
UNIVERSITY of CALIFORNIA

Santa Barbara

Visibility Problems for Sensor Networks and Unmanned Air Vehicles

A Dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Mechanical Engineering

by

Karl J. Obermeyer

Committee in charge:

Professor Francesco Bullo, Chair

Professor Bassam Bamieh

Professor Jeff Moehlis

Professor João P. Hespanha

Professor Subhash Suri

June 2010

Visibility Problems for Sensor Networks and Unmanned Air Vehicles

Copyright c© 2010

by

Karl J. Obermeyer

Meinem Vater, dem Fritz, der Nome und meinem Opa gewidmet

iii

Acknowledgements

Foremost I must thank my advisor, Prof. Francesco Bullo, whose incredible en-

ergy, enthusiasm, optimism, and wisdom make him one of a kind. Coming to

UCSB to work with him has proven a great decision. Thank you to Prof. Todd

Murphey for recommending Prof. Bullo to me while I was still applying to grad-

uate schools. Thank you also to the other members of my doctoral committee,

Professors Bassam Bamieh, João Hespanha, Jeff Moehlis, and Subhash Suri, for

their service and valuable feedback. I am also grateful to the UCSB Mechanical

Engineering administrative staff, especially Laura Reynolds.

When I was an undergraduate at CU Boulder, I had the pleasure of conduct-

ing my first research projects with Prof. James Curry, Prof. James Meiss, and

senior graduate student (now Dr.) Derin Wysham under the Applied Math De-

partment’s NSF VIGRE (Vertical Integration of Research and Education) grant.

This experience introduced me to the research process and prepared me for my

Ph.D. studies in a way that seems indispensable in retrospect. My sincere thanks

to Prof. Curry, Prof. Meiss, Derin Wysham, the CU Boulder Applied Math

Department, and the NSF.

Anurag Ganguli, Ketan Savla, and Sara Susca, who were senior graduate stu-

dents during my beginning years at UCSB, deserve many thanks. I benefitted a

great deal from their advice and perspectives on various control and robotics top-

ics. I thank Anurag additionally for the collaboration on much of the work in this

dissertation. Thanks are due also to my other academic siblings and cousins for

their friendship and great research discussions, particularly Shaunak Bopardikar,

Florian Dörfler, Joey Durham, Michael Schuresko, and Steve Smith.

iv

Thanks to my mathematician friends Jordan Fisher, Rick Spjut, and Dave

Valdman for lending their perspectives on my research and being available for

analysis and topology consultations. Thanks also to Prof. Mihai Putinar for all

of his office hours I spent learning measure theory.

This research was supported by a US Department of Defense SMART Fel-

lowship for which I am grateful. As part of the SMART program, I spent three

summers interning at the Control Design and Analysis Branch of AFRL, Wright-

Patterson Air Force Base. For insightful interactions and collaboration I thank

the many people I met directly or indirectly through AFRL, especially Maruthi

Akella, Nicola Ceccarelli, Swaroop Darbha, Raymond Holsapple, Derek Kingston,

Mark Mears, James Myatt, Paul Oberlin, Steve Rasmussen, Corey Schumacher,

Vitaly Shaferman, and Tyler Summers.

Software implementation of control and planning algorithms is an important

part of robotics research. When I first began PhD studies, my programming skills

were weak. Securing my theoretical contributions was demanding enough that I

struggled to find time for learning to program adequately. I owe a great debt of

gratitude to my brother Fritz Obermeyer for tutoring me in the ways of software

development, and for all the occasions when he somehow magically could see bugs

in my code without even knowing what algorithm I was implementing. Thanks

also to Donald Knuth for the LaTeX software used to typeset all my publications,

and to the Free Software Foundation for Emacs and the gcc compiler used for my

simulations.

Last but not least, I would like to thank the rest of my family and extended

family, including Mary Dinh and Shaw Lynds, for their support through this

research marathon.

v

Curriculum Vitæ

Karl J. Obermeyer

Education

2001–2005 MS and BS in Applied Mathematics, University of Colorado

at Boulder, Boulder, CO, USA.

Experience

2007–2009 Summer Intern, Control Design and Analysis Branch of US

Air Force Research Lab, Wright-Patterson Air Force Base,

Dayton, OH, USA.

2002–2005 Project Engineer, Obermeyer Hydro Inc., Wellington, CO,

USA.

1998–1999 Machinist, Perry Technology Corp., New Hartford, CT, USA.

Selected Publications

K. J. Obermeyer, A. Ganguli, and F. Bullo, “Multi-Agent Deployment for Vis-

ibility Coverage in Polygonal Environments with Holes”, Note: Journal Article

In Preparation.

K. J. Obermeyer, P. Oberlin, and S. Darbha, “Sampling-Based Roadmap Methods

for a Visual Reconnaissance UAV”, in AIAA Journal of Guidance, Control, and

Dynamics, 2010, Note: Under Review.

(continued)

vi

K. J. Obermeyer, A. Ganguli, and F. Bullo, “A Complete Algorithm for Search-

light Scheduling”, in International Journal of Computational Geometry and Ap-

plications, 2010, Note: Under Review.

K. J. Obermeyer, “Path Planning for a UAV Performing Reconnaissance of Static

Ground Targets in Terrain”, in Proceedings of the AIAA Guidance, Navigation,

and Control Conference, Chicago, 2009.

K. J. Obermeyer, A. Ganguli, and F. Bullo, “Asynchronous Distributed Search-

light Scheduling”, in Proceedings of IEEE Conference on Decision and Control,

New Orleans, 2007.

K. J. Obermeyer and Contributors, “The VisiLibity Library: A C++ library for

floating-point visibility computations”, at http://www.VisiLibity.org, 2008.

vii

Abstract

Visibility Problems for Sensor Networks and Unmanned Air Vehicles

by

Karl J. Obermeyer

This dissertation presents novel motion coordination, planning, and control al-

gorithms to solve visibility problems for mobile sensor networks and UAVs (Un-

manned Air Vehicles). These are problems where an autonomous system must

move in such a way that it achieves or maintains line of sight of some object(s) of

interest in a nonconvex environment. More specifically, we address variations of

the following three problems: (1) How should a group of camera-equipped robotic

agents deploy into an environment in order to achieve full visibility of that envi-

ronment, (2) how can the rotations of security cameras be coordinated to ensure

an intruder is caught on video, and (3) what path should a UAV follow in order

to photograph a set of suspicious vehicles in a city as quickly as possible? We

find answers to these questions using a unique blend of tools from the research

domains of computational geometry, combinatorics, robot motion planning, and

control theory.

viii

Contents

Acknowledgments iv

Curriculum Vitæ vi

Abstract viii

List of Figures xii

1 Introduction 1

1.1 Relevant Literature . 3

1.2 Organization and Contributions 10

2 Multi-Agent Deployment for Visibility Coverage 14

2.1 Introduction . 14

2.2 Notation and Preliminaries . 18

2.3 Problem Description and Assumptions 20

2.4 Network of Visually-Guided Agents 21

2.5 Incremental Partition Algorithm 22

2.5.1 A Sparse Vantage Point Set 34

2.6 Distributed Deployment Algorithm 37

2.6.1 Leader Behavior . 40

2.6.2 Proxy Behavior . 51

2.6.3 Explorer Behavior . 53

ix

2.6.4 Performance Analysis . 54

2.6.5 Simulation Results . 57

2.6.6 Extensions . 57

2.7 Conclusion . 58

3 Centralized Searchlight Scheduling 65

3.1 Introduction . 65

3.2 Preliminaries . 70

3.2.1 Notation . 70

3.2.2 Assumptions . 72

3.3 Reducing the Solution Space . 73

3.4 A Complete Algorithm . 89

3.4.1 Geometric Preprocessing 89

3.4.2 Searching the Information Graph GI 94

3.4.3 Implementation and Computed Examples 97

3.5 Extension to Searchlights with Finite Field of View 99

3.6 Conclusions . 104

4 Distributed Searchlight Scheduling 106

4.1 Introduction . 106

4.2 Preliminaries . 109

4.2.1 Notation . 109

4.2.2 Problem description and assumptions 111

4.2.3 One Way Sweep Strategy (OWSS) 112

4.3 Asynchronous Network Agents . 115

4.4 Distributed Algorithms . 116

4.4.1 Distributed One Way Sweep Strategy (DOWSS) 117

4.4.2 Positioning Guards for Parallel Sweeping 122

4.5 Conclusion . 131

5 Path Planning for a Visual Reconnaissance UAV 133

x

5.1 Introduction . 133

5.2 Mathematical Formulation . 139

5.2.1 Calculating Visibility Regions 144

5.3 Sampling-Based Roadmap Methods 145

5.3.1 Roadmap Construction . 145

5.3.2 Resolution Complete Method 150

5.3.3 Approximate Dynamic Programming Method 154

5.3.4 Numerical Study . 158

5.3.5 Relationship to Methods for Collision-Free Path Planning . 160

5.4 A Genetic Algorithm . 162

5.4.1 Crossover . 166

5.4.2 Mutation . 168

5.4.3 Numerical Study . 168

5.5 Extensibility . 170

5.5.1 Wind, Airspace Constraints, and Any Dynamics 170

5.5.2 Open-Path vs. Closed-Tour Problems 174

5.6 Conclusion . 175

6 Conclusion 177

6.1 Future Directions . 180

Bibliography 182

A Distributed Searchlight Scheduling Detailed Pseudocodes 197

xi

List of Figures

2.1 Deployment simulation . 15

2.2 Visibility and vertex-limited visibility polygons 19

2.3 Incremental partition example . 25

2.3 Incremental partition example continued 26

2.4 Triangulating the incremental partition 27

2.5 Branch conflict examples . 60

2.6 Special cases in incremental partition 61

2.7 Worst-case examples . 62

2.8 Distributed deployment flow charts 63

2.9 Depth-first search of partition tree 64

3.1 Simple searchlight schedule . 67

3.2 Maximal nonseparable regions disappear 75

3.3 Maximal nonseparable regions merge 76

3.4 Searchlight critical angles . 78

3.5 Searchlight roadmap on torus . 81

3.6 Projection of searchlight action 82

3.7 Maximal nonseparable regions merge 86

3.8 Complete searchlight algorithm geometric preprocessing 90

3.9 Critical angles and environment partition 98

3.10 Critical angles and environment partition 99

3.11 Complete algorithm example computation 100

xii

3.12 The φ-Searchlight Scheduling Problem 101

3.13 Example of φ-searchlight advantage 102

3.14 φ-searchlight critical angles . 103

4.1 Parallel Tree Sweep Strategy simulation 107

4.2 One Way Sweep Strategy . 114

4.3 Asynchronous schedule . 116

4.4 Distributed One Way Sweep Strategy 120

4.5 Distributed One Way Sweep Strategy time complexity 121

4.6 Parallel Tree Sweep Strategy partitions 127

4.7 Expanding a clear region across a gap 128

5.1 Visibility over a terrain . 134

5.2 Example PVDTSP problem instance 135

5.3 Dense and sparse limts of the PVDTSP 144

5.4 Constructing a PVDTSP roadmap 150

5.4 Constructing a PVDTSP roadmap (continuation) 151

5.5 Isolated global optima for the PVDTSP 151

5.6 Noon-Bean transformation . 153

5.7 FST transformation . 156

5.8 Roadmap methods tested on instance with 5 targets 161

5.9 Roadmap methods tested on instance with 10 targets 162

5.10 Roadmap methods tested on instance with 20 targets 163

5.11 Roadmap method for collision-free path planning 164

5.12 Genetic algorithm tested on instance with 5 targets 171

5.13 Genetic algorithm tested on instance with 10 targets 172

5.14 Genetic algorithm tested on instance with 20 targets 173

xiii

Chapter 1

Introduction

Due to advances in mechanical, electrical, and computer engineering, the last half

century has witnessed the inception of autonomous systems in the form of robots,

networks of sensors and actuators, autonomous vehicles, and other mechatronic

devices. These systems are increasingly being used in both civilian and military

applications which are difficult, dangerous, or impossible for humans, e.g., en-

vironmental monitoring, geological survey, surgery, surveillance, reconnaissance,

and search and rescue. Good coordination, planning, and control algorithms are

a key component of autonomous systems technology because they can increase

operational capabilities while reducing risk, costs, and operator workloads. This

dissertation presents novel motion coordination, planning, and control algorithms

to solve visibility problems for mobile sensor networks and UAVs (Unmanned Air

Vehicles). These are problems where an autonomous system must move in such

a way that it achieves or maintains line of sight of some object(s) of interest in

a nonconvex environment. An objects of interest could be, e.g., a robot, a vehi-

cle, a human, an animal, or the environment itself. More specifically, we address

variations of the following three problems.

1

Distributed Visibility-Based Deployment Problem with Connectivity:

Design a distributed algorithm for a network of autonomous camera-equipped

robotic agents to deploy into an unmapped nonconvex polygonal environ-

ment such that (1) they maintain a line-of-sight connected network, and

(2) from their final positions every point in the environment is visible to

some agent. The agents are to begin deployment from a common point and

operate using only information from local sensing and line-of-sight commu-

nication.

Seachlight Scheduling Problem: Find a schedule to rotate a set of search-

lights (modeled as rays) or cameras with limited field of view (modeled as

cones) such that any intruder in a nonconvex polygonal environment will

necessarily be detected in finite time.

Reconnaissance Path Planning Problem for a UAV: Given a set of station-

ary ground targets in a terrain (natural, urban, or mixed), compute a flyable

path for a camera-equipped UAV such that it can photograph all targets in

minimum time.

Traditional motion coordination, planning, and control has been concerned

primarily with stearing an autonomous system between states such that (1) dy-

namic constraints are satisfied, and (2) collisions are avoided. The key difficulty

in visibility problems is that not only the same two constraints must be satisfied

as in the traditional setting, but also special line-of-sight geometric constraints

must be satisfied.

2

1.1 Relevant Literature

We give here an overview of some literature involving visibility problems. More

problem-specific literature reviews can be found in the individual chapters.

Visibility Coverage

The Distributed Visibility-Based Deployment Problem with Connectivity is a vis-

ibility coverage problem. Approaches to visibility coverage can be divided into

two categories: those where the environment is known a priori and those where

the environment must be discovered. When the environment is known a priori, a

well-known approach is the Art Gallery Problem in which one seeks the smallest

set of guards such that every point in a polygon is visible to some guard. This

problem has been shown both NP-hard [1] and APX-hard [2] in the number of

vertices n representing the environment.1 The best known approximation algo-

rithms offer solutions only within a factor of O(log g), where g is the optimum

number of agents [4]. The Art Gallery Problem with Connectivity is the same as

the Art Gallery Problem, but with the additional constraint that the guards’ vis-

ibility graph must consist of a single connected component, i.e., the guards must

form a connected network by line of sight. This problem is also NP-hard in n [5].

Many other variations on the Art Gallery Problem are well surveyed in [6, 7, 8].

The classical Art Gallery Theorem, proven first in [9] by induction and in [10]

by a beautiful coloring argument, states that ⌊n
3
⌋ vertex guards2 are always suf-

ficient and sometimes necessary to cover a polygon with n vertices and no holes.

The Art Gallery Theorem with Holes, later proven independently by [11] and [12],

1Definitions of computational complexity classes such as NP can be found, e.g., in [3].
2A vertex guard is a guard which is located at a vertex of the polygonal environment.

3

states that ⌊n+h
3
⌋ point guards3 are always sufficient and sometimes necessary to

cover a polygon with n vertices and h holes. If guard connectivity is required, [13]

proved by induction and [14] by a coloring argument, that ⌊n−2
2
⌋ vertex guards

are always sufficient and occasionally necessary for polygons without holes. We

are not aware of any such bound for connected coverage of polygons with holes.

For polygonal environments with holes, centralized camera-placement algorithms

described in [15] and [16] take into account practical imaging limitations such as

camera range and angle-of-incidence, but at the expense of being able to obtain

worst-case bounds as in the Art Gallery Theorems. The constructive proofs of

the Art Gallery Theorems rely on global knowledge of the environment and thus

are not amenable to emulation by distributed algorithms.

One approach to visibiliy coverage when the environment must be discovered

is to first use SLAM (Simultaneous Localization And Mapping) techniques [17, 18]

to explore and build a map of the entire environment, then use a centralized pro-

cedure to decide where to send agents. In [19], for example, deployment locations

are chosen by a human user after an initial map has been built. Waiting for a

complete map of the entire environment to be built before placing agents may not

be desirable. In [20] agents fuse sensor data to build only a map of the portion

of the environment covered so far, then heuristics are used to deploy agents onto

the frontier of the this map, thus repeating this procedure incrementally expands

the covered region. For any techniques relying heavily on SLAM, however, syn-

chronization and data fusion can pose significant challenges under communication

bandwidth limitations. In [21] agents discover and achieve visibility coverage of

an environment not by building a geometric map, but instead by sharing only

3A point guard is a guard which may be located anywhere in the interior or on the boundary
of a polygonal environment.

4

combinatorial information about the environment; however, the strategy focuses

on the theoretical limits of what can be achieved with minimalistic sensing, thus

the amount of robot motion required becomes impractical.

Most relevant to, and a source of inspiration for the work in Chapter 2, are the

distributed visibility-based deployment algorithms, for polygonal environments

without holes, developed recently by Ganguli et al [22, 23, 24]. These algorithms

are simple, require only limited impact-based communication, and offer worst-case

optimal bounds on the number of agents required. The basic strategy is to incre-

mentally construct a so-called nagivation tree through the environment. To each

vertex in the navigation tree corresponds a region of the the environment which

is completely visible from that vertex. As agents move through the environment,

they eventually settle on certain nodes of the navigation tree such that the entire

environment is covered.

Visibility-Based Pursuit-Evasion

Seachlight Scheduling is a form of visibility-based pursuit-evasion, that is, pursuit-

evasion where the goal is to see an evader rather than achieve physical proximity to

it. To our knowledge the Searchlight Scheduling Problem was first introduced by

Sugihara, Suzuki and Yamashita [25]. They give a solution, the “One Way Sweep

Strategy”, to the limited class of searchlight scheduling problem instances in which

the environment is simply connected and there is at least one searchlight located

on the boundary for every connected component of their visibility graph. In [26] an

upper bound is given on the number of guards with multiple searchlights sufficient

in polygonal environments containing holes. We adopt the convention in [26] and

call a mobile guard possessing k searchlights a k-searcher. Some articles involving

5

1-searchers, sometimes calling them flashlights or beam detectors, are [27], [28],

[29], and [30]. Other treatments of visibility-based pursuit evasion problems in

simple 2D environments include, e.g., [31, 32, 33, 34, 35, 36, 37, 38, 39, 40].

Exact cell decomposition, a method we use in Chapter 3, has been used in the

design of complete algorithms to solve visibility-based pursuit-evasion problems

before, e.g., in [32] and [27]. In [32] an algorithm is given for a single mobile

searcher with omnidirectional vision, and it is shown that determining the min-

imum number of such pursuers required to clear a polygonal environment with

holes is NP-hard. In [27] a complete algorithm is described for a single mobile

“φ-searcher” having an angle φ field of view, and it is shown that determining the

minimum number of such pursuers required to clear a polygonal environment with

holes is also NP-hard. To our knowledge nobody has carried out the design of a

complete algorithm to solve any visibility-based pursuit-evasion problem involv-

ing arbitrary polygonal environments with holes. However, there are at least two

noteworthy articles involving multiple pursuers in polygonal environments without

holes. In [41] a polynomial time complete algorithm is provided for two 1-searchers

in a simple polygonal environment, but has not been extended to three or greater

pursuers and it is not clear how to do so. In [42] a polynomial time complete algo-

rithm is given to determine the minimum number of∞-searchers (omnidirectional

vision) necessary to clear a simple polygon, but under the constraints that (1) the

pursuers are in a chain configuration where consecutive pursuers along the chain

are mutually visible, and (2) end pursuers must remain on the polygon boundary.

6

Reconnaissance Path Planning for a UAV

UAVs are becoming the sensor platform of choice for many surveillance, reconnais-

sance, and search and rescue applications [43, 44, 45, 46]. The Reconnaissance

Path Planning Problem which we treat in this dissertation is for a fixed-wing

UAV modeled as a Dubins vehicle4. If we approximate as polygons the subsets of

airspace from which targets are visible to a UAV, then our reconnaissance path

planning problem is reduced to a Polygon-Visiting Dubins Traveling Salesman

Problem (PVDTSP hereinafter). To our knowledge the PVDTSP has not previ-

ously been studied. Because the PVDTSP has embedded in it the combinatorial

problem of choosing the order to visit the polygons, the solution space is very large

and discontinuous. This precludes direct application of numerical optimal control

techniques traditionally used in trajectory optimization, surveyed, e.g., in [47].

However, several related variations of the TSP are of interest. The ETSP (Eu-

clidean TSP) is a TSP where the vertices of the graph are points in the Euclidean

plane R
2 and the edges are weighted with Euclidean distances. In the ETSPN

(Euclidean TSP with Neighborhoods) one seeks a shortest closed Euclidean path

passing through n subsets of the plane. The ETSP is NP-hard [48] and so is

the ETSPN by virtue of being a generalization of the ETSP. The DTSP (Dubins

TSP), where a Dubins vehicle must follow a shortest tour through n single point

targets in the plane, is known to be NP-hard in n [49]. Various heuristics for

both single and multi-vehicle versions of the DTSP can be found, e.g., in [50],

[51], and [52]. The PVDTSP reduces to the ETSPN in the limit as the vehi-

cle’s minimum turning radius becomes small compared to the distances between

polygons. Similarly, as the area of the polygons goes to zero, the PVDTSP re-

4A Dubins vehicle is one which moves only forward and has a minimum turning radius [45, 46].

7

duces to the DTSP, hence the PVDTSP is NP-hard. There exist a number of

algorithms with approximation guarantees for both the DTSP [53, 54, 55] and

ETSPN [56, 57, 58], but it appears that extending any of these algorithms to

the PVDTSP would put undesirable restirictions on the problem instances which

could be handled, e.g., the polygons would not be allowed to overlap. The FOTSP

(Finite One-in-set TSP)5 is the problem of finding a closed path of minimum cost

which passes through at least one vertex in each of a finite collection of clusters,

the clusters being mutually exclusive finite vertex sets. The FOTSP is NP-hard

because it has as a special case the ATSP (Asymmetric TSP) [59]. An FOTSP

instance can be solved exactly by transforming it into an ATSP instance using

the Noon-Bean transformation from [60], then invoking an ATSP solver. Alter-

natively, an FOTSP can be solved using an approximate dynamic programming

technique as in [61]. In the robotics literature [18, 62], a sampling-based roadmap

method6 refers to any algorithm which operates by sampling a finite set of points

from a continuous state space in order to reduce a continuous motion planning

problem to planning on a finite discrete graph. Sampling-based roadmap methods

have traditionally only been used for collision-free point-to-point path planning

amongst obstacles, however, in [63] approximate solutions to the DTSP are found

by sampling discrete sets of orientations that the Dubins vehicle can have over

each target, essentially approximating a DTSP instance by an FOTSP instance.

They then use the Noon-Bean transformation to convert the FOTSP instance into

an ATSP instance so that a standard ATSP solver can be applied. Discretization

of the vehicle state space in order to approximate the original problem by an

5What we have chosen to call the FOTSP is known variously in the literature as “Group-
TSP”, “Generalized-TSP”, “One-of-a-Set TSP”, “Errand Scheduling Problem”, “Multiple
Choice TSP”, “Covering Salesman Problem”, or “International TSP”.

6In this usage, “method” means a high level algorithm having multiple components, each of
which may be considered an algorithm in its own right.

8

FOTSP is a key idea which we build upon in designing sampling-based roadmap

methods for the PVDTSP in the present work. For NP-hard problems such as

the TSP and most of its variations, another possible approach is to use meta-

heuristic algorithms, e.g., tabu search, simulated annealing, or genetic algorithms

[64]. These techniques typically lack performance guarantees, yet obtain good

solutions in reasonable computation time. Particularly, genetic algorithms have

recently been applied to variations of the TSP and UAV motion planning prob-

lems [65, 66, 67, 68, 69, 70, 71]. Genetic algorithm is an umbrella term referring

to any iterative procedure which mimics biological evolution by operating on a

population of candidate solutions encoded as so-called chromosomes. The genetic

operators of crossover and mutation are successively applied, generation after gen-

eration, until a sufficiently fit solution appears in the population. It is not obvious

how to adapt existing genetic algorithms to the PVDTSP, nor is it clear whether

any such adaptations would be effective.

Tracking, Exploration, and Visibility in Other Disciplines

There are several other research areas involving visibility which are certainly worth

mentioning despite being less relevant to the present work than most references

given so far. The problem of tracking a moving target while maintaining line of

sight in the presence of occlusions is treated, e.g., in [72, 73, 70, 71, 74]. Robotic

exploration for the purpose of map building has been the subject of extensive

research [18, 17], but usually statistical rather than combinatorial methods are

used. The field of computer vision [75, 76] focuses on pure imaging and sensing

issues rather than motion control, coordination, or planning. In computer graphics

and computational geometry, visibility problems focus on efficient computation of

9

visibility sets and occlusion from geometric environment models, e.g., see [77, 74]

and references therein.

1.2 Organization and Contributions

The organization and contributions of this dissertation are summarized as follows.

Chapter 2: Multi-Agent Deployment for Visibility Coverage

The contribution of this chapter is the design of an algorithm which solves

the Distributed Visibility-Based Deployment Problem with Connectivity in

polygonal environments with holes. For this algorithm we prove (i) con-

vergence, (ii) worst-case upper bounds on the time and number of agents

required, (iii) bounds on the memory and communication complexity, and

(iv) robust extensions. Simulation results are also included. Our algorithm

operates using line-of-sight communication and by use of a so-called parti-

tion tree distributed data structure similar to the navigation tree used by

Ganguli et al as described above. In polygonal environments with holes the

algorithms of Ganguli et al fail because branches of the navigation tree con-

flict when they wrap around one or more holes. Our algorithm, however, is

able to handle such “branch conflicts”.

Chapter 3: Centralized Searchlight Scheduling

There are three main contributions in this chapter. First, we show by exact

cell decomposition that if an instance of the Searchlight Scheduling Prob-

lem permits any solution at all, then it also permits a solution in a reduced

discrete solution space. The second contribution is to use the knowledge of

10

the solution space discretization to design a complete7 algorithm for search-

light scheduling. Although it remains an open problem whether searchlight

scheduling is NP-hard, our computed examples demonstrate that for search-

lights, even in environments with holes, the time complexity of a complete

exact cell decomposition is not entirely prohibitive and can be practical for

problem instances of useful size. At this time no other algorithm exists to

solve the general Searchlight Scheduling Problem. As a third contribution

we treat a new problem which we call the φ-Searchlight Scheduling Problem

in which φ-searchlights sense not just along a ray, but over a finite field

of view (as for a typical security camera). We show how our searchlight

scheduling algorithm can be extended to take advantage of φ-searchlights

having a wider field of view than just a ray. This is an important extension

because for cameras having a finite field of view it is a much more realistic

sensor model. We envision our algorithms and/or other algorithms inspired

by this work will one day be used in automating the design of security

systems consisting of networks of statically positioned rotating sensors and

actuators.

Chapter 4: Distributed Searchlight Scheduling

The main contribution of this chapter is the development of two asyn-

chronous distributed algorithms to solve the searchlight scheduling prob-

lem. Correctness and completion time bounds for nonconvex polygonal en-

vironments are discussed. The first algorithm, called DOWSS (Distributed

One Way Sweep Strategy), is a distributed version of a known algorithm

described originally in [25], but it can be very slow in clearing the entire

7Here complete means that if a solution exists, the algorithm is guaranteed to find one in
finite time.

11

environment because only one searchlight may rotate at a time. On-line

processing time required by agents during execution of DOWSS is relatively

low, so that the expedience with which an environment can be cleared is es-

sentially limited by the maximum angular speed searchlights may be rotated

at. In an effort to reduce the time to clear the environment, we develop a

second algorithm, called PTSS (Parallel Tree Sweep Strategy), which sweeps

searchlights in parallel if guards are placed in appropriate locations. These

locations are related to an environment partition with certain properties.

That we analyze the time it takes to clear an environment, given a bound

on the angular rotation velocity, is a unique feature among all work involving

searchlights to date.

Chapter 5: Path Planning for a Visual Reconnaissance UAV

There are four main contributions in this chapter. First, we precisely for-

mulate the general aircraft visual reconnaissance problem for static ground

targets in terrain. Assuming the UAV can be modeled as a Dubins vehicle

and that target visibility sets are polygons, we reduce our general formula-

tion to a PVDTSP (Polygon-Visiting Dubins Traveling Salesman Problem).

Although the PVDTSP reduces to the well-studied DTSP and ETSP in the

sparse limit as targets are very far apart, we provide a worst-case analy-

sis demonstrating the importance of developing specialized algorithms for

the PVDTSP in the dense limit as targets are close together and polygons

may overlap significantly. The second contribution is the design and nu-

merical study of two sampling-based roadmap methods for the PVDTSP.

These methods operate by sampling finite discrete sets of vehicle states to

approximate a PVDTSP instance by an FOTSP instance, then applying

12

existing FOTSP solving techniques. One of our sampling-based roadmap

methods uses the Noon-Bean transformation from [60] and is resolution

complete, which means it provably converges to a nonisolated global op-

timum as the number of samples grows. Our other sampling-based roadmap

method achieves faster computation times by using the approximate dy-

namic programming technique from [61], but consequently only converges

to a nonisolated global optimum modulo target order. While we have bor-

rowed the idea of approximation by an FOTSP from [63], the present work

goes beyond a simple extension in that we (1) illustrate the connection with

sampling-based roadmap methods used for path planning in the robotics lit-

erature8, (2) use a novel sampling technique to reduce computational time

complexity, and (3) provide proof of convergence to nonisolated global op-

tima. The third contribution, is the design of a genetic algorithm for the

PVDTSP. The genetic algorithm has no performance guarantees but is easi-

est to implement and tends to find good feasible solutions quickly. Numerical

experiments indicate that both the sampling-based roadmap methods and

genetic algorithm deliver good solutions suitably quickly for online purposes

when applied to PVDTSP instances having up to about 20 targets. Addi-

tionally, all the algorithms have a means for a user to trade off computation

time for solution quality. The fourth contribution is a description of how

the modular nature of all the algorithms allows them to easily be extended

to handle wind, airspace constraints, any vehicle dynamics, and open-path

(vs. closed-tour) problems.

8Although [63] appears to be the first application of a sampling-based roadmap method to a
TSP-type problem, they do not use the term “sampling-based roadmap method”, nor is there
any mention of the connection with sampling-based roadmap methods in the robotics literature.

13

Chapter 2

Multi-Agent Deployment for

Visibility Coverage

2.1 Introduction

In this chapter we design a distributed algorithm for deploying a group of mobile

robotic agents with omnidirectional vision into nonconvex polygonal environments

with holes, e.g., an urban or building floor plan. Agents are identical except for

their unique identifiers (UIDs), begin deployment from a common point, possess

no prior knowledge of the environment, and operate only under line-of-sight sens-

ing and communication. The objective of the deployment is for the agents to

achieve full visibility coverage of the environment while maintaining line-of-sight

connectivity (at any time the agents’ visibility graph consists of a single connected

component). We call this the Distributed Visibility-Based Deployment Problem

with Connectivity. Once deployed, the agents may supply surveillance informa-

tion to an operator through the ad-hoc line-of-sight communication network. A

graphical description of our objective is given in Fig. 2.1.

14

Figure 2.1. This sequence (left to right, top to bottom) shows a simulation

run of the distributed visibility-based deployment algorithm described in Sec. 2.6.

Agents (black disks) initially are colocated in the lower left corner of the envi-

ronment. As the agents spread out, they claim areas of responsibility (green)

which correspond to cells of the incremental partition tree TP . Blue lines show

line-of-sight connections between agents responsible for neighboring vertices of TP .

Once agents have settled to their final positions, every point in the environment

is visibile to some agent and the agents form a line-of-sight connected network.

Approaches to visibility coverage problems can be divided into two categories:

those where the environment is known a priori and those where the environment

must be discovered. When the environment is known a priori, a well-known ap-

proach is the Art Gallery Problem in which one seeks the smallest set of guards

such that every point in a polygon is visible to some guard. This problem has

been shown both NP-hard [1] and APX-hard [2] in the number of vertices n

representing the environment. The best known approximation algorithms offer

solutions only within a factor of O(log g), where g is the optimum number of

agents [4]. The Art Gallery Problem with Connectivity is the same as the Art

15

Gallery Problem, but with the additional constraint that the guards’ visibility

graph must consist of a single connected component, i.e., the guards must form a

connected network by line of sight. This problem is also NP-hard in n [5]. Many

other variations on the Art Gallery Problem are well surveyed in [6, 7, 8]. The

classical Art Gallery Theorem, proven first in [9] by induction and in [10] by a

beautiful coloring argument, states that ⌊n
3
⌋ vertex guards1 are always sufficient

and sometimes necessary to cover a polygon with n vertices and no holes. The Art

Gallery Theorem with Holes, later proven independently by [11] and [12], states

that ⌊n+h
3
⌋ point guards2 are always sufficient and sometimes necessary to cover

a polygon with n vertices and h holes. If guard connectivity is required, [13]

proved by induction and [14] by a coloring argument, that ⌊n−2
2
⌋ vertex guards

are always sufficient and occasionally necessary for polygons without holes. We

are not aware of any such bound for connected coverage of polygons with holes.

For polygonal environments with holes, centralized camera-placement algorithms

described in [15] and [16] take into account practical imaging limitations such as

camera range and angle-of-incidence, but at the expense of being able to obtain

worst-case bounds as in the Art Gallery Theorems. The constructive proofs of

the Art Gallery Theorems rely on global knowledge of the environment and thus

are not amenable to emulation by distributed algorithms.

One approach to visibiliy coverage when the environment must be discovered

is to first use SLAM (Simultaneous Localization And Mapping) techniques [17] to

explore and build a map of the entire environment, then use a centralized proce-

dure to decide where to send agents. In [19], for example, deployment locations

1A vertex guard is a guard which is located at a vertex of the polygonal environment.
2A point guard is a guard which may be located anywhere in the interior or on the boundary

of a polygonal environment.

16

are chosen by a human user after an initial map has been built. Waiting for a

complete map of the entire environment to be built before placing agents may not

be desirable. In [20] agents fuse sensor data to build only a map of the portion

of the environment covered so far, then heuristics are used to deploy agents onto

the frontier of the this map, thus repeating this procedure incrementally expands

the covered region. For any techniques relying heavily on SLAM, however, syn-

chronization and data fusion can pose significant challenges under communication

bandwidth limitations. In [21] agents discover and achieve visibility coverage of

an environment not by building a geometric map, but instead by sharing only

combinatorial information about the environment, however, the strategy focuses

on the theoretical limits of what can be achieved with minimalistic sensing, thus

the amount of robot motion required becomes impractical.

Most relevant to and the inspiration for the present work are the distributed

visibility-based deployment algorithms, for polygonal environments without holes,

developed recently by Ganguli et al [22, 23, 24]. These algorithms are simple,

require only limited impact-based communication, and offer worst-case optimal

bounds on the number of agents required. The basic strategy is to incrementally

construct a so-called nagivation tree through the environment. To each vertex in

the navigation tree corresponds a region of the the environment which is com-

pletely visible from that vertex. As agents move through the environment, they

eventually settle on certain nodes of the navigation tree such that the entire en-

vironment is covered.

The contribution of this chapter is the design of an algorithm which solves the

Distributed Visibility-Based Deployment Problem with Connectivity in polygo-

nal environments with holes. For this algorithm we prove (i) convergence, (ii)

17

worst-case upper bounds on the time and number of agents required, (iii) bounds

on the memory and communication complexity, and (iv) robustness extensions.

Simulation results are also included. Our algorithm operates using line-of-sight

communication and a so-called partition tree data structure similar to the navi-

gation tree used by Ganguli et al as described above. In polygonal environments

with holes the algorithms of Ganguli et al fail because branches of the navigation

tree conflict when they wrap around one or more holes. Our algorithm, however,

is able to handle such “branch conflicts”.

This chapter is organized as follows. We begin with some technical definitions

in Sec. 2.2, then a precise statement of problem and assumptions in Sec. 2.3. De-

tails on the agents’ sensing, dynamics, and communication are given in Sec. 2.4.

Algorithm descriptions, including pseudocode and simulation results, are pre-

sented in Sec. 2.5 and Sec. 2.6. We conclude in Section 2.7.

2.2 Notation and Preliminaries

We begin by introducing some basic notation. The real numbers are repre-

sented by R. Given a set, say A, the interior of A is denoted by int(A), the

boundary by ∂A, and the cardinality by |A|. Two sets A and B are openly dis-

joint if int(A)∩ int(B) = ∅. Given two points a, b ∈ R
2, [a, b] is the closed segment

between a and b. Similarly,]a, b[is the open segment between a and b. The

number of robotic agents is N and each of these agents has a unique identifier

(UID) taking a value in {0, . . . , N −1}. Agent positions are P = (p[0], . . . , p[N−1]),

a tuple of points in R
2. Just as p[i] represents the position of agent i, we use such

superscripted square brackets with any variable associated with agent i, e.g., as

18

in Table 2.4.

We turn our attention to the environment, visibility, and graph theoretic con-

cepts. The environment E is polygonal with vertex set VE , edge set EE , total

vertex count n = |VE | = |EE |, and hole count h. Given any polygon c ⊂ E , the

vertex set of c is Vc and the edge set is Ec. A segment [a, b] is a diagonal of E if (i)

a and b are vertices of E , and (ii)]a, b[⊂ int(E). Let e be any point in E . The point

e is visible from another point e′ ∈ E if [e, e′] ⊂ E . The visibility polygon V(e) ⊂ E

of e is the set of points in E visible from e (Fig. 2.2). The vertex-limited visibility

polygon Ṽ(e) ⊂ V is the visibility polygon V(e) modified by deleting every vertex

which does not coincide with an environment vertex (Fig. 2.2). A gap edge of

V(e) (resp. Ṽ(e)) is defined as any line segment [a, b] such that]a, b[⊂ int(E),

[a, b] ⊂ ∂V(e) (resp. [a, b] ⊂ ∂Ṽ(e)), and it is maximal in the sense that a, b ∈ ∂E .

Note that a gap edge of Ṽ(e) is also a diagonal of E . For short, we refer to the

gap edges of V(e) as the visibility gaps of e. A set R ⊂ E is star-convex if there

Figure 2.2. In a simple nonconvex polygonal environment are shown examples of

the visibility polygon (red, left) of a point observer (black disk), and the vertex-

limited visibility polygon (red, right) of the same point.

exists a point e ∈ R such that R ⊂ V(e). The kernel of a star-convex set R, is

the set {e ∈ E|R ⊂ V(e)}, i.e., all points in R from which all of R is visible. The

visibility graph GvisE(P) of a set of points P in environment E is the undirected

graph with P as the set of vertices and an edge between two vertices if and only

19

if they are (mutually) visible. A tree is a connected graph with no simple cycles.

A rooted tree is a tree with a special vertex designated as the root. The depth of a

vertex in a rooted tree is the minimum number of edges which must be treversed

to reach the root from that vertex. Given a tree T , VT is its set of vertices and

ET its set of edges.

2.3 Problem Description and Assumptions

The Distributed Visibility-Based Deployment Problem with Connectivity which

we solve in the present work is formally stated as follows:

Design a distributed algorithm for a network of autonomous robotic
agents to deploy into an unmapped environment such that from their
final positions every point in the environment is visible from some
agent. The agents begin deployment from a common point, their visi-
bility graph GvisE(P) is to remain connected, and they are to operate
using only information from local sensing and line-of-sight communi-
cation.

By local sensing we intend that each agent is able to sense its visibiliity gaps

and relative positions of objects within line of sight. Additionally, we make the

following main assumptions :

(i) The environment E is static and consists of a simple polygonal outer bound-

ary together with disjoint simple polygonal holes. By simple we mean that

each polygon has a single boundary component, its boundary does not in-

tersect itself, and the number of edges is finite.

(ii) Agents are identical except for their UIDs (0, . . . , N − 1).

20

(iii) Agents do not obstruct visibility or movement of other agents.

(iv) Agents are able to locally establish a common reference frame.

(v) There are no communication errors nor packet losses.

Later, in Sec. 2.6.6 we will describe how our nominal deployment algorithm

can be extended to relax some assumptions.

2.4 Network of Visually-Guided Agents

In this section we lay down the sensing, dynamic, and communication model for

the agents. Each agent has “omnidirectional vision” meaning an agent possesses

some device or combination of devices which allows it to sense within line of sight

(i) the relative position of another agent, (ii) the relative position of a point on

the boundary of the environment, and (iii) the gap edges of its visibility polygon.

For simplicity, we model the agents as point masses with first order dynamics,

i.e., agent i may move through E according to the continuous time control system

ṗ[i] = u[i], (2.1)

where the control u[i] is bounded in magnitude by umax. The control action de-

pends on time, values of variables stored in local memory, and the information

obtained from communication and sensing. Although we present our algorithms

using these first order dynamics, the crucial property for convergence is only that

an agent is able to navigate along any (unobstructed) straight line segment be-

tween two points in the environment E , thus the deployment algorithm we describe

21

is valid also for higher order dynamics.

The agents’ communication graph is precisely their visibility graph GvisE(P),

i.e., any visibility neighbors (mutually visible agents) may communicate with each

other. Agents may send their messages using, e.g., UDP (User Datagram Proto-

col). Each agent (i = 0, . . . , N − 1) stores received messages in a FIFO (First-

In-First-Out) buffer In Buffer[i] until they can be processed. Messages are sent

only upon the occurrence of certain asynchronous events and the agents’ proces-

sors need not be synchronized, thus the agents form an event-driven asynchronous

robotic network similar to that described, e.g., in [78]. In order for two visibil-

ity neighbors to establish a common reference frame, we assume agents are able

to solve the correspondence problem: the ability to associate the messages they

receive with the corresponding robots they can see. This may be accomplished,

e.g., by the robots performing localization, however, as mentioned in Sec. 2.1,

this might use up limited communication bandwidth and processing power. Sim-

pler solutions include having agents display different colors, “license plates”, or

periodic patterns from LEDs [79].

2.5 Incremental Partition Algorithm

We introduce a centralized algorithm to incrementally partition the environ-

ment E into a finite set of openly disjoint star-convex polygonal cells. Roughly, the

algorithm operates by choosing at each step a new vantage point on the frontier of

the uncovered region of the environment, then computing a cell to be covered by

that vantage point (each vantage point is in the kernel of its corresponding cell).

The frontier is pushed as more and more vantage point - cell pairs are added

22

until eventually the entire environment is covered. The vantage point - cell pairs

form a directed rooted tree structure called the partition tree TP . This algorithm

is a variation and extension of an incremental partition algorithm used in [24],

the main differences being that we have added a protocol for handling holes and

adapted the notation to better fit the added complexity of handling holes. The

deployment algorithm to be described in Sec. 2.6 is a distributed emulation of the

centralized incremental partition algorithm we present here.

Before examining the precise pseudocode Table 2.1, we informally step through

the incremental partition algorithm for the simple example of Fig. 2.3a-f. This

sequence shows the environment partition together with corresponding abstract

representations of the partition tree TP . Each vertex of TP is a vantage point - cell

pair and edges are based on cell adjacency. Given any vertex of TP , say (pξ, cξ),

ξ is the PTVUID (Partition Tree Vertex Unique IDentifier). The PTVUID of a

vertex at depth d is a d-tuple, e.g., (1), (2,1), or (1,1,1). The symbol ∅ is used as

the root’s PTVUID. The algorithm begins with the root vantage point p∅. The

cell of p∅ is the grey shaded region c∅ in Fig. 2.3a, which is the vertex-limited

visibility polygon Ṽ(p∅). According to certain technical criteria, made precise

later, child vantage points are chosen on the endpoints of the unexplored gap

edges. In Fig. 2.3a, dashed lines show the unexplored gap edges of c∅. Selecting

p(1) as the next vantage point, the corresponding cell c(1) becomes the portion of

Ṽ(p(1)) which is across the parent gap edge and extends away from the parent’s

cell. The vantage point p(2) and its cell c(2) are generated in the same way. There

are now three vertices, (p∅, c∅), (p(1), c(1)), and (p(2), c(2)) in TP (Fig. 2.3b). In

a similar manner, two more vertices, (p(2,1), c(2,1)) and (p(2,1,1), c(2,1,1)), have been

added in Fig. 2.3c. An intersection of positive area is found between cell c(2,1,1)

23

and the cell of another branch of TP , namely c(1). To solve this branch conflict, the

cell c(2,1,1) is discarded and a special marker called a phantom wall (thick dashed

line in Fig. 2.3d) is placed where its parent gap edge was. A phantom wall serves

to indicate that no branch of TP should cross a particular gap edge. The vertex

(p(1,2), c(1,2)) added in Fig. 2.3e thus can have no children. Finally, Fig. 2.3f shows

the remaining vertices (p(1,1), c(1,1)) and (p(1,1,1), c(1,1,1)) added to TP so that the

entire environment is covered and the algorithm terminates.

24

3
56

4

21

c∅

p∅

p∅, c∅

(a)

c(1)

c∅

p(2) p(1)

c(2)

p∅

p(1), c(1)

p∅, c∅

p(2), c(2)

(b)

c(2,1,1)

c(1)

c(2)

p(2,1)

c(2,1)

p(2,1,1)

p∅

c∅

p(2) p(1)

p(1), c(1)

p∅, c∅

p(2,1), c(2,1)

p(2,1,1), c(2,1,1)

p(2), c(2)

(c)

Figure 2.3. This simple example shows how the incremental partition algorithm

of Table 2.1 progresses (a)-(f). Cell vantage points are shown by black disks. The

portion of the environment E covered at each stage is shown in grey (left) along

with a corresponding abstract depiction of the partition tree (right).

25

c(1)
p(2) p(1)

c(2)

p(2,1)

c(2,1)

p∅

c∅

p(1), c(1)

p∅, c∅

p(2,1), c(2,1)

p(2), c(2)

(d)

c(2)

p(1)

c(1)

p(1,2)

c(1,2)

c(2,1)

p(2,1)

p∅

c∅

p(2)

p(1,2), c(1,2)

p(1), c(1)

p∅, c∅

p(2,1), c(2,1)

p(2), c(2)

(e)

c(1,1,1)

p(2,1)

c(2,1)

c(1)
p(1,1)

p(1,2)

c(1,2)

c(1,1)
p(1,1,1)

p∅

c∅

p(2) p(1)

c(2)

p(1,1,1), c(1,1,1)

p(1,1), c(1,1) p(1,2), c(1,2)

p(1), c(1)

p∅, c∅

p(2,1), c(2,1)

p(2), c(2)

(f)

Figure 2.3. (continuation) A phantom wall (thick dashed line), shown first in

(d), comes about when there is a branch conflict, i.e., when cells from different

branches of the partition tree TP are not openly disjoint. The final partition can

be used to triangulate the environment as shown in Fig. 2.4.

26

Figure 2.4. The partition tree produced by the centralized incremental partition

algorithm of Table 2.1 or the distributed deployment algorithm of Table 2.6 can

be used to triangulate an environment, as shown here for the simple example of

Fig. 2.3. The triangulation is constructed by drawing diagonals (dashed lines)

from each vantage point (black disks) to the visible environment vertices in its

cell.

Now we turn our attention to the pseudocode Table 2.1 for a precise description

of the algorithm. The input is the environment E and a single point p∅ ∈ VE . The

output is the partition tree TP . We have seen that each vertex of the partition

tree is a vantage point - cell pair. In particular, a cell is a data structure which

stores not only a polygonal boundary, but also a label on each of the polygon’s

gap edges. A gap edge label takes one of four possible values: parent, child,

unexplored, or phantom wall. These labels allow the following exact definition

of the partition tree.

Definition 2.1 (Partition Tree TP). The directed rooted partition tree TP has

(i) vertex set consisting of vantage point - cell pairs produced by the incremental

partition algorithm of Table 2.1, and

27

Table 2.1. Centralized Incremental Partition Algorithm

INCREMENTAL PARTITION(E , p∅)
{Compute and Insert Root Vertex into TP}

1: c∅ ← Ṽ(p∅);
2: for each gap edge g of cξ do
3: label g as unexplored in c∅;
4: insert (p∅, c∅) into TP ;
{Main Loop}

5: while any cell in TP has unexplored gap edges do
6: cζ ← any cell in TP with unexplored gap edges;
7: g ← any unexplored gap edge of cζ ;
8: (pξ, cξ)← CHILD(E , TP , ζ, g); {See Tab. 2.2}
9: {Check for Branch Conflicts}

10: if there exists any cell cξ′ in TP which is in branch conflict with cξ
then

11: discard (pξ, cξ);
12: label g as phantom wall in cζ ;
13: else
14: insert (pξ, cξ) into TP ;
15: label g as child in cζ ;
16: return TP ;

28

Table 2.2. Incremental Partition Subroutine

CHILD(E , TP , ζ, g)

1: ξ ← successor(ζ, i), where g is the ith nonparent gap edge of cζ coun-
terclockwise from pζ ;

2: if |Vcξ | > 3 then
3: enumerate cζ ’s vertices 1, 2, 3, . . . counterclockwise from pζ ;
4: else
5: enumerate cζ ’s vertices so that pζ is assigned 1 and the remaining

vertices of cζ are assigned 2 and 3
such that the vertex assigned 3 is on the parent gap edge of cζ ;

6: pξ ← vertex on g assigned an odd integer in the enumeration;
7: cξ ← Ṽ(pξ);
8: truncate cξ at g such that only the portion remains which is across g

from pζ ;
9: delete from cξ any vertices which lie across a phantom wall from pξ;

10: for each gap edge g′ of cξ do
11: if g′ == g then
12: label g′ as parent in cξ;
13: else if g′ coincides with an existing phantom wall then
14: label g′ as phantom wall in cξ;
15: else
16: label g′ as unexplored in cξ;
17: return (pξ, cξ);

29

(ii) a directed edge from vertex (pζ , cζ) to vertex (pξ, cξ) if and only if cζ has a

child gap edge which coincides with a parent gap edge of cξ.

Stepping through the pseudocode Table 2.1, lines 1-4 compute and insert the root

vertex (p∅, c∅) into TP . Upon entering the main loop at line 5, line 6 selects a

cell cζ arbitrarily from the set of cells in TP which have unexplored gap edges.

Line 7 selects an arbitrary unexplored gap edge g of cζ . The next vantage point

candidate will be placed on an endpoint of g by a call on line 8 to the CHILD

function of Table 2.2. The PTVUID ξ is computed by the successor function on

line 1 of Table 2.2. For any d-tuple ζ and positive integer i, successor(ζ, i) is simply

the (d+1)-tuple which is the concatenation of ζ and i, e.g., successor((2, 1), 1)) =

(2, 1, 1). The CHILD function constructs a candidate vantage point pξ and cell

cξ as follows. In the typical case, when the parent cell cζ has more than three

edges, cζ ’s vertices are enumerated counterclockwise from pζ , e.g., as c∅’s vertices

in Fig. 2.3a or Fig. 2.6. In the special case of cζ being a triangle, e.g., as the

triangular cells in Fig. 2.6, cζ ’s vertices are enumerated such that the 3 lands on

cζ ’s parent gap edge. The vertex of g which is odd in the enumeration is selected

as pξ. Occasionally there may be double vantage points (colocated), e.g., as p(2)

and p(3) in Fig. 2.6. We will see in Sec. 2.5.1 that this parity-based vantage point

selection scheme is important for obtaining a special subset of the vantage points

called the sparse vantage point set. Returning to Table 2.1, the final portion of

the main loop, lines 9-14, checks whether cξ is in branch conflict or (pξ, cξ) should

be added permanently to TP . A cell cξ is in branch conflict with another cell cξ′ if

and only if cξ and cξ′ are not openly disjoint (see Fig. 2.5). The main algorithm

terminates when there are no more unexplored gap edges in TP .

An important difference between our incremental partition algorithm and that

30

of Ganguli et al [24] is that the set of cells computed by our incremental partition

is not unique. This is because the freedom in choosing cell cζ and gap g on lines

6-7 of Table 2.1 allows different executions of the algorithm to fill the same part of

the environment with different branches of TP . This may result in different sets of

phantom walls as well. A phantom wall is only created on line 11 of Table 2.1 when

there is a branch conflict. This discarding may seem computationally wasteful

because the environment could just be made simply connected by choosing h

phantom walls (one for each hole) prior to executing the algorithm. Such an

approach, however, would not be amenable to distributed emulation without a

priori knowledge of the environment.

The following important properties we prove for the incremental partition algo-

rithm are similar to properties we obtain for the distributed deployment algorithm

in Sec. 2.6.

Lemma 2.1 (Star-Convexity of Partition Cells). Any partition tree vertex (pξ, cξ)

constructed by the incremental partition algorithm of Table 2.1, has the properties

that

(i) the cell cξ is star-convex, and

(ii) the vantage point pξ is in the kernel of cξ.

Proof. Given a star-convex set, say S, let K be the kernel of S. Suppose that we

obtain a new set S ′ by truncating S at a single line segment l who’s endpoints lie

on the boundary ∂S. It is easy so see that the kernel of S ′ contains K ∩ S ′, thus

S ′ must be star-convex if K ∩ S ′ is nonempty. Indeed l could not possibly block

line of sight from any point in K ∩ S ′ to any point p in S ′, otherwise p would

have been truncated. Inductively, we can obtain a set S ′ by truncating the set S

at any finite number of line segments and the kernel of S ′ will be a superset of

S ′ ∩K. Now consider a partition tree vertex (pξ, cξ). By definition, the visibility

31

polygon V(pξ) is star-convex and pξ is in the kernel. By the above reasoning, the

vertex-limited visibility polygon Ṽ(pξ) is also star-convex and has pξ in its kernel

because Ṽ(pξ) can be obtained from V(pξ) by a finite number of line segment

truncations (lines 8 and 9 of Table 2.2). Likewise, cξ must be star-convex with pξ

in its kernel because cξ is obtained from Ṽ(pξ) by a finite number of line segment

truncations at the parent gap edge and phantom walls.

Theorem 2.1 (Properties of the Incremental Partition Algorithm). Suppose the

incremental partition algorithm of Table 2.1 is executed on an environment E with

n vertices and h holes. Then

(i) the algorithm returns in finite time a partition tree TP such that every point

in the environment is visible to some vantage point,

(ii) the visibility graph of the vantage points GvisE({pξ|(pξ, cξ) ∈ TP}) consists of

a single connected component,

(iii) the final number of vertices in TP (and thus the total number of vantage

points) is no greater than n+ 2h− 2,

(iv) there exist environments where the final number of vertices in TP is equal to

the upper bound n+ 2h− 2, and

(v) the final number of phantom walls is precisely h.

Proof. We prove the statements in order. The algorithm processes unexplored

gap edges one by one and terminates when there are no more unexplored gap

edges. Once an unexplored gap edge has been processed, it is never processed

again because its label changes to phantom wall or child. Gap edges of cells

are diagonals of the environment and there are no more than
(
n

2

)
= n2−n

2
possible

diagonals, which is finite, therefore the algorithm must terminate in finite time.

Lemma 2.1 guarantees that if the entire environment is covered by cells of TP ,

then every point is visible to some vantage point. Suppose the final set of cells

does not cover the entire environment. Then there must be a portion of the

environment which is topologically isolated from the rest of the environment by

32

phantom walls, otherwise an unexplored gap edge would have expanded into that

region. However, this would mean that a phantom wall was created at the parent

gap edge of a candidate cell which was not in branch conflict. This is not possible

because a phantom wall is only ever created if there is a branch conflict (lines 9-10

Table 2.1). This completes the proof of statement (i).

Statement (ii) follows from Lemma 2.1 together with the fact that every van-

tage point is placed on the boundary of its parent’s cell. Given two vantage

points in TP , say pξ and pξ′ , a path through GvisE({pξ|(pξ, cξ) ∈ TP}) from pξ to

pξ′ can be constructed as follows. Follow parent-child visibility links up to the

root vantage point p∅, then follow parent-child visibility links from p∅ down to pξ′ .

Since such a path can always be constructed between any pair of vantage points,

GvisE({pξ|(pξ, cξ) ∈ TP}) must consist of a single connected component.

For statement (iii), we triangulate E by triangulating the cells of TP individu-

ally as in Fig. 2.4. Each cell cξ is triangulated by drawing diagonals from pξ to the

vertices of cξ. The total number of triangles in any triangulation of a polygonal

environment with holes is n+2h−2 (Lemma 5.2 in [7]). Since there is at least one

triangle per cell and at most one vantage point per cell, the number of vantage

points cannot exceed the maximum number of triangles n+ 2h− 2.

Statement (iv) is proven by the example in Fig. 2.7a.

For statement (v), we argue topologically. Suppose the final number of phan-

tom walls were less than h. Then somewhere two branches of the parition tree

must share a gap edge with no phantom wall separating them. If this shared gap

edge is not a phantom wall, it must be either (1) a child in branch conflict, or (2)

unexplored. Either way, the algorithm would have tried to create a cell there but

then deleted it and created a phantom wall; a contradiction. Now suppose there

were more than h phantom walls. Then a cell would be topologically isolated by

phantom walls from the rest of the environment. This is not possible because

phantom walls can never be created at the parent-child gap edge between two

cells. Since the final number of phantom walls can be neither less nor greater

than h, it must be h.

33

2.5.1 A Sparse Vantage Point Set

Suppose we were to deploy robotic agents onto the vantage points produced

by the incremental partition algorithm (one agent per vantage point). Then, as

Theorem 2.1 guarantees, we would achieve our goal of complete visibility coverage

with connectivity. The number of agents required would be no greater than the

number of vantage points, namely n+2h−2. This upper bound, however, can be

greatly improved upon. In order to reduce the number of vantage points agents

must deploy to, the postprocessing algorithm in Table 2.3 takes the partition tree

output by the incremental partition algorithm and labels a subset of the vantage

points called the sparse vantage point set. Starting at the leaves of the partition

tree and working towards the root, vantage points are labeled either nonsparse

or sparse according to criterion on line 2 of Table 2.3. As proven in Theorem 2.2

below, the sparse vantage points are suitable for the coverage task and their

cardinality has a much better upper bound than the full set of vantage points.

All the vantage points in the example of Fig. 2.3 are sparse. Fig. 2.6 shows an

example of when only a proper subset of the vantage points is sparse.

Lemma 2.2 (Properties of a Child Vantage Point of a Triangular Cell). Let (pξ, cξ)

be a partition tree vertex constructed by the incremental partition algorithm of

Table 2.1 and suppose cξ has a parent cell cζ which is a triangle. Then pξ is in the

kernel of pζ. Furthermore, if pζ has a parent vantage point pζ′ (the grandparent

of pξ), then pξ is visible to pζ′.

Proof. The kernel of a triangular (and thus convex) cell cζ is all of cζ . By

Lemma 2.1, pζ′ is in the kernel of cζ′ . According to the parity-based vantage

34

Table 2.3. Postprocessing of Partition Tree

LABEL VANTAGE POINTS(E , TP)

1: while there exists a vantage point pξ in TP such that pξ has not yet
been labeled

and
(
pξ is at a leaf or all child vantage points of pξ have been

labeled
)

do
2: if |Vcξ | == 3 and pξ has exactly one child vantage point labeled

sparse then
3: label pξ as nonsparse;
4: else
5: label pξ as sparse;

point selection scheme (line 5 of Table 2.2), pξ is located at a point common to

cζ′ , cζ , and cξ, therefore pξ is in the kernel of cζ and visible to cζ′ .

Theorem 2.2 (Properties of the Sparse Vantage Point Set). Suppose the incre-

mental partition algorithm of Table 2.1 is executed to completion on an environ-

ment E with n vertices and h holes and the vantage points of the resulting partition

tree are labeled by the algorithm in Table 2.3. Then

(i) every point in the environment is visible to some sparse vantage point,

(ii) the visibility graph of the sparse vantage points GvisE({pξ|(pξ, cξ) ∈ TP})

consists of a single connected component,

(iii) the number of points in R
2 where at least one sparse vantage point is located

is no greater than
⌊
n+2h−1

2

⌋
, and

(iv) there exist environments where the upper bound
⌊
n+2h−1

2

⌋
in (iii) is met.

Proof. Statements (i) and (ii) follow directly from Lemma 2.2 together with state-

ments (i) and (ii) of Theorem 2.1.

For statement (iii) we use a triangulation argument similar to that used in [24]

for environments without holes. We use the same triangulation as in the proof

35

of Theorem 2.1 (Fig. 2.4). The total number of triangles in any triangulation of

a polygonal environment with holes is n + 2h − 2 (Lemma 5.2 in [7]). Suppose

we can assign at least one unique triangle to p∅ whenever p∅ is sparse and at

least two unique triangles to all other sparse vantage point locations. Then using

the formula for the total number of triangles, we see the total number of sparse

vantage point locations is upper bounded by

⌊
(n+ 2h− 2) + 1

2

⌋

=

⌊
n+ 2h− 1

2

⌋

,

which is the desired result. Indeed we can make such an assignment of triangles to

sparse vantage point locations. Our argument relies on the parity-based vantage

point selection scheme and the criterion for labeling a vantage point as sparse

on line 2 of Table 2.3. To any sparse vantage point location, say of pξ other than

the root, we assign one triangle in the parent cell. The triangle in the parent cell

is the triangle formed by its parent gap edge together with its parent’s vantage

point. To each sparse vantage point location, say of pξ, including the root, we

assign additionally one triangle in the cell cξ. If cξ has no children, then any

triangle in cξ can be assigned to pξ. If cξ has children (in which case it must

have greater than onen triangle) we need to check that it has more triangles than

child vantage point locations with odd parity. Suppose cξ has an even number

of edges. Then this number of edges can be written 2m where m ≥ 2. The

number of triangles in cξ is 2m − 2 and the number of odd parity vertices in cξ

where child vantage points could be placed is m− 1. This means at most m− 1

triangles in cξ are assigned to odd parity child vantage point locations, which

leaves (2m− 2)− (m− 1) = m− 1 ≥ 1 triangles to be assigned to the location of

pξ. The case of cξ having an odd number of edges is proven analogously.

Statement (iv) is proven by the example in Fig. 2.7.

36

2.6 Distributed Deployment Algorithm

In this section we describe how a group of mobile robotic agents can distribut-

edly emulate the incremental partition and vantage point labeling algorithms

of Sec. 2.5, thus solving the Distributed Visibility-Based Deployment Problem

with Connectivity. We first give a rough overview of the algorithm, called DE-

PLOY DEPTH-FIRST(), and later address the details with aid of the pseudocode

in Tables 2.6. Each agent i has a local variable mode[i], among others, which

takes a value lead, proxy, or explore. For short, we call an agent in lead

mode a leader, an agent in proxy mode a proxy, and an agent in explore mode

an explorer. Agents may switch between modes (see Fig. 2.8a) based on certain

asynchronous events. Leaders settle at sparse vantage points and are responsible

for maintaining in their memory a distributed representation of the partition tree

TP consistent with Definition 2.1. By distributed representation we mean that

each leader i retains in its memory up to two vertices of responsibility, (p
[i]
1 , c

[i]
1)

and (p
[i]
2 , c

[i]
2), and it knows which gap edges of those vertices lead to the parent and

child vertices in TP .3 We call (p
[i]
1 , c

[i]
1) the primary vertex of agent i and (p

[i]
2 , c

[i]
2)

the secondary vertex. A leader typically has only a primary vertex in its memory

and may have also a secondary only if it is either positioned (1) at a double van-

tage point, or (2) at a sparse vantage point adjacent to a nonsparse vantage point.

Each cell in a leader’s memory has a status which takes the value retracting,

stable, or fertile (see Fig. 2.8b). Only when a cell has attained fertile status

can any child TP vertices be added at its unexplored gap edges. Intuitively, the

reason a cell must go through two statuses before becoming fertile is that two

3The subscripts of the vertices of responsibility are not to be confused with PTVUIDs, i.e.,

(p
[i]
1 , c

[i]
1) and (p

[i]
2 , c

[i]
2) are not in general the same as (p(1), c(1)) and (p(2), c(2)).

37

things had to be done to a newly constructed cell in the incremental partition

algorithm: the cell had to be (1) truncated at existing phantom walls, and then

(2) deleted if it was in branch conflict. The job of a proxy agent is to assist leaders

in advancing the status of their cells towards fertile by proxying communication

with other leaders (see Fig 2.5d). Any agent which is not a leader or proxy is an

explorer. Explorers merely move in depth-first order systematically about TP in

search of opportunity to serve as a proxy or leader (see Fig. 2.9). To simplify the

presentation, let us assume for now that, as in the example Fig. 2.3, no double

vantage points or triangular cells occur. Under this assumption, each leader will

be responsible for only one TP vertex, its primary vertex, and all vantage points

will be sparse. The deployment begins with all agents colocated at the first van-

tage point p∅. One agent, say agent 0, is initialized to lead mode with the first

cell c
[0]
ξ1

= c∅ = Ṽ(p∅) in its memory. All other agents are initialized to explore

mode. Agent 0 can immediately advance the status of c∅ to fertile because it

cannot possibly be in branch conflict (no other cells even exist yet); in general,

however, cells can only transition between statuses when a proxy tour is executed.

Agent 0 sees all the explorers in its cell and assigns as many as necessary to be-

come leaders so that there will be one new leader positioned on each unexplored

gap edge of c∅. The new leader agents move concurrently to their new respective

vantage points while all remaining explorer agents move towards the next cell in

their depth-first ordering. When a leader first arrives at its vantage point, say pξ,

of the cell cξ, it initializes cξ to have status retracting and boundary equal to the

portion of Ṽ(pξ) which is across the parent gap edge and extends away from the

parent’s cell. When an explorer agent comes to such a newly created retracting

cell, the leader assigns that explorer to become a proxy and follow a proxy tour

which traverses all the gap edges of cξ. During the proxy tour, the proxy agent is

38

able to communication with any leader of a fertile cell that might be in branch

conflict with the cξ. The cell cξ is thus truncated as necessary to ensure it is not

in branch conflict with any fertile cell. When this first proxy tour is complete,

the status of cξ is advanced to stable. The leader of cξ then assigns a second

proxy tour which again traverses all the gap edges of cξ. During this second proxy

tour, the leader communicates, via proxy, with all leaders of stable cells which

come into line of sight of the proxy. If a branch conflict is detected between cξ

and another stable cell, the agents have a standoff : they agree to delete the TP

vertex with PTVUID which is larger according to the following total ordering.

Definition 2.2 (PTVUID Total Ordering). Let ξ1 and ξ2 be distinct PTVUIDs.

If ξ1 and ξ2 do not have equal depth, then ξ1 < ξ2 if and only if the depth of ξ1

is less than the depth of ξ2. If ξ1 and ξ2 do have equal depth, then ξ1 < ξ2 if and

only if ξ1 is lexicographically smaller than ξ2.
4

When a cell cξ with parent cζ is deleted, two things happen: (1) The leader of cζ

marks a phantom wall at its child gap edge leading to cξ, and (2) all agents that

were in cξ become explorers, move back into cζ , and resume depth-first searching

for new tasks. If the second proxy tour of a cell cξ is completed without cξ being

deleted, then the status of cξ is advanced to fertile and its leader may then

assign explorers to become leaders of child TP vertices at the cξ’s unexplored gap

edges. Agents in different branches of TP create new cells in parallel and run

proxy tours in an effort to advance those cells to fertile status. New TP vertices

can in turn be created at the unexplored gap edges of the new fertile cells and the

process continues until, provided there are enough agents, the entire environment

is covered and the deployment is complete.

We now turn our attention to pseudocode Table 2.6 to describe

4 For example, (1) < (2) and (1, 3) < (3, 2), but (3, 2) < (1, 3, 1).

39

DEPLOY DEPTH-FIRST() more precisely. The algorithm consists of three threads

which run concurrently in each agent: communication (lines 1-5), navigation (lines

6-11), and internal state transition (lines 12-23). An outline of the local variables

used for these threads is shown in Table 2.4 and 2.5. The communication thread

tracks the internal states of all an agent’s visibility neighbors. One could de-

sign a custom communication protocol for the deployment which would make

more efficient use of communication bandwidth, however, we find it simplifies the

presentation to assume agents have direct access to their visibility neighbors’ in-

ternal states via the data structure Neighbor Data[i]. The navigation thread has

the agent follow, at maximum velocity umax, a queue of waypoints called Route[i]

as long as the internal state component c
[i]
ξproxied

.Wait Set is empty (it is only ever

nonempty for a proxy agent and its meaning is discussed further in Section 2.6.2).

The waypoints can be represented in a local coordinate system established by

the agent every time it enters a new cell, e.g., a polar coordinate system with

origin at the cell’s vantage point. In the internal state transition thread, an agent

switches between lead, proxy, and explore modes. The agent reacts to differ-

ent asynchronous events depending on what mode it is in. We treat the details

of the different mode behaviors and corresponding subroutines in the following

Sections 2.6.1, 2.6.2, and 2.6.3.

2.6.1 Leader Behavior

The lead portion of the internal state transition thread (lines 13-16 of Ta-

ble 2.6) consists of three subroutines: ATTEMPT CELL CONSTRUCTION(),

LEAD(), and PROPAGATE SPARSE VANTAGE POINT INFORMATION(). In

ATTEMPT CELL CONSTRUCTION() (Table 2.7), the leader agent attempts to

40

Table 2.4. Agent Local Variables for Distributed Deployment

Use Name Brief Description

Communication

UID[i] := i agent Unique IDentifier

In Buffer[i] FIFO queue of messages received from other agents

Neighbor Data[i] data structure which tracks relevant state informa-
tion of visibility neighbors

state change interrupt[i] boolean, true if and only if internal state has
changed between the last and current iteration of
the communication thread

new visible agent interrupt[i] boolean, true if and only if a new agent became
visible between the last and current iteration of
the communication thread

Navigation
Route[i] FIFO queue of waypoints

p[i], ṗ[i], u position, velocity, and velocity input

Internal State

mode[i] agent mode takes a value lead, proxy, or explore

Vantage Points[i] := (p
[i]
ξ1
, p

[i]
ξ2

) vantage points used in lead mode for distributed
representation of TP ; may have size 0, 1, or 2; each
pξ may be labeled either sparse or nonsparse

Cells[i] := (c
[i]
ξ1
, c

[i]
ξ2

) cells used in lead mode for distributed represen-
tation of TP ; may have size 0, 1, or 2; cell fields
shown in Tab. 2.5

Parent Gap Edges[i] := (g
[i]
ξ1
, g

[i]
ξ2

) parent gap edges used in lead mode for initializing
cells in Cells[i]; may have size 0, 1, or 2

c
[i]
ξproxied

used in proxy mode as local copy of cell being
proxied

ξ
[i]
current, ξ

[i]
last PTVUIDs of current and last TP vertices visited in

depth-first search; used in explore mode to navi-
gate TP

41

Table 2.5. Cell Data Fields for Distributed Deployment

Name Brief Description

ξ PTVUID (Partition Tree Vertex Unique IDentifier)

cξ.Boundary polygonal boundary with each gap edge la-
beled either as parent, child, unexplored, or
phantom wall; child gap edges may be addition-
ally labeled with an agent UID if that agent has
been assigned as leader of that gap edge

cξ.status cell status may take a value retracting, stable,
or fertile

cξ.proxy uid UID of agent assigned to proxy cξ; takes value ∅ if
no proxy has been assigned

cξ.Wait Set set of PTVUIDs used by proxy agents to decide
when they should wait for another cell’s proxy tour
to complete before deconfliction can occur

construct a cell in such a way that the cell is guaranteed to contain at least one

triangle which is not in any other cell of the distributed TP representation. Having

at least one unique triangle is important for proving an upper bound on number

of required agents in Theorem 2.3. To this end, the leader may switch to proxy

mode and proxy for another leader in line of sight. If, even after proxying, the

agent cannot guarantee a unique triangle, then it places a phantom wall at the

parent gap edge of the cell and deletes the cell. If the agent can guarantee a

unique triangle, then it initializes the cell to retracting status and waits for a

proxy agent to help it advance the cell’s status towards fertile.

In LEAD() (Table 2.8), the agent already has initialized cell(s) in its memory.

Being reponsible for cells means that the leader agent may have to assign itself

a secondary TP vertex which is the child of its primary vertex, assign another

42

Table 2.6. Distributed Deployment Algorithm

DEPLOY DEPTH-FIRST()

{ Communication Thread }
1: while true do
2: in message ← In Buffer[i].PopFirst();
3: update Neighbor Data[i] according to in message;
4: if state change interrupt[i] or visible agent interrupt[i] then
5: broadcast internal state information;

{ Navigation Thread }
6: while true do
7: while Route[i] is not empty and p[i] 6= Route[i].First() and

c
[i]
ξproxied

.Wait Set is empty do

8: u[i] ← velocity with magnitude umax and direction towards
Route[i].First();

9: u[i] ← 0;
10: if p[i] == Route[i].First() then
11: Route[i].PopFirst();

{ Internal State Transition Thread }
12: while true do
13: if mode[i] == lead then
14: ATTEMPT CELL CONSTRUCTION(); { See Tab. 2.7 }
15: LEAD(); { See Tab. 2.8 }
16: PROPAGATE SPARSE VANTAGE POINT INFORMATION();

{ See Tab. 2.9 }
17: else if mode[i] == proxy then
18: if cproxied.status == retracting then
19: PROXY RETRACTING CELL(); { See Tab. 2.10 }
20: else if cproxied.status == stable then
21: PROXY STABLE CELL(); { See Tab. 2.11 }
22: else if mode[i] == explore then
23: EXPLORE(); { See Tab. 2.12 }

43

Table 2.7. Distributed Deployment Subroutine

ATTEMPT CELL CONSTRUCTION()

1: if there is a vantage point pξ in Vantage Points[i] for which no cell in
Cells[i] has yet been constructed

and p[i] == pξ then
2: if Neighbor Data[i] contains a cell cξ′ such that cξ′ .proxy uid == i

then
3: { Proxy for another leader }
4: mode[i] ← proxy; Route[i] ← tour which traverses all gap edges of

c′ξ and returns to pξ;

5: else if Neighbor Data[i] shows any stable or fertile cell cξ′ having a
gap edge coinciding with gξ

and ξ′ is not the parent PTVUID of ξ then
6: { Label phantom wall if not at least one unique triangle }
7: if Cells[i] is empty then

8: label g
[i]
ξ1

as phantom wall;

9: clear g
[i]
ξ1

and p
[i]
ξ1

;

10: mode[i] ← explore; swap ξ
[i]
last and ξ

[i]
current;

11: else if Cells[i] contains exactly one cell then

12: label any gap edges of c
[i]
ξ1

that coincide with g
[i]
ξ2

as phantom wall;

13: clear g
[i]
ξ2

and p
[i]
ξ2

; Route[i] ← straight path to p
[i]
ξ1

;

14: else if Neighbor Data[i] shows no other agent about to construct a
cell cξ′ where ξ′ < ξ then

15: { Compute initial cell }
16: cξ ← Ṽ(pξ);
17: truncate cξ at gξ such that only the portion remains which is across

g from the parent;
18: for each gap edge g′ of cξ do
19: if g′ == g then
20: label g′ as parent in cξ;
21: else
22: label g′ as unexplored in cξ;
23: insert cξ into Cells[i];

44

Table 2.8. Distributed Deployment Subroutine

LEAD()

1: if Cells[i] contains only a single fertile cell c
[i]
ξ1

and c
[i]
ξ1

is triangle with one unexplored gap edge gξ
and gξ has not been assigned a leader then

2: { Assign self a secondary vertex at child of primary vertex }

3: p
[i]
ξ2
← pξ; g

[i]
ξ2
← gξ;

4: Route[i] ← straight line path to pξ;

5: label gξ on c
[i]
ξ1

as child and as having leader i;

6: else if Cells[i] contains cell cζ with double child vantage point pξ = pξ′

where ξ < ξ′

and Neighbor Data[i] contains an agent j with cξ in Cells[j]

and pξ is labeled sparse

and gap edge gξ′ is unexplored then
7: { Assign other leader a secondary vertex at double vantage point }
8: label gξ′ on cζ as child and having leader j;
9: else if Neighbor Data[i] shows explorer agent j such that cξ = c

ξ
[j]
current

is fertile in Cells[i] then
10: ξ′ ← PTVUID of next vertex in depth-first ordering ;
11: if there is an unexplored gap edge gξ′ of cξ

and
(
pξ′ is single vantage point

or double vantage point with colocated vantage point nonsparse
in Neighbor Data[i]

)
then

12: { Assign explorer to become leader of child vertex }
13: label gξ′ in cξ as child and having leader j;
14: if Neighbor Data[i] contains an explorer agent j

and Cells[i] contains a cell cξ = c
ξ
[j]
current

with cξ.status 6= fertile

and cξ.proxy uid == ∅ then
15: { Assign explorer as proxy }
16: cξ.proxy uid ← j;
17: else if Neighbor Data[i] contains a leader agent j with Cells[j] empty

and Cells[i] contains a retracting cell cξ and cξ.proxy uid == ∅
then

18: { Assign leader as proxy }
19: cξ.proxy uid ← j;
20: if Neighbor Data[i] contains a child gap edge gξ with agent i labeled

as its leader
and pξ is not in Vantage Points[i] then

21: { Accept leadership of second cell at double vantage point }

22: p
[i]
ξ2
← pξ; g

[i]
ξ2
← gξ;

(continued)

45

(continuation)

23: { Respond to proxy events }

24: if cell cξ in Cells[i] corresponds to cell c
[j]
ξproxied

in Neighbor Data[i] then

25: if c
[j]
ξproxied

has been truncated at a fertile cell then

26: perform the same truncation on cξ;

27: if cξ.Wait Set 6= c
[j]
ξproxied

.Wait Set then

28: cξ.Wait Set ← c
[j]
ξproxied

.Wait Set;

29: if agent j has completed the proxy tour then
30: if cξ has a phantom wall at its parent gap edge then
31: if Cells[i] contains exactly one cell then

32: clear p
[i]
ξ1

, g
[i]
ξ1

, and c
[i]
ξ1

;

33: mode[i] ← explore;
34: else if Cells[i] contains two cells then
35: clear p

[i]
ξ2

, g
[i]
ξ2

, and c
[i]
ξ2

;

36: Route[i] ← straight path to p
[i]
ξ1

;
37: else
38: advance cξ.status;
39: cξ.proxy uid ← ∅;
40: { Label phantom walls }

41: if Neighbor Data[i] shows a stable cell c
[j]
ξproxied

in branch conflict with

cξ in Cells[i]

and ξ
[j]
proxied < ξ then

42: { Yield to competing stable cell }
43: label parent gap edge of cξ as phantom wall;
44: if Neighbor Data[i] shows a phantom wall coinciding with gap edge g

of cell cξ in Cells[i] then
45: label g as phantom wall in cξ;

46: if Neighbor Data[i] shows stable cell c
[j]
ξproxied

in branch conflict with

stable cell cξ in Cells[i]

and ξ
[j]
proxied < ξ then

47: label parent gap edge of cξ as phantom wall;

46

Table 2.9. Distributed Deployment Subroutine

PROPAGATE SPARSE VANTAGE POINT INFORMATION()

1: { Label a vantage point in Vantage Points[i] as sparse or nonsparse }
2: if there is an unlabeled vantage point pξ in Vantage Points[i] with

fertile cell cξ in Cells[i]

and
(

(pξ, cξ) is a leaf or Cells[i] and Neighbor Data[i] show all child
vantage points have been labeled

)
then

3: if |Vcξ | == 3 and Cells[i] or Neighbor Data[i] shows a child vantage
point labeled sparse then

4: label pξ as nonsparse;
5: else
6: label pξ as sparse;
7: { Acquire a nonsparse vertex from an agent higher in the partition tree}
8: if Cells[i] contains exactly one cell cξ with pξ labeled sparse and p[i]

== pξ
and Neighbor Data[i] shows a cell cζ which is the parent of cξ and

pζ is labeled nonsparse then
9: insert cζ into Cells[i] and pζ into Vantage Points[i];

10: { Give up a nonsparse vertex to an agent lower in the partition tree }

11: if Neighbor Data[i] shows a leader agent j with p
[j]
ξ1

labeled sparse

and c
[i]
ξ2

== c
[j]
ξ2

and ξ
[j]
2 is the parent PTVUID of ξ

[i]
1 then

12: clear p
[i]
ξ2

, g
[i]
ξ2

, and c
[i]
ξ2

; Route[i] ← straight path to p
[i]
ξ1

;

47

Table 2.10. Distributed Deployment Subroutine

PROXY RETRACTING CELL()

1: if Route[i] is nonempty then

2: if Neighbor Data[i] shows fertile cell cξ in branch conflict with c
[i]
ξproxied

then
3: { Truncate cξproxied

at fertile cell }

4: truncate c
[i]
ξproxied

at cξ;

5: if Neighbor Data[i] shows stable cell cξ in branch conflict with c
[i]
ξproxied

and cξ.proxy uid 6= ∅ and ξ
[i]
proxied is not in cξ.Wait Set then

6: { Add competing cell to cξproxied
.Wait Set }

7: insert ξ into cξproxied
.Wait Set;

8: if Neighbor Data[i] shows cξ no longer in branch conflict with c
[i]
ξproxied

for some ξ in c
[i]
ξproxied

.Wait Set

or
(

Neighbor Data[i] shows fertile cell cξ such that

c
[i]
ξproxied

.Wait Set contains ξ
)

or
(

Neighbor Data[i] shows stable cell cξ for some ξ in

c
[i]
ξproxied

.Wait Set

and ξ > ξ
[i]
proxied and cξ.Wait Set contains ξ

[i]
proxied

)
then

9: { Remove competing cell from cξproxied
.Wait Set }

10: remove ξ from c
[i]
ξproxied

.Wait Set;

11: else if Route[i] is empty then
12: { End tour and enter previous mode, explore or lead }
13: if Vantage Points[i] is empty then
14: mode[i] ← explore;
15: else
16: mode[i] ← lead;

17: clear c
[i]
ξproxied

;

48

Table 2.11. Distributed Deployment Subroutine

PROXY STABLE CELL()

1: if Route[i] is nonempty and the parent gag edge of c
[i]
ξproxied

is not

phantom wall then
2: if

(
Neighbor Data[i] shows stable cell cξ in branch conflict with

c
[i]
ξproxied

and ξ < ξ
[i]
proxied

)

or Neighbor Data[i] shows a phantom wall coinciding with parent

gap edge of c
[i]
ξproxied

then

3: { Yield to competing stable cell }

4: label parent gap edge of c
[i]
ξproxied

as phantom wall; clear

c
[i]
ξproxied

.Wait Set;

5: Route[i] ← straight path towards midpoint of gξcurrent ;
6: if Neighbor Data[i] shows retracting cell cξ in branch conflict with

c
[i]
ξproxied

and cξ.proxy uid 6= ∅ and cξ.Wait Set does not contain ξ
[i]
proxied

then
7: { Add competing cell to cξproxied

.Wait Set }
8: insert ξ into cξproxied

.Wait Set;

9: if Neighbor Data[i] shows cξ no longer in branch conflict with c
[i]
ξproxied

for some ξ in c
[i]
ξproxied

.Wait Set

or
(

Neighbor Data[i] contains stable cell cξ where c
[i]
ξproxied

.Wait Set

contains ξ
)

or
(

Neighbor Data[i] shows retracting cell cξ for some ξ in

c
[i]
ξproxied

.Wait Set

and ξ > ξ
[i]
proxied and cξ.Wait Set contains ξ

[i]
proxied

)
then

10: { Remove competing cell from cξproxied
.Wait Set }

11: remove ξ from c
[i]
ξproxied

.Wait Set;

12: else if Route[i] is empty then
13: { End tour and become explorer }
14: mode[i] ← explore;

15: if parent gap edge of c
[i]
ξproxied

is phantom wall then

16: swap ξlast and ξcurrent;
17: clear cξproxied

;

49

Table 2.12. Distributed Deployment Subroutine

EXPLORE()

1: if Neighbor Data[i] shows a fertile cell cξ where ξ == ξ
[i]
current then

2: ξ′ ← PTVUID of next vertex in depth-first ordering ;
3: if gap edge gξ′ of cξ has already been assigned a leader then
4: { Continue exploring }

5: ξ
[i]
last ← ξ

[i]
current; ξ

[i]
current ← ξ′;

6: Route[i] ← local shortest path to midpoint of gξ′ through cξ;
7: else if gap edge gξ′ of cξ has agent i labeled as its leader then
8: { Become leader }

9: mode[i] ← lead; p
[i]
ξ1
← pξ′ ; g

[i]
ξ1
← gξ′ ;

10: Route[i] ← local shortest path to pξ′ through cξ;
11: else if Neighbor Data[i] shows a cell cξ such that cξ.proxy uid == i

then
12: { Become proxy }

13: mode[i] ← proxy; c
[i]
ξproxied

← cξ;

14: Route[i] ← tour which traverses all gap edges of cξ and returns to
midpoint of gξ;

15: if Neighbor Data[i] shows phantom wall appeared at gap edge with

PTVUID ξ
[i]
current then

16: { Move up partition tree in reaction to deleted cell }

17: swap ξ
[i]
last and ξ

[i]
current;

50

leader agent a secondary vertex at a double vantage point, assign an explorer

agent to become a leader of a child vertex, assign another agent to proxy, or

accept leadership of a second vertex at a double vantage point. Additionally, the

leader must react to four proxy related events: truncation of a retracting cell,

addition/removal of PTVUIDs to a cell’s Wait Set, cell status advancement upon

proxy tour completion, or labeling phantom walls upon cell deletion. Note that

all vantage points are selected according to the same parity-based vantage point

selection scheme used in the incremental partition algorithm of Sec. 2.5.

In PROPAGATE SPARSE VANTAGE POINT INFORMATION() (Table 2.9),

the leader agent propagates vantage point labels and swaps fertile cells with other

leaders in such a way that leader agents eventually are positioned only at sparse

vantage points.

2.6.2 Proxy Behavior

The proxy portion of the internal state transition thread on lines 17-21 of

Table 2.6 runs one of two subroutines depending on the status of the proxied

cell: PROXY RETRACTING CELL() and PROXY STABLE CELL(). Suppose

an agent i is proxying for a cell cξ in leader agent j’s memory. Then agent i keeps a

local copy of cξ in c
[i]
ξproxied

and modifies it during the proxy tour. Agent j updates cξ

to match c
[i]
ξproxied

whenever a change occurs. In PROXY RETRACTING CELL()

(Table 2.10), the agent traverses the gap edges of c
[i]
ξproxied

while truncating its

boundary at any encountered fertile cells in branch conflict. The goal is for the

retracting proxied cell to not be in branch conflict with any fertile cells by the

end of the proxy tour when its status is advanced to stable. If the proxy agent

encounters a stable cell, say cξ′ , in branch conflict, it must pause its proxy tour,

51

i.e., pause motion, until cξ′ becomes fertile or deleted. If the proxy were not to

pause, then it would run the risk of the stable cell becoming fertile after the op-

portunity for the proxy to perform truncation had already passed. The pausing is

accomplished by adding ξ′ to the cell field c
[i]
ξproxied

.Wait Set read by the navigation

thread. Once the proxy tour is over, the leader of the proxied cell advances the

cell’s status to stable and the proxy agent enters a new mode.

In PROXY STABLE CELL() (Table 2.11), the goal is for the stable proxied

cell to not be in branch conflict with any other stable cells by the end of the

proxy tour if its status is to be advanced to fertile. To this end, the agent

traverses the gap edges of c
[i]
ξproxied

while comparing ξ
[i]
proxied with the PTVUID of

every encountered stable cell in branch conflict with c
[i]
ξproxied

. If a stable cell with

PTVUID less than ξ
[i]
proxied is encountered, then a phantom wall is labeled at the

parent gap edge of c
[i]
ξproxied

(from this point on all other cells treat the cell as

already deleted because the phantom wall at the parent gap edge serves as a dele-

tion indicator) and the proxy agent heads straight back to the parent gap edge

where it will end the proxy tour and enter explore mode. If the proxy agent

encounters a retracting cell, say cξ′ , in branch conflict, it must pause its proxy

tour, i.e., pause motion, until cξ′ becomes stable or truncated out of branch con-

flict. If the proxy were not to pause, then it would run the risk of the retracting

cell becoming stable after the opportunity for the proxy to perform deconfliction

had already passed. The pausing is accomplished by adding ξ′ to the cell field

c
[i]
ξproxied

.Wait Set read by the navigation thread. Note that the use of PTVUID

total ordering (Definition 2.2) on line 8 of PROXY RETRACTING CELL() and

line 9 of PROXY STABLE CELL() precludes the possibility of a deadlock situ-

ation where a stable and retracting cell are indefinitely waiting for each other.

52

Finally, if a stable cell with PTVUID less than ξ
[i]
proxied is never encountered, then

the leader of the proxied cell advances the cell’s status to fertile and the proxy

agent enters explore mode.

2.6.3 Explorer Behavior

The explore portion of the internal state transition thread on lines 22-23 of

Table 2.6 consists of a single subroutine EXPLORE() shown in Table 2.12. Of

all agent modes, explore behavior is the simplest because all the agent has to

do is navigate TP in depth-first order (see Fig. 2.9) until a leader agent assigns

them to become a leader at an unexplored gap edge or to perform a proxy task.

The local shortest paths (lines 6 and 10) can be computed quickly and easily

by the visibility graph method [80]. If the current cell that an explorer agent is

visiting is ever deleted because of branch deconfliction, the explorer simply moves

up TP and continues depth-first searching. By having each agent use a different

gap edge ordering for the depth-first search, the deployment tends to explore

many partition tree branches in parallel and thus converge more quickly. In our

simulations (Sec. 2.6.5), we had each agent cyclically shift their gap edge ordering

by their UID, subject to the following restriction important for proving an upper

bound on number of required agents in Theorem 2.3.

Remark 2.1 (Restriction on Depth-First Orderings). Each agent in an execution

of the distributed deployment may search TP depth-first using any child ordering

as long as every pair of child vertices adjacent at a double vantage point are visited

in the same order by every agent.

53

2.6.4 Performance Analysis

The convergence properties of the Distributed Depth-First Connected Deploy-

ment Algorithm shown of Table 2.6 are captured in the following theorems.

Theorem 2.3 (Convergence). Suppose that N agents are initially colocated at a

common point p∅ ∈ VE of a polygonal environment E with n vertices and h holes. If

the agents operate according to the Depth-First Connected Deployment Algorithm

of Table 2.6, then

(i) the agents’ visibility graph GvisE(P) consists of a single connected component

at all times,

(ii) there exists a finite time t∗, such that for all times greater than t∗ the set

of vertices in the distributed representation of the partition tree TP remains

fixed,

(iii) if the number of agents N ≥ ⌊n+2h−1
2
⌋, then for all times greater than t∗

every point in the environment E will be visibile to some agent, and there

will be no more than h phatom walls, and

(iv) if N > ⌊n+2h−1
2
⌋, then for all times greater than t∗ every cell in the dis-

tributed representation of TP will have fertile status and there will be pre-

cisely h phantom walls.

Proof. We prove the statements in order. Nonleader agents, as we have defined

their behavior, remain at all times within line of sight of at least one leader agent.

Leader agents likewise remain in the kernel of their cell(s) of responsibility and

within line of sight of the leader agent responsible for the corresponding parent

cell(s). Given any two agents, say i and j, a path can thus be constructed by

first following parent-child visibility links from agent i up to the leader agent

responsible for the root, then from the leader agent responsible for the root down

to agent j. The agents’ visibility graph must therefore consist of a single connected

component, which is statement (i).

54

For statement (ii), we argue similarly to the proof of Theorem 2.1(i). Dur-

ing the deployment, cells are constructed only at unexplored gap edges. A cell

either (1) advances though a finite number of status changes or (2) it is deleted

during a proxy tour. Either way, each cell is only modified a finite number of

times and only one cell is ever created at any particular unexplored gap edge.

Since unexplored gap edges are diagonals of the environment and there are only

finitely many possible diagonals, we conclude the set of vertices in the distributed

representation of TP must remain fixed after some finite time t∗.

For statement (iii), we rely on an invariant: during the distributed deployment

algorithm, at least two unique triangles can be assigned to every leader agent which

has at least one cell of responsibility, other than the root cell, in its memory;

at least one unique triangle can be assigned to the leader agent which has the

root cell in its memory. One of the triangles is in a leader’s own cell (primary

or secondary) and its existence is ensured by the leader behavior in Table 2.7.

The second triangle is in a parent cell of a cell in the agent’s memory. The

existence of this second triangle is ensured by the depth-first order restriction

stipulated in Remark 2.1 together with the parity-based vantage point selection

scheme. Remembering that the maximum number of triangles in any triangulation

is n+2h−2 and arguing precisely as we did for the sparse vantage point locations

in the proof of Theorem 2.2(iii), we find the number of agents required for full

coverage can be no greater than ⌊n+2h−1
2
⌋. As in the proof of Theorem 2.1(v), the

number of phantom walls can be no greater than h because if it where then some

cell would be topologically isolated.

Proof of statement (iv) is as for statement (iii), but because there is one extra

agent and depth-first is systematic, the extra agent is guaranteed to eventually

proxy any remaining nonfertile cells into fertile status and create phantom walls

to separate all conflicting partition tree branches.

Remark 2.2 (Near Optimality without Holes). As mentioned in Sec. 2.1 at the

beginning of this chapter, (n − 2)/2 guards are always sufficient and occasion-

ally necessary for visibility coverage of any polygonal enironment without holes.

55

This means that when h = 0, the bound on the number of sufficient agents in

Theorem 2.3 statement (iii) differs from the worst-case optimal bound by at most

one.

Theorem 2.4 (Time to Convergence). Let E be an environment as in Theo-

rem 2.3. Assume time for communication and processing are negligible compared

with agent travel time and that E has uniformly bounded diameter as n → ∞.

Then the time to convergence t∗ in Theorem 2.3 statement (ii) is O(n2 + nh).

Moreover, if the maximum perimeter length of any vertex-limited visibility poly-

gon in E is uniformly bounded as n→∞, then t∗ is O(n+ h).

Proof. As in the proof of Theorem 2.3, every cell which is never deleted has at

least one unique triangle and there are at most n+2h−2 triangles total, therefore

there are at most n+2h−2 cells which are never deleted. The maximum number of

phantom walls ever created is h (Theorem 2.3). Since cells are only ever deleted

when a phantom wall is created, at most h cells are ever deleted. Summing

the bounds on the number cells which are and are not deleted, we see the total

number of cells any agent must ever visit during the distributed deployment is

n + 2h − 2 + h = n + 3h − 2. Let ld be the maximum diameter of any vertex-

limited visibility polygon in E . Then, neglecting time for proxy tours, an agent

executing depth-first search on TP will visit every vertex of TP in time at most

2umaxld(n+ 3h− 2). Now Let lp be the maximum perimeter length of any vertex-

limited visibility polygon in E . Then the total amount of time agents spend on

proxy tours, counting two tours for each cell, is 2umaxlp(n + 3h − 2). Exploring

and leading agents operate in parallel and at most every agent waits for every

proxy tour, so it must be that

t∗ ≤ 2umax(lp + ld)(n+ 3h− 2).

While the diameter of E being uniformly bounded implies ld is uniform bounded,

lp may be O(n).

The performance of a distributed algorithm can also be measured by agent

memory requirements and the size of messages which must be communicated.

56

Lemma 2.3 (Memory and Communication Complexity). Let k be the maximum

number of vertices of any vertex-limited visibility polygon in the environment E

and suppose E is represented with fixed resolution. Then the required memory size

for an agent to run the distributed deployment algorithm is O(Nk) bits and the

message size is O(k) bits.

Proof. The memory required by an agent for its internal state is dominated by

its cell(s) of responsibility (of which there are at most two) and proxy cell (at

most one). A cell requires O(k) bits, therefore the internal state requires O(k)

bits. The overall amount of memory in an agent is dominated by Neighbor Data[i],

which holds no more than N internal states, therefore the memory requirement

of an agent is O(Nk). Agents only ever broadcast their internal state, therefore

the message size is O(k).

2.6.5 Simulation Results

We used C++ and the VisiLibity library [81] to simulate the Distributed

Depth-First Deployment Algorithm of Table 2.6. An example simulation run

is shown in Fig. 2.1 for an environment with n = 41 vertices and h = 4 holes. The

environment was fully cover in finite time by only 13 agents, which indeed is less

than the upper bound ⌊n+2h−1
2

= 24⌋ given by Theorem 2.3.

2.6.6 Extensions

There are several ways that the distributed deployment algorithm can be di-

rectly extended for robustness to agent arrival, agent failure, packet loss, and

removal of an environment edge. Robustness to agent arrival can be achieved

by having any new agents simply enter explore mode, setting ξ
[i]
current to be the

PTVUID of the first cell they land in, and setting ξ
[i]
last to be the parent PTVUID

57

of ξcurrent. The line-of-sight connectivity guaranteed by Theorem 2.3 allows single-

agent failures to be detected and handled by having the visibility neighbors of a

failed agent move back up the partition tree as necessary to patch the hole left

by the failed agent. For robustness to packet loss, agents could add a receipt

confirmation and/or parity check protocol. If a portion of the environment were

blocked off during the beginning of the deployment but then were revealed by

an edge removal (interpreted as the “opening of a door”), the deployment could

proceed normally as long as the deleted edge were marked as an unexplored gap

edge in the cell it belonged to.

Less trivial extensions include (1) the use of distributed assignment algorithms

such as [82, 83] for guiding explorer agents to tasks faster than depth-first search,

or (2) performing the deployment from multiple roots, i.e., when different groups

of agents begin deployment from different locations. Deployment from multiple

roots can be achieved by having the agents tack on a root identifier to their

PTVUID, however, it appears this would increase the bound on number of agents

required in Theorem 2.3 by up to one agent per root.

2.7 Conclusion

In this chapter we have presented the first distributed deployment algorithm

which solves, with provable performance, the Distributed Visibility-Based De-

ployment Problem with Connectivity in polygonal environments with holes. We

began by designing a centralized incremental partition algorithm, then obtained

the distributed deployment algorithm by asynchronous distributed emulation of

the centralized algorithm. Given at least ⌊n+2h−1
2
⌋ agents in an environment with

58

n vertices and h holes, the deployment is guaranteed to achieve full visibility cov-

erage of the environment in time O(n2 + nh), or time O(n + h) if the maximum

perimeter length of any vertex-limited visibility polygon in E is uniformly bounded

as n → ∞. The deployment behaved in simulations as predicted by the theory

and can be extended to achieve robustness to agent arrival, agent failure, packet

loss, removal of an environment edge (such as an opening door), or deployment

from multiple roots.

There are many interesting possibilities for future work in the area of deploy-

ment and nonconvex coverage. Among the most prominent are: 3D environments,

dynamic environments with moving obstacles, and optimizing different perfor-

mance measures, e.g., based on continuous instead of binary visibility, or with

minimum redundancy requirements.

59

cξ

cξ′pξ′

pξ

(a)

pξ

pξ′

cξ

cξ′

(b)

pξ

cξ pξ′

cξ′

(c)

proxytour

cξ′

pξ

cξ

pξ′

(d)

Figure 2.5. (a,b,c) The incremental partition algorithm of Table 2.1 and dis-

tributed deployment algorithm of Table 2.6 may discard a cell cξ if it is in branch

conflict with another cell cξ′ already in the partition tree, i.e., when cξ and cξ′ and

are not openly disjoint. In these three examples, blue represents one cell cξ, red

another cell cξ′ , and purple their intersection cξ ∩ cξ′ . A cell can even conflict with

it’s own parent if they enclose a hole as in (c). (d) In the distributed deployment

algorithm, leader agents position themselves at partition tree vantage points (pξ

and pξ′) and retain in their memory the corresponding cells (cξ and cξ′). Even

if the leader agents are not mutally visible, their cells may intersect as shown

abstractly by the Venn diagram. Sending a proxy agent, on a proxy tour around

one of the cell boundaries guarantees it will enter the cells’ intersection so that

communication between leaders can be proxied. The leaders can then establish

a local common reference frame and compare cell boundaries in order to solve

branch conflicts.

60

3

2

1

3

5
3

3

3
46

2

1

2
1 1

1

2

2

p∅

p(1)

p(2,1)

p(3,1,1)

p(3,1)

p(3), p(2)
p(2,1,1)

Figure 2.6. The example used in Fig. 2.3 showed a typical incremental partition

in which there were neither double vantage points nor any triangular cells. This

example, on the other hand, shows these special cases. Disks, black or white, show

vantage points produced by the incremental partition algorithm of Table 2.1.

Integers show enumerations of the cells used for the parity-based vantage point

selection scheme. The double vantage points p(2) and p(3) are colocated. The

cells c(2), c(3), c(2,1), c(3.1), c(2,1,1), and c(3,1,1) are triangular. The vantage points

colored black are the sparse vantage points found by the postprocessing algorithm

of Table 2.3. Under the distributed deployment algorithm of Table 2.6, robotic

agents position themselves at sparse vantage points.

61

p(1,1,1)

p∅

p(1)

p(1,1)

(a)

p(1)

p∅

p(1,1)

(b)

Figure 2.7. (a) An example of when the final number of vantage points in TP

is equal to the upper bound n + 2h − 2 given in Theorem 2.1. (b) An example

of when the number of points in R
2 where at least one sparse vantage point is

located is equal to the upper bound
⌊
n+2h−1

2

⌋
given in Theorems 2.2 and 2.3.

62

Agent Mode

lead

proxy

explore

(a)

Cell Status

fertile

stable

deleted

retracting

(b)

Figure 2.8. In the distributed deployment algorithm of Table 2.6, each agent may

switch between lead, proxy, and explore mode based on certain asynchronous

events. Leaders are responsible for maintaining a distributed representation of the

partition tree TP , proxy agents help establish communication for solving branch

conflicts (as in Fig. 2.5d), and explorers systematically navigate through TP in

search of opportunities to become a leader or proxy (as in Fig. 2.9). (b) Any cell

in a leader’s memory has a status which takes the value retracting, stable, or

fertile. Each cell status is initially retracting. The status of a retracting

cell is advanced to stable after the execution of a proxy tour in which the cell is

truncated as necessary to ensure no branch conflict with any fertile cells. In a

second proxy tour, a stable cell is either deleted or advanced to fertile status

depending on whether it is found to be in branch conflict with another stable

cell of smaller PTVUID (according to total ordering Def. 2.2). Only when a cell

has attained fertile status can any child cells be added at its unexplored gap

edges.

63

1

2 6

753

4

1

2

3

4

5

7

6

Figure 2.9. In the distributed deployment algorithm of Table 2.6, explorer agents

search the partition tree TP depth-first for leader or proxy tasks they could per-

form. An agent in a cell, say cξ, can always order the gap edges of cξ, e.g.,

counterclockwise from the parent gap edge gξ. The depth-first search progresses

by the agent always moving to the next unvisited child or unexplored gap edge

in that ordering. The agent thus moves from cell to cell deeper and deeper until

a leaf (a vertex with no children) is found. Once at a leaf, the agent backtracks

to the most recent vertex with unvisited child or unexplored gap edges and the

process continues. As an example, (left) shows the depth-first order an agent

would visit the vertices of TP in Fig. 2.3f if the gap edges in each cell were or-

dered couterclockwise from the parent gap edge. If the agent instead uses a gap

edge ordering cyclically shifted by one, then (right) shows the different resulting

depth-first order. If each agent uses a different gap edge ordering, e.g., cyclically

shifted by their UID, then different branches of TP are explored in parallel and

the deployment tends to cover the environment more quickly.

64

Chapter 3

Centralized Searchlight

Scheduling1

3.1 Introduction

Consider a group of point guards statically positioned in a nonconvex polygonal

environment with holes, e.g., a floor plan. Each guard is equipped with a single

searchlight, a ray sensor which can rotate about the guard’s position but cannot

penetrate the boundary of the environment (imagine a ray of light such as a laser

range finder, or a camera with a very narrow field of view). A searchlight aims only

in one direction at a time and cannot penetrate the boundary of the environment,

but its direction can change continuously. A point is detected by a searchlight

at some instant if and only if the point lies on the ray. Targets are points which

move arbitrarily fast. The Searchlight Scheduling Problem is to

Find a schedule to rotate a set of stationary searchlights such that any
target in an environment will necessarily be detected in finite time.

1Reprinted from [84] with permission of World Scientific Publishing Company.

65

A searchlight problem instance consists of an environment together with a set of

stationary sensor positions. Obviously there can only exist a search schedule if all

points in the environment are visible from some guard. For a graphical description

of our objective see Fig. 3.1.

To our knowledge the Searchlight Scheduling Problem was first introduced by

Sugihara, Suzuki and Yamashita.[25] They give a solution, the “One Way Sweep

Strategy”, to the limited class of searchlight scheduling problem instances in which

the environment is simply connected and there is at least one searchlight located

on the boundary for every connected component of their visibility graph. In [26] an

upper bound is given on the number of guards with multiple searchlights sufficient

in polygonal environments containing holes. We adopt the convention in [26] and

call a mobile guard possessing k searchlights a k-searcher. Some articles involving

1-searchers, sometimes calling them flashlights or beam detectors, are [27], [28],

[29], and [30]. Closely related is the Classical Art Gallery Problem, namely that of

finding a minimum set of guards (with omnidirectional vision) such that the entire

polygon is visible. There are many variations on the art gallery problem which are

wonderfully surveyed in [6], [7], and [8]. With an emphasis on practical imaging

considerations, [16] describes a centralized task-specific procedure for choosing

the locations of cameras in a network. As described in [22] and [23], there are

distributed algorithms for deploying guards into simple polygons such that their

final positions are a solution to the art gallery problem. We later used these

ideas in [85] for distributed deployment of agents such that the agents are able to

execute a searchlight schedule in an asynchronous distributed manner from their

final positions.

66

(c)

(b)

(d)

(a)

Figure 3.1. A simple example of a searchlight schedule. “Clear” regions where

no undetected evader could exist are shown in gray. From (a) to (d): First the

lower searchlight aims at the upper searchlight and sweeps until it hits a corner

where its visibility is occluded. Next, the upper searchlight sweeps the area the

lower searchlight cannot see. Finally, the lower searchlight continues sweeping the

remainder of the environment. No target, no matter how fast, would be able to

avoid detection by this rotation sequence.

Exact cell decomposition, a method we use in the present chapter, has been

used in the design of complete algorithms to solve visibility-based pursuit-evasion

problems before, e.g., in [32] and [27]. In [32] an algorithm is given for a single

mobile searcher with omnidirectional vision, and it is shown that determining the

minimum number of such pursuers required to clear a polygonal environment with

holes is NP-hard. In [27] a complete algorithm is described for a single mobile

“φ-searcher” having an angle φ field of view, and it is shown that determining

the minimum number of such pursuers required to clear a polygonal environment

with holes is also NP-hard. Due to anticipated computational complexity, both

67

articles, perhaps appropriately, dismiss the idea of using a complete exact cell

decomposition for the case of multiple searchers, although they do implement

incomplete extensions which they claim work well for practical purposes. It is

suggested on page 569 of [62] that implementation of a complete exact cell de-

composition algorithm for multiple pursuers would be further complicated because

“some of the cell boundaries are algebraic surfaces due to complicated interactions

between the visibility polygons of different pursuers.” To our knowledge nobody

has carried out the design of a complete algorithm to solve any visibility-based

pursuit-evasion problem involving arbitrary polygonal environments with holes.

However, there are at least two noteworthy articles involving multiple pursuers

in polygonal environments without holes. In [41] a polynomial time complete al-

gorithm is provided for two 1-searchers in a simple polygonal environment, but

has not been extended to three or greater pursuers and it is not clear how to do

so. In [42] a polynomial time complete algorithm is given to determine the mini-

mum number of ∞-searchers (omnidirectional vision) necessary to clear a simple

polygon, but under the constraints that (1) the pursuers are in a chain configura-

tion where consecutive pursuers along the chain are mutually visible, and (2) end

pursuers must remain on the polygon boundary.

There are three main contributions in this chapter. First, we show by ex-

act cell decomposition that if an instance of the Searchlight Scheduling Problem

permits any solution at all, then it also permits a solution in a reduced discrete

solution space. The second contribution is to use the knowledge of the solution

space discretization to design a complete2 algorithm for searchlight scheduling.

Although it remains an open problem whether searchlight scheduling is NP-hard,

2Here complete means that if a solution exists, the algorithm is guaranteed to find one in
finite time.

68

our computed examples demonstrate that for searchlights, even in environments

with holes, the time complexity of a complete exact cell decomposition is not

entirely prohibitive and can be practical for problem instances of useful size. To

accomplish this, we construct our cell decomposition dependent on the pursuer

positions so that there is no need to explicitly compute any algebraic surfaces.

At this time no other algorithm exists to solve the general Searchlight Schedul-

ing Problem. As a third contribution we treat a new problem which we call the

φ-Searchlight Scheduling Problem in which φ-searchlights sense not just along a

ray, but over a finite field of view (see Fig 3.12). We show how our searchlight

scheduling algorithm can be extended to take advantage of φ-searchlights having

a wider field of view than just a ray. This is an important extension because for

cameras having a finite field of view it is a much more realistic sensor model. We

envision our algorithms and/or other algorithms inspired by this work will one

day be used in automating the design of security systems consisting of networks

of statically positioned rotating sensors and actuators.

This chapter is organized as follows. Section 3.2 covers preliminary notation,

technical definitions, and statement of assumptions. Section 3.3 provides an ex-

tensive theoretical development which culminates in a proof showing a reduction

of the searchlight scheduling solution space. The solution space reduction guar-

antees the completeness of our algorithm, which we present in Section 3.4. In

Section 3.5 we introduce the φ-Searchlight Scheduling Problem and explain how

our results for searchlight scheduling can be directly extended for φ-searchlights.

We conclude in Section 3.6.

69

3.2 Preliminaries

3.2.1 Notation

We begin by introducing some basic notation. We let R and T
d represent

the set of real numbers and the d-dimensional torus, respectively. Clockwise is

abbreviated by cw, and counterclockwise by ccw. Given two points a, b ∈ R
2, we

let [a, b] signify the closed segment between a and b. Similarly,]a, b[is the open

segment between a and b, [a, b[represents the set]a, b[∪{a} and]a, b] is the set

]a, b[∪{b}. Given a set (resp. list) A, |A| denotes the cardinality of the set (resp.

list), A◦ the interior, Ā the closure, and ∂A the boundary. Also, we shall use P

to refer to tuples of elements in R
2 of the form (p[1], . . . , p[N]) (these will be the

locations of the searchlights), where N denotes the total number of searchlights.

We turn our attention to the environments we are interested in and to the

concepts of visibility in such environments. The environment, denoted by E , is

closed and consists of an (outer) polygon containing polygonal holes. The bound-

aries of these polygons do not intersect themselves or each other. Throughout

this chapter, n will refer to the number of edges of E (holes included) and r the

number of reflex vertices. A reflex vertex is constituted by any concave vertex of

the outer polygon or convex vertex of a hole. A point q ∈ E is visible from p ∈ E

if [p, q] ⊂ E . The visibility set V(p) ⊂ E from a point p ∈ E is the set of points in

E visible from p. A visibility gap of a point p ∈ E is defined as any line segment

[a, b] such that]a, b[⊂ int E , [a, b] ⊂ ∂V(p), and it is maximal in the sense that

a, b ∈ ∂E . Intuitively, visibility gaps form the border between portions of E visible

from p and portions of E not visible from p.

Now we introduce some notation and definitions specific to the Searchlight

70

Scheduling Problem. An instance of the Searchlight Scheduling Problem is spec-

ified by a pair (E , P), where E is an environment and P is a set of searchlight

locations in E . For convenience, we will refer to the ith searchlight as s[i] (which is

located at p[i] ∈ R
2), and S = {s[0], . . . , s[N−1]} will be the set of all searchlights.

We let θ[i] denote the configuration angle of the searchlight in radians from the

positive horizontal axis, and Θ = {θ[0], . . . , θ[N−1]} denote the joint configuration.

So, if we say, e.g., aim s[i] at point e, what we really mean is set θ[i] equal to an

angle such that the ith searchlight is aimed at e. Note that searchlights do not

block visibility of other searchlights.

The next few definitions are similar to those in [25].

Definition 3.1 (Schedule). Let [0, T] be a finite interval of real time. A schedule

of a searchlight θ[i](t) ∈ Θ(t) is a continuous function θ[i] : [0, T] → T
1 such that

s[i] changes direction of rotation at most a finite number of times.

The requirement that no searchlight switches direction of rotation an infinite

number of times is important for practical realizability.

Definition 3.2 (Active). s[i] is active at time t if it is rotating (has nonzero

angular velocity), otherwise it is inactive.

The ray of s[i] at time t ∈ [0, T] is the intersection of V(p[i]) and the semi-

infinite ray starting at p[i] with direction θ[i](t). s[i] is said to be aimed at a point

e ∈ E at some time instant if e is on the ray of s[i]. A point e is illuminated if

there exists a searchlight aimed at e.

Definition 3.3 (Separability). Two points in E are separable at time t ∈ [0, T] if

every continuous path connecting them in the interior of E contains an illuminated

point, otherwise they are nonseparable. Two regions R1 and R2 in E are separable

if every pair of points e1 ∈ R1 and e2 ∈ R2 are separable.

71

Definition 3.4 (Contamination and Clarity). A point e ∈ E is contaminated

at time zero if and only if it is not illuminated. The point e is contaminated at

time t ∈]0, T] if and only if there exists a continuous function f : [0, t] → E

such that f(t) = e and for every instant t′ ∈ [0, t], f(t′) is not illuminated by any

searchlight. A point which is not contaminated is called clear. A region is said to

be contaminated if it contains a contaminated point, otherwise it is clear.

Definition 3.5 (Search Schedule). Given E and a set of searchlight locations

P = {p[0], . . . , p[N−1]}, a schedule Θ(t) = {θ[0](t), . . . , θ[N−1](t)} : [0, T]→ T
N is a

search schedule for (E , P) if E is clear at T .

3.2.2 Assumptions

The following main assumptions will be made about every problem instance

in this chapter:

(i) The environment is static and has a finite number of vertices.

(ii) Every point in the environment is visible from some searchlight and there is

a finite number N of searchlights.

Comments: If there were some point in the environment not visible from

any searchlight, then a target could remain there undetected for all time.

(iii) No two searchlights are co-located.

(iv) All searchlights are switched on at all times, even when rotating.

Comments: Leaving inactive searchlights switched on can only increase, and

not decrease the chance of detecting an evader. One might argue that leaving

a sensor switched on could be costly, e.g., from an energy standpoint, but

we are not considering such things in our solution.

72

3.3 Reducing the Solution Space

The solution space of the Searchlight Scheduling Problem is the set of all pos-

sible schedules. This section focuses on defining several special classes of schedules

and showing that the existence of a search schedule in the most general contin-

uous class implies the existence of a search schedule in a reduced discrete class

which can be searched for a solution. This is accomplished by an exact cell de-

composition of the searchlights’ joint configuration space (TN). Our algorithm

in Section 3.4 and its completeness will follow directly from the solution space

reduction.

At any instant of a schedule, searchlights are aimed in various directions so

that their beams separate (in the sense of Definition 4.2) the environment E into a

set of distinct polygonal regions (possibly containing holes) each of which is either

entirely clear or entirely contaminated. We formalize this.

Definition 3.6 (Maximal Nonseparable Region). For a fixed searchlight configu-

ration Θ and an unilluminated point e ∈ E, the equivalence class of all points in

E which are nonseparable from e is called a maximal nonseparable region.

At any time during a schedule there is a finite number of maximal nonseparable

regions. As an example, in Fig. 3.1(c) there are 4 maximal nonseparable regions,

3 of which are clear.

Definition 3.7 (Support). If a portion of a searchlight’s beam forms part of the

boundary of a maximal nonseparable region, then that searchlight is said to support

that maximal nonseparable region. The set of all searchlights whose beams form the

boundary of a maximal nonseparable region is called the support of that maximal

nonseparable region.

The support of a maximal nonseparable region changes, in general, over the

73

course of a schedule. As a schedule is executed, maximal nonseparable regions, in

addition to continuously deforming, may undergo any of the following changes:

Disappear : A maximal nonseparable region disappears if and only if its area goes

to zero. This can happen if one or more searchlights rotate (i) into ∂E , (ii)

into coincidence with another searchlight’s beam, (iii) onto the intersection

of other searchlights’ beams, or (iv) onto the intersection point of another

searchlight’s beam with ∂E . The only way to clear a contaminated maximal

nonseparable region is to make it disappear. Examples are shown in Fig 3.3.

Appear : The reverse of disappear. Note any maximal nonseparable region which

appears remains clear until merging with a contaminated region.

Merge: Two or more maximal nonseparable regions can merge into one if a

searchlight rotates (i) past a reflex vertex of ∂E where its visibility is oc-

cluded, (ii) away from a reflex vertex which it was grazing, or (iii) past

another searchlight not on ∂E . Examples are shown in Fig. 3.3. A clear

maximal nonseparable region can become contaminated only by merging

with a contaminated region.

Split : The reverse of merge.

Indeed, any possible change to a maximal nonseparable region will fall under one

of the above categories. To describe the entire system evolution precisely, we

say at time t it possesses an information state which consists of the searchlights’

joint configuration Θ(t) ∈ T
N together with the contamination state C(t) of the

environment E . By contamination state is meant an encoding of which points in

E are contaminated, e.g., a binary labeling of the maximal nonseparable regions

74

(0 for clear, 1 for contaminated). We denote the information state by a pair

(Θ(t), C(t)), or by (Θ, C) when the time is implicitly understood. Note, however,

that the concept of information state has no intrinsic dependence on time, so we

may also speak of the information state of a searchlight system without it being

associated with any particular schedule. The information state takes on a value

in a continuous information space I. To every searchlight schedule corresponds

a unique trajectory through I, thus a search schedule can simply be viewed as

an information space trajectory which begins with a completely contaminated

information state and ends with a completely clear information state. Ultimately

we will discretize the continuous information space I into a so-called information

graph GI which can be searched systematically for a searchlight rotation schedule.

We delay discussing the information graph further until Section 3.4.

The definitions to follow will allow us to describe the exact cell decomposition

of the searchlight configuration space (TN).

(a)

s[0] R

(b)

s[0] s[1]

R

Figure 3.2. How a maximal nonseparable region R can be made to disappear by a

single searchlight s[0] rotating as indicated in each case by the smaller arrow. The

thick line segments may represent either portions of ∂E or other searchlight beams.

In this way, (a) could depict s[0] rotating either into ∂E , or into coincidence with

another searchlight’s beam. Likewise, (b) could depict s[0] rotating either onto the

intersection of other searchlights’ beams, or onto the intersection point of another

searchlight’s beam with ∂E .

75

(a)

R2

R1

s[1]

s[0]

(b)

R1

R2

s[1]

s[0]

(c)

R2

R1s[0]

s[1]

s[2]

Figure 3.3. The only manner in which two or more maximal nonseparable regions

can merge into one is by some searchlight rotating either (a) past a reflex vertex

of ∂E where its visibility is occluded, (b) away from a reflex vertex which it was

grazing, or (c) past another searchlight not on ∂E . In each example the clear region

R1 will become contaminated when it merges with the contaminated region R2.

Note that in (a) and (b) the reflex vertex could have also been a flat edge (between

two reflex vertices) aligned with s[0]’s beam, but the effect is the same.

Definition 3.8 (Critical Angle). An angle ψ is a critical angle3 of s[i] if θ[i] = ψ

implies either

(i) s[i] is located on an edge (including endpoints) of ∂E and is aimed along that

edge,

(ii) s[i] is aimed at one of its visibility gaps,

(iii) s[i] is aimed at another visible searchlight, or

(iv) s[i] is aimed directly away from another visible searchlight.

Basic examples of critical angles are shown by the dashed lines in Fig. 3.3.

3Thanks to Howie Choset for pointing out the appropriateness of the name “critical angle”.
Taking the origin at a searchlight, its beam can be viewed as a level set of the Morse function
h(x, y) = tan(y/x) so that the critical angles are where h(x, y) has a critical point (constituted
by a reflex vertex of ∂E or a searchlight in the interior of E). See [86], [87].

76

More complicated examples can be found in Fig. 3.9 and 3.10. A searchlight

configuration is a critical configuration if every searchlight is aimed along one of

its critical angles. An information state corresponding to searchlights in a critical

configuration is a critical information state.

The next definition gives a useful notation for expressing the relationship be-

tween two information states with the same searchlight configuration but different

contamination states.

Definition 3.9 (Partial Ordering on Information States). Given two information

states (Θ1, C1) and (Θ2, C2), we write (Θ1, C1) � (Θ2, C2) if Θ1 = Θ2 and every

maximal nonseparable region which is clear in C1 is also clear in C2. If it is

understood from context that Θ1 = Θ2, then we simply write C1 � C2.

Definition 3.10 (Critical Intervals and Rectangles). Let ψ
[i]
j and ψ

[i]
k be either

adjacent or equal critical angles of s[i]. Then an angular interval λ[i] =]ψ
[i]
j , ψ

[i]
k [⊂

T (resp. [ψ
[i]
j , ψ

[i]
k]) consisting of all angles which are

(i) between ψ
[i]
j and ψ

[i]
k , and

(ii) ccw from ψ
[i]
j to ψ

[i]
k

is an open critical interval (resp. closed critical interval) if λ[i] does not contain

any critical angles of s[i] (resp. other than ψ
[i]
j and ψ

[i]
k). The angles ψ

[i]
j and ψ

[i]
k are

the bounding angles of the critical interval. In the case ψ
[i]
j = ψ

[i]
k , λ[i] = {ψ

[i]
j } and

λ[i] is called a null critical interval. The Cartesian product Λ = λ[0]×· · ·×λ[N−1] ⊂

T
N of critical intervals is a critical rectangle.

Definition 3.11 (Minimal Critical Rectangle). Given a searchlight configuration

Θ0 = {θ[0]
0 , . . . , θ

[N−1]
0 }, the minimal critical rectangle Λ containing Θ0 is the

Cartesian product of critical intervals Λ = λ[0] × · · · × λ[N−1], where each λ[i]

(i = 0, . . . , N − 1) is the unique smallest critical interval containing θ
[i]
0 . If θ

[i]
0 is

a noncritical angle, then λ[i] is open. If θ
[i]
0 is critical, then λ[i] is a null (closed)

critical interval.

77

(a) (b)

Figure 3.4. Examples of critical angles: (a) Each searchlight has two critical

angles aiming along the adjacent walls and one aiming towards its visibility gap.

(b) Each searchlight has two critical angles, one pointing directly toward the other

searchlight and one pointing directly away.

Remark 3.1. By Definition 3.11, the minimal critical rectangle Λ containing a

searchlight configuration Θ0 is not necessarily closed or open. In particular, Λ is

(i) closed iff Θ0 is a critical configuration,

(ii) open iff in Θ0 no searchlight is aimed at a critical angle, or

(iii) neither open nor closed otherwise.

Lemma 3.1. Given a searchlight configuration Θ0, the minimal critical rectangle

Λ containing Θ0 is unique.

Proof. Letting Λ = λ[0]×· · ·×λ[N−1] as in Definition 3.11, uniqueness of Λ follows

immediately from the uniqueness of each λ[i] (i = 0, . . . , N − 1).

If the searchlight configuration does not leave a minimal critical rectangle,

then by definition no merging can happen4. This gives the following lemma.

Lemma 3.2. Let Λ be the minimal critical rectangle containing some searchlight

configuration. Then any maximal nonseparable region which is cleared without

leaving Λ necessarily remains clear until Λ is left.

4In this way, critical rectangles are reminiscent of the “conservative regions” defined in [32].

78

In fact we can make a slightly stronger statement as in the following two

definitions and lemma.

Definition 3.12 (Λ-equivalence of maximal nonseparable regions). Let Λ be the

minimal critical rectangle containing some searchlight configuration, and R and R′

distinct maximal nonseparable regions present when the searchlight configuration

is somewhere in Λ̄. Then R and R′ are Λ-equivalent if it is possible for R and R′

to merge without the searchlight configuration leaving Λ̄.

Definition 3.13 (modulo Λ-equivalence). Let Λ be the minimal critical rectangle

containing some searchlight configuration. When we say a property holds for max-

imal nonseparable regions modulo Λ-equivalence, we intend the following. Any

Λ-equivalence class of maximal nonseparable regions, say {R0, R1, . . . , RM−1}, is

to be interpreted as a single maximal nonseparable region, say R, where

(i) the contamination state of R is taken to be the logical OR of the contami-

nation states of R0, R1, . . . , RM−1, and

(ii) the area of R is taken to be the sum of the areas of R0, R1, . . . , RM−1.

Roughly put, making a statement about maximal nonseparable regions modulo

Λ-equivalence amounts to ignoring the splitting and merging which can happen

when the searchlight configuration moves between the minimal critical rectangle

Λ and its relative boundary Λ̄ \ Λ.

Lemma 3.3. Let Λ be the minimal critical rectangle containing some search-

light configuration. Then, modulo Λ-equivalence, any maximal nonseparable region

which is cleared without leaving Λ̄ necessarily remains clear until Λ̄ is left.

Proof. A maximal nonseparable region can only be recontaminated by merging

with a contaminated maximal nonseparable region. However, if these two regions

merged without the searchlight configuration leaving Λ̄, then they must be Λ-

equivalent and therefore should be interpreted as a single contaminated maximal

nonseparable region.

79

Now we are ready to define the classes of schedules we are interested in.

Definition 3.14 (Classes of Schedules). A schedule is called

(i) sequential if only one searchlight is active at a time,

(ii) critical if searchlights only rotate between critical angles, i.e., while rotating

they never stop or change direction at a noncritical angle,

(iii) rotation-monotone if each searchlight is constrained to rotate either exclu-

sively cw or exclusively ccw,

(iv) contamination-monotone if no point in the environment changes contami-

nation state more than once, and

(v) general if it does not necessarily fall under any of the above special classes.

We have all but stated explicitly what the exact cell decomposition of the

searchlights’ joint configuration space (TN) is. The cells are precisely the set of

all closed critical rectangles of positive measure, i.e., those which are the Cartesian

product of non-null critical intervals (see example Fig. 3.5). This decomposition

is exact in the sense that for the Searchlight Scheduling Problem it suffices to

consider only the class of schedules which travel along cell boundaries, which is

the class of critical sequential schedules. This exactness will be captured rigorously

in the main Theorems 3.1, 3.2, and Corollary 3.1 at the end of this section, but

first we require a few more definitions and lemmas.

Definition 3.15 (Atomic and Critical Atomic Actions). Let A[i] denote a rotation

action by a searchlight s[i] from an angle αinit to an angle αfin, where αinit and αfin

may or may not be critical angles. A[i] is atomic if

(i) s[i] rotates monotonically cw or ccw without stopping, and

80

Figure 3.5. For the simple problem instance of Fig. 3.3a, each of the 2 search-

lights has 3 critical angles. Together, these 6 critical angles define the exact cell

decomposition of the searchlight configuration space T
2 (shown embedded in R

3,

thick black lines are the cell boundaries).

(ii) s[i] does not aim at any critical angle during the execution of the action

except possibly αinit and/or αfin.

If αinit and αfin are both critical angles, then A[i] is called a critical atomic action.

Simply put, a rotation action being atomic just amounts to the searchlight not

changing direction of rotation nor crossing a critical angle.

Definition 3.16 (Projections of Atomic Actions). Given an atomic action A[i]

there is a minimal critical interval λ[i] containing that action. The forward pro-

jection of A[i], denoted Â[i], rotates s[i] over all of λ̄[i] by rotating in the same

direction as A[i]. The reverse projection of A[i], denoted Ǎ[i], rotates s[i] over all

of λ̄[i] by rotating in the direction opposing A[i]. See Fig. 3.6.

Lemma 3.4. Any sequential searchlight schedule can be written as a discrete

sequence of atomic rotation actions, i.e., a sequence of the form

{A[im]
m }

M−1
m=0 = A[i0]

0 A
[i1]
1 A

[i2]
2 · · · A

[iM−1]
M−1 ,

where each A
[im]
m denotes an atomic rotation action by searchlight im.

81

ψ
[i]
k

Ǎ[i]

Â[i]
ψ

[i]
j

αfin
A[i] αinit

s[i]

Figure 3.6. The forward projection Â[i] and reverse projection Ǎ[i] of an atomic

action A[i]. ψ
[i]
j and ψ

[i]
k signify the bounding critical angles of the minimal critical

interval (λ[i] in Definition 3.16) containing A[i].

Proof. Given a sequential schedule represented by a sequence of actions, any non-

atomic actions can be broken up into an appropriate number of atomic actions by

splitting at the instances of time when a searchlight rotates over a critical angle

or changes rotation direction.

Lemma 3.5 (Schedule Decomposition into Time Intervals). For any general

search schedule Θ(t), t ∈ [0, T], there exists a unique finite increasing sequence of

times

t0,0, t0,1, t0,2, . . . , t1,0, t1,1, t1,2, . . . , t2,0, t2,1, t2,2, . . . , tM,0,

where

(i) t0,0 = 0 and tM,0 = T ,

(ii) the times {ti,j| i ∈ {1, . . . ,M − 1} and j = 0} correspond one-to-one to the

times other than 0 and T when there is a change in the minimal critical

rectangle containing the searchlight configuration,5 and

(iii) the times {ti,j| i ∈ {0, . . . ,M − 1} and j > 0} correspond one-to-one to the

times when one or more contaminated maximal nonseparable regions disap-

5At t0,0 = 0 and tM,0 = T there may or may not be a change in the minimal critical rectangle
containing the searchlight configuration.

82

pear but there is not concurrently a change in the minimal critical rectangle

containing the searchlight configuration.

Proof. Recall there are finitely many searchlights, each searchlight only has a

finite number of critical angles, and searchlights may change direction of rota-

tion only a finite number of times. From these observations, it is clear that

the minimal critical rectangle containing the searchlight configuration can only

change a finite number of times, i.e., M is finite. Finiteness of the subsequences

ti,1, ti,2, ti,3, . . . (for i ∈ {0, 1, . . . ,M − 1}) follows from the facts that (i) there are

only finitely many maximal nonseparable regions, and (ii) while the searchlight

configuration remains in the same minimal critical rectangle, any contaminated

maximal nonseparable regions which disappear cannot be recontaminated (see

Lemma 3.2). Uniqueness follows from the one-to-one correspondence between

times and events.

Lemma 3.6. Let Λ be the minimal critical rectangle containing some searchlight

configuration. Then, modulo Λ-equivalence, the area of each maximal nonseparable

region is a continuous function of the searchlight configuration when restricted to

Λ̄.

Proof. We know from elementary geometry that the area of a polygon is a con-

tinuous function of the coordinates of its vertices. Maximal nonseparable regions

are polygons whose vertices have the following property: the coordinates of the

vertices are continuous functions of the searchlight configuration.

Lemma 3.7. Suppose a maximal nonseparable region R can be made to disap-

pear by a single atomic action A[i] from a configuration Θ0 (cf Fig. 3.3). Let Θ1

be a configuration of the searchlights identical to Θ0 except that s[i] is aimed at

an angle in the interior of the angular interval over which it sweeps according to

A[i], and let Λ be the minimal critical rectangle containing Θ1.
6 Then the area of

6The important feature of Λ is that if Λ′ is the minimal critical rectangle containing Θ0, then
Λ̄′ ⊂ Λ̄ and the searchlight configuration will remain in Λ̄ while s[i] executes A[i].

83

R is a monotonic continuous function of each supporting searchlight’s configura-

tion (holding all other searchlights’ configurations fixed) while the configuration is

restricted to Λ̄.

Proof. Observe that R cannot extend around a hole of E , otherwise some portion

of R would be invisible to s[i]. Also, there can be no searchlights located in the

interior of R, otherwise s[i] would have to rotate over another searchlight to clear

R (which would mean A[i] were not atomic). From these properties it follows,

that while the searchlights remain in Λ̄, two facts hold true: (i) the portion of

R’s boundary formed by its supporting searchlight beams must be convex7, and

(ii) R must lie entirely on one side of each supporting searchlight’s beam. If any

supporting beam rotates towards the interior of R, then R’s area must decrease.

Likewise the area increases if any supporting beam rotates away from the interior,

so we have established monotonicity. Continuity follows as in Lemma 3.6.

Theorem 3.1 (Reduction from General to Sequential). Any instance of the Search-

light Scheduling Problem which permits a general search schedule also permits a

sequential search schedule.

Proof. Let Θ(t), t ∈ [0, T], be a general search schedule and

t0,0, t0,1, t0,2, . . . , t1,0, t1,1, t1,2, . . . , t2,0, t2,1, t2,2, . . . , tM,0

a sequence of times as described in Lemma 3.5. We say that a schedule Θ̃(t)

emulates another schedule Θ(t) over a time interval [tinit, tfin] if Θ̃(tinit) = Θ(tinit)

and C̃(tinit) = C(tinit) implies (Θ̃(tfin), C̃(tfin)) � (Θ(tfin), C(tfin)). To prove the

theorem it suffices to show a sequential schedule Θ̃(t) can be constructed which

emulates Θ(t) over the time interval [0, T].

We first show that Θ(t) can be emulated by a sequential schedule over each

time interval of the form [ti,0, ti,0+ǫ], i ∈ {0, 1, . . . ,M−1}, where ǫ ∈]0, ti,1 − ti,0[.

This is when merging can occur (review Fig. 3.3). Suppose we simply execute a

7By “convex” we mean that when two searchlight beams form adjacent edges of R, then the
interior angle between those edges is less than π. The portion of R’s boundary formed by the
environment boundary may or may not be convex.

84

sequence of atomic actions A
[0]
0 A

[1]
1 A

[2]
2 · · · A

[N−1]
N−1 which rotates each searchlight

directly from θ[i](ti,0) to θ[i](ti,0 + ǫ), i ∈ {1, . . . , N}, one at a time in no particular

order. It suffices to guarantee such a sequence of atomic actions does not cause

any maximal nonseparable region, say R, to merge with a contaminated region,

say R′, which R did not merge with under Θ(t).8 This is indeed the case, for

suppose that R, through A
[0]
0 A

[1]
1 A

[2]
2 · · · A

[N−1]
N−1 , does merge with such an R′. This

is only possible if the support of R changes to include a new beam that will cause

the merge. The only way to change the support of R in this manner is for one or

more supporting beams of R to cross the intersection of a combination of other

searchlights’ beams and ∂E . In such a case, it must be that R′ just appeared as

an artifact of using the sequence of atomic actions, thus R′ is clear (see examples

in Fig. 3.7).

We next consider the existence of a sequential schedule to emulate Θ(t) only

during a time interval of the form [ti,0 + ǫ, ti+1,0], i ∈ {0, 1, . . . ,M − 1}, where ǫ ∈

]0, ti,1 − ti,0[. Let Λ be the minimal critical rectangle containing Θ(ti,0 + ǫ). Recall

that a maximal nonseparable region disappears if and only if its area goes to zero

and this area, modulo Λ-equivalence, is a continuous function of the searchlight

configuration when restricted to Λ̄ (see Lemma 3.6). Together with Lemmas 3.3,

this implies that all contaminated maximal nonseparable regions which are caused

to disappear by Θ(t) during (ti,0, ti+1,0) can also be made to disappear one at a time

by a sequential schedule. In particular, Θ(t) can be emulated over [ti,0+ǫ, ti+1,0] by

any sequential schedule Θ̃(t) which visits successively the configurations Θ(ti,0 +

ǫ),Θ(ti,1),Θ(ti,2), . . . ,Θ(ti+1,0) without leaving Λ̄.9

We now know that the general schedule Θ(t) can be emulated by a sequen-

tial schedule Θ̃(t) over each interval [ti,0, ti+1,0], i ∈ {0, 1, . . . ,M − 1}, such that

Θ̃(ti+1,0) = Θ(ti+1,0). Therefore concatenating the sequential schedules produces

a sequential search schedule Θ̃(t) emulating Θ(t) over the duration [0, T].

8If multiple regions merge into one under Θ(t), then these regions may instead merge one at

a time when using A
[0]
0 A

[1]
1 A

[2]
2 · · · A

[N−1]
N−1 , but this does not affect our line of argument.

9In our definition of emulation, it is only important to visit Θ(ti,0 + ǫ) first and Θ(ti+1,0)
last, otherwise the order of visiting the configurations does not matter.

85

(b)(a)

(c) (d)

R6

R2

R3

R4 R5

R3
R4

R6

R2
R1

R4

R5

R2
R1

R3
R2

R1

R4
R5

R3

s[0]

s[1]

s[0]

s[1]

s[0]

s[1]

s[0]

s[1]

Figure 3.7. Gray regions are clear. The effect of a searchlight s[0] executing the

action indicated by the smaller arrow is (a) R1 merges with R2, (b) R1 merges

with R2, (c) R1 merges with R2 and R3 merges with R6, (d) R4 merges with R6.

(a) and (b) are analogous to (a) and (b), resp., of Fig. 3.3. On the other hand, (c)

and (d) show the effects of s[1] rotating over the intersection of s[0]’s beam with

the reflex vertex, before s[0]’s action is executed as in (a) and (b), respectively.

Note that R6 in (c) and (d) are clear because they are simply artifacts which

appeared as a result of s[1] rotating over the intersection of s[0]’s beam with the

reflex vertex.

Theorem 3.2 (Reduction from Sequential to Critical Sequential). Any instance

of the Searchlight Scheduling Problem which permits a sequential search schedule

also permits a critical sequential search schedule.

Proof. By Lemma 3.4 it suffices to show that given an atomic sequential sched-

ule, i.e., a search schedule written as a sequence of atomic actions {A
[im]
m }

M−1
m=0 =

86

A
[i0]
0 A

[i1]
1 A

[i2]
2 · · · A

[iM−1]
M−1 , we can construct another search schedule expressed as a

sequence of critical atomic actions. Reducing the problem further, suppose that

from an atomic sequential search schedule {A
[im]
m }

M−1
m=0 we are able to construct

a new atomic sequential search schedule {Ã[im]
m }

M̃−1
m=0 such that for an arbitrary

searchlight, say s[0],

(i) the actions executed by searchlights other than s[0] are unaltered, and

(ii) the actions executed by s[0] are exclusively critical atomic (though they may

increase in number).

If we can find a procedure to construct such a schedule, then this procedure could

be repeated for each s[i], i ∈ {0, . . . , N−1}, until we are left with a critical atomic

sequential schedule. We show such a procedure exists.

Let (Θm, Cm) denote the information state of the original schedule {A
[im]
m }

M−1
m=0

just before the mth action is executed. Without loss of generality, assume that in

{A
[im]
m }

M−1
m=0 all searchlights are initially aimed at critical angles. We construct from

{A
[im]
m }

M−1
m=0 another search schedule {Ã

[im]
m }

M̃−1
m=0 as described above essentially by

modifying {A[im]
m }

M−1
m=0 action by action. Suppose A[0]

k is the first action which

rotates s[0] from a critical angle ψ
[0]
1 to a noncritical angle α contained in the critical

interval [ψ
[0]
1 , ψ

[0]
2]. We can let Ã

[im]
m = A

[im]
m , m ∈ {0, . . . , k − 1}, but we do not

want s[0] to stop at a noncritical angle, so we set Ã
[0]
k = Â

[0]
k (recall Definition 3.16).

Since Ã
[0]
k sweeps over a larger region than A

[0]
k and does not cause any merging

which A
[0]
k does not, it must clear the same maximal nonseparable regions as A

[0]
k .

We only need to worry about how this change in s[0]’s configuration will effect

subsequent actions by other searchlights. Suppose the next action is A
[1]
k+1. We

keep Ã
[1]
k+1 = A

[1]
k+1, but since during Ã

[1]
k+1 s

[0] was aimed at ψ
[0]
2 (instead of α),

the effect of Ã
[1]
k+1 may be different than A

[1]
k+1. In particular, Ã

[1]
k+1 may not clear

all the same maximal nonseparable regions which A
[1]
k+1 did. The monotonicity

property of Lemma 3.7 guarantees we can compensate for this difference simply

by choosing Ã
[0]
k+2 = Ǎ

[0]
k . The important result of executing such a Ã

[0]
k+2 is that if

we were to then rotate s[0] from ψ
[0]
1 directly back to α (though we do not actually

87

do this because we only want s[0] to stop at critical angles), then we would end

up in the configuration Θk+2 with contamination state C � Ck+2. So far we have

constructed a schedule {Ã
[im]
m }

k+2
m=0 from {A

[im]
m }

k+1
m=0. The procedure continues

alternately taking an action from {A
[im]
m }Mm=k+2 and rotating s[0] over the critical

interval [ψ
[0]
1 , ψ

[0]
2]. After every pair of such actions, the monotonicity property of

Lemma 3.7 guarantees the same maximal nonseparable regions will be cleared as

in the original schedule. In the end we are left with a sequential search schedule

{Ã
[im]
m }

M̃−1
m=0 which satisfies the above enumerated requirements.

Putting together Theorems 3.1 and 3.2, we finally arrive at the main solution

space reduction result.

Corollary 3.1 (Main Reduction Result). Any instance of the Searchlight Schedul-

ing Problem which permits a general search schedule also permits a critical sequen-

tial search schedule.

Proof. Immediate from combining Theorems 3.1 and 3.2.

An interesting and open problem is whether it is possible to reduce the solution

space even further, e.g., as in Conjecture 3.1 below. Further reduction of the

solution space could allow for faster computation of search schedules.

Conjecture 3.1 (Rotation- and Contamination-Monotonicity). Any instance of

the Searchlight Scheduling Problem which permits a general search schedule also

permits a rotation- and contamination-monotone critical sequential search sched-

ule.10

10It is intended that there would exist a rotation- and contamination-monotone critical se-
quential search schedule from some initial condition, not necessarily from any initial condition.

88

3.4 A Complete Algorithm

The solution space reduction result Corollary 3.1 tells us that if we can system-

atically search the space of critical sequential schedules, then we are guaranteed

to find a search schedule if one exists. Our algorithm does just this by search-

ing for a solution trajectory through a discretization of the information space.

Every critical sequential search schedule, by definition, can be represented by a

sequence of critical atomic actions connecting critical information states (as in,

e.g., Fig. 3.11), thus the information space discretization is defined as follows.

Definition 3.17 (Directed Information Graph GI).

(i) nodes correspond to critical information states, and

(ii) there is a directed edge from one node, say x, to another node, say x′, if and

only if it is possible to reach x′ from x by executing a single critical atomic

action.

If a search schedule exists, then our algorithm will find it by searching GI for a

path from a completely contaminated node to a completely clear node. In its

entirety the algorithm consists of two parts: (i) geometric preprocessing which

extracts combinatorial information from the problem instance geometry, followed

by (ii) systematic search of the information graph. We detail these parts sepa-

rately in Sections 3.4.1 and 3.4.2, then provide a discussion of implementation and

computed examples in Section 3.4.3.

3.4.1 Geometric Preprocessing

The geometric preprocessing, taking the environment geometry and search-

light positions as input, computes an environment partition and a graph by

89

Table 3.1. Geometric Preprocessing

Input: geometric problem instance (E , P)

1: for all searchlights i = 1, . . . , N do
2: compute visibility polygon V(p[i]);

3: extract critical angles Ψ[i] = {ψ
[i]
1 , ψ

[i]
2 , . . . , ψ

[i]

n
[i]
ψ

} from V(p[i]);

4: compute cells γ1, γ2, . . . , γnγ of environment partition Γ;
5: compute partition dual graph GΓ;

s[0]

s[2]

s[1]

s[0]

s[2]

s[1]

Figure 3.8. The geometric preprocessing part of the complete algorithm (Ta-

ble 3.1, Section 3.4) is illustrated using a simple problem instance having three

searchlights and one hole. First a geometric description of the problem instance is

taken as input (left). This consists of the environment geometry E together with

the searchlight locations P . Next (right), the critical angles Ψ of the searchlights

(dashed lines) and environment partition Γ are computed. Each cell of Γ is ei-

ther completely clear or completely contaminated on any node of the information

graph GI . Finally, the dual graph GΓ of the environment partition is computed.

This instance was solved by our C++ implementation of the complete algorithm.

The computed solution is illustrated in Fig. 3.11, statistics in Table 3.3.

means of the sequence of computations shown in Table 3.1. Each of the search-

lights’ visibility polygons V(p[i]), i ∈ {1, . . . , N}, will have at most n edges and

can be computed in O(n log n) time [74]. Let Ψ = {Ψ[1],Ψ[2], . . . ,Ψ[N]}, where

90

Ψ[i] = {ψ
[i]
1 , ψ

[i]
2 , . . . , ψ

[i]

n
[i]
ψ

} denotes a list of the ith searchlight’s critical angles.

Using Definition 3.8, each Ψ[i] can easily be extracted from V(p[i]) by checking

for (i) radially aligned edges of V(p[i]) in O(n) time, and (ii) inclusion of other

searchlights in V(p[i]) in O(Nn) time (point-in-polygon test) [88]. Adding these

time complexities gives a bound on the total time to compute Ψ.

Lemma 3.8. The critical angles Ψ can be computed in O(Nn log n+N2n) time.

Lemma 3.9 gives an upper bound on the size of each Ψ[i].

Lemma 3.9. A searchlight can have no more than r+2N critical angles if located

on ∂E, otherwise no more than r + 2N − 2 if located in E◦.

Proof. These bounds follow directly from the Definition 3.8 of critical angles. A

searchlight located on ∂E may have 2 critical angles due to adjacent edges of ∂E ,

2(N − 1) due to line-of-sight with other searchlights, and r due to reflex vertices

of E , hence 2 + 2(N − 1) + r = r + 2N . For a searchlight located in E◦ the only

difference is that there can be no critical angles due to adjacent edges of ∂E .

In most instances, however, the number of critical angles is far less than the bound

in Lemma 3.9.

We now describe how the environment partition Γ is constructed. For each

searchlight s[i], i ∈ {1, . . . , N}, and critical angle ψ
[i]
j , j ∈ {1, . . . , n

[i]
ψ }, the jth

critical segment of the ith searchlight is the closed line segment consisting of all

points illuminated by s[i] when aimed in the direction ψ
[i]
j . The critical segments

together partition E into a finite set of simply connected polygonal cells.11 Ex-

amples are shown by the dashed lines in Fig. 3.8, 3.9, 3.10. Representing E as a

11Recall that in Section 3.3 we spoke of cells as part of an exact cell decomposition of the
searchlight configuration space. These cells on T

N were a theoretical tool for obtaining the main
reduction result Corollary 3.1. Since as part of the geometric preprocessing we partition the
environment E into polygonal cells, we stipulate now that, whenever the term “cells” appears
in Section 3.4, it is always the environment partition cells which are intended, not the cells of
the exact cell decomposition of T

N .

91

list of cells Γ = {γ1, γ2, . . . , γnγ} allows one to encode the contamination state by

a binary nγ-tuple CΓ. In CΓ, each cell is labeled either “0” for clear or “1” for

contaminated. This representation of a contamination state, together with the

searchlights’ joint configuration, is used to represent a node of GI . Lemma 3.10

gives an upper bound on the time to compute Γ.

Lemma 3.10. The cells γ1, γ2, . . . , γnγ of the environment partition Γ can be

computed in O((n+Nr + 2N2)8) time.

Proof. Constructing the cells of Γ amounts to computing the faces of an arrange-

ment of line segments. The faces of an arrangement of L line segments can be

computed in O(L8) time. We count the line segments contributing to our arrange-

ment. There are n segments due to E , and from Lemma 3.9 at most N(r + 2N)

critical segments. Substituting L = n+Nr + 2N2, we find the cells can be com-

puted in O((n+Nr + 2N2)8) time. Because arrangements constitute an already

well studied area of computational geometry, and for the sake of brevity, we omit

further detail.[89]

Lemma 3.11 gives an upper bound on the number of cells in Γ.

Lemma 3.11. The number nΓ of cells in the environment partition Γ is O(N4 +

r2N2).

Proof. Given and arrangement of L ∈ N lines in the plane, the maximum number

of regions they partition the plane into is L(L+1)
2

+ 1; see [89]. According to

Lemma 3.9, the interior of E is partitioned by at most N(r + 2N) = rN + 2N2

critical segments. Setting L = rN+2N2, we see that the affine hulls of the critical

segments together partition the plane into at most

(rN + 2N2)(rN + 2N2 + 1)

2
+ 1 =

r2N2 + 4rN3 + rN + 4N4 + 2N2

2
+ 1

regions. This gives a conservative upper bound on the order of nΓ. We did not

have to take into account the n line segments of E because only the r reflex vertices

92

can cause the cell count to increase (by one each), so the order would not have

been affected.

The final task of geometric preprocessing is to compute the undirected dual

graph of Γ.

Definition 3.18 (Dual Partition Graph). The dual graph GΓ of Γ is the undirected

graph defined as follows:

(i) its nodes are the polygonal cells {γ1, γ2, . . . , γnγ} of Γ, and

(ii) there is a (undirected) edge from one node, say γ, to another node, say γ′,

if and only if the polygons γ and γ′ share an edge.

An example of a partition dual graph is shown in Fig. 3.8. Encoding the adjacency

information of the environment partition cells, GΓ will later allow us to compute

the recontamination which can occur during an information state transition. In

this way, GΓ is a parameter of the information state transition function fGΓ
(x, u)

as we will see in Section 3.4.2 and Table 3.2. Lemma 3.12 gives an upper bound

on the time to compute GΓ.

Lemma 3.12. The dual graph GΓ of the evironment partition Γ can be computed

in O((N4 + r2N2)2(n+Nr +N2)2) time.

Proof. GΓ can be easily computed by comparing every edge of every cell. When

an edge of two cells matches, then an edge is added between the respective nodes

of GΓ. Lemma 3.11 tells us we must check all pairs of O(N4 + r2N2) cells. Each

cell has at most n+Nr+ 2N2 edges, so for each of the O((N4 + r2N2)2) pairs of

cells, O((n+Nr +N2)2) edges must be compared. The total time complexity is

therefore O((N4 + r2N2)2(n+Nr +N2)2).

Together Lemmas 3.8, 3.10, and 3.12 tell us that the total time complexity

of geometric preprocessing is polynomial in the problem instance parameters N ,

93

n, and r. It may be possible to compute the environment partition Γ and its

dual graph GΓ faster than our bounds suggest. However, we have not spent much

effort optimizing the geometric preprocessing because, as indicated by computed

examples (see, e.g., Table 3.3), the overall time complexity of our algorithm is

dominated by the information graph search described in Section 3.4.2.

3.4.2 Searching the Information Graph GI

The information graph GI can be searched using any systematic graph search

algorithm such as breadth-first, Dijkstra, or A∗. Graph search algorithms are

surveyed nicely in, e.g., [62] and [90]. We use breadth-first for simplicity. A

pseudocode is provided in Table 3.2, where our notation closely follows that used

on page 33 of [62]. Since GI is typically very large, containing many irrelevant

and unreachable nodes, we do not precompute GI , but instead nodes are added

to the representation only as visited by the graph search. The search begins by

pushing an initial information state x0 onto the FIFO (First-In First-Out) queue

Q. In x0, the contamination state CΓ = (1, 1, 1 . . . , 1) (environment completely

contaminated) and the searchlight configuration may be chosen arbitrarily. At

each iteration of the main loop a node x is popped off the queue Q, added to

the search tree T , and its out-neighbors (in GI) are computed. If an out-neighbor

is a goal node, i.e., an information state having a completely clear environment

(CΓ = (0, 0, 0, . . . , 0)), then the algorithm returns SUCCESS. If an out-neighbor

is not a goal node and it is not redundant (not already in Q or T), then it is

added onto the queue. FAILURE is returned if every node of GI was visited

and no goal node found, which means no solution exists. When the algorithm

does return SUCCESS, a critical sequential search schedule can be recovered by

94

backtracing pointers through the search tree and storing the sequence of critical

atomic actions.

Theorem 3.3 and Corollary 3.2 provide upper bounds on the size of GI .

Theorem 3.3 (Number of Nodes in GI). The number of nodes in the information

graph GI is12 (2N + r)N2O(N4+N2r2)).

Proof. Follows from Lemmas 3.11 and 3.9. To count the number of unique con-

tamination labelings we raise 2 to the bound on the number of cells. (2N + r)N is

an upper bound on the number of unique critical searchlight configurations.

Stirling’s approximation says that NN ≈ N !, so the upper bound in Theo-

rem 3.3 grows with N worse than N !. The following Corollary 3.2 of Theorem 3.3

shows, however, that if there is an upper bound k on the maximum number of

critical angles any single searchlight has, then the number of nodes in GI can be

bounded by a function which is only exponential in N .

Corollary 3.2 (Number of Nodes in GI). Suppose that each searchlight in an

instance has at most k critical angles. Then the number of nodes in the information

graph GI is kN2O(N2k2+r).

Proof. The number of line segments forming the environment partition can be

no greater than Nk + n, so setting ξ = Nk + n in the formula in the proof of

Lemma 3.11 and adding r gives an upper bound on the number of cells. To count

the number of unique (binary) contamination labelings, we raise 2 to the bound

on the number of cells. kN is an upper bound on the number of unique critical

searchlight configurations. The resulting upper bound on the number of nodes in

GI is kN2
1
2
N2k2+ 1

2
Nk+r+1.

12A function g(x) is in the set 2O(h(x)) if ∃ x0 and c ∈ R>0 such that x > x0 =⇒ g(x) <
2ch(x). Note that O(2h(x)) is a proper subset of 2O(h(x)).

95

Table 3.2. Breadth First Search of Information Graph GI

xinitial := initial GI node with CΓ = (1, 1, 1, . . . , 1)
Xclear := set of GI nodes with CΓ = (0, 0, 0, . . . , 0)
Q := FIFO queue of alive GI nodes
T := search tree of dead GI nodes
U := set of critical atomic actions

fGΓ
(x, u) := information state transition function

1: Q.Insert(xinitial);
2: while Q not empty do
3: x← Q.PopFirst();
4: T.Insert(x);
5: if x ∈ Xclear then
6: return SUCCESS;
7: for all u ∈ U do
8: x′ ← fGΓ

(x, u);
9: if x′ /∈ Q and x′ /∈ T then

10: Q.Insert(x′);
11: return FAILURE;

96

The bounds on the size of GI given in Theorem 3.3 Corollary 3.2 could be

used to derive a bound on the time complexity of the graph search, however we

do not do this because we believe such bounds would be too loose. Instead,

in Theorem 3.4 we derive a bound which reflects the output sensitivity of the

computation time.

Theorem 3.4 (Time Complexity of GI Breadth-First Search). Suppose that, for

a particular problem instance (E , P) and initial information state x0, there exists

a search schedule consisting of M∗ critical atomic actions, and M∗ is the smallest

such number. Then performing the breadth-first search of GI shown in Table 3.2

starting from x0 takes time O((N4 + r2N2)(2N)2M∗)).

Proof. Referring to Table 3.2, observe that the number of possible critical atomic

actions |U | = 2N (each searchlight can rotate either cw or ccw). This means

each node of GI has at most 2N out-neighbors. Taking 2N as the branching

factor of the breadth-first search tree, and knowing the search will terminate at

depth M∗, we see that O((2N)M
∗
) nodes will have been visited. To generate

each node (except for x0) an information state transition must be computed,

which can be done in O(nΓ) time using a technique called floodfill.13 So far

the total time complexity we have accounted for is O(nΓ(2N)M
∗
). Additional

complexity is added by each node being compared with every other node to avoid

redundancy in the search tree. To check whether two information states are equal

costs O(N + nΓ) time because the searchlight configurations and contamination

state of each cell must be compared. There are O((2N)2M∗) pairs of nodes, so the

redundancy checks result in total time complexity O((N + nΓ)(2N)2M∗). Using

Lemma 3.11 to substituteO(nΓ) = O(N4+r2N2), we obtain total time complexity

O((N4 + r2N2)(2N)2M∗).

13Floodfill is technique commonly used in computer graphics for painting connected regions
of rasterized images.

97

3.4.3 Implementation and Computed Examples

We have implemented our algorithm, both geometric preprocessing and infor-

mation graph breadth-first search, in C++ on a 2.33GHz i686 processor using the

Standard Library and the VisiLibity library for visibility computations.[81] The

VisiLibity Library, which we used only for the geometric preprocessing step, uses

so-called ǫ-geometry for robustness ([91], [92]). Table 3.3 shows statistics from

the computed examples of Fig. 3.1, 3.8, 3.9, and 3.10. Fig. 3.11 shows a graphical

illustration of the critical sequential search schedule computed for the instance in

Fig. 3.8.

s[0]

s[1]

s[2]

Figure 3.9. Dashed lines show the critical angles for each searchlight and also

partition the environment into discrete simply connected polygonal cells. Each

cell is either completely clear or completely contaminated on any node of the

information graph. This instance was solved by our C++ implementation of the

complete algorithm described in Section 3.4. Computation statistics are found in

Table 3.3.

We have tested dozens of problem instances and although the algorithm works

well for instances with up to 4 guards and 5 critical angles per guard (such as

the examples shown in Fig. 3.1, 3.8, 3.9, 3.10), it seems there is a very rapid

98

s[0]

s[2]

s[1]

s[3]

Figure 3.10. Dashed lines show the critical angles for each searchlight and also

partition the environment into discrete simply connected polygonal cells. Each

cell is either completely clear or completely contaminated on any node of the

information graph. This instance was solved by our C++ implementation of the

complete algorithm described in Section 3.4. Computation statistics are found in

Table 3.3.

combinatorial explosion for problem instances even slightly more complex. For

example, one problem instance we tested had n = 21 vertices, r = 14 reflex

vertices, h = 3 holes, N = 5 searchlights, and it computed for over 13 hours

without finding a solution. This raises an important open question which we do

not answer in this chapter, namely whether the general Searchlight Scheduling

Problem is NP-hard.

99

Figure 3.11. From left to right, top to bottom, here is shown a critical sequential

search schedule computed by our C++ implementation of the complete algorithm

described in Section 3.4 (same instance as Fig. 3.8). Grey regions are clear, the

smaller arrows indicate which searchlight will execute a critical atomic action at

each step of the sequence. Computation statistics are found in Table 3.3.

100

Table 3.3. Statistics from computed examples.

Problem Edges in Cells in
Instance Guards Environment Environment

Partition
Fig. 3.1 2 8 6

Fig. 3.8, 3.11 3 11 19
Fig. 3.9 3 8 15
Fig. 3.10 4 16 22

Information Geometric Information Total
Graph Nodes Preprocessing Graph Search Computation

Visited Time (seconds) Time (seconds) Time (seconds)
13 < 0.01 < 0.01 < 0.01
497 0.03 0.02 0.05
464 0.02 0.01 0.03
5401 0.05 1.79 1.84

3.5 Extension to Searchlights with Finite Field

of View

A searchlight senses only along a ray, but many real sensors, such as security

cameras, have a finite field of view. This motivates the definition of φ-searchlight,14

which is identical to a searchlight except instead of sensing only along a ray, it can

sense anywhere within a finite field of view measured by an angle φ as illustrated

in Fig. 3.12. Now we can define the φ-Searchlight Scheduling Problem:

Given N φ-searchlights with finite fields of view φ[0], φ[1], φ[2], . . . , φ[N],
find a rotation schedule such that any target in an environment will
necessarily be detected in finite time.

One must ask whether there is actually any advantage to having searchlights

with finite field of view, e.g., whether there are problem instances which can be

14The name “φ-searchlight” was inspired by the “φ-searchers” of [27], the difference being
that a “φ-searcher” can rotate and translate, whereas a “φ-searchlight” can only rotate.

101

s[0]

s[2]

s[1]

φ[0]
φ[1]

φ[2]

Figure 3.12. In the φ-Searchlight Scheduling Problem, each searchlight may have

a different field of view φ[0], φ[1], φ[2], . . . , φ[N].

solved with φ-searchlights but not by searchlights. Indeed there are instances

where greater fields of view enable a solution.

Lemma 3.13 (Increased Field of View Advantage). As the field of view of φ-

searchlights increases, the set of solvable problem instances grows.

Proof. In the simple “hour-glass”15 example of Fig. 3.13, there is no solution unless

both searchlights have a field of view φmin or greater.

The algorithm we have described in Section 3.4 could be used with φ-searchlights

as is, but this would not take advantage of the added capabilities offered by greater

fields of view. In fact only a small modification is necessary to obtain a complete

algorithm for φ-searchlight scheduling. We need only redefine the critical angles.

Observe that for a φ-searchlight, critical visibility events can only occur when

there is a change in the set of searchlight critical angles (as per Definition 3.8)

illuminated by its field of view. Therefore, taking the configuration θ[i] of a φ-

15Thanks to Nicola Ceccarelli for suggesting this example.

102

1 2

43

φmin

s[0]

s[1]

Figure 3.13. In this simple “hour-glass” example, the environment cannot be

cleared unless both φ-searchlights have field of view at least φmin. To see why,

imagine the fields of view are both less than φmin and notice if you clear any

one of the corners (labeled 1, 2, 3, and 4), then trying to clear a second corner

cannot be accomplished without contaminating the first. On the other hand, if

both fields of view are φmin or greater, the problem is easily solvable because each

φ-searchlight is able to simultaneously illuminate one of the corners and the other

φ−searchlight

searchlight s[i] to be the angular position of the bisector of its field of view,16 we

have the following definition.

Definition 3.19 (φ-Searchlight Critical Angle). An angle ψ is a critical angle of

a φ-searchlight s[i] if θ[i] passing through ψ implies a change in the set of searchlight

critical angles illuminated by s[i]’s field of view.

Analogous to Definition 3.14, we can define a critical sequential schedule for φ-

searchlights to be one in which only one φ-searchlight is active at a time and each

φ-searchlight may only rotate between φ-searchlight critical angles. Furthermore,

16Taking the bisector is rather arbitrary, we just need a reference angle.

103

Figure 3.14. Supposing the dotted lines are searchlight critical angles, here is

shown that a φ-searchlight may have multiple searchlight critical angles in its

view at any given time. The φ-searchlight critical angles are thus defined in terms

of the searchlight critical angles as in Definition 3.19.

all the Lemmas, Theorems, and Corollaries which we proved for searchlights in

Section 3.3 can be proven analogously for φ-searchlights simply by substituting

the new definition of critical angle. The proofs are so similar that we omit them

and simply state the main (solution space) reduction result.

Corollary 3.3. Any instance of the φ-Searchlight Scheduling Problem which per-

mits a general search schedule also permits a critical sequential search schedule.

Just as Corollary 3.1 led to the design of the complete algorithm for search-

light scheduling in Section 3.4, Corollary 3.3 allows a complete algorithm for

φ-searchlight scheduling.

3.6 Conclusions

In this chapter we have shown that the Searchlight Scheduling Problem can be

reduced to a path planning problem through an appropriate information graph.

The proof was based on an exact cell decomposition of the searchlights’ toroidal

104

configuration space. Using the reduction result we designed a complete algorithm

for searchlight scheduling. The algorithm is divided into two parts. First, geomet-

ric preprocessing is performed in time polynomial in the number of guards and

environment vertices. Second, the information graph is searched breadth-first.

Our time complexity upper bound for the information graph breadth-first search

is exponential in the output size. Although it remains an important open ques-

tion whether the general Searchlight Scheduling Problem is NP-hard, computed

examples demonstrated that the algorithm can be practical for problem instances

of useful size, and for which there currently exists no other algorithm. Addition-

ally, we have shown that our complete algorithm for searchlight scheduling can be

directly extended to the φ-Searchlight Scheduling Problem in which sensors have

finite fields of view.

In the future, we hope that NP-hardness of the Searchlight Scheduling Problem

can be shown, or else that the computational time complexity bounds for a com-

plete algorithm can be improved. There are also many interesting and unexplored

variations of the Searchlight Scheduling Problem. These include minimizing time

to clear the environment, evaders with bounded speed, sensor limitations such as

limited depth of field, and sensors sweeping a half-plane or cone through three

dimensional environments.

105

Chapter 4

Distributed Searchlight

Scheduling1

4.1 Introduction

Consider a group of robotic agents guarding a nonconvex polygonal environ-

ment, e.g., a floor plan. For simplicity, we model the agents as point masses. Each

agent is equipped with a single unidirectional sweeping sensor called a searchlight

(imagine a ray of light such as a laser range finder emanating from each agent). A

searchlight aims only in one direction at a time and cannot penetrate the boundary

of the environment, but its direction can be changed continuously by the agent.

A point is detected by a searchlight at some instant if and only if the point lies

on the ray. An evader is any point which can move continuously with unbounded

speed. The Searchlight Scheduling Problem is to

Find a schedule to rotate a set of stationary searchlights such that any
evader in an environment will necessarily be detected in finite time.

1 c© 2007 IEEE. Reprinted from [85] with permission of IEEE.

106

A searchlight problem instance consists of an environment and a set of stationary

guard positions. Obviously there can only exist a search schedule if all points in

the environment are visible by some guard. For a graphical description of our

objective, see Fig. 4.1 and 3.1.

Figure 4.1. Simulation results of the PTSS algorithm described in Section 4.4.2,

executed by agents (black dots) in a polygon shaped like a typical floor plan. Left

to right, top to bottom, moving evaders (small yellow squares) disappear as they

are detected by searchlights (red). The cleared region grows until it encompasses

the entire environment.

To our knowledge the searchlight scheduling problem was first introduced in

the inspiring work by Sugihara, Suzuki and Yamashita in [25], which considers sim-

ple polygonal environments and stationary searchlights. The work in [26] extends

[25] by considering guards with multiple searchlights (they call a guard possessing

k searchlights a k-searcher) and polygonal environments containing holes. Some

107

works involving mobile searchlights, sometimes calling them flashlights or beam

detectors, are [27], [28], [29], and [30]. Closely related is the Art Gallery Problem,

namely the problem of finding a minimum set of locations from which the entire

polygon is visible. Many variations on the Art Gallery Problem are wonderfully

surveyed in [6], [7], and [8]. With an emphasis on practical imaging considerations,

[16] describes a centralized task-specific procedure for choosing the locations of

cameras in a network.

Assume now that each member of the group of guards is equipped with an

omnidirectional line-of-sight sensor. By a line-of-sight sensor, we mean any device

or combination of devices that can be used to determine, in its line-of-sight, (i)

the position or state of another guard, and (ii) the distance to the boundary of the

environment. By omnidirectional, we mean that the field-of-vision for the sensor

is 2π radians. There exist distributed algorithms to deploy asynchronous mobile

robots with such omnidirectional sensors into nonconvex environments, and they

are guaranteed to converge to fixed positions from which the entire environment

is visible, e.g., [22], [23], and the algorithm in Chapter 2. The algorithms in

[23] and Chapter 2 guarantee the ancillary benefit of the final guard positions

having a connected visibility graph ([23]). Once a set of guards seeing the entire

environment has been established, it may be desired to continuously sweep the

environment with searchlights so that any evader will be detected in finite time.

The main contribution of this chapter is the development of two asynchronous

distributed algorithms to solve the searchlight scheduling problem. Correctness

and completion time bounds for nonconvex polygonal environments are discussed.

The first algorithm, called the DOWSS (Distributed One Way Sweep Strategy,

Section 4.4.1), is a distributed version of a known algorithm described originally

108

in [25], but it can be very slow in clearing the entire environment because only

one searchlight may rotate at a time. On-line processing time required by agents

during execution of DOWSS is relatively low, so that the expedience with which

an environment can be cleared is essentially limited by the maximum angular

speed searchlights may be rotated at. In an effort to reduce the time to clear

the environment, we develop a second algorithm, called the PTSS (Parallel Tree

Sweep Strategy, Section 4.4.2), which sweeps searchlights in parallel if guards are

placed in appropriate locations. These locations are related to an environment

partition with certain properties. That we analyze the time it takes to clear an

environment, given a bound on the angular rotation velocity, is a unique feature

among all work involving searchlights to date.

We begin with some technical definitions, statement of assumptions, and brief

description of the known centralized algorithm called the one way sweep strategy

(appears, e.g., in [25], [26], [28]). We then develop a partially asynchronous model,

a distributed one way sweep strategy, and our new algorithm the parallel tree

sweep strategy.

4.2 Preliminaries

4.2.1 Notation

We begin by introducing some basic notation. We let R, S
1, and N represent

the set of real numbers, the circle, and natural numbers, respectively. Given

two points x, y ∈ R
2, we let [x, y] signify the closed segment between x and y.

Similarly,]x, y[is the open segment between x and y, [x, y[represents the set

]x, y[∪{x} and]x, y] is the set]x, y[∪{y}. Also, we shall use P to refer to tuples

109

of elements in R
2 of the form (p[0], . . . , p[N−1]) (these will be the locations of the

agents), where N denotes the total number of agents.

We now turn our attention to the environment we are interested in and to the

concepts of visibility. Let E be a simple polygonal environment, possibly noncon-

vex. By simple, we mean that E does not contain any hole and the boundary does

not intersect itself. Throughout this chapter, n will refer to the number of edges

of E and r the number of reflex vertices. A point a ∈ E is visible from b ∈ E if

[a, b] ⊂ E . The visibility set V(p) ⊂ E from a point p ∈ E is the set of points in

E visible from p. A visibility gap of a point p with respect to some region R ⊂ E

is defined as any line segment [a, b] such that]a, b[⊂ int(R), [a, b] ⊂ ∂V(p), and

it is maximal in the sense that a, b ∈ ∂R (intuitively, visibility gaps block off

portions of R not visible from p). The visibility graph Gvis of a set of agents P in

environment E is the undirected graph with P as the set of vertices and an edge

between two agents if and only if they are visible to each other.

We now introduce some notation specific to the searchlight problem. An in-

stance of the searchlight problem can be written as a pair (E , P), where E is an

environment and P is a set of agent locations. For convenience, we will refer

to the searchlight of the ith agent as s[i] (which is located at p[i] ∈ R
2), and

S = {s[0], . . . , s[N−1]} will be the set of all searchlights. θ[i] will also denote the

angle of the ith searchlight in radians from the positive horizontal axis. So, if we

say, e.g., aim s[i] at point x, what we really mean is set θ[i] equal to an angle such

that the ith searchlight is aimed at x. Searchlights do not block visibility of other

searchlights.

The next few definitions were taken from [25].

Definition 4.1 (schedule). The schedule of a searchlight s[i] ∈ S is a continuous

110

function θ[i] : [0, t∗] 7→ S
1, where [0, t∗] is an interval of real time.

The ray of s[i] at time t ∈ [0, t∗] is the intersection of V(p[i]) and the semi-

infinite ray starting at p[i] with direction θ[i](t). s[i] is said to be aimed at a point

x ∈ E in some time instant if x is on the ray of s[i]. A point x is illuminated if

there exists a searchlight aimed at x.

Definition 4.2 (separability). Two points in E are separable at time t ∈ [0, t∗]

if every curve connecting them in the interior of E contains an illuminated point,

otherwise they are nonseparable.

Definition 4.3 (contamination and clarity). A point x ∈ E is contaminated if

an undetected evader can be located at x, otherwise x is clear. A region is said to

be contaminated if it contains a contaminated point, otherwise it is clear.

Definition 4.4 (search schedule). Given E and a set of searchlight locations P =

{p[0], . . . , p[N−1]}, the set Θ = {θ[0], . . . , θ[N−1]} is a search schedule for (E , P) if E

is clear at t∗.

4.2.2 Problem description and assumptions

We introduce the problem of interest. The Distributed Searchlight Scheduling

Problem is to

Design a distributed algorithm for a network of autonomous robotic
agents in fixed positions, who will coordinate the rotation of their
searchlights so that any evader in an environment will necessarily be
detected in finite time. Furthermore, these agents are to operate using
only information from local sensing and limited communication.

What is precisely meant by local sensing and limited communication will become

clear in later sections. We make the following main assumptions about every

searchlight instance in this chapter:

111

(i) The environment is a simple polygon with finitely many reflex vertices.

Comments: Compactness is a practical assumption for sensor range limi-

tations. Simple connectedness means no holes. Having only finitely many

reflex vertices precludes problems such as arise from fractal environments

and will be important for proving the algorithms terminate in finite time.

(ii) Every point in the environment is visible from some agent and there are a

finite number N ∈ N of agents.

Comments: If there were some point in the environment not visible by any

agent, then an evader could remain there undetected for infinite time.

(iii) For every connected component of Gvis, there is at least one agent located

on the boundary of the environment.

Comments: This will be important for proving the algorithms terminate

without failure. It also implies every agent is either on the boundary of the

environment or visible from some other agent. If there existed an agent i

located at a point pi in the interior of the environment and not visible by

any other agent, then there would exist ǫ > 0 such that Bǫ(pi) ∩ V(pj) = ∅

for i 6= j. An evader could thus evade detection by remaining in Bǫ(pi) and

simply staying on the opposite side of agent i as li points.

4.2.3 One Way Sweep Strategy (OWSS)

This section describes informally the centralized recursive One Way Sweep

Strategy (OWSS hereinafter) originally introduced in [25]. The reader is referred

to [25] for a detailed description. Centralized OWSS also appears in [28] and [26].

OWSS is a method for clearing a subregion of a simple 2D region E determined by

112

the rays of searchlights. The subregions of interest are the so-called semiconvex

subregions of E supported by a set of searchlights at a given time and are defined

as follows:

Definition 4.5 (semiconvex subregion). E is always a semiconvex subregion of E

supported by ∅. Furthermore, any R ⊂ E is a semiconvex subregion of E supported

by a set of searchlights Ssup if both of the following hold:

(i) It is enclosed by a segment of ∂E and the rays of some of the searchlights in

S.

(ii) The interior of R is not visible from any searchlight in S.

The term “semiconvex” comes from the fact that any reflex vertex of a semi-

convex subregion is also a reflex vertex of E . In polygonal environments, all

semiconvex subregions are polygons. The schedule used in Fig. 3.1 was based

on OWSS, but as a more general example, consider Fig. 4.2. To clear the en-

vironment E , which is a semiconvex subregion supported by ∅, we may begin by

selecting an arbitrary searchlight on the boundary, say s[0]. The first searchlight

selected to clear an environment will be called the root. s[0] aims as far clockwise

(cw hereinafter) as possible so that it is aligned along the cw-most edge. s[0] will

then rotate couterclockwise (ccw hereinafter) through the environment, stopping

incrementally whenever it encounters a visibility gap. The only visibility gap s[0]

encounters produces the semiconvex subregion R (thick border). At this time,

another searchlight which sees across the visibility gap and is not in the interior

of R, in this case s[1], is chosen to begin sweeping the area in R not seen by s[0].

Notice we have marked angles φstart and φfinish. These are the cw-most and ccw-

most directions, resp., in which s[1] can aim at some point in R. s[1] will rotate

from φstart to φfinish and in the process encounter visibility gaps, each producing

113

the semiconvex subregions R1, Rj, and Rm, which must be cleared by s[2] and/or

s[3]. As soon as R is clear (when s[1] = φfinish), s
[0] can continue rotating until it is

pointing along the wall immediately to its left at which time the entire environ-

ment is clear. The recursive nature of OWSS should be apparent at this point.

Note that in OWSS (and DOWSS described later) it is actually arbitrary whether

a searchlight rotates cw or ccw over a semiconvex subregion, but to simplify the

discussion we always use ccw.

clear

s[0]

s[2]

s[3]

R0

Rj

Rm−1

a0

b1

a0
bj

am−1 bm−1

s[1]

θfinishθstart

R

Figure 4.2. One Way Sweep Strategy (OWSS) clears, by rotating s[1], the semi-

convex subregion R (thick border) supported by s[0]. s[1] must stop incrementally

at each of its visibility gaps [a1, b1], [aj, bj], and [am, bm]. In this recursive process,

the regions (R1, Rj, Rm) behind the visibility gaps become semiconvex subregions

supported by {s[0], s[1]}, and must be cleared using only the remaining searchlights

(s[2] and s[3]).

114

4.3 Asynchronous Network Agents

In this section we lay down the sensing and communication framework for

agents with searchlights. Each agent is able to sense the relative position of any

point in its visibility set as well as identify visibility gaps on the boundary of its

visibility set. The agents’ communication graph Gcomm is assumed connected. An

agent can rotate its searchlight continuously in any direction and turn it on or off.

Each of the N agents has a unique identifier (UID), say i, and a portion of

memory dedicated to outgoing messages with contents denoted by M[i]. Agent i

can broadcast its UID together withM[i] to all agents within its communication

region (defined differently in each algorithm). We assume a bounded time delay,

δ > 0, between a broadcast and the corresponding reception.

Each agent repeatedly performs the following sequence of actions between any

two wake-up instants:

(i) SPEAK, that is, send a BROADCAST repeatedly at δ intervals, until it

starts rotating;

(ii) LISTEN for a time interval at least δ;

(iii) PROCESS and LISTEN after receiving a valid message;

(iv) ROTATE to an angle decided during PROCESS.

See Figure 4.3 for a schematic illustration of the schedule.

Any agent i performing the ROTATE action does so according to the discrete-

time control system

θ[i](t+ ∆t) = θ[i](t) + u[i], (4.1)

115

LISTEN

PROCESS ROTATE

BROADCAST BROADCAST

Figure 4.3. Sequence of actions performed by an agent i in between two wake-up

instants. Note that a BROADCAST is an instantaneous event taking place where

there is a vertical pulse, where as the PROCESS, LISTEN and ROTATE actions

take place over an interval. The ROTATE interval may be empty if the agent

does not sweep.

where the control is bounded in magnitude by umax. The control action depends on

time, values of variables stored in local memory, and the information obtained from

communication and sensing. The subsequent wake-up instant is the time when

the agent stops performing ROTATE and is not predetermined. This network

model is identical to that used for distributed deployment in [22] and [23].

4.4 Distributed Algorithms

Here we design distributed algorithms for a network of agents as described

above, where no agent has global knowledge of the environment or locations of all

other agents.

116

4.4.1 Distributed One Way Sweep Strategy (DOWSS)

Once one understands OWSS as in Section 4.2.3, especially its recursive nature,

performing one way sweep of an environment in a distributed fashion is fairly

straightforward. We give here an informal description and supply a pseudocode

in Table 4.1 (A more detailed pseudocode, which we refer to in the proofs, can

be found in Appendix A). In our discussion root/parent/child will refer to the

relative location of agents in the simulated one way sweep recursion tree. In this

tree, each node corresponds to a one way rotation action by some agent. A single

agent may correspond to more than one node, but only one node at a time. To

begin DOWSS, some agent (the root2), say i, can aim as far clockwise as possible

and then begin rotating until it encounters a visibility gap. Paused at a visibility

gap, agent i broadcasts a call for help to the network. For convenience, call the

semiconvex subregion which i needs help clearing R. All agents not busy in the

set of supporting searchlight Ssup (indeed at the zeroth level of recursion only the

root is in Srmsup), who also know they can see a portion of int(R) but are not

in int(R), volunteer themselves to help i. Agent i then chooses a child and the

process continues recursively. In DOWSS as in Table 4.1, an agent needing help

always chooses the first child to volunteer, but some other criteria could be used,

e.g., who sees the largest portion of R. Whenever a child is finished helping, i.e.,

clearing a semiconvex subregion, it reports to its parent so the parent knows they

may continue rotating.

The only subtle part of DOWSS is getting agents to recognize, without global

knowledge of the environment, that they see the interior of a particular semicon-

2 The root could be chosen by any leader election scheme, e.g., a predetermined or lowest
UID.

117

vex subregion which some potential parent needs help clearing. More precisely,

suppose some agent l must decide whether to respond as a volunteer to agent

i’s help request to clear a semiconvex subregion R. Agent l must calculate if it

actually satisfies p[l] /∈ int(R) and int(R) ∩ V(p[l]) 6= ∅. This is accomplished by

agent i sending along with its help request an oriented polyline ψ (see SPEAK

section of Table 4.1). By an oriented polyline we mean that ψ consists of a set

of points listed according to some orientation convention, e.g., so that if one were

to walk along the points in the order listed, then the interior of R would always

be to the right. The polyline encodes the portion of ∂R which is not part of ∂E

and the orientation encodes which side of ψ is the interior of R. Notice that for

this to work, all agents must have a common reference frame. Whenever the root

broadcasts a polyline, it is just a line segment, but as recursion becomes deeper,

an agent needing help may have to calculate a polyline consisting of a portion of

its own beam and its parent’s polyline. The polyline may even close on itself and

create a convex polygon. Examples of these scenarios are illustrated by in Fig 4.4.

We conclude our description of DOWSS with the following theorem.

Theorem 4.1 (Correctness of DOWSS). Given a simple polygonal environment

E and agent positions P = (p[0], . . . , p[N−1]), let the following conditions hold:

(i) the standing assumptions are satisfied;

(ii) all agents i ∈ {0, . . . , N − 1} have a common reference frame;

(iii) p[0] ∈ ∂E;

(iv) the agents operate under DOWSS.

Then E is cleared in finite time.

Proof. As in Theorem 2 of [25], whenever an agent, say i, needs help clearing a

semiconvex subregion R, there is some available agent l satisfying p[l] /∈ int(R)

118

and int(R) ∩ V(p[l]) 6= ∅. This comes from the standing assumption that for

every connected component of Gvis, there is at least one agent on the environment

boundary. Now since visibility sets are closed, we may demand additionally that

agent l sees a portion of the oriented polyline ψ sent to it by i. This means that

in an execution of DOWSS, some l will always be able to recognize, using only

knowledge of V(p[l]) and ψ from local sensing and limited communication, that it

is able to help. We conclude DOWSS simulates OWSS.

We now give an upper bound on the time it takes DOWSS to clear the en-

vironment assuming the searchlights rotate at some constant angular velocity ω,

and that communication and processing time are negligible.

Lemma 4.1 (DOWSS Time to Clear Environment). Let agents in a network

executing DOWSS rotate their searchlights with angular speed ω. Then the time

required to clear an environment with r reflex vertices is no greater than 2π
ω

1−rN

1−r
.

Proof. There are only finitely many (r) reflex vertices of E , and finitely many

guards (N). Recall each visibility gap encountered during an execution of DOWSS

produces a semiconvex subregion whose reflex vertices necessarily are part of ∂E .

This means the number of visibility gaps encountered by any agent when sweeping

from φstart to φfinish (at any level of the recursion tree) can be no greater than r, i.e.,

refering to line 8 of PROCESS in DOWSS pseudocode Appendix A, |G| = m ≤ r.

Since the number of agents available to sweep a semiconvex subregion decreases

by one for each level of recursion, the maximum depth of the recursion tree is

upper bounded by N −1. It is apparent the number of nodes in the recursion tree

cannot exceed 1 + r + r2 + · · ·+ rN−1 = 1−rN

1−r
.

It is not known whether this bound is tight, but at leastq examples as in

Fig. 4.5 can be constructed where DOWSS and OWSS run in O(r2) (⇒ O(n2))

time if guards are chosen malevolently. A key point is that DOWSS and OWSS do

not specify (i) how to place guards given an environment, or (ii) how to optimally

119

(a)

s[4] s[3]

s[2]

s[0]

s[1]

s[5]

(b)

s[4] s[3]

s[2]

s[0]

s[1]

s[5]

(c)

s[4] s[3]

s[2]

s[0]

s[1]

s[5]

(d)

s[4] s[3]

s[2]

s[0]

s[1]

s[5]

Figure 4.4. An example execution of DOWSS. The configuration in (a) results

from s[0] clearing the very top of the region with help of s[2], s[3], and s[4] followed

by s[1] attempting to clear the semiconvex subregion below where s[0] is aimed.

When s[1] gets stuck, it requests help by broadcasting the thick black polyline in

(a), in this case just a line segment. s[2] then helps s[1] but gets stuck right off, so it

broadcasts the thick black polyline shown in (b). Next s[3] helps s[2] but gets stuck

and broadcast the polyline in (c). Similarly s[4] broadcasts the polyline in (d),

in this case a convex polygon, which only s[5] can clear. In general, information

passed between agents during any execution of DOWSS will be in the form of

either an oriented line segment (a), a general oriented polyline (b and c), or a

convex polygon (d).

choose guards at each step given a set of guards. These are interesting unsolved

problems in their own right which we do not explore in this chapter.

120

s[0]
s[1]
s[2]

s[3]

Figure 4.5. An example from a class of searchlight instances for which malevolent

guard choice in OWSS or DOWSS implies time to clear the environment is O(r2)

(and therefore O(n2)). Here r = 4 reflex vertices are oriented on the bottom so

that s[r] = s[4] in the upper right corner sees the entire environment. r − 1 = 3

guards are placed in the upper left and s[0] is chosen as the root. s[0] clears up to

the first reflex vertex (grey) where it stops and calls upon s[1] for help. s[1] then

calls upon s[2] which likewise calls upon s[3]. This happens every time s[0] stops

(dashed lines) at the other r − 1 reflex vertices. The recursion tree of such an

execution has 1 + r(r− 1) nodes, thus the environment is cleared in O(r2) time.

Another performance measure of a distributed algorithm is the size of the

messages which must be communicated.

Lemma 4.2 (DOWSS Message Size). If the environment has n sides, r reflex

vertices, and N agents then the polyline (passed as a message between agents

during DOWSS) consists of a list of no more than min{r + 1, N} points in R
2.

Furthermore, since r ≤ n−3, the list consists of no more than n−2 points in R
2.

Proof. For every segment (which is a segment of some searchlight’s beam) in

such a polyline, there corresponds a unique reflex vertex of the environment.

The correspondence comes from the fact that at a given time every searchlight

supporting a semiconvex subregion has it’s searchlight aimed at a reflex vertex

where it’s visibility is occluded. The uniqueness comes from the fact that if two

121

searchlights support the same semiconvex subregion, say R, and are aimed at

the same reflex vertex, then only one of the searchlights’ beams can actually

constitute a portion of ∂R of positive length. This shows the polyline can consist

of no more than r segments and therefore r + 1 vertices. Also, in the worst case,

the polyline grows by one edge for each level of recursion. Such polylines start

out as a line segment (defined by two points) and the recursion depth cannot

exceed N − 1. We conclude the maximum number of points defining any polyline

is min{r + 1, N}.

That DOWSS allows flexibility in guard positions (only standing assumptions

required) may be an advantage if agents are immobile. However, DOWSS only

allowing one searchlight rotate at a time is a clear disadvantage when time to

clear the environment is to be minimized. This lead us to design the algorithm in

the next section.

4.4.2 Positioning Guards for Parallel Sweeping

The DOWSS algorithm in the previous section is a distributed message-passing

and local sensing scheme to perform searchlight scheduling given a priori the lo-

cation of the searchlights. Given an arbitrary positioning, time to completion of

DOWSS can be large; see Lemma 4.1 and Figure 4.5. The algorithm we design

in this section, called the Parallel Tree Sweep Strategy (PTSS), provides a way

of choosing searchlight locations and a corresponding schedule to achieve faster

clearing times. PTSS works roughly like this: According to some technical crite-

ria described below, the environment is partitioned into regions called cells with

one agent located in each cell. Additionally, the network possesses a distributed

representation of a rooted tree. By distributed representation we mean that ev-

ery agent knows who its parent and children are. Using the tree, agents rotate

122

Table 4.1. Asynchronous Schedule for DOWSS (cf Fig. 4.2, 4.3, 4.4)

Name: DOWSS
Goal: Agents in the network coordinate their search-

light rotating to clear an environment E .
Assumes: Agents are stationary and have a completely con-

nected communication topology with no packet
loss. Sweeping is initialized by a root.

For time t > 0, each agent executes the following actions between
any two wake-up instants according to the schedule in Section 4.3:

SPEAK

Broadcast either
(i) a request for help,

(ii) a message to engage a child, or

(iii) a signal of task completion to a parent.

LISTEN

Listen for either
(i) a help request from a potential parent,

(ii) volunteers to help,

(iii) engagement by parent, or

(iv) current child reporting completion.

PROCESS

(i) Use oriented polyline from potential parent with information from
sensing to check if able to help, or

(ii) if engaged, compute wayangles, visibility gaps and oriented poly-
lines.

ROTATE

(i) Aim at start wayangle and switch searchlight on,

(ii) rotate to next wayangle, or

(iii) rotate to finish wayangle and switch searchlight off.

123

their searchlights in a way that expands the clear region from the root out to the

leaves, thus clearing the entire environment. Since agents may operate in parallel,

time to clear the environment is linear in the height of the tree and thus O(n).

Guaranteed linear time to completion is a clear advantage over DOWSS which

can be quadratic or worse (see Lemma 4.1 and Fig. 4.5). Before describing PTSS

more precisely, we need a few definitions.

Definition 4.6. (i) A set S ⊂ R
2 is star-shaped if there exists a point p ∈ S

with the property that all points in S are visible from p. The set of all such

points of a given star-shaped set S is called the kernel of S and is denoted

by ker(S).

(ii) Given a compact subset E of R
2, a partition of E is is a collection of sets

{P [0], . . . ,P [N−1]} such that ∪N−1
i=0 P

[i] = E where P [i]’s are compact, simply

connected subsets of E with disjoint interiors. {P [1], . . . ,P [N]} will be called

cells of the partition.

For our purposes a gap (which visibility gap is a special case of) will refer to

any segment [q, q′] with q, q′ ∈ ∂E and]q, q′[∈ E̊ . The cells of the partitions we

consider will be separated by gaps.

Definition 4.7 (PTSS partition). Given a simple polygonal environment E, a

partition {P [0], . . . ,P [N−1]} is a PTSS partition if the following conditions are

true:

(i) P [i] is a star-shaped cell for all i ∈ {0, . . . , N − 1};

(ii) the dual graph3 of the partition is a tree;

(iii) a root, say P [0], of the dual graph may be chosen so that ker(P [0])∩ ∂E 6= ∅,

and for any node other than the root, say P [k] with parent P [j], we have that

(P [j] ∩ P [k]) ∩ ker(P [k]) ∩ ∂E 6= ∅.

3The dual graph of a partition is the graph with cells corresponding to nodes, and there is an
edge between nodes if the corresponding cells share a curve of nonzero length.

124

Definition 4.8. Given a PTSS partition {P [0], . . . ,P [N−1]} of E and a root cell

P [0] of the partition’s dual graph satisfying the properties discussed in Defini-

tion 4.7, the corresponding (rooted) PTSS tree is defined as follows:

(i) the node set (p[0], . . . , p[N−1]) is such that p[0] ∈ ker(P [0])∩∂E and for k > 1,

p[k] ∈ (P [j] ∩ P [k]) ∩ ker(P [k]) ∩ ∂E, where P [j] is the parent of P [k] in the

dual graph of the partition;

(ii) there exists an edge (p[j], p[k]) if and only if there exists an edge (P [j],P [k])

in the dual graph.

We now describe two examples of PTSS partitions seen in Fig. 4.6. The left

configuration in Fig. 4.6 results from what we call a Reflex Vertex Straddling

(RVS hereinafter) deployment. RVS deployment begins with all agents located at

the root followed by one agent moving to the furthest end of each of the root’s

visibility gaps, thus becoming children of the root. Likewise, further agents are

deployed from each child to take positions on the furthest end of the children’s

visibility gaps located across the gaps dividing the parent from the children. In

this way, the root’s cell in the PTSS partition is just its visibility set, but the cells

of all successive agents consist of the portion of the agents’ visibility sets lying

across the gaps dividing their cells from their respective parents’ cells. It is easy

to see that in final positions resulting from an RVS deployment, agents see the

entire environment.

Remark 4.1. Interestingly, in the RVS deployment, agents are deployed along

a subset of the critical angles defined for the centralized searchlight scheduling

algorithm of Chapter 3.

Lemma 4.3. RVS deployment requires, in general, no more than r + 1 ≤ n − 2

agents to see the entire environment from their final positions. In an orthogonal

environment, no more than n
2
− 2 agents are required.

125

Proof. Follows from the fact that in addition to the root, no more than one agent

will be placed for each reflex vertex (only reflex vertices occlude visibility).

See Fig. 4.1 for simulation results of PTSS executed by agents in an RVS

configuration. The right configuration in Fig. 4.6 results from the deployment

described in [23] in which an orthogonal environment is partitioned into convex

quadrilaterals.

Lemma 4.4. The deployment described in [23] requires no more than n
2
−2 agents

to see the entire (orthogonal) environment from their final positions.

Proof. See [23].

Both of the PTSS configurations in these examples may be generated via

distributed deployment algorithms in which agents perform a depth-first, breadth-

first, or randomized search on the PTSS tree constructed on-line. Please refer to

[22] and [23] for a detailed description of these algorithms.

We now turn our attention to the pseudocode in Table 4.2 (A more detailed

pseudocode, which we refer to in the proofs, can be found in Appendix A) and

describe PTSS more precisely. Suppose some agents are positioned in an envi-

ronment according to a PTSS partition and tree with agent 1 as the root. PTSS

begins by agent 1 pointing its searchlight along a wall in the direction φstart and

then rotating away from the wall toward φfinish, pausing whenever it encounters

the first side of a gap, say φj, where j is odd. Paused at φj, agent 1 sends a

message to its child at that gap, say agent 2, so that agent 2 knows it should aim

its searchlight across the gap. Once agent 2 has its searchlight safely aimed across

the gap, it sends a message to agent 1 so that agent 1 knows it may continue

rotating over the whole gap. When agent 1 has reached the other side of the gap

126

Figure 4.6. Left are agent positions resulting from a Reflex Vertex Straddling

(RVS) deployment. Right are agent positions resulting from the deployment de-

scribed in [23] in which an orthogonal environment is partitioned into convex

quadrilaterals. The PTSS partitions are shown by coloring the cells alternating

grey and white (caution: grey does not depict clarity here). Dotted lines show

edges of the PTSS tree where the circled agent is the root.

at φj+1, agent 1 sends a message to agent 2 and both agents continue clearing the

rest of their cells concurrently, stopping at gaps and coordinating with children

as necessary. In this way, the clear region expands from the root to the leaves at

which time the entire environment has been cleared. We arrive at the following

lemmas and correctness result.

Lemma 4.5 (Expanding a Clear Region Across a Gap). Suppose an environment

is endowed with a PTSS partition and tree, and that agent i is a parent of agent

j (see Fig. 4.7). Then a clear region may always be expanded across the gap from

P [i] to P [j] by s[j] first aiming across the gap and waiting for s[i] to rotate over

the gap. Both agents may then continue clearing the remainder of their respective

cells concurrently.

Proof. This obviously hold for the scenario in Fig. 4.7. Using the definition of

PTSS partition, it is clear any general PTSS parent-child relationship is reducible

127

to the case in Fig. 4.7.

s[i]

s[j]

v

v′

Figure 4.7. Expanding a clear region (grey) across a gap (thick dashed segment

[v, v’]) from cell P [i] to cell P [j] may always be accomplished by the child (s[j])

aiming across the gap and waiting for the parent (s[i]) to rotate over the gap.

Both agents may then continue clearing the remainder of their respective cells.

Theorem 4.2 (Correctness of PTSS). Given a simple polygonal environment E

and agent positions

P = (p[0], . . . , p[N−1]), let the following conditions hold:

(i) the standing assumptions are satisfied;

(ii) all agents i ∈ {0, . . . , N − 1} are positioned in a PTSS partition and rooted

tree with agent 0 as the root;

(iii) the agents operate under PTSS.

Then E is cleared in finite time.

Proof. Follows immediately from Lemma 4.5.

Since multiple branches of the PTSS tree may be cleared concurrently, and

using Lemmas 4.3 and 4.4, we have the next lemma (assuming processing and

communication time are negligible, cf. Lemma 4.1).

128

Lemma 4.6 (PTSS Time to Clear Environment). Let the agents in a network

executing PTSS rotate their searchlights with angular speed ω. Then time required

to clear an environment is

(i) linear in the height of the PTSS tree;

(ii) no greater than 2π
ω

(r+1) ≤ 2π
ω

(n−2) if agents are in final positions according

to an RVS deployment;

(iii) no greater than π
ω
(n − 2) if agents are in final positions in an orthogonal

polygon according to an RVS deployment or the deployment described in

[23].

Proof. With communication time neglibile, each child will wait for it’s parent a

maximum time of 2π
ω

. It now suffices to observe that the maximum length of any

parent-child sequence is just the height of the PTSS tree.

Looking at the SPEAK section of the PTSS pseudocode in Appendix A, it is

easy to see that message size is constant (cf. Lemma 4.2).

Lemma 4.7 (PTSS Message Size). Messages passed between agents executing

PTSS have constant size.

Requiring guards to be situated in a PTSS tree is more restrictive than the

mere standing assumptions required by DOWSS, but the time savings using PTSS

over DOWSS can be considerable. Despite our two example schemes to construct

a PTSS tree, it is not clear how to construct one which clears an environment in

minimum time among all possible PTSS trees. It is also not clear how to optimally

choose the root of the tree (point of deployment). However, if the environment

layout is known a priori and one may choose the root location, then an exhaustive

strategy may be adopted whereby all possible root choices are compared.

129

Table 4.2. Asynchronous Schedule for PTSS (cf Fig. 4.3, 4.7, 4.6)

Name: PTSS
Goal: Agents in the network coordinate their search-

light rotating to clear an environment E .
Assumes: Agents are statically positioned as nodes in a

PTSS partition and tree, and each knows a priori
the gaps of its cell and UIDs of the correspond-
ing children and parent. Sweeping is initialized
by the root.

For time t > 0, each agent executes the following actions between
any two wake-up instants according to the schedule in Section 4.3:

SPEAK

Broadcast either

(i) a command for a child to aim across a gap,

(ii) a confirmation to a parent when aimed across gap, or

(iii) when finished rotating over a gap, a signal of completion to the
child.

LISTEN

Listen for either

(i) instruction from a parent to aim across a gap,

(ii) confirmation from a child aimed across a gap, or

(iii) confirmation that parent has passed the gap.

PROCESS

When first engaged, compute wayangles where coordination with chil-
dren will be necessary.

ROTATE

(i) Aim at start wayangle and switch searchlight on,

(ii) rotate to next wayangle, or

(iii) rotate to finish wayangle and switch searchlight off.

130

4.5 Conclusion

In this chapter we have provided two solutions to the distributed searchlight

scheduling problem. DOWSS requires that the guards satisfy the standing as-

sumptions, has message size O(n), and sometimes requires time O(r2) to clear an

environment. PTSS requires that the agents be positioned according to a PTSS

tree, has constant message size, and requires time linear in the height of the PTSS

tree. We have given two procedures for constructing PTSS trees, one requiring no

more than r ≤ n−3 guards for a general polygonal environment, and two requiring

no more than n−2
2

guards for an orthogonal environment. Guards rotate through

a total angle no greater than 2π, so the upper bounds on the time for PTSS to

clear an environment with these partitions are 2π
ω
r ≤ 2π

ω
(n− 3) and π

ω
(n− 2), re-

spectively. Because PTSS allows searchlights to rotate concurrently, it generally

clears an environment much faster than DOWSS. However, a direct comparison

is not appropriate since DOWSS does not specify how to choose guards whereas

PTSS does.

To extend DOWSS and PTSS for environments with holes, one simple solution

is to add one guard per hole, where a simply connected environment is simulated

by the extra guards using their beams to connect the holes to the outer bound-

ary. Another straightforward extension for PTSS would be to combine it directly

with a distributed deployment algorithm such as those in [22] and [23], so that

deployment and searchlight rotation happen concurrently. This suggests an in-

teresting problem we hope to explore in the future, namely minimizing the time

to perform a coordinated search given a limited number of mobile guards. Other

considerations for the future include loosening the requirements in the definition

of the PTSS partition, and incorporating other sensor constraints such as limited

131

depth of field and beam incidence.

132

Chapter 5

Path Planning for a Visual

Reconnaissance UAV1

5.1 Introduction

In this chapter we present novel path planning algorithms for a single fixed-

wing aircraft performing a reconnaissance mission using EO (Electro-Optical)

camera(s). Given a set of stationary ground targets in a terrain (natural, ur-

ban, or mixed), the objective is to compute a path for the reconnaissance aircraft

so that it can photograph all targets in minimum time. That the targets are

situated in terrain plays a significant role because terrain features can occlude

visibility. As a result, in order for a target to be photographed, the aircraft must

be located where both (1) the target is in close enough range to satisfy the pho-

tograph’s resolution requirements, and (2) the line-of-sight between the aircraft

and the target is not blocked by terrain. For a given target, we call the set of

all such aircraft positions the target’s visibility region. An example visibility re-

1Reprinted from [93, 94, 95] with permission of the American Institute of Aero-
nautics and Astronautics.

133

gion is illustrated in Fig. 5.1. In full generality, the aircraft path planning can be

Figure 5.1. Top is shown an example target, a ground vehicle parked next to

a building in urban terrain. The set of all points which are close enough to the

target to satisfy photograph resolution requirements is a solid sphere (bottom left).

The green two-dimensional region in the sky (bottom right) shows the subset of

the sphere, at a reconnaissance aircraft’s altitude h, where target visibility is not

occluded by terrain. Assuming the aircraft body itself doesn’t occlude visibility,

then flying the aircraft through the green region is sufficient for the target to

be photographed, hence we call it the target’s visibility region for fixed aircraft

altitude h.

complicated by wind, airspace constraints (e.g. due to enemy threats or collision

avoidance), aircraft dynamic constraints, and the aircraft body itself occluding

visibility. However, under simplifying assumptions, if we model the aircraft as a

134

Dubins vehicle2, approximate the targets’ visibility regions by polygons, and let

the path be a closed tour (loop), then the reconnaissance path planning problem

can be reduced to the following.

For a Dubins vehicle, find a shortest planar closed tour which visits at
least one point in each of a set of polygons.

Figure 5.2. Example problem instance and candidate solution path for the

PVDTSP (Polygon-Visiting Dubins Traveling Salesman Problem). In order to

photograph all targets, the aircraft must fly through at least one point in each

target’s visibility region (green), cf. Fig. 5.1.

We refer to this henceforth as the PVDTSP Polygon-Visiting Dubins Traveling

Salesman Problem) since it is a variation of the famous TSP (Traveling Salesman

Problem).3 A graphical illustration of the PVDTSP is shown in Fig. 5.1.

To our knowledge the PVDTSP has not previously been studied. Because the

PVDTSP has embedded in it the combinatorial problem of choosing the order

2A Dubins vehicle is one which moves only forward and has a minimum turning radius [45, 46].
3The TSP, one of the most famous NP-hard problems of combinatorial optimization, is to

find a minimum cost tour (cyclic path) through a weighted graph such that every vertex is
visited exactly once. If the graph is directed, it is called the ATSP (Asymmetric TSP). See, e.g.,
[96] for a brief introduction, or [59] for an extensive treatment.

135

to visit the polygons, the solution space is very large and discontinuous. This

precludes direct application of numerical optimal control techniques traditionally

used in trajectory optimization, surveyed, e.g., in [47]. However, several related

variations of the TSP are of interest. The ETSP (Euclidean TSP) is a TSP where

the vertices of the graph are points in the Euclidean plane R
2 and the edges are

weighted with Euclidean distances. In the ETSPN (Euclidean TSP with Neighbor-

hoods) one seeks a shortest closed Euclidean path passing through n subsets of the

plane. The ETSP is NP-hard [48] and so is the ETSPN by virtue of being a gen-

eralization of the ETSP. The DTSP (Dubins TSP), where a Dubins vehicle must

follow a shortest tour through n single point targets in the plane, is known to be

NP-hard in n [49]. Various heuristics for both single and multi-vehicle versions of

the DTSP can be found, e.g., in [50], [51], and [52]. The PVDTSP reduces to the

ETSPN in the limit as the vehicle’s minimum turning radius becomes small com-

pared to the distances between polygons. Similarly, as the area of the polygons

goes to zero, the PVDTSP reduces to the DTSP, hence the PVDTSP is NP-hard.

There exist a number of algorithms with approximation guarantees for both the

DTSP [53, 54, 55] and ETSPN [56, 57, 58], but it appears that extending any of

these algorithms to the PVDTSP would put undesirable restrictions on the prob-

lem instances which could be handled, e.g., the polygons would not be allowed to

overlap. The FOTSP (Finite One-in-set TSP)4 is the problem of finding a closed

path of minimum cost which passes through at least one vertex in each of a finite

collection of clusters, the clusters being mutually exclusive finite vertex sets. The

FOTSP is NP-hard because it has as a special case the ATSP (Asymmetric TSP)

[59]. An FOTSP instance can be solved exactly by transforming it into an ATSP

4What we have chosen to call the FOTSP is known variously in the literature as “Group-
TSP”, “Generalized-TSP”, “One-of-a-Set TSP”, “Errand Scheduling Problem”, “Multiple
Choice TSP”, “Covering Salesman Problem”, or “International TSP”.

136

instance using the Noon-Bean transformation from [60], then invoking an ATSP

solver. Alternatively, an FOTSP can be solved using an approximate dynamic

programming technique as in [61]. In the robotics literature [18, 62], a sampling-

based roadmap method5 refers to any algorithm which operates by sampling a finite

set of points from a continuous state space in order to reduce a continuous motion

planning problem to planning on a finite discrete graph. Sampling-based roadmap

methods have traditionally only been used for collision-free point-to-point path

planning amongst obstacles, however, in [63] approximate solutions to the DTSP

are found by sampling discrete sets of orientations that the Dubins vehicle can

have over each target, essentially approximating a DTSP instance by an FOTSP

instance. They then use the Noon-Bean transformation to convert the FOTSP

instance into an ATSP instance so that a standard ATSP solver can be applied.

Discretization of the vehicle state space in order to approximate the original prob-

lem by an FOTSP is a key idea which we build upon in designing sampling-based

roadmap methods for the PVDTSP in the present work. For NP-hard problems

such as the TSP and most of its variations, another possible approach is to use

metaheuristic algorithms, e.g., tabu search, simulated annealing, or genetic algo-

rithms [64]. These techniques typically lack performance guarantees, yet obtain

good solutions in reasonable computation time. Particularly genetic algorithms

have recently been applied to variations of the TSP and UAV motion planning

problems [65, 66, 67, 68, 69, 70, 71]. Genetic algorithm is an umbrella term re-

ferring to any iterative procedure which mimics biological evolution by operating

on a population of candidate solutions encoded as so-called chromosomes. The

genetic operators of crossover and mutation are successively applied, generation

5In this usage, “method” means a high level algorithm having multiple components, each of
which may be considered an algorithm in its own right.

137

after generation, until a sufficiently fit solution appears in the population. It is

not obvious how to adapt existing genetic algorithms to the PVDTSP, nor is it

clear whether any such adaptations would be effective.

There are four main contributions in this chapter. First, we precisely formu-

late the general aircraft visual reconnaissance problem for static ground targets in

terrain. Under simplifying assumptions, we reduce our general formulation to the

PVDTSP. Although the PVDTSP reduces to the well-studied DTSP and ETSP

in the sparse limit as targets are very far apart, we provide a worst-case anal-

ysis demonstrating the importance of developing specialized algorithms for the

PVDTSP in the dense limit as targets are close together and polygons may over-

lap significantly. Our second contribution is the design and numerical study of two

sampling-based roadmap methods for the PVDTSP. These methods operate by

sampling finite discrete sets of vehicle states to approximate a PVDTSP instance

by an FOTSP instance, then applying existing FOTSP solving techniques. One of

our sampling-based roadmap methods uses the Noon-Bean transformation from

[60] and is resolution complete, which means it provably converges to a noniso-

lated global optimum as the number of samples grows. Our other sampling-based

roadmap method achieves faster computation times by using the approximate dy-

namic programming technique from [61], but consequently only converges to a

nonisolated global optimum modulo target order. While we have borrowed the

idea of approximation by an FOTSP from [63], the present work goes beyond

a simple extension in that we (1) illustrate the connection with sampling-based

roadmap methods used for path planning in the robotics literature6, (2) use a

6Although [63] appears to be the first application of a sampling-based roadmap method to a
TSP-type problem, they do not use the term “sampling-based roadmap method”, nor is there
any mention of the connection with sampling-based roadmap methods in the robotics literature.

138

novel sampling technique to reduce computational time complexity, and (3) pro-

vide proof of convergence to nonisolated global optima. As a third contribution,

we design a genetic algorithm for the PVDTSP. The genetic algorithm has no per-

formance guarantees but is easiest to implement and tends to find good feasible

solutions quickly. Numerical experiments indicate that both the sampling-based

roadmap methods and genetic algorithm deliver good solutions suitably quickly

for online purposes when applied to PVDTSP instances having up to about 20

targets. Additionally, all the algorithms have a means for a user to trade off com-

putation time for solution quality. Our fourth contribution is to describe how the

modular nature of all the algorithms allows them to easily be extended to handle

wind, airspace constraints, any vehicle dynamics, and open-path (vs. closed-tour)

problems.

This chapter is organized as follows. In Sec. 5.2 we introduce notation, math-

ematically formulate the minimum time reconnaissance aircraft path planning

problem, show how to reduce the problem to a PVDTSP, and provide the worst-

case analysis motivating the development of specialized PVDTSP algorithms. In

Sec. 5.3 we present, analyze, and numerically validate the sampling-based roadmap

methods. In Sec. 5.4 we present the genetic algorithm with a supporting Monte-

Carlo numerical study. Finally, we describe how all our algorithms can be ex-

tended in Sec. 5.5 and conclude in Section 5.6.

5.2 Mathematical Formulation

We begin with some preliminary notation. The s-dimensional Euclidean space

is R
s and S is the circle parameterized by angle radians ranging from 0 to 2π, 0

139

and 2π identified. Let T = {T1, T2, . . . , Tn} be the set of n targets which must be

photographed by our aircraft. Given a set A, we denote its cardinality by |A|, its

interior by intA, and its power set, i.e., the set of all subsets of A, by 2A. Given

two sets A and B, A × B is the Cartesian product of these sets. The complete

state of our reconnaissance aircraft is encoded in a vector x, which takes a value

in the aircraft’s state space X. We can segregate x into internal and external

states so that

x =

xinternal

xexternal

 ∈ X = Xinternal ×Xexternal. (5.1)

The internal state xinternal accounts for control surface states, and more impor-

tantly, if the aircraft has gimbaled camera(s), then also for the camera state(s).

The external state xexternal accounts for the aircraft body position and velocity in

the full six degrees of freedom.

We now define a map V : T → 2X from the set of targets to subsets of the

aircraft state space. Under this map, V(Ti) ⊂ X, called the ith target’s visibility

region, is precisely the set of all aircraft states such that Ti can be photographed

whenever the aircraft is in that state. Later, in Sec. 5.2.1, we discuss how to

calculate visibility regions from a terrain model, but let us assume for now we can

make this calculation. We also assume a BVP (Boundary Value Problem) solver

is available which calculates the minimum time aircraft trajectory between any

two states x and x′, provided a trajectory exists. We treat this minimum time

between states as a “black box” distance function denoted by d(x,x′). Now our

140

minimum time reconnaissance path planning problem can be stated as

Minimize : C(x1, . . . ,xn) =
∑n−1

i=1 d(xi,xi+1) + d(xn,x1)

Subject To : for each i ∈ {1, . . . , n} there exists j ∈ {1, . . . , n}

such that xj ∈ V(Ti),

(5.2)

where the decision variables are the states xi (i = 1, . . . , n). Once an optimal

sequence of states (x1, . . . ,xn) has been chosen, then the minimum time state-to-

state trajectory planner can be used to connect each pair of consecutive states,

thus we obtain a minimum time closed reconnaissance tour. Since the complete

state space of an aircraft can be very complicated, we simplify the discussion by

making the following main assumptions.

(i) The aircraft is modeled as a Dubins vehicle with minimum turning radius

rmin, fixed altitude h, and constant airspeed Va.

Comments: Common for small low-power UAVs.

(ii) Regardless of state, the aircraft body never occludes visibility between the

camera and a target.

Comments: Holds when either there are multiple cameras covering all angles

from the aircraft, or there is a sufficiently flexible gimbaled camera with

dynamics faster than the aircraft body dynamics.7

(iii) There are no airspace constraints nor wind.

Comments: As to be discussed in Sec. 5.5, our results can easily be extended

to handle wind and no-fly zones.

7An omnidirectional camera is another possibility, but they typically have poor resolution.

141

In accordance with assumption (i), the aircraft dynamics take the form

ẋ

ẏ

ψ̇

=

Va sin(ψ)

Va cos(ψ)

u

, (5.3)

where (x, y) ∈ R
2 are earth-fixed Cartesian coordinates, ψ ∈ S is the azimuth

angle, and u is the input to an autopilot system. Assumption (ii) tells us that a

target can be photographed independent of aircraft azimuth ψ, therefore we can

abstract out xinternal so that the aircraft state space is reduced to

x = (x, y, ψ) ∈ X = R
2 × S = SE(2), (5.4)

and the Visibility sets V(T1), . . . ,V(Tn) are reduced to 2-dimensional regions in R
2

as shown in Fig. 5.1 and 5.1 (as opposed to subsets of X = R
2 × S). Hereinafter

we refer to the state of a Dubins vehicle interchangeably as “state” or “pose”

(position with orientation). The minimum time path between two Dubins states

x and x′ can be computed very quickly in constant time [45, 97]. This provides us

with our “black box” distance function d(x,x′) as it appears in the optimization

problem Eq. 5.2. Although visibility regions may contain circular arcs due to

the camera range constraint, they can be well approximated by polygons. We

have now reduced our minimum time reconnaissance path planning problem to a

PVDTSP.

In some UAV systems in the field today, target visibility sets are neglected and

reconnaissance paths are planned by simply solving the DTSP over the target

positions, i.e., the UAV is restricted to pass directly over each target in order

to photograph it. However the worst-case analysis in the following Theorem 5.1

demonstrates that an arbitrarily large relative cost increase can be incurred by

142

solving the DTSP instead of the PVDTSP. This cost increase is most pronounced

in the dense limit (left in Fig. 5.2) as targets become very close together, which

motivates our development of specialized PVDTSP algorithms for tight urban

scenarios especially. In contrast, in the sparse limit (right in Fig. 5.2) when

the minimum turning radius and visibility set diameters are much smaller than

the distances between targets, there is no significant advantage to solving the

PVDTSP over the DTSP nor over the ETSP.

Theorem 5.1 (DTSP vs. PVDTSP Worst-Case Analysis). In a fixed compact

subset of the plane R
2, solving the DTSP over point targets instead of the PVDTSP

over those same targets’ visibility sets may incur a cost penalty of order Ω(n) in

the worst case.8

Proof. The set of all DTSP tours through n point targets is a subset of all

PVDTSP tours through those same targets’ visibility sets, therefore the length of

a tour that results from solving the PVDTSP to optimality can be no greater than

that of solving the DTSP. Now it suffices to prove the theorem by demonstrating

a class of visual reconnaissance problem instances, parameterized by the number

of targets n, for which the tour cost when solved as a DTSP is order Ω(n) (lower

bounded) yet only order O(1) (upper bounded) when solved as a PVDTSP. One

such class of instances is illustrated left in Fig. 5.2.9 Given any n noncolinear

point targets in the plane, we can linearly scale them until the radius of the circle

constructed from any three of them has radius smaller than the Dubins vehicle

minimum turn radius. This scaling ensures that, in order to fly a feasible DTSP

tour, the aircraft must travel a distance at least the length of one minimum turn

radius circle for every two targets. Solving the DTSP over these points would

thus cost Ω(n), yet letting the intersection of the targets visibility sets’ contain

all the targets, the PVDTSP could be solved with a single minimum turn radius

8A function f(n) is said to be Ω(n) if there exist positive constants c and n0 such that
f(n) ≥ cn for all n ≥ n0.

9Such a class of instances has been used previously in [54] to show DTSP tours in general
have worst-case length Ω(n).

143

loop and thus cost only O(1).

Figure 5.3. In the dense limit (left) as the distances between targets are much

smaller than the minimum turning radius, there can be a large penalty incurred

(Ω(n), see Theorem 5.1 and proof) by solving the DTSP instead of the PVDTSP.

In particular, if the densely packed targets are sufficiently noncolinear, an aircraft

solving the PVDTSP can photograph all targets in a single pass (shown as blue

circle), but an aircraft solving the DTSP would only be able to photograph two

targets per pass, thus requiring a tour at least the length of n
2

minimum turn

radius circles. In the sparse limit (right) when the minimum turning radius and

visibility set diameters are much smaller than the distances between targets, there

is no significant advantage to solving the PVDTSP over the DTSP nor over the

ETSP.

5.2.1 Calculating Visibility Regions

In order to calculate the visibility region V(Ti) of a target, it is necessary to

know the target location and to have a computer model/representation of the

terrain. This representation may be either a vector format, e.g., a TIN (Triangu-

lated Irregular Network), or a raster format, e.g., a DEM (Digital Elevation Map)

144

such as the military’s DTED (Digital Terrain Elevation Data). The necessary

data to build a terrain model could be gathered, e.g., by LIDAR (LIght Detection

And Ranging), SAR (Synthetic Aperture Radar), or photogrammetry. Once the

terrain model has been built, the visibility region of a target may be calculated

using a “sweeping algorithm” [70, 71, 74] in the vector case, or Bresenham’s line

algorithm [98] in the raster case.

5.3 Sampling-Based Roadmap Methods

In this section we present two sampling-based roadmap methods for the PVDTSP.

These methods operate by sampling a finite discrete set of poses from the con-

tinuous Dubins state space in order to approximate the PVDTSP instance by an

FOTSP instance, then applying an FOTSP algorithm. We call the approximating

FOTSP instance a PVDTSP roadmap. In Sec. 5.3.1 we explain in detail how to

construct a PVDTSP roadmap. The methods that use the roadmap are then de-

scribed in Sec. 5.3.2 and 5.3.3. We provide a numerical study in Sec. 5.3.4 and in

Sec. 5.3.5 describe the relationship between the sampling-based roadmap methods

in the present work and those used in the robotics literature for collision-free path

planning. Later in Sec. 5.5 we explain how our methods can be extended to handle

wind, airspace constraints, any vehicle dynamics, and open-path problems.

5.3.1 Roadmap Construction

To define a PVDTSP roadmap we first need definitions of the ATSP (Asym-

metric TSP) and FOTSP (Finite One-in-a-set TSP) which are more precise than

those given in Sec. 5.1.

145

Definition 5.1 (ATSP). Given a weighted directed graph G = (V,E) where V is

a finite set of vertices

{v1, v2, v3, . . . , vnV }

and E a set of directed edges with weights

{wi,j|i, j ∈ {1, 2, 3, . . . , nV } and i 6= j},

the Asymmetric TSP (ATSP) is to find a directed cycle of minimum cost which

visits every vertex in V exactly once.

Definition 5.2 (FOTSP). Suppose we have a weighted directed graph G = (V,E)

as in Def. 5.1, but now the vertices are partitioned into finitely many nonempty

mutually exclusive vertex sets called clusters S = {S1, S2, S3, . . . , SnS}, so that the

vertices can be written as

V =
{

v(1,1), v(1,2), v(1,3), . . . , v(1,nS1
), v(2,1), v(2,2), v(2,3), . . . , v(2,nS2

), . . .

. . . , v(nS ,1), v(nS ,2), v(ns,3), . . . , v(nS ,nSnS
)

}

.
(5.5)

Then the Finite One-in-a-set TSP (FOTSP) is to Find a directed cycle of mini-

mum cost which visits at least one vertex from each cluster.

Definition 5.3 (PVDTSP Roadmap). A roadmap for a PVDTSP instance is an

FOTSP instance, as per Def. 5.2, where there is one cluster for each polygon.

The vertices V are obtained by sampling a finite set of poses in each polygon and

assigning them to the respective cluster. The edges E are obtained by making

all possible inter-cluster connections using Dubins minimum time state-to-state

distances as weights.

We perform the pose sampling in Def. 5.3 using what is known as a quasir-

andom sequence, although it could also be performed with a random sequence,

uniform grid, or some heuristic. A quasirandom sequence is a deterministic se-

quence which densely fills a space and concurrently optimizes a generalized notion

of resolution such as dispersion.10. Given a set of samples in a metric space, the

10 There exist other generalized notions of resolution in the literature, e.g., discrepancy is
usually used in the Monte-Carlo integration context [99]

146

dispersion of that set is the radius of the largest empty ball. Although there are

many different quasirandom sequences to choose from in the literature [99, 18, 62],

we have chosen to use Halton sequences for simplicity, efficiency, and because they

(1) are asymptotically optimal with respect to dispersion, (2) have, with high

probability, better dispersion than uniform random sampling, and (3) allow more

flexibility in the number of samples than a regular grid. Halton sequences are

defined formally as follows.

Definition 5.4 (Halton Sequence [100]). Let b1, . . . , bs be coprime positive integers

greater than 1. For each j ∈ {1, . . . , s}, let the base bj representation of an integer

k be given by

k =
∑

i

aijb
i
j (aij ∈ {0, 1, . . . , bj − 1}).

Let

Φbj(k) :=
∑

i

aijb
−(i+1)
j .

Then the s-dimensional Halton sequence h(b1,...,bs−1)(k) : N→ [0, 1]s is

h(b1,...,bs−1)(k) = (Φb1(k),Φb2(k), . . . ,Φbd(k)).

A Halton sequence produces samples on the s-dimensional unit box in R
s,

for some s, so in order to use it for sampling tours, we must show how to map

samples from a unit box onto poses in the polygons of a PVDTSP instance. The

definitions and main convergence result Theorem 5.2 to follow show that, without

loss of generality, we may construct our PVDTSP roadmaps by sampling Halton

points on a 2-dimensional unit box even though the full Dubins state space SE(2) is

3-dimensional. In particular, it suffices to map Halton points on the 2-dimensional

unit box to entry poses of the polygons as shown in Fig. 5.3.1. By entry pose of a

polygon we mean a pose which is positioned on the polygon’s perimeter and either

oriented towards the polygon’s interior or parallel with its boundary.

147

Definition 5.5 (Metric Space of Entry Poses (Xentry, ρX)). Let Xentry ⊂ X =

SE(2) be the 2-dimensional set of all Dubins states which correspond to an entry

pose of some polygon in a PVDTSP instance. We endow Xentry with the metric

ρX as follows. For any two points x = (x, y, ψ) and x′ = (x′, y′, ψ′) in Xentry,

ρX(x,x′) :=
√

|x− x′|2 + |y − y′|2
︸ ︷︷ ︸

Euclidean metric on R2

+ min{|ψ − ψ′|, 2π − |ψ − ψ′|}
︸ ︷︷ ︸

geodesic distance on S

. (5.6)

To achieve a prescribed dispersion on a bounded s-dimensional continuous

space can require arbitrarily many more samples than to achieve the same disper-

sion on a codimension one surface. Constructing a PVDTSP roadmap by sampling

on the 2-dimensional Xentry instead of the 3-dimensional X should therefore sig-

nificantly reduce the computational time complexity of any algorithm which uses

the roadmap.

Definition 5.6 (Halton Entry Pose Induced PVDTSP Roadmap Ri). Let Ri

denote a PVDTSP roadmap, as per Def. 5.3, where the vertices are obtained from

mapping the first i terms of the 2-dimensional Halton quasirandom sequence of

bases 2 and 3 onto the space of entry poses as in Fig. 5.3.1.

Definition 5.7 (Metric Space of Dubins Tours (D, ρD)). Let D be the set of all

finite-length closed Dubins tours in the plane. We endow D with a metric ρD as

follows. For any two tours τ : S→ R
2 and τ ′ : S→ R

2 in D,

ρD(τ, τ ′) := inf
f :S↔S

sup
t∈S

||τ(t)− τ ′(f(t))||2, (5.7)

where inff :S↔S is the infimum over all reparameterizations between the tours,

supt∈S is the supremum over all positions along the tours, and || ||2 is the L2

norm in R
2.

Definition 5.8 (Set of PVDTSP-feasible Dubins Tours Dfeas). Let Dfeas be the

set of all tours in D which pass through every polygon of a PVDTSP instance.

We are now ready to state the main convergence result which will directly lead

to convergence properties of the methods in Sec. 5.3.2 and 5.3.3.

148

Theorem 5.2 (Roadmap Convergence). Let {τi}
∞
i=1 be the sequence of best tours

contained in the sequence of roadmaps {Ri}
∞
i=1, respectively. Then the sequence

of costs {C(τi)}
∞
i=1 is nonincreasing and

lim
i→∞

C(τi) ≤ inf
τ∈intDfeas

C(τ). (5.8)

Proof. From Def. 5.6 we know that a roadmapRi is contained in another roadmap

Rj whenever j ≥ i, therefore the best tour in Ri is also in Rj. This ensures the

sequence of costs {C(τi)}
∞
i=1 is nonincreasing. The limit of the sequence of costs

on the left hand side of Eq. 5.8 must exist because it is monotonic and lower

bounded by zero. To prove the inequality it suffices to show that for all ǫ > 0

there exists N such that i > N implies

C(τi) ≤ inf
τ∈intDfeas

C(τ) + ǫ. (5.9)

By definition of infimum, there exists a sequence of tours {τ ′j}
∞
j=1 in intDfeas such

that

lim
j→∞

C(τ ′j) = inf
τ∈intDfeas

C(τ),

i.e., for all ǫ > 0 there exists N1 such that j > N1 implies

C(τ ′j) ≤ inf
τ∈intDfeas

C(τ) +
ǫ

2
. (5.10)

A tour τ ′j must first enter each polygon at a unique entry pose. Because we are

sampling poses densely in Xentry, we can always choose i large enough that Ri has

a set of entry poses arbitrarily close to the entry poses of τ ′j (with respect to the

metric ρX). This together with the fact that τ ′j is in the interior of Dfeas implies

that for all ǫ > 0 there exists N2 such that

C(τi) ≤ C(τ ′j) +
ǫ

2
(5.11)

whenever i > N2. Combining Eq. 5.10 and 5.11, we obtain the desired result that

for all ǫ > 0 there exists N = max{N1, N2} such that i > N implies

C(τi) ≤ C(τ ′j) + ǫ
2

≤ infτ∈intDfeas
C(τ) + ǫ

2
+ ǫ

2

= infτ∈intDfeas
C(τ) + ǫ.

149

1

0
0 1

Quasirandom Samples

0
0 L

Entry Pose Samples

E
nt

ry
 A

ng
le

Location Along Perimeters

Figure 5.4. Green polygons are target visibility sets of a PVDTSP instance. The

roadmap for a PVDTSP instance is an FOTSP instance which we construct in

three steps. First we sample points from a Halton quasirandom sequence on the

unit box (left). Second we map the quasirandom samples onto the space of entry

poses represented by another box (right), where the horizontal axis represents

a parameterization of position along the 1D polygon perimeters and the vertical

axis represents entry angle in radians. These entry poses are the roadmap vertices

and the dashed lines (right) show the separation between polygons. (continued)

In words, Theorem 5.2 states that the best tour cost taken from the sequence

of (Halton entry pose induced) roadmaps is no greater, in the limit, than the cost

of any nonisolated feasible tour. A roadmap may by chance contain an isolated

global optimal tour, hence Eq. 5.8 is an inequality rather than equality. An

example of an isolated global optimum is shown in Fig. 5.3.1.

5.3.2 Resolution Complete Method

We describe in this section a method which is resolution complete, which means

it provably converges, in the limit as the number of samples in the roadmap

150

Figure 5.4. (continuation) The samples in the boxes correspond precisely to the

entry pose samples shown on the plan view of the polygons (left). The vertices are

partitioned into clusters according to which polygon they belong to. The third

and last step is to create the roadmap edges by making all possible inter-cluster

connections between vertices using Dubins shortest paths (right, blue curves). The

edges are thus weighted by their Dubins distances. For comparison, an example

roadmap for collision-free path planning is shown in Fig. 5.3.5.

Figure 5.5. Isolated global optima can exist for a PVDTSP instance. In this

example an isolated global optimal tour consists of the minimum turn radius

circle (blue) just touching the outer vertices of the polygons.

increases, to a solution at least as good as any nonisolated solution.11 A procedural

11This definition of resolution complete differs slightly from the useage in the context of
sampling-based roadmap methods for collision free path planning, where it means that a method
is guaranteed to find a nonisolated collision-free path as long as there are enough samples.
However, the definitions are deliberately compatible so that a resolution complete collision-free
path planner can be used in conjunction with our PVDTSP method in case we desire to solve

151

outline is shown in Table 5.1. The input consists of n polygons, a vehicle minimum

turn radius rmin, and a sample count nsamples. First a roadmap is constructed by

sampling nsamples Halton entry poses as per Def. 5.6. Second, the roadmap FOTSP

instance is converted to an ATSP instance using the Noon-Bean transformation

[60], illustrated in Fig. 5.3.2 and defined as follows.

Definition 5.9 (Noon-Bean Transformation). Suppose we are given an FOTSP

instance specified, as in Def. 5.2, by a weighted directed graph G = (V,E) together

with a partitioning into clusters S = {S1, S2, S3, . . . , SnS}. Then the Noon-Bean

Transformation of this FOTSP instance is an ATSP instance G ′ = (V ′, E ′) con-

structed as follows. Begin with G ′ = G, i.e., let V ′ = V and E ′ = E, then make

these three modifications to E ′:

(i) For each cluster, add zero-weight directed edges to E ′ to create a zero-cost

cycle which traverses all the vertices of the cluster (so there are a total of

nS zero-cost cycles),

(ii) cyclically shift intercluster edges of E ′ so that they emanate from the pre-

ceeding vertex in their respective zero-cost cycles, and

(iii) add a large penalty M =
∑

i,j wi,j, i.e., the total of all weights in G, to the

weight of all interlcuster edges in E ′.

The third step of the method is to solve the ATSP instance, which can be done

using any exact ATSP solver. The fourth and final step is to extract the PVDTSP

a PVDTSP with obstacles. We address these topics further in Sec. 5.3.5 and 5.5.1

Table 5.1. Outline of Resolution Complete Method for the PVDTSP

1: Construct roadmap by sampling entry poses on the polygon boundaries
2: Use Noon-Bean transform to convert Roadmap to an ATSP instance
3: Solve ATSP instance
4: Extract PVDTSP solution from ATSP solution

152

5

3

19 7

24

21

12

8

10

S3

v(1,1)

v(1,3)v(1,2)

v(3,1)

v(3,3)
v(3,2)

v(2,2)

v(2,1)

S2

S1

10
+M

0

0

24+M

19+M
7+M

3+M

12+M

21
+M

0

0

0
0

0

0

5+M
8+M

S3

v(1,1)

v(1,3)v(1,2)

v(3,1)

v(3,3)
v(3,2)

v(2,2)

v(2,1)

S2

S1

Figure 5.6. An FOTSP instance such as this example (left) can be transformed

into an equivalent ATSP instance (right) using the Noon-Bean transformation.

This transformation consists of (1) adding to each cluster a zero-cost cyle which

traverses all the vertices of that cluster, (2) cyclically shifting intercluster edges so

that they emanate from the preceeding vertex in their respective zero-cost cycles,

and (3) adding a large penalty M to interlcuster edges so that each cluster is

only visited once. Once a solution to the ATSP instance is found, a solution to

the FOTSP instance can by extracted by taking only the first vertex visited in

each cluster, thus skipping fictitious zero-cost edges. Bold edges show equivalent

optimal tours in the example FOTSP and ATSP instances.

solution form the ATSP solution by taking only the first vertex visited in each

cluster, thus skipping the fictitious zero-cost edges.

The convergence of the method as the number of samples nsamples goes to

infinity is captured in the following corollary to Theorem 5.2.

Corollary 5.1 (Convergence of Resolution Complete Method). Let {τi}
∞
i=1 be the

sequence of tours computed by the resolution complete method when applied to the

sequence of roadmaps {Ri}
∞
i=1, respectively. Then the sequence of costs {C(τi)}

∞
i=1

is nonincreasing and

lim
i→∞

C(τi) ≤ inf
τ∈intD

C(τ). (5.12)

153

Proof. It is proven in [60] that the Noon-Bean transformation is exact in the

sense that if the exact solution of the ATSP instance is found, then the extracted

solution to the FOTSP instance will also be exact. This means the method will

always find the best tour in a given roadmap. The corollary thus follows directly

from Theorem 5.2.

Building the roadmap takes time complexity O(n2
samples) because adding a

vertex or edge costs constant time and there are O(n2
samples) edges (no more than

in a complete graph). The Noon-Bean transformation also takes time complexity

O(n2
samples) because it adds only nsamples zero-weight edges, but modifies one at a

time the other O(n2
samples) edges. Solving the ATSP instance of nsamples vertices is

NP-hard and therefore we cannot expect to do it in guaranteed polynomial time.

However, state-of-the-art heuristic ATSP solvers are effectively exact and have

an (empirically determined) average case runtime of O(n2.2
samples) [101, 102]. We

address further in Sec. 5.3.4 the issue of ATSP solver exactness versus effective

exactness. Extracting the PVDTSP solution from the ATSP solution takes only

O(nsamples) time, so supposing we use a heuristic ATSP solver, we can expect the

average case runtime of the entire method to be

O(n2.2
samples). (5.13)

5.3.3 Approximate Dynamic Programming Method

The method we describe in this section uses approximate dynamic program-

ming. A procedural outline is shown in Table 5.2. The input consists of n poly-

gons, a vehicle minimum turn radius rmin, and a sample count nsamples. First a

roadmap is constructed by sampling nsamples Halton entry poses as per Def. 5.6.

Second, the FST (Fischetti-Salazar-Toth) transformation [61], defined in Def. 5.10

154

Table 5.2. Outline of Approximate Dynamic Programming Method for the

PVDTSP

1: Construct roadmap by sampling entry poses on the polygon boundaries
2: Use FST transform to obtain an ATSP instance from the roadmap
3: Solve ATSP instance to obtain a cluster ordering
4: Solve Dynamic Programs induced by cluster ordering from ATSP solu-

tion
5: Select best Dynamic Program solution as PVDTSP solution

and illustrated in Fig. 5.3.3, is applied to the roadmap FOTSP instance to obtain

an ATSP instance.

Definition 5.10 (FST Transformation). Suppose we are given an FOTSP in-

stance specified, as in Def. 5.2, by a weighted directed graph G = (V,E) together

with a partitioning into clusters S = {S1, S2, S3, . . . , SnS}. Then the FST Trans-

formation of this FOTSP instance is an ATSP instance G ′ = (V ′, E ′) constructed

as follows. There is one vertex in V ′ for every cluster of the FOTSP instance.

There is a directed edge from vertex v′i ∈ V
′ to vertex v′j ∈ V

′ if and only if there

exists a directed edge from cluster Si to cluster Sj. The weight w′
i,j of the directed

edge from each such v′i to v′j is the arithmetic mean of the weights of all directed

edges from Si to Sj.

Solving the ATSP instance in the third step gives an approximate order p to visit

the roadmap FOTSP clusters. From this point on, any edges in the roadmap

which do not satisfy order p are ignored. Making use of the cluster and vertex

labeling scheme introduced in Eq. 5.5, we now describe the fourth step of the

method. Since we can perform a relabeling as necessary, suppose without loss

of generality that p = (1, 2, 3, . . . , nS), i.e., the approximate cluster ordering is

S1, S2, S3, . . . , SnS . Suppose further that we known the optimal roadmap FOTSP

solution passes through the j∗th vertex v(1,j∗) of the first cluster. Treating clusters

155

8

3

19 7

24

21

12

10

5

S3

v(1,1)

v(1,3)v(1,2)

v(3,1)

v(3,3)
v(3,2)

v(2,2)

v(2,1)

S2

S1

3

7

24

16.5

10 12

S2

S1

S3

5

3

1910

8

S3

v(1,1)

v(1,3)v(1,2)

v(3,1)

v(3,3)
v(3,2)

v(2,2)

v(2,1)

S2

S1

Figure 5.7. The FST transform of an FOTSP instance (upper left) is an ATSP

instance (upper right) where (1) the vertices of the ATSP instance correspond

to clusters of the FOTSP instance, and (2) the weight of each directed edge in

the ATSP instance is the average weight of directed edges between the respective

clusters in the FOTSP instance. Solving the ATSP instance gives an approximate

ordering, say p, of the clusters of the FOTSP instance. If one ignores in the FOTSP

instance all edges not satisfying the ordering p (bottom), then an approximate

FOTSP solution (bottom bold) can be found by dynamic programming with the

clusters as stages.

as stages, an optimal FOTSP solution satsifying order p can be found by solving

the dynamic programming recursion

156

G∗(v(nS ,j)) = d(v(nS ,j), v(1,j∗)) (j = 1, . . . , nSnS)

G∗(v(i,j)) = mink∈{1,...,nSi+1
}

{

d(v(i,j), v(i+1,k)) +G∗(v(i+1,k))
}

(i = nS, . . . , 2; j = 1, . . . , nSi)

G∗(v(1,j∗)) = mink∈{1,...,nS2
}

{

d(v(1,j∗), v(2,k)) +G∗(v(2,k))
}

,

where G∗(v) denotes the optimal-cost-to-go from a vertex v, and d(v, v′) is the

weight of the directed edge from vertex v to vertex v′. Since it is not known a

prior which vertex in the first cluster is i∗, one dynamic program must be solved

for each vertex in the first cluster, hence step five of the method is to select the

best out of nS1 dynamic program solutions.

The convergence of the method as the number of samples nsamples goes to

infinity is captured in the following corollary to Theorem 5.2.

Corollary 5.2 (Convergence of Approximate Dynamic Programming Method).

Let {τi}
∞
i=1 be a sequence of tours computed by the approximate dynamic program-

ming method when applied to the sequence of roadmaps {Ri}
∞
i=1, respectively. If

there exists N such that τi satisfies an order p for all i > N then the sequence of

costs {C(τi)}
∞
i=N+1 is nonincreasing and

lim
i→∞

C(τi) ≤ inf
τ∈(intDfeas)p

C(τ), (5.14)

where (Dfeas)p is the set of all PVDTSP-feasible tours which satisfy order p.

Proof. Let {(Ri)p}
∞
i=1 be the sequence of roadmaps as in Def. 5.6, but where only

edges satisfying order p are allowed. Dynamic programming will always find the

best tours in these p-limited roadmaps, therefore the proof of this corollary is

exactly the same as the proof for Theorem 5.2, except Drmfeas is replaced by

(Dfeas)p and {Ri}
∞
i=1 by {(Ri)p}

∞
i=1.

Building the roadmap takes time complexity O(n2
samples) because adding a ver-

tex or edge takes constant time and there are O(n2
samples) edges (no more than in a

complete graph). The FST transformation also takes time complexity O(n2
samples)

because it must access each of the O(n2
samples) edges of the FOTSP instance in

157

order compute the weights of the edges in the ATSP instance. Since the ATSP

is NP-hard, we assume a state-of-the-art heuristic ATSP solver with (empirically

determined) average case runtime of O(n2.2) will be used [101, 102]. On average

there will be
nsamples

n
vertices per cluster, so the average case total time complexity

of solving the dynamic programs is O(
n2

samples

n
). Adding up all the time complexi-

ties, we can expect the average case runtime of the entire method to be

O(n2.2 +
n2

samples

n
+ nsamples). (5.15)

5.3.4 Numerical Study

We have implemented the sampling-based roadmap methods of Sec. 5.3.2 and

5.3.3 in C++ on a 2.33 GHz i686. For solving ATSP instances, our implementa-

tions call the powerful LKH [102] solver as a subroutine. Strictly speaking, LKH is

based on what is known as the Lin-Kernighan heuristic, and therefore is an inex-

act solver, i.e., it is not guaranteed to find the global optimal solution to an ATSP

instance. Using an inexact ATSP solver with what we have been calling the “reso-

lution complete method” means that it is no longer truly resolution complete and

therefore not guaranteed to converge to a nonisolated global optimum. However,

allowing ourselves a slight abuse of terminology, we retain the name “resolution

complete method” in the presentation of our numerical results because state-of-

the-art heuristic TSP solvers, e.g., LKH or Linkern, perform so well in practice

that they are widely accepted as effectively exact for ATSP instances having up

to hundreds or even thousands of nodes [102, 103]. Moreover, exact ATSP solvers

can be extremely slow, sometimes taking hours to find a solution that an inexact

158

heuristic solver finds in only seconds. 12 Hours of computation time may not be

available in UAV applications requiring online solutions.

Out of several dozen problem instances we experimented with, the results from

three representative examples are shown in Table 5.3, Fig. 5.3.4, Fig. 5.3.4, and

Fig. 5.3.4. In all examples the aircraft minimum turn radius was rmin = 3 m. Both

methods deliver good solutions and are suitably fast for online purposes when

applied to PVDTSP instances having up to about 20 targets. The computation

times for the approximate dynamic programming method are generally a little

shorter than for the resolution complete method, but the resulting tours are also

a little longer. The plots of computation time vs. sample count seem to match the

predicted average case time complexities in Eq. 5.13 and 5.15. One can see, from

the plots of solution quality vs. sample count and computation time vs. sample

count, that a user of either method can indirectly trade off computation time for

solution quality by adjusting the number of samples. The resolution complete

method appears to monotonically converge to nonisolated global optima as the

number of samples grows, so we presume the LKH solver is indeed effectively

exact for these examples having up to 20 targets and 1500 samples. In just a

few examples out of dozens we tested did we observe slight nonmonotonicity.

This mostly occured when there were greater than 20 targets and 1500 samples.

Although this indicates LKH is no longer effectively exact for the larger size

problem instances, the approximate solutions it gave were consistently very good.

The PVDTSP instances used for experimentation in this section are the same

as those used for testing the genetic algorithm presented in Sec. 5.4. In particular,

the PVDTSP instances in Figures 5.3.4, 5.3.4, 5.3.4 correspond to those in Figures

12According to [102], the empirically determined average case run-time of LKH on an ATSP
instance with nnodes nodes is O(n2.2

nodes).

159

5.4.3, 5.4.3, 5.4.3, respectively. For small instances with around 5 targets or less,

the performance of the genetic algorithm, in terms of solution quality per compu-

tation time, is comparable to that of the sampling-based roadmap methods. For

larger problem instances with greater than 5 targets the sampling-based roadmap

methods perform significantly better.

5.3.5 Relationship to Methods for Collision-Free Path Plan-

ning

As mentioned in Sec. 5.1, sampling-based roadmap methods in the robotics

literature, surveyed nicely in the recent texts [18] and [62], have traditionally been

used exclusively for planning collision-free paths through continuous spaces by

discretizing the obstacle-free portion of the space into a finite directed graph called

a roadmap, e.g., as shown in Fig. 5.3.5. The roadmap can then be searched using

standard shortest path algorithms such as Dijkstra or A∗ [104]. It is interesting to

note that for collision-free path planning the roadmap vertices must be sampled

from the full 3-dimensional Dubins state space, yet for a PVDTSP roadmap it is

sufficient to sample only on the 2-dimensional space of entry poses (Fig. 5.3.1 vs.

Table 5.3. Statistics from resolution complete and approximate dynamic pro-

gramming algorithms implemented in C++ on a 2.33 GHz i686.

Instance No. of Resolution Complete Approx. Dynamic Programming
Samples Computation Time Tour Length Computation Time Tour Length

Fig. 5.3.4 400 8.05 s 37.64 m 6.12 s 37.64 m
5 targets
Fig. 5.3.4 800 53.54 s 67.44 m 51.42 s 69.89 m
10 targets
Fig. 5.3.4 1500 506.07 s 118.99 m 447.14 s 142.03 m
20 targets

160

50 100 150 200 250 300 350 400

40

45

50

55

60

65
Tour Cost vs. Number of Samples

Number of Samples

T
o

u
r

C
o

st
 (

m
et

er
s)

Resolution Complete
Approx. DP

50 100 150 200 250 300 350 400

1

2

3

4

5

6

7

8
Computation Time vs. Number of Samples

Number of Samples

C
o

m
p

u
ta

ti
o

n
 T

im
e

(s
ec

o
n

d
s)

Resolution Complete
Approx. DP

Figure 5.8. Computed example with n = 5 targets, aircraft minimum turn radius

rmin = 3 m. Green polygons represent the target visibility regions. Black dots are

the tour nodes. Cf Table 5.3.

Fig. 5.3.5).

161

100 200 300 400 500 600 700 800

70

80

90

100

110

120

130
Tour Cost vs. Number of Samples

Number of Samples

T
o

u
r

C
o

st
 (

m
et

er
s)

Resolution Complete
Approx. DP

100 200 300 400 500 600 700 800

5

10

15

20

25

30

35

40

45

50

Computation Time vs. Number of Samples

Number of Samples

C
o

m
p

u
ta

ti
o

n
 T

im
e

(s
ec

o
n

d
s)

Resolution Complete
Approx. DP

Figure 5.9. Computed example with n = 10 targets, aircraft minimum turn radius

rmin = 3 m. Green polygons represent target visibility regions. Black dots are the

tour nodes. Cf Table 5.3.

5.4 A Genetic Algorithm

In this section we present a genetic algorithm which is easy to implement and

delivers quick feasible solutions to the PVDTSP with monotonic improvement

over runtime. Although there are no performance guarantees, we validate the

162

200 400 600 800 1000 1200 1400
120

140

160

180

200

220

240
Tour Cost vs. Number of Samples

Number of Samples

T
o

u
r

C
o

st
 (

m
et

er
s)

Resolution Complete
Approx. DP

200 400 600 800 1000 1200 1400

50

100

150

200

250

300

350

400

450

500
Computation Time vs. Number of Samples

Number of Samples

C
o

m
p

u
ta

ti
o

n
 T

im
e

(s
ec

o
n

d
s)

Resolution Complete
Approx. DP

Figure 5.10. Computed example with n = 20 targets, aircraft minimum turn

radius rmin = 3 m. Green polygons represent target visibility regions. Black dots

are the tour nodes. Cf Table 5.3.

algorithm with a Monte-Carlo numerical study in Sec. 5.4.3. Later in Sec. 5.5 we

show that the algorithm can be extended to handle wind, airspace constraints,

any vehicle dynamics, and open-path problems. For details on genetic algorithms

in general, we suggest [105] and [64].

The first step in designing a genetic algorithm is to decide on an encoding to

163

Figure 5.11. Suppose the red polygons are obstacles. A roadmap for computing

collision-free Dubins paths between pairs of poses is a finite directed graph whose

vertices are poses sampled from the freespace (black arrows, left) and whose edges

are obtained by attempting to make collision-free connections between samples

using a local planning method, usually a Boundary Value Problem solver (blue

curves, right). In this example poses were sampled using a Halton quasirandom

sequence in SE(2), however, one could alternatively use random or uniform grid

sampling. To find a collision-free path between two poses, those poses are con-

nected to the roadmap using the local planning method, then the roadmap is

searched using a shortest path algorithm such as Dijkstra or A∗. Cf. Fig. 5.3.1.

represent candidate solutions. Each encoded solution will be a chromosome in

the population which evolves over the course of the genetic algorithm. For our

encoding we use a sequence of doubles

((Tk1 ,x1), (Tk2 ,x2), (Tk3 ,x3), . . . , (Tkn ,xn)), (5.16)

where we refer to a double (Tki ,xi) as a node of the tour. The sequence k1, . . . , kn

represents a permutation of the target identifiers 1, . . . , n. This is the order in

which the aircraft will visit the targets. Each aircraft state xi is in the kith

target’s visibility set V(Tki). If a solution is accepted, the aircraft flies to each

164

state x1, . . . ,xn in the order they appear in the chromosome, photographing Tki

when it reaches xi. Shortest Dubins paths are flown between successive states in

the sequence. We define the fitness of a chromosome c to be f(c) = 1/C(c), where

C is the cost shown in Eq. 5.2. We say a chromosome c is more fit than another

c′ if f(c) > f(c′).

Referring to the pseudocode in Table 5.4, we now describe how our genetic

algorithm operates. The algorithm has five fixed parameters: population size NP ,

crossover probability px, mutation probability pm, elite group size Ne, and number

of generations Ng. The population P is initialized to a set of NP random chro-

mosomes. A random chromosome is produced by randomly shuffling the integers

1, . . . , n, uniform randomly sampling points in the the targets’ visibility sets (for

the state positions), and uniform randomly sampling angles on the interval [0, 2π)

(for state orientations). Now we enter the main loop (line 2). At the beginning

of the main loop, the Ne fittest chromosomes are copied into the next generation

population P ′. This ensures the fitness of the fittest chomosome in P can never

decrease during the execution of the algorithm. Next, in order to make P ′ have

size NP , we need to produce NP −Ne−1 offspring. Offspring are produced two at

a time as follows. Two chromosomes, cmom and cdad are selected randomly from

P with probability proportional to their respective fitnesses. This is known as

roulette wheel parent selection. With probability px, children ci and ci+1 are gen-

erated by crossing over the parents, otherwise they are just copies of the parents

(see Sec. 5.4.1 below for a detailed description of our crossover operation). Once

the children are in place, we randomly perform mutation operators on them with

probabilities pm, pm, pm/7, and pm/7, respectively13 (see Sec. 5.4.2 below for a

13The last two mutation probabilities were scaled by 1/7 because it seems to give better
performance.

165

detailed description of our mutation operators). Once all the children have been

constructed and P ′ has size n, P and P ′ are swaped, i.e. the new generation

replaces the old. The process continues for Ng generations. After termination,

the algorithm returns the fittest chromosome in the population, which represents

the shortest aircraft tour found.

5.4.1 Crossover

Our crossover operator, which appears in line 6 of the pseudocode Table 5.4,

produces offspring by preserving partial tours from the parents. We have adapted

for our problem the so-called Order Crossover (OX) [64] used for the TSP. An

offspring is constructed by choosing a node subsequence from one parent, then

filling in the remaining nodes in the order they appear in the other parent. We

illustrate by an example having n = 9 targets. Let the parents be

cmom = ((T2,x1), (T3,x2), (T5,x3), (T7,x4), (T4,x5), (T6,x6), (T9,x7), (T8,x8), (T1,x9))

cdad = ((T6, x̃1), (T1, x̃2), (T7, x̃3), (T9, x̃4), (T3, x̃5), (T5, x̃6), (T8, x̃7), (T4, x̃8), (T2, x̃9)).

First, two cut points are uniform randomly chosen, represented by the bars |,

cmom = ((T2,x1), (T3,x2) | (T5,x3), (T7,x4), (T4,x5), (T6,x6) | (T9,x7), (T8,x8), (T1,x9))

cdad = ((T6, x̃1), (T1, x̃2) | (T7, x̃3), (T9, x̃4), (T3, x̃5), (T5, x̃6) | (T8, x̃7), (T4, x̃8), (T2, x̃9)).

Next, the sections between the cut points are placed directly into the offspring,

ci = (− , − | (T5,x3), (T7,x4), (T4,x5), (T6,x6) | − , − , −)

ci+1 = (− , − | (T7, x̃3), (T9, x̃4), (T3, x̃5), (T5, x̃6) | − , − , −).

It now remains to fill in the blank spaces (−) in the offspring. The rest of ci is

166

Table 5.4. Genetic Algorithm for the PVDTSP

1: construct random initial population P = {c1, c2, . . . , cNc} of NP chro-
mosomes;

2: for all generations 1, 2, 3, . . . , Ng do
3: copy Ne best chromosomes from P directly into new population P ′;
4: for all i = 1, 3, 5, 7, . . . , NP −Ne − 1 do
5: roulette wheel select parents cmom and cdad from P ;
6: generate children c′i and c′i+1 by crossover with probability px,

otherwise c′i ← cmom and c′i+1 ← cdad;
7: for all j = i, i+ 1 do
8: orientation shift mutate c′j with probability pm;
9: position shift mutate c′j with probability pm;

10: swap mutate c′j with probability pm/7.0;
11: partial reverse mutate c′j with probability pm/7.0;
12: P ′ = P ′ ∪ {c′i, c

′
i+1};

13: P ← P ′; clear P ′;
14: return best chromosome in P ;

completed as follows. The order of nodes in cdad, starting from the second cut

point, is

((T8, x̃7), (T4, x̃8), (T2, x̃9), (T6, x̃1), (T1, x̃2), (T7, x̃3), (T9, x̃4), (T3, x̃5), (T5, x̃6)).

Deleting from this ordering the nodes with targets {T5, T7, T4, T6} already present

in the first offspring, we obtain

((T8, x̃7), (T2, x̃9), (T1, x̃2), (T9, x̃4), (T3, x̃5)).

Finally, this remaining sequence of nodes is inserted into the blank spaces of ci,

starting at the second cut point, to obtain

ci = ((T9, x̃4), (T3, x̃5) | (T5,x3), (T7,x4), (T4,x5), (T6,x6) | (T8, x̃7), (T2, x̃9), (T1, x̃2)).

Similarly, the second offspring is

167

ci+1 = ((T4,x5), (T6,x6) | (T7, x̃3), (T9, x̃4), (T3, x̃5), (T5, x̃6) | (T8,x8), (T1,x2), (T2,x1)).

5.4.2 Mutation

Mutation, in lines 8-11 of the pseudocode Table 5.4, is used in case the initial

population is not rich enough to find a good solution via crossover alone. We

use four different kinds of mutation. In orientation shift, an index i ∈ {1, . . . , n}

is chosen uniform randomly, then the aircraft azimuth ψ within the state xi is

reset uniform randomly in the interval [0, 2π) (radians). In position shift, an

index i ∈ {1, . . . , n} is chosen uniform randomly, then the aircraft position (x, y)

within the state xi is reset uniform randomly within the polygonal approximation

of V(Tki). In swap, two indices i, j ∈ {1, . . . , n} are chosen uniform randomly,

then the nodes (Tki ,xi) and (Tkj ,xj) swap positions within the chromosome. In

partial reverse, two indices i, j ∈ {1, . . . , n} are chosen uniform randomly, then

the segment of the chromosome (Tki ,xi), . . . , (Tkj ,xj) is reversed; this includes

rotating the azimuth portion of those nodes’ states by π radians.

5.4.3 Numerical Study

We have implemented the genetic algorithm of Sec. 5.4 in C++ on a 2.33

GHz i686. For a baseline comparison, we also implemented the naive random

search algorithm shown in Table 5.5. Out of several dozen problem instances we

experimented with, the Monte-Carlo results from three representative examples

are shown in Table 5.6, Fig. 5.4.3, Fig. 5.4.3, and Fig. 5.4.3. In all examples

the aircraft minimum turn radius was rmin = 3 m. The parameter values shown

in Table 5.6 were the best of many different combinations of values we tested,

so we presume they are close to optimal. The genetic algorithm delivered good

168

solutions suitably quickly for online purposes when applied to PVDTSP instances

having up to about 20 targets. Tours produced by the genetic algorithm were on

average about half the length of those produced by the pure random search. The

monotonic improvement, seen in the plots of solution quality vs. computation

time, illustrates how a user can directly trade off computation time for solution

quality by stopping the algorithm anytime in order to obtain the best feasible

solution so far.

The PVDTSP instances used for experimentation in this section are the same

as those used for the sampling-based roadmap methods in Sec. 5.3. In particular,

the PVDTSP instances in Figures 5.4.3, 5.4.3, 5.4.3 correspond to those in Figures

5.3.4, 5.3.4, 5.3.4, respectively. For small instances with around 5 targets or less,

the performance of the genetic algorithm, in terms of solution quality per compu-

tation time, is comparable to that of the sampling-based roadmap methods. For

larger problem instances with greater than 5 targets the sampling-based roadmap

methods perform significantly better.

Table 5.5. Random Search Algorithm for the PVDTSP

1: cbest ← random feasible solution;
2: while t < T do
3: c← random feasible solution;
4: if c is better than cbest then
5: cbest ← c;
6: return cbest;

169

Table 5.6. Statistics from genetic and random search algorithms implemented in

C++ on a 2.33 GHz i686.

Instance No. of Computation Genetic Algorithm Genetic Algorithm Random Search
Runs Time per Parameters Mean Best Mean Best

Run Tour Length Tour Length

Fig. 5.4.3 30 4.99 s NP = 100, Ng = 500, 36.99 m 55.36 m
5 targets Ne = 4, px = 0.7,

pm = 0.1
Fig. 5.4.3 30 20.66 s NP = 100, Ng = 1000, 77.33 m 154.29 m
10 targets Ne = 4, px = 0.7,

pm = 0.1
Fig. 5.4.3 30 87.90 s NP = 100, Ng = 2000, 173.85 m 412.90 m
20 targets Ne = 4, px = 0.7,

pm = 0.1

5.5 Extensibility

5.5.1 Wind, Airspace Constraints, and Any Dynamics

In Sec. 5.2 we formulated the minimum time reconnaissance path planning

problem as finding a sequence of states (x1, . . . ,xn) from which the targets can

be photographed. We assumed a minimum time state-to-state trajectory planner

was available as a “black box” that could be accessed by our algorithms in order

to evaluate the distance function d(x,x′), which is all we need to evaluate the

goodness of any candidate solution. In this way, the minimum time state-to-state

trajectory planner is a module within our algorithms. We could therefore use

our algorithms with any of the minimum time state-to-state trajectory planners

available in the literature. These include planners which can handle wind, no-

fly zones, and any vehicle dynamics. The literature on nonholonomic trajectory

planning is vast, so we survey only briefly a few works most relevant.

Without obstacles or wind, the procedure for computing an optimal Dubins

pose-to-pose path was first shown using complicated measure theoretic arguments

170

0 1 2 3 4
35

40

45

50

55

60

65

70

75

80

Coputation Time (seconds)

M
ea

n
 S

h
o

rt
es

t
T

o
u

r
L

en
g

th
 (

m
et

er
s)

Mean Shortest Tour Length over 30 Runs

Genetic Algorithm
Random Search

Figure 5.12. Computed example with n = 5 targets, aircraft minimum turn

radius rmin = 3 m. Green polygons represent the target visibility regions. Black

dots are the tour nodes. Error bars show the sample standard deviations. Cf

Table 5.6.

in [45], then later more concisely using Pontryagin’s maximum principle from

optimal control in [97]. More recently it has been shown that in a constant wind

field without obstacles, a shortest pose-to-pose Dubins path can be caclulated in

171

0 5 10 15 20

80

100

120

140

160

180

200

Coputation Time (seconds)

M
ea

n
 S

h
o

rt
es

t
T

o
u

r
L

en
g

th
 (

m
et

er
s)

Mean Shortest Tour Length over 30 Runs

Genetic Algorithm
Random Search

Figure 5.13. Computed example with n = 10 targets, aircraft minimum turn

radius rmin = 3 m. Green polygons represent target visibility regions. Black

dots are the tour nodes. Error bars show the sample standard deviations. Cf

Table 5.6.

constant time to fixed accuracy [46, 106, 107]. Using these methods, pose-to-pose

shortest path queries with no obstacles can be computed in constant time.

Given a polygonal environment with polygonal holes represented by a total

172

0 20 40 60 80

200

250

300

350

400

450

500

Coputation Time (seconds)

M
ea

n
 S

h
o

rt
es

t
T

o
u

r
L

en
g

th
 (

m
et

er
s)

Mean Shortest Tour Length over 30 Runs

Genetic Algorithm
Random Search

Figure 5.14. Computed example with n = 20 targets, aircraft minimum turn

radius rmin = 3 m. Green polygons represent target visibility regions. Black

dots are the tour nodes. Error bars show the sample standard deviations. Cf

Table 5.6.

of m vertices, the shortest collision-free Euclidean path (no curvature constraint)

can be calculated in O(m logm) time [108]. Unfortunately the same problem

with a Dubins vehicle is NP-hard in m [109]. However, much work has been

173

done to quickly find nearly optimal obstacle avoiding paths, surveyed further in

[110, 62, 18]. Trajectory planners specifically intended for fixed-wing UAVs, which

use a branch and bound technique, are described in [111, 112]. Another approach

to nonholonomic motion planning with obstacles is to use a MILP (Mixed Integer

Linear Program) [113, 114].

5.5.2 Open-Path vs. Closed-Tour Problems

So far in this chapter, we have considered only closed-tour solutions to the

reconnaissance UAV path planning problem. One may alternatively wish to find

an open reconnaissance path from a fixed initial pose xinitial to a different fixed

final pose xfinal. In this case, instead of the closed-tour cost function in Eq. 5.2,

we use the open path cost function

C(x1, . . . ,xn) = d(xinitial,x1) +
n−1∑

i=1

d(xi,xi+1) + d(xn,xfinal).

The genetic algorithm in Sec. 5.4 can directly be applied to open-path problems by

simply replacing the closed-tour cost function with the open-path cost function.

The sampling-based roadmap methods must be modified only slightly in how they

construct the roadmap. The open-path roadmap has all the vertices and edges

that the closed-tour roadmap of Def. 5.3 does, but in addition has two degenerate

(single-vertex) clusters, one for the initial pose and one for the final pose. The

initial degenerate cluster is connected by distance d-weighted edges outgoing to all

vertices in nondegenerate clusters. The final degenerate cluster is connected (1)

by a zero-weight edge outgoing to the initial cluster vertex, and (2) by distance

d-weighted edges incoming from all vertices in the nondegenerate clusters.

174

5.6 Conclusion

We have formulated the general aircraft visual reconnaissance problem for

static ground targets in terrain and shown that, under simplifying assumptions,

it can be reduced to a variant of the Traveling Salesman Problem which we call

the PVDTSP (Polygon-Visiting Dubins Traveling Salesman Problem). Although

the PVDTSP reduces to the well-studied DTSP and ETSP in the sparse limit as

targets are very far apart, our worst-case analysis demonstrated the importance

of developing specialized algorithms for the PVDTSP in the dense limit as tar-

gets are close together. We designed two sampling-based roadmap methods for

the PVDTSP. These methods operate by sampling finite discrete sets of vehicle

states to approximate a PVDTSP instance by an FOTSP instance, then apply-

ing existing FOTSP algorithms. One of our sampling-based roadmap methods

uses what is known as the Noon-Bean transformation and is resolution complete,

which means it provably converges to a nonisolated global optimum as the num-

ber of samples grows. Our other sampling-based roadmap method achieves faster

computation times by using an approximate dynamic programming technique,

but consequently only converges to a nonisolated global optimum modulo target

order. We also designed a genetic algorithm for the PVDTSP. The genetic al-

gorithm has no performance guarantees but is easiest to implement and tends to

find good feasible solutions quickly. Numerical experiments indicate that both the

sampling-based roadmap methods and genetic algorithm deliver good solutions

suitably quickly for online purposes when applied to PVDTSP instances having

up to about 20 targets. Additionally, all algorithms allow trade-off of computation

time for solution quality and are extensible to handle wind, airspace constraints,

any vehicle dynamics, and open-path problems. The algorithms each have their

175

own merit depending on application and user needs. The methods could also be

used in a receeding horizon fashion for stochastic scenarios with pop-up targets.

While the algorithms we have presented are essentially ready to be fielded,

there is much room for future work. We are currently investigating extensions to

multiple vehicles, constant factor approximation guarantees, a way to calculate

how many samples a roadmap needs to guarantee a prescribed accuracy, and op-

timal ratios of roadmap orientation dispersion to position dispersion. Aside form

improvements to the existing algorithms, it would be interesting to numerically

evaluate hybrid approaches.

176

Chapter 6

Conclusion

In this dissertation we designed algorithms to solve visibility problems in motion

coordination, planning, and control. Solutions were enabled by a unique blend of

mathematical tools from the research domains of combinatorics, computational

geometry, robot motion planning, and control theory. In Chapter 2 we presented

the first distributed deployment algorithm which solves, with provable perfor-

mance, the Distributed Visibility-Based Deployment Problem with Connectivity

in polygonal environments with holes. The deployment algorithm was designed as

a distributed emulation of a centralized incremental partition algorithm. Given at

least ⌊n+2h−1
2
⌋ agents in an environment with n vertices and h holes, the deploy-

ment is guaranteed to achieve full visibility coverage of the environment in time

O(n2 + nh), or time O(n + h) if the maximum perimeter length of any vertex-

limited visibility polygon in E is uniformly bounded as n→∞. The deployment

behaved in simulations as predicted by the theory and can be extended to achieve

robustness to agent arrival, agent failure, packet loss, removal of an environment

edge (such as an opening door), or deployment from multiple roots.

In Chapter 3 we showed that the Searchlight Scheduling Problem can be re-

177

duced to a path planning problem through an appropriate information graph.

The proof was based on an exact cell decomposition of the searchlights’ toroidal

configuration space. Using the reduction result we designed a complete algorithm

for searchlight scheduling. The algorithm is divided into two parts. First, geomet-

ric preprocessing is performed in time polynomial in the number of guards and

environment vertices. Second, the information graph is searched breadth-first.

Our time complexity upper bound for the information graph breadth-first search

is exponential in the output size. Although it remains an important open ques-

tion whether the general Searchlight Scheduling Problem is NP-hard, computed

examples demonstrated that the algorithm can be practical for problem instances

of useful size, and for which there currently exists no other algorithm. Addition-

ally, we have shown that our complete algorithm for searchlight scheduling can be

directly extended to the φ-Searchlight Scheduling Problem in which sensors have

finite fields of view.

In Chapter 4 we provided two solutions to the distributed searchlight schedul-

ing problem in polygonal environments without holes. In an environment with n

vertices and r reflex vertices, DOWSS requires that the guards satisfy the stand-

ing assumptions, has message size O(n), and sometimes requires time O(r2) to

clear an environment. PTSS requires that the agents be positioned according to

a PTSS tree, has constant message size, and requires time linear in the height of

the PTSS tree. We have given two procedures for constructing PTSS trees, one

requiring no more than r ≤ n−3 guards for a general polygonal environment, and

two requiring no more than n−2
2

guards for an orthogonal environment. Guards

slew through a total angle no greater than 2π, so the upper bounds on the time

for PTSS to clear an environment with these partitions are 2π
ω
r ≤ 2π

ω
(n − 3) and

178

π
ω
(n− 2), respectively. Because PTSS allows searchlights to slew concurrently, it

generally clears an environment much faster than DOWSS. However, a direct com-

parison is not appropriate since DOWSS does not specify how to choose guards

whereas PTSS does. To extend DOWSS and PTSS for environments with holes,

one simple solution is to add one guard per hole, where a simply connected envi-

ronment is simulated by the extra guards using their beams to connect the holes

to the outer boundary. Another straightforward extension for PTSS would be to

combine it directly with a distributed deployment algorithm such as in Chapter 2,

so that deployment and searchlight slewing happen concurrently.

In Chapter 5 we formulated the general aircraft visual reconnaissance problem

for static ground targets in terrain and showed that, under simplifying assump-

tions, it can be reduced to a variant of the Traveling Salesman Probem which we

call the PVDTSP (Polygon-Visiting Dubins Traveling Salesman Problem). Al-

though the PVDTSP reduces to the well-studied DTSP and ETSP in the sparse

limit as targets are very far apart, our worst-case analysis demonstrated the im-

portance of developing specialized algorithms for the PVDTSP in the dense limit

as targets are close together. We designed two sampling-based roadmap methods

for the PVDTSP. These methods operate by sampling finite discrete sets of vehicle

states to approximate a PVDTSP instance by an FOTSP instance, then apply-

ing existing FOTSP algorithms. One of our sampling-based roadmap methods

uses what is known as the Noon-Bean transformation and is resolution complete,

which means it provably converges to a nonisolated global optimum as the num-

ber of samples grows. Our other sampling-based roadmap method achieves faster

computation times by using an approximate dynamic programming technique,

but consequently only converges to a nonisolated global optimum modulo target

179

order. We also designed a genetic algorithm for the PVDTSP. The genetic al-

gorithm has no performance guarantees but is easiest to implement and tends to

find good feasible solutions quickly. Numerical experiments indicate that both the

sampling-based roadmap methods and genetic algorithm deliver good solutions

suitably quickly for online purposes when applied to PVDTSP instances having

up to about 20 targets. Additionally, all algorithms allow trade-off of computation

time for solution quality and are extensible to handle wind, airspace constraints,

any vehicle dynamics, and open-path problems. The algorithms each have their

own merit depending on application and user needs. The methods could also be

used in a receeding horizon fashion for stochastic scenarios with pop-up targets.

6.1 Future Directions

Visibility Coverage

While our distributed deployment algorithm presented in Chapter 2 represents a

significant theoretical advancement in nonconvex coverage, a practical implemen-

tation with actual robots would still present significant challenges, particularly to

overcome our assumptions that (1) agents communicate, process, and establish a

local common reference frame while moving, and (2) agents do not obstruct visi-

bility or movement of other agents. Other interesting possibilities for future work

in the area of deployment and nonconvex coverage include 3D environments, dy-

namic environments with moving obstacles, and optimizing different performance

measures, e.g., based on continuous instead of binary visibility, or with minimum

redundancy requirements.

180

Visibility-Based Pursuit-Evasion

We hope that in the future either NP-hardness of the Searchlight Scheduling

Problem can be shown, or else that the computational time complexity bounds

for a complete algorithm can be tightened. There are also many interesting and

unexplored variations of the Searchlight Scheduling Problem including minimizing

time to clear the environment, evaders with bounded speed, sensor limitations such

as limited depth of field, sensors sweeping a half-plane, or sweeping cones through

3D environments. Aside from searchlight scheduling, a particularly interesting

problem in visibility-based purusit evasion, to our knowledge unsolved, is that of

minimizing the time to perform a coordinated search given a limited number of

mobile guards.

Reconnaissance Path Planning for a UAV

The UAV path planning algorithms presented in Chapter 5 are essentially ready

to be fielded, yet there is much room for future work. We are currently investi-

gating extensions to multiple vehicles, constant factor approximation guarantees,

a way to calculate how many samples a roadmap needs to guarantee a prescribed

accuracy, and optimal ratios of roadmap orientation dispersion to position disper-

sion. Aside form improvements to the existing algorithms, it would be interesting

to numerically evaluate hybrid approaches.

181

Bibliography

[1] D. T. Lee and A. K. Lin, “Computational complexity of art gallery prob-

lems,” IEEE Transactions on Information Theory, vol. 32, no. 2, pp. 276–

282, 1986.

[2] S. Eidenbenz, C. Stamm, and P. Widmayer, “Inapproximability results for

guarding polygons and terrains,” Algorithmica, vol. 31, no. 1, pp. 79–113,

2001.

[3] M. R. Garey and D. S. Johnson, Computers and Intractability. Springer,

1979.

[4] A. Efrat and S. Har-Peled, “Guarding galleries and terrains,” Information

Processing Letters, vol. 100, no. 6, pp. 238–245, 2006.

[5] B. C. Liaw, N. F. Huang, and R. C. T. Lee, “The minimum cooperative

guards problem on k-spiral polygons,” in Canadian Conference on Compu-

tational Geometry, (Waterloo, Canada), pp. 97–102, 1993.

[6] J. Urrutia, “Art gallery and illumination problems,” in Handbook of Com-

putational Geometry (J. R. Sack and J. Urrutia, eds.), pp. 973–1027, North-

Holland, 2000.

182

[7] J. O’Rourke, Art Gallery Theorems and Algorithms. Oxford University

Press, 1987.

[8] T. C. Shermer, “Recent results in art galleries,” Proceedings of the IEEE,

vol. 80, no. 9, pp. 1384–1399, 1992.

[9] V. Chvátal, “A combinatorial theorem in plane geometry,” Journal of Com-

binatorial Theory. Series B, vol. 18, pp. 39–41, 1975.

[10] S. Fisk, “A short proof of Chvátal’s watchman theorem,” Journal of Com-

binatorial Theory. Series B, vol. 24, p. 374, 1978.

[11] I. Bjorling-Sachs and D. Souvaine, “An efficient algorithm for guard place-

ment in polygons with holes,” Discrete and Computational Geometry,

vol. 13, no. 1, pp. 77–109, 1995.

[12] F. Hoffmann, M. Kaufmann, and K. Kriegel, “The art gallery theorem for

polygons with holes,” in IEEE Symposium on Foundations of Computer

Science (FOCS), (San Juan, Puerto Rico), pp. 39–48, Oct. 1991.

[13] G. Hernández-Peñalver, “Controlling guards,” in Canadian Conference on

Computational Geometry, (Saskatoon, Canada), pp. 387–392, 1994.

[14] V. Pinciu, “A coloring algorithm for finding connected guards in art

galleries,” in Discrete Mathematical and Theoretical Computer Science,

vol. 2731/2003 of Lecture Notes in Computer Science, pp. 257–264, Springer,

2003.

[15] H. González-Baños and J.-C. Latombe, “A randomized art-gallery algorithm

for sensor placement,” in ACM Symposium on Computational Geometry,

(Medford, MA), pp. 232–240, 2001.

183

[16] U. M. Erdem and S. Sclaroff, “Automated camera layout to satisfy task-

specific and floor plan-specific coverage requirements,” Computer Vision

and Image Understanding, vol. 103, no. 3, pp. 156–169, 2006.

[17] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. MIT Press, 2005.

[18] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E.

Kavraki, and S. Thrun, Principles of Robot Motion: Theory, Algorithms,

and Implementations. MIT Press, 2005.

[19] R. Simmons, D. Apfelbaum, D. Fox, R. Goldman, K. Haigh, D. Musliner,

M. Pelican, and S. Thrun, “Coordinated deployment of multiple heteroge-

nous robots,” in IEEE/RSJ Int. Conf. on Intelligent Robots & Systems,

(Takamatsu, Japan), pp. 2254–2260, 2000.

[20] A. Howard, M. J. Matarić, and G. S. Sukhatme, “An incremental self-

deployment algorithm for mobile sensor networks,” Autonomous Robots,

vol. 13, no. 2, pp. 113–126, 2002.

[21] S. Suri, E. Vicari, and P. Widmayer, “Simple robots with minimal sensing:

From local visibility to global geometry,” International Journal of Robotics

Research, vol. 27, no. 9, pp. 1055–1067, 2008.

[22] A. Ganguli, J. Cortés, and F. Bullo, “Distributed deployment of asyn-

chronous guards in art galleries,” in American Control Conference, (Min-

neapolis, MN), pp. 1416–1421, June 2006.

[23] A. Ganguli, J. Cortés, and F. Bullo, “Visibility-based multi-agent deploy-

ment in orthogonal environments,” in American Control Conference, (New

York), pp. 3426–3431, July 2007.

184

[24] A. Ganguli, Motion Coordination for Mobile Robotic Networks with Visibil-

ity Sensors. PhD thesis, Electrical and Computer Engineering Department,

University of Illinois at Urbana-Champaign, Apr. 2007.

[25] K. Sugihara, I. Suzuki, and M. Yamashita, “The searchlight scheduling prob-

lem,” SIAM Journal on Computing, vol. 19, no. 6, pp. 1024–1040, 1990.

[26] M. Yamashita, I. Suzuki, and T. Kameda, “Searching a polygonal region by

a group of stationary k-searchers,” Information Processing Letters, vol. 92,

no. 1, pp. 1–8, 2004.

[27] B. P. Gerkey, S. Thrun, and G. Gordon, “Visibility-based pursuit-evasion

with limited field of view,” International Journal of Robotics Research,

vol. 25, no. 4, pp. 299–315, 2006.

[28] M. Yamashita, H. Umemoto, I. Suzuki, and T. Kameda, “Searching for

mobile intruders in a polygonal region by a group of mobile searchers,”

Algorithmica, vol. 31, no. 2, pp. 208–236, 2001.

[29] B. Simov, G. Slutzki, and S. M. LaValle, “Pursuit-evasion using beam de-

tection,” in IEEE Int. Conf. on Robotics and Automation, (San Francisco,

CA), pp. 1657–1662, Apr. 2000.

[30] J. H. Lee, S. M. Park, and K. Y. Chwa, “Simple algorithms for searching

a polygon with flashlights,” Information Processing Letters, vol. 81, no. 5,

pp. 265–270, 2002.

[31] I. Suzuki and M. Yamashita, “Searching for a mobile intruder in a polygonal

region,” SIAM Journal on Computing, vol. 21, no. 5, pp. 863–888, 1992.

185

[32] L. J. Guibas, J. C. Latombe, S. M. LaValle, D. Lin, and R. Motwani, “A

visibility-based pursuit-evasion problem,” International Journal of Compu-

tational Geometry & Applications, vol. 9, no. 4-5, pp. 471–493, 1999.

[33] S. M. LaValle, B. H. Simov, and G. Slutzki, “An algorithm for searching

a polygonal region with a flashlight,” in Proceedings of the 16th Annual

Symposium on Computational Geometry, pp. 260–269, 2000.

[34] I. Suzuki, Y. Tazoe, M. Yamashita, and T. Kameda, “Searching a polyg-

onal region from the boundary,” International Journal of Computational

Geometry & Applications, vol. 11, no. 5, pp. 529–553, 2001.

[35] S. M. LaValle and J. E. Hinrichsen, “Visibility-based pursuit-evasion: the

case of curved environments,” IEEE Transactions on Robotics and Automa-

tion, vol. 17, no. 2, pp. 196–202, 2001.

[36] L. Guilamo, B. Tovar, and S. M. LaValle, “Pursuit-evasion in an unkown

environment using gap navigation trees,” in IEEE/RSJ Int. Conf. on Intel-

ligent Robots & Systems, (Sendai, Japan), pp. 3456–3462, Sept. 2004.

[37] T. Kameda, M. Yamashita, and I. Suzuki, “On-line polygon search by a

seven-state boundary 1-searcher,” IEEE Transactions on Robotics, vol. 22,

no. 3, pp. 446–460, 2006.

[38] L. E. Parker, “Distributed algorithms for multi-robot observation of multiple

moving targets,” Autonomous Robots, vol. 12, no. 3, pp. 231–55, 2002.

[39] V. Isler, S. Kannan, and S. Khanna, “Randomized pursuit-evasion in a

polygonal environment,” IEEE Transactions on Robotics, vol. 5, no. 21,

pp. 875–884, 2005.

186

[40] J. W. Durham, A. Franchi, and F. Bullo, “Distributed pursuit-evasion with

limited-visibility sensors via frontier-based exploration,” in IEEE Int. Conf.

on Robotics and Automation, (Anchorage, Alaska), May 2010. To appear.

[41] B. Simov, G. Slutzki, and S. M. LaValle, “Clearing a polygon with two

1-searchers,” International Journal of Computational Geometry & Applica-

tions, 2007. to appear.

[42] A. Efrat, L. J. Guibas, D. C. Lin, J. S. B. Mitchell, and T. M. Murali,

“Sweeping simple polygons with a chain of guards,” in ACM-SIAM Sympo-

sium on Discrete Algorithms, (San Francisco, CA), pp. 927–936, Jan. 2000.

[43] P. Chandler, M. Pachter, and S. Rasmussen, “Uav cooperative control,” in

American Control Conference, (Arlington, VA), pp. 50–55, June 2001.

[44] A. Ryan, M. Zennaro, A. Howell, R. Sengupta, and J. K. Hedrick, “An

overview of emerging results in cooperative uav control,” in IEEE Conf. on

Decision and Control, 2004.

[45] L. E. Dubins, “On curves of minimal length with a constraint on average

curvature and with prescribed initial and terminal positions and tangents,”

American Journal of Mathematics, vol. 79, pp. 497–516, 1957.

[46] T. G. McGee, S. Spry, and J. K. Hedrick, “Optimal path planning in a

constant wind with a bounded turning rate,” in AIAA Conf. on Guidance,

Navigation and Control, (San Francisco, CA), Aug. 2005. Electronic Pro-

ceedings.

[47] J. T. Betts, “Survey of numerical methods for trajectory optimization,”

187

AIAA Journal of Guidance, Control, and Dynamics, vol. 21, no. 2, pp. 193–

207, 1998.

[48] C. H. Papadimitriou, “The euclidean traveling salesman problem is np-

complete,” Theoretical Computer Science, vol. 4, pp. 237–244, 1977.

[49] J. L. Ny, E. Frazzoli, and E. Feron, “The curvature-constrained traveling

salesman problem for high point densities,” in IEEE Conf. on Decision and

Control, pp. 5985–5990, 2007.

[50] K. E. Nygard, P. R. Chandler, and M. Pachter, “Dynamic network flow

optimization models for air vehicle resource allocation,” 2001.

[51] C. Schumacher, P. R. Chandler, and S. R. Rasmussen, “Task allocation for

wide area search munitions,” in American Control Conference, 2002.

[52] Z. Tang and Ü. Özgüner, “Motion planning for multi-target surveillance

with mobile sensor agents,” IEEE Transactions on Robotics, vol. 21, no. 5,

pp. 898–908, 2005.

[53] S. Rathinam, R. Sengupta, and S. Darbha, “A resource allocation algorithm

for multi-vehicle systems with non holonomic constraints,” IEEE Transac-

tions on Automation Sciences and Engineering, vol. 4, no. 1, pp. 98–104,

2007.

[54] K. Savla, E. Frazzoli, and F. Bullo, “Traveling Salesperson Problems for the

Dubins vehicle,” IEEE Transactions on Automatic Control, vol. 53, no. 6,

pp. 1378–1391, 2008.

188

[55] J. Le Ny and E. Feron, “An approximation algorithm for the curvature-

constrained traveling salesman problem,” in Allerton Conf. on Communi-

cations, Control and Computing, (Monticello, IL), Sept. 2005.

[56] M. de Berg, J. Gudmundsson, M. J. Katz, C. Levcopoulos, M. H. Overmars,

and A. F. van der Stappen, “TSP with neighborhoods of varying size,”

pp. 21–35, 2002.

[57] A. Dumitresco and J. S. B. Mitchell, “Approximation algorithms for TSP

with neighborhoods in the plane,” Journal of Algorithms, vol. 48, no. 1,

pp. 135–159, 2003.

[58] C. S. Mata and J. S. B. Mitchell, “Approximation algorithms for geomet-

ric tour and network design problems,” in Symposium on Computational

Geometry, pp. 360–369, 1995.

[59] G. Gutin and A. P. Punnen, The Traveling Salesman Problem and Its Vari-

ations. Springer, 2007.

[60] C. E. Noon and J. C. Bean, “An efficient transformation of the generalized

traveling salesman problem,” Tech. Rep. 91-26, Department of Industrial

and Operations Engineering, University of Michigan, Ann Arbor, 1991.

[61] M. Fischetti, J. J. Salazar-González, and P. Toth, The Traveling Salesman

Problem and its Variations, ch. 13. Kluwer, 2002.

[62] S. M. LaValle, Planning Algorithms. Cambridge University Press, 2006.

Available at http://planning.cs.uiuc.edu.

189

[63] P. Oberlin, S. Rathinam, and S. Darbha, “A transformation for a heteroge-

neous, multiple depot, multiple traveling salesmen problem,” in American

Control Conference, pp. 1292–1297, 2009.

[64] Z. Michalewicz and D. B. Fogel, How to Solve It: Modern Heuristics.

Springer, 2004.

[65] B. Freisleben and P. Merz, “A genetic local search algorithm for solving

symmetric and asymmetric traveling salesman problems,” in In Proceedings

of the 1996 IEEE International Conference on Evolutionary Computation,

pp. 616–621, IEEE Press, 1996.

[66] P. Larrañaga, C. M. H. Kuijpers, R. H. Murga, I. Inza, and S. Dizdarevic,

“Genetic algorithms for the travelling salesman problem: A review of rep-

resentations and operators,” Artificial Intelligence Review, vol. 13, pp. 129–

170, April 1999.

[67] L. V. Snyder and M. S. Daskin, “A random-key genetic algorithm for the

generalized traveling salesman problem,” European Journal of Operational

research, vol. 174, 2006.

[68] Z. C. Huang, X. L. Hu, and S. D. Chen, “Dynamic traveling salesman

problem based on evolutionary computation,” in Proceedings of the 2001

Congress on Evolutionary Computation, vol. 2, pp. 1283–1288, 2001.

[69] W. Pullan, “Adapting the genetic algorithm to the travelling salesman prob-

lem,” in Proceedings of the 2003 Congress on Evolutionary Computation,

vol. 2, pp. 1029–1035, 2003.

190

[70] V. Shaferman and T. Shima, “Cooperative uav tracking under urban oc-

clusions and airspace limitations,” in AIAA Conf. on Guidance, Navigation

and Control, (Honolulu, Hawaii), Aug 2008. Electronic Proceedings.

[71] V. Shaferman and T. Shima, “Co-evolution genetic algorithm for UAV dis-

tributed tracking in urban environments,” in ASME Conference on Engi-

neering Systems Design and Analysis, Jul 2008.

[72] H. H. Gonzalez-Banos, C.-Y. Lee, and J.-C. Latombe, “Real-time combina-

torial tracking of a target moving unpredictably among obstacles,” in Pro-

ceedings IEEE International Conference on Robotics & Automation, 2002.

[73] R. Murrieta-Cid, A. Sarmiento, S. Bhattacharya, and S. Hutchinson, “Main-

taining visibility of a moving target at a fixed distance: The case of observer

bounded speed,” in Proceedings IEEE International Conference on Robotics

& Automation, pp. 479–484, 2004.

[74] S. K. Ghosh, Visibility Algorithms in the Plane. Cambridge University Press,

2007.

[75] E. Trucco and A. Verri, Introductory Techniques for 3-D Computer Vision.

Prentice Hall, 1998.

[76] D. A. Forsyth and J. Ponce, Computer Vision: A Modern Approach. Pren-

tice Hall, 2002.

[77] J. Bittner and P. Wonka, “Visibility in computer graphics,” Environment

and Planning B: Planning and Design, vol. 30, pp. 729–756, Sept. 2003.

191

[78] F. Bullo, J. Cortés, and S. Mart́ınez, Distributed Control of Robotic Net-

works. Applied Mathematics Series, Princeton University Press, 2009. Avail-

able at http://www.coordinationbook.info.

[79] D. Cruz, J. McClintock, B. Perteet, O. A. A. Orqueda, Y. Cao, and

R. Fierro, “Decentralized cooperative control: A multivehicle platform for

research in networked embedded systems,” IEEE Control Systems Maga-

zine, vol. 27, no. 3, pp. 58–78, 2007.

[80] N. J. Nilsson, “A mobile automaton: An application of artificial intelli-

gence techniques,” in 1st International Conference on Artificial Intelligence,

pp. 509–520, 1969.

[81] K. J. Obermeyer, “The VisiLibity library.” http://www.VisiLibity.org,

2008. R-1.

[82] B. J. Moore and K. M. Passino, “Distributed task assignment for mobile

agents,” IEEE Transactions on Automatic Control, vol. 52, no. 4, pp. 749–

753, 2007.

[83] M. M. Zavlanos, L. Spesivtsev, and G. J. Pappas, “A distributed auction

algorithm for the assignment problem,” in IEEE Conf. on Decision and

Control, pp. 1212–1217, Dec. 2008.

[84] K. J. Obermeyer, A. Ganguli, and F. Bullo, “A complete algorithm for

searchlight scheduling,” International Journal of Computational Geometry

& Applications, Oct. 2008. Submitted.

[85] K. J. Obermeyer, A. Ganguli, and F. Bullo, “Asynchronous distributed

192

searchlight scheduling,” in IEEE Conf. on Decision and Control, (New Or-

leans, LA), pp. 4863–4868, Dec. 2007.

[86] H. Choset, E. Acar, A. A. Rizzi, and J. Luntz, “Exact cellular decomposi-

tions in terms of critical points of Morse functions,” in IEEE Int. Conf. on

Robotics and Automation, (San Francisco, CA), pp. 2270–2277, Apr. 2000.

[87] H. Choset, “Nonsmooth analysis, convex analysis, and their applications

to motion planning,” International Journal of Computational Geometry &

Applications, vol. 9, no. 4-5, pp. 447–469, 1999.

[88] J. O’Rourke, Computational Geometry in C. Cambridge University Press,

2000.

[89] D. Halperin, “Arrangements,” in Handbook of Discrete and Computational

Geometry (J. E. Goodman and J. O’Rourke, eds.), pp. 529–562, New York:

Chapman and Hall/CRC Press, 2 ed., 2004.

[90] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach. Pren-

tice Hall, 2 ed., 2003.

[91] L. Guibas, D. Salesin, and J. Stolfi, “Epsilon geometry: building robust

algorithms from imprecise computations,” in ACM Symposium on Compu-

tational Geometry, (New York), pp. 208–217, June 1989.

[92] M. Segal, “Using tolerances to guarantee valid polyhedral modeling results,”

in Proceedings of SIGGRAPH, (Dallas, TX), pp. 105–114, Aug. 1990.

[93] K. J. Obermeyer, “Path planning for a UAV performing reconnaissance of

static ground targets in terrain,” in AIAA Conf. on Guidance, Navigation

and Control, (Chicago, IL), Aug. 2009.

193

[94] K. J. Obermeyer, P. Oberlin, and S. Darbha, “Sampling-based roadmap

methods for a visual reconnaissance UAV,” in AIAA Conf. on Guidance,

Navigation and Control, (Toronto, ON, Canada), Aug. 2010. To Appear.

[95] K. J. Obermeyer, P. Oberlin, and S. Darbha, “Sampling-based roadmap

methods for a visual reconnaissance UAV,” AIAA Journal of Guidance,

Control, and Dynamics, 2010. Submitted.

[96] J. Gross and J. Yellen, Handbook of Graph Theory. CRC Press, 2003.

[97] J.-D. Boissonnat, A. Cérézo, and J. Leblond, “Shortest paths of bounded

curvature in the plane,” Journal of Intelligent and Robotic Systems, vol. 11,

pp. 5–20, 1994.

[98] J. E. Bresenham, “Algorithm for computer control of a digital plotter,” in

Seminal Graphics: Pioneering Efforts that Shaped the Field, (New York,

NY, USA), pp. 1–6, Association for Computing Machinery, 1998.

[99] H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Meth-

ods. No. 63 in CBMS-NSF Regional Conference Series in Applied Mathe-

matics, Society for Industrial & Applied Mathematics, 1992.

[100] J. H. Halton, “On the efficiency of certain quasi-random sequences of points

in evaluating multi-dimensional integrals,” Numerische Mathematik, vol. 2,

pp. 84–90, 1960.

[101] D. Applegate, R. Bixby, V. Chvátal, and W. Cook, “On the solution of

traveling salesman problems,” in Documenta Mathematica, Journal der

Deutschen Mathematiker-Vereinigung, (Berlin, Germany), pp. 645–656,

194

Aug. 1998. Proceedings of the International Congress of Mathematicians,

Extra Volume ICM III.

[102] K. Helsgaun, “An effective implementation of the linkernighan traveling

salesman heuristic,” European Journal of Operational Research, vol. 126,

pp. 106–130, October 2000.

[103] D. L. Applegate, R. E. Bixby, and V. Chvátal, The Traveling Salesman

Problem: A Computational Study. Applied Mathematics Series, Princeton

University Press, 2006.

[104] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to

Algorithms. MIT Press, 2 ed., 2001.

[105] J. C. Spall, Introduction to Stochastic Search and Optimization. Wiley-

Interscience, 2003.

[106] R. McNeely, R. V. Iyer, and P. Chandler, “Tour planning for an unmanned

air vehicle under wind conditions,” AIAA Journal of Guidance, Control,

and Dynamics, vol. 30, no. 5, pp. 1299–1306, 2007.

[107] L. Techy and C. A. Woolsey, “Minimum-time path planning for unmanned

aerial vehicles in steady uniform winds,” AIAA Journal of Guidance, Con-

trol, and Dynamics, vol. 32, no. 6, pp. 1736–1746, 2009.

[108] J. Hershberger and S. Suri, “An optimal algorithm for euclidean shortest

paths in the plane,” SIAM Journal on Computing, vol. 28, pp. 2215–2256,

1999.

195

[109] J. Reif and H. Wang, “The complexity of the two dimensional curvature-

constrained shortest-path problem,” in In Proc. Third International Work-

shop on the Algorithmic Foundations of Robotics, pp. 49–57, 1998.

[110] J.-C. Latombe, Robot Motion Planning. Kluwer Academic Publishers, 1991.

[111] A. Eele and A. Richards, “Path-planning with avoidance using nonlinear

branch-and-bound optimisation,” in AIAA Conf. on Guidance, Navigation

and Control, (Hilton Head, South Carolina), 2007. Electronic Proceedings.

[112] A. Eele and A. Richards, “Comparison of branching strategies for path-

planning with avoidance using nonlinear branch-and-bound,” in AIAA Conf.

on Guidance, Navigation and Control, (Honolulu, Hawaii), 2008. Electronic

Proceedings.

[113] F. Borrelli, D. Subramanian, A. U. Raghunathan, and L. T. Biegler, “MILP

and NLP techniques for centralized trajectory planning of multiple un-

manned air vehicles,” in American Control Conference, 2006.

[114] A. Richards and J. P. How, “Aircraft trajectory planning with collision

avoidance using mixed integer linear programming,” in American Control

Conference, pp. 1936–1941, 2002.

196

Appendix A

Distributed Searchlight

Scheduling Detailed Pseudocodes

More detailed versions of the pseudocodes in Tables 4.1 and 4.2.

197

Name: DOWSS

The root initially has state = 4 and all other agents begin with state = 1,
where possible states are 1, 2, 3, . . . , 12. Each agent i ∈ {1, . . . , N}, possesses
local variables parent, child, ψparent, ψtemp, j, G, Φ, φstart, φfinish, Ψ, and u,
all initially empty.

SPEAK

1: while state == 7 or state == 8 do

2: {request help}

3: BROADCAST(i, ψj(t), help);

4: state← 8;

5: while state == 2 do

6: {volunteer to help}

7: BROADCAST(i, parent(t), ψtemp(t), volunteer);

8: state← 3;

9: while state == 9 do

10: {engage a child}

11: BROADCAST(i, child(t), ψj(t), selected);

12: state← 10;

13: while state = 12 do

14: {report to parent when complete}

15: BROADCAST(i, parent, ψparent(t), complete);

16: state← 1;

LISTEN

1: while state == 1 or state == 3 do

2: {listen for help request}

3: if RECEIVE(i′, ψ
[i′]

j′
(t − τ), help), where 0 ≤ τ ≤ δ

then

4: ψtemp ← ψ
[i′]

j′
(t− τ); state← 3;

5: while state == 8 do

6: {listen for volunteers}

7: if RECEIVE(i′, parent[i
′](t − τ), ψ

[i′]
temp(t −

τ), volunteer), where 0 ≤ τ ≤ δ, parent[i
′](t−τ) = i,

and ψ
[i′]
temp(t− τ) = ψj then

8: child← i′; state← 9;

9: while state == 3 do

10: {listen for engagement by parent}

11: if RECEIVE(i′, child[i′], ψ
[i′]

j′
(t − τ), selected),

where 0 ≤ τ ≤ δ, where childi′ = i then

12: parent← i′;ψparent ← ψ
[i′]

j′
(t− τ); state← 4;

13: else if RECEIVE(i′, child[i′], ψ
[i′]

j′
(t−τ), selected),

where 0 ≤ τ ≤ δ, where child[i′] 6= i then

14: state← 1;

15: while state == 10 do

16: {listen for child to report completion}

17: if RECEIVE(i′, parent[i
′], ψ

[i′]
parent(t −

τ), complete), where 0 ≤ τ ≤ δ then

18: if j < m then

19: j ← j + 1; state← 6;

20: else if j == m then

21: state← 11;

PROCESS

1: while state == 3 do

2: {use ψtemp and V(p[i]) to check if able to help}

3: if able to see across oriented polyline ψtemp into
semiconvex subregion and not located in interior of
that subregion then

4: state← 2;

5: while state == 4 do

6: {when first engaged, perform geometric computa-
tions; note visibility gaps are listed ccw and radially
outwards}

7: Compute φstart and φfinish; {start and finish angles}

8: Compute G← (g1, . . . , gm); {visibility gaps}

9: Compute Φ ← (φ1, . . . , φm); {resp. angles of visi-
bility gaps}

10: Compute Ψ ← (ψ1, . . . , ψm); {polyline for each
visibility gap}

11: j ← 1; {initialize rotation counter}

12: state← 5;

ROTATE

1: while state == 5 do

2: {aim at start angle and switch searchlight on}

3: θ[i] ← φstart;

4: state← 6;

5: while state == 6 do

6: {rotate to next angle}

7: while θ[i] < φj do

8: u←
min{umax,||φj−θ[i]||}

||φj−θ[i]||
(φj − θ

[i]);

9: θ[i] ← θ[i] + u;

10: state← 7;

11: while state == 11 do

12: {rotate to finish angle and switch searchlight off}

13: while θ[i] < φfinish do

14: u←
min{umax,||φfinish−θ[i]||}

||φfinish−θ[i]||
(φfinish − θ

[i]);

15: θ[i] ← θ[i] + u;

16: state← 12;

198

Name: PTSS

The root initially has state = 2 and all other agents begin with state = 1,
where possible states are 1, 2, . . . , 10. Each agent i ∈ {0, . . . , N−1} possesses
local variables parent, Φ, φstart, φfinish, C, j, and u, all initially empty. As
needed to clarify ownership, a superscript with square brackets indicates the
UID of the agent to whom a variable belongs.

SPEAK

1: while state == 7 do

2: {tell child to aim across gap}

3: BROADCAST(childj , aim across gap);

4: state← 8;

5: while state == 4 do

6: {tell parent when aimed across gap}

7: BROADCAST(i, aimed across gap);

8: state← 5;

9: while state == 9 do

10: {tell child when finished rotating over gap}

11: BROADCAST(childj , gap passed);

12: if j < m then

13: j ← j + 1; state← 6;

14: else if j == m then

15: state← 10;

LISTEN

1: while state == 1 do

2: {listen for instruction from parent to aim across gap}

3: if RECEIVE(child[i′], aim across gap) and i ==

child[i′]
then

4: state← 2;

5: while state == 8 do

6: {listen for confirmation from child aimed across gap}

7: if RECEIVE(i′, aimed across gap) and i′ == childj

then

8: j ← j + 1; state← 6;

9: while state == 5 do

10: {listen for confirmation that parent has passed the
gap}

11: if RECEIVE(child[i′], gap passed) and i ==

child[i′]
then

12: state← 6;

PROCESS

1: while state == 2 do

2: {when first engaged, perform geometric computa-
tions}

3: Compute φstart and φfinish; {start and finish angles}

4: Compute Φ← (φ1, . . . , φm); {ordered gap endpoint
angles}

5: Compute C ← (child1, . . . , childm); {resp. child
UIDs}

6: j ← 1; {initialize rotation counter}

7: state← 3;

ROTATE

1: while state == 3 do

2: {aim at start angle and switch searchlight on}

3: θ[i] ← φstart;

4: state← 4;

5: while state == 6 do

6: {rotate to next angle}

7: while θ[i] < φj do

8: u←
min{umax,||φj−θ[i]||}

||φj−θ[i]||
(φj − θ

[i]);

9: θ[i] ← θ[i] + u;

10: if j is odd then

11: state← 7;

12: else if j is even then

13: state← 9
14: while state == 10 do

15: {rotate to finish angle and switch searchlight off}

16: while θ[i] < φfinish do

17: u←
min{umax,||φfinish−θ[i]||}

||φfinish−θ[i]||
(φfinish − θ

[i]);

18: θ[i] ← θ[i] + u;

19: state← 1;

199

	Acknowledgments
	Curriculum Vitæ
	Abstract
	List of Figures
	Introduction
	Relevant Literature
	Organization and Contributions

	Multi-Agent Deployment for Visibility Coverage
	Introduction
	Notation and Preliminaries
	Problem Description and Assumptions
	Network of Visually-Guided Agents
	Incremental Partition Algorithm
	A Sparse Vantage Point Set

	Distributed Deployment Algorithm
	Leader Behavior
	Proxy Behavior
	Explorer Behavior
	Performance Analysis
	Simulation Results
	Extensions

	Conclusion

	Centralized Searchlight Scheduling
	Introduction
	Preliminaries
	Notation
	Assumptions

	Reducing the Solution Space
	A Complete Algorithm
	Geometric Preprocessing
	Searching the Information Graph GI
	Implementation and Computed Examples

	Extension to Searchlights with Finite Field of View
	Conclusions

	Distributed Searchlight Scheduling
	Introduction
	Preliminaries
	Notation
	Problem description and assumptions
	One Way Sweep Strategy (OWSS)

	Asynchronous Network Agents
	Distributed Algorithms
	Distributed One Way Sweep Strategy (DOWSS)
	Positioning Guards for Parallel Sweeping

	Conclusion

	Path Planning for a Visual Reconnaissance UAV
	Introduction
	Mathematical Formulation
	Calculating Visibility Regions

	Sampling-Based Roadmap Methods
	Roadmap Construction
	Resolution Complete Method
	Approximate Dynamic Programming Method
	Numerical Study
	Relationship to Methods for Collision-Free Path Planning

	A Genetic Algorithm
	Crossover
	Mutation
	Numerical Study

	Extensibility
	Wind, Airspace Constraints, and Any Dynamics
	Open-Path vs. Closed-Tour Problems

	Conclusion

	Conclusion
	Future Directions

	Bibliography
	Distributed Searchlight Scheduling Detailed Pseudocodes

