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Abstract

Control and Estimation in Network Systems

by

Kevin D. Smith

Networks are ubiquitous in natural and engineered systems, from critical infrastruc-

tures (like power grids and water distribution systems) to contact networks in epidemi-

ological models. Managing these systems requires a broad array of tools to monitor the

configuration and state of the network, identify optimal operating points, and design

controls. This thesis examines a collection of topics broadly related to this theme.

In Part 1, we consider problems related to control and optimization in network sys-

tems. Chapter 1 studies the problem of safety-critical control in networks of grid-forming

inverters. Coupling a physically-meaningful Lyapunov-like function with an optimization

approach to identifying forward-invariant sets, we propose a method to certify that a post-

fault trajectory achieves frequency synchronization while respecting safety constraints.

In Chapter 2, we consider the network resource allocation problem of optimally distribut-

ing resources to mitigate the spread of an epidemic. We propose a convex optimization

framework for minimizing the basic reproduction number for general compartmental epi-

demiological models. Chapter 3 addresses optimal control in infinitesimally contracting

systems. We provide new convergence criteria for a common indirect optimal control

algorithm, and we establish the uniqueness of the optimal control in the limits of large

contraction rates and short time horizons.

In Part 2, we use tools from statistical inference and machine learning to solve esti-

mation problems in network systems. Chapter 4 examines the problem of inferring rout-

ing topologies from endpoint data in communication networks. Extending a technique

ix



called network tomography to use higher-order statistics, and using Möbius inversion to

disentangle the interactions between different network paths that are reflected in these

statistics, we are able to estimate routing matrices without the cooperation of interme-

diate routers. Finally, in Chapter 5, we use machine learning to predict edge flows. We

propose an implicit neural network that incorporates two fundamental physical principles

to estimate flows on unlabeled edges, and we provide a contraction mapping to evaluate

the model and backpropagate loss gradients.
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4.5 Sparse Möbius Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
4.6 Results and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
4.8 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5 Network Flow Estimation 154
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
5.2 Implicit Flow Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
5.3 Comparison with Optimization Models . . . . . . . . . . . . . . . . . . . 166
5.4 Models for Flow Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 167
5.5 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
5.7 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
5.8 Experiment Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Bibliography 186

xii



Part I

Control
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Chapter 1

Safety-Critical Control of

Grid-Forming Inverter Networks

This chapter was first published in IEEE Transactions on Automatic Control [119].1

Due to the rise of distributed energy resources, the control of networks of grid-forming

inverters is now a pressing issue for power system operation. Droop control is a popular

control strategy in the literature for frequency control of these inverters. In this chapter,

we analyze transient stability in droop-controlled inverter networks that are subject to

multiple operating constraints. Using a physically-meaningful Lyapunov-like function,

we provide two sets of criteria (one mathematical and one computational) to certify

that a post-fault trajectory achieves frequency synchronization while respecting safety

constraints. We show how to obtain less-conservative transient stability conditions by

incorporating information from loop flows, i.e., net flows of active power around cycles

in the network. Finally, we use these conditions to quantify the scale of parameter

disturbances to which the network is robust. We illustrate our results with numerical

1©2021 IEEE. Reprinted, with permission, from Kevin D. Smith, Saber Jafarpour, and Francesco
Bullo, Transient Stability of Droop-Controlled Inverter Networks With Operating Constraints, January
2021.
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Safety-Critical Control of Grid-Forming Inverter Networks Chapter 1

case studies of the IEEE 24-bus system.

1.1 Introduction

Transient stability is a power systems problem of both practical importance and the-

oretical interest. The goal of transient stability analysis is to determine whether or not

the system will return to a stable, frequency-synchronized operating point after a large

disturbance. Transients are difficult to analyze: the governing differential equations

are nonlinear, and linearization techniques are not useful for large-scale disturbances.

Therefore, system operators typically rely on numerical simulation [53, Chapter 9.3] to

study system behavior. Simulation is an effective tool for analyzing individual distur-

bance scenarios, but it has limitations. Simulating a comprehensive set of disturbances

is computationally expensive, and it does not establish rigorous guarantees.

Direct methods of transient stability analysis address these limitations by establishing

theoretical guarantees on transient behavior. Direct methods are not a substitute for sim-

ulation in real-world power system operation, since they rely on low-order, theoretically-

tractable models. Instead, they provide significant theoretical insight into these simpli-

fied systems. Classical works on using Lyapunov-like methods to study transient stability

include [6, 129, 26]. More recently, [132, 133] used set-theoretic control techniques to es-

tablish regions of attraction for the coupled swing equations. Direct methods are highly

model-specific and provide conservative guarantees, so this topic is still the subject of

active research.

Historically, the literature on direct methods has focused on networks of high-inertia

synchronous generators. But the rise of distributed energy resources has sparked a grow-

ing interest in the stability of low-inertia inverter networks, particularly microgrids. In-

ertia is both a blessing and a curse from a control perspective—the same inertia that
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Safety-Critical Control of Grid-Forming Inverter Networks Chapter 1

makes the system robust to disturbances also makes the system respond sluggishly to

control inputs. A suitable fast-acting controller can make a low-inertia inverter network

highly robust. Two broad classes of inverter controllers have emerged to exploit this

low inertia: grid-following controllers, in which the inverter acts as a current source to

track the local voltage signal; and grid-forming controllers, in which the inverter acts as

a voltage source to stabilize voltage frequencies throughout the network. Both of these

frameworks involve new models and require fresh approaches to direct transient stability

analysis.

One of the most popular approaches to grid-forming control is proportional droop

control, in which local voltage frequencies are modulated in proportion to the power

drawn from neighboring buses. Recent work [112, 3, 143] has studied the dynamics of

droop-controlled microgrids (DCMGs) via the inhomogeneous Kuramoto model. Under

certain assumptions, equilibrium points of the Kuramoto model correspond to frequency-

synchronized operating points of the DCMG, and regions of attraction around these

equilibria provide a rigorous way to assess how robust DCMG operating points are to

disturbances. Some progress has been made on estimating these regions of attraction

[40], but these closed-form estimates tend to be very conservative and require stringent

regularity assumptions on the topology or system parameters.

Another limitation of the literature is that few bounds on the transients are available.

To a system operator, a guarantee of frequency synchronization alone is not satisfying,

if the resulting transient will violate operating constraints (like constraints on line flows

and nodal power injections). Recent work has begun to address transient stability in

conjunction with other engineering constraints [82, 81]. If direct methods of transient

stability are to provide more insight into the operation of DCMGs, then less-conservative

regions of attraction, as well as bounds on quantities of engineering significance, are

needed. This chapter addresses these two needs.

4
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Contributions Our first contribution is to extend the transient stability problem. In

addition to the classical notion of transient stability (asymptotic frequency synchro-

nization), we impose five “desired properties” of transients, so as to enforce operating

constraints on nodal frequencies, power flows across transmission lines, nodal power in-

jections, nodal ramping rates, and reserves of stored energy.

Our second contribution is to provide two sufficient conditions for when a trajectory of

a DCMG will exhibit transient stability and the five desired properties. Both certificates

require only two pieces of information from from the initial condition (nodal frequencies

and line angle differences) instead of the full (and harder to measure) vector of voltage

angles. The first certificate can be viewed as a DCMG-specific form of Nagumo’s theorem,

and it is intended as a theoretical basis for transient-stability-certifying algorithms. The

second certificate, which consists of a tractable mixed-integer linear program (MILP), is

built on top of the first certificate. These theoretical results use a physically-meaningful

Lyapunov function called the “maximum frequency deviation,” which (to our knowledge)

has not been used before to study power systems.

Our third contribution is to improve these two certificates using the winding partition

of the n-torus. We introduced the winding partition in [68] to localize the multiple equi-

librium points of network flows on the n-torus. This chapter provides the first application

of the winding partition to analyzing system dynamics (in contrast to its previous appli-

cations to statics problems). We show how to incorporate the “winding vector” of the

initial condition (a quantity closely related to flows of active power around cycles in the

network) into the two certificates, resulting in less-conservative conditions for transient

stability and the other desired properties.

As a fourth contribution, we use our transient stability conditions to quantify the

size of parameter disturbances with respect to which the DCMG is robust. We define

a single number that quantifies the “size” of an arbitrary change in model parameters,

5
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and we compute a critical threshold such that post-fault transient stability is guaranteed

in any disturbance “smaller” than the threshold. We examine particular disturbance

modes, including changes in nominal power injections, voltage magnitudes, and branch

admittance magnitudes. We illustrate all of these results numerically, using the IEEE

24-bus system as a case study.

Organization The next four sections are organized around our four main contribu-

tions. After introducing our notation, model, and problem statement, Section 1.2 states

the extended transient stability problem in Definition 1.1, formally introducing transient

stability and the five desired properties of the transient. Section 1.3 presents our two cer-

tificates in Theorem 1.4 and Theorem 1.6, respectively. We review the winding partition

in Section 1.4 and improve both certificates by incorporating the winding vector in The-

orem 1.9, and we show that these improved certificates are less conservative (Theorem

1.10). Finally, Section 1.5 uses the stability certificates to study how robust a DCMG is

to changes in parameters, and it presents our numerical case studies.

1.2 Preliminaries and Problem Statement

1.2.1 Notation

The Circle and n-Torus Let S be the circle, i.e., the set of phases or angles. For every

pair of angles α, β ∈ S, we use |α − β| to denote the geodesic distance between them.

The counterclockwise difference between two angles is the map dcc : S × S → [−π, π),

where

dcc(α, β) =


|α− β|, c.c. arc from α to β shorter than π

−|α− β|, otherwise

6
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In other words, we consider the clockwise and counterclockwise arcs from α to β. If

the counterclockwise arc is shorter, then dcc(α, β) is the length of that arc. Otherwise,

dcc(α, β) is the negated length of the clockwise arc. The n-torus, denoted Tn, is the

product of n circles.

Sets Given any set S within Rn or Tn, we refer to the interior of the set by int(S), the

closure by cl(S), and the boundary by ∂S = cl(S) \ int(S), with respect to the standard

topologies on Rn and Tn. Given a function V : Rn → R and a scalar c ∈ R, we define a

sublevel set

V −1
< (c) = {x ∈ Rn | V (x) < c}.

Linear Algebra The vector 1n (resp. 0n) is a vector in Rn with all the entries equal

to one (resp. zero). For every v ∈ Rn, diag(v) ∈ Rn×n is a diagonal matrix with entries

diag(v)ii = vi for every i ∈ {1, . . . , n}. The ∞-norm of v is ‖v‖∞ = maxi |vi|, and the

1-norm of v is ‖v‖1 =
∑n

i=1 |vi|. We define vsum =
∑n

i=1 vi and vmin = mini{vi}. For

every v, w ∈ Rn, we write v ≤ w (resp. v < w) if vi ≤ wi (resp. vi < wi), for every

i ∈ {1, . . . , n}. For a matrix X ∈ Rn×n, the Moore–Penrose pseudoinverse is denoted by

X†.

Graph Theory An undirected graph is a pair G = (V , E), where V is a set of n nodes,

and E ⊆ V ×V is the set of m edges. The neighborhood of any node i ∈ V is denoted by

N (i). While G is undirected, we may enumerate and assign an arbitrary orientation to

each edge e ∈ E by labeling one incident node as the “source” s(e) and the other as the

“sink” t(e). The incidence matrix of the graph [20, §9.1] is the matrix B ∈ {−1, 0, 1}n×m

7
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with entries

Bi,e =


+1, s(e) = i

−1, t(e) = i

0, otherwise

Graphs and the n-Torus We may assign a phase-valued state to every node in G,

so that the full state of the graph is in Tn. Given a state θ ∈ Tn, we use the abuse of

notation BTθ to represent the vector in Rm of counterclockwise differences across each

edge, i.e., (BTθ)e = dcc(θi, θj), where i is the source of e and j is the sink. Furthermore,

given any γ ∈ (0, π]m, we define the phase-cohesive set as the open set

∆(γ) =
{
θ ∈ Tn : |BTθ| < γ

}
In contrast to the literature, where ∆(γ) takes a scalar-valued γ, the γ we refer to in this

chapter is always a vector, allowing for inhomogeneous phase cohesion.

1.2.2 Model

We consider a DCMG on an undirected topology G = (V , E), with n buses V =

{1, . . . , n} and m branches (or lines) E ⊆ V × V . We assume that G is connected, but

otherwise we make no assumptions about its structure; both trees and cyclic graphs are

acceptable.

Bus Model Each bus has a complex voltage Eie
jθi , where Ei > 0 is the voltage magni-

tude and θi ∈ S is the phase. We assume that voltage controllers are operating at a much

faster time scale than frequency controllers, so that Ei is constant but θi is dynamic. We

consider two types of buses: droop-controlled inverters and frequency-dependent loads.

8
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Buses in VI ⊂ V represent droop-controlled inverters, which produce a controllable volt-

age signal with constant magnitude Ei and time-varying frequency θ̇i. These inverters

operate according to the frequency droop control law [23, 57]:

θ̇i = ω∗ − pe,i − p∗i
di

, ∀i ∈ VI (1.1)

Here θ̇i is the instantaneous AC frequency, ω∗ is the nominal frequency (for example,

60 Hz), p∗i ≥ 0 is the nominal active power injection, and d−1
i > 0 is the droop coeffi-

cient. Buses in VL = V \ VI represent frequency-dependent loads [83, §9.1], where the

instantaneous active power injection pe,i is

pe,i = p∗i − di(θ̇i − ω∗), ∀i ∈ VL (1.2)

Here p∗i ≤ 0 is the nominal active power load, and di > 0. Note that (1.1) and (1.2) are

algebraically equivalent.

Branch Model For each branch {i, j} ∈ E , we assume that the real power flow from

node i into the {i, j} branch is

pline
ij = ãij + aij sin(θi − θj − φij) (1.3)

where ãij ∈ R, aij ≥ 0 and φij ∈ (−π
2
, π

2
) are constants. These constants are not

necessarily symmetric (i.e., φij 6= φji), so in general pij 6= −pji.

The AC steady-state active power flow across many types of branches can be written in

the form (1.3). Transmission lines, for example, are typically represented by the nominal

Π model, which consists of a series admittance Yije
jϕij that is flanked by two shunt

admittances Yiie
jϕii and Yjje

jϕjj [83, §6.1]. Active power flow in the nominal Π model is

9
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given by (1.3) with ãij = E2
i (Yii cos(ϕii)+Yij cos(ϕij)), aij = EiEjYij, and φij = ϕij+

π
2
. In

medium-length and short-length lines, the shunt admittance is typically purely capacitive

or altogether negligible, either of which leads to the simplification ãij = E2
i Yij cos(ϕij).

It is also typical that the series admittance is primarily inductive, so φij ≈ 0. In the

extreme case of lossless lines (with no shunt admittance), the active power flow reduces

to the antisymmetric form pline
ij = aij sin(θi − θj). For transformers, active power flow in

the standard equivalent circuit model can also be written in the form (1.3). We omit the

specifications of the parameters for brevity and refer the reader to [83, §6.2].

Dynamics Due to conservation of energy, active power injections at each bus must

balance against power outflows:

pe,i =
∑
j∈N (i)

ãij + aij sin(θi − θj − φij), ∀i ∈ V

Substituting this expression for pe,i into (1.1) and (1.2) leads to a differential equation in

θ that captures the angle dynamics of the grid. We can write these dynamics compactly

by defining a constant vector p ∈ Rn with entries pi = p∗i + ω∗di −
∑

j∈N (i) ãij for each

i ∈ V , as well as a matrix D = diag{di, i ∈ V}. Then the system can be written as

Dθ̇ = f(θ) (1.4)

where f : Tn → Rn is a vector with entries

fi(θ) = pi −
∑
j∈N (i)

aij sin(θi − θj − φij), ∀i ∈ V

Equation (1.4) is the model that we study in this chapter. If the sine coefficients are

homogeneous and the underlying graph is complete, this model is familiar in the physics

10
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community as the Kuramoto-Sakaguchi model [110], which has been used to study syn-

chronization phenomena in coupled oscillator networks [139, 35, 18].

Limitations of the Model Our model is based on several commonly-used simplifying

assumptions that should be examined explicitly. Perhaps the most important simplifica-

tion is that we neglect voltage dynamics and reactive power. This is particularly common

in the controls community, and it is often justified by assuming fast-acting voltage con-

trollers [133, 135]. If voltage control fails, possibly due to insufficient reactive power,

then unmodeled dynamics of the aij and ãij parameters may destabilize the system.

Another simplification is our use of steady-state AC models for branches in (1.3),

which is very common in analysis of conventional power grids. These models assume

sinusoidal nodal voltages at a constant frequency, an assumption that is technically con-

tradicted by the dynamic frequencies in (1.4). But the purpose of this chapter is to find

sufficient conditions for “safe” transient stability, and a key aspect of safe power grid op-

eration is a tight tolerance around the nominal frequency, typically under 1%. In other

words, the trajectories that we are interested in certifying have only a small variance in

frequency. Nonetheless, the effects of transmission line dynamics on inverter-based grids

is a subject of recent interest, and we refer the reader to [54] for a rigorous study of this

topic.

1.2.3 Problem Statement

Under normal operation, nodal frequencies are synchronized at the nominal frequency

ω∗, and power injections pe are equal to the nominal power injections p∗. But contingen-

cies, like failing transmission lines or a sudden change in power supply or demand, disrupt

this equilibrium behavior. Droop control will stabilize the post-fault system about a new

equilibrium, provided that this new equilibrium is sufficiently close to the pre-fault state.

11
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This local stability property is well-known and easily verified by eigenvalue analysis of

(1.4).

Unfortunately, the dynamics of droop control after larger-scale disturbances are not

as well understood, and local stability alone does not inspire confidence in a power

system controller. Furthermore, the controller should ensure that the system’s critical

engineering constraints are satisfied during the transient. In this chapter, in addition to

non-local transient stability, we consider five engineering constraints that are important

in the context of inverter networks:

Definition 1.1 (Desired Properties). We define the following six properties that are

desirable in a trajectory θ(t) of (1.4):

(P1) Transient stability. Nodal frequencies asymptotically synchronize, i.e., limt→∞ θ̇(t) =

ωsyn1n for some synchronous frequency ωsyn ∈ R.

(P2) Frequency constraint. Nodal frequencies are bounded by |θ̇(t) − ω∗1n| ≤ δ̄ for all

t ≥ 0, where δ̄ ≥ 0n is a vector of frequency tolerances.

(P3) Angle difference constraint. Voltage angle differences are bounded by |BTθ(t)| ≤ γ̄

for all t ≥ 0, where γ̄ ∈ (0, π
2
]m is a vector of angle difference tolerances.

(P4) Power constraint. Power injections are sufficiently close to the nominal injection,

i.e., |pe(t)− p∗| ≤ p̄e for all t ≥ 0, where p̄e ∈ Rn
≥0 is a vector of power tolerances.

(P5) Ramping constraint. The rate of change in power injections is sufficiently small:

|ṗe(t)| ≤ r̄e for all t ≥ 0, where r̄e ∈ Rn
≥0 is a vector of ramping tolerances.

(P6) Energy constraint. The difference from nominal energy injection is bounded by

∣∣∣∣∫ ∞
0

pe(t)− p∗ dt
∣∣∣∣ ≤ s̄

12
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where s̄ ∈ Rn
≥0 is a vector of nodal capacities to store or dump energy.

Each of these desired properties are necessary for safe operation of the power system.

(P1) and (P2) are the standard objectives of primary and secondary frequency control,

which keep nodal frequencies close to the rated frequency of grid components. (P3)

protects transmission lines from overheating, since larger angle differences lead to larger

current flow, and thus, more thermal dissipation. (P4) and (P6) ensure that the power

and energy drawn from inverters are within a reasonable range. For example, an inverter

powered by solar panels on a sunny afternoon is more flexible in its active power injection

(via curtailment) than the same inverter on a cloudy morning. Finally, (P5) ensures that

the rate at which power injections fluctuate is within the tolerance of the inverter. The

objective of this chapter is to find computationally-tractable sufficient conditions on θ(0)

for each of these six properties.

1.3 Main Theoretical Results

We now proceed with our main results: two sets of sufficient conditions to certify that

a trajectory satisfies transient stability and the five desired properties in Definition 1.1.

1.3.1 Lyapunov Function

Our analysis is based on the frequency deviation vector, which measures the difference

between instantaneous and nominal frequencies at each bus:

v(θ) = θ̇ − ω∗1n = D−1f(θ)− ω∗1n (1.5)

13
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From v(θ), we define our Lyapunov candidate function, the maximum frequency deviation

V (θ) = ||v(θ)||∞

If a trajectory θ(t) is clear from context, we will abuse notation and write V (t) instead

of V (θ(t)). We will show that the min-max frequency deviation is non-increasing when

voltage angle differences are sufficiently small; exactly how small depends on φij. For

each branch, we define a critical arc length

γ∗e =
π

2
−max {|φij|, |φji|} , ∀e = {i, j} ∈ E

Due to the assumption that φij ∈ (−π
2
, π

2
), the critical arc lengths satisfy the bound

γ∗e ∈ (0, π
2
], and the maximum value of π

2
is achieved by lossless transmission lines (for

which φij = 0). We collect the critical arc lengths into a vector γ∗ ∈ Rm.

As long as the angle difference across each branch is less than the critical arc length,

the maximum frequency deviation is non-increasing:

Lemma 1.2 (Max Frequency Deviation is Non-Increasing). Let θ(t) be a trajectory of

(1.4) such that θ(t) ∈ ∆(γ∗) on some interval t ∈ [t0, t1]. Then V (t1) ≤ V (t0).

The proof of this property is based on the following lemma, which is (to our knowledge)

novel:

Lemma 1.3 (Sign-Definiteness of Laplacian Matrices). Let L ∈ Rn×n be a Laplacian

matrix. For any x ∈ Rn, let Imax = {i : |xi| = ||x||∞} be the set of nodes with maximal

absolute value. Then

max
i∈Imax

{− sgn(xi)(Lx)i} ≤ 0

Furthermore, if the digraph corresponding to L is strongly connected, then equality holds

14
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if and only if x ∈ span(1n).

Proof of Lemma 1.3. For every i ∈ Imax, we compute

− sgn(xi)(Lx)i =
∑
j 6=i

Lij|xi| −
∑
j 6=i

Lij sgn(xi)xj

≤
∑
j 6=i

Lij(|xi| − |xj|)

The first line follows because L has zero row sums and the second line because off-diagonal

entries of L are non-positive. But i ∈ Imax implies that |xi|−|xj| ≥ 0, so we conclude that

− sgn(xi)(Lx)i ≤ 0. Equality clearly holds in the case where x ∈ span(1n). Now suppose

that maxi∈Imax{− sgn(xi)(Lx)i} = 0, which implies that
∑

j 6=i Lij(|xi| − sgn(xi)xj) = 0

for some particular i ∈ Imax. But each summand is non-positive, so |xi| = sgn(xi)xj for

each j for which Lij 6= 0; consequently, xi = xj for each out-neighbor j of i. It follows

that j ∈ Imax. Extending the same argument to j and all of its neighbors, we see that

if a directed path exists from i to any node k, then xk = xi. But the graph is strongly

connected, so we conclude that x ∈ span(1n).

Proof of Lemma 1.2. We first observe that θ̈ = D−1J(θ)θ̇, where J(θ) is the Jacobian

matrix of f(θ). For i 6= j,

Jij(θ) =
∂fi(θ)

∂θj
=


− cos(θi − θj − φij), {i, j} ∈ E

0, else

If θ ∈ ∆(γ∗), then cos(θi − θj − φij) > 0. Furthermore, evaluating the diagonal entries

of J(θ) reveals that the matrix has zero row sums, so −J(θ) is the Laplacian matrix of a

weighted, directed graph whose topology is identical to G (treating each undirected edge

in G is a pair of directed edges). Note that this graph is strongly connected.
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Let Imax = {i : |vi(t)| = ||v(t)||∞} be the set of buses with maximal frequency

deviation, so we can write

V (t) = max
i∈Imax

{sgn(vi(t))vi(t)}

Using [20, Lemma 15.16(iii)] to compute the upper right Dini derivative of a pointwise-

maximum function, we obtain

D+V (t) = max
i∈Imax

{
sgn(vi(t))

(
D−1J(θ)θ̇

)
i

}
= max

i∈Imax

{
sgn(vi(t))

(
D−1J(θ)v(t)

)
i

}
where the last step follows because ω∗1n ∈ ker(J). But D−1J(θ) is a Laplacian matrix

corresponding to a strongly connected graph, so by Lemma 1.3, D+V (t) ≤ 0. Lemma

1.2 follows from this bound [20, Lemma 15.16(ii)].

In summary, the maximum frequency deviation is positive definite about the subspace

of frequency-synchronized states, and it is non-increasing inside of ∆(γ∗).

1.3.2 Set-Theoretic Certificate

We now use the maximum frequency deviation to establish a set-theoretic transient

stability and operating constraint certification. Our approach is to construct forward-

invariant sets using V , based on the following optimization problem:

Problem 1.1 (Min-Max Frequency Deviation). Let S ⊆ ∆(γ∗). We define V ∗(∂S) to
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be the minimum value of the following:

minimize : V (θ)

variables : θ ∈ Tn

subject to : θ ∈ ∂S

D−1f(θ) is pointed outward from S

If the problem is infeasible, we define V ∗(∂S) = +∞.

The min-max frequency deviation is the minimum value of V (θ) along the “outward

boundary” of S, i.e., the portion of ∂S where θ̇ is pointed away from the set.

Minimizing a Lyapunov function around a set boundary is a well-established tech-

nique for constructing forward-invariant sets—see, for example, Nagumo’s 1942 theorem

[12, Theorem 4.7]. More recently, [133] applied this technique to a quadratic Lyapunov

function for the coupled swing equations. In our case, the min-max frequency deviation is

defined so that sets of the form S∩V −1
< (V ∗(∂S)) are forward invariant. This observation,

together with the monotonicity of V , leads to the central theorem of the chapter.

Theorem 1.4 (Set-Theoretic Certificate). Let θ(t) be a trajectory of (1.4). Let γ0 =

|BTθ(0)| and δ0 = V (θ(0)) denote the initial angle differences and max frequency de-

viation. If there exist a vector γ ∈ [γ0, γ
∗] and a set ∆(γ0) ⊆ S ⊆ ∆(γ) such that

δ0 < V ∗(∂S), then

(i) θ(t) ∈ S ∩ V −1
< (δ0) for all t ≥ 0.

(ii) The transient stability property (P1) is satisfied.

Further conditions on γ and δ0 lead to various desirable properties from Definition 1.1:

(iii) The frequency constraint (P2) is satisfied for each bus i if δ0 ≤ δ̄i.
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(iv) The angle difference constraint (P3) is satisfied for each line {i, j} if γij ≤ γ̄ij.

(v) The power constraint (P4) is satisfied for each bus i if δ0 ≤ p̄e,id
−1
i .

(vi) The ramping constraint (P5) is satisfied for each bus i if

δ0 ≤
1

2
r̄i

 ∑
j∈N (i)

aij

−1

Additionally, in the special case of lossless networks (where aij = aji and φij = φji = 0),

the following is true:

(vii) The energy constraint (P6) is satisfied for each bus i if

δ0 ≤
λ2(L) cos(γmax)s̄i

di/dmin

(
1 +

1

2
log

(
dsum

dmin

))−1

where λ2(L) is the smallest non-zero eigenvalue of the Laplacian matrix L =

B
(
diag{aij}{i,j}∈E

)
BT.

Proof. To prove statement (i), observe that any trajectory which escapes S must cross

through some point on ∂S where θ̇ is pointed outward from S. By definition, V ∗(∂S) ≤

V (θ) at such a point θ. But Lemma 1.2 implies that V (θ) ≤ V (0), which further implies

that θ(0) /∈ V −1
< (δ0) if the trajectory reaches this point. Forward invariance of S∩V −1

< (δ0)

follows by contrapositive. Regarding statement (ii), recall from the proof of Lemma 1.2

that the frequency dynamics can be written θ̈ = D−1J(θ)θ̇, where D−1J(θ) is the negated

Laplacian matrix of a strongly connected digraph when θ ∈ ∆(γ∗). It follows from [20,

Theorem 12.10] that θ̇(t) converges to a consensus state.

Statements (iii) and (iv) follow trivially from statement (i). Statement (v) follows

because droop control relates power injections to frequencies by pe,i = p∗i −di(θ̇i−ω∗) for
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each i ∈ V . Therefore |pe,i(t)−p∗i | ≤ diV (t) ≤ diδ0 for all t ≥ 0. To prove statement (vi),

we observe for each bus i that

|ṗe,i| =

∣∣∣∣∣∣
∑
j∈N (i)

aij cos(θi − θj − φij)(θ̇i − θ̇j)

∣∣∣∣∣∣ ≤ 2δ0

∑
j∈N (i)

aij

since cos(θi − θj − φij) ∈ (0, 1). To prove (vii), observe that

d

dt
v(θ)TDv(θ) = 2v(θ)TJ(θ)θ̇ = 2v(θ)TJ(θ)v(θ)

where the last step follows because ker(J(θ)) = span{1n}. Under the lossless assumption,

J(θ) is negated symmetric Laplacian matrix, and the edge weights in the corresponding

graph are aij cos(θi − θj), which is lower-bounded by aij cos(γmax). It follows from [20,

Lemma 6.9(ii)] that λ(−J(θ)) ≥ cos(γmax)λ2(L), so

d

dt
v(θ)TDv(θ) ≤ − cos(γmax)λ2(L)||v(θ)||22

≤ − cos(γmax)λ2(L)dmin

(
v(θ)TDv(θ)

)
Therefore v(θ)TDv(θ) has an exponential upper bound, which decays in time at the rate

cos(γmax)λ2(L)dmin. The integrand in (P6) can be upper-bounded using both δ0 and this

exponential, yielding the condition in statement (vii).

Theorem 1.4 simplifies transient analysis in two ways. First, the conditions depend

on the quantities γ0 and δ0, rather than the full initial state θ(0). A system operator

can measure γ0 through line flows and δ0 through nodal frequencies, rather than using

state estimation to obtain θ(0). Second, the theorem recasts transient analysis as the

search for a set S ⊆ ∆(γ∗) with a sufficiently large min-max frequency deviation. The

remainder of the section examines a computationally-efficient way to search for such a
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set.

1.3.3 Groundwork for the MILP Certificate

It is impractical to repeatedly evaluate V ∗(∂S) while searching for a set that satisfies

Theorem 1.4. Fortunately, we can efficiently compute upper bounds on V ∗(∂S) if we

restrict our search to sets of the form S = ∆(γ). We obtain these upper bounds through

a series of relaxations to Problem 1.1, and then we use these bounds to establish an

easily-computable transient stability certificate. This subsection lays out the first of two

relaxations that we make for this certificate.

When S = ∆(γ) for some γ ∈ (0, γ∗], Problem 1.1 admits the following relaxation:

Problem 1.2 (Min-Max Frequency Deviation, Lower Bound). Let γ ∈ (0, γ∗]. We define
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V̂ (γ) to be the minimum value of the following:

min ||D−1f − ω∗1n||∞ (1.6a)

w.r.t. f ∈ Rn, y ∈ Rm, η+ ∈ Rm, η− ∈ Rm,

z+ ∈ {0, 1}m, z− ∈ {0, 1}m

s.t. f = p−B+A+η+ −B−A−η− (1.6b)

η+
e = sin(ye − φs(e),t(e)), ∀e ∈ E (1.6c)

η−e = − sin(ye + φt(e),s(e)), ∀e ∈ E (1.6d)

|y| ≤ γ (1.6e)

z+
e = 1 =⇒ ye = γe and (1.6f)

d−1
s(e)fs(e) − d−1

t(e)ft(e) ≥ 0, ∀e ∈ E

z−e = 1 =⇒ ye = −γe and (1.6g)

d−1
s(e)fs(e) − d−1

t(e)ft(e) ≤ 0, ∀e ∈ E∑
e∈E

z+
e + z−e = 1 (1.6h)

If the problem is infeasible, we define V̂ (γ) = +∞.

Recall that s(e) and t(e) represent the arbitrary “source” and “target” nodes of each

e ∈ E . To express constraint (1.6b) succinctly, we decompose the incidence matrix B

into two matrices B+, B− ∈ {0, 1}n×m, where (B+)i,e = 1 if and only if s(e) = i, and

(B−)i,e = 1 if and only if t(e) = i, so that B = B+ − B−. We also define two diagonal

matrices A+ = diag{as(e),t(e), ∀e ∈ E} and A− = diag{at(e),s(e), ∀e ∈ E}. Constraints

(1.6f) and (1.6g) are indicator constraints: if z+
e = 1, then the constraints ye = γe and

d−1
s(e)fs(e) − d−1

t(e)ft(e) ≥ 0 become “active,” but these constraints do not apply if z+
e = 0.

Indicator constraints are easily encoded in the MILP framework [13], and many MILP
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solvers allow indicator constraints to be supplied explicitly.2

Problem 1.2 relaxes Problem 1.1 by optimizing the vector of counterclockwise differ-

ences y = BTθ directly, instead of optimizing θ ∈ Tn. Given this interpretation of y,

constraints (1.6b)–(1.6d) ensure that f = f(θ) and that the cost function (1.6a) is equal

to V (θ). Constraint (1.6e) guarantees that θ ∈ ∆(γ), and (1.6f)–(1.6h) ensure that the

underlying θ is on the “outward-pointing” boundary of S.

The most important property of Problem 1.2 is that it yields a lower bound to

V ∗(∂∆(γ)):

Lemma 1.5 (Problem 1.2 is a Relaxation). Let γ ∈ (0, γ∗], and let S = ∆(γ). The

solutions to Problems 1.1 and 1.2 are related by V̂ (γ) ≤ V ∗(∂S), where equality holds if

the underlying graph G is a tree.

Due to this bound, we can replace the δ0 < V (∆(γ)) condition in Theorem 1.4 with the

stricter (but computable) condition δ0 < V̂ (γ).

Theorem 1.6 (Computational Certificate). Consider a trajectory θ(t) of (1.4) on any

connected graph G. Let γ0 = |BTθ(0)| and δ0 = V (θ(0)) denote the initial angle dif-

ferences and initial max frequency deviation. If there exists a vector γ ∈ [γ0, γ
∗] such

that δ0 < V̂ (γ), then statements (i)–(vii) from Theorem 1.4 hold, with respect to the set

S = ∆(γ).

Proof. Let S = ∆(γ). By Lemma 1.5, δ0 < V̂ (γ) ≤ V ∗(∂S), so γ and S satisfy the

hypothesis of Theorem 1.4.

Given a particular γ ∈ [γ0, γ
∗], Theorem 1.6 provides a certificate for transient stability

and the other operating constraints in Definition 1.1, using only two properties of the

2CPLEX 12.9 supports explicit indicator constraints. Similarly, the Python interface to Gurobi 9
provides the method Model.addGenConstrIndicator(). Both links accessed 8/9/2020.
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initial condition: the initial angle differences γ0, and the initial maximal frequency de-

viation δ0. Furthermore, Theorem 1.6 replaces Problem 1.1 with Problem 1.2, which is

more readily solved by numerical methods.

But two issues still remain. The first problem with Theorem 1.6 is that it is con-

servative, since Problem 1.2 is a lower bound on Problem 1.1. This bound is only tight

in acyclic networks, and the gap between these two problems tends to increase with the

number of edges in the graph. In other words, denser graphs lead to more conservative

certificates provided by Theorem 1.6 (compared to Theorem 1.4 applied to S = ∆(γ)).

Closing this gap with additional constraints requires some deeper analysis of the n-torus

geometry, which we postpone to Section 1.4.

The second issue is that Problem 1.2 is difficult to solve. It is possible to tackle the

problem using nonlinear programming techniques, but it is faster and safer to relax the

problem to obtain a lower bound, which we examine next.

1.3.4 MILP Certificate

Problem 1.2 is challenging to solve numerically, since it contains the nonlinear equality

constraints (1.6c) and (1.6d). Furthermore, we must be careful about using nonlinear

solvers to estimate V̂ . If the solver obtains a sub-optimal solution, then this solution may

exceed V ∗(∂∆(γ)), thereby invalidating Theorem 1.6. But any lower bound on V̂ (γ) can

be used in place of V̂ (γ) in Theorem 1.6. We can get a lower bound—while simultaneously

making the problem much easier to solve—by further relaxing Problem 1.2 into a MILP.

The relaxation is conceptually simple; all we need to do is replace (1.6c) and (1.6d)

with linear and integer constraints. The general idea is to find a polytope or a union

of polytopes that contain the sine curve. Then these bounds can be encoded within

the MILP and substituted in for (1.6c) and (1.6d). The process of constructing these
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Figure 1.1: Sample relaxations to the constraint η+
e = sin(ye − φs(e),t(e)) on

ye ∈ [−γe, γe] using bounding polytopes. In the left example, φs(e),t(e) = 0 and γe = π
2 .

In the right example, φs(e),t(e) = 0.4 and γe = π
3 .

polytopes is a messy exercise in elementary geometry, so we do not go into details here.

Instead, we present two examples in Figure 1.1, both of which relax the sine constraints

with four linear bounds (although tighter and more complicated bounds are clearly pos-

sible.) In fact, one can achieve arbitrary precision in the relaxed sine constraints by

using piecewise-linear bounds, at the expense of additional binary variables and slower

computation.

Replacing (1.6c) and (1.6d) with the polytope relaxation turns Problem 1.2 into a

MILP. This MILP can be solved with standard software like Gurobi, CPLEX, or MAT-

LAB. The solution is a lower bound on V̂ (γ), which can safely be used in place of V̂ (γ)

in Theorem 1.6. We also note that this MILP is computationally tractable, since the

binary variables essentially split the problem into 2m linear programming sub-problems,

each corresponding to one of the 2m faces of ∆(γ). Informally, Problem 1.2 is no more

complex than a collection of 2m linear programs.
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1.4 Improved Guarantees for Meshed Networks

In the previous section, we found transient guarantees based on two properties of the

initial condition, γ0 and δ0. But if G is a cyclic topology (i.e., the graph is not a tree),

we can make use of an additional property of the initial condition: its winding vector,

u0. Winding vectors have recently gained attention in the study of power transmission

networks due to their relationship with loop flows [70, 29], i.e., net flows of power around

cycles in the network. In [68], we partitioned the n-torus into equivalence classes of wind-

ing vectors, and we showed that a wide class of network systems with phase-valued states

(including the Kuramoto model) have at most one equilibrium point within each equiv-

alence class. Since winding vectors contain enough information to uniquely characterize

equilibrium points of the system, one might also expect them to provide information

about the transient behavior.

In this section, we briefly review concepts related to the winding partition. We then

apply these concepts to the transient stability problem at hand, using knowledge of

the initial winding vector u0 to obtain less-conservative certificates from Theorem 1.4

and completely close the gap between Problems 1.1 and 1.2. For simplicity, we assume

throughout this section that G contains at least one cycle. (Otherwise G is a tree, in

which case there is no gap between Problems 1.1 and 1.2 to begin with.)

1.4.1 Winding Partition of the n-Torus

Preliminaries We start with some preliminaries on algebraic graph theory and its

application to graph cycles. We refer the reader to [20, §9.3] for a more detailed discussion

of these concepts. A simple cycle in G is a sequence of consecutive nodes, where the first

and last nodes are identical, but all other nodes are distinct. Given a simple cycle

σ = (i1, i2, . . . , inσ , i1), the cycle vector vσ ∈ Rm is defined with respect to the incidence
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matrix B by

(vσ)e =


+1, if the edge e is traversed positively by σ,

−1, if the edge e is traversed negatively by σ,

0, otherwise.

for each e ∈ E . More formally, given an adjacent pair of nodes ij, ij+1 in σ, we say that

σ traverses the edge {ij, ij+1} positively if Bij ,e = +1 and Bij+1,e = −1; otherwise, it

traverses the edge negatively. The set of cycle vectors for all simple cycles in G span

a vector space, called the cycle space of G. A set of simple cycles Σ is called a cycle

basis if the cycle vectors corresponding to elements of Σ are a basis for the cycle space.

A cycle basis Σ = {σ1, σ2, . . . , σ|Σ|} can be encoded in a cycle-edge incidence matrix

CΣ ∈ {−1, 0, 1}|Σ|×m, where

CΣ =

(
vσ1 vσ2 · · · vσ|Σ|

)T

Clearly Img(CT
Σ) is the cycle space. Furthermore, because G is a connected graph, the

dimension of the cycle space is |Σ| = m− n+ 1.

Winding Vectors and Winding Partition We now review basic definitions regard-

ing winding vectors and the winding partition. The partition divides the n-torus into

equivalence classes induced by an underlying graph G. These equivalence classes are

defined by how many times the phase differences across basis cycles of G “wind” around

the unit circle:

Definition 1.7 (Winding Numbers, Vectors, and Cells). Let θ ∈ Tn. Given any simple
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cycle σ in G with nσ nodes, the winding number of θ along σ is

wσ(θ) =
1

2π

nσ∑
i=1

dcc(θi, θi+1) (1.7)

where the nodes in σ are indexed σ = (1, . . . , nσ, 1) and θnσ+1 = θ1. Given a cycle basis

Σ of G, the winding vector of θ along Σ is the vector

wΣ(θ) =

(
wσ1(θ) wσ2(θ) · · · wσ|Σ|(θ)

)T

(1.8)

For every winding vector u ∈ wΣ(Tn), the u-winding cell is the equivalence class

Ωu = {θ ∈ Tn : wΣ(θ) = u} (1.9)

We note that winding cells were introduced in [68], but winding vectors have been used in

the study of power flows since [70]. The reader has likely encountered a similar concept

of “winding number” from interpreting Nyquist plots.

Winding vectors are always integer-valued, a property which is analogous to Kirchoff’s

voltage law (KVL). For real-valued nodal potentials, KVL guarantees that potential

differences sum to zero around any cycle. Similarly, phase differences (in the sense of

counter-clockwise arc length) sum to an integer multiple of 2π around any cycle. For

example, suppose that G is the triangle graph, consisting of a single cycle σ = (1, 2, 3, 1).

Let θ ∈ T3. If there is an arc of length π that contains θ1, θ2, θ3, then wσ(θ) = 0.

Otherwise, wσ(θ) = ±1. Figure 1.2 (top) illustrates these three possible winding numbers,

based on the configuration of phases around the cycle. Meanwhile, Figure 1.2 (bottom)

illustrates Ωu for each u = −1, 0, 1.
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Figure 1.2: Possible winding numbers for any 3-torus state on the 3-cycle (top),
and the winding cells in T3 corresponding to each of these possible winding numbers
(bottom).
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The cycle basis of a graph is often non-unique, and each valid cycle basis Σ leads

to a different definition of the winding vector wΣ(θ). However, it turns out that the

equivalence classes of wΣ, namely the winding cells, do not depend on the particular

choice of cycle basis. Given two cycle bases Σ and Σ′, every winding cell based on wΣ is

identical to a winding cell based on wΣ′ .

Physical Interpretation of Winding Vectors Winding vectors are closely con-

nected to net flows of active power around cycles in the network. These flows, called

loop flows, are of considerable interest to the power systems community because they do

not deliver useful power and can jeopardize system stability. For example, flows around

the Lake Erie Loop were a major factor in the 2003 Northeast Blackout [55]. Rigorous

connections between loop flows and winding vectors are discussed in detail in [70, 29, 68].

We here provide some basic intuition and show how to measure the initial winding vector

using line flows, instead of the full state θ(0).

Consider the active power flows across each line given by (1.3). We assume that these

flows are measurable, so that pline is known, even if the state θ is not. If θ ∈ ∆(γ∗), then

(1.7) can be written

wσ(θ) =
1

2π

nσ∑
i=1

arcsin

(
pline
i,i+1 − ãi,i+1

ai,i+1

)
+ φi,i+1 (1.10)

If we ignore shunt and series losses by setting ãi,i+1 = 0 and φi,i+1 = 0, and we expand

the arcsine function about the origin, we obtain

wσ(θ) =
1

2π

nσ∑
i=1

pline
i,i+1

ai,i+1

+O((pline
i,i+1)3)

The quantity a−1
i,i+1p

line
i,i+1 is a normalized line flow, scaled by the capacity of the line. Thus,

up to second order, the winding number is a normalized loop flow (at least in the case of
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short, lossless transmission lines). While somewhat informal, this analysis suggests that

winding vectors are a quantized measure of these loop flows. We can also use (1.10) to

infer the winding vector from line flow data. Therefore, like the vector of angle differences

γ0, we can identify the initial winding vector u0 using measurements of line flows instead

of the full state θ(0).

1.4.2 Improved Certificates

We have previously seen (in Theorems 1.4 and 1.6) how to certify transient stability

and other desirable properties from the initial condition, using the measurable quantities

γ0 and δ0 instead of the full state θ(0). As with γ0 and δ0, the initial winding vector

u0 = wΣ(θ(0)) provides additional information that we can exploit to make guarantees

about the transient. In the remainder of this section, we will show how to use the winding

vector to obtain better certificates out of Theorems 1.4 and 1.6, replacing the antecedents

of these theorems with less-conservative conditions.

The new conditions are straightforward to state and prove. We modify Theorem 1.4

to search over sets of the form ∆(γ0) ∩ Ωu0 ⊆ S ⊆ ∆(γ) ∩ Ωu0 instead of ∆(γ0) ⊆ S ⊆

∆(γ). Reducing the lower bound from ∆(γ0) to ∆(γ0)∩Ωu0 directly incorporates u0 and

results in a larger search space for S, thereby expanding the set of cases that satisfy the

antecedent of Theorem 1.4. Shrinking the upper bound from ∆(γ) to ∆(γ) ∩ Ωu0 is not

strictly necessary, but as we will see later on, we can always find an optimal S within

this smaller upper bound. Similarly, we will modify Theorem 1.6 by adding a constraint

to Problem 1.2 that forces the optimum to reside within Ωu0 :

Problem 1.3 (Min-Max Frequency Deviation, Exact). Let γ ∈ (0, γ∗] and u ∈ Img(wΣ).

We define V̂ (γ, u) as the minimum value of Problem 1.2, under the additional constraint

CΣy = 2πu. If the problem is infeasible, we define V̂ (γ, u) = +∞.
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The additional CΣy = 2πu constraint confines the solution to Ωu, completely closing the

gap between Problems 1.1 and 1.2:

Lemma 1.8 (Relations of Minima). Let γ ∈ (0, γ∗], let u ∈ Img(wΣ), and let S =

∆(γ) ∩ Ωu. The solutions to Problems 1.1, 1.2, and 1.3 are related by

V̂ (γ) ≤ V̂ (γ, u) = V ∗(∂S).

We can now state the new transient stability certificates that account for the initial

winding vector.

Theorem 1.9 (Certificates with Winding Vectors). Consider a trajectory θ(t) of (1.4),

and let Σ be a cycle basis of the underlying graph. Let γ0 = |BTθ(0)|, δ0 = V (θ(0)), and

u0 = wΣ(θ(0)) denote the initial angle differences, max frequency deviation, and winding

vector. Consider the following two conditions:

(a) There exist a vector γ ∈ [γ0, γ
∗] and a set ∆(γ0)∩Ωu0 ⊆ S ⊆ ∆(γ)∩Ωu0 such that

δ0 < V ∗(∂S).

(b) There exists a vector γ ∈ [γ0, γ
∗] such that δ0 < V̂ (γ, u0).

If either (a) or (b) are true, then statements (i)–(vii) from Theorem 1.4 hold, with respect

to S from condition (a) or S = ∆(γ) ∩ Ωu0 from condition (b).

Proof. The proof that statements (i)–(vii) follow from (a) is identical to the proof of

Theorem 1.4, since the new upper and lower bounds on S do not impact the argument

for statement (i), and (because S is still contained within ∆(γ)) they have no bearing

on statements (ii)–(vii). We can use this result from condition (a) to prove that (i)–(vii)

follow from condition (b). Let S = ∆(γ)∩Ωu0 , and observe that δ0 < V̂ (γ, u0) ≤ V ∗(∂S)

due to Lemma 1.8. Then S satisfies (a), so all of the statements hold.
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It is straightforward to show that these new conditions which incorporate u0 are valid

certificates for transient stability, but this is not enough—if we are to go to the trouble

of measuring u0, we would like the assurance that this additional information actually

leads to better transient stability certificates. With some simple but careful reasoning

about the winding partition, we can see that (a) and (b) are less-conservative versions of

the antecedents to Theorems 1.4 and 1.6, respectively:

Theorem 1.10 (Theorem 1.9 is less conservative than Theorems 1.4 and 1.6). Consider

a trajectory θ(t) of (1.4), let Σ be a cycle basis of the underlying graph, and let γ0 =

|BTθ(0)|, δ0 = V (θ(0)), and u0 = wΣ(θ(0)). The following are true:

(i) If the hypothesis of Theorem 1.4 is satisfied, i.e., if there exist a vector γ ∈ [γ0, γ
∗]

and a set ∆(γ0) ⊆ S ⊆ ∆(γ) such that δ0 < V ∗(∂S), then the set S ′ = S ∩ Ωu0

satisfies condition (a) of Theorem 1.9.

(ii) If the hypothesis of Theorem 1.6 is satisfied, i.e., if there exists a vector γ ∈ [γ0, γ
∗]

such that δ0 < V̂ (γ), then γ satisfies condition (b) of Theorem 1.9.

Proof. To prove (i), it is sufficient to show that V ∗(∂S ′) ≥ V ∗(∂S), for which it is

sufficient to show that ∂(S ∩ Ωu0) ⊆ ∂S. Because the winding cells partition Tn, each

of the sets ∆(γ) ∩ Ωu are disjoint. In fact, because γ < π1m, the boundaries of these

sets are non-overlapping. Since S ⊆ ∆(γ), we may conclude that ∂S itself is partitioned

into non-overlapping pieces ∂(S ∩ Ωu0); hence ∂(S ∩ Ωu0) ⊆ ∂S. Similarly, for (ii) it is

sufficient to show that V̂ (γ, u0) ≥ V̂ (γ), which we have from Lemma 1.8.

The initial winding vector provides an additional bit of information about the initial

state θ(0), and like the vector of initial angle differences γ0, the initial winding vector

u0 can be inferred from measurements of active power flows. With knowledge of u0,
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we can replace the set-theoretic certificate in Theorem 1.4 and the MILP certificate in

Theorem 1.6 with the less-conservative conditions (a) and (b) of Theorem 1.9.

1.5 Quantifying Robustness

An important task in power systems control is understanding how robust an oper-

ating point is to disturbances. It is straightforward to study the effects of a particular

disturbance using simulation, but simulating a comprehensive set of contingencies (or

combinations thereof) is time consuming. Our transient stability certificates can aid

with this analysis by quantifying the scale of disturbances to which an operating point

is robust.

In this section, we consider a DCMG that is operating at a synchronous state θ0. At

time t = 0, certain model parameters undergo an instantaneous perturbation—nominal

injections change, for example, or a drop in nodal voltages or branch admittances occurs.

The initial condition θ0 is no longer a synchronous state in the “post-fault” model. If

the system is sufficiently resilient, then the post-fault transient will settle back down

to a synchronous state, and none of the engineering constraints will be violated in the

process—but this is not always the case. We will construct a sufficient condition for post-

fault transient stability, based on the scale of the perturbations to model parameters.

Numerical Case Study Throughout the section, we will illustrate our results using

numerical examples from the IEEE-RTS 24-bus test case [52]. We parameterized (1.4)

using branch and bus values from this test case, and we selected the initial voltage angles

θ0 ∈ Tn, voltage magnitudes, and nominal power injections by solving for the optimal

power flow in MATPOWER. For simplicity, we chose uniform droop coefficients of 10 pu·s

and a uniform nominal frequency of 60 s−1. We will refer to this model as the “pre-fault”
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model. Note that θ0 is a synchronous equilibrium of the pre-fault model (since it solves

the active power flow equations with nominal injections), and the initial winding vector

is u0 = 011 (corresponding to the winding cell with minimal loop flows).

Code The code that we used to generate numerical results in this section is publicly

available at https://github.com/KevinDalySmith/DCMG-transient-stability. The

optimization problems are implemented using the Python interface to Gurobi 9.0, so a

local installation of Gurobi and an active license are needed to run it.

1.5.1 Evaluating Post-Fault Transient Stability

We begin by examining how Theorems 1.6 and 1.9 apply to the problem of quantifying

system robustness. Both of these theorems certify transient stability if the post-fault

initial condition (i.e., the pre-fault synchronous state) is sufficiently close to a post-fault

synchronous state, as measured by the initial max frequency deviation, δ0 = V (θ0).

Then transient stability is certified if there exists any γ ∈ [γ0, γ
∗] such that δ0 < V̂ (γ) or

δ0 < V̂ (γ, u0), as in the following example.

Example 1.11 (Certificates in the 24-Bus System). To illustrate Theorems 1.6 and

1.9 in the 24-bus system, we randomly select a set of 100 test points Γ ⊂ [0m, γ∗]

and evaluate V̂ (γ) and V̂ (γ, u0) at each γ ∈ Γ, with u0 = 011. Consider an arbitrary

initial condition with a maximum angle difference γ̄ = ||BTθ(0)||∞ and initial frequency

deviation δ0 = V (θ(0)). Theorem 1.6 certifies transient stability of the resulting trajectory

if

δ0 < max
γ∈Γ

{
V̂ (γ) : γ ≥ γ̄1m

}
.

Under the additional assumption that wΣ(θ(0)) = 011, Theorem 1.9 certifies transient
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Figure 1.3: Transient stability certification in the IEEE 24-bus test case. The hor-
izontal axis is the max angle difference ||BTθ0||∞ of the initial condition, and the
vertical axis is the largest max frequency deviation V (θ0) for which transient stability
is certified. The lower curve is computed using V̂ (γ), and the upper curve is computed
using V̂ (γ,011).
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stability if

δ0 < max
γ∈Γ

{
V̂ (γ, 011) : γ ≥ γ̄1m

}
.

Figure 1.3 plots both of these conditions. Each curve plots the right-hand side of the pre-

ceding inequalities as a function of γ̄ (using polytopic relaxations to the sine constraints).

For any initial condition corresponding to a point (γ̄, δ0) below the curve, transient sta-

bility is certified.

The curve maximizing V̂ (γ) is significantly lower than the curve maximizing V̂ (γ, 011),

i.e., the transient stability condition from Theorem 1.6 is more conservative than that

from Theorem 1.9 (as guaranteed by Theorem 1.10). This plot makes a strong case for

incorporating information from the initial winding vector—without it, only very small

angle disturbances are certified in the 24-bus system.

In order to certify transient stability after a fault, we must ensure that the initial post-

fault frequency deviation is below the critical threshold. One approach is to follow the

procedure of Example 1.11: generate a plot similar to Figure 1.3 using the post-fault

parameters, and check whether or not θ0 corresponds to a point below the curve. But

this approach is cumbersome when considering a large number of contingencies, and it

offers little advantage over simulation.

A much more efficient approach, similar to that in [133], is to define the “size” of a

general disturbance and establish a threshold below which transient stability is certified

in all disturbances that are “smaller” than the threshold. A natural way to define the

size of a disturbance is to quantify its effect on the frequency deviation vector from (1.5).

Suppose that v : Tn → Rn is the frequency deviation vector field defined with the pre-

fault model parameters, and similarly, let v̄ be the vector field defined with the post-fault

parameters. If we can bound the difference ξ(θ) = v̄(θ) − v(θ), then we can bound the

solutions to Problems 1.2 and 1.3 after the disturbance based on their solutions before
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the disturbance:

Theorem 1.12 (Robustness to Parameter Changes). Consider the model (1.4), and let

v : Tn → Rn be the associated frequency deviation vector. Let θ0 ∈ Tn be a state for

which v(θ0) = 0, i.e., for which all nodal frequencies are identical to ω∗. After some

perturbation in model parameters, suppose that the new frequency deviation vector is

given by v̄(θ) = v(θ) + ξ(θ), and let γ0 = |BTθ0| and u0 = wΣ(θ0) in the post-fault model.

If there exists γ ∈ [γ0, γ
∗] such that

||ξ(θ0)||∞ + max
θ∈∂S
||ξ(θ)||∞ < min

θ∈∂S
||v(θ)||∞ (1.11)

where either S = ∆(γ) or S = ∆(γ) ∩ Ωu0, then the trajectory of the perturbed model

starting from θ0 satisfies statements (i)–(vii) from Theorem 1.4 with respect to S.

Proof. Let Θ ⊆ ∂S be the feasible set of Problem 1.1 evaluated on the perturbed model,

i.e., the set of points θ ∈ ∂S such that D−1f(θ) is pointed outward from S. Then the

solution to Problem 1.1 (evaluated on the perturbed model) is

V ∗(∂S) = min
θ∈Θ
{||v(θ) + ξ(θ)||∞}

≥ min
θ∈Θ
{||v(θ)||∞} −max

θ∈Θ
{||ξ(θ)||∞}

≥ min
θ∈∂S
{||v(θ)||∞} −max

θ∈∂S
{||ξ(θ)||∞}

Given the initial condition θ0 to the perturbed model, the initial frequency deviation is

δ0 = ||v(θ0) + ξ(θ0)||∞ = ||ξ(θ0)||∞, so applying (1.11) and the lower bound on V ∗(∂S),

we obtain

δ0 = ||ξ(θ)||∞ < min
θ∈∂S
||v(θ)||∞ −max

θ∈∂S
||ξ(θ)||∞ ≤ V ∗(∂S)

Therefore γ and S satisfy the hypothesis of Theorem 1.4 in the perturbed model, and
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the theorem statements follow.

Condition (1.11) bounds the scale of the perturbation ξ(θ). As we will see, in many

cases, the left-hand size of the equation is straightforward to compute (or at least upper

bound). The right-hand side of (1.11) is almost identical to either V̂ (γ) or V̂ (γ, u0)

(depending on whether S is intersected with the winding cell); the only difference is that

the “D−1f(θ) is pointed outward from S” constraint is removed. It is straightforward

to obtain a lower bound on minθ∈∂S ||v(θ)||∞ with a minor relaxation to either V̂ (γ) or

V̂ (γ, u): simply remove the d−1
s(e)fs(e) − d−1

t(e)ft(e) constraints from (1.6f) and (1.6g). This

lower bound can be used in place of the left-hand side of (1.11).

In the IEEE 24-bus test case, we use random sampling to identify a point γ ∈ [γ0, γ
∗]

for which minθ∈∂S ||v(θ)||∞ ≥ 0.0435, with respect to the set S = ∆(γ) ∩ Ωu0 , u0 = 011.

The arc lengths in this particular γ range from 18.5 to 22.1 degrees, with a median of 20.3

degrees. Therefore, Theorem 1.12 guarantees that the IEEE 24-bus steady-state is robust

to any perturbations in parameters for which ||ξ(θ0)||∞ + maxθ∈∂S ||ξ(θ)||∞ < 0.0435.

In the remaining subsections, we will apply Theorem 1.12 to particular modes of

disturbances: fluctuations in nominal power injections, changes in nodal voltages, and

changes in branch admittances.

1.5.2 Perturbations of Nominal Injections

Suppose that the perturbed model is identical to the original model, except the vector

of nominal frequency deviations has been shifted to p∗ + ∆p∗. It is then clear from (1.5)

that the vector of frequency deviations suffers the perturbation ξ(θ) = D−1∆p∗. This

quantity is constant, and condition (1.11) reduces to the condition

||D−1∆p∗||∞ <
1

2
min
θ∈∂S
||v(θ)||∞
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Figure 1.4: Relative tolerances of nominal power injections in the IEEE 24-bus system.
Each bar indicates the range of perturbations (as a percentage of the nominal value)
with respect to which the transient stability certificate still holds. Note that these
perturbations may occur simultaneously. Also note that bus 12 has a tolerance of
1500% due to its small nominal injection.
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for some S = ∆(γ) ∩ Ωu0 , with γ ∈ [γ0, γ
∗]. In the IEEE 24-bus test case, a sufficient

condition is ||∆p∗||∞ < 0.217 pu. The median bus in this test case has a nominal

injection magnitude of 0.94 pu, so our certificate guarantees that the system is robust

to disturbances of 23% in the nominal injection of this bus. Figure 1.4 plots the relative

tolerance of all buses in the system.

1.5.3 Perturbations of Voltage and Admittance Magnitudes

Next, we consider perturbations to nodal voltage magnitudes and branch admittance

magnitudes. Both of these values are encoded in the ãij and aij parameters, so these

perturbations can be represented with perturbations ∆ãij and ∆aij. The entries of the

corresponding perturbation vector are

ξi(θ) = d−1
i

∑
j∈N (i)

∆ãij + ∆aij sin(θi − θj − φij)

For simplicity, assume that ∆ãij ≤ 0 and ∆aij ≤ 0 (i.e., there is a loss in voltage

magnitudes or branch admittances). In order to compute ||ξ(θ0)||∞, we first compute

ηij = sin(θi − θj − φij) using θ0, so that

||ξ(θ0)||∞ = max
i

d−1
i

∣∣∣∣∣∣
∑
j∈N (i)

∆ãij + ηij∆aij

∣∣∣∣∣∣


Similarly, defining η̄ij = max{sin(γ{i,j} − φij), sin(γ{i,j} + φij)} as an upper bound on

| sin(θi − θj − φij)| for θ ∈ ∆(γ), we can bound

max
θ∈∂S
||ξ(θ)||∞ ≤ max

i

−d−1
i

 ∑
j∈N (i)

∆ãij + η̄ij∆aij


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Figure 1.5: Tolerance for voltage loss in the IEEE 24-bus system, as a percentage
of the nominal voltage magnitude. If an individual bus loses the fraction of voltage
magnitude indicated by its corresponding bar in the chart, then transient stability in
the post-fault system is guaranteed.

Then condition (1.11) is satisfied if the sum of these two quantities is less than maxθ∈∂S ||v(θ)||∞.

Note that this condition is a set of linear constraints on ∆ãij and ∆aij.

For a simple illustrative example, suppose that one particular bus ` ∈ V suffers a

loss in voltage magnitude, so that E` → (1 − α)E` for some α ∈ (0, 1]. Then ∆ã`j =

−α(2 − α)ã`j, ∆a`j = −αa`j, and ∆aj` = −αaj` for all j ∈ N (`), while the remaining

perturbations are zero. In the IEEE 24-bus test case, we compute the largest value of α

that satisfies the previous equation for each ` ∈ V , using 0.0435 for the right-hand side of

the bound. These largest α are plotted in Figure 1.5. The median bus can tolerate a 1%

loss of voltage magnitude before ∆aij and ∆ãij violate the above bound. This is much

more restrictive than the bound for nominal power injections, which is to be expected,

given that we used a conservative upper bound on maxθ∈∂S |ξi(θ)| instead of the exact

value.
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1.6 Conclusion

In this chapter, we study transient stability in power networks consisting of droop-

controlled inverters and frequency-dependent loads. We extend the notion of transient

stability to include not only frequency synchronization but also operating constraints

on nodal frequencies, angle differences, power injections, ramping, and storage reserves.

To analyze the transients, we introduce a physically-meaningful Lyapunov-like function,

and we re-cast the transient stability problem as an optimization problem that admits an

efficient relaxation. We show that incorporating information from loop flows (in the form

of the winding vector) can make these transient stability certificates less conservative.

Finally, we show how these certificates can be used to quantify the size of parameter

disturbances to which the system is robust.

The model we use in this chapter is, of course, a highly simplified model for frequency

dynamics. Nonetheless, we hope that this work provides a step toward understanding

the fundamental behavior of future low-inertia power grids. Extensions of this work may

offer rigorous answers to open theoretical questions about these systems. At what scale

do the ubiquitous grid-following inverters harm system stability, and how can power en-

gineers use droop-controlled inverters to mitigate this effect? How do legacy high-inertia

generators affect transient behavior in power networks that are dominated by invert-

ers? Future research may enrich this work with models of different types of generators,

to better-understand frequency dynamics as power grids transition to low-inertia power

sources.
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1.7 Proofs

Proof of Lemma 1.5. Let θ be the minimizing argument of Problem 1.1, let ye = dcc(θi, θj)

be the counterclockwise angle difference across each branch e ∈ E , and define f , η+, and

η− according to (1.6b)–(1.6d). Because θ ∈ ∂∆(γ), (1.6e) holds because θ ∈ cl(∆(γ)),

and there exists some edge e ∈ E such that ye = ±γe. In the case where ye = γe, let

z+
e = 1, so the two linear constraints in (1.6f) activate. The first constraint is just ye = γe,

which we have assumed is true. The second constraint, d−1
s(e)fs(e) − d−1

t(e)ft(e) ≥ 0, holds

because D−1f(θ) = D−1f points outward from ∆(γ). Thus (1.6f) is satisfied, and (1.6g)

and (1.6h) are satisfied by setting all other entries of z+ and z− equal to zero. In the

case where ye = −γe, we employ a complementary argument with z−e = 1. In both cases,

all constraints are satisfied, so (f, y, η+, η−, z+, z−) is feasible. Finally, the cost function

(1.6a) is equal to V (θ) (the cost function of Problem 1.1) when evaluated at θ. Hence

V̂ (γ) ≤ V ∗(∂∆(γ)).

To see that equality holds in the tree case, let us consider the argmin (f, y, η, z+, z−)

of Problem 1.2. Because G is a tree and |y| ≤ γ, there always exists θ ∈ ∆(γ) for

which ye = dcc(θs(e), θt(e)) for all e ∈ E . Then (1.6e)–(1.6h) ensure that θ ∈ ∂∆(γ), and

(1.6a)–(1.6d) ensure that the cost function of Problem 1.2 is identical to V (θ). Hence

V ∗(∂∆(γ)) ≤ V̂ (γ) if G is acyclic.

The proof of Lemma 1.8 proceeds similarly, but it uses some properties of the winding

partition of the n-torus. Readers unfamiliar with the winding partition are encouraged

to read 1.4.1 and glance at [68]. The property that we need is the following lemma, which

shows how the winding partition relates to the boundaries of phase-cohesive sets:

Lemma 1.13. Let Ωu be a winding cell, and let γ ∈ (0, π1m). Consider the set S =

∆(γ) ∩ Ωu. Then ∂S = ∂∆(γ) ∩ Ωu.
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Proof. We first argue that cl(∆(γ)) ∩ ∂Ωu = ∅. If θ ∈ cl(∆(γ)), then |θi − θj| < π for all

{i, j} ∈ E (by the assumption that γ < π1m). Then there is a neighborhood around θ

within which the winding numbers around each cycle do not change, so θ belongs to the

interior of a winding cell.

First, using elementary properties of topology, we have

∂S ⊆ cl(S) ⊆ cl(∆(γ)) ∩ cl(Ωu)

Because ∂S ⊆ cl(∆(γ)), we have that ∂S ∩ ∂Ωu = ∅. Therefore, from the elementary

property ∂S ⊆ ∂∆(γ) ∪ ∂Ωu, we obtain the result ∂S ⊆ ∆(γ). Furthermore, because

∂S ⊆ cl(Ωu) but ∂S∩∂Ωu = ∅, we have that ∂S ⊆ int(Ωu) ⊆ Ωu. Hence ∂S ⊆ ∂∆(γ)∩Ωu.

To show equality, we invoke the winding partition to write

∂∆(γ) = ∂

 ⋃
v∈Img(wΣ)

∆(γ) ∩ Ωv


⊆

⋃
v∈Img(wΣ)

∂(∆(γ) ∩ Ωv)

For v 6= u, the sets Ωu and ∂(∆(γ)∩Ωv) are disjoint, since we have shown that ∂(∆(γ)∩

Ωv) ⊆ Ωv. Thus, intersecting both sides of the equation with Ωu, we obtain ∂∆(γ)∩Ωu ⊆

∂(∆(γ) ∩ Ωu) = ∂S. This completes the proof.

We now prove Lemma 1.8.

Proof of Lemma 1.8. The statement that V̂ (γ) ≤ V̂ (γ, u) is obvious, since Problem 1.2

is a relaxation of Problem 1.3.

To show that V̂ (γ, u) ≤ V ∗(∂S), let θ be the minimizing argument of Problem 1.1.

As in the proof of Lemma 1.5, select the values of the decision variables (f, y, η, z+, z−)

accordingly to satisfy (1.6b)–(1.6h), thereby ensuring that the cost function (1.6a) is
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equal to V (θ). Because θ ∈ Ωu, [68, Theorem 3.5] guarantees the existence of x ∈ 1T
n

such that y = BTx+ 2πC†Σu. Multiplying across by CΣ, we obtain

CΣy = CΣB
Tx+ 2πCΣC

†
Σu = 2πu

We have performed two simplifications in this equation. First, Img(CT
Σ) is the cycle space,

which is identical to ker(B) [20, Theorem 9.5], so the CΣB
Tx term vanishes. Second,

the summation structure in (1.7) implies that u ∈ Img(CΣ), so the orthogonal projection

matrix CΣC
†
Σ has no effect on u. Thus (f, y, η) satisfies all of the constraints of Problem

1.3, so V̂ (γ, u) ≤ V ∗(∂S).

Next, we will show that V ∗(∂S) ≤ V̂ (γ, u). Let (f, y, η, z+, z−) be the minimizing

argument of Problem 1.3. Consider the equation y = BTx+2πC†Σu. Note that Img(BT) =

(Img(C†Σ))⊥, so we can decompose y = y1 + y2 with y1 ∈ Img(BT) and y2 = Img(C†Σ),

and the equation can be split into y1 = BTx and y2 = 2πC†Σu. The first equation has a

unique solution x ∈ 1⊥n , while the second equation is true because CΣy = 2πu, so there is

a unique point x ∈ 1⊥n that satisfies y = BTx+ 2πC†Σu. It follows from [68, Theorem 3.5]

that there exists θ ∈ Ωu such that ye = dcc(θs(e), θt(e)) for all e ∈ E . From the remaining

constraints in Problem 1.3, we can see that θ ∈ ∂∆(γ) ∩ Ωu, so it follows from Lemma

1.13 that θ ∈ ∂S. Furthermore, the constraints imply that the velocity vector is pointed

outward. Thus θ is within the feasible set of Problem 1.1, and the identical values of the

cost functions imply that V ∗(∂S) ≤ V̂ (γ, u).
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Chapter 2

Network Resource Allocation in

Epidemic Models

This chapter was first published in IEEE Transactions on Automatic Control [117].1

The basic reproduction number R0 is a fundamental quantity in epidemiological mod-

eling, reflecting the typical number of secondary infections that arise from a single infected

individual. While R0 is widely known to scientists, policymakers, and the general pub-

lic, it has received comparatively little attention in the controls community. This note

provides two novel characterizations of R0: a stability characterization and a geometric

program characterization. The geometric program characterization allows us to write

R0-constrained and budget-constrained optimal resource allocation problems as geomet-

ric programs, which are easily transformed into convex optimization problems. We apply

these programs to allocating vaccines and antidotes in numerical examples, finding that

targeting R0 instead of the spectral abscissa of the Jacobian matrix (a common target in

the controls literature) leads to qualitatively different solutions.

1©2022 IEEE. Reprinted, with permission, from Kevin D. Smith and Francesco Bullo, Convex Op-
timization of the Basic Reproduction Number, October 2022.
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2.1 Introduction

Perhaps the most important parameter in an epidemic is the basic reproduction num-

ber. This number, denoted R0, is the number of secondary infections that arise from a

typical infected individual within an otherwise completely susceptible population. R0

is a widely-known term, especially since 2020, when articles with “R0” in the title ran

in mainstream publications like The New York Times and The Wall Street Journal.

Since R0 is an intuitive and widely-known quantity, one might also expect it to appear

frequently in the controls literature on epidemics, but this is not the case.

Instead, the literature tends to focus on two other major approaches to epidemic

control. First, in the optimal control framework, parameters or control inputs are chosen

to minimize some cost function integrated along the model trajectory [108, 84, 60, 123].

These trajectories seldom admit closed-form solutions, so this approach generally re-

quires model-specific analysis and numerical solutions of Pontryagin’s conditions [108, 84],

potentially large-scale optimization to embed discrete-time dynamics [60], or lineariza-

tion and a discount factor to ensure convergence [123]. The second major approach is

the spectral optimization framework, in which resources are allocated to minimize the

spectral abscissa of the model’s Jacobian matrix about some disease-free equilibrium

[101, 128, 99, 92, 65]. If the Jacobian is stable, then the abscissa represents the rate

at which the trajectory converges to this equilibrium, so minimizing the (negative) ab-

scissa leads to a faster-decaying epidemic. Spectral optimization is based on a linear

approximation of the model, but it is nonetheless an appealing framework for resource

allocation, since the spectral abscissa can be directly evaluated from model parameters

(without computing a trajectory).

The spectral abscissa is closely related to R0. They are equivalent threshold param-

eters for whether the epidemic spreads or decays: in compartmental epidemic models
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(under reasonable assumptions), the epidemic enters an exponential growth phase if and

only if the abscissa is positive, if and only if R0 > 1 [37]. Furthermore, intuitively, both

quantities reflect the rate at which the epidemic spreads or decays. But it is important

to note that the abscissa and R0 are different quantities. In fact, through proper choice

of infection and recovery rates in the Kermack-McKendrick SIR model, one can achieve

any pair of values for the abscissa α and reproduction number R0 such that R0 > 0

and sgn(α) = sgn(R0 − 1). Thus, while the intuition for these two quantities is similar,

minimizing the abscissa will generally lead to a different allocation of resources than

minimizing R0 directly.

To our knowledge, there is no work in the literature that focuses on directly mini-

mizing or constraining R0 in the resource allocation problem. Motivated by the ubiquity

of R0 in epidemiology and its popularity in the public discourse around COVID-19, this

note provides theoretical foundations to fill in this gap.

Contributions We propose a modification of the spectral optimization framework to

operate on R0 instead of on the spectral abscissa. We offer three primary contributions:

(i) We provide two novel characterizations of R0 in compartmental epidemic models.

One characterization relates R0 to the stability of perturbations to the Jacobian

matrix, and the other expresses R0 as a geometric program, which can be trans-

formed into a convex optimization problem.

(ii) We define two R0-based optimal resource allocation problems: the R0-constrained

allocation problem, which identifies the lowest-cost allocation to restrict R0 be-

low a given upper bound; and the budget-constrained allocation problem, which

minimizes R0 with a limited allowance for resource cost. We provide a geometric

programming transcription for both of these problems, allowing them to be solved
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efficiently with off-the-shelf software.

(iii) We present numerical results based on a county-level multi-group SEIR model in

California, parameterized using real-world cell phone mobility data. The experi-

ments study the allocation of vaccines and antidotes, a classical problem in spectral

optimization. We explain and emphasize the differences between the allocations

based on R0 and the corresponding allocations based on the abscissa.

Organization Section 2.2 introduces the general family of compartmental epidemic

models that we consider (§2.2.1), formally defines R0 (§2.2.2), briefly reviews geometric

programming (§2.2.3), and states three key lemmas about Metzler and Hurwitz matrices

(§2.2.4). Section 2.3 presents our main theoretical results, including the two new char-

acterizations of R0 (§2.3.1), and the two R0-based optimal resource allocation problems

and their geometric program transcriptions (§2.3.2). Finally, Section 2.4 presents the

numerical experiments.

Notation The matrix A ∈ Rn×n is Metzler if all its off-diagonal entries are non-negative

and is Hurwitz if all its eigenvalues have negative real part. Let ρ(A) denote the spectral

radius of A. Given A ∈ Rn×n, let diag(A) denote the vector in Rn composed of the

diagonal elements of A. Given x ∈ Rn, let diag(x) denote the diagonal matrix whose

diagonal is x. Thus diag(diag(x)) = x, and diag(diag(A)) is a copy of A with all off-

diagonal entries set to zero. Given a set S, we write cl(S) to denote the closure of

S.
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2.2 Preliminaries

2.2.1 Compartmental Epidemic Models

Compartmental models are a general and widely-used family of epidemic models that

divide a population into compartments based on disease state and other demographic

factors. This chapter focuses on deterministic epidemic models, in which the number of

individuals in each compartment is governed by a system of differential equations. Per-

haps the most well-known example is Kermack and McKendrick’s SIR model, which has

three compartments (susceptible, infected, and recovered), but compartmental models

can be arbitrarily complex to capture nuances in the spread of infection between different

parts of the population in different disease states. Compartmental models are frequently

based on an underlying stochastic model, such that the state variables approximate the

expected number of individuals in each compartment.

We consider the general compartmental model in [37], with n infected compartments

and m non-infected compartments. The components of this model are as follows. Let

x ∈ Rn be the expected numbers of individuals in each infected compartment, and let

y ∈ Rm be the expected numbers of non-infected individuals. The resulting dynamics is

ẋ = f(x, y) + v(x, y) (2.1a)

ẏ = g(x, y) (2.1b)

where f , v, and g are continuously differentiable and defined on non-negative domains.

The dynamics of the infected subsystem are decomposed into two vector fields f and

v, where f contains the rates at which new infections appear, and v contains rates of

transitions that do not correspond to new infections. For example, if infected individuals

must pass through a latent disease state before entering an active infectious state (as
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in the SEIR model), then f captures new infections as they appear in the latent state,

while transitions from latent to active infections are contained in v, since the latter are

not altogether new infections. This explicit separation of rates corresponding to new

infections from all other transitions is crucial to the computation of R0, and it reflects

extra physical interpretation that cannot be inferred from the expression for ẋ alone.

Assumption 2.1 (Regularity of f , v, and g). The vector fields f , v, and g have the

following properties:

(i) f(x, y) ≥ 0n for all x and y;

(ii) f(0n, y) = 0n and v(0n, y) = 0n for all y;

(iii) for all x, y, and i, xi = 0 implies that vi(x, y) ≥ 0;

(iv) for all x, y, and j, yj = 0 implies that gj(x, y) ≥ 0.

Assumption 2.1 collects weak conditions that are obvious from the physical interpreta-

tions of f , v, and g. Condition (i) follows from the interpretation of f as a rate at which

new infections are created. Condition (ii) ensures that no individuals can transfer into or

out of an infected compartment (through new infections or otherwise) if the population

is completely free of disease; thus every disease-free state is an equilibrium of (2.1a).

Finally, conditions (iii) and (iv) reflect the fact that individuals cannot transition out

from an empty compartment.

We also assume that (2.1) admit a disease-free equilibrium point (0n, y∗) that is

locally asymptotically stable in the absence of new infections. That is, if new infections

are “switched off” by dropping the vector field f from the dynamics, then the population

will return to (0n, y∗) even if a small number of infected individuals are introduced.
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Assumption 2.2 (Existence of a Stable Equilibrium). There exists y∗ ≥ 0m such that

g(0n, y∗) = 0m and the following Jacobian matrix is Hurwitz:

D

v(0n, y∗)

g(0n, y∗)

 =

Dxv(0n, y∗) Dyv(0n, y∗)

Dxg(0n, y∗) Dyg(0n, y∗)

 .
The point (0n, y∗) satisfying Assumption 2.2 is not necessarily unique, and while it is also

an equilibrium point of the full model, it may be unstable when f is no longer ignored.

Under Assumptions 2.1 and 2.2, linearizing the dynamics of (2.1a) about (0n, y∗)

decouples them from y, and we obtain

ẋ = (F + V )x (2.2)

where F = Dxf(0n, y∗) is non-negative and V = Dxv(0n, y∗) is Hurwitz and Metzler.

We refer the reader to [37, Lemma 1] for the details of this linearization.

2.2.2 Basic Reproduction Numbers

The basic reproduction number is well-known in epidemiology as the typical number

of secondary infections that arise from a single infected individual, within an otherwise

completely susceptible population. Diekmann, Heesterbeek, and Metz [38] introduced

the next generation operator to compute this quantity in general models with structured

populations. This approach was later applied by van den Driessche and Watmough [37]

specifically to the compartmental model (2.1).

Definition 2.1. For a compartmental epidemic model (2.1a)-(2.1b) satisfying Assump-

tions 2.1 and 2.2 and with linearization (2.2) about (0n, y∗), the basic reproduction number
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is

R0 = ρ(FV −1). (2.3)

We refer the reader to [38, §2] and [37, §3] for derivations of (2.3) from the epidemiological

definition of R0.

2.2.3 Geometric Programming

Geometric programs are a family of generally non-convex optimization problems that

can be transformed into convex optimization problems by a change of variables. Ge-

ometric programs enjoy a multitude of applications in engineering and control theory,

including the design of optimal positive systems [100], a problem which is closely related

to the resource allocation considered in this note. We refer the reader to [16] as a stan-

dard introduction to geometric programming and briefly introduce the key concepts in

what follows.

A monomial function is a map Rn
>0 → R>0 of the form f(x) = cxb11 x

b2
2 · · ·xbnn , where

c > 0 and bi ∈ R. A posynomial function is a sum of monomial functions. Note that

posynomials are closed under addition and multiplication, and that a posynomial divided

by a monomial is a posynomial. Given a posynomial function f0, a set of posynomial func-

tions fi, i ∈ {1, . . . ,m}, and a set of monomial functions gi, i ∈ {1, . . . , p}, a geometric

program in standard form is:

minimize : f0(x)

variables : x > 0n

subject to : fi(x) ≤ 1, i ∈ {1, . . . ,m}

gi(x) = 1, i ∈ {1, . . . , p}

The problem becomes convex after the change of variables xi = eyi . Off-the-shelf software

53



Network Resource Allocation in Epidemic Models Chapter 2

is available for geometric programs, including the CVX package in MATLAB [50].

2.2.4 Properties of Hurwitz and Metzler Matrices

We now reproduce three lemmas regarding properties of Metzler and Hurwitz ma-

trices that will be necessary for our main results. The first lemma is a standard result

characterizing the stability of Metzler matrices (see [22, Theorem 10.14]):

Lemma 2.2 (Metzler Hurwitz Lemma). Let M ∈ Rn×n be a Metzler matrix. The fol-

lowing are equivalent:

(i) M is Hurwitz,

(ii) M is invertible and −M−1 ≥ 0, and

(iii) there exists w > 0n such that Mw < 0n.

We borrow the next two results from [37]; the first is a slight restatement of [37, Lemma

5], so we do not include a proof.

Lemma 2.3 (Properties of Hurwitz and Metzler Matrices). Let H,M ∈ Rn×n be Metzler

matrices, such that H is Hurwitz and −MH−1 is Metzler. The following are equivalent:

(i) M is Hurwitz, and

(ii) −MH−1 is Hurwitz.

The second result is abstracted from the proof of [37, Theorem 2] and we include a

self-contained proof.

Lemma 2.4 (Stability of Perturbed Metzler Matrices). Let H ∈ Rn×n be Metzler and

Hurwitz, and let E ∈ Rn×n
≥0 be a non-negative perturbation matrix. The following are

equivalent:
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(i) H + E is Hurwitz, and

(ii) ρ(−EH−1) < 1.

Proof. Let A = −(H+E)H−1 = −(In+EH−1). Note that A is Metzler, since −H−1 ≥ 0

by Lemma 2.2, so −EH−1 ≥ 0. Then by Lemma 2.3, H + E is Hurwitz if and only if A

is Hurwitz. If ρ(−EH−1) < 1, then A is clearly Hurwitz. But if ρ(−EH−1) ≥ 1, then

A is not Hurwitz: since −EH−1 ≥ 0, the Perron-Frobenius theorem guarantees that its

dominant eigenvalue is real and non-negative, so −(In + EH−1) has an eigenvalue with

non-negative real part.

2.3 Optimization Framework for R0

2.3.1 Geometric Program for R0

The main theoretical result of this chapter is the following theorem, which provides

two novel characterizations of R0:

Theorem 2.5 (Characterizations of R0). Consider the linearized epidemic dynamics

(2.2) with F ∈ Rn×n
≥0 and V ∈ Rn×n Hurwitz and Metzler. Write V = Vod − Vd, where

Vd ≥ 0 is diagonal and Vod ≥ 0 has zero diagonal. The following are characterizations of

the basic reproduction number:

(i) Stability characterization:

R0 = inf
r>0
{r : F + rV is Hurwitz} (2.4)
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(ii) Geometric program characterization:

R0 = inf
r>0
w>0n

{
r : diag(rVdw)−1(F + rVod)w ≤ 1n

}
(2.5)

Proof. To prove that (2.4) follows from (2.3), we compute

inf
r>0
{r : F + rV is Hurwitz} = inf

r>0
{r : ρ(F (rV )−1) < 1}

= inf
r>0
{r : ρ(FV −1) < r}

= inf
r>0
{r : R0 < r} = R0,

where the first step follows from Lemma 2.4. We now use (2.4) to prove (2.5). Let

W = {w > 0n : V w < 0n} and Ŵ = {w > 0n : V w ≤ 0n}. By Lemma 2.11 (in Appendix

2.6),

R0 = inf{r > 0 : F + rV is Hurwitz}

= inf{r > 0 : ∃w ∈ W s.t. (F + rV )w < 0n}

= inf{r > 0 : ∃w ∈ Ŵ s.t. (F + rV )w ≤ 0n}

= inf
r>0, w>0n

{r : (F + rV )w ≤ 0n}

In the last step, we note that the V w ≤ 0n constraint is implied by (F + rV )w ≤ 0n, so

we are free to remove it. Manipulating the (F + rV )w ≤ 0n constraint into the standard

form for geometric programming yields (2.5).

Remark 2.6 (Degenerate Cases, Pt. I). The infimum in (2.5) is not always attained.

For example, if F =

0 0

1 1

 and V = −

1 0

0 1

, then R0 = inf r>0
w>02

{
r : r ≥ w1+w2

w2

}
= 1.

But there is no feasible point w > 02 that satisfies the inequality constraint with r = 1.
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Thus, in general, we cannot replace the infimum in (2.5) with a minimum.

2.3.2 Optimal Resource Allocation

The geometric program characterization (2.5) sets us up to efficiently optimize model

parameters to either minimize or constrain R0. In a manner analogous to [101], we

consider two forms of the resource allocation problem: R0-constrained allocation, and

budget-constrained allocation. In both forms of the resource allocation problem, we sup-

pose that the model parameters F , Vod, and Vd depend on a vector of “resources” θ ≥ 0k,

and that the cost of a particular allocation of resources is given by a cost function c(θ).

Furthermore, the resources must satisfy some collection of constraints h(θ) ≤ 1q. The

dependence on θ must obey the following conditions:

Assumption 2.3 (Resource Dependence). The resource dependence of the parameters

F (θ), Vod(θ), Vd(θ), c(θ), and h(θ) have the following properties:

(i) F (θ), Vod(θ), c(θ), and h(θ) are element-wise posynomial functions;

(ii) Vd(θ) is an element-wise monomial function; and

(iii) the set of feasible allocations {θ ≥ 0k : h(θ) ≤ 1q} is bounded, and if θ is in this

set, then Vod(θ)− Vd(θ) is Hurwitz.

Conditions (i) and (ii) are necessary to transcribe the allocation problem as a geometric

program, while condition (iii) ensures that the matrix parameters F , Vod, and Vd satisfy

the antecedent of Theorem 2.5 for any feasible allocation. Condition (iii) also ensures the

feasible θ are confined to a compact set. Under these assumptions, for all θ ∈ h−1
≤ (1q),

the resource dependence of R0 can be written as

R0(θ) = ρ
(
F (θ)(Vod(θ)− Vd(θ))−1

)
. (2.6)
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Additional resources will typically reduce the rate of new infections or increase the rate

at which existing infections are removed. This property is not included in Assumption

2.3, since it is not needed for any of the results in this section. However, if this property

is true, then it is useful (albeit unsurprising) to note that R0(θ) is weakly decreasing in

θ.

Lemma 2.7 (Monotonicity). Suppose that F (θ), Vod(θ), and Vd(θ) satisfy Assump-

tion 2.3. If additionally F (θ) and Vod(θ) are non-increasing and Vd(θ) is non-decreasing

in θ, then for θ, θ′ ∈ h−1
≤ (1q) with θ′ ≥ θ, we have R0(θ′) ≤ R0(θ).

Proof. Let θ′ ≥ θ. Since 0 ≤ F (θ′) ≤ F (θ), 0 ≤ Vod(θ
′) ≤ Vod(θ), and Vd(θ

′) ≥ Vd(θ) ≥ 0,

we can write F (θ) = F (θ′)+∆F and V (θ) = V (θ′)+∆V (θ) for some matrices ∆F,∆V ≥

0. Then

V −1(θ)− V −1(θ′) = (V (θ′) + ∆V )−1 − V −1(θ′)

= −(V (θ′) + ∆V )−1(∆V )V −1(θ′)

≤ 0

where the last inequality follows from Lemma 2.2, since V (θ) and V (θ′) are Hurwitz and

Metzler, and thus V −1(θ) ≤ 0 and V −1(θ′) ≤ 0. Then

−F (θ)V −1(θ) = −(F (θ′) + ∆F )V −1(θ)

≥ −F (θ′)V −1(θ)

≥ −F (θ′)V −1(θ′)
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Since −F (θ)V −1(θ) ≥ 0 and −F (θ′)V −1(θ′) ≥ 0, we are guaranteed that

R0(θ) = ρ(−F (θ)V −1(θ))

≥ ρ(−F (θ′)V −1(θ′))

= R0(θ′)

since the spectral radius is weakly increasing in the elements of a non-negative matrix

[64, Theorem 8.1.18].

We now define the two optimal allocation problems. In the R0-constrained allocation

problem, we identify the cheapest allocation of resources to ensure that R0 ≤ rmax, where

rmax > 0 is some arbitrary threshold. In the budget-constrained allocation problem, some

budget cmax > 0 is available to spend on resources, and we would like to deploy these

limited resources to minimize R0.

Definition 2.8 (Optimal Allocation Problems). Let F (θ), Vod(θ), Vd(θ), c(θ), and h(θ)

satisfy Assumption 2.3. We define the following optimization problems:

(i) Given rmax > 0, we say that θ∗ is an optimal R0-constrained allocation if θ∗ is a

minimizer of

min
θ≥0k
{c(θ) : h(θ) ≤ 1q and R0(θ) ≤ rmax} (2.7)

(ii) Given cmax > 0, we say that θ∗ is an optimal budget-constrained allocation if θ∗ is

a minimizer of

min
θ≥0k
{R0(θ) : h(θ) ≤ 1q and c(θ) ≤ cmax} (2.8)

Assumption 2.3 ensures that R0(θ) in (2.6) is well-defined over the feasible sets; further-

more, R0(θ) is continuous, since the matrix inverse and spectral radius are continuous
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functions of the matrix elements. Thus the feasible sets are compact, so the minima of

both problems exist.

Using Theorem 2.5, we can construct a pair of geometric programs to solve for optimal

R0-constrained and budget-constrained allocations. For notational convenience, we define

a map p : R>0 × Rn
>0 × Rk

≥0 → Rn
>0 by

p(r, w, θ) = diag(rVd(θ)w)−1(F (θ) + rVod(θ))w (2.9)

Under Assumption 2.3, p(r, w, θ) is posynomial, so the following are geometric programs:

Problem 2.1 (R0-Constrained Allocation GP). Given rmax > 0 and a tolerance param-

eter τ ≥ 0:

minimize : c(θ)

variables : r > 0, w > 0n, θ > 0k

subject to : p(r, w, θ) ≤ 1n

h(θ) ≤ 1q

r ≤ rmax + τ

Problem 2.2 (Budget-Constrained Allocation GP). Given cmax > 0:

minimize : r

variables : r > 0, w > 0n, θ > 0k

subject to : p(r, w, θ) ≤ 1n

h(θ) ≤ 1q

c(θ) ≤ cmax

Theorem 2.9 (Geometric Program Transcription). Let θ∗ ≥ 0k, rmax > 0, and cmax > 0.

Let F1(τ) for τ > 0 and F2 be the sets of feasible points (r, w, θ) for Problems 2.1 and

2.2. The following are true:
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(i) θ∗ is an optimal R0-constrained allocation if and only if the infimum of Problem

2.1 converges to c(θ∗) as τ → 0+ and there exists r∗, w∗ such that (r∗, w∗, θ∗) ∈

cl(F1(τ)) for all τ > 0.

(ii) θ∗ is an optimal budget-constrained allocation if and only if R0(θ∗) is the infimum

of Problem 2.2 and there exists r∗, w∗ such that (r∗, w∗, θ∗) ∈ cl(F2).

See Appendix 2.7.1 for the proof.

We note that Problem 2.1 is an arbitrarily accurate approximation of theR0-constrained

allocation problem, controlled by the parameter τ ≥ 0. This approximation is necessary

due to the closed inequality constraint on R0 and the representation of R0 by the infimum

in (2.5), which is not always attained:

Remark 2.10 (Degenerate Cases, Pt. II). In some cases, Problem 2.1 may be infeasible

when τ = 0, for example, if F (θ) = F and V (θ) = V are the matrices defined in

Remark 2.6 and rmax = 1. Fortunately, the feasible set is nonempty for all τ > 0, so

we can still consider the limit of solutions to Problem 2.1 as τ → 0+. This feasibility

problem arises due to the constraint on R0, so it is not an issue in Problem 2.2.

In practice, the issue of an empty feasible set is not of significant concern, since

numerical optimization already has inherently limited precision. We suggest solving

Problem 2.1 with τ = 0 (and only using a small positive value if the solver reports primal

infeasibility).

2.4 Numerical Examples

In the following experiments, we compare R0-minimizing allocations with abscissa-

minimizing allocations. The code used to generate these results is available online.2

2The MATLAB script and functions used to generate these results is available at https://www.

mathworks.com/matlabcentral/fileexchange/99354-geometric-programs-for-r0. Running the

61

https://www.mathworks.com/matlabcentral/fileexchange/99354-geometric-programs-for-r0
https://www.mathworks.com/matlabcentral/fileexchange/99354-geometric-programs-for-r0


Network Resource Allocation in Epidemic Models Chapter 2

2.4.1 Epidemic Model

We adopt a standard multigroup SEIR model (with vital dynamics) for an epidemic

in the state of California, where each group corresponds to one of the state’s n = 58

counties. The SEIR model has two infected states (exposed and infectious) and two non-

infected states (susceptible and recovered). Letting s, e, z, r ∈ Rn
≥0 denote the expected

number of people in each group and disease state, the model dynamics for each group

i ∈ {1, . . . , n} are

ṡi = −βisi
n∑
j=1

aijzj żi = γiei − δizi

ėi = βisi

n∑
j=1

aijzj − γiei ṙi = δizi

It is clear that the model has a disease-free equilibrium (s0, 0n, 0n, 0n). Linearizing about

this point, we obtain

ė
ż

 ≈
− diag(γ) diag(β) diag(s0)A

diag(γ) − diag(δ)


e
z

 .
Because the diag(β) diag(s0)A term is the only one corresponding to the creation of new

infections, we decompose this Jacobian into the two matrices

F =

0 diag(β) diag(s0)A

0 0

 , V =

− diag(γ) 0

diag(γ) − diag(δ)

 ,
where F is non-negative and V is Hurwitz and Metzler.

The model requires a matrix of inter-group contact rates A ∈ Rn×n
≥0 , which we esti-

code requires an installation of CVX 2.2 and the MOSEK solver.
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mated using data from SafeGraph. 3 In particular, we used the Social Distancing Metrics

dataset to estimate a matrix P ∈ Rn×n, where pij is the daily fraction of people from

county i who visited county j, averaged over each day in 2020. Then (PPT)ij approxi-

mates the probability that two random individuals from counties i and j are co-located in

the same county on a given day. We set A = αPPT, where the scalar α = 2.3667× 10−7

was chosen to ensure R0 = 2.5 when β = 0.1, γ = 0.2, and δ = 0.1. Note that α is

always multiplied by β, so the only effect of this scalar is to allow us to work with round

numbers for β and R0.

The remaining model parameters are the transmission rates β > 0n, incubation rates

γ > 0n, and recovery rates δ > 0n for each group. We used uniform model parameters

across each group for simplicity. We generated 2,000 different models by choosing β, γ,

and δ for each of 10 (γ and δ) or 20 (β) evenly-spaced values in the range [0.025, 0.5],

[0.05, 0.5], and [0.05, 0.5], respectively. The γ and δ range was chosen to allow for a wide

range of mean incubation and recovery times (between 2 and 20 days), while the β range

was coarsely tuned so that the models have a wide but realistic range of pre-intervention

R0 (95% between 0.23 and 19.38).

2.4.2 Optimal Allocation of Pharmaceuticals

We consider the following optimal resource allocation scenario from [101], in which

there are two types of pharmaceutical interventions: vaccines, which reduce the local

transmission rates βi; and antidotes, which increase the local recovery rates δi. By

allocating vaccines to patch i, we can optimize the local transmission rate within a range

3SafeGraph (https://www.safegraph.com) is a data company that aggregates anonymized location
data from numerous applications in order to provide insights about physical places, via the SafeGraph
Community. To enhance privacy, SafeGraph excludes census block group information if fewer than two
devices visited an establishment in a month from a given census block group.
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βi ∈ [β
i
, βi], where βi ≥ β

i
> 0. The cost of this vaccine allocation is, for all i,

fi(βi) =
β−1
i − β

−1

i

β−1

i
− β−1

i

. (2.10)

Note that the most aggressive allocation has a cost of fi(βi) = 1, while allocation of no

vaccines at all has a cost fi(βi) = 0. The form of (4.7) ensures diminishing returns in

the investment of vaccines at each patch. Similarly, by allocating antidotes to patch i,

the local recovery rate can be optimized in the range δi ∈ [δi, δi], with δi ≥ δi > 0. The

cost of the antidote allocation is, for all i,

gi(δi) =
(δ̃i − δi)−1 − (δ̃i − δi)−1

(δ̃i − δi)−1 − (δ̃i − δi)−1
, (2.11)

where the parameters δ̃i > δi control the shape of the cost curve. The total cost, summing

over the local costs of vaccines and antidotes over all patches, is constrained by a budget

cmax.

In order to perform budget-constrained resource allocation, we must encode the fol-

lowing budget constraint in the standard form for geometric programming:

n∑
i=1

fi(βi) + gi(δi) ≤ cmax

Since gi have non-posynomial dependence on δi, we replace 1−δi with auxiliary variables

ηi, constrained by δ̃i − δi ≤ ηi ≤ δ̃i − δi. Then the posynomial budget constraint is

n∑
i=1

κ−1β−1
i

β−1

i
− β−1

i

+
κ−1η−1

i

(δ̃i − δi)−1 − (δ̃i − δi)−1
≤ 1 (2.12)

64



Network Resource Allocation in Epidemic Models Chapter 2

where we define a positive constant

κ = cmax +
n∑
i=1

β
−1

i

β−1

i
− β−1

i

+
(δ̃i − δi)−1

(δ̃i − δi)−1 − (δ̃i − δi)−1

Altogether, the resource vector is θT =

[
βT ηT

]
, and the constraints are β

i
≤ βi ≤ βi,

δ̃i − δi ≤ ηi ≤ δ̃i − δi, and (2.12).

For each experiment, we selected cost parameters based on the pre-intervention SEIR

model parameters β and δ. Since pharmaceuticals and vaccines never increase the trans-

mission rate or decrease the recovery rate, we set βi = βi and δi = δi. We chose β
i

= 0.1βi

and δi = 2δi to reflect a 90% reduction in transmissibility and 50% reduction in mean

recovery time at maximum investment, and we selected δ̃i = 2 so that δ̃i > δi.

2.4.3 Results and Discussion

We first set a budget of cmax = 0.1 and performed budget-constrained resource alloca-

tion to minimize R0 and the abscissa for each of the 2,000 models. We then simulated the

nonlinear post-intervention dynamics for both the R0-minimized and abscissa-minimized

models until convergence.

In 1,270 models, both the R0-minimized and abscissa-minimized models had R0 > 1,

so the number of infected individuals experienced an initial exponential growth phase

before peaking and decaying. Figure 2.1 (left) compares the number of active infections

at the peak between the R0-minimized and abscissa-minimized trajectories. In 1,068

(84.1%) of these models, minimizing R0 led to a smaller peak than minimizing the ab-

sicssa. Similarly, Figure 2.1 (right) compares the number of cumulative infections at the

end of the simulation. Minimizing R0 resulted in fewer cumulative cases in 1,056 (83.1%)

in the example models. In the remaining models, one or both of the R0-minimizing or
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Figure 2.1: Comparison of peak (left) and cumulative (right) infections from min-
imizing R0 vs. the abscissa, in models with an initial exponential growth phase.
Both histograms show the distribution of how many more infections resulted in the
absicssa-minimizing scenario vs. the R0-minimizing scenario.

abscissa-minimizing allocations led to R0 < 1, so the trajectory immediately decays to-

ward a disease-free equilibrium. It is not meaningful to compare peaks in these models;

however, in 96.4% of them, minimizing R0 resulted in fewer cumulative infections.

Next, we selected three particular models to examine the allocations under various

budgets. We chose a low-R0 model (β = 0.05, γ = 0.2, δ = 0.2; R0 = 0.625), a mid-

R0 model (β = 0.1, γ = 0.2, δ = 0.1; R0 = 2.5), and a high-R0 model (β = 0.15,

γ = 0.2, δ = 0.075; R0 = 5.0), and we repeated the budget-constrained allocations at

various budgets. Figure 2.2 (left) plots the cumulative infections for the post-intervention

models. Cumulative infections in the R0-minimized and abscissa-minimized models are

very similar at low budgets, but past a budget of 2, minimizing the R0 leads to a modest

decrease in cumulative infections when compared to minimizing the abscissa. (It is not

meaningful to plot the peak infections, since R0 < 1 in all post-intervention models

with budgets above 2.) Figure 2.2 (right) illustrates a difference in allocation strategies

between the two targets, as minimizing R0 results in a larger share of the budget spent
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Figure 2.2: Cumulative infections (left) and total budget allocated to vaccines (right)
for three models, given various budgets. Solid lines correspond to post-intervention
models minimizing R0, while dashed lines reflect minimizing the abscissa. In these
examples, minimizing R0 results in fewer cumulative infections and a greater fraction
of the budget allocated to vaccines.
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on vaccines.

2.5 Conclusion

In this note, we have established a new formula for the basic reproduction number

of a compartmental epidemic model. We then applied this formula to resource alloca-

tion problems that minimize or constrain R0, transcribing these problems as geometric

programs, and we have provided numerical experiments to highlight that targeting R0

instead of the abscissa can result in qualitatively different solutions. Our results show

that R0 can be a superior target for controlling cumulative and peak infections; however,

more work is needed to identify for which models and parameter ranges this is the case.

The possible applications of our optimization framework are broad, since it applies to a

general class of epidemic models and cost functions. Policymakers should be aware of

the limitations of optimal resource allocation: models (and linear models in particular)

have limited accuracy, and mathematics does not address the complex social factors of

epidemic response. Nonetheless, we believe that this work and its future extensions—

coupled with judicious choices of models and cost functions—can provide useful insight

for epidemic preparedness and response.

2.6 A Relaxing Lemma

Lemma 2.11 (A Relaxing Lemma). Let V ∈ Rn×n be a Metzler and Hurwitz matrix, and

let F 6= 0 be a non-negative matrix of the same shape. Let W = {w > 0n : V w < 0n},

Ŵ = {w > 0n : V w ≤ 0n}, R0 = inf{r > 0 : ∃w ∈ W s.t. (F + rV )w < 0n}, and

R̂0 = inf{r > 0 : ∃w ∈ Ŵ s.t. (F + rV )w ≤ 0n}. Then R0 = R̂0.

Proof. It is obvious that R̂0 ≤ R0, so we need only show that R̂0 ≥ R0. Before we embark
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on this task, we will construct useful expressions for R̂0 and R0. Let I be the (possibly

empty) set of indices for which the ith row of F is zero: F (i) = 0n. For any w ∈ Ŵ ,

observe that {r > 0 : (F + rV )w ≤ 0n} is non-empty if and only if (V w)i = 0 implies

that i ∈ I. Thus, we define

W̄ = {w > 0n : V w ≤ 0n and (V w)i < 0 for all i ∈ Ic}

where W ⊂ W̄ ⊂ Ŵ . Then we can write

R̂0 = inf

 ⋃
w∈Ŵ

{r > 0 : (F + rV )w ≤ 0n}


= inf

( ⋃
w∈W̄
{r > 0 : (F + rV )w ≤ 0n}

)

= inf
w∈W̄

(inf{r > 0 : (F + rV )w ≤ 0n}) = inf R̂

where R̂ = {r∗(w) : w ∈ W̄}, and r∗ : W̄ → R≥0 is the map defined by

r∗(w) = inf{r > 0 : (F + rV )w ≤ 0n}, ∀w ∈ W̄

It is straightforward to solve for r∗(w):

r∗(w) = max
i∈Ic

{
(Fw)i
|V w|i

}
, ∀w ∈ W̄
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Similar to R̂0, we have the following expression for R0:

R0 = inf

( ⋃
w∈W
{r > 0 : (F + rV )w < 0n}

)

= inf
w∈W

(inf{r > 0 : (F + rV )w < 0n})

= inf
w∈W

(min{r > 0 : (F + rV )w ≤ 0n}) = infR

where R = {r∗(w) : w ∈ W}.

The remainder of the proof is to show that R0 is a lower bound on R̂. Let r̂ ∈ R̂, so

that r̂ > 0 and (F + r̂V )ŵ ≤ 0n for some ŵ ∈ W̄ . Let x > 0n such that V x < 0n (which

must exist because V is Hurwitz), and for all t ≥ 0, let w(t) = ŵ+ tx. We can also show

that ∣∣∣∣(Fw(t))i
|V w(t)|i

− (Fŵ)i
|V ŵ|i

∣∣∣∣ ≤ κit, ∀t ≥ 0 and ∀i ∈ Ic

where

κi =
1

|V ŵ|i

(
(Fx)i +

(Fŵ)i|V x|i
|V ŵ|i

)
> 0, ∀i ∈ Ic

Then for all t > 0,

|r∗(w(t))− r∗(ŵ)| =
∣∣∣∣max
i∈Ic

{
(Fw(t))i
|V w(t)|i

}
−max

j∈Ic

{
(Fŵ)j
|V ŵ|j

}∣∣∣∣
≤
(

max
i∈Ic

κi

)
t

Thus, given any ε > 0, we can choose t < ε (maxi∈Ic κi)
−1 to ensure that |r∗(w(t)) −

r∗(ŵ)| < ε. Because w(t) ∈ W for all t > 0, it is the case that r∗(w(t)) ∈ R for all t > 0,

so that every open ball around r∗(ŵ) contains a point in R. Then r∗(ŵ) ∈ cl(R), which

implies that r∗(ŵ) ≥ R0. But r∗(ŵ) ≤ r̂, and r̂ was chosen arbitrarily from R̂, so R0

is a lower bound on R̂. But R̂0 is the greatest such lower bound, so we conclude that
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R̂0 ≥ R0.

2.7 Proofs

2.7.1 Proof of Theorem 2.9

Let G1,G2 be the sets of feasible points θ for (2.7) and (2.8), respectively. We define

a Metzler matrix

M(r, θ) = F (θ) + rVod(θ)− rVd(θ) (2.13)

Since the determinant of M(r, θ) is a polynomial in r of degree n, for some scalars

a1, a2, . . . , an ∈ C, we can write |M(r, θ)| = (r − a1)(r − a2) · · · (r − an). Due to (2.4)

in Theorem 2.5, M(R0(θ), θ) must be singular, so R0(θ) is a root; then we can assign

a1, a2, . . . , a` = R0(θ) up to some multiplicity `. Define a “pseudo-determinant” µ(r, θ) =

(r − a`+1) · · · (r − an) as the product of the remaining factors, which is real and nonzero

for all r ≥ R0(θ). Then

M−1(r, θ) =
adj(M(r, θ))

(r −R0(θ))`µ(r, θ)
, ∀r > R0(θ)

Now, pick z > 0n arbitrarily, and define

w(r, θ) = −(r −R0(θ))`M−1(r, θ)z, ∀r > R0(θ) (2.14)

w∗(θ) = lim
r→R0(θ∗)+

w(r, θ) = −
(

adj(M(R0(θ), θ))

µ(R0(θ), θ)

)
z (2.15)

For any r > R0(θ), (2.4) in Theorem 2.5 implies that M(r, θ) is Hurwitz, so −M−1(r, θ) ≥

0, and thus w(r, θ) > 0n. Furthermore, M(r, θ)w(r, θ) < 0n, so expanding M(r, θ) with

(4.4) and re-arranging, we obtain p(r, w(r, θ), θ) < 1n. We now use w∗(θ) to formally
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establish relationships between the feasible sets of both pairs of optimization problems:

Lemma 2.12 (Relating the Feasible Sets). For each τ > 0, let Θ1(τ) ⊂ Rk be the set

of θ such that (r, w, θ) ∈ cl(F1(τ)) for some r, w. Similarly, let Θ2 ⊂ Rk be the set of θ

such that (r, w, θ) ∈ cl(F2) for some r, w. The following are true:

(i) θ ∈ G1 =⇒ (R0(θ), w∗(θ), θ) ∈ cl(F1(τ)) for all τ > 0,

(ii) θ ∈ G2 =⇒ (R0(θ), w∗(θ), θ) ∈ cl(F2),

(iii) G1 =
⋂
τ>0 Θ1(δ), and

(iv) G2 = Θ2.

Proof. To prove (i), let θ ∈ G1, so h(θ) ≤ 1q and R0(θ) ≤ rmax. Fix any τ > 0, and

let ε > 0. By (2.15), we can choose r > R0(θ) such that ||w(r, θ) − w∗(θ)|| < ε and

|r − R0(θ)| < min{τ, ε}. Since p(r, w(r, θ), θ) ≤ 1q and r < R0(θ) + τ ≤ rmax + τ , we

have (r, w(r, θ), θ) ∈ F1(τ), so every neighborhood of (R0(θ), w∗(θ), θ) (by choice of ε)

contains a point in F1(τ). We prove (ii) by a similar argument (without τ), noting that

θ ∈ G2 implies c(θ) ≤ cmax.

To prove (iii), we note that (i) implies that G1 ⊆
⋂
τ>0 Θ1(τ). If θ ∈ Θ1(τ) for all

τ > 0, then h(θ) ≤ 1q and R0(θ) ≤ rmax + τ for all τ > 0, which implies R0(θ) ≤ rmax,

and thus θ ∈ G1. Hence G1 ⊇
⋂
τ>0 Θ1(τ) as well. Statement (iv) follows from a similar

argument.

Proof of Theorem 2.9. In order to prove (i), we first define c∗(δ) as the infimum of Prob-

lem 2.1 for all τ > 0, and we define c∗ as the minimum cost of the R0-constrained

allocation problem. Noting that Θ1(τ) are nested downward as τ → 0:

c∗=minG1 =min
⋂
τ>0

Θ1(τ)= lim
τ→0+

min Θ1(τ)= lim
τ→0+

c∗(τ)
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The second step is due to Lemma 2.12, and the third step is a general property of

intersections of nested sets. Let θ∗ be an optimal R0-constrained allocation. Then θ∗ ∈

G1, so by Lemma 2.12, (R0(θ∗), w∗(θ∗), θ∗) ∈ cl(F1(τ)) for all τ > 0, and we have shown

that c∗(τ) → c∗ = c(θ∗) as τ → 0+. On the other hand, if there exist r∗, w∗ such

that (r∗, w∗, θ∗) ∈ cl(F1(τ)) for all τ > 0, then Lemma 2.12 guarantees θ∗ ∈ G, and

c∗(τ)→ c(θ∗) implies that c(θ∗) = c∗.

We now prove (ii). Let θ∗ be an optimal budget-constrained allocation. Then θ∗ ∈ G2,

so Lemma 2.12 implies that (R0(θ∗), w∗(θ∗), θ∗) ∈ cl(F2). Consider any other point

(r, w, θ) ∈ cl(F2), and note that Lemma 2.12 also implies θ ∈ G2, so that R0(θ∗) ≤ R0(θ).

But R0(θ) ≤ r by (2.5), so R0(θ∗) ≤ r. Thus R0(θ∗) is the min value of r over cl(F2).

Finally, suppose that (R0(θ∗), w∗(θ∗), θ∗) ∈ cl(F2) and that R0(θ∗) is the infimum of

Problem 2.2. Lemma 2.12 guarantees that θ∗ ∈ G2. Consider any other point θ ∈ G2,

and note that (R0(θ), w∗(θ), θ) ∈ cl(F2) as well, so that R0(θ∗) ≤ R0(θ). Therefore θ∗ is

a minimizer for (2.8), so it is an optimal budget-constrained allocation.
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Chapter 3

Optimal Control of Contracting

Systems

This chapter will appear in IEEE Control Systems Letters by IEEE [116].1

Strongly contracting dynamical systems have numerous properties (e.g., incremental

ISS), find widespread applications (e.g., in controls and learning), and their study is re-

ceiving increasing attention. This work starts with the simple observation that, given

a strongly contracting system, its adjoint dynamical system is also strongly contract-

ing, with the same rate, with respect to the dual norm, under time reversal. As main

implication of this dual contractivity, we show that the classic Method of Successive Ap-

proximations (MSA), an indirect method in optimal control, is a contraction mapping

for short optimization intervals or large contraction rates. Consequently, we establish

new convergence conditions for the MSA algorithm, which further imply uniqueness of

the optimal control and sufficiency of Pontryagin’s minimum principle under additional

assumptions.

1©2022 IEEE. Reprinted, with permission, from Kevin D. Smith and Francesco Bullo, Contractivity
of the Method of Successive Approximations for Optimal Control, December 2022.
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3.1 Introduction

Optimal control is generally a difficult problem, and with the exception of some ana-

lytically tractable cases, it must be solved numerically. Numerical approaches broadly fall

into two categories: direct and indirect methods. Direct methods, like direct collocation

and direct shooting methods [126, 103, 10], discretize and approximate the state and/or

control to encode the problem as a nonlinear program. Due to their relative simplicity,

robustness, and the wide availability of software implementations, direct methods tend

to be favored in modern times [10, §4.3], [31].

Indirect methods are an older class of methods based on Pontryagin’s minimum prin-

ciple (PMP), which gives a necessary condition for optimality of a control signal. PMP

states that the optimal trajectory must solve a two-point boundary problem, together

with a costate, and that the optimal control minimizes a Hamiltonian function at each

point in time. Indirect methods search for an input, state trajectory, and costate tra-

jectory that satisfy PMP. Many direct methods, including shooting and collocation, can

also be applied as indirect methods to the PMP boundary value problem [74]. An-

other approach is the Method of Successive Approximations (MSA) [25], also called the

Forward-Backward-Sweep algorithm [85], which is the main topic of this chapter.

MSA [75, 80, 4] and its variants [95, 25] are classic approaches that have received

renewed attention in the machine learning community [87, 86, 14] as alternatives to

gradient descent for training residual neural networks (ResNets). Indeed, a new thrust

of machine learning research is to apply control-theoretic techniques to the training of

ResNets by viewing these models as forward Euler discretizations of continuous-time

control systems [43, 140, 127]. Within this framework, training the ResNet can be viewed

as an optimal control problem. As argued in [87, 86], MSA (and its variants) allow for

error and convergence analysis and can lead to better training dynamics than gradient
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descent.

Unfortunately, MSA does not always converge, a problem that is still the subject of

ongoing research. In [93], the authors prove convergence criteria based on boundedness

and Lipschitz assumptions. Similar bounds are established in [87, 86]. This chapter

provides a new set of convergence criteria when MSA is applied to strongly contracting

dynamical systems.

The contributions of this chapter are as follows. First, in §3.3, we study the adjoints

of nonlinear systems that arise in optimal control theory. We show that adjoints of

contracting systems under time reversal are also contracting with the same rate, albeit

with respect to the dual norm. This property allows us to prove Grönwall-like and ISS-like

bounds on the adjoint dynamics. §3.4 applies these bounds to analyze MSA. Assuming

Lipschitz continuity of all relevant maps in the optimal control problem, we obtain a

bound on the Lipschitz constant of each MSA iteration. This Lipschitz constant becomes

arbitrarily small in the limits of short optimization intervals and large contraction rates,

thereby establishing conditions for when the iteration is a contraction mapping. With an

additional assumption of pointwise uniqueness of the minimizer of the Hamiltonian, we

show that these conditions also lead to uniqueness of the optimal control and sufficiency

of PMP.

3.2 Preliminaries

3.2.1 Contracting Dynamics over Normed Vector Spaces

Let ‖·‖ : Rn → R≥0 be a norm. The dual norm ‖·‖? : Rn → R≥0 is the norm ‖x‖? =

sup‖y‖≤1 y
Tx. Given a matrix A ∈ Rn×n, the induced norm of A is ‖A‖ = sup‖x‖=1‖Ax‖
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and the induced logarithmic norm of A is

µ(A) = lim
α→0+

‖In + αA‖ − 1

α
.

Explicit formulas for the induced (logarithmic) norms are known for the standard p ∈

{1, 2,∞} norms on Rn [21, §2.4].

A map T : X → Y between normed spaces (X, ‖·‖X) and (Y, ‖·‖Y ) is Lipschitz

continuous if a constant ` ≥ 0 exists such that ‖T (x) − T (x̄)‖Y ≤ `‖x − x̄‖X for all

x, x̄ ∈ X. The minimal Lipschitz constant Lip(T ) is the infimum over ` that satisfy this

inequality. If T is continuously differentiable, then Lip(T ) = supx∈X‖DxT (x)‖, where

DxT (x) denotes the Jacobian matrix of T . Furthermore, if X = Y = Rn, then the

one-sided Lipschitz constant of T is osL(T ) = supx∈X µ(DxT (x)). A dynamical system

ẋ = f(t, x, . . . ) with a continuously differentiable vector field f : Rn → Rn is said to

be strongly infinitesimally contracting with rate c > 0 if the map x 7→ f(t, x, . . . ) is

uniformly one-sided Lipschitz with constant −c for all t and for all inputs.

Strongly contracting systems enjoy numerous properties. As a useful example, we

state the following lemma without proof (as it slightly generalizes [21, Theorem 3.15,

Corollary 3.16]).

Lemma 3.1 (Grönwall comparison lemma). Consider a dynamical system

ẋ(t) = f(t, x(t), u1(t), . . . , um(t)), ∀t ≥ 0, (3.1)

with x(t) ∈ Rn and inputs ui ∈ Ui ⊆ Rki for i ∈ {1, 2, . . . ,m}. Let ‖·‖ be a norm on Rn,

and let ‖·‖Ui be norms on Ui. Assume that

(i) the system (3.1) is strongly infinitesimally contracting with rate c > 0, and

(ii) for each i ∈ {1, 2, . . . ,m}, the maps ui 7→ f(t, x, u1, . . . , ui, . . . , um) are uniformly
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Lipschitz continuous with constant `f,Ui for all t ≥ 0, x ∈ Rn, and uj ∈ Uj with

j 6= i.

Let (u1, . . . , um) and (ū1, . . . , ūm) be input signals, and let x, x̄ be the corresponding tra-

jectories of (3.1). For all t ≥ 0,

‖x(t)− x̄(t)‖ ≤ e−ct‖x(0)− x̄(0)‖

+
m∑
i=1

`f,Ui

∫ t

0

e−c(t−τ)‖ui(τ)− ūi(τ)‖Uidτ.
(3.2)

Note that (3.2) still holds when c ≤ 0, i.e., for expansive systems with a bounded

rate of expansion; however, we do not consider such systems in this chapter.

3.2.2 Optimal Control

We study the following optimal control problem:

Problem 3.1 (Optimal control problem). Consider a dynamical system

ẋ(t) = f(t, x(t), u(t)), x(0) = x0 ∈ Rn, (3.3)

where f is continuous in all arguments and continuously differentiable in the second and

third arguments. Further consider a cost functional

J [u] =

∫ T

0

φ(t, x(t), u(t)) dt+ ψ(x(T )), (3.4)

where φ : [0, T ]×Rn×U → R is a running cost that is differentiable in the second argu-

ment, and ψ : Rn → R is a differentiable terminal cost. Let U = {u : [0, T ]→ U s.t. u measurable}

be a space of permissible control signals, where T > 0 and U ⊆ Rk is a compact set con-

taining 0k. The optimal control problem is to find u∗ ∈ U that minimizes J [u∗].
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An elementary necessary condition for the optimality of a control is Pontryagin’s

minimum principle (PMP) [5, Theorem 5.10, Theorem 5.11] [17, Theorem 6.3.1, Theorem

6.5.1]:

Theorem 3.2 (Pontryagin’s minimum principle). Let u∗ ∈ U be an optimal control for

Problem 3.1 (if one exists), and let x : [0, T ] → Rn be the corresponding trajectory of

(3.3). There exists a constant ν ≥ 0 such that, for all t ∈ [0, T ],

u∗(t) ∈ argmin
ũ∈U

H(t, x(t), λ(t), ũ), (3.5)

where H : R× Rn × Rn × U → R is the Hamiltonian

H(t, x, λ, u) = λTf(t, x, u) + νφ(t, x, u) (3.6)

and λ : [0, T ]→ Rn is the costate trajectory

λ̇(t) = −Dxf(t, x(t), u(t))Tλ(t)− νφx(t, x(t), u(t)) (3.7)

with the boundary condition λ(T ) = νψx(x(T )).

If ν = 0, the problem is said to be abnormal [5, §6]. Abnormal problems are notori-

ously difficult, and we do not consider them in this chapter. Barring abnormal problems,

we adopt the standard assumption (without loss of generality) that ν = 1.

3.2.3 Method of Successive Approximations

The Method of Successive Approximations (MSA) [25], also called the Forward-

Backward Sweep algorithm [85], is a basic approach to computing an input that sat-

isfies PMP. The method iteratively solves the PMP two-point boundary value problem,
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then updates the control to minimize the new Hamiltonian at each time, as outlined in

Algorithm 3.1.

Algorithm 3.1 Method of Successive Approximations

Require: initial guess u(0) ∈ U
1: for i = 1, 2, . . . , N do
2: x(i) ← trajectory of (3.3) from x0 with input u(i−1)

3: λ(i) ← trajectory of (3.7) from λ(T ) = ψx(x
(i)(T )) with inputs x(i) and u(i−1)

4: u(i)(t)← argminũ∈U H(t, x(i)(t), λ(i)(t), ũ) for all t ∈ [0, T ], ties broken arbitrarily
5: end for
6: return u(N)

The algorithm can run for a fixed number of iterations; alternatively, it may terminate

when the difference between successive iterates u(i−1), u(i) is within a specified tolerance.

Note that each iteration of the algorithm maps a control u(i−1) to a new control u(i), so

that each iteration can be thought of as an operator MSA : U → U .

Definition 3.3 (MSA Operator). Given a control u ∈ U , let x : [0, T ] → Rn be the

corresponding trajectory of (3.3), and let λ : [0, T ]→ Rn be the trajectory of (3.7) from

λ(T ) = ψx(x(T )). Then MSA(u) is the control that satisfies (3.5) with respect to x(t)

and λ(t) for all t ∈ [0, T ], with ties broken in an arbitrary deterministic manner.

Definition 3.3 is well-posed if the signal of Hamiltonian-minimizing controls from (3.5)

is measurable. When we analyze the MSA algorithm in §3.4, we will impose Lipschitz

continuity assumptions that forbid any edge cases where MSA(u) is not measurable.

3.2.4 Adjoints

Adjoints are familiar from linear systems theory. Given input and output Hilbert

spaces Sin,Sout and a linear system G : Sin → Sout, the adjoint of G is the unique linear

system G̃ : Sout → Sin such that 〈Gu, y〉Sout = 〈u, G̃y〉Sin
for all u ∈ Sin and y ∈ Sout. For
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an LTV system with the usual (A,B,C,D) representation, the adjoint dynamics are

λ̇(t) = −A(t)Tλ(t)− C(t)Tv(t) (3.8a)

z(t) = B(t)Tλ(t) +D(t)Tv(t) (3.8b)

with v ∈ Sout and z ∈ Sin [51, 3.2.4]. The theory of adjoints leads to the duality of

controllability and observability and of linear quadratic regulators and estimators [79].

3.3 Contractivity of the Adjoint

This section examines adjoints of nonlinear systems. We first explain how the no-

tion of “adjoint” frequently used in the optimal control literature relates to the adjoint

from linear systems. We then prove a simple yet powerful result: that the adjoint of a

strongly infinitesimally contracting system is itself strongly infinitesimally contracting,

with respect to the dual norm, when integrated backwards in time. This dual contrac-

tivity property leads to useful bounds for the evolution of costates, to later be employed

in §3.4.

3.3.1 Adjoints of Nonlinear Systems

Nonlinear systems do not properly have adjoints according to the definition in §3.2.4.

Instead, the adjoint of the system’s linearized variational dynamics is often referred to as

its adjoint [75, 32]. Consider the nonlinear system (3.3) with output y(t) = x(t). Let u(t)

be an input signal corresponding to a nominal trajectory x(t), let x̃(t) be the trajectory
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from ũ(t). Linearizing the dynamics of δx(t) = x̃(t)− x(t) from δu(t) = ũ(t)− u(t),

˙(δx)(t) = Dxf(t, x(t), u(t))δx(t) +Duf(t, x(t), u(t))δu(t)

(δy)(t) = δx(t)

so by (3.8a), the adjoint dynamics are

λ̇(t) = −Dxf(t, x(t), u(t))Tλ(t)− v(t) (3.9a)

z(t) = Duf(t, x(t), u(t))Tλ(t) (3.9b)

where v(t) ∈ V ⊆ Rn. Not coincidentally, the costate dynamics (3.7) from PMP are

of the form (3.9a), with a forcing term v(t) = φx(t, x(t), u(t)) from the running cost.

Indeed, PMP can be derived from the variational linearization described above; see [17,

Theorem 2.3.1, Theorem 6.1.1].

3.3.2 Contractivity of the Adjoint

We now examine the adjoints of strongly contracting systems. When the original

system is contracting with respect to a norm ‖·‖, it is natural to study the adjoint

system using the dual norm ‖·‖?, as the following lemma suggests.

Lemma 3.4 (Dual Lipschitz constants). Let ‖·‖ : Rn → R≥0 be a norm, and let ‖·‖? be

its dual norm. Let f, g : Rn → Rn be a pair of continuously differentiable vector fields,

such that Dxf(x) = Dxg(x)T for all x ∈ Rn. Then

(i) Lip‖·‖(f) = Lip‖·‖?(g), and

(ii) osL‖·‖(f) = osL‖·‖?(g).

The following is an immediate consequence of Lemma 3.4:
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Theorem 3.5 (Dual contraction). Consider the pair of dynamical systems (3.3) and

(3.9a). Let T > 0 and c > 0, let ‖·‖ be a norm on Rn, and let λ←(t) = λ(T − t) be the

time-reversed trajectory of (3.9a) (where we study the time-reversed dynamics due to the

minus sign in the vector field). The following are equivalent:

(i) the x(t) system is strongly infinitesimally contracting with respect to ‖·‖ with rate

c, and

(ii) the λ←(t) system is strongly infinitesimally contracting with respect to ‖·‖? with

rate c.

Proof. Let g be the function

g(t, λ̃, x̃, ũ) ,
dλ←(t)

dt
= Dxf(t, x̃, ũ)Tλ̃+ v(t),

For all fixed t, λ̃, x̃, and ũ, we have Dλg(t, λ̃, x̃, ũ) = Dxf(t, x̃, ũ)T. Hence, applying

Lemma 3.4 to the maps g̃(λ) = g(t, λ, x̃, ũ) and f̃(x) = f(t, x, ũ), we obtain osL‖·‖(f̃) =

osL‖·‖?(g̃). Thus the maps λ = g(t, λ, x̃, ũ) are uniformly one-sided Lipschitz with con-

stant −c with respect to ‖·‖?, if and only if the maps x 7→ f(t, x, ũ) have the same

property with respect to ‖·‖.

3.3.3 Bounds on Adjoint Dynamics

Theorem 3.5 establishes that λ←(t) is strongly contracting so long as the original

system is strongly contracting, so we can exploit standard bounds on contracting systems

to bound the evolution of λ(t). Before stating these bounds, we impose the following two

assumptions:

Assumption 3.1 (Strong contractivity). The system (3.3) is strongly infinitesimally
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contracting with rate c > 0, i.e., osL(f(t, x̃, ũ)) ≤ −c for all t ∈ [0, T ] and ũ ∈ U .

Furthermore, the trajectory of (3.3) on the interval [0, T ] with u(t) = 0k is bounded.

Assumption 3.2 (Lipschitz continuity, Pt. I). For all fixed t ∈ [0, T ] and x ∈ Rn, the

map u 7→ f(t, x̃, u) from (Rk, ‖·‖U) into (Rn, ‖·‖) is Lipschitz with constant `f,u.

Strong contractivity is a fairly strong assumption. For example, if some x∗ ∈ Rn is an

equilibrium point of the unforced system for all t, strong contractivity implies that x∗ is

globally exponentially stable (due to Lemma 3.1). Due to Theorem 3.5, the assumption

also implies that the adjoint dynamics are also strongly contracting. Consequently, we

can prove that all state and costate trajectories remain bounded.

Lemma 3.6 (Boundedness of state and costate). Consider the system (3.3) and its

adjoint (3.7). If the input spaces U ⊂ (Rk, ‖·‖U) and V ⊂ (Rn, ‖·‖?) are bounded, then

under Assumptions 3.1 and 3.2, there exist bounded sets X ⊂ (Rn, ‖·‖) and Λ ⊂ (Rn, ‖·‖?)

such that x(t) ∈ X and λ(t) ∈ Λ for all t ∈ [0, T ] and measurable u : [0, T ] → U and

v : [0, T ]→ V .

In the remainder of this chapter, we will let X,Λ ⊂ Rn be the bounded sets guaranteed

by Lemma 3.6. In particular, the boundedness of λ(t) allows us to impose additional

Lipschitz continuity assumptions:

Assumption 3.3 (Lipschitz continuity, Pt. II). For all fixed t ∈ [0, T ], x̃ ∈ X, ũ ∈ U ,

and λ̃ ∈ Λ,

(i) the map x 7→ Dxf(t, x, ũ)Tλ̃ from (Rn, ‖·‖) into (Rn, ‖·‖?) is Lipshitz with constant

`fx,x, and

(ii) the map u 7→ Dxf(t, x̃, u)Tλ̃ from (Rk, ‖·‖U) into (Rn, ‖·‖?) is Lipschitz with con-

stant `fx,u.
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We are now ready to state the first bound on the evolution of the adjoint trajectories.

Theorem 3.7 (Grönwall comparison of costates). Consider the system (3.3) and its

adjoint (3.9a) with Assumptions 3.1–3.3. Let u, ū : [0, T ] → U and v, v̄ : [0, T ] → V

be two pairs of measurable input signals, and let λ, λ̄ : [0, T ] → Rn be the corresponding

adjoint trajectories. Then for all t ≥ 0,

‖λ(t)− λ̄(t)‖? ≤ e−c(T−t)‖λ(T )− λ̄(T )‖?

+

∫ T

t

e−c(τ−t)‖v(τ)− v̄(τ)‖? dτ

+ `fx,u

∫ T

t

e−c(τ−t)‖u(τ)− ū(τ)‖U dτ

+
`fx,x`f,u sinh(c(T−t))

c

∫ t

0

e−c(T−τ)‖u(τ)−ū(τ)‖U dτ

+
`fx,x`f,ue

−c(T−t)

c

∫ T

t

sinh(c(T−τ))‖u(τ)−ū(τ)‖U dτ.

(3.10)

Theorem 3.7 provides a somewhat unwieldy bound. We can sacrifice its sharpness to

obtain a much simpler incremental ISS property.

Corollary 3.8 (Incremental ISS of adjoint systems). Under the same hypotheses as

Theorem 3.7,

sup
t∈[0,T ]

‖λ(t)− λ̄(t)‖? ≤ ‖λ(T )− λ̄(T )‖?

+ κ sup
t∈[0,T ]

‖v(t)− v̄(t)‖?

+
(
`fx,uκ+ `fx,x`f,uκ

2
)

sup
t∈[0,T ]

‖u(t)− ū(t)‖U .

(3.11)

where

κ = c−1(1− e−cT ). (3.12)
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3.4 Applications to Optimal Control

Here we show how the contractivity of the adjoint system leads to the contractivity

of the MSA iteration, under additional Lipschitz continuity assumptions.

Assumption 3.4 (Lipschitz continuity of cost gradients). For all fixed t ∈ [0, T ], x̃ ∈ X,

and ũ ∈ U ,

(i) the map x 7→ φx(t, x, ũ) from (Rn, ‖·‖) into (Rn, ‖·‖?) is Lipschitz with constant

`φx,x,

(ii) the map u 7→ φx(t, x̃, u) from (Rk, ‖·‖U) into (Rn, ‖·‖?) is Lipschitz with constant

`φx,u, and

(iii) the map x 7→ ψx(x) from (Rn, ‖·‖) into (Rn, ‖·‖?) is Lipschitz with constant `ψx,x.

Assumption 3.5 (Lipschitz continuity of the optimum). There exists a continuous map

h : [0, T ]×X × Λ→ U such that

h(t, x, λ) ∈ argmin
u∈U

H(t, x, λ, u) (3.13)

for all t ∈ [0, T ], x ∈ X, and λ ∈ Λ, with ties broken in an identical manner as the MSA

operator, where for all fixed t ∈ [0, T ], x̃ ∈ X, and λ̃ ∈ Λ,

(i) the map x 7→ h(t, x, λ̃) from (Rn, ‖·‖) into (Rk, ‖·‖U) is Lipschitz with constant `h,x,

and

(ii) the map λ 7→ h(t, x̃, λ) from (Rn, ‖·‖?) into (Rk, ‖·‖U) is Lipschitz with constant

`h,λ.
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Notice that Assumption 3.5 implies that MSA(u) is measurable for any u ∈ U . With

these Lipshitz assumptions, we can finally bound the Lipschitz constant of the MSA

operator.

Theorem 3.9 (Contractivity of MSA). Suppose that Problem 3.1 is nonsingular and

satisfies Assumptions 3.1–3.5, and consider the norm ‖·‖U : U → R≥0 given by

‖u‖U = sup
t∈[0,T ]

‖u(t)‖U . (3.14)

The following are true:

(i) The Lipschitz constant of an MSA iteration with respect to the ‖·‖U norm is bounded

by

Lip(MSA) ≤ b1κ+ b2κ
2 (3.15)

where

b1 = `h,x`f,u + `h,λ (`ψx,x`f,u + `φx,u + `fx,u) (3.16a)

b2 = `h,λ`f,u (`φx,x + `fx,x) (3.16b)

(ii) If b1κ + b2κ
2 < 1, then the MSA operator is a contraction; hence it has a unique

fixed point û ∈ U , the MSA iterates u(i) = MSAi(u(0)) converge to û from any initial

guess u(0) ∈ U , and

‖u(i)(t)− û(t)‖U ≤
(

(b1κ+ b2κ
2)i

1− b1κ− b2κ2

)
‖u(1) − u(0)‖U

for all t ∈ [0, T ].
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Figure 3.1: Diagram of the nonlinear circuit studied in Section 3.5.

Corollary 3.10 (Uniqueness and Sufficiency). Under the same hypotheses as Theorem

3.9, if additionally

(i) the Hamiltonian has a unique minimizer for all t ∈ [0, T ], x ∈ X, and λ ∈ Λ,

(ii) an optimal control u∗ exists, and

(iii) the time horizon T is sufficiently small or the contraction rate c is sufficiently large

that Lip(MSA) < 1,

then u∗ is the unique optimal control, and PMP is a sufficient condition for optimality.

3.5 Example

For an illustrative example the results, consider the circuit from [76, §1.2.2], depicted

in Figure 3.1. The circuit contains a nonlinear resistive element, with a current-voltage

relationship ih = r(vh) for some twice-differentiable function r : R → R with r(0) = 0.

We assume that R > 1, that r′(x1) ≥ 1 + ε for some ε > 0, and that r′′(x1) is bounded

for all x1 ∈ R. (This assumption allows us to use the L∞ norm for simplified analysis;

weighted norms can be used to generalize the parameter ranges.) The state variables are

x1 ∈ R (voltage across the nonlinear element) and x2 ∈ R (current through the inductor),
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and the control input u ∈ R is the voltage across the source. The dynamics are

ẋ1 =
1

C
(−r(x1) + x2) , ẋ2 =

1

L
(−x1 −Rx2 + u)

from an initial condition x(0) = 02. Our objective is to minimize the cost

J [u] =

∫ T

0

1

2
u2(t)︸ ︷︷ ︸
φ

dt+
γ

2
‖x(T )− x∗‖2

2︸ ︷︷ ︸
ψ

for some terminal cost weight γ > 0, where x∗ ∈ R2 is an arbitrary target state, and the

space of permissible controls is U = [−umax, umax] for some umax > 0. Note that 02 is an

equilibrium point of the unforced dynamics.

3.5.1 Examining the Assumptions

This optimal control problem satisfies Assumptions 3.1–3.5, as we demonstrate in the

following paragraphs.

Assumption 3.1 The dynamics are strongly infinitesimally contracting with respect

to the L∞ norm:

osL(f) = sup
x∈R2

µ∞(Dxf(x))

= sup
x1∈R

max

{
1− r′(x1)

C
,

1−R
L

}
= max

{
1− dmin

C
,

1−R
L

}
, −c < 0

where dmin = infx1∈R r
′(x1) > 1. Thus Assumption 3.1 is satisfied with contraction rate

c.
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Assumption 3.2 Given two inputs u, ū ∈ R, ‖f(x, u)− f(x, ū)‖∞ = L−1|u− ū| for all

x ∈ R2, so Assumption 3.2 is satisfied with `f,u = L−1.

Reachability Analysis Before we examine Assumption 3.3, it is useful to bound the

set of states that are reachable within time T . Lemma 3.1 allows us to compare x(t) with

the trajectory at the origin corresponding to zero input:

‖x(t)‖∞ ≤ L−1

∫ t

0

e−c(t−τ)|u(τ)| dτ ≤ umax(1− e−ct)
cL

In particular, x(T ) belongs to a L∞ ball centered about the origin, with radius umaxL
−1κ,

where κ is defined in (3.12).

Assumption 3.3 Since the Jacobian matrix Dxf(x, u) has no dependence on u, we

have `fx,u = 0. To evaluate `fx,x, note that

Dxf(x, u)Tλ =

−C−1r′(x1) −L−1

C−1 −RL−1


λ1

λ2


Then for any x, x̄ ∈ R2,

‖Dxf(x, u)Tλ−Dxf(x̄, u)Tλ‖1 = C−1|λ1||r′(x1)− r′(x2)|

≤ C−1η|λ1||x1 − x2|

where we define η = supx∈R |r′′(x)|. (Note we evaluate the L1 norm, which is dual to the

L∞ norm of the state space.) To bound |λ1|, we note that Theorem 3.5 implies that the

time-reversed costate dynamics λ←(t) are strongly infinitesimally contracting with rate
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c. Furthermore, the origin is a trajectory, so by Lemma 3.1,

‖λ←(t)‖1 ≤ e−ct‖λ←(0)‖1 ≤ ‖λ(T )‖1, ∀t ∈ [0, T ].

Since λ(T ) = ψx(x(T )), we can then bound

‖λ(t)‖1 ≤ ‖ψx(x(T ))‖1 = γ‖x(T )− x∗‖1, ∀t ∈ [0, T ].

Then for all t ∈ [0, T ],

|λ1(t)| ≤ ‖λ(t)‖1 ≤ γ
(
‖x∗‖1 + 2umaxL

−1κ
)
,

using the property that ‖x(T )‖∞ ≤ umaxL
−1κ. Thus, Assumption 3.3 is satisfied with

`fx,x =
γη

C

(
‖x∗‖1 + 2umaxL

−1κ
)
.

Assumption 3.4 Since the running cost φ(u) = u2 has no dependence on x, we have

`φx,x = 0 and `φx,u = 0. Furthermore, for any x, x̄ ∈ R2, ‖ψx(x)− ψx(x̄)‖1 = γ‖x− x̄‖1,

so Assumption 3.4 is satisfied with `ψx,x = γ.

Assumption 3.5 The Hamiltonian can be written

H(x, λ, u) =
1

2
u2 +

λ2

L
u+ b(x, λ)
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for a constant offset b(x, λ). Minimizing the Hamiltonian over u ∈ [−umax, umax] leads to

the unique minimizer

h(λ) =


−umax, L−1λ2 > umax

−L−1λ2, L−1|λ2| ≤ umax

umax, L−1λ2 < −umax

The map h is Lipschitz in λ with no dependence on x, so Assumption 3.5 is satisfied with

`h,x = 0 and `h,λ = L−1.

3.5.2 Convergence of MSA

Having demonstrated that the optimal control problem satisfies Assumptions 3.1–3.5,

we can state the guarantees of Theorem 3.9. Substituting in the Lipschitz constants from

the previous section into (3.16a)–(3.16b), we obtain

b1 =
γ

L2
, b2 =

γη

CL2

(
‖x∗‖1 + 2umaxL

−1κ
)

By Theorem 3.9, convergence is guaranteed when

κ+
η‖x∗‖1

C
κ2 +

2ηumax

LC
κ3 <

L2

γ

3.5.3 Numerical Results

Consider a nonlinearity of the form

r(v) = αv + β

(
1

1− e−kv −
1

2

)
(3.17)
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Figure 3.2: Shape of the r(v) function from (3.17), with α = β = 2, for various values of k.
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Figure 3.3: Bounds on the Lipschitz constant of the MSA operator at various time
horizons, via Theorem 3.9.
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Figure 3.4: Three successive iterates of the MSA algorithm when Lip(MSA) ≤ 0.85,
starting from an initial guess u(0)(t) = 0.

so that dmin , infv∈R r′(v) = α and η , supv∈R |r′′(v)| = βk2/(6
√

3). Figure 3.2 illus-

trates this function for various values of the shape parameter k. We select α = β = 2

and k = 4. Furthermore, we select a target state x∗ = (0.1, r(0.1)), with umax = 2 and

terminal cost weight γ = 100, with model parameters R = 20, L = 11, and C = 1. With

these parameters, the contraction rate is c = 1, and the upper bound on Lip(MSA) from

Theorem 3.9 is plotted in Figure 3.3. We select a time horizon of T = 1, where the bound

Lip(MSA) ≤ 0.85 is guaranteed.

In order to implement the MSA algorithm, we use solve_ivp from the SciPy package

to integrate the state and costate dynamics. This function implements the explicit Runge-

Kutta method RK45, and it approximates the solution as a continuous function using

quartic interpolation. Starting with an initial guess of u(0) = 0, the MSA algorithm

quickly converges, with the iterates u(i) for the first three iterations i ∈ {1, 2, 3} depicted

in Figure 3.4. Note the rapid decay of the L∞ distance between each successive iterate.
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3.6 Conclusion

In this chapter, we have examined an indirect method for the optimal control of

strongly contracting systems. We have observed that the time-reversed adjoints of such

systems are also contracting with the same rate, with respect to the dual norm, leading

to useful bounds on the costate trajectory from PMP. Based on this observation, we

bounded the Lipschitz constant of each iteration of MSA, demonstrating that the iteration

is actually a contraction mapping for sufficiently strongly contractive systems or for

sufficiently short horizons. In these cases, MSA is guaranteed to converge to a unique

control that satisfies PMP. With an additional assumption on pointwise uniqueness of the

minimizer of the Hamiltonian, we showed that this control is indeed the unique optimal

control.

The main approach of this chapter, namely using ISS properties of the adjoint to

bound the Lipschitz constant of a U → U operator, is quite general and could be applied

to many other indirect methods in optimal control. Several variants of MSA, both older

[95, 25] and newer [87, 86], could be studied with this type of analysis in future work,

possibly with more general convergence criteria. Another practical future direction would

be the study of discretized implementation of the forward and backward integration steps,

as in [93]. Of course, one could also analyze indirect methods for extensions of the optimal

control problem, such as constraints on the terminal state or in the infinite time horizon.

An additional interesting direction would be the application of convergence guarantees

to model predictive control of contractive nonlinear systems.
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3.7 Proofs

3.7.1 Proof of Lemma 3.4

For a general matrix A ∈ Rn×n, from the definitions of induced norms and dual norms

we have

‖A‖? = sup
‖y‖?=1

sup
‖z‖≤1

zTAy

Swapping the order of the suprema and applying the definition of the dual norm once

again yields

‖A‖? = sup
‖z‖≤1

sup
‖y‖?=1

yTATz = sup
‖z‖≤1

‖ATz‖??

But Rn with any norm is a reflexive Banach space, so ‖·‖?? = ‖·‖, and thus ‖A‖? = ‖AT‖.

We use this fact to prove both statements. Because g is continuously differentiable and

Dxg(x) = Dxf(x)T,

Lip‖·‖?(g) = sup
x∈X
‖Dxg(x)‖? = sup

x∈X
‖Dxf(x)‖ = Lip‖·‖(f)

and

osL‖·‖?(g) = sup
x∈X

lim
α→0+

‖In + αDxg(x)‖? − 1

α

= sup
x∈X

lim
α→0+

‖In + αDxf(x)‖ − 1

α
= osL‖·‖(f)

3.7.2 Proof of Lemma 3.6

Let x̄(t) be the trajectory of (3.3) corresponding to input ū(t) = 0k. Since (3.3) is

strongly infinitesimally contracting, we can use Lemma 3.1 to compare a trajectory x(t)
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with x̄(t):

‖x(t)− x̄(t)‖ ≤ `f,u
c

(1− e−cT ) sup
τ∈[0,T ]

‖u(τ)‖U

for all t ∈ [0, T ]. Since U and x̄(t) are bounded, x(t) is bounded as well. Similarly,

the time-reversed costate dynamics (3.9) have an equilibrium point at the origin when

v(t) = 0n, regardless of x(t) and u(t), and (due to Theorem 3.5) they are strongly

contracting with rate c > 0. Again, we can use Lemma 3.1 to compare λ←(t) with the

trajectory at the origin:

‖λ←(t)‖? ≤ ‖λ←(0)‖? +
1

c
(1− e−cT ) sup

τ∈[0,T ]

‖v(τ)‖?

for all t ∈ [0, T ]. Since V is bounded, λ←(t) is confined to a ball Λ about the origin.

3.7.3 Proof of Theorem 3.7

As in Theorem 3.5, let λ←(t) = λ(T − t), so that

dλ←(t)

dt
= Dxf(T − t, x(T − t), u(T − t))Tλ←(t)− v(t− T )

At any fixed t, the λ← vector field has the Jacobian matrix Dxf(T−t, x(T−t), u(T−t))T,

which is transpose the Jacobian matrix of f(T − t, ·, u(T − t)). By Assumption 3.1,

osL(f(T − t, ·, u(T − t))) ≤ −c, so Lemma 3.4 implies that the λ← vector field is also

one-sided Lipschitz with constant c, with respect to ‖·‖?. Then we apply Lemma 3.1 to

bound ‖λ←(t)− λ̄←(t)‖? with respect to the inputs u(t), x(t), and v(t), resulting in the
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following bound on ‖λ(t)− λ̄(t)‖?:

‖λ(t)− λ̄(t)‖? ≤ e−c(T−t)‖λ(T )− λ̄(T )‖?

+ `fx,u

∫ T

t

e−c(τ−t)‖u(τ)− ū(τ)‖U dτ

+ `fx,x

∫ T

t

e−c(τ−t)‖x(τ)− x̄(τ)‖X dτ

+

∫ T

t

e−c(τ−t)‖v(τ)− v̄(τ)‖? dτ

We apply Lemma 3.1 once more to remove explicit dependence on x, via the bound

∫ T

t

e−c(τ−t)‖x(τ)− x̄(τ)‖X dτ ≤ `f,u

∫ T

t

∫ τ

0

e−c(τ−t)e−c(τ−τ
′)‖u(τ ′)− ū(τ ′)‖U dτdτ ′

We then swap the order of integration:

∫ T

t

∫ τ

0

e−c(τ−t)e−c(τ−τ
′)‖u(τ ′)− ū(τ ′)‖Udτ ′dτ

=

∫ t

0

∫ T

t

e−c(τ−t)e−c(τ−τ
′)‖u(τ ′)− ū(τ ′)‖Udτdτ ′

+

∫ T

t

∫ T

τ ′
e−c(τ−t)e−c(τ−τ

′)‖u(τ ′)− ū(τ ′)‖Udτdτ ′

=
sinh(c(T − t))

c

∫ t

0

e−c(T−τ)‖u(τ)− ūτ)‖Udτ

+
e−c(T−t)

c

∫ T

t

sinh(c(T − τ))‖u(τ)− ūτ)‖Udτ
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3.7.4 Proof of Corollary 3.8

The first three terms are obvious upper bounds on the first three terms in (3.10), and

sinh(c(T−t))
c

∫ t

0

e−c(T−τ) dτ +
e−c(T−t)

c

∫ T

t

sinh(c(T−τ)) dτ

=

∫ T

t

∫ τ

0

e−c(τ−t)e−c(τ−τ
′) dτ ′dτ ≤ κ

∫ T

t

e−c(τ−t) dτ ≤ κ2

3.7.5 Proof of Theorem 3.9

Let u, ū ∈ U , and let x, x̄ and λ, λ̄ be the corresponding state and costate trajectories.

Then for all t ∈ [0, T ],

‖MSA(u)(t)−MSA(ū)(t)‖U

= ‖h(t, x(t), λ(t))− h(t, x̄(t), λ̄(t))‖U

≤ `h,x‖x(t)− x̄(t)‖+ `h,λ‖λ(t)− λ̄(t)‖?

(3.18)

The costate dynamics are (3.9) with v(t) = −φx(t, x(t), u(t)), which is bounded in

(Rn, ‖·‖?) by the boundedness of x(t) and u(t) and the Lipschitz continuity of φx. By

Corollary 3.8,

‖λ(t)− λ̄(t)‖? ≤ ‖λ(T )− λ̄(T )‖?

+ κ sup
t∈[0,T ]

‖φx(t, x(t), u(t))− φx(t, x̄(t), ū(t))‖?

+
(
`fx,uκ+ `fx,x`f,uκ

2
)

sup
t∈[0,T ]

‖u(t)− ū(t)‖U ,
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where

‖λ(T )− λ̄(T )‖? = ‖ψx(x(T ))− ψx(x̄(T ))‖?

≤ `ψx,x‖x(T )− x̄(T )‖ ≤ `ψx,x sup
t∈[0,T ]

‖x(t)− x̄(t)‖

and

‖φx(t, x(t), u(t))− φx(t, x̄(t), ū(t))‖?

≤ `φx,x‖x(t)− x̄(t)‖+ `φx,u‖u(t)− ū(t)‖U

≤ `φx,x sup
t∈[0,T ]

‖x(t)− x̄(t)‖+`φx,u sup
t∈[0,T ]

‖u(t)− ū(t)‖U

As a consequence of Lemma 3.1, supt∈[0,T ]‖x(t) − x̄(t)‖ ≤ `f,uκ supt∈[0,T ]‖u(t) − ū(t)‖U ,

so we simplify

‖λ(t)− λ̄(t)‖? ≤ `ψx,x`f,uκ sup
t∈[0,T ]

‖u(t)− ū(t)‖U

+ κ2`φx,x`f,u sup
t∈[0,T ]

‖u(t)− ū(t)‖U

+ κ`φx,u sup
t∈[0,T ]

‖u(t)− ū(t)‖U

+ (`fx,uκ+ `fx,x`f,uκ
2) sup

t∈[0,T ]

‖u(t)− ū(t)‖U .

Substituting the state and costate difference bounds into (3.18) completes the proof of

statement (i). Then statement (ii) is a standard consequence of the Banach fixed point

theorem.
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3.7.6 Proof of Corollary 3.10

We first establish that the fixed points of the MSA operator are precisely the controls

that satisfy PMP. One direction is obvious: u∗ = MSA(u∗) implies that u∗ satisfies

PMP. Now suppose that u∗ satisfies PMP, and let x∗, λ∗ be the corresponding state

and costate trajectories. Then u∗(t) ∈ argminu∈U H(t, x∗(t), λ∗(t), u) for all t ∈ [0, T ],

so the assumption that the Hamiltonian has a unique minimizer implies that u∗(t) =

h(t, x∗(t), λ∗(t)) for all t ∈ [0, T ], and thus u∗ = MSA(u∗).

We then establish that the MSA iteration converges to a unique fixed point û. For

T sufficiently small or c sufficiently large, κ is sufficiently small that Lip(MSA) ≤ b1κ+

b2κ
2 < 1, by Theorem 3.9. Then the Banach fixed point theorem establishes that a

unique fixed point û exists, and that the iteration from any initial guess converges to û.

Since an optimal control u∗ exists, it is a fixed point of MSA, and the fixed point of

MSA is unique. Furthermore, if a control u∗ satisfies PMP, then it is a fixed point of

MSA, and hence is equal to the optimal control.
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Chapter 4

High-Order Network Tomography

This chapter was first published in IEEE / ACM Transactions on Networking [120].1

Many tasks regarding the monitoring, management, and design of communication

networks rely on knowledge of the routing topology. However, the standard approach to

topology mapping—namely, active probing with traceroutes—relies on cooperation from

increasingly non-cooperative routers, leading to missing information. Network tomog-

raphy, which uses end-to-end measurements of additive link metrics (like delays or log

packet loss rates) across monitor paths, is a possible remedy. Network tomography does

not require that routers cooperate with traceroute probes, and it has already been used

to infer the structure of multicast trees. This paper goes a step further. We provide

a tomographic method to infer the underlying routing topology of an arbitrary set of

monitor paths using the joint distribution of end-to-end measurements, without making

any assumptions on routing behavior. Our approach, called the Möbius Inference Al-

gorithm (MIA), uses cumulants of this distribution to quantify high-order interactions

among monitor paths, and it applies Möbius inversion to “disentangle” these interac-

1©2022 IEEE. Reprinted, with permission, from Kevin D. Smith, Saber Jafarpour, Ananthram
Swami, and Francesco Bullo, Topology Inference With Multivariate Cumulants: The Möbius Inference
Algorithm, April 2022.
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tions. In addition to MIA, we provide a more practical variant called Sparse Möbius

Inference, which uses various sparsity heuristics to reduce the number and order of cu-

mulants required to be estimated. We show the viability of our approach using synthetic

case studies based on real-world ISP topologies.

4.1 Introduction

Many tasks regarding the monitoring, management, and design of communication

networks benefit from the network operator’s ability to determine the routing topology,

i.e., the incidence between paths and links in the network. During small-scale network

failures, for example, routes may automatically switch, and it is important that the

network operator has knowledge of the new routing matrix. In the case of large-scale

topology failures, inference of the routing topology is a crucial prelude to determining

both the surviving network topology and the available services that remain. Peer-to-

peer file-sharing networks are another example: nodes may want to know the routing

topology so that they can select routes that have minimal overlap with existing routes,

so as to avoid congestion and improve performance. Furthermore, the problem of optimal

monitor placement relies on some knowledge of the network topology, and inference of

the routing matrix provides topological information that could be used to bootstrap new

end-to-end measurements.

Literature Review Two main approaches are available for topology inference in com-

munication networks: using traceroutes, and using network tomography [141]. Tracer-

outes are the simplest and most direct approach, but they rely on intermediate routers

to cooperate by responding to traceroute packets. This cooperation is becoming increas-

ingly uncommon [58], leading to inaccuracies in traceroute-based topology mapping [90].
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Some authors have modified traceroute approaches to account for uncooperative routers

[137, 72, 63], using partial traceroute results to over-estimate the topology, then applying

heuristics and side information to merge nodes. These approaches perform well on test

cases, but a rigorous method of selection among viable topologies would still be desirable.

Another approach to topology inference has started to emerge from the literature

on network tomography. Network tomography is the problem of inferring additive link

metrics (like delays or log packet loss rates) from end-to-end measurements; a nice review

is provided in [28]. Unlike traceroute approaches, network tomography does not rely on

intermediate routers to cooperate with traces. Instead, it measures some metric like

delay or log packet loss rate between hosts, and it solves a linear inverse problem to

infer the values of these metrics on each link. While most tomography literature assumes

that the routing matrix is known, some authors have used tomographic approaches to

infer the routing topology in special cases. In general, these approaches are based on

a collection of statistics called path sharing metrics (PSMs), which are defined for each

pair of host-to-host paths. The PSM for a pair of paths is the sum of metrics across all

links that are shared by the two paths. A topology is then selected that explains all of

the PSMs.

The tomographic approach was first applied to the single-source and multiple-receiver

setting to infer multicast trees. One of the first papers to adopt this idea is [104], which

uses joint statistics of packet loss between pairs of receivers as a PSM. By repeatedly

identifying the pair with greatest path sharing, joining that pair into a “macro-node,”

and re-computing the statistics, the authors iteratively build the multicast tree from the

bottom up. A few years later, [42] generalized this idea from packet losses to other PSMs,

including correlations between packet delays between receiver pairs; and [27] accounted

for measurement noise by moving the problem to a maximum likelihood framework.

Somewhat more recently, [98] re-considered the problem of constructing a multicast tree
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from PSMs and provided new rigorous and more-efficient algorithms. These papers all

reconstruct the tree from PSMs of source-receiver paths.

Later work has extended tomographic topology inference from beyond multicast trees

to more general multiple-source, multiple-receiver problems. In [102], the authors merge

multicast trees to infer the topology with multiple sources, under some “shortest-path”

assumptions on the routing behavior—again using PSMs. [9] provides more general

necessary and sufficient conditions for when network inference is possible based on PSMs.

Both of these papers essentially assume shortest-path routing, an assumption which is not

always valid, for example, due to load balancing in the TCP layer [102]. This assumption

also cannot accommodate more complex probing paths, such as the two-way paths that

emerge when a monitoring endpoint pings another node.

Recent papers have also applied tomography to problems with uncertain (yet not

completely unknown) topologies. In [91], the typical linear inverse problem from tomog-

raphy is replaced with a Boolean linear inverse problem, allowing the authors to identify

failed links from end-to-end data. Similarly, [49] studies the problem of making network

tomography robust to dynamics in the network topology. The last two papers also deal

with the problem of measurement design, i.e. constructing the routing matrix to ensure

identifiability. Neither of these two last papers is concerned with inferring the routing

matrix; however, they do represent approaches outside of the PSM paradigm for gleaning

topological information from end-to-end data in a tomography setting.

Another recent paper [109] introduced a new method for topology inference, called

“OCCAM”. Like most of the other methods we have referenced, OCCAM is based on

PSMs; however, instead of algorithmically constructing the unique topology that is con-

sistent with the PSMs and routing assumptions, OCCAM solves an optimization problem

with an Occam’s razor heuristic. The heuristic is not guaranteed to find the correct net-

work structure (unless the underlying network is a tree), but the authors demonstrate
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good empirical performance. To our knowledge, OCCAM is the only approach to truly

general topology inference via network tomography, i.e., an approach that does not re-

quire any assumptions on routing behavior (beyond the fundamental assumption of stable

paths between source-receiver pairs).

Contributions This chapter provides another such approach to topology inference.

We extend the use of second-order PSMs into higher-order statistics (i.e., statistics in-

volving more than two paths), allowing us to relax any underlying assumptions about the

underlying topology. Our method uses cumulants to quantify high-order interactions be-

tween multiple paths, then applies Möbius inversion to “disentangle” these interactions,

resulting in an encoding of the routing topology. Our general approach, which we call

the Möbius Inference Algorithm (MIA), is a non-parametric method of reconstructing

the routing matrix from multivariate cumulants of end-to-end measurements, under mild

assumptions. It does not require any prior knowledge of the topology or distributions of

link metrics, and works under general routing topologies.

The chapter has three main contributions. First, we provide a novel application of

statistics and combinatorics to network tomography. We show that multivariate cumu-

lants of end-to-end measurements reveal interactions between the monitor paths (in the

form of overlapping links), and we demonstrate how Möbius inversion can be used to in-

fer link-path incidence from these cumulants. Based on these observations, we construct

the Möbius Inference Algorithm (MIA), which recovers a provably correct routing matrix

from these cumulants.

Second, we adapt MIA to the more practical scenario in which a dataset of end-to-end

measurements is available, instead of exact cumulants. This “empirical” variant of the

routing inference algorithm applies a hypothesis test to every candidate column of the

routing matrix, deciding based on the data whether or not the column is present. This
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hypothesis testing is based on a novel statistic, and it works within any framework for

location testing the mean of a distribution.

Third, we create a more practical procedure, called Sparse Möbius Inference, which

modifies MIA using several sparsity heuristics. This procedure minimizes the number

of cumulants that need to be evaluated, restricts cumulant orders to some user-specified

limit, and reduces the time complexity of the algorithm. It also makes the inference more

robust against measurement noise, by replacing the exact Möbius inversion formula with

a lasso regression problem.

Finally, we use many numerical case studies, based on real-world Rocketfuel networks,

to evaluate the performance of Sparse Möbius Inference. We study how the performance

depends on the underlying network, the number of monitor paths, the sample size, and

other parameters.

Organization This chapter takes a didactic approach to introducing MIA and its

sparse variant. Section 4.2 formally describes the communication network model and

key variables, provides a brief introduction to cumulants and k-statistics, and discusses

our three mild assumptions. Section 4.3 considers the easiest setting for topology in-

ference, wherein precise values for all of the necessary cumulants are available without

noise, so that we can focus on the core statistical and combinatorial insights behind MIA.

Section 4.4 then replaces the precise cumulant values with noisy measurements. Then

Section 4.5 replaces MIA altogether with the more practical Sparse Möbius Inference

procedure, which allows the user to cap the order of cumulants they are willing to esti-

mate. Finally, Section 4.6 provides an overview of our numerical results and evaluation.

Proofs are contained in Section 4.8, and additional numerical results are available in the

supplementary material of our publication in IEEE/ACM Transactions on Networking

[120].
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4.2 Modeling and Preliminaries

4.2.1 Model

We consider a network on a (possibly directed) graph G with a set of links L =

{`1, `2, . . . , `m}. Every link is associated with an additive link metric, like a time delay

or log packet loss rate. We will refer to these metrics simply as “delays,” although other

metrics are possible.

For each link, there is a link delay variable U`, which is a random variable representing

the amount of time that a unit of traffic requires to traverse the link. Link delays are not

measured directly. Instead, we will infer properties of these variables from cumulative

delays across certain simple paths in G, called monitor paths. Let Pm be a set of n

monitor paths. Each p ∈ Pm is associated with a path delay variable

Vp =
∑

`∈L s.t.
p traverses `

U`, ∀p ∈ Pm (4.1)

which is the total delay experienced by a unit of traffic along the path p. If we define

a random vector of link variables U =

(
U`1 U`2 · · · U`m

)T

and a random vector of

path variables V =

(
Vp1 Vp2 · · · Vpn

)
, then we can write (4.1) in the form

V = RU (4.2)

using a routing matrix R ∈ {0, 1}n×m, where rp` = 1 if and only if p traverses the link `.

We stress that we do not make any assumptions about the nature of these monitor paths

or the underlying routing behavior. They may be one-way paths between monitoring

endpoints, two-way paths from a ping to a node and back, or both. The paths do not

have to reflect shortest-path routing.
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We suppose that an experimenter is capable of measuring path delays Vp(t) for each

monitor path p, at many sample times t. The experimenter has no prior knowledge about

the link variables U` and does not know the routing matrix R. Importantly, we make the

simplifying assumption that link delays are spatially and temporally independent, i.e.,

U`(t) and U`′(t
′) are statistically independent unless ` = `′ and t = t′. This assumption

is fundamental in the network tomography literature [141, 28, 42, 27, 98, 102].

4.2.2 Preliminaries and Notation

General Notation Let Z≥0 and Z>0 denote the sets of non-negative and positive

integers, respectively. Given a set S and an integer i ≤ |S|, let the binomial
(
S
i

)
=

{S ′ ⊆ S : |S ′| = i} denote the collection of all i-element subsets of S. Given i, n ∈ Z≥0, let((
n
i

))
denote the number of i-element multisets chosen from n distinct elements. Given two

ordered and countable sets X ⊆ Y , define the characteristic vector χ(X, Y ) ∈ {0, 1}|Y |

of X in Y by χi(X, Y ) = 1 if and only if yi ∈ X. Given any function f : X → R, the

support of the function supp(f) is the subset of elements x ∈ X such that f(x) 6= 0.

Multi-Indices A multiset is a set that allows for repeated elements. A multiset can

be represented by a multi-index, which is a function α : S → Z≥0 that maps each

element of S to its multiplicity in the multiset. The support of a multi-index is the set

of elements with positive multiplicity, i.e., supp(α) = {s ∈ S : α(s) ≥ 1}. The size of

a multi-index is its total multiplicity: |α| =
∑

s∈S α(s). If S is an ordered set with n

elements (e.g., if S consists of elements of a vector), then multi-indices on S are naturally

represented as vectors α ∈ Zn≥0; in this case, we will use multi-indices on S and vectors

in Zn≥0 interchangeably. For example, for S = {a, b, c, d}, the multi-index corresponding

to the multiset {a, b, b, d, d, d} can be represented by the vector

(
1 2 0 3

)T

, using an

alphabetic ordering of S.
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Link Sets Throughout this chapter, we make use of two maps from sets of monitor

paths to sets of links. Recall that R ∈ {0, 1}n×m is the routing matrix. For each P ⊆ Pm,

we define the common link set C : 2Pm → 2L by

C(P ) = {` ∈ L : rp` = 1, ∀p ∈ P} (4.3)

and the exact link set E : 2Pm → 2L by

E(P ) = {` ∈ L : rp` = 1, ∀p ∈ P and rp` = 0, ∀p /∈ P} (4.4)

The common link set C(P ) contains all links that are utilized by every path in P . The

exact link set is more strict: E(P ) consists of links that are utilized by every path in P

and that are not utilized by any path outside of P . Neither of these maps are known a

priori. It is worth noting that the exact link set contains all of the information of the

routing matrix, since E(P ) is nonempty if and only if the characteristic vector χ(P, Pm)

is a column of R.

As an example, consider the following routing matrix encoding 8 monitor paths that

utilize 8 links:

R =



1 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 1 0 1 0 1

0 0 1 1 0 1 1 0

0 1 1 1 0 0 0 0

0 1 0 0 1 0 1 0

0 1 1 0 1 0 0 1

0 1 0 0 0 1 1 0


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Distribution Parameters Cumulants
Normal µ, σ2 κ1 = µ, κ2 = σ2, κi = 0 for i ≥ 3
Exponential λ κi = λi(i− 1)! for i ≥ 1
Gamma α, β κi = αβ−i(i− 1)! for i ≥ 1

Table 4.1: Cumulants of common univariate distributions.

In this example, C({p1}) = E({p1}) = {`1}, since column 1 is the only column with a

nonzero first entry, and all other entries in the column are zero. Furthermore, C({p3, p7}) =

E({p3, p7}) = {`8}, since column 8 is the only column with a nonzero third and seventh

entry, and all other entries are zero. But C and E are not always equal: C({p5, p6}) =

{p2}, but column 2 contains other nonzero entries as well, so E({p5, p6}) = ∅. Multiple

common links are also possible, e.g., C({p6, p7}) = {`2, `5}.

4.2.3 Cumulants and k-Statistics

Cumulants are a class of statistical moments, which extend the familiar notions of

mean and covariance to higher orders. A good introduction is provided in [94]; we provide

a quick background here. Given a random variable X, define the cumulant generating

function

K(t) = log E[etX ] = κ1t+
κ2

2!
t2 +

κ3

3!
t3 + · · ·

which admits a Taylor expansion for some sequence of coefficients κ1, κ2, κ3, . . . . These

coefficients are defined as the cumulants of the random variable X. The first three

cumulants are identical to central moments: κ1 is the mean of X, κ2 is the variance, and

κ3 = E[(X − E[X])3]. For orders four and higher, the relationship between cumulants

and central moments is increasingly complicated. Table 4.1 provides some examples of

common distributions whose cumulants have closed-form expressions. Given a random

variable X and an integer i ∈ Z>0, we let κi(X) denote the ith cumulant of X.

Multivariate cumulants extend cumulants to joint distributions. Given some jointly-
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distributed random variables X1, X2, . . . , Xn, the cumulant generating function is

K(t) = log E[et1X1+···+tnXn ] =
∑
α

κα
|α|!t

α

where the sum in the Taylor expansion occurs over all multi-indices α on the set of integers

{1, 2, . . . , n}, and tα denotes the product t
α(1)
1 t

α(2)
2 · · · tα(n)

n . Collecting X1, X2, . . . , Xn into

the random vector X =

(
X1 X2 · · · Xn

)T

, we use either the compact notation κα(X)

or expanded notation κα(X1, X2, . . . , Xn) to represent the multivariate cumulant of the

joint distribution that corresponds to the multi-index α. If α is the multi-index of all

ones, we drop the subscript and use the shorthand notation κ(X1, X2, . . . , Xn). The order

of a cumulant as the size |α| of its multi-index.

First-order multivariate cumulants are means: if α has all zero multiplicites except

α(i) = 1, then κα(X) = E[Xi]. Second-order multivariate cumulants are covariances: if α

has all zero multiplicities except α(i) = α(j) = 1, then κα(X) = cov(Xi, Xj). If instead

α(i) = 2 with all other multiplicities zero, then κα(X) = Var(Xi). We also make use of

two general properties of multivariate cumulants:

(i) Multilinearity. If Y is a random variable independent from X1, X2, . . . , Xn, then

κα(X1, . . . , Xi + Y, . . . , Xn) =

κα(X1, . . . , Xi, . . . , Xn) + κα(X1, . . . , Y, . . . , Xn)

for any index i and multi-index α.

(ii) Independence. If any pair Xi, Xj of the random variables X1, X2, . . . , Xn are inde-

pendent, and α(i) and α(j) are both non-zero, then κα(X) = 0.

Cumulants can be computed analytically from joint distributions using the generating
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function, but for unknown distributions, they must be estimated from samples. Given

an i.i.d. sample x1,x2, . . . ,xN ∈ Rn from X, the k-statistic kα(x1,x2, . . . ,xn) is defined

as the minimum-variance unbiased estimator of κα(X). The first and second-order k-

statistics are sample means and sample covariances, but higher-order k-statistics quickly

become more complex. We refer the reader to [97] and [115] for a discussion of how

general k-statistics are derived. For the purpose of this chapter, it suffices to note that

software packages are available to compute k-statistics from samples, both in R [96] and

our own Python library [114].

4.2.4 Assumptions

At various points throughout the chapter, we will invoke three closely-related as-

sumptions regarding the routing matrix and link delay cumulants. The first assumption

requires that R has no repeated columns:

Assumption 4.1 (Distinct Links). No two links are traversed by precisely the same set

of paths in Pm; i.e., no two columns of R are identical; i.e., |E(P )| ∈ {0, 1} for all

P ⊆ Pm.

This assumption is common in the network tomography literature. If `, `′ ∈ L are used

by precisely the same set of monitor paths, then the link delays U`, U`′ will only show

up in path delays through their sum U` + U`′ . Due to this linear dependence, complete

network tomography is impossible when Assumption 4.1 is violated, since R will be rank

deficient.

The second assumption requires that link delays have nonzero cumulants:

Assumption 4.2 (Nonzero Cumulants). For all ` ∈ L, and for all i = 2, . . . , n, the

delay cumulant is nonzero: κi(U`) 6= 0.
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For most practical purposes, one can think of Assumption 4.2 as meaning that no link

delay distribution is normally distributed. Non-normality is a necessary condition for the

assumption to hold, since the normal distribution has zero-valued cumulants for orders 3

and higher. Non-normality is not technically a sufficient condition, since it is theoretically

possible for a distribution to have zero cumulants at some orders, but these cases are rare.

In fact, the normal distribution is the only distribution with a finite number of nonzero

cumulants [94]. If link delays are known to be non-normally distributed, we consider this

to be a weak assumption.

Finally, the third assumption requires that certain sums of link delays have nonzero

cumulants:

Assumption 4.3 (Nonzero Common Cumulants). For all P ⊆ Pm, and for all i =

2, 3, . . . , n, if C(P ) is nonempty, then
∑

`∈C(P ) κi(U`) 6= 0.

In other words, if all paths in P ⊆ Pm share a collection of common links C(P ), the

delay cumulants on these common links should not cancel out by summing to zero. This

is also a weak assumption, since such a cancellation is very unlikely. In fact, many fami-

lies of distributions supported on R>0 (including exponential and gamma distributions)

have strictly positive cumulants at all orders, in which case Assumption 4.3 is satisfied

automatically.

4.3 Theoretical Foundations

We now proceed with our main theoretical contribution: a simple algorithm to infer

the routing matrix from multivariate cumulants of path latencies. The purpose of this

section is to state the underlying theoretical principles of MIA, so we will temporarily

assume that exact values for multivariate cumulants of the path delay vector V are
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available. In reality, the experimenter seldom knows these exact values and must estimate

them via k-statistics instead, but this requires some extra statistical treatment that we

defer to Sections 4.4 and 4.5. For now, we assume exact cumulant values to focus on the

discrete mathematics that underpin MIA.

MIA works by identifying which exact link sets E(P ) are nonempty, since these

correspond precisely to columns of R (via the characteristic vector of P ). The sizes of

the exact link sets are not directly observable, but they can be inferred from the sizes of

the common link sets. From (4.3) and (4.4), we can see that exact and common link sets

are related by

E(P ) = C(P ) \
⋃
p′ /∈P

C(P ∪ {p′}).

We can count the size of the union using the inclusion-exclusion principle:

∣∣∣∣∣∣
⋃
p′ /∈P

C(P ∪ {p′})

∣∣∣∣∣∣ =
∑
Q⊃P

(−1)|Q|−|P |+1|C(Q)|. (4.5)

Since C(P ∪ {p′}) ⊆ C(P ) for all p′, we can use the inclusion-exclusion formula (4.5) to

find the size of the exact link set as a function of the sizes of the common link sets:

|E(P )| =
∑
Q⊇P

(−1)|Q|−|P ||C(Q)| (4.6)

If we could somehow evaluate the number of common links shared by any set of monitor

paths, we could use the inclusion-exclusion principle to compute any |E(P )|, from which

we could reconstruct the routing matrix.

Unfortunately, counting the number of common links is typically infeasible in a to-

mography setting. But the relationship in (4.6) actually holds for any additive measure

of link sets, not just cardinality, and some additive measures can be inferred directly from
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end-to-end path data. For example, if “|C(Q)|” represents the sum of delay variances

Var(U`) for each link in C(Q), then (4.6) yields the sum of delay variances across links

in E(P ), which is nonzero if and only if E(P ) is nonempty. This sum of delay variances

across common links can be inferred from path delay data—at least for pairs of monitor

paths p, p′, the covariance cov(Vp, Vp′) is equal to the sum of delay variances for each

shared link in C({p, p′}). For larger path sets, we require higher-order statistics—like

multivariate cumulants—to measure “|C(P )|”.

Having conveyed some of the core ideas behind MIA, we are ready to present the

algorithm itself and examine it with more theoretical rigor. The algorithm occurs in

three stages:

(i) Estimation. Estimate a vector of multivariate cumulants of path latencies. This

vector contains information about the links that are common to any given collec-

tion of paths. (The label “estimation” is a misnomer in the context of this section,

wherein cumulants are known precisely, but it will make more sense when we con-

sider the “data-driven” version of the algorithm.)

(ii) Inversion. Apply a Möbius inversion transformation to this vector of estimates.

The vector resulting from this transformation contains the routing matrix, under

a simple encoding. The transformation is linear, so this step can be viewed as a

matrix-vector multiplication.

(iii) Reconstruction. Decode the transformed vector, thereby reconstructing the routing

matrix.

Theorem 4.1 (Analysis of MIA). Consider the application of Algorithm 4.1 to a joint

distribution of path delays V =

(
Vp1 Vp2 · · · Vpn

)T

. Let R ∈ {0, 1}n×m be the true
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Algorithm 4.1 Möbius Inference Algorithm (MIA)

Require: Joint distribution of path delays V
Ensure: Routing matrix R̂

1: {Estimation stage:}
2: Initialize undefined function fn : 2Pm → R
3: for P ⊆ Pm do
4: Define α as any multi-index on Pm such that supp(α) = P and |α| = n
5: fn(P )← κα(V)
6: end for
7: {Inversion stage:}
8: Initialize undefined function gn : 2Pm → R
9: for P ⊆ Pm do

10: gn(P )←∑
Q⊇P (−1)|Q|−|P |fn(Q)

11: end for
12: {Reconstruction stage:}
13: Initialize empty matrix R̂ ∈ Rn×0

14: for P ⊆ Pm do
15: if gn(P ) 6= 0 then
16: R̂←

(
R̂ χ(P, Pm)

)
17: end if
18: end for
19: return R̂
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underlying routing matrix, and let U =

(
U`1 U`2 · · · U`m

)T

be the underlying link

delays, so that V = RU. The following are true:

(i) The algorithm terminates and returns a matrix R̂ ∈ {0, 1}n×m̂ for some m̂ ∈ Z≥0,

in O(2n) time.

(ii) By line 7, the map fn : 2Pm → R satisfies the following property:

fn(P ) =
∑

`∈C(P )

κn(U`), ∀P ⊆ Pm (4.7)

(iii) By line 12, the map gn : 2Pm → R satisfies the following property:

gn(P ) =
∑

`∈E(P )

κn(U`), ∀P ⊆ Pm (4.8)

(iv) Every column of R̂ is also a column of R. Furthermore, under Assumptions 4.1

and 4.2, R and R̂ are equivalent (up to a permutation of columns).

Statement (i) is obvious from inspection of the algorithm, so we will focus on proving

the remaining three statements, which fall neatly into the three stages (estimation, inver-

sion, and reconstruction) of the algorithm. In the following subsections, we will analyze

each of these three stages.

4.3.1 Estimation Stage

The purpose of the estimation stage is to collect a vector of high-order statistics of

path delays. These statistics are carefully chosen so that they contain information about

the routing topology. The title of “estimation” for this stage will be more appropriate
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in the next subsection, when we must estimate these statistics from data (rather than

compute them analytically from a known distribution).

In the estimation stage, we gather a vector of multivariate path delay cumulants for

every path set P ⊆ Pm. The multivariate cumulants that we select for each path set are

based on representative multi-indices:

Definition 4.2 (Representative Multi-Indices). Let P ⊆ Pm, and let i ≥ |P | be an

integer. An ith-order representative multi-index of P is any multi-index α on Pm such

that supp(α) = P and |α| = i. We use Ai,P to denote the set of all ith-order representative

multi-indices of P .

We will now collect a vector of path delay cumulants, with one entry corresponding to

each set of monitor paths in 2Pm :

Definition 4.3 (Common Cumulant). Let i be a positive integer. For each P ⊆ Pm, let

α be any ith-order representative multi-index of P . The ith-order common cumulant is

the map fi : 2Pm → R with entries

fi(P ) = κα(V), ∀P ⊆ Pm (4.9)

Careful readers will also note that we refer to “the” common cumulant, rather than

“a” common cumulant, which would seem more appropriate, given the many choices of

representative multi-indices. But the value of the common cumulant is independent of

the particular choice of representative multi-index—regardless of which representative

multi-index we choose, it is always the sum of univariate cumulants across links that are

traversed by every path in P . Broadly speaking, the value of fi(P ) contains information

about which links are common to every path in P .

Lemma 4.4 (Properties of the Estimation Stage). The following are true:
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(i) Let P ⊆ Pm. If i ≥ |P |, there are
(
i−1
|P |−1

)
ith-order representative multi-indices of

P .

(ii) For all i ∈ Z>0, the common cumulant fi : 2Pm → R satisfies (4.7).

(iii) Statement (ii) of Theorem 4.1 is true, i.e., Algorithm 4.1 correctly computes the

common cumulant vector for order i = n.

4.3.2 Inversion Stage

In the inversion stage, we extract topological information from the vector of common

cumulants by applying an invertible linear transformation. Lemma 4.4 (ii) shows that

common cumulants are sums over common link sets. But it is clear from (4.3) and (4.4)

that common link sets can be written as unions of exact link sets, which more directly

provide information about the routing matrix. Accordingly, common cumulants can be

written as sums over exact link sets, using exact cumulants :

Definition 4.5 (Exact Cumulant). For each positive integer i, we define the ith-order

exact cumulant gi : 2Pm → R by (5.10), replacing n with i.

In the following lemma, we formalize the relationship of common cumulants as sums of

exact cumulants. We then apply Möbius inversion to this sum:

Lemma 4.6 (Properties of the Inversion Stage). Let fi be the common cumulant vector,

and let gi : 2Pm → R. The following three statements are equivalent:

(i) gi is the exact cumulant vector.

(ii) fi and gi satisfy

fi(P ) =
∑
Q⊇P

gi(Q), ∀P ⊆ Pm (4.10)
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(iii) fi and gi satisfy

gi(P ) =
∑
Q⊇P

(−1)|Q|−|P |fi(Q), ∀P ⊆ Pm (4.11)

Furthermore, statement (iii) of Theorem 4.1 is true, i.e., the Algorithm 4.1 correctly

computes the exact cumulant vector.

Lemma 4.6 is the heart of MIA. By applying the inversion (4.11) to the vector of common

cumulants, we calculate the vector of exact cumulants. Whereas common cumulants con-

tain information about which links are traversed by every path in a set, exact cumulants

contain information about which links are traversed precisely by the paths in a set, i.e.,

they contain information about columns of the routing matrix.

4.3.3 Reconstruction Stage

The final stage of the algorithm is to reconstruct the routing matrix from the exact

cumulant vector. This reconstruction is straightforward, using only the zero-nonzero

pattern of gi:

Lemma 4.7 (Properties of the Reconstruction Stage). Let gn : 2Pm → R be the exact

cumulant vector. For each P ⊆ Pm, let χ(P, Pm) ∈ {0, 1}n be the characteristic vector of

P in Pm. The following are true:

(i) If P ∈ supp(gn), then χ(P, Pm) must be a column of the routing matrix. Under

Assumptions 4.1 and 4.2, the converse is also true.

(ii) Statement (iv) of Theorem 4.1 is true.
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4.3.4 Detailed Example

In order to illustrate MIA, we will apply the algorithm to a small example, consisting

of 3 monitor paths that utilize three links. We will walk through each of the three stages

of the algorithm in detail.

Setup Consider a network with three monitor paths Pm = {p1, p2, p3} and three links

L = {`1, `2, `3}, with a routing matrix

R =

`1 `2 `3


p1 1 1 0

p2 1 0 1

p3 0 0 1

(4.12)

Clearly this routing matrix satisfies Assumption 4.1. Each of the three link delay dis-

tributions is exponential, with probability density functions fu`(x) = λ`e
−λ`x for each

` ∈ L, and intensities λ`1 = 1, λ`2 = 1.5, and λ`3 = 2 (in units of per millisecond).

All cumulants of exponential distributions are positive, so the latency variables satisfy

Assumption 4.2. We then invoke (4.2) to obtain the joint distribution of path delays.

We assume that the theoretical distribution of path delays is known—in particular, the

cumulants κα(V) are known exactly—and our objective is to use these cumulants to infer

the routing matrix, via Algorithm 4.1.

Estimation Stage

There are seven non-empty subsets of Pm. Sets with one path only have one 3rd-order

representative multi-index; for example, the path set P = {p1} has a unique representa-

tive multi-index α = (3, 0, 0). Sets with two paths have 2 representative multi-indices;
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for example, P = {p1, p2} has α = (2, 1, 0) and α′ = (1, 2, 0). The three-element path set

P = Pm has only the one representative multi-index α = (1, 1, 1). For each of these seven

path sets, we will select one of the representative multi-indices arbitrarily and collect

them into the common cumulant vector. For example:

f3 =



f3({p1})

f3({p2})

f3({p3})

f3({p1, p2})

f3({p1, p3})

f3({p2, p3})

f3(Pm)



=



κ(3,0,0)(V)

κ(0,3,0)(V)

κ(0,0,3)(V)

κ(1,2,0)(V)

κ(1,0,2)(V)

κ(0,1,2)(V)

κ(1,1,1)(V)



=



70/27

9/4

1/4

2

0

1/4

0


It is worth noting that f3 agrees with (4.7), i.e., we can decompose the vector into

univariate cumulants of link delays:

f3 =



κ(3,0,0)(V)

κ(0,3,0)(V)

κ(0,0,3)(V)

κ(1,2,0)(V)

κ(1,0,2)(V)

κ(0,1,2)(V)

κ(1,1,1)(V)



=



κ3(U1) + κ3(U2)

κ3(U1) + κ3(U3)

κ3(U3)

κ3(U1)

0

κ3(U3)

0



=



70/27

9/4

1/4

2

0

1/4

0


Of course, performing this decomposition relies on our prior knowledge of R and the link

delay distributions, which are unavailable to the experimenter.
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Inversion Stage

In order to obtain the exact cumulant vector g3 from the common cumulant vector

f3, we apply the Möbius inversion transformation (4.11). Note that this transformation

is linear, and it can be represented in the matrix form g3 = Xf3, where the matrix X

contains the coefficients (−1)|Q|−|P |:



g3({p1})

g3({p2})

g3({p3})

g3({p1, p2})

g3({p1, p3})

g3({p2, p3})

g3(Pm)



=



1 0 0 −1 −1 0 1

0 1 0 −1 0 −1 1

0 0 1 0 −1 −1 1

0 0 0 1 0 0 −1

0 0 0 0 1 0 −1

0 0 0 0 0 1 −1

0 0 0 0 0 0 1


︸ ︷︷ ︸

X



f3({p1})

f3({p2})

f3({p3})

f3({p1, p2})

f3({p1, p3})

f3({p2, p3})

f3(Pm)



Evaluating this transformation, we obtain the following expression for the exact cumulant

vector:

g3 =



g3({p1})

g3({p2})

g3({p3})

g3({p1, p2})

g3({p1, p3})

g3({p2, p3})

g3(Pm)



=



16/27

0

0

2

0

1/4

0


We can verify that these values for g3 agree with both (5.10) and (4.10). For example,
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the routing matrix (4.12) implies that E({p1}) = {`2}, so (5.10) gives

g3({p1}) =
2

λ3
`2

=
16

27

in agreement with our computed result for g3. Furthermore, (4.10) claims that we can

decompose f3({p1}) according to

f3({p1}) = g3({p1}) + g3({p1, p2}) + g3({p1, p3}) + g3(Pm)

=
70

27

in agreement with f3({p1}) from the previous stage.

Reconstruction Stage

All that remains is to examine the zero-nonzero pattern of g3. Note that g3 has three

non-zero entries: P1 = {p1}, P2 = {p1, p2}, and P3 = {p2, p3}. We can then reconstruct

the routing matrix from the characteristic vectors of these three path sets:

R̂ =

(
χ(P1, Pm) χ(P2, Pm) χ(P3, Pm)

)
=


1 1 0

0 1 1

0 0 1


Observe that R̂ is equivalent to the “ground truth” routing matrix in (4.12), modulo an

irrelevant permutation of columns, as guaranteed by Theorem 4.1 (iv).
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4.4 From Distributions to Data

Having presented the core theory underlying MIA, we now turn to a more practical

problem: routing matrix inference from data, rather than from a theoretical distribution.

Instead of knowing the joint distribution of the path delay vector V, in this section, we

only assume that an i.i.d. sample v1,v2, . . . ,vN ∈ Rn of is available. Thus, instead of

using ground-truth cumulant values κα(V) in the estimation stage of the algorithm, we

have to use estimates of these cumulants via the k-statistics kα(v1,v2, . . . ,vN). Moreover,

because k-statistics introduce noise into the inference procedure, we will also need to

modify the reconstruction stage to be robust against this noise.

Estimation Stage In lines 4 and 5 of Algorithm 4.1, MIA selects an arbitrary repre-

sentative multi-index α ∈ An,P and records the common cumulant value fn(P )← κα(V).

The choice of representative multi-index here is truly arbitrary, since all yield an iden-

tical value for κα(V). This is not true for k-statistics. While the expected values of

kα(v1,v2, . . . ,vN) are identical for all α ∈ An,P , the actual values of these statistics will

generally be different. It is not clear that any of these values is a better estimate than

the others, so we propose replacing κα(V) with the average

f̂n(P ) =

(
n− 1

|P | − 1

)−1 ∑
α∈An,P

kα(v1,v2, . . . ,vN) (4.13)

of all k-statistics for the representative multi-indices of P . Thus, we replace both lines

4 and 5 in Algorithm 4.1 with (4.13), as well as using the notation f̂n(P ) instead of

fn(P ) (to highlight that the algorithm is now using an estimate of the common cumulant

instead of its true value).
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Inversion Stage There is no need to modify the inversion stage of the algorithm in

the data-driven setting. The inversion stage simply applies the linear transformation

gn = Xfn, where X encodes the Möbius inversion. When we switch from gn and fn to

vectors of estimates ĝn and f̂n, this transformation is still valid in expectation:

E[ĝn] = X E[f̂n] = Xfn = gn

Reconstruction Stage In line 15 of Algorithm 4.1, MIA checks if an entry of the exact

cumulant vector is nonzero. But in the data-driven scenario, we switch from exact cumu-

lants to estimates ĝn, which only match the zero-nonzero pattern of gn in expectation. To

account for inevitable noise in these estimates, instead of checking if ĝn(P ) = 0, we must

adopt some kind of hypothesis test Nonzero(gn(P ) | v1,v2, . . . ,vN), i.e., some decision

rule to guess whether gn(P ) 6= 0 based on the data. We will examine the construction of

such a test in the next subsection.

The performance of MIA in the data-driven setting depends entirely on the accuracy of

the hypothesis test. This accuracy depends on the test itself, the choice of test parameters

(like significance levels), and the size of the sample size N , so it is difficult to state general

theoretical guarantees regarding the algorithm. Nonetheless, some guarantees are evident

in extreme cases, if Assumptions 4.1 and 4.2 are satisfied:

(i) If the test has no Type I error, i.e., if gn(P ) = 0 always leads to a decision that

Nonzero(gn(P ) | v1,v2, . . . ,vN) is false, then every column of R̂ will be a true

column of R.

(ii) If the test has no Type II error, then R̂ will contain every column of R.

(iii) If the test is consistent, in the sense that the test is free of both Type I and Type

II error in N →∞ limit, then similarly R̂ = R in the N →∞ limit.
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For all practical purposes, none of these extreme cases will apply, and we will have to

rely on the algorithm’s performance in test scenarios to assess its usefulness.

4.4.1 Hypothesis Tests

We now examine the hypothesis test Nonzero(gn(P ) | v1,v2, . . . ,vN), which we will

subsequently abbreviate as Nonzero(gn(P )). Because E[ĝn(P )] = gn(P ), we can assess

the null hypothesis gn(P ) = 0 via an equivalent null hypothesis, that E[ĝn(P )] = 0. There

is no single correct way to perform this mean location test—many approaches exist, with

advantages and disadvantages.

Normal Approximation

Because the statistics ĝn(P ) are asymptotically normally distributed, we could simply

estimate the mean and variance of the distribution and apply a standard z-test. This

approach is used in [125], for example, to perform hypothesis testing on univariate cu-

mulants, using univariate k-statistics. Unfortunately, while the mean of the distribution

is easily estimated by ĝn(P ), the variance relies on computing variances of multivariate

k-statistics, which are both mathematically and computationally complex.

Sample Splitting

Another simple approach is to partition the original N -length sample into M sub-

samples of size N/M , compute ĝn(P ) for each subsample, and use standard hypothesis

testing to assess whether the statistics have zero mean. Since the subsamples are non-

overlapping, each of the M values of ĝn(P ) will be iid, so standard approaches (like

the 1-sample Student’s t-test [36, §9.5]) can be used to test the null hypothesis that

E[ĝn(P )] = 0.
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Bootstrapping

Bootstrapping (see, e.g., [33, Chapter 2]) is a resampling technique that uses the

empirical distribution (i.e., the discrete distribution with uniform weight on each sample

value) to approximate the original distribution. For b = 1, 2, . . . ,M (where typically

M ≈ 50), we define a resample ṽb1, ṽb2, . . . , ṽbN that is chosen randomly with replacement

from the original sample v1,v2, . . . ,vN . We then compute ĝn(P ) for each resample,

resulting in a sample of size M for ĝn(P ), which we can use to perform a mean hypothesis

test. This approach has been applied to estimating confidence intervals for cumulants

[142].

4.4.2 Detailed Example

In order to illustrate the empirical version of MIA, we will continue to use the low-

dimensional example from Section 4.3.4, with the same routing matrix (4.12) and the

same exponentially-distributed link delays. We created a synthetic dataset with 900

independent samples from each link distribution, which we transformed into 900 samples

of Vp1 , Vp2 , and Vp3 based on the sums encoded in R.

We use the sample splitting approach to the Nonzero(g(P )) hypothesis test in this

example. The 900 original sample points are split into 30 samples of size 30. To carry

out the estimation stage, we estimate the common cumulant vector for each of these 30
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P f3(P ) f̂3,P g3(P ) ĝ3,P

{p1} 2.59 2.67± 0.5 0.593 0.66± 0.2
{p2} 2.25 2.31± 0.7 0 0.06± 0.2
{p3} 0.25 0.24± 0.05 0 0.02± 0.02

{p1, p2} 2 2.01± 0.6 2 2.01± 0.5
{p1, p3} 0 −0.01± 0.05 0 −0.01± 0.04
{p2, p3} 0.25 0.23± 0.07 0.25 0.23± 0.06

{p1, p2, p3} 0 0.00± 0.09 0 0.00± 0.09

Table 4.2: Common and exact cumulants in the low-dimensional example. Columns
f3(P ) and g3(P ) report the true underlying values, while f̂3(P ) and ĝ3(P ) show the
mean and standard error of the respective estimates.

samples with the simple average of k-statistics in (4.13):

f̂3 =



f̂3({p1})

f̂3({p2})

f̂3({p3})

f̂3({p1, p2})

f̂3({p1, p3})

f̂3({p2, p3})

f̂3(Pm)



=



k(3,0,0)(·)

k(0,3,0)(·)

k(0,0,3)(·)
1
2
k(1,2,0)(·) + 1

2
k(2,1,0)(·)

1
2
k(1,0,2)(·) + 1

2
k(2,0,1)(·)

1
2
k(0,1,2)(·) + 1

2
k(0,2,1)(·)

k(1,1,1)(·)


Here kα(·) is shorthand for kα(v1,v2, . . . ,vN). Columns 2 and 3 of Table 4.2 report

the means and standard errors for these 30 estimates of f̂3. To perform the inversion

stage, the the vector ĝ3 is then computed by ĝ3 = Xf̂3, where X is the matrix defined

in Section 4.3.4. Columns 4 and 5 of Table 4.2 similarly summarize the distribution of

these 30 estimates for ĝ3. Indeed, all of the f̂3(P ) and ĝ3(P ) averages are within one

standard error of f3(P ) and g3(P ), respectively.

Based on these 30 estimates of ĝ3, we perform the reconstruction stage using a 1-

sample Student’s t-test to assess the null hypothesis that E[ĝ3(P )] = 0 for each path set.

The p-value for each null hypothesis is reported in Table 4.3, as well as the result of the
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P p-value for g3(P ) = 0 χ(P ) is in R?
{p1} 0.001 Yes
{p2} 0.8 No
{p3} 0.5 No

{p1, p2} 0.0005 Yes
{p1, p3} 0.9 No
{p2, p3} 0.0008 Yes

{p1, p2, p3} 1 No

Table 4.3: Hypothesis testing for whether or not χ(P, Pm) is a column of the routing
matrix, at 0.01 significance.

test at a significance of 0.01.

For precisely three of the path sets, we reject the null hypothesis that g3(P ) = 0:

P1 = {p1}, P2 = {p1, p2}, and P3 = {p2, p3}. Assembling the characteristic vectors of

these path sets into R̂, we obtain an identical estimate to our result from Section 4.3.4,

which is identical to the ground truth routing matrix (up to a permutation of columns).

4.5 Sparse Möbius Inference

The key step in the Möbius Inference Algorithm is the linear transformation gi = Xfi,

where gi is a vector of 2n−1 exact cumulants, fi is a vector of 2n−1 common cumulants,

n is the number of monitor paths, and X is the matrix encoding Möbius inversion.

Three problems arise naturally: the computational expense of the transformation X, the

impracticality of populating every entry of fi with empirical measurements, and the noise

present in fi (and gi) due to the use of cumulants with excessively high order. In this

section, we simultaneously tackle these three problems using several different sparsity

heuristics.

Our proposed “Sparse Möbius Inference” procedure proceeds in three stages. In the

first stage, we use measurements of low-order common cumulants to identify which entries

of the fi and gi vectors can contain nonzero entries. We can then ignore all other entries
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of these vectors and drop their corresponding columns and rows from X, reducing the

Möbius inversion down to a (typically much) smaller set of equations. In the second

stage, we impose the following sparsity heuristic on gi: if P is a sufficiently large path

set that is strictly contained within some other path set in supp(fi), then gi(P ) = 0.

This heuristic allows us to remove further entries from both gi and fi, provided we make

a suitable modification to X. Finally, in the third stage, we apply a sparsity-promoting

lasso optimization problem to filter noisy estimates of common cumulants and impute

the values of common cumulants that are impractical to measure. The end result is a

sparse estimate for gi, which only relies on estimates of common cumulants up to a small,

user-specified order.

4.5.1 Stage 1: Bound the Support of fi

In the first stage, we estimate the collection of path sets P ⊆ Pm for which fi(P ) 6= 0.

The key to this process is the observation that fi(Q) 6= 0 only if fi(P ) 6= 0 for all subsets

P ⊆ Q: if just a single subset P has a zero-valued common cumulant, then C(P ) = ∅,

which implies that C(Q) = ∅. If we focus on small path sets, then we can use low-order

cumulants to identify which of these path sets have no common links, and remove all of

their supersets from the support of fi.

We can maintain a compact representation of our estimate of supp(fi) using a bounding

topology. A bounding topology is any collection of path sets B ⊆ 2Pm with the following

property: if fi(P ) 6= 0, then B contains some path set B ∈ B such that P ⊆ B. We will

refer to the collection of all sets contained by some B ∈ B (i.e., the union
⋃
B∈B 2B) as

the “support estimate” of B. Below are two extreme examples:

• B = {Pm} is trivially a bounding topology, albeit not a very informative one, since

the support estimate is 2Pm .

133



High-Order Network Tomography Chapter 4

• B = supp(gi) is a bounding topology: if fi(P ) 6= 0, then some superset B ⊇ P

satisfies gi(B) 6= 0, and thus B ∈ B. This is a “tight” bounding topology, in the

sense that every set in its support estimate is indeed in the support of fi.

Stage 1 begins with an uninformative bounding topology (like B = {Pm}), and it iter-

atively “tightens” B using successive orders of common cumulant estimates. The fun-

damental idea is that if we determine Nonzero(fi(P )) is false for some small path set

P , then we ought to split up all B ∈ B containing P into smaller sets that do not con-

tain P , thereby eliminating all supersets of P from the support estimate. This iterative

tightening procedure then terminates at a (typically small) user-specified cumulant order.

Unfortunately, Nonzero(fi(P )) is usually a hypothesis test with limited statistical

power—there is a chance that our data would incorrectly indicate that fi(P ) = 0, leading

us to remove any superset of P from the support estimate and thus ignore nonzero

values of the common cumulant in future calculations. Such an error could greatly harm

the accuracy of later stages of the topology inference. In order to hedge against this

possibility, we propose a robust procedure that splits a set B ∈ B only if a sufficient

number of subsets of B are found to have zero common cumulant. The user provides a

threshold function t : Z>0 × Z>0 → Z>0, where B ∈ B is never split so long as t(|B|, i)

size-i subsets of |B| are found to have a nonzero common cumulant.

The core of the procedure is Algorithm 4.2, which tightens an estimate of the bounding

topology using common cumulants of some fixed order i. The algorithm initially computes

the collection of all size-i sets P in the support estimate of B for which Nonzero(fi(P ))

is true. What follows is effectively a voting procedure: each of these sets P counts as a

“vote” in favor of keeping each superset Q ⊇ P in the support estimate. If one of the

sets B ∈ B fails to reach its threshold of t(|B|, i) votes, then B is split up into the |B|

subsets obtained by removing one element from B, and the votes for these subsets are
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tallied as well. This process repeats until all the sets in B with size at least i reach their

respective thresholds. Theorem 4.8 formally states the guarantees of this algorithm:

Algorithm 4.2 Tighten(B, i, t)
Require: Bounding topology B ⊆ 2Pm , cumulant order i ∈ Z>0, and threshold function

t : Z>0 × Z>0 → Z>0

Ensure: Tightened bounding topology B′ ⊆ 2Pm

1: Initialize B′ = ∅, X = ∅, and

P =

{
P ∈

⋃
B∈B

(
B

i

)
: Nonzero(fi(P ))

}

2: while |B| > 0 do
3: Remove an arbitrary set B from B and add it to X
4: if |B| < i or |{P ∈ P : P ⊆ B}| ≥ t(|B|, i) then
5: B′ ← B′ ∪ {B}
6: else
7: for p ∈ B do
8: Bsub ← B \ {p}
9: if Bsub /∈ X and no set in B ∪ B′ contains Bsub then

10: B ← B ∪ {Bsub}
11: end if
12: end for
13: end if
14: end while
15: return B′

Theorem 4.8 (Properties of Algorithm 4.2). Let B ⊆ 2Pm be a collection of path sets,

let i ∈ Z>0 be a cumulant order, and let t : Z>0 × Z>0 → Z>0 be a threshold function.

The following are true:

(i) Algorithm 4.2 evaluates IsNonzero(fi(P )) O(ni) times and terminates after O(2q)

iterations of the while loop, where q is the size of the largest set in B. The algorithm

returns a collection of path sets B′ ⊆ 2Pm.

(ii) The support estimate of B′ is a subset of the support estimate of B.
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(iii) For any set P in the support estimate of B, P is also in the support estimate of B′

only if either |P | < i, or if there is a superset Q ⊇ P in the support estimate of B

for which at least t(|Q|, i) size-i subsets R ⊆ Q satisfy Nonzero(fi(R)).

Through the repeated application of Algorithm 4.2 to a collection B and successively

larger orders i, as detailed in Algorithm 4.3, we obtain tighter support estimates. Every

path set in supp(fi) should remain in the support estimate of B after each iteration,

so long as the values of the threshold function t are sufficiently small (and the test

Nonzero(fi(P )) is sufficiently accurate). Furthermore, as we incorporate information

from higher-order cumulants, we remove path sets for which fi(P ) = 0 from the support

estimate. In summary, the support estimate of B becomes a more and more accurate

approximation of supp(fi).

Algorithm 4.3 BoundingTopology(B, i0, if , t)
Require: Initial guess B ⊆ 2Pm , initial cumulant order i0, final cumulant order if , and

threshold function t : Z>0 × Z>0 → Z>0

Ensure: Tightened bounding topology B ⊆ 2Pm

1: for i = i0, i0 + 1, . . . , if do
2: B ← Tighten(B, i, t)
3: end for
4: return B

We will conclude the discussion of Stage 1 by addressing two questions—how should

we select the initial guess for B that is supplied to Algorithm 4.3, and how should we

design the threshold function t?

Choosing an Initial Bounding Topology A safe (albeit inefficient) choice for the

initial guess of bounding topology is B = {2Pm}. Clearly the support estimate of B will

contain every path set in supp(fi). Unfortunately, this choice also maximizes the runtime

of Algorithm 4.3, since the sub-routine Algorithm 4.2 is exponential in the size of the

largest set in B.
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A more practical approach is to use second-order cumulants (i.e., covariances) to

construct an initial guess for B. Second-order k-statistics tend to have a small vari-

ance (compared to the higher-order k-statistics), leading to only a small probability that

Nonzero(f2(P )) yields a false negative, which makes the thresholding in Algorithm 4.2

unnecessary. If we require that Nonzero(f2(P )) is true for all two-element subsets of

each set in B, then we can use second-order cumulants to construct a more efficient ini-

tial guess for B, and then we can run Algorithm 4.3 on this initial guess starting at order

i0 = 3.

One way to efficiently construct this covariance-based initial guess is to use standard

algorithms for maximal clique enumeration. Recall from graph theory that a clique is

any set of nodes for which all nodes in the set are adjacent, and a maximal clique is a

clique that is not contained within a larger clique. Construct a graph Gb = (Pm, Eb)

where each monitor path is a node, and an edge {pi, pj} is included in Eb if and only

if Nonzero(f2({pi, pj})) is true. Cliques in Gb are precisely the path sets for which

Nonzero(f2(P )) is true of every two-element subset. Therefore, we take as our initial

guess for B the set of maximal cliques in Gb. The size of the largest clique is typically

significantly smaller than n, leading to a faster runtime for Algorithm 4.3.

Constructing the Threshold Function Algorithm 4.3 requires the user to specify a

threshold function t(|P |, i), indicating the minimum number of size-i subsets of P that

must pass the nonzero common cumulant test for P to remain in the support estimate.

Choosing the threshold value is a balance—large values may lead to sets in supp(fi) being

rejected from the support estimate, but small values will cause information from many

zero-valued cumulants to be ignored. We will try to devise an intuitive and tunable form

for t(|P |, i) to strike this balance.

Recall that the statistical power of a hypothesis test is the probability of rejecting the
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null hypothesis given that the alternative hypothesis is true—in our case, the probability

that Nonzero(fi(P )) is true if indeed P ∈ supp(fi). Suppose that, for each P ∈ supp(fi),

the corresponding test Nonzero(fi(P )) is true independently and with uniform probabil-

ity 1 − β. Under these (inaccurate but nonetheless useful) assumptions, the number of

size-i subsets of any Q ∈ supp(fi) for which Nonzero(fi(P )) is true follows a binomial

distribution, with
(|Q|
i

)
trials and a success probability of 1 − β. Hence, the probability

that at least t(|Q|, i) size-i subsets of Q pass the nonzero test is 1−F|Q|,i(t(|Q|, i)), where

F|Q|,i is the cdf of the binomial distribution.

Because Q truly belongs to the support of fi, it is highly undesirable that we erro-

neously remove Q from the support estimate by setting the threshold t(|Q|, i) inappro-

priately high. To render such an error unlikely, we must ensure that 1 − F|Q|,i(t(|Q|, i))

exceeds some high probability 1−γ ∈ (0, 1), e.g., 1−γ = 0.1. Once we specify γ, we can

solve for the appropriate threshold as the quantity

t(|Q|, i) = max{t ∈ Z>0 : F|Q|,i(t) < γ}

= min{t ∈ Z>0 : F|Q|,i(t) ≥ γ} − 1

In other words, we set t(|Q|, i) as one less the γ quantile of the binomial distribution with(|Q|
i

)
trials and success probability 1−β. There is no good closed-form expression for the

value of this quantile; however, it is readily computable in many statistics packages.

This binomial quantile specification for t(|Q|, i) is somewhat informal, since the out-

comes of Nonzero(fi(P )) are neither independently nor identically distributed, as the

derivation assumed. However, the method does at least provide an intuitive way to

reduce the specification of t down to two tunable parameters, γ ∈ (0, 1) (the highest tol-

erable probability that Q ∈ supp(fi) is accidentally rejected) and β ∈ (0, 1) (an estimate

for the probability that Nonzero(fi(P )) yields a false negative). We could also specify
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different values of these parameters for different k-statistic orders i, to account for the

fact that k-statistics tend to become less accurate with higher orders.

4.5.2 Stage 2: Bound the Support of gi

In the previous stage, we used information from low-order cumulants to narrow the

entries of fi containing nonzero entries down to the support estimate of B. Because

fi(P ) = 0 implies that gi(P ) = 0 as well, this stage also simultaneously restricts the

nonzero entries of g to the support estimate of B. The second stage drops even more

zero-valued entries from these two vectors. Instead of using empirical information from

low-order cumulants, this stage enforces a “hard” sparsity heuristic: that gi(P ) = 0 for

all path sets P larger than some threshold size s, unless that path set is an element of B.

In other words, we assume that the only “large” path sets are those contained directly

in the bounding topology inferred from low-order cumulants.

This heuristic immediately zeros out large swaths of the gi vector, allowing us to

ignore them during the final stage. But the heuristic also allows us to drop even more

entries from the fi vector, as stated in the following lemma:

Lemma 4.9 (Elimination of Large, Non-Maximal Path Sets). Let B ⊆ 2Pm be a collection

of path sets, and let s ∈ Z>0. Assume that the following are true:

(i) Every set in B is maximal (i.e., no B,B′ ∈ B exist such that B ⊂ B′),

(ii) fi(P ) 6= 0 and gi(P ) 6= 0 only if P is in the support estimate of B, and

(iii) gi(P ) = 0 for all P ⊆ Pm with |P | > s and P /∈ B.
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Then for every P in the support estimate of B such that |P | ≤ s,

gi(P ) =
∑

Q⊇P :|Q|≤s
(−1)|Q|−|P |fi(Q)

−
∑

B∈B:B⊇P
(−1)s−|P |

(|B| − |P | − 1

s− |P |

)
fi(B)

(4.14)

Due to (4.14), there is no need to measure or keep track of fi(P ) for sufficiently large

P , unless P is a set in B. Note that these common cumulants are not just zeroed out—

they take on a nonzero value; however, this value is constrained to a linear combination of

the common cumulants for B ∈ B, which are already elements of the common cumulant

vector.

4.5.3 Stage 3: Lasso Optimization

The previous two stages eliminated large parts of the fi and gi vectors, using a

combination of information from low-order cumulants, a priori assumptions, and suitable

modifications of the Möbius transformation matrix X. These two stages significantly

reduce the computational expense of performing Möbius inversion and populating fi with

empirical estimates of common cumulants. Furthermore, because the first stage tends

to eliminate the largest subsets of Pm from the support for fi, we can populate fi with

cumulants of order lower than n. But this cumulant order (which must be at least the

size of the largest path set with a nonzero common cumulant) can still be unrealistically

large, and the resulting common cumulant estimates can be quite noisy. In the final

stage of Sparse Möbius Inference, we address these two problems by filtering fi using

lasso optimization.

To set up the problem, the user first supplies a maximum cumulant order imax ∈ Z>0,

indicating the largest order of cumulant they are willing to estimate. Based on imax,
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we partition the common cumulant vector by fimax =

(
fo fu

)T

, and we make the cor-

responding partition to the inversion matrix X =

(
Xo Xu

)
. fo corresponds to the

common cumulants fimax(P ) of path sets with size at most imax, i.e., the common cumu-

lants that we can “observe” using empirical estimates. All other “unobserved” common

cumulants are consigned to the fu vector. Note that fo is not directly populated with

common cumulant estimates: in fact, both fo, fu are left as decision variables in the lasso

optimization problem, and the value of fo is allowed to deviate from the empirical esti-

mate if it promotes a sparser solution g. Instead, all of the empirical common cumulant

estimates are collected into a vector f̂o, and the corresponding standard deviations of

each estimate are collected into the vector σ. We then solve for the optimal common

cumulant vector f∗ =

(
f∗o f∗u

)T

using the convex, unconstrained optimization problem:

f∗o , f
∗
u = argmin

fo,fu

J(fo, fu)

J(fo, fu) = ||Σ−1(fo − f̂o)||22 + ||D(Xofo + Xufu)||1
(4.15)

Here Σ = diag{σ}, and D is some tunable diagonal matrix of positive weights (which

we will soon discuss in more detail). Having computed the solution, we then evaluate

g∗ = Xof
∗
o + Xuf

∗
u .

Eqn. (5.13) simultaneously de-noises measurements of the observed common cumu-

lant values and imputes the unobserved common cumulants. The quadratic term is

proportional to the log likelihood of the data f̂o (under the assumption of independent

and normally-distributed common cumulant estimates with variances σ2), and the regu-

larizer ||Xofo+Xufu||1 encourages sparsity in the vector g∗. The end result is an estimate

of gimax that only measures common cumulants up to a user-specified order and is more

robust to noise in these measurements.
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As with the full Möbius Inference Algorithm, the columns of the routing matrix

correspond to the nonzero entries of gimax . Thus, once we obtain an optimal (and sparse)

exact cumulant vector g∗, we add the characteristic vector of each P ∈ supp(g∗) to our

estimate of R.

Weighting the 1-Norm A straightforward choice for weighting the 1-norm of g∗ is

to choose a uniform weighting strategy, in which case D = λI for some parameter λ > 0

that weights the 1-norm relative to the log likelihood of the data. But uniform weighting

tends to suppress entries of g∗ corresponding to singleton path sets. If P = {p} for some

p ∈ Pm, then (4.14) shows that gi(P ) is the only entry of gi that depends on fi(P ). Thus,

if the uncertainty σ in the measurement of f̂o(P ) is sufficiently large, the optimizer is

free to zero out g∗(P ) by tuning the decision variable corresponding to fi(P ). Indeed,

we have observed numerically that uniform weighting leads to routing matrix estimates

missing many columns with single nonzero entries.

To counteract this problem, we suggest applying less weight to “under-determined”

entries of g∗. Formally, for each P in the support estimate, let

a(P ) =


|{Q in supp. est. : Xo(Q,P ) > 0}| , |P | ≤ imax

|{Q in supp. est. : Xu(Q,P ) > 0}| , |P | > imax

be the number of entries of g∗ that depend on the decision variable corresponding to

fimax(P ). We then choose the weight corresponding to g∗(P ) according to d(P ) = λa(P )b,

where λ > 0 is a uniform overall weight for the 1-norm term, and b ∈ [0, 1) is some

exponent. The exponent should be non-negative to ensure that the weight is increasing

in a(P ), but it should also be fairly small, so that the weight’s rate of change rapidly

tapers off for positive a(P ). We have found empirically that setting b between 0.2 and
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Stage 1 Stage 2 Stage 3

k-statistics

R̂

Path Delay Data

User Parameters

B X

f̂i(P ),Var(f̂i(P ))Nonzero(fi(P ))

g∗B0, i0, if , t s imax

Figure 4.1: Diagram of the Sparse Möbius Inference procedure.

0.4 is generally a good choice.

4.5.4 Putting Everything Together

For completeness, we now show how the three stages of the Sparse Möbius Inference

procedure come together to form a data-to-routing-matrix pipeline. Figure 5.1 depicts a

diagram of this process.

The user begins Stage 1 with an initial guess of the bounding topology B0 ⊆ 2Pm

(either {Pm} or maximal cliques of the graph formed by nonzero covariances), an initial

cumulant order i0 (usually 2 or 3), a final cumulant order if (e.g., 4 or 5), and a threshold

function t (perhaps using quantiles of the binomial distribution). Algorithm 4.3 then

tightens the support estimate by setting B = BoundingTopology(B0, i0, if , t), using the

path delay dataset to evaluate Nonzero(fi(P )) for orders i = i0, i0 + 1, . . . , if . Then B is

passed on to Stage 2.

In the second stage, the user provides a size threshold s for the “hard” sparsity heuris-

tic. In accordance with (4.14), the modified Möbius inversion matrix X is constructed,
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Figure 4.2: Distributions of F1 scores of the routing matrix estimate for the 120 case
studies, based on a sample of size 100,000. Plots in each row are based on the same
underlying network, and plots in the same column have the same number of monitor
nodes. The three boxes in each plot correspond to values imax = 2, 3, 4 used for
inference.

considering only rows and columns of the matrix corresponding to path sets in the sup-

port estimate of B that are either directly in B or at most of size s. This matrix X is

passed to Stage 3.

To begin the final stage, the user specifies a cumulant order imax (e.g., 3, 4, or 5)

and partitions the common cumulant vector and the matrix X accordingly. For path

sets of size at most imax, the path delay data is once again used to estimate the common

cumulants f̂o and the variances σ2 of these estimates. Solving (5.13) yields a filtered

common cumulant vector f∗, leading to a sparse estimate g∗ = Xf∗ of the exact cumulant

vector. Finally, the estimate R̂ is constructed from the zero-nonzero pattern of g∗.
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4.6 Results and Evaluation

What follows is an abbreviated set of experimental results applying Sparse Möbius

Inference to many synthetic datasets. The full description of our methodology and results

are contained in the supplementary material of our publication in IEEE/ACM Transac-

tions on Networking [120]. We use the F1 score as an accuracy metric, which is the

harmonic mean of the precision (positive predictive value) and recall (detection probabil-

ity) of a binary classifier. Our implementation of the Sparse Möbius Inference procedure

is available at https://github.com/KevinDalySmith/high-order-tomography.

Synthetic Datasets We created 120 synthetic datasets based on real ISP network

topologies, provided by Rocketfuel [124]. We selected three networks within the Rocket-

fuel database with different sizes and densities (AS1221, AS1755, and AS2914). For each

topology, we generated 40 synthetic datasets of path delays: 10 each for experiments

with 5, 6, 7, and 8 monitor nodes. For each of these 40 case studies, the network links

are assigned different gamma delay distributions, the nnode monitor nodes are selected

at random, and the n =
(
nnode

2

)
monitor paths are chosen by computing the shortest

path between each pair of monitor nodes. Then a large sample of the joint path delay

distribution is recorded.

Sparsity of the Common and Exact Cumulants The Sparse Mob̈ius Inference

procedure is based on the postulate that the vectors of common and exact cumulants are

both sparse. This assumption holds up extremely well in our case studies; with n = 28

paths, for example, 99.99% to 99.999% of the entries of the common cumulant vector are

zero.
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Evaluating the Bounding Topology The first stage of Sparse Möbius Inference uses

low-order cumulants to estimate supp(fi). Our results indicate that Algorithm 4.3 is very

effective at finding a bounding topology with a tight support estimate. For almost all of

the 120 case studies, third-order cumulants (if = 3) with a sample size N = 50, 000 or

larger are sufficient to construct a bounding topology that predicts supp(fi) with an F1

score of 1.0 (or extremely close to 1.0).

Evaluating the Estimated Routing Matrix Next, we evaluate the performance of

Sparse Möbius Inference end-to-end. We ran stages 2 and 3 to get an estimate of R̂

for each case study and various sample sizes, using as input to Stage 2 the bounding

topologies computed with if = 4 from the same sample. The hyperparameters of the

lasso heuristic (λ and the exponent b) are tuned separately for each underlying network

and number of monitor paths. Figure 4.2 shows the F1 scores that we obtained for each of

the 120 case studies. For all underlying networks, the performance tends to degrade with

the number of monitor paths, and the best estimate is usually obtained using third-order

k-statistics (imax = 3).

Evaluating the Lasso Heuristic We also evaluated the lasso heuristic in Stage 3 using

ground-truth cumulants. For these experiments, we borrowed the bounding topologies

computed from the N = 100, 000 sample with if = 4, but instead of populating the f̂o

vector in (5.13) with k-statistics computed from this sample, we used the true common

cumulants. These values have no uncertainty, so we removed the quadratic penalty from

J(fo, fu), instead constraining fo = f̂o. Again, the hyperparameters λ and b are tuned

separately for each network and number of monitor paths. Figure 4.3 plots the distribu-

tion of the resulting F1 scores. For smaller (5 or 6 monitor) scenarios, the lasso heuristic

typically achieves 100% accurate routing matrix reconstruction. In larger scenarios, the
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Figure 4.3: Distributions of F1 scores of the routing matrix estimate based on
ground-truth cumulants (instead of k-statistics). Each plot corresponds to a par-
ticular number of monitor paths, and the results are aggregated across case studies
from the 3 underlying networks. The three boxes in each plot correspond to values
imax = 2, 3, 4.

heuristic requires up to third-order cumulants for completely accurate inference.

Discussion Our results paint a mixed but optimistic picture for the Sparse Möbius

Inference procedure. Admittedly, higher F1 scores from the N = 100, 000 sample would

be desirable before the method is deployed in real-world applications. But the two key

components of the procedure—estimating supp(fi) from low-order k-statistics, and using

the lasso sparsity heuristic to infer R without using the high-order cumulants required

by MIA—worked well in isolation, achieving 100% accuracy in most scenarios.
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4.7 Conclusion

We have provided a novel tomographic approach to routing topology inference from

path delay data, without making any assumptions on routing behavior. Through MIA,

we have provided a theoretical framework for extending the use of second-order statistics

in network tomography toward higher-order statistics. Furthermore, we have introduced

the Sparse Möbius Inference procedure, which implements a heuristic and more practical

variant of MIA. We have examined the performance of Sparse Möbius Inference using

many synthetic case studies. While more work is needed to improve the filtering of noisy

k-statistics, our results indicate that the Sparse Möbius Inference can serve as a solid

foundation for future improvements.

4.8 Proofs

4.8.1 Proof of Lemma 4.4

To prove (i), we will count the number of ways that i “counts” of multiplicity can

be assigned to the support of a representative multi-index. Each element of P contains

at least one count, and we are free to distribute the remaining i− |P | counts arbitrarily

across the elements of P . Thus, there are
((
|P |
i−|P |

))
ways to distribute the remaining

counts, which is equivalent to
(
i−1
|P |−1

)
.

To prove (ii), let α be some ith-order representative multi-index of P . Using the
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independence of U` and the multilinearity of multivariate cumulants, we have

fi(P ) = κ

R(1)U, . . . ,R(1)U︸ ︷︷ ︸
α(1) times

, . . . ,R(n)U, . . . ,R(n)U︸ ︷︷ ︸
α(n) times


=

m∑
`=1

(
r
α(1)
1` · · · r

α(n)
n`

)
κ

 U`, . . . , U`︸ ︷︷ ︸
α(1)+···+α(n) times


=

m∑
`=1

 ∏
j∈supp(α)

rj`

κi(U`)

where R(j) denotes the jth row of R. Since
∏

j∈supp(α) rj` = 1 if ` ∈ C(P ) and is zero

otherwise, we obtain

fi(P ) =
∑

`∈C(P )

κn(U`), ∀P ⊆ Pm

To prove (iii), observe that the estimation stage of Algorithm 1 defines the map fn

precisely according to Definition 3, so that fn is the common cumulant vector by line 6

of the algorithm. Then statement (iii) follows by statement (ii) of this lemma.

4.8.2 Proof of Lemma 4.6

We begin with the equivalence (ii) ⇐⇒ (iii). This equivalence holds for any functions

fi, gi : 2Pm → R, and it follows from the Möbius inversion formula applied over 2Pm . See,

for example, [2, Theorem 5.1].

To prove that (i) =⇒ (ii), we will first show that

C(P ) =
⋃
Q⊇P

E(Q) (4.16)

Let ` ∈ C(P ), and examine the column of the routing matrix R` ∈ {0, 1}n. There is

some Q ⊆ Pm for which the characteristic vector satisfies χ(Q,Pm) = R`. It follows that
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` ∈ E(Q). Now, because ` ∈ C(P ), it follows that rp` = 1 for all p ∈ P , so that Q ⊇ P .

Therefore ` ∈ ⋃Q⊇P E(Q). Next, let ` ∈ ⋃Q⊇P E(Q), so that ` ∈ E(Q) for some Q ⊇ P .

It is clear that rp` = 1 for all p ∈ Q, so the inclusion Q ⊇ P implies that ` ∈ C(P ). Now,

if gi is the exact cumulant vector, we can (from Definition 5) substitute (4.16) into

gn(P ) =
∑

`∈E(P )

κn(U`), ∀P ⊆ Pm (4.17)

obtaining ∑
Q⊇P

gi(Q) =
∑
Q⊇P

∑
`∈E(Q)

κi(U`) =
∑

`∈C(P )

κi(U`) = fi(P )

The last step follows from Lemma 4.4 (ii). Hence (i) =⇒ (ii).

To prove that (ii) =⇒ (i), suppose that fi and gi satisfy (4.10). By (4.16),

∑
Q⊇P

gi(Q) =
∑
Q⊇P

∑
`∈E(Q)

κi(U`) (4.18)

for all P ⊆ Pm. We will use (4.18) to show that gi satisfies (4.17) by strong induction over

|P |. In the |P | = n base case, the only possible set is P = Pm, for which (4.18) reduces

to gi(Pm) =
∑

`∈E(Pm) κi(U`). Now suppose that (4.17) holds for all P with |P | ≥ i for

some j ∈ [2, n]. Let P ⊆ Pm such that |P | = j − 1, and observe that

∑
Q⊇P

gi(Q) = gi(P ) +
∑
Q⊃P

∑
`∈E(Q)

κi(U`)

by the inductive hypothesis. Substituting this equation in to (4.18) and simplifying, we

obtain (4.17). Hence (4.17) holds for all P ⊆ Pm, so (ii) =⇒ (i).

To prove the final statement, note that the inversion stage of Algorithm 1 defines the

map gn according to (4.11), where fn is the common cumulant vector (per Lemma 4.4

(iii)), by line 10. It follows from the equivalence proven in this lemma that gn is the exact
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cumulant vector.

4.8.3 Proof of Lemma 4.7

If gn(P ) 6= 0, it is clear from (4.17) that E(P ) is non-empty, which implies that some

column of the routing matrix R` satisfies χ(P, Pm) = R`. Now suppose that Assumptions

4.1 and 4.2 are true. By Assumption 4.1, the set E(P ) is either empty or contains a

single element. By Assumption 4.2, if E(P ) contains a single element `, it must satisfy

κn(U`) 6= 0. Therefore, if gn(P ) = 0, under these two assumptions, it follows that E(P )

is empty. Hence χ(P, Pm) is not a column of the routing matrix.

Per Lemma 4.6, the vector gn in Algorithm 4.1 is the exact cumulant vector by line

10, so we can apply the above result to gn in the reconstruction stage of the algorithm,

yielding statement (iv) of Theorem 4.1.

4.8.4 Proof of Theorem 4.8

There are at most
(
n
i

)
= O(ni) size-i sets, so Nonzero(fi(P )) is evaluated O(ni) times

to compute P . The worst-case runtime occurs when |{P ∈ P : P ⊆ B}| < t(|B|, i) for

each iteration of the while loop, in which case the variable B takes on the value of every

subset (with size at least i) of every original set in B precisely once (because the collection

X tracks which sets have already been processed, preventing redundant iterations of the

while loop). Thus, there are O(2q) iterations of the while loop.

To prove (ii), observe that every set added to B′ was originally in the queue B, and

that sets in the queue are either from the original collection B, or they are subsets of a

previous element in the queue. Hence every set in B′ is a subset of a set in the original

B, so the support estimate of B′ is a subset of the original support estimate. To prove

(iii), suppose that P is in the support estimate of B′, so that some B′ ∈ B′ contains
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P . Sets are only added to B′ on line 5, and the set must satisfy either |B′| < i or

|{P ′ ∈ P : P ′ ⊆ B′}| ≥ t(|B′|, i).

4.8.5 Proof of Lemma 4.9

Let P be in the support estimate of B with |P | ≤ s. We can split the Möbius inversion

formula into two parts:

gi(P ) =
∑

Q⊇P :|Q|≤s
(−1)|Q|−|P |fi(Q)

+
∑

R⊇P :|R|>s
(−1)|R|−|P |fi(R)

Focus on the second sum, and let R ⊇ P such that |R| > s. Condition (iii) implies that

fi(R) =
∑
Q⊇R

gi(Q) =
∑

B∈B:B⊇R
gi(B)

so we can simplify the second sum by

∑
R⊇P :|R|>s

(−1)|R|−|P |fi(R)

=
∑

R⊇P :|R|>s
(−1)|R|−|P |

∑
B∈B:B⊇R

gi(B)

= (−1)−|P |
∑
B∈B

gi(B)
∑

B⊇R⊇P :|R|>s
(−1)|R|

= (−1)−|P |
∑
B∈B

gi(B)

|B|∑
j=s+1

(−1)j
(|B| − |P |
j − |P |

)
=
∑
B∈B

(−1)s+1−|P |
(|B| − |P | − 1

s− |P |

)
gi(B)
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Finally, observe that gi(B) = fi(B), since there are no proper supsersets of B in the

support estimate of B (due to condition (i)).
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Chapter 5

Network Flow Estimation

This chapter was first published in the 36th Conference on Neural Information Processing

Systems [121].

Flow networks are ubiquitous in natural and engineered systems, and in order to un-

derstand and manage these networks, one must quantify the flow of commodities across

their edges. This chapter considers the estimation problem of predicting unlabeled edge

flows from nodal supply and demand. We propose an implicit neural network layer that

incorporates two fundamental physical laws: conservation of mass, and the existence of

a constitutive relationship between edge flows and nodal states (e.g., Ohm’s law). Com-

puting the edge flows from these two laws is a nonlinear inverse problem, which our layer

solves efficiently with a specialized contraction mapping. Using implicit differentiation to

compute the solution’s gradients, our model is able to learn the constitutive relationship

within a semi-supervised framework. We demonstrate that our approach can accurately

predict edge flows in AC power networks and water distribution systems.
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5.1 Introduction

Network flows are a fundamental aspect of modern society, from traffic and commu-

nication networks to power and water distribution systems. Many critical infrastructures

are well-modeled as graphs, with edges that transport vital commodities [106]. Beyond in-

frastructure, network flows are also central to models in epidemiology, ecology, medicine,

and chemical networks. Their dynamics have been well-studied in compartmental sys-

tems theory [66]. Given the prevalence of flow networks in natural and engineered sys-

tems, predicting flows in these networks is an important learning task that may facilitate

monitoring, control, optimization, and protection of these networks.

While domain-specific tools to predict network flows have been around for a while,

the machine learning community has only recently taken an interest in general-purpose

models for network flows. [71] predicts edge flows from partial measurements by making

a smoothing assumption, i.e., by minimizing nodal flow divergence. [111] improves on

this approach by adding a trainable regularizer that can incorporate side information.

Both of these approaches are centered on a notion of approximate conservation, i.e., that

the net inflow to each node should be near zero. Since conservation of mass is a universal

constraint on network flows, imposing this conservation law is an important step toward

embedding physics into the model.

But the conservation law alone is not enough to uniquely determine flow, which is

why both [71] and [111] rely on heuristic regularizers to select the “best” conservation-

respecting flow. In fact, physical networks are often governed by a pair of physical laws:

the conservation law, and a constitutive relationship, which specifies the magnitude and

direction of each edge flow based on “effort” variables at each incident node (e.g., pressure

or voltage). For example, in DC circuits, currents are conserved according to Kirchoff’s

current law, and Ohm’s law is the constitutive relationship that relates current flows to
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nodal potentials. The conservation law and the constitutive relationship together define

the unique edge flows (and nodal efforts).

5.1.1 Contributions

This chapter proposes a model for network flows that embeds both the conservation

law and existence of a constitutive relationship. Our model, which we call an Implicit

Flow Network (IFN), predicts each edge flow using a trainable nonlinear function of la-

tent nodal variables. These latent variables are constrained to a manifold wherein the

conservation law is satisfied. In addition to introducing IFN, we offer the following con-

tributions: (i) a contraction algorithm that is able to both evaluate the IFN layer and

backpropagate gradients through it, (ii) an explicit upper bound on the number of it-

erations required by this algorithm, (iii) a rigorous theoretical comparison between IFN

and the state-of-the-art flow estimation methods in [71, 111], and (iv) numerical experi-

ments from several AC power networks and water distribution systems that indicate IFN

can significantly outperform these baselines on the flow estimation task. Additionally,

because IFN requires a nonlinearity with a constrained slope, we provide (v) a novel

“derivative-constrained perceptron”, which is essentially a trainable activation function

with upper and lower bounds on its slope.

5.1.2 Related Work

Network Flow Estimation Flows on graphs are a classical topic in computer science

[46], and flow forecasting has long been studied in specific domains like traffic [89], but

interest in the flow estimation task from a machine learning perspective appears to be

relatively recent. Deep learning algorithms have been used to predict traffic flows [88, 138]

and power flows [15], but [71] and [111] appear to be the first papers to propose methods
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for domain-agnostic flow prediction, based on the notion of divergence minimization.

Implicit Neural Networks IFN belongs to a growing class of models called implicit

neural networks, which do not explicitly state the output of the model; rather, they

describe a desired relationship between the model’s inputs and outputs. In the prevailing

implicit framework, the output is defined as a fixed point of a trainable perceptron. This

approach was introduced in [7] as a “deep equilibrium network”. Subsequent work has

developed new frameworks for ensuring the existence of the fixed point and computing it

[134, 105, 44, 67, 47]. Other types of implicit neural networks include neural ODEs [24]

and layers that solve convex optimization problems [1] and Nash equilibria [61].

Graph Neural Networks Graph neural networks (GNN) are a diverse family of mod-

els for network-related learning tasks that incorporate graph structure directly into the

model. GNNs can typically be classified into three types, in increasing order of generality

[19, §5.3]: convolutional models [77, 59], attentional models [130], and message-passing

models [48, 8]. Recently, [56] proposed an implicit graph convolutional network. Analo-

gously, IFN can be interpreted as an implicit message-passing GNN, with flows serving

as messages and latent nodal variables acting as an embedding.

5.1.3 Preliminaries and Notation

Given a directed graph G = (V , E), the signed incidence matrix B ∈ {−1, 0, 1}|V|×|E|

is the matrix with entries

Bi,e =


1, i is the head of e

−1, i is the tail of e

0, else

, ∀i ∈ V and e ∈ E

157



Network Flow Estimation Chapter 5

Flow Nodal Variable h(y) =
DC Current Voltage y
DC Power Voltage y2

AC Power (lossless) Voltage Angle sin(y)
Water Flow Rate Hydraulic Head sgn(y)|y|0.54

Mechanical Force Networks Position y

Table 5.1: Examples of physical flow networks and their constitutive relationships.

For an undirected graph, the signed incidence matrix is obtained by assigning an aribtrary

orientation to each edge. For each i ∈ V , let Nin(i),Nout(i) ⊂ V be the in-neighbors and

out-neighbors of i.

Given a vector x ∈ Rn, we use the notation [x] to denote the diagonal matrix diag(x) ∈

Rn×n. Where such notation would be unclear (e.g., may be confused with brackets to

indicate order of operations), we fall back on the diag(·) notation. We write x⊥ to refer

to the vector space that is orthogonal to x, i.e., the space {x′ ∈ Rn : xTx′ = 0}. Given

a positive definite diagonal matrix D ∈ Rn×n, we write ||x||2,D to represent the weighted

2-norm ‖D 1
2x‖2. Given any matrix M , Mi is the ith column vector of M , and M (j) is

the transpose of the jth row vector.

5.2 Implicit Flow Networks

IFN is inspired by the physics of network systems. In many physical networks, nodes

“communicate” through the exchange of a commodity, like power, water, or force, which

can be represented as edge flows. Flows obey a conservation law: for all i ∈ V ,

0 =

net inflow︷ ︸︸ ︷
ui +

∑
j∈Nin(i)

f(i,j)−
net outflow︷ ︸︸ ︷∑

j′∈Nout(i)

f(i,j′), (5.1)
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where u ∈ R|V| are nodal inflows from outside the network, and f ∈ R|E| are the edge flows.

Furthermore, the flows are related to nodal variables through a constitutive relationship

(CR); there is some strictly increasing function h such that, for all (i, j) ∈ E ,

f(i,j) = a(i,j)h(xi − xj), (5.2)

where a ∈ R|E| are edge weights and x ∈ R|V| are nodal “efforts” or “potentials.” For

example, in DC power networks, the CR is Ohm’s law f(i,j) = r−1
(i,j)(xi − xj), where r

are resistances and x are voltages. In lossless AC networks, the CR is the active power

flow equation f(i,j) = a(i,j) sin(xi − xj), where the edge weights are a function of line

parameters and x are voltage angles [83, §6.4]. In water distribution systems, the CR

is the Hazen-Williams formula [45, Sec. 8.15]. Table 5.1 lists several flow networks, the

physical interpretation of the effort variables x, and the flow function h.

We propose IFN as a layer that predicts edge flows based on these two physical

laws—conservation and the existence of a CR:

Definition 5.1 (Implicit Flow Network). An implicit flow network (IFN) is a module

with the following components:

(i) fixed parameters 0 < dmin ≤ dmax,

(ii) trainable parameters θ ∈ Rr for some r, and

(iii) a family of differentiable functions hθ : R → R such that dmin ≤ h′θ(y) ≤ dmax for

all y ∈ R and θ ∈ Rr, which we call flow functions.

The module requires each of the following inputs:

(i) a weighted, connected, undirected graph G = (V , E , a) with edge weights a ∈ R|E|>0,

and
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(ii) a supply / demand vector u ∈ R|V| such that
∑

i∈V ui = 0.

The module outputs the unique vector f ∈ R|E| for which there exists x ∈ R|V| such that

Bf = u (5.3)

f = [a]hθ(B
Tx) (5.4)

where B ∈ {−1, 0, 1}|V|×|E| is the signed incidence matrix of G, and hθ is applied element-

wise. We use the notation FNh,θ(G, u) to represent the solution f given inputs G and u,

flow functions h, and parameters θ.

We will prove that IFNs are well-posed in Theorem 5.2. Note that (5.3) and (5.4)

are just vectorized statements of the conservation law (5.1) and the CR (5.2), so these

two physical laws directly define the output. The IFN’s only trainable component is its

flow function, parameterized by θ. In practice, we will only make calls to the inverse

of the flow function when evaluating and backpropagating through IFN layers, so it is

convenient to learn the inverse flow function directly.

We emphasize that IFNs are layers that can be situated in more complex architectures,

with other models upstream estimating the supply / demand vector, edge weights, or even

the topology. For example, in power systems, demand forecasting is a very well-studied

problem [113, 39], and one can solve the economic dispatch problem to forecast power

generation at each node [122], collectively leading to an estimate of the supply / demand

vector.

5.2.1 Evaluating the Implicit Flow Network

Our approach to evaluating the implicit flow network is adapted from [69] and is

illustrated in Figure 5.1. Any undirected graph G induces a direct decomposition of
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B (incidence matrix)

a (edge weights)

f (flows)u (supply / demand)
Cutset Component

Cycle Component

Inverse Flow Fnc.

Inputs (From data or 

upstream models)

Implicit Flow Network Layer

Figure 5.1: Diagram of the IFN. Inputs are the supply / demand vector u, incidence
matrix B, and edges weights a, which are either known or output from upstream mod-
els. The IFN layer separately computes the cutset component and cycle component of
the flows, with a trainable model for the inverse of the flow function in the CR. These
components are summed and output as the flow prediction, for downstream use.

the edge flow space R|E|: given the incidence matrix B ∈ {−1, 0, 1}|V|×|E|, the cycle space

ker(B) and cutset space Img(BT) are orthogonal, and R|E| = ker(B)⊕ Img(BT). We refer

the reader to [22, §9.4] for a primer on cycle and cutset spaces. Accordingly, we decompose

the vector f = FNh,θ(G, u) as f = fcyc + fcut, where fcyc ∈ ker(B) and fcut ∈ Img(BT).

The cutset component is readily determined from (5.3), since Bf = Bfcut = u implies

that fcut = B†u. Then we must analyze (5.4) to solve for fcyc. Define a cycle projection

matrix P ∈ Rm×m as the oblique projection onto ker(B) parallel to Img([a]BT):

P = Im − [a]BT
(
B[a]BT

)†
B (5.5)

Based on this projection, we define a map T : ker(B)→ ker(B) for all fcyc ∈ ker(B) by

T (fcyc) = P
(
fcyc − dmin[a]h−1

θ ([a]−1fcyc + [a]−1B†u)
)

(5.6)
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We can show that fcyc is the unique fixed point of T , and that T is a contraction mapping,

leading to a simple algorithm to compute this fixed point.

Theorem 5.2 (Properties of T ). Consider an implicit flow network with parameters

dmin, dmax, and θ, with flow functions hθ. Suppose that the inputs G = (V , E , a) and

u ∈ 1⊥|V| are given, and let B ∈ {−1, 0, 1}|V|×|E| be the signed incidence matrix of G. The

following are true:

(i) T is a contraction mapping with respect to || · ||2,[a]−1, with Lipschitz constant

Lip(T ) ≤ 1− dmin

dmax

,

(ii) the sequence of iterates f
(k+1)
cyc = T (f

(k)
cyc) starting from any initial condition f

(0)
cyc ∈

ker(B) converges to a unique fixed point fcyc,

(iii) the output of the implicit flow network is unique and given by

FNh,θ(G, u) = fcyc +B†u (5.7)

Consequently, IFN is well-posed.

Theorem 5.2 provides a simple algorithm for computing the IFN output f : pick any

f
(0)
cyc ∈ ker(B), repeatedly apply the map T until approximate convergence, then add B†u.

Some care is required when implementing this map. Since P is a dense matrix with |E|2

entries, it is undesirable to explicitly construct the cycle space projection matrix for large

networks. Instead, in order to project a vector v ∈ R|E|, we can use the fact that

w , (B[a]BT)†Bv = argmin
w∈Rn

{
||B[a]BTw −Bv||2

}
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so the projection is evaluated as Pv = v − [a]BTw. Using this method of projection to

implement T , the fixed point iteration to compute FNh,θ(G, u) is stated in Algorithm 5.1.

Algorithm 5.1 Evaluating the implicit flow network.

1: B ← signed incidence matrix of G
2: fcut ← argminfcut∈Rm {||Bfcut − u||2}
3: fcyc ← 0m
4: ∆fcyc ←∞1m
5: while ||∆fcyc||2,[a]−1 > ε do
6: v ← dmin[a]h−1

θ ([a]−1fcyc + [a]−1fcut)
7: w ← argminw∈Rn

{
||B[a]BTw −Bv||2

}
8: ∆fcyc ← v − [a]BTw
9: fcyc ← fcyc −∆fcyc

10: end while
11: f ← fcyc + fcut

12: return f

Theorem 5.3 (Implicit Flow Networks, Forward Pass). Consider an implicit flow net-

work with parameters dmin, dmax, and θ, with flow functions hθ. Suppose that the inputs

G = (V , E , a) and u ∈ 1⊥|V| are given, and let B ∈ {−1, 0, 1}|V|×|E| be the signed incidence

matrix of G. The following are true of Algorithm 5.1, with a tolerance of ε > 0:

(i) for each iteration k = 1, 2, . . . of the loop, let f
(k)
cyc represent the new value of fcyc

defined on line 9; and let f
(0)
cyc = 0m. Then

f (k+1)
cyc = T (f (k)

cyc), ∀k ≥ 0;

(ii) the algorithm converges with at most k∗ iterations of the while loop, where

k∗ = 1 +
log
(
d−1

minρ
−1ε
)

log
(

1− dmin

dmax

) (5.8)

and ρ = ||[a]
1
2h−1

θ ([a]−1B†u)||2; and
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(iii) the algorithm returns f ∈ R|E|, where

||f − FNh,θ(G, u)||2,[a]−1 ≤
(
dmax − dmin

dmin

)
ε (5.9)

If evaluating h−1
θ is sufficiently simple, then the most expensive step in the iteration is

solving the ordinary least squares problem on line 7. Using a general-purpose solver, the

complexity of this operation is roughly O(|V|3). But B[a]BT is a sparse Laplacian matrix,

so we can use a specialized Laplacian solver that reduces the complexity to O(|E| logk |E|)

for some constant k [131].

The bound on the number of iterations k∗ can be computed before any forward pass,

since evaluating h−1
θ does not require solving the IFN equations. But we can further

simplify the bound by approximating h−1
θ (0) = 0, which is often justified because physical

flow functions generally have a root at the origin. Using the fact that (h−1
θ )′(y) ≤ d−1

miny,

we can then eliminate the dependence on h−1
θ :

k∗ ≤ 1 + log

(
1− dmin

dmax

)(
log ε− log

(
||[a]−

1
2B†u||2

))

5.2.2 Computing the Gradients

In order to train the flow function and any upstream models, it is necessary to back-

propagate gradients through the IFN layer. We can perform this backward pass using

implicit differentiation, and it turns out that the gradients of FNh,θ(G, u) with respect

to the parameters θ, a, and u can also be computed using Algorithm 5.1, i.e., by writing

the gradient as the output of an auxiliary implicit flow network.

Theorem 5.4 (Gradients). Consider an implicit flow network with parameters dmin,

dmax, and θ, with flow functions hθ. Suppose that the inputs G = (V , E , a) and u ∈ 1⊥|V|
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are given, and let B ∈ {−1, 0, 1}|V|×|E| be the signed incidence matrix of G. Let f =

FNh,θ(G, u), and let w be a scalar entry of θ, a, or u. We can compute the derivatives

df
dw

as follows.

Define a vector of flow functions g : R|E| → R|E| by

g(η) = D−1

(
η − [a]−1 ∂v

∂w

)
, ∀η ∈ R|E| (5.10)

where D ∈ R|E|×|E| is the diagonal matrix with entries

Dee =
dh−1

θ (ye)

dye

∣∣∣∣
ye=a

−1
e fe

, ∀e ∈ E (5.11)

and v = [a]h−1
θ ([a]−1fcyc + [a]−1B†u). Then

df

dw
= FNg,·(G, 0n) +B†

du

dw
(5.12)

(We use the notation · in place of θ, since g has no trainable parameters.) Furthermore,

the derivative constraint parameters dmin, dmax from the original implicit flow network are

valid for the new implicit flow network.

In other words, to compute the gradient with respect to a parameter, we perform a

single evaluation of the implicit flow network. In order to compute the derivatives with

respect to some parameter or input w, we first evaluate the partial derivatives ∂v
∂w

and

the total derivatives du
dw

. Then we construct the flow functions g according to (5.10), and

solve an implicit flow network to find df
dw

according to (5.12). It is easy to evaluate du
dw

,

but for convenience, we provide the values of ∂v
∂w

below:

∂v

∂θi
= [a]

dh−1
θ ([a]−1f)

dθi
,

∂v

∂ae
= diag

(
h−1
θ ([a]−1f)− [a]−1Df

)
e
,

∂v

∂ui
=
(
DB†

)
i
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5.3 Comparison with Optimization Models

Both of the state-of-the-art methods for flow estimation, from [71] and [111], use an

optimization problem to predict flows. After a suitable transformation to incorporate

external flow injections u, we can state this optimization problem as

f̂ = argmin
f∈R|E|

{
||f ||22,[q] + λ2||Bf − u||22 s.t. fe = f̃e, ∀ labeled edges e ∈ E

}
(5.13)

where λ > 0, and q > 0m is some vector of edge weights. In [71], q = 1m, while [111]

allows q to be the output of a neural network. IFN is not explicitly an optimization

problem, but it can be cast as one that is similar to (5.13):

Theorem 5.5 (Optimization Form of IFN). Consider an IFN with flow function hθ.

Suppose that the inputs G = (V , E , a) and u ∈ 1⊥|V| are given, and let B ∈ {−1, 0, 1}|V|×|E|

be the signed incidence matrix of G. Then the IFN output can be stated as the solution

of a convex optimization problem:

FNh,θ(G, u) = argmin
f∈Rm

{∑
e∈E

∫ fe

0

h−1
θ (a−1

e z) dz s.t. Bf = u

}
(5.14)

Theorem 5.5 can be interpreted as a nonlinear generalization of the Thomson principle

from electrical circuits theory [41]. Interestingly, the theorem sets up a direct comparison

between IFN and the models in [71] and [111]. If the flow function hθ is the identity map,

then (5.14) can be simplified as

FNh,θ(G, u) = argmin
f∈Rm

{∑
e∈E
||f ||22,[a]−1 s.t. Bf = u

}
(5.15)

Ignoring the constraints from labeled flows, we can interpret (5.13) as using a penalty

method to approximate the output of an IFN with a linear flow function. Thus, we have
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three distinct differences between IFN and the optimization-based approaches. First, IFN

allows for a nonlinear flow function, while [71] and [111] implicitly assume a linear CR.

Second, IFN imposes flow conservation as a hard constraint rather than an approximate

constraint (which is a limitation if u is uncertain). Finally, IFN does not incorporate flow

measurements directly; rather, the model exploits these measurements during training

to learn the proper flow function (and train any upstream models for the IFN inputs),

making it less sensitive to noise in the labeled flows.

5.4 Models for Flow Functions

In order to implement an IFN, it is necessary to parameterize its inverse flow function

h−1
θ . Since the flow function is essentially a trainable activation function, i.e., a scalar

nonlinearity, simple models are likely to be sufficient. The main difficulty with selecting

a flow function is that its slope must be bounded by dmin ≤ h′θ(y) ≤ dmax for all y ∈ R.

This section proposes a simple scalar nonlinearity that is guaranteed to respect arbitrary

upper and lower bounds on its slope.

Definition 5.6 (Derivative-Constrained Perceptron). Let k ∈ Z>0 be a hidden layer

size, let a, b, c ∈ Rk be freely trainable parameters (encoded within the parameter vector

θ), and let σ be a non-expansive activation. Let p, q ≥ 1 such that p−1 + q−1 = 1, and

let d̄min ≤ d̄max ∈ R. Then the derivative-constrained perceptron N(x, θ) is the 3-layer

neural network defined by

c̄(θ) =

(
1−

(||c||p||a||q − 1)+

||c||p||a||q

)
c (L1)

N0(x, θ) = c̄T(θ)σ(ax+ b) (L2)

N(x, θ) =

(
d̄max − d̄min

2

)
N0(x, θ) +

(
d̄max + d̄min

2

)
x (L3)
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Intuitively, (L1) re-scales c so that the perceptron in (L2) is guaranteed to be non-

expansive in x. Then (L3) re-centers and re-scales the derivatives of the perceptron from

the range [−1, 1] to [d̄min, d̄max].

Theorem 5.7 (Derivative-Constrained Perceptron). Let N(x, θ) be a derivative-constrained

perceptron with d̄min ≤ d̄max ∈ R. Then for all parameter values θ,

d̄min ≤
d

dx
N(x, θ) ≤ d̄max, ∀x ∈ R (5.16)

Note that the values d̄min, d̄max in Definition 5.6 and Theorem 5.7 are distinct from

the IFN parameters dmin, dmax. Since we parameterize the inverse flow function h−1
θ in

IFN, one shoudl set d̄min = d−1
max and d̄max = d−1

min to implement h−1
θ with a derivative-

constrained perceptron.

5.5 Numerical Experiments

We studied the transductive task of predicting unlabeled flows, given that some la-

beled flows in the same network are known. If the edges E are partitioned into a labeled

set El and an unlabeled set Eu, the task is to predict the missing flows {fe : e ∈ Eu}

given the labeled flows {fe : e ∈ El}. For each network, we randomly selected a frac-

tion of the edges to be labeled edges, and we trained IFN and baselines on the labeled

edges. Then we evaluated the RMSE of the flows predicted for the unlabeled edges

Eu to compute the testing error. See Section 5.8 for full details. Code is available at

https://github.com/KevinDalySmith/implicit-flow-networks.
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5.5.1 Datasets

AC Power We selected 6 standard power network test cases. The first 4 test cases

(IEEE-57, IEEE-118, IEEE-145, and IEEE-300) are synthetic transmission system test

cases, while the remaining cases ACTIVSg200 and ACTIVSg500 are similar to the Illinois

and South Carolina power grids, respectively [11]. Each test case contains the topology

and electrical parameters of the power network, as well as baseline demands and power

injections at each node. While branch resistances are typically small, we set them to

zero to ensure lossless transmission lines. We used the MATPOWER toolbox [144] to

solve the power flow equations, then recorded the active power flows on each branch (f),

computed the net active power injections at each node (u), and selected relevant electrical

parameters as edge attributes (series reactance, tap ratio, and voltage magnitude at the

two incident nodes).

Water Distribution We selected 3 sample water distribution networks from the ASCE

Task Committee on Research Databases for Water Distribution Systems database [62],

representing municipal water distribution systems in Fairfield, CA, Bellingham, WA, and

Harrisburg, PA. Each network contains the topology of the distribution system, as well

as the characteristics of pipes and other network elements and nodal demands. We used

the WNTR package [78] to compute the flow rates through each pipe (f), net inflow rate

at each node (u), and edge weights associated with each pipe.

5.5.2 Models and Experiment Details

IFN Architecture In order to use the IFN layer to predict power flows, we created

a two-layer model. The first layer estimates positive edge weights a ∈ R|E| according to

ae = exp (L(ze)) for all e ∈ E , where L is a linear module, and ze is the log-transformed
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vector of edge attributes. The second layer is an IFN. To predict water flows, we used

an IFN layer alone, supplying the edge weights from the dataset as input (rather than

learning them from other edge attributes). For both water and power, the IFN layer uses

a derivative-constrained perceptron as the inverse flow function (k = 128, p = q = 1
2
)

with a ReLU activation function. For power, we set dmin = 0.4 and dmax = 2; and for

water, dmin = 0.2 and dmax = 20.

Baselines We compared the IFN model against four baselines. The minimum diver-

gence method (Div) from [71] minimizes the nodal divergence ||Bf ||22 and a regularization

term λ||f ||22. The bilevel optimization methods from [111] replace the uniform regular-

izer with a weighted regularizer ||f ||22,[q], where q is a vector of weights. In Bil-MLP and

Bil-GCN, q is the output of either a 2-layer MLP or GCN model with edge attributes as

inputs (we use 64 nodes in each hidden layer with ReLU activations). In Bil-True, we

specify q as the reciprocal of the coefficient in the linearized CR for AC power networks,

so that Bil-True approximates (5.15) with a as the ground-truth edge weight. For water

experiments, Bil-True uses the same edge weights as the IFN model.

All of the baselines assume that nodal divergence Bf should be approximately zero,

but nodes in power networks inject and withdraw power according to the supply / demand

vector u, resulting in nonzero divergence. Thus, when we evaluate the baselines, we

transform the power network into a divergence-free network by introducing a “source

node”, adding an edge from the source node to all nodes in V , and treating the entries

of u as the flows along each corresponding virtual edge.

5.5.3 Results

Figure 5.2 reports the results for the AC power networks, and Figure 5.3 reports

the results for water distribution systems. In both types of networks, the IFN model
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Figure 5.2: Results for missing flow prediction in AC power networks. Reported values
are the RMSE (in units of MW) on the testing set, averaged across 10 trials. Note
the vertical axis is in a log scale.
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Figure 5.3: Results for missing flow prediction in water distribution systems. Reported
values are the RMSE (in units of m3/s) on the testing set, averaged across 10 trials.
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significantly outperforms the baselines on all of the networks when a small fraction of

edges are labeled (less than 80% in power and less than 60% in water). While the other

baselines tend to improve as more labeled edges are made available for training, IFN

achieves near-optimal performance with as few as 10% of the edges labeled.

5.6 Conclusion

In this chapter, we have introduced an implicit model for network flows that incor-

porates physics through a conservation law and through the existence of a constitutive

relationship between flows and nodal variables. We have demonstrated that a simple

architecture using this model can learn to accurately predict active power flows in AC

networks and water distribution systems. Future work may investigate more elaborate

architectures using IFN as a layer, wherein the supply / demand vector, edge weights,

or even the graph itself could be predicted from upstream models, and the flows them-

selves used for downstream tasks. Another interesting extension may be to extend our

method to networks with higher-order interactions, i.e., hypergraphs [73] and simplicial

complexes [107, 136].

IFN has some limitations that should also be addressed in future work. IFN assumes

that the graph is undirected, which does not adequately model networks with unidirec-

tional flows (e.g., traffic) or lossy flows (e.g., resistive power grids). IFN also assumes a

CR that depends on the difference between nodal variables. This form appears frequently

in physical systems, but in other network flow models (like Daganzo traffic models [30]),

the CR has a more general dependence on the nodal variables. These limitations may be

addressed with extensions of IFN’s contraction algorithm.
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5.7 Proofs

5.7.1 Proof of Theorem 5.2

To prove statement (i), choose any fcyc ∈ ker(B), let y = [a]−1fcyc + [a]−1B†u for

brevity, and observe that

∣∣∣∣∣∣∣∣∂T (fcyc)

∂fcyc

∣∣∣∣∣∣∣∣
2,[a]−1

=

∣∣∣∣∣∣∣∣[a]−
1
2P

(
Im − dmin[a]

∂h−1
θ (y)

∂y
[a]−1

)
[a]

1
2

∣∣∣∣∣∣∣∣
2

≤ ||[a]−
1
2P [a]||2

∣∣∣∣∣∣∣∣[a]

(
Im − dmin[a]

∂h−1
θ (y)

∂y
[a]−1

)
[a]

1
2

∣∣∣∣∣∣∣∣
2

=

∣∣∣∣∣∣∣∣[a]−
1
2

(
Im − dmin[a]

∂h−1
θ (y)

∂y
[a]−1[a]−1

)
[a]

1
2

∣∣∣∣∣∣∣∣
2

where ||[a]−
1
2P [a]

1
2 ||2 = 1 because [a]−

1
2P [a]

1
2 is a symmetric and idempotent matrix, i.e.,

an orthogonal projection. Then

∣∣∣∣∣∣∣∣∂T (fcyc)

∂fcyc

∣∣∣∣∣∣∣∣
2,[a]−1

= max
e∈E

∣∣1− dmin(h−1
θ )′(ye)

∣∣ ≤ 1− dmin

dmax

Hence

Lip(T ) = sup
fcyc∈Rm

∣∣∣∣∣∣∣∣∂T (fcyc)

∂fcyc

∣∣∣∣∣∣∣∣
2,[a]−1

≤ 1− dmin

dmax

< 1

Then statement (ii) follows from statement (i) and the Banach fixed point theorem. To

prove statement (iii), observe that fcyc = Pfcyc, so fcyc = T (fcyc) if and only if

P [a]h−1
θ

(
[a]−1f

)
= 0m (5.17)

where f = fcyc +B†u. But ker(P [a]) = Img(BT), so (5.17) is equivalent to the existence

of x ∈ Rn such that

h−1([a]−1f) = BTx (5.18)
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and (5.18) is equivalent to (5.4).

5.7.2 Proof of Theorem 5.3

To prove statement (i), let k ≥ 0 and consider iteration k + 1 of the loop. The

iteration first defines v = dmin[a]h−1
θ

(
[a]−1f

(k)
cyc + [a]−1fcut

)
on line 6. Then on line 7,

w = argmin
w∈Rn

{
||B[a]BTw −Bv||2

}
=
(
B[a]BT

)†
Bv

and line 8 defines

∆fcyc = v − [a]BTw =
(
Im − [a]BT

(
B[a]BT

)†)
v = Pv

Finally, on line 9,

f (k+1)
cyc = f (k)

cyc − Pv = f (k)
cyc − dminP [a]h−1

θ

(
[a]−1f (k)

cyc + [a]−1fcut

)
A simple inductive argument shows that f

(k)
cyc ∈ ker(B). The base case f

(0)
cyc = 0m is

trivial, for all k′ ≥ 0, line 9 ensures that f
(k′+1)
cyc ∈ ker(B) so long as f

(k′)
cyc ∈ ker(B). Hence

f
(k)
cyc = Pf

(k)
cyc , and we conclude that

f (k+1)
cyc = P

(
f (k)

cyc − dmin[a]h−1
θ

(
[a]−1f (k)

cyc + [a]−1fcut

))
= T (f (k)

cyc)

To prove statement (ii), recall from Theorem 5.2 that Lip(T ) ≤ 1− d−1
maxdmin, which
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(together with statement (i)) implies that, for all k ≥ 0,

||f (k+1)
cyc − f (k)

cyc||2,[a]−1 ≤
(

1− dmin

dmax

)k
||f (1)

cyc − f (0)
cyc||2,[a]−1

= dmin

(
1− dmin

dmax

)k
||P [a]h−1

θ

(
[a]−1B†u

)
||2,[a]−1

= dmin

(
1− dmin

dmax

)k
ρ

The algorithm terminates after iteration k if and only if ||f (k)
cyc − f (k−1)

cyc ||
2,[a]−

1
2
≤ ε, so the

algorithm will have terminated after k∗ iterations if

dmin

(
1− dmin

dmax

)k∗−1

ρ ≤ ε

which is equivalent to

k∗ ≥ 1 +
log
(
d−1

minρ
−1ε
)

log
(

1− dmin

dmax

)
Finally, to prove statement (iii), note that the algorithm terminates after iteration k as

soon as

||f (k)
cyc − f (k−1)

cyc ||2,[a]−1 ≤ ε

If fcyc is the true fixed point of T , then using a general property of contraction mappings,

||f (k)
cyc − fcyc||2,[a]−1 ≤ Lip(T )

1− Lip(T )
||f (k)

cyc − f (k−1)
cyc ||2,[a]−1

≤
(
dmax − dmin

dmin

)
ε

Therefore, the vector f returned by the algorithm satisfies

||f − FNh,θ(G, u)||2,[a]−1 = ||f (k)
cyc − fcyc||2,[a]−1 ≤

(
dmax − dmin

dmin

)
ε
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5.7.3 Proof of Theorem 5.4

Let v = [a]h−1
θ ([a]−1fcyc +[a]−1B†u). From Theorem 5.2, we can write f = fcyc +B†u,

where fcyc is the unique fixed point of T . Therefore df
dw

= dfcyc

dw
+B† du

dw
, so the remainder

of the proof is to show that dfcyc

dw
= FNg,·(G, 0n).

Since fcyc = T (fcyc), and Pfcyc = fcyc, we have

fcyc = P (fcyc − dminv) = fcyc − dminPv

so an equivalent characterization of fcyc is the unique solution to the equations

Bfcyc = 0n

Pv = 0m

Since

dv

dw
=
∂v

∂w
+

∂v

∂fcyc

dfcyc

dw
=
∂v

∂w
+Ddfcyc

dw

then differentiating and factoring out [a], we obtain

B
dfcyc

dw
= 0n

P [a]

(
[a]−1 ∂v

∂w
+ [a]−1Ddfcyc

dw

)
= 0m

Since ker(P [a]) = Img(BT), there exists x ∈ Rn such that

[a]−1 ∂v

∂w
+ [a]−1Ddfcyc

dw
= BTx
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which we can re-write as

dfcyc

dw
= [a]D−1

(
BTx− [a]−1 ∂v

∂w

)
= [a]g(BTx)

Hence dfcyc

dw
is the solution to

B
dfcyc

dw
= 0n (5.19)

dfcyc

dw
= [a]g(BTx) (5.20)

which is identical to (5.3)–(5.4) with dfcyc

dw
in place of f , 0n in place of u, and g in place

of hθ. Furthermore, g respects the same dmin, dmax derivative constraints as hθ, since for

each e ∈ E ,

g′e(ηe) =
1

Dee
=
dhθ(ye)

dye

∣∣∣∣
ye=a

−1
e fe

∈ [dmin, dmax]

It follows that dfcyc

dw
is the output of the implicit flow network with flow functions g and

parameters dmin, dmax, evaluated on the original graph G and nodal demands 0n.

5.7.4 Proof of Theorem 5.5

Since h−1
θ is increasing, the optimization problem in (5.14) has a convex cost function

with linear constraints, so the KKT conditions are necessary and sufficient. Letting

x ∈ Rm be a vector of Lagrange multipliers, the Lagrangian is

L =
∑
e∈E

∫ fe

0

h−1
θ (a−1

e z) dz − xT (Bf − u)

leading to the stationarity condition

0T
m =

∂L
∂f

= h−1
θ (fT[a]−1)− xTB
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which is equivalent to (5.4). Additionally, the primal constraint Bf = u is equivalent to

(5.3), so the minimizer of the optimization problem is identical to the output of the IFN.

5.7.5 Proof of Theorem 5.7

Due to (L3), it is clear that the derivative bounds (5.16) hold if and only if

∣∣∣∣dN0(x, θ)

dx

∣∣∣∣ ≤ 1, ∀x ∈ R (5.21)

For all x, x′ ∈ R, by Hölder’s inequality,

|N0(x, θ)− N0(x′, θ)| =
∣∣c̄T(θ) (σ(ax+ b)− σ(ax′ + b))

∣∣
≤ ||c̄(θ)||p ||σ(ax+ b)− σ(ax′ + b)||q

Since σ is non-expansive, its Lipschitz constant with respect to the q-norm is

Lip(σ) = sup
η∈Rk

∣∣∣∣∣∣∣∣∂σ(η)

∂η

∣∣∣∣∣∣∣∣
q

= sup
η0∈R
|σ′(η0)| ≤ 1

and thus

||σ(ax+ b)− σ(ax′ + b)||q ≤ ||a(x− x′)||q ≤ ||a||q|x− x′|

Furthermore, by (L1),

||c̄(θ)||p||a||q =

(
1−

(||c||p||a||q − 1)+

||c||p||a||q

)
||c||p||a||q

= ||c||p||a||q − (||c||p||a||q − 1)+

= min {1, ||c||p||a||q}
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Test Case MATPOWER Case Name |V| |E|
IEEE-57 case57 57 135
IEEE-118 case118 118 297
IEEE-145 case145 145 567
IEEE-300 case300 300 709
ACTIVSg200 case ACTIVSg200 200 445
ACTIVSg500 case ACTIVSg500 500 1084

Table 5.2: MATPOWER test case details.

so that

|N0(x, θ)− N0(x′, θ)| ≤ min {1, ||c||p||a||q} |x− x′| ≤ |x− x′|

for all x, x′. Hence (5.21) is satisfied.

5.8 Experiment Details

5.8.1 AC Power Datasets

We created datasets from 6 AC power network test cases. Each dataset that we cre-

ated represents a snapshot of an AC power network in its steady state, consisting of four

components: the network topology (as an oriented, undirected graph), four attributes on

each edge (voltage magnitude at the two incident nodes, series reactance, and tap ratio),

the net power injection at each node, and the active power flow through each branch.

Original Data We generated our datasets using MATPOWER, an open-source toolbox

for power system simulation in MATLAB [144]. The toolbox includes many standard test

cases, which contain a network topology and tables of electrical and economic parameters

for each bus (node), branch (edge), and generator. We selected 6 test cases, listed in Table

5.2. The raw data files for these test cases are available from the MATPOWER source1,

1https://github.com/MATPOWER/matpower/tree/master/data
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and details on the test case file format are contained in Appendix B of the user manual2.

Data Generation After loading each test case into MATPOWER, we performed the

following two modifications of the network parameters:

(i) We set branch resistances (column 3 in the branch data table) to zero, so that

transmission lines in the system are lossless. This step was necessary because IFN

is limited to undirected graphs, while lossy lines are more appropriately modeled

with a pair of directed edges, since the power injected at one endpoint does not equal

the power withdrawn from the other endpoint. Fortunately, branch resistances are

typically small before this modification.

(ii) We replaced any negative series reactances (column 4 in the branch data table)

with a positive value, chosen as the median of the positive series reactances in the

same network. We performed this modification because negative series reactances

results in decreasing constitutive relationships on the corresponding edges, whereas

IFN assumes that the constitutive relationship is increasing. This modification only

affected two networks: IEEE-145, in which 24 (4.2%) of the branches were assigned

a series reactance of 0.2306; and IEEE-300, in which 1 (0.1%) of the branches was

assigned a series reactance of 0.059.

We then computed the resulting power flows using the runpf function and recorded the

results.

Pre-Processing Finally, we converted the results from the MATPOWER simulation

into a PyTorch Geometric data object, with the following attributes:

• edge index, the edge index tensor, containing the topology from the test case.

2https://matpower.org/docs/MATPOWER-manual.pdf

180

https://matpower.org/docs/MATPOWER-manual.pdf


Network Flow Estimation Chapter 5

Test Case |V| |E|
Fairfield 111 125
Bellingham 121 162
Harrisburg 261 286

Table 5.3: Water distribution network details.

• x, a tensor of net active power injections at each node, which has the property that

1T
nx = 0. (This tensor is identical to the supply / demand vector u.)

• edge attr, a tensor of four relevant attributes for each edge: the voltage magni-

tudes at the two incident nodes, the series reactance, and the tap ratio.

• f true, the tensor of active power flows on each edge simulated by MATPOWER.

The net active power injections at each node are computed according to

ui = PGi − PDi −GSiVM2
i

where PGi is active power generated at i, PDi is active power demanded, GSi is shunt

conductance, and VMi is the voltage magnitude.

5.8.2 Water Distribution Dataset

We created 3 datasets representing snapshots of municipal water distribution networks

in their steady state, consisting of four components: the network topology (as an oriented,

undirected graph), weights for each edge, the net inflow rates at each node, and the flow

rate through each pipe.

Original Data Each of the datasets is based on a network from the ASCE Task Com-

mittee on Research Databases for Water Distribution Systems database [62]. Networks in

this database contain a distribution network topology and tables of hydraulic parameters
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and operating characteristics for each node, pipe (edge), pump, reservoir, and storage

tank in the network. We selected 3 networks, listed in Table 5.3 and plotted in Figure

5.4. The raw data files are available online3.

Data Generation and Preprocessing We loaded each network INP file into WNTR

and ran the WNTR simulator with a hydraulic accuracy of 10−8. We then converted the

results into a PyTorch Geometric data object, with the following attributes:

• edge index, the edge index tensor, containing the topology from the test case.

• x, a tensor of net inflows at each node, which has the property that 1T
nx = 0.

• edge attr, a tensor of three relevant attributes for each edge: the pipe length, pipe

diameter, and pipe roughness coefficient.

• f true, the tensor of flow rates through each pipe simulated by WNTR.

Edge weights are computed according to the formula

ae = (0.27855)CeD
2.63
e L−0.54

e (5.22)

where Ce is the roughness coefficient (unitless), De is the diameter (meters), and Le is

the pipe length (meters) 4.

5.8.3 Details on IFN

Our IFN implementation uses Algorithm 5.1 to compute the layer’s forward pass.

We set the maximum number of iterations in this algorithm to 100, with a tolerance

of ε = 10−2 for power and ε = 10−4 for water. With the release of PyTorch 1.11.0, the

3http://www.uky.edu/WDST/index.html
4https://wntr.readthedocs.io/en/latest/hydraulics.html
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Figure 5.4: Network maps of the three water distribution systems: Fairfield (upper
left), Bellingham (upper right), and Harrisburg (bottom).
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torch.linalg.lstsq method5 now supports automatic differentiation, allowing PyTorch

to automatically backpropagate through the Algorithm 5.1 iterations, instead of using

Theorem 5.4. We found that Algorithm 5.1 terminated with a small enough number of

iterations that automatic differentiation was faster, so we opted to use this rather than

the method from Theorem 5.4. We trained the IFN models to minimize the RMSE loss

function by minimizing the RMSE loss function

`rmse =

√
1

|El|
∑
e∈E

(fe − FNh,θ(G, u)e)
2

5.8.4 Details on Baselines

We implemented all of the baselines by adapting Silva’s code6 from [111], refactoring

some utility functions to decrease runtime. Following [111], we perform the following two

data normalization steps:

(i) negative flows are converted into positive flows by flipping the orientation of the

corresponding edges and replacing the entries of f true with their absolute value,

and

(ii) flows are proportionally normalized to the range [0, 1] within each network.

After training with the normalized flows and computing the missing flow predictions, the

predictions are denormalized before computing the testing RMSE.

Div The minimizing divergence baseline from [71] has a single hyperparameter, λ, from

the regularization term λ2||f ||22 in the loss function. We set λ = 0.1 for all networks and

fractions of labeled edges by hand-tuning the parameter to the proper order of magnitude.

5https://pytorch.org/docs/stable/generated/torch.linalg.lstsq.html
6https://openreview.net/forum?id=l0V53bErniB
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Bilevel Baselines All three of the bilevel baselines (Bil-MLP, Bil-GCN, and Bil-True)

have several hyperparameters related to the bilevel optimization algorithm. For most of

these parameters, we use the same settings as [111]: the number of iterations for the inner

optimization problem is 300 during training and 3000 during evaluation, and the number

of k-fold cross validation folds is 10; however, we increased the number of iterations of

the outer optimization problem from 10 to 100, with an early stopping interval of 10,

to ensure that the outer optimization problem was given sufficient time to converge. As

with [111], we used a 2-layer MLP and GCN in Bil-MLP and Bil-GCN, respectively, but

we increased the size of the hidden layer to 64.

Bil-True Like IFN, the baselines Bil-MLP and Bil-GCN train a model to predict edge

weights from side information (if we interpret Q as a diagonal matrix of edge weights).

We devised Bil-True as a third baseline to use the “ground-truth edge weights” instead of

training a model. For water experiments, these ground-truth edge weights are given by

(5.22). For the power experiments, we compute these edges weights from the AC active

power flow equation: in a lossless AC power grid, active power flows fij on each edge

{i, j} ∈ E are given by

fij =
vivj
xijτij

sin(θi − θj) ≈
vivj
xijτij

(θi − θj) (5.23)

where vi, vj are the voltage magnitudes on incident nodes, xij is the series reactance, τij

is the tap ratio, and θi, θj are the incident voltage angles. Since (5.23) is the constitutive

relationship for AC power networks, examining its linear approximation in light of (5.15)

suggests using xijτij/vivj as the regularizer weight on fij.
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