
UNIVERSITY of CALIFORNIA
Santa Barbara

Distributed Coordination for Teams of Robots

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Mechanical Engineering

by

Joseph William Durham

Committee in charge:

Professor Francesco Bullo, Chair
Professor Jeff Moehlis
Professor Brad Paden
Professor Katie Byl

June 2011



The dissertation of Joseph William Durham is approved:

Professor Katie Byl

Professor Brad Paden

Professor Jeff Moehlis

Professor Francesco Bullo, Chair

June 2011



Distributed Coordination for Teams of Robots

© Copyright 2011

by

Joseph William Durham

iii



To my wife whose love and support helped so much through the long graduate

school process, and whose willingness to join me on a new path in Santa Barbara

has led us to so many interesting places.

To my parents who always encouraged me to pursue education and supported

all my childhood activities, I understand more each day the sacrifices they made

and how their choices helped make me who I am.

To my brother who has faced incredible challenges in life and every time shown

an inner strength to not only perservere but thrive.

iv



Acknowledgements

My biggest thanks go to my advisor, Francesco Bullo, whose guiding hand is

present behind everything which appears in this thesis. He agreed to take me

on and support my acquisition of research hardware which was new for the lab.

Looking back, I can appreciate how I was given a long enough leash to choose

my own problems and direction without getting lost. The supportive atmosphere

in the lab and the interesting visitors I had the chance to collaborate with are

all the direct result of Francesco. Despite his misgivings, he also allowed me the

flexibility to travel and then finish up my degree partly from Boston when life

pulled me in that direction for which I am very grateful.

I also owe a big thanks to Jeff Moehlis who guided me through my Masters

work and beginning as a researcher, and who has been a friendly and supportive

ear in the years since. My thanks also goes out to my other committee members,

Katie Byl and Brad Paden. Their questions and feedback helped shape this work

and my future thinking on these kinds of problems.

I have been fortunate to work directly with several other great scientists and

mathematicians. Thank you to Ruggero Carli and Paolo Frasca for the rewarding

discussions on partitioning and coverage. Thank you Antonio Franchi for all your

work on frontier-based clearing and the incredible effort behind MIP in which we

implemented our ideas. I would also like to thank a few people I worked with

less directly but whose coding was helpful on various projects, including Dario

Cazzaro, Luca Invernizzi, and Paolo Stegango.

The Bullo Lab has been a richly supportive atmosphere, and I count many past

and present members of the lab among my collaborators and friends. I would like

to thank all of my lab mates for the stimulating discussions in the lab and fun

diversions outside of it.

I would also like to thank several influential people who helped me see the

beauty and power of mathematics, computer sciences, and robotics. I would like

v



to thank Gary Tsuruda who really inspired me in middle school and helped to

light my learning fire which has been burning bright ever since. I would like to

thank Peter Lindener who gave me my first taste of scientific research and engaged

in so many interesting and challenging discussions on many topics over the years.

Finally, I would like to thank Sebastien Thrun and the Stanford Racing Team for

allowing me to participate in the early development of Stanley and to the fellow

members of the path planning team who helped solidify my decision to pursue

robotics.

vi



Curriculum Vitæ

Joseph William Durham

Education

2011 Ph.D. in Mechanical Engineering,
University of California, Santa Barbara,
Santa Barbara, CA, USA

2007 M.Sci. in Mechanical Engineering,
University of California, Santa Barbara,
Santa Barbara, CA, USA

2004 B.A. in Physics, magna cum laude,
Carleton College,
Northfield, MN, USA

Journal Articles

4. J. W. Durham, R. Carli, P. Frasca, and F. Bullo, Discrete Partitioning and
Coverage Control for Gossiping Robots. Submitted to IEEE Transactions on
Robotics, Nov ’10.

3. J. W. Durham, A. Franchi, and F. Bullo, Distributed Pursuit-Evasion with-
out Global Localization via Local Frontiers. Submitted to Autonomous
Robots, Oct ’10.

2. J. W. Durham and J. Moehlis, Feedback Control of Canards. Chaos, pub-
lished 2008.

1. J. W. Durham and P. Lindener, Moderated Differential Pairwise Tallying: A
Voter Specified Hybrid of Ranking by Pairwise Comparisons and Cardinal
Utility Sums, Voting Matters, Issue 27, September 2009.

Conference Proceedings

5. J. W. Durham, R. Carli, P. Frasca, and F. Bullo, Dynamic Coverage Con-
trol with Asynchronous One-to-Base-Station Communication. Submitted to
IEEE Conf. on Decision and Control, Orlando, FL, Dec 2011.

4. J. W. Durham, R. Carli, and F. Bullo, Pairwise Optimal Discrete Coverage
Control for Gossiping Robots. In IEEE Conf. on Decision and Control,
Atlanta, GA, Dec 2010.

vii



3. J. W. Durham, A. Franchi, and F. Bullo, Distributed pursuit-evasion with
limited-visibility sensors via frontier-based exploration. In IEEE Int. Conf.
on Robotics and Automation, Anchorage, Alaska, May 2010.

2. J. W. Durham, R. Carli, P. Frasca, and F. Bullo, Discrete Partitioning and
Coverage Control with Gossip Communication. In ASME Dynamic Systems
and Control Conference, Hollywood, CA, October 2009.

1. J. W. Durham and F. Bullo, Smooth Nearness Diagram Navigation. In
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Nice, France,
pages 690-695, September 2008.

Selected Honors and Awards

2011 UCSB Department of Mechanical Engineering, Best Teaching As-
sistant Award

2006 L.E.A.P.S. Teaching Fellowship

2005 UCSB Department of Mechanical Engineering, State Research As-
sistant Fellowship

2000 Eagle Scout

viii



Abstract

Distributed Coordination for Teams of Robots

by

Joseph William Durham

It is anticipated that in the near future autonomous teams of mobile robots

will revolutionize the transportation of passengers and goods, search and rescue

operations, and other applications. Challenging questions arise in designing co-

ordination algorithms to synthesize and act on spatially distributed information

so that a robotic team reaches a desirable global level of performance. We ex-

plore distributed coordination algorithms in two application areas. An emphasis

of our work is on models and algorithms which can handle limited communication,

localization errors, and the other challenges of hardware implementation.

The first application is territory partitioning and coverage in non-convex envi-

ronments. We present coverage algorithms for two communication models: short-

range, unreliable “gossip” communication between pairs of agents, and sporadic

contact between individual robots and a central base station. In both cases we

handle arbitrary non-convex environments by representing them as connected

graphs. Our coverage algorithms drive teams of robots towards territory par-

ix



titions which minimize the expected distance to task requests appearing in the

environment. We also detail how to compute these solutions efficiently.

Our second application is a visibility-based pursuit-evasion problem in which a

team of mobile robots with limited sensing and communication capabilities must

coordinate to detect any evaders in an unknown, multiply-connected planar envi-

ronment. Our distributed algorithm to guarantee evader detection is built around

maintaining complete coverage of the frontier between cleared and contaminated

regions while expanding the cleared region. We detail a novel distributed method

for storing and updating this frontier without building a global map or requiring

global localization.
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Chapter 1

Introduction

Coordinated networks of mobile robots are already in use for environmental

monitoring [2] and pickup and delivery in warehouses [3]. In the near future, au-

tonomous robotic teams will revolutionize transportation of passengers and goods,

search and rescue operations, and other applications. The appeal of novel robotic

solutions in these areas varies by application, but broadly falls into the categories

of augmenting the abilities of human operators, improving the levels of service pro-

vided, and increasing cost efficiency. For example, a group of underwater gliders

used for ocean monitoring can provide a researcher with several streams of data

about ocean currents and chemistry which would be very expensive and time con-

suming to gather by hand. The gliders can be out at sea for months at a time,

providing a more thorough collection of data than one researcher could hope to
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CHAPTER 1. INTRODUCTION

accomplish otherwise, while also being ready to react to changing conditions.

There are several challenges in the coordination of a team of mobile robots

which are common across the potential applications. An inherent aspect is that

the robots will be distributed around an environment gathering information and

deciding on actions to take. Interesting and challenging questions arise in deter-

mining how to best synthesize and act on this spatially distributed information so

that the team as a whole reaches a desirable global state, especially when combined

with practical limitations such as limited-range or intermittent communication.

Even when all-to-all communication is available, local or hierarchical decision

making is often preferable because it reduces both the load on the communication

channel and the load on any central processors. This thesis will explore the chal-

lenges of multirobot coordination while presenting distributed solutions in two

particular areas: territory partitioning and coverage control; and pursuit-evasion

and search.

Partitioning and Coverage Control Many of the tasks envisioned for teams

of mobile robots share a common feature: the robots are asked to provide service

over a space. One question which naturally arises is: when a group of robots is

waiting for a task request to come in, how can they best position themselves to be

ready to respond? The distributed environment partitioning problem for robotic

2



CHAPTER 1. INTRODUCTION

networks consists of designing individual control and communication laws such

that the team divides a large space into regions. Typically, partitioning is done

so as to optimize a cost function which measures the quality of service provided

over all of the regions. Coverage control additionally optimizes the positioning of

robots inside a region as shown in Fig. 1.1.

Figure 1.1: Example of a team of robots providing efficient coverage of a non-
convex environment, as measured by an appropriate multicenter cost function.

In this thesis we will describe two distributed partitioning and coverage control

algorithms for networks of robots with different available forms of communication.

The first model is asynchronous, unreliable, range-limited communication between

pairs of robots or “gossip” communication, whereas in the second model each

3



CHAPTER 1. INTRODUCTION

robot can only talk occasionally to a central base station. In both cases the goal

is to minimize the expected distance between the closest robot and spatially dis-

tributed events which will appear at discrete points in a non-convex environment.

Optimality is defined with reference to relevant “multicenter” cost functions.

Pursuit-evasion and Search We examine a particular type of distributed

pursuit-evasion problem known as the clearing problem which involves designing

control and communication protocols such that a team of robotic searchers sweep

an environment and detect any intruders which may be present. The clearing

problem has received a lot of attention in recent years because of its applications

to safety and security, and also for its relevance in search and rescue scenarios.

In the literature, both probabilistic and guaranteed approaches are studied, we

focus on guaranteeing that all “contaminated” areas which may contain evaders

are eventually cleared. The particular challenges in achieving this guarantee are

handling environments which are not known in advance, and coordinating clearing

when global localization and global communication are unavailable.

Our approach to environment clearing centers around the frontier or boundary

between cleared and contaminated areas as shown in Fig. 1.2. Some robots will

take on the role of local frontier-guards in charge of securing, updating, and ex-

panding their local piece of the global frontier in coordination with their immediate

4



CHAPTER 1. INTRODUCTION

Figure 1.2: Example of our frontier-based approach for a team of robots to sweep
through and clear an environment.

neighbors. By distributing the handling of the frontier and making local decisions

of how to expand it, our algorithm removes the need for global localization or the

construction of maps.

1.1 Literature Synopsis

In this section we give an overview of the existing literature for the problems

considered in this thesis.
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CHAPTER 1. INTRODUCTION

1.1.1 Partitioning and Coverage Control

A broad discussion of partitioning and coverage control is presented in [4]

which builds on the classic work of Lloyd [5] on algorithms for optimal quantizer

design through “centering and partitioning.” The Lloyd-type approach studied

in this paper was first adapted for distributed coverage control in [6]. Since this

beginning, similar algorithms have been applied to non-convex environments [7, 8],

unknown density functions [9, 10], equitable partitioning [11], and construction of

truss-like objects [12]. There are also multi-agent partitioning algorithms built on

market principles or auctions, see [13] for a survey. We will focus on distributed

Lloyd methods because there are known ways to characterize equilibrium sets and

prove convergence for these algorithms.

In [14] the authors have shown how a group of robotic agents can optimize

the partition of convex bounded set using a Lloyd algorithm with gossip commu-

nication. The relationship between continuous and discrete coverage control laws

using Euclidean distances in convex polygons is studied in [15]. A gossip Lloyd

algorithm for optimizing partitions of a discrete set in non-convex environments

using graph distances was presented in [16].

Territory partitioning and coverage control have applications in many fields.

In cyber-physical systems, applications include automated environmental moni-
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CHAPTER 1. INTRODUCTION

toring [2], fetching and delivery [3], construction [12], and other vehicle routing

scenarios [17]. Coverage of discrete sets is closely related to the literature on data

clustering and k-means [18, 19], as well as the facility location or k-center prob-

lem [20]. Partitioning of graphs is also its own field of research, see [21] for a

survey. Territory partitioning through local interactions is also studied for animal

groups, see for example [22, 23].

1.1.2 Pursuit-evasion and Search

In the literature on pursuit-evasion problems, many different approaches and

starting assumptions have been explored. The study of guaranteeing detection

of evaders in planar environments began with [24]. For a single searcher, [25]

studied a searcher with a limited field of view in a known polygon, while [26]

cleared unknown environments without localization using minimalist sensing. The

most similar work to this one is [27], which uses coordinated sweep lines of agents

to clear unknown environments while building a graph representing the cleared

space.

Pursuit-evasion on graphs representing decompositions of known environments

is a related topic which goes back to [28] and includes recent works by [29] and

[30]. Another active area is efficient evader detection, where one or more searchers

are tasked with probabilistically locating targets which move randomly [31]. The

7
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pursuit-evasion literature has also addressed what to do once evaders are located,

including tracking moving evaders [32] and capturing evaders [33].

Beyond pursuit-evasion, our work draws inspiration from methods for explo-

ration and deployment of agents based on the frontier between explored and un-

known regions [34, 35, 36].

1.2 Contributions of the Thesis

The contributions of this thesis are organized into three main chapters, followed

by a shared conclusion.

Chapter 2 This chapter discusses partitioning and coverage control for robot

teams with short-range “gossip” communication, i.e., asynchronous and unre-

liable communication between nearby robots. It also describes our approach

to modeling non-convex environments as a set of discrete points from which

we build a graph, which is also used as a foundation for Chapter 3. We present

both a motion protocol which drives robots to meet their neighbors and a pair-

wise partitioning rule to update territory ownership when two robots meet.

Our approach takes advantage of the discrete setting and the pairwise nature

of updates to perform iterative optimal two-partitioning instead of using the

more traditional Lloyd algorithm. We show that this change in philosophy

8
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results in significant improvements in the quality of the final solution. This

chapter also includes results from a hardware-in-the-loop experiment to vali-

date our proposal.

Chapter 3 This chapter also describes a partitioning and coverage control al-

gorithm, but in this case for a one-to-base station communication model. The

one-to-base model is intended for robots in environments where peer-to-peer

communication may be impractical, such as in the ocean, mountainous ter-

rain, or urban environments. In this case it is the time delays between when

different robots communicate with the central base station that introduces a

distributed element to the problem. Our proposed algorithm evolves overlap-

ping coverings of a discrete set of points in the environment and converges at

equilibrium to a centroidal Voronoi partition. We also explain how this ap-

proach can smoothly handle the dynamic arrival or departure of robots from

the team.

Chapter 4 In this chapter we change topics and present a frontier-based dis-

tributed algorithm to sweep complex non-convex environments and detect any

evaders which may be present. Our algorithm is built around a set of four be-

haviors which each robot switches between depending on its local conditions.

Chief among these is the frontier-guard behavior in which the robot becomes a

9
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local coordinator handling updates to and expansion of its piece of the global

frontier between cleared and contaminated areas. We detail the distributed

algorithm roles and how they work together to enable the team to clear un-

known environments without global localization and without building maps.

This chapter also contains results from hardware experiments demonstrating

the approach.

Chapter 5 This chapter contains some conclusions and future directions for the

work presented in this thesis.

Notation Finally, a few explanations of our notation. We use R≥0 to denote

the set of non-negative real numbers and Z≥0 the set of non-negative integers.

Given a set A, |A| denotes the number of elements in A. Given sets A,B, their

difference is A \B = {a ∈ A | a /∈ B}. A set-valued map, denoted by T : A ⇒ B,

associates to an element of A a subset of B.

10



Chapter 2

Coverage with Gossip

Communication

This chapter describes a distributed partitioning and coverage control algo-

rithm for a network of robots to minimize the expected distance between the

closest robot and spatially distributed events which will appear at discrete points

in a non-convex environment. Optimality is defined with reference to a relevant

“multicenter” cost function. As with all multirobot coordination applications, the

challenge comes from reducing the communication requirements: the proposed al-

gorithm requires only short-range “gossip” communication, i.e., asynchronous and

unreliable communication between nearby robots.

There are three main contributions in this work. First, we present a discrete
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partitioning and coverage optimization algorithm for mobile robots with unre-

liable, asynchronous, and short-range communication. Our algorithm has two

components: a motion protocol which drives the robots to meet their neighbors,

and a pairwise partitioning rule to update territories when two robots meet. The

partitioning rule optimizes coverage of a set of points connected by edges to form

a graph. The flexibility of graphs allows the algorithm to operate in non-convex,

non-polygonal environments with holes. Our graph partition optimization ap-

proach can also be applied to non-planar problems or more general data sets.

Second, we provide an analysis of both the convergence properties and com-

putational requirements of the algorithm. By studying a dynamical system of

partitions of the graph’s vertices, we prove that almost surely the algorithm con-

verges to a pairwise-optimal partition in finite time. The set of pairwise-optimal

partitions is shown to be a proper subset of the well-studied set of centroidal

Voronoi partitions. We further describe how our pairwise partitioning rule can be

implemented to run in anytime and how the computational requirements of the

algorithm can scale up for large domains and large teams.

Third, we detail experimental results from our implementation of the algo-

rithm in the Player/Stage robot control system. We present a simulation of 30

robots providing coverage of a portion of a college campus to demonstrate that our

algorithm can handle large robot teams, and a hardware-in-the-loop experiment

12



CHAPTER 2. COVERAGE WITH GOSSIP COMMUNICATION

conducted in our lab which incorporates sensor noise and uncertainty in robot

position. Through numerical analysis we also show how our new approach to

partitioning represents a significant performance improvement over both common

Lloyd-type methods and the recent results in [14].

This chapter is organized as follows. In Section 2.1 we review and adapt

coverage and geometric concepts (e.g., centroids, Voronoi partitions) to a discrete

environment like a graph. We formally describe our robot network model and the

discrete partitioning problem in Section 2.2, and then state our coverage algorithm

and its properties. Section 2.3 contains proofs of the main convergence results. In

Section 2.4 we detail our implementation of the algorithm and present experiments

and comparative analysis. A summary is given in Section 2.5.

The work in this chapter was done in collaboration with R. Carli and P. Frasca.

2.1 Preliminary Material

We are given a team of N robots tasked with providing coverage of a finite

set of points in a non-convex and non-polygonal environment. In this Section we

translate concepts used in coverage of continuous environments to graphs.

13
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2.1.1 Non-convex Environment as a Graph

Let Q be a finite set of points in a continuous environment. These points

represent locations of interest, and are assumed to be connected by weighted

edges. Let G(Q) = (Q,E,w) be an (undirected) weighted graph with edge set

E ⊂ Q × Q and weight map w : E → R>0; we let we > 0 be the weight of edge

e. We assume that G(Q) is connected and think of the edge weights as distances

between locations.

Remark 2.1.1 (Discretization of an environment) For the examples in this

thesis we will use a coarse occupancy grid map as a representation of a continuous

environment. In an occupancy grid [37], each grid cell is either free space or an

obstacle (occupied). To form a weighted graph, each free cell becomes a vertex

and free cells are connected with edges if they border each other in the grid. Edge

weights are the distances between the centers of the cells, i.e., the grid resolution.

There are many other methods to discretize a space, including triangularization

and other approaches from computational geometry [38], which could also be used.

In any weighted graph G(Q) there is a standard notion of distance between

vertices defined as follows. A path in G is an ordered sequence of vertices such

that any consecutive pair of vertices is an edge of G. The weight of a path is the

sum of the weights of the edges in the path. Given vertices h and k in G, the

14
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distance between h and k, denoted dG(h, k), is the weight of the lowest weight

path between them, or +∞ if there is no path. If G is connected, then the distance

between any two vertices in G is finite. By convention, dG(h, k) = 0 if h = k.

Note that dG(h, k) = dG(k, h), for any h, k ∈ Q.

2.1.2 Partitions of Graphs

We will be partitioning Q into N connected subsets or regions which will

each be covered by an individual robot. To do so we need to define distances on

induced subgraphs of G(Q). Given I ⊂ Q, the subgraph induced by the restriction

of G to I, denoted by G∩ I, is the graph with vertex set equal to I and edge

set containing all weighted edges of G where both vertices belong to I. In other

words, we set (Q,E,w)∩ I = (Q∩ I, E ∩ (I × I), w|I×I). The induced subgraph

is a weighted graph with a notion of distance between vertices: given h, k ∈ I, we

write dI(h, k) := dG∩ I(h, k). Note that dI(h, k) ≥ dG(h, k).

We define a connected subset of Q as a subset A ⊂ Q such that A 6= ∅ and

G∩A is connected. We can then partition Q into connected subsets as follows.

Definition 2.1.2 (Connected Partitions) Given the graph G(Q) = (Q,E,w),

we define a connected N−partition of Q as a collection P = {Pi}Ni=1 of N subsets

of Q such that
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(i)
⋃N
i=1 Pi = Q;

(ii) Pi ∩ Pj = ∅ if i 6= j;

(iii) Pi 6= ∅ for all i ∈ {1, . . . , N}; and

(iv) Pi is connected for all i ∈ {1, . . . , N}.

Let PartN(Q) to be the set of connected N−partitions of Q.

Property (ii) implies that each element of Q belongs to just one Pi, i.e., each

location in the environment is covered by just one robot. Notice that each Pi ∈ P

induces a connected subgraph in G(Q). In subsequent references to Pi we will

often mean G∩Pi, and in fact we refer to Pi(t) as the dominance subgraph or

region of the i-th robot at time t.

Among the ways of partitioning Q, there are some which are worth special

attention. Given a vector of distinct points c ∈ QN , the partition P ∈ PartN(Q)

is said to be a Voronoi partition of Q generated by c if, for each Pi and all k ∈ Pi,

we have ci ∈ Pi and dG(k, ci) ≤ dG(k, cj), ∀j 6= i. Note that the Voronoi partition

generated by c is not unique since how to apportion tied vertices is unspecified.
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2.1.3 Adjacency of Partitions

For our gossip algorithms we need to introduce the notion of adjacent sub-

graphs. Two distinct connected subgraphs Pi, Pj are said to be adjacent if there

are two vertices qi, qj belonging, respectively, to Pi and Pj such that (qi, qj) ∈ E.

Observe that if Pi and Pj are adjacent then Pi ∪Pj is connected. Similarly, we

say that robots i and j are adjacent or are neighbors if their subgraphs Pi and Pj

are adjacent. Accordingly, we introduce the following useful notion.

Definition 2.1.3 (Adjacency Graph) For P ∈ PartN(Q), we define the adja-

cency graph between regions of partition P as G(P ) = ({1, . . . , N}, E(P )), where

(i, j) ∈ E(P ) if Pi and Pj are adjacent.

Note that G(P ) is always connected since G(Q) is.

2.1.4 Cost Functions

We define three coverage cost functions for graphs: Hone, Hmulticenter, and

Hexpected. Let the weight function φ : Q → R>0 assign a relative weight to each

element of Q. The one-center function Hone gives the cost for a robot to cover a

connected subset A ⊂ Q from a vertex h ∈ A with relative prioritization set by φ:

Hone(h;A) =
∑
k∈A

dA(h, k)φ(k).
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A technical assumption is needed to solve the problem of minimizing Hone(·, A):

we assume from now on that a total order relation, <, is defined on Q, i.e., that

Q = {1, . . . , |Q|}. With this assumption we can deterministically pick a vertex in

A which minimizes Hone as follows.

Definition 2.1.4 (Centroid) Let Q be a totally ordered set, and let A ⊂ Q.

We define the set of generalized centroids of A as the set of vertices in A which

minimize Hone, i.e.,

C(A) := argmin
h∈A

Hone(h;A).

Furthermore, we define the map Cd : C(Q) → Q such that Cd(A) := min{c ∈

C(A)}. We call Cd(A) the generalized centroid of A.

In subsequent use we drop the word “generalized” for brevity. Note that

with this definition the centroid is well-defined, and also that the centroid of a

region always belongs to the region. With a slight notational abuse, we define

Cd : PartN(Q)→ QN as the map which associates to a partition the vector of the

centroids of its elements.
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We define the multicenter function Hmulticenter to measure the cost for N robots

to cover a connected N -partition P from the vertex set c ∈ QN :

Hmulticenter(c, P ) =
1∑

k∈Q φ(k)

N∑
i=1

Hone(ci;Pi).

We aim to minimize the performance function Hmulticenter with respect to both the

vertices c and the partition P .

We can now state the coverage cost function we will be concerned with for the

rest of this chapter. Let Hexpected : PartN(Q)→ R≥0 be defined by

Hexpected(P ) = Hmulticenter(Cd(P ), P ).

In the motivational scenario we are considering, each robot will periodically be

asked to perform a task somewhere in its region with tasks appearing according to

distribution φ. When idle, the robots would position themselves at the centroid of

their region. By partitioning G so as to minimize Hexpected, the robot team would

minimize the expected distance between a task and the robot which will service

it.
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2.1.5 Optimal Partitions

We introduce two notions of optimal partitions: centroidal Voronoi and pairwise-

optimal. Our discussion starts with the following simple result about the multi-

center cost function.

Proposition 2.1.5 (Properties of Multicenter Function) Let P ∈ PartN(Q)

and c ∈ QN . If P ′ is a Voronoi partition generated by c and c′ ∈ Qn is such that

c′i ∈ C(Pi) ∀ i, then

Hmulticenter(c, P
′) ≤ Hmulticenter(c, P ), and

Hmulticenter(c
′, P ) ≤ Hmulticenter(c, P ).

The second inequality is strict if any ci /∈ C(Pi).

Proposition 2.1.5 implies the following necessary condition: if (c, P ) minimizes

Hmulticenter, then ci ∈ C(Pi) ∀i and P must be a Voronoi partition generated

by c. Thus, Hexpected has the following property as an immediate consequence of

Proposition 2.1.5: given P ∈ PartN(Q), if P ∗ is a Voronoi partition generated by

Cd(P ) then

Hexpected(P ∗) ≤ Hexpected(P ).

This fact motivates the following definition.
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Definition 2.1.6 (Centroidal Voronoi Partition) P ∈ PartN(Q) is a cen-

troidal Voronoi partition of Q if there exists a c ∈ Qn such that P is a Voronoi

partition generated by c and ci ∈ C(Pi) ∀ i.

The set of pairwise-optimal partitions provides an alternative definition for

the optimality of a partition: a partition is pairwise-optimal if, for every pair of

adjacent regions, one can not find a better two-partition of the union of the two

regions. This condition is formally stated as follows.

Definition 2.1.7 (Pairwise-optimal Partition) P ∈ PartN(Q) is a pairwise-

optimal partition if for every (i, j) ∈ E(P ),

Hone(Cd(Pi);Pi)+Hone(Cd(Pj);Pj) =

min
a,b∈Pi∪Pj

{ ∑
k∈Pi∪Pj

min
{
dPi∪Pj(a, k), dPi∪Pj(b, k)

}
φ(k)

}
.

The following Proposition states that the set pairwise-optimal partitions is

in fact a subset of the set of centroidal Voronoi partitions. See Fig. 2.1 for an

example which demonstrates that the inclusion is strict.

Proposition 2.1.8 (Pairwise-optimal Characterization) Let P ∈ PartN(Q)

be a pairwise-optimal partition. Then P is also a centroidal Voronoi partition.
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(a) (b) (c)

Figure 2.1: All possible centroidal Voronoi partitions of a 2 × 5 grid: (a) has
a cost of 12 hops, (b) has a cost of 11, and (c) has a cost of 10. Only (c) is
pairwise-optimal by definition.

Proof. To create a contradiction, assume that P ∈ PartN(Q) is a pairwise-

optimal partition but not a centroidal Voronoi partition. In other words, there

exist components Pi and Pj in P and an element x of one component, say x ∈ Pi,

such that

dG (x,Cd(Pi)) > dG (x,Cd(Pj)) . (2.1)

Furthermore, it is always possible to choose Pj such that

dG (x,Cd(Pj)) ≤ dG (x,Cd(Pk)) (2.2)

for all k 6= j.

Let sGa,b be a shortest path in G connecting a to b. Consider a sGx,Cd(Pj)
and let

m ∈ sGx,Cd(Pj)
be the first element of the path starting from Cd(Pj) which is not

in Pj. Let ` be such that m ∈ P`.
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If m = x, then from (2.1) and the definition of sGx,Cd(Pj)
we have that

dPi (x,Cd(Pi)) > dPi∪Pj (x,Cd(Pj))

which is a contradiction of the fact that P is pairwise-optimal.

If m 6= x, then, given (2.2), one of these two conditions holds:

(i) dG (m,Cd(P`)) > dG (m,Cd(Pj)), or

(ii) dG (m,Cd(P`)) = dG (m,Cd(Pj)).

In the first case, we again have a contradiction using the same logic above with m

in place of x. In the second case, we must further consider whether there exists

a sGm,Cd(P`)
such that every vertex in sGm,Cd(P`)

is also in P`. If there is not such a

path, then

dP` (m,Cd(P`)) > dG (m,Cd(P`)) = dP`∪Pj (m,Cd(Pj))

and we again have a contradiction as above. If there is such a path, then we can

instead repeat this analysis using using ` in place of j and considering the path

formed by this sGm,Cd(P`)
and the vertices in sGx,Cd(Pj)

after m. Since the next vertex

playing the role of m must be closer to x, we will eventually find a vertex which

creates a contradiction.
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For a given environment Q, a pair made of a centroidal Voronoi partition P

and the corresponding vector of centroids c is locally optimal in the following

sense: Hexpected cannot be reduced by changing either P or c independently. A

pairwise-optimal partition achieves this property and adds that for every pair of

neighboring robots (i, j), there does not exist a two-partition of Pi ∪ Pj with a

lower coverage cost. In other words, positioning the robots at the centroids of a

centroidal Voronoi partition (locally) minimizes the expected distance between a

task appearing randomly in Q according to relative weights described by φ and the

robot who owns the vertex where the task appears. Positioning at the centroids

of a pairwise-optimal partition improves performance by reducing the number of

sub-optimal solutions which the team might converge to.

2.1.6 Review of Lloyd Optimization for Coverage & its

Drawbacks

In the literature there are well-studied distributed algorithms based on the

classic work of Lloyd [5] for optimizing an N -partition P so as to reach a cen-

troidal Voronoi partition, see for instance [4] and [8]. The Lloyd approach is built

around separate partitioning and centering steps, and while typically these algo-

rithms are given for Euclidean spaces, the extension to discrete metric spaces is
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straightforward. These algorithms are distributed in the sense that each robot

determines its dominance subgraph and its motion plan based only on commu-

nication with its neighbors in the adjacency graph. Specifically, at each discrete

time instant t ∈ Z≥0, each robot i performs the following tasks: (1) i transmits

its position and receives the positions of all adjacent robots; (2) i computes its

Voronoi region Pi based on the information received and some tie breaking rule1;

and (3) i moves to Cd(Pi). Along the lines of [4], one can show that such an

algorithm causes P to converge to the set of centroidal Voronoi partitions.

While such iterative optimization algorithms are popular and work well in sim-

ulation, they require synchronous and reliable communication among the robots.

As robots with adjacent regions may be arbitrarily far apart, these communication

requirements are burdensome and unrealistic for deployed robotic networks. In

addition, even for very simple graphs the set of centroidal Voronoi partitions may

contain several sub-optimal configurations (see Fig. 2.1). We are thus interested in

gossip coverage algorithms for two reasons: (1) they apply to more realistic robot

network models, and (2) they will allow us to reach the set of pairwise-optimal

partitions.

1There may be cells which are equidistant from i and the closest adjacent robot. A tie
breaking rule is a method to decide which robot should own such a tied cell, such as giving tied
cells to the robot with the lowest index.
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2.2 Models, Problem Formulation, and Proposed

Solution

We aim to partition Q among N robotic agents using only asynchronous, unre-

liable, short-range communication. In Section 2.2.1 we describe the computation,

motion, and communication capabilities required of the team of robots, and in

Section 2.2.2 we formally state the problem we are addressing. In Section 2.2.3

we propose our solution, the Discretized Gossip Coverage Algorithm, and in 2.2.4

we provide an illustration. In Sections 2.2.5 and 2.2.6 we state the algorithm’s

convergence and complexity properties.

2.2.1 Robot Network Model with Gossip Communication

Our Discretized Gossip Coverage Algorithm requires a team of N robotic

agents where each agent i ∈ {1, . . . , N} has the following basic computation and

motion capabilities:

(C1) agent i knows its unique identifier i;

(C2) agent i has a processor with the ability to store G(Q) and perform operations

on subgraphs of G; and

(C3) agent i can determine which vertex in Q it occupies and can move at speed
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v along the edges of G(Q) to any other vertex in Q.

Remark 2.2.1 The localization requirement in (C3) is actually quite loose. Lo-

calization is only used for navigation and not for updating partitions, thus limited

duration localization errors are not a problem.

The robotic agents are assumed to be able to communicate with each other

according to the range-limited gossip communication model which is described as

follows:

(C4) given a communication range rcomm > maxe∈E we, when any two agents

reside for some positive duration at a distance r < rcomm, they communicate

at the sample times of a Poisson process with intensity λcomm > 0.

Recall that an homogeneous Poisson process is a widely-used stochastic model

for events which occur randomly and independently in time, where the expected

number of events in a period ∆ is ∆λcomm.

Remark 2.2.2 (Communication Model) (1) This communication capability

is the minimum necessary for our algorithm, any additional capability can only

reduce the time required for convergence. For example, it would be acceptable to

have intensity λ(r) depend upon the pairwise robot distance in such a way that

λ(r) ≥ λcomm for r < rcomm.
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(2) We use distances in the graph to model limited range communication. These

graph distances are assumed to approximate geodesic distances in the underlying

continuous environment and thus path distances for a diffracting wave or moving

robot.

2.2.2 Problem Statement

Assume that, for all t ∈ R≥0, each agent i ∈ {1, . . . , N} maintains in memory

a connected subset Pi(t) of environment Q. Our goal is to design a distributed

algorithm that iteratively updates the partition P (t) = {Pi(t)}Ni=1 while solving

the following optimization problem:

min
P∈PartN (Q)

Hexpected(P ), (2.3)

subject to the constraints imposed by the robot network model with range-limited

gossip communication from Section 2.2.1.

2.2.3 The Discretized Gossip Coverage Algorithm

In the design of an algorithm for the minimization problem (2.3) there are two

main questions which must be addressed. First, given the limited communication

capabilities in (C4), how should the robots move inside Q to guarantee frequent

28



CHAPTER 2. COVERAGE WITH GOSSIP COMMUNICATION

enough meetings between pairs of robots? Second, when two robots are communi-

cating, what information should they exchange and how should they update their

regions?

In this section we introduce the Discretized Gossip Coverage Algorithm which,

following these two questions, consists of two components:

(1) the Random Destination & Wait Motion Protocol ; and

(2) the Pairwise Partitioning Rule.

The concurrent implementation of the Random Destination & Wait Motion Pro-

tocol and the Pairwise Partitioning Rule determines the evolution of the positions

and dominance subgraphs of the agents as we now formally describe. We start

with the Random Destination & Wait Motion Protocol.

Algorithm 2.1: Random Destination & Wait Motion Protocol

Each agent i ∈ {1, . . . , N} determines its motion by repeatedly performing
the following actions:

1: agent i samples a destination vertex qi from a uniform distribution over its
dominance subgraph Pi;

2: agent i moves to vertex qi through the shortest path in Pi connecting the
vertex it currently occupies and qi; and

3: agent i waits at qi for a duration τ > 0.

If agent i is moving from one vertex to another we say that agent i is in the

moving state while if agent i is waiting at some vertex we say that it is in the

waiting state.
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Remark 2.2.3 (Motion Protocol) The motion protocol is designed to ensure

frequent enough communication between pairs of robots. In general, any motion

protocol can be used which meets this requirement, so i could select qi from the

boundary of Pi or use some heuristic non-uniform distribution over Pi.

If any two agents i and j reside in two vertices at a graphical distance smaller

that rcomm for some positive duration, then at the sample times of the correspond-

ing communication Poisson process the two agents exchange sufficient information

to update their respective dominance subgraphs Pi and Pj via the Pairwise Par-

titioning Rule.

Algorithm 2.2: Pairwise Partitioning Rule

Assume that at time t ∈ R≥0, agent i and agent j communicate. Without
loss of generality assume that i < j. Let Pi(t) and Pj(t) denote the current
dominance subgraphs of i and j, respectively. Moreover, let t+ denote the
time instant just after t. Then agents i and j perform the following tasks:

1: agent i transmits Pi(t) to agent j and vice-versa
2: initialize Wa∗ := Pi(t), Wb∗ := Pj(t), a

∗ := Cd(Pi(t)), b
∗ := Cd(Pj(t))

3: compute U := Pi(t)∪Pj(t) and a list S of all pairs of vertices in U
4: for each (a, b) ∈ S do
5: compute the sets

Wa := {x ∈ U : dU(x, a) ≤ dU(x, b)}
Wb := {x ∈ U : dU(x, b) < dU(x, a)}

6: if Hone(a;Wa) + Hone(b;Wb) < Hone(a
∗;Wa∗) +Hone(b

∗;Wb∗) then
7: Wa∗ := Wa,Wb∗ := Wb, a

∗ := a, b∗ := b
8: Pi(t

+) := Wa∗ , Pj(t
+) := Wb∗

Some remarks are now in order.
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Remark 2.2.4 (Partitioning Rule) (1) The Pairwise Partitioning Rule is de-

signed to find a minimum cost two-partition of U . More formally, if list S and

sets Wa∗ and Wb∗ for (a∗, b∗) ∈ S are defined as in the Pairwise Partitioning Rule,

then Wa∗ and Wb∗ are an optimal two-partition of U .

(2) While the loop in steps 4-7 must run to completion to guarantee that Wa∗

and Wb∗ are an optimal two-partition of U , the loop is designed to return an

intermediate sub-optimal result if need be. If Pi and Pj change, then Hexpected will

decrease and this is enough to ensure eventual convergence.

(3) We make a simplifying assumption in the Pairwise Partitioning Rule that,

once two agents communicate, the application of the partitioning rule is instan-

taneous. We discuss the actual computation time required in Section 2.2.6 and

some implementation details in Section 2.4.

(4) Notice that simply assigning Wa∗ to i and Wb∗ to j can cause the robots to

“switch sides” in U . While convergence is guaranteed regardless, switching may

be undesirable in some applications. In that case, any smart matching of Wa∗ and

Wb∗ to i and j may be inserted.

(5) Agents who are not adjacent may communicate but the partitioning rule will

not change their regions. Indeed, in this case Wa∗ and Wb∗ will not change from

Pi(t) and Pj(t).
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Some possible modifications and extensions to the algorithm are worth men-

tioning.

Remark 2.2.5 (Extensions) (1) If the robots have heterogenous dynamics,

line 5 can be modified to consider per-robot travel times between vertices. For

example, dU(x, a) could be replaced by the expected time for robot i to travel from

a to x while dU(x, b) would consider robot j.

(2) Here we focus on partitioning territory, but this algorithm can easily be com-

bined with methods to provide a service in Q as in [17]. The agents could split their

time between moving to meet their neighbors and update territory, and performing

requested tasks in their region.

2.2.4 Illustrative Simulation

The simulation in Fig. 2.2 shows four robots partitioning a square environment

with obstacles where the free space is represented by a 12× 12 grid. In the initial

partition shown in the left panel, the robot in the top right controls most of

the environment while the robot in the bottom left controls very little. The

robots then move according to the Random Destination & Wait Motion Protocol,

and communicate according to range-limited gossip communication model with

rcomm = 2.5m (four edges in the graph).
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Figure 2.2: Simulation of four robots dividing a square environment with obsta-
cles. The boundary of each robots territory is drawn in a different color, the
centroid of a territory is drawn with an X, and pairwise communication is drawn
with a solid red line. On the left is the initial partition assigned to the robots.
The middle frames show two pairwise territory exchanges, with updated territories
highlighted with solid colors. The final partition is shown at right.

The first pairwise territory exchange is shown in the second panel, where the

bottom left robot claims some territory from the robot on the top left. A later

exchange between the two robots on the top is shown in the next two panels.

Notice that the cyan robot in the top right gives away the vertex it currently

occupies. In such a scenario, we direct the robot to follow the shortest path in

G(Q) to its updated territory before continuing on to a random destination.

After 9 pairwise territory exchanges, the robots reach the pairwise-optimal
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partition shown at right in Fig. 2.2. The expected distance between a random

vertex and the closest robot decreases from 2.34m down to 1.74m.

2.2.5 Convergence Property

In this subsection we characterize the convergence of the Discretized Gossip

Coverage Algorithm. The strength of our result is the possibility of enforcing that

a partition will converge to a pairwise-optimal partition through pairwise territory

exchange. In Theorem 2.2.6 we summarize this convergence property, with proofs

given in Section 2.3.

Theorem 2.2.6 (Convergence Property) Consider a network of N robotic

agents endowed with computation and motion capacities (C1), (C2), (C3), and

communication capacities (C4). Assume the agents implement the Discretized

Gossip Coverage Algorithm consisting of the concurrent implementation of the

Random Destination & Wait Motion Protocol and the Pairwise Partitioning Rule.

Then,

(i) the partition P (t) remains connected and is described by P : R≥0 → PartN(Q),

and

(ii) P (t) converges almost surely in finite time to a pairwise-optimal partition.
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Remark 2.2.7 For simplicity we assume uniform robot speeds, communication

processes, and waiting times. An extension to non-uniform processes would be

straightforward.

2.2.6 Complexity Properties and Discussion

In this subsection we explore the computational requirements of the Discretized

Gossip Coverage Algorithm, and make some comments on implementation. Cost

function Hone(h;Pi) is the sum of the distances between h and all other vertices in

Pi. This computation of one-to-all distances is the core computation of the algo-

rithm. For most graphs of interest the total number of edges |E| is proportional

to |Q|, so we will state bounds on this computation in terms of |Pi|. Computing

one-to-all distances requires one of the following:

• if all edge weights in G(Q) are the same (e.g., for a graph from an occupancy

grid), a breadth-first search approach can be used which requires O(|Pi|) in

time and memory;

• otherwise, Dijkstra’s algorithm must be used which requiresO(|Pi| log (|Pi|))

in time and O(|Pi|) in memory.

Let D(Pi) be the time to compute one-to-all distances in Pi, then computing

Hone(h;Pi) requires O(D(Pi)) in time.
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Proposition 2.2.8 (Complexity Properties) The motion protocol requires O(|Pi|)

in memory, and O(D(Pi)) in computation time. The partitioning rule requires

O(|Pi|+ |Pj|) in communication bandwidth between robots i and j, O(|Pi|+ |Pj|)

in memory, and can run in any time.

Proof. We first prove the claims for the motion protocol. Step 2 is the only

non-trivial step and requires finding a shortest path in Pi, which is equivalent to

computing one-to-all distances from the robot’s current vertex. Hence, it requires

O(D(Pi)) in time and O(Pi) in memory.

We now prove the claims for the partitioning rule. In step 1, robots i and j

transmit their subgraphs to each other, which requires O(|Pi|+ |Pj|) in communi-

cation bandwidth. For step 3, the robots determine U := Pi ∪ Pj, which requires

O(|Pi| + |Pj|) in memory to store. Step 4 is the start of a loop which executes

O(|U |2) times, affecting the time complexity of steps 5, 6 and 7. Step 5 requires

two computations of one-to-all distances in U which each take O(D(U)). Step 6

involves four computations of Hone over different subsets of U , however those for

Wa∗ and Wb∗ can be stored from previous computation. Since Wa and Wb are

strict subsets of U , step 5 takes longer than step 6. Step 7 is trivial, as is step 8.

The total time complexity of the loop is thus O(|U |2 D(U)).
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However, the loop in steps 4-7 can be truncated after any number of iterations.

While it must run to completion to guarantee that Wa∗ and Wb∗ are an optimal

two-partition of U , the loop is designed to return an intermediate sub-optimal

result if need be. If Pi and Pj change, thenHexpected will decrease. Our convergence

result will hold provided that all elements of S are eventually checked if Pi and Pj

do not change. Thus, the partitioning rule can run in any time with each iteration

requiring O(D(U)).

All of the computation and communication requirements in Proposition 2.2.8

are independent of the number of robots and scale with the size of a robot’s

partition, meaning the Discretized Gossip Coverage Algorithm can easily scale up

for large teams of robots in large environments.

2.3 Convergence Proofs

This section is devoted to proving the two statements in Theorem 2.2.6. The

proof that the Pairwise Partitioning Rule maps a connected N -partition into a

connected N -partition is straightforward. The proof of convergence is more in-

volved and is based on the application of Lemma 2.3.1 in Section 2.3.2 below to

the Discretized Gossip Coverage Algorithm.
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2.3.1 Well-posedness

We start by proving that the Pairwise Partitioning Rule is well-posed in the

sense that it maintains a connected partition.

Proof. [Proof of Theorem 2.2.6 statement (i)] To prove the statement we need

to show that P (t+) satisfies points (i) through (iv) of Definition 2.1.2. From

the definition of the Pairwise Partitioning Rule, we have that Pi(t
+) ∪ Pj(t+) =

Pi(t)∪Pj(t) and Pi(t
+)∩Pj(t+) = ∅. Moreover, since a∗ ∈ Pi(t+) and b∗ ∈ Pj(t+),

it follows that Pi(t
+) 6= ∅ and Pj(t

+) 6= ∅. These observations imply the validity

of points (i), (ii), and (iii) for P (t+). Finally, we must show that Pi(t
+) and Pj(t

+)

are connected, i.e., P (t+) also satisfies point (iv). To do so we show that, given

x ∈ Wa∗ , any shortest path in Pi(t)∪Pj(t) connecting x to a∗ completely belongs to

Wa∗ . We proceed by contradiction. Let sx,a∗ denote a shortest path in Pi(t)∪Pj(t)

connecting x to a∗ and let us assume that there existsm ∈ sx,a∗ such thatm ∈ Wb∗ .

For m to be in Wb∗ means that dPi(t)∪Pj(t)(m, b
∗) < dPi(t)∪Pj(t)(m, a

∗). This implies

that

dPi∪Pj(x, b
∗) ≤ dPi∪Pj(m, b

∗) + dPi∪Pj(x,m)

< dPi∪Pj(m, a
∗) + dPi∪Pj(x,m)

= dPi∪Pj(x, a
∗).
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This is a contradiction for x ∈ Wa∗ . Similar considerations hold for Wb∗ .

2.3.2 Invariance Principle

For completeness we present a convergence result for set-valued algorithms on

finite state spaces, which can be recovered as a direct consequence of [14, Theo-

rem 4.5]. Lemma 2.3.1 establishes strong convergence properties for a particular

class of set valued maps, which we will now briefly review.

Given a set X, a set-valued map T : X ⇒ X is a map which associates to an

element x ∈ X a subset Z ⊂ X. A set-valued map is non-empty if T (x) 6= ∅ for

all x ∈ X. Given a non-empty set-valued map T , an evolution of the dynamical

system associated to T is a sequence {xn}n∈Z≥0
⊂ X where xn+1 ∈ T (xn) for all

n ∈ Z≥0. A set W ⊂ X is strongly positively invariant for T if T (w) ⊂ W for all

w ∈ W .

Lemma 2.3.1 (Persistent random switches imply convergence) Let (X, d)

be a finite metric space. Given a collection of maps T1, . . . , Tm : X → X, define

the set-valued map T : X ⇒ X by T (x) = {T1(x), . . . , Tm(x)}. Given a stochastic

process σ : Z≥0 → {1, . . . ,m}, consider an evolution {xn}n∈Z≥0
of T satisfying

xn+1 = Tσ(n)(xn). Assume that:

(i) there exists a set W ⊆ X that is strongly positively invariant for T ;
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(ii) there exists a function U : W → R such that U(w′) < U(w), for all w ∈ W

and w′ ∈ T (w) \ {w}; and

(iii) there exists p ∈ (0, 1) and k ∈ N such that, for all i ∈ {1, . . . ,m} and n ∈

Z≥0, there exists h ∈ {1, . . . , k} such that P
[
σ(n+ h) = i |σ(n), . . . , σ(1)

] ≥
p.

For i ∈ {1, . . . ,m}, let Fi be the set of fixed points of Ti in W , i.e., Fi = {w ∈

W | Ti(w) = w}. If x0 ∈ W , then the evolution {xn}n∈Z≥0
converges almost surely

in finite time to an element of the set (F1 ∩ · · · ∩Fm), i.e., there exist almost surely

τ ∈ N and x̄ ∈ (F1 ∩ · · · ∩Fm) such that xn = x̄ for n ≥ τ.

2.3.3 Algorithm as Set-valued Map

Our next step is to show that the evolution determined by the Discretized

Gossip Coverage Algorithm can be seen as a set-valued map. To this end, for any

pair of robots (i, j) ∈ {1, . . . , N}2, i 6= j, we define the map Tij : PartN(Q) →

PartN(Q) by

Tij(P ) = (P1, . . . , P̂i, . . . , P̂j, . . . , PN),

where P̂i = Wa∗ and P̂j = Wb∗ .
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If at time t ∈ R≥0 the pair (i, j) and no other pair of robots perform an

iteration of the Pairwise Partitioning Rule, then the dynamical system on the

space of partitions is described by

P (t+) = Tij (P (t)) . (2.4)

We define the set-valued map T : PartN(Q) ⇒ PartN(Q) as

T (P ) = {Tij(P ) | (i, j) ∈ {1, . . . , N}2, i 6= j}. (2.5)

Observe that (2.4) can then be rewritten as P (t+) ∈ T (P (t)).

2.3.4 Persistence of Communication

We begin with a property of the Random Destination & Wait Motion Protocol

which is needed to show the persistence of pairwise exchanges.

Lemma 2.3.2 Consider a group of N robots implementing the Discretized Gossip

Coverage Algorithm starting from an arbitrary initial P ∈ PartN(Q). Consider

t ∈ R≥0 and let P (t) denote the partition at time t. Assume that at time t no two

robots are communicating. Then, there exist ∆ > 0 and α ∈ (0, 1), independent

of P (t) and the positions and states of the robots at time t, such that, for every
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(i, j) ∈ E(P (t)), P [(i, j) communicate within (t, t+ ∆)] ≥ α.

Proof. To begin, we define two useful quantities. Let

S(Q) := max
P∈PartN (Q)

max
Pi∈P

max
h,k∈Pi

dPi(h, k)

be a pseudo-diameter for Q, and then choose ∆ := 2S(Q)
v

+ 2τ . We fix a pair

(i, j) ∈ E(P ), and pick adjacent vertices a ∈ Pi, b ∈ Pj.

Our goal is to lower bound the probability that i and j will communicate

within the interval (t, t+ ∆). To do so we construct one sequence of events of

positive probability which enables such communication. Consider the following

situation: i is in the moving state and needs time ti to reach its destination qi,

whereas robot j is in the waiting state at vertex qj and must wait there for time

τj ≤ τ . We denote by t(a) (resp. t(b)) the time needed for i (resp. j) to travel

from qi (resp. qj) to a (resp. b). Let Ei be the event such that i performs the

following actions in (t, t+ ∆) without communicating with any robot k 6= j:

(i) i reaches qi and waits at qi for the duration τ ; and

(ii) i chooses vertex a as its next destination and then stays at a for at least

∆− t(a)− ti − τ .
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Let Ej be the event such that j performs the following actions in (t, t+∆) without

communicating with any k 6= i:

(i) j waits at qj for the duration τj; and

(ii) j chooses vertex b as its next destination and then stays at b for at least

∆− t(b)− τj.

Let Eij = Ei ∩ Ej.

Next, we lower bound the probability that event Ei occurs. Recall the defini-

tion of λcomm from Sec. 2.2.1. Since a robot can have at most N − 1 neighbors,

the probability that (i) of Ei happens is lower bounded by e−λcommτN . For (ii), the

probability that i chooses a is 1/ |Pi|, which is lower bounded by 1/ |Q|. Then, in

order to spend at least (∆− t(a)− ti − τ) at a, i must choose a for d∆−t(a)−ti−τ
τ

e

consecutive times. Finally, the probability that during this interval i will not

communicate with any robot other than j is lower bounded by e−λcomm(∆)(N−2).

The probability that (ii) occurs is thus lower bounded by (1/ |Q|)d∆
τ
e e−λcomm∆N .

Combining the bounds for (i) and (ii), it follows that

P[Ei] ≥
(

1
|Q|

)d∆
τ
e
e−λcomm(∆+τ)N .
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The same lower bound holds for P[Ej], meaning that

P [Eij] = P [Ei] P [Ej] ≥
(

1
|Q|

)2d∆
τ
e
e−2λcomm(∆+τ)N .

If event Eij occurs, then robots i and j will be at adjacent vertices for an

amount of time during the interval (t, t+ ∆) equal to

tmin = min {∆− t(a)− ti − τ,∆− t(b)− τj} .

Since t(a) and t(b) are no more than S(Q)
v

, we can conclude that i and j will be

within rcomm for at least tmin ≥ τ . Conditioned on Eij occurring, the probability

that i and j communicate in (t, t+ ∆) is thus lower bounded by 1− e−λcommτ . A

suitable choice for α from the statement of the Lemma is then

α =
(

1
|Q|

)2d∆
τ
e
e−2λcomm(∆+τ)N

(
1− e−λcommτ

)
.

It can be shown that this also constitutes a lower bound for the other possible

combinations of initial states: robot i is waiting and robot j is moving ; robots i

and j are both moving ; and robots i and j are both waiting.

The next two Propositions state facts whose validity is ensured by Lemma 2.3.2.
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Proposition 2.3.3 (Persistence of Exchanges) Consider N robots implement-

ing the Discretized Gossip Coverage Algorithm. Then, there almost surely exists

an increasing sequence of time instants {tk}k∈Z≥0
such that P (t+k ) = Tij(P (tk))

for some (i, j) ∈ E(P (tk)).

Proof. The proof follows directly from Lemma 2.3.2 which implies that the time

between two consecutive pairwise communications is almost surely finite.

The existence of time sequence {tk}k∈Z≥0
allows us to to express the evolution

generate by the Discretized Gossip Coverage Algorithm as a discrete time process.

Let P (k) := P (tk) and P (k + 1) := P (t+k ), then

P (k + 1) ∈ T (P (k))

where T : PartN(Q) ⇒ PartN(Q) is defined as in (2.5).

Given k ∈ Z≥0, let Ik denote the information which completely characterizes

the state of Discretized Gossip Coverage Algorithm just after the k-th iteration of

the partitioning rule, i.e., at time t+k−1. Specifically, Ik contains the information

related to the partition P (k), the positions of the robots at t+k−1, and whether each

robot is in the waiting or moving state at t+k−1. The following result characterizes

the probability that, given Ik, the (k + 1)-th iteration of the partitioning rule is
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governed by any of the maps Tij, (i, j) ∈ E(P (k)).

Proposition 2.3.4 (Probability of Communication) Consider a team of N

robots with capacities (C1), (C2), (C3), and (C4) implementing the Discretized

Gossip Coverage Algorithm. Then, there exists a real number π̄ ∈ (0, 1), such

that, for any k ∈ Z≥0 and (i, j) ∈ E(P (k))

P [P (k + 1) = Tij(P (k)) | Ik] ≥ π̄.

Proof. Assume that at time t̄ one pair of robots communicates. Given a pair

(̄i, j̄) ∈ E(P (t̄)), we must find a lower bound for the probability that (̄i, j̄) is the

communicating pair. Since all the Poisson communication processes have the same

intensity, the distribution of the chance of communication is uniform over the pairs

which are “able to communicate,” i.e., closer than rcomm to each other. Thus, we

must only show that (̄i, j̄) has a positive probability of being able to communicate

at time t̄, which is equivalent to showing that (̄i, j̄) is able to communicate for

a positive fraction of time with positive probability. The proof of Lemma 2.3.2

implies that with probability at least α/(1− e−λcommτ ) any pair in E(P (t̄)) is able

to communicate for a fraction of time not smaller than τ
∆
, where α and ∆ are

defined in the proof of Lemma 2.3.2. Hence the result follows.
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The property in Proposition 2.3.4 can also be formulated as follows. Let σ :

Z≥0 → {(i, j) ∈ {1, . . . , N}2, i 6= j} be the stochastic process such that σ(k) is the

communicating pair at time k. Then, the sequence of pairs of robots performing

the partitioning rule at time instants {tk}k∈Z≥0
can be seen as a realization of the

process σ, which satisfies

P
[
σ(k + 1) = (i, j) | σ(k)

] ≥ π̄ (2.6)

for all (i, j) ∈ E(P (k)).

2.3.5 Lyapunov Function

Next we show that the cost function decreases whenever the application of T

from (2.5) changes the territory partition. This fact is a key ingredient to apply

Lemma 2.3.1.

Lemma 2.3.5 (Decreasing Cost Function) Let P ∈ PartN(Q) and let P+ ∈

T (P ). If P+ 6= P , then Hexpected(P+) < Hexpected(P ).
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Proof. Without loss of generality assume that (i, j) is the pair executing the

Pairwise Partitioning Rule. Then

Hexpected(P+)−Hexpected(P ) = Hone(Cd(P+
i );P+

i ) +Hone(Cd(P+
j );P+

j )

−Hone(Cd(Pi);Pi)−Hone(Cd(Pj);Pj).

According to the definition of the Pairwise Partitioning Rule we have that if

P+
i 6= Pi, P

+
j 6= Pj, then

Hone(Cd(P+
i );P+

i ) +Hone(Cd(P+
j );P+

j ) < Hone(Cd(Pi);Pi) +Hone(Cd(Pj);Pj)

from which the statement follows.

2.3.6 Proof of Main Convergence Result

We now complete the proof of our main convergence result for the Discretized

Gossip Coverage Algorithm, Theorem 2.2.6.

Proof. [Proof of Theorem 2.2.6 statement (ii)] Note that the algorithm evolves in a

finite space of partitions, and by Theorem 2.2.6 statement (i), the set PartN(Q) is

strongly positively invariant. This fact implies that assumption (i) of Lemma 2.3.1

is satisfied. From Lemma 2.3.5 it follows that assumption (ii) is also satisfied,
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with Hexpected playing the role of the function U . Finally, the property in (2.6) is

equivalent to the property of persistent random switches stated in Assumption (iii)

of Lemma 2.3.1, for the special case h = 1. Hence, we are in the position to

apply Lemma 2.3.1 and conclude convergence in finite-time to an element of the

intersection of the equilibria of the maps Tij, which by definition is the set of the

pairwise-optimal partitions.

2.4 Experimental Methods & Results

To demonstrate the utility and study practical issues of the Discretized Gossip

Coverage Algorithm, we implemented it using the open-source Player/Stage robot

control system [39] and the Boost Graph Library (BGL) [40]. All results presented

here were generated using Player 2.1.1, Stage 2.1.1, and BGL 1.34.1. To compute

distances in uniform edge weight graphs we extended the BGL breadth-first search

routine with a distance recorder event visitor.

2.4.1 Large-scale Simulation

To evaluate the performance of our gossip coverage algorithm with larger

teams, we tested 30 simulated robots partitioning a map representing a 350m ×

225m portion of campus at the University of California at Santa Barbara. As
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Figure 2.3: Images of starting and final partitions for a simulation with 30 robots
providing coverage of a portion of campus at UCSB.
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shown in Fig. 2.3, the robots are tasked with providing coverage of the open space

around some of the buildings on campus, a space which includes a couple open

quads, some narrower passages between buildings, and a few dead-end spurs. For

this large environment the simulated robots are 2m on a side and can move at

3.0m
s

. Each territory cell is 3m× 3m.

In this simulation we handle communication and partitioning as follows. The

communication range is set to 30m (10 edges in the graph) with λcomm = 0.3 comm
s

.

The robots wait at their destination vertices for τ = 3.5s. This value for τ was

chosen so that on average one quarter of the robots are waiting at any moment.

Lower values of τ mean the robots are moving more of the time and as a result

more frequently miss connections, while for higher τ the robots spend more time

stationary which also reduces the rate of convergence. With the goal of improving

communication, we implemented a minor modification to the motion protocol:

each robot picks its random destination from the cells forming the open boundary2

of its territory. In our implementation, the full partitioning loop may take 5

seconds for the largest initial territories in Fig. 2.3. We chose to stop the loop

after a quarter second for this simulation to verify the anytime computation claim.

The 30 robots start clustered in the center of the map between Engineering II

and Broida Hall, and an initial Voronoi partition is generated from these starting

2The open boundary of Pi is the set of vertices in Pi which are adjacent to at least one vertex
owned by another agent.
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positions. This initial partition is shown on the left in Fig. 2.3 with the robots

positioned at the centroids of their starting regions. The initial partition has a

cost of 37.1m. The team spends about 27 minutes moving and communicating

according to the Discretized Gossip Coverage Algorithm before settling on the

final partition on the right of Fig. 2.3. The coverage cost of the final equilibrium

improved by 54% to 17.1m. Visually, the final partition is also dramatically more

uniform than the initial condition. This result demonstrates that the algorithm

is effective for large teams in large non-convex environments.
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Figure 2.4: Graph of the cost Hexpected over time for the simulation in Fig. 2.3.

Fig. 2.4 shows the evolution of Hexpected during the simulation. The largest

cost improvements happen early when the robots that own the large territories

on the left and right of the map communicate with neighbors with much smaller

territories. These big territory changes then propagate through the network as

the robots meet and are pushed and pulled towards a lower cost partition.
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2.4.2 Implementation Details

We conducted an experiment to test the algorithm using three physical robots

in our lab, augmented by six simulated robots in a synthetic environment extend-

ing beyond the lab. Our lab space is 11.3m on a side and is represented by the

upper left portion of the territory maps in Fig. 2.6. The territory graph loops

around a center island of desks. We extended the lab space through three connec-

tions into a simulated environment around the lab, producing a 15.9m × 15.9m

environment. The map of the environment was specified with a 0.15m bitmap

which we overlayed with a 0.6m resolution occupancy grid representing the free

territory for the robots to cover. The result is a lattice-like graph with all edge

weights equal to 0.6m. The 0.6m resolution was chosen so that our physical robots

would fit easily inside a cell.

Additional details of our implementation are as follows.

Robot hardware

Rear caster

ComputerRangefinder

Drive wheel

Figure 2.5: Erratic mobile robot with Hokuyo URG-04LX laser rangefinder.
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We use Erratic mobile robots from Videre Design, as shown in Fig. 2.5. The

vehicle platform has a roughly square footprint (40cm × 37cm), with two dif-

ferential drive wheels and a single rear caster. Each robot carries an onboard

computer with a 1.8Ghz Core 2 Duo processor, 1 GB of memory, and 802.11g

wireless communication. For navigation and localization, each robot is equipped

with a Hokuyo URG-04LX laser rangefinder. The rangefinder scans 683 points

over 240◦ at 10Hz with a range of 5.6 meters.

Experiment setup

Our mixed physical and virtual robot experiments are run from a central com-

puter which is attached to a wireless router so it can communicate with the phys-

ical robots. The central computer creates a simulated world using Stage which

mirrors and extends the real space in which the physical robots operate. The

central computer also simulates the virtual members of the robot team. These

virtual robots are modeled off of our hardware: they are differential drive with

the same geometry as the Erratic platform and use simulated Hokuyo URG-04LX

rangefinders.
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Localization

We use the amcl driver in Player which implements Adaptive Monte-Carlo

Localization [41]. The physical robots are provided with a map of our lab with

a 15cm resolution and told their starting pose within the map. We set an initial

pose standard deviation of 0.9m in position and 12◦ in orientation, and request

localization updates using 50 of the sensor’s range measurements for each change

of 2cm in position or 2◦ in orientation reported by the robot’s odometry system.

We then use the most likely pose estimate output by amcl as the location of the

robot. For simplicity and reduced computational demand, we allow the virtual

robots access to perfect localization information.

Motion Protocol

Each robot continuously executes the Random Destination & Wait Motion

Protocol, with navigation handled by the snd driver in Player which implements

Smooth Nearness Diagram navigation [42]. For snd we set the robot radius pa-

rameter to 22cm, obstacle avoidance distance to 0.7m, and maximum speeds to

0.4m
s

and 40
◦

s
. The snd driver is a local obstacle avoidance planner, so we feed it

a series of waypoints every couple meters along paths found in G(Q). We consider

a robot to have achieved its target location when it is within 20cm and it will then

wait for τ = 3.5s. For the physical robots the motion protocol and navigation
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processes run on board, while there are separate threads for each virtual robot on

the central computer.

Communication and Partitioning

As the robots move, a central process monitors their positions and simulates

the range-limited gossip communication model between both real and virtual

robots. We set rcomm = 2.5m and λcomm = 0.3 comm
s

. These parameters were

chosen so that the robots would be likely to communicate when seperated by at

most four edges, but would also sometimes not connect despite being close. When

this process determines two robots should communicate, it informs the robots who

then perform the Pairwise Partitioning Rule. Our pairwise communication imple-

mentation is blocking: if robot i is exchanging territory with j, then it informs

the match making process that it is unavailable until the exchange is complete.

2.4.3 Hardware-in-the-Loop Simulation

The results of our experiment with three physical robots and six simulated

robots are shown in Figs. 2.6 and 2.7. The first row in Fig. 2.6 shows the starting

positions of the team of robots, with the physical robots, labeled 1, 2, and 3,

lined up in a corner of the lab and the simulated robots arrayed around them.

The starting positions are used to generate the initial Voronoi partition of the
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Figure 2.6: Each row contains a territory map and the corresponding overhead
camera image for a step of the hardware-in-the-loop simulation. The position of
the camera in the environment is shown with a camera icon in the territory map.
The physical robots are numbered 1, 2, and 3 and have the orange, blue, and
lime green partitions. Their positions in each territory map are indicated with
numbered circles.
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environment. The physical robots own the orange, blue, and lime green territories

in the upper left quadrant of the environment. We chose this initial configuration

to have a high coverage cost, while ensuring that the physical robots will remain

in the lab as the partition evolves.

In the middle row, robots 1 and 2 have met along their shared border and are

exchanging territory. In the territory map, the solid red line indicates 1 and 2

are communicating and their updated territories are drawn with solid orange and

blue, respectively. The camera view confirms that the two robots have met on the

near side of the center island of desks.

The final partition in the last row in Fig. 2.6 is reached after 91
2

minutes. All

of the robots are positioned at the centroids of their final territories. The three

physical robots have gone from a cluster in one corner of the lab to a more even

spread around the space. Fig. 2.7 shows the evolution of the cost functionHexpected

as the experiment progresses, including the costs for each robot. As expected, the

total cost never increases and the disparity of costs for the individual robots

shrinks over time until settling at a pairwise-optimal partition.

In this experiment the hardware challenges of sensor noise, navigation, and

uncertainty in position were efficiently handled by the amcl and snd drivers. The

coverage algorithm assumed the role of a higher-level planner, taking in position

data from amcl and directing snd. By far the most computationally demanding
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Figure 2.7: Evolution of cost functions during the experiment in Fig. 2.6. The
total cost Hexpected is shown above in black, while Hone for each robot is shown
below in the robot’s color.

component was amcl, but the position hypotheses from amcl are actually un-

necessary: our coverage algorithm only requires knowledge of the vertex a robot

occupies. If a less intensive localization method is available, the algorithm could

run on robots with significantly lower compute power.

2.4.4 Comparative analysis

In this subsection we present a numerical comparison of the performance of

the Discretized Gossip Coverage Algorithm and the following two Lloyd-type al-

gorithms.
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Decentralized Lloyd Algorithm

This method is from [6] and [4] and was reviewed in Section 2.1.6, we repeat it

here for convenience. At each discrete time instant t ∈ Z≥0, each robot i performs

the following tasks: (1) i transmits its position and receives the positions of all

adjacent robots; (2) i computes its Voronoi region Pi based on the information

received; and (3) i moves to Cd(Pi).

Gossip Lloyd Algorithm

This method is from [16]. It is a gossip algorithm, and so we have used the

same communication model and the Random Destination & Wait Motion Protocol

to create meetings between robots. Say robots i and j meet at time t, then the

pairwise Lloyd partitioning rule works as follows: (1) robot i transmits Pi(t) to j

and vice versa; (2) both robots determine U = Pi(t)∪Pj(t); (3) robot i sets Pi(t
+)

to be its Voronoi region of U based on Cd(Pi(t)) and Cd(Pj(t)), and j does the

equivalent.

For both Lloyd algorithms we use the same tie breaking rule when creating

Voronoi regions as is present in the Pairwise Partitioning Rule: ties go to the

robot with the lowest index.

Our first numerical result uses a Monte Carlo probability estimation method

from [43] to place probabilistic bounds on the performance of the two gossip algo-
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Figure 2.8: Initial partition and histogram of final costs for a Monte Carlo test
comparing the Discretized Gossip Coverage Algorithm (black bars), Gossip Lloyd
Algorithm (gray bars), and Decentralized Lloyd Algorithm (red dashed line). For
the gossip algorithms, 116 simulations were performed with different sequences
of pairwise communications. The Decentralized Lloyd Algorithm is deterministic
given an initial condition so only one final cost is shown.

rithms. Recall that the Chernoff bound describes the minimum number of random

samples K required to reach a certain level of accuracy in a probability estimate

from independent Bernoulli tests. For an accuracy ε ∈ (0, 1) and confidence

1− η ∈ (0, 1), the number of samples is given by

K ≥ 1
2ε2

log 2
η
.

For η = 0.01 and ε = 0.1, at least 116 samples are required.

Figure 2.8 shows both the initial territory partition of the extended laboratory

environment used and also a histogram of the final results for the following Monte

Carlo test. The environment and robot motion models used are described in
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Section 2.4.2. Starting from the indicated initial condition, we ran 116 simulations

of both gossip algorithms. The randomness in the test comes from the sequence of

pairwise communications. These sequences were generated using: (1) the Random

Destination & Wait Motion Protocol with qi sampled uniformly from the open

boundary of Pi and τ = 3.5s; and (2) the range-limited gossip communication

model with rcomm = 2.5m and λcomm = 0.3 comm
s

.

The cost of the initial partition shown in Fig. 2.8 is 5.48m, while the best

known partition for this environment has a cost just under 2.18m. The histogram

in Fig. 2.8 shows the final equilibrium costs for 116 simulations of the Discretized

Gossip Coverage Algorithm (black) and the Gossip Lloyd Algorithm (gray). It

also shows the final cost using the Decentralized Lloyd Algorithm (red dashed

line), which is deterministic from a given initial condition. The histogram bins

have a width of 0.10m and start from 2.17m. For the Discretized Gossip Coverage

Algorithm, 105 out of 116 trials reach the bin containing the best known partition

with a mean final cost of 2.23m. The Gossip Lloyd Algorithm reaches the lowest

bin in only 5 of 116 trials and has a mean final cost of 2.51m. The Decentralized

Lloyd Algorithm settles at 2.48m. Our new gossip algorithm requires an average

of 96 pairwise communications to reach an equilibrium, while gossip Lloyd requires

126.

Based on these results, we can conclude with 99% confidence that there is at
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least an 80% probability that 9 robots executing the Discretized Gossip Coverage

Algorithm starting from the initial partition shown in Fig. 2.8 will reach a pairwise-

optimal partition which has a cost within 4% of the best known cost. We can

further conclude with 99% confidence that the Gossip Lloyd Algorithm will settle

more than 4% above the best known cost at least 86% of the time starting from

this initial condition.

Figure 2.9 compares final cost histograms for 10 different initial conditions for

the same environment and parameters as described above. Each initial condition

was created by selecting unique starting locations for the robots uniformly at

random and using these locations to generate an initial Voronoi partition. The

initial cost for each test is shown with the green dashed line. In 9 out of 10 tests

the Discretized Gossip Coverage Algorithm reaches the histogram bin with the

best known partition in at least 112 of 116 trials. The two Lloyd methods get

stuck in sub-optimal centroidal Voronoi partitions more than 4% away from the

best known partition in more than half the trials in 7 of 10 tests.

2.5 Summary

We have presented a novel distributed partitioning and coverage control al-

gorithm which requires only unreliable short-range communication between pairs

63



CHAPTER 2. COVERAGE WITH GOSSIP COMMUNICATION

Total cost (m)

S
im

u
la

ti
o
n
 c

o
u
n
t

Figure 2.9: Histograms of final costs from 10 Monte Carlo tests using random
initial conditions in the environment shown in Fig. 2.8 comparing Discretized
Gossip Coverage Algorithm (black bars), Gossip Lloyd Algorithm (gray bars), and
Decentralized Lloyd Algorithm (red dashed line). For the gossip algorithms, 116
simulations were performed with different sequences of pairwise communications.
The Decentralized Lloyd Algorithm is deterministic given an initial condition so
only one final cost is shown. The initial cost for each test is drawn with the green
dashed line.
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of robots and works in non-convex environments. The classic Lloyd approach to

coverage optimization involves iteration of separate centering and Voronoi par-

titioning steps. For gossip algorithms, however, this separation is unnecessary

computationally and we have shown that improved performance can be achieved

without it. Our new Discretized Gossip Coverage Algorithm provably converges

to a subset of the set of centroidal Voronoi partitions which we labeled pairwise-

optimal partitions. Through numerical comparisons we demonstrated that this

new subset of solutions avoids many of the local minima in which Lloyd-type

algorithms can get stuck.

Our vision is that this partitioning and coverage algorithm will form the foun-

dation of a distributed task servicing setup for teams of mobile robots. The robots

would split their time between servicing tasks in their territory and moving to con-

tact their neighbors and improve the coverage of the space. Our convergence re-

sults only require sporadic improvements to the cost function, affording flexibility

in robot behavior.
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Chapter 3

Coverage with One-to-Base

Communication

In the previous chapter we presented a solution to the coverage control prob-

lem assuming that the robots are able to communicate peer-to-peer, but in some

environments this is impractical. For example, underwater acoustic communica-

tion between ocean gliders is very low bandwidth and hilly or urban terrain can

block peer-to-peer radio communication. To address this issue, in this chapter

we present a coverage control algorithm for a team of robots who each have oc-

casional contact with a central base station (one-to-base-station communication).

This communication model can represent the surfacing of ocean gliders to commu-

nicate with a tower on the shore as illustrated in Fig. 3.1 [1], the use of a UAV as a
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data mule which periodically visits ground robots [44], or the cost-mindful use of

satellite or cellular communication. Our algorithm optimizes the response time of

the team to service requests in a non-convex environment represented by a graph,

with optimality defined by a relevant “multi-center” cost function for overlapping

territories. While the algorithm is given for one-to-base-station communication,

it also works if each robot can occasionally broadcast a message directly to the

rest of the team.

Figure 3.1: Illustration of four underwater gliders operating off the coast of South-
ern California and communicating with a central radio tower. Underwater robotic
systems of this type are already in use in the area, see the Southern California
Coastal Ocean Observing System (www.sccoos.org) or the projects run by the
USC Center for Integrated Networked Aquatic PlatformS [1].
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There are three main contributions of this work. First, we present the first

coverage control algorithm for an asynchronous one-to-base-station communica-

tion model. This communication model is realistic and relevant for a variety of

application domains, and the time delay between when different robots communi-

cate with the base station requires novel tools. Our algorithm evolves overlapping

coverings of graphs and being graph-based also enables it to work in complex

non-convex environments.

Second, we prove that our algorithm converges to a centroidal Voronoi partition

in finite time. Our Lyapunov argument is based on an adaptation of the standard

partition-based coverage cost function. Operating on overlapping coverings also

requires reconsidering when to perform the classic Lloyd steps of centering versus

territory exchange.

Third, we describe how our algorithm can seamlessly handle the unscheduled

arrival or departure of robots from the team. This feature leverages the fact that

our algorithm is using overlapping regions, and also would ease integration of

coverage control with some form of task servicing by the robot team.

This chapter is organized as follows. In Section 3.1 we adapt the strict par-

titioning setup from the previous chapter to overlapping coverings of graphs. In

Section 3.2 we present the one-to-base communication model, problem formula-

tion, and our proposed solution. Section 3.3 contains the proof that our algorithm
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converges to a centroidal Voronoi partition at equilibrium. In Section 3.4 we dis-

cuss practical issues and explain how our algorithm can adapt to dynamic changes

to the robot team and in Section 3.5 we provide some numerical results. We then

summarize this chapter in Section 3.6.

The work in this chapter was done in collaboration with R. Carli and P. Frasca.

3.1 Preliminary Material

There is significant overlap between the concepts for partitions of graphs in

Section 2.1 and what we need in this section. However, the one-to-base-station

communication model in this chapter requires overlapping coverings, instead of a

partition. Here we will detail only those features which differ from Section 2.1.

3.1.1 Coverings of Graphs

We will be covering Q with n subsets or regions which will each be owned by

an individual agent.

Definition 3.1.1 (n-Covering) Given the graph G(Q) = (Q,E,w), we define a

n−covering of Q as a collection P = {Pi}ni=1 of subsets of Q such that:

(i)
⋃n
i=1 Pi = Q;
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(ii) Pi 6= ∅ for all i ∈ {1, . . . , n};

Let Covn(Q) to be the set of n−coverings of Q.

Note that with this definition a vertex in Q may belong to multiple subsets in P ,

i.e., a vertex may be covered by multiple agents. This fact is an important change

from the gossip-based approach in Chapter 2 and our prior work [16, 45].

We also have use for the concept of a partition of Q, but in this case we do

not require that the partition be connected.

Definition 3.1.2 (n-Partition) A n-partition is a n-covering with the addi-

tional property that:

(iii) if i 6= j, then Pi ∩Pj = ∅.

Let PartN(Q) to be the set of n−partitions of Q.

Again we recall the useful definition of a Voronoi partition: Given a vector

of distinct points c ∈ Qn, the partition P ∈ PartN(Q) is said to be a Voronoi

partition of Q generated by c if, for each Pi and all k ∈ Pi, we have ci ∈ Pi and

dG(k, ci) ≤ dG(k, cj), ∀j 6= i. The elements of c are said to be the generators

of the Voronoi partition. Note that the Voronoi partition generated by c is not

unique since how to assign tied vertices is unspecified.
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3.1.2 Cost Functions

In this chapter we will have use for two cost functions, Hone from Section 2.1

and Hmax which is designed specifically for overlapping coverings. We define the

following multi-center function Hmax : QN ×Covn(Q)→ R≥0 to measure the cost

for n robots to cover a n-covering P from the vertex set c ∈ Qn:

Hmax(c, P ) =
1

|Q|
∑
k∈Q

max
i
{dG(ci, k) | k ∈ Pi}φ(k)

We aim to minimize the performance function Hmax with respect to both the

covering P and the vertices c. In the motivational scenario we are considering,

each robot will periodically be asked to perform a task somewhere in its region

with tasks located according to distribution φ. When idle, the robots would

position themselves at the vertices c. By minimizing Hmax, the robot team would

minimize the expected distance between a task and the furthest robot which can

service the task.

Proposition 3.1.3 (Properties of Hmax) Let P ∈ Covn(Q), P ′ ∈ PartN(Q),

and c ∈ Qn such that ci ∈ P ′i ⊂ Pi ∀ i. Let c′ ∈ Qn such that c′i ∈ C(P ′i ) ∀ i.
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Then the following statements hold:

Hmax(c, P ′) ≤ Hmax(c, P ), and

Hmax(c′, P ′) ≤ Hmax(c, P ′).

The second inequality is strict if any ci /∈ C(P ′i ).

Proof. The first statement is a straightforward consequence of the restriction

that P ′i ⊂ Pi and that Hmax uses the maximum cost over i. The second statement

is a result of the fact that, since P ′ is a partition, Hmax(c, P ′) = 1
|Q|
∑

iHone(ci;P
′
i ).

Notice that Proposition 3.1.3 is similar to Proposition 2.1.5 for Hmulticenter,

with the main change being that the second statement is only true for partitions

and not for coverings. This difference will drive certain changes in our coverage

algorithm in this chapter. Proposition 3.1.3 again motivates the definition of a

centroidal Voronoi partition, which we repeat here for convenience.

Definition 3.1.4 (Centroidal Voronoi Partition) P ∈ PartN(Q) is a cen-

troidal Voronoi partition of Q if there exists a c ∈ Qn such that P is a Voronoi

partition generated by c and ci ∈ C(Pi) ∀ i.
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For a given environment Q, a pair made of a centroidal Voronoi partition and

the corresponding vector of centroids is locally optimal in the following sense:

Hmax cannot be reduced by changing either P or c independently. Therefore, if

the team of robots position themselves at the centroids of a centroidal Voronoi

partition, then they (locally) optimize their coverage of Q as measured by Hmax.

3.2 Models, Problem Formulation, and Proposed

Solution

3.2.1 Robot Network Model with Asynchronous One-to-

Base-Station Communication

Our One-to-Base Coverage Algorithm is designed for a team of n robotic agents

and a central base station. Each agent i ∈ {1, . . . , n} is required to have the

following basic computation capabilities:

(C1) agent i must be able to identify itself to the base station; and

(C2) agent i must have a processor with the ability to store Si ⊂ G(Q) and a

center si ∈ Si.
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Each agent i ∈ {1, . . . , n} is assumed to communicate with the base station ac-

cording to the asynchronous one-to-base-station communication model described

as follows:

(C3) there exists a finite upper bound ∆ on the time between communications

between i and the base station. For simplicity, we assume no two agents

communicate with the base station at the same time.

The base station must have the following computation capabilities:

(C4) it must be able to store an arbitrary n-covering of Q, P = {Pi}ni=1 and a list

of centroids c ∈ Qn; and

(C5) it must have the ability to perform operations on subgraphs of G(Q).

3.2.2 Problem Statement

Assume that, for all t ∈ R≥0, each agent i ∈ {1, . . . , n} maintains in memory a

subset Si(t) of environment Q and a vertex si(t) ∈ Si(t). Our goal is to iteratively

update the covering S(t) = {Si(t)}ni=1 and the centers s(t) = {si(t)}ni=1 while

solving the optimization problem:

min
s∈Qn

min
S∈Covn(Q)

Hmax(s, S), (3.1)

74



CHAPTER 3. COVERAGE WITH ONE-TO-BASE COMMUNICATION

subject to the constraints imposed by the robot network model with asynchronous

one-to-base-station communication from Section 3.2.1.

3.2.3 The One-to-Base Coverage Algorithm

To solve the minimization problem (3.1), we introduce the following One-to-

Base Coverage Algorithm.

Algorithm 3.1: One-to-Base Coverage Algorithm

The base station maintains in memory an n-covering P = {Pi}ni=1 and a
vector of centers c = (ci)

n
i=1, while each robot i maintains in memory a set

Si and a vertex si. At t = 0, let P (0) ∈ Covn(Q), S(0) = P (0), and let all
ci(0)’s be distinct. Assume that at time t ∈ R>0, robot i communicates
with the base station. Let P+, c+, S+

i , and s+
i be the values after the

communication. Then the base station executes the following actions:

1: if Hone(Cd(Pi);Pi) < Hone(ci;Pi) and Cd(Pi) 6= cj for every j 6= i then
2: update c+

i := Cd(Pi)
3: else
4: c+

i := ci
5: tell agent i to set S+

i := Pi and s+
i := c+

i

6: for each agent j 6= i do
7: compute the sets

Pi→j :=
{
x ∈ Pi : dG(x, cj) < dG(x, c+

i )
}

P ∗j→i :=
{
x ∈ Pj ∩Pi : dG(x, cj) ≥ dG(x, c+

i )
}

8: P+
j :=

(
Pj \ P ∗j→i

) ∪ Pi→j
Observe that Pi→j contains the cells of Pi which are closer to cj, whereas P ∗j→i

contains only the cells in both Pi and Pj which are either closer to c+
i or tied. Also

notice that only the centroid of the agent communicating with the base station is

updated.
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Remark 3.2.1 The One-to-Base algorithm can be adapted to the scenario where

each robot can occasionally broadcast a message to the team. Robot i would up-

date its centroid and broadcast s+
i and Si, then every other robot j would update

Sj following lines 7 and 8 above. Those robots for which Si ∪ Sj is connected

must receive the broadcast for the convergence property to hold, the others are not

required.

3.2.4 Convergence Property

In this subsection we characterize the convergence of the One-to-Base Coverage

Algorithm.

Theorem 3.2.2 (Convergence Property) Consider a network consisting of n

robots endowed with computation capacities (C1), (C2) and communication capac-

ity (C3), and a base station with capacities (C4) and (C5). Assume the network

implements the One-to-Base Coverage Algorithm. Then the resulting evolution

(s, S) : R≥0 → Qn × Covn(Q)

converges in finite time to a pair (s∗, S∗) composed of a centroidal Voronoi parti-

tion S∗ generated by s∗.
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3.3 Convergence Proofs

This section is devoted to proving Theorem 3.2.2. The convergence proof

is based on applying Lemma 2.3.1 from Section 2.3.2 to the evolution given by

the One-to-Base Coverage Algorithm. In order to do that, we must describe the

algorithm using a set valued-map and find a Lyapunov function.

3.3.1 Set-valued Map

With the definitions of a set of centroids and of the One-to-Base Coverage

Algorithm, we have that the algorithm is well-posed in the following sense.

Proposition 3.3.1 (Well-posedness) Let P ∈ Covn(Q) and c ∈ Qn such that

ci ∈ Pi and ci 6= cj for all i and all j 6= i. Then, P+ and c+ produced by the

One-to-Base Coverage Algorithm meet the same criteria.

With this result, we can state the One-to-Base Coverage Algorithm as a set

valued map. For any i ∈ {1, . . . , N}, we define the map Ti : Qn × Covn(Q) →

Qn × Covn(Q) by

Ti(c, P ) =
{{c1, . . . , c

+
i , . . . , cN}, {P+

1 , . . . , Pi, . . . , P
+
N }
}
,
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where c+
i and P+ are defined per the algorithm when i is the communicating robot.

Then, we can define the set-valued map T : Qn × Covn(Q) ⇒ Qn × Covn(Q) by

T (c, P ) = {T1(c, P ), . . . , TN(c, P )} .

Thus, the dynamical system defined by the application of the algorithm is de-

scribed by {c+, P+} ∈ T (c, P ).

3.3.2 Lyapunov Function

For our Lyapunov argument we need the following definitions. Let M(P ) be

the set of vertices which are owned by multiple agents. LetHmin be a cost function

defined similarly to Hmax but sum minimum coverage costs over all agents:

Hmin(c, P ) =
1

|Q|
∑
k∈Q

min
i
{dG(ci, k) | k ∈ Pi}φ(k).

Proposition 3.3.2 (Lyapunov Function) Let P be a n-covering of Q and c be

a set of centroids for P . Let (c+, P+) ∈ T (c, P ). If c+ 6= c or P+ 6= P , then one

of these conditions holds:

(i) Hmax(c+, P+) < Hmax(c, P );

(ii) Hmax(c+, P+) = Hmax(c, P ) and Hmin(c+, P+) < Hmin(c, P ); or
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(iii) Hmax(c+, P+) = Hmax(c, P ), Hmin(c+, P+) = Hmin(c, P ), and |M(P+)| <

|M(P )|.

Proof. Consider the situation where there are just two agents i and j. Without

loss of generality, assume that agent i contacts the base station at time t.

We start with the case where c+
i = ci. First, consider when the change to P

includes the addition of cells in Pi→j to Pj. Such a change necessarily decreases

Hmin while Hmax is unchanged. Next, if the change to P occurs because of the

removal of cells in P ∗j→i from Pj, then Hmax does not increase, Hmin is unchanged,

and |M | necessarily decreases.

Next, we show that if c+
i 6= ci, then Hmax(c+, P+) < Hmax(c, P ). Then, define

Pmax as follows: given a P ∈ Covn(Q), let Pmax = {Pi,max}ni=1 be a partition of Q

such that for all i:

Pi,max =

v ∈ Pi
∣∣∣∣∣∣∣∣
v /∈ Pj ∀ j 6= i, or

i = min
{

argmaxj{dG(cj, v) | v ∈ Pj}
}
 .

Note that Pi,max is a function of Pi, Pj, ci, and cj.

With the Pmax definition, we can rewrite Hmax as:

Hmax(c, P ) =
1

|Q|
∑
i

Hone(ci, Pi,max)
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Using this new form, the initial cost to cover Q by i and j is given by (ignoring

1
|Q| for simplicity):

Hmax(c, P ) =Hone(ci, Pi,max) +Hone(cj, Pj,max \ Pi) +Hone(cj, Pj,max ∩ Pi).

During the update ci and Pj change, meaning that:

Hmax(c+, P+) =Hone(c
+
i , P

+
i,max) +Hone(cj, P

+
j,max \ Pi) +Hone(cj, P

+
j,max ∩ Pi).

The algorithm T ensures that if c+
i 6= ci, then:

Hone(c
+
i , Pi) < Hone(ci, Pi). (3.2)

However, it is possible that the relevant cost for i has increased, i.e., that

Hone(c
+
i , P

+
i,max) > Hone(ci, Pi,max).

We will show that any such increase is necessarily smaller in magnitude than the

decrease in the cost to cover for j.

Two observations: First, P+
j,max ∩ Pi = ∅ by how we choose P+

j , meaning that

Hone(cj, P
+
j,max ∩ Pi) is zero. Second, the set of vertices owned by j but not by i
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has not changed, meaning that Hone(cj, P
+
j,max \ Pi) = Hone(cj, Pj,max \ Pi). This

leaves us wanting to show that:

Hone(c
+
i , P

+
i,max) < Hone(ci, Pi,max) +Hone(cj, Pj,max ∩ Pi).

We can write set Pi as:

Pi = Pi,max ∪ (Pj,max ∩ Pi)

= P+
i,max ∪ (P+

j,max ∩ Pi) = P+
i,max.

Using these equivalences, we can rewrite (3.2) as:

Hone(c
+
i , P

+
i,max) < Hone(ci, Pi,max) +Hone(ci, Pj,max ∩ Pi).

Then, using the definition of Pj,max we conclude that:

Hone(c
+
i , P

+
i,max) < Hone(ci, Pi,max) +Hone(ci, Pj,max ∩ Pi)

< Hone(ci, Pi,max) +Hone(cj, Pj,max ∩ Pi).
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Nothing in this analysis is exclusive to the two agent scenario. Following the

same logic, it can be shown that:

Hone(c
+
i , P

+
i,max)−Hone(ci, Pi,max) <

∑
j 6=i

Hone(cj, Pj,max ∩ Pi),

meaning that any increase in the cost to cover for agent i from a centroid update

is more than offset by decreases to the cost to cover from the territory updates of

those agents who owned cells in Pi.

3.3.3 Characterization of Fixed Points

The following Proposition characterizes the fixed points for T (c, P ), defined1

as those pairs (c, P ) such that {(c, P )} = T (c, P ), or equivalently as those pairs

which are a fixed point of every map Ti.

Proposition 3.3.3 (Fixed Points) Let P ∈ Covn(Q) be c ∈ Qn be a fixed point

of T . Then, P is a centroidal Voronoi partition of Q generated by c. Moreover,

every centroidal Voronoi partition is a fixed point for T .

Proof. If P is not a partition, then P ∗j→i 6= ∅ for some i 6= j. If P is a partition

but not a Voronoi partition generated by c, then Pi→j 6= ∅ for some i 6= j. Finally,

1The standard definition of fixed point for a set-valued map (which we do not use) uses the
weaker condition (c, P ) ∈ T (c, P ).
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if P is a Voronoi partition generated by c but ci /∈ C(Pi) for any i, then ci will

change when i communicates with the base station.

Next, we show that every centroidal Voronoi partition is a fixed point. If

ci ∈ C(Pi) for all i, then c+
i = ci for all Ti. If P is a Voronoi partition generated

by c, then Pi→j = ∅, P ∗j→i = ∅, and thus P+ = P for all Ti.

3.3.4 Convergence of P (t)

The proof continues with the application of of Lemma 2.3.1 in Section 2.3.2 to

(c(t), P (t)). Since the algorithm T : Qn×Covn(Q) ⇒ Qn×Covn(Q) is well-posed,

we have that Qn×Covn(Q) is strongly positively invariant. This fact implies that

assumption (i) of Lemma 2.3.1 is satisfied.

We can form a Lyapunov function using Proposition 3.3.2 as follows. Since

Q is a finite set, there exists only a finite number of possible values for Hmax,

Hmin, and |M |. Let εx and εn be the magnitude of the smallest possible difference

between two values of Hmax and Hmin, respectively. Let αn and αM be larger than

twice the maximum possible values of Hmin and |M |, respectively. Consider the

following function U : Qn × Covn(Q)→ R≥0:

U(c, P ) = Hmax(c, P ) +
εx
αn
Hmin(c, P ) +

εx
αn

εn
αM
|M(P )|.
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With this scaling of Hmin and |M |, when Hmax decreases then U necessarily also

decreases, and similarly if Hmax is constant but Hmin decreases. Thus, invoking

Proposition 3.3.2, we conclude that if (c′, P ′) ∈ T (c, P ), then either U(c′, P ′) <

U(c, P ) or (c′, P ′) = (c, P ). Thus, U(c, P ) fulfills assumption (ii). Finally, the

communication model (C3) assures that assumption (iii) is met.

Hence, we are in the position to apply Lemma 2.3.1 and conclude the following

result.

Proposition 3.3.4 (Convergence of P (t)) The evolution of the One-to-Base

Coverage Algorithm (c(t), P (t)), generated by the map T , converges in finite time

to the intersection of the equilibria of the maps Ti, which is the set of pairs (c, P )

where P is a centroidal Voronoi partition generated by c. In particular, P (t)

converges in finite time to one centroidal Voronoi partition.

3.3.5 Convergence of Robot Covering

So far we have discussed the properties of the covering P held by the base

station. Here we extend these arguments to the covering S held by the robots.

First, we show that S is indeed a covering of Q.

Proposition 3.3.5 (Well-posedness of S) Let S be a n-covering of Q. Then,

S+ produced by the One-to-Base Coverage Algorithm is also a n-covering.
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Proof. Let s ∈ Q. If there exist times t1 < t2 such that q ∈ Si(t1) and q 6∈ Si(t2),

then there exists a t̃ ∈ [t1, t2) such that q 6∈ Pi(t̃+). By how the update of P (t)

is defined, this implies that some agent j 6= i with q ∈ Pj(t̃) communicates to

the base station at time t̃. But since Sj(t̃
+) = Pj(t̃), we have that q ∈ Sj(t̃

+).

Therefore, q must belong to some region of S(t) for all t.

We are now ready to conclude our convergence proof.

Proof. [Proof of Theorem 3.2.2]. The definition of the One-to-Base Coverage

Algorithm implies that if there exists τ ∈ N such that P (t) = P̄ ∈ Covn(Q) for

t ≥ τ , then S(t) = P̄ for t ≥ τ + ∆. As an immediate consequence of this fact,

the convergence properties of P (t), stated in Proposition 3.3.4, are inherited by

S(t).

3.4 Dynamic Changes to Team

One benefit of evolving overlapping coverings instead of strict partitions is the

simplicity of handling dynamic arrivals, departures, and even the disappearance

of robots. While departure or disappearance can increase Hmax, such an increase

is only a transient and the system will evolve towards a new centroidal Voronoi

partition.
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Arrival

When a new robot i communicates with the base station, it can be assigned

any initial Pi desired. Possibilities include adding all vertices within a set distance

of its initial position or assigning it just the single vertex which has the highest

coverage cost in Q.

Departure

A robot i might announce to the base station that it is departing, perhaps to

recharge its batteries or to perform some other task. In this situation, the base

station can simply add Pi to the territory of the next robot it talks to before

executing the normal steps of the algorithm.

Disappearance

The disappearance or failure of a robot i can be detected if it does not commu-

nicate with the base station for longer than ∆. If this occurs, then the departure

procedure above can be triggered. Should i reappear later, it can be handled as

a new arrival or given its old territory.

Remark 3.4.1 (Robustness to Changes to Team) The One-to-Base Cover-

age Algorithm with the additions above is robust to the arrival or departure of
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robots from the team and after such an event will converge to a centroidal Voronoi

partition in finite steps.

3.5 Numerical Results

To demonstrate the utility of the One-to-Base Coverage Algorithm, we imple-

mented it using the open-source Player/Stage robot control system [39] and the

Boost Graph Library (BGL) [40]. All results presented here were generated using

Player 2.1.1, Stage 2.1.1, and BGL 1.34.1.

One illustrative example is shown in Figure 3.2. The environment contains

three obstacles drawn in black and the four octagonal robots are tasked with

providing coverage of the free space around the obstacles. This free space is

modeled using an occupancy grid with a 0.6m resolution which was chosen so

that the robots could fit inside of a grid cell. The grid is converted into a graph

by making each free cell a vertex and connecting edges between cells which border

each other. To compute distances in this uniform edge weight graph we extended

the BGL breadth-first search routine with a distance recorder event visitor.

For this example we chose a random robot to communicate with the base

station at each iteration, while ensuring that no robot went more than 8 rounds

without being selected. In the intermediate state of covering P shown in the
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Figure 3.2: Simulation of four robots partitioning an environment with three
black obstacles. The free space of the environment is modeled using the indicated
occupancy grid where each cell is a vertex in the resulting graph. On the left,
each robot starts owning the entire environment and positioned at its initial unique
centroid. The middle frames show an intermediate state of the covering P and
the result of an update when the circled robot contacts the base station. The
boundary of each robot’s territory drawn in its color with centroids marked with
an X. The final partition is shown at right.
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second panel of Figure 3.2, the light blue robot on the top left and the dark blue

robot on the middle left both own some vertices also claimed by the circled orange

robot. The third panel shows the result after the orange robot communicates with

the base station: the orange robot’s centroid has been updated and both blue

robots have relinquished their claim to vertices closer to orange.

The final centroidal Voronoi partition in the fourth panel is reached after

25 iterations, with the evolution of Hmax over time shown in Figure 3.3. The

final coverage cost of 1.82m represents an improvement of 59% over the starting

cost. Since each robot initially covers the entire environment, this also represents

the improvement from using 4 robots instead of 1 to provide coverage in this

environment.
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Figure 3.3: Graph of the cost Hmax over time for the simulation in Fig.
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3.6 Summary

We have described the One-to-Base Coverage Algorithm which can drive ter-

ritory ownership among a team of robots in a non-convex environment to a cen-

troidal Voronoi partition in finite time given only occasional contact between each

robot and a central base station. Here we have focused on dividing territory, but

the algorithm can easily be combined with methods to provide a service over Q,

as in [17].

In practical use, between the times that a robot communicates with the base

station it could take sample measurements, pick up packages, or perform other

tasks. When a robot communicates to the base station, it could transmit any

information it has gathered about the environment and then receive its updated

territory and a list of tasks to perform. When idle, a robot would position itself at

the centroid of its territory. If tasks appear according to the distribution φ (which

could evolve over time), then by minimizing cost function Hmax the algorithm also

minimizes the the expected distance between a task and the furthest idle robot

which might be assigned the task.
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Distributed Environment

Clearing

This chapter deals with a distributed pursuit-evasion problem for a team of

robotic searchers in an unknown environment. The particular pursuit-evasion

problem we examine, also known as the clearing problem, involves designing control

and communication protocols such that the searchers sweep an environment and

detect any intruders which may be present. The clearing problem has received a

lot of attention in recent years because of its applications to safety and security.

In this chapter, we describe a distributed environment clearing algorithm based

on the concept of the frontier or boundary between cleared and contaminated

regions. Our algorithm can guarantee the detection of any intruders or, if there
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are insufficient searchers available, clear as much area as it can while ensuring no

cleared area is recontaminated.

There are three key contributions of this work. First, our frontier-based clear-

ing algorithm can guarantee detection of evaders in unknown, multiply-connected

planar environments which may be non-polygonal. We introduce the (d, φ)-

searcher model, a realistic model of current robot and sensor hardware with limited

range and limited field-of-view sensing, and prove that our algorithm will clear an

environment provided sufficient searchers are available.

Second, our clearing algorithm is distributed and efficient. We detail a novel

method for storing and updating the global frontier between cleared and con-

taminated areas based on local intersections of oriented arcs. This method uses

a small, constant amount of memory per robot and does not require a map or

global localization. We also propose a viewpoint planning method which locally

minimizes the number of robots required to rapidly expand the cleared area.

Third, we present both realistic simulations and hardware experiments to val-

idate our approach. We implemented the algorithm using the Multirobot Integra-

tion Platform and the Player/Stage robot simulation system. Our implementation

demonstrates that frontiers and sensor footprints can be handled in a discetized

fashion, that the algorithm is robust to sensor and motion noise, and that the local

optimizations in our algorithm lead to efficient clearing of complex environments.
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We also present Monte Carlo results for the clearing efficacy of our algorithm for

as a function of the number of robots.

In the literature, [27] is the only other work for multiple robots which can

guarantee detection of evaders without prior knowledge of the environment. Their

approach sweeps hallways using lines of robots where the robots at the ends per-

form wall following and give commands to those in the middle. There are a few

important differences from our work. For one, they build and store a topological

map whose memory footprint scales with the size of the environment, whereas our

approach requires only a constant amount of memory per robot. Partly because of

the global map, their approach sweeps only one hallway at a time and they admit

there are complications in dealing with topological holes. Our method expands in

parallel and handles holes seemlessly. Their dependence on wall following would

also prove challenging in cluttered environments or in large empty spaces which

our approach can handle. We also provide simulation and experimental validation

which are not included in their theoretically-oriented work.

Section 4.1 provides definitions and states the problem we are addressing. In

Section 4.2 we examine a centralized version of our algorithm to explain some

details. The decentralized clearing algorithm is presented and illustrated in Sec-

tion 4.3. In Section 4.4 we discuss theoretical properties of the algorithm and

in Section 4.5 we present experimental results. We conclude in Section 4.6 and
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mention some future directions.

The work in this chapter was done in collaboration with A. Franchi.

4.1 Searcher Model & Problem Formulation

We are given a team of n robotic searchers with limited sensing and communication

capabilities and finite memory. The searchers start clustered together in the free

space of an unknown but limited planar environment. Let Q be the free space

of the environment, which must be connected but can have holes and may be

non-polygonal. The searchers are tasked with detecting evaders which may be

arbitrarily small and can move arbitrarily fast, but continuously, through Q. The

trajectories and initial positions of the evaders are unknown.

4.1.1 Robot and Sensor Models

The robot model we use, the (d, φ)−searcher, is a differential or omnidirec-

tional drive mobile robot that can rotate in place and translate continuously at

bounded speed through Q. Our model gets its name from the attached distance

sensor which has a maximum range d > 0 and an angular field-of-view φ ∈ [π, 2π].

The sensor cannot penetrate obstacles but is capable of detecting any evaders

visible to it. We will also discuss d-searchers, which are a (d, φ)-searchers with
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φ = 2π.

Let S denote the footprint of the sensor when a robot is in a generic configu-

ration, as shown in Fig. 4.1. The footprint is a local obstacle free region and we

say that a point is guarded by a robot if it belongs to the footprint of the sensor

of that robot. The oriented boundary of the sensor footprint, ∂S of S, is a closed

S

∂S

∂S

∂Sd

φ

L

L

L

Figure 4.1: On the left, four obstacles surround a (d, φ)−searcher and lie within the
dashed circular sector representing the area perceivable by the searcher’s sensor
without occlusions. The right image shows the boundary ∂S of the sensor footprint
for this configuration, with dashed oriented arcs for the free boundary L and solid
arcs for the local obstacle boundary

arc partitioned into two sets: (1) the local obstacle boundary (all the points where

the sensor has perceived an obstacle), and (2) the free boundary, denoted by L,

which consists of all the remaining points. Notice that while S is always a simply

connected region, L is not, in general, a connected set. We refer to the connected

subsets of L as free arcs. The orientation of ∂S is defined in a counter-clockwise
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manner, such that a point moving along the boundary would have the internal

part of S on the left. The free arcs constituting L inherit the orientation of ∂S

and are an open subset of the topological manifold ∂S, with their endpoints on

obstacles. The local obstacle boundary arcs, on the other hand, are closed in ∂S.

The perception of a searcher’s sensor at a given pose is the tuple {S, ∂S,L},

i.e., a footprint S, the boundary ∂S, and the set of free boundary arcs L of ∂S.

4.1.2 Communication, Localization, and Memory

Our method for classifying ∂S requires that a pair of robots are guaranteed to

be able to communicate whenever their sensor footprints intersect. For example,

this condition would be satisfied if robots can communicate when the distance

between them is less than the sum of the radii of their sensor footprints.

One of the benefits of our approach is that it can work in the absence of global

localization. Instead, we will assume that two robots with intersecting sensor

footprints can compute their relative poses as a result of some mutual localization

procedure. Mutual localization could be achieved by the method described in [46],

or by scan matching [47]. Alternatively, the mutual visibility of the overlapping

portion of footprints could be used by projecting calibration dots or dispatching

an extra robot to serve as an intermediary. We further require that a robot is able

to localize itself with respect to a perception whenever it is inside the footprint,

96



CHAPTER 4. DISTRIBUTED ENVIRONMENT CLEARING

e.g., by a simple pairwise scan matching.

Each searcher must have an amount of memory which is strictly sufficient to

store two perceptions, plus some variables of negligible size used for the execution

of the algorithm. This constraint means that each step of the distributed clearing

algorithm must use only a limited and constant amount of memory per robot

regardless of the size of Q.

4.1.3 Inspected Region and Problem Statement

For notation and explanation, we have use for the union of the perceptions

taken by all robots from different poses in Q during algorithm execution, which

we refer to as the inspected region and denote by I. Since our algorithm does

not allow recontamination, I also represents the cleared area. Though I will be

connected, it may not be simply connected, meaning that ∂I is a set of closed

oriented curves. As with ∂S, ∂I is oriented and partitioned into two sets: (1)

the obstacle boundary, and (2) the frontier denoted by F . We wish to emphasize

that our algorithm does not compute or store I, which is incompatible with the

memory constraint, but instead uses only the oriented frontier F .

With these definitions we can now state the goal of our algorithm: control a

team of n (d, φ)-searchers so that they always guard all the points of the frontier

F while expanding the cleared region I as much as possible, subject to the limited
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sensing, communication, and memory constraints.

4.2 The Centralized Clearing Algorithm

For clarity, we have split the presentation of our clearing algorithm into two stages.

In this Section we pretend that a central controller is commanding the searchers

so that we can describe the fundamental algorithm steps and the data structures

involved. In Section 4.3 we detail the distributed implementation of the algorithm.

At any given time, the team of n searchers is divided into two classes, the

frontier-guards and the followers:

• Frontier-guard : Each frontier-guard is assigned a unique pose v = (x, y, θ) ∈

Q×[0, 2π[ called the guard’s viewpoint, which can move during the evolution

of the algorithm. The frontier-guard must quickly reach its viewpoint and

report a perception {S, ∂S,L}. To detect evaders, each frontier-guard must

also continuously monitor its sensor.

• Follower : Each follower is assigned to passively follow a frontier-guard, and

this assignment can change as the algorithm progresses.

As needed, the central process will switch frontier-guards to followers, and vice-

versa. The steps of the centralized clearing algorithm are as follows.
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Algorithm 4.1: Centralized Clearing Algorithm

Initialize one robot as frontier-guard, the rest as followers. The central
process performs these actions:

1: for each {Sk, ∂Sk,Lk} received do
2: Compute Fk from Fk−1 and {Sk, ∂Sk,Lk} as detailed in Sec. 4.2.1.
3: Compute the next set of viewpoints Vk+1 as detailed in Sec. 4.2.2.
4: Assign each v ∈ Vk+1 to a nearby searcher and set the searcher to be a

frontier-guard.
5: Assign remaining searchers a frontier-guard to follow.
6: Compute paths for all frontier-guards to reach their viewpoints while

maintaining coverage of Fk−1, and send the paths to the guards.

For the reader’s convenience we describe the algorithm in detail. At the be-

ginning, all n searchers are clustered around a point in Q. One robot is selected

as the initial frontier-guard and assigned its initial pose as a starting viewpoint.

All other robots are set as followers of this guard. The initial frontier-guard then

records the first perception {S1, ∂S1,L1}, which initializes the main data stored

during the evolution of the algorithm.

Whenever a frontier-guard arrives at its viewpoint and records a new percep-

tion, it sends the perception to a central processing unit. In this way the central

process receives a sequence of perceptions. For each perception received, a new

step k of the algorithm starts and the perception is classified as {Sk, ∂Sk,Lk} and

called the k-th perception (refer to Table 4.1 for a reminder of the meaning of the

symbols).

We denote the total inspected region at step k as Ik := ∪ki=1Si. Again, the
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Table 4.1: Main symbols used in the algorithm.

Symb. Description
Q Planar environment.
S(v) Sensor footprint from pose v.
Sk Sensor footprint of the k−th perception.
∂Sk Oriented boundary of Sk.
Lk Free (non-obstacle) boundary of ∂Sk.
Ik Inspected region at the k−th step := ∪ki=1Si.
Fk Oriented frontier arcs of Ik. Fk = FExt

k−1 ∪ LExt
k .

FExt
k−1 Fk−1\closure(Sk).
LExt
k Lk\interior(Ik−1).

Vk Set of viewpoints at the k−th step.

algorithm does not use or store Ik or the obstacle portion of ∂Ik; an important

innovation of this work is that it stores and updates only Fk, the oriented frontier

arcs of Ik. Since the obstacle boundary of the inspected region Ik is impossible for

either searchers or evaders to cross, there are only two ways an evader can enter

Ik: (1) by being inside of Sk\Ik−1 at the instant in which the k-th perception

is performed, or (2) by crossing Fk. In this first case detection of the evader is

immediate, the focus of our algorithm is thus on maintaining complete coverage

of Fk and updating it when a new perception is added.

The basic flow of the centralized clearing algorithm is as follows. After receiv-

ing a new perception the global frontier is updated (Step 2). Next the determi-

nation of a new set of viewpoints to cover and expand the frontier is performed

(Step 3). After that, searchers are assigned roles as guards or followers and dis-
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patched to their respective target positions (Step 4).

To guarantee the detection of any evaders in Q, the planning of new viewpoints

in step 2 must meet the frontier guarding property and the expansion property

laid out in the following Definition. We describe our method which achieves these

properties in Section 4.2.2.

Definition 4.2.1 (Viewpoint Planning Properties) Given a non-empty fron-

tier Fk and a set of prior viewpoints Vk, the viewpoint planner selects the smallest

set of viewpoints Vk+1 inside Ik which satisfy the following two properties:

(i) Frontier guarding: Ensure Fk is contained in the closure of ∪v∈Vk+1
S(v),

and

(ii) Expansion: Ensure Area(Ik+1) ≥ Area(Ik) + ε for some ε > 0 except for at

most finite steps.

Within these constraints, the viewpoint planner maximizes Area(Ik+1) assuming

that there will be no new obstacles discovered.

We can now state the main theoretical result of this chapter.

Theorem 4.2.2 (Detection of Evaders) Given an implementation of the cen-

tralized clearing algorithm with the viewpoint planning properties in Definition 4.2.1
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and a number of robots n ≥ max{|Vk| | for all steps k}, the entire environment Q

is cleared and every evader in Q is detected in finite time.

Proof. The expansion property in Defintion 4.2.1 ensures that there will be a time

step kf where Fkf = ∅, meaning that ∂Ikf consists entirely of obstacle arcs and Ikf

completely covers Q. Therefore, for every evader e in Q, there exists at least one

instant of time when e either (1) is inside of Ske\Ike−1 at time ke ∈ {1, . . . , kf},

or (2) crosses Fke−1 during the time interval [ke−1, ke] for ke ∈ {2, . . . , kf}. In the

first scenario, detection of the evader is immediate. We can conclude, by means

of the frontier guarding property, that the second scenario will also be detected.

In the rest of this Section we describe how to implement the frontier update

and how to plan viewpoints (Steps 2 and 3 of the centralized clearing algorithm,

respectively). The path-planning in Step 4.1 is also non-trivial, however we will

only discuss how to perform this in the context of the distributed version of the

clearing algorithm in Section 4.3.

4.2.1 Global Frontier without a Global Map

On the first iteration, frontier F1 is initialized as the free boundary of the first

perception, L1. For each step k > 1, the algorithm needs to compute the new
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frontier Fk, i.e., the non-obstacle boundary of the inspected region Ik = Ik−1∪Sk.

The set Fk can be partitioned into two subsets, (1) the set FExt
k−1 of arcs from Fk−1

which do not belong to the closure of Sk, and (2) the set LExt
k of arcs from Lk which

are not on the interior of Ik−1 = ∪k−1
i=1 Si. While the computation of FExt

k−1 from

Fk−1 and {Sk, ∂Sk,Lk} is immediate, in this section we describe a novel method

for computing LExt
k using only the oriented arcs of Fk−1 and {Sk, ∂Sk,Lk}.

In all previous work including [36], LExt
k has been computed using Sk and

Ik−1. The disadvantages of this prior procedure for updating the frontier are that

computing Ik−1 requires global localization and storing it requires an amount of

memory proportional to the area of environment Q, which is in contrast with the

problem statement in Sec. 4.1.3. It is also worth noting that at step k it is not

possible in general to compute LExt
k using only the most recent sensor footprints

from each frontier-guard, see the example in Fig. 4.2. The orientation of Fk−1 and

∂Sk is critically important for properly determining the frontier without Ik−1.

Our global frontier update method for computing LExt
k is based around the

intersections of the oriented arcs of Fk−1 and ∂Sk. Let L?k denote the set of points

belonging to the intersection between the arcs of Lk and the arcs of Fk−1, and L̄?k
the remaining points of Lk. The actions of the global frontier update method are

defined as follows.

The points of LExt
k can be either on the boundary of or exterior to Ik−1, the
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1

(a)

3
2

2

(b)

Figure 4.2: (a) After robots 1 and 2 have classified their frontiers, robot 1 moves
to a new position. Once robot 1 has moved and recorded a new perception, its
prior perception is no longer stored by the robot team. (b) When robot 3 arrives
and records {Sk, ∂Sk,Lk} (striped yellow), it cannot properly classify Lk based
only on the most recent perceptions of the other robots. Without all of Ik−1, robot
3 can only determine that the indicated section of Lk is not on the global frontier
using the intersections of ∂Sk and robot 2’s oriented frontier segments (dashed
red)

boundary points belong to L?k while the exterior ones belong to L̄?k. The following

crucial result states that an arc in Lk can only switch between the interior and

exterior of Ik−1 at an intersection point in L?k.

Lemma 4.2.3 (Neighborhood Classification) Let ` be an arc in Q which

does not intersect Fk−1. If any point of ` belongs to the exterior of Ik−1, then

all of ` belongs to the exterior. If any point of ` belongs to the interior of Ik−1,
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Algorithm 4.2: Global Frontier Update Method

1: Classify the neighborhood of each p ∈ L?k as internal or not
2: Classify the ends of each ` ∈ Lk
3: Propagate classification to rest of Lk
4: Set Fk = FExt

k−1 ∪ LExt
k

then all of ` belongs to the interior.

Proof. Since ` is in Q, it cannot cross the obstacle boundary of ∂Ik−1. Therefore,

if ` does not intersect Fk−1, then it does not cross ∂Ik−1.

The first step of the frontier update method is to classify the neighborhood

on ∂Sk of each intersection point p ∈ L?k as either internal to Ik−1 or not. An ex-

ample of this neighborhood classification is shown in Fig. 4.3. The neighborhood

classifications for all possible intersection cases are depicted in Fig. 4.4.

⇔
l

J

p
p

p

p

p p⇔
p

f

J

l′

Figure 4.3: Classification of the neighborhood J of p ∈ L?k where arcs ` ∈ Lk
and f ∈ Fk−1 intersect. At left, the partitions of J induced by ` and f are shown
separately. The white region on the right of the oriented arcs indicates the exterior
and the patterned region indicates the interior. The fusion of the two partitions
of J is shown at right. The bold part of `, denoted by `′, belongs to LExt

k because
it lies between a white and a patterned region. Note that in this case p ∈ `′

The second step of the method is to classify the ends of each arc ` ∈ Lk in the

neighborhood of the endpoints of the adjacent obstacle arcs. These neighborhoods
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Figure 4.4: The classification of the points of arc ` ∈ Lk in the neighborhood of
all possible types of intersections with arc f ∈ Fk−1. Arc ` is drawn solid, while
f is dashed. Each row shows a different intersection type, with columns for the
various reciprocal orientations of ` and f . The first row shows isolated crossings,
the second shows isolated tangents, the third shows joinings, and the fourth row
shows segments where ` and f overlap. The bold portions of ` belong to LExt

k

can be classified using the following Lemma.

Lemma 4.2.4 (Obstacle Arc Classification) Let o denote a local obstacle arc

of ∂Sk, let `L and `R ∈ L̄?k denote the ends of the free arc segments on the left

and right of o, respectively, in the neighborhood of the endpoints of o. Let Eo ⊂ o

be the set of endpoints of any frontier arcs of Fk−1 which either begin or end on

o, and which are, in the neighborhood of o, fully contained in the closure of Sk.

Then:

• If Eo = ∅, then either `L and `R are both internal to Ik−1 or neither are.
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• If Eo 6= ∅, then `L is internal to Ik−1 if the closest1 e ∈ Eo is the beginning

of a frontier arc, and not internal otherwise. The opposite holds for `R.

Proof. If Eo = ∅, as shown in the first two cases of Fig. 4.5, then there exists

a free arc connecting `L with `R which is contained in the interior of Sk and is

close enough to o to not intersect Fk−1. Therefore, we can apply Lemma 4.2.3.

If Eo 6= ∅, assume without loss of generality that it is a singleton, i.e., Eo = {e},

as shown in the third and fourth cases of Fig. 4.5. Then, there exists a free arc

connecting `L to the ‘nearest’ half of the neighborhood of e which is in the interior

of Sk and is close enough to o to not intersect Fk−1. Therefore, we can apply

Lemma 4.2.3. Similar claims hold for `R.

o

o

o

o

f

f
lRlL

lL

lL

lL

lR

lR

lR

Figure 4.5: Four classification cases are depicted for an obstacle arc o (dotted)
with two adjacent free arcs (solid). In the first two, no internal frontier arc has
an endpoint on o, so in the neighborhood of o the free arcs are classified as both
frontier (bold) or both internal (thin). In the second two cases, an internal frontier
arc f (dashed) has an endpoint on o which induces opposite classifications for the
two free arcs

1With respect to the distance on the arc o.
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The third and final step is to propagate the classification from the neighbor-

hoods to all points of the arcs of Lk. This propagation again exploits Lemma

4.2.3. Notice that, so long as the selection of viewpoints guarantees that either

L?k 6= ∅ or at least one local obstacle arc o has a non-empty Eo, this third step is

well defined.

Combined, these three steps determine which segments Lk are not in the in-

terior of Ik−1 and thus should be included in frontier Fk.

4.2.2 Viewpoint Planning

In this Section we describe how to pick a set of viewpoints Vk+1 which meet the

frontier guarding property and expansion property of Definition 4.2.1. With the

distributed application in mind, we simplify the planning of Vk+1 by construct-

ing it from Vk. Let vk be the viewpoint of the k-th perception. As detailed in

Section 4.2.1, Fk can be partitioned into two sets: FExt
k−1 (a subset of the prior

frontier), and LExt
k (a subset of ∂Sk). Let F Int

k−1 be the portion of Fk−1 which is

inside the closure of Sk.

To construct Vk+1, we need the following sets:

(i) The set of viewpoints V obs
k ⊂ Vk which are assigned to guard only obsolete

portions of the frontier in F Int
k−1, if any.
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(ii) A set of new viewpoints V ′ inside Sk to cover and expand the new frontier

segments LExt
k .

With these defined, we then set:

Vk+1 =
(
(Vk \ vk) \ V obs

k

) ∪ V ′.
The rest of this section is devoted to describing how to choose V ′ inside of Sk

when LExt
k 6= ∅.

We say that a free arc ` ∈ Lk is relevant for viewpoint planning if it contains a

frontier fragment from LExt
k . A relevant free arc may contain one or more frontier

fragments, and each frontier fragment is entirely contained in one relevant free

arc. Let LRel
k ⊆ Lk denote the set of relevant free arcs around vk.

Our local viewpoint planning method consists of partitioning the frontier frag-

ments of each `Rel ∈ LRel
k among the fewest possible new viewpoints. We first

detail how to perform the method for d-searchers, that is, robots with a sensor

with a field-of-view of 2π. Afterwards, we describe how to adapt the method for

(d, φ)-searchers. In both cases, the actions of the local viewpoint planning method

are as follows.

Remark 4.2.5 This viewpoint planner is for circular sector footprints of radius

d and field-of-view φ ≥ π. For more general footprints, our clearing algorithm
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Algorithm 4.3: Local Viewpoint Planning Method

Initialize V ′ = ∅. Then, for each `Rel ∈ LRel
k perform the following:

1: Determine p, the number of viewpoints needed to cover `Rel

2: Partition `Rel into p pieces
3: for i = 1 to p do
4: Select a pose v in Sk to cover the i-th partition of `Rel and as much new

area as possible
5: Add v to V ′

could also be applied provided a viewpoint planning method with the properties in

Definition 4.2.1 is available.

Each `Rel is comprised of straight radial segments and circular segments with

radius d. The possible configurations are: single radial; single curved; curved with

radial on one side; or curved with radial segments on both sides (see the examples

in Fig. 4.1 and Fig. 4.6). Let S(v) denote the sensor footprint for a robot at

viewpoint v. The following Lemma simplifies the determination of when a radial

segment is inside S(v) for φ = 2π.

Lemma 4.2.6 (Coverage of Radial Arcs) Let v′ be a potential new viewpoint

inside Sk for a d-searcher, and let r ∈ LRel
k be a radial free arc segment. Let p be

the far endpoint of r and v′p be the line segment between v′ and p. If dist (v′, p) < d

and v′p only intersects ∂S at p, then open set r is contained inside of S (v′).

Proof. Our proof centers around the triangle T formed by vk, v
′, and p. Radial

free arc segment r is a connected subset of vkp. Since Sk has maximum radius
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d, dist (v′, vk) < d. Combined with the fact that dist (v′, p) < d, we can conclude

that all of r is within d of v′. All that remains is to show that there are no

obstructing obstacles inside of triangle T .

We know that v′p is contained in the closure of Sk because it only intersects

∂S at p. Since Sk is star-shaped, both vkp and vkv′ are also contained in the

closure of Sk. Then, as Sk is simply connected, we can conclude that the interior

of T is in Q and, therefore, r is inside of S (v′).

There are two notable consequences of Lemma 4.2.6. First, for any `Rel with

only a radial segment, one viewpoint is sufficient. Second, for any `Rel which

contains both curved and radial segments, we only need to partition the curved

segment: the viewpoint which covers an endpoint of the curved segment will also

cover any attached radial segment.

To assist in selecting viewpoints to cover curved segments, we introduce pa-

rameter dmin ∈ (0, d], the minimum distance between vk and any v ∈ V ′. As will

become clear, dmin encodes a trade-off in the algorithm: smaller values of dmin can

reduce |V ′| and thereby reduce the number of searchers required; larger values of

dmin can increase the area exposed and thereby reduce the number of iterations

required to clear Q.

Let δ (`Rel) be the angular width of `Rel measured counter-clockwise from the
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right-most frontier point on `Rel to the left-most frontier point on `Rel. A single

viewpoint at least dmin from vk can then cover an angular width of at most α (dmin)

given by

α (dmin) = 2 arccos (dmin/2d) ∈ [2π
3
, π
)
.

The number of viewpoints η necessary to cover `Rel is then determined by the

following Lemma.

Lemma 4.2.7 (Number of Viewpoints Required) For any `Rel ∈ LRel
k , the

clearing algorithm requires η ∈ {1, 2, 3} viewpoints. Moreover:

− if δ (`Rel) ≤ 2π
3

, then η = 1,
− if 2π

3
< δ (`Rel) < π, then η = 1 or 2,

− if π ≤ δ (`Rel) < 2π, then η = 2 or 3, and
− if δ (`Rel) = 2π, then η = 3.

Proof. This result is a direct consequence of Lemma 4.2.6 and the fact that

α (dmin) ∈ [2π
3
, π
)
.

For η > 1, the angular width of `Rel is then partitioned such that the first

viewpoint covers [0, δ (`Rel) /η], and each subsequent viewpoint covers the next

equally sized slice of angular width. This partitioning of `Rel achieves step 2 of

the viewpoint planning method.

After partitioning `Rel, the final step is to place each new viewpoint v. This

placement must ensure that a perception from v covers the required portion of

`Rel and also uncovers as much area as possible beyond `Rel (assuming no new
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obstacles). For single radial segments, we place v at the midpoint of the segment

facing perpendicular to the segment out into the unknown territory beyond `Rel.

For all other configurations, we construct a line through vk which bisects the

curved arc in `Rel assigned to v. We then place v on this bisector at the point

in Sk which is closest to the intersection with `Rel and also ensures that both

endpoints of the curved arc in `Rel assigned to v will be inside S(v). Here pose v

is oriented radially outward from vk.

By construction, this method of selecting V ′ guarantees that LExt
k ∈ ∪v∈V ′S(v)

for searchers with φ = 2π, meaning that the frontier guarding property in Defini-

tion 4.2.1 is satisfied. For dmin close to zero, it creates the fewest new viewpoints

possible, while for dmin = d it exposes more area with minimal additional view-

points. The following Lemma shows that this viewpoint planner also guarantees

the expansion property.

Lemma 4.2.8 (Guaranteed Expansion) The set of new viewpoints V ′ pro-

duced by the Local Viewpoint Planning Method satisfies the expansion property

from Definition 4.2.1.

Proof. Consider a new viewpoint v ∈ V ′ inside of Sk and the associated footprint

S(v). What we will show is that, except for at most a finite number of steps, there

exists some new area A ∈ S(v) where Area (A) ≥ ε and Area (A ∩ Ik) = 0 for some
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small ε > 0.

Two properties allow us to determine values for epsilon. We have specified

that v will be at least dmin from vk. Let `v be the free arc segment assigned to

viewpoint v and let re be the smallest possible diameter of any evader the team

will be asked to detect. Then, we know that the length of `v is at least re or it

can be ignored. In the case where `v is either a radial or curved segment, then

a value for ε assuming that dmin and re are small is dminre. The case were `v is

mixed is more intricate, but a similar lower bound can be found.

Finally, the only circumstances in which Area (A) might be less than ε occur

when either there is a finite-sized obstacle or a finite-length portion of F which

reduces the size of A. These can only occur a finite number of times, so the

statement holds.

We have described a viewpoint planning method which meets the requirements

of Definition 4.2.1 for searchers with φ = 2π. For (d, φ)-searchers whose sensors

have a field-of-view in[π, 2π), the above method is optimal when `Rel contains

either only radial frontier fragments, or only curved frontier fragments. One option

for handling mixed fragments is to split them and handle the radial and curved

parts separately. However, this simple approach may create more viewpoints than

strictly required. We instead propose the following geometric method.

114



CHAPTER 4. DISTRIBUTED ENVIRONMENT CLEARING

Consider the case when `Rel consists of a radial segment on the right of a

curved segment. Let pr be the first frontier point in the radial part of `Rel, and let

pm be the intersection of the curved and radial segments. Next, loop over possible

pl’s, starting from pl = pm and moving along the curved segment, stopping at the

furthest pl for which the midpoint of prpl is within d of pm. Then, place v at the

midpoint of prpl, facing outward perpendicular to prpl. This placement ensures

that all frontier points between pr and pl are covered by a perception taken from

v for φ ≥ π, while maximizing the amount of `Rel covered. If any frontier on the

curved segment remains uncovered, it can be handled using the prior approach.

This method can be trivially modified if the radial segment is on the left, and can

also be applied on both sides for a curved segment with radial segments on both

sides.

4.3 The Distributed Clearing Algorithm

In the distributed setting, the communication graph is in general disconnected,

necessitating some changes from the centralized description. First, the global

frontier must be stored and updated in a distributed manner. Second, view-

point planning must be performed locally by the frontier-guards. Furthermore,

the distributed algorithm only has access to pairwise relative mutual localization
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between neighbors. Finally, while the centralized version is synchronous and se-

quential, the distributed setting is asynchronous and concurrent, i.e., it is possible

for perceptions from disconnected searchers to be recorded at the same time.

4.3.1 Distributed Handling of Global Frontier and View-

point Planning

We distribute the storing and updating of the global frontier by having each

frontier-guard store its local frontier segments and update them through commu-

nication with its neighboring frontier-guards. We denote the section of the global

frontier Fk owned by robot i by Fk,i. This distributed storage of the global fron-

tier can always be achieved since, by the frontier guarding property, each global

frontier point is guarded by a frontier-guard.

The pairwise frontier update method which follows is a distributed version of

the method in Sec. 4.2.1 for classifying the free boundary Lk.

This distributed frontier classification is always possible because the classifi-

cation of Lk requires only the frontier fragments from Fk−1 which intersect Sk. In

the distributed setting, each of these frontier fragments belong either to a neigh-

boring guard’s perception or to robot i’s previous perception. The localization

with respect to the first kind of fragments is guaranteed since by assumption two
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Algorithm 4.4: Pairwise Frontier Update Method

When robot i records a new perception, it updates Fk as follows:

1: Classify neighborhood of each intersection p between Lk and Fk−1,i as
internal or not, if any

2: for each robot j in communication with i do
3: Classify neighborhood of each intersection p between Lk and Fk−1,j as

internal or not
4: Inform j if any piece of Fk−1,j lies inside Sk
5: Classify the ends of each ` ∈ Lk
6: Propagate classification to rest of Lk
7: Store Fk,i

robots whose footprints intersect are in communication and are mutually local-

ized. The localization w.r.t. the second kind of fragments is also guaranteed by

assumption since robot i’s current viewpoint lies in the footprint of the previous

one.

Using the pairwise frontier update method, updates to the global frontier are

based only on current relative poses of nearby searchers, not on absolute poses.

The distributed clearing algorithm, therefore, is able to continue clearing an envi-

ronment even if the searchers cannot determine where they are relative to where

they started. Note that, because it operates in pairs, this frontier update method

requires only an amount of memory per robot proportional to that required to

store two perceptions.

Once Fk,i is determined, we can use the local viewpoint planning method

from Sec. 4.2.2. This method is already distributed as it requires only the local
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frontier of the frontier-guard doing the planning. The execution of the path to

new viewpoints can also be done without global localization, whether it’s being

executed by the guard itself or by a follower. Since the new viewpoint lies inside

the local perception, either local odometry of reasonable accuracy or a registration

of footprints taken along the path with Sk will suffice.

4.3.2 Distributed Algorithm & Robot Roles

The two classes of searchers from the centralized algorithm are each split in

two, yielding four possible states:

• Expand : When a searcher is assigned a new viewpoint to move to, it enters

the expand state until it reaches the viewpoint and records a perception.

• Frontier-guard : Each frontier-guard i remains stationary at its viewpoint

and has complete control over its local frontier segments, Fk,i. It must

communicate with neighboring frontier-guards to update Fk,i, plan a new

viewpoint to cover and expand Fk,i, and dispatch a follower to the new

viewpoint.

• Follow : Must passively follow and respond to commands from a frontier-

guard or expander.
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• Wander : When a frontier-guard no longer has a local frontier to guard, it

wanders until it locates a leader to follow.

Algorithm 4.5: Distributed Clearing Algorithm

To begin, one searcher is set to Expand to its starting pose and all others
start either Following the first or in the Wander state. All agent’s then
continuously execute the procedure corresponding to their state.

Procedure Expand

Data: frontier,path
foreach follower in followers do1

Send(follower,“follow”,path);2

Move(path);3

{S, ∂S,L} ← Perceive();4

neighFront ← UpdateNeighFrontier();5

frontier ← Frontier({S, ∂S,L},frontier,neighFront);6

DoBehavior(“Frontier-Guard”,S,frontier);7

Procedure Follow

Receive(Leader,message,path);1

switch message do2

case “follow”3

Move(path);4

case “expand”5

DoBehavior(“Expand”,∅,path);6

case “wander”7

DoBehavior(“Wander”);8
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Procedure Frontier-Guard
Data: S,frontier
if frontier is empty then1

Send(followers,“wander”);2

DoBehavior(“Wander”);3

(bestVP,NumVPs) ← ViewPointPlan(S,frontier);4

path ← PathToViewPoint(S,bestVP);5

if NumVPs == 1 then6

DoBehavior(“Expand”,frontier,path);7

else8

if followers has at least one follower then9

follower ← PopFollower(followers);10

Send(follower,“expand”,path);11

while follower is expanding do12

Sleep();13

else14

while no new neighbor and no followers do15

Sleep();16

DoBehavior(“Frontier-Guard”,S,frontier);17

Procedure Wander

SearchForLeader();1

if leader found then2

DoBehavior(“Follow”);3

if all searchers wandering then4

exit5

The distributed clearing algorithm consists of an initialization step, followed by

each searcher iteratively executing the procedure corresponding to its current

state. These procedures have subroutines for all important computations, and

detail when searchers transition between states. There are four key subroutines
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we would like to highlight:

• UpdateNeighFrontier/Frontier: These two functions perform the pair-

wise frontier update method in Section 4.3.1.

• ViewPointPlan: This function follows the local viewpoint planning method

in Section 4.2.2, and then picks the best new viewpoint to expand first.

• PathToViewPoint: Determines a safe path from the current viewpoint to the

new viewpoint inside S, which can be a straight line since S is star-shaped.

• SearchForLeader: This function does a random walk with two additional

behaviors: 1) when it encounters a frontier-guard, it switches to Follow; 2)

wanderers may join to form a wandering blob.

The following subsections describe our implementation of the algorithm, show

simulation and hardware experiment results, and expand on some technical details.

4.3.3 Illustrative Simulation

Figure 4.6 provides a detailed example of three robots implementing the dis-

tributed algorithm. The searchers are simulated Khepera III robots with laser

rangefinders with a range of 0.8 m and a field-of-view of 240◦. Perfect mutual

localization is provided for this simulation, while the Smooth Nearness Diagram
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Figure 4.6: Simulation of three (d, φ)-searchers clearing an environment. Recorded
perceptions are shown in a light blue, with frontiers shown with bold lines in the
color of the frontier guard who owns them. The trajectories of the robots are
shown in the final panel, with large squares for viewpoints

navigation driver in Player is used to navigate between viewpoints and avoid col-

lisions [42].

The first panel of Fig. 4.6 shows the initialization of the algorithm. The three

robots start within communication range of each other and with initial poses which

do not significantly interfere with each other’s sensors. The green robot begins as

a frontier-guard and records the first perception. The blue robot then clears the

area behind the green robot.

In the second panel, the orange robot has expanded one of the initial frontiers,

classified its boundary, and become a frontier-guard. As orange only needs one

new viewpoint to expand its single frontier arc, it will expand alone around the

top of the obstacle. Blue is then dispatched to clear the other initial frontier.

The next two images show the continued expansion of the cleared area. By
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the fourth panel, both orange and green have reached positions from which they

require assistance in order to expand. After the blue robot clears the inside of the

U-shaped obstacle, it enters the Wander state and searches for a leader.

The remaining images show the final stages of the algorithm, where orange and

blue clear one room while green clears the lower corridor. Green finishes before

the others, and enters the Wander state to try to find them. The final panel shows

recorded trajectories for the robots during clearing as well as all viewpoints.

4.4 Theoretical Analysis & Results

4.4.1 Frontier Guarding & Expansion Properties

The behavior of the frontier-guards in the distributed clearing algorithm guar-

antees both the frontier guarding property and the expansion property from Def-

inition 4.2.1. When expander i reaches its viewpoint and makes a perception, it

then enters the stationary frontier-guard state. So long as i remains a frontier-

guard, it maintains complete coverage of the frontier segments in Fk,i. Searcher i

will only leave the frontier-guard state if either Fk,i is erased by a new neighbor, or

if i determines that one new viewpoint is sufficient to cover Fk,i and that the path

to the viewpoint also maintains coverage of Fk,i. The local viewpoint planning

method guarantees that each new viewpoint will expand the cleared area.
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4.4.2 Algorithm Completeness

Two assumptions are required to extend Theorem 4.2.2 and claim that the

distributed clearing algorithm is guaranteed to detect every evader in Q. First,

there must be a sufficient number of searchers available to expand at least one

frontier segment at each step of the algorithm. Second, any searcher who enters

the Wander state must reach an active frontier in finite time. When these two

assumptions are satisfied, the searchers will never have to wait an infinitely long

time between the recording of perceptions. Therefore, we can conclude following

the proof of Theorem 4.2.2 and the frontier guarding and expansion properties

that the distributed clearing algorithm will clear all of Q and detect every evader

in Q.

4.4.3 Time and Memory Complexity

The computational requirements of the four main subroutines of the dis-

tributed clearing algorithm are as follows. An important innovation of this works

is the pairwise frontier merging method, which requires only O(2|∂S|) memory

and O(|∂S|2) time to find intersections and classify the local frontier (where ∂S is

the boundary of one sensor footprint). Our geometric viewpoint planning method

typically requires only constant time per viewpoint, but scales with |∂S| if φ < 2π
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and the relevant frontier arc consists of both curved and radial segments. Path

planning to new viewpoints is trivial as the straight line between viewpoints is

always in S. Reactive collision avoidance can then be handled by a local planner

like Smooth Nearness Diagram navigation. Finally, the search for leader subrou-

tine is also straightforward as it must simply pick a point on the free boundary of

the robot’s current sensor footprint to drive towards.

Therefore, we have the following result which satisfies the memory assumption

in Section 4.1.2.

Lemma 4.4.1 (Constant Memory per Robot) The distributed clearing algo-

rithm requires each searcher have an amount of memory proportional to that re-

quired to store two perceptions.

Notice that this statement is per robot : the frontier-guarding property ensures

that the team of searchers will divide the global frontier F into finite sized pieces.

4.4.4 Detecting Completion

When the environment has been cleared, all searchers will be in the Wander

state. If all-to-one communication is available (e.g., if all robots have even a

very low-bandwidth connection to a central command center), then detecting

task completion is trivial. In the most general case, the wandering searchers will
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have to reach a consensus that the task is complete by querying other searchers

when they encounter them. In the absence of global localization or other means

of assuring rendezvous, our proposal is that robots in the Wander state clump

together when they encounter each other to form wandering blobs. Eventually,

through the random walks of these growing blobs, all searchers will be joined into

a single blob and task completion can be easily detected.

4.4.5 Handling Agent Failure

The distributed clearing algorithm relies on maintaining complete coverage of

the global frontier at all times. The failure of any searcher in the frontier-guard

state, therefore, has the potential to recontaminate the cleared area and require

restarting the algorithm. However, the algorithm can be made quite robust to

random failures with a few minor modifications, at the cost of requiring a larger

robot team.

The two mission-critical robot behaviors are Frontier-guard and Expand. To

handle the potential failure of a frontier-guard, all followers of the guard could

hold duplicate copies of the guard’s perception and local frontier. The followers

would regularly communicate with the guard to check that it is functioning and,

if it fails, then one follower would take its place. If a high degree of robustness is

required for a particular application, the algorithm could be modified to ensure
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each guard always has one or more followers. The failure of a searcher in the

Expand state could be handled by one of its followers in a similar manner. In

addition, when a frontier-guard commands a searcher to expand to a particular

point, it can regularly check the expander’s progress and dispatch another agent

if necessary.

4.5 Experimental Results & Numerical Analysis

To demonstrate the utility of the proposed distributed clearing algorithm, we im-

plemented it using the open-source Multirobot Integration Platform (MIP) [48]

and the Player/Stage robot software system [39]. The clearing algorithm and

related modules were implemented using the MIP architecture, which provides a

multi-tasking estimation/control framework, a realistic simulation environment,

and allows direct porting for execution on real robots. Perceptions are imple-

mented as local coverage grids with 5 cm resolution2, with oriented frontier arcs

handled as ordered sequences of cells. Each robot stores only its most recent

perception and its local frontier.

2Such a discretization of local space is useful and common in practice, the resolution of the
local grid should be chosen based on the minimum detectable evader size.
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4.5.1 Hospital Wing Simulation

Figure 4.7 presents a larger simulation in a more complex environment modeled

after part of a wing of a hospital. The environment is 16m wide and 20m tall,

with a number of small patient rooms around a central desk, as well as a couple

storage closets and other rooms at the bottom of the map.

Six simulated d-searchers with d = 2.0 m begin in the largest room in the

bottom right corner. The first image shows the result of the first expansion, with

the blue robot having reached its viewpoint and erasing the first third of the initial

full circle frontier. The initial frontier-guard then dispatches another follower to

cover the second third, before expanding the final third itself.

By the middle image, the team has swept through all of the lower rooms. Five

of the searchers are engaged in covering and expanding the frontier, while the

purple robot remains behind. The purple robot was part of the group of four

which cleared the bottom left room, and all four of those searchers entered the

Wander state once that room was clear. While most of these searchers found their

way to an active frontier, the purple searcher is still wandering.

The final image shows the recorded trajectories of each agent, with viewpoints

indicated with larger squares. The bottom set of rooms, as well as the rooms in

the top right, show a dense set of tracks of searchers. The density in these rooms
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Figure 4.7: Three screenshots from a simulation of six d-searchers clearing a por-
tion of a hospital wing. The paths of the agents are shown at right, with all
viewpoints drawn with larger squares
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is a result of multiple searchers repeatedly executing the Wander behavior after

clearing these parts of the map. The clear lines in the top right and middle left

show the efficient, simple paths taken by searchers executing repeated expansions.

4.5.2 Hardware Experiments

The distributed clearing algorithm was experimentally validated using Khep-

era III robots. Each robot is equipped with a wi-fi card and a Hukuyo URG-04LX

laser sensor. The latter has a field-of-view of 240◦ and a range artificially limited

to 0.8 m. Simple odometry is used to provide mutual localization and Smooth

Nearness Diagram navigation is used to avoid obstacles. Each robot is controlled

by a separate process and they communicate with each other using a wireless

network.

Figure 4.8: Four phases of an experiment with three Khepera III robots with
Hukuyo URG-04LX laser sensors. One of the robots simulates a motor fault (b,f)
which forces the others to complete the task by themselves (d,h)
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A complete experiment is summarized in Fig. 4.8, where each column contains

a camera image and the relative perceptions for a distinct phase of the algorithm.

In the first two panels (a,e) one robot acts as frontier-guard while the others are

followers. By the second phase (b,f), the first dead-end corridor has been cleared

and two frontier-guards are set to sweep the next two corridors. In the third

phase (c,g) one robot simulates a motor fault, which forces the two other robots

to complete the task by themselves. In the end (d,h), the environment is fully

cleared and the trajectories for each robot are shown, with larger boxes indicating

viewpoints.

4.5.3 Area Cleared in Empty Space

In this section we use Monte Carlo simulations to study how the area cleared

in an obstacle-free environment changes with the number of robots available. The

simulated searchers expand from their starting position and clear as much area as

they can before reaching a final equilibrium where the team would need additional

searchers to continue. The theoretical limit on the area cleared in the absense of

obstacles by n d-searchers occurs when the searchers are at the vertices of a n-

sided regular polygon with sides of length 2d. The cleared area in this limit is the

area of the regular polygon plus the area of the sensor footprint of each searcher
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beyond the polygon. For n searchers, this area is given by nd2

tan(πn)
+ (n+2)πd2

2
. We

set d = 1.0 m, meaning the limit on the area 12 searchers can clear is 66.8 m.

We conducted 100 simulations for 3 through 12 robots. In each trial, we

chose a random agent as the initial frontier-guard, which produced differences in

subsequent robot roles and timing of establishment of perceptions. The robots

are only asked to get within 2 cm and 2◦ of a particular viewpoint, which leads to

variability in the resulting perceptions and frontiers. When the first guard records

the initial perception, it will has a frontier arc with angular width 2π. We divide

followers evenly such that a third of the available robots will end up at each of

the three viewpoints needed to expand the initial frontier.

The results of our simulations are shown in Fig. 4.9. With three searchers the

Distributed Clearing Algorithm consistently cleared 95.2% of maximum possible

area. This efficiency dipped to 85.2% with six searchers, then increased to 96.8%

and 90.6% on average with with 9 and 12 searchers, respectively. A video of

an example trial which cleared 96.2% of the optimal area is available as Online

Resource 4. The variability in the area cleared with six or fewer searchers is

minimal because the sequence of expansions is independent of the relative timing

of when robots record their perceptions. With six searchers, two go to each of

the three viewpoints needed to expand the initial circular frontier. Each of these

pairs will then split the next two viewpoints needed to expand their local frontier,
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Figure 4.9: Comparison of average, maximum, and minimum area cleared in 100
simulations for different numbers of robots to the theoretical limit.

and the team will then reach an equilibrium. With eight searchers, the number

of expansions increases from 9 to 17 or 18 and these later expansions influence

each other by sometimes clearing a significant portion of a neighboring guard’s

frontier.

These numerical results demonstrate that expansion sequence generated by

the Local Viewpoint Planning Method can produce efficient global results without

global information even for large numbers of searchers.
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4.6 Summary

We have presented a distributed pursuit-evasion algorithm for a team of mo-

bile robots with limited sensing and communication capabilities, limited on-board

memory, and access to only local mutual localization. Our algorithm can guaran-

tee detection of moving evaders in an unknown, non-polygonal environment with

holes, provided the team consists of a sufficient number of robots. A key contribu-

tion of this algorithm is a novel method for updating the global frontier between

cleared and contaminated regions using only local information. We also validated

the algorithm through both simulations and hardware experiments, and discussed

some theoretical and numerical results on the algorithm’s performance.
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Conclusions

In coordination algorithms for teams of mobile robots, interesting and chal-

lenging questions arise in determining how to synthesize information and choose

actions given that the robots will be distributed around a space. The work on

territory partitioning and coverage in this thesis demonstrated that the kind of

communication available to the robotic team changes how a coordination algo-

rithm can be designed. For pairwise gossip communication we showed that limited

communication is not always a curse. In fact, our Discretized Gossip Coverage

Algorithm can achieve better final territory partitions by performing a more ex-

haustive search for optimal pairwise configurations at each iteration. For the

one-to-base communication model we explored how time delays in the propaga-

tion of information through a robotic network can introduce a need for a different
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kind of distributed decision making.

In Chapter 4 we tackled a different challenge in looking at how to sweep

through and clear an unknown, multiply-connected planar environment. Our

distributed algorithm in this case leveraged the physical locations of key guard

robots posted along the frontier between cleared and contaminated areas. These

guards served as both local coordinators for updating and expanding the frontier

and also as localization beacons for nearby robots. In this way we managed to

clear environments of evaders using only short-range communication and local

mutual localization.

5.1 Summary

We began in Chapter 2 with a partitioning and coverage control algorithm

for a team of robots with only range-limited gossip communication available.

Here we detailed our approach to handling complex non-convex environments

by considering a discrete set of points connected by edges to form a graph. Our

pairwise approach to territory partitioning allowed us to use iterative optimal

two-partitioning instead of the more common Lloyd algorithm. As we showed,

this change in tactics resulted in a notable improvement in final costs in complex

environments. We also presented a motion protocol which ensures that the robots
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meet their neighbors frequently enough.

Chapter 3 presented a second algorithm for partitioning and coverage con-

trol for a different communication model: one-to-base station communication.

To handle the time delays between contact from different robots to the central

base we had to adapt partition-based approaches to instead evolve overlapping

regions. The result was a variant of the Lloyd algorithm which split the normal

centering and partitioning steps such that the communicating robot’s centroid was

updated while the territories of the other robots were adjusted. We showed that

this approach produces convergence to a member of the set of centroidal Voronoi

partitions in finite time.

Chapter 4 looked at a visibility-based pursuit-evasion problem in which a team

of mobile robots with limited sensing and communication capabilities must coor-

dinate to detect any evaders in an unknown, multiply-connected planar environ-

ment. Our distributed algorithm in this case defined four behaviors that individual

agents would switch between as local conditions dictated. One important contri-

bution was a method for distributing the storage and maintenance of the global

frontier between cleared and contaminated areas among a series of local guards

positioned along the frontier. We also presented experimental and numerical re-

sults demonstrating how the algorithm works and the number of agents required

to clear certain kinds of environments.
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5.2 Extensions & Future Directions

Coverage with Gossip Communication The Pairwise Partitioning Rule we

proposed can be adapted to work for any separable cost function provided that

there is some computationally simple way to search the space of options. One

immediate possibility would be equitable partitioning. In the bigger picture, the

improvement in final partition cost achieved by our gossip algorithm demonstrates

the potential of gossip communication in distributed coordination algorithms.

There appear to be many other problems where this realistic and minimal com-

munication model could be fruitfully applied.

Coverage with One-to-Base Station Communication We have focused on

the standard coverage control cost function with the one-to-base station commu-

nication model, but there are other cost functions which could be studied. In

addition, some kind of randomization in the centroid update rule might allow the

system to break out of high cost local minima.

Distributed Environment Clearing One useful extension for our approach to

clearing would be to guarantee a connected communication graph for the searchers

at all times, perhaps including a connection back to the initial starting point. On

the theoretical side, the development of bounds on the number of d−searchers
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required to clear a general environment would be a significant contribution but

also appears to be very difficult to determine. Finally, the frontier concept could

also be applied to three-dimensional environments.

139



Bibliography

[1] A. Pereira, H. Heidarsson, C. Oberg, D. Caron, B. Jones, and G. Sukhatme,
“A communication framework for cost-effective operation of AUVs in coastal
regions,” in Field and Service Robotics (A. Howard, K. Iagnemma, and
A. Kelly, eds.), vol. 62 of Tracts in Advanced Robotics, pp. 433–442, Springer,
2010.

[2] R. Smith, J. Das, H. Heidarsson, A. Pereira, F. Arrichiello, I. Cetnic,
L. Darjany, M.-E. Garneau, M. Howard, C. Oberg, M. Ragan, E. Seubert,
E. Smith, B. Stauffer, A. Schnetzer, G. Toro-Farmer, D. Caron, B. Jones, and
G. Sukhatme, “USC CINAPS builds bridges,” IEEE Robotics & Automation
Magazine, vol. 17, no. 1, pp. 20 –30, 2010.

[3] P. R. Wurman, R. D’Andrea, and M. Mountz, “Coordinating hundreds of
cooperative, autonomous vehicles in warehouses,” AI Magazine, vol. 29, no. 1,
pp. 9–20, 2008.

[4] F. Bullo, J. Cortés, and S. Mart́ınez, Distributed Control of Robotic Networks.
Applied Mathematics Series, Princeton University Press, 2009. Available at
http://www.coordinationbook.info.

[5] S. P. Lloyd, “Least squares quantization in PCM,” IEEE Transactions on
Information Theory, vol. 28, no. 2, pp. 129–137, 1982. Presented as Bell
Laboratory Technical Memorandum at a 1957 Institute for Mathematical
Statistics meeting.

[6] J. Cortés, S. Mart́ınez, T. Karatas, and F. Bullo, “Coverage control for mobile
sensing networks,” IEEE Transactions on Robotics and Automation, vol. 20,
no. 2, pp. 243–255, 2004.

[7] M. Zhong and C. G. Cassandras, “Distributed coverage control in sensor
network environments with polygonal obstacles,” in IFAC World Congress,
(Seoul, Korea), pp. 4162–4167, July 2008.

140



BIBLIOGRAPHY

[8] L. C. A. Pimenta, V. Kumar, R. C. Mesquita, and G. A. S. Pereira, “Sens-
ing and coverage for a network of heterogeneous robots,” in IEEE Conf. on
Decision and Control, (Cancún, México), pp. 3947–3952, Dec. 2008.
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[35] A. Howard, M. J. Matarić, and G. S. Sukhatme, “An incremental self-
deployment algorithm for mobile sensor networks,” Autonomous Robots,
vol. 13, no. 2, pp. 113–126, 2002.

[36] A. Franchi, L. Freda, G. Oriolo, and M. Vendittelli, “The sensor-based ran-
dom graph method for cooperative robot exploration,” IEEE/ASME Trans.
on Mechatronics, vol. 14, no. 2, pp. 163–175, 2009.

[37] H. Minc, Nonnegative Matrices. Wiley, 1988.

[38] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf, Computa-
tional Geometry: Algorithms and Applications. Springer, 2 ed., 2000.

[39] B. Gerkey, R. T. Vaughan, and A. Howard, “The Player/Stage Project: Tools
for multi-robot and distributed sensor systems,” in Int. Conference on Ad-
vanced Robotics, (Coimbra, Portugal), pp. 317–323, June 2003.

[40] J. G. Siek, L.-Q. Lee, and A. Lumsdaine, “Boost Graph Library.”
http://www.boost.org, July 2007. Version 1.34.1.

[41] S. Thrun, D. Fox, W. Burgard, and F. Dellaert, “Robust Monte Carlo local-
ization for mobile robots,” Artificial Intelligence, vol. 128, no. 1-2, pp. 99–141,
2001.

143



BIBLIOGRAPHY

[42] J. W. Durham and F. Bullo, “Smooth nearness-diagram navigation,” in
IEEE/RSJ Int. Conf. on Intelligent Robots & Systems, (Nice, France),
pp. 690–695, Sept. 2008.

[43] R. Tempo, G. Calafiore, and F. Dabbene, Randomized Algorithms for Anal-
ysis and Control of Uncertain Systems. Springer, 2005.

[44] R. C. Shah, S. Roy, S. Jain, and W. Brunette, “Data MULEs: modeling
and analysis of a three-tier architecture for sparse sensor networks,” Ad Hoc
Networks, vol. 1, no. 2-3, pp. 215–233, 2003.

[45] J. W. Durham, R. Carli, and F. Bullo, “Pairwise optimal coverage control
for robotic networks in discretized environments,” in IEEE Conf. on Decision
and Control, (Atlanta, GA, USA), pp. 7286–7291, Dec. 2010.

[46] A. Franchi, G. Oriolo, and P. Stegagno, “Mutual localization in a multi-robot
system with anonymous relative position measures,” in 2009 IEEE/RSJ Int.
Conf. on Intelligent Robots & Systems, (St. Louis, MO), pp. 3974–3980, Oct.
2009.

[47] A. Censi, “An ICP variant using a point-to-line metric,” in 2008 IEEE Int.
Conf. on Robotics and Automation, (Pasadena, CA), pp. 19–25, May 2008.

[48] A. Franchi and P. Stegagno, “Multirobot Integrated Platform.” http://

www.dis.uniroma1.it/∼labrob/software/MIP/, Aug. 2009.

144


	Contents
	List of Figures
	Introduction
	Literature Synopsis
	Partitioning and Coverage Control
	Pursuit-evasion and Search

	Contributions of the Thesis

	Coverage with Gossip Communication
	Preliminary Material
	Non-convex Environment as a Graph
	Partitions of Graphs
	Adjacency of Partitions
	Cost Functions
	Optimal Partitions
	Review of Lloyd Optimization for Coverage & its Drawbacks

	Models, Problem Formulation, and Proposed Solution
	Robot Network Model with Gossip Communication
	Problem Statement
	The Discretized Gossip Coverage Algorithm
	Illustrative Simulation
	Convergence Property
	Complexity Properties and Discussion

	Convergence Proofs
	Well-posedness
	Invariance Principle
	Algorithm as Set-valued Map
	Persistence of Communication
	Lyapunov Function
	Proof of Main Convergence Result

	Experimental Methods & Results
	Large-scale Simulation
	Implementation Details
	Hardware-in-the-Loop Simulation
	Comparative analysis

	Summary

	Coverage with One-to-Base Communication
	Preliminary Material
	Coverings of Graphs
	Cost Functions

	Models, Problem Formulation, and Proposed Solution
	Robot Network Model with Asynchronous One-to-Base-Station Communication
	Problem Statement
	The One-to-Base Coverage Algorithm
	Convergence Property

	Convergence Proofs
	Set-valued Map
	Lyapunov Function
	Characterization of Fixed Points
	Convergence of P(t)
	Convergence of Robot Covering

	Dynamic Changes to Team
	Numerical Results
	Summary

	Distributed Environment Clearing
	Searcher Model & Problem Formulation
	Robot and Sensor Models
	Communication, Localization, and Memory
	Inspected Region and Problem Statement

	The Centralized Clearing Algorithm
	Global Frontier without a Global Map
	Viewpoint Planning

	The Distributed Clearing Algorithm
	Distributed Handling of Global Frontier and Viewpoint Planning
	Distributed Algorithm & Robot Roles
	Illustrative Simulation

	Theoretical Analysis & Results
	Frontier Guarding & Expansion Properties
	Algorithm Completeness
	Time and Memory Complexity
	Detecting Completion
	Handling Agent Failure

	Experimental Results & Numerical Analysis
	Hospital Wing Simulation
	Hardware Experiments
	Area Cleared in Empty Space

	Summary

	Conclusions
	Summary
	Extensions & Future Directions

	Bibliography

