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Abstract

Distributed Control of Inverter-Based Power Grids

by

John William Simpson-Porco

Electrical power is the bedrock of modern civilization, and the large-scale hierarchi-

cal structure of bulk generation, transmission, and distribution has served us well for

more than one hundred years. Currently however, the landscape of energy production is

shifting, as economic, environmental, and technological factors are pushing power gen-

eration towards a future dominated by distributed generation from renewable energy

sources. While grid-wide control strategies and architectures in bulk power systems were

designed for slow time-scales and large synchronous generators, renewable energy inter-

faced through power electronic inverters allows for rapid response and greater flexibility

in both local controller design and grid-wide control architectures.

This thesis focuses on exploring the limitations of both local controller design and

control architectures for inverter-based power grids. Our contributions can be broadly

divided into two categories. First, we study the classic primary droop controllers proposed

for inverter-based power grids, and provide the first nonlinear analysis of the closed-

loop frequency and voltage dynamics resulting from the controllers. We present tight

analytic conditions for the existence and uniqueness of stable equilibrium points, thereby

quantifying the fundamental limits of these controllers. In the second portion of the

thesis, we propose and analyze a distributed control architecture which takes the place

of the classical centralized secondary control layer. The distributed controllers combine

classic droop ideas from power systems with agreement algorithms studied in cooperative

control and multi-agent systems, leading to a scalable control architecture which achieves

xi



centralized performance. The algorithms require only sparse communication between

nearby inverters in the power grid, and require no a priori knowledge of the grid topology

or load demands. We present extensive analysis results, along with experimental results

validating our designs, and outline directions for future research.
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Chapter 1

Introduction

This introductory chapter will be quite brief. We first state some permissions and attri-

butions associated with the work presented herein. We then provide a sparse, big-picture

outline of microgrids and hierarchical control architectures, leaving detailed descriptions

of problem setups and technical details to later chapters of this dissertation.

1.1 Permissions and Attributions

1. Some of the content of Chapter 2 is the result of collaboration with Basilio Gentile,

Florian Dörfler, and Sando Zampieri, and has previously appeared in [9]. Relevant

material is Copyright © IEEE 2013.

2. Chapter 3 is the result of collaboration with Florian Dörfler, with some content

previously appearing in [28, 29]. Reference [29] is Copyright © IEEE 2013, while

[28] is Copyright © Elsevier 2013.

3. Chapter 4 is the result of collaboration with Florian Dörfler, Qobad Shafiee, Josep

M. Guerrero, Juan C. Vasquez, with some content previously appearing in [30, 4].

References are Copyright © IEEE 2013 and 2015, respectively.
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Introduction Chapter 1

4. Some of the tangential contributions in Chapter 5 are the result of collaborations

with Florian Dörfler and Hedi Bouattour, and have previously appeared in [16, 21,

2, 8, 3]. Reference [16] is Copyright © Elsevier 2014 while the remaining references

are Copyright © IEEE 2013, 2014, and 2015.

1.2 Microgrids and Hierarchical Control

Economic factors, environmental concerns, and the rapidly expanding integration

of small-scale renewable energy sources are all pushing the incumbent centralized power

generation paradigm towards a more distributed future. As a bridge between high-voltage

transmission and low-voltage distributed generation (DG), the concept of a microgrid

continues to gain popularity [67, 40, 35, 25, 26]. Microgrids are low-voltage electrical

distribution networks, heterogeneously composed of distributed generation, storage, load,

and managed autonomously from the larger primary network. An example microgrid

is shown in Figure 1.1. Microgrids can connect to a larger power system through a

(a) (b)

Figure 1.1: (a) Schematic of a “parallel” microgrid, in which several inverters supply
power to a distribution bus (effectively a single load) (b) A simple non-parallel
microgrid consisting of five loads and three inverters .

Point of Common Coupling (PCC), but are also able to “island” themselves and operate

2



Introduction Chapter 1

Figure 1.2: Low-detail schematic of microgrid control architecture.

independently [40]. Islanded operation of a microgrid could be planned, or could occur

spontaneously if a fault triggers the disconnection of the microgrid from the primary grid.

Energy generation within a microgrid can be quite heterogeneous, including photo-

voltaic, wind, micro-turbines, etc. Such sources generate either DC power or variable

frequency AC power, and are interfaced with a synchronous AC grid via power electronic

inverters. It is through these inverters that cooperative actions must be taken to en-

sure synchronization, voltage regulation, power balance and load sharing in the network

[59]. Control strategies ranging from centralized to completely decentralized have been

proposed to address these challenges [45], and have subsequently been aggregated into a

hierarchical control architecture [40] (Figure 1.2).

The control hierarchy consists of three levels. The first and most basic level is primary

3
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control, which stabilizes the microgrid and establishes power sharing. Although central-

ized architectures have been used for primary control [45], in order to enhance redundancy

and enable plug-and-play functionality, the current standard is to employ proportional

control loops locally at each inverter. In Chapter 3 we provide additional introductory

detail on these controllers. Our main contribution is the first detailed analyses of these

controllers, giving necessary and sufficient conditions under which the network possess

stable equilibrium points in closed-loop operation.

While successful for stabilization, these decentralized “droop” controllers force the

bus voltages and the steady-state network frequency to deviate from their nominal val-

ues [85, 59, 49]. This leads naturally to the next level in the hierarchy, termed secondary

control. Broadly speaking, the goal of secondary control is to remove the aforementioned

deviations in both global frequency and local voltage [59]. Centralized techniques for

secondary control have been well studied in high-voltage transmission and distribution

networks [53]. These centralized strategies have also been applied in the context of micro-

grids, and the term “secondary” has been broadened to include additional control goals

such as reactive power sharing [12, 14], harmonic compensation, and voltage unbalance

[40, 59, 85, 36].

Several recent works (see Chapter 4) have proposed secondary control strategies for

microgrids. However, to date no single control strategy has been able to offer a flexible,

plug-and-play architecture guaranteeing frequency and voltage regulation while main-

taining precise active and reactive power sharing among non-identical DGs. Currently,

this combination of goals appears infeasible with decentralized control using only local

information (voltage, power, ect.) at each DG [5]. As such, communication between

DGs has been identified as a key ingredient in achieving these goals while avoiding a

centralized control architecture [28, 30, 27, 5, 34, 21, 14]. In Chapter 4 we provide ad-

ditional introductory information on secondary control. Our main contribution is our

4
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development of a distributed secondary control architecture for frequency and voltage

regulation in microgrids. This distributed architecture uses communication among in-

verters along with local control actions to achieve centralized control performance in a

scalable, redundant way.

The final level of tertiary control is concerned with global economic dispatch over the

network, and depends on current energy markets and prices. The focus of this thesis is

not on tertiary control, and we comment only briefly on it in Chapter 5.2.

5



Chapter 2

Preliminaries and Models

This chapter recalls some preliminaries, introduces relevant models of power network

components, algorithms for distributed averaging, and states a few basic results which

will prove useful as foundational knowledge later on.

2.1 Mathematical Foundations: Graphs, Matrices, and Graph

Matrices

In this section we introduce the basic mathematical tools and models used in this

thesis. Our notation in this section is mostly standard, and we introduce only the essential

concepts necessary to develop our subsequent results. We refer the interested reader to

[47], for further details on matrix theory, [82, 69] for algebraic graph theory, and to [48,

44] for control applications of graphs and/or algebraic graph theory.

Sets, Numbers, and Functions: Given a finite set V , let |V| denote its cardinality.

The set R (resp. R≥0, R>0) is the field of real (resp. nonnegative real, strictly positive

real) numbers, and C is the field of complex numbers. Throughout, j is the imaginary

unit. For any z ∈ C, conj(z) is its complex conjugate. For x = (x1, . . . , xn)T ∈ Rn,

sin(x) = (sin(x1), . . . , sin(xn))T ∈ Rn.

6



Preliminaries and Models Chapter 2

Vectors and matrices: Given a real n-tuple (x1, . . . , xn), we let x ∈ Rn be the

associated vector. We let 1n and 0n be the n-dimensional vectors of unit and zero

entries, while 0 denotes a zero matrix of appropriate dimension, determined by the

context in which it is used. The n × n identity matrix is In. For x ∈ Rn, span(x) =

{v ∈ Rn : v = αx, α ∈ R}. The set 1⊥n , {x ∈ Rn : 1Tnx = 0} is the subspace of all

vectors in Rn orthogonal to span(1n). Given x ∈ Rn or an equivalent n-tuple, diag(x)

or diag(x1, . . . , xn) denote the associated diagonal matrices with x on the diagonal. We

will also find the equivalent compact notation [x] useful for the same diagonal matrix.

Given x, y ∈ Rn, we write x >> y if xi > yi for each i ∈ {1, . . . , n}. For a vector x ∈ Rn,

‖x‖1 =
∑n

k=1 |xk|, ‖x‖2 = (
∑n

i=k x
2
k)

1/2 and ‖x‖∞ = maxk |xk|.

For A ∈ Rn×m, ker(A) and Image(A) denote the kernel and image of A, respectively.

The inertia of A ∈ Rn×n is the triple {νs, νc, νu}, where νs (resp. νu) denotes the number

of stable (resp. unstable) eigenvalues of A in the open left (resp. right) half complex

plane, and νc denotes the number of “center” eigenvalues, which have zero real part. For

A = AT ∈ Rn×n, we implicitly will assume its eigenvalues are arranged in increasing order

λ1(A) ≤ λ2(A) ≤ · · · ≤ λn(A). For A ∈ Rn×n, ‖A‖2 = |λmax(A)| (the largest absolute

eigenvalue), while ‖A‖∞ = maxi
∑n

k=1 |Aik|.

A matrix A ∈ Rn×n is a Z-matrix if Aij ≤ 0 for all i 6= j. The spectral radius ρ(A) of

a real-valued matrix A ∈ Rn×n is ρ(A) = max{|λ|C : det (λIn − A) = 0}, where |x|C is

the magnitude of x ∈ C. A Z-matrix A ∈ Rn×n is an M-matrix if it can be expressed as

A = sIn−B, where B ∈ Rn×n has nonnegative elements and s ≥ ρ(B). In this case A is

positive definite, and the elements of A−1 are nonnegative [101]. Moreover, if the graph

induced by the sparsity pattern of A is strongly connected, then A is irreducible and the

elements of A−1 are all strictly positive [81, 101].

7
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Figure 2.1: Example of weighted graph and adjacency matrix for four nodes, with V =
{1, 2, 3, 4} and E = {(1, 2), (2, 1), (2, 3), (3, 2), (3, 4), . . .}.

Digraphs and graph matrices: A digraph with n nodes is a triple G = (V , E , A)

where V = {1, . . . , n} is the set of vertices (or nodes, or buses), E ⊆ V × V is the set

of directed edges (or branches, or lines), and A ∈ Rn×n is the adjacency matrix. The

entries of A satisfy aij ≥ 0 for each edge (i, j) ∈ E and are zero otherwise. Note that

any nonnegative matrix A induces a weighted directed graph G, where diagonal elements

correspond to self-connections or self-loops. We typically restrict ourselves to digraphs

without self-loops: all diagonal elements of A are zero. A directed path of length K on

G from node i0 to node i` is an ordered set of distinct nodes {i0, i1, . . . , iK} ⊂ V such

that (ik−1, ik) ∈ E for each j ∈ {1, . . . , K}. A directed cycle of length K is a non-trivial

directed path {vi0 , vi1 , . . . , viK} such that vi0 = viK . The cycle space of G is the subspace

of R|E| spanned by the cycles of G. That is, by assigning a number ` ∈ {1, . . . , |E|} to

each edge (i, j) ∈ E , ξ = (`1, . . . , `|E| is an element of the cycle space if the directed path

induced by ξ is a directed cycle. The digraph is acyclic if the cycle space is empty. If

there is a directed path in G from one node i ∈ V to another node j ∈ V , then j is

reachable from i. If node i ∈ V is reachable from every node j ∈ V \ {i} in the digraph,

then i is globally reachable.

For each node i ∈ V , the weighted out degree is degi =
∑

j 6=i aij, corresponding to the

sum of the weights of all outgoing edges from node i. The associated out-degree matrix is

diag({degi}ni=1). The Laplacian matrix is defined as L = diag({degi}ni=1)−A. Note that

8
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by construction
∑n

j=1 Lij = 0 for each i ∈ V , and hence 1n ∈ ker(L). It follows from the

Gers̆gorin disk theorem [94, Theorem 6.1.1] that all eigenvalues of L have nonnegative

real parts, and the zero eigenvalue is simple if and only if the digraph features a globally

reachable node [61].

Undirected graphs and graph matrices: In this work we will be particularly in-

terested in the special case of undirected graphs: a digraph G = (V , E , A) is undirected

if (i, j) ∈ E and aij > 0 implies that (j, i) ∈ E and aji = aij. Since the edges are

bidirectional and of identical weight, we will simply write {i, j} ∈ E to refer to the sin-

gle undirected edge. In this case, the adjacency and Laplacian matrices are symmetric:

A = AT and L = LT .

If a unique number ` ∈ {1, . . . , |E|} and an arbitrary direction are assigned to

each edge {i, j} ∈ E , the (oriented) node-edge incidence matrix H ∈ Rn×|E| is defined

component-wise by Hk` = 1 if node k is the sink node of edge ` and Hk` = −1 if node k is

the source node of edge `; all other elements are zero. Note that for x ∈ Rn, HTx ∈ R|E|

is the vector of edge-wise differences xi − xj. If A = diag({aij}{i,j}∈E is the diagonal

matrix of edge weights, then one may show that

L = HAHT .

If the graph is connected, then Ker(HT ) = Ker(L) = span(1n), and all n − 1 non-zero

eigenvalues of L are strictly positive. The second smallest eigenvalue λ2(L) is termed the

algebraic connectivity, and quantifies the convergence speed of the distributed averaging

algorithms we will employ in the sequel. It can be shown that λ2(L) > 0 if and only if G

is connected.

It can be shown that the cycle space of G is given by ker(H). In particular, G is

9
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acyclic if and only if ker(H) = ∅. This implies that for every x ∈ 1⊥n , there exists a

unique ξ ∈ R|E| such that Hξ = x. The vector x can be interpreted as a vector of

injections of some quantity (for example, electrical current); x ∈ 1⊥n means that inflows

must balance outflows, and ξ is then interpreted as the resulting branch-wise flows of

this quantity within the graph.

Differential-Algebraic Systems: Consider the differential-algebraic system

0n = g(x, y) , ẋ = f(x, y) , (2.1)

where x ∈ Rm, y ∈ Rn, and f : Rn+m → Rm, g : Rn+m → Rn are sufficiently smooth.

Let M = {(x, y) ∈ Rn+m : 0n = g(x, y)} be the constraint set of (2.1), and define the

singular set S of g(x, y) by

S ,
{

(x, y) ∈M
∣∣∣ det

∂g

∂y
= 0

}
. (2.2)

The singular set S decomposes M into open sets Mi where det ∂g
∂y

is sign-definite and

such that M = S ∪ (∪iMi). Components Mi with det ∂g
∂y

< 0 (resp. det ∂g
∂y

> 0) are

called stable (resp. unstable)[100].

2.2 Electric Power Grids

For our purposes, an AC electric power grid is most conveniently modeled using circuit

theoretic tools. For stable and reliable operation, the frequencies of all AC signals in

power grids must remain very close to the nominal network frequency of ω∗/2π =50/60Hz;

a frequency deviation of only a few percent is enough to cause protection equipment to trip

devices out of the network, potentially resulting in a large-scale blackout. For practical
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operation, we may therefore assume quasi-synchronous operation, and represent time

varying signals f(t) within the grid as harmonic signals f(t) = Re(Fejω
∗t), where F ∈ C

is the amplitude of the harmonic signal, containing both magnitude and phase-shift

information. This phasor modeling allows for the convenient representation of voltages

and currents in terms of magnitude and phase, and for the modeling of transmission lines

as static impedances as opposed to partial or ordinary differential equations.

2.2.1 Phasor Modeling and AC Power Flow

We may model a power grid in quasi-synchronous steady-state as a undirected, con-

nected, and complex-weighted graph G = (V , E , A), where V is the set of buses and E is

the set of transmission lines. We partition the set of buses as V = L∪I; buses L will

correspond to load buses, while buses I will be associated with inverters. The modeling

distinctions between these two sets of buses will be covered shortly. For notational con-

venience, we set n , |L| and m , |I|, for a total of n + m buses. An edge {i, j} ∈ E

corresponds to a transmission line, with which we associate a complex-valued admittance

yij = gij + jbij ∈ C. The conductance of the transmission line is gij, while the susceptance

of the line is bij. It is always the case that gij = 0, while for typical lines with inductive

characteristics bij ≤ 0.

The large-scale structure of a power grid is most conveniently described by the bus

admittance matrix Y ∈ C(n+m)×(n+m), a Laplacian-like matrix which encodes the topology

and branch-weights of the network. In the absence of phase-shifting transformers, the
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admittance matrix is symmetric Y = Y T and may be defined element-wise as

Yij =


−yij if i 6= j and {i, j} ∈ E

0 if i 6= j and {i, j} /∈ E∑
j 6=i yij + yshunt,i if i = j ,

(2.3)

where yshunt,i ∈ C is the shunt admittance (direct connection to ground) at bus i ∈ V .

To each node i ∈ V , we associate a voltage phasor Vi ∈ C and a phasor current injec-

tion Ii ∈ C. Similarly, along each edge {j, k} we associate a complex voltage difference

vjk ∈ C1 and a current flow ijk ∈ C. With this notation, Kirchoff’s voltage law, current

law, and Ohm’s law may be written as

vjk = Vj − Vk , (2.4a)

Ij =
∑

k∈V
ijk + ishunt,j , (2.4b)

ijk = yjkvjk , (2.4c)

ishunt,j = yshunt,jVj (2.4d)

where ishunt,j is the shunt current to ground at node j. In vector notation this reads as

v = HTV , (2.5a)

I = Hi+ ishunt , (2.5b)

i = diag({yij}{i,j}∈E)v , (2.5c)

ishunt = diag(yshunt)V . (2.5d)

1Reference directions for this difference are taken as the same as those used in the definition of the incidence
matrix, although this choice is not necessary.
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where B is the node-edge incidence matrix of the graph and all variables have been

vectorized in the obvious manner. Eliminating v, i and ishunt from (2.5), we obtain

I =
(
Hdiag({yij}{i,j}∈E)HT + diag(yshunt)

)
V .

A little thought shows that the matrix in brackets is exactly the bus admittance matrix

Y , and we have therefore derived the nodal relationship

I = Y V .

and the vectorized formula for Y as

Y = Hdiag({yij}{i,j}∈E)HT + diag(yshunt) .

Unlike a standard Laplacian matrix, the row sums of the bus admittance matrix Y are

not necessarily zero.

The complex electrical power Se,i = Pe,i + jQe,i injected into node i ∈ V is defined as

Si = Vi · conj(Ii). In vector notation, this reads as Se = V ◦ conj(Y V ), where ◦ is the

Hadamard (element-wise) product. We now represent the phasor voltage in polar form

as Vi = Eie
jθi ∈ C corresponding to the magnitude Ei > 0 and the phase angle θi ∈ S1

of the harmonic voltage signal at bus i ∈ V . Similarly, we decompose the admittance

matrix in rectangular form as Y = G+ jB, where G ∈ R(n+m)×(n+m) is the conductance

matrix and B ∈ R(n+m)×(n+m) is the susceptance matrix. With some effort, one may
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expand out the nodal power relations to obtain the power flow equations

Pe,i =
∑

j∈V
BijEiEj sin(θi − θj) +

∑
j∈V

GijEiEj cos(θi − θj) , i ∈ V , (2.6a)

Qe,i = −
∑

j∈V
BijEiEj cos(θi − θj) +

∑
j∈V

GijEiEj sin(θi − θj) , i ∈ V . (2.6b)

The quantity Pe,i is called the active (or real) power, and represents the average over

one AC cycle of the power which can be used to do work. Active power results from

current draw which is in phase with the nodal voltage, and is the type of power we often

speak of informally. Conversely, Qe,i is termed the reactive power, and is associated with

current injection Ii which is π/2 out of phase with the nodal voltage Vi. If Qe,i < 0, bus

i ∈ V is consuming reactive power, an inductive-type behavior. Conversely, Qe,i > 0,

corresponds to an injection of reactive power, associated with capacitive behavior of the

device connected at bus i.

Unlike active power which represents an average, reactive power represents the peak

power needed to energize the electromagnetic fields of the device connected at bus i during

each AC cycle. This electromagnetic energy is stored and released during each AC cycle,

and thus averages to zero. While active power takes economic effort to produce, reactive

power can be produced with zero marginal cost by appropriate equipment. However, like

active power, the transmission of reactive power contributes to total transmission losses,

and it is therefore desirable to either generate reactive power as close as possible to its

point of consumption, or to compensate loads such that they consume less reactive power

(for example, shunt compensation).

Since we will use it extensively in this thesis, we collect here some properties of the

susceptance matrix B.

Lemma 2.2.1. (Properties of Susceptance Matrix). Consider a connected lin-

ear electrical network describable by an admittance matrix Y = G + jB. Assume that
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the network is connected, that all lines have inductive characteristics (i.e., no line is

overcompensated by series capacitors), and that the network contains no phase shifting

transformers. Then the susceptance matrix B satisfies

(i) Symmetry: B = BT ;

(ii) Inductive Lines: Bij ≥ 0 for i 6= j, with strict inequality if and only if {i, j} ∈ E,

and Bii < 0 for all i ∈ V ;

(iii) Definiteness: If the network contains no reactive shunt elements (including line

charging capacitors), then B is negative semidefinite with a simple eigenvalue at zero

corresponding to the eigenvector 1n+m. If the network contains no shunt capacitors

but contains at least one shunt reactor, then B is negative definite.

Lemma 2.2.1 (iii) follows from diagonal dominance arguments.

2.2.2 Decoupled AC Power Flow

For the analysis and design purposes of this work the lossy coupled AC power equa-

tions (2.6) must be simplified to a more tractable form. The first simplification we

perform is to neglect the conductance matrix G, and assume that lines are dominantly

inductive, resulting in the lossless coupled AC power flow equations

Pe,i =
∑

j∈V
BijEiEj sin(θi − θj) , i ∈ V , (2.7a)

Qe,i = −
∑

j∈V
BijEiEj cos(θi − θj) , i ∈ V . (2.7b)

The second and final key simplification we make is the classic active/reactive power

decoupling assumption [84, 76], where

(i) voltage magnitudes Ei, Ej are held constant at nominal values in (2.7a), leaving the

active power injection as a function of only the phase angles, and
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(ii) phase angle difference θi−θj are held constant at nominal values (typically approx-

imated as zero) in (2.7b), leaving the reactive power injection as a function of only

the voltage magnitudes Ei and Ej.

This assumption is based on the linearized behavior of (2.7) around practical power

grid operating points, which typically satisfy |θi − θj| <1 for all {i, j} ∈ E . It follows

by examining the system Jacobian that ∂Pe/∂E ' 0 and ∂Qe/∂θ ' 0, leading to the

decoupling assumption. Under the decoupling assumption, we obtain the decoupled power

flow equations

Pe,i(θ) =
∑

j∈V
BijEiEj sin(θi − θj) , i ∈ V , (2.8a)

Qe,i(E) = −
∑

j∈V
BijEiEj , i ∈ V . (2.8b)

In particular, the decoupling assumption allows us to treat frequency and voltage

control problems as decoupled from one another, significantly simplifying analysis and

design. Additional information and results regarding decoupled load flow are available

in [96, 92, 93].

Observations regarding decoupled active power flow: The decoupled active power

flow (2.8a) displays a clear diffusive behavior, with branch-wise power flowsBijEiEj sin(θi−

θj) from bus i to bus j ({i, j} ∈ E) depending only on the odd coupling function

sin(θi−θj). It follows that
∑

i∈V Pe,i(θ) = 0, since each term BijEiEj sin(θi−θj) matches

with an equal and opposite term BijEiEj sin(θj − θi) in the sum. This is simply the

statement that the network lines are lossless, and dissipate no active power. It follows

that active power satisfies a KCL conservation law of the form Pe,i(θ) = H · ξ(θ), where

ξij(θ) = BijEiEj sin(θi−θj). In vector notation, the decoupled active power flow therefore
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reads as

Pe(θ) = H · diag({BijEiEj}{i,j}∈E) · sin(HT θ) .

Observations regarding decoupled reactive power flow: While the active power

flow is diffusive and sinusoidal, the decoupled reactive power flow (2.8b) appears to be

quadratic, and when written in the form (2.8b), the diffusive character of the reactive

power flow is less apparent. However, using the definition of the admittance matrix from

(2.3), one may equivalently write (2.8b) as

Qe,i(E) = −bshunt,iE2
i + Ei

∑
j∈V

Bij(Ei − Ej) .

While the presence of terms Ei −Ej suggests a diffusive behavior, there are two notable

wrinkles. First, the presence of shunt capacitors or reactors generates reactive power

injections which scale as the square of the local voltage Ei, independent of neighboring

buses. Second, the coupling function in the second term is no longer odd, since the sum

is scaled by Ei. A consequence of this is that, unlike active power, reactive power satisfies

no clean conservation law, as one may verify by noting that

∑
j∈V

Qe,i = −
∑

j∈V
bshunt,iE

2
i +

∑
i,j∈V

Bij(Ei − Ej)2 .

That is, reactive power is dissipated by inductive lines and shunts. In vector notation,

the decoupled active power flow (2.8b) reads simply as

Qe(E) = −[E]BE , (2.9)

where [E] = diag(E).

Remark 2.2.1. (State Space of Reactive Power Flow). Within the phasor modeling
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framework, Ei represents a voltage magnitude, and we therefore restrict our attention to

voltage magnitude vectors E ∈ Rn+m
≥0 . Additionally, it is convenient to further exclude

the case where any voltage magnitude is identically zero, and we therefore assume that

E ∈ Rn+m
>0 . If the voltage magnitude at any bus was identically zero, the corresponding

power injection must be identically zero, and the node can be eliminated from the network

via Kron reduction. This choice of state space will simplify our analysis by excluding

non-physical and short-circuit equilibria which would not occur in practice. �

Remark 2.2.2 (Lossless and Decoupling Assumptions). . The approximation of lossless

power flow is usually valid in high-voltage transmission networks, where the inductive

characteristics of lines dominate any resistive losses; typical transmission losses are on

the order of 8%, which for control design purposes may be neglected. Low-voltage grids

typically do not enjoy such favorable line characteristics, with conductance/susceptance

ratios in distribution grids on the order of unity. Nonetheless, the lossless assumption

is typically justified in the setting of microgrids, which are highly engineered. In partic-

ular, inverter output impedances can be controlled to dominate over network impedances

[60],[35, Chapter 7]. Moreover, under the less restrictive assumption of uniform reac-

tance/resistance ratios ϕ = atan2(−bij, gij) = const., the change of coordinates2

P̃e,i

Q̃e,i

 =

sin(ϕ) − cos(ϕ)

cos(ϕ) sin(ϕ)


Pe,i

Qe,i


transforms the lossy equations (2.6) into a form identical to the lossless equations (2.7),

with the susceptance matrix entries being modified as B̃ij = Bij

√
1 + tan2 ϕ. For exam-

ple, the constant R/X assumption holds if all transmission lines are made from the same

material. While this coordinate transformation robs active and reactive power of their

2Strictly speaking, all shunt admittances must also share this common reactance/resistance ratio.
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physical meanings, for control purposes it allows for techniques from decoupled power flow

to be applied rigorously in lossy grids for frequency and voltage stabilization.

The decoupling assumption is extremely accurate in practical power networks, and has

been shown to yield accurate even far from the normal operating regime [9]. Extremely

close to the bifurcation points of the system, the decoupling assumption must be taken

with caution; voltage magnitudes can no longer be considered as constant in the active

power flow, and phase angles can no longer be considered as small in the reactive power

flow. From the perspective of control design though we are interested in a regime around

nominal operating conditions, and in the sequel, we may without much loss of detail

restrict our attention to the decoupled power flow equations (2.8). �

2.2.3 Linear Approximations for Reactive Power Flow

We review here the approximation techniques developed in [9] for the decoupled

reactive power flow equation (2.9). This approximation technique will be used in Section

(3.3.1) to investigate the stability properties of equilibria for voltage dynamics under our

proposed quadratic droop controller. We assume that all loads are constant power loads

Qload,i(Ei) = Q∗i , and assume that the voltage magnitudes Ei at inverter buses i ∈ I

are fixed. As we will see in Section 3.3.1, these assumptions are not restrictive, and the

resulting formulae can be adapted to study system behavior under different load models

and for inverters implementing droop control rather than regulating their voltages. We

partition the bus susceptance matrix B, the vector of voltage magnitudes E, and the

vector of power injections Qe according to loads and inverters as

B =

BLL BLI

BIL BII

 , E =

EL
EI

 , Qe =

QL

QI

 .
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With this notation, the reactive power balance equation at the load buses i ∈ L can be

written in vector notation as

QL = −[EL](BLLEL +BIIEI) . (2.10)

Define the open-circuit load voltages Eoc
L ∈ Rn

>0 and the short-circuit load matrix Qcrit ∈

Rn×n by

Eoc
L = −B−1LLBLIEI ,

Qsc = [Eoc
L ]BLL[Eoc

L ] .

In particular, note that Eoc
L is the unique high-voltage solution of (2.10) when QL = 0n.

In [9] it was shown that then the high-voltage solution of (2.8b) is given to first order by

EL = [Eoc
L ]
(
1n +Q−1sc QL

)
+ h.o.t. . (2.12)

See [9, 24] for a quantification of the error term. The basic formula can be derived by

linearizating the system (2.9) around the open-circuit solution Eoc
L . The “short-circuit

ratio” Q−1sc QL quantifies the percentage deviation (Ei − Eoc
i )/Eoc

i of how far the load

voltages EL deviate from their open-circuit values Eoc
L .

2.2.4 Microgrids and DC/AC Inverters

radial topology

ωi = ui , i ∈ I , (2.13a)

τiĖi = vi , i ∈ I . (2.13b)
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Comment on actuation delay for frequency change as well.

2.2.5 Load Modeling

A load model is a static or dynamic model which specifies how the power consumption

at a load bus i ∈ L evolves over time as a function internal states and external network

conditions. Load modeling is one of the most complex and controversial aspects of power

systems analysis. Despite decades of research, no consensus has been achieved regarding

the most appropriate load models for different types of stability studies, and it seems

likely that this will remain the case. Not surprisingly, a large spectrum of possible load

models exists with varying levels of complexity. The simplest class of models are static

load models, which specify the active Pload,i and reactive Qload,i power injections (negative

demands) of loads as algebraic functions of local frequency deviations and local voltage

levels, resulting in the nodal power balance requirements

0 = Pload,i − Pe,i , i ∈ L , (2.14a)

0 = Qload,i −Qe,i , i ∈ L . (2.14b)

In this thesis we will focus on the network-theoretic aspects of power grid stability, it

behooves us to minimize the complexity of nodal dynamics, and we therefore consider

the following static models for load buses i ∈ L.

Constant active power loads: These load models will be used in Section 3.2 for our

analysis of primary frequency control. All load buses i ∈ L are assumed to be PV buses

with fixed voltage magnitudes Ei and fixed active power injections P ∗i ∈ R, yielding the

model

Pload,i = P ∗i , i ∈ L . (2.15)
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With our sign conventions, P ∗i < 0 corresponds to power consumption, while P ∗i > 0

corresponds to power production. This model is standard in load flow analyses where

the goal is to characterize the steady-state operating point of the network after transients

have died out. Note that the model results in a static algebraic equation, and thus when

paired with dynamic models of inverters, the resulting closed-loop system is differential-

algebraic.

Frequency-dependent active power loads: These load models will also be used in

Section 3.2 for our analysis of primary frequency control. All load buses i ∈ L are assumed

to be PV buses with fixed voltage magnitudes Ei and fixed active power injections P ∗i ∈ R,

yielding the model

Pload,i = P ∗i −Diθ̇i , i ∈ L . (2.16)

With our sign conventions, P ∗i < 0 corresponds to power consumption, while P ∗i > 0

corresponds to power production. The gain Di is always positive. This model was

proposed in [98] for bulk power systems, and a derivation from first principles can be

found in [75, Chapter 7]. While the presence of θ̇i in fact results in a differential equation

for the load, the model is still termed “static” as it lacks internal state variables.

General reactive power loads: We assume a static load model for reactive power of

the form

Qload,i = Qload,i(Ei) , (2.17)

that is, a smooth function of a local supplied voltage Ei. To state more detailed results,

we will at times find it useful to specialize this model to the so-called ZIP model, where

reactive power demand is modeled as a second-order polynomial in the local voltage Ei.
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The model takes the form

QZIP
load,i = bshunt,iE

2
i + Ishunt,iEi +Q∗i , i ∈ L , (2.18)

where bshunt,i represents a shunt admittance, Ishunt,i represents a constant shunt current,

and Q∗i represents a constant power consumption. For inductive loads which consume

reactive power, these parameters are negative, while for capacitive loads they are positive.

At times for analytical or notational reasons we will find it convenient to specialize more

by removing terms to arrive at the ZI model

QZI
load,i = bshunt,iE

2
i + Ishunt,iEi , i ∈ L , (2.19)

and the P model

QP
load,i = Q∗i , i ∈ L . (2.20)

2.3 The Generalized Kuramoto Model of Oscillator Networks

Another set of literature relevant to our investigation is that pertaining to synchro-

nization of phase-coupled oscillators, in particular the classic and celebrated Kuramoto

model. A generalization of this model considers n ≥ 2 coupled oscillators, each repre-

sented by a phase θi ∈ S1 (the unit circle) and a natural frequency Ωi ∈ R. The system

of coupled oscillators obeys the dynamics

Diθ̇i = Ωi −
∑n

j=1
aij sin(θi − θj) , i ∈ {1, . . . , n} , (2.21)

where aij ≥ 0 is the coupling strength between the oscillators i and j and Di is the

time constant of the ith oscillator. Figure 2.2 shows a mechanical analog of (2.21), in
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Figure 2.2: Mechanical analog of a Kuramoto oscillator network. The particles have no
inertia and do not collide with another.

which the oscillators can be visualized as a group of n kinematic particles, constrained to

rotate around the unit circle. The particles rotate with preferred directions and speeds

specified by the natural frequencies Ωi, and are connected together by elastic springs of

stiffness aij. The rich dynamic behavior of the system (2.21) arises from the competition

between the tendency of each oscillator to align with its natural frequency Ωi, and the

synchronization enforcing coupling aij sin(θi − θj) with its neighbors. We refer to the

recent surveys [51, 73, 39] for applications and theoretic results.

Torus Geometry and Synchronization: The set S1 denotes the unit circle, an angle

is a point θ ∈ S1, and an arc is a connected subset of S1. The geodesic distance between

two angles θ1, θ2 ∈ S1, denoted by |θ1 − θ2|, is the minimum length of the counter-

clockwise and clockwise arcs connecting θ1 and θ2. The n-torus Tn = S1 × · · · × S1 is

the Cartesian product of n unit circles. For γ ∈ [0, π/2[ and a given graph G(V , E , ·),

let ∆G(γ) = {θ ∈ T|V| : max{i,j}∈E |θi − θj| ≤ γ} be the closed set of angle arrays

θ = (θ1, . . . , θn) with neighboring angles θi and θj, {i, j} ∈ E no further than γ apart.

Consider the first order phase-coupled oscillator model (2.21) defined on a graph
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G(V , E , ·). A solution θ : R≥0 → T|V| of (2.21) is said to be synchronized if (a) there

exists a constant ωsync ∈ R such that for each t ≥ 0, θ̇(t) = ωsync1|V| and (b) there exists

a γ ∈ [0, π/2[ such that θ(t) ∈ ∆G(γ) for each t ≥ 0.

2.4 Distributed Averaging Algorithms

This section overviews distributed averaging (or more simply, consensus) protocols

from multi-agent systems. We review the basic ideas, properties, and convergence results.

Our treatment focuses on protocols written as continuous-time dynamical systems; anal-

ogous statements can be made in discrete-time.

2.4.1 Continuous-Time Agreement Protocols (Consensus)

Consider a system consisting of n autonomous agents, each characterized by a scalar

state variable xi ∈ Rn. A rudimentary task for the agents to perform is to achieve

agreement on a common state value. For example, if the agents represent autonomous

vehicles, it may be desirable to agree on a rendezvous location, or to agree on a common

alignment and speed for group locomotion. The agents can not communicate with each

other in an arbitrary fashion, but can interact only through a digraph G = (V , E , A)

with the adjacency matrix A ∈ Rn×n describing the interaction between agents. This

interaction could consist of communication, or a form of physical coupling through a

common infrastructure network (such as a power grid). More formally, consensus is

achieved asymptotically if

lim
t→+∞

xi(t) = x∞ ,
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for each agent i ∈ V and some finite x∞ ∈ R. To achieve this objective, consider the

consensus protocol [57, 58, 48, 43, 44]

ẋi = −
∑

j∈V
aij(xi − xj) , i ∈ V . (2.22)

By rearranging (2.22), we may equivalently write

1

degi
ẋi = −xi +

∑
j 6=i

wijxj ,

where the coefficients wij = aij/degi are nonnegative and satisfy
∑

j wij = 1 for all i ∈ V .

That is, with time constant 1/degi, the state of agent i ∈ V evolves towards a convex

combination (weighted average) of its neighbors states. In vector notation, (2.22) reads

as ẋ = −Lx, where L is the Laplacian matrix of G. As noted in Section 2.1, it holds

that ker(L) = span(1n). It follows that the consensus dynamics (2.22) are translationally

invariant, meaning that x(t) and x(t) + c1n satisfy the same dynamics, for any choice of

c ∈ R. The equilibrium subspace span(1n) is called the agreement subspace. It can be

shown that the agreement subspace is exponentially stable if and only if the graph G has

a globally reachable node.

While various extensions are possible, in this work we will make use of only the

simplest consensus algorithms. In particular, we will assume that the interaction topology

described by G is undirected and constant for all time, and that the edge weights aij are

also constant. In this case, the graph has a globally reachable node if and only if it

is connected, which we assume throughout. Let x̄ = 1
n
1Tnx be the average of the state

variables across all agents. Then

˙̄x(t) = −1TnLx(t) = 0n .
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Thus, the average of the states is a conserved quantity for all t ≥ 0. We conclude that if

the consensus protocol is convergent, the asymptotic consensus value x∞ must be equal

to the average of the initial conditions, x∞ = 1
n
1Tnx(0). Using the disagreement vector

δ = x − x∞1n and the quadratic Lyapunov function V (δ) = ‖δ‖22, a simple calculation

shows that the convergence rate of the consensus protocol (2.22) is no worse than λ2(L),

the algebraic connectivity.
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Chapter 3

Primary Control of Inverter-Based

Power Grids

3.1 Introduction

Primary control is the first layer in the control hierarchy for microgrids, and is con-

cerned with the fast balancing of active and reactive power demands over time-scales

on the order of seconds. This balancing of power is required to maintain network sta-

bility. A key additional objective of interest within the microgrid community is that of

accurately sharing both active and reactive power among a bank of inverters operated

in parallel. Such a network is depicted in Figure 1.1a, in which each inverter transmits

power directly to a common load. Roughly speaking, power sharing occurs when the

fraction of total generation supplied by each inverter is proportional to its generation

capacity. Said differently, as a percentage of its generation capacity, each unit supplies

the same fraction of power. The purpose of this power sharing objective is to prevent any

one inverter from becoming overloaded, which can easily occur due to poor distributions

of power demands across the network and localized response of generation.
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Although several control architectures have been proposed to solve these problems,

the so-called droop controllers have attracted the most attention, as they are ostensibly

decentralized and generally effective [77, 40, 65, 59, 54, 50, 49, 35]. The original reference

for this methodology is [85], where Chandorkar et. al. introduce what we will refer to as

the conventional droop controller. For inductive lines, the conventional droop controller

attempts to emulate the behavior of a classical synchronous generator by imposing an in-

verse relation at each inverter between frequency and active power injection, and between

terminal voltage and reactive power injections. [83]. Under other network conditions,

the controller takes different forms [60, 42, 35]. Some representative references for the

basic methodology are [77, 65, 59, 54, 50] and [49]. For networks with inductive lines,

the droop controllers specify the inverter frequency ωi and the inverter output voltage

Ei for each inverter i ∈ I according to

ωi = ω∗ −mi(Pe,i − P ∗i ) , i ∈ I , (3.1a)

Ei = E∗i − ni(Qe,i −Q∗i ) , i ∈ I . (3.1b)

In the frequency controller (3.1a), ω∗ is the rated network (angular) frequency, Pe,i is

the active electrical power injection at inverter given by (2.8a), and P ∗i ∈ [0, P i] is the

inverters nominal active power injection. The controller gain mi > 0 is referred to as the

droop coefficient. The controller balances the active power demand in the network by

specifying the frequency ωi of the voltage signal at the inverters terminals. In the voltage

controller (3.1b), E∗i is the nominal inverter voltage, Qe,i is the reactive electrical power

injection at the inverter given by (2.8b), and Q∗i is the inverters nominal reactive power

injection. 1 The gain ni > 0 is again called a droop coefficient. The voltage controller

balances reactive power demands by adjusting the terminal voltage of the inverter.

1The setpoints Q∗i and P ∗i are typically designed to satisfy an apparent power constraint (P ∗i )2+(Q∗i )2 ≤ (S∗i )2.
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Small-signal stability analyses for two inverters operating in parallel are presented

under various assumptions in [66, 63, 56, 55] and the references therein. The recent

work [34] highlights some drawbacks of the conventional droop controller. Distributed

controllers based on tools from synchronous generator theory and multi-agent systems

have also been proposed for synchronization and power sharing. See [57, 58] for a broad

overview, and [35, 20, 41] for various works. Lower voltage levels and uncompensated

loads in microgrids can cause voltage magnitudes to fall to dangerously low levels, leading

to voltage instability and collapse [86]. At the transmission level, these phenomena have

received increasing attention after recent voltage instability induced blackouts in Scandi-

navia (2003), Canada/USA (2003), and Greece (2004) [53]. Indeed, the U.S. Department

of Energy has recently invested significant resources studying strategies for reactive power

support and the shaping of network voltage profiles [38].

Limitations of the Literature: Despite forming the foundation for the operation

of parallel VSIs, the frequency-droop control law (3.1a) has never been subject to a

nonlinear analysis [34]. No conditions have been presented under which the controller

(3.1a) leads the network to a synchronous steady state, nor have any statements been

made about the convergence rate to such a steady state should one exist. Stability

results that are presented rely on linearization for the special case of two inverters, and

sometimes come packaged with extraneous assumptions [54, 49]. No guarantees are given

in terms of performance. Schemes for power sharing based on ideas from multi-agent

systems often deal directly with coordinating the real and reactive power injections of

the distributed generators, and assume implicitly that a low level controller is bridging

the gap between the true network physics and the desired power injections. Moreover,

conventional schemes for frequency restoration typically rely on a combination of local

integral action and separation of time scales, and are generally unable to maintain an
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appropriate sharing of power among the inverters.

The widespread deployment and practical utility of the E-Q controller has led to

several attempts at analysis [34, 31]. However, these attempts have met with remarkably

little success. To our knowledge, the only provably correct conditions for stability were

presented in [31]. Unfortunately, the conditions in [31] are extremely conservative, and

hold only for the all-to-all networks of inverters which appear in network-reduced models.

Analyses which begin from network-reduced models — models in which the load nodes

are eliminated from the network — are inherently unable to address the heart of the

problem; the voltage levels seen at the load terminals of the true physical network. Said

differently, the literature offers no guidance on the foundational issue of operating point

feasibility. That is, the existence and locations of equilibria for the network. This large

gap of knowledge regarding E-Q controlled networks means that precise reactive loading

limits and security margins are inherently unknown, making system monitoring and non-

conservative operation difficult.

3.1.1 Contributions and Organization

The contributions of this chapter are as follows.

Frequency Droop Control (Section 3.2): In Section 3.2.1, we begin with our key

observation that the equations governing a microgrid under the frequency-droop con-

troller can be equivalently cast as a generalized Kuramoto model of the form (2.21). In

Section 3.2.2 we present a necessary and sufficient condition for the existence of a locally

exponentially stable and unique synchronized solution of the closed-loop, and provide a

lower bound on the exponential convergence rate to the unique synchronized solution.

We state a robustified version of our stability condition which relaxes the assumption of

fixed voltage magnitudes and admittances. In Section 3.2.3 we demonstrate rigorously
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— and without assumptions on large output impedances or identical voltage magnitudes

— that if the droop coefficients are selected proportionally, then power is shared among

the units proportionally. We provide explicit bounds on the set of serviceable loads.

Finally, in Section 3.2.4 we examine how the droop controller gains can be selected to

achieve desired steady-state power injections and/or branch flows within the microgrid.

All results presented for active power extend past the classic case of a parallel topology

of inverters and hold for generic acyclic interconnections of inverters and loads.

Voltage Droop Control (Section 3.3): In Section 3.3.1 we present a novel alter-

native to the conventional voltage-droop controller, which we refer to as the quadratic

droop controller. In contrast with the conventional controller — the design of which

is motivated by the local, linear behavior of power flow near a steady-state operating

point — our proposed design is inspired by the “control by interconnection” approach

from port-Hamiltonian systems [68]. We find that the analysis of the network is greatly

simplified by designing a controller which preserves the quadratic structure of the AC

power flow equations in closed-loop. In particular, we show that the equilibria of the

network when controlled by our quadratic droop controller are in exact correspondence

with the solutions of a reduced power flow equation (RPFE). We then examine the so-

lutions of this reduced power flow equation and their stability properties for particular

load models. For ZI load models, we solve the reduced power flow equation explicitly

for the unique high-voltage operating point. We then use the approximation techniques

detailed in Section 2.2.3 to study the stability properties of the high-voltage equilibrium

for ZIP loads and for dynamic constant power loads. All results in this subsection hold

for general topologies.

In Section 3.3.2 we consider in detail the common and practically relevant case of a

parallel microgrid (Figure 1.1a). By explicitly solving our RPFE we provide a necessary
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and sufficient condition on the network load for the existence of a locally exponentially

stable high-voltage equilibrium point. Confirming classic intuition, our condition estab-

lishes the existence of a critical inductive load for the network, which depends only on

the network topology, admittances, inverter set point voltages, and controller gains. The

condition succinctly states that the network load must be less inductive than this critical

value. In addition, we study the (in)stability properties of the complementary low-voltage

equilibrium point, and in doing so provide a quite complete picture of the network state

space.

Finally, in Section 3.3.3 we use the results we derive for the quadratic droop controller

to draw a correspondence between the equilibria of the quadratic droop-controlled net-

work and the equilibria of the same network when controlled by the conventional droop

controller. While not a bidirectional correspondence, in doing so we provide the first

characterization of the network equilibrium points (and their stability properties) under

the conventional voltage-droop controller.

Classic intuition developed in power systems is that loading distorts the spatial voltage

profile in a network by dragging down the voltage magnitudes at loaded buses, and

forcing larger deviations between phase angles at adjacent buses. The former is associated

primarily with reactive power loading, while the latter is due to the branch-wise transfer of

active power. Moreover, it is generally accepted that high-voltage, small-phase-difference

equilibria of such networks are stable, while low-voltage, large-phase-difference equilibria

are unstable [53]. Taken together, these rules of thumb suggest the existence of a critical

active power loading and a critical reactive power loading which depend on the network

under consideration. If the respective loads are less than these critical values, the the

network voltage profile will be sufficiently homogeneous and a stable equilibrium will

exist. The papers [87, 97, 88, 74, 86] give some conservative estimates of these critical

loading limits. A fundamental outstanding problem regarding the voltage stability of
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droop-controlled microgrids is therefore to relate the existence of stable equilibria to the

network topology, line admittances, loads, and controller gains, and to determine the

exact locations of the equilibria should any exist. One can interpret the results that

follow as partially addressing these problems, in that we consider decoupled active and

reactive power flow problems.

3.2 Analysis of Frequency Droop Control

3.2.1 Equivalence of Generalized Kuramoto Model and Frequency-Droop

Controlled Microgrid

In this section we connect the frequency-droop controller (3.1a) to a network of first-

order phase-coupled oscillators of the form (2.21). We restrict our attention to active

power flows, and for the moment assume that the voltage magnitudes Ei are fixed at

every bus. To begin, note that by defining Di , m−1i and by writing ωi(t) = ω∗ + θ̇i(t),

we can equivalently write the frequency-droop controller (3.1a) as

Diθ̇i = P ∗i − Pe,i , i ∈ I . (3.2)

Note that θ̇i is the deviation of the frequency at inverter i ∈ I from the nominal frequency

ω∗. Inserting the active power flow equations (2.8a), the droop controller (3.2) becomes

Diθ̇i = P ∗i −
∑n+m

j=1
EiEjBij sin(θi − θj) , i ∈ I . (3.3)

In the event of an energy shortage where an inverter i ∈ I is unable to implement the

droop characteristic (3.3), we formally set Di = 0 and allow P ∗i to track the maximum

power output available from the inverter, which reduces (3.3) to a constant power load

as in (2.15). Using the frequency-dependent load model (2.16) where Pload,i = P ∗i −Diθ̇i,
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the active power balance equations (2.14a) become

Diθ̇i = P ∗i −
∑n+m

j=1
EiEjBij sin(θi − θj) , i ∈ L . (3.4)

Equations (3.3)–(3.4) constitute our system model. If the droop-controlled system

(3.3)–(3.4) achieves synchronization, then we can — without loss of generality — trans-

form our coordinates to a rotating frame of reference, where the synchronization frequency

is zero and the study of synchronization reduces to the study of equilibria.

We can now identify the droop-controlled system (3.3)–(3.4) with a network of gen-

eralized Kuramoto oscillators described by (2.21) and arrive at the following insightful

relation.

Lemma 3.2.1. (Equivalence of Perturbed Droop-Controlled System and Ku-

ramoto Model). The following two models are equivalent:

(i) The droop-controlled microgrid (3.3)–(3.4), with frequency-dependent loads Pload,i =

P ∗i − Diθ̇i (i ∈ L), droop coefficients mi = 1/Di > 0, nominal power injections

P ∗i ∈ R (i ∈ I), nodal voltage phases θi ∈ S1, nodal voltages magnitudes Ei > 0,

and branch susceptances −Bij < 0;

(ii) The generalized Kuramoto model (2.21), with time constants Di > 0, natural fre-

quencies νi ∈ R, phase angles θi ∈ S1 and coupling weights aij > 0.

The parametric quantities of the two models are related via P ∗i = νi and EiEjBij = aij.

In light of Lemma 3.2.1 and for notational simplicity, we define the vector of con-

stant power loads and nominal power injections P ∗ , (P ∗1 , . . . , P
∗
n+m)T , the matrix of

time constants (frequency-dependent load gains and inverse droop coefficients) D ,

diag(D1, . . . , Dn+m), and for {i, j} ∈ E we use the shorthand aij , EiEjBij and set
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A , A. The droop-controlled system (3.3)–(3.4) then reads in vector notation as

Dθ̇ = P ∗ −BAsin(BT θ) , (3.5)

where θ , (θ1, . . . , θn+m)T and B ∈ R(n+m)×|E| is the node-edge incidence matrix of the

underlying graph G = (V , E , A).

3.2.2 Necessary and Sufficient Condition for Existence of a Stable, Syn-

chronous Steady-State

While Lemma 3.2.1 was convenient to state using the frequency-dependent load model

(2.16), from this point onward we instead use the constant power load model (2.15), or

equivalently set Di = 0 for all i ∈ L. Explicitly, the model we consider now is

Diθ̇i = P ∗i −
∑n+m

j=1
EiEjBij sin(θi − θj) , i ∈ I (3.6a)

0 = P ∗i −
∑n+m

j=1
EiEjBij sin(θi − θj) , i ∈ L . (3.6b)

In terms of the vectorized model (3.5), the matrix D is now block diagonal, with the first

block being all zeros. This choice of load model makes the stability analysis more inter-

esting, and avoids introducing any unneeded or unrealistic frequency dependence in the

loads. A natural question now arises: under what conditions on the power injections, net-

work topology, susceptances, and droop coefficients does the differential-algebraic closed-

loop system (3.3)–(3.4) possess a stable, synchronous solution?

Theorem 3.2.1. (Existence and Stability of Sync’d Solution). Consider the fre-

quency droop-controlled microgrid (3.3)–(3.4) defined on an acyclic network with node-
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edge incidence matrix B. Define the scaled power imbalance ωavg by

ωavg ,

∑
i∈L∪I P

∗
i∑

i∈I Di

,

and let ξ ∈ R|E| be the unique vector of edge power flows satisfying KCL, given implicitly

by P ∗ − ωavgD1n = Bξ. The following two statements are equivalent:

(i) Synchronization: There exists an arc length γ ∈ [0, π/2[ such that the closed-loop

system (3.3)–(3.4) possess a locally exponentially stable and unique synchronized

solution t 7→ θ∗(t) ∈ ∆G(γ) for all t ≥ 0;

(ii) Flow Feasibility: The power flow is feasible, i.e.,

Γ , ‖A−1ξ‖∞ < 1 . (3.7)

If the equivalent statements (i) and (ii) hold true, then the quantities Γ ∈ [0, 1[ and

γ ∈ [0, π/2[ are related uniquely via Γ = sin(γ), and the following statements hold:

a) Explicit Synchronized Solution: The synchronized solution satisfies θ∗(t) =

θ0 + (ωsynct1n) (mod 2π) for some θ0 ∈ ∆G(γ), where ωsync = ωavg, and the syn-

chronized angular differences satisfy sin(BT θ∗) = A−1ξ;

b) Explicit Synchronization Rate: The local exponential synchronization rate is

no worse than

λ ,
λ2(L)

maxi∈I Di

√
1− Γ2 , (3.8)

where L = BABT is the Laplacian matrix of the network with weights aij.

Remark 3.2.2. (Physical Interpretation). From the droop controller (3.2), it holds

that P ∗ − ωsyncD1n ∈ 1⊥n is the vector of steady state power injections. The power
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injections therefore satisfy the Kirchoff Current Law, and ξ ∈ R|E| is the associated vector

of power flows along edges [91]. Physically, the parametric condition (3.7) therefore states

that the active power flow along each edge be feasible, i.e., less than the physical maximum

aij = EiEjBij. While the necessity of this condition seems plausible, its sufficiency is

perhaps surprising. Theorem 3.2.1 shows that equilibrium power flows are invariant under

constant scaling of all droop coefficients, as overall scaling of D appears inversely in ωavg.

Although grid stress varies with specific application and loading, the condition (3.7) is

typically satisfied with a large margin of safety – a practical upper bound for γ would

be 10◦, corresponding to Γ ' 0.2. See [23] for a detailed discussion of synchronization

results for networks with cycles.

Proof. To begin, note that if a solution t 7→ θ(t) to the system (3.5) is frequency synchro-

nized, then by definition there exists an ωsync ∈ R such that θ̇(t) = ωsync1n for all t ≥ 0.

Summing over all equations (3.3)–(3.4) gives ωsync = ωavg. Without loss of generality, we

can consider the auxiliary system associated with (3.5) defined by

Dθ̇ = P̃ −BAsin(BT θ) , (3.9)

where P̃i = P ∗i for i ∈ L and P̃i = P ∗i − ωavgDi for i ∈ I. Since P̃ ∈ 1⊥n , system (3.9)

has the property that ω̃avg = 0 and represents the dynamics (3.5) in a reference frame

rotating at an angular frequency ωavg. Thus, frequency synchronized solutions of (3.5)

correspond one-to-one with equilibrium points of the system (3.9). Given the Laplacian

matrix L = BABT , (3.9) can be equivalently rewritten in the insightful form

Dθ̇ = BA ·
(
BTL†P̃ − sin(BT θ)

)
. (3.10)

Here, we have made use of the facts that LL† = L†L = In − 1
n
1n1Tn and P̃ ∈ 1⊥n .
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Since ker(B) = ∅, equilibria of (3.10) must satisfy BTL†P̃ = BTL†Bξ = sin(BT θ). We

claim that BTL†B = A−1. To see this, define X , BTL†B and notice that XABT =

BTL†(BABT ) = BTL†L = BT . Since ker(B) = ∅, it therefore holds that XA = I|E| and

the result follows. Hence, equilibria of (3.10) satisfy

A−1ξ = sin(BT θ) . (3.11)

Equation (3.11) is uniquely solvable for θ∗ ∈ ∆(γ), γ ∈ [0, π/2[, if and only if Γ ,

max{i,j}∈E(ξij/aij) ≤ sin(γ). Since the right-hand side of the condition Γ ≤ sin(γ) is a

concave and monotonically increasing function of γ ∈ [0, π/2[, there exists an equilibrium

θ∗ ∈ ∆G(γ) for some γ ∈ [0, π/2[ if and only if the condition Γ ≤ sin(γ) is true with the

strict inequality sign for γ = π/2. This leads immediately to the claimed condition Γ < 1.

In this case, the explicit equilibrium angles are then obtained from the n decoupled equa-

tions (3.11). See [23, Theorems 1, 2(G1)] for additional information. Local exponential

stability of the equilibrium θ∗ ∈ ∆(γ) is established by recalling the equivalence between

the index-1 differential-algebraic system (3.10) and an associated reduced set of pure

differential equations (see also the proof of (b)). In summary, the above discussion shows

the equivalence of (i) and (ii) and statement (a). To show statement (b), consider the

linearization of the dynamics (3.9) about the equilibrium θ∗ ∈ ∆(γ) given by

d

dt

 0n

∆θI

 = −

I|L| 0

0 D−1I


LLL LLI

LIL LII


∆θL

∆θI

 ,
where we have partitioned the matrix L(θ∗) = Bdiag({aij cos(θ∗i − θ∗j )}{i,j}∈E)BT ac-

cording to load nodes L and inverter nodes I, and defined DI , diag({Di}i∈I). Since

θ∗ ∈ ∆G(γ), the matrix L(θ∗) is a Laplacian and thus positive semidefinite with a simple

eigenvalue at zero corresponding to rotational invariance of the dynamics under a uniform
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shift of all angles. It can be easily verified that the upper left block LLL of L(θ∗) is non-

singular [22], or equivalently that θ∗ is a regular equilibrium point. Solving the set of |L|

algebraic equations and substituting into the dynamics for ∆θI , we obtain d(∆θI)/dt =

−D−1I Lred(θ∗)∆θI , where Lred , LII −LILL−1LLLLI . The matrix Lred(θ∗) ∈ R|I|×|I| is also

a Laplacian matrix, and therefore shares the same properties as L(θ∗) [22]. Thus, it is the

second smallest eigenvalue of D−1I Lred(θ∗) which bounds the convergence rate of the lin-

earization, and hence the local convergence rate of the dynamics (3.9). A simple bound on

λ2(D
−1
I Lred(θ∗)) can be obtained via the Courant-Fischer Theorem [70]. For x ∈ 1⊥m, let

y = D
1/2
I x, and note that xTLred(θ∗)x/(xTDIx) = yTD

−1/2
I Lred(θ∗)D

−1/2
I y/(yTy). Thus,

y ∈ (D
−1/2
I 1m)⊥ is an eigenvector of D

−1/2
I Lred(θ∗)D

−1/2
I with eigenvalue µ ∈ R if and

only if x = D
−1/2
I y is an eigenvector of D−1I Lred(θ∗) with eigenvalue µ. For y 6= 0m, we

obtain

λ2(D
−1
I Lred(θ∗)) = min

y∈(D−1/2
I 1|I|)⊥

yTD
− 1

2
I Lred(θ∗)D

− 1
2

I y

yTy

= min
x∈1⊥|I|

xTLred(θ∗)x

xTDIx
≥ 1

maxi∈I Di

min
x∈1⊥|I|

xTLred(θ∗)x

xTx

≥ λ2(Lred(θ∗))

maxi∈I Di

≥ λ2(L(θ∗))

maxi∈I Di

,

where we have made use of the spectral interlacing property of Schur complements [22] in

the final inequality. Since θ∗ ∈ ∆G(γ), the eigenvalue λ2(L(θ∗)) can be further bounded

as λ2(L(θ∗)) ≥ λ2(L) cos(γ), where L = BABT is the Laplacian with weights {aij}{i,j}∈E .

This fact and the identity cos(γ) = cos(sin−1(Γ)) =
√

1− Γ2 complete the proof.

An analogous stability result for inverters operating in parallel now follows as a corol-

lary.

Corollary 3.2.3. (Existence and Stability of Sync’d Solution for Parallel In-
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verters). Consider a parallel interconnection of inverters, as depicted in Figure 1.1a.

The following two statements are equivalent:

(i) Synchronization: There exists an arc length γ ∈ [0, π/2[ such that the closed-

loop system (3.5) possess a locally exponentially stable and unique synchronized

solution t 7→ θ∗(t) ∈ ∆G(γ) for all t ≥ 0;

(ii) Power Injection Feasibility:

Γ , max
i∈I
|(P ∗i − ωavgDi)/ai0| < 1 . (3.12)

Proof. For the parallel topology of Figure 1.1a there is one load fed by m inverters, and

the incidence matrix of the graph G(V , E , A) takes the form B = [−1m Im]T . Letting P̃

be as in the previous proof, we note that ξ is given uniquely as ξ = (BTB)−1BT P̃ . In

this case, a set of straightforward but tedious matrix calculations reduce condition (3.7)

to condition (3.12).

Our analysis so far has been based on the assumption that each term aij , EiEjBij

is a constant and known parameter for all {i, j} ∈ E . In a realistic power system, both

effective line susceptances and voltage magnitudes are dynamically adjusted by additional

controllers. The following result states that as long as these controllers can regulate the

effective admittances and nodal voltages above prespecified lower bounds Bij and Ej, the

stability results of Theorem 3.2.1 go through with little modification.

Corollary 3.2.4. (Robustified Stability Condition). Consider the frequency-droop

controlled system (3.3)–(3.4). Assume that the nodal voltage magnitudes satisfy Ei ≥

Ei > 0 for all i ∈ L ∪ I, and that the line susceptance magnitudes satisfy Bij ≥ Bij > 0

for all {i, j} ∈ E. For {i, j} ∈ E, define aij , EiEjBij, and let A = diag({aij}{i,j}∈E).

The following two statements are equivalent:
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(i) Robust Synchronization: For all possible voltage magnitudes Ei ≥ Ei and

line susceptances Bij ≥ Bij, there exists an arc length γ ∈ [0, π/2[ such that the

closed-loop system (3.3)–(3.4) possess a locally exponentially stable and unique syn-

chronized solution t 7→ θ∗(t) ∈ ∆G(γ) for all t ≥ 0;

(ii) Worst Case Flow Feasibility: The active power flow is feasible for the worst

case voltage and line admittance magnitudes, that is,

‖A−1ξ‖∞ < 1 . (3.13)

Proof. The result follows by noting that aij (resp. aij) appears exclusively in the denom-

inator of (3.7) (resp. (3.13)), and that the vector ξ ∈ R|E| defined in Theorem 3.2.1 does

not depend on the voltages or line admittances.

Finally, regarding the assumption of purely inductive lines, we note that since the

eigenvalues of a matrix are continuous functions of its entries, the exponential stability

property established in Theorem 3.2.1 is robust, and the stable synchronous solution

persists in the presence of sufficiently small line conductances [79]. See also Remark

2.2.2.

3.2.3 Power Sharing and Actuation Limits

While Theorem 3.2.1 gives the necessary and sufficient condition for the existence

of a synchronized solution to the closed-loop system (3.3)–(3.4), it offers no immediate

guidance on how to select the control parameters P ∗i and Di to satisfy the actuation

constraint Pe,i ∈ [0, P i]. The following definition gives the proper criteria for selection.

Definition 3.2.5. (Proportional Droop Coefficients). The droop coefficients are

selected proportionally if P ∗i /Di = P ∗j /Dj and P ∗i /P i = P ∗j /P j for all i, j ∈ I.
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Theorem 3.2.6. (Power Flow Constraints and Power Sharing). Consider a syn-

chronized solution of the frequency-droop controlled system (3.3)–(3.4), and let the droop

coefficients be selected proportionally. Define the total load PTL ,
∑

i∈L P
∗
i . The follow-

ing two statements are equivalent:

(i) Injection Constraints: 0 ≤ Pe,i ≤ P i , ∀i ∈ I;

(ii) Load Constraint: −
∑

j∈I P j ≤ PTL ≤ 0 .

Moreover, the inverters share the total load PTL proportionally according to their power

ratings, that is, Pe,i/P i = Pe,j/P j, for each i, j ∈ I.

Proof. From (3.2), the steady state active power injection at each inverter is given by

Pe,i = P ∗i − ωsyncDi. By imposing Pe,i ≥ 0 for each i ∈ I, substituting the expression for

ωsync from Theorem 3.2.1, and rearranging terms, we obtain, for each i ∈ I,

Pe,i = P ∗i −

(
PTL +

∑
j∈I P

∗
j∑

j∈I Dj

)
Di ≥ 0

⇐⇒ PTL ≤ −
∑
j∈I

(
P ∗j −

P ∗i
Di

Dj

)
= 0 ,

where in the final equality we have used Definition 3.2.5. Along with the observation

that Pe,i ≥ 0 if and only if Pe,j ≥ 0 (i, j ∈ I), this suffices to show that 0 ≤ Pe,i for each

i ∈ I if and only if PTL ≤ 0. If we now impose for i ∈ I that Pe,i ≤ P i and again use the

expression for ωsync along with Definition 3.2.5, a similar calculation yields

Pe,i ≤ P i ⇐⇒ PTL ≥ −
P i

P ∗i

∑
j∈I

P ∗j = −
∑

j∈I
P j.

Along with the observation that Pe,i ≤ P i if and only if Pe,j ≤ P j (i, j ∈ I), this

shows that Pe,i ≤ P i for each i ∈ I if and only if the total load PTL satisfies the above
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inequality. In summary, we have demonstrated two if and only if inequalities, which when

taken together show the equivalence of (i) and (ii). To show the final statement, note

that the fraction of the rated power capacity injected by the ith inverter is given by

Pe,i

P i

=
P ∗i − ωsyncDi

P i

=
P ∗j − ωsyncDj

P j

=
Pe,j

P j

,

for each j ∈ I. This completes the proof.

Power sharing results for parallel inverters supplying a single load follow as a corollary

of Theorem 3.2.6, with PTL = P ∗0 . Note that the coefficients Di must be selected with

global knowledge. The frequency-droop controller therefore requires a centralized design

for power sharing despite its decentralized implementation. We remark that Theorem

3.2.6 holds independently of the network voltage magnitudes and line susceptances, as

long as the condition of (3.2.2) is satisfied for the existence of a synchronized solution.

3.2.4 Power Flow Shaping

The coefficient selection (3.2.5) results in proportional power sharing among the in-

verter units and eliminates all remaining degrees of freedom in the controller, as all

droop coefficients are determined up to a positive constant. We now address the follow-

ing “reachability” question: given a set of desired power injections for the inverters, can

one select the droop coefficients to generate these injections?

We define a power injection setpoint as a point of power balance, at fixed load demands

and subject to the basic feasibility condition (3.7) given in Theorem 3.2.1.

Definition 3.2.7. (Feasible Power Injection Setpoint). Let γ ∈ [0, π/2[. A vector

P set ∈ Rn+m is a γ-feasible power injection setpoint if it satisfies the following three

properties:
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1. Power balance: P set ∈ 1⊥n ;

2. Load invariance: P set
i = P ∗i for all loads i ∈ L;

3. γ-feasibility: the associated branch power flows defined through KCL as ξset =

B†P set are feasible with phase cohesiveness γ, that is, ‖A−1ξset‖∞ ≤ sin(γ).

The next result characterizes the relationship between droop controller designs and

γ-feasible injection setpoints. In particular, any γ-feasible power injection setpoint can

be achieved by an appropriate choice of droop coefficients. The converse statement holds

as well: only the set of γ-feasible power injections can be reached via droop control.

For simplicity, we omit the singular case where
∑n+m

j=i P ∗i = 0. In this case, ωsync =

0, and the droop coefficients offer no control over the steady-state inverter injections

Pe,i(θ
∗) = P ∗i −Diωsync.

Theorem 3.2.8. (Power Flow Shaping). Consider the droop-controlled system (3.6).

Assume ωsync 6= 0, let P set ∈ 1⊥n , and let γ ∈ [0, π/2[. The following statements are

equivalent:

(i) Coefficient selection: there exists a selection of droop coefficients Di, i ∈ I, such

that the steady-state injections satisfy Pe(θ
∗) = P set, with [θ∗] ⊂ ∆G(γ);

(ii) Feasibility: P set is a γ-feasible power injection setpoint.

If the equivalent statements (i) and (ii) hold true, then the quantities Di and P set
i are

related with arbitrary β 6= 0 as

Di = β(P ∗i − P set
i ) , i ∈ I . (3.14)

Moreover, [θ∗] is locally exponentially stable if and only if β(P ∗i − P set
i ) is nonnegative

for all i ∈ I.
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Proof. (i) =⇒ (ii): Since by assumption θ∗ ∈ ∆G(γ), and since by definition Pe(θ
∗) ∈

1⊥n , Theorem 3.2.1 shows that P set is a γ-feasible injection setpoint.

(ii) =⇒ (i): Let P set be a γ-feasible injection setpoint. Consider the droop coeffi-

cients Di = β(P ∗i − P set
i ). Since ωsync 6= 0, for each i ∈ I we obtain the steady-state

injection

Pe,i(θ
∗) = P̃i = P ∗i −Diωsync

= P ∗i − β(P ∗i − P set
i )

1

β

∑
i∈V P

∗
i∑

i∈I(P
∗
i − P set

i )︸ ︷︷ ︸
=1

= P set
i ,

where we used
∑

i∈I P
set
i = −

∑
i∈L P

∗
i . Since Pe,i(θ

∗)=P ∗i =P set
i for each i ∈ L, we have

Pe(θ) = P set. Since P set is γ-feasible, θ∗ is well defined in ∆G(γ). This completes the

converse. From the reasoning in the proof of Theorem 3.2.1, one may conclude that θ∗

is locally exponentially stable if and only if all Di are nonnegative.

Note that since the mapping between nodal injections and branch flows is one-to-one

for acyclic graphs, the set of feasible setpoint branch flows is exactly the image under B†

of the set of γ-feasible power injection setpoints.

Remark 3.2.9. (Generation Constraints). The definition of a γ-feasible injection

set point makes no reference to the inverter generation constraint Pe,i ∈ [0, P i], and these

constraints are therefore not guaranteed to hold. However, in the case where P ∗i = 0 (a

common parameter choice for islanded microgrids), if the problem parameters satisfy

−
∑

j∈L
P ∗j ≤

(
P i/Di

)∑
j∈I

Dj , i ∈ I , (3.15)

then the inverters will all satisfy their actuation constraints. The inequalities (3.15)

limit the heterogeneity of the inverter power injections, and are sufficient for the load
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serviceability condition

−
∑

i∈L
P ∗i ≤

∑
i∈I

P i , (3.16)

as one can see by rearranging and summing over all i ∈ I. Similarly, under the controller

gain selection P ∗i = P i for each i ∈ I, if the load serviceability condition (3.16) holds,

then ωsync > 0 and the inverter actuation constraints are always satisfied.

3.3 Analysis of Voltage Droop Control

The voltage droop controller is the second half of the droop control strategy and

the counterpart to the frequency controller (3.1a). For the case of inductive lines, the

controller specifies the inverter output voltage Ei by [35, Chapter 19]

Ei = E∗i − ni(Qe,i −Q∗i ) , i ∈ I , (3.17)

where E∗i > 0 is the nominal voltage for inverter unit i ∈ I inverter, Q∗i ∈ R is the unit’s

nominal reactive power injection, and Qe,i is the measured reactive power injection2. As

in the primary frequency controller (3.1a), the gain ni > 0 is called the droop coefficient.

From (3.17), it is clear that if an inverter injects a non-zero amount of reactive power

Qe,i, its voltage will deviate from E∗i .

The equation (3.18) is algebraic, and is to be thought of as a target which we would

like to implement. To model actuation delay in adjusting the voltage magnitude and

to simplify the subsequent analysis problems, it will be convenient to add an integral

channel to the controller (3.17) yielding the first-order system

τiĖi = −Ci(Ei − E∗i )−Qe,i , (3.18)

2See [52, 35] for details regarding estimation of active/reactive powers.
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where τi > 0 is the actuation time constant and Ci , n−1i . Note that solutions of

the algebraic equations (3.17) correspond to steady states of (3.18). In terms of the

first order inverter model (2.13b), the conventional droop controller specifies a feedback

vi = −Ci(Ei − E∗i ) − Qe,i, consisting of a local proportional control Ci(Ei − E∗i ) and a

nonlinear diffusive feedback Qe,i.

Despite its extensive history, the voltage droop controller (3.17) has so far resisted

any rigorous stability analysis. In our opinion, the key obstacle has been — and remains

— the difficulty in determining the equilibria of the closed-loop system. We remove this

obstacle in the next section by proposing a controller based on the nonlinear physics of

AC power flow.

3.3.1 Quadratic Voltage Droop Control

While the droop controller (3.17) is simple and intuitive, it is based on the linear

behavior of AC power flow around the system’s open-circuit operating point, and does

not respect the inherently quadratic nature of reactive power flow. We instead propose

a physically-motivated modification of the conventional voltage-droop controller (3.17).

In place of (3.17), consider instead the quadratic droop controller

vi = KiEi(Ei − E∗i )−Qe,i(E) , i ∈ I , (3.19)

where Ki < 0 is a controller gain. Note that compared to the conventional controller

(3.17), the gain on the local feedback term is no longer constant, but scales with the local

inverter voltage. Combining the decoupled reactive power flow (2.8b) with an algebraic

load model (2.17) of the form Qload,i(Ei) at each load bus i ∈ L, we must also satisfy the

48



Primary Control of Inverter-Based Power Grids Chapter 3

power balance equations

0 = Qload,i(Ei)−Qe,i(E) , i ∈ L . (3.20)

Combining now the inverter model (2.13), the quadratic droop controller (3.19), the

load power balance (3.20), and the power flow equation (2.9), the closed-loop dynamical

system is differential-algebraic, and can be written compactly as

 0n

τIĖI

 =

 QL(EL)

[EI ]KI(EI − E∗I )

+ [E]BE , (3.21)

where τI = diag(τn+1, . . . , τn+m), KI = diag(Kn+1, . . . , Kn+m), EI = (En+1, . . . , En+m),

and QL(EL) = (Qload,1(E1), . . . , Qload,n(En)). The closed-loop dynamics (3.21) highlight

the competition in the network between the driving terms in parentheses, which attempt

to distort the network voltage profile, and the homogenizing effect of the network [E]BE

which attempts to drive the voltages towards the subspace spanned by 1n+m. (Lemma

2.2.1 (ii)). Since the variables Ei represent voltage magnitudes referenced to ground,

they are intrinsically positive, and for physical consistency we restrict our attention to

positive voltage magnitudes. In particular, let M , {E ∈ Rn+m : (3.20) holds ∀i ∈ L}

denote the m-dimensional manifold in Rn+m where all algebraic equations (3.20) hold.

We consider (3.21) to be defined only on the intersection M>0,M∩ Rn+m
>0 .

We offer two interpretations of the controller (3.19), one theoretical and one prag-

matic.

Circuit-theoretic interpretation: In analogy with feedback strategies used in the

study of port-Hamiltonian systems [68], the design (3.19) can be interpreted as control

by interconnection, where we interconnect the physical electrical network with fictitious
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“controller circuits” at the inverter nodes i ∈ I [46]. Indeed, consider the two-node

Figure 3.1: Linear circuit representation of the quadratic droop controller (3.19).

circuit of Figure 3.1, where the blue node has variable voltage Ei and is connected via a

susceptance Ki < 0 to the green node of fixed voltage E∗i . The current-voltage relations

for this fictitious circuit areIi
I∗i

 = j

 Ki −Ki

−Ki Ki


Ei
E∗i

 , (3.22)

where Ii (resp. I∗i ) is the current injection at the node with voltage Ei (resp. E∗i ). Now,

let there be m of the two-node circuits in Figure 3.1; one for each inverter. If we identify

the variable-voltage blue nodes of these circuits with the inverter nodes of our original

network (Figure 3.2a), and impose that the current injected into the first must exit from

the second, we obtain an augmented network with n+ 2m nodes, and in vector notation

the current-voltage relations in the new network are


IL

0m

I∗I

 = j


BLL BLI 0

BIL BII +KI −KI

0 −KI KI



EL

EI

E∗I

 . (3.23)

where we have partitioned all variables accordingly. In this augmented network, the

inverters behave as interior nodes joining the fictitious controller nodes to the loads, and

do not sink or source power themselves. Left multiplying the first two blocks of equations

in (3.23) by [E] and noting that by definition j[EL]IL = QL(EL), we immediately obtain

the right hand side of (3.21). Thus, unlike the conventional droop controller (3.17), the
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quadratic droop controller preserves the structure of the circuit equations in closed-loop

operation.

Practical interpretation: Far from being linear, voltage/reactive power capability

characteristics of synchronous generators display significant nonlinearities. In the absence

of saturation constraints, the characteristics are in fact quadratic [53, Equation 3.105],

and thus the quadratic droop controller (3.19) more accurately mimics the behavior of a

true synchronous generator compared to the classical controller (3.17). Intuitively, this

quadratic dependence can be interpreted as follows: the marginal voltage drop (voltage

deviation per unit increase in reactive power) increases with reactive power provided.

Remark 3.3.1. (Generalizations of Quadratic Droop). The quadratic droop con-

troller (3.19) is a special case of the more general feedback controller

ui = Ei
∑

j∈I

(
αijEj + βijE

∗
j

)
, (3.24)

where αij, βij are gains. One recovers (3.19) by setting αii = Ki, βii = −Ki, and all

other parameters to zero. While the decentralized control (3.19) can be interpreted as

control-by-interconnection with the simple circuit of Figure 3.1, the controller (3.24) rep-

resents a more general, densely interconnected circuit with m variable-voltage nodes and

m fixed voltage nodes. While interesting in and of itself, decentralized control strategies

are generally preferable in microgrids for redundancy, so for this reason and simplicity

of presentation we restrict our attention to the decentralized controller (3.19), with the

understanding that all results extend to the more general feedback controller (3.24). �

For mathematical convenience and simplicity of presentation, we make the following

assumption in our subsequent calculations, which can be eliminated at the cost of a less

elegant development.
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Assumption 3.3.2. (No Shunts). There are no shunt elements at inverter buses

i ∈ I, and shunts at load buses i ∈ L are included in the load model Qload,i and not in

the susceptance matrix B.

It follows that B is negative semidefinite with a simple eigenvalue at zero correspond-

ing to eigenvector 1n+m (Lemma 2.2.1 (iii)).

A basic question regarding the closed-loop system (3.21) is the following: under

what conditions on load, network topology, admittances, and controller gains does the

differential-algebraic system (3.21) possess a locally exponentially stable equilibrium?

Our first result exploits the structure of the control law (3.19) to establish a correspon-

dence between the equilibria of (3.21) and the solutions of a power flow equation for a

reduced network.

Theorem 3.3.3. (Reduced Power Flow Equation for Quadratic Droop Net-

work). Consider the closed-loop system (3.21) resulting from the quadratic droop con-

troller (3.19). Partition the susceptance matrix and nodal voltage variables according to

loads and inverters as

B =

BLL BLI

BIL BII

 , E = (EL, EI)
T ,

and define

Bred , BLL −BLI (BII +KI)
−1BIL ∈ Rn×n , (3.25)

W1 , −B−1redBLI (BII +KI)
−1KI ∈ Rn×m , (3.26)

E∗L , W1E
∗
I ∈ Rn

>0 , (3.27)

W2 , (BII +KI)
−1
(
−BIL KI

)
∈ Rm×n. (3.28)
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The following two statements are equivalent:

(i) Original Network: The voltage vector E = (EL, EI) ∈ M>0 is an equilibrium

point of (3.21);

(ii) Reduced Network: The load voltage vector EL ∈ Rn
>0 is a solution of the reduced

power flow equation

0n = QL(EL) + [EL]Bred(EL − E∗L) , (3.29)

and the inverter voltage vector is recovered via

EI = W2

EL
E∗I

 ∈ Rm
>0 . (3.30)

Moreover, if the Jacobian of (3.29), given by

Jred =
∂QL

∂EL
+ [EL]Bred + [Bred(EL − E∗L)] , (3.31)

is a Hurwitz matrix when evaluated at a solution EL ∈ Rm
>0 of (3.29), then the equilibrium

point (EL, EI) of the differential-algebraic system (3.21) is locally exponentially stable.

Proof. That the quantities (3.25)–(3.28) are in fact well-defined follows from Proposition

A.2.1, the statement and proof of which can be found in Appendix A.

(i)⇒(ii): Since E = (EL, EI)
T ∈ M>0, it follows by definition that that EL ∈ Rn

>0

and EI ∈ Rm
>0. By setting the left-hand side of (3.21) to zero, equilibrium points satisfy

0n+m =

 QL(EL)

[EI ]KI(EI − E∗I )

+

[EL] 0

0 [EI ]


BLL BLI

BIL BII


EL
EI

 . (3.32)
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Since E ∈M>0 solves (3.32), we can left-multiply the lower block of equations in (3.32)

by [EI ]
−1 to obtain

0m = KI(EI − E∗I ) +BIIEI +BILEL , (3.33)

and solve for EI to recover (3.30). Substituting (3.30) into the first block of equations in

(3.32), we calculate

−QL(EL) = [EL]BLLEL − [EL]BLI(BII +KI)
−1 (BILEL −KIE

∗
I )

= [EL] (BLL −BLI(BII +KI)
−1BIL)︸ ︷︷ ︸

Bred

EL − [EL]BLI(BII +KI)
−1KIE

∗
I︸ ︷︷ ︸

BredE
∗
L

= [EL]Bred(EL − E∗L) ,

which is the reduced power flow equation (3.29).

(ii)⇒(i): Due to (3.30) and Proposition A.2.1 (iii), we have that EL ∈ Rn
>0 implies

that EI ∈ Rm
>0 and hence E ∈ Rn

>0. An easy computation shows that (3.29) and (3.30)

together imply that (EL, EI) satisfy the fixed point equations (3.32), and thus E ∈M>0.

To show the final statement, we study the local stability of the differential-algebraic

system (3.21) at the equilibrium E ∈ M>0 by appealing to [64, Theorem 1]. Consider

the generalized eigenvalue problem (GEP) Jv = λτv where v ∈ Rn, τ = blkdiag(0, τI)

and Jacobian matrix J is given by

J = [E]B + [BE] +D . (3.34)

The diagonal matrix D ∈ R(n+m)×(n+m) has elements Dii = dQload,i(Ei)/dEi for i ∈ L

and Dii = Ki(Ei − E∗i ) + KiEi for i ∈ I. Since E ∈ M>0, we can left-multiply through
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by [E]−1 and formulate the GEP as the symmetric problem

Mv = λ[E]−1τv , (3.35)

where

M = MT , B + [E]−1([BE] +D) . (3.36)

Partitioning the eigenvector v as v = (vL, vI), block partitioning M , and eliminating

the top set of algebraic equations, we arrive at a reduced GEP MredvI = λ[EI ]
−1τIvI

where Mred = MT
red , MII − MILM

−1
LLMLI . By [64, Lemma 1], E ∈ M>0 is locally

exponentially stable if and only if the eigenvalues of this reduced GEP are all in the open

left-half complex plane. The matrices on both sides are symmetric, and in particular the

matrix [EI ]
−1τI on the right is diagonal. The eigenvalues {λi}i∈I of this reduced GEP

are therefore real, and it holds that λi < 0 for each i ∈ I if and only if Mred is negative

definite [71, Chapter 6]. Hence, to show exponential stability of E ∈ M>0, we need

only show that −Mred is positive definite, which we will do indirectly by combining two

standard results on Schur complements. A straightforward computation using (3.25),

(3.27), (3.30) and (3.33) yields

M =

M11 BLI

BIL BII +KI

 .

where M11 = [EL]−1(∂QL/∂EL) +BLL + [EL]−1[Bred(EL − E∗L)]. Since the bottom-right

block −(BII + KI) of −M is positive definite, −M will be positive definite if and only

if the Schur complement with respect to this bottom-right block is also positive definite.
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This Schur complement is equal to

−[EL]−1
∂QL

∂EL
−Bred − [EL]−1[Bred(EL − E∗L)] , (3.37)

which is exactly −[EL]−1 times the Jacobian (3.31) of (3.29). Since Jred is Hurwitz

with nonnegative off-diagonal elements, −J is an M -matrix and is therefore D-stable.

It follows that the Schur complement (3.37) is positive definite, and hence that Mred is

positive definite, which completes the proof.

Figure 3.2: Diagram showing network augmentation and reduction for quadratic droop
control. First, each inverter node of the network in Figure 1.1b is interconnected
with a two-node controller circuit, consisting of an inverter node and fictitious node
at constant voltage E∗i . In Theorem 3.3.3, the inverter nodes are eliminated via Kron
reduction, leaving a reduced network with only fixed voltage nodes and load nodes .

Theorem 3.3.3 states that to study the existence and uniqueness of stable equilibria

for the closed-loop system (3.21), we need only study the reduced power flow equation

(3.29) and its Jacobian matrix. Voltages at inverters may then be recovered uniquely

from (3.30). In fact, since W2 is row-stochastic (Proposition A.2.1), the inverter voltages

(3.30) are weighted averages of load voltages E∗L and inverter set point voltages E∗I .

Similarly, W1 is row-stochastic, and hence the open-circuit load voltages E∗L in (3.27) are

weighted averages of inverter set points.

56



Primary Control of Inverter-Based Power Grids Chapter 3

The reduced power flow equation (3.29) is straightforward to interpret in terms of the

circuit-reduction of Figure 3.2. Eliminating the inverter voltages EI from the augmented

network current balance (3.23) through Kron reduction [22], one obtains the input/output

equivalent reduced circuit

IL
I∗I

 =

 Bred −BredW1

−W T
1 Bred KI(BII +KI)

−1BII


EL
E∗I

 . (3.38)

This reduction process is shown pictorially in Figure 3.2. Left-multiplying the first block

in (3.38) by [EL] immediately yields the reduced power flow (3.29). Hence (3.29) is

exactly the reactive power balance equation QL = [EL]IL in the reduced network (c.f.

[76, Equation 2.10b]). The bottom block of equations in (3.38) can be thought of as

determining the fictitious controller current injections once the top block is solved for

EL.

The reduced power flow equation (3.29) can be solved exactly for the specific case we

now outline.

Corollary 3.3.4. (Stability for “ZI” Loads). Consider the reduced power flow equa-

tion (3.29) for constant-impedance/constant-current loads

QZI
L (VL) = [EL][bshunt]EL + [EL]Ishunt , (3.39)

where bshunt ∈ Rn (resp. Ishunt ∈ Rn) is the vector of constant-impedance loads (resp.

constant current loads). Assume that

(i) −([bshunt] +Bred) is an M-matrix , and

(ii) Ishunt > BredE
∗
L component-wise .

57



Primary Control of Inverter-Based Power Grids Chapter 3

Then the unique solution EZI
L ∈ Rn

>0 to (3.29) is given by

EZI
L = (Bred + [bshunt])

−1(BredE
∗
L − Ishunt) , (3.40)

and the associated equilibrium point (EZI
L , EZI

I ) of (3.21) is locally exponentially stable.

The first technical condition in Corollary 3.3.4 restricts the impedance loads from

being overly capacitive, while the second restricts the current loads from being overly

inductive (since BredE
∗
L < 0 component-wise). Note in the case of open-circuit operation

(no loading) when Ishunt = bshunt = 0, (3.40) reduces to EZI
L = E∗L.

Proof. Corollary 3.3.4 Substituting the ZI load model (3.39) into the reduced power flow

equation (3.29), we obtain

0n = [EL] {(Bred + [bshunt])EL − (BredE
∗
L − Ishunt)} ,

= [EL](Bred + [bshunt])(EL − EZI
L ) (3.41)

where in the second line we have factored out (Bred + [bshunt]) and identified the second

term in parentheses with (3.40). We observe that EL = EZI
L is a solution. Since (Bred +

[bshunt]) is nonsingular and we require that EL ∈ Rn
>0, E

ZI
L is the unique solution if

EZI
L ∈ Rn

>0. Since −(Bred + [bshunt]) is an M -matrix, the inverse (Bred + b[shunt])
−1 inverse

has nonpositive elements [62], and hence multiplication by the strictly negative vector

BredE
∗
L − Ishunt yields a strictly positive vector EZI

L ∈ Rn
>0. To show stability, we apply

Theorem 3.3.3 and check that the Jacobian of (3.41) evaluated at (3.40) is Hurwitz.

Differentiating (3.41), we calculate that

Jred = [EL](Bred + [bshunt]) + [(Bred + [bshunt])(EL − EZI
L )] ,
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and therefore that

Jred|EL=E
ZI
L

= [EZI
L ](Bred + [bshunt]) ,

which is Hurwitz since −(Bred + [bshunt]) is by assumption an M -matrix and M -matrices

are D-stable.

A more general static load model still is the ZIP model Qi(Ei) = bload,iE
2
i +Iload,iEi+

Qi, i ∈ L, which augments the ZI model (3.39) with an additional constant power demand

Qi ∈ R [83, 76]. In vector notation, this generalizes (3.39) as

QZIP
L (EL) = [EL][bshunt]EL + [EL]Ishunt +QL . (3.42)

Unlike the ZI model (3.39), the reduced power flow equation (3.29) cannot be solved

analytically for ZIP loads, except for the special case of a parallel microgrid which we

detailed in [29]. Indeed, even this special case demonstrates that the network can have

multiple equilibrium points with non-trivial stability properties. The following result

builds on [9, 1] and provides an approximate characterization of the high-voltage reduced

power flow solution when “QL is small”.

Theorem 3.3.5. (Stability with “ZIP” Loads). Consider the reduced power flow

equation (3.29) with the ZIP load model (3.42), let the conditions of Corollary 3.3.4

hold, and let EZI
L be the high-voltage solution of (3.29) for ZI loads as given in Corollary

3.3.4. Furthermore, define the short-circuit capacity matrix

Qsc , [EZI
L ](Bred + [bshunt])[E

ZI
L ] ∈ Rn×n . (3.43)

Then to first order, the solution of the reduced power flow equation (3.29) with ZIP loads
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(3.42) is given by

EZIP
L = [EZI

L ]
(
1n −Q−1sc QL

)
. (3.44)

Moreover, if

‖Q−1sc QL‖∞ < 1/2 , (3.45)

then EZIP
L ∈ Rn

>0 and the corresponding equilibrium point (EZIP
L , EZIP

I ) of (3.21) is locally

exponentially stable.

Much like the technical conditions (i) and (ii) in Corollary 3.3.4, the condition (3.45)

restricts the size of the constant power component in the ZIP model (3.42); it must be

sufficiently small compared to the short-circuit capacity matrix.

Proof. Theorem 3.3.5 .With the ZIP load model (3.42), the reduced power flow equation

(3.41) is modified to

QL = f(EL) = −[EL](Bred + [bshunt])(EL − EZI
L ) .

Expanding f(EL) around EL = EZI
L to first order, we obtain

QL = f(EL) ' f(EZI
L ) +

∂f(EL)

∂EL

∣∣∣
EL=E

ZI
L

(EL − EZI
L )

= 0− Jred|EL=E
ZI
L
· (EL − EZI

L )

= [EZI
L ](Bred + [bshunt])(EL − EZI

L ) ,

which after a matrix inversion yields (3.44). To study stability, we again apply Theorem

3.3.3 and examine the Jacobian matrix of the reduced power flow, Jred = −∂f(EL)
∂EL

, which
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when evaluated at EZIP
L yields

Jred = [EZIP
L ](Bred + [bshunt])− [EZI

L ]−1[QL] .

Since Jred is Hurwitz if and only if −Jred is an M -matrix, and since M -matrices are

D-stable, we may left-multiply by [EZIP
L ]−1 and Jred will be Hurwitz if and only if the

symmetric (negative) M -matrix matrix

[EZIP
L ]−1Jred = (Bred + [bshunt])− [EZIP

L ]−1[EZI
L ]−1[QL]

is negative definite. Applying D-stability twice, we may left and right multiply by [EZI
L ]

and equivalently study the symmetric matrix

[EZI
L ][EZIP

L ]−1Jred[EZI
L ] = Qsc − [EZIP

L ]−1[EZI
L ][QL] ,

where we have identified the first term with the short-circuit matrix (3.43). Left-

multiplying by Q−1sc and applying the Inertia Theorem, Jred will be Hurwitz if and only

if

[EZIP
L ]−1[EZI

L ]Q−1sc [QL]− In ,

is Hurwitz. A sufficient condition for this is that

‖[EZIP
L ]−1[EZI

L ]Q−1sc [QL]‖∞ < 1 . (3.46)

61



Primary Control of Inverter-Based Power Grids Chapter 3

However, left-multiplying (3.44) by [EZIP
L ]−1, we have

[EZIP
L ]−1[EZI

L ]Q−1sc [QL] = [EZIP
L ]−1[EZI

L ]− 1n .

Thus, the sufficient condition (3.46) is equivalent to ‖[EZIP
L ]−1[EZI

L ] − 1n‖∞ < 1, which

from examination of (3.44) holds if and only if the stated condition (3.45) holds, com-

pleting the proof.

While the ZIP load model can accurately capture the steady-state behavior of most

aggregated loads, when considering dynamic stability of a power system it is often impor-

tant to check results obtained for static load models against those obtained using basic

dynamic load models. A common dynamic load model is the dynamic shunt (DS) model

Tiḃshunt,i = Qi − E2
i bshunt,i, or in vector notation

T ḃshunt = QL − [EL]2bshunt . (3.47)

where T = diag(T1, . . . , Tn) is a matrix of positive time-constants. The DS model speci-

fies that the shunt susceptance bshunt,i is adjusted dynamically to achieve a constant power

consumption Qi; this is a common low-fidelity dynamic model for thermostatically con-

trolled loads, induction motors, and aggregate loads behind tap-changing transformers.

We restrict our attention to inductive loads Qi < 0, as these are the most common in

practice. The next result shows that the

Theorem 3.3.6. (Stability for “DS” Loads). Consider the reduced power flow equa-

tion (3.29) with the dynamic shunt load model (3.47). Then to first order, the solution
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EDS
L of the reduced power flow equation (3.29) with DS loads (3.47) is given by

EDS
L = [E∗L]

(
1n −Q−1sc QL

)
, (3.48a)

bDS
shunt = [EDS

L ]−2QL , (3.48b)

where Qsc = [E∗L]Bred[E∗L]. Moreover, if

‖Q−1sc QL‖∞ < 1/2 (3.49)

then the corresponding equilibrium point (EDS
L , EDS

I , bDS
shunt) of (3.21) is locally exponen-

tially stable.

Proof. Without loss of generality, we assume that Qi 6= 0 for all i ∈ L, since if Qi = 0 the

unique steady-state of (3.47) is bshunt,i = 0 and the equation can be removed. In steady-

state, the DS model (3.47) is equivalent to a constant power load model, and hence the

steady-state load voltages EDS
L are given approximately by EZIP

L as in Theorem 3.3.5,

but with ZI components bshunt = 0n and Ishunt = 0n, yielding the stated result. To show

stability, we can no reason from Theorem 3.3.3 and jump directly to the reduced power

flow equation, since this result was derived in the absence of load dynamics. Surprisingly

however, a long calculation shows that applying the proof methodology of Theorem 3.3.3

to the extended dynamics (3.21)–(3.47) yields the same result: to test for stability, we

need only study the Jacobian of the reduced power flow equation (3.29). A calculation

analogous to that in Theorem 3.3.5 then yields the stated stability condition.

3.3.2 Quadratic Droop Control in Parallel Microgrids

The reduced power flow equation (3.29) is particularly simple for the common class

of parallel microgrids, which consist of a single load fed by multiple inverters in parallel
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(Figure 1.1a). In this section we let nodes I = {1, . . . ,m} correspond to the inverter

nodes, and let node VL = {0} be the common connection point for a total of N nodes.

In this case, the susceptance matrix has the simple form

B =



∑m
i=1 bi0 −b10 · · · −bm0

−b10 b10 · · · 0

...
...

. . .
...

−bm0 0 · · · bm0


,

where bi0 < 0 is the susceptance between inverter i ∈ I and the common distribution

bus. For simplicity in this section we restrict ourselves to the constant power load model

(2.20); all results extend to the ZIP model (2.18) with little additional effort. In this

case, the algebraic power flow equation (3.20) takes the form

h(E) , Q0 +
∑m

j=1
bj0E0(E0 − Ej) = 0 . (3.50)

Before studying the equilibria of the closed-loop system, we examine closely the global

structure of our constraint set M , {E ∈ Rm+1 : h(E) = 0}.

Lemma 3.3.1. (Topology of Constraint Set for Parallel Microgrid). Consider the

power balance equation (3.50) for a parallel microgrid, and define the total susceptance

btot < 0 and the singular normal vector a ∈ Rm+1 by

btot ,
∑m

i=1
bi0 , a ,

(
−1 ,

b10
2btot

, . . . ,
bm0

2btot

)T
,

with associated hyperplane

H ,
{
E ∈ Rm+1 | aTE = 0

}
. (3.51)

64



Primary Control of Inverter-Based Power Grids Chapter 3

Figure 3.3: Equilibrium locations for (a) capacitive loading Q0 > 0, (b) inductive loading
Q0 ∈]Qsing, 0[, and (c) highly inductive loading Q0 ∈]Qcrit, Qsing[. Gray arrows represent
the behavior of the associated singularly perturbed system (3.52) with parasitic term
εĖ0.

The following statements hold:

(i) Singular Surface: The singular surface S of the load power balance (3.50) is

given by S =M∩H;

(ii) Topology of State Space M>0:

(a) If Q0 ≥ 0, there exists a unique stable component Mstable of M such that

M>0 =Mstable
>0 is nonempty and simply connected;

(b) If Q0 < 0, there exist unique stable and unstable components Mstable (resp.

Munstable) of M such that M>0 =Mstable
>0 ∪Munstable

>0 ∪ S>0, where all sets in

the union are nonempty and simply connected.

Lemma 3.3.1 is illustrated in Figure 3.3.

Remark 3.3.7. (Physically Measurable States). It is argued in [100] thatMstable
>0 is

the only physically observable portion of the state space, in that if one performed measure-

ments on the physical system in steady state, one would only ever obtain measurements

on or near Mstable
>0 . The restriction to M>0 is clear from Remark 2.2.1. To understand

the additional restriction to the stable component, consider instead of the load balance
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(3.50) an associated singularly perturbed system

εĖ0 = h(E) , (3.52)

where ε > 0. The additional term εĖ0 could arise due to parasitics neglected during

modeling of the system. Now, note that any small disturbance or noise in the system will

push the state E off the constraint set M>0, such that the “boundary layer” dynamics

(3.52) will determine whether the state will be attracted or repelled from M>0. From

Lemma 3.3.1, Mstable
>0 is exactly the attracting portion of M>0, while initial conditions

arbitrarily close to Munstable
>0 — if it exists — will be repelled; see Figure 3.3. Thus, if we

performed a measurement on our system in steady state, we would expect to never observe

voltages near Munstable
>0 . Based on physical grounds, we therefore restrict our attention to

Mstable
>0 . �

In the following, local exponential stability of an equilibrium E+ ∈ Mstable
>0 refers to

the behavior of nearby initial conditions also belonging to Mstable
>0 , see [89].

Theorem 3.3.8. (Existence of High-Voltage Equilibrium for Parallel Micro-

grids). Consider the closed-loop system (3.21) for a parallel microgrid resulting from the

quadratic droop controller (3.19). Define the critical voltage vector Ecrit ∈ Rm+1
>0 and the

critical load Qcrit < 0 by

Ecrit ,

E∗L
2

; W2

E∗L/2
E∗I


 , (3.53a)

Qcrit ,
1

4
Bred(E∗L)2 . (3.53b)

The following two statements are equivalent:
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(i) Stable High Voltage Equilibrium: The closed-loop (3.21) possesses exactly one

locally exponentially stable equilibrium E+ ∈Mstable
>0 satisfying E+ >> Ecrit;

(ii) Load Feasibility: The load is not overly inductive,

Q0 > Qcrit. (3.54)

If the above statements are satisfied, E+ is given by

E+
0 =

E∗L
2

(
1 +

√
1− Q0

Qcrit

)
, (3.55a)

E+
i = −KiE

∗
i + bi0E

+
0

Ki + bi0
, i ∈ I . (3.55b)

Remark 3.3.9. (Interpretation of Feasibility Condition). Theorem 3.3.8 gives the

necessary and sufficient condition for the existence of a “high” voltage equilibrium. That

is, each component of the equilibrium is larger than the corresponding component of the

strictly positive vector Ecrit in (3.53a). One can verify that (3.25) and (3.27) reduce to

the scalar values

Bred =
∑m

j=1

(
bj0Kj

bj0 +Kj

)
< 0 , (3.56)

E∗L =
1

Bred

∑m

j=1

(
bj0Kj

bj0 +Kj

)
E∗j > 0 , (3.57)

and thus the RPFE (3.29) reduces to a single quadratic equation. The parametric con-

dition (3.54) is exactly the classic power flow feasibility result for the modified two-node

network of Figure 3.4 [76, Chapter 2].

Perhaps surprisingly, Theorem 3.3.8 shows that the voltage stability of parallel net-

works does not simply decouple line-by-line into m voltage stability problems. The critical
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Figure 3.4: Single-line equivalent circuit for feasibility condition (3.54).

load (3.53b) takes into account the network topology, admittances, and droop controller

gains, while the ratio Q0/Qcrit serves as an exact security metric for network monitoring.

The condition (3.54) is asymmetric with respect to inductive (Q0 < 0) and capacitive

(Q0 > 0) loads. This is due to the assumed inductive nature of the network, and would

be reversed for a capacitive network. Moreover, note that when Q0 = Qcrit, it holds that

E+ = E− = Ecrit and both fixed points coalesce before disappearing in a saddle-node

bifurcation [86]. �

Theorem 3.3.8 establishes the existence and local stability of a high voltage equilib-

rium for the closed-loop differential-algebraic system (3.21). From the explicit form of

the equilibrium E+ in (3.55), the reader may suspect that we have ignored an additional

equilibrium. Indeed, under a restricted condition on the load, a “low” voltage equilib-

rium E− ∈ Mstable
>0 exists as well. Recall that a hyperbolic equilibrium E− is said to be

of type-k if k of its eigenvalues have positive real parts [100].

Theorem 3.3.10. (Unstable Low Voltage Equilibrium for Inductive Loads).

Define the singular load value as

Qsing ,
4Bred/btot

(1 +Bred/btot)2
Qcrit ∈ ]Qcrit, 0[ . (3.58)

The following two statements are equivalent:

(i) Unstable Low Voltage Equilibrium: The closed-loop (3.21) possesses exactly
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one hyperbolic type-1 unstable equilibrium E− ∈Mstable
>0 satisfying E− << Ecrit;

(ii) Load Restriction : Q0 ∈ ]Qcrit, Qsing[ .

If the above statements are satisfied, E− is given by

E−0 =
E∗avg

2

(
1−

√
1− Q0

Qcrit

)
, (3.59a)

E−i = −KiE
∗
i + bi0E

−
0

Ki + bi0
, i ∈ I . (3.59b)

Remark 3.3.11. (Load Restrictions). The load restriction (ii) ensures that E− ∈

Mstable
>0 , c.f. Remark 3.3.7. As in Theorem 3.3.8, no equilibrium E− exists for Q0 < Qcrit.

When Q0 = Qcrit, E
+ = E− = Ecrit. That is, the stable and unstable equilibria coalesce at

value Ecrit ∈Mstable
>0 , then vanish in a saddle-node bifurcation leading to voltage collapse

[90, 86]. When Q0 = Qsing it holds that E− ∈ S>0, and the stability properties of E−

change via a singularity-induced bifurcation [80]. Indeed, when Q0 ∈ ]Qsing, 0[ one can

show that E− ∈ Munstable
>0 . In this regime, E− is in fact locally exponentially stable, but

is unstable in the ambient space for the associated parasitic dynamics, see Figure 3.3 and

Remark 3.3.7. For Q0 ≥ 0, E− has negative elements and is therefore not in the state

space M>0. �

Proof. A quick calculation using (3.56) and (3.57) shows that thatQsing/Qcrit = 4α(1−α),

where α , Bred/(Bred + btot) ∈ ]0, 1/2[. Since α 7→ 4α(1 − α) ∈ ]0, 1[ for α ∈ ]0, 1/2[, it

holds that Qsing ∈ ]Qcrit, 0[.

(ii)⇒(i): For Q0 ∈ ]Qsing, Qcrit[, one may proceed as in the proof of Theorem 3.3.8

to derive (3.59) and show that E− ∈ Mstable
>0 and that E− << Ecrit. It remains to show

that E− is hyperbolic and type-1. One may quickly calculate from (3.59) that when
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Q0 = Qsing,

E−0 = E0,sing ,
Bred

(Bred + btot)
E∗L ∈ ]0, E∗L/2[ .

It is therefore clear that for Q0 satisfying (ii), E−0 ∈ ]E0,sing, E
∗
avg/2[. By proceeding

as in the proof of Theorem 3.3.8, one may arrive at a generalized eigenvalue problem

M(E−)v = λ[E−]−1τv. Here, the matrix M(E−) takes the form

M(E−) =

α(γ) BLI

BIL BII +KI

 ,

where γ = E−0 − E0,sing > 0, and α(γ) is defined by

α(γ) ,
γ(Bred + btot)

2

E∗LBred + γ(Bred + btot)
.

Due to condition (ii), γ ∈ ]0, E∗avg/2− E0,sing[, and hence α(γ) ∈ ]0, Bred − btot[. More-

over, note that α(γ) is a strictly positive and monotonically increasing function of γ for

γ ∈ ]0, E∗avg/2− E0,sing[. As before in Theorem 3.3.8, we calculate the reduced matrix

Mred(E−) = BII +KI −BILBLI/α(γ) , (3.60)

and study the reduced generalized eigenvalue problem Mred(E−)u = λ[E−I ]−1τIu. From

(3.60), it’s clear that for sufficiently small α(γ) (and hence, for sufficiently small γ), the

second term becomes sufficiently large such that Mred(E−) becomes indefinite. Let us

examine the other extreme, where γ → E∗avg/2 − E0,sing. First, note that the following

facts hold:

1. BILBLI is a rank-one positive semidefinite matrix with non-zero eigenvalue
∑m

j=1 b
2
j0;

2. limγ→E∗avg/2−E0,sing
α(γ) = Bred − btot.
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One may verify by explicit calculation that in the limit as γ → E∗avg/2−E0,sing, Mred(E−)

has an eigenvalue at zero corresponding to the eigenvector (BII + KI)
−1BIL. Since the

addition of a rank one matrix can change the rank of BII +BI by no more than one, we

further conclude that zero is a simple eigenvalue. Since α(γ) is a strictly positive and

monotonically increasing function of γ for γ ∈ ]0, E∗avg/2− E0,sing[, and the eigenvalues

of a matrix are continuous functions of the matrix entries, we conclude that Mred(E−) is

indefinite for all values of γ ∈ ]0, E∗avg/2− E0,sing[ — and hence all values of Q0 satisfying

(ii) — with m − 1 positive eigenvalues and one negative eigenvalue. This shows that

E− is a hyperbolic type-1 unstable fixed point and completes (i)⇒(ii). The converse

implication follows, since if (ii) is not satisfied, E− /∈Mstable
>0 .

Taken together, Lemma 3.3.1 along with Theorems 3.3.8 and 3.3.10 give a clear

picture of the dynamics on the state space; depending on the problem parameters, there

are always either zero, one, or two equilibria in Rm+1
>0 (Figure 3.3).

3.3.3 Revisiting Conventional Voltage Droop Control

As we have seen, the analysis of a parallel microgrid controlled by the quadratic droop

controller (3.19) is considerably simpler than the analogous but seemingly intractable

problem for the conventional droop controller (3.18).

We can in fact leverage the results of Sections 3.3.1 and 3.3.2 to provide a partial

analysis of the conventional droop controller (3.18). The following result — the proof

of which follows by comparing (3.18) and (3.19) — relates the equilibria of the two

closed-loop systems for a special choice of controller gains.

Lemma 3.3.2. (Equilibria of Conventional Droop Controller). Consider the re-

spective closed-loop systems resulting from the conventional droop controller (3.18) and
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the quadratic droop controller (3.19) for an arbitrary network topology. The following

two statements are equivalent:

(i) Quadratic System: E ∈M>0 is an equilibrium of the quadratic droop-controlled

system with controller gains Ki < 0, i ∈ I;

(ii) Conventional System: E ∈ M>0 is an equilibrium of the conventionally droop-

controlled system with controller gains Ci = −KiEi where Ki < 0, i ∈ I.

Theorem 3.3.12. (Stability of Conventional Droop Controller). Consider the

closed-loop differential-algebraic system

0 = Q0 +
∑m

j=1
bj0E0(E0 − Ej) , (3.61a)

τiĖi = −Ci(Ei − E∗i )−Qe,i(E) , i ∈ I , (3.61b)

resulting from the conventional droop controller (3.18) in a parallel microgrid. Assume

that the stability condition (3.54) for quadratic droop control holds, and that the controller

gains are chosen as in Lemma 3.3.2. If

max
i,j∈{1,...,m}

E∗i
E∗j

< 2 , (3.62)

then E+, as given by (3.55), is locally exponentially stable for the voltage droop controlled

system (3.61).

Proof. That E+ is an equilibrium of both the quadratic droop closed-loop system (3.21)

and the conventional droop closed-loop system (3.61) follows from Lemma 3.3.2.

To show stability, one may proceed as in the proof of Theorem 3.3.8 and arrive at a
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generalized eigenvalue problem M̃(E+)v = −λ[E+]−1τv, where

M̃(E+) = M(E+) +

0 0

0 KI ([EI ]
−1[E∗I ]− Im)

 ,

with the components of EI being given by (3.55b). Again appealing to [64, Theorem 1],

we study the Schur complement with respect to the bottom right block, which after a

simple but tedious calculation is found to be given by

S =
m∑
j=1

Kjbj0
Kj + bj0

2− E∗L
E+

0

+
E∗j − E+

0

Kj(Kj+2bj0)

b2j0
E∗j + E+

0

 .

Motivated by (3.55a), define β , E+
0 − E∗avg/2 > 0. Notice that condition (3.62) implies

that 2E∗i,min > E∗i,max, and Proposition A.2.1 (ii) implies that E∗i,max ≥ E∗L. Hence, (3.62)

implies that E∗i > E∗L/2 for each i ∈ {1, . . . ,m}. Hence, one may verify that the term in

parenthesis is positive for all β ≥ 0. By the same reasoning as in the proof of Theorem

3.3.8, we conclude that the m×m reduced matrix associated with M̃ is negative definite

for any E+
0 as given by (3.55a)-(3.55b). It follows that E+ is locally exponential stable

for the conventional droop controlled system (3.61).

The mild extra condition (3.62) in Theorem 3.3.12 requires that the inverter voltage

set points are sufficiently similar, and in practice is always satisfied.
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Chapter 4

Distributed Secondary Control of

Inverter-Based Power Grids

4.1 Introduction

In Chapter 3 we provided detailed analyses of primary controllers for microgrids.

One consequence of these results is that primary droop controllers lead to steady-state

frequency and voltage deviations of the inverter variables from their nominally rated

values. The next level in the microgrid control hierarchy, termed secondary control, is

tasked with removing these deviations. Since secondary control techniques for frequency

and voltage have somewhat different motivations and implementation issues, we review

them separately.

Frequency Regulation: Many techniques have been suggested to restore the network

frequency, ranging on the spectrum from centralized to decentralized [59], and each with

its own advantages and disadvantages. One centralized technique is to mimic Automatic

Generation Control from bulk power systems. This is implemented using area control

errors on slow time-scales, a centralized integral controller, and one-to-all communication
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[53]. However, this centralized approach conflicts with the microgrid paradigm of dis-

tributed generation and autonomous management. A decentralized technique is to use

a slower integral control locally at each inverter [85]. This implicitly assumes that the

measured local frequency is equal to the steady-state network frequency, and therefore

relies on a separation of time-scales between the fast, synchronization-enforcing primary

droop controller and the slower, secondary integral controller [85, 49]. Except in special

cases, this approach destroys the power sharing properties established by primary control

[5], and is too slow to dynamically regulate the grid frequency during rapid load changes.

In [14, 15] control strategies were proposed in which DG units communicate their

frequencies, voltages and reactive power injections to one another in order to perform

secondary control and share active and reactive power. The methods have two draw-

backs: first, all inverters must communicate with all other inverters, requiring a dense

communication architecture. Second, the controller gains must be finely tuned in order

to maintain active power sharing; see [21] for a detailed analysis.

Voltage Regulation In high-voltage networks, the sharing among generators of reac-

tive power demand is usually not a major concern due to capacitive compensation of both

loads and transmission lines; voltages at generators are therefore regulated to fixed values

by the excitation system [53]. Voltage regulation has subsequently been adopted as the

standard for voltage secondary control in microgrids [85, 40]. However, in small-scale

microgrid applications, the low ratings of DG units, small electrical distances between

units, and the lack of static compensation requires an accurate sharing of reactive power

demand among DGs to prevent overloading. In Section 4.3 we highlight how voltage

regulation and reactive power sharing are conflicting objectives.

Due to the line impedance effect, the voltage droop controller (3.1b) is unable to share

reactive power demand among even identical inverters operating in parallel [59]. In [34],
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an alternative primary droop controller was proposed for reactive power sharing among

parallel inverters with the same rated voltages. The method requires each unit to have a

measurement of the common load voltage, limiting its applicability in complex microgrid

scenarios. Similarly, the centralized secondary control architecture proposed in [12] for

reactive power sharing requires each unit to communicate with a central controller. The

distributed voltage controller proposed in [14, 15] require all DGs to communicate with

all others directly. Moreover, since the controller regulates DG voltages to their nominal

values, it is be unable to share reactive power between heterogeneous units connected

through varying line impedances. See [12, 14] and the references therein for more.

4.1.1 Contributions and Organization

In this section we present a general and fully distributed framework for secondary

frequency and voltage control in islanded microgrids. Our designs overcome the limita-

tions of existing strategies by combining decentralized proportional droop control and

integral control with distributed averaging algorithms. We therefore refer to our pro-

posed controllers as DAPI (Distributed Averaging Proportional Integral) controllers.

These controllers use decentralized control actions and sparse communication among

neighboring DG units to achieve precise frequency regulation, active power sharing, and

a tunable trade-off between voltage regulation and reactive power sharing. The dis-

tributed architecture eliminates the need for a central supervisory control: additional

DGs are integrated through a low-bandwidth communication link to an existing DG,

with the communication topology being a tunable design variable. The DAPI controllers

are model-free, in the sense that they require no a priori knowledge of the microgrid

topology, line impedances or load demands.

There are four main technical contributions in this chapter. First, in Section 4.2

we introduce the frequency DAPI controller frequency stabilization and active power
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sharing. Through the use of a distributed-averaging algorithm, the proposed controller

dynamically regulates the network frequency to a nominal value, while preserving the

proportional power sharing properties of the frequency-droop controller. We show that

this controller is locally stabilizing, without relying on the classic assumption of a time-

scale separation between the primary (droop) and secondary (integral) control loops.

Second, in Section 4.3 we highlight and clearly demonstrate a fundamental limitation

of voltage control: precise voltage regulation and precise reactive power sharing are

conflicting objectives. The presentation frames and motivates our subsequent controller

designs.

Third, in Section 4.4 we introduce the voltage DAPI controller. This distributed

voltage controller accounts for the conflict between voltage regulation and reactive power

sharing by allowing for a tunable compromise between the two objectives. We build

intuition for our design by detailing several tuning strategies. Taken together, the two

DAPI controllers form a distributed duo for plug-and-play microgrid control.

Fourth, in Section 4.4 we present a small-signal voltage stability analysis of the micro-

grid under DAPI control, derive sufficient conditions on the controller gains and microgrid

parameters for closed-loop stability, and study the transient performance of the system

under changes in the controller gains.

Fifth and finally, in Section 4.5 we present extensive experimental results validating

our DAPI designs. The experimental microgrid consists of four heterogeneous DGs in

a non-parallel configuration, with high R/X connections and distributed load. We val-

idate our designs, and move beyond our theoretical results by demonstrating controller

performance under communication link failures and plug-and-play operation.
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4.2 Distributed Secondary Control of Frequency/Active Power

As is evident from the expression for ωsync in Theorem 3.2.1, the frequency-droop

controller typically leads to a deviation of the steady-state operating frequency from the

nominal value ω∗. Intuitively, this is not surprising: the droop controller is essentially a

proportional controller, and proportional control of a first order system leads to steady-

state deviations.

Again in light of Theorem 3.2.1, it is clear that modifying the nominal active power

injection P ∗i via the transformation P ∗i −→ P ∗i − ωsyncDi (for i ∈ I) in the controller

(3.3) will yield zero steady state frequency deviation (c.f. the auxiliary system (3.9)

with ω̃sync = 0). Unfortunately, the information to calculate ωsync is not available locally

at each inverter. As originally proposed in [85], after the frequency of each inverter

has converged to ωsync, a slower, “secondary” control loop can be used locally at each

inverter. Each local secondary controller slowly modifies the nominal power injection

P ∗i until the network frequency deviation is zero. This procedure implicitly assumes

that the measured frequency value θ̇i(t) is a good approximation of ωsync, and relies on

a separation of time-scales between the fast, synchronization-enforcing primary droop

controller and the slower secondary integral controller. This methodology is employed

in [85, 72, 49]. For large droop coefficients Di, this approach can be particularly slow

(Theorem 3.2.1 (b)), with this slow response leading to an inability of the controller

to dynamically regulate the network frequency in the presence of a time-varying load.

Moreover, these decentralized integral controllers destroy the power sharing properties

established by the primary droop controller. In what follows, we pursue an alternative

scheme for frequency restoration which does not implicitly rely on a separation of time-

scales as in [85, 72, 49]. Assuming the existence of a communication network among the

inverters, we expand on the conventional frequency-droop design (3.1a) and propose the
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Figure 4.1: Block diagram of DAPI frequency control. The upper control loop is the
droop controller (3.2).

distributed-averaging proportional-integral (DAPI) controller

Diθ̇i = P ∗i − pi − Pe,i , i ∈ I , (4.1)

kiṗi = Diθ̇i +
∑
j∈I

Lc,ij

(
pi
Di

− pj
Dj

)
, i ∈ I , (4.2)

where pi ∈ R is an auxiliary power variable and ki > 0 is a gain, for each i ∈ I.3

The matrix Lc ∈ Rm×m is the Laplacian matrix corresponding to a weighted, undirected

and connected communication graph Gc(VI , Ec, Ac) between the inverters, see Figure 4.6.

The DAPI controller (4.1)–(4.2) is depicted in Figure 4.1, and will be shown to have

the following two key properties. First of all, the controller is able to quickly regulate

the network frequency under large and rapid variations in load. Secondly, the controller

accomplishes this regulation while preserving the power sharing properties of the primary

frequency-droop controller (3.2).

The closed-loop dynamics resulting from the DAPI controller (4.1)–(4.2) are given by

3The presented results extend to discrete time and asynchronous communication, see [48].
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0 = P ∗i −
∑n

j=1
aij sin(θi − θj) , i ∈ L , (4.3)

Diθ̇i = P ∗i − pi −
∑n

j=1
aij sin(θi − θj) , i ∈ I , (4.4)

kiṗi = P ∗i − pi −
∑n

j=1
aij sin(θi − θj)

+
∑

j∈I
Lc,ij

(
pi
Di

− pj
Dj

)
, i ∈ I . (4.5)

The following result establishes local stability of the desired equilibrium of (4.3)–(4.5) as

well as the power sharing properties of the DAPI controller.

Theorem 4.2.1. (Stability of DAPI-Controlled Network). Consider an acyclic

network of droop-controlled inverters and loads in which the inverters can communicate

through the weighted graph Gc, as described by the closed-loop system (4.3)–(4.5) with

parameters P ∗i ∈ [0, P i], Di > 0 and ki > 0 for i ∈ I, and connected communication

Laplacian Lc ∈ Rm×m. The following two statements are equivalent:

(i) Stability of Droop Controller: The droop control stability condition (3.7)

holds;

(ii) Stability of DAPI Controller: There exists an arc length γ ∈ [0, π/2[ such that

the system (4.4)–(4.5) possess a locally exponentially stable and unique equilibrium(
θ∗, p∗

)
∈ ∆G(γ)× Rm.

If the equivalent statements (i) and (ii) hold true, then the unique equilibrium is given

as in Theorem 3.2.1 (ii), along with p∗i = Diωavg for i ∈ I. Moreover, if the droop coef-

ficients are selected proportionally, then the DAPI controller preserves the proportional

power sharing property of the primary droop controller.
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Figure 4.2: Graphical interpretation of DAPI control shows droop characteristics with
(dashed lines) and without (solid lines) secondary control action. One can interpret the
DAPI secondary control action as a uniform shifting of all droop characteristics by an
amount ω∗ − ωss.

Note that Theorem 4.2.1 asserts the exponential stability of an equilibrium of the

closed-loop (4.3)–(4.5), and hence, a synchronization frequency ωsync of zero. The network

therefore synchronizes to the nominal frequency ω∗. A graphical interpretation of the

DAPI control action is shown in Figure 4.2, where droop curves for two different inverters

are uniformly shifted upwards by an amount equal to ωss = ωsync.

Proof. Consider the closed-loop (4.3)–(4.5) arising from the DAPI controller (4.1)–(4.2).

We formulate our problem in the error coordinates p̃i(t) , pi(t) − Diωavg, and write

(4.3)–(4.5) in vector notation as

D

0n

θ̇I

 = P̃ − Pe −

0n

p̃

 , (4.6)

K ˙̃p = P̃I − Pe,I − (Im + LcD
−1
I )p̃ , (4.7)
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where we have defined A , diag({aij}{i,j}∈E), Pe , BAsin(BT θ) = (Pe,L, Pe,I), D ,

blkdiag(In, DI), K , diag({ki}i∈I) and partitioned the vector of power injections by

load and inverter nodes as P̃ = (P̃L, P̃I)
T . Equilibria of (4.6)–(4.7) satisfy

0n+2m =


In 0 0

0 D−1I Im

0 Im DI + Lc


︸ ︷︷ ︸

Q1


In 0 0

0 Im 0

0 0 D−1I


︸ ︷︷ ︸

Q2

P̃ − Pe

−p̃


︸ ︷︷ ︸

x

. (4.8)

The positive semidefinite matrixQ1 has one dimensional kernel spanned by (0n, DI1m,−1m),

while Q2 is positive definite. Note however that since P̃ − Pe ∈ 1⊥n+m, and Q2x =

(P̃ −Pe,−D−1I p̃), it holds that Q2x /∈ Ker(Q1). Thus, (4.8) holds if and only if x = 0n+m;

that is, p̃ = p̃∗ = 0m and P̃ − Pe = 0n+m. Equivalently, from Theorem 3.2.1, the latter

equation is solvable for a unique (modulo rotational symmetry) value θ∗ ∈ ∆G(γ) if and

only if the parametric condition (3.7) holds.

To establish the local exponential stability of the equilibrium (θ∗, p̃∗), we linearize

the DAE (4.6)–(4.7) about the regular fixed point (θ∗, p̃∗) and eliminate the resulting

algebraic equations, as in the proof of Theorem 3.2.1. The Jacobian J(θ∗, p̃∗) of the

reduced system of ordinary differential equations can then be factored as J(θ∗, p̃∗) =

−Z−1X, where Z = blkdiag(Im, K) and

X =

D−1I Im

Im Lc +DI


︸ ︷︷ ︸

=X1=XT
1

Lred(θ∗) 0

0 D−1I


︸ ︷︷ ︸

=X2=XT
2

.

Thus, the problem of local exponential stability of (θ∗, p̃∗) reduces to the generalized

eigenvalue problem −X1X2v = λZv, where λ ∈ R is an eigenvalue and v ∈ R2m is

82



Distributed Secondary Control of Inverter-Based Power Grids Chapter 4

the associated eigenvector. We will proceed via a continuity-type argument. Consider

momentarily a perturbed version of X1, denoted by Xε
1, obtained by adding the matrix

εIm to the lower-right block of X1, where ε ≥ 0. Then for every ε > 0, Xε
1 is positive

definite. Defining y , Zv, we can write the generalized eigenvalue problem Xε
1X2v =

−λZv as X2Z
−1y = −λ(Xε

1)
−1y. The matrices on both left and right of this generalized

eigenvalue problem are now symmetric, with X2Z
−1 = blkdiag(Lred, D

−1
I K−1) having

a simple eigenvalue at zero corresponding to rotational symmetry. By applying the

Courant-Fischer Theorem to this transformed problem, we conclude (for ε > 0 and

modulo rotational symmetry) that all eigenvalues are real and negative.

Now, consider again the unperturbed case with ε = 0. Notice that the matrix X2 is

positive semidefinite with kernel spanned by (1m, 0m) corresponding to rotational sym-

metry, while X1 is positive semidefinite with kernel spanned by (−DI1m, 1m). Since

Image(Lred(θ∗)) = 1⊥m, Image(X2) ∩ Ker(X1) = ∅, that is, X2v is never in the kernel

of X1. Thus we conclude that Ker(X1X2) = Ker(X2). Now we return to the original

eigenvalue problem in the form X1X2v = −λZv. Since the eigenvalues of a matrix are

continuous functions of the matrix entries, and Ker(X1X2) = Ker(X2), we conclude that

the number of negative eigenvalues does not change as ε→ 0+, and the eigenvalues there-

fore remain real and negative. Hence, the equilibrium (θ∗, p̃∗) of the DAE (4.6)–(4.7) is

(again, modulo rotational symmetry) locally exponentially stable.

To show the final statement, note from the modified primary controller (4.1) that

the steady state power injection at inverter i ∈ I is given by Pe,i = P ∗i − pi(t = ∞) =

P ∗i − ωavgDi, which is exactly the steady state power injection when only the primary

droop controller (3.2) is used. The result then follows from Theorem (3.2.6). This

completes the proof of Theorem 4.2.1.
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Figure 4.3: Schematic of DGs operating in a parallel microgrid.

4.3 Fundamental Limitations of Voltage Control

In this section we illustrate the fundamental conflict between two secondary control

goals: voltage regulation and reactive power sharing. For simplicity of exposition, we

focus on a parallel microgrid consisting of two identical DGs connected to a common

distribution bus (Figure 4.3). The reactances of the two lines connecting the DGs to the

common bus are different; in particular, X01 > X02.

Figure 4.4 depicts the E-Q droop characteristics before and after a standard, voltage-

regulating secondary control action. Without secondary control, the inverters operate at

voltages E1 and E2 with reactive power injections Q1 and Q2 (solid black line). Since

Q1 6= Q2, reactive power is not shared; this is the “line impedance effect”. Application

of voltage-regulating secondary control ensures that both DG voltage magnitudes are

restored to the common rating E∗ (dotted blue and green lines are the post-secondary

control droop characteristics). Note however that the inverter power injections change to

Q′1 < Q1 and Q′2 > Q2. The application of standard secondary control therefore worsens

the already poor sharing of reactive power between the DGs.
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Figure 4.4: E-Q droop and standard secondary control for two parallel inverters with
identical ratings, operating through reactive lines with X01 > X02.

For the same problem setup, Figure 4.5 depicts the E-Q droop characteristics before

and after a power sharing enforcing secondary control action is taken.1 While the identical

inverters now proportionally share the reactive power by both injecting Q′′, the resulting

voltage values E ′′1 and E ′′2 are more dissimilar than they were with only primary control.

Table 4.1: Relationships between voltage magnitudes and reactive power injections for
different control actions.

Control Method Voltage Magnitudes Reactive Powers

Primary Control E2 < E1 < E∗ Q1 < Q2

Standard Sec. (′) E ′2 = E ′1 = E∗ Q′1 < Q1 < Q2 < Q′2
Power Sharing (′′) No Relationship Q′′1 = Q′′2 = Q′′

Table 4.1 collects the relationships between voltage magnitudes and reactive power

injections for the different control actions described above. We observe that — except

1This control action is not uniquely determined; there are many shiftings of the droop characteristics which
lead to power sharing (Section 4.4).
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Figure 4.5: E-Q droop and power sharing secondary control for two parallel inverters
with identical ratings, operating through reactive lines with X01 > X02.

under special circumstances — precise voltage regulation leads to large errors in reactive

power sharing, as shown in Figure 4.4. Conversely, the objective of reactive power sharing

does not uniquely determine the DG bus voltages, and when implemented improperly

can result in poor voltage profiles as shown in Figure 4.5. The accuracy of reactive power

sharing that can be achieved therefore depends on both the upper and lower limits for

the DG voltage magnitudes, and on the homogeneity of the line reactances. We conclude

that an ideal secondary voltage controller should allow for a tunable compromise between

voltage regulation and reactive power sharing.

4.4 Distributed Secondary Control of Voltage/Reactive Power

Note: In this section B is not the bus susceptance matrix, but instead denotes

an adjacency matrix for a communication graph among the DGs performing secondary

voltage control.

As noted in Section 3.3, the E-Q droop controller (3.1b) is unable to share reactive
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power between DGs. Moreover, in Section 4.3 we described the conflict between voltage

regulation and reactive power sharing. With these problems in mind, we propose the

second DAPI controller

Ei = E∗ − niQe,i + ei , i ∈ I , (4.9a)

κi
dei
dt

= −βi(Ei − E∗)−
∑
j∈I

bij

(
Qe,i

Q∗i
− Qj

Q∗j

)
, i ∈ I , (4.9b)

where ei ∈ R is the secondary control variable, Q∗i > 0 is the ith DGs reactive power

rating, and βi, κi > 0 are gains. The matrix B ∈ Rm×m with elements bij > 0 is

the adjacency matrix of a communication network between the DGs. The secondary

controller (4.9b) achieves a tunable compromise between voltage regulation and reactive

power sharing. We consider four cases:

Case 1 (β = 0, B 6= 0): In this case the first term in (4.9b) is disappears, leaving

only the second term. Steady-state requires the derivative on the left-hand side of (4.9b)

to be zero, which occurs if and only if Qe,i/Q
∗
i = Qe,j/Q

∗
j for all inverters. Thus, the

steady-state is a power sharing configuration. The secondary control variables ei converge

to values which shift the individual droop curves as necessary to establish proportional

power sharing, see Figure 4.5. However, as discussed in Section 4.3, under such a control

action DG voltages can drift quite far from their nominal values.

Case 2 (β 6= 0, B = 0): In this case the second term in (4.9b) disappears, and

the controller reduces to the standard decentralized voltage-regulating secondary control

discussed in Section 4.3. Reactive power is shared poorly (Figure 4.4).

Case 3 (β 6= 0, B 6= 0): In this regime (4.9a)–(4.9b) achieves a compromise be-

tween reactive power sharing and voltage regulation based on the relative sizes of the

gains βi and bij.

Case 4 (Smart Tuning): As a specialization of Case 3, consider having a specific
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DG i implement the controller (4.9b) with βi 6= 0 and bij = 0, while the all other DGs

j 6= i implement (4.9b) with βj = 0 and bjk 6= 0.2 That is, DG i regulates its voltage to

the nominal value, and the voltages at DGs j 6= i are then controlled to share power in

a manner consistent with the voltage regulation of DG i (cf. Section 4.3). This tuning

sets up a “leader-follower” [48] relationship among the DGs, where the voltages at DGs

j 6= i will form a cluster around the voltage value of Ei = E∗ of DG i.

The above cases are tested experimentally in Section 4.5.1.

Remark 4.4.1. (Remarks on DAPI Control). The communication layers between

DG units described the adjacency matrices A and B are design variables of the DAPI

controllers. This customizable architecture allows for design flexibility. For example, to

add redundancy against communication channels being permanently disconnected, sup-

plementary communication can be introduced. Note that the communication architecture

need not mirror the electrical topology of the network (Figure 4.8), and that the con-

trollers do not rely on high-gain techniques such as feedback linearization [19]. A detailed

schematic of the DAPI control architecture is shown in Figure 4.6.

The time-constants ki and κi in (4.15b) and (4.9b) allow for a precise tuning of the

secondary control speed. A conventional choice is to make ki and κi sufficiently large,

enforcing a time-scale separation between primary and secondary control. This however

is not required – our experimental results suggest that primary and secondary control can

be performed on similar time scales without stability issues or performance degradation.

Table 4.2 provides a simple qualitative reference for the effects of the control parameters

in (4.15) and (4.9).

Stability & Performance of DAPI Voltage Control: While the secondary fre-

quency controller (4.15b) will never destabilize the primary controller (4.15a), the sec-

2This directed communication tuning requires that DG i sends information to at least one neighbor.
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Figure 4.6: Low-level block diagram of the proposed DAPI control architecture for a
single DG. For simplicity we have have abbreviated di =

∑n
j=1 aij and δi =

∑n
j=1 bij.

ondary voltage controller (4.9b) can potentially destabilize (4.9a). This possibility exists

due to the previously discussed conflict between reactive power sharing and voltage reg-

ulation. A full nonlinear stability analysis of the voltage/reactive power DAPI controller
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Table 4.2: Qualitative effects of controller gains

Gain Qualitative Change Upon Increase

ki Slows frequency regulation at DG i
κi Slows voltage regulation / Q-sharing at DG i
aij Faster P -sharing between DGs i and j
bij Improved steady-state Q-sharing between DGs i and j
βi Improved steady-state voltage regulation at DG i

(4.9a)–(4.9b) is extremely challenging and beyond the scope of this article; a partial anal-

ysis for a simpler controller can be found in [13]. In Section 4.4 we present a small-signal

stability analysis of (4.9a)–(4.9b), along with sufficient conditions which ensure stable

operation. In Section 4.4 we explore the effect of the controller gains in (4.15),(4.9) on

the transient performance of the closed-loop system.

Small-Signal Stability of Voltage DAPI Control: To avoid unnecessary technical

complications, we model any delay in adjusting the output voltage in (4.9a) with a simple

low-pass filter, yielding the dynamic system dEi/dt = −(Ei−E∗i )−niQi+ei, and assume

loads are impedances collocated with DGs. Both of these assumptions can be relaxed at

the expense of more complicated formulae. Under the standard decoupling assumption

in which reactive power is related strongly to differences in voltage magnitudes [53], the

reactive power injection (2.8b) at the ith DG takes the form

Qi = −E2
i Yload,ii + Ei

∑n

j=1
Ybus,ij(Ei − Ej) , (4.10)

90



Distributed Secondary Control of Inverter-Based Power Grids Chapter 4

where Yload is diagonal matrix of load susceptances and Ybus = Y T
bus is the microgrid’s bus

admittance matrix [53]. In vector notation, the system equations (4.9),(4.10) are3

Ė = −(E − E∗)−NQ+ e , (4.11a)

κė = −β(E − E∗)− Lc[Q∗]−1Q , (4.11b)

Q = [E]Y E , (4.11c)

where E,E∗ and e are the vectors of voltage magnitudes, voltage set points, and secondary

control variables, N, β and κ are diagonal matrices of controller gains, Q and Q∗ are the

vectors of DG reactive power injections and reactive power ratings, Lc = diag(
∑n

j=1 bij)−

B is the Laplacian matrix [57] corresponding to the communication network among the

DGs, and Y = −(Ybus + Yload). When implementing the controller (4.9) in practice, the

voltages Ei will remain near their nominal values E∗. We can exploit this to obtain a

linear dynamic system by making the approximation that [E] ' [E∗] in (4.11c); details on

this approximation technique can be found in [9]. After making this approximation and

inserting (4.11c) into (4.11b), the nonlinear system (4.11a)–(4.11b) becomes the linear

system

ẋ = Wx+ u , (4.12)

where x = (E, e), u = (E∗, κ−1βE∗), and

W =

−W1 In

−W2 0n

 =

 −(In +N [E∗]Y ) In

−κ−1(β + Lc[Q
∗]−1[E∗]Y ) 0n

 ,

where In (resp. 0n) is the n × n identity matrix (resp. zero matrix). For future use,

we note that all eigenvalues of −W1 are real and negative since W1 is similar to a sym-

3Here [z] denotes the diagonal matrix with the vector z along the diagonal.
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metric M -matrix, as can be verified by using the similarity transform TW1T
−1 where

T = N
−1/2
I [E∗I ]

−1/2. We now derive sufficient conditions under which the linearized

system (4.12) is exponentially stable. Specifically, we will assume that the characteristic

polynomial det(sI2n−W ) = 0 of (4.12) has a root in the closed right-half complex plane,

and derive conditions under which this assumption is contradicted. These conditions will

therefore ensure all characteristic roots are in the left-half complex plane, and thus ensure

stability. Since −W1 has negative eigenvalues, it follows that det(sIn + W1) 6= 0, and

using the Schur complement determinant formulae for block matrices we may simplify

the characteristic polynomial as

det(sI2n −W ) = det(s2In + sW1 +W2) = 0 . (4.13)

Since the determinant is zero, the matrix s2In+sW1+W2 must be singular, and therefore

the polynomial (4.13) has a solution if and only if xT (s2In + sW1 + W2)x = 0 for some

real vector x of unit length. The latter is simply a scalar quadratic equation of the form

s2 + α1s+ α2 = 0, where α1 = xTW1x and α2 = xTW2x. If it is true that

λmin(W1 +W T
1 ) > 0 , (4.14a)

λmin(W2 +W T
2 ) > 0 , (4.14b)

where λmin(·) is the smallest eigenvalue of the matrix argument, then α1, α2 > 0 and all

solutions of s2 + α1s + α2 = 0 satisfy Re(s) < 0 by the Routh-Hurwitz criterion. This

contradicts our assumption that the characteristic polynomial has a closed right-half

plane root, and hence under the conditions (4.14) the linearized system is exponentially

stable.

Let us now physically interpret the stability conditions (4.14). The first condition
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(4.14a) restricts the DGs from being too dissimilar. For example, if all DGs have the

same droop gains ni and voltage set points E∗, then W1 is a scalar values times Y and

(4.14a) is always true. For dissimilar DGs, the intuition for (4.14a) is that given equal

voltage set points, DGs with high ratings should be connected to the microgrid through

stiff lines of high admittance. To understand the second condition (4.14b), we first

consider the case of pure voltage regulation (Case 2 in Section 4.4) where βi 6= 0 and

Lc = 0n. Then W2 = κ−1β > 0 is diagonal and (4.14b) is satisfied. The voltage regulation

gains βi always act to stabilize the system. Since eigenvalues are continuous functions

of matrix parameters, the system is also stable for non-zero but sufficiently small power

sharing gains bij. In the more general case where the power sharing gains bij are also

non-zero, the condition (4.14b) properly accounts for the complicated interplay between

the microgrid’s electrical stiffness matrix Y and the averaging control action Lc in the

product Lc[Q
∗]−1[E∗]Y . Intuitively, (4.14b) will be satisfied when all line impedances are

sufficiently uniform and all DGs are sufficiently similar, since in this case reactive power

sharing is not in strong conflict with the line impedance effect (cf. Section 4.3). The

stability conditions (4.14) are both satisfied in all experiments presented in Section 4.5.

Transient Performance of DAPI Control The impact of the controller gains ki,

aij, κi, βi and bij on the steady-state equilibrium was discussed in detail in Sections 4.2–

4.4 and summarized in Table 4.2. We now examine the impact of these controller gains

on the system’s transient performance. To do this, we consider a case study with four

DGs (Figure 4.8), with the system parameters of Table 4.3. The communication network

among the DGs is a ring, and the controller gains aij and bij are given by (4.17); aij are

constants, while bij are parameterized by a single constant b. For all DGs i = 1, . . . , 4,

the other control parameters ki, κi and βi are taken as uniform constants k, κ and β,

respectively. The nominal values for these gains are k = 1.7 s, κ = 1 s, β = 1.2, and
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b = 180 V (the same as in Study 1c of Section 4.5).

We increment the gains independently in intervals around their nominal values,

and for each iteration we (i) numerically determine the system operating point from

(2.7),(4.15),(4.9), (ii) linearize the closed-loop system around the operating point, and

(iii) plot the eigenvalues of the linearization. These eigenvalue traces are displayed in

Figure 4.7, where black crosses denote the eigenvalues for the nominal controller gains

and arrows indicate the direction of increasing gain.

Eigenvalues on the real axis are strongly associated with the frequency dynamics

(4.15a)–(4.15b), while complex conjugate eigenvalues are associated with the voltage

dynamics (4.9a)–(4.9b). These conjugate eigenvalues lead to an underdamped voltage

response: physically, this is a manifestation of the line impedance effect, which the con-

troller (4.9a)–(4.9b) must overcome to establish reactive power sharing. As the frequency

time-constant k is increased (blue), real eigenvalues move towards the origin leading to

slow, smooth frequency/active power response. Conversely, decreasing k leads to fast

(but still overdamped) frequency regulation. Increasing aij has an effect nearly identical

to decreasing k, and we have therefore omitted the trace and held aij constant. Increas-

ing the voltage time-constant κ (red) causes the underdamped conjugate eigenvalues to

collapse onto the real axis, leading to an overdamped voltage/reactive power response

for sufficiently slow secondary control. Increasing either feedback gain b or β (green and

gold) results in an increasingly underdamped voltage/reactive power response.

Taken together, Table 4.2, the stability conditions (4.14), and the eigenvalue traces

of Figure 4.7 provide a solid foundation for understanding the DAPI controllers (4.15)–

(4.9). Our experimental results demonstrate that despite the simplifying assumptions in

the preceding analysis, the DAPI controllers (4.15)–(4.9) can be tuned for both stability

and high performance.
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Figure 4.7: Eigenvalue traces of closed-loop system (2.7),(4.15),(4.9) as controller gains
are varied. Arrows indicate the direction increasing gain. The absence of a trace indicates
that the parameter under consideration has negligible effect on the respective eigenvalue.
System parameters are taken from Study 1c of Section 4.5. Black crosses indicate eigen-
value locations for the nominal gains used in Study 1c. Several fast eigenvalues are
omitted for clarity.

4.5 Experimental Validation of DAPI Control

This section presents experimental results validating the DAPI controllers presented

in Sections 4.2 and 4.4. All experiments were performed at the Intelligent Microgrid

Laboratory (Aalborg University, Denmark). Recall that the controllers are

ωi = ω∗ −miPi + Ωi , i ∈ I , (4.15a)

ki
dΩi

dt
= −(ωi − ω∗)−

n∑
j∈I

aij (Ωi − Ωj) , i ∈ I , (4.15b)
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where Ωi is the secondary control variable and ki is a positive gain. The first equation

(4.15a) is the standard droop controller with the additional secondary control input Ωi.

Ei = E∗ − niQi + ei , i ∈ I , (4.16a)

κi
dei
dt

= −βi(Ei − E∗)−
n∑
j=1

bij

(
Qi

Q∗i
− Qj

Q∗j

)
, i ∈ I , (4.16b)

where ei is the secondary control variable, Q∗i is the ith DGs reactive power rating, and

βi, κi are positive gains. The n × n matrix B with elements bij > 0 is the adjacency

matrix of a communication network between the DGs.

A schematic of the experimental setup is shown in Figure 4.8, consisting of four DGs

interconnected through impedances. Loads are present locally at units 1 and 4, and

units 1 and 4 are rated for twice as much power as units 1 and 3 (Table 4.3). The DAPI

controllers (4.15a)–(4.9b) were implemented in Simulink®, with measurements recorded

via a dSPACE® 1006. See [40, 35] for details on the inner voltage, current and impedance

control loops.

This section is organized into four studies, beginning with a characterization of con-

troller performance, and then examining robustness under communication link failure,

heterogeneous controller gains, and plug-and-play operation. The communication struc-

ture is shown in Figure 4.8, with the adjacency matrices A = [aij] in (4.15b) and B = [bij]

in (4.9b) being

A =



0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0


, B = b ·



0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0


, (4.17)

where b ≥ 0 varies depending on the study under consideration. All other parameters

are as reported in Table 4.3. All plots are color-coded in correspondence with Figure 4.8:
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Figure 4.8: Schematic of the experimental microgrid setup, consisting of four DGs in-
terconnected through heterogeneous impedances. Loads are collocated at DGs one and
four. Red dotted lines denote communication links.

DG 1 (blue), DG 2 (red), DG 3 (green), and DG 4 (brown).

4.5.1 Study 1: Controller Performance

Studies in this section illustrate the performance of the DAPI controllers (4.15a)–

(4.16b) under various controller tunings. In all four sub-studies 1a–1d, only primary

droop controllers (4.15a) and (4.16a) are running up to t = 7 s, at which time the sec-

ondary controllers (4.15b) and (4.16b) are activated. The local load at DG unit 4 is

detached at t = 22 s, then reattached at t = 36 s.

First considering the frequency dynamics in the top portion of Figure 4.9, the fre-

quency deviation experienced under primary droop control is quickly eliminated by the

DAPI controller (4.15a)–(4.15b), and frequency regulation is maintained throughout load

changes with minimal transients. Active power is accurately shared amongs the hetero-

geneous DGs throughout the entire runtime. This robust frequency and active power

behavior is identical in all other sub-studies, and thus we omit the plots due to space

considerations. The remainder of studies 1a and 1b in Figures 4.9 and 4.10 highlight the

conclusions drawn in Section 4.3 regarding the limitations of voltage secondary control.
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Table 4.3: Electrical and control parameters.

Parameter Symbol Value

Electrical Setup

Nominal Frequency ω∗/2π 50 Hz
DC Voltage Vdc 650 V
Nominal Voltages E∗ 325.3 V (230 V rms)
Filter Capacitance C 25µF
Filter Inductance Lf 1.8 mH
Output Impedance L0 1.8 mH
Line Impedance (1,2) Z12 R = 0.8 Ω, L = 3.6 mH
Line Impedance (2,3) Z23 R = 0.4 Ω, L = 1.8 mH
Line Impedance (3,4) Z34 R = 0.7 Ω, L = 1.9 mH

Control Parameters

Parameter Symbol DGs 1&4 DGs 2&3

Rated Active Power P ∗i 1400 W 700 W
Rated Reactive Power Q∗i 800 VAr 400 VAr
P − ω Droop Coeff. mi 2.5 · 10−3 rad

W·s 5 · 10−3 rad
W·s

Q− E Droop Coeff. ni 1.5 · 10−3 V
VAr

3 · 10−3 V
VAr

Int. Frequency Gain ki 1.7 s 1.7 s
Int. Voltage Gain κi 1 s 1 s

Tuning for pure reactive power sharing: Figure 4.9 shows results for the voltage

DAPI controller (4.16a)–(4.16b) tuned for power sharing (βi = 0, b = 50 V), with no

attempt at voltage regulation, as in Case 1 of Section 4.4. While reactive power is

shared accurately, voltage magnitudes deviate from their nominal values E∗ = 325.3 V

(cf. Figure 4.5).

Tuning for pure voltage regulation: Conversely, Figure 4.10 reports results for the

same controller tuned to regulate voltage levels without reactive power sharing (βi = 2.2,

b = 0 V), as in Case 2 of Section 4.4. While voltage levels are tightly regulated, reactive

power sharing among the units is poor (cf. Figure 4.4). As explained in Section 4.3, the

poor performance in Figure 4.10 is a general property of all voltage controllers strategies
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Figure 4.9: Study 1a – reactive power sharing without voltage regulation, with control
parameters b = 50 V, β1 = β2 = β3 = β4 = 0. In correspondence with Figure 4.5 of
Section 4.3, the quality of voltage regulation is quite poor.

that exactly regulate DG voltage levels.

Compromised tuning: Figure 4.11 displays the results for Study 1c, in which the

DAPI controllers (4.15a)–(4.9b) are implemented with b = 180 V and uniform controller

gains βi = 1.2, as in Case 3 of Section 4.4. Considering the voltage dynamics, the voltage

DAPI controller (4.16a)–(4.16b) achieves a compromise between voltage regulation and

reactive power sharing. Voltage magnitudes are roughly clustered around E∗ = 325.3 V,

while reactive power is approximately shared.

Smart tuning: Figure 4.12 displays the results for Study 1d, in which the DAPI con-

trollers (4.15a)–(4.9b) are implemented with b = 100 V and β2 = 4, β1 = β3 = β4 = 0, in

accordance with the discussion of Case 4 in Section 4.4. In comparison with the voltage

dynamics of Study 1c, the voltage regulation in Figure 4.12 shows a slight improvement,
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Figure 4.10: Study 1b – voltage regulation without reactive power sharing, with param-
eters b = 0 V, β1 = β2 = β3 = β4 = 2.2. In correspondence with Figure 4.4 of Section
4.3, the quality of reactive power sharing is quite poor.
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Figure 4.11: Study 1c – a compromise between voltage regulation and reactive power
sharing, with control parameters β1 = β2 = β3 = β4 = 1.2, b = 180 V.

while the reactive power sharing is noticeably improved, maintaining accurate sharing

through load changes and during transients. Note that this performance improvement

has been achieved while reducing the controller gain b which enforces reactive power

sharing. Due to this reduction in controller gain, the ringing in the reactive power signal

during transients is noticeably improved from Study 1c to Study 1d, in agreement with

the stability and root locus analyses of Section 4.4.

4.5.2 Study 2: Communication Link Failure

In this study the communication link (Figure 4.8) between DG units 3 and 4 fails at

t = 2 s. At t = 7 s the local load at unit 4 is detached, and is reattached at t = 18 s.
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Figure 4.12: Study 1d – accurate reactive power sharing and good voltage regulation,
with control parameters β1 = β3 = β4 = 0, β2 = 4 and b = 100 V.

Control parameters are the same as in Study 1d. As the results in Figure 4.13 show, the

DAPI controllers (4.15a)–(4.9b) maintain the high performance from Study 1d despite

the absence of the communication link between DG units 3 and 4 (cf. Remark 4.4.1).

4.5.3 Study 3: Non-Uniform Controller Gains

We examine the behavior of the frequency DAPI controller (4.15a)–(4.15b) under

inhomogeneous controller gains. Control parameters are the same as in Study 1d, except

for variations in the integral gains k1 = 1.5 s, k2 = 1 s, k3 = 2 s and k4 = 0.5 s. The

results are displayed in Figure 4.14. Note that the inhomogeneous controller gains leads

to varying transient responses for the DGs, but the steady-state behavior and stability

of the system is unchanged. This illustrates the utility of the gains ki and κi in tuning

the transient response of the DAPI-controlled microgrid.

4.5.4 Study 4: Plug-and-Play Functionality

The plug-and-play functionality of the controllers was tested by disconnecting unit

3 at t = 10 s, and reconnecting it at t = 30 s. A synchronization process was used in

the downtime to synchronize unit 3 with the remaining microgrid before reconnection.

Control parameters are the same as in Study 1d, and the results are displayed in Figure
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4.15. As in previous experiments, the DAPI controllers (4.15a)–(4.9b) maintain accurate

power sharing and frequency and voltage regulation before, during, and after the plug-

and-play procedure, with minimal transients. The bus voltages and bus frequencies

remain well regulated despite the disconnection of DG 3.
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Figure 4.13: Study 2 – DAPI performance under communication link failure. Control
parameters are the same as in Study 1d.
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Figure 4.14: Study 3 – DAPI performance with heterogeneous controller gains. Control
parameters are the same as in Study 1d.
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Figure 4.15: Study 4 – DAPI performance under plug-and-play operation. Control pa-
rameters are the same as in Study 1d.
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Conclusions

5.1 Summary

In this thesis has consisted of two main parts. In Chapter 3 we have provided a de-

tailed theoretical analysis of primary control in inverter-based power grids. Our results

combine analysis techniques from systems and control theory, coupled oscillators, alge-

braic graph theory, and multi-agent systems in order to accurately quantify the limits

of classical primary controllers through necessary and sufficient nonlinear conditions for

local stability. For voltage control, we found it convenient to redesign the reactive power

droop controller by adding a quadratic nonlinearity. Unlike the conventional droop con-

troller, our proposed quadratic design is physically well motivated, and can be interpreted

within “control by interconnection” paradigm. This leads to an elegant circuit-theoretic

description of the closed-loop, and to an exact analysis of the network equilibria and

their stability properties.

In Chapter 4 we introduced a general distributed control methodology for secondary

control in islanded microgrids. By leveraging distributed averaging algorithms from

multi-agent systems, the DAPI controllers achieve frequency regulation while sharing
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active power proportionally, and can be tuned to achieve either voltage regulation, reac-

tive power sharing, or a compromise between the two. A small-signal stability analysis

has been presented for the voltage DAPI controller along with a performance study, and

the controllers have been validated through extensive experimental testing.

5.2 Tangential Contributions

In this section we briefly summarize some side-projects which are tangentially related

to the contents of this thesis.

Resistive Networks with CPD’s: In a standard distribution network scenario, the

utility provides a stiff reference voltage at the point of common coupling, while the

remaining load nodes in the network tend to take on roughly the same voltage value

within a few percent, modulo differences needed for current flows. In [3] we examined

what would happen in the absence of such a utility connection; given that certain powers

are supplied and demanded, what does the network voltage profile look like in the absence

of a stiff reference point? Somewhat surprisingly, we found that the distribution network

and the power demands of sources and sinks combine to determine an intrinsic voltage

level for the network, independent of a stiff reference from a utility.

Figure 5.1: A resistive two-port terminated with two constant power devices.
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Tertiary Control in Microgrids: A tertiary operation and control layer has the

objective to minimize an economic dispatch problem, that is, an appropriate quadratic

cost of the accumulated generation [78]:

minimize
θ∈Tn , u∈RnI

f(u) =
∑

i∈VI

1

2
αiu

2
i (5.1a)

subject to P ∗i + ui = Pe,i(θ) ∀ i ∈ I , (5.1b)

P ∗i = Pe,i(θ) ∀ i ∈ L , (5.1c)

|θi − θj| ≤ γ
(AC)
ij ∀ {i, j} ∈ E , (5.1d)

Pe,i(θ) ∈ [0, P i] ∀ i ∈ I , (5.1e)

Here, αi > 0 is the cost coefficient for source i ∈ VI . The decision variables are the

angles θ and secondary control inputs u. The non-convex equality constraints (5.1b)-

(5.1c) are the nonlinear steady-state secondary control equations, the security constraint

(5.1d) limits the power flow on each branch {i, j} ∈ E with γ
(AC)
ij ∈ [0, π/2[, and (5.1e) is

a generation constraint. In [8, 2] we showed that the set of minimizers of the nonlinear and

non-convex AC economic dispatch optimization problem are in one-to-one correspondence

with the minimizers of a convex DC dispatch problem. Our next result shows a surprising

symbiotic relationship between primary/secondary control and tertiary. We show that

the minimum of the AC economic dispatch can be achieved by a decentralized droop

control design. Whereas similar conditions are known for related transmission system

problems [18, 6, 11, 17, 32, 33, 10, 7] (in a simplified linear and convex setting with lossless

DC power flows), we also establish a converse result: every droop controller results in a

steady-state which is the minimizer of some AC economic dispatch. We deduce, among

others, that the optimal droop coefficients are inversely proportional to the marginal

generation costs, and the conventional power sharing objectives is a particular case.
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Figure 5.2: Contraction implies that system trajectories converge towards one another –
the distance between arbitrary trajectories decreases.

Contraction Theory on Riemannian Manifolds: Problems of synchronization in

power networks are essentially questions regarding the convergence of system trajecto-

ries towards one another. However, rather than evolving on Rn, frequency dynamics of

power networks evolve on the compact manifold Tn, rendering many standard nonlinear

stability results applicable only locally. In an attempt to overcome these limitations,

we explored the literature on incremental stability and contraction theory, formulated

the main stability results and conditions in [16] in the intrinsic, geometric framework of

differential geometry. Ultimately we found that the results could not be easily applied to

problems in power networks due to issues of determining invariant sets, but the idea of

rigorously applying contraction theory to power network dynamics continues to attract

serious interest.
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5.3 Future Research Directions

While this thesis is among the first to present a set of cohesive analysis and synthesis

results for microgrid control, many interesting and important problems remain entirely

unresolved. In this final section we present a few interesting (if difficult, or speculative)

directions for future research.

Decentralized Droop Control in Heterogeneous Networks: The droop con-

trollers analyzed in this work are designed for use in networks with inductive charac-

teristics. In Remarks 2.2.2 we commented on how under uniform R/X ratios, a rotation

in the space of power injections can transform lossy power flow into lossless power flow,

allowing the application of analysis and control techniques such as the droop controllers

considered herein. This approach is rather elegant, in that the transformed system “looks

like” a lossless system. While reasonable in highly engineered settings, in plug-and-play

situations in real-life networks, this validation approach suffers two drawbacks: (1) real

distribution networks are often built in an ad-hoc manner, with various types of distri-

bution lines installed at different points in time, and (2) objectives such as active and

reactive power sharing are difficult to analyze due to the rotation of power coordinates.

An open and extremely important problem is to design a provably stable decentral-

ized or distributed control strategy for microgrids with heterogeneous R/X ratios. The

controller should be simple, intuitive, and yield performance guarantees comparable the

ones provided herein. While we are skeptical that this problem is feasible in a decen-

tralized framework, its solution seems attainable if one allows for a distributed control

framework with communication.

Another issue not addressed in this work is a nonlinear analysis of reactive power

sharing, as an analysis of the voltage-droop controller (3.1b) is difficult to perform. Large-
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signal stability of the voltage controller (4.9a)-(4.9b) remains an open analysis problem.

Moreover, the secondary control goals of voltage regulation and reactive power sharing

ignore an important factor for microgrid stability: the voltage levels at loads which are

not collocated with DGs. An open problem is to design a controller guaranteeing that

voltage levels at non-collocated load buses remain within tolerances while maintaining a

high level of performance.

Dynamic Architectures for Distributed Power Grid Control: Localized re-

sponse properties of power grids [95, 93, 92] imply that large-scale centralized control

architectures are inefficient, in that given an area in need of control action, all relevant

state information is already local to that area, and control actions must also be taken

at least relatively locally. This localized response is a result of the nonlinear diffusive

behavior of power networks; under normal operation, state variables are insensitive to

disturbances that are electrically distant.

It follows that optimal control architectures for power grids should be sensitivity-

limited, with local control options being exhausted before electrically distant controls

are implemented. Moreover, recognizing that power grids are dynamic networks, control

areas should not be static, but should evolve dynamically with the condition of the

system.
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Appendix A

Technical Lemmas

A.1 Useful Results

Lemma A.1.1. (Sherman-Morrison Formula, [99]). Let A,B ∈ Rn×n and let A be

nonsingular. If A+B is nonsingular, then

(A+B)−1 = A−1 − A−1(In +BA−1)−1BA−1 .

A.2 Chapter 3

Proposition A.2.1. (Properties of Reduced Quantities). The following statements

hold:

(i) −Bred is an M-matrix;

(ii) W1 and W2 are row-stochastic;

(iii) E∗L > 0n component-wise.

Proof. (i) : The first fact follows from the closure of the set of symmetric positive definite

M -matrices under the Schur complement, as −Bred is the Schur complement of −(B +
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blkdiag(0, KI)) with respect to the −(BII +KI) block [22, Lemma 2.1], [62].

(ii) : We begin withW2. SinceBII+KI is a principal sunblock of (B+blkdiag(0, KI)),

the negative of which is an M -matrix, it is invertible and has an inverse with nonpositive

elements. Moreover, both −BIL and KIL are nonpositive, and it follows that W2 is non-

negative. We expand the inverse using the Sherman Morrison Formula (Lemma A.1.1)

to obtain

W2 = (KI +BII)
−1
[
−BIL KI

]
=
(
B−1II −B

−1
II (Im +KIB

−1
II )−1KIB

−1
II

) [
−BIL KI

]
= (Im −B−1II (Im +KIB

−1
II )−1KI)

[
−B−1II BIL B−1II KI

]
.

Left-multiplying by 1n+m and turning the crank, we calculate that

W21n+m = (Im −B−1II (Im +KIB
−1
II )−1KI)

(
1m +B−1II KI1m

)
= 1m +B−1II KI1m −B−1II (Im +KIB

−1
II )−1KI(1m +B−1II KI1m)

= 1m +B−1II KI1m −B−1II (Im +KIB
−1
II )−1KI(Im +B−1II KI)1m

= 1m +B−1II KI1m −B−1II (Im +KIB
−1
II )−1(Im +KIB

−1
II )KI1m

= 1m +B−1II KI1m −B−1II KI1m

= 1m ,

where we have used the fact that −B−1II BIL is row-stochastic. We proceed similarly for

W1 = −B−1redBLI (KI +BII)
−1KI . Since −Bred is an M -matrix, −B−1red has nonnegative

elements. Likewise, (KI +BII)
−1 has nonpositive elements, KI has strictly negative ele-

ments, and BLI has nonnegative elements. It follows that W1 is nonnegative. Multiplying
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by 1n and turning the crank, we calculate that

W11m = −B−1redBLI

(
(KI +BII)

−1KI1m − (KI +BII)
−1BIL1n + (KI +BII)

−1BIL1n
)

= −B−1redBLIW21n+m −B−1redBLI(KI +BII)
−1BIL1n

= −B−1redBLI1m −B−1redBLI(KI +BII)
−1BIL︸ ︷︷ ︸

BLL−Bred

1n

= 1n −B−1red (BLL1n +BLI1m)

= 1n −B−1red0n

= 1n.

where we have used the definition of Bred and the fact that L has zero row sum. Item

(iii) then follows from (ii) since E∗L = W1E
∗
I and E∗I has strictly positive entries.

Lemma 3.3.1

Proof. (i): Differentiating the load equation (3.50) with respect to E0 and dividing by

btot gives the hyperplane H, which when restricted to M as in (3.51) gives the singular

surface.

(ii): Combining the expression for the hyperplane in (3.51) and the load balance

(3.50) by solving each for −
∑N−1

j=1 bj0Ej and equating them, we calculate that E0 =

±
√
Q0/btot. Since btot < 0 by definition, it follows that for Q0 ≥ 0 there are no singular

points in the strictly positive orthant RN+1
>0 . For Q0 < 0, E0 must take on the unique

positive value Ē0 =
√
Q0/btot. Substituting Ē0 back into the load balance (3.50), we find

explicitly that S ∩RN+1
>0 = {E ∈M∩Rn+1

>0 : E0 = Ē0 and Ē0 = 1
2btot

∑N−1
j=1 bj0Ej}. Let
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Ss (resp. Su) be the set of points E ∈ RN+1
>0 where ∂h

∂E
< 0 (resp. ∂h

∂E
> 0). That is,

Ss ,

{
E ∈ RN+1

>0

∣∣∣∣E0 >
1

2btot

∑N−1

j=1
bj0Ej

}
,

Su ,

{
E ∈ RN+1

>0

∣∣∣∣E0 <
1

2btot

∑N−1

j=1
bj0Ej

}
.

Clearly S+ and S− are separated by the unrestriced version of the hyperplane in (3.51).

Define

Mstable
>0 , {E ∈M∩ Rn+1

>0 : E0 > Ē0} ,

Munstable
>0 , {E ∈M∩ Rn+1

>0 : E0 < Ē0} .

We will show that Mstable
>0 ⊂ Ss, and hence conclude that Mstable

>0 is a stable component

(Figure A.1). Take E ∈Mstable
>0 . Then from (3.50), E satisfies

1

2btot

∑N−1

j=1
bj0Ej =

1

2

(
E0 +

Ē2
0

E0

)
, (A.3)

where we have rewritten Q0 in terms of Ē0. One quickly verifies that the right-hand side

of (A.3) is less than E0 for E0 > Ē0, and thus for every E ∈ Mstable
>0 . It follows that

Mstable
>0 ⊂ Ss, and an analogous argument shows that Munstable

>0 ⊂ Su. It follows that

Mstable
>0 and Munstable

>0 are disjoint, completing the proof.
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Figure A.1: Constraint manifold and associated constructions for one inverter and one
inductive load Q0 < 0.
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