C),

breakage probabilities (Fig. 2.4B), traction profiles (Fig. 2.4D) and proliferation rates

(Fig. 2.4E) correspond to ensemble averages over 10000 runs. The intercellular forces

in the kymograph of Fig. 2.4F were obtained using a single simulation run of the same

system.

The spatial autocorrelation function was calculated as

C(|x0 − x|/lc) =

1

N

N∑
i=1

∑tmax

t=1 (f (i)(x0/lc, t/τM)− < f (i)(x0/lc) >)(f (i)(x/lc, t/τM)− < f (i)(x/lc) >)∑tmax

t=1 (f (i)(x0/lc, t/τM)− < f (i)(x0/lc) >)2
,

where f (i)(x, t) refers to the intercellular force at position x at time t from the ith simu-

lation run and < f (i)(x) > refers to the time average of the intercellular force at position

x for the ith simulation run; x0 was chosen to be 25lc from the middle of the colony;

tmax, which is the maximum simulation time, was chosen to be 500τM ; and N = 100 is

the number of ensembles over which the autocorrelation function was computed. The
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exact position of x0 in the colony does not affect the value of the autocorrelation function

obtained.

2.5 Discussion

At the single cell level, our predictions of diffusive movements at time scales longer

than the traction persistence time, are in good agreement with experimental observations

showing diffusive cell movements at long timescales [104, 105]. Our results predict that

the diffusion constant of cellular movements depends quadratically with the cell’s trac-

tion force. This prediction could be experimentally tested by measuring the magnitude

of traction forces using traction force microscopy while monitoring cellular movements.

In addition, the predicted dependence of the cell velocity on an applied external force

can potentially be measured using magnetic tweezers in a similar way as in previous

experiments [86].

Beyond single cell movements, the observed behaviors in collision experiments on

CIL [87, 80, 1] arise naturally in our description if both CIL and FIR are taken into

account. Importantly, in the theoretical description presented above, CIL involves only

lamellipodial retraction but does not impose repolarization away from contact; repo-

larization is a consequence of the pulling forces acting on the cell via FIR. While it is

typically assumed that CIL involves repolarization, our description highlights the impor-

tance of considering the separate effects of lamellipodial retraction and force-dependent

repolarization, as suggested by recent experimental results [82, 87, 88]. Indeed, some

cell types show lamellipodial retraction upon contact, but no repolarization [82, 106, 84].

Our predictions indicate that the dynamics of repolarization, characterized by the cumu-

lative probability of repolarization (Fig. 2.2), are very different for distinct collision types

and depend strongly on parameters such as adhesion strength or traction force (TM/FA)
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as well as the traction repolarization time and the mechanical relaxation time (τT/τM).

These parameters can be experimentally varied using drugs targeting force generation or

cell adhesion, and the dynamics of cell polarization could be monitored with polarization

markers. Having a quantitative understanding of the behavior of cells during collisions

would considerably help understand their behavior in larger groups.

Several experimental works have shown that coherently moving cell groups emerge

even for cells types that display repulsion upon collision [22, 1]. Our theoretical predic-

tions indicate that this phenomenon can be explained by a stabilization of lamellipodia

enabled by neighboring polarized cells (NER) through either physical or biochemical

mechanisms. In the absence of NER, our analysis predicts that no coherently moving

cell groups can exist, as CIL prevents their formation. Since NER is directly related to

the existence of cryptic lamellipodia, experiments exploring the physical and biochem-

ical cues enabling cells to generate lamellipodia when contacted on all sides may help

understand their collective behavior. In particular, experiments to characterize how po-

larization of cells affects the ability of their neighbors to polarize and generate cryptic

lamellipodia may help understand the role of NER.

We find an optimal group number that maximizes migration persistence of small

groups of cells (Fig. 2.3C,D), which could explain why collective migration of small cell

groups is often observed in developing embryos [14, 21, 23] and cancer metastasis [25].

This prediction can directly be tested in 1D systems by measuring either switches in the

direction of group motion or group breakage for groups of cells of different numbers (no

cell proliferation) and for different cell adhesion strength. Our results also indicate that by

varying the cell density alone (or confinement), with no changes in cell specific parameters

(for a given cell type), both coherently moving cell trains or cell dispersal behavior can be

observed (Fig. 2.3C,F). These predictions suggest that several experimentally observed

behaviors [100, 98, 99], such as cell dispersal and coordinated group migration, can be
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achieved by varying cellular confinement. We also find that, in addition to cell density,

cell specific parameters can control the ability of cells to form coherently moving groups or

disperse (Fig. 2.3C,F). Experiments to test these results could be realized in 1D systems

by controlling the cell seeding density and monitoring cellular movements in the absence

of cell proliferation.

Beyond small groups, we find that in the absence of cell proliferation, large cell

colonies break up into smaller groups as a consequence of large intercellular forces that

build up within the colony. However, colony breakage has not been observed in 2D

cell monolayers in the absence of cell proliferation. Since colony breakage occurs in our

simulations when intercellular pulling forces become larger than the cell-cell adhesion

strength, it is conceivable that the cells used in many of these experiments (such as MDCK

cells) adhere so strongly to each other that breakage is never observed. Our predictions

indicate that lowering mildly the adhesion strength between cells should enable portions

of the colony located close to the migrating edge (where intercellular forces are predicted

to be largest) to break off. Another possibility is that colony breakage is an effect observed

only in 1D geometries, as in 2D cell monolayers, the larger number of neighbors per cell

may be able to sustain the forces that build up within the monolayer and help prevent

breakage. Our results show that, at least in 1D, the presence of cell proliferation can help

avoid colony breakup by preventing the buildup of large intercellular forces. While the

1D system studied here is not equivalent to a 2D cell monolayer, the predicted profile of

cell proliferation is in agreement with previous experimental observations [101].

2.6 Summary

We presented a theoretical description of cell migration that accounts for known indi-

vidual cell behaviors, such as CIL and FIR, and is able to reproduce the motion of a single

33



Connecting Single Cell to Collective Cell Migration Chapter 2

cell, two cell collisions, small groups of cells and large colonies. This description provides

a unified framework to connect a large number of experiments in different conditions and

with different cell types. Moreover, it allows a direct connection between specific molecu-

lar perturbations in cell adhesion, cell polarization, the generation of traction forces and

mechanical feedback, and predicts their effect on collective cell migration.
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Chapter 3

The Meeting Time of Random
Walks

3.1 Introduction

3.1.1 Problem description and motivation.

In this chapter, we examine the meeting time between two groups of random walkers.

This problem is motivated by a group of pursuers trying to intercept a group of evaders.

The meeting time, in the context of this chapter, describes the average time till a first

encounter occurs between one of the pursuers and one of the evaders given initial positions

of the pursuers and the evaders. This notion of two adversarial mobile groups wherein

one of the groups is trying to intercept members of the other group appears under several

names: pursuit-evasion games [107], predator-prey interactions [108], cops and robbers

games [109] and princess-monster games [110]. Our primary motivation is the design

of stochastic surveillance strategies for quickest detection of mobile intruders. Single

and multi-agent surveillance strategies appear in environmental monitoring [111, 112],

minimizing emergency vehicle response times [113], traffic routing and border patrol [114,

115]. Aside from our proposed application to stochastic surveillance, the meeting time

has direct applications to information flow in distributed networks [116], self-stabilization
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Figure 3.1: Multiple pursuers (green) and multiple evaders (red) performing random
walks on a digraph.

of tokens [117] and measuring similarity of objects [118].

3.1.2 Applications of meeting times in various contexts

Early interest in meeting times was motivated by applications to self-stabilizing token

management schemes [119]. In a token management scheme, only one of the many

processors on a distributed network is enabled to change state or perform a particular

task, and this processor is said to possess the token. If two tokens meet then they

collapse into a single token. Israeli and Jalfon suggest a scheme in which the token is

passed randomly to a neighbor [117]. In a general connected, undirected, n-vertex graph

they were able to obtain an exponential bound for the meeting time of two tokens in

terms of the maximum degree and the diameter of the graph. Coppersmith et al [120]

improved the bound to be polynomial in the number of nodes by bounding the meeting

time in terms of the pairwise hitting time from the starting nodes of the tokens to hidden

vertices. In [120, 117, 119] the notion of the meeting time involves the tokens being moved

asynchronously by an adversary whose objective is to maximize meeting time by playing

only one of the two tokens. Bshouty et al [121] obtain a bound on the meeting time of

several such tokens in terms of the meeting time of two tokens. Bounds for meeting times

of two identical independent continuous-time reversible Markov chains in terms of the
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pairwise hitting times of the chain are mentioned in the work by Aldous [122]. Several

variations of “cat-mouse” games are discussed in [123] wherein bounds are obtained in

terms of the pairwise hitting time or the variation-threshold time (a measure of rate of

convergence to stationary distributions) depending on the Markov chains being discrete-

time or continuous-time.

3.1.3 Organization.

This chapter is organized as follows. In Section 3.2 we introduce notation that is

used throughout the chapter and review useful concepts. In Section 3.3 we introduce

our formulation for the meeting times of pairs of Markov chains, and also define sets

of pairs of matrices for which finite meeting times exist. In Section 3.4 we extend the

notion of the meeting time to multiple pursuers and evaders. In Section 3.5 we obtain

closed-form expressions for continuous-time Markov chains. Finally, in Section 3.6 we

present conclusions.

3.2 Notation and review of known results

In this section we define various useful concepts and notation. We provide an overview

of some facts and known results on Markov chains and the Kronecker product of Markov

chains, while also introducing notation that will be used throughout the chapter to deal

with vectors and matrices, and random walks on graphs.

3.2.1 Markov chains.

A Markov chain is a sequence of random variables taking value in the finite set

{1, . . . , n} with the Markov property, namely that the future state depends only on the
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present state.

Let Xk ∈ {1, . . . , n} denote the location of a random walker at time k ∈ {0, 1,

2, . . . }, then a discrete-time Markov chain is time-homogeneous if P[Xn+1 = j |Xn =

i] = P[Xn = j |Xn−1 = i] = pi,j, where P = [pi,j] ∈ Rn×n is the transition matrix

of the Markov chain. By definition, each transition matrix P is row-stochastic, i.e.,

P1n = 1n. The period of a state is defined as the greatest common divisor of all t such

that {t ≥ 1 |P[Xt = i |X0 = i] 6= 0}. A state whose period is one is referred to as

an aperiodic state. It can be shown that in a communicating class(defined below) all

states share the same period. For more details on discrete-time Markov chains refer [124,

Chapter 8].

Let Xt ∈ {1, . . . , n} denote the location of a random walker at time t ∈ R+, then a

continuous-time Markov chain is time-homogeneous if P[Xt′+t = j |Xt′ = i] = pti,j for all

t ≥ 0, t
′ ≥ 0, where P (t) = pti,j ∈ Rn×n is the transition matrix of the Markov chain.

The evolution of the continuous-time Markov chain is determined by the solution to the

first-order differential equation P
′
(t) = P (t)Q, where P (t) = pti,j and Q is a transition

rate matrix which satisfies Q1n = 0n. For more details on continuous-time Markov chains

refer [125, Chapters 2 & 3]. A continuous-time Markov chain is said to be ergodic if it is

irreducible.

Consider two states i and j belonging to a Markov chain. We say i communicates

with j if pti,j 6= 0 for some t > 0. For a subset of states X ⊂ {1, . . . , n}, we say that

X forms a communicating class if for every state i, j ∈ X the states communicate with

each other, i.e P[Xt = j |X0 = i] 6= 0 and P[Xt′ = i |X0 = j] 6= 0 for some t, t′ ≥ 0. An

absorbing class A of a Markov chain is a communicating class such that the probability of

escaping the set is zero, i.e pti,j = 0 for all t > 0 for all i ∈ A, j /∈ A. If a communicating

class is not absorbing, then it is called a transient class. In general, a Markov chain

will have multiple absorbing and transient classes. If a Markov chain has only a single
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absorbing class then it is referred to as a single absorbing Markov chain.

For any two start nodes i, j, the first hitting time from node i to node j, denoted by

Ti,j, is the first time that a random walker reaches node j starting from node i. More

formally,

Ti,j = min{t ≥ 1 | Xt = j given that X0 = i}.

Note that the first hitting time can be infinite when the Markov chain is reducible but

is always finite when the Markov chain is irreducible. The hitting time between nodes

i and j is given by hi,j = E[Ti,j]. If a Markov chain is single absorbing, then a unique

stationary distribution π exists. The vector π ∈ Rn×1 is a stationary distribution of a

discrete-time Markov chain with transition matrix P if
∑n

i=1 πi = 1 and π>P = π> and

of a continuous-time Markov chain with transition rate matrix Q if
∑n

i=1 πi = 1 and

π>Q = 0. A Markov chain is irreducible if the absorbing class is the entire set of states

{1, . . . , n}. A discrete-time Markov chain is said to be ergodic if it is irreducible and

aperiodic.

3.2.2 Matrix notation.

We use the notation A = [ai1...il,j1...jm ] to denote the matrix generated by elements

ai1...il,j1...jm , where the rows of A are determined by cycling through indices il followed by

il−1 and so on until i1, and the columns of A are determined by cycling through indices

jm followed by jm−1 and so on until j1. For example, consider i1, i2, j1, j2 ∈ {1, . . . , n},

then

39



The Meeting Time of Random Walks Chapter 3

A = [ai1i2,j1j2 ] =



a11,11 a11,12 . . . a11,1n a11,21 . . . a11,nn

a12,11 a12,12 . . . a12,1n a12,21 . . . a12,nn

...
... . . . . . . . . .

...
...

a1n,11 a1n,12 . . . a1n,1n a1n,21 . . . a1n,nn

a21,11 a21,12 . . . a21,1n a21,21 . . . a21,nn

...
... . . . . . . . . .

...
...

ann,11 ann,12 . . . ann,1n ann,21 . . . ann,nn



.

For the case where A = [ai,j] this corresponds to the classic interpretation with element

ai,j in the i-th row and j-th column of A. We use the notation diag[a] to indicate the

diagonal matrix generated by vector a and vec(A) to indicate the vectorization of a matrix

A ∈ Rn×m where vec(A) = [A(1, 1), . . . , A(n, 1), A(1, 2), . . . , A(n, 2), . . . ,

A(m, 1), . . . , A(n,m)]>. In other words, even if we define A as A = [ai1i2,j1j2 ], the vector

vec(A) = vec([ai1i2,j1j2 ]) is simply a stacking of the columns of A.

Let In ∈ Rn×n denote the identity matrix of size n, 1n ∈ Rn×1 denote the vector of

ones of size n, and e1, e2, . . . , en ∈ Rn×1 denote vectors with unity in the row indicated

by the subscript. We define a generalized Kronecker delta function δi1i2...il,j1j2...jm , by

δi1...il,j1j2...jm =


1, if ∃ l′,m′ such that il′ = jm′ for any 1 ≤ l′ ≤ l, 1 ≤ m′ ≤ m,

0, otherwise.

We use the subscript p, e or superscript (p), (e) to delineate between quantities associated

with pursuers and evaders.

We are now ready to review some useful facts about Kronecker products. The Kro-

necker product, represented by the symbol ⊗, of two matrices A ∈ Rn×m and B ∈ Rq×r
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is an nq ×mr matrix given by

A⊗B =


a1,1B . . . a1,mB

...
. . .

...

an,1B
. . . an,mB

 .

The Kronecker product is bilinear and has many useful properties, two of which are

summarized in the following Lemma; see [126, Chapter 4] for more information.

Lemma 1 (Properties of the Kronecker product) Given the matrices A,B,C and

D, the following relations hold for the Kronecker product.

(i) (A⊗B)(C ⊗D) = (AC)⊗(BD),

(ii) (B>⊗A) vec(C) = vec(ACB),

where it is assumed that the matrices are of appropriate dimension when matrix multi-

plication or addition occurs.

3.2.3 Markov chains on graphs.

In this chapter, for discrete-time Markov chains we consider weighted digraphs G =

(V,E, P ) with node sets V := {1, . . . , n}, edge set E ⊂ V × V , and associated transition

matrix P = [pi,j] with the property that pi,j ≥ 0 if (i, j) ∈ E and pi,j = 0 otherwise. The

weight of the edge (i, j) is interpreted as the weight associated with the probability of

transition from node i to node j. The nodes of the graph are equivalent to the states of

the Markov chain. We say there exists a walk of length ` from node i1 to node il if there

exists a sequence of nodes i2, . . . , i`−2 such that pik,ik+1
> 0 for 1 ≤ k ≤ `− 1.

In this chapter, for continuous-time Markov chains we consider weighted digraphs

G = (V,E,Q) with node sets V := {1, . . . , n}, edge set E ⊂ V × V , and associated
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transition rate matrix Q = [Qi,j] with the property that qi,j ≥ 0 if (i, j) ∈ E, qi,j = 0

otherwise and qi,i = −∑j∈V qi,j. The weight of the edge (i, j) is interpreted as the rate of

transition from node i to node j. One could also look at the entry −1/qi,i as the average

time at which the walker leaves node i and 1/qi,j as the average time for a jump from

i to j. We say there exists a walk from node i1 to node il if there exists a sequence of

nodes i2, . . . , i`−1 such that qil,il+1
> 0 for 1 ≤ l ≤ `− 1.

The following lemmas are used in the proofs of the main results introduced in this

chapter.

Lemma 2 (Convergence of substochastic matrices) Let P ∈ Rn×n be a substochas-

tic matrix with at least one row-sum
∑n

j=1 Pi,j < 1. If for every node there exists a walk

to a node with row-sum less than 1, then P is convergent.

Lemma 3 (Existence of walks on Kronecker products) Let P1, P2, . . . , PN ∈ Rn×n

be stochastic matrices. If there exists a walk from i1 → j1 in P1, i2 → j2 in P2, . . . ,

and iN → jN in PN of equal length, then there exists a walk from (i1, i2, . . . , iN) to

(j1, j2, . . . , jN) in P1⊗P2⊗ . . .⊗PN .

Note that the Kronecker product of two Markov chains on a graph can be interpreted as

a single Markov chain on the Kronecker product graph [127]. This property of random

walks on graphs enables a direct translation of the notion of meeting time of multiple

random walkers on a single graph to that of the hitting time of a single random walker

on the Kronecker product graph.

3.3 The meeting time of two Markov chains.

In this section, we formulate and study the meeting time between two discrete-time

Markov chains.
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3.3.1 Main result

Consider the pursuer and evader performing random walks on a set of nodes V :=

{1, . . . , n} with digraphs Gp = (V,Ep, Pp), Ge = (V,Ee, Pe), edge sets Ep, Ee ⊂ V × V ,

and transition matrices Pp, Pe. The matrix Pp satisfies p
(p)
i,j ≥ 0 if (i, j) ∈ Ep and p

(p)
i,j = 0

if (i, j) /∈ Ep. Similarly Pe satisfies similar properties to be a well-defined transition

matrix on Ge.

Let X
(p)
t , X

(e)
t ∈ {1, . . . , n} be the location of the two agents at time t ∈ {0, 1, 2, . . . }.

For any two start nodes i, j, the first meeting time from i and j, denoted by Ti,j, is the

first time that both random walkers meet when starting from nodes i and j, respectively.

More formally,

Ti,j = min{t ≥ 1 | X(p)
t = X

(e)
t given that X

(p)
0 = i and X

(e)
0 = j}.

Note that the first meeting time can be infinite. It is easy to construct examples in which

the two agents never meet. Let mi,j = E[Ti,j] be the expected first meeting time starting

from nodes i and j. For the sake of brevity, we shall refer to the expected first meeting

time as just the meeting time.

Theorem 1 (The meeting time of two Markov chains) Consider two Markov chains

with transition matrices Pp and Pe defined on a digraph G with nodeset V = {1, . . . , n}.

The following statements are equivalent:

(i) for each pair of nodes i, j, the meeting time mi,j from nodes i and j is finite,

(ii) for each pair of nodes i, j, there exists a node j and a length ` such that a walk of

length ` exists from i to k and a walk of length ` exists from j to k,

(iii) for each pair of nodes i, j, there exists a walk in the digraph associated with the

stochastic matrix Pp⊗Pe from (i, j) to a node (k, k), for some k ∈ {1, . . . , n}, and

43



The Meeting Time of Random Walks Chapter 3

(iv) the sub-stochastic matrix (Pp⊗Pe)E is convergent and the vector of meeting times

is given by

vec(M) = (In2 − (Pp⊗Pe)E)−11n2 , (3.1)

where M ∈ Rn×n and E ∈ Rn2×n2
is a binary diagonal matrix with diagonal entries

1n2 − vec(In).

Proof: For the nodes i and j, the first meeting time satisfies the recursive formula

Ti,j =


1, w.p.

∑
k p

(p)
i,k p

(e)
j,k,

Tk1,h1 + 1, w.p. p
(p)
i,k1
p

(e)
j,h1

, k1 6= h1.

Taking the expectation we have

E[Ti,j] =
∑
k

p
(p)
i,k p

(e)
j,k +

∑
k1 6=h1

p
(p)
i,k1
p

(e)
j,h1

(E[Tk1,h1 ] + 1),

=
∑
k1

∑
h1

p
(p)
i,k1
p

(e)
j,h1

+
∑
k1 6=h1

p
(p)
i,k1
p

(e)
j,h1

E[Tk1,h1 ],

= 1 +
∑
k1 6=h1

p
(p)
i,k1
p

(e)
j,h1

E[Tk1,h1 ].

Let mi,j = E[Ti,j] for every i, j ∈ {1, . . . , n} and let M = [mi,j]. Note that the entries of

M can be written as

mi,j = 1 +
∑
k1 6=h1

p
(p)
i,k1
p

(e)
j,h1

mk1,h1 ,

=⇒ mi,j = 1 +
n∑

k1=1

p
(p)
i,k1

n∑
h1=1

mk1,h1p
(e)
j,h1
−

n∑
k=1

p
(p)
i,k p

(e)
j,kmk,k,

=⇒ M = 1n1>n + Pp(M −Md)P
>
e ,
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where Md ∈ Rn×n is a diagonal matrix with only the diagonal elements of M . We have

used the property that (ABC)i,j =
∑

k Ai,k
∑

lBk,lCl,j to obtain the equation in matrix

form. Rewriting the equation in vector form and using Lemma 1 gives

vec(M) = 1n2 + (Pp⊗Pe)(vec(M)− vec(Md)),

vec(M) = 1n2 + (Pp⊗Pe)(In2 − vec(In)) vec(M)

vec(M) = 1n2 + (Pp⊗Pe)E vec(M)

If the matrix In2− (Pp⊗Pe)E is invertible then we have a unique solution to the meeting

times. We shall now show that the finiteness of meeting times as in (i) is equivalent to

the existence of walks of equal length to common nodes as mentioned in (ii) and in (iii),

which guarantees invertibility of In2 − (Pp⊗Pe)E in (iv).

We start by proving that (i) =⇒ (ii). If we assume that (i) 6=⇒ (ii), then there

exists a pair of nodes i and j such that the meeting time is finite and there exists no

walk of equal length to any node in V . However if there exists no walk of equal length

to a common node, then the agents never meet and the meeting time is always infinite.

Hence by contradiction (i) =⇒ (ii).

Next, we show that (ii) ⇐⇒ (iii). The Kronecker product of the transition matrices

gives a joint transition matrix for the agents over the set of nodes V ×V . The (i, j) entry

of the matrix Pp⊗Pe corresponds to the states X(p) = i and X(e) = j [128]. The

statement (ii) ensures the existence of a node k for every pair (i, j) which is reachable by

a walk of equal length from i in Pp and j in Pe. This condition is equivalent to the node

(k, k) being reachable from the pair (i, j) on the Kronecker product of the two Markov

chains [129, Proposition 1].

Next, we show (iii) =⇒ (iv). The stochastic matrix Pp⊗Pe has a walk from any

node (i, j) to some node (k1, h1) where P[X(p) = k,X(e) = k |X(p) = k1, X
(e) = h1] 6= 0 as

45



The Meeting Time of Random Walks Chapter 3

PfinitePSA-overlap Pall-overlapPone-ergodic

Figure 3.2: Sets of pairs of transition matrices with finite meeting times.

there exists a walk (i, j)→ (k, k). Note that post-multiplying the square matrix Pp⊗Pe

by E corresponds to setting the columns associated with nodes of the form (k, k) to

0n2 . Thus the row associated with (k, h) has row-sum less than 1. Therefore every node

(i, j) has a walk to a node whose row-sum is less than 1 which implies that the matrix

(Pp⊗Pe)E is convergent by virtue of Lemma 2.

From this we obtain equation (3.1). Since (iii) guarantees the existence of (In2 −

(Pp⊗Pe))
−1, we prove that (iii) =⇒ (iv).

Note that the existence of vec(M) in (iv) gives (iv) =⇒ (i). Thus we have shown

that (i) =⇒ (ii) ⇐⇒ (iii) =⇒ (iv) =⇒ (i). Hence the four conditions are

equivalent.

The above necessary and sufficient conditions give the most general set of pairs of

matrices for which finite meeting times exist. These conditions are in practice difficult to

use for designing transition matrices. Hence, we introduce a few sets of pairs of matrices

for which the meeting times are guaranteed to be finite.

3.3.2 Sufficient conditions for finiteness.

Consider the following sets of pairs of matrices:

Pfinite: finite meeting times. Let Pfinite be the set of pairs of transition matrices Pp, Pe

satisfying the conditions stated in Theorem 1 and therefore having finite meeting

times.
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Pall-overlap: Markov chains with all-to-all overlapping absorbing classes.

Let Pall-overlap be the set of pairs of transition matrices Pp, Pe with the following

property: Pp has multiple absorbing classes A
(p)
1 , A

(p)
2 , . . . , A

(p)
q with associated peri-

ods d
(p)
1 , d

(p)
2 , . . . , d

(p)
q , and Pe has multiple absorbing classes A

(e)
1 , A

(e)
2 , . . . , A

(e)
r with

associated periods d
(e)
1 , d

(e)
2 , . . . , d

(e)
r , and for each q′ ∈ {1, . . . , q} and r′ ∈ {1, . . . , r},

A
(p)
q′ ∩ A

(e)
r′ 6= φ and gcd(d

(p)
q′ , d

(e)
r′ ) = 1.

PSA-overlap: single absorbing Markov chains with overlapping absorbing

classes. Let PSA-overlap be the set of pairs of transition matrices Pp, Pe with the

following property: Pp has a single absorbing class A(p) with period d(p), and Pe has

a single absorbing class A(e) with period d(e), and A(p)∩A(e) 6= φ and gcd(d(p), d(e)) =

1.

Pone-ergodic: one ergodic Markov chain. Let Pone-ergodic be the set of pairs of transi-

tion matrices Pp, Pe such that one of the matrices Pp or Pe is ergodic.

Given the above definitions the following theorem holds.

Theorem 2 (Sufficient conditions for finite meeting times) The sets of pairs of

transition matrices Pfinite, Pall-overlap, PSA-overlap, Pone-ergodic satisfy

(Pone-ergodic ∪PSA-overlap) ⊂ Pall-overlap ⊂ Pfinite.

Proof: Before we prove the statement in the theorem we prove a minor result. Con-

sider two Markov chains, each with transition matrices Pp, Pe ∈ Rn×n defined on a digraph

G with nodeset V = {1, . . . , n}. Let the absorbing classes of Pp beA
(p)
1 , A

(p)
2 , . . . , A

(p)
q with

periods d
(p)
1 , d

(p)
2 , . . . , d

(p)
q respectively, and let the absorbing classes of Pe beA

(e)
1 , A

(e)
2 , . . . , A

(e)
r

with periods d
(e)
1 , d

(e)
2 , . . . , d

(e)
r respectively. If there exists an absorbing class A

(p)
q′ in Pp

and A
(e)
r′ in Pe such that A

(p)
q′ ∩ A

(e)
r′ 6= φ and gcd(d

(p)
q′ , d

(e)
r′ ) = 1, then there exists a walk
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1 2

1 2

Pp

Pe

1,1 2,2

1,2 2,1

Pp ⌦ Pe

(i)

(ii)

1

Pp

Pe

2

1 2

Pp ⌦ Pe

1,1 2,2

1,2 2,1

Figure 3.3: The pursuer-evader pair in (i) has finite meeting times as every node has
a walk to the common nodes (1, 1) and (2, 2) in the Kronecker graph. However, in (ii)
there exists no walks to common nodes from (1, 2) and (2, 1).

from all pairs (i, j), where i is any node from which there exists a walk to A
(p)
q′ and j is

any node from which there exists a walk to A
(e)
r′ , to a node (k, k) in the digraph associated

with the transition matrix Pp⊗Pe.

The proof of this result is as follows. Since A
(p)
q′ ∩ A

(e)
r′ 6= φ there exists at least one

node k which is accessible from both i and j. Since k belongs to the absorbing class A
(p)
q′ ,

starting from the node i there exists all walks of length u1d
(p)
q′ + v1 to the node k for all

u1 ≥ U1, for some U1 ∈ N sufficiently large and some v1 ∈ N such that 0 ≤ v1 ≤ d
(p)
q′ .

Similarly, since k also belongs to the absorbing class A
(e)
r′ , starting from the node j there

exists all walks of length u2d
(e)
r′ + v2 to the node k for all u2 ≥ U2, for some U2 ∈ N

sufficiently large and some v2 ∈ N such that 0 ≤ v2 ≤ d
(e)
r′ . Since gcd(d

(p)
q′ , d

(e)
r′ ) = 1 we

can always find u1 and u2 such that u1d
(p)
q′ + v1 = u2d

(p)
r′ + v2. Thus there exists a walk

of equal length to the node k from both i and j which ensures that (k, k) is accessible

from (i, j).

To prove Pall-overlap ⊂ Pfinite we utilize statement (iii) in Theorem 1 to show that

for every pair of nodes (i, j), where i, j are nodes in the Markov chain associated with

Pp, Pe, there must exist a walk to a common node of the form (k, k). Consider a pair
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of Markov chains (Pp, Pe) ∈ Pall-overlap. The states of the Markov chain associated with

the transition matrix Pp can be split into a set of absorbing classes A
(p)
1 , A

(p)
2 , . . . , A

(p)
q

and transient classes T
(p)
1 , T

(p)
2 , . . . , T

(p)
s . Similarly for the Markov chain associated with

Pe, the states can be split into a set of absorbing classes A
(e)
1 , A

(e)
2 , . . . , A

(e)
r and transient

classes T
(e)
1 , T

(e)
2 , . . . , T

(e)
t . We begin by first proving the case for pairs of states belonging

to (1) the absorbing classes of both chains, (2) the transient classes of both chains, and

finally, (3) transient states of one chain paired with absorbing classes from the other

chain.

Now we will use this result to prove Pall-overlap ⊂ Pfinite. We shall show that for pairs of

matrices belonging to Pall-overlap the meeting times are finite by concluding that statement

(iii) of Theorem 1 is satisfied. Consider a pair of Markov chains (Pp, Pe) ∈ Pall-overlap. The

states of the Markov chain associated with the transition matrix Pp can be split into a set

of absorbing classes A
(p)
1 , A

(p)
2 , . . . , A

(p)
q and transient classes T

(p)
1 , T

(p)
2 , . . . , T

(p)
s . Similarly

for the Markov chain associated with Pe, the states can be split into a set of absorbing

classes A
(e)
1 , A

(e)
2 , . . . , A

(e)
r and transient classes T

(e)
1 , T

(e)
2 , . . . , T

(e)
t . For statement (iii) in

Theorem 1 to be satisfied, for every pair of nodes (i, j), where i, j are nodes in the Markov

chain associated with Pp, Pe, there must exist a walk to a node of the form (k, k). To

do so we shall initially consider pairs of states belonging to the absorbing classes of both

chains, followed by the transient classes of both chains, and finally, transient states of

one chain paired with absorbing classes from the other chain, and show that in each case

we show a common node exists to which there is a walk of equal length using the proven

result.

First, consider nodes (i, j) such that i belongs to an absorbing class A
(p)
q′ where q′ ∈

{1, . . . , q} and j belongs to an absorbing class A
(e)
r′ where r′ ∈ {1, . . . , r}. By definition,

every node in an absorbing class has walks to every other node in its class. Pall-overlap

gives that A
(p)
q′ ∩ A

(e)
r′ 6= φ and gcd(d

(p)
q′ , d

(e)
r′ ) = 1. Hence the provisions for the result are
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⌦
1 2

4 3

1

2

4

3
Pp Pe

Figure 3.4: The periods associated with the pair of Markov Chains shown here are
not co-prime; Pp is a period 4 chain and Pe is a period 2 chain. However, the meeting
times are finite as they satisfy conditions in Theorem 1.

satisfied for nodes (i, j) ∈ A(p)
q′ × A

(e)
r′ as A

(p)
q′ ∩ A

(e)
r′ 6= φ and gcd(d

(p)
q′ , d

(e)
r′ ) = 1 for every

q′ ∈ {1, . . . , q} and every r′ ∈ {1, . . . , r}.

Second, consider nodes (i, j) such that i belongs to a transient class T
(p)
s′ where s′ ∈

{1, . . . , s} and j belongs to a transient class T
(e)
t′ where t′ ∈ {1, . . . , t}. Since i belongs

to a transient class, there must exist a walk to one of the absorbing classes, say A
(p)
q′ .

Similarly, since j belongs to a transient class, there must exist a walk to one of the

absorbing classes, say A
(e)
r′ . Hence by the proven result, for each node (i, j) ∈ T (p)

s′ × T
(e)
t′

for every s′ ∈ {1, . . . , s} and t′ ∈ {1, . . . , t} there exists walks to a node of the form (k, k).

Finally, consider nodes (i, j) such that i belongs to a transient class T
(p)
s′ and j belongs

to an absorbing class A
(e)
r′ . Since i belongs to a transient class, there must exist a walk

starting from i to an absorbing class, say A
(p)
q′ . Thus once again we can apply the earlier

stated result for nodes (i, j) ∈ T (p)
s′ × A

(e)
r′ for every s′ ∈ {1, . . . , s} and r′ ∈ {1, . . . , r}.

Similarly, the case of nodes belong to absorbing classes in Pp and transient classes in Pe

also follows.

Thus we have exhausted all pairs (i, j) in Pp⊗Pe and for each pair found a node of

the form (k, k). Therefore Pp and Pe satisfy the conditions stated in statement (iii) of

Theorem 1, hence guaranteeing finite meeting times and proving that Pall-overlap ⊆ S. To

show that Pall-overlap 6= S, we present a counter-example in Figure 3.3.2. This concludes

the proof for Pall-overlap ⊂ Pfinite.

Now, we prove PSA-overlap ⊂ Pall-overlap. The pairs of matrices (Pp, Pe) ∈
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PSA-overlap is obtained by considering the subset of matrices which only have a single

absorbing class. Thus PSA-overlap ⊂ Pall-overlap.

Finally, to prove Pone-ergodic ⊂ Pall-overlap let us assume without loss of generality

that Pp is irreducible and aperiodic. This would imply that the entire nodeset V is an

absorbing state and d(p) = 1. One can see that Pp paired with any other matrix Pe

belongs to Pall-overlap. Thus Pone-ergodic ⊂ Pall-overlap.

3.3.3 Mean meeting time and relation to hitting times.

Before we define the mean meeting time for two random walkers, we introduce a

minor result.

Remark 1 Consider two random walkers moving with transition matrices Pp, Pe starting

from nodes i, j respectively, then the meeting time

mi,j = (e1⊗ e2)(In2 − (Pp⊗Pe)E)−11n2 . (3.2)

Note that the expression above is a direct result of equation (3.1). entries mii as the

value represents the meeting time assuming the agents do not meet at time t = 0.

We are now in a position to define the mean meeting time of two random walkers.

Stationary distributions are well-defined for both Pp and Pe when each transition matrix

has a single absorbing class. Further the meeting times for matrices with this property

are finite only if the absorbing classes overlap and the periods are co-prime as is the case

for pairs of transition matrices in PSA-overlap. Hence we have the following result.

Corollary 1 (Mean meeting time) Consider two transition matrices Pp, Pe with sta-

tionary distributions πp, πe. The mean meeting time

M(Pp, Pe) = π>p Mπe = (πp⊗ πe)
> vec(M), (3.3)
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where M is the matrix of meeting times, is finite if the pair of transition matrices

(Pp, Pe) ∈ PSA-overlap .

Proof: The mean meeting time can be obtained from the meeting times as

M(Pp, Pe) =
∑
i

∑
j

π(i)
p π(j)

e mi,j

=
∑
i

∑
j

(π(i)
p ei⊗ π(j)

e ej)(In2 − (In⊗P )E)−11n2

= (πp⊗ πe)(In2 − (Pp⊗Pe)E)−11n2 .

Further as the following result shows, the hitting times of a Markov chain are equal to

the meeting times for the case of a mobile pursuer and stationary evader.

Corollary 2 (Connection to hitting times and meeting times with stationary evader)

Consider a stationary evader with distribution πe and a pursuer with an irreducible tran-

sition matrix Pp and stationary distribution πp, then the following properties hold:

(i) the meeting times between the stationary evader and the pursuer are equal to the

pairwise hitting times of Pp and are given by

hi,j = mi,j = (e1⊗ e2)>(In2 − (In⊗Pp)E)−11n2 , (3.4)

where hi,j is the expected time to travel from node i to node j and

(ii) the mean meeting time between the stationary evader and the pursuer is given by

Mstationary(πe, Pp) = (πe⊗ πp)>(In2 − (In⊗Pp)E)−11n2 . (3.5)
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Proof: A stationary evader can be described by the transition matrix In. However,

note that the identity matrix has non-unique stationary distribution hence the evader

stationary distribution can be arbitrarily defined given that
∑n

i=1 π
(i)
e = 1. Since P is

irreducible, the pair of matrices (In, P ) belongs to Pone-ergodic and hence meeting times

are finite. Further the expression for meeting times in this context is identical to that of

pairwise hitting times [53, Theorem 2.3(i)]. The mean first meeting time in such a case

is

Mstationary(πe, Pp) =
∑
i

∑
j

π(i)
e π

(j)
p mi,j

=
∑
i

∑
j

(π(i)
e ei⊗ π(j)

p ej)(In2 − (In⊗Pp)E)−11n

= (πe⊗ πp)(In2 − (In⊗Pp)E)−11n.

When the stationary distribution of the evader is equal to the stationary distribution of

the pursuer the expression for the meeting time is identical to the mean first passage

time of the Markov chain Pp [53, Theorem 2.3(i)].

3.3.4 Comparison to existing bounds.

In this section we provide comparisons with existing bounds from literature, a sum-

mary of which is presented in Table 3.3.4. We present numerics for a variety of graphs

and compare the exact value of the worst meeting time, denoted as Mmax, with bounds

on the same quantity from refs. [130, 120] and with the worst hitting time computed using

the formula in [53] and also a bound on the worst hitting time as described in [131].

Most of the bounds discussed here are for random walks i.e., equal probability of

transition from a node to every neighbor. The bounds by Aldous [122] also hold for
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all reversible Markov chains. Hence in this section we consider transition matrices only

corresponding to random walks. We include self-loops in all transition matrices to en-

sure aperiodicity. In general meeting times for transition matrices can be significantly

smaller than the values discussed here. For example, using transition matrices which are

permutation matrices one could obtain O(n) meeting times on all graphs.

Bounding the worst meeting time as discussed in [122] in terms of the worst pairwise

hitting time gives estimates which are of the same order. The computational complexity

of exactly obtaining the worst hitting time is O(n3) [53, Theorem 2.3(i)] as compared to

O(n6) for computing worst meeting times. Thus for small to medium graphs the worst

hitting time can be a useful proxy.

The polynomial bound from Coppersmith et al [120, Theorem 3] is for sequential

motion of the tokens i.e, one of the two tokens moves followed by the other. In order

to compare this bound with the expression in equation (3.1) which is for simultaneous

motion of the two random walkers, we divide the bound by two. This bound while easy

to compute only provides a maximal estimate of the worst case meeting times.

The bound from Lovász [131, Corollary 3.3] is a bound for the worst hitting time.

The bounds from Cooper et al [130, Theorem 1] and Lovász, both of which involve the

spectral gap of the transition matrix, behave similarly in most cases. In general the

estimates tend to be one or two orders of magnitude off. The complexity of computing

the spectral gap can be cost-effective as this operation can be performed in worst-case

O(n3) and for certain types of matrices in O(n2).

3.4 The meeting time of multiple random walkers

Here we extend the results from the previous section to the case of a group of pursuers

trying to intercept a group of evaders.
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Meeting time Hitting time

Quantity Mmax
Bound by

Cooper et al [130]
Bound by

Coppersmith et al [120]
Hmax [53]

Bound by
Lovász [131]

Complexity O(n6) O(n3) O(1) O(n3) O(n3)
Ring 83.7 2488.8 856.0 150.0 2451.8
Path 174.8 9249.0 856.0 551.0 17308.6
Star 8.0 161.6 856.0 58.0 304.0

Lollipop 224.0 1376.3 856.0 483.8 2107.1
Lattice 35.9 805.6 856.0 83.7 1233.0

Random geometric
graph (dense)

22.7 342.2 856.0 92.6 1098.8

Random geometric
graph (sparse)

77.0 3587.1 856.0 319.6 10138.9

Table 3.1: Comparison of exact value of worst meeting time with bounds from liter-
ature and worst hitting times for random walks on various graphs of size 20 nodes.
Values shown for random geometric graphs are averages over 100 instances.

3.4.1 Main result

Now consider L pursuers and M evaders. Let X
(p,1)
t , X

(p,2)
t , . . . X

(p,L)
t ∈ {1, . . . , n} de-

note the locations of the L pursuers at time t ∈ {0, 1, 2, . . . }. LetX
(e,1)
t , X

(e,2)
t , . . . X

(e,M)
t ∈

{1, . . . , n} denote the locations of the M evaders at time t ∈ {0, 1, 2, . . . }. For an L-tuple

of nodes associated with the pursuers (i1, i2, . . . iL) and an M -tuple of nodes associ-

ated with the evaders (j1, j2, . . . , jM), the first meeting time among L pursuers and M

evaders, denoted by Ti1i2...iL,j1j2...jM , is the first time that one of the pursuers meets one

of the evaders. More formally, Ti1i2...iL,j1j2...jM is

min{t ≥ 1|X(p,a)
t = X

(e,b)
t for some a ∈ {1, . . . , L} and b ∈ {1, . . . ,M}

given that X
(p,l)
0 = il ∀ l ∈ {1, . . . , L} and X

(e,m)
0 = jm ∀ m ∈ {1, . . . ,M}}.

Let the transition matrices associated with the L pursuers be P
(1)
p , P

(2)
p , . . . , P

(L)
p and the

transition matrices associated with the M evaders be P
(1)
e , P

(2)
e , . . . , P

(M)
e . The following

theorem gives necessary and sufficient conditions for the the first expected meeting time

between the L pursuers and M evaders mi1i2...iL,j1j2...jM = E[Ti1i2...iL,j1j2...jM ]. For the sake
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of brevity, we shall refer to the first expected meeting time in this context as the group

meeting time.

Theorem 3 (The group meeting time of multiple Markov chains) Consider Markov

chains with transition matrices P
(1)
p , P

(2)
p . . . , P

(L)
p , P

(1)
e , P

(2)
e , . . . , P

(M)
e defined on a di-

graph G with nodeset V = {1, . . . , n}. The following statements are equivalent:

(i) for every i1, i2, . . . iL, j1, j2, . . . , jM ∈ {1, . . . , n}, the group meeting time

mi1i2...iL,j1j2...jM is finite,

(ii) for every i1, i2, . . . , iL, j1, j2, . . . , jM ∈ {1, . . . , n}, there exists a node k and a length

` such that a walk of length ` exists from one of the nodes i1, i2, . . . , iL to k in one of

the transition matrices P
(1)
p , P

(2)
p , . . . , P

(L)
p and a walk of length ` exists from one of

the nodes j1, j2, . . . , jM to k in one of the transition matrices in P
(1)
e , P

(2)
e , . . . , P

(M)
e ,

(iii) for every i1, i2, . . . , iL, j1, j2, . . . , jM ∈ {1, . . . , n}, there exists a walk in the digraph

associated with the stochastic matrix P
(1)
p ⊗P (2)

p . . .⊗P (L)
p ⊗P (1)

e ⊗P (2)
e

. . .⊗P (M)
e from a node (i1, i2, . . . , iL, j1, j2, . . . , jM) to a node of the form (i

′
1, i
′
2, . . . , k,

. . . , i
′
L, j

′
1, j

′
2, . . . , k, . . . , j

′
M), for some k ∈ {1, . . . , n}, and

(iv) the substochastic matrix PE is convergent and the vector of group meeting times is

given by

vec(M) = (InL+M − PE)−11nL+M , (3.6)

where M ∈ RnL×nM , P = P
(1)
p ⊗P (2)

p . . .⊗P (L)
p ⊗P (1)

e ⊗P (2)
e . . .⊗P (M)

e and E is a

binary diagonal matrix with entries 1nL+M − vec([δi1i2...iL,j1j2...jM ]).
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Proof: For the nodes i1, i2, . . . , iL, j1, j2, . . . , jM , the group meeting time satisfies

the recursive formula

Ti1i2...iL,j1j2...jM=


1, w.p.

n∑
k=1

(
1−

L∏
a=1

(1− p(p,a)
ia,k

)
)(

1−
M∏
b=1

(1− p(e,b)
jb,k

)
)
,

Tk1k2...kL,h1h2...hM+1,w.p.
∑
ka 6=hb

L∏
a=1

p
(p,a)
ia,ka

M∏
b=1

p
(e,b)
jb,hb

.

Note that the symbol
∑

ka 6=hb is a summation over the indices k1, k2, . . . , kL, h1, h2, . . . , hM

such that ka 6= hb for every a ∈ {1, . . . , L} and b ∈ {1, . . . ,M}. The quantity (1 −∏L
a=1(1− p(p,a)

ia,k
)) indicates the probability that one of the pursuers will move to node k

and (1−∏M
b=1(1− p(e,b)

ib,k
)) indicates the probability that one of the evaders will move to

node k. Therefore
∑n

k=1(1−∏L
a=1(1−p(p,a)

ia,k
))(1−∏M

b=1(1−p(e,b)
jb,k

)) is the probability that

one of the pursuers encounters one of the evaders at a common node.

Taking the expectation we have

E[Ti1i2...iL,j1j2...jM ] =
n∑
k=1

(1−
L∏
a=1

(1− p(p,a)
ia,k

))(1−
M∏
b=1

(1− p(e,b)
jb,k

))

+
∑
ka 6=hb

L∏
a=1

p
(p,a)
ia,ka

M∏
b=1

p
(e,b)
jb,hb

(E[Tk1k2...kL,h1h2...hM ] + 1),

=⇒ E[Ti1i2,...iL,j1j2...jM ] = 1 +
∑
ka 6=hb

L∏
a=1

p
(p,a)
ia,ka

M∏
b=1

p
(e,b)
jb,hb

(E[Tk1k2...kL,h1h2...hM ]).

Let mi1i2...iL,j1j2...jM = E[Ti1i2...iL,j1j2...jM ] for every i1, i2, . . . , iL, j1, j2, . . . , jM ∈ {1, . . . , n}
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and let M = [mi1i2...il,j1j2...jM ]. Note that the entries of M can be written as

mi1i2...il,j1j2...jM = 1 +
∑
ka 6=hb

L∏
a=1

p
(p,a)
ja,ka

M∏
b=1

p
(e,b)
jb,hb

mk1k2...kl,h1h2...hM

= 1 +
n∑

k1,k2,...,kL
h1,h2,...,hM

L∏
a=1

p
(p,a)
ia,ka

M∏
b=1

p
(e,b)
jb,hb

mk1k2...kl,h1h2...hM−

∑
k1,k2,...,kL
h1,h2,...,hM

δi1i2...iL,j1j2...jM

L∏
a=1

p
(p,a)
ia,ka

M∏
b=1

p
(e,b)
jb,hb

mk1k2...kl,h1h2...hM ,

where we have rewritten the summation
∑

ka 6=hb in terms of the generalized kronecker

delta function. This equation can be written in vector form as

vec(M) =1nL+M + (P (1)
p ⊗P (2)

p ⊗ · · ·⊗P (L)
p ⊗P (1)

e ⊗P (2)
e ⊗ · · ·⊗P (M)

e ) vec[M ]

− (P (1)
p ⊗P (2)

p ⊗ · · ·⊗P (L)
p ⊗P (1)

e ⊗P (2)
e ⊗ · · ·⊗P (M)

e )

vec([δi1i2...iL,j1j2...jM ]) vec[M ],

=⇒ vec(M) =1nL+M + P (InL+M − vec([δi1i2...iL,j1j2...jM ])) vec[M ],

=⇒ vec(M) =1nL+M + PE vec(M).

If the matrix InL+M − PE is invertible then we have a unique solution to the meeting

times. We shall now show that the finiteness of group meeting times as in (i) is equivalent

to the existence of walks of equal length to common nodes as mentioned in (ii) and in

(iii), which leads to invertibility of InL+M − PE in (iv).

We start by proving (i) =⇒ (ii). If we assume that (i) 6=⇒ (ii) then there exists an

L-tuple of nodes i1, i2, . . . , iL and an M -tuple of nodes j1, j2, . . . , jM such that the group

meeting time between groups of agents starting from these positions is finite and there

exists no walk of equal length to a common node for any possible pursuer-evader pairs.

However if there exists no walk of equal length from one of the nodes in i1, i2, . . . , iL and
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one of the nodes in j1, j2, . . . , jM to a common node, then none of the agents ever meet

and the group meeting time is infinite. Hence by contradiction (i) =⇒ (ii).

Next we show that (ii) =⇒ (iii). The Kronecker product of the L pursuer transition

matrices and the M evader transition matrices gives a joint transition matrix for the

agents. The node (i1, i2, . . . , iL, j1, j2, . . . , jM) corresponds to the states X
(1)
p = i1, X

(2)
p =

i2, . . . , X
(L)
p = iL and X

(1)
e = j1, X

(2)
e = j2, . . . , X

(M)
e = jM . Statement (ii) ensures

that there exists a node k to which there is a walk of length ` from one of the nodes

i1, i2, . . . , iL in a pursuer transition matrix PL′
p and from one of the nodes j1, j2, . . . , jM

in an evader transition matrix PM ′
e . Starting from any node il for any l ∈ {1, . . . , L}

there exists a node i
′

l such that there exists a walk of length ` from il to i
′

l in the

transition matrix P
(p)
l . Similarly starting from jm there exists some node j

′
m to which

there exists a walk of length ` for some m ∈ {1, . . . ,M} in the transition matrix P
(e)
m .

Thus there exists walks of length ` : i1 → i
′
1, i2 → i

′
2, . . . , iL′ → k, . . . , iL →

i
′
L, j1 → j

′
1, j2 → j

′
2, . . . , jM ′ → k, . . . , and jM → j

′
M . Using Lemma 3 there

exists a walk from (i1, i2, . . . , iL′ , . . . , iL, j1, j2, . . . , jM ′ , . . . , jM) to a node of the form

(i
′
1, i
′
2, . . . , k, . . . , i

′
L, j

′
1, j

′
2, . . . , k, . . . , j

′
M), thus proving (ii) =⇒ (iii).

Next, we show (iii) =⇒ (iv). Note that post-multiplying the Kronecker prod-

uct of all transition matrices P
(1)
p ⊗P (2)

p ⊗ . . .⊗P (L)
p ⊗P (1)

e ⊗P (2)
e ⊗ . . .⊗P (M)

e by E sets

columns associated with nodes of the form (i
′
1, i
′
2, . . . , k, . . . , i

′
L, j

′
1, j

′
2, . . . , k, . . . , j

′
M) to

0nL+M . Therefore every node has a walk to a node whose row-sum is less than 1 which

implies that the matrix PE is convergent. From this we obtain equation (3.6). Since

(iii) guarantees the existence of (InL+M − PE)−1, we prove that (iii) =⇒ (iv).

Note that the existence of vec(M) in (iv) gives (iv) =⇒ (i). Thus we have shown

that (i) =⇒ (ii) =⇒ (iii) =⇒ (iv) =⇒ (i). Hence the four conditions are

equivalent.

The above necessary and sufficient conditions give the most general set of tuples of
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matrices for which finite meeting times exist. Similar to the single pursuer and single

evader case, we present sufficient conditions on the transition matrices which ensure that

the meeting times between two groups is finite.

3.4.2 Sufficient conditions for finiteness and mean group meet-

ing time.

Consider the following sets of L+M -tuples of matrices:

PL,M
finite: finite group meeting times. Let PL,M

finite be the set of L+M -tuples of transition

matrices P
(1)
p , P

(2)
p , . . . , P

(L)
p , P

(1)
e , P

(2)
e , . . . , P

(M)
e satisfying the conditions stated in

Theorem 3 and therefore having finite group meeting times.

PL,M
all-overlap: Markov chains with all-to-all overlapping absorbing classes.

Let PL,M
all-overlap be the set of L + M -tuples of transition matrices P

(1)
p , P

(2)
p , . . . ,

P
(L)
p , P

(1)
e , P

(2)
e , . . . , P

(M)
e with the following property: for each transition matrix

P
(l)
p , l ∈ {1, . . . , L} there exists a transition matrix P

(m)
e for some m ∈ {1, . . . ,M}

such that (P
(l)
e , P

(m)
p ) ∈ Pall-overlap.

PL,M
SA-overlap: single absorbing Markov chains with overlapping absorbing

classes. Let PL,M
SA-overlap be the set of L+M -tuples of transition matrices P

(1)
p , P

(2)
p , . . . ,

P
(L)
p , P

(1)
e , P

(2)
e , . . . , P

(M)
e with the following property: for each transition matrix

P
(l)
p , l ∈ {1, . . . , L} there exists a transition matrix P

(m)
e for some m ∈ {1, . . . ,M}

such that (P
(l)
e , P

(m)
p ) ∈ PSA-overlap.

PL,M
one-ergodic: one ergodic Markov chain. Let PL,M

one-ergodic be the set of L + M -tuples

of transition matrices P
(1)
p , P

(2)
p , . . . , P

(L)
p , P

(1)
e , P

(2)
e , . . . , P

(M)
e such that one of the

transition matrices is ergodic.
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Given the above, we are now in a position to define the mean group meeting time of two

sets of random walkers, L pursuers and M evaders. The group meeting times for matrices

with single absorbing classes are finite when the L + M -tuple (P
(1)
p , P

(2)
p , . . . , P

(L)
p , P

(1)
e ,

P
(2)
e , . . . , P

(M)
e ) ∈ PL,M

SA-overlap. Hence, we have the following result.

Corollary 3 (Mean group meeting time) Consider L+M transition matrices P
(1)
p , P

(2)
p

, . . . , P
(L)
p , P

(1)
e , P

(2)
e , . . . , P

(M)
e with stationary distributions π

(1)
p , π

(2)
p , . . . , π

(L)
p , π

(1)
e , π

(2)
e ,

. . . , π
(M)
e . The mean group meeting time

ML,M = (π(1)
p ⊗ π(2)

p ⊗ . . .⊗ π(L)
p ⊗ π(1)

e ⊗ π(2)
e ⊗ . . .⊗ π(M)

e )> vec(M), (3.7)

where M is the matrix of group meeting times, is finite if the L + M-tuple of transition

matrices (P
(1)
p , P

(2)
p , . . . , P

(L)
p , P

(1)
e , P

(2)
e , . . . , P

(M)
e ) ∈ PL,M

SA-overlap .

A word on the computational complexity for the multiple pursuer-evader case: since

the general expression for the group meeting time among groups of pursuers and evaders

involve extensive use of the Kronecker product, the memory and computational re-

sources necessary are significantly affected by the curse of dimensionality. The matrix

(P
(1)
p ⊗P (2)

p ⊗ . . .⊗P (L)
p ⊗P (1)

e ⊗P (2)
e ⊗ . . .⊗P (M)

e ) contains n(L+M) elements. Inversion

of a full matrix would require O(k3) operations lending an undesirable complexity of

O(n3(L+M)) [132]. Most practical solutions to the transition matrices benefit from the

sparse nature of the graphs. A sparse system of equations can be solved with complex-

ity O(nnz) where nnz is the number of non-zero elements. For the Kronecker product

of L + M transition matrices defined on the same graph the number of non-zero ele-

ments is |E|(L+M), and with a sparse solver the group meeting time can be computed in

O(|E|(L+M)) operations. For further details see [133].
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3.5 Meeting times for continous-time Markov chains

In this section we formulate the meeting time between two continuous-time Markov

chains. The essence of the proof is to use the fact that the meeting time of two continuous-

time Markov chains is equivalent to the hitting time on the joint transition matrix gen-

erated by the Kronecker product of the digraphs associated with the two chains.

3.5.1 The meeting time of two continuous-time Markov chains

Consider the pursuer and evader performing random walks on a set of nodes V :=

{1, . . . , n} with digraphs Gp = (V,Ep, Qp), Ge = (V,Ee, Qe), edge sets Ep, Ee ⊂ V × V ,

and transition rate matrices Qp, Qe. Let Pp(t), Pe(t) denote the transition matrices of

the purser and evader at time t. Let mi,j denote the expected first meeting time for a

pursuer starting from node i and an evader starting from node j, which shall be referred

to simply as the meeting time. Then the following theorem holds.

Theorem 4 (The meeting time of two continuous-time Markov chains) Consider

two Markov chains with transition rate matrices Qp and Qe defined on a digraph G with

nodeset V = {1, . . . , n}. The following statements are equivalent:

(i) for each pair of nodes i, j, the expected first meeting time mi,j from nodes i and j

is finite,

(ii) for each pair of nodes i, j, there exists a node k such that a walk exists from i to k

and a walk exists from j to k,

(iii) for each pair of nodes i, j, there exists a walk in the digraph associated with the

transition rate matrix Qp⊗ In + In⊗Qe from (i, j) to a node (k, k), for some k ∈

{1, . . . , n}, and
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(iv) the matrix E(In2 − (Qp⊗ In + In⊗Qe)) − In2 is invertible and the first meeting

times are given by the unique solution to

vec(M) = (E(In2 − (Qp⊗ In + In⊗Qe))− In2)−1E1n2 (3.8)

where M ∈ Rn×n and E ∈ Rn2×n2
is a binary diagonal matrix with diagonal entries

1n2 − vec(In).

Proof: Consider the joint evolution of the two continuous-time Markov chains on the

Kronecker product graph given by the Kronecker product Pp(t)⊗Pe(t). The transition

rate matrix for this Markov chain is easy to derive. Consider

d

dt
(Pp(t)⊗Pe(t)) =Pp(t)Qp⊗Pe(t) + Pp(t)⊗Pe(t)Qe

=(Pp(t)⊗Pe(t))(Qp⊗ In + In⊗Qe),

where we have used the product rule for derivatives and Lemma 1 to obtain the joint

transition rate matrix as Qp⊗ In + In⊗Qe.

The n× n block entries of the joint transition rate matrix

Qp⊗ In + In⊗Qe =



q
(p)
1,1In +Qe q

(p)
1,2In . . . q

(p)
1,nIn

q
(p)
2,1In q

(p)
2,2In +Qe . . . q

(p)
2,nIn

...
...

. . .
...

q
(p)
n,1In q

(p)
n,2In . . . q

(p)
n,nIn +Qe


.

The meeting times for the two transition rate matrices correspond to hitting times

from nodes on the joint transition rate matrix Qp⊗ In + In⊗Qe to the set of common

nodes of the form (k, k). The solution to hitting times for continuous-time Markov chains

is given in [125, Theorem 3.3.3]. We restate the result here for the sake of completeness.
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Given a transition rate matrix Q = [qa,b] defined on a set of nodes A and a subset S ⊂ A,

the expected meeting times starting from a node a ∈ A to the set S denoted by hSa is

given by the solution to the system of equations


hSa = 0 for a ∈ S

−∑b∈A qa,bh
S
b = 1 for a /∈ S.

(3.9)

The meeting times can be obtained as the solution to the system of equations above with

transition rate matrix given by Qp⊗ In + In⊗Qe and S = {(k, k) | k ∈ V }. Denoting

Qp⊗ In + In⊗Qe and S = {(k, k) | k ∈ V } by Qeff and Scommon, respectively, the system

of equations in (3.9) can be written as


mi,j = 0 for (i, j) ∈ Scommon

−∑k∈V
∑

h∈V Q
eff
(i,j),(k,h)mk,h = 1 for (i, j) /∈ Scommon.

These equations can be re-written in vector form as

−EQeff vec(M) = E1n2 , (E − In2) vec(M) = 0n2 .

Adding the above two equations we obtain equation (3.8). If the matrix E(In2−Qeff)−In2

is invertible then we have a unique solution to the meeting times. We shall now show that

the finiteness of meeting times as in (i) is equivalent to the existence of walks to common

nodes as mentioned in (ii) and (iii), which leads to invertibility of E(In2 −Qeff)− In2 in

(iv).

We start by proving that (i) =⇒ (ii). If we assume that (i) 6=⇒ (ii), then there

exists a pair of nodes i and j such that the expected first meeting time is finite and there

exists no walk to a common node in V . However if there exists no walk to a common
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node, then the agents never meet and the first meeting time is always infinite. Hence by

contradiction (i) =⇒ (ii).

Now we shall prove that (ii) =⇒ (iii). Since the matrix Qe is added to every

diagonal block of the joint transition rate matrix if there exists a walk in the transition

rate matrix Qe from j to k then there exists a walk in Qp⊗ In + In⊗Qe from (i, j) to

(i, k) for every i ∈ {1, . . . , n}. Also note that the off diagonal block elements are of

the form q
(p)
i′,j′In. One can verify that because of this structure if there is a walk from

j → k in Qp then in Qp⊗ In + In⊗Qe there exists a walk from (i, j) → (k, j) for every

j ∈ {1, . . . , n}. Hence if there is a walk i → k in Qp and j → k in Qe then there exists

walks (i, j)→ (i, k)→ (k, k), thus proving (ii) =⇒ (iii).

Finally we shall prove (iii) =⇒ (iv). First consider the modified transition rate

matrix E(Qp⊗ In + In⊗Qe). The matrix E sets the rows corresponding to nodes of

the form (j, j) to 0>n2 . The rank of a transition rate matrix is n − d where d is the

number of sinks in the transition rate matrix [134]. The matrix E(Qp⊗ In + In⊗Qe)

has at least n sinks corresponding to the elements (k, k) for every j ∈ {1, . . . , n}. If

every node has a path to a node of the form (k, k) as in (iii), then there are only exactly

n sinks. This is because there are exactly n nodes of the form (k, k). Thus the rank

of E(Qp⊗ In + In⊗Qe) is n2 − n implying that this matrix has n null eigenvectors.

One can verify that the null eigenvectors (and basis vectors for the kernel) are given by

e1, en+1, e2n+2, . . . , en2 . Let the other eigenvectors be v1, v2, . . . , vn2−n. Since the kernel of

E(Qp⊗ In + In⊗Qe) is spanned by e1, en+1, e2n+2, . . . , en2 , the eigenvectors of the same

matrix can be uniquely constructed by ensuring they are orthogonal to the kernel, i.e.

v>p eq = 0 for every p ∈ {1, . . . , n2 − n} and q ∈ {1, n + 1, . . . , n2}. Let us denote the

eigenvalues associated with these eigenvectors as λ1, λ2, . . . , λn2−n. Consider the matrix

E(Qp⊗ In + In⊗Qe) + (In2 − E). We shall show that E(Qp⊗ In + In⊗Qe) + (In2 −

E) has the same eigenvectors as E(Qp⊗ In + In⊗Qe). It is easy to see that now the
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eigenvectors e1, en+1, . . . , en2 have eigenvalues 1. One can verify vq is still an eigenvector

but with eigenvalue λq + 1. Note that E(Qp⊗ In + In⊗Qe) is positive semi-definite

from Gershgorin’s disk theorem [124]. Since E(Qp⊗ In + In⊗Qe) has all non-negative

eigenvalues we are assured that E(Qp⊗ In+In⊗Qe)+(In2−E) has all positive eigenvalues

and is invertible. Thus if (iii) holds −(E(Qp⊗ In + In⊗Qe) + (In2 − E)) has full rank

and is invertible. Thus equation (3.8) gives the unique solution to the meeting times.

Therefore (iii) =⇒ (iv).

Note that the existence of vec(M) in (iv) gives (iv) =⇒ (i). Thus we have shown

that (i) =⇒ (ii) =⇒ (iii) =⇒ (iv) =⇒ (i). Hence the four conditions are

equivalent.

One can derive sets of pairs of transition rate matrices for which meeting times are guar-

anteed to be finite akin to the discrete-time case: Qall-overlap, QSA-overlap and Qone-ergodic.

The sets are almost identical in description except for the fact that periodicity condi-

tions are no longer necessary. A notion of mean meeting time is applicable to the set of

transition rate matrices belonging to QSA-overlap.

3.5.2 The group meeting times of multiple continuous-time Markov

chains.

The setup for multiple pursuers and evaders following continuous-time Markov chains

on a common graph is identical to the multiple pursuers and multiple evaders in the

discrete time case. Consider pursuer transition rate matrices Q
(1)
p , Q

(2)
p , . . . , Q

(L)
p and

evader transition rate matrices Q
(1)
e , Q

(2)
e , . . . , Q

(M)
e .

Theorem 5 (The group meeting time of multiple continuous-time Markov chains)

Consider Markov chains with transition rate matrices Q
(1)
p , Q

(2)
p , . . . , Q

(L)
p , Q

(1)
e , Q

(2)
e ,

. . . , Q
(M)
e defined on a digraph G with nodeset V = {1, . . . , n}. The following statements
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are equivalent:

(i) for every i1, i2, . . . iL, j1, j2, . . . , jM ∈ {1, . . . , n}, the expected first meeting time

mi1i2...iL,j1j2...jM is finite,

(ii) for every i1, i2, . . . , iL, j1, j2, . . . , jM ∈ {1, . . . , n}, there exists a node k such that

there exists a walk from one of the nodes i1, i2, . . . , iL to k in one of the tran-

sition rate matrices Q
(1)
p , Q

(2)
p , . . . , Q

(L)
p and a walk exists from one of the nodes

j1, j2, . . . , jM to k in one of the transition matrices in Q
(1)
e , Q

(2)
e , . . . , Q

(L)
e ,

(iii) for every i1, i2, . . . , iL, j1, j2, . . . , jM ∈ {1, . . . , n}, there exists a walk in the digraph

associated with the transition rate matrix
∑L

l=1 Inl−1 ⊗Q(l)
p ⊗ InL+M−l +

∑M
m=1 InL+m−1

⊗Q(m)
e ⊗ InM−m from a node (i1, i2, . . . , iL, j1, j2, . . . , jM) to a node of the form

(i
′
1, i
′
2, . . . , k, . . . , i

′
L, j

′
1, j

′
2, . . . , k, . . . , j

′
M), for some k ∈ {1, . . . , n}, and

(iv) the matrix E(InL+M − Q) − InL+M is invertible and the expected first meeting time

is given by

vec(M) = (E(InL+M −Q)− InL+M )−11nL+M , (3.10)

where M ∈ RnL×nM ,
∑L

l=1 Inl−1 ⊗Q(l)
p ⊗ InL+M−l +

∑M
m=1 InL+m−1 ⊗Q(m)

e ⊗ InM−m

and E is a binary diagonal matrix with entries

1nL+M − vec([δi1i2...iL,j1j2...jM ]).

We state this result without proof as it utilizes the same technique as in the proof of

Theorem 4. The proof of this result involves constructing the joint transition rate matrix

of all agents on the Kronecker digraph and then computing the hitting time to the set

of (L+M) tuples of nodes such that one of the first L entries is the same as one of the

next M entries. The complexity of computing meeting times using equation (3.10) for
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continuous-time Markov chains is O(n3(L+M)) as it involves inversion of a matrix which

has nL+M elements, which is identical to the discrete-time case.

3.6 Summary

We have studied the meeting time of multiple random walkers on a graph and have

presented necessary and sufficient conditions for finiteness and novel closed-form expres-

sions for the expected time to meeting between a single pursuer and a single evader,

multiple pursuers and multiple evaders, and extended the treatment to continuous-time

chains. We also provide sufficient conditions for certain pairs (or tuples) of Markov chains

that satisfy conditions on their absorbing classes to have finite meeting times. Finally,

we discuss connections to other metrics relevant to Markov chains such as the hitting

time.
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Chapter 4

Markov chains with Maximum
Entropy Rate

4.1 Introduction

4.1.1 Problem description

The entropy rate of a Markov chain is a measure of information and unpredictability

generated with each time-step [63]. In this chapter, we study Markov chains with maximal

entropy generation subject to two constraints: (i) allowable transitions are specified by

a given irreducible adjacency matrix and (ii) the stationary distribution of the Markov

chain is given. It is customary to refer to Markov chains with maximum entropy rate

as maxentropic. Maxentropic Markov chains with stationary distribution constraints are

of interest in surveillance strategies as they maximize the uncertainty in the path of

the surveillance agent. Aside from applications to stochastic surveillance, the notion

of maxentropic Markov chains is useful for example in link-prediction [135], community

detection [136] and image processing [137].
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4.1.2 Prior applications of maxentropic Markov chains

To the best of our knowledge, maxentropic Markov chains first appeared in [64] as

the solution to the optimization problem of maximizing the entropy rate given the first

and second moments of the Markov chain. More recently, Burda et al. [65] provide a

closed form solution for maxentropic Markov chains subject solely to graph constraints.

This Markov chain, referred to as the maximal entropy random walk (MERW), possesses

the property that all walks of equal length with given start and end node are equiprob-

able. The solution we provide is for Markov chains subject to stationary distribution

constraints in addition to graph constraints. In what follows, we review prior applica-

tions of maxentropic Markov chains: (i) detection of features in images and (ii) design

of metrics on large graphs and complex networks.

Image analysis. Based of the notion of maximal entropy random walks in [65], several

applications have been proposed in image analysis. The MERW is utilized instead of the

equal neighbor random walk to detect visually salient features in [137]. The MERW has

also been utilized to implement a probabilistic object localization scheme in [138]. Korus

and Huang [139] successfully adopt the MERW for localizing forgeries in digital images.

Metrics on large networks. The MERW is used to design unsupervised methods for

link prediction in [135]. Ochab and Burda study the feasibility of using the MERW in

algorithms for community detection [136]. Furthermore, the MERW is used to study

the trapping problem in dendrimers, i.e., artificial macromolecules with treelike struc-

tures [140]. More recently, a relation between entropy rate and congestion in complex

networks was established and a method was proposed to mitigate congestion using MERW

in [141].
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4.1.3 Relevance to stochastic surveillance

The setup we consider is one in which the area to be surveilled has been sampled

to obtain a robotic roadmap represented by a graph. The nodes of the graph designate

points of high priority and the edges indicate whether it is possible to move between dif-

ferent nodes. (Restrictions might be imposed by obstacles, no-fly zones, etc.) The graph

structure is captured by a binary adjacency matrix and the relative importance of each

node is given by a normalized vector which indicates a desired visit frequency to each

node. Markov chains modeled by transition matrices are well suited to designing random

walks on graphs with visit frequency constraints. The left-dominant eigenvector of the

transition matrix, referred to as the stationary distribution, gives the visit frequency of a

random walker who moves according to the Markov chain. Graph and stationary distri-

bution constraints are linear and hence can be enforced quite effectively in optimization

problems involving cost functions with various robotic motivations such as maximizing

speed of traversal, minimizing the expected reward for an intruder or convergence to a

desired swarm formation [52, 54, 142].

While prior work with the same framework has emphasized the speed of the Markov

chain or optimizing the probability of capture given an intruder model, the transition

matrices obtained as solutions to such formulations need not necessarily be unpredictable

(e.g., permutation matrices, which have zero entropy rate, are the fastest Markov chains

when a Hamiltonian tour exists). The notion of maximum entropy rate Markov chains

is valuable as it translates directly to maximum unpredictability in the path of the

surveillance agent. The specification of a stationary distribution, which serves as a prior

for where the intruder might be located, makes our approach more suited than the MERW

which has a fixed stationary distribution.
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4.1.4 Applications in other areas

The methods described in this chapter are potentially useful for developing novel

methods of conducting image analysis. The maxentropic Markov chain with visit fre-

quency specification provides a natural way of incorporating prior knowledge of where

an object or an anomaly is likely to be located within an image and hence can be used

in place of the MERW in [138, 137] when such knowledge is available. Further the fact

that the method described in this chapter scales well with the graph dimension enables

its use for analysis of large images.

Finally, the methods developed in this chapter could also aid in the design of novel

metrics for complex networks. In refs. [139, 135, 136], novel metrics are designed by

using the MERW to evaluate properties of the network. With the ability to specify visit

frequencies in the random walk it becomes possible to evaluate some of these metrics in

a weighted sense. For example, if one specifies that visit frequencies of the random walk

be a function of the degree of each node, the metric thus obtained will incorporate such

a weighting.

4.1.5 Organization

This chapter is organized as follows. In section 4.2 we introduce notation and review

known results. In section 4.3 we derive some preliminary results. In section 4.4 we

introduce the main result of this chapter which is the maxentropic chain with prescribed

visit frequencies. In section 4.5 we show realizations of the maxentropic Markov chain

over prototypical roadmaps. Finally, in section 4.6 we present conclusions.
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4.2 Notation and review of known results

4.2.1 Notation

For x ∈ Rn, let ‖x‖1 =
∑n

i=1 |xi|, let [x] denote the diagonal matrix with diagonal

entries x, that is,

[x] =


x1 . . . 0

...
. . .

...

0 . . . xn

 .
A matrix A ∈ Rn×n is irreducible if, for all partitions {I, J} of the index set {1, . . . , n},

there exists i ∈ I and j ∈ J such that aij 6= 0. Here {I, J} is a partition of the index set

if I ∪ J = {1, . . . , n} and I ∩ J = φ.

Given x, y ∈ Rn, we define the component-wise vector product x◦y ∈ Rn by (x◦y)i =

xiyi for i ∈ {1, . . . , n}. We note the simple equalities:

[x]y = x ◦ y = [y]x and [[x]y] = [x][y] = [x ◦ y]. (4.1)

Define the set of positive n-tuples by Rn
>0 = {x ∈ Rn | xi > 0, i ∈ {1, . . . , n}} and the

probability simplex of order n by ∆n = {v ∈ Rn | ∑n
i=1 vi = 1, vi ≥ 0 for i ∈ {1, . . . , n}}.

Consider a graph G with nodeset V = {1, . . . , n} then a walk from node i1 to i2 and

so on until node ik for {i1, i2, . . . , ik} ∈ V is denoted as i1 → i2 → . . .→ ik.

For notation and definitions related to Markov chains refer section 3.2. We modify the

notation slightly to suit the contents of this chapter in the following manner: transition

probabilities from node i to node j shall be denoted as pij instead of pi,j. A similar change

in notation is applied to all other quantities including hitting times. This is appropriate

considering we are dealing with a single random walker throughout this chapter.

The following lemma and its proof are included here for completeness.
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Lemma 4 Let S ⊆ Rn be a compact convex set, ‖.‖ be a matrix norm on Rn, and

h : S → S be a continuously differentiable map. If ‖∂h/∂x(x)‖ < 1 for all x ∈ S, then h

is a contraction mapping with respect to the norm ‖.‖ and has a unique fixed point in S.

Proof: Because S is compact and h is C1, there exists c ∈ (0, 1) such that

‖∂h/∂x(x)‖ ≤ c, for all x ∈ S.

By the Mean Value Inequality [143, Proposition 2.4.8], for every x, y ∈ S, there exists

η ∈ S such that

‖h(y)− h(x)‖ ≤ ‖∂h/∂x(η)‖‖y − x‖.

Therefore, for every x, y ∈ S, we know

‖h(y)− h(x)‖ ≤ c‖y − x‖.

Since 0 < c < 1, this inequality shows that h : S → S is a contraction with respect to the

norm ‖ · ‖. By the Banach Contraction Theorem [144, Theorem 3.4.1], h has a unique

fixed point in S.

4.2.2 Review of maxentropic Markov chains

Throughout the chapter we model the transition matrix of a Markov chain as a row-

stochastic matrix. Given a Markov chain with an irreducible transition matrix P ∈ Rn×n

(i.e., an irreducible row-stochastic matrix), the entropy rate of the Markov chain is given

by

H(P ) = −
n∑

i,j=1

πi(P )pij log pij, (4.2)
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where π(P ) ∈ interior(∆n) is the stationary distribution of P (whose existence, unique-

ness, and positivity are established by the Perron-Frobenius Theorem for irreducible

matrices).

Problem 1 (Maximizing entropy rate) Given a connected undirected unweighted graph

G, compute the matrix P ∈ Rn×n satisfying

max H(P )

subj. to P is row stochastic, i.e., P ≥ 0 and P1n = 1n

pij = 0, if {i, j} is not an edge of G.

Theorem 6 (The maxentropic Markov chain [65, 64]) Given a symmetric, irre-

ducible A ∈ {0, 1}n×n with associated undirected graph G, let λ > 0 and v ∈ Rn
>0 be

the dominant eigenvalue and eigenvector of A (whose existence and uniqueness are es-

tablished by the Perron-Frobenius Theorem).

Then the solution to Problem 1 is unique, is called maxentropic Markov chain over

G, and is given by

P ∗ =
1

λ
[v]−1A[v], (4.3)

or, in components, by

P ∗ij =
aij
λ

vj
vi
.

Moreover, P ∗ has the following properties:

(i) its stationary distribution is v ◦ v/‖v ◦ v‖1,

(ii) its paths are equiprobable in the following sense: pick a start node i and a path
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length k. The probability of traversal for a path from i of length k ≥ 1 is

1

λk
vj
vi
, (4.4)

where j is the final node in the path. Note that all paths from i to j of length k

have the same probability.

The following example illustrates a maxentropic chain.

Example 1 Consider the adjacency matrix associated with a 4-node ring and the max-

entropic Markov chain associated with this graph,

A =



1 1 0 1

1 1 1 0

0 1 1 1

1 0 1 1


, P ∗ =



1/3 1/3 0 1/3

1/3 1/3 1/3 0

0 1/3 1/3 1/3

1/3 0 1/3 1/3


.

In general one can show that the Markov chain that maximizes entropy on the ring is the

transition matrix that randomizes the position of the random walker at the subsequent

timestep between its current location and the two adjacent nodes on the ring.

4.3 Maxentropic maps and their properties

In this section we introduce and characterize two maps: the maxentropic matrix map

and maxentropic vector map. These maps shall be used in the construction of Markov

chains with maximum entropy subject to graph and stationary distribution constraints.
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4.3.1 The maxentropic matrix map and its properties

Given a symmetric, irreducible, binary matrix A ∈ {0, 1}n×n, define the maxentropic

matrix map ΦA : Rn
>0 → Rn×n

≥0 by

ΦA(x) = [Ax]−1A[x], (4.5)

or, in components, by (
ΦA(x)

)
ij

= aij
xj∑n

k=1 aikxk
.

The maxentropic Markov chain subject to graph and stationary distribution con-

straints can be generated from the maxentropic matrix map for a suitable choice of x.

In the remainder of this section, we only characterize the maxentropic matrix map. The

connection to maxentropic Markov chains shall become clear in Section 4.4.

Theorem 7 (Properties of the maxentropic matrix map) Given a symmetric, ir-

reducible, binary matrix A ∈ {0, 1}n×n and a vector x ∈ Rn
>0, the maxentropic matrix

map has the following properties:

(i) ΦA(x) is well defined, nonnegative, and row-stochastic,

(ii) ΦA(x) has the same irreducible zero/positive pattern as A,

(iii) the left dominant eigenvector of ΦA(x) is

π(x) =
1

‖[x]Ax‖1

[x]Ax, (4.6)

(iv) ΦA(x) is reversible, i.e., [π(x)]ΦA(x) = ΦA(x)>[π(x)].

Proof: First, we know Ax > 0 because x > 0 and because A being irreducible

implies each row of A has at least one positive entry. Hence, the diagonal matrix [Ax] is

77



Markov chains with Maximum Entropy Rate Chapter 4

invertible and ΦA(x) is well defined and nonnegative. Finally, [x]1n = x implies

ΦA(x)1n = [Ax]−1A[x]1n = [Ax]−1Ax = 1n.

This concludes the proof of statement (i).

Next, note that ΦA(x) is equal to the matrix A pre- and post-multiplied by two

diagonal matrices with positive diagonal; hence ΦA(x) has the same zero/positive pattern

as A and is irreducible. This concludes the proof of statement (ii).

Regarding statement (iii), by the Perron-Frobenius Theorem for irreducible nonneg-

ative matrices we know that ΦA(x) has a unique left dominant eigenvector, i.e., a vector

π(x) satisfying π(x)>ΦA(x) = π(x)> and 1>π(x) = 1.

It suffices to show π(x)>ΦA(x) = π(x)>. Recalling the equalities (4.1), we compute

π(x)>ΦA(x) =
1

‖[x]Ax‖1

(
[x]Ax

)>(
[Ax]−1A[x]

)
=

1

‖[x]Ax‖1

(
[Ax]x

)>(
[Ax]−1A[x]

)
=

1

‖[x]Ax‖1

x>[Ax][Ax]−1A[x]

=
1

‖[x]Ax‖1

x>A[x] =
1

‖[x]Ax‖1

(
[x]Ax

)>
.

This concludes the proof of statement (iii).

Finally, again recalling the equalities (4.1) and assuming ‖[x]Ax‖1 = 1 without loss

of generality, we compute

[π(x)]ΦA(x) = [[x]Ax][Ax]−1A[x]

= ([x][Ax])[Ax]−1A[x] = [x]A[x],

ΦA(x)>[π(x)] = [x]A[Ax]−1[[x]Ax] = [x]A[x].
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This concludes the proof of statement (iv).

4.3.2 The maxentropic vector map and its properties

Next, we study the left dominant eigenvector of the row-stochastic matrix ΦA(x).

Given a binary, symmetric, irreducible matrix A with unit diagonal entries, define the

maxentropic vector map φA : Rn
>0 → Rn

>0 by

φA(x) = [x]Ax,

or, in components, by (
φA(x)

)
i

= xi

n∑
k=1

aikxk.

In what follows, we use the notion of proper maps to establish that the maxentropic

vector map is a global diffeomorphism. A map h : X → Y is proper if for every compact

set C ⊂ Y , the preimage h−1(C) ⊂ X is compact.

Theorem 8 (Properties of the maxentropic vector map) Given a symmetric, ir-

reducible, binary matrix A ∈ {0, 1}n×n with unit diagonal entries, the maxentropic vector

map φA has the following properties:

(i) the Jacobian of φA satisfies ∂φA/∂x(x) = [x]A+[Ax] and is full rank at all x ∈ Rn
>0,

(ii) φA is a proper map, and

(iii) φA is a global diffeomorphism, in particular, for every π ∈ Rn
>0, there exists a

unique x∗ ∈ Rn
>0 such that φA(x∗) = π.

Proof: Regarding property (i), clearly φA is analytic. Elementary calculations based
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also on the equalities (4.1) show that ∂φA/∂x(x) = [x]A+ [Ax]. One can show

∂(φA)i
∂xi

(x) = aiixi +
n∑
j=1

aijxj

>
n∑

j=1,j 6=i

aijxj =
n∑

j=1,j 6=i

∂(φA)i
∂xj

(x),

for all x ∈ Rn
>0, because aii = 1 > 0 for all i ∈ {1, . . . , n}. Hence, the Jacobian matrix

∂φA/∂x(x) is strictly row diagonally dominant and, therefore, invertible for all x ∈ Rn
>0.

Before continuing, it is convenient to define the map φ̂A : Rn
≥0 → Rn

≥0 by φ̂A(x) =

[x]Ax, so that φA is the restriction of the map φ̂A to Rn
>0. We claim that, for every

S ⊆ Rn
>0, we have φ−1

A (S) = φ̂A
−1

(S). We establish this claim as follows. By the property

of the restriction map, we can easily show that φ−1
A (S) ⊆ φ̂A

−1
(S). Now suppose that

there exists a vector v = (v1, v2, . . . , vn)> such that v ∈ φ̂A
−1

(S) and v 6∈ φ−1
A (S). This

implies that φ̂A(v) ∈ S. Since v 6∈ φ−1
A (S), there exists some i ∈ {1, . . . , n}, such that

vi = 0. This implies that ([v]Av)i = 0 and therefore we have
(
φ̂A(v)

)
i

= 0. However, this

means that φ̂A(v) 6∈ S. Which is a contradiction. Therefore, we have φ−1
A (S) = φ̂A

−1
(S).

Regarding property (ii), let C be a compact set in Rn
>0. Then it is a compact set in

Rn
≥0. Therefore, C is closed in Rn

≥0. Since φ̂A is a continuous map, φ̂A
−1

(C) is closed in

Rn
≥0. We show that φ̂A

−1
(C) is bounded in Rn

≥0. Since all diagonal elements of A are

one, we have the following inequality

‖x‖2
∞ ≤ ‖[x]Ax‖∞, for all x ∈ Rn

≥0.

Since C is compact, there exists M ∈ R>0 such that, for every y ∈ C, we have ‖y‖∞ < M .

Thus, for every x ∈ φ̂A
−1

(C), we have

‖x‖2
∞ ≤ ‖[x]Ax‖∞ = ‖φ̂A(x)‖∞ < M.
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Therefore, φ̂A
−1

(C) is bounded in Rn
≥0. This implies that φ̂A

−1
(C) is compact in Rn

≥0.

Recall that we established φ−1
A (C) = φ̂A

−1
(C). Therefore φ−1

A (C) is a compact set in

Rn
>0.

Finally, regarding property (iii), we start by noting that property (i) implies, by the

Inverse Function Theorem, that φA is a local diffeomorphism. Therefore, using prop-

erty (ii) the map φA is a proper local diffeomorphism and [143, Theorem 2.5.17] implies

that φA is a global diffeomorphism.

Remark 2 (The maxentropic vector map is ill-posed without self-loops) The fol-

lowing example shows that the statements (ii) and (iii) in Theorem 8 do not generally

hold for graphs without self-loops. Consider the adjacency matrix

A =

0 1

1 1

 .
Define the vectors, x = [x1 x2]> and π = [π1 π2]>. The maxentropic vector map is given

by φA(x) = [x1x2 x1x2 + x2
2]>. One can solve for the inverse of the map φA explicitly in

this case obtaining

φ−1
A (π) =

[
π1√

π2 − π1

√
π2 − π1

]
.

Consider the compact set Π = {[π1 π2]> | π1 + π2 = 1, 0.25 ≤ π1 ≤ 0.5}. The preimage

of the set Π under the maxentropic vector map φ−1
A is not bounded, and hence this set is

not compact in Rn. Also note that the φ−1
A (π) is empty when π1 > π2 and hence the map

is not a diffeomorphism. �

In what follows, we characterize the inverse function of φA at π. In other words,

given a point π ∈ interior(∆n), we compute x = φ−1
A (π) as the solution to the algebraic
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equation

φA(x) = [x]Ax = π. (4.7)

Theorem 9 (Inverse of the maxentropic vector map) Given a symmetric, irreducible,

binary matrix A ∈ {0, 1}n×n with unit diagonal entries, pick π ∈ interior(∆n).

(i) For A = 1n1>n , the algebraic equation (4.7) admits the unique solution π.

(ii) Define the constants η = maxi{
∑n

j=1 aij
√
πj}, ξ = maxi{

∑n
j=1 aijπj}, and the

vector x0 = π√
ξ
. Then the sequence {xk}k∈N defined by linear iteration

xk+1 = xk − 1

2η

(
[xk]Axk − π

)
, for all k ∈ N, (4.8)

converges to the unique solution of equation (4.7).

Proof: Regarding statement (i), note that A = 1n1>n implies Aπ = 1n. Therefore,

if we set x equal to π into equation (4.7), we get

[π]Aπ = [π]1n = π.

Regarding statement (ii), we first define the nonempty compact convex domain

Ωπ =
{

y ∈ Rn
>0

∣∣∣ π
η
≤ y ≤ √π

}
.

We first show that x0 ∈ Ωπ. Since A is a binary matrix, for every i ∈ {1, . . . , n}, we have

√√√√ n∑
j=1

aijπj ≤
n∑
j=1

aij
√
πj.
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Therefore, one can deduce that

√√√√max
i

{ n∑
j=1

aijπj

}
≤ max

i

{ n∑
j=1

aij
√
πj

}
.

Moreover, matrix A has unit diagonal entries so that

√
πi ≤

√√√√ n∑
j=1

aijπj ≤

√√√√max
i

{ n∑
j=1

aijπj

}
.

Therefore, we have

π

η
≤ π√

ξ
≤ √π,

so that x0 ∈ Ωπ. Next, define the map fπ : Ωπ → Rn by

fπ(x) = x− 1

2η
([x]Ax− π) .

We aim to show that Ωπ is invariant under the map fπ, i.e., fπ(Ωπ) ⊆ Ωπ. Consider a

point x ∈ Ωπ. We have

πi
η
≤ xi ≤

√
πi, for all i ∈ {1, . . . , n}.

Therefore, for every i ∈ {1, . . . , n}, we compute

(fπ(x))i = xi −
1

2η
(([x]Ax)i − πi)

= xi −
1

2η
x2
i −

1

2η

(
n∑

j=1,i 6=j

aijxj

)
+

1

2η
πi

≤ xi −
1

2η
x2
i +

1

2η
πi.
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Note that, for every i ∈ {1, . . . , n}, we have xi ≤
√
πi < η. This implies that the

maximum of the function xi − 1
2η
x2
i is
√
πi − 1

2η
πi. Hence, we have

(fπ(x))i ≤ xi −
1

2η
x2
i +

1

2η
πi ≤

√
πi −

1

2η
πi +

1

2η
πi =

√
πi.

On the other hand, for every i ∈ {1, . . . , n}, we have

n∑
i=1

aijxj ≤
n∑
i=1

aij
√
πj ≤ η

Therefore, for every i ∈ {1, . . . , n}, we have

(fπ(x))i = xi −
1

2η
([x]Ax)i +

1

2η
πi

= xi

(
1− 1

2η

n∑
j=1

aijxj

)
+

1

2η
πi

≥ πi
η

(
1− η

2η

)
+

1

2η
πi ≥

πi
η
.

This shows that fπ(x) ∈ Ωπ and therefore Ωπ is an invariant set for the map fπ. Next,

we show that the map fπ is a contraction mapping on Ωπ. The derivative of fπ satisfies

∂fπ
∂x

(x) = In −
1

2η
([x]A+ [Ax]) , for all x ∈ Ωπ.

Also, we have

∥∥∥∂fπ
∂x

(x)
∥∥∥

1
=

∥∥∥∥In − 1

2η
([x]A+ [Ax])

∥∥∥∥
1

= max
i

{∣∣∣∣∣1− aiixi
2η
−

n∑
j=1

aijxj
2η

∣∣∣∣∣+

∣∣∣∣∣
n∑

j=1,j 6=i

aijxj
2η

∣∣∣∣∣
}
.

Since x ∈ Ωπ implies x ≤ √π, we deduce that, for every i ∈ {1, . . . , n}, we have
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aiixi +
∑n

j=1 aijxj ≤ 2η. This implies that, for every i ∈ {1, 2, . . . , n}, we have

∣∣∣∣∣1− aiixi
2η
−

n∑
j=1

aijxj
2η

∣∣∣∣∣ = 1− aiixi
2η
−

n∑
j=1

aijxj
2η

.

Thus, for every i ∈ {1, 2, . . . , n}, we get

∣∣∣∣∣1− aiixi
2η
−

n∑
j=1

aijxj
2η

∣∣∣∣∣+

∣∣∣∣∣
n∑

j=1,j 6=i

aijxj
2η

∣∣∣∣∣ = 1− aiixi
η

.

Therefore, we obtain

∥∥∥∂fπ
∂x

(x)
∥∥∥

1
= max

i

{∣∣∣∣1− aiixi
η

∣∣∣∣} < 1.

Now, using Lemma 4, the map fπ has a unique fixed point in the domain Ωπ and, for

x0 = π√
ξ
∈ Ωπ, the sequence defined by the linear iteration (4.8) converges to this unique

fixed-point. The proof of the theorem is complete if one notes that x∗ is the unique fixed

point of fπ if and only if x∗ is the unique solution to the algebraic equation (4.7).

Remark 3 (Solution to the maxentropic vector map on the complete graph)

If A = 1n1>n , then we have η = 1 and the initial condition x0 = π√
η

= π in statement (ii)

is the fixed-point of the linear iteration (4.8) and the unique solution to the algebraic

equation (4.7). �

Remark 4 (Newton-Raphson iteration) The Newton-Raphson iteration for the non-

linear equation φA(x) = π is

xk+1 = xk − ([xk]A+ [Axk])−1([xk]Axk − π). (4.9)

In simulations, this iteration appears to always converge for a wide variety of graphs,

85



Markov chains with Maximum Entropy Rate Chapter 4

from random initial conditions, and for arbitrary choices of π ∈ interior(∆n) — even if

we are unable to provide a convergence proof. We postpone to Section 4.4.3 a runtime

comparison between the linear iteration (4.8) and this Newton-Raphson iteration (4.9).�

4.4 Maxentropic Markov chains with prescribed sta-

tionary distributions

In this section, we define the optimization problem whose solution we characterize.

We then prove uniqueness and existence of the solution before we introduce the main

result of the chapter which is a closed-form expression for the maxentropic Markov chain

at given stationary distribution, following which we perform computational comparisons

with standard convex program solvers and provide proofs for the main result.

4.4.1 Problem statement

Recall that the solution to Problem 1, i.e., the maximum entropy problem subject to

purely graph constraints, is the Markov chain given by equation (4.3) in Theorem 6. In

what follows, we introduce a new optimization problem by imposing additional stationary

distribution constraints on Problem 1. Before we state the problem definition, we remind

the reader that given π ∈ interior(∆n) and given a Markov chain with an irreducible

transition matrix P ∈ Rn×n (i.e., an irreducible row-stochastic matrix), the entropy rate

of the Markov chain P at fixed π is given by

Hπ(P ) = −
n∑

i,j=1

πipij log pij. (4.10)
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Problem 2 (Maximizing entropy rate with a stationary distribution constraint)

Given a symmetric, irreducible, binary matrix A ∈ {0, 1}n×n with unit diagonal entries

and given a positive vector π ∈ interior(∆n), compute the transition matrix P ∈ Rn×n

satisfying

max Hπ(P ) (4.11)

subj. to P ≥ 0, (4.12)

pij = 0, if aij = 0, (4.13)

P1n = 1n, (4.14)

π>P = π>. (4.15)

Remark 5 Problem 2 is a disciplined convex program and hence the numerical solution

of this program can be computed in CVX [145]. �

Remark 6 (Problem 2 is ill-posed without self-loops) For given graph topologies

without self-loops and for many corresponding instances of stationary distributions, CVX

returns that Problem 2 is infeasible. For all such cases, we find that the linear iteration in

equation (4.8) diverges (recall Remark 2). For example, consider once again the adjacency

matrix

A =

0 1

1 1

 .
CVX returns that the program is infeasible for any stationary distribution constraint (4.15),

[π1 π2]>P = [π1 π2]>, in which π1 > π2. Additionally, for this setting the linear itera-

tion (4.8) diverges.

Indeed, the graph topology embodied by A dictates that, whenever the surveillance

agent visits node 1, then the agent visits node 2 in the subsequent timestep. Hence, the
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visit frequency at node 2 is necessarily greater than or equal to the visit frequency at node

1. �

Several such preliminary results indicate that imposing graph constraints can restrict

the set of stationary distribution achieved by Markov chains and inspired the conjecture

in Section 4.6. We do not pursue this potentially interesting direction of research in this

chapter as within the framework of designing surveillance strategies, self-loops can be

naturally incorporated. Hence, we proceed under the assumption that all nodes have

self-loops.

Remark 7 In the absence of self-loops in G, the set of irreducible Markov chains over

G with prescribed stationary distribution might be empty; see [146] and the conjecture in

Section 4.6 for additional context.

Before we introduce the main result, we prove that the optimizer is irreducible. The

optimizer being irreducible ensures existence of the solution to Problem 2 as only irre-

ducible stochastic matrices have well-defined stationary distributions. In addition, we

also prove that the optimizer assigns a positive transition probability to every edge in

the graph, which is a property that shall be utilized in the proof of the main result.

Theorem 10 (Maxentropic Markov chains are well defined) Given a symmetric,

irreducible, binary matrix A ∈ {0, 1}n×n with unit diagonal entries and given a positive

vector π ∈ interior(∆n), Problem 2 satisfies the following properties:

(i) the cost function is strictly concave and the constraint set is compact and convex.

Hence, its global maximum solution P ∗ exists and is unique;

(ii) the optimizer P ∗ satisfies p∗ij > 0 whenever {i, j} is an edge of the graph G asso-

ciated to A. Hence, P ∗ is irreducible and has a well-defined stationary distribution

that must be equal to π.
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Because of statement (ii), we refer to P ∗ as the maxentropic Markov chain over G with

stationary distribution π.

Note that, for a symmetric, irreducible A ∈ {0, 1}n×n with unit diagonal entries, the

graph associated to A is undirected, unweighted, and connected and has self-loops at

each node.

Proof: [Proof of Theorem 10] Regarding statement (i), the function −p log(p) is

strictly concave with a strictly positive second-derivative for p > 0. The entropy rate is

a linear combination of strictly concave functions and hence H(P ) is strictly concave.

Regarding statement (ii), we first show, using a contradiction, that the diagonal

entries of P ∗ can not be zero. Assume that exactly one of the diagonal elements of

P ∗ is zero, i.e., there exists a single k ∈ {1, . . . , n} such that p∗kk = 0. We try to

find a contradiction. For every 0 < ε < 1
2
, define the matrix-valued function P̃ ∗(ε) =

(1 − ε)P ∗ + εIn. Note that, for every ε ∈ (0, 1
2
), we have P̃ ∗(ε) ≥ 0. Also, for every

ε ∈ (0, 1
2
), we have p̃∗ij ≥ 0 if {i, j} is an edge of G and p̃∗ij = 0 otherwise. One can

check that P̃ ∗(ε)1n = 1n and π>P̃ ∗(ε) = π>. These facts imply that, for every ε ∈ (0, 1
2
),

the matrix P̃ ∗(ε) is in the feasible set of Problem 2. By the Mean Value Theorem [147,

Theorem 5.10], for every ε ∈ (0, 1
2
), there exists cε ∈ (0, ε) such that

Hπ(P̃ ∗(ε))−Hπ(P ∗) =
∂Hπ(P̃ ∗)

∂ε

∣∣∣∣
cε

ε.

Note that, for i, j ∈ {1, . . . , n}, we have

∂Hπ(P̃ ∗)

∂p̃∗ij
= πi(log((1− ε)p∗ij) + 1), ∀i 6= j,

∂Hπ(P̃ ∗)

∂p̃∗ii
= πi(log((1− ε)p∗ii + ε) + 1).
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Using the chain rule, we compute

∂Hπ(P̃ ∗)

∂ε
=

n∑
i=1

n∑
j=1

∂Hπ(P̃ ∗)

∂p̃∗ij

∂p̃∗ij
∂ε

=
n∑
i=1

∂Hπ(P̃ ∗)

∂p̃∗ii

∂p̃∗ii
∂ε

+
n∑
i=1

n∑
j=1,j 6=i

∂Hπ(P̃ ∗)

∂p̃∗ij

∂p̃∗ij
∂ε

= −
n∑
i=1

πi(log((1− ε)p∗ii + ε) + 1)(1− p∗ii)

+
n∑
i=1

n∑
j=1,j 6=i

πi(log((1− ε)p∗ij) + 1)(p∗ij)

Using the fact that p∗kk = 0, we get

∂Hπ(P̃ ∗)

∂ε
= −πk(log(ε) + 1)

−
n∑

i=1,i 6=k

πi(log ((1− ε)p∗ii + ε) + 1)(1− p∗ii)

+
n∑
i=1

n∑
j=1,j 6=i

πi(log((1− ε)p∗ij) + 1)(p∗ij).

Hence we obtain

1

ε

(
Hπ(P̃ ∗(ε))−Hπ(P ∗)

)
= −πk(log(cε) + 1)

−
n∑

i=1,i 6=k

πi
(

log ((1− cε)p∗ii + cε) + 1
)
(1− p∗ii)

+
n∑
i=1

n∑
j=1,j 6=i

πi(log((1− cε)p∗ij) + 1)p∗ij.

Since cε ∈ (0, 1
2
) and p∗ii 6= 0, for every i 6= k, the term

∑
k 6=i πi(log((1−cε)p∗ii+1)+1)(1−

p∗ii) is bounded. Similarly, since for every i 6= j, p∗ij 6= 0, the term
∑∑

i 6=j πi(log((1 −

cε)p
∗
ij)+1)p∗ij is bounded. Thus, by choosing ε small enough, one can make cε small enough
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and, therefore, the term −πk(log(cε) + 1) large enough. Thus, there exists ε∗ ∈ (0, 1
2
)

such that

Hπ(P̃ ∗(ε))−Hπ(P ∗) > 0, for all ε ∈ (0, ε∗].

This is a contradiction, since we assumed that P ∗ is the solution to Problem 2. It is

straightforward to generalize this argument to the case when we have more zeros on the

diagonal of P ∗ Therefore, all the diagonal entries of P ∗ are strictly positive.

Next, assuming that all diagonal elements of P ∗ are positive, we show that, for every

i, j with i 6= j, if aij > 0, then p∗ij > 0. Assume that there exists exactly one pair (k, l)

such that akl > 0 but p∗kl = 0. We try to find a contradiction. Define the matrix Γ ∈ Rn×n

with all zero entries except for:

Γkk = −1, Γkl = 1, Γlk =
πk
πl
, and Γll = −πk

πl
.

Define η = min{ 1
1+p∗kk

, πl
πlp
∗
ll+πk
}. For every ε ∈ [0, η), we define the matrix function

P̃ ∗(ε) = (1 − ε)P ∗ + εΓ. One can show that, for every ε ∈ (0, η), we have P̃ ∗(ε) ≥ 0.

Moreover, for every ε ∈ (0, η), we have p̃∗ij ≥ 0 if {i, j} is an edge of G and p̃∗ij = 0

otherwise. One can check that P̃ ∗(ε)1n = 1n and π>P̃ ∗(ε) = π>. This implies that, for

every ε ∈ (0, η), the matrix P̃ ∗(ε) is in the feasible set of Problem 2. By the Mean Value

Theorem [147, Theorem 5.10], for every ε ∈ (0, η), there exists cε ∈ (0, ε) such that

Hπ(P̃ ∗(ε))−Hπ(P ∗) =
∂Hπ(P̃ ∗)

∂ε

∣∣∣∣
cε

ε.
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Using the chain rule, we compute

1

ε

(
Hπ(P̃ ∗(ε))−Hπ(P ∗)

)
=

n∑
i=1

n∑
j=1

∂Hπ(P̃ ∗)

∂p̃∗ij

∂p̃∗ij
∂ε

∣∣∣∣
cε

= −πk(log(cε)+1)+πk(log((1−cε)p∗kk−cε) + 1)(1+p∗kk)

− πl(log((1− cε)p∗lk +
πk
πl
cε) + 1)

(
πk
πl
− p∗lk

)
+ πl(log((1− cε)p∗ll −

πk
πl
cε) + 1)

(
p∗ll +

πk
πl

)
+
∑
i 6∈{k,l}

∑
j 6∈{k,l}

πi(log((1− cε)p∗ij) + 1)p∗ij. (4.16)

Note p∗ij = 0 if and only if (i, j) = (k, l). Since cε ∈ (0, η), by choosing ε small enough,

one can make −πk(log(cε) + 1) large enough while the remaining terms in the right hand

side of (4.16) are bounded. Therefore, there exists ε∗ ∈ (0, η) such that

Hπ(P̃ ∗(ε))−Hπ(P ∗) > 0, for all ε ∈ (0, ε∗].

This contradicts the fact that P ∗ is the solution to Problem 2. The generalization of this

argument to the case where we have more zeros in P ∗ is straightforward. Hence, p∗ij = 0

if and only if {i, j} is not an edge of the graph G.

4.4.2 Main result

Having motivated the problem of finding the maximum entropy Markov chain subject

to graph and stationary distribution constraints and having obtained some preliminary

results, we finally present the solution to Problem 2.

Theorem 11 (Maxentropic Markov chains with prescribed stationary distribution)

Consider a symmetric, irreducible, binary matrix A ∈ {0, 1}n×n with unit diagonal en-
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tries and a positive vector π ∈ interior(∆n). Let x = φ−1
A (π) denote the solution to

[x]Ax = π (whose existence, uniqueness, positivity, and computation algorithm are given

in Theorems 8 and 9).

Then the maxentropic Markov chain over G with stationary distribution π is

P ∗ = ΦA(φ−1
A (π)) = [Ax]−1A[x]. (4.17)

Moreover, P ∗ is reversible and its entropy rate is

H(P ∗) = −2x>A[x] log(x) + π> log(π). (4.18)

We postpone the proof of this theorem to Section 4.4.4.

Remark 8 Theorem 11 implies the following result: if G has self-loops at each node,

then, for all π ∈ interior(∆n), there exists at least one Markov chain over G with sta-

tionary distribution π. �

We provide a corollary describing notable choices of the maxentropic vector in The-

orem 11.

Corollary 4 (Remarkable special cases) Given a symmetric, irreducible, binary ma-

trix A ∈ {0, 1}n×n with unit diagonal entries, let d = A1n and D = [A1n] denote its degree

vector and matrix, and let v and λ denote its dominant eigenvector and eigenvalue. Then

(i) the maxentropic Markov chain with stationary distribution (1>n d)−1d is

P ∗ = ΦA(1n) = [A1n]−1A,

with entropy rate

H(P ∗) = (1>n d)−1d> log(d);
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(This is the so-called equal neighbor random walk.)

(ii) the maxentropic Markov chain with stationary distribution v ◦ v/‖v ◦ v‖1 is

P ∗ = ΦA(v) =
1

λ
[v]−1A[v],

with entropy rate

H(P ∗) = log λ;

(This is the maxentropic Markov chain characterized in Theorem 6 as the solution

to Problem 1.)

(iii) if A = 1n1>n and π is arbitrary, then the maxentropic Markov chain over the com-

plete graph with stationary distribution π is

P ∗ = ΦA(π) = 1nπ
>,

with entropy rate

H(P ∗) = −π> log(π).

(The maxentropic vector for the complete graph is shown to be π in Theorem 9.)

Finally, we present an interesting property associated with maxentropic Markov

chains with prescribed stationary distribution, that is an extension of Theorem 6(ii).

Lemma 5 (All allowed permutations of a walk are equiprobable) Under the same

assumptions as in Theorem 11, consider a start node i and a final node j on the graph

G for which there exists a path i, l1, l2, . . . , lk, j and a path i, σ(l1), σ(l2), . . . , σ(lk), j for a

permutation σ. The following equiprobable path traversal property holds for maxentropic
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Markov chains:

P[i→ l1 → l2 → . . .→ lk → j]

= P[i→ σ(l1)→ σ(l2)→ . . .→ σ(lk)→ j].

We postpone the proof of this lemma to Section 4.4.4.

i

l1

l2

l3

l4

l5

j

Figure 4.1: The maxentropic Markov chain satisfies a weak version of equiprobability:
the probability of a walk through a set of nodes is equal, irrespective of the order of
the nodes. The probability of the red and blue walks depicted here are equal for a
maxentropic walk.

4.4.3 Computational complexity

In this subsection we show how our proposed procedure to compute maxentropic

chains with prescribed stationary distributions is useful not only to reveal their structure

and properties but also serves as a valuable method in terms of reducing computational

complexity. In short our claim is that:

To compute maxentropic Markov chains (as in Problem 2), the linear itera-

tion (4.8) and equality (4.17) (as stated in Theorem 11) are in general com-

putationally faster than general-purpose convex program solvers.

We establish this claim in two ways. First, we consider a variety of graphs, we

fix a given tolerance, and we observe empirically that that our proposed method has

significantly smaller runtimes than the standard CVX solver, see Table 4.1.
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Graph Linear itera-
tion (4.8) &
equality (4.17)

Newton-
Raphson
iteration (4.9)

CVX

Line 0.02s 0.01s 44.24s
Star 0.23s 0.01s 54.97s
Ring 0.02s 0.01s 37.53s
Lattice 0.01s 0.02s 40.42s
Complete∗ 0.01s 0.03s 575.58s

Table 4.1: Average runtimes of various methods over 100 runs on standard graph
topologies with 100 nodes to compute maxentropic Markov chains with a randomly
chosen stationary distribution for each run. Tolerance is fixed as 10−8 in all cases.
Computations were performed on a 2.9GHz processor.
∗We delete one edge from the complete graph as the iteration in Theorem 9 starts with the

solution to the complete graph.

Second, we analyze the computational complexity of the competing algorithms in

their two parts: the cost per iteration, and the number of iterations required to get

to within a specific tolerance of the optimal solution. In what follows we analyze each

algorithm and report the results in Table 4.2.

Method Cost per iteration No. of iterations
Linear iteration (4.8) &
equality (4.17)

O(n)−O(n2) O(1)-O(n)

Newton-Raphson itera-
tion (4.9)

O(n3) O(1)∗

CVX O(n3)-O(n6) O(
√
n)

Table 4.2: Computational complexity of various method to compute maxentropic
Markov chains with given stationary distribution.
∗ We can prove this bound for sparse graphs and in simulations the bound holds for complete

graphs.

For the linear iteration (4.8) in Theorem 9, each iteration consists of only matrix

multiplications with the adjacency matrix or a diagonal matrix, whose cost per iteration

is O(n) when the adjacency matrix A is sparse and O(n2) when A is dense. Also, a

careful study of the Banach Fixed Point Theorem and the estimates in Theorem 9 shows

that the number of iterations for a fixed tolerance depends on the maximum degree of

nodes in the graph. In particular, it can be shown that for sparse graphs such as ring

graphs and lattice graph, where the maximum degree does not change with the size of
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the graph, the number of iterations is O(1). However, for star graphs and dense graphs

such as the complete graph, the number of iterations is of order O(n). In short, the

effective worst case complexity across graph topologies for a fixed tolerance is O(n3).

For the Newton–Raphson iteration (4.9), the factorization of the Jacobian at each

step leads to O(n3) number of operations for each iteration. It can be shown that the

number of iterations necessary to obtain a solution within a fixed tolerance is O(1) for

sparse graphs. In simulations it is observed that the number of iterations is only weakly

dependent on the problem size even for dense graphs and is essentially a constant. We are

unable to provide an effective worst-case analysis for the number of iterations necessary

when the topology is dense, but across different graph topologies it appears safe to assume

that the worst case complexity for fixed tolerance is O(n3).

In general using a convex program solver would be computationally more expensive

as the search space for the convex program is Rm
≥0, where m = n2 − (2n − 1) − ne,

where ne is the number of edge constraints. Note that the stationary and stochastic

constraints in equations (4.14) and (4.15) effectively sum up to 2n− 1 constraints (it can

be shown that one of the constraints is redundant). When the graph is sparse m = O(n),

otherwise m = O(n2). Interior point methods used by convex program solvers would need

to compute the factorization of an O(m)× O(m) matrix at every iterations resulting in

a runtime complexity for each iteration of O(n3) for sparse graphs and O(n6) when

the graph is dense (see refs. [148, 149]). The worst-case dependence on problem size

is O(
√
n) [150]. Even assuming a constant dependence on problem size as is observed

in practice in most semidefinite program interior point solvers, the effective worst-case

runtime complexity for fixed tolerance is O(n3) for sparse graphs and O(n6) for dense

graphs. Also, note that CVX uses a successive approximation scheme to approximate

exponential and logarithmic functions [145, Section 11.3]. While this does not affect

the computational complexity of the procedure, there are no theoretical guarantees for
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convergence to the optimal solution for such an approximation.

Although this chapter presents numerical comparisons only with general purpose

convex program solvers, we note that convex programs with linear constraints can be

solved efficiently using first-order methods such as mirror descent [151]. Such methods

have the same worst-case computational complexity as our proposed linear iteration (4.8).

We expect our linear iteration to have lower constant factors than first-order methods for

dense graphs for the following reason: as our linear iteration operates on an n-dimensional

manifold whereas any first-order convex programming method operates on the space of

transition probabilities which is O(n2) for the case of dense graphs.

4.4.4 Proofs

Consider a Markov chain with transition matrix P on a graphG with binary adjacency

matrix A. Let the random variable Yt denote the observed transition on the graph G at

time t which can assume values on {1, . . . ,m}, where m =
∑

i

∑
j aij is the total number

of edges in the graph. If P is an irreducible Markov chain with stationary distribution π,

then for very large times t the probability that a transition from node i to node j occurs

is given by

lim
t→∞

P[Yt = {i, j}] = lim
t→∞

(P[Xt+1 = j |Xt = i]P[Xt = i]])

= P[Xt+1 = j |Xt = i] lim
t→∞

P[Xt = i]

= πipij.

(4.19)

This calculation motivates the following definition.

Definition 1 For an irreducible transition matrix P with stationary distribution π, de-

fine the ergodic flow matrix by

Q = [π]P. (4.20)
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Remark 9 The ergodic flow matrix Q is symmetric if and only if the associated Markov

chain P is reversible. �

Let qij denote the entries of Q. Note that qij is the probability associated with observing

a transition along an edge (i, j) at very large times t according to the calculation in

equation (4.19) and the sum of this probability over all edges is 1. The entropy associated

with this random variable is

H(Q) = −
n∑

i,j=1

qij log(qij). (4.21)

Lemma 6 (Relation between entropy rate and entropy of ergodic flow matrix)

For an irreducible transition matrix P with stationary distribution π,

Hπ(P ) = H(Q)−H(π), (4.22)

where H(π) =
∑n

i πi log(πi).

Proof: The entropy rate of an irreducible Markov chain P with a stationary distri-

bution π is given by

Hπ(P ) = −
∑
i,j=1

πipij log pij

= −
n∑

i,j=1

πipij(log(πipij)− log(πi))

= −
n∑

i,j=1

qij log(qij) +
n∑
i

πi log(πi)

= H(Q)−H(π).
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Consider the convex program which maximizes the entropy of the random variable

associated with the ergodic flow matrix.

Problem 3 (Maximize entropy of ergodic flows) Given a connected undirected un-

weighted graph G and a positive vector π ∈ interior(∆n), compute the ergodic flow matrix

Q ∈ Rn×n satisfying

max H(Q) (4.23)

subj. to Q ≥ 0, (4.24)

qij = 0, if {i, j} is not an edge of G, (4.25)

Q1n = π, (4.26)

Q>1n = π. (4.27)

Note that the matrix Q is well-defined only when its associated transition matrix has a

stationary distribution π. Hence an optimization algorithm might encounter instances

where qij = 0 when aij = 1 and hence its associated transition matrix is possibly re-

ducible. In such a case the matrix Q might not have the correct interpretation as the

ergodic flow matrix associated with its transition matrix P . However, as a result of

Theorem 10 we are guaranteed that the optimal solution Q∗ will have the appropriate

interpretation as the ergodic flow matrix associated with its transition matrix P ∗. Fur-

ther, since the ergodic flow matrix and its associated transition matrix are closely related

we have the following result.

Lemma 7 (Equivalence of Problem 2 and Problem 3) Given a stationary distri-

bution π, Problem 2 is equivalent to Problem 3 in the following sense:

(i) if p∗ij is the optimal solution to Problem 2, then q∗ij = πip
∗
ij is the optimal solution

to Problem 3, and
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(ii) if q∗ij is the optimal solution to Problem 3, then p∗ij = q∗ij/πi is the optimal solution

to Problem 2.

Proof: First, we shall show that the constraints (4.12)-(4.15) in Problem 2 are

equivalent to constraints (4.24)-(4.27) in Problem 3. Note that equation (4.20) and the

fact that π ∈ interior(∆n) implies that Q has the same zero/positive pattern as P . Hence

constraints (4.12), (4.13) are equivalent to constraints (4.24), (4.25) respectively. Note

that

P1n = 1n =⇒ [π]P1n = [π]1n =⇒ Q1n = π.

Hence constraint (4.14) is equivalent to constraint (4.26). Also constraint (4.15) is equiv-

alent to

P>π = P>π =⇒ P>[π]1n = π =⇒ Q>1n = π.

Hence constraint (4.15) is equivalent to constraint (4.27). This completes the proof of

equivalency of constraints.

Second, we shall show that the maximization of the objective function in Problem 2

is equivalent to the maximization of the objective function in Problem 2 subject to the

same constraints. For a given stationary distribution π, as a result of Lemma 6 Hπ(P )

and H(Q) differ by a constant quantity H(π). Hence the maximization of the objective

functions in the two problems are equivalent. Given an optimal solution P ∗ to Problem 2

one can construct an ergodic flow matrix Q∗ using equation (4.20) and vice-versa. Thus

(i) and (ii) hold.

Problem 4 (Relaxed convex program to maximize entropy of ergodic flows) Given

a connected undirected unweighted graph G and a positive vector π ∈ interior(∆n), com-
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pute Q such that

max H(Q) (4.28)

subj. to Q ≥ 0, (4.29)

qij = 0, if {i, j} is not an edge of G, (4.30)

Q1n +Q>1n = 2π. (4.31)

One can show that when the graph G has self-loops at each node, the optimal values

of Problem 3 and Problem 4 are the same.

Theorem 12 (Equality of solutions to Problem 3 and Problem 4) Let G be a con-

nected undirected graph with self-loop at each node, A be the binary adjacency matrix

associated to G, and π ∈ interior(∆n) be a positive vector. Denote the optimal value of

Problem 4 by Q∗r and the optimal value of Problem 3 by Q∗. Then the following statements

hold:

(i) Q∗r = Q∗,

(ii) there exists a vector x ∈ Rn
>0 such that Q∗ = [x]A[x].

Proof:

Note that graph and stationary constraints are identical in both problem formulations.

Further constraint (4.31) in Problem 4 is obtained by adding (4.26) and (4.27). Therefore,

the feasible set of Problem 4 is larger than the feasible set of Problem 3 and thus we have

H(Q∗) ≤ H(Q∗r).

Using similar arguments to the proof of Theorem 10, one can show that if Q∗r = [q∗ij]

is the solution for Problem 4, then we have q∗ij > 0 if and only if aij = 1. This implies
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that Q∗r is the critical point of the Lagrange dual function L : R|E| ×Rn → R defined by

L(Q, λ) = −
∑
{i,j}∈E

qij log qij −
n∑
i=1

∑
{i,j}∈E

λi(qij + qji − 2πi),

where E is the edge set of the graph G. Setting the partial derivatives of L to zero, for

every {i, j} ∈ E , we obtain

∂L
∂qij

= 1 + log qij − λi − λj.

Introducing new Lagrange multipliers λ̃i = λi + 1/2, the solution Q∗r = [q∗ij] satisfies

q∗ij = aij exp−λ̃i exp−λ̃j .

Let xi = exp−λ̃i then q∗ij = aijxixj or in matrix notation Q∗r = [x]A[x]. Substituting

this solution into the constraints in Problem 4 and using the fact that aij = aji,

∑
j

aijxixj +
∑
j

ajixjxi = 2πi

=⇒ xi
∑
j

aijxj = πi

=⇒ [x]Ax = π.

Note that A is symmetric, binary matrix with unit diagonal entries. Thus, by Theorem 8,

there exists a unique x∗ ∈ Rn
>0 such that [x∗]Ax∗ = π. Therefore the global maximum of

the concave function H is given by

Q∗r = [x∗]A[x∗]. (4.32)

One can verify that the solution Q∗r also satisfies constraints (4.26) and (4.27) in Prob-

lem 3. This, together with the fact that the feasible set of Problem 4 is larger than the
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feasible set of the Problem 3, implies that Q∗r = Q∗. This completes the proof of the

part (i). Part (ii) of the theorem follows from part (i) and equation 4.32.

Now we have the requisite results to prove Theorem 11.

Proof: [Proof of Theorem 11] Using Lemma 7 and Theorem 12, the solution P ∗ = [p∗ij]

to Problem 2 is given by p∗ij = (Ax)−1
i aijxj or in matrix notation as P ∗ = [Ax]−1A[x] =

ΦA(x). Also as a result of (iv) in Theorem 4.5 P ∗ is reversible.

The entropy of the ergodic flow matrix Q∗ is given by

H(Q∗) = −
n∑

i,j=1

q∗ij log q∗ij

= −
n∑

i,j=1

aijxixj(log xi + log xj)

= −2
n∑
i

xi

n∑
j

aijxj log(xj) = −2x>A([x] log(x)).

The entropy rate of P ∗ is given by Hπ(P ∗) = H(Q∗) − H(π). The quantity H(π) =

−π> log π in vector notation and hence the result in equation (4.18).

Proof: [Proof of Lemma 5] Note that from equations (4.20) and (4.32) we can write

the probability of transition from s to t as

pst =
astxsxt
πs

.

For the sake of brevity let σm = σ(lm) for every 1 ≤ m ≤ k. Consider the probability of
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any valid permutation of the path i, l1, l2, . . . , lk, j being traversed. This is given by

piσ1pσ1σ2 . . . pσkj = aiσ1aσ1σ2 . . . aσkj
xixσ1xσ1xσ2 . . . xσkxj
πiπσ1πσ2 . . . πσk

=
xixj
πi

x2
σ1
x2
σ2
. . . x2

σk

πσ1πσ2 . . . πσk

= pijpσ1σ1pσ2σ2 . . . pσkσk .

The quantity pσ1σ1pσ2σ2 . . . pσkσk is invariant to permutations of the sequence {lm}1≤m≤k.

Hence all such paths are equiprobable.

4.5 Application to robotic surveillance

In this section, we apply maxentropic chains with non-uniform stationary distribu-

tions to the design of robotic surveillance strategies over graphs.

4.5.1 Setup

We consider scenarios in which (i) surveillance agents move on a roadmap (i.e., an

undirected graph) according to a discrete-time random walk, (ii) intruders appear at

random locations on the roadmap at random times, (iii) intruders can observe the local

presence/absence of the surveillance agent(s) and decide when to attack and (iv) the

intruder attack is detected precisely when a surveillance agent and the intruder are at

the same location during the intruder attack. We consider the following settings: a

single agent on a ring, a single agent on a lattice (see Fig. 4.2), and multiple agents on

a partitioned map of a realistic environment (see Fig. 4.3).
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Figure 4.2: Comparison of maxentropic Markov chain strategy with minimum hit-
ting time strategy. The size of the nodes indicate the stationary distribution value
associated with the node and opacity of arrows indicate magnitude of transition prob-
ability. The worst hitting time for the minimum hitting time Markov chain is denoted
by max

i,j
hij .
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4.5.2 Intruder models

Given a probability vector π ∈ ∆n, we consider the following intruders models.

(i) The Random Intruder : The random intruder has no knowledge of the position of

the surveillance agent(s). Such an intruder selects a node i with probability πi. The

attack takes an arbitrary duration which is quantified by the number of transitions

performed by the agent(s).

(ii) The Intelligent Intruder : The intelligent intruder selects a node i with probability

πi, waits for a/the surveillance agent to arrive at the node, and commences an

attack lasting for an arbitrary duration in the timestep immediately following the

visit of the surveillance agent. The attack duration is quantified by the number of

transitions performed by the agent(s). (Intelligent intruders have been previously

studied for example by [51, 54].)

We visualize and design the probability vector π as follows. In Fig. 4.2 the size of

the nodes depicts the importance of the node and hence the desired visit frequency.

For the ring graph, the north, east, west and south nodes have been assigned twice the

priority of the remaining nodes. For the lattice graph, the central node has twice the

priority of the peripheral nodes. In Fig. 4.3, which depicts the multi-agent case, we pre-

partition the graph for four agents and specify visit frequencies such that all nodes have

the same priority. Equal priority with overlapping subgraphs is achieved by specifying a

non-uniform visit frequency for each agent on their individual subgraphs. We do this by

splitting the visit frequency load equally between the agents for shared nodes.
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4.5.3 Surveillance strategies

First, we assume that the intruders and surveillance agents assign the same level of

priority to nodes in the graph. In other words, visit frequencies by surveillance agents

are biased in a manner so as to be proportional to intruder attacks. Second, we consider

two policies for the surveillance agent:

(i) The maxentropic agent : The surveillance agent adopts a policy which is the max-

entropic Markov chain with visit frequencies proportional to the importance of the

node, i.e., the solution described in Theorem 11.

(ii) The minimum hitting time agent : Let {hij(P )}ij denote the matrix of mean hitting

times for the Markov chain modeled by the transition matrix P . Consider the

following optimization program.

Problem 5 (Nonlinear program to minimize mean hitting time) Given a

connected undirected unweighted graph G and a positive vector π ∈ interior(∆n),

compute P such that

min
∑
i

∑
j

πiπjhij(P )

subj. to P ≥ 0,

pij = 0, if aij = 0,

P1n = 1n,

π>P = π>.

The solution to this nonlinear program is the Markov chain adopted by the mini-

mum hitting time agent. The numerical optimization is conducted using a sequen-

tial quadratic programming solver as implemented by the KNITRO/TOMLAB
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Figure 4.3: Comparison of maxentropic Markov chain strategy with minimum hitting
time strategy for the multi-agent case on a partitioned graph. The color(s) of the
node indicates which agent(s) are surveilling the node and the opacity of the arrows
indicate transition probabilities.

package; for the graph sizes of interest here, this package reliably computes the

global minimum solutions. This nonlinear program is identical to the formulation

in [53, Problem 1] for a single agent.

For the multi-agent case, each agent performs either the maxentropic Markov chain

strategy or the minimum hitting time strategy on their respective subgraphs. There is no

actual coordination among the agents (except the joint specification of individual visit

frequencies).

4.5.4 Simulation Results

Results for Random Intruders. For the random intruder, for all choices of visit fre-

quencies on a variety of graph topologies, we find that the minimum hitting time agent

outperforms the maxentropic agent for all attack durations. The minimum hitting time

Markov chain results in faster travel times through the graph. In the absence of knowl-

edge of attack durations, simulations indicate that a strategy with emphasis on fast travel

times (small hitting times) performs better than one with emphasis on unpredictability
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such as the maxentropic chain. Maxentropic Markov chains by their reversible nature

have mixing times of O(D2) where D is the diameter of the graph [152]. For reversible

Markov chains bounds exist on the mixing time and the mean hitting time showing that

these notions are equivalent [123]. Thus the maxentropic agent has mean hitting time

O(D2) whereas it is likely that minimum hitting time agent achieves hitting times of

O(D) in all cases, though such a result remains to be proved.

Results for Intelligent Intruders. For the intelligent intruder with relatively short

attack durations, we note that the maxentropic strategy outperform the minimum hitting

time strategy. It stands to reason that, for attack durations larger than the worst hitting

time of the chain, the capture of the intelligent intruder is very probable for the minimum

hitting time strategy (capture is certain for cases on the ring with uniform stationary

distribution where the minimum hitting time strategy is a clockwise or a counterclockwise

traversal). In simulations, it is observed that for attack durations which are larger than

the worst hitting times of the minimum hitting time chain, the minimum hitting time

strategy performs better (see Fig. 4.2). Analysis of the hitting times of the maxentropic

chain might reveal an exact condition of the regime of attack durations wherein each

strategy leads to higher capture rates.

We summarize these results in Table 4.3. In short, these results indicate that intro-

ducing unpredictability into surveillance strategies is appropriate in the important and

realistic setting where (i) the intruder uses knowledge of the agents’ locations to plan its

attacks (e.g., attacking as soon as an agent leaves), and (ii) attack have sufficiently short

duration so that they are not detectable by simple fast surveillance agents.

Random Intruder Intelligent Intruder
Maxentropic Agent Low capture rate High capture rate when

attack duration is low
Min. Hitting Agent High capture rate High capture rate when

attack duration is high

Table 4.3: Qualitative summary of results for intruder and agent models.
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4.6 Summary

In this chapter we considered the optimization problem of maximizing the entropy

rate of a Markov chain with prescribed stationary distribution. We showed this problem

is strictly convex with a unique global optimizer. We provided a fast iterative algo-

rithm with rigorous convergence guarantees to compute the so-called entropic vector; as

a function of this entropic vector, we provide a closed-form formula for the maximum

entropy Markov chain with prescribed stationary distribution. We then characterized

several properties of maxentropic chains. The interest for Markov chains with maxi-

mum entropy and prescribed stationary distributions arises naturally in robotic surveil-

lance; accordingly we showed some realizations of optimal chains for prototypical robotic

roadmaps.
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Chapter 5

Markov Chains with Maximum
Return Time Entropy

5.1 Introduction

5.1.1 Problem description and motivation

Given a Markov chain, the first return time of a given node is the first time that

the random walker returns to the starting node; this is a discrete random variable with

infinite support and whose randomness is measured by its entropy. In this chapter, given

a strongly connected directed graph with integer-valued travel times (weights) and a

prescribed stationary distribution, we study Markov chains with maximum return time

entropy. Here the return time entropy of a Markov chain is a weighted average of the

entropy of different states’ return times with weights equal to the stationary distribution.

We design stochastic surveillance strategies with an entropy maximization objective in

order to thwart intruders who plan their attacks based on observations of the surveillance

agent. The randomness in the first return time is desirable because an intelligent intruder

observing the inter-visit times of the surveillance agent is confronted with a maximally

unpredictable return pattern by the surveillance agent. The maximization of randomness

in return times is expected to be more effective than maximization of unpredictability
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in the sequence of locations as achieved by the maximum entropy rate Markov chain in

chapter 4.

5.1.2 Organization

This chapter is organized as follows. We formulate the return time entropy maxi-

mization problem in Section 5.2. We establish the properties of the return time entropy

in Section 5.3. The approximation analysis and the gradient formulas are provided in

Section 5.4. We present the simulation results regarding the robotic surveillance problem

in Section 5.5. Section 5.6 concludes the chapter.

5.1.3 Notation and useful lemmas

Let R, Z≥0, and Z>0 denote the set of real numbers, nonnegative and positive integers,

respectively. In addition to building on matrix notation from the previous two chapters,

we utilize the notation [S] to denote a diagonal matrix with diagonal elements being S

if S is a vector, or being the diagonal of S if S is a square matrix. The following lemmas

are useful.

Lemma 8 (A uniform bound for stable matrices [153, Proposition D.3.1]) Assume the

matrix subset A ⊂ Rn×n is compact and satisfies

ρA := max
A∈A

ρ(A) < 1.

Then for any λ ∈ (ρA, 1) and for any induced matrix norm ‖ · ‖, there exists c > 0 such

that

‖Ak‖ ≤ cλk, for all A ∈ A and k ∈ Z≥0.
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Lemma 9 (Weierstrass M-test [147, Theorem 7.10]) Given a set X , consider the se-

quence of functions {fk : X → R}k∈Z>0. If there exists a sequence of scalars {Mk ∈

R}k∈Z>0 satisfying
∑∞

k=1Mk <∞ and

|fk(x)| ≤Mk, for all x ∈ X , k ∈ Z>0,

then
∑∞

k=1 fk converges uniformly on X .

Lemma 10 (Geometric distribution generates maximum entropy [154]) Given a discrete

random variable Y ∈ Z>0 and E[Y ] = µ ≥ 1, the probability distribution with maximum

entropy is

P[Y = k] = (1− 1

µ
)k−1 1

µ
, k ∈ Z>0,

with entropy

H(Y ) = µ log µ− (µ− 1) log(µ− 1). (5.1)

5.2 Problem formulation

We introduce definitions and some preliminary results which lead to the formulation

of the maximum return time entropy problem.

5.2.1 Return time of random walks

In this chapter, we consider a strongly connected directed weighted graph G =

{V, E ,W}, where V denotes the set of n nodes {1, . . . , n}, E ⊂ V × V denotes the

set of edges, and W ∈ Zn×n≥0 is the integer-valued weight (travel time) matrix with wij

being the one-hop travel time from node i to node j. If (i, j) /∈ E , then wij = 0; if

(i, j) ∈ E , then wij ≥ 1. Let wmax = maxi,j{wij} be the maximum travel time.

114



Markov Chains with Maximum Return Time Entropy Chapter 5

Given the graph G = {V, E ,W}, let Xk ∈ {1, . . . , n} denote the location of a random

walker on G following a transition matrix P at time k ∈ Z≥0. For any pair of nodes

i, j ∈ V , we recall that the first hitting time from i to j, denoted by Tij, is the first time

the random walk reaches node j starting from node i, that is

Tij = min
{ k−1∑
k′=0

wXk′Xk′+1
|X0 = i,Xk = j, k ≥ 1

}
. (5.2)

In particular, the return time Tii of node i is the first time the random walk returns to

node i starting from node i. Let the (i, j)-th element of the first hitting time probability

matrix Fk denote the probability that the random walk reaches node j for the first time

in exactly k time units starting from node i, i.e., Fk(i, j) = P [Tij = k].

5.2.2 Return time entropy of random walks

For an irreducible Markov chain, the return time Tii of each state i is a well-defined

random variable over Z>0. We define the return time entropy of state i by

H(Tii) = −
∞∑
k=1

P [Tii = k] logP [Tii = k]

= −
∞∑
k=1

Fk(i, i) logFk(i, i), (5.3)

where the logarithm is the natural logarithm and 0 log 0 = 0.

Remark 10 (Coprime travel times) The return time entropy of states does not change

when we scale the travel times on all edges simultaneously by the same factor. Therefore,

we assume the weights on the graph are coprime.

Definition 2 (The set of Markov chains ε-conforming to a graph) Given a strongly con-

nected directed weighted graph G = {V, E ,W} with n nodes and the stationary distribution
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π > 0, pick a minimum edge weight ε > 0, the set of Markov chains ε-conforming to G

is defined by

PεG,π = {P ∈ Rn×n | pij ≥ ε if (i, j) ∈ E ,

pij = 0 if (i, j) /∈ E ,

P1n = 1n, π
>P = π>}.

Definition 3 (Return time entropy) Given a set PεG,π, define the return time entropy

function J : PεG,π 7→ R≥0 by

J (P ) =
n∑
i=1

πiH(Tii). (5.4)

Remark 11 (The expectation of the first return time) For an irreducible Markov chain

defined over a weighted graph with travel times, [52, Theorem 6] states

E[Tii] =
π>(P ◦W )1n

πi
, (5.5)

where ◦ is the Hadamard element-wise product. For unitary travel times, this formula

reduces to the usual E[Tii] = 1/πi. In both cases, the first return times expectations are

inversely proportional to the entries of π.

In general, it is difficult to obtain the closed-form expression for the return time

entropy function.

Examples 13 (Two special cases with unitary travel times) The elementary proofs of

the following results are omitted in the interest of brevity.

(i) (Two-node complete graph case) Given a two-node complete graph G with unit
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weights, if the transition matrix P ∈ PεG,π has the following form

P =

p11 p12

p21 p22

 ,
then the return time entropy function is

J (P ) = −2π1p11 log(p11)− 2π2p22 log(p22)

− 2π1p12 log(p12)− 2π2p21 log(p21).

(ii) (Complete graph case with special structure) Given an n ≥ 2-node complete graph G

with unit weights and the stationary distribution π = 1
n
1n, if the transition matrix

P ∈ PεG,π has the form

P = (a− b)In + b1n1>n ,

for any a ≥ 0 and b > 0 satisfying a + (n − 1)b = 1, then the return time entropy

function is

J (P ) = −a log(a)− (n− 1)b log
(
(n− 1)b2

)
− (n− 1)(1− b) log(1− b).

In this chapter, we are interested in the following problem.

Problem 6 (Maximization of the return time entropy) Given a strongly connected di-

rected weighted graph G = {V, E ,W} and the stationary distribution π > 0, pick a mini-
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mum edge weight ε > 0, the maximization of the return time entropy is as follows.

maximize J (P )

subject to P ∈ PεG,π

5.3 Properties of the return time entropy

5.3.1 Dynamical model for hitting time probabilities

In this subsection, we characterize a dynamical model for the first hitting time prob-

abilities and establish several important properties of the model.

Theorem 14 (Linear dynamics for the first hitting time probabilities) Consider a tran-

sition matrix P ∈ Rn×n that is nonnegative, row-stochastic and irreducible. Then

(i) the hitting time probabilities Fk, k ∈ Z>0, satisfy the discrete-time delayed linear

system with a finite number of impulse inputs:

vec(Fk) = vec(P ◦ 1{k1n1>n=W}) +
n∑
i=1

n∑
j=1

pij(Ej ⊗ eie
>
j ) vec(Fk−wij), (5.6)

where Ei = [1n − ei] ∈ Rn×n, and the initial conditions are vec(Fk) = 0n2 for all

k ≤ 0;

(ii) if the weights are unitary, i.e., wij ∈ {0, 1}, then the hitting time probabilities

satisfy

vec(Fk) = (In ⊗ P )(In2 − [vec(In)]) vec(Fk−1), (5.7)

where the initial condition is F1 = P .
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Proof: By definition in (5.2), Fk(i, j) satisfies the following recursive formula for

k ∈ Z>0

Fk(i, j) = pij1{k=wij} +
n∑

h=1,h 6=j

pihFk−wih(h, j), (5.8)

where 1{·} is the indicator function and Fk(i, j) = 0 for all k ≤ 0 and i, j ∈ V .

Let Dk(i) ∈ Rn×n be a matrix associated with node i at time k that has the form

Dk(i) =
∑
j∈Ni

eje
>
j Fk−wij ,

where Ni is the set of out-going neighbors of node i. Then, (5.8) can be written in the

following matrix form

Fk = P ◦ 1{k1n1>n=W} +
n∑
i=1

eie
>
i P (Dk(i)− [Dk(i)]). (5.9)

Vectorizing both sides of (5.9), we have

vec(Fk) = vec(P ◦ 1{k1n1>n=W})

+
n∑
i=1

(In ⊗ eie
>
i P )(In2 − [vec(In)]) vec(Dk(i)).

Note that

vec(Dk(i)) =
∑
j∈Ni

(In ⊗ eje
>
j ) vec(Fk−wij),

and

(In2 − [vec(In)])(In ⊗ eje
>
j ) = Ej ⊗ eje

>
j .

Therefore, we have (5.6).
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Moreover, if the travel times are unitary, then F1 = P and

n∑
i=1

n∑
j=1

pij(Ej ⊗ eie
>
j ) = (In ⊗ P )(In2 − [vec(In)]). (5.10)

Thus, equation (5.7) follows.

The dynamical system (5.6) can be transformed to an equivalent homogeneous linear

system by restarting the system at k = wM with same system matrices and appropriate

initial conditions. Moreover, we can augment the system and obtain a discrete-time

linear system without delays. This equivalent augmented system is useful for example in

studying stability properties. For k ≥ 1, we have



vec(Fk+wmax)

vec(Fk+wmax−1)

...

vec(Fk+1)


= Ψ



vec(Fk+wmax−1)

vec(Fk+wmax−2)

...

vec(Fk)


, (5.11)

where

Ψ =



Φ1 Φ2 · · · · · · Φwmax

In2 0n2×n2 · · · · · · 0n2×n2

0n2×n2 In2 · · · · · · 0n2×n2

...
...

. . . · · · 0n2×n2

0n2×n2 · · · · · · In2 0n2×n2


, (5.12)

and for h ∈ [1, wmax],

Φh =
n∑
i=1

n∑
j=1

pij(Ej ⊗ eie
>
j )1{wij=h}. (5.13)

The initial conditions for (5.11) can be computed using (5.6). For brevity, we denote
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[
vec(Fk+wmax−1) · · · vec(Fk)

]>
by vec(F̃k)

>.

Lemma 11 (Properties of the linear dynamics for the first hitting time probabilities) If

P ∈ Rn×n is nonnegative, row-stochastic and irreducible, then

(i) the matrix (In ⊗ P )(In2 − [vec(In)]) is row-substochastic with ρ
(
(In ⊗ P )(In2 −

[vec(In)])
)
< 1.

(ii) the delayed discrete-time linear system with a finite number of impulse inputs (5.6)

is asymptotically stable;

(iii) vec(Fk) ≥ 0 for k ∈ Z>0 and
∑∞

k=1 vec(Fk) = 1n2×1.

Proof: Regarding (i), note that the matrix (In⊗P )(In2− [vec(In)]) is block diagonal

with the i-th block being PEi. Since P is irreducible, there is at least one positive entry

in each column of P . Therefore PEi’s are row-substochastic and so is (In ⊗ P )(In2 −

[vec(In)]). By [53, Lemma 2.2], ρ(PEi) < 1 for all i ∈ {1, . . . , n} and ρ((In ⊗ P )(In2 −

[vec(In)])) = maxi ρ(PEi) < 1.

Regarding (ii), since we can rewrite (5.6) as (5.11) with appropriate initial condi-

tions and Φi’s are nonnegative, by the stability criterion for delayed linear systems [155,

Theorem 1], (5.6) is asymptotically stable if

ρ
( wmax∑

i=1

Φi

)
= ρ
(
(In ⊗ P )(In2 − [vec(In)])

)
< 1,

which is true by (i).

Regarding (iii), first note that all the system matrices are nonnegative, thus vec(Fk) ≥
0 for all k ∈ Z>0. Moreover, due to (ii), the delayed linear system (5.6) is asymptotically
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stable. Summing both sides of (5.6) over k, we have

∞∑
k=1

vec(Fk) = vec(P ) +
n∑
i=1

n∑
j=1

pij(Ej ⊗ eie
>
j )
∞∑
k=1

vec(Fk)

= vec(P ) + (In ⊗ P )(In2 − [vec(In)])

∞∑
k=1

vec(Fk),

which implies that
∑∞

k=1 vec(Fk) = 1n2×1.

5.3.2 Well-posedness of the optimization problem

We here show that the function J is continuous over the compact set PεG,π. Then,

by the extreme value theorem, J has a (possibly non-unique) maximum point in the set

and thus Problem 6 is well-posed.

Lemma 12 (Continuity of the return time entropy function) Given the compact set PεG,π,

the following statements hold:

(i) there exist constants λmax ∈ (0, 1) and c > 0 such that

Fk(i, i) ≤ cλkmax, for all k ∈ Z>0, i ∈ {1, . . . , n};

(ii) the return time entropy functions H(Tii), i ∈ {1, . . . , n}, and J (P ) are continuous

on the compact set PεG,π; and

(iii) Problem 6 is well-posed in the sense that a global optimum exists.

Proof: Regarding (i), for k ≥ wM +1, since the spectral radius ρ(Ψ) is a continuous

function of Ψ [124, Example 7.1.3], where Ψ is given in (5.12), and Ψ is a continuous

function of P , ρ(Ψ) is a continuous function of P . Hence, by Lemma 11(ii) and the
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extreme value theorem, there exists a ρmax < 1 such that

ρmax = max
P∈PεG,π

ρ(Ψ) < 1.

Therefore, for k ≥ wM + 1 and i ∈ {1, . . . , n}, by Lemma 8, there exist c1 > 0 and

ρmax < λmax < 1 such that

Fk(i, i) ≤ ‖ vec (F̃k−wmax+1)‖∞

= ‖(Ψ)k−wmax vec(F̃1)‖∞

≤ ‖(Ψ)k−wmax‖∞‖ vec(F̃1)‖∞

≤ c1λ
k−wmax
max =

c1

λwmax
max

λkmax.

Let c = max{ c1
λwmax
max

, 1
λwmax
max
}, then we have for k ≥ wM + 1,

Fk(i, i) ≤
c1

λwmax
max

λkmax < cλkmax.

For k ≤ wM ,

cλkmax ≥ cλwmax
max ≥ 1 ≥ Fk(i, i).

Therefore, we have (i).

Regarding (ii), due to (i), there exists a positive integer K that does not depend on

the elements of PεG,π such that when k ≥ K, cλkmax ≤ e−1. Since x 7→ −x log x is an

increasing function for x ∈ [0, e−1], when k ≥ K,

−Fk(i, i) logFk(i, i) ≤ −cλkmax log(cλkmax) := Mk.
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For k < K, −Fk(i, i) logFk(i, i) ≤ e−1 := Mk. Then

K−1∑
k=1

Mk =
K − 1

e
,

and

∞∑
k=K

Mk = −
∞∑
k=K

cλkmax log(cλkmax)

= −c log c

∞∑
k=K

λkmax − c log(λmax)

∞∑
k=K

kλkmax

= −c
( λKmax

1− λmax
log(cλKmax) +

λK+1
max

(1− λmax)2
log(λmax)

)
. (5.14)

Hence,

∞∑
k=1

Mk =
K−1∑
k=1

Mk +
∞∑
k=K

Mk <∞,

which holds for any i and any transition matrix in the compact set PεG,π. By Lemma 9, the

series −∑∞k=1 Fk(i, i) logFk(i, i) converges uniformly. Since the the limit of a uniformly

convergent series of continuous function is continuous [147, Theorem 7.12], H(Tii) is

a continuous function on PεG,π. Finally, J (P ) is a finite weighted sum of continuous

functions H(Tii), thus J (P ) is a continuous function.

Regarding (iii), because J is a continuous function over the compact set PεG,π, the ex-

treme value theorem ensures that Problem 6 admits a global optimum solution (possibly

non-unique) and is therefore well-posed.
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5.3.3 Optimal solution for complete graphs with unitary travel

times

We here provide (1) an upper bound for the return time entropy with unitary travel

times based on the principle of maximum entropy and (2) the optimal solution to Prob-

lem 6 for the complete graph case with unitary travel times.

Lemma 13 (Maximum achieved return time entropy in a complete graph with unitary

weights) Given a strongly connected graph G with unitary weights and the compact set

PεG,π,

(i) the return time entropy function is upper bounded by

J (P ) ≤ −
n∑
i=1

(πi log πi + (1− πi) log(1− πi));

(ii) when the graph G is complete, the upper bound is achieved and the transition matrix

that maximizes the return time entropy J (P ) is given by P = 1nπ>.

Proof: Regarding (i), by Remark 11, in the case of unitary travel times, we have

E[Tii] = 1/πi. Thus, Tii is a discrete random variable with fixed expectation, whose

entropy is bounded as shown in Lemma 10. For any transition matrix P ∈ PεG,π, the

return time entropy function J (P ) satisfies

J (P ) =

n∑
i=1

πiH(Tii) ≤
n∑
i=1

πi max
Tii
{H(Tii)}

=
n∑
i=1

πi
( 1

πi
log

1

πi
− (

1

πi
− 1) log(

1

πi
− 1)

)
= −

n∑
i=1

(
πi log πi + (1− πi) log(1− πi)

)
,

where the third line uses (5.1).
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Regarding (ii), when the graph is complete and P = 1nπ>, the return time Tii follows

the geometric distribution:

P(Tii = k) = πi(1− πi)k−1.

Then by Lemma 10, we obtain the results.

5.3.4 Relations with the entropy rate of Markov chains

Given an irreducible Markov chain P with n nodes and stationary distribution π,

recall that the entropy rate of P is given by

H(P ) = −
n∑
i=1

πi

n∑
j=1

pij log pij.

We next study the relationship between the return time entropy J with unitary travel

times and the entropy rate H.

Theorem 15 (Relations between the return time entropy with unitary travel times and

the entropy rate) For all P in the compact set PεG,π where G has unitary travel times, the

return time entropy J (P ) and the entropy rate H(P ) satisfy

H(P ) ≤ J (P ) ≤ nH(P ), (5.15)

where n is the number of nodes in the graph G.

We prove this theorem The proof of the following theorem follows from Lemmas 15 and

Lemma 16 below.

Remark 12 Theorem 15 establishes a large gap, possibly of size O(n), between H(P )

and J (P ) and, thereby, optimizing H and J are two different matters altogether.
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First, we show that the return time entropy is upper bounded by n times of the

entropy rate. As in [67], we define a Markov trajectory from state i to state j to be a

path with initial state i, final state j, and no intervening state equal to j. Let Tij be the

set of all Markov trajectories from state i to state j. Let P [`] denote the probability of

a Markov trajectory ` ∈ Tij; clearly
∑

`∈Tij P [`] = 1. Let Lij be the Markov trajectory

random variable that takes value ` in Tij with probability P [`]. Finally, we define the

entropy of Lij by

H(Lij) = −
∑
`∈Tij

P [Lij = `] logP [Lij = `] .

Lemma 14 (Entropy of Markov trajectories [67, Theorem 1]) For an irreducible Markov

chain with transition matrix P , the entropy H(Lii) of the random Markov trajectory from

state i back to state i is given by

H(Lii) =
H(P )

πi
.

Through the entropy of the Markov trajectories, we are able to establish the upper

bound of the return time entropy in (5.15).

Lemma 15 (Upper bound of the return time entropy by n times of the entropy rate)

Given the compact set PεG,π,

(i) the return time entropy is upper bounded by

J (P ) ≤ nH(P ), for all P ∈ PεG,π; (5.16)

(ii) the equality in (5.16) holds if and only if any node of the graph G has the property

that all distinct first return paths have different length, i.e., the return paths are
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distinguishable by their lengths, and in this case,

argmax
P∈PεG,π

J (P ) = argmax
P∈PεG,π

H(P ).

Proof: Regarding (i), the return time random variable Tii is defined by lumping the

trajectories in Tii with the same length,

P [Tii = k] =
∑

`∈Tii,|`|=k

P [Lii = `] , (5.17)

where |`| denotes the length of the path `. Note that

−P [Tii = k] logP [Tii = k] = −
( ∑
`∈Tii,|`|=k

P [Lii = `]
)

log
( ∑
`∈Tii,|`|=k

P [Lii = `]
)

≤ −
∑

`∈Tii,|`|=k

P [Lii = `] logP [Lii = `] , (5.18)

where we used that (x + y) log(x + y) ≥ x log x + y log y for x, y ≥ 0. Since both the

return time entropy and the entropy of Markov trajectories are absolutely convergent,

we have

H(Tii) = −
∞∑
k=1

P [Tii = k] logP [Tii = k]

≤ −
∞∑
k=1

∑
`∈Tii,|`|=k

(
P [Lii = `] logP [Lii = `]

)
= H(Lii),

which along with Lemma 14 imply

J (P ) ≤ nH(P ).
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1 2

3 4

Figure 5.1: An example graph that satisfies the property in Lemma 15(ii)

Regarding (ii), the inequality in (5.16) comes from the inequality (5.18). If any node

of the graph G has the property that all distinct first return paths have different length,

then the summation on the right hand side of (5.17) only has one term and the inequality

in (5.18) becomes an equality. On the other hand, if for some node of G, there are distinct

return paths that have the same length, then one needs to lump the paths with the same

length and the inequality in (5.18) becomes strict. Moreover, if the equality holds, then

J (P ) is a constant n times of H(P ) and thus they have the same maximizer.

Example 2 For the two-node case in Examples 13(i), the return time entropy is twice

the entropy rate. This is not a coincidence since the 2-node complete graph satisfies the

property in Lemma 15(ii). Figure 5.1 illustrates a graph with 4 nodes that also satisfies

the property in Lemma 15(ii).

In the rest of this subsection, we show that the return time entropy is lower bounded

by the entropy rate as shown in (5.15).

Lemma 16 (Lower bound of the return time entropy by the entropy rate) Given the

compact set PεG,π,

(i) the return time entropy is lower bounded by

J (P ) ≥ H(P ), for all P ∈ PεG,π; (5.19)

(ii) the equality in (5.19) holds if and only if P is a permutation matrix.

129



Markov Chains with Maximum Return Time Entropy Chapter 5

Proof: Regarding (i), note that the first hitting time Tij from state i to state j as

defined in (5.2) is a random variable , whose entropy is H(Tij). Then by definition, we

have in the case of unitary travel times,

H(Tij) = −
∞∑
k=1

P [Tij = k] logP [Tij = k]

= −pij log pij − (
∑
k1 6=j

pik1pk1j) log(
∑
k1 6=j

pik1pk1j)

− (
∑

k1,k2 6=j
pik1pk1k2pk2j) log(

∑
k1,k2 6=j

pik1pk1k2pk2j)

− · · ·

− (
∑

k1···km 6=j
pik1 · · · pkmj) log(

∑
k1···km 6=j

pik1 · · · pkmj)

− · · · .

Since x 7→ −x log x is a concave function, for xi ≥ 0 and for coefficients αi ≥ 0 satisfying∑n
i=1 αi = 1, we have

−(
n∑
i=1

αixi) log(
n∑
i=1

αixi) ≥ −
n∑
i=1

αi(xi log xi). (5.20)
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Thus, for m ≥ 1,

−P [Tij = m+ 1] logP [Tij = m+ 1] = −(
∑

k1···km 6=j
pik1 · · · pkmj) log(

∑
k1···km 6=j

pik1 · · · pkmj)

= −(
∑
k1 6=j

pik1
∑

k2···km 6=j
pk1k2 · · · pkmj + pij · 0)

· log(
∑
k1 6=j

pik1
∑

k2···km 6=j
pk1k2 · · · pkmj + pij · 0)

≥ −
∑
k1 6=j

pik1(
∑

k2···km 6=j
pk1k2 · · · pkmj

. log(
∑

k2···km 6=j
pk1k2 · · · pkmj))

= −
∑
k1 6=j

pik1P[Tk1j = m] logP[Tk1j = m], (5.21)

where the inequality uses equation (5.20). Summing both sides of (5.21) over m for

m ≥ 1, we have

H(Tij) ≥ −pij log pij +
∑

k1 6=j
pik1H(Tk1j)

= −pij log pij +
∑n

k1=1
pik1H(Tk1j)− pijH(Tjj). (5.22)

Let H(T ) be a matrix whose (i, j)-th element is H(Tij). Then equation (5.22) can be put

in the matrix form

H(T ) ≥ −P ◦ logP + PH(T )− P [H(T )], (5.23)

where the inequality and the log function are entrywise. Multiplying π> from the left

and 1n from the right on both sides of (5.23), we have

π>[H(T )]1n ≥ −π>(P ◦ logP )1n,
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which is J (P ) ≥ H(P ).

Regarding (ii), if P is a permutation matrix, then J (P ) = H(P ) = 0. On the other

hand, if P is not a permutation matrix, then there exist 2 or more nonzero elements on

at least one row of P . In this case, the inequality in (5.21) is strict for that row for some

m, which carries over to (5.22). Thus, J (P ) > H(P ).

5.4 Truncated return time entropy and its optimiza-

tion via gradient descent

We now introduce the truncated and conditional return time entropy and setup a

gradient descent algorithm.

5.4.1 The truncated and conditional return time entropies

In practical applications, we may discard events occurring with extremely low proba-

bility. In what follows, we study the return time distribution and its entropy conditioned

upon the event that the return time is upper bounded. We first introduce a truncation

accuracy parameter 0 < η � 1 that upper bounds the cumulative probabilities of very

large return times and we define a duration Nη ∈ Z>0 by

Nη =
⌈ wmax

ηπmin

⌉
− 1, (5.24)

where πmin = mini∈{1,...,n}{πi} and d·e is the ceiling function. It is an immediate conse-

quence of the Markov’s inequality that, given the fixed stationary distribution π, for all
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i ∈ {1, . . . , n},

P[Tii ≥ Nη + 1] ≤ E[Tii]

Nη + 1
≤ wmax

πi(Nη + 1)
≤ η,

where we used (5.5)

E[Tii] =
π>(P ◦W )1n

πi
≤ wmax

πi
.

We now define the conditional return time and its entropy.

Definition 4 (Conditional return time and its entropy) Given P ∈ PεG,π and a duration

Nη, the conditional return time Tii |Tii ≤ Nη of state i is defined by

Tii |Tii ≤ Nη = min
{ k−1∑
k′=0

wXk′Xk′+1
|
k−1∑
k′=0

wXk′Xk′+1
≤ Nη,

X0 = i,Xk = i, k ≥ 1
}
.

with probability mass function

P[Tii = k |Tii ≤ Nη] =
Fk(i, i)∑Nη
k=1 Fk(i, i)

.

Moreover, the conditional return time entropy function Jcond,η : PεG,π 7→ R≥0 is

Jcond,η(P ) =
n∑
i=1

πiH(Tii |Tii ≤ Nη)

= −
n∑
i=1

πi

Nη∑
k=1

Fk(i, i)
Nη∑
k=1

Fk(i, i)

log
Fk(i, i)

Nη∑
k=1

Fk(i, i)

.

Given the duration Nη, Jcond,η(P ) is a finite sum of continuously differentiable func-

tions and thus more tractable than the original return time entropy function J (P ). Next,

we introduce a truncated entropy that is even simpler to evaluate.

Definition 5 (Truncated return time entropy function) Given a compact set PεG,π and
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the duration Nη, define the truncated return time entropy function Jtrunc,η : PεG,π 7→ R≥0

by

Jtrunc,η(P ) = −
n∑
i=1

πi

Nη∑
k=1

Fk(i, i) logFk(i, i).

The following lemma shows that, for small η, the truncated return time entropy

Jtrunc,η(P ) is a good approximation for the conditional return time entropy Jcond,η(P ).

Furthermore, when η is sufficiently small, the truncated return time entropy Jtrunc,η(P )

is also a good approximation for the original return time entropy function J (P ).

Lemma 17 (Approximation bounds) Given P ∈ PεG,π and the truncation accuracy η, we

have

(i) the conditional return time entropy is related to the truncated return time entropy

by

Jtrunc,η(P ) + log(1− η) < Jcond,η(P ) <
Jtrunc,η(P )

1− η ; (5.25)

(ii) J (P ) ≥ Jtrunc,η(P ) holds trivially and if

η ≤ wmax log λmax

πmin(log λmax − log c− 1)
, (5.26)

then

J (P )− Jtrunc,η(P ) ≤ c log(λ−1
max)

(1− λmax)2
(1 +Nη)λ

Nη
max, (5.27)

where c and λmax are given as in Lemma 12(i);

(iii) J (P ) = lim
η→0+

Jcond,η(P ) = lim
η→0+

Jtrunc,η(P ).
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Proof: Regarding (i), for Jcond,η(P ), we have

Jcond,η(P ) = −
n∑
i=1

πi

Nη∑
k=1

Fk(i, i)
Nη∑
k=1

Fk(i, i)

log
Fk(i, i)

Nη∑
k=1

Fk(i, i)

= −
n∑
i=1

πi


Nη∑
k=1

Fk(i, i) logFk(i, i)

Nη∑
k=1

Fk(i, i)

− log

Nη∑
k=1

Fk(i, i)

 .

On one hand,

Jcond,η(P ) > −
n∑
i=1

πi
( Nη∑
k=1

Fk(i, i) logFk(i, i)− log

Nη∑
k=1

Fk(i, i)
)

≥ −
n∑
i=1

πi

Nη∑
k=1

Fk(i, i) logFk(i, i) + log(1− η). (5.28)

On the other hand,

Jcond,η(P ) < −
n∑
i=1

πi
1

Nη∑
k=1

Fk(i, i)

Nη∑
k=1

Fk(i, i) logFk(i, i)

≤ − 1

1− η
n∑
i=1

πi

Nη∑
k=1

Fk(i, i) logFk(i, i).

(5.29)

Combining (5.28) and (5.29), we have (5.25).

Regarding (ii), if η satisfies (5.26), we have cλ
Nη
max ≤ e−1. Then, following the same
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arguments as in the proof of Lemma 12(ii) and replacing K in (5.14) with Nη, we have

J (P )− Jtrunc,η(P )

≤ −c
(

λ
Nη
max

1− λmax
log(cλ

Nη
max) +

λ
Nη+1
max

(1− λmax)2
log(λmax)

)

≤ − cλ
Nη
max

(1− λmax)2
(Nη log(λmax) + λmax log(λmax) + log(c))

≤ − cλ
Nη
max

(1− λmax)2
(Nη log(λmax) + log(λmax))

=
c log(λ−1

max)

(1− λmax)2
(1 +Nη)λ

Nη
max.

Regarding (iii), the results follow from (5.25) and (5.27), respectively. Specifically, in

(5.27), since 0 < λmax < 1, the error J (P ) − Jtrunc,η(P ) goes to 0 exponentially fast as

η goes to 0 (Nη →∞).

5.4.2 The gradient of the truncated return time entropy

Lemma 17 establishes how Jtrunc,η(P ) is a good approximation to both of J (P ) and

Jcond,η(P ). Since it is also easier to compute Jtrunc,η(P ) than the other two quantities,

we focus on optimizing Jtrunc,η(P ) by computing its gradient.

For k ∈ Z>0, define Gk = ∂ vec(Fk)
∂ vec(P )

∈ Rn2×n2
and note

Gk =

[
∂ vec(Fk)
∂p11

∂ vec(Fk)
∂p21

· · · ∂ vec(Fk)
∂p(n−1)n

∂ vec(Fk)
∂pnn

]
. (5.30)

Lemma 18 (Gradient of the truncated return time entropy function) Given P ∈ PεG,π,

the matrix sequence Gk in (5.30) satisfies the iteration for k ∈ Z>0,
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Gk = [vec(1{k1n1>n=W})] +
wmax∑
i=1

ΦiGk−i

+
n∑
i=1

n∑
j=1

(EjF
>
k−wij ⊗ In)[vec(eie

>
j )]1{wij>0}, (5.31)

where the initial conditions are Gk = 0n2×n2 for k ≤ 0. Moreover, the vectorization of

the gradient of Jtrunc,η satisfies

vec
(∂Jtrunc,η(P )

∂P

)
= −

n∑
i=1

πi

Nη∑
k=1

∂
(
Fk(i, i) logFk(i, i)

)
∂Fk(i, i)

G>k e(i−1)n+i, (5.32)

where e(i−1)n+i ∈ Rn2
and

∂Fk(i, i) logFk(i, i)

∂Fk(i, i)
=


1 + log(Fk(i, i)), if Fk(i, i) > 0,

0, if Fk(i, i) = 0.

Proof: For k ∈ Z>0, according to (5.6), we have for puv > 0,

∂ vec(Fk)

∂puv
= vec(eue>v )1{k=wuv} + (Ev ⊗ eue>v ) vec(Fk−wuv)

+

n∑
i=1

n∑
j=1

pij(Ej ⊗ eie
>
j )
∂ vec(Fk−wij )

∂puv
,

where the second term on the right hand side satisfies

(Ev ⊗ eue
>
v ) vec(Fk−wuv) = vec(eue

>
v Fk−wuvEv)

= (EvF
>
k−wuv ⊗ In) vec(eue

>
v ).

Stacking ∂ vec(Fk)
∂puv

’s in a matrix as (5.30), we obtain (5.31).

Since Jtrunc,η(P ) only involves Fk(i, i) for i = {1, . . . , n}, we only need the corre-
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sponding columns in G>k to compute the gradient, which is realized by multiplying the

standard unit vector as in (5.32).

Remark 13 Iteration (5.31) is an exponentially stable discrete-time delayed linear sys-

tem subject to and a finite number of impulse inputs and an exponentially vanishing input.

Hence, the state Gk → 0 exponentially fast as k →∞.

5.4.3 Optimizing the truncated entropy via gradient projection

Motivated by the previous analysis, we consider the following problem.

Problem 7 (Maximization of the truncated return time entropy) Given a strongly con-

nected directed graph G and the stationary distribution π, pick a minimum edge weight

ε > 0 and a truncation accurate parameter η > 0, the maximization of the truncated

return time entropy function is as follows:

maximize Jtrunc,η(P ),

subject to P ∈ PεG,π.

To solve numerically this nonlinear program, we exploit the results in Lemma 18 and

adopt the gradient projection method as presented in [156, Chapter 2.3]:

1: select: minimum edge weight ε� 1, truncation accuracy η � 1, and initial condition

P0 in PεG,π
2: for iteration parameter s = 0 : (number-of-steps) do

3: {Gk}k∈{1,...,Nη} := solution to iteration (5.31) at Ps

4: ∆s := gradient of Jtrunc,η(Ps) via equation (5.32)

5: Ps+1 := projectionPεG,π(Ps + (step size) ·∆s)

6: end for
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We analyze the computational complexity of this algorithm. To compute step 3:,

we need to evaluate the right-hand side of equation (5.31) by computing three terms.

For the first term, we need to do m comparisons, where m is the number of edges in

the graph (i.e., the number of variables in the transition matrix), and it takes O(m)

elementary operations. For the second term, note that the matrices Φi ∈ Rn2×n2
in-

troduced in equation (5.13) can be precomputed and is block diagonal with n blocks of

size n × n. Also note that Gk ∈ Rn2×n2
has only m nonzero columns. Thus, we need

O(wmaxmn
3) operations. For the third term, Fk is updated by equation (5.11), which

requires O(wmaxn
3) and is the main computational cost. Therefore, it takes O(wmaxmn

3)

to compute one update of iteration (5.31). Thus, it takes O(Nηwmaxmn
3) elementary

operations to complete step 3:. In step 5:, we need to solve a least square problem with

linear equalities and inequalities constraints; which requires O(m3) [157].

5.5 Numerical results

In this section, we provide numerical results on the computation of the maximum

return time entropy chain (Subsection 5.5.1) and its application to robotic surveillance

problems (Subsection 5.5.2). We compute and compare three chains:

(i) the Markov chain that maximizes the return time entropy (solution of Problem 6),

abbreviated as the MaxReturnEntropy chain. This chain may be computed for a

directed graph with arbitrary integer-valued travel times. Since we do not have

a way to solve Problem 6 directly, the MaxReturnEntropy chain is approximated

by the solution of Problem 7, which is solved via the gradient projection method.

Unless otherwise stated, we choose truncation accuracy η = 0.1. Note that (5.24)

is quite conservative and the actual probabilities being discarded is much less than

0.1.
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(ii) the Markov chain that maximizes the entropy rate, as discussed in chapter 4, ab-

breviated as the MaxEntropyRate chain. Note, that this chain can be computed

for a directed graph with unitary weights via solving a convex program. If the

graph is undirected, the MaxEntropyRate chain can be computed efficiently via

the methods described in the previous chapter.

(iii) the Markov chain that minimizes the mean (weighted) hitting time known as the

(weighted) Kemeny constant, abbreviated as the MinKemeny chain. This chain

may be computed for a directed graph with arbitrary travel times via solving a

nonlinear nonconvex program [53]. We compute this chain using the solver imple-

mented in the KNITRO/TOMLAB package.

5.5.1 Computation, comparison and intuition

We divide this subsection into two parts. In the first part, we first compare 3 chains

on graphs that have unitary travel times. We then summarize several observations in

computing the MaxReturnEntropy chain. Finally, we visualize and plot the chains as well

as the return time distributions. In the second part, we compare the MaxReturnEntropy

chain with the MinKemeny chain on a realistic map taken from [2, Section 6.2] with

travel times.

Chains on graphs with unitary travel times

Comparison: We consider 2 simple undirected graphs and solve for the MaxRetur-

nEntropy chain, the MaxEntropyRate chain and the MinKemeny chain for each case.

We compare the return time entropy, the entropy rate, and the Kemeny constant of

these chains in Table 5.1. The stationary distribution of the ring graph is set to be

π = [1/12, 1/6, . . . , 1/12, 1/6]>, and the stationary distribution of of grid is proportional
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(a) MaxReturnEntropy chain
on ring graph
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(b) MaxEntropyRate chain on
ring graph
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(c) MinKemeny chain on ring
graph

Figure 5.2: Return time distributions of node 1 (i.e., top node) on an 8-node ring
graph with stationary distribution π = [1/12, 1/6, . . . , 1/12, 1/6]>. Although the ex-
pectations of the first return time distributions in the figure are the same, the his-
togram is remarkably different for different chains. Specifically, for the nonreversible
MaxRetrunEntropy chain, the distribution is bimodal and generates more entropy.
The node size is proportional to the stationary distribution.
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(a) MaxReturnEntropy chain
on 4× 4 grid
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(b) MaxEntropyRate chain on
4× 4 grid
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(c) MinKemeny chain on 4 × 4
grid

Figure 5.3: Return time distributions of node 6 (i.e., second node on the second row)
on a 4 × 4 grid with stationary distribution π proportional to the node degree and
unitary travel times. The node size is proportional to the stationary distribution.
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to the degree of nodes. To evaluate the value of J (P ), we set η = 10−2. From the table,

we notice that the MaxReturnEntropy chain has the highest value of the return time

entropy in both cases. It also has relatively good performance in terms of the entropy

rate and the Kemeny constant, which indicates that the MaxReturnEntropy chain is

potentially a good combination of speed (expected traversal time) and unpredictability.

Furthermore, it is clear that (5.15), which characterizes the relationship between the

entropy rate and the return time entropy, holds.

Table 5.1: Comparison between different chains on different graphs

Graph Markov chains J (P ) H(P )
Kemeny
constant

8-node ring
MaxReturnEntropy 2.4927 0.8698 10.0479
MaxEntropyRate 2.3510 0.9883 19.5339

MinKemeny 1.9641 0.4621 6.1667

4-by-4 grid
MaxReturnEntropy 3.6539 0.9491 16.3547
MaxEntropyRate 3.2844 1.4021 30.8661

MinKemeny 2.0990 0.2188 10.0938

Observations : In computing the MaxReturnEntropy chain, we observe some interest-

ing properties of our problem. First, when solving Problem 7 by the gradient projection

method with different initial conditions, we found different optimal solutions, and they

have slightly different optimal values. This suggests that Problem 6 is unlikely to be

a convex problem. Secondly, the global optimal solution to Problem 6 is possibly not

unique in general. For instance, for an undirected ring graph with even number of nodes

and certain stationary distribution, exchanging the probability of going right and that of

going left for all nodes does not change the return time entropy. Thirdly, the optimal so-

lution to Problem 6 is likely to be nonreversible because none of the approximate optimal

solutions we have encountered are reversible. This again indicates that the MaxRetur-

nEntropy chain is a good combination of unpredictability and speed. Fourth, even if we

set the edge weight ε = 0, the MaxReturnEntropy chain is always irreducible.
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Intuition: In order to provide intuition for the maximization of the return time en-

tropy, we compare and plot the chains as well as the return time distribution of a same

node on the 8-node ring graph and the 4× 4 grid graph in Fig. 5.2 and Fig. 5.3, respec-

tively. Since the stationary distribution is fixed and identical for all chains in each case,

the expectations of the probability mass functions in each figure are the same. From the

figures, we note that for the MaxReturnEntropy chain, the return time distribution is

reshaped so that the distribution is more spread out and it is more difficult to predict the

return time. In contrast, the return time distribution for the MinKemeny chain has a pre-

dictable pattern and the return time probability is constantly 0 for some time intervals.

Moreover, from the visualization of the chains, we notice that the MaxReturnEntropy

chain has a net flow on the graph, which again indicates its nonreversibility.

MaxReturnEntropy and MinKemeny on a realistic map

In this part, we compare the MaxReturnEntropy chain with the MinKemeny chain

on a realistic map with travel times. The problem data is taken from [2, Section 6.2]:

a small area in San Francisco (SF) is modeled by a fully connected directed graph with

12 nodes and by-car travel times on edges measured in seconds. The map is shown in

Fig. 5.4. The importance of the a location (node) is characterized by the the number of

crimes recorded at that place during a specific period, and the surveillance agent should

visit the places with higher crime rate more often. The visit frequency is set to be

[133
866
, 90

866
, 89

866
, 87

866
, 83

866
, 83

866
, 74

866
, 64

866
, 48

866
, 43

866
, 38

866
, 34

866
]>. For simplicity, we quantize the travel

times by treating a minute as one unit of time, i.e., dividing the travel times by 60 and

round the result to the smallest integer that is larger than it, and by doing so, we have

wmax = 9. The pairwise travel times are recorded in Table 5.2.

First, we compare three key metrics of the MaxReturnEntropy chain and MinKemeny

chain. The results are reported in Table 5.3. It can be observed that the MaxRetur-
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Figure 5.4: San Francisco (SF) crime map from [2, Section 6.2].

nEntropy chain is much better than the MinKemeny chain regarding the return time

entropy and the entropy rate. This better performance in terms of the unpredictability is

obtained at the cost of being slower as indicated by the larger weighted Kemeny constant.

We also plot the return time distribution of location A in Fig. 5.5. Apparently, the

MaxReturnEntropy chain spreads the return time probabilities over the possible return

times and it is hard to predict the exact time the surveillance agent comes back to the

location. In contrast, the MinKemeny chain tries to achieve fast traversal on the graph

and the return times distribute over a few intervals.

5.5.2 Application to the Robotic Surveillance Problem

In this subsection, we provide simulation results in the application of robotic surveil-

lance.

Setup: Consider the scenario where a single agent performs the surveillance task by

moving randomly according to a Markov chain on the road map. The intruder is able to

observe the local behaviors of the surveillance agent, e.g., presence/absence and duration
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Table 5.2: The quantized pairwise by-car travel times on SF crime map

Location A B C D E F G H I J K L

A 1 3 3 5 4 6 3 5 7 4 6 6
B 3 1 5 4 2 4 4 5 5 3 5 5
C 3 5 1 7 6 8 3 4 9 4 8 7
D 6 4 7 1 5 6 4 7 5 6 6 7
E 4 3 6 5 1 3 5 5 6 3 4 4
F 6 4 8 5 3 1 6 7 3 6 2 3
G 2 5 3 5 6 7 1 5 7 5 7 8
H 3 5 2 7 6 7 3 1 9 3 7 5
I 8 6 9 4 6 4 6 9 1 8 5 7
J 4 3 4 6 3 5 5 3 7 1 5 3
K 6 4 8 6 4 2 6 6 4 5 1 3
L 6 4 6 6 3 3 6 4 5 3 2 1

Table 5.3: Comparison between different chains on SF crime map

Markov chains J (P ) H(P )
Weighted Kemeny

constant
MaxReturnEntropy 5.0078 1.7810 63.6007

MinKemeny 2.4678 0.6408 24.2824

between visits, and he/she plans and decides the time of attack so as to avoid being

captured. It takes a certain amount of time for the intruder to complete an attack, which

is called the attack duration of the intruder. A successful detection/capture happens

when the surveillance agent and the intruder are at the same location and the intruder

is attacking.

Intruder model (success probability maximizer with bounded patience): Consider a

rational intruder that exploits the return time statistics of the Markov chains and chooses

an optimal attack time so as to minimize the probability of being captured. The intruder

picks a node i to attack randomly according to the stationary distribution, and it collects

and learns the probability distribution of node i’s first return time. Suppose the intruder

and the surveillance agent are at the same node i at the beginning and the attack duration

of the intruder is τ . If the intruder observes that the surveillance agent leaves the node
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(a) MaxReturnEntropy chain on SF crime map
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(b) MinKemeny chain on SF crime map

Figure 5.5: Return time distributions of location A on SF crime map. Note that the
scales of the vertical axes are different in the two figures.

and does not come back for s periods, he/she can attack with the probability of being

captured given by
τ∑
k=1

P [Tii = s+ k |Tii > s] . (5.33)

Mathematically speaking, (5.33) is the conditional cumulative return probability for the

surveillance agent. Specifically for s = 0, (5.33) is the capture probability when the

intruder attacks immediately after the agent leaves the node. Then, the optimal time of

attack si for the intruder is given by

si = argmin0≤s≤Si{
τ∑
k=1

P [Tii = s+ k |Tii > s]}. (5.34)

The reason there is an upper bound Si on s is that the event Tii > s happens with very

low probability when s is large, and the intruder may be unwilling to wait for such an

event to happen. Let δ ∈ (0, 1) be the degree of impatience of the intruder, then Si can
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be chosen as the minimal positive integer such that the following holds,

P [Tii ≥ Si] ≤ δ,

where a smaller δ implies a larger Si and a more patient intruder. In other words, when

δ is small, the intruder is willing to wait for a rare event to happen. Note that the value

of Si is also dependent on the node i that the intruder chooses to attack, and thus the

argmin in (5.34) is over different ranges when the intruder attacks different nodes. In

summary, the intruder is dictated by two parameters: the attack duration τ and the

degree of impatience δ, and the strategy for the intruder is as follows: waits until the

event that the surveillance agent leaves and does not come back for the first si steps

happens, then attacks immediately.

From the surveillance point of view, the probability of capturing the rational intruder

when he/she attacks node i is

Pi [Capture] =
τ∑
k=1

P [Tii = si + k |Tii > si] ,

and the performance of the Markov chains can be evaluated by the total probability of

capture as follows

P [Capture] =
n∑
i=1

πiPi [Capture] . (5.35)

Simulation results : Designing an optimal defense mechanism for the rational intruder

is an interesting yet challenging problem in its own. Instead, we use the MaxReturnEn-

tropy chain as a heuristic solution and compare its performance with other chains. In

the following, we consider two types of graphs: the grid graph and the SF crime map.

The degree of impatience of the intruder is set to be η = 0.1 in this part.

We first consider a 4 × 4 grid and plot the probability of capture defined by (5.35)
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for the chains in comparison in Fig. 5.6. It can be observed that, when defending

against the rational intruder described above, the MaxReturnEntropy chain outperforms

all other chains when the attack duration of the intruder is small or moderate. The un-

predictability in the return time prevents the rational intruder from taking advantage of

the visit statistics learned from the observations. The MinKemeny chain, which empha-

sizes a faster traversal, has a hard time capturing the intruder when the attack duration

of the intruder is small. This is because the agent moves in a relatively more predictable

way, and the return time statistics may have a pattern that could be exploited. The

MaxEntropyRate chain has the in-between performance.
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Figure 5.6: Performance of different chains on a 4× 4 grid.

For the SF crime map, we use the same problem data as described in Subsection 5.5.1.

Since the MaxEntropyRate chain does not generalize to the case when there are travel

times, we compare the performance of the MaxReturnEntropy chain and the MinKemny

chain. Again, The MaxReturnEntropy chain outperforms the MinKemeny chain when

the attack duration of the intruder is relatively small.

Conclusion: The simulation results presented in this subsection demonstrate that the

MaxReturnEntropy chain is an effective strategy against the intruder with reasonable
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Figure 5.7: Performance of different chains on the SF crime map.

amount of knowledge and level of intelligence, particularly when the attack duration of

the intruder is small or moderate. With the property of both unpredictability and speed,

the MaxReturnEntropy chain should also work well in a much more broader range of

scenarios.

5.6 Summary

In this chapter, we proposed and optimized a new metric that quantifies the unpre-

dictability of Markov chains over a directed strongly connected graph with travel times,

i.e., the return time entropy. We characterized the return time probabilities and showed

that optimizing the return time entropy is a well-posed problem. For the case of unitary

travel times, we established an upper bound for the return time entropy by using the

maximum entropy principle and obtained an analytic solution for the complete graph.

We connected the return time entropy with the well-known entropy rate of Markov chains

and showed that the return time entropy is lower bounded by the entropy rate and upper

bounded by n times the entropy rate. In order to solve the optimization problem numeri-

cally, we approximated the return time entropy as well as a practically useful conditional
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return time entropy by the truncated return time entropy. We derived the gradient of

the truncated return time entropy and proposed to solve the problem by the gradient

projection method. We applied our results to the robotic surveillance problem and found

that the chain with maximum return time entropy is a good trade-off between speed and

unpredictability, and it performs better than several existing chains against a rational

intruder.
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Chapter 6

Conclusions and Future Work

Before we conclude this thesis and present future directions, it is interesting to note

the role that unpredictability plays in both endeavors: biological and robotic. In the

design of stochastic surveillance strategies, the role of unpredictability is quite apparent

as some of the solutions presented directly try to maximize entropy. In the description

of collective cell migration, randomness plays a much subtler role: a Langevin-type noise

models the formation of ruffling lamellipodia in the theoretical description. These ruffling

behaviors are key to breaking the symmetry of the system, initiating persistent motion

in groups of cells, and forming trends in traction and stress profiles in colonies. All of

these behaviors are salient features of collective migration in groups of cells, which are

observed in experiments and would not be observed in simulations if not for the addition

of noise.

6.1 Summary

In chapter 2, we presented a theoretical description of cell migration that accounts

for known individual cell behaviors, such as contact inhibition of locomotion and force-

induced repolarization, and is able to reproduce the motion of a single cell, two cell

collisions, small groups of cells and large colonies. This description provides a unified
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framework to connect a large number of experiments in different conditions and with

different cell types. Moreover, it allows a direct connection between specific molecular

perturbations in cell adhesion, cell polarization, the generation of traction forces and

mechanical feedback, and their effect on collective cell migration. The theory presented

in this chapter provides a framework within which the results of multiple experiments

can be understood and future experiments organized.

In chapter 3, we studied the meeting time of multiple random walkers on a graph

and presented necessary and sufficient conditions for finiteness and novel closed-form

expressions for the expected time to meeting between a single pursuer and a single evader,

multiple pursuers and multiple evaders, and extended the treatment to continuous-time

chains. We also provide sufficient conditions for certain pairs (or tuples) of Markov chains

that satisfy conditions on their absorbing classes to have finite meeting times. Finally,

we discuss connections to other metrics relevant to Markov chains such as the hitting

time.

In chapter 4, we considered the optimization problem of maximizing the entropy rate

of a Markov chain with prescribed stationary distribution. We showed this problem

is strictly convex with a unique global optimizer. We provided a fast iterative algo-

rithm with rigorous convergence guarantees to compute the so-called entropic vector; as

a function of this entropic vector, we provide a closed-form formula for the maximum

entropy Markov chain with prescribed stationary distribution. We then characterized

several properties of maxentropic chains. The interest for Markov chains with maximum

entropy rate and prescribed stationary distributions arises naturally in robotic surveil-

lance; accordingly we showed some realizations of optimal chains for prototypical robotic

roadmaps.

In chapter 5, we proposed and optimized a different notion of unpredictability of

Markov chains over a directed strongly connected graph with travel times based on the
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entropy of the random variable associated with the return time to nodes. We character-

ized the return time probabilities and showed that optimizing the return time entropy

is a well-posed problem. For the case of unitary travel times, we show that the return

time entropy is lower bounded by the entropy rate and upper bounded by n times the

entropy rate. In order to solve the optimization problem numerically, we approximated

the return time entropy as well as a practically useful conditional return time entropy

by the truncated return time entropy. We applied our results to the robotic surveillance

problem and found that the chain with maximum return time entropy is a good trade-off

between speed and unpredictability, and it performs better than several existing chains

against a rational intruder.

In general, it is noted that the maximum entropy rate Markov chain and the maxi-

mum return time entropy chain are both good solutions when the intruder is capable of

observing the motion of the surveillance agent. The maximum return time entropy chain

formulation has three main advantages.

(i) It is more reasonable to expect that an intruder would have access to the return

times of the agent than have knowledge of the sequence of locations of the agent.

(For e.g., an intruder hovering just outside the visibility range of the surveillance

agent at a node). Thus the entropy of a more relevant random variable is being

maximized.

(ii) This chain is naturally non-reversible and comparison of hitting times indicate that

in general, the maximum return time entropy chain has lower travel times than the

maximum entropy rate Markov chain.

(iii) The formulation can tackle directed, weighted graphs.

The maximum entropy rate Markov chain presents the following advantages.
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(i) The computation of maximum entropy rate Markov chains is significantly more

computationally efficient than the maximum return time entropy chain enabling

its use on much larger graphs and potential recomputation in online scenarios, i.e.,

where the stationary distribution is changing with time.

(ii) Maximum entropy rate Markov chains optimize a more well-studied quantity, i.e.

the entropy rate, and hence is more widely applicable as mentioned in subsec-

tion 4.1.2.

The above discussion indicates that for applications to robotic surveillance where the

strategy is precomputed and computational costs are not a concern, the maximum return

time entropy chain should be the preferred strategy.

6.2 Future Work

The work described in this thesis leaves open several directions for future research.

We present future directions for each strand of research discussed.

Collective cell migration: The theoretical description presented in chapter 2 shows

that the collective migration of small groups of cells can be understood within the same

framework as single cell migration and the expansion of large colonies. Extensions of this

work to 2D and 3D systems [158], as well as the consideration of cell shapes or biochemical

signaling, will help further elucidate how different modes of collective migration emerge

in developing embryos.

Aside from theoretical directions in which this work can be extended, the theory bears

several predictions which could be used to motivate experiments on cell motility. Our

results predict that the diffusion constant of the motion of a single cell depends quadrat-

ically with the characteristic traction force of the cell type. We established that collision
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dynamics between cells are strongly dependent on parameters such as the traction force

and inter-cellular adhesion both of which can be targeted experimentally. For develop-

ing persistence in groups of cells, we see that neighbor-enabled repolarization (NER)

plays a crucial role, hence, experiments which alter the polarization dynamics of cells

should measurably affect the persistence characteristics observed in clusters. Further

our description predicts that absence of cell proliferation can lead to breakage of cell

colonies when the intercellular adhesion is weak. This can be probed using experimental

techniques which limit proliferation [159] and alter inter-cellular adhesion [160].

Meeting times of random walks: Several future directions of interest are left open

by the work exploring the meeting times of random walks. Though we provide closed-

form expressions here, the complexity involved in the calculation makes the computation

expensive for large number of agents and on graphs with large number of nodes. It

would be of practical interest to devise a formulation which has lower complexity. The

literature on computationally efficient methods to calculate the SimRank of nodes on a

graph might provide alternative formulations [79]. An extension of the work discussed

here would be to consider walkers moving with travel times similar to the case of doubly

weighted graphs described in [52].

The hitting time of a Markov chain is intimately connected with the fundamental

matrix of a Markov chain [57]. It would be interesting to see whether meeting times be-

tween Markov chains can be expressed in terms of their fundamental matrices. Algebraic

techniques used to compute the pseudo-inverse could potentially aid in the discovery of

such an expression [161]. The notion of random walks on Kronecker product graphs,

which is extensively used in chapter 3, can potentially be utilized to provide closed-form

formulations of other quantities such as the expected time to capture of all evaders or

the coalescence time of multiple random walkers [130].

In the robotic context, the expression for meeting times can be utilized to setup
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pursuit-evasion games in which policies correspond to choice of Markov chains. It would

be of interest to study optimal strategies for when the evader assumes certain behaviors

(such as a deterministic walk or a random walk such as the equal neighbor Markov chain)

and whether Nash equilibria exist for such games. Also, the computational tools provided

here can be employed in the design of random walks with meeting time constraints. This

could be useful in scenarios where communication is limited by distance and the agents

need to communicate regarding events occurring on the graph (such as detection of

anomalies) by being in close range.

Maximum entropy surveillance: The work on designing maximum entropy rate

surveillance strategies was primarily targeted at the single- agent case on an undirected

graph with self-loops at every node. As such, it is potentially important to extend the

analysis in chapter 4 to more general graph settings, including graphs without a complete

set of self-loops and directed graphs with asymmetric adjacency matrices. For graphs

without a complete set of self-loops, we present a mathematical conjecture inspired by

our results on the maxentropic matrix and vector maps.

Conjecture: Given a connected graph G with binary adjacency matrix A, the set of

stationary distributions for all irreducible Markov chains over G is {[x]Ax/‖[x]Ax‖1 | x ∈

Rn
>0}.

Numerical simulations indicate that the set of feasible stationary distributions over sparse

graphs without self-loops is of measure zero (for an appropriately defined measure).

Several open directions remain in the work on designing maximum return time entropy

surveillance strategies. First of all, a simple closed- form expression for the return time

entropy would enable us to establish more properties of the objective function and thus

make the optimization problem more tractable. Second, it is interesting to design an

optimal Markov chain that maximizes the probability of capture of the intruder model

proposed in this chapter. Third, we believe there are more application scenarios for
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Markov chains where the return time entropy is an appropriate quantity to optimize.

Most importantly, appropriate notions of unpredictability for the multi-agent case

are yet to be developed for both approaches and could lead to the design of effective

strategies against intruders with advanced planning and sensing capabilities. It should

be possible to generate more entropy rate as well as return time entropy using multiple

agents. With the help of an appropriately defined notion of group entropy rate or group

return time entropy, one could utilize this quantity to further increase the unpredictabil-

ity of surveillance strategies. This could also lead to strategies that trade-off between

unpredictability and speed more effectively, e.g., on a shared graph some of the agents

could optimize for entropy while others could be optimized for speed. It is also of inter-

est to combine notions of unpredictability with speed of traversal of graphs; see recent

related work in [52].
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Eighty (T. S. D. Miklós, V. T. Sós, ed.), vol. 2, pp. 353–398. János Bolyai
Mathematical Society, 1993.

[132] P. Burgisser, M. Clausen, and A. Shokrollahi, Algebraic Complexity Theory.
Springer Verlag, 1997.

[133] J. R. Gilbert, C. Moler, and R. Schreiber, Sparse matrices in MATLAB: Design
and implementation, SIAM Journal on Matrix Analysis and Applications 13
(1992), no. 1 333–356.

[134] D. M. Foster and J. A. Jacquez, Multiple zeros for eigenvalues and the
multiplicity of traps of a linear compartmental system, Mathematical Biosciences
26 (1975), no. 1 89–97.

[135] R.-H. Li, J. X. Yu, and J. Liu, Link prediction: The power of maximal entropy
random walk, in ACM Int. Conf. on Information and Knowledge Management,
(Glasgow, UK), pp. 1147–1156, Oct., 2011.

168

http://www.stat.berkeley.edu/~aldous/RWG/book.html


[136] J. K. Ochab and Z. Burda, Maximal entropy random walk in community
detection, The European Physical Journal Special Topics 216 (2013), no. 1 73–81.

[137] J.-G. Yu, J. Zhao, J. Tian, and Y. Tan, Maximal entropy random walk for
region-based visual saliency, IEEE Transactions on Cybernetics 44 (2014), no. 9
1661–1672.

[138] L. Wang, J. Zhao, X. Hu, and J. Lu, Weakly supervised object localization via
maximal entropy random walk, in IEEE Int. Conf. on Image Processing, (Paris,
France), pp. 1614–1617, Oct., 2014.

[139] P. Korus and J. Huang, Improved tampering localization in digital image forensics
based on maximal entropy random walk, IEEE Signal Processing Letters 23
(2016), no. 1 169–173.

[140] X. Peng and Z. Zhang, Maximal entropy random walk improves efficiency of
trapping in dendrimers, The Journal of Chemical Physics 140 (2014), no. 23
234104.

[141] Y. Fan and H. Liu, Mitigating congestion in complex transportation networks via
maximum entropy, 2017.

[142] S. Bandyopadhyay, S. J. Chung, and F. Y. Hadaegh, Probabilistic and distributed
control of a large-scale swarm of autonomous agents, IEEE Transactions on
Robotics 33 (2017), no. 5 1103–1123.

[143] R. Abraham, J. E. Marsden, and T. S. Ratiu, Manifolds, Tensor Analysis, and
Applications, vol. 75 of Applied Mathematical Sciences. Springer Verlag, 2 ed.,
1988.

[144] S. G. Krantz and H. R. Parks, The Implicit Function Theorem. Birkhäuser, 2013.
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