
University of California
Santa Barbara

Coordination Strategies for Human Supervisory

Control of Robotic Teams

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy

in

Mechanical Engineering

by

Jeffrey Russell Peters

Committee in charge:

Professor Francesco Bullo, Chair
Professor Brad E. Paden
Professor Jeff Moehlis
Professor Yasamin Mostofi

June 2017

The Dissertation of Jeffrey Russell Peters is approved.

Professor Brad E. Paden

Professor Jeff Moehlis

Professor Yasamin Mostofi

Professor Francesco Bullo, Committee Chair

June 2017

Coordination Strategies for Human Supervisory Control of Robotic Teams

Copyright c© 2017

by

Jeffrey Russell Peters

iii

To everyone who has given me words of encouragement.

iv

Acknowledgements

A special thank you goes to my advisor, Francesco Bullo, for the crucial role that he has

played in my professional development. Dr. Bullo has been nothing but supportive of

me, encouraging me to pursue my ideas and to get involved with various endeavors that

have made me into the scientist that I am today. He has shown incredible patience and

persistence in helping me to gain the confidence that has allowed me to reach my goals. I

will always be grateful to him for his efforts and I am sure the lessons that he has taught

me will serve me well throughout my career.

In addition to Dr. Bullo, I have been extremely fortunate to have collaborated with

a number of great scientists over the years, and I am thankful to each of them for the

roles that they have played in my career. In particular, I would like to express my

deepest gratitude to Amit Surana from United Technologies Research Center (UTRC). I

was lucky enough to work with Dr. Surana on the collaborative project that comprised

the bulk of my Ph.D work, and his mentorship has been crucial to the project’s success

and my own scientific maturation. A special thanks also goes to Luca Bertuccelli for

his help during my internships at UTRC, and for all of the professional advice that he

has given me. Also deserving of my gratitude are all of the fantastic people at UTRC,

including (but not limited to) Michael Giering, Tong Sun, Bob Labarre, Isaac Cohen,

Andrej Banazjuk, Paul O’Neil, Billy Sisson, Alex Shilov, and Alex Dorgan.

I also extend my thanks to the rest of my collaborators from the ICB SCORCH

project that have not yet been acknowledged, namely (i) Grant Taylor and Terry Turpin

from the US Army Aviation Development Directorate, (ii) Miguel Eckstein and Arturo

Deza from the UCSB psychology department, and (iii) all of the people at ICB that made

the project a reality.

Next, I would like to thank Fabio Pasqualleti, Vhaibhav Srivastava, John Simpson,

v

Rush Patel, David Copp, Tie Bo Wu, and Dan Wilson who all helped me to establish

myself as a graduate student and who continued collaboration with me in various forms

throughout the years. Thank you also to Mishel George, Pushkharini Agharkar, Wenjun

Mei, and all of the other present and past students from my lab group, for the many

stimulating discussions, both inside and outside of the lab, that have made my stay at

UCSB truly enjoyable. Further, I would like to say thank you to my PhD committee

members, Jeff Moehlis, Brad Paden, and Yasamin Mostofi, for their efforts and encour-

agement, as well as their help with the PhD process. A thank you also goes out to Sean

Wang, and all of the other students that I have mentored and taught. I have learned as

much from them as they have learned from me, and it has been a pleasure to witness

their continued successes.

Lastly, I would like to thank all of my friends and family for their support. Most

notably, the biggest thank you of them all goes to my wife Denisse, who has supported

me through all of the ups and downs that life has brought.

vi

Curriculum Vitæ
Jeffrey Russell Peters

Education

2017 Ph.D. Mechanical Engineering
University of California
Santa Barbara, CA, USA.

2015 M.A. Applied Mathematics
University of California
Santa Barbara, CA, USA

2013 M.S. Mechanical Engineering
University of California
Santa Barbara, CA, USA

2011 B.S. Mechanical Engineering
University of Illinois
Urbana - Champaign, Illinois, USA

Research Experience

2011 - 2017 Graduate Student Researcher
University of California, Santa Barbara
Investigated problems related to human supervisory control and
multi-agent coordination, including (i) routing and load-balancing
strategies for multi-agent surveillance missions, (ii) human behav-
ioral modeling and decision support development using physiolog-
ical sensing, (iii) robust scheduling strategies for sequential task-
analysis, (iv) joint routing/scheduling for supervisory missions, (v)
sensor network localization under cyclic constraints, and (vi) opti-
mal coordination of active cameras for smart intruder detection.

Summer 2014/15 Systems Department Intern
United Technologies Research Center
Performed simulated and experimental studies in order to model
human operator behavior and increase performance. In particular,
used eye-tracking to assess usability of a supervisory interface, and
developed robust scheduling strategies for multi-operator missions.

Teaching Experience

2017 Certificate in College and University Teaching (CCUT)
University of California, Santa Barbara

vii

Spring 2017 Teaching Associate
Course: ME 179P, Intro to Robotic Planning and Kinematics
Mechanical Engineering, University of California, Santa Barbara

Summer 2016 Teaching Associate
Course: ME 16, Engineering Mechanics: Dynamics
Mechanical Engineering, University of California, Santa Barbara

Fall 2015 Teaching Assistant
Course: ME 104, Mechatronics
Mechanical Engineering, University of California, Santa Barbara

Spring 2014 Teaching Assistant
Course: ME 16, Engineering Mechanics: Dynamics
Mechanical Engineering, University of California, Santa Barbara

Fall/Winter 2013 Instructor
Course: Thinking Robotics: Teaching Robots to Make Decisions
School for Scientific Thought, University of California, Santa Bar-
bara

Fall 2011 Teaching Assistant
Course: ME 104, Mechatronics
Mechanical Engineering, University of California, Santa Barbara

Mentoring

2016-2017 Jake Carrade, Alan Cao, Sean Wang, Viswa Rao, and Lan-
don Peik
Program: Mechanical Engineering Capstone Design Team
University of California, Santa Barbara

2016-2017 Franklin Zheng
Program: B.S./M.S. Research
University of California, Santa Barbara

2016-2017 Sean Wang
Program: Undergraduate Research
University of California, Santa Barbara

Spring 2016 Tirion Wray
Program: Undergraduate Research
University of California, Santa Barbara

Summer 2014 Ariana Del Toro
Program: RISE Summer Internship
University of California, Santa Barbara

Summer 2014 Heather Vermilyea
Program: School for Scientific Thought Course Development
University of California, Santa Barbara

viii

Professional Service

Technical Reviewer

Journal IEEE Transactions on Control of Network Systems
IEEE Transactions on Control Systems Technology
EEE Transactions on Human Machine Systems
Automatica

Conference American Control Conference
IFAC World Congress

Publications

Journal Articles

1. J.R. Peters, A. Surana, G.S. Taylor, T. Turpin, and F. Bullo. UAV Surveillance
Under Visibility and Dwell-Time Constraints (2017). Submitted.

2. J.R. Peters, A. Surana, and F. Bullo. Joint Scheduling and Routing for Collaborative
Human-UAV Persistent Surveillance Missions (2017). Submitted.

3. J.R. Peters, S.J. Wang, A. Surana, and F. Bullo. Cloud-Supported Coverage Control
for Persistent Surveillance Missions, ASME Journal of Dynamic Systems, Measure-
ment, and Control 139 (2017), no. 8 081011 - 081011-12.

4. J.R. Peters and L. Bertuccelli. Robust Task Scheduling for Multi-Operator Supervi-
sory Control Missions, AIAA Journal of Aerospace Information Systems 13 (2016),
no. 13 393 - 406.

5. J.R. Peters, D. Borra, B.E. Paden, and F. Bullo. Sensor Network Localization on
the Group of 3D Displacements, SIAM Journal on Control and Optimization 53
(2015), no. 6 3534 - 3561.

6. J.R. Peters, V. Srivastava, G.S. Taylor, A. Surana, M.P. Eckstein, and F. Bullo.
Human Supervisory Control of Robotic Teams: Integrating Cognitive Modeling with
Engineering Design, IEEE Control Systems Magazine 35 (2015), no. 6 57 - 80.

7. F. Pasqualetti, F. Zanella, J.R. Peters, M. Spindler, R. Carli, and F. Bullo. Cam-
era Network Coordination for Intruder Detection, IEEE Transactions on Control
Systems Technology 22 (2013), no. 5 1669 - 1683.

Conference Articles

1. A. Deza, J.R. Peters, A. Surana, G. S. Taylor, and M. Eckstein. Attention Allocation
Aid for Visual Search, in CHI Conference on Human Factors in Computing Systems,
(Denver, CO, USA), pp. 220 - 231, May, 2017.

2. J.R. Peters, S.J. Wang, and F. Bullo. Coverage Control with Anytime Updates for
Persistent Surveillance Missions, in American Control Conference (Seattle, WA,
USA), pp. 265 - 270, May, 2017.

ix

3. J.R. Peters and L. Bertuccelli. Robust Scheduling Strategies for Collaborative Human-
UAV Missions, in American Control Conference, (Boston, MA, USA), pp. 5255 -
5262, June, 2016.

Software

1. J.R. Peters and R. Patel. Thinking Robotics: Teaching Robots to Make Decisions.
http://www.teachengineering.org, 2015.

Books/Teaching Curriculum

1. J.R. Peters and Contributors. The AreaCon Library. http://www.areacon.org,
2016.

Thesis

1. J.R. Peters. Camera Coordination for Intruder Detection in 1D Environments.
MS Thesis, Mechanical Engineering Department, University of California at Santa
Barbara, December 2014.

Misc./Unpublished Work

1. J.R. Peters, A. Surana, and Luca Bertuccelli. Eye-Tracking Metrics for Task-Based
Supervisory Control. arXiv preprint arXiv:1506.01976, 2015.

x

http://www.teachengineering.org/
http://www.areacon.org

Abstract

Coordination Strategies for Human Supervisory Control of Robotic Teams

by

Jeffrey Russell Peters

Autonomous mobile sensor teams are crucial to many civilian and military applications.

These robotic teams often operate within a larger supervisory system, involving human

operators who oversee the mission and analyze sensory data. Here, both the human

and the robotic system sub-components, as well as interactions between them, must be

carefully considered in designing effective mission coordination strategies.

This dissertation explores a series of representative sub-problems relating to the anal-

ysis and coordination of both mobile sensors and human operators within supervisory

systems. The content herein is presented in three parts: Part I focuses on coordinating

operator behavior independently (operator-focused methods), Part II focuses on coor-

dinating mobile-sensor behavior independently (sensor-focused methods), and Part III

focuses on jointly coordinating both operator and mobile sensor behavior (joint meth-

ods). The content herein is primarily motivated by a particular application in which

Unmanned Aerial Vehicles collect visual imagery to be analyzed by a remotely located

operator, although many of the results apply to any system of similar architecture.

Specifically, with regard to operator-focused methods, Chapter 2 illustrates how phys-

iological sensing, namely eye tracking, may provide aid in modeling operator behavior

and assessing the usability of user interfaces. The results of a pilot usability study

in which human observers interact with a supervisory control interface are presented,

and eye-tracking data is correlated with various usability metrics. Chapter 3 develops

robust scheduling algorithms for determining the ordering in which operators should pro-

xi

cess sensory tasks to both boost performance and decrease variance. A scenario-based,

Mixed-Integer Linear Program (MILP) framework is presented, and is assessed in a series

of numerical studies.

With regard to sensor-focused methods, Chapters 4 and 5 consider two types of su-

pervisory surveillance missions: Chapter 4 develops a cloud-based coverage strategy for

persistent surveillance of planar regions. The scheme operates in a dynamic environment,

only requiring sporadic, unplanned data exchanges between a central cloud and the sen-

sors in the field. The framework is shown to provide collision avoidance and, in certain

cases, produce convergence to a Pareto-optimal coverage configuration. In chapter 5, a

heuristic routing scheme is discussed to produce Dubins tours for persistent surveillance

of discrete targets, each with associated visibility and dwell-time constraints. Under some

assumptions, the problem is posed as a constrained optimization that seeks a minimum-

length tour, while simultaneously constraining the time required to reach the first target.

A sampling-based scheme is used to approximate solutions to the constrained optimiza-

tion. This approach is also shown to have desirable resolution completeness properties.

Finally, Chapter 6 explores joint methods for coordinating both operator and sensor

behavior in the context of a discrete surveillance mission (similar to that of Chapter 5),

in which UAVs collect imagery of static targets to be analyzed by the human operator. In

particular, a method is proposed to simultaneously construct UAV routes and operator

schedules, with the goal of maintaining the operator’s task load within a high-performance

regime and preventing unnecessary UAV loitering. The full routing/scheduling problem

is posed as a mixed-integer (non-linear) program, which can be equivalently represented

as a MILP through the addition of auxiliary variables. For scalability, a MILP-based

receding-horizon method is proposed to incrementally construct suboptimal solutions to

the full optimization problem, which can be extended using a scenario-based approach

(similar to that of Chapter 3) to incorporate robustness to operator uncertainty.

xii

Contents

Curriculum Vitae vii

Abstract xi

List of Tables xv

List of Figures xvi

1 Introduction 1
1.1 Subproblem Descriptions . 3
1.2 Literature Review . 8
1.3 Contributions . 17
1.4 Permissions and Attributions . 22

Part I Operator-Focused Methods 24

2 Human Modeling and Usability Analysis Using Physiological Sensing 25
2.1 The RESCHU Interface . 25
2.2 Experimental Setup . 27
2.3 Results . 29
2.4 Discussion . 35
2.5 Chapter Summary . 38

3 Robust Task-Scheduling Strategies for Multi-Operator Missions 39
3.1 Multiple Operator Scheduling . 40
3.2 Adaptive Scheduling Scheme . 57
3.3 Heuristic Approach . 67
3.4 Chapter Summary . 72

xiii

Part II Sensor-Focused Methods 74

4 Cloud-Supported Coverage Control for Multi-Agent Surveillance 75
4.1 Mission Overview and Solution Approach 76
4.2 Problem Setup . 78
4.3 Dynamic Coverage Update Scheme . 82
4.4 Decomposition-Based Surveillance. 91
4.5 Numerical Examples . 94
4.6 Chapter Summary . 100

5 UAV Surveillance Under Visibility and Dwell-Time Constraints 102
5.1 Problem Formulation . 103
5.2 Discrete Approximation . 109
5.3 UAV Tour Construction . 112
5.4 Numerical Examples . 116
5.5 Extensions for Multiple Vehicle Missions 122
5.6 Chapter Summary . 131

Part III Joint Methods 132

6 Joint Scheduling and Routing for Supervisory Surveillance Missions 133
6.1 Problem Formulation . 134
6.2 Mixed-Integer Programming Formulation 139
6.3 Dynamic Solution Strategy . 147
6.4 Uncertain Processing Times . 152
6.5 Simulation Studies and Discussion . 156
6.6 Chapter Summary . 165

7 Conclusions and Future Work 167
7.1 Summary . 168
7.2 Future Work . 171

A Proof of Results from Chapter 4 173

B Resolution Completeness of Algorithm 14 182

Bibliography 187

xiv

List of Tables

2.1 Summary of Usability Study Results . 29
2.2 Distribution of Gaze Events . 30

4.1 Storage Summary for the Cloud-Supported Architecture 79

5.1 Target Input Data (Pareto-Optimality Study) 117
5.2 Target Input Data (Resolution Completeness Study) 121
5.3 Target Input Data (Multi-Vehicle Study) 127

6.1 Decision Variables . 141

xv

List of Figures

1.1 A typical human supervisory control setup consisting of 3 main compo-
nents: the human operator(s), the data-processing station, and the au-
tonomous agents. Human operator(s) interact with the autonomous agents
through the data-processing station. The degree to which human perfor-
mance and input affects automation, as well as the method by which sen-
sor data is presented to the operators is determined by the data-processing
station and its internal functionalities. 2

1.2 When complete or pairwise coverage updates are impossible, two updates
are required to move from the left-most to the right-most configuration.
When the red region is updated first, a collision (redundant sensing) risk
is introduced. 6

2.1 The RESCHU interface and its main features: (1) the map window, (2)
the search window, (3) the message window, (4) the engage panel, (5) the
scheduling panel, and (6) the re-plan panel. 26

2.2 Example UAV imagery. The target is specified in the message panel, and
the user is able to pan and zoom in the available image by clicking on the
image and using the radio buttons, respectively. Once the user finds the
target, they can right click on the target and select “SUBMIT”. 27

2.3 Fixation transition percentages for participant 3 (left column) and 4 (right
column). The top two plots show the fixation transition probabilities for
the experimental trial as a whole. The middle two plots show fixation
transition probabilities for search times. The bottom two plots show the
fixation transition probabilities for nonsearch times. Each plot additionally
shows histograms representing the fixation lengths (s) that occurred in
each region for each condition. 32

2.4 Filtered mean pupil sizes as a function of time (s) for Participants 3 (top)
and 4 (bottom). Pink shaded regions in the plots correspond to search
times. 34

2.5 Boxplots showing the statistics for the mean normalized pupil diameters
during search and nonsearch tasks for participant 3 (left) and 4 (right). . 34

xvi

3.1 A diagram illustrating the basic MILP solution approach for an example
with 4 tasks. The binary decision variables xj,k,` essentially “choose” tasks
from the available task pool to fill available “slots” in each operator’s
schedule. Idle times are specified via the null task, TM+1, which is the only
task in the pool that can be chosen to fill multiple slots in an operator’s
output schedule. 44

3.2 An example of a multi-operator (augmented) schedule produced by solv-
ing (3.28), for an example mission with 10 tasks, 2 operators (labeled
“Agent 1”,“Agent 2”), a total horizon length of 30 (dimensionless units),
and log-normally distributed task processing times. 55

3.3 An illustration of the effects of altering the parameters W , W , pβ, and pγ
when using the optimization problem (3.28) to generate schedules for a
single-operator sample mission. 58

3.4 A performance comparison between 4 different solution methodologies: (i)
a priori planning with no workload consideration, (ii) a priori planning
with workload consideration, (iii) receding horizon planning with work-
load consideration, and (iv) receding horizon planning with estimation
and workload considerations. 63

3.5 Observed computation times for different methodologies: (i) single agent,
a priori planning, no task load consideration, (ii) single agent, a priori
planning, task load consideration, (iii) single agent, receding horizon plan-
ning, task load consideration, (iv) single agent, receding horizon planning
with estimation, task load consideration, and (v) 4 agents, receding hori-
zon planning with estimation, task load consideration. 67

3.6 Schematic of the proposed task assignment process for a sample mission.
An heuristic assignment step is run for each available scenario. Then, to
obtain final operator/task pairings, each task is paired with the operator
to which it was most often assigned while looping through the individual
scenarios. 71

3.7 Performance of heuristic task assignment methods (Algorithm 6) in com-
parison to “naive” scheduling which solves the full, joint optimization prob-
lem (3.28). 72

4.1 Illustration of the proposed decomposition-based, cloud-supported cover-
age control and surveillance strategy. There are two primary components
to the framework: The partitioning component (executed on the cloud)
manages coverage regions and introduces logic to prevent collisions, while
the trajectory planning component (executed onboard each agent) governs
agent motion. 77

xvii

4.2 Assuming uniform density at the instant shown, the left diagram shows a
centroidal Voronoi partition generated by the unfilled vertices (generators
) and weighted uniformly, ie. si = sj for all i, j ∈ {1, . . . , N}. Here, the
shape of the vertices indicate which region the vertex belongs to, and the
numbers represent edge weights. However, the left configuration is not
Pareto optimal by Definition 2, as the cost H can be decreased by moving
to the configuration on the right (fixing generators). 91

4.3 Illustration of a 4 agent example mission over a static Gaussian likeli-
hood. Each agent’s position, past trajectory, and active coverage region
are shown with the colored triangle, line, and squares, resp. 95

4.4 The maximum amount of time that any subregion went uncovered in each
of 50 simulation runs (left), and the value of the cost H as a function of
time, averaged over the same 50 runs (right), for the 4 agent sample mission. 95

4.5 Comparison between the (time-invariant) event likelihood Φ (left), and the
proportion of time that some agent occupied each subregion during the a
simulated mission after significant time has passed (10000 units) (right). 96

4.6 Simplified example illustrating how Algorithm 7 manipulates timing pa-
rameters to prevent agent collisions: After the blue agent communicates
with the cloud, it waits for some amount of time before entering the newly
acquired region. During this waiting period, the red agent has time to
safely vacate. 97

4.7 Comparison of coverage cost between [1] and Algorithm 7. Coverage
costs are calculated with Hmin ([1], Section II-C) on the left and with H
(Section 4.3.2) on right in the 4 agent simulated sample mission. 98

4.8 The initial and final likelihood Φ(·, t) for the sample mission with time-
varying density (Figure 4.9). 99

4.9 Coverage regions after the likelihood switches (see Figure 4.8) during the
simulated sample mission. 99

4.10 Evolution of the cost H using a piecewise-constant likelihood with 12 ran-
dom switches (indicated by the stars)(left), and the average percent de-
crease in H following each switch (right). 100

5.1 An illustration of key imaging parameters associated target Tj. Parameters
are measured with respect to a fixed, global reference frame. 105

5.2 Example visibility region VISj (green shaded area) associated with some
target Tj when BEHj 6= ANGLE (left), and when BEHj = ANGLE (right).
Notice that the visibility region forms either a full annulus or an annular
sector in the ground plane. 105

5.3 Example imaging behaviors at target Tj for various choices of BEHj and
τj. The cases where τj = 0 and BEHj ∈ {ANY, FULL} are very similar to the
τj = 0, BEHj = ANGLE case, and are thus omitted from the illustration. . 106

xviii

5.4 Examples of valid configuration samples associated with the target Tj for
various choices of BEHj and τj. Here, the red dot is the sampled point’s
location and the arrow represents its heading (distinct points can have the
same planar location). Notice that each discrete point has a location and
heading that represents the beginning and ending configuration of a valid
dwell-time loop at the target Tj. 110

5.5 Diagrams illustrating two cases when INLε (blue nodes), i.e., the set of
nodes that the UAV can reach from its initial configuration, satisfies con-
dition 1 (left) and 2 (right) of Theorem 7. 115

5.6 Approximate Pareto-optimal front and example routes for a 5-target ex-
ample mission. The table contains the spacing parameters considered,
the middle plots show the closed trajectory times produced (left) and the
corresponding initial maneuver times produced (right), and the bottom
diagrams shows the optimal routes produced for spacing condition 5 when
ε = 65 s (left) and ε = 205 s (right). 118

5.7 Performance of the greedy algorithm with respect to optimal routes. No-
tice that, when measured as the difference between the total tour lengths,
the relative performance of the greedy algorithm in this example can be
made arbitrarily poor by increasing the number of dwell-time loops to be
performed at each target. 120

5.8 Optimal routes when ε = 16.26, 25 s (left) and relative cost error when
ε = 130 s (right) for the example mission described in Section 5.4.3. . . . 122

5.9 Illustration of solutions produced using the decomposition-based solution
strategy of Algorithm 15 when target assignment is performed using the
“Greedy” strategy (top left), the “Closest” strategy (top right), and the
“Random” strategy(bottom). 129

5.10 Maximum individual UAV tour times (i.e., the value of the objective func-
tion in (5.3)), computed over 2000 simulation runs of each implementation
of Algorithm 15 for an example surveillance mission. 130

6.1 Illustration of the coupling between UAV and operator behavior. Notice
that the operator cannot start a task until the corresponding UAV reaches
the appropriate target, and that the UAV cannot leave the target until
the operator finishes processing the task. 135

6.2 Illustration of the sets Vj associated with each target j 137
6.3 Relation between binary decision variables and resulting solution. Notice

that xi,j,k = 1 if and only if the edge (i, j) ∈ E is included in some UAV’s
tour, and the target associated with node j represents the k-th task in the
operator’s schedule. 141

6.4 Relative percent difference (RPD) between solutions produced using the
dynamic routing framework of Section 6.3 and the a priori scheme for (left
to right) pβ = 0.1, 0.01, 0.001, 0.0001. 157

xix

6.5 RPD between the solutions produced by the dynamic planning scheme of
Section 6.3 and the a priori planning scheme for a single-vehicle mission
with pλ = 0.1. 159

6.6 Target locations (left) and processing time cumulative distribution func-
tion (CDF) (right) for the example surveillance mission 160

6.7 An example mission progression for the baseline solution, which ignores
task load and resource synchronization issues (left column), and the scenario-
based solution (right column). 163

6.8 Resource utilization during the mission depicted in Figure 6.9. Notice
how the scenario-based optimization synchronizes resources to avoid bot-
tlenecks during the mission. 164

6.9 Cost statistics obtained over 100 simulation runs for the (i) baseline method,
(ii) the dynamic method using “worst”-case processing times, (iii) the dy-
namic method using expected processing times, and (iv) the dynamic,
scenario-based scheme using Q = 1, 5, and 10 scenarios. 164

xx

Chapter 1

Introduction

The use of mobile sensors is becoming increasingly common in both civilian and military

applications, since autonomous agents can provide support in tasks that are too dan-

gerous, too expensive, or simply too difficult for humans to perform unaided. Example

applications that can benefit from autonomous sensors include search and rescue, forest

fire or oil spill monitoring, surveillance and reconnaissance, transportation and logistics,

and hazardous waste cleanup [2, 3, 4].

Naturally, applications involving autonomous sensors require intelligent and practical

strategies to govern sensor behavior in the presence of numerous constraints that arise

in operational scenarios. However, these sensor coordination strategies alone may not be

enough to guarantee effective operation of the overall system. Indeed, in many realistic

missions, mobile sensors are only a part of a much larger system involving diverse data

sources and analysis tools. These complex systems often contain both human and robotic

elements and, in many cases, system functionality relies on the human operator’s ability

to process information generated by their autonomous partners quickly and accurately [5,

6]. The incredible amount of data generated by modern sensors makes human operators

susceptible to information overload, which can have detrimental effects on performance

1

Introduction Chapter 1

Human
Operator

Data Processing
 Station

Autonomous
Agents

Figure 1.1: A typical human supervisory control setup consisting of 3 main com-
ponents: the human operator(s), the data-processing station, and the autonomous
agents. Human operator(s) interact with the autonomous agents through the
data-processing station. The degree to which human performance and input affects
automation, as well as the method by which sensor data is presented to the operators
is determined by the data-processing station and its internal functionalities.

and may lead to dire consequences [7]. Therefore, it is not only necessary to coordinate the

mobile sensors, but also to understand human operator behavior and to properly mediate

their relationship with autonomous agents. This “systems engineering” perspective has

been the topic of many recent research initiatives like the National Robotic Initiative [8],

which emphasizes collaboration between humans and their robotic partners and envisions

symbiotic mechanisms to facilitate interactions between diverse system components.

In this dissertation, we explore various mechanisms for both understanding and co-

ordinating different aspects of a particular type of multi-agent system in which human

operators are responsible for overseeing autonomous agents and providing feedback based

on sensor data. In the control systems community, the term human supervisory system

(or simply supervisory system) is often used as a shorthand reference for systems with

this type of architecture [9, 10, 11]. In a typical human supervisory control application,

the operator indirectly interacts with autonomous agents via a central data-processing

station (Figure 1.1). As such, system designers not only can develop sophisticated algo-

rithms for guiding autonomous agents, but also have the opportunity to easily incorporate

automated utilities to control how information is presented to the operator, and how the

input provided by the operator is used by automated systems. The goal of these utilities

is to take advantage of the inherent robustness and adaptability of human operators,

2

Introduction Chapter 1

while mitigating adverse effects such as unpredictability and performance variability. In

some contexts, to meet the goal of single-operator supervision of multiple automated sen-

sor systems, such facilitating mechanisms are not only useful, but necessary for practical

use [12, 13]. Although many of the topics discussed herein are applicable to a wide-range

of supervisory systems, our analysis is motivated primarily by a particular supervisory

application in which sensory data regarding some target or key event is collected by a

team of Unmanned Aerial Vehicles (UAVs) and subsequently analyzed by a remotely

located human operator (within either a helicopter or ground control station). As such,

most of the topics discussed herein are placed within this context.

Our discussion is divided into three parts, each of which presenting subproblems

that illustrate a particular approach supervisory system design: In Part I, we focus on

methods that seek to optimize system performance by improving the operator experience

and moderating operator behavior. In Part II, we focus on the design of multi-agent

coordination algorithms for the mobile sensors, in order to better divide the sensing

workload and plan more efficient routes. Finally, in Part III, we focus on methods

that seek to improve overall system performance by jointly optimizing over the operator

schedule and the autonomous vehicle routes.

1.1 Subproblem Descriptions

Each chapter of this dissertation addresses a different subproblem relating to the de-

sign of an effective supervisory control system for surveillance missions involving UAVs.

A brief description and motivation for each subproblem is provided here.

3

Introduction Chapter 1

Part I: Operator-Focused Methods

Human Modeling and Usability Analysis Using Physiological Sensing: An

understanding of operator behavior is a crucial component to any supervisory coordi-

nation scheme. One set of tools that can aid in developing this understanding includes

physiological sensors such as eye-trackers. Eye-tracking has become a common means

of analyzing operator interactions with interfaces [14], and is widely used in psychology

[15], communications [16], and more recently, engineering [17].

In Chapter 2, we investigate the potential benefit of using eye-tracking to understand

operator behavior and to assess interface usability in the context of supervisory con-

trol. We present a brief, pilot usability study in which gaze information was recorded

while human subjects interacted with a particular supervisory control interface called

the Research Environment for Supervisory Control of Heterogenous Unmanned Vehicles

(RESCHU) [18]. In this short study, we demonstrate how metrics that can provide insight

into “typical use” of a given supervisory interface can be extracted from eye-tracking data.

This information can potentially be leveraged to improve future interfaces and evaluate

operator states in real-time. Although the pilot study is not extensive enough to produce

statistically significant results, the methodologies presented provide valuable intuition

and demonstrate the potential uses of eye-tracking within supervisory applications.

Robust Task-Scheduling Strategies for Multi-Operator Missions: Many su-

pervisory missions require the operator(s) to sequentially process tasks (sensory data)

that are generated by their autonomous partners. Proper scheduling of these tasks can

have a profound impact on both operator and mission performance, since crucial mission

planning decisions often rely on the operators’ abilities to process tasks quickly and ac-

curately [19, 20]. In the presence of multiple operators, it is necessary to both allocate

4

Introduction Chapter 1

tasks and determine a processing order, evoking a combinatorial optimization problem

whose solution is not straightforward. Traditional deterministic scheduling strategies are

usually ill-suited for use in supervisory systems, due to (i) uncertainty in human behavior,

and (ii) a failure to account for the operator’s cognitive requirements, e.g., required levels

of arousal or stress. In Chapter 3, we introduce a straightforward, flexible framework for

operator task scheduling that accounts for processing time uncertainty and the imposed

task load (related to stress) in order to optimize operator performance.

Part II: Sensor-Focused Methods

Cloud-Supported Coverage Control for Multi-Agent Surveillance Missions:

Supervisory surveillance missions frequently require mobile agents (sensors) to periodi-

cally exchange data with a central cloud (in this context, the cloud coincides with the

central data processing station/operator interface; see Figure 1.1). When operating in

non-ideal environments or under hardware limitations, these potentially sporadic agent-

cloud exchanges may be the only means of sharing real-time information across agents.

In addition to missions involving UAVs, other applications that encounter this constraint

include autonomous underwater vehicles that rely on periodic surfacing to communicate

with a tower [21] and data mules that periodically visit ground robots [22].

In this type of cloud-based architecture, implementation of typical decomposition-

based coverage control schemes (i.e., those that partition the workspace and assign each

agent the coverage responsibilities of a single region) are not straightforward using ex-

isting approaches to dynamic workspace decomposition. Indeed, in cloud-based archi-

tectures, updated mission information is only relayed to one agent at a time, rendering

traditional partitioning schemes, which rely on complete or pairwise coverage updates,

impossible. Further, existing cloud-based strategies, e.g., [1], may introduce undesirable

5

Introduction Chapter 1

!

Figure 1.2: When complete or pairwise coverage updates are impossible, two updates
are required to move from the left-most to the right-most configuration. When the
red region is updated first, a collision (redundant sensing) risk is introduced.

configurations or collision-risks (Fig. 1.2). In Chapter 4, we seek to alleviate these is-

sues by introducing a cloud-supported, decomposition-based framework for multi-agent

persistent surveillance that promotes effective coverage without introducing collision (re-

dundant sensing) risks and without requiring ideal or pre-planned data exchanges.

UAV Surveillance Under Visibility and Dwell-Time Constraints: Many su-

pervisory applications, e.g., military operations [23], utilize a fixed-wing UAV to collect

visual data within a large environment. In Chapter 5, we study a particular persistent

surveillance mission in which a UAV that is equipped with a gimbaled camera is tasked

with providing surveillance imagery of multiple static targets, each of which is associated

with a pre-defined set of viewing constraints. The imaging constraints associated with

each target include (i) a desired tilt angle with tolerances, (ii) a desired azimuth with tol-

erances, including the option of a 360-degree view, and (iii) the amount of time that the

UAV should dwell before moving to the next target. The goal is to construct flight paths

that are optimal in some sense while simultaneously allowing all imaging constraints to

be satisfied. In this type of surveillance mission, there are often also multiple objectives,

leading to a difficult, combinatorial optimization. We present a heuristic framework that

systematically constructs UAV routes to image all targets to specification, and approxi-

mates solutions to the full, multi-objective routing problem.

6

Introduction Chapter 1

Part III: Joint Methods

Joint Human/UAV Scheduling in Supervisory Surveillance Missions: As al-

ready noted, the presence of both human and autonomous elements within a single sys-

tem is potentially very beneficial, since the interplay between these components can, in

theory, create a symbiotic relationship that emphasizes the strengths and mitigates the

deficiencies of each. However, this type of interaction is not guaranteed, even if each com-

ponent is optimized independently. To realize the full benefit of this setup, coordination

schemes must jointly optimize the entire system, accounting for the inherent coupling

between the human and autonomous elements.

To demonstrate this approach, Chapter 6 considers a discrete surveillance mission (in-

spired by the mission in Chapter 5), in which a human operator analyzes imagery that is

collected and transmitted in real-time by UAVs as they visit a set of discrete, geographi-

cally spaced targets. In contrast to purely operator-focused or purely sensor-focused ap-

proaches that coordinate a single system component’s behavior individually, we develop

a joint optimization scheme to coordinate both the human and the autonomous agents

simultaneously, consequently addressing inherent couplings between them explicitly. In

particular, the generated target imagery can be viewed as a set of “tasks” requiring op-

erator attention; as such, in addition to vehicle routing issues, a constrained scheduling

problem, similar to that of Chapter 3, emerges. Since real-time imagery is only available

to the operator while a UAV loiters at a target, both the operator and the UAV resources

are simultaneously required to complete each task. Chapter 6 develops a framework to

coordinate these resources by jointly optimizing over UAV routes and the operator task-

processing schedule with the goal of (i) maintaining the operator’s task load within a

high-performance regime, and (ii) minimizing unnecessary UAV loiter time.

7

Introduction Chapter 1

1.2 Literature Review

Research relating to supervisory systems or their subcomponents takes various forms,

drawing insight from one or multiple scientific fields including engineering, psychology,

operations research, and computer science. As such, the body of relevant literature is

vast. This section briefly reviews existing research relating to those theoretical topics

that are most relevant to the particular coordination approaches studied herein.

Human Supervisory Control and Decision Supports: Many current applications

utilize human-centered automation systems, such as dynamic positioning systems for

maritime applications [24], command and control systems for monitoring space assets [25],

automated vehicle operation aids [26], aviation accident and emergency response sys-

tems [27], numerous military technologies [4, 28], medical imaging systems [29], advanced

traffic management and intelligent transportation systems [30], and many more.

As a consequence of the growing interest in human supervisory control, a large body

of research has focused on the direct incorporation of human performance models into

autonomous system design, and significant efforts have focused on finding systematic

ways of distributing operator cognitive resources effectively. In some approaches, the

human decision-making process is unregulated, but the automated system is tailored to

the human operator’s cognitive requirements. Research efforts focusing this approach

often involve (i) optimal scheduling of operator tasks [31, 32, 33, 34, 35, 36, 18]; (ii)

shortening of human reaction times through mediation of operator utilization [37, 38];

and (iii) efficient work-shift design to counter fatigue or interruption effects [39]. In other

approaches, both the operator’s decision-making process and the autonomous agents are

controlled. For example, the human operator is given a set time to spend on each task,

and operator decisions are used to alter automation schemes. Typical research efforts

8

Introduction Chapter 1

under this approach focus on (i) determining optimal operator attention allocation both

within and across tasks [40, 41, 42]; (ii) managing operator workload and/or task load [43];

and (iii) controlling autonomous agents to collect the most useful information [44, 45, 43].

With the ever-increasing maturity of sensing technology, many researchers studying

human-centered systems study real-time, adaptive schemes, in which both physiological

and performance measures are used to infer the operator’s cognitive state, and auto-

mated functionalities are only triggered upon detection of non-optimal or undesirable

states [46, 47]. However, the majority of such adaptive systems to date have been ex-

perimental rather than practical due to difficulties in accurately characterizing the user

cognitive states [48]. Regardless, continually improving quality and affordability of phys-

iological sensors, such as eye trackers and electroencephalography (EEG) devices, have

led to improved metrics for objective analysis of real-time cognitive behavior [49].

Eye-tracking and Human Performance: Chapter 2 explores the use of eye-tracking

to provide insight into operator behavior. Eye-tracking has been studied extensively

in a variety of contexts, particularly cognitive psychology. Some eye-tracking literature

studies the dynamics of eye-movements, e.g. [50]; although it has been shown that eye-

movements are highly dependent upon the task that is being performed [51]. As such,

works such as [52] have sought to incorporate top-down, i.e., task-dependent factors

into eye-movement models. For our purposes, the most relevant works regarding eye-

movements are those that study visual search [53], but even these results are sensitive

to the specific search task being performed. Eye-tracking has also been used to aid in

quantifying the mental state of the subject in question [54, 55], and as a feedback mech-

anism for the design of engineering systems [56, 57].

Supervisory System Design and RESCHU: Many research efforts have focused on

9

Introduction Chapter 1

studying the effects of system design factors such as level of automation [58], the presence

or absence of decision support systems [59], and the choice of control architecture [60]

on human performance in supervisory tasks. In particular, RESCHU (see Section 1.1)

has become a popular platform for testing and analysis of coordination schemes in the

context of human supervisory control [18, 61, 62, 63]. The study in Chapter 2 relating

to usability analysis of RESCHU is primarily motivated by [60], in which researchers use

RESCHU to show the benefits on operator workload and performance of using task-based,

as opposed vehicle-based, control. Here, task-based control refers to a setup where the

user does not have direct control over individual vehicle trajectories and can only issue

high-level commands, whereas vehicle-based control refers to a setup where the user di-

rectly controls each vehicle trajectory. Chapter 2 extends this work by using eye-tracking

to better characterize user interactions with task-based RESCHU and further develop an

intuition and understanding of operator interaction with a typical supervisory interface.

Discrete Task Scheduling in Human-Centered Systems: Typical discrete task-

scheduling problems are NP-hard in general [64]. Despite its difficulty, the traditional

deterministic scheduling problem and its variations have been considered for a number of

years in the form of job-shop problems, e.g., [65], and a variety of high-quality heuristic

methods exist for constructing effective solutions. Common solution strategies utilize

integer programming [66], disjunctive graphs [67], and various heuristics [68]. Although

these strategies are well-established for deterministic settings, they are often ill-suited for

human-centered systems, primarily due to uncertainty in human behavior. In particular,

processing times in human visual search usually carry significant uncertainty. Although

some existing strategies consider resource allocation and discrete scheduling in uncer-

tain or dynamic environments (e.g., [69]), and robust optimization methods are feasible

in some circumstances [70], other factors that are generally unique to human-centered

10

Introduction Chapter 1

systems can cause even these strategies to fail. For example, cognitive workload, fa-

tigue, memory retention, among others, all have some effect on operator performance in

persistent task execution missions.

The subproblems in Chapters 3 and 6 both contain a scheduling component that

accounts for the operator’s task load, which is rigorously defined as “a measurement of

human performance that broadly refers to the levels of difficulty an individual encounters

when executing a task” [71]. We focus on task load, as opposed to other human factors

issues, since it has well-established trends and links to performance that can feasibly be

exploited by mission planners [72]. In particular, the operator’s task load is closely re-

lated to the more abstract notion of stress [73, 74], and, under the typical interpretation

of the Yerkes-Dodson law [75, 76], moderate amounts of operator stress result in optimal

operator performance. This logic motivates our strategy of maintaining the operator’s

task load within a moderate regime as a means of improving primary task performance.

Sensor-Focused Coordination Strategies for Multi-Agent Systems: A large

amount of recent research focuses on the development of coordination strategies specifi-

cally for UAV applications (e.g., [77, 78, 79]). However, UAV research is a sub-class of a

much larger body of literature that addresses algorithmic design and high-level reasoning

for general autonomous mobile sensor applications [80]. These applications often neces-

sitate solutions to complex routing problems, which may involve logical, temporal, and

spatial constraints, as well as environmental uncertainty. When construction of global

optima is not feasible, heuristics may still permit the real-time construction of solutions

for use within practical systems. For example, variations on the classic Traveling Sales-

person Problem (TSP) [81, 82, 83] arise frequently and, since the TSP is NP-hard, global

optima usually cannot be consistently found in reasonable time. However, several new

insights have been developed over the last decade for the classical version of the TSP,

11

Introduction Chapter 1

along with a number of variations [84, 85, 86], and sophisticated heuristic solvers, e.g. [87]

can quickly construct high-quality solutions for practical use. Other problems that com-

monly arise in mobile sensor applications include the construction of region selection

policies [44, 88], the derivation of static and dynamic coverage schemes [89, 90], the de-

velopment of persistent task execution schemes [91], and the design of load balancing

strategies [92, 93].

Multi-Agent Coverage Control and Persistent Surveillance: Typical coordina-

tion strategies for multi-agent coverage control involve optimization [94], auctions [95],

meta-heuristics [96], potential fields [97], Markov decision processes [98], among oth-

ers [99]. The coverage control problem of Chapter 4 is related to persistent surveillance

(monitoring), in which a sensor team is tasked with continual surveillance of some re-

gion, requiring subregions to be visited multiple (or infinitely many) times to minimize

a cost, e.g., the time between visits or the likelihood of detecting events [100]. Persistent

surveillance is a generalization of patrolling, where agents follow closed tours to protect

or supervise an environment. Most solutions to patrolling problems utilize operations

research, non-learning multi-agent systems, and multi-agent learning [101]; however, ex-

isting formulations are often one-dimensional and solutions usually reduce to “back and

forth” motions that do not easily generalize, e.g. [102].

Decomposition-Based Surveillance: The framework proposed in Chapter 4 employs

workspace decomposition to reduce a multi-agent coverage problem into a set of single-

agent problems. This approach is common in multi-agent systems due to simplicity

and scalability [100]. For planar persistent surveillance, decomposition-based approaches

consist of two primary components: partitioning and single-agent routing. The most com-

mon approaches to optimal partitioning in convex environments are based on Voronoi

12

Introduction Chapter 1

partitions [103], and effective schemes exist for constructing optimal partitions under

various constraints [104, 105, 106]. Non-convex workspaces are typically addressed by

creating a graph approximation, on which a number of graph partitioning schemes can

be used [107]. In robotics, discrete partitioning is often considered under communication

constraints [108, 1]. The scheme in Chapter 4 most closely mirrors [1]; however, in con-

trast to [1], our approach employs additional logic to ensure the resultant coverage regions

retain properties that are consistent with effective, decomposition-based surveillance.

Single-agent path planners for persistent surveillance typically operate on graphs [109,

110, 44], and classical problems, e.g., TSPs [81], often play a key role in this case.

Schemes for non-discrete spaces (open subsets of Euclidean space), are less common.

Here, strategies include a priori construction of motion routines [111], adaptation of static

coverage strategies [112], the use of random fields [113], and spectral decomposition [114].

The modular framework discussed in Chapter 4 incorporates any single-agent planner

satisfying mild assumptions (Section 4.4).

Remarkably few papers explicitly address the implication of combining dynamic par-

titioning with continuous routing for multi-agent persistent surveillance. Existing work is

mostly preliminary, considering ideal conditions and simplistic methods; e.g., the authors

of [115] use a sweeping algorithm for partitioning and guide vehicles via lawn-mower pat-

terns, while [116] uses rectangular partitions and a reactive routing policy. The authors

of [117] use slightly more sophisticated partitioning along with lawn-mower trajectories.

In [118], partitions are based on the probability of target presence, but ideal communi-

cation is assumed. Others, e.g. [119], use a decomposition-based approach, but focus on

assignment without detailed treatment of the combined assignment/routing protocol.

Cloud-Supported Robotic Architectures: Chapter 4 considers a cloud-supported

computational framework. Cloud-based robotic infrastructures (cloud robotics) have seen

13

Introduction Chapter 1

growing research interest of late, as they can provide many benefits to complex systems,

such as the storage and analysis of “big data,” the availability of parallel grid computing,

the potential for collective learning, and the utilization of human computation [120]. In

multi-agent systems, cloud-supported schemes have been used for tasks such as collective

optimization [121], rendezvous [122], and coordinated task-assignment [1]. In human

supervisory control applications involving mobile sensors, cloud-supported architectures

arise naturally, since mobile agents are typically required to transmit sensor data to a

remotely located human operator for analysis (thus requiring a central repository), and

harsh operational environments often prohibit reliance on peer-to-peer communication.

Discrete Surveillance and TSP Variations: Chapter 5 studies a discrete surveillance

problem that is loosely interpreted as a generalization of both the Polygon-Visiting Du-

bins TSP (PVDTSP) [123, 124] and the Dubins TSP with Neighborhoods (DTSPN) [125].

The PVDTSP and the DTSPN are variations on the standard Dubins TSP (DTSP), re-

quiring vehicles visit planar regions rather than discrete points. To incorporate imaging

constraints, Chapter 5 adopts a strategy that is, in some sense, an extension of [124],

where the authors approximate solutions to a PVDTSP by discretizing the polygons and

posing a Generalized TSP (GTSP) (also called the Set TSP, Group TSP, (Finite) One-in-

a-Set TSP, Multiple Choice TSP, or Covering Salesperson Problem). Discretization-based

strategies that approximate a continuous motion planning problem with a discrete path-

finding problem over a graph are typically called sampling-based roadmap methods [126,

Ch. 5]. Such methods are traditionally used for point-to-point planning among obsta-

cles; however, they have also been used for more general Dubins path planning, e.g. [127].

Like the TSP, the GTSP is a combinatorial optimization; however, strategies exist for

computing high-quality solutions. The most popular approach converts the GTSP into

an Asymmetric TSP (ATSP) using a Noon-Bean transform [128]. The availability of

14

Introduction Chapter 1

efficient ATSP solvers, e.g., LKH [87], make such transformations a practical GTSP so-

lution option even though they do not produce global optima in general. Other common

GTSP solution approaches make use of meta-heuristics, e.g. [129].

Multi-Objective Optimization: The scheduling problem of Chapter 3, the discrete

surveillance problem of Chapter 5, and the joint scheduling/routing problem of Chap-

ter 6 all consider optimization problems that, in some sense, contain multiple, potentially

conflicting objectives. Multi-objective optimization problems are well-studied in existing

literature [130, 131, 132]. In engineering, most solutions attempt to satisfy some pre-

determined notion of optimality, the most common of which being Pareto optimality.

Pareto-optimal fronts are usually difficult to characterize directly, so they are typically

constructed through scalarization, which maps the solutions of a related single-objective

optimization problem to Pareto-optimal solutions of the multi-objective problem. The

most common scalarization techniques are linear scalarization, where the cost is a linear

combination of the objectives, and the ε-constraint method, where the values of all but a

single objective are explicitly treated as optimization constraints [133]. We note that no

single approach to multi-objective optimization is superior in a general sense; rather, the

appropriate method depends on the type of information available, the user’s preferences,

solution requirements, and the availability of software [131].

Joint Human/Sensor Optimization for Supervisory Control: Chapter 6 presents

a scheme that jointly optimizes both the UAV and operator behavior. Despite extensive

research devoted to improving each component individually, there have been very few

attempts to jointly optimize both operator and autonomous agent behavior. Indeed,

existing work typically assumes a “loose” coupling between the human and autonomous

agents, resulting in reactive policies. For example, the authors of [38, 40] assume that op-

15

Introduction Chapter 1

erator tasks arrive in a queue according to a fixed stochastic process, which determines

the optimal processing times. The authors of [44] use an adaptive surveillance policy

based on operator responses in a target detection task; however, operator behavior is not

controlled. Some work, such as [18], develops discrete-event simulation models, which

can be used for testing and optimization. However, these abstractions utilize parametric

process models that do not explicitly consider the cause of task generation.

Very limited work has considered more tightly coupled coordination. Those most

closely related to the study in Chapter 6 are [134, 135], which use optimization schemes

for simultaneous routing and scheduling under operator workload constraints. However,

these works contain several limitations. In particular, both [134] and [135] rely on the

availability of a suitable abstraction to the vehicle routing problem, which may be un-

available in complex scenarios. For example, [134] requires an accurate predictor of the

mission cost associated with a given task-agent pairing, which is often unavailable a priori

in non-trivial problems. In addition, both approaches consider deterministic setups; as

such, solution quality can become poor or even infeasible during mission execution when

operator uncertainty is introduced. With respect to [135], all planning operations are

performed offline, and may not be easily applied to dynamic schemes due to computa-

tional complexity. Indeed, the authors of [135] discretize the time continuum to obtain a

pure integer program approximation, which can quickly become intractable for even mod-

est time horizons. In contrast, the distributed framework in [134] is designed for online

implementation; however, it does not consider tasks requiring both human and robotic re-

sources simultaneously. Chapter 6 presents a joint optimization framework that seeks to

overcome the above limitations by: (i) combining vehicle routing and operator scheduling

into a single, mixed-integer problem; (ii) providing a scalable online/incremental imple-

mentation methodology, and (iii) demonstrating a natural extension that incorporates

robustness to uncertainty in operator processing times.

16

Introduction Chapter 1

1.3 Contributions

The primary contribution of this dissertation is the illustration of a number of fun-

damentally different approaches to generating effective coordination schemes for use in

human supervisory control systems involving autonomous mobile sensors. Although the

discussion herein focuses on particular subproblems (primarily motivated by applications

in which the operator(s) analyze visual data generated by UAVs), the presented content

also serves to demonstrate various design philosophies, which each draw from numer-

ous scientific fields, that can be applied to a broader set of human-centered systems.

Indeed, Part I focuses on improving operator performance, primarily using tools from

psychology, human factors, computer science, and operations research; Part II focuses on

improving mobile sensor performance, primarily using tools from engineering, control sys-

tems, and robotics; and Part III focuses on joint methods that combine operator-focused

and sensor-focused methods within a single optimization framework.

More specifically, individual chapter contributions are summarized as follows.

Chapter 2 illustrates how eye-tracking metrics can be used to both analyze operator be-

havior and assess the usability of supervisory control interfaces. The main contribution of

this chapter is the inclusion and analysis of eye-tracking data from a pilot usability study

of the task-based RESCHU interface. For the study, we collected gaze and pupil size

information using a non-restrictive eye-tracker while human subjects performed a search

and surveillance mission involving either 4 or 8 UAVs. We provide analysis of 2 complete

eye-tracking data sets, one from a user on the 4 UAV condition and one from a user

on the 8 UAV condition. We find both qualitative and quantitative differences in gaze

characteristics (i) between the two users, and (ii) between events occurring when the user

was engaging in a target search, and those occurring at other times in the experiment.

17

Introduction Chapter 1

Specifically, the main results of this chapter are as follows: First, by dividing the user

interface into disjoint regions of interest, we calculate statistics including the average

time that the user’s gaze fell upon each region, the distribution of fixation lengths in

each region, and the fixation transition probabilities between regions under the 1-step

Markov assumption. Second, by comparing these statistics across the the search and non-

search portions of the experiment, we are able to postulate as to what a gaze pattern

would be for a “typical user” and suggest possible interface improvements. Third, we an-

alyze pupil statistics, finding that pupil size was smaller during visual search tasks than

during nonsearch tasks. Finally, we discuss numerous valuable future research directions.

Chapter 3 addresses the problem of determining the optimal processing schedules for

general, multi-operator sequential task analysis. Specifically, we build a MILP framework

for a multiple operator task-scheduling problem that incorporates task load considera-

tions. We then illustrate how robustness to task processing time uncertainty can be

added into this formulation through the use of scenarios. We also demonstrate the flexi-

bility allowed by this scenario in choosing both the desired degree of robustness and the

degree that task load is considered. Next, we illustrate how, in certain situations, general

performance can be improved through the use of adaptive schemes, which employ both

strategic re-planning and estimation. We develop a receding horizon re-planning strat-

egy for single operator scheduling, and subsequently expand our problem formulation to

include an additional estimation step. We then discuss adaptations for use with multiple

operator setups. Finally, we show through simulation how increased computation times

due to such extensions may, in some scenarios, make some of the presented schemes in-

tractable for practical use in their raw form. As an alternative, we propose a heuristic for

task assignment and show that we can achieve vast computational advantages at mini-

mal performance expense. Throughout our discussion, we also address issues that arise

18

Introduction Chapter 1

in practical implementation of our proposed framework.

In Chapter 4, we shift our focus to the development of coverage control schemes for

multi-agent systems that operate in dynamic and communication-constrained environ-

ments. We develop a cloud-supported, decomposition-based, multi-agent coverage control

framework for persistent surveillance, which requires only sporadic, unscheduled data ex-

changes between agents and a central cloud. In particular, we develop a sophisticated

partitioning and coordination scheme that can be effectively paired with single-agent

trajectory planners. This leads to the complete, modular framework in which high-level

coverage is coordinated on the cloud and agent trajectories are generated independently

via on-board planners. We encompass realistic constraints including restrictive commu-

nication, dynamic environments, and non-parametric event likelihoods.

Specifically, our dynamic partitioning scheme only requires agents to sporadically

upload and download data from the cloud. The cloud runs updates to govern region as-

signments, while also manipulating surveillance parameters. We prove that these updates

produce desirable properties: coverage regions collectively form a connected N -covering

and evolve at a time-scale that allows for appropriate agent reaction, no subregion remains

uncovered indefinitely, local likelihood functions have disjoint support, among others. In

certain cases, we show that the set of coverage regions and generators converges to a

Pareto optimal pair in finite time. We show that the combination of our partitioning

scheme with a trajectory planner ensures collision avoidance, provided the planner obeys

natural restrictions. We illustrate our framework through numerical examples.

We note that this partitioning approach is primarily motivated by [1]; however, the

algorithms proposed in Chapter 4 are explicitly designed to operate within a multi-agent

surveillance framework and introduce additional logic that evokes a set of desirable prop-

erties. The proposed scheme has the following advantages: First, our framework main-

19

Introduction Chapter 1

tains connectivity of intermediate coverage regions, ensuring that agents can visit their

entire assigned region without entering another agent’s territory. Second, our framework

provides inherent collision avoidance when the scheme is paired with low-level motion

planners. Third, our algorithms explicitly manipulate local likelihood functions main-

tained by the agents to guarantee that each has support within an allowable region,

promoting seamless and modular pairing with any trajectory planner that uses the sup-

port of the event likelihood to govern agent routes, e.g., [114]. The framework has these

features while maintaining similar convergence properties as the algorithms in [1].

Chapter 5 addresses a different persistent surveillance mission in which fixed-wing UAVs

are required to visit a set of discrete targets (rather than planar regions as in Chapter 4).

We show how the multi-objective routing problem with both visibility and dwell-time

constraints can be rigorously posed as a constrained optimization problem under reason-

able assumptions on UAV behavior. Indeed, we define visibility regions at each target,

which reflect imaging requirements, along with a set of feasible dwell-time maneuvers

to be performed within the regions. These constructions are then translated into a set

of constraints that are incorporated into a precise problem statement, which represents

an ε-constraint scalarization of the multi-objective problem. We then approximate the

constrained optimization problem, having an infinite solution space, with a discrete prob-

lem, having a finite solution space. The discrete approximation implicitly considers both

the required dwell-times and the visibility constraints, as it is formulated through a se-

lective discretization procedure. Next, we present a novel heuristic method for solving

the discrete approximation that leverages solutions to GTSP instances. We show that

this method produces feasible solutions and, in many cases, maps optimal solutions of

a related GTSP directly to optimal solutions of the discrete problem. Finally, we incor-

porate these constructions into a complete heuristic framework to produce high-quality

20

Introduction Chapter 1

solutions to the full, multi-objective routing problem. We prove that the heuristic algo-

rithm is resolution complete in a specific mathematical sense. Then, we present a greedy

heuristic method for expanding the heuristic for use in multi-vehicle problems. We finish

by testing these methods numerically.

We note that the work in Chapter 5 is most closely related to that presented in [124],

which uses a similar sampling-based framework to address a PVDTSP. However, the

framework in [124] considers a single metric (total tour time), and cannot incorporate

non-trivial dwell-times. As such, our work is can be viewed as an expansion of [124] to

incorporate a more general set of imaging behaviors, and accommodate an additional

performance metric that is reflective of realistic mission scenarios.

Finally, Chapter 6 shows how a tighter coupling between the human and autonomous

components can be achieved through joint optimization. In particularly, we develop

a joint optimization framework for a discrete, supervisory surveillance mission similar

to that of Chapter 5, in which UAVs must visit a set of discrete targets and transmit

visual data to a remotely-located operator. The chapter opens by formulating the multi-

vehicle, scheduling/routing problem as a Mixed-Integer Non-linear Program (MINLP),

whose objective function captures both the task load imposed on the operator and the

time that UAVs spend loitering unnecessarily. We show that the general MINLP can be

re-formulated as a MILP, at the expense of a significant increase in the problem size. In

single vehicle missions, we show that an alternative linearization exists that does not af-

fect the problem size. Next, to ease computational issues, we introduce a receding-horizon

framework for constructing suboptimal solutions. Here, whenever the operator finishes

processing a task, a re-planning operation is initiated that only chooses each UAV’s next

destination and the impending portion of the operator’s schedule. We pose this finite

horizon re-planning operation as a comparatively small-scale MILP, whose solutions are

21

Introduction Chapter 1

constructed using existing solvers. We then show how this receding horizon framework

can be manipulated to provide robustness to uncertain processing times via a straight-

forward, scenario-based extension of the re-planning MILP. Finally, we demonstrate the

utility and flexibility of our framework in a set of simulated missions. In addition to illus-

trating the performance and robustness properties of the proposed solution, this example

also demonstrates how the dynamic solution framework readily extends to incorporate

more general problem setups such as those containing fixed-wing UAVs.

1.4 Permissions and Attributions

1. Portions of Chapter 1 and the complete content of Chapters 4, 5, and 6 are the re-

sult of a project sponsored by the Institute for Collaborative Biotechnologies at the

University of California, Santa Barbara (UCSB) and carry the following disclaimer:

“This work has been sponsored by the U.S. Army Research Office and the Regents

of the University of California, through Contract Number W911NF-09-D-0001 for

the Institute for Collaborative Biotechnologies, and that the content of the infor-

mation does not necessarily reflect the position or the policy of the Government or

the Regents of the University of California, and no official endorsement should be

inferred.”

2. Portions of Chapter 1 are the result of a collaboration with Vaibhav Srivastava,

Miguel Eckstein, Amit Surana, Grant Taylor, and Francesco Bullo, and has pre-

viously appeared in IEEE Control Systems Magazine [136]. This content carries

the following notice: c©2015 IEEE. Reprinted, with permission, from Jeffrey R.

Peters, Vaibhav Srivastava, Miguel P. Eckstein, Amit Surana, Grant S. Taylor, and

Francesco Bullo, Human Supervisory Control of Robotic Teams: Integrating Cogni-

22

Introduction Chapter 1

tive Modeling with Engineering Design, November 2015. http://www.ieee.org.

3. The content of Chapter 2 and portions of Chapter 1 are the result of a collaboration

with Luca Bertuccelli and Amit Surana. The original (previously unpublished)

report from this work is available at https://arxiv.org/abs/1506.01976.

4. The content of Chapter 3 and portions of Chapter 1 are the result of a collabo-

ration with Luca Bertuccelli, and have previously appeared in the AIAA Journal

of Aerospace Information Systems [137]; reproduced with the permission of the

American Institute of Aeronautics and Astronautics, Inc.: http://www.aiaa.org.

5. The content of Chapter 4 and portions of Chapter 1 are the result of a collaboration

with Sean Wang and Francesco Bullo, and have previously appeared in ASME Jour-

nal of Measurement, Control, and Dynamics [138]; reproduced with the permission

of the American Society of Mechanical Engineers (ASME): http://www.asme.org.

6. The content of Chapter 5 and portions of Chapter 1 are the result of a collaboration

with Amit Surana, Grant Taylor, Terry Turpin, and Francesco Bullo.

7. The content of Chapter 6 and portions of Chapter 1 are the result of a collaboration

with Amit Surana and Francesco Bullo.

23

http://www.ieee.org
https://arxiv.org/abs/1506.01976
http://www.aiaa.org
http://www.asme.org

Part I

Operator-Focused Methods

24

Chapter 2

Human Modeling and Usability

Analysis Using Physiological Sensing

This chapter explores the use of physiological sensing, specifically eye-tracking, for the

purpose of better understanding operator interactions with supervisory control inter-

faces. In particular, we study the task-based version of the Research Environment for

Supervisory Control of Heterogenous Unmanned Vehicles (RESCHU).

2.1 The RESCHU Interface

We first give a brief overview of task-based RESCHU. For a comprehensive descrip-

tion, we instruct the reader to consult [18, 60]. The RESCHU environment allows a single

user the ability to control multiple UAVs in a search and identification task. Figure 2.1

shows a screen shot of the Graphical User Interface (GUI), which has 6 main features:

(1) a map showing positions of UAVs, targets, and hazard areas, (2) a search window

which displays the UAV payloads (camera imagery), (3) a message window which relays

system information to the user, (4) a panel for engaging the payload, i.e., displaying the

25

Human Modeling and Usability Analysis Using Physiological Sensing Chapter 2

Figure 2.1: The RESCHU interface and its main features: (1) the map window, (2)
the search window, (3) the message window, (4) the engage panel, (5) the scheduling
panel, and (6) the re-plan panel.

camera imagery to the user, (5) a table showing estimated arrival times for the UAVs to

their assigned tasks, and (6) a panel for selecting damage tolerances and re-planning UAV

trajectories. The map depicts the UAVs as bullet shapes according to MIL-STD-2525C

convention, and depicts hazard areas and task locations as yellow circles and diamonds,

resp. The UAVs incur damage when they intersect a hazard area. The hazard areas

stochastically appear and disappear, which creates a need for dynamic path planning.

Once a UAV reaches a task location, an “ENGAGE” button on the panel (4) becomes

active. When the operator presses the button, a surveillance image appears in the search

window (2). Images are static, but can be panned/zoomed (see Figure 2.2). A textual

description of the search target appears in the message window (3). Once the operator

believes that they have found the target, they right-click where they believe the target

object to be. Upon task completion, the UAV is automatically re-assigned to a new task

and immediately begins moving in a straight-line path to its new destination.

The operator also has the option of changing the UAV flight paths to avoid damage.

We focus on a task-based control setup [60]. The operator is shown current task assign-

ments for all UAVs in the map window (region (1), Figure 2.1). The operator can only

26

Human Modeling and Usability Analysis Using Physiological Sensing Chapter 2

Figure 2.2: Example UAV imagery. The target is specified in the message panel, and
the user is able to pan and zoom in the available image by clicking on the image and
using the radio buttons, respectively. Once the user finds the target, they can right
click on the target and select “SUBMIT”.

change assignments and/or flight paths by selecting a damage tolerance (low, medium,

or high) in the replan panel (region (6), Figure 2.1) and clicking the “Replan Times”

button. The system then calculates estimated arrival times for all vehicles. If the oper-

ator likes the new plan, they accept by clicking the check mark in the scheduling panel

(region (5), Figure 2.1), and new arrival times are automatically tabulated.

2.2 Experimental Setup

2.2.1 Participants

We collected eye-tracking data on 4 subjects as they interacted with the simulation

(all male, age in range 18-44). However, due to experimental error, we only were able to

obtain complete, reliable eye-tracking data sets from 2 out of the 4 users, one of which

performed a search task involving 4 UAVs (Participant 3, age in range 18-34, no prior

experience with RESCHU) and the other performed a task involving 8 UAVs (Participant

4, age in range 18-34, extensive experience with RESCHU, i.e. “expert user”). Since the

27

Human Modeling and Usability Analysis Using Physiological Sensing Chapter 2

emphasis of this chapter is the analysis of eye-tracking data, we focus on these two

users. Both of these subjects indicated that their occupation was related to science and

engineering. Although 2 eye-tracking data sets is a very small sample, the objective

of this pilot study is not to provide conclusive statistical insight, but rather to provide

test data and intuition about supervisory interfaces that can guide researchers in future

experiments.

2.2.2 Methods

The hardware setup consisted of a computer equipped with a Tobii x120 eye-tracking

mechanism [139]. The subject was first instructed to complete a training module on how

to use the RESCHU interface. Once the user felt ready, the experimental investigator

guided the subject through calibration of the eye-tracker and started the simulation.

Each trial lasted 10 minutes, during which the participant interacted with RESCHU

in the manner described in Section 2.1. Participants had 2 main goals: (i) correctly

process as many tasks as possible, i.e., find as many targets as possible, and (ii) incur

the least amount of UAV damage by the end of the mission. Time stamps for virtually

all events (engagement of search tasks, etc.) during the simulation were logged by the

RESCHU software. The eye-tracking mechanism did not make physical contact with

the participants and did not impede their ability to interact with the interface. The

eye-tracker collected data at a rate of 60 Hz. Data that was logged by the eye tracker

included a time stamp, horizontal and vertical positions of the subject’s gaze on the

screen (px), and pupil sizes (mm). In addition, the eye tracker automatically classified

each gaze event as being either a saccade, a fixation, or an unclassified event using a

built-in filter (see [139]). With this information, the eye-tracker sequentially numbered

each gaze event and assigned a corresponding duration. Finally, a validation vector was

28

Human Modeling and Usability Analysis Using Physiological Sensing Chapter 2

Table 2.1: Summary of Usability Study Results

Metric Findings

Gaze Events • Qualitative and quantitative differences between search/nonsearch
• “Unbalanced” in search times, “balanced” in nonsearch
• Qualitative and quantitative differences between users
• 8 UAV user (expert) had more gaze transitions during search times
• Event durations follow right-skewed distributions

Pupil Size • Lower during search times for both users

included which assigned an integer between 0 (low uncertainty) and 4 (high uncertainty)

according to the quality of each measurement.

2.3 Results

In what follows, we refer to each occurrence of the user engaging a UAV payload,

i.e., looking at camera imagery, and subsequently searching for a target as a search

task. We quantify the length of one search task as the time between the user pressing

the “ENGAGE” button and the user submitting the target location. We refer to times

during which the user is engaged in a search task as search times. We say that the user

is engaged in a nonsearch task if they are not performing a search task, and we refer

to the corresponding times as nonsearch times. An brief overview of our main results is

presented in Table 2.1 for convenience.

For participant 3, the eye-tracking mechanism logged 37, 606 data points, of which

29, 503 (78.3%) were logged during search times. For participant 4, the expert user, the

eye-tracking mechanism logged 37, 088 data points, of which 26, 087 (70.3%) were logged

during search times. Approximately 95% and 86% of the data points for participants 3

and 4, resp., were accurate according to the validity vectors provided by the eye-tracker.

During fixations, the eye-tracking hardware assigned each fixation a single “fixation

29

Human Modeling and Usability Analysis Using Physiological Sensing Chapter 2

Table 2.2: Distribution of Gaze Events

Participant 3

Search Nonsearch Total

Map Window 4.2% 50.9% 16.4%
Search Window 89.7% 11.7% 69.4%
Message Window 1.9% 22.2% 7.2%
Engage Panel 0.0% 4.3% 1.2%
Scheduling Panel 0.1% 4.9% 1.4%
Replan Panel 0.0% 0.0% 0.0%
Unclassified 4.0% 5.9% 4.5%

Participant 4

Search Nonsearch Total

Map Window 1.0% 43.9% 13.7%
Search Window 78.3% 3.6% 56.2%
Message Window 9.1% 8.7% 9.0%
Engage Panel 3.2% 6.5% 4.3%
Scheduling Panel 1.3% 23.8% 8.0%
Replan Panel 0.4% 3.6% 1.3%
Unclassified 6.7% 9.8% 7.6%

point” by taking an average of the gaze locations at each data point during the fixation

event. Because gaze location can vary slightly during fixations, we filtered data by

replacing raw gaze locations during fixation events with the fixation point. Table 2.2

shows the percentage of gaze events during search, non-search, and total times, resp.,

falling within each region (Figure 2.1). Note that the similarity in the proportion of

participant 4’s gaze that fell in the search window during search times (78.3%), and

proportion of participant 3’s data corresponding to search times (78.3%) is coincidental.

For both participants, the percentage of gaze events falling within either the search

window or the message window is much higher during search times (participant 3: 91.6%,

participant 4: 87.4%) than during nonsearch times (participant 3: 33.9%, participant

30

Human Modeling and Usability Analysis Using Physiological Sensing Chapter 2

4: 12.3%). During nonsearch times, both participants spent the most time looking in

the map window (50.9%, 43.9%). If we examine the combinations of windows with the

most gaze events during non-search tasks, participant 3 spent most of his time looking

within either the map window, search window, or the message window (84.8%), while

participant 4 distributed his gaze mostly among the map window, the scheduling panel,

and unclassified regions (81.1%). Neither of the participants looked at the replan panel

very often, with a negligible amount of participant 3’s gaze events falling within this

window, and only 1.3% of participant 4’s total gaze events occurring in this region.

In order to analyze scan-paths, i.e., sequences of fixations, we consider the fixations

that occurred in each of the 6 regions indicated in Figure 2.1. Assuming that the sequence

of fixations satisfies the 1-step Markov assumption (valid in certain circumstances [15]),

then we can construct a transition probability matrix by considering the probability that

the next fixation will fall within a particular region of the screen, given the location of

the current fixation. Figure 2.3 shows graphical representations of the fixation transition

probability matrices for participant 3 and participant 4 for (i) the overall mission, (ii)

search times, and (iii) nonsearch times. In these plots, the six regions are represented by

blue boxes, each with an orange vertex placed randomly inside. The vertex located out-

side the boxes represents all unclassified regions. Lines connecting the vertices represent

transitions between regions, with the direction of convex curvature representing a forward

transition. The size of the vertex corresponds to the probability of a “self-loop”, that is,

that the next fixation will fall in the same region as the current fixation . For clarity, if the

total number of transitions starting from a given region was less than 5, these transitions

were omitted from the diagram. Notice the major qualitative differences between scan-

path behavior of the two conditions (search or nonsearch). Both participants exhibited

an increased probability of a self-loop in the search window, and a decreased probability

of self-loops in the map window during search times. Further, notice that the transition

31

Human Modeling and Usability Analysis Using Physiological Sensing Chapter 2

Figure 2.3: Fixation transition percentages for participant 3 (left column) and 4 (right
column). The top two plots show the fixation transition probabilities for the exper-
imental trial as a whole. The middle two plots show fixation transition probabilities
for search times. The bottom two plots show the fixation transition probabilities for
nonsearch times. Each plot additionally shows histograms representing the fixation
lengths (s) that occurred in each region for each condition.

32

Human Modeling and Usability Analysis Using Physiological Sensing Chapter 2

probability distribution is much more “balanced” during nonsearch times for both par-

ticipants, i.e., there are much more equally distributed probabilities with respect to the

transitions between regions. If we compare probabilities between the two participants,

participant 4 showed a slightly higher tendency to transition to and from the scheduling

window and unclassified regions than did participant 3, especially during search times.

However, similar qualitative behaviors emerge across participants in all conditions. From

a quantitative point of view, we consider the balanced Kullback-Leibler (KL) divergence

as a metric between two Markov transition matrices A,B:

DKL(A||B) =
∑
i,j

Ai,j log

(
Ai,j
Bi,j

)
+Bi,j log

(
Bi,j

Ai,j

)
. (2.1)

To produce finite values, we replace the 0 entries in each matrix with ε = 0.01. Using this

metric to compare across the participants, we obtain a KL divergence between the total

transition matrices of 6.17, a KL divergence between the search transition matrices of

16.02, and a KL divergence between the nonsearch transition matrices of 9.80. Comparing

within participants 3 and 4, resp., the KL divergences between the search and nonsearch

matrices are 9.52 and 20.92, the KL divergences between the total and nonsearch matrices

are 1.95 and 6.80, and KL divergences between the total and search matrices are 4.76 and

6.96. From these numbers, it is apparent that there are, in fact, quantitative differences

between the search and nonsearch conditions. In addition, although the two users show

qualitatively similar patterns in gaze transitions, they are still quantitatively different. In

addition to the Markov transition matrices, Figure 2.3 contains histograms quantifying

fixation lengths within each region. For clarity, all of the histograms were plotted on

the same horizontal scale, with outliers omitted. Notice that all conditions produce

distributions that are skewed to the right to varying degrees.

Plots of pupil diameter as a function of time are shown in Figure 2.4. In the figures,

33

Human Modeling and Usability Analysis Using Physiological Sensing Chapter 2

Figure 2.4: Filtered mean pupil sizes as a function of time (s) for Participants 3 (top)
and 4 (bottom). Pink shaded regions in the plots correspond to search times.

−2

−1

0

1

2

3

Nonsearch Search

N
o
rm

a
liz

e
d
 M

e
a
n
 P

u
p
il

D
ia

m
e
te

r

−5

−4

−3

−2

−1

0

1

2

3

Nonsearch Search

N
o

rm
a

liz
e

d
 M

e
a

n
 P

u
p

il
D

ia
m

e
te

r

Figure 2.5: Boxplots showing the statistics for the mean normalized pupil diameters
during search and nonsearch tasks for participant 3 (left) and 4 (right).

times during which the user was engaged in a search task are indicated by the pink shaded

regions. The blue curve represents the filtered mean pupil diameter, i.e., the mean pupil

diameter between the left and right eyes, while the red line represents the mean of the

blue curve. Data was filtered by discarding non-valid points, and using a moving window

filter with a window length of 180 points (3 s). Notice that for both users, pupils tend

to shrink at the onset of search tasks. To further investigate differences in pupil size

during search and nonsearch times, we normalize and re-scale the data points from each

participant to have 0 mean and unit variance, and consider the pupil diameters that were

measured in each condition. The result is shown in Figure 2.5. Assuming our data is

34

Human Modeling and Usability Analysis Using Physiological Sensing Chapter 2

independent, and that the distributions are sufficiently normal due to the large numbers

of data points, we can compare the means of the search and nonsearch pupil diameters via

a 2-sample Welch’s t-test (not assuming equal variances). This test reveals a significant

difference between the search and non-search tasks for both participant 3 (t = −78.93,

df = 15699, p < 0.001) and participant 4 (t = −39.86, df = 24435, p < 0.001).

2.4 Discussion

The fact that our hardware did not produce valid data sets for two of the users

already presents valuable insight as to how to improve the RESCHU GUI. The two users

that did not produce valid data sets tended to squint their eyes and lean in toward

the screen, preventing the eye-tracker from collecting adequate data. The users both

indicated that the reason for this behavior was that text on the interface was too small,

and that they had difficulty seeing certain portions of the screen (particularly the search

window). The eye-tracking data that was collected, particularly the data that is contained

in Table 2.2 and Figure 2.3, also provides valuable insight as to how the interface should

be changed. Specifically, since both of the users showed similar trends in the amount

of time they spent looking in the various regions, it is conceivable that re-sizing the

various windows to be more consistent with the proportions of the gaze events that

occurred in the windows could improve performance. For example, the current GUI has

the scheduling window taking up a large portion of the screen, but from Table 2.2 we see

that user 3 focused on this window in only a very small part of the experiment, regardless

of whether he was searching or not searching. User 4 also spent a relatively small amount

of time looking at the scheduling window, especially during searches. Thus, it could be

advantageous to make this window smaller. The differences that are present between the

search and nonsearch conditions in the gaze-patterns in Fig. 2.3 also indicate that using

35

Human Modeling and Usability Analysis Using Physiological Sensing Chapter 2

a dynamic re-sizing scheme to adjust the windows during these different tasks might

improve performance. In this case, our data suggests that blowing up the search window

during the visual searches and shrinking the other windows, especially the scheduling

panel and the map window, could have beneficial effects.

Since both users qualitatively showed similar patterns in their gaze transition prob-

abilities, Figure 2.3 allows us to postulate as to “typical” use of RESCHU. During non-

search tasks, both users spent most of their time looking at the map window, but also

spent a significant portion of the time shifting their gaze among different regions. During

search times, the users fixated the most on the search window, with very few transitions

out of this window. When the users did transition their gaze out of the search win-

dow during a search task, they generally transitioned back to the search window rather

quickly. This suggests that typical use involves a balanced gaze approach in which the

user constantly scans the screen (with slight bias toward the map window) during non-

search times, and an unbalanced approach during search times, where the user spends

almost all of their time in the search window with occasional short looks outside.

Despite qualitative similarities, our quantitative approach showed that there are still

differences in overall gaze behaviors between the users which could potentially be ex-

ploited by system designers. The largest quantitative difference when comparing across

users occurred between their respective search transition matrices. User 4 (the expert

user) seemed to have a slightly more balanced approach in the sense previously discussed

during search times, then did user 3. This could be a result of increased workload for

user 4, since the increased tendency to transition outside the search window during search

times could be a result of pressure to attend to other UAVs. Future research should in-

vestigate whether these differences in scan-paths during search tasks exist in other users,

and if encouraging users in high workload conditions to focus on the search window does,

in fact, improve performance. Differences in scan-paths across workload conditions could

36

Human Modeling and Usability Analysis Using Physiological Sensing Chapter 2

also be useful in quantifying operator cognitive workload in real-time.

From a modeling perspective, the data contained in Figure 2.3 has the potential to

produce a multi-layered user model. Indeed, at the highest level the user can be modeled

as a state machine, with states such as “search” and “nonsearch”, while within each

state we can potentially model the user behavior on a finer level using relations similar

to those contained in Figure 2.3. The utility of such a model should be assessed in future

research. It is also of interest to expand the number of states in the finer level Markov

chain construction to include the UAV locations in addition to static regions of interest.

The pupil diameter phenomena in Figure 2.5 provides intriguing insight. Most re-

searchers in cognitive psychology generally have found that pupil diameter tends to in-

crease during mentally challenging tasks. In our experiment, we observed decreased pupil

diameters during the search tasks relative to those measured during the nonsearch tasks.

One possible explanation for this is that visual search is mainly perceptual, as opposed to

cognitive, and thus may not follow the same trends. Another possible explanation for our

observed phenomena lies in the size of the windows and of the visual stimuli. It is known

that pupil size is linked to visual acuity, i.e., how well a person can resolve stimuli of a

given spatial frequency. In particular, some works, e.g. [140], have demonstrated inverse

relationships between pupil size and spatial frequency. With respect to our experiments,

all of the visual search stimuli (intentionally) contained high spatial frequencies and all

of our participants, including participants 3 and 4, indicated that they felt as though

the search window was too small and the map window was too big. Since our gaze data

revealed that the user fixated mostly on the map window during non-search tasks and

the search window during search tasks, it is possible that the observed pupil diameters

are a reaction to changes in spatial frequency of the primary stimuli during search and

nonsearch tasks. With this point of view, our data aligns well with previous research on

pupil diameter phenomena. It is of interest to see if this pattern persists in other GUIs.

37

Human Modeling and Usability Analysis Using Physiological Sensing Chapter 2

2.5 Chapter Summary

An understanding of operator behavior is often a key component to the development

of effective supervisory systems. The analysis of this chapter suggests how eye-tracking

data can potentially be used to deduce the user state and predict anomalous behavior,

which, in turn, can be used to design decision supports. Indeed, from the eye-tracking

data, we are able to postulate “typical use,” which could be used as a basis of caparison for

real-time systems. Further investigation is needed to determine if the postulated behavior

is observed for general users and what changes emerge when the GUI is altered. Our

data also suggests that scan-paths, particularly during search tasks, could be an indicator

of cognitive workload. Theoretically, it is advantageous to further explore more explicit

representations of scan-path behavior. It is also beneficial to characterize scan-paths

within search images and investigate correlations with performance. The incorporation

of fixation times on each sensor into scan-path models should also be investigated.

Our data also suggests that pupil diameters during search tasks are smaller than those

in nonsearch tasks. We postulate that this may be a result of the layout of the GUI, and

thus future research should investigate whether this phenomena persists in other GUIs.

If there is a difference in pupil diameter among the two conditions, implications with

respect to operator workload should be investigated, and the reliability and robustness

of this metric in the context of supervisory control should be further assessed.

38

Chapter 3

Robust Task-Scheduling Strategies

for Multi-Operator Missions

The previous chapter demonstrated the investigation of operator behavior through passive

observation and post-processing assessment. This information can be used to improve

operator performance in an offline fashion by altering user interfaces and data presenta-

tion. However, information about operator cognitive behavior can also be used to develop

decision support systems that seek to improve system performance in an online fashion,

i.e., as the mission progresses and new information becomes available.

This chapter illustrates a particular operator-focused coordination scheme that seeks

to improve human performance (and thus system performance) by optimizing the oper-

ator’s schedule, i.e., the order and time at which tasks are processed. This approach is

applicable to any supervisory application requiring sequential task-processing by an op-

erator or team of operators, e.g., human analysis of data sets generated by autonomous

mobile sensors. In particular, this type of scheduling is relevant to many surveillance

tasks that rely on operator analysis of camera imagery to find or monitor targets.

The following analysis outlines a heuristic scheme to generate operator schedules in

39

Robust Task-Scheduling Strategies for Multi-Operator Missions Chapter 3

a manner that both takes into account human cognitive requirements and is robust to

various types of behavioral and modeling uncertainty. For full generality, we present the

scheme assuming the possibility of multiple operators, though the scheme readily applies

to the single operator case.

3.1 Multiple Operator Scheduling

3.1.1 Scheduling Objective

Suppose there areM ∈ N heterogenous tasks stacked in a queue awaiting the attention

of any one of L ∈ N operators. We assume that each task Tj, where j ∈ {1, . . . ,M},

has an associated processing time τj ∈ R>0, which defines how long the task will take to

complete, an availability time Aj ∈ R>0, which defines the global time at which the task

becomes available for processing, and an associated reward Rj ∈ R≥0, which is awarded

upon successful completion. Assume, for the moment, that τj is known a priori (we relax

this assumption later). Also assume that the parameters τj, Aj, and Rj are independent

of which operator processes the task. Further, assume that all operators are aware of

which tasks are available, and which tasks have already been processed at any time.

For the purposes of this study, we consider an “all or nothing” reward distribution

scheme, in which an operator receives the full reward Rj if the task is completed, and

no reward otherwise. Further, the reward for a task is only obtained if some operator

completes the task within a pre-specified time horizon TH ∈ R>0.

With this framework, we seek an optimal multi-operator schedule, i.e., ordered se-

quence of tasks for each operator, that maximizes the total reward accumulated across

all operators. Note that, given any ordered sequence of tasks for a single operator, one

can easily define appropriate starting times for each element of the sequence so that the

40

Robust Task-Scheduling Strategies for Multi-Operator Missions Chapter 3

availability time constraints Aj are not violated. Indeed, the time at which the operator

should start each task in the sequence can be taken as the maximum of the completion

time of the previous task in the sequence, and the appropriate start time constraint.

We formally characterize the nominal problem statement as follows: define a (multi-

operator) schedule as a set of L sequences {S` := {Tσ(1,`), Tσ(2,`), . . . , Tσ(M`,`)}}`∈{1,...,L},

where
∑L

`=1M` ≤ M and σ : tL`=1{1, . . . ,M`} → {1, . . . ,M} is some injective mapping

(here, t· is the set theoretic disjoint union). Let S denote the set of all possible schedules.

We seek a schedule S∗ ∈ S, so that if each operator ` were to start the first task in the

sequence at time Aσ(1,`), and the k-th task in the sequence at time max{Ck−1,`, Aσ(k,`)}

where k ∈ {2, . . . ,M`} and Ck−1,` represents the time at which the k−1-st task in operator

`’s sequence is completed , then the total accumulated reward across all operators over

the time horizon TH is maximized.

3.1.2 Incorporating Task Load Constraints

Since we consider the scheduling problem primarily in the context of human super-

visory systems involving UAVs, the effectiveness of a given schedule depends upon the

cognitive states of the operators. Therefore, it is desirable to construct a schedule that

allows each operator to maintain their cognitive state in a high-performance regime. In

particular, we focus our attention on moderating the relationship between the chosen

schedule and the resulting operator task loads (see Section 1.1), and thus we extend the

nominal problem statement to incorporate additional load constraints.

Although there are many different ways of modeling task load, e.g., utilization ra-

tio [141], multi-dimensional load space abstractions [142], among others, we model task

load via a simple, incremental, discrete process, which is driven by the task processing

order and task processing times. Our chosen model is based on the simple observation

41

Robust Task-Scheduling Strategies for Multi-Operator Missions Chapter 3

that, in most situations, when operators are executing tasks, the imposed task load level

increases, and when operators are idle, the imposed task load decreases. In order to

capture this simple dynamic evolution, to each task Tj, we associate a task load incre-

ment ∆Wj, which represents the amount that the operator’s task load increases from

working on the task for time τj. Further, we assume that task load decreases by a cer-

tain amount when the operator is idle, proportional to idle time. We wish to solve the

scheduling problem under the additional constraint that, if possible, each operator’s task

load should remain within the regime [W,W] ⊂ R at any time within the interval [0, TH].

Although this model may be simplistic, it captures the essence of task load evolution

during sequential processing. Indeed, many widely accepted task load evolution models

are deterministic processes that augment task load levels during busy times and degrade

task load during idle times (e.g., [141]). Later, we will treat processing times as pre-

determined parameters for the optimization (even in the scenario-based formulation of

Section 3.1.4). Therefore, if desired, the task load increment parameters can be system-

atically chosen to reflect more sophisticated dynamics. For example, if f : R≥0 → R is

a function that relates time to the amount that task load increments when the operator

is engaging in a general task, then we can set ∆Wj = f(τj) for all j ∈ {1, . . . ,M}. A

similar statement can be made regarding task load decrements during idle time.

Note that while there are numerous task load (and cognitive workload) models in

the literature, many rely on large amounts of pre-existing data or the presence of exten-

sive physiological sensing to calibrate and precisely model the operator load. We have

chosen a simpler path that captures the main qualitative features of such activities. As

part of the development of these types of approaches, it would be important to validate

whether high level decision making problems (such as the one addressed in this chapter)

could support such simplified models, or would necessitate more complex, higher fidelity

models. Currently, this is an open question that we leave as a topic of future work.

42

Robust Task-Scheduling Strategies for Multi-Operator Missions Chapter 3

Despite its flexibility, the incremental task load model considered here cannot account

for dynamics in which increment or decrement magnitudes are dependent upon initial

conditions, since the order in which tasks will be processed is unknown a priori. However,

task load evolution is usually a subjective experience regardless, and thus fine level task

load models may be ill-suited if they are derived from aggregate data. Therefore, in

the construction of general schemes intended to be used with many different operators,

simplistic dynamics may be preferable to finer level models. If, however, the model is

meant to be tuned to a specific operator or group of operators, or more precise real-time

data can be leveraged to accurately predict cognitive states (e.g., neurophysiological

cues [143]), then alternative models may be preferable. In the latter case, the mixed-

integer linear programming (MILP) framework presented herein may not be sufficient

and other options should be explored.

3.1.3 Multi-Operator Scheduling as a MILP

We now illustrate how the finite horizon scheduling problem can be formulated as

a MILP. For the time being, we consider here the deterministic case in which all task

processing times τj are known exactly. In the MILP formulation, the primary decision

variables are binary indicators xj,k,` ∈ {0, 1}, which specify whether or not task Tj should

be executed in the k-th time slot of operator `’s output schedule, i.e., task sequence (see

Figure 3.1). In accordance with Sections 3.1.1 and 3.1.2, each task Tj is fully specified

by the (fixed) 4-tuple (τj, Aj, Rj,∆Wj).

In addition to the tasks {T1, . . . , TM}, we introduce one additional “null-task,” TM+1,

to represent times during which the operator is idle. Specifically, we define the null

task as TM+1 := (ζ, 0, 0,−∆WM+1), where ∆WM+1 > 0 is a constant and ζ ∈ R≥0 is a

parameter representing its length. With the goal of capturing task load evolution within

43

Robust Task-Scheduling Strategies for Multi-Operator Missions Chapter 3

Figure 3.1: A diagram illustrating the basic MILP solution approach for an example
with 4 tasks. The binary decision variables xj,k,` essentially “choose” tasks from the
available task pool to fill available “slots” in each operator’s schedule. Idle times are
specified via the null task, TM+1, which is the only task in the pool that can be chosen
to fill multiple slots in an operator’s output schedule.

the MILP framework, we augment the set of tasks to be processed with the newly created

null task, and re-define T := {T1, . . . , TM , TM+1}.

The null-task is the only task that the operator may execute more than once. In

other words, the output of our proposed method is an augmented schedule, which is

formally defined as a set of sequences {S` := {Tσ(1,`), Tσ(2,`), . . . , Tσ(M`,`)}}, where each

index M` ∈ N is upper bounded by a fixed parameter K ∈ N, and σ : tL`=1{1, . . . ,M`} →

{1, . . . ,M + 1} is some mapping such that the pre-image of each singleton set {j}, where

j ∈ {1, . . . ,M}, contains at most 1 element. This differs from the definition of schedule

in that it allows the possibility of the null-task appearing more than once, and thus the

parameter K, which represents the maximum number of tasks that can appear in any

single operator’s sequence, may exceed M . To guarantee reasonable output augmented

schedules, it is necessary to pick K sufficiently large, i.e., to consider output sequences

with a sufficiently large number of terms. Setting K ≥ TH/ζ + M is sufficient for our

purposes. For the remainder of this chapter, when the distinction between a schedule

and an augmented schedule is not of particular relevance, we simply say “schedule,” and

reserve the qualifier “augmented” only for cases where the distinction is consequential.

44

Robust Task-Scheduling Strategies for Multi-Operator Missions Chapter 3

With this structure, we can incorporate task load into a MILP as an explicit variable

that satisfies an appropriate set of constraints. As such, the scheduling problem with

the additional task load consideration reduces to that of finding the optimal augmented

schedule based on the set T . We rigorously develop this formulation here.

Feasibility Constraints: We first pose a set of constraints to ensure that the solu-

tion to the MILP corresponds to a feasible solution to the scheduling problem. Consider

the following constraints on the binary decision variables xj,k,`:

M+1∑
j=1

xj,k,` ≤ 1, ∀k ∈ {1, . . . , K},∀` ∈ {1, . . . , L}, (3.1)

L∑
`=1

K∑
k=1

xj,k,` ≤ 1, ∀j ∈ {1, . . . ,M}, (3.2)

M+1∑
j=1

xj,k,` − xj,k−1,` ≤ 0, ∀k ∈ {2, . . . , K},∀` ∈ {1, . . . , L}. (3.3)

The constraint (3.1) specifies that each time slot, with respect to each operator’s sequence

order, can contain at most one task. Similarly, the constraint (3.2) guarantees that each

task can only be assigned to at most a single location in the sequence, with the exception

of the null task (note the constraint does not include the null-task). The constraint (3.3)

guarantees that each operator’s task “slots” are filled successively. That is, if some op-

erator’s task slot is filled with a task, then all of the previous slots must be filled as well.

Together, these three constraints ensure that the output solutions correspond to valid

augmented schedules, according to the rigorous definition given.

Availability, Start Time, and Completion Time Constraints: The next constraint

set defines appropriate choice of task start times and completion times. Define Bk,` and

45

Robust Task-Scheduling Strategies for Multi-Operator Missions Chapter 3

Ck,` as non-integer decision variables that denote the start time and the completion time

of the k-th task in operator `’s sequence, resp. Consider the following constraints:

M+1∑
j=1

xj,k,`Aj ≤ Bk,`, ∀k ∈ {1, . . . , K},∀` ∈ {1, . . . , L}, (3.4)

M+1∑
j=1

xj,k,`τj = Ck,` −Bk,`, ∀k ∈ {1, . . . , K},∀` ∈ {1, . . . , L}, (3.5)

Ck,` ≤ TH , ∀k ∈ {1, . . . , K},∀` ∈ {1, . . . , L}, (3.6)

0 ≤ B1,` ≤ ζ, ∀` ∈ {1, . . . , L}, (3.7)

0 ≤ Bk,` − Ck−1,` ≤ ζ. ∀k ∈ {2, . . . , K},∀` ∈ {1, . . . , L}, (3.8)

The constraint (3.4) guarantees that no task is started before the specified availability

time. The constraint (3.5) guarantees that start times and completion times are related

correctly. The constraint (3.6) specifies that rewards are only attained for those tasks

that are completed within the time horizon TH . The contributions of constraints (3.7)

and (3.8) are two-fold: First, the lower bounds specify that, in any individual operator’s

sequence, no task can begin before the previous task ends. The upper bounds arise from

the fact that we have discretized operator idle time into discrete sets of length ζ. These

constraints limit “gaps” that may be present in the output schedule (see Remark 1).

Task Load Evolution Constraints: The remaining constraints deal with moderat-

ing task load. Define Wk,` as a non-integer decision variable indicating operator `’s task

load level after the k-th task in their sequence, and let β, γ be additional, auxiliary

46

Robust Task-Scheduling Strategies for Multi-Operator Missions Chapter 3

non-integer decision variables. Consider the following constraints:

W0,` +
M+1∑
j=1

∆Wjxj,1,` = W1,`, ∀` ∈ {1, . . . , L}, (3.9)

Wk−1,` +
M+1∑
j=1

∆Wjxj,k,` = Wk,`, ∀k ∈ {2, . . . , K}, ∀` ∈ {1, . . . , L}, (3.10)

Wk,` −W ≤ β, ∀k ∈ {1, . . . , K}, ∀` ∈ {1, . . . , L}, (3.11)

W −Wk,` ≤ γ, ∀k ∈ {1, . . . , K}, ∀` ∈ {1, . . . , L}, (3.12)

β ≥ 0, (3.13)

γ ≥ 0. (3.14)

With our incremental definition, it is necessary to ensure that operator `’s task load

level, Wk,`, after the k-th task is defined precisely as the task load Wk−1,` after execution

of the previous task plus the increment defined in the task definition. This is captured

by the constraints (3.9) and (3.10). Here, W0,` denotes operator `’s initial task load.

Notice that, since we have included the null-task in the pool of available tasks, this set

of constraints also defines the appropriate change in task load due to idle time. The con-

straints (3.11), (3.12), (3.13), and (3.14) state that the task load levels need to remain

within the pre-specified bounds, buffered by the decision variables β and γ. These aux-

iliary “buffer” variables will factor into a linear objective function to penalize schedules

that exceed the specified bounds, as discussed in the subsequent section.

MILP Formulation: With these constraints in place, the full MILP takes the form (3.15).

We note that this formulation is a natural extension of that in our previous work [144],

47

Robust Task-Scheduling Strategies for Multi-Operator Missions Chapter 3

which considers an analogous problem for a single operator scenario.

Maximize:

(
M∑
j=1

K∑
k=1

L∑
`=1

Rjxj,k,`

)
− pββ − pγγ

Subject To: (3.1)− (3.14)

(3.15)

Here, the optimization is performed over the binary variables xj,k,` and the non-integer

variables Bk,`, Ck,`,Wk,`, β and γ. The remaining variables are fixed parameters. Notice

that the buffer variables β and γ enter into the objective function as linear penalties for

violating the task load constraints, proportional to the parameters pβ, pγ > 0. Enforcing

the task load bounds in this manner, rather than as a strict constraint, is beneficial for

a variety of reasons. First, exact bounds W,W are usually not known beforehand, and

thus enforcement of a strict bound may be ill-advised. Second, the variables pβ and pγ

provide the system designer with a means to tune the degree of enforcement of task load

bounds. Indeed, higher values of pβ and pγ lead to higher penalties in the objective

function for bound violations. Finally, the enforcement of task load penalties as a soft

constraint ensures feasibility of at least 1 non-degenerate solution, assuming that the

time horizon TH is sufficiently long. This leads to the following observation.

Lemma 1 (Feasibility) The optimization (3.15) is feasible. If, in addition, there exists

j ∈ {1, . . . ,M} such that τj +Aj < TH , then there exists a non-degenerate feasible point,

i.e., a choice of decision variables for which there is at least 1 task in the associated

output augmented schedule.

Proof: The zero vector is feasible, implying nominal feasibility. First assume that

there exists j ∈ {1, . . . ,M} such that Aj = 0 and τj < TH . In this case, we can construct a

feasible decision vector by choosing xj,1,1 = 1, all other binary decision variables are equal

to zero, B1,1 = 0, C1,1 = τj, and γ = β = C, where C is a very large constant (bounding

48

Robust Task-Scheduling Strategies for Multi-Operator Missions Chapter 3

workload violations). Simple substitution verifies feasibility. When there exists j such

that Aj + τj < TH and Aj 6= 0, we can construct a feasible decision vector using a similar

procedure, inserting null-tasks at the beginning of the schedule as necessary to ensure

that (3.7) is satisfied and re-defining the non-integer variables accordingly.

Most formulations of the optimal scheduling problem are known to be NP-hard. The

MILP (3.15) presents a similar set of difficulties. Despite difficulties in finding global

optima for all problem types, effective heuristics and reasonable methods exist for find-

ing high quality solutions to MILPs [145]. Such methods include rounding schemes,

branch and bound search strategies, genetic algorithms, simulated annealing schemes,

and many others [146, 147]. Efficient implementations of many such solution heuristics

are included in a variety of software packages, including the Matlab optimization tool-

box [148], GLPK [149], and cvx [150, 151]. Therefore, if strict global optima are not of

primary concern, the MILP formulation (3.15) may provide a viable solution.

Remark 1 (Null-Task Granularity) Recall that (3.15) relies on the creation of a dis-

crete “null-task” with length ζ. Once a solution to the MILP is found and an augmented

schedule is extracted, tasks are sequentially executed by each operator. Due to task avail-

ability constraints, however, it may not be possible for the operator to start a new task

immediately after the previous task is completed. Further, the solver may also introduce

artificial delays between successive null-tasks. Therefore, if the time-profile of the opera-

tor’s task execution is mapped over the horizon TH , there may be “gaps”, i.e., times in

which no task (even a null-task) is executed. Task load effects during these gaps are not

explicitly taken into account in (3.15). However, a result of (3.7) and (3.8) is that the

length of any possible gaps shrink to 0 as ζ → 0. Therefore, if ζ is taken small enough,

then task load effects due to unaccounted gaps become negligible. Of course, shrinking ζ

increases computational complexity, and thus there is a tradeoff that must be addressed.

49

Robust Task-Scheduling Strategies for Multi-Operator Missions Chapter 3

3.1.4 Incorporating Uncertainty

A major drawback of the scheduling formulation of Section 3.1.3 is that it does not di-

rectly incorporate uncertainty in system parameters. As mentioned, uncertainty is inher-

ent to mixed human-machine teaming applications, and steps should be taken to design

a system that takes this issue into account. In response, we focus our attention in this

section on designing scheduling schemes that are robust to uncertainty in task process-

ing times, which is usually a significant source of uncertainty in persistent task analysis

missions. As such, assume that, for each Tj, the processing time τj is a random variable,

which is distributed according to a probability density function fj. We assume for now

that each distribution fj is known with complete certainty a priori. For simplicity, we

assume that the distributions fj are operator independent; however, we note that, if de-

sired, operator-dependent processing time distributions can be added to our formulation

through straightforward extension (see Remark 5). Generally, the choice of appropriate

function fj is dependent upon the nature of the task being processed. However, in some

circumstances, standard distributions, such as log-normal distributions, have been shown

to be effective in the context of collaborative human-UAV missions [32, 152].

We adopt a scenario-based approach to addressing uncertainty. According to this

approach, the processing time distributions of each task are sampled to generate a set

of scenarios, or possible task processing times. These scenarios are then used to find an

augmented schedule, which remains feasible regardless of the scenario that is chosen to

represent the true task processing times. If the underlying distributions are accurate,

then using large numbers of scenarios to generate a task processing schedule enables the

result to be robust to particular realizations of the processing time variables in actuality.

That is, by following the schedule obtained, a wide variety of task processing times will

still produce rewards that are above the predicted lower bound. Note that the optimal

50

Robust Task-Scheduling Strategies for Multi-Operator Missions Chapter 3

choice for the number of scenarios will generally be application dependent. A thorough

study of the optimal number of scenarios with respect to a given performance metric is an

open research problem that we do not consider here. For our purposes, we choose values

for this parameter that effectively illustrate qualitative effects on the resultant solution.

More formally, suppose that, for each task Tj, we generate a set of Q ∈ N possible

processing times, (τ 1j , τ
2
j , . . . , τ

Q
j), where τ qj ∼ fj for all q. For each q ∈ {1, . . . , Q}, the

set {τ q1 , . . . , τ qM , ζ} defines a scenario, since it represents a possible realization of task

processing times (note that the null task is included). Given the set of Q scenarios, we

expand the MILP (3.15) through the additional requirement that any constraint relating

to availability, start times, completion times, or task loads must be satisfied for all of the

generated scenarios. Amendments to the relevant constraints to satisfy this additional

robustness requirement are summarized as follows.

Availability, Start Time, and Completion Time Constraints: Define Bq
k,` and

Cq
k,` as non-integer decision variable that denote the start time and the completion time

of the k-th task in operator `’s sequence according to the q-th scenario, respectively. We

also introduce one additional auxiliary, non-integer decision variable α. We enforce the

following constraints (which are analogous to (3.4) - (3.8)):

M+1∑
j=1

xj,k,`Aj ≤ Bq
k,`, ∀k ∈ {1, . . . , K},∀` ∈ {1, . . . , L},∀q ∈ {1, . . . , Q} (3.16)

Bq
k,` +

M+1∑
j=1

xj,k,`τ
q
j = Cq

k,`, ∀k ∈ {1, . . . , K},∀` ∈ {1, . . . , L}, ∀q ∈ {1, . . . , Q} (3.17)

Cq
k,` − TH ≤ α, ∀k ∈ {1, . . . , K},∀` ∈ {1, . . . , L}, ∀q ∈ {1, . . . , Q} (3.18)

0 ≤ Bq
1,` ≤ ζ, ∀` ∈ {1, . . . , L},∀q ∈ {1, . . . , Q} (3.19)

0 ≤ Bq
k,` − Cq

k−1,` ≤ ζ. ∀k ∈ {2, . . . , K},∀` ∈ {1, . . . , L},∀q ∈ {1, . . . , Q}. (3.20)

51

Robust Task-Scheduling Strategies for Multi-Operator Missions Chapter 3

Task Load Evolution Constraints: Define W q
k,` as a non-integer decision variable

indicating operator `’s task load level after the k-th task in their sequence according to

the q-th scenario. Define all other variables as before. Consider the following constraints:

W0,` +
M+1∑
j=1

∆Wjxj,1,` = W q
1,`, ∀` ∈ {1, . . . , L},∀q ∈ {1, . . . , Q},

(3.21)

W q
k−1,` +

M+1∑
j=1

∆Wjxj,k,` = W q
k,`, ∀k ∈ {2, . . . , K},∀` ∈ {1, . . . , L}, q ∈ {1, . . . , Q}

(3.22)

W q
k,` −W ≤ β, ∀k ∈ {1, . . . , K},∀` ∈ {1, . . . , L},∀q ∈ {1, . . . , Q}

(3.23)

W −W q
k,` ≤ γ, ∀k ∈ {1, . . . , K},∀` ∈ {1, . . . , L},∀q ∈ {1, . . . , Q}

(3.24)

α ≥ 0, (3.25)

β ≥ 0, (3.26)

γ ≥ 0. (3.27)

Note that the constraints (3.21) - (3.27) are analogous to (3.9) - (3.14). Also note that, if

desired, we can easily make the workload increments scenario-dependent as well. In this

case, ∆Wj in (3.21) and (3.22) would be replaced by a scenario-dependent parameter

∆W q
j . This is often useful if workload increments are a function of the task processing

time. We take this approach for the numerical simulations presented later in this chapter.

Scenario-Based MILP Formulation The scenario-based MILP is expressed in (3.28).

52

Robust Task-Scheduling Strategies for Multi-Operator Missions Chapter 3

Maximize:

(
M∑
j=1

K∑
k=1

L∑
`=1

Rjxj,k,`

)
− pαα− pββ − pγγ

Subject To: (3.1)− (3.3)

(3.16)− (3.27).

(3.28)

Here, the optimization is performed over the binary variables xj,k,` and the non-integer

variables Bq
k,`, C

q
k,`,W

q
k,`, α, β and γ. The remaining variables are fixed parameters. Note

that (3.28) is largely the same as (3.15); however, there are a few key differences. First,

for each q, there are unique sets of decision variables {Bq
k,`}, {Cq

k,`}, and {W q
k,`}, where k ∈

{1, . . . , K} and ` ∈ {1, . . . , L}, yet there is only one set of binary variables {xj,k,`} which

serves all scenarios. Thus, starting times, ending times, and task load values are scenario-

dependent, while the resulting schedule is not dependent on these parameters. This allows

for the unambiguous extraction of an augmented schedule from the solution. The result

will then (ideally) be robust to uncertainty in processing times. Second, an additional

decision variable α bounds the amount that the task completion times can exceed the

horizon TH . This variable α is then factored into the objective function by means of a

linear penalty. As with task load, this “soft” enforcement of the time horizon constraint is

advantageous because it provides system designers with an additional “tuning” parameter

to control the degree of robustness. Indeed, by increasing the value of pα, more penalty is

incurred for generating schedules whose completion times are likely to exceed TH . These

additional parameters also serve to prevent the optimization from returning degenerate

solutions in the case of highly skewed processing time distributions. This discussion

readily leads to the following lemma, whose proof straightforward and thus omitted.

Lemma 2 There always exists at least 1 non-degenerate solution to (3.28).

53

Robust Task-Scheduling Strategies for Multi-Operator Missions Chapter 3

Remark 2 (Robust Optimization) Many schemes exist for solving optimization prob-

lems containing uncertainty. In particular, the area of robust optimization provides tools

for finding solutions that perform well in the worst case, given that the underlying un-

certainty sets are accurately bounded [70]. Scenario-based approaches to handling uncer-

tainty can, in some sense, be viewed as a “naive” approach to robust optimization since

they rely on a sampling-based expansion of the constraint set. Despite this, scenario-

based approaches lend themselves well to a variety of applications due to their simplicity

and effectiveness. We adopt a scenario-based approach for the following reasons: First,

scenario-based optimization is simple and intuitive, making it an attractive to practition-

ers and theoreticians alike. Second, most other approaches to robust optimization rely on

the presence of bounded uncertainties, or require approximations that enforce artificial

bounds. The scenario-based approach does not require such bounds. Third, scenario-

based approaches allow for easy tuning of the problem to fit with a desired degree of

robustness. Finally, given “regularly” shaped uncertainty distributions, scenario-based

approaches usually provide reasonable performance with a modest number of samples.

Remark 3 (Scenario Generation) Scenarios are generated by sampling the functions

fj. Naive Monte-Carlo sampling usually produces samples that most accurately reflect the

underlying distribution in the limit as the number of samples grows. However, scenarios

can be generated by any reasonable sampling method and, in certain situations, design

goals may be better served by these alternative means. For example, processing time

distributions may have semi-infinite support, and thus Monte-Carlo sampling can produce

some scenarios with excessively long durations in comparison to the horizon length. In

most cases, excessively long durations will lead to degenerate, or excessively conservative

solutions. Therefore a more restrictive sampling scheme may be beneficial.

54

Robust Task-Scheduling Strategies for Multi-Operator Missions Chapter 3

0 5 10 15 20 25 30

Q = 15

Q = 10

Q = 15

Q = 1

1

2

3

4

5

6

7

8

9

10

4.3

2.8

4.7

1.2

2.8

4.2

1.2

3.1

4.1

3.7

R R 5 R R 4 R R R 8

R R 4 R 7 R R R R 1

R R 4 R R R 5 R R 1

R R 5 R R 1 R R R 8

Time

Agent 1

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Time

T
a
s
k
 L

o
a
d
 L

e
v
e
l

Agent 1

Q = 1
Q = 5
Q = 10
Q = 15
Task Load Upper Bound
Task Load Lower Bound

0 5 10 15 20 25 30

Q = 15

Q = 10

Q = 15

Q = 1

1

2

3

4

5

6

7

8

9

10

4.3

2.8

4.7

1.2

2.8

4.2

1.2

3.1

4.1

3.7

R R 1 R R 7 R

R 5 R R R R 8 R

R R R 7 R 8 R R

4 R R R 7 R

Time

Agent 2

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Time
T

a
s
k
 L

o
a
d
 L

e
v
e
l

Agent 2

Q = 1
Q = 5
Q = 10
Q = 15
Task Load Upper Bound
Task Load Lower Bound

Figure 3.2: An example of a multi-operator (augmented) schedule produced by
solving (3.28), for an example mission with 10 tasks, 2 operators (labeled “Agent
1”,“Agent 2”), a total horizon length of 30 (dimensionless units), and log-normally
distributed task processing times.

3.1.5 Numerical Examples

Figure 3.2 shows a summary of scheduling solutions for an abstracted and simplified

mission with 10 tasks, 2 operators, a horizon length of 30 (dimensionless units), and

log-normally distributed task processing times. The solution was calculated using the

formulation (3.28). For this simulation, we chose pα = 10, pβ = pγ = 15, W = 0.3,

W = 0.7, and W0,1 = W0,2 = 0.5. In the two plots in the left-most column of Figure 3.2,

the problem setup is portrayed using the blue bars. For each task Tj, the appropriate

bar starts at the task availability time Aj, and extends for a length corresponding to the

expected processing time. The number inside the bar represents the reward obtained for

successful completion of the task. The gray bars in the lower portion of the plot represent

a simulated instance of the operator task execution for each scenario condition, based

on the solution to (3.28). The start time and length of the bar represent the time that

55

Robust Task-Scheduling Strategies for Multi-Operator Missions Chapter 3

the task was started and the task duration respectively, while the number inside the bar

represents the task index, with a letter “R” indicating a null-task (“Rest”). Specifically,

these simulated schedules were calculated as follows. First, “actual” task execution times,

i.e., realizations of each task processing time, were randomly sampled from the appropri-

ate distribution. Then, for each scenario condition, scenarios were generated using naive

Monte-Carlo sampling (see Remark 3), and the optimization (3.28) was solved using Mat-

lab’s Intlinprog function. Using the resultant schedule, task execution was simulated

by assuming that each operator processes each task in the respective sequence specified

by the optimization solution and that each task has a duration according to the “actual”

processing time. Each task was started at the earliest possible time (the maximum of

the previous task completion time and the availability constraint), and tasks were only

included if their actual completion time was less than TH . Note that all task executions

satisfy the availability constraints, as expected, but their actual duration differs from the

expected duration due to uncertainty in processing times.

The two plots in the right-most column of Figure 3.2 show the evolution of task load

corresponding to the simulated mission that is summarized by the corresponding plots

on the left. In the simulation, a simple linear task load model is considered: if t ∈ R≥0,

we assume operator `’s task load W` satisfies the dynamics:

dW`

dt
(t) =

0.05, if executing a non-null task at time t and W (t) 6= 1,

−0.05, if executing a null task or no task at time t and W (t) 6= 0, and

0, otherwise.

We have chosen to constrain task load values to lie between 0 and 1 both for modeling

purposes, and because this is a normalization that arises naturally in common task load

models [153]. In a priori planning, this cap is not taken into account by the optimization,

56

Robust Task-Scheduling Strategies for Multi-Operator Missions Chapter 3

and thus, for planning, it is assumed that ∆W q
j := ±0.05τ qj , where the sign is dependent

upon whether the task under consideration is a null-task. Note here, that as the number

of scenarios increases, the task load does not exceed the specified bounds.

Figure 3.3 illustrates the effects of altering the task load bounds on achieved perfor-

mance for a single-operator scheduling mission. The plot was generated as follows. First,

an underlying task set was generated, the parameters TH = 30, W0,1 = 0.5, and pα = 10

were initialized, and a set of 10 scenarios were generated. Then, 10 simulations runs

were conducted, where in each run, (i) “actual” task processing times were sampled from

the appropriate distribution, (ii) an augmented schedule was created using a solution

to (3.28) for each set of W,W, pβ, and pγ values (for the “no task load” condition, set

these parameters to 0), (iii) the task execution process was simulated using the result-

ing schedule and “actual” processing times, and (iv) the achieved nominal reward was

recorded, i.e., the sum of the Ri’s for tasks that could be executed within time TH . The

top plot in Figure 3.3 shows the mean and standard deviation of the rewards obtained

over the simulation runs (the absence of error bars indicates no variation across runs).

The bottom two plots in Figure 3.3 show the maximum amounts that the task load ex-

ceeded the upper task load bound and the maximum amount that the task load violated

the lower task load bound during task execution, respectively (not taking into account

violations that occur after all tasks in an operator’s schedule have been executed). Notice

that the obtained reward decreases as pβ and pγ are increased and as the allowable task

load bounds widen, while the magnitude of task load bound violation decreases.

3.2 Adaptive Scheduling Scheme

The use of a priori, scenario-based robust scheduling strategies can generate reliable

lower bounds on system performance. That is, using a reasonable number of scenarios

57

Robust Task-Scheduling Strategies for Multi-Operator Missions Chapter 3

0 1 5 10 20
13

14

15

16

17

18

19

20

Task Load Parameter, p
β
 = p

γ

R
e

w
a

rd
 O

b
ta

in
e

d

W = 0.2, W = 0.8

W = 0.3, W = 0.7

W = 0.4, W = 0.6

0 1 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Task Load Parameter, p
β
 = p

γ

M
a
x
 T

a
s
k
lo

a
d
 V

io
la

ti
o
n
,
U

p
p
e
r

W = 0.2, W = 0.8

W = 0.3, W = 0.7

W = 0.4, W = 0.6

0 1 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Task Load Parameter, p
β
 = p

γ
M

a
x
 T

a
s
k
 L

o
a
d
 V

io
la

ti
o
n
,
L
o
w

e
r

W = 0.2, W = 0.8

W = 0.3, W = 0.7

W = 0.4, W = 0.6

Figure 3.3: An illustration of the effects of altering the parameters W , W , pβ, and pγ
when using the optimization problem (3.28) to generate schedules for a single-operator
sample mission.

(assuming that the chosen processing time distributions are accurate), the MILP (3.28)

will produce a theoretical lower reward bound that will likely hold true in actuality.

In missions where accurate performance guarantees are crucial, such bounds may be

sufficient. However, theoretical bounds produced by scenario-based robust optimizations

may be very conservative, particularly when the uncertainty distributions are highly

skewed or have high variance. For example, if visual search times are modeled via log-

normal distribution, then robust scheduling strategies will be most likely driven by search

times occurring in the tail, which are unlikely to occur in actuality. As such, it is clear that

naively following a robust schedule that is calculated a priori does not take advantage

of the full knowledge at the designer’s disposal during the mission, and thus may lead to

poor solutions with respect to actual realizations of uncertain parameters.

In this section, we explore adaptive methods for improving performance while still

maintaining the desired robustness properties of solutions. We start by developing strate-

58

Robust Task-Scheduling Strategies for Multi-Operator Missions Chapter 3

gies for the single-operator case (i.e., the case where K = 1), and subsequently show how

they can be extended for use with multiple operators.

3.2.1 Single Operator Receding-Horizon Scheduling

Assume a single operator is charged with sequentially processing a set of tasks. Per-

formance under a robust scheduling strategy can potentially be improved by re-planning

in real-time as task processing times are incrementally realized. This observation nat-

urally leads to a receding-horizon scheme, which calculates new, robust schedules after

each task is processed. This scheme is described in Algorithm 1.

Algorithm 1: Single Operator Receding-Horizon Scheduling
Input : T := {Tj}j∈{1,...,M+1}; {fj}j∈{1,...,M}; W0,1; Q, pα, pβ , pγ

while Non-null tasks remain and the remaining horizon TH > 0 do
1 Collect the tasks to be processed in a set T ;
2 Formulate and solve the scenario-based robust scheduling problem as in Section 3.1.4,

with respect to the set T and a horizon length TH ;
3 if Resultant schedule is empty or consists of only null tasks then

break

4 Operator executes the resultant schedule, until the first non-null task T̂ is completed;
5 Remove T̂ from T , and observe the time t that has elapsed since the last re-plan;
6 Subtract t from all remaining (non-null) task availability constraints, redefine TH = TH − t;

The added benefit of the receding-horizon approach is that it takes advantage of

the manner in which uncertainty arises in the sequential task analysis mission. Indeed,

in these missions, uncertainty is generally reduced as time progresses. Accordingly, the

receding horizon scheme re-plans each time an uncertain variable is realized, which, in the

robust planning case, will generally lead to better performance. The obvious drawback to

this strategy is that it requires a MILP to be solved after each non-null task is executed;

thus, the total computational complexity is significantly increased. Therefore, there is a

tradeoff between solution quality and computation time that must be addressed.

Remark 4 (Computation time) Even though the receding-horizon robust scheduling

59

Robust Task-Scheduling Strategies for Multi-Operator Missions Chapter 3

scheme may be computationally intense in its raw form, there are many simple steps that

can be taken to adjust the scheme and fit it into a variety of computational frameworks.

The simplest amendment is to reduce the number of scenarios used, which reduces com-

plexity at the expense of robustness. A slightly more sophisticated strategy would only

re-plan when a certain criterion is met, as opposed to re-planning after every non-null

task execution. For example, one could choose to re-plan only if the observed time on

the executed task is significantly different from the worst-case processing time predicted

by the generated scenarios. For the sake of brevity, a thorough treatment of these types

of amendments is not included here, and is left as a topic of future work.

3.2.2 Single-Operator, Receding-Horizon Scheduling with Un-

certainty Set Estimation

It has been assumed thus far that the probability distribution fj of processing times

for each task is known exactly. Indeed, samples are drawn assuming certain distribu-

tions in order to generate the scenarios that are used in the optimization (3.28). In

many cases, however, the distributions themselves may not be known exactly, and thus

may need to be estimated during the course of task execution. Of course, depending on

problem assumptions, such estimation may not be helpful, e.g., if all tasks are assumed

to have completely independent distributions fj. However, given appropriate problem

structure, online estimation of uncertain distributions can potentially further boost per-

formance when used in conjunction with the receding-horizon approach of Section 3.2.1.

To illustrate, we develop a common scenario that can benefit from such estimation here.

Assume once again the presence of a single operator. Building on the formulation of

the previous sections, suppose each task Tj is generated by one of P ∈ N sources, e.g.,

different regions of interest, and each such task can be of H ∈ N possible types, e.g.,

60

Robust Task-Scheduling Strategies for Multi-Operator Missions Chapter 3

easy, medium, or hard. Assuming independent sampling, suppose further that associated

to each source p ∈ {1, . . . , P}, there exists an unknown, static probability mass function

gp : {1, . . . , H} → [0, 1] which captures the likelihood that a task originating from source p

is of type h. That is, the probability of any single task that is generated by source p being

of type h is gp(h). Finally, to each type h, associate an unknown, static probability density

function fh : R≥0 → R, which captures the distribution of possible processing times. Note

that the processing time distributions fh are region independent. To summarize, with

these additions, each task Tj consists of a 6-tuple Tj = (τj, Aj, Rj,∆Wj, ρj, ηj), where

Aj, Rj, and ∆Wj are defined as before, ρj ∈ {1, . . . , P} represents the source which

generated the task (known to the operator), ηj ∼ gρj is the task type (unknown to the

operator), and τj ∼ fηj is the processing time (unknown to the operator).

The true distributions associated with both sources and types are unknown to the

operator. However, in this new setup, there are commonalities among the distributions

that can be exploited through estimation. Thus, we implement estimation in conjunction

with the receding horizon approach as follows. For each source p and each type h, let ĝp

and f̂h denote estimates of gp and fh, resp. The basic idea behind this adaptive scheduling

approach is to incrementally update the estimates ĝp and f̂h as new information becomes

available, i.e., as the operator processes tasks. The updated estimates are then used in

subsequent scheduling operations. This process is described by Algorithm 2

Line 2 in Algorithm 2 requires explanation. Indeed, the operator does not know the

task type of any unprocessed task with complete certainty, and thus it is necessary to

make a decision about which distribution should be sampled for the purpose of generating

scenarios. This choice can be made in many different ways. For example, a logical choice

is a “maximum likelihood” method, where each parameter τ qj is selected by first selecting

η∗j ∈ arg maxh ĝρj(h) and subsequently sampling the distribution fη∗j . That is, each

scenario is generated by sampling from the processing time distribution corresponding to

61

Robust Task-Scheduling Strategies for Multi-Operator Missions Chapter 3

Algorithm 2: Single Operator Receding-Horizon Scheduling with Estimation

Input : T := {Tj}j∈{1,...,M+1}; {f̂h}h∈{1,...,H}, {ĝp}p∈{1,...,P}; W0,1; pα, Q, pβ , pγ

while Non-null tasks remain and the remaining horizon TH > 0 do
1 Collect the tasks to be processed in a set T ;

2 Generate new scenarios according to the estimates {ĝp}p∈{1,...,P} and {f̂h}h∈{1,...,H};
3 Formulate and solve the scheduling problem (3.28);
4 if Resultant schedule is empty or consists of only null tasks then

break

5 Operator executes the resultant schedule, until the first non-null task T̂ is completed;

6 Observe η̂ and τ̂; Update the estimates ĝρ̂ and f̂η̂ ;
7 Remove T̂ from T , and observe the time t that has elapsed since the last re-plan;
8 Subtract t from all remaining (non-null) task availability constraints, redefine TH = TH − t;

the most likely type for task Tj, according to ĝρj . We exploit this “maximum likelihood”

sampling process in our remaining simulations. Once the sampling method has been

established, it remains to choose a process for updating the distributions ĝp and f̂h.

The appropriate update method will generally be governed by the problem assumptions.

To illustrate the functionality of the receding-horizon robust scheduling scheme with

estimation, we assume that each element in the set {fh}h∈{1,...,H} := (µh, σh) is log-

normally distributed, where µh, σh are the standard log-normal distribution parameters.

We also assume that some previous information is available regarding each distribution

gp and fh in the form of a set of previous samples, accumulated prior to the current

scheduling mission. With this information, upon completion of task Tj, the appropriate

distributions ĝρh and f̂ηj are updated using standard maximum likelihood estimation.

Figure 3.4 presents a comparison between the various solution methods discussed

thus far for a sample mission involving 10 tasks, 2 possible task sources, and 3 possible

task types. Here, it is assumed that there is uncertainty in task processing times, as

well as in the task distributions gp and the distributions fh. Each distribution gp was

generated randomly, and the distributions fh were generated by creating a set of log-

normal distributions, each with identical σ parameters, and whose medians (eµ) were

spaced equally across the interval [0, 0.5TH]. It is assumed that 10 prior samples from each

62

Robust Task-Scheduling Strategies for Multi-Operator Missions Chapter 3

0 5 10 15

5

10

15

20

Number of Scenarios, Q

R
e

w
a

rd
 O

b
ta

in
e

d

No Task Load

A Priori

RH

RH w Est

0 5 10 15
0

0.1

0.2

0.3

0.4

Number of Scenarios, Q

M
a

x
 T

a
s
k
 L

o
a

d
 V

io
la

ti
o

n
,

U
p

p
e

r

A Priori

RH

RH w Est

Figure 3.4: A performance comparison between 4 different solution methodologies: (i)
a priori planning with no workload consideration, (ii) a priori planning with workload
consideration, (iii) receding horizon planning with workload consideration, and (iv)
receding horizon planning with estimation and workload considerations.

source distribution gp are available a priori, and 5 prior samples are available from each

distribution fh. The prior samples were generated from sampling the appropriate “actual”

distributions. The estimates ĝp and f̂h were then generated using standard maximum

likelihood estimation. For the methods involving estimation, these distribution estimates

were re-evaluated each time a task was completed. In all cases, scenarios were generated

using the “maximum likelihood” scheme. Finally, we chose pα = 10, pβ = pγ = 15,

W0 = 0.5, W = 0.3, W = 0.7, and TH = 30. The left plot in Figure 3.4 shows the

nominal rewards obtained, i.e., the sum of the the rewards Ri associated with tasks that

were executed, averaged over 10 simulated task execution processes. The same setup and

prior information was used in each run, but each run had different realizations of the

processing times, sampled from the underlying distributions. Identical scenarios were

used across experimental conditions (i.e., solution methods considered). As expected,

the “no task load” condition resulted in the highest achieved rewards for all cases, and

the rewards showed a slight downward trend as the number of scenarios increases, since

higher numbers of scenarios provide increased robustness at the expense of lower expected

rewards. Also note the large variances due to the high amounts of uncertainty in the

63

Robust Task-Scheduling Strategies for Multi-Operator Missions Chapter 3

underlying problem. The right plot in Figure 3.4 shows the maximum amount that the

upper task load bound was violated during the mission (the lower bound was almost never

violated in any of the conditions, so the plot is omitted). Notice that, qualitatively, the

receding horizon scheme with estimation resulted in lower task load violations than the

other methods, while still achieving similar nominal rewards, particularly as the number

of scenarios increased. Although the obtained benefit is quantitatively inconclusive in this

example, we hypothesize that the adaptive scheme with estimation would likely produce

a more pronounced benefit in situations with larger numbers of tasks. Rigorous analysis

of this hypothesis and other effects due to the underlying problem structure on the utility

of adaptive schemes is another interesting avenue of future research.

3.2.3 Multiple-Operator Receding-Horizon Schemes

On the surface, it may seem straightforward to extend the receding-horizon schemes

of the previous two sections for use with multiple operators. However, upon closer ex-

amination, certain aspects of the previous algorithms become unclear in the presence of

multiple operators that process tasks simultaneously. For example, in calculating sched-

ules in the receding horizon framework for a single operator (Section 3.2.1), it is clear

when re-planning operations are appropriate, e.g., when the operator finishes processing

a task. However, with multiple operators, each operator will finish their assigned tasks

at different times, and thus a decision must be made as to when it is appropriate re-plan.

We explore these and other issues relating to multiple operator adaptive schemes here.

Assume the presence of L > 1 operators and the task structure of Section 3.2.2. As

before, we assume that all task-related quantities are operator independent. That is,

each task Tj is defined as before, with the parameters τj, Aj, Rj,∆Wj, ρj, ηj being inde-

pendent of which operator processes the task. Further, the distributions gp and fh are

64

Robust Task-Scheduling Strategies for Multi-Operator Missions Chapter 3

operator independent. Under these assumptions, the formulation (3.28) is appropriate

for a priori planning of schedules. However, to develop a receding horizon scheme for

multiple operators (analogous to Sections 3.2.1 and 3.2.2), some additional work is nec-

essary. In particular, different operators will process and finish tasks at different times,

and therefore an appropriate re-plan strategy must be formulated. In order to keep a

close connection to the single cycle case, we develop a strategy in which we re-plan each

time a non-null task is completed. This process is outlined in Algorithm 3.

Algorithm 3: Multi-Operator Receding-Horizon Scheduling

Input : T := {Tj}j∈{1,...,M+1}; {f̂h}h∈{1,...,H}, {ĝp}p∈{1,...,P}; {W0,`}`∈{1,...,L}; Q, pα, pβ , pγ

while Non-null tasks remain and the remaining horizon TH > 0 do
1 Collect the tasks to be processed in a set T ;
2 Call Algorithm 4 to formulate and solve a constrained multiple operator scheduling problem,

in which tasks already in progress must be completed first by the appropriate operator;
3 if Resultant (multi-operator) schedule is empty or consists of only null tasks then

break

4 Operators execute the new schedule until someone completes a non-null task T̂ (if an
operator has a task in progress, this task will be the first task in their new schedule);

5 If desired, observe τ̂, η̂ and update estimates ĝρ̂ and f̂η̂ ;
6 Remove T̂ from T , and observe the time t that has elapsed since the last re-plan;
7 Subtract t from all remaining (non-null) task availability constraints, redefine TH = TH − t;

Notice that line 2 in Algorithm 3 constructs new multiple operator schedule while

simultaneously constraining the tasks already in progress to be completed first. This is

done by adding some additional constraints to (3.28) before it is solved. For example, if

task Tj is in progress by operator ` at the time of re-plan, then the additional constraint

to be added would take the form xj,1,` = 1. Indeed, setting xj,1,` = 1 indicates that

the first task in operator `’s new task sequence is task Tj. Recall, however, that upon

re-plan, the actual processing time of any task in progress is still unknown. Therefore,

in order for the MILP to accurately reflect the current mission state, prior to solving

the MILP (3.28) (with the additional constraint just mentioned), it is also necessary to

subtract the time that each task has been in progress from the generated scenarios. In

65

Robust Task-Scheduling Strategies for Multi-Operator Missions Chapter 3

summary, for the previous algorithm, line 2 will require the steps in Algorithm 4.

Algorithm 4: Constrained MILP Formulation

Input : T := {Tj}j∈{1,...,M+1}; {f̂h}h∈{1,...,H}, {ĝp}p∈{1,...,P}; {W0,`}`∈{1,...,L}; Q, pα, pβ , pγ
Output : Multi-operator (augmented) schedule

1 Generate new scenarios for the remaining tasks in T ;
for Each task Tj in progress do

2 Find the difference t̂ between the current time and the time task Tj was started;

3 For all q, set τ qj = max{τ qj − t̂, 0};
4 Find the agent ` that is working on task j. Add an additional constraint xj,1,` = 1 to (3.28).

5 Formulate and solve (3.28), including the newly added constraints.;
return Multi-operator (augmented) schedule

Remark 5 (Generality) Although we have made a variety of assumptions in formulat-

ing (3.28), further generality can be achieved by altering the MILP in a natural way. For

example, task processing times can be made operator dependent by generating scenarios

for each operator, and introducing an additional index ` into the task processing time.

The variables τ qj would then become τ qj,` to represent the time required for operator ` to

process task Tj in the q-th scenario. Other generalizations can be made similarly. These

generalizations are, of course, at the expense of additional computation.

Remark 6 (Re-plan Schemes) In the presented receding horizon scheme for multiple

operators, we have chosen to re-plan each time a non-null task is completed. This is

certainly not the only strategy. For example, an alternative strategy would re-plan only

if a non-null task is finished and the actual task duration is significantly different than

expected. Exploration of different re-plan strategies should be assessed in future work.

Remark 7 (Task Pool Evolution) A natural question that arises from the presented

multiple-operator, receding horizon strategy is whether it is possible to simply omit tasks

that are already in progress from the re-plan MILP, rather than altering scenarios and

66

Robust Task-Scheduling Strategies for Multi-Operator Missions Chapter 3

1 5 10 15 20
0

100

200

300

400

500

600

Number of Scenarios, Q

C
o
m

p
u
ta

ti
o
n
 T

im
e
 (

s
)

No Task Load, A Priori

Task Load, A Priori

Task Load, RH

Task Load, RH w Est

Task Load, RH w Est, 4 Agents

Figure 3.5: Observed computation times for different methodologies: (i) single agent,
a priori planning, no task load consideration, (ii) single agent, a priori planning,
task load consideration, (iii) single agent, receding horizon planning, task load con-
sideration, (iv) single agent, receding horizon planning with estimation, task load
consideration, and (v) 4 agents, receding horizon planning with estimation, task load
consideration.

including additional constraints. This alternative strategy is not possible given the pre-

sented MILP framework, as the actual task end-times are unknown at the time of re-plan.

3.3 Heuristic Approach

The multiple operator formulation of Section 3.2.3 may be appropriate for small

scheduling problems; however, the introduction of additional variables, which are neces-

sary to move from a single to a multiple operator framework, and the additional planning

instances that are required by adaptive approaches can significantly increase computa-

tion time, as shown in Figure 3.5. This figure was generated for an example problem

involving M = 10 tasks, TH = 30, ζ = 2, W = 0.3, W = 0.7, W0,` = 0.3 for all `,

pα = 10, and pβ = pγ = 15. Note that even with a moderate number of tasks and op-

erators, the inflation of the state space caused by the introduction of new variables and

adaptive strategies significantly increases computation time. We remark that the plot

67

Robust Task-Scheduling Strategies for Multi-Operator Missions Chapter 3

in Figure 3.5 is only meant to give the reader a flavor for the usual trends with respect

to computation time, and is not meant to portray a strict relationship to be observed

in every problem instance. Indeed, due to the use of heuristic solvers (namely, Matlab’s

intlinprog solver), observed computation times rely heavily on the particular problem

setup and the parameters used to initialize solvers. For instance, there may be cases in

which moving from a single agent setup to a 2 agent setup actually reduces computation

time due to the nature of the state space. Despite this, the general trend remains, in

that computation time diverges quickly to an impractical level as the number of agents

grows and additional problem complexities are added.

This discussion motivates the need for alternative means for solving the multiple

operator problem. In this section, we introduce one such method, and illustrate how

this alternative method can still achieve adequate performance, while using only a frac-

tion of the computation time that is observed when solving the problem with the naive

approaches of Sections 3.1.4 and 3.2.3 . The idea behind this alternative approach is

straightforward: instead of solving a single optimization across all operators, we use a

heuristic to first assign tasks to operators, and subsequently solve the resulting single op-

erator problems. In this section, we restrict our attention to a priori planning, although

one could easily construct an analogous approach for receding-horizon implementation.

Consider first the case of a single scenario, i.e., Q = 1. Our proposed assignment

strategy proceeds in a methodical fashion, in which operators are cyclically selected one

at a time according to a pre-defined order. When an operator is selected, a single task is

assigned to the selected operator out of the remaining task pool, based on scores that are

assigned to each task. This procedure evolves according to Algorithm 5. In this algorithm,

the pool of available tasks includes the null-task. The idea behind Algorithm 5 is to

quickly and incrementally simulate a task-execution process for each operator, based on

local information, and use the result as a basis for task assignment. Each task is assigned

68

Robust Task-Scheduling Strategies for Multi-Operator Missions Chapter 3

a score based on how much the objective function of (3.28) would increment if that task

were to be executed next in the considered operator’s task sequence. The score for each

task is discounted by a factor λt
end
j −θj , which is proportional to the amount of time that

it will take the operator to process the task (assuming that the time indicated by the

scenario is accurate). The task with maximum score is assigned to the operator under

consideration, and this task is “executed” next in the operator’s simulated schedule.

Algorithm 5: Single Scenario Task Assignment
Input : T := {Tj}j∈{1,...,M+1}; {W0,`}`∈{1,...,L}; pα, pβ , pγ
Output : Operator/Task Pairings

1 Initialize statistics α = β = γ = 0, select λ ∈ (0, 1];
for Each Operator ` do

2 Initialize statistics θ` = 0, ξ` = W0,`

3 Select a permutation of the set {1, . . . , L} to act as the selection order;
while Unassigned non-null tasks remain (cycling through the selection order) do

for The next operator in the selection order, say operator ` do
for Each task Tj do

4 Calculate theoretical time tendj that operator ` could finish Tj , assuming θ` is the

current time and the time prescribed by the scenario is the true processing time;

5 Calculate theoretical task load W end
j that would be attained if task Tj were to be

processed next by operator `, under the same assumptions of the previous step,
along with an additional assumption that ξ` is operator `’s current task load;

if W end
j −W > β then

6 Set εj = W end
j −W − β and β = W end

j −W
else

7 Set εj = 0

if −W end
j +W > γ then

8 Set εj = −W end
j +W − γ and γ = −W end

i +W

else
9 Set εi = 0

if tendj − TH > α then
Set εj = tendj − TH − α and α = tendj − TH

else
10 Set εj = 0.

11 Calculate a score πj = (Rj − pαεj − pβεj − pγεj)λt
end
j −θj ;

12 Select j∗ ∈ arg maxj πj and, if task Tj∗ is not a null-task, assign task Tj∗ to operator `;

13 Set θ` = tendj∗ , ξj = W end
j∗ and, if task Tj∗ is not a null-task, remove task Tj∗ from T .

return Operator/Task Pairings

Since we have only used one scenario thus far, the Algorithm 5 suffers from the same

69

Robust Task-Scheduling Strategies for Multi-Operator Missions Chapter 3

deficiency as traditional deterministic scheduling schemes in the presence of uncertainty.

Namely, we have performed task assignments based on the assumption that the processing

times for a single scenario are true. To incorporate some degree of robustness into the

heuristic task assignment scheme, we propose Algorithm 6 (see Figure 3.6).

This new algorithm has the added feature that it bases the final target assignment

on a series of heuristic assignment operations, and assigns to each task the agent that is

most likely to comprise the best task-operator assignment. One other small detail that

must be addressed is the procedure to be used if there is a “tie” between two or more

operators when executing the final step of Algorithm 61. One possibility is to randomly

select one of the operators as the final assignment. Although valid, this strategy does

not take into account tasks that are already assigned to the set of operators that are

tied. A potentially better approach in the case of ties is to assign the task according to

either the global end times of the task, or the number of tasks that are already in the

various operator’s assignment. For example, if there is a tie between operators 1 and 2,

but operator 1 has already been assigned 5 tasks and operator 2 has not been assigned

any task, then it may be beneficial to give the task to operator 2. Thorough comparisons

between these variations is left as a topic of future research.

Algorithm 6: Multi-Scenario Task Assignment
Input : T := {Tj}j∈{1,...,M+1}; {W0,`}`∈{1,...,L}; Q, pα, pβ , pγ
Output : Operator/Task Pairings

1 Generate a set of Q scenarios, and initialize a matrix counts as a M × L matrix of zeros;
for Each scenario q do

2 Call Algorithm 6 to obtain a target-task assignment;
for Each operator ` and each task Tj assigned to operator ` do

3 Increment the (j, `)-th element of the matrix counts by 1

4 Obtain final pairings: for each j ∈ {1, . . . ,M}, assign Tj to agent `∗ ∈ arg max` counts(j, ·).
return Operator/Task Pairings

1“Ties” can also occur, in theory, in step 12 of Algorithm 5, though it is highly unlikely in practice.
If such a scenario arises, a similar tie-breaking procedure should be used

70

Robust Task-Scheduling Strategies for Multi-Operator Missions Chapter 3

Figure 3.6: Schematic of the proposed task assignment process for a sample mission.
An heuristic assignment step is run for each available scenario. Then, to obtain final
operator/task pairings, each task is paired with the operator to which it was most
often assigned while looping through the individual scenarios.

Figure 3.7 shows a performance comparison between 3 solution methods for a sample

3-operator scheduling problem, using a “least number of tasks” tie-breaking procedure.

The solution methods used are (i) the “naive” approach of Section 3.1.4, (ii) the full

heuristic assignment and solution approach of the present section, and (iii) a “reward-

only” heuristic assignment strategy that is analogous to the full heuristic strategy, except

scores are assigned to tasks solely based on the rewards Ri during assignment, i.e., the

strategy is the same as that discussed above, except the value of εi, εi, and εi are always

taken to be 0. The plots illustrate the average over 10 simulation runs of the ratio

between the computation times, obtained nominal rewards, and the task load violations

for the heuristic strategies to the respective variables for the naive strategy. Notice

that the computation times for the heuristic strategies is only a small fraction of that

necessary for the naive strategy, while the performance remains mostly unchanged. In

fact, the heuristic strategies even out-performed the naive strategy in some cases. The

reason that this is possible is again due to the nature of the heuristic solvers used. To

prevent excessively long computation times, a bound was placed on number of nodes

71

Robust Task-Scheduling Strategies for Multi-Operator Missions Chapter 3

0 5 10 15 20 25
0

0.01

0.02

0.03

0.04

0.05

0.06

Number of Scenarios, Q

R
a
ti
o
 o

f
C

o
m

p
u
ta

ti
o
n
 T

im
e
s
,
H

e
u
ri
s
ti
c
/N

a
iv

e

Reward−Only Heuristic
Full Heuristic

0 5 10 15 20 25
0.8

1

1.2

1.4

1.6

1.8

2

Number of Scenarios, Q

R
a
ti
o
 o

f
N

o
m

in
a
l
R

e
w

a
rd

s
,
H

e
u
ri
s
ti
c
/N

a
iv

e

Reward−Only Heuristic
Full Heuristic

0 5 10 15 20 25
−20

−10

0

10

20

30

40

Number of Scenarios, QU
p
p
e
r

T
a
s
k
 L

o
a
d
 V

io
la

ti
o
n
 R

a
ti
o
,
H

e
u
ri
s
ti
c
/N

a
iv

e

Reward−Only Heuristic

Full Heuristic

0 5 10 15 20 25
−1

−0.5

0

0.5

1

1.5

2

2.5

Number of Scenarios, QL
o
w

e
r

T
a
s
k
 L

o
a
d
 V

io
la

ti
o
n
 R

a
ti
o
,
H

e
u
ri
s
ti
c
/N

a
iv

e

Reward−Only Heuristic

Full Heuristic

Figure 3.7: Performance of heuristic task assignment methods (Algorithm 6) in com-
parison to “naive” scheduling which solves the full, joint optimization problem (3.28).

that intlinprog solver was permitted to explore during its implicit branch and bound

solution phase (105). This bound sometimes limited the quality of solutions produced by

the naive strategy, allowing it to be out-performed by the heuristic method. This result

only furthers the case that heuristic methods may be preferable to the naive approach.

Remark 8 (Task Assignment) Algorithm 6 assigns tasks to operators on the basis of

which operator was assigned a given task most often upon iterating through the various

scenarios. Loosely, this is a sort of “maximum likelihood” approach in the sense that it

selects, for each task, the operator that is most likely to be assigned to that task, given

the realized samples of the processing time distributions.

3.4 Chapter Summary

In the context of human supervisory missions involving sequential task analysis, it is

crucial to develop task scheduling methodologies that (i) take human cognitive require-

72

Robust Task-Scheduling Strategies for Multi-Operator Missions Chapter 3

ments into account, (ii) are robust to uncertainty in system and modeling parameters,

(iii) can incorporate a wide range of design goals, and (iv) are simple enough to practi-

cally implement. Our presented MILP framework can potentially accomplish all of these

goals. Indeed, we have illustrated how this framework can incorporate task load, intro-

duce robustness, and expand to handle a number of additional layers of complexity, while

remaining within a straightforward, well-studied, familiar theoretical framework.

With this preliminary work in hand, future work should focus on verifying the utility

of these scheduling frameworks through human subjects experiments. In particular, these

studies should seek to (i) verify that performance actually does, in fact, improve with the

introduction of such scheduling systems, (ii) investigate whether simple task load models

are sufficient for these applications or if more elaborate models should be considered,

and (iii) identify any other unforeseen practical or performance issues. With this knowl-

edge, additional theoretical methods can be explored on how to incorporate additional

complexities and tailor system designs to particular missions. Furthermore, we envision

that this kind of technology could be applied to a multitude of other domains, including

healthcare and manufacturing applications. In addition to the suggestions throughout

the text, other interesting future research avenues include a thorough investigation of

how to choose optimal parameters for a given application domain or set of design goals,

a study of the domain of applicability of the various solution methods, e.g., a study of the

conditions under which estimation is useful, and a comparison between different heuristics

for task assignment, given the time scales on which a particular mission operates.

73

Part II

Sensor-Focused Methods

74

Chapter 4

Cloud-Supported Coverage Control

for Multi-Agent Surveillance

A large component of effective supervisory control systems, particularly those involv-

ing mobile sensors, is an intelligent coordination scheme to govern the behavior of au-

tonomous agents. Recall that human operators in supervisory systems do not govern the

low-level behavior of their robotic partners, but instead provide only periodic input in

the form of high-level coordination commands. As such, mobile sensors that are present

in the system must be able to act, in large part, as independent entities, choosing actions

that support high-level mission goals without requiring constant operator interaction.

This chapter, along with the following chapter, shifts the focus momentarily away from

the human operator, and focuses instead on the design of high-level coordination schemes

for teams of mobile sensors. In essence, the schemes discussed in these chapters seek

to improve overall system performance by enhancing the efficiency and effectiveness by

which the automated agents (namely, mobile sensors) operate. In general, the appropriate

control scheme will be dependent upon the particular task at hand, and thus will depend

on the mission specifications, the operational environment, available hardware, among

75

Cloud-Supported Coverage Control for Multi-Agent Surveillance Chapter 4

other factors. The discussions of this dissertation are primarily motivated by supervisory

surveillance systems involving teams of UAVs; thus, we focus on representative sub-

problems that commonly arise in this domain.

We start our discussion of sensor-focused methods by developing a coordination

scheme for a mission in which a team of mobile agents (e.g.,UAVs) must continuously

monitor a planar, non-discrete region of interest to look for targets or monitor some event.

We focus on a decomposition-based approach, where each agent is dynamically assigned

surveillance responsibility of a particular region. Since peer-to-peer communication is

often difficult or impossible in realistic supervisory systems (see Section 1.1), we develop

a cloud -based approach to coverage region assignment, in which agents are only required

to sporadically communicate with a central repository or cloud in an unplanned fashion

(in supervisory systems, the cloud typically is a server that is housed at the same location

as the human operator, e.g., a helicopter or ground control station). This is in contrast

to typical load-balancing strategies that require complete or pairwise updates.

4.1 Mission Overview and Solution Approach

A team of N mobile agents1, each equipped with an on-board sensor, is tasked with

persistently monitoring a non-trivial, planar region of interest. The primary goal of the

mission is to collect sensor data about some dynamic event or characteristic, e.g., the

presence of an intruder. Collected data is periodically uploaded to the cloud. Agents

must move within the environment to obtain complete sensory information. Ideally,

agent motion should be coordinated so that (i) the sensing workload is balanced across

agents, (ii) no subregion goes unobserved indefinitely, (iii) agents never collide (have

sensor overlap), and (iv) the search is biased toward regions of greater interest. To

1Each agent is uniquely paired with a coverage region, so the quantity N represents both the number
of agents and the number of regions in subsequent partitioning operations

76

Cloud-Supported Coverage Control for Multi-Agent Surveillance Chapter 4

-Link established

-Data sent to cloud.

-Cloud computes

 and sends update

-Agent receives

 updated region

 and variables

-Agent waits before

 entering new region

-During waiting

 period, other agent

 queries cloud and

 vacates

-Agents move within

 assigned regions

-Once waiting period

 ends, agents can

 enter any part of

 assigned region

Figure 4.1: Illustration of the proposed decomposition-based, cloud-supported cov-
erage control and surveillance strategy. There are two primary components to the
framework: The partitioning component (executed on the cloud) manages coverage
regions and introduces logic to prevent collisions, while the trajectory planning com-
ponent (executed onboard each agent) governs agent motion.

achieve these goals, we propose a decomposition-based approach in which each agent’s

motion is restricted to lie within a dynamically assigned coverage region. The partitioning

component (operating on the cloud), defines these coverage regions and provides high-

level restrictions on agent motion through the manipulation of surveillance parameters,

while the trajectory planning component (operating on-board each agent) incrementally

constructs agent motion. We assume only asynchronous, cloud-agent data transfer, i.e.,

agents sporadically exchange data with the cloud, in which inter-exchange times are not

specified a priori, but are subject to an upper bound.

Broadly, our framework operates as follows (Figure 4.1). Initial coverage variables

are communicated to the agents prior to deployment, i.e., initial information is known to

each agent at the mission onset. Once in the field, agents communicate sporadically with

the cloud. During each agent-cloud exchange, the cloud calculates a new coverage region

solely for the communicating agent, along with a set of timing and surveillance parameters

that serve to govern the agent’s high-level motion behavior, and transmits the update.

The update algorithm also alters relevant global variables maintained by the cloud. Upon

update completion, the data-link is terminated and the agent follows a trajectory found

77

Cloud-Supported Coverage Control for Multi-Agent Surveillance Chapter 4

via its onboard planner. Notice that this structure is a type of event-triggered control,

since high-level updates only occur in the event of an agent-cloud exchange.

4.2 Problem Setup

The cloud, as well as each agent, has its own local processor. “Global” information

is stored on the cloud, while each agent only stores information pertinent to itself.

Convention 1 In this chapter, the subscripts i, j, or ` denote an entity or set element

relevant to agent (i.e., sensor or UAV) i, j, or `, resp. The superscript ‘A’ denotes an

entity that is stored by the agent’s local, i.e. on-board, processor.

A storage summary is shown in Table 4.1. We expand on these, and define other relevant

mathematical constructs here.

4.2.1 Mathematical Constructs and Definitions

Agent Dynamics: Each agent (sensor) i is a point mass that moves with maximum

possible speed si > 0. Define s := {si}Ni=1.

Communication Protocol: Each agent periodically exchanges data with the cloud.

Assume the following:

1. each agent can identify itself to the cloud, and transmit/receive data,

2. there is a lower bound ∆ > 0 on the time between any two successive exchanges

involving the cloud, and

3. there is an upper bound ∆ > 0 on the time between any single agent’s successive

exchanges with the cloud.

78

Cloud-Supported Coverage Control for Multi-Agent Surveillance Chapter 4

Table 4.1: Storage Summary for the Cloud-Supported Architecture

Stored on the Cloud

Variable Description

G := (V,E) Graphical representation of the environment
PPP N -covering of V (PPP ∈ CovN(V))
ccc Set of generators

(
ccc ∈ V N

)
ID Set of identifiers

(
ID ∈ {1, . . . , N}|V |

)
ΓΓΓ Set of timers

(
ΓΓΓ ∈ RN

≥0
)

ωωω Set of most recent exchange times
(
ωωω ∈ RN

≥0
)

Φ Global likelihood (Φ : V × R≥0 → R>0)

Stored by Agent i

Variable Description

G := (V,E) Graphical representation of the environment
PA
i Coverage region

(
PA
i ⊂ V

)
cAi Coverage region generator

(
cAi ∈ V

)
PA,pd
i Set of “recently added” vertices

(
PA,pd
i ⊆ PA

i

)
γAi Local timing parameter

(
γAi ∈ R

)
ωAi Most recent exchange time

(
ωAi ∈ R≥0

)
ΦA
i Local likelihood

(
ΦA
i : V × R≥0 → R≥0

)
Assume that agent-cloud exchanges occur instantaneously, and notice that condition 2

implies no two exchanges (involving any agents) occur simultaneously2. Since computa-

tion time is typically small in comparison to inter-exchange times and exchanges occur

sporadically, these assumptions are without significant loss of generality.

Environment: Consider a bounded surveillance environment as a finite grid of dis-

joint, non-empty, simply-connected subregions. We represent the grid as a weighted

graph G := (V,E), where V is the set of vertices (each representative of a unique grid el-

ement), and E is the edge set comprised of undirected, weighted edges {k1, k2} spanning

2Mathematically, the bound ∆ also prevents zeno behavior

79

Cloud-Supported Coverage Control for Multi-Agent Surveillance Chapter 4

vertices representing adjacent3 grid elements. Let the weight associated to {k1, k2} be

some finite upper bound on the minimum travel distance between any point in the grid

element associated to k1 to any point in the grid element associated to k2 along a path

that does not leave the union of the two elements. Locations of environmental obstacles

and prohibited areas are known and are not included in the graphical representation G.

Consider V ′ ⊆ V . A vertex k1 ∈ V is adjacent to V ′ if k1 /∈ V ′ and there exists

{k1, k2} ∈ E with k2 ∈ V ′. Define G(V ′) := (V ′, E ′) as the subgraph of G induced by the

vertex set V ′. A path on G(V ′) between k1, kn ∈ V ′ is a sequence (k1, k2, . . . , kn), where

k1, k2, . . . , kn ∈ V ′ and {kr, kr+1} ∈ E ′ for r ∈ {1, . . . , n − 1}. We say V ′ is connected

if a path exists in G(V ′) between any k1, k2 ∈ V ′. Let dV ′ : V ′ × V ′ → R≥0 ∪ {∞} be

the standard graph distance on G(V ′), i.e., the length of a shortest weighted path in

G(V ′) (if none exists, dV ′ takes value ∞). Notice that dV (k1, k2) ≤ dV ′(k1, k2) for any

k1, k2 ∈ V ′. Also let dV ′ denote the map dV ′ : V ′ × 2V
′ → R≥0 ∪ {∞}, where dV ′(k, V

′′)

is the length of a shortest weighted path in G(V ′) between k and any vertex in V ′′.

Coverage Regions: An N-covering of V is a family PPP := {Pi ⊆ V }Ni=1 satisfying

(i)
⋃N
i=1 Pi = V , and (ii) Pi 6= ∅ for all i. Define CovN(V) as the set of all possible N -

coverings of V . An N-partition of V is an N -covering that also satisfies (iii) Pi
⋂
Pj = ∅

for all i 6= j. An N -covering or N -partition PPP is connected if each Pi is connected. In

what follows, the cloud maintains an N -covering PPP of V , and surveillance responsibilities

are assigned by pairing each agent i with Pi ∈ PPP (called agent i’s coverage region). Each

agent maintains a copy PA
i of Pi. The cloud also stores a set ccc := {ci ∈ V }Ni=1 (ci is the

generator of Pi), and each agent i maintains a copy cAi of ci.

Identifiers, Timers, and Auxiliary Variables: The proposed algorithms also require

3Travel between the elements without leaving their union is possible

80

Cloud-Supported Coverage Control for Multi-Agent Surveillance Chapter 4

some logic and timing variables. To each k ∈ V , assign an identifier IDk ∈ {1, . . . , N}.

Define ID := {IDk}k∈V , and let PPP ID := {P ID
i }Ni=1, where P ID

i := {k ∈ V | IDk = i}.

Notice PPP ID is an N -partition of V . For each agent i, define a timer Γi having dynamics

Γ̇i = −1 if Γi 6= 0, and Γ̇i = 0 otherwise. Define ΓΓΓ := {Γi}Ni=1. Each agent i maintains

a local timing variable γAi . Even though γAi plays a similar role to Γi, note that γAi is

constant unless explicitly updated, while Γi has autonomous dynamics. Next, the cloud

maintains a set ωωω := {ωi}Ni=1, where ωi is the time of agent i’s most recent exchange with

the cloud. Each agent maintains a copy ωAi of ωi. Finally, each agent stores a subset

PA,pd
i ⊆ PA

i which collects vertices that have recently been added to PA
i .

Likelihood Functions: The likelihood of a relevant event occurring within any subset

of the surveillance region V is maintained on the cloud in the form of a time-varying

probability mass function4 Φ : V × R≥0 → R>0. For simplicity, assume that, at any t,

the instantaneous support, supp(Φ(·, t)), equals V .

Define each agent’s local likelihood ΦA
i : V ×R≥0 → R≥0 as the function that, loosely,

represents the agent’s local belief regarding events. Specifically, define

ΦA
i (k, t) =

Φ(k, t),
if k ∈ PA

i and(
t− ωAi ≥ γAi or k /∈ PA,pd

i

)
,

0, otherwise.

(4.1)

The conditions defining ΦA
i are understood as follows: at some time t, an element k ∈ V

only belongs to supp(ΦA
i (·, t)) if (i) k ∈ PA

i , and (ii) sufficient time has passed since k

was first added to PA
i , as determined by the parameters γAi , ωAi , and PA,pd

i . Notice that,

4Φ(·, t) is a probability mass function for any time t.

81

Cloud-Supported Coverage Control for Multi-Agent Surveillance Chapter 4

in general, each ΦA
i will be different5 from Φ.

Remark 9 (Global Data) If global knowledge of Φ is not available instantaneously to

agent i, ΦA
i can alternatively be defined by replacing Φ(k, t) in (4.1) by Φ(k, ωAi). All

subsequent theorems hold under this alternative definition.

Remark 10 (Data Storage) The cost of storing a graph as an adjacency list is O(|V |+

|E|). The generator set ccc, each element of PPP , and the identifier set ID can be stored as

integral vectors. The timer set ΓΓΓ and the set ωωω are are stored as real vectors, while

Φ is stored as a time-varying real vector. Thus, the cost of storage on the cloud is

O(N |V |+ |E|). Similarly, each agent’s local storage cost is O(|V |+ |E|).

4.3 Dynamic Coverage Update Scheme

We adopt following convention for the remainder of this chapter.

Convention 2 Suppose that:

1. min ∅ := max ∅ := 0, and

2. given a specific time instant, superscripts ‘-’ or ‘+’ refer to the value of the associ-

ated variable before or after the instant in question, resp.

4.3.1 Additive Set

We start with a definition.

Definition 1 (Additive Set) Given k ∈ P ID
i , the additive set P add

i (k) ⊆ V is the

largest connected subset satisfying:

5ΦAi need not be normalized and thus may not be a time-varying probability mass function in a strict
mathematical sense

82

Cloud-Supported Coverage Control for Multi-Agent Surveillance Chapter 4

1. P ID
i ⊆ P add

i (k), and

2. for any h ∈ P add
i (k) ∩ Pj, where j 6= i:

(a) Γj = 0, and

(b) 1
si
dP add

i (k)(h, k) < 1
sj
dPj

(h, cj).

The following characterizes well-posedness of Definition 1.

Proposition 1 (Well-Posedness) If P ID
i is connected and disjoint from

⋃
j 6=i Pj, then

P add
i (k) exists and is unique for any k ∈ P ID

i .

Proof: Under the specified conditions, P ID
i is connected and satisfies conditions

1 and 2 in Definition 1; P add
i (k) is the unique, maximally connected superset of P ID

i

satisfying the same conditions.

It is important to note that, under the conditions of Proposition 1, if h ∈ P add
i (k), then

(i) max{Γj | j 6= i, h ∈ Pj} = 0, and (ii) there is a path from k to h in G(P add
i (k)) that is

shorter than the optimal path spanning cj and h within G(Pj), for any j 6= i with h ∈ Pj.

4.3.2 Cloud-Supported Coverage Update

We start by defining a cost/performance function that we can use to evaluate a given

N -covering PPP . Define the cost function H : V N × CovN(V)× R≥0 → R≥0 ∪ {∞} by

H(ccc,PPP , t) =
∑
k∈V

min
i

{
1

si
dPi

(k, ci) | k ∈ Pi
}

Φ(k, t).

The intuition behind the definition ofH is as follows: If (i) each agent is solely responsible

for events within its own coverage region, and (ii) events occur proportionally to Φ, then

H(ccc,PPP , t) is the expected time required for an agent to reach a randomly occurring event

from its region generator at time t; related functions are studied in [1, 104, 108].

83

Cloud-Supported Coverage Control for Multi-Agent Surveillance Chapter 4

Algorithm 7: Cloud-Supported Coverage Update

Data: t0, PPP , ccc, Φ, ωωω, ∆, ∆H, ΓΓΓ, ID, sss
Result: PPP , ccc, PA

i , cAi , PA,pd
i , ΓΓΓ, γAi , ΦA

i , ωωω, ωAi , ID
begin

% Initialize, remove regions others have claimed

1 Initialize PPP ∗ = PPP test = PPP , ccc∗ = ccctest = ccc
2 Set P ∗i = P test

i = P ID
i

% If timer is non-zero and no regions have been claimed since last update,
perform trivial update

if Γi > 0 and P ∗i = Pi then
3 Set γAi = γAi − t0 + ωi and ωAi = ωi = t0

else

% Iterate through generator locations to find cost-minimizing configuration

for k ∈ P ID
i do

4 Set P test
i = P add

i (k) and ctesti = k
if H(ccctest,PPP test, t0) < H(ccc∗,PPP ∗, t0) then

5 Set PPP ∗ = PPP test, ccc∗ = ccctest

% Update timers and variables

6 Set PA,pd
i = P ∗i \P ID

i

7 Call Alg. 8 and obtain output ΦA
i , ω, T, γ

A
i

8 Set Pi = PA
i = P ∗i , ci = cAi = c∗i , ω

A
i = ωi

9 for k ∈ Pi do Set IDk = i

10 return PPP , ccc, PA
i , cAi , PA,pd

i , ΓΓΓ, γAi , ΦA
i , ωωω, ωAi , ID

We are now in a position to define the main algorithm of this chapter: Algorithm 7

defines the operations performed on the cloud when agent i makes contact at time t0. In

the algorithm, the input ∆H > 0 is a constant parameter6, and the auxiliary variables

are made up of components relevant to each agent: PPP ∗ := {P ∗i }Ni=1, ccc
∗ := {c∗i }Ni=1, PPP

test :=

{P test
i }Ni=1, and ccctest := {ctesti }Ni=1.

6∆H represents, loosely, the amount of time an agent must hold a vertex before it can be re-assigned.
More precise characterization is contained later in Section 4.3.4.

84

Cloud-Supported Coverage Control for Multi-Agent Surveillance Chapter 4

Algorithm 8: Timer Update

Data: t0, PPP , PPP ∗, ccc∗, PA,pd
i , Φ, ωωω, ∆, ∆H, ΓΓΓ, sss

Result: ΦA
i ,ωωω,ΓΓΓ, γ

A
i

begin

% Find max time to return to coverage region

1 ∆Bf
i := max

{
1
si
dPi

(k, P ∗i \PA,pd
i) | k ∈ Pi\P ∗i

}
% Find max time for agents to vacate acquired regions, redefine timers to
ensure communication

for Each j 6= i satisfying Pj ∩ P ∗i 6= ∅ do

2 ∆Bf
j := max

{
1
sj
dPj

(k, Pj\P ∗i) | k ∈ Pj ∩ P ∗i
}

3 Set Γj = ωj + ∆− t0
% Select maximum and redefine variables

4 Find ∆Bf
max = max

j 6=i,Pj∩P ∗i 6=∅
{ωj + ∆ + ∆Bf

j − t0}
5 Redefine ∆Bf

max = max{∆Bf
max,∆

Bf
i }

6 Set Γi = ∆Bf
max + ∆H, γAi = ∆Bf

max, ωi = t0
7 Construct ΦA

i (Eq. (4.1)) with updated variables
8 return ΦA

i ,ωωω,ΓΓΓ, γ
A
i

85

Cloud-Supported Coverage Control for Multi-Agent Surveillance Chapter 4

4.3.3 Well-Posedness

Consider the following initialization assumption.

Assumption 1 (Initialization) The following properties are satisfied when t = 0:

1. PPP is a connected N-partition of V ,

2. PPP = PPP ID, and

3. for all i ∈ {1, . . . , N},

(a) Pi = PA
i ,

(b) ci = cAi ∈ PA
i ,

(c) PA,pd
i = ∅,

(d) Γi = ωi = ωAi = 0, and

(e) γAi = −∆H.

Notice that conditions 1 and 3b of Assumption 1 together imply that ci 6= cj for any

j 6= i. The following theorem, whose proof is postponed until Appendix A, characterizes

the well-posedness of Algorithm 7.

Theorem 1 (Well-Posedness) Under Assumption 1, a scheme in which, during each

agent-cloud exchange, the cloud executes Algorithm 7 to update relevant global and local

variables is well-posed. That is, any operations required by Algorithm 7 are always well-

posed at the time of execution.

Algorithm 7 does not ensure that coverage regions (elements of PPP) remain disjoint.

It does, however, guarantee that the N -covering PPP , the local coverage regions PPPA :=

{PA
i }Ni=1, and the local likelihoods {ΦA

i }Ni=1 retain properties that are consistent with a

86

Cloud-Supported Coverage Control for Multi-Agent Surveillance Chapter 4

decomposition-based scheme. Namely, the coverings PPP and PPPA maintain connectivity,

and each ΦA
i has support that is disjoint from that of all other local likelihoods, yet

evolves to provide reasonable global coverage. Further, Algorithm 8 ensures that agents

can “safely” vacate areas that are re-assigned before newly assigned agents enter, i.e.,

they can vacate areas that are re-assigned without introducing a collision or redundant

sensing risk. We expand upon these ideas in the following two subsections. For clarity,

proofs of all results in these two sections are postponed until Appendix A

4.3.4 Set Properties

The next result formalizes key set properties induced by Algorithm 7.

Theorem 2 (Set Properties) Suppose Assumption 1 holds, and that, during each agent-

cloud exchange, the cloud executes Algorithm 7 to update relevant global and local vari-

ables. Then, the following hold at any time t ≥ 0:

1. PPP ID is a connected N-partition of V ,

2. PPP is a connected N-covering of V ,

3. ci ∈ Pi and ci 6= cj for any i 6= j,

4. supp(ΦA
i (·, t)) ⊆ Pi for any i, and

5.
⋂N
i=1 supp(ΦA

i (·, t)) = ∅

When the cloud makes additions to an agent’s coverage region, newly added vertices are

not immediately included in the instantaneous support of the agent’s local likelihood.

If agent movement is restricted to lie within this support, the aforementioned delay

temporarily prohibits the agent from exploring newly added regions, allowing time for

87

Cloud-Supported Coverage Control for Multi-Agent Surveillance Chapter 4

others to vacate. Conversely, when regions are removed from an agent’s coverage region,

Algorithm 7 ensures a “safe” path, i.e., a path with no collision risk, exists and persists

long enough for the agent to vacate. Let d := maxi
1
si

∑
{k1,k2}∈E dV (k1, k2), and define

agent i’s prohibited region at time t as Prohi(t) := {k ∈ V | k /∈ supp(ΦA
i (·, t))}. With

this terminology, we formalize the previous discussion here.

Theorem 3 (Coverage Quality) Suppose Assumption 1 holds, and that, during each

agent-cloud exchange, the cloud updates relevant global and local coverage variables via

Algorithm 7. Then, for any k ∈ V and any t ≥ 0:

1. k belongs to at least one agent’s coverage region Pi,

2. if k ∈ Prohi(t) ∩ Pi for some i, then there exists t0 satisfying t < t0 < t + ∆ + d

such that, for all t ∈ [t0, t0 + ∆H], the vertex k belongs to the set Pi\Prohi(t), and

3. if k is removed from Pi at time t, then, for all t ∈
(
t, t+ 1

si
dP−i

(
k, P ID,−

i

)]
, we

have

(a) P ID,−
i ⊆ Pi, and

(b) there exists a length-minimizing path on G(P−i) from k into P ID,−
i , and all of

the vertices along any such path (except the terminal vertex) belong to the set

ProhID+
k

(t)\⋃j 6=ID+
k
Pj.

Theorems 2 and 3 allow Algorithm 7 to operate within a decomposition-based frame-

work to provide reasonable coverage with inherent collision avoidance. Indeed, when

agents avoid prohibited regions, the theorems imply that each agent (i) can visit its en-

tire coverage region (connectedness), (ii) allows adequate time for other agents to vacate

newly assigned regions, and (iii) has a “safe” route into the remaining coverage region if

its current location is removed during an update.

88

Cloud-Supported Coverage Control for Multi-Agent Surveillance Chapter 4

Remark 11 (Coverage Variables) If Assumption 1 holds and updates are performed

with Algorithm 7, then Pi = PA
i and ci = cAi for all i and all t. Thus, both Theorem 2

and Theorem 3 are equivalently stated by replacing Pi with PA
i and ci with cAi in their

respective theorem statements.

Remark 12 (Bounds) Theorem 3 holds if d is replaced by any upper bound on the

distance between any possible pair of vertices within any possible connected subgraph.

4.3.5 Convergence Properties

Our proposed strategy differs from [1] due to logic, i.e., timing parameters, etc., that

ensures effective operation within a decomposition-based framework. Note also that H

differs from previous partitioning cost functions in [1, 104, 108], since it uses subgraph,

rather than global graph, distances. As such, convergence properties of the algorithms

herein do not follow readily from existing results. As such, we explore the convergence

properties of our algorithms in detail here. Consider the following definition.

Definition 2 (Pareto Optimality) The pair (ccc,PPP) is Pareto optimal at time t if

1. H(ccc,PPP , t) ≤ H(ccc,PPP , t) for any ccc ∈ V N , and

2. H(ccc,PPP , t) ≤ H(ccc,PPP , t) for any PPP ∈ CovN(V).

When Φ is time-invariant (and Assumption 1 holds), Algorithm 7 produces finite-time

convergence of coverage regions and generators to a Pareto optimal pair. The limiting

coverage regions are “optimal” in that they balance the sensing load in a way that

directly considers the event likelihood. Further, the operation only requires sporadic and

unplanned agent-cloud exchanges. We formalize this result here.

89

Cloud-Supported Coverage Control for Multi-Agent Surveillance Chapter 4

Theorem 4 (Convergence) Suppose Assumption 1 holds and that, during each agent-

cloud exchange, the cloud updates relevant global and local coverage variables via Algo-

rithm 7. If Φ is time-invariant, i.e., Φ(·, t1) = Φ(·, t2) for all t1, t2, then the N-covering

PPP and the generators ccc converge in finite time to an N-partition PPP ∗ and a set ccc∗, resp.

The pair (c∗, P ∗) is Pareto optimal at any time following convergence.

We can further characterize convergence if we introduce the notion of (multiplicatively-

weighted) Voronoi partitions and (generalized) centroid sets.

Definition 3 (Centroid Set) Define the centroid set of a subset V ′ ⊆ V at time t ∈

R≥0 as the set of elements in V ′ that minimize a one-center function, i.e.,

C(V ′, t) := arg min
h∈V ′

∑
k∈V ′

dV ′(k, h)Φ(k, t).

Definition 4 (Multiplicatively-Weighted Voronoi Partition) The N-covering PPP of

V is a multiplicatively weighted Voronoi partition at time t ∈ R≥0, generated by ccc and

weighted by sss, if PPP is an N-partition of Q and, for each i,

1. ci ∈ Pi, and

2. 1
si
dV (k, ci) ≤ 1

sj
dV (k, cj) for all j 6= i and all k ∈ Pi.

If the generators ccc also satisfy ci ∈ C(Pi, t) for all i, then PPP is also called centroidal.

The following proposition relates Pareto-optimal configurations to centroidal, (multiplicatively-

weighted) Voronoi partitions.

Proposition 2 (Pareto Optimality and Voronoi partitions) If a pair (ccc,PPP), where

ccc ∈ V N and PPP ∈ (2V)N is an N-partition of V , is Pareto optimal at time t by Defini-

90

Cloud-Supported Coverage Control for Multi-Agent Surveillance Chapter 4

1 1
1

1

1 1
1

2

2
1

1
11

1 1
1

1

1 1
1

2

2
1

1
11

Figure 4.2: Assuming uniform density at the instant shown, the left diagram shows
a centroidal Voronoi partition generated by the unfilled vertices (generators) and
weighted uniformly, ie. si = sj for all i, j ∈ {1, . . . , N}. Here, the shape of the vertices
indicate which region the vertex belongs to, and the numbers represent edge weights.
However, the left configuration is not Pareto optimal by Definition 2, as the cost H
can be decreased by moving to the configuration on the right (fixing generators).

tion 2, then PPP is also a centroidal, multiplicatively-weighted Voronoi partition generated

by ccc and weighted by sss.

Note that a general centroidal Voronoi partitionPPP generated by ccc and weighted by sss is not

always Pareto optimal. Indeed, a counterexample is shown in Figure 4.2. Proposition 2

immediately leads to the following corollary to Theorem 4.

Corollary 1 (Limiting Configurations) Suppose Assumption 1 holds and that, dur-

ing each agent-cloud exchange, the cloud updates relevant global and local coverage vari-

ables via Algorithm 7. If Φ is time-invariant, i.e., Φ(·, t1) = Φ(·, t2) for all t1, t2, then

the N-covering PPP and the generators ccc converge in finite time to an N-partition PPP ∗ and

a set ccc∗, resp. The N-covering PPP ∗ of V is a centroidal, multiplicatively-weighted Voronoi

partition, generated by ccc∗ and weighted by sss, at any time following convergence.

4.4 Decomposition-Based Surveillance.

This section pairs the proposed partitioning framework with a generic, single-vehicle

trajectory planner, forming the complete framework.

91

Cloud-Supported Coverage Control for Multi-Agent Surveillance Chapter 4

4.4.1 Complete Routing Algorithm

By Theorem 2, the support of each ΦA
i (i) lies entirely within PA

i , and (ii) is disjoint

from the support of other local likelihoods. By Theorem 3, (i) any vertex only goes

uncovered over bounded intervals, and (ii) the parameter ∆H is a lower bound on the time

that a recently uncovered vertex must remain covered before it can become uncovered

again. These results suggest an intelligent routing scheme to achieve adequate coverage

while maintaining collision avoidance that carefully restricts motion according to the

instantaneous support of the local likelihood functions. This motivates the following

assumption.

Assumption 2 (Agent Motion) Each agent i has knowledge of its position at any

time t, and its on-board trajectory planner operates under the following guidelines:

1. generated trajectories obey agent motion constraints,

2. trajectories are constructed incrementally and can be altered in real-time, and

3. the agent is never directed to enter regions associated with Prohi(t).

Assume further that each agent precisely traverses generated trajectories.

Algorithm 9 presents the local (on-board) motion protocol for Agent i.

4.4.2 Collision Avoidance

Although Assumption 2 locally prevents agents from entering prohibited regions,

dynamic coverage updates can still place an agent within its prohibited region when the

vertex corresponding to its location is abruptly removed. If this happens, Algorithm 9

constructs a route from the agent’s location back into a region where there is no collision

risk. With mild assumptions, this construction (i) is well-defined, and (ii) does not

92

Cloud-Supported Coverage Control for Multi-Agent Surveillance Chapter 4

Algorithm 9: Motion Protocol for Agent i

Data: G, ΦA
i , PA

i , cAi , PA,pd
i , γAi , ωAi

begin
while True do

1 Increment trajectory via on-board planner
2 Follow trajectory

if Data link with the cloud then
3 Set P test

i = PA
i

4 Obtain updated variables from the cloud
if Location lies within P test

i \PA
i then

5 Find shortest path in the graph G(P test
i) from the currently

occupied node into PA
i

while Agent i is outside PA
i do

6 Follow the aforementioned route

present a transient collision risk. We formalize this result here (once again, we postpone

proof until Appendix A).

Theorem 5 (Collision Avoidance) Suppose Assumptions 1 and 2 hold, and that each

agent’s initial position lies within its initial coverage region Pi. If each agent’s motion is

locally governed according to Algorithm 9, where the update in line 4 is calculated on the

cloud via Algorithm 7, then no two agents will ever collide.

Remark 13 (Agent Dynamics) We assume point mass dynamics for simplicity. How-

ever, all theorems herein also apply under alternative models, e.g., non-holonomic dy-

namics, provided that the environment is discretized so that (i) travel between adjacent

grid elements is possible without leaving their union, (ii) agents can traverse the afore-

mentioned paths at maximum speed, and (iii) edge weights accurately upper bound travel

between adjacent regions. When these conditions are not met, Theorems 1, 2, 3, and 4

still apply, though Theorem 5 is no longer guaranteed.

93

Cloud-Supported Coverage Control for Multi-Agent Surveillance Chapter 4

4.5 Numerical Examples

This section presents numerical examples to illustrate the proposed framework. In all

examples, updates are performed on the cloud via Algorithm 7 during each agent-cloud

exchange, and each agent’s local processor runs the motion protocol in Algorithm 9. For

incremental trajectory construction (Algorithm 9, line 1), all examples use a modified

Spectral Multiscale Coverage (SMC) scheme [114], which creates trajectories to mimic

ergodic dynamics while also locally constraining motion to lie outside of prohibited re-

gions. Notice this planner satisfies Assumption 2. Initial region generators ccc were selected

randomly (enforcing non-coincidence), and each agent was initially placed at its region

generator. The initial covering PPP was created by calculating a weighted Voronoi par-

tition, and remaining initial parameters were chosen to satisfy Assumption 1. Assume

that relevant initial variables are uploaded to the agents’ local servers prior to initial

deployment, i.e., each agent has full knowledge of initial information at time 0. For each

simulation, randomly chosen agents sporadically exchange data with the cloud. Agent-

cloud exchange times were randomly chosen, with maximum inter-exchange time ∆.

4.5.1 Time-Invariant Likelihood

Consider a 4 agent mission, executed over a 100 x 100 surveillance region that is

subject to a time-invariant, Gaussian likelihood centered near the bottom left corner.

The region is divided into 400, 5 x 5 subregions. Regions are considered adjacent if they

share a horizontal or vertical edge. Here, each agent had a maximum speed of 1 unit

distance per unit time, and ∆ = 10 time units. Figure 4.3 shows the evolution of the

coverage regions for an example simulation run. Agent trajectories are shown by the

colored lines. Note that Figure 4.3 only shows each agent i’s active coverage region, i.e.,

Pi\Prohi(t). The family of active coverage regions does not generally form an N -covering

94

Cloud-Supported Coverage Control for Multi-Agent Surveillance Chapter 4

of V ; however, elements of this family are connected and never intersect as a result of

inherent collision avoidance properties.

t = 0 t = 50 t = 150

t = 250 t = 350 t = 10000

Figure 4.3: Illustration of a 4 agent example mission over a static Gaussian likelihood.
Each agent’s position, past trajectory, and active coverage region are shown with the
colored triangle, line, and squares, resp.

The left plot in Figure 4.4 depicts the maximum time that any grid square went

uncovered, i.e. did not belong to any agent’s active covering, during each of 50 simulation

runs. Here, the maximum amount of time that any region went uncovered was 186 units,

50 100 150 200
0

5

10

15

20

25

Max Uncovered Time

F
re

q
u

e
n

c
y

0 100 200 300 400
20

25

30

35

40

45

50

55

Number of Updates

C
o
s
t

Figure 4.4: The maximum amount of time that any subregion went uncovered in each
of 50 simulation runs (left), and the value of the cost H as a function of time, averaged
over the same 50 runs (right), for the 4 agent sample mission.

though the maximum for most trials was less than 75 units. This is well-below the loose

95

Cloud-Supported Coverage Control for Multi-Agent Surveillance Chapter 4

bound ∆ +d = 770 predicted by Theorem 3 (see Remark 12). Note that this metric does

not capture the time between the agent’s actual visits to the grid-square, but rather the

length of intervals on which no agent was allowed to visit the square. The time between

visits is governed by the particular choice of trajectory planner and the parameter ∆H.

The right plot in Figure 4.4 shows the mean values of the cost function H, calculated

over the same 50 simulations runs. Here, error bars represent the range of cost values at

select points. The variance between runs is due to the stochastic nature of the agent-cloud

exchange patterns. Notice the cost is non-increasing over time, eventually settling as the

coverage regions/generators reach their limiting configuration, e.g., see Figure 4.3. These

limiting configurations are each Pareto optimal and form a multiplicatively weighted

Voronoi partition. The resultant coverage assignments provide load-balancing that takes

into account the event likelihood. If the low-level trajectory planner biases trajectories

according to the event likelihood, this results in desirable coverage properties. Under

the modified SMC planner used here, the temporal distribution of agent locations closely

resembles the spatial likelihood distribution in the limit, as shown in Figure 4.5.

Figure 4.5: Comparison between the (time-invariant) event likelihood Φ (left), and the
proportion of time that some agent occupied each subregion during the a simulated
mission after significant time has passed (10000 units) (right).

Further, during the simulation, no two agents ever occupied the same space due to

the careful parameter manipulations employed by Algorithm 7. Figure 4.6 illustrates

the logic governing these manipulations through a simplistic example: During the first

update, the blue agent acquires some of the red agent’s coverage region. Rather than

immediately adding these regions to its active covering, the blue region waits until suf-

96

Cloud-Supported Coverage Control for Multi-Agent Surveillance Chapter 4

Blue communicates

with cloud
Red communicates,

vacates region

Blue adds

new regions

Figure 4.6: Simplified example illustrating how Algorithm 7 manipulates timing pa-
rameters to prevent agent collisions: After the blue agent communicates with the
cloud, it waits for some amount of time before entering the newly acquired region.
During this waiting period, the red agent has time to safely vacate.

ficient time has passed to guarantee that the red agent has updated and moved out of

the reassigned regions. Under Algorithm 9, once the red agent communicates with the

cloud, it immediately vacates the re-assigned regions, after which the blue agent can add

the region to its active covering. This procedure guarantees that no two agents will ever

have overlapping active coverings and thus the agents will never collide (Theorem 5).

This same logic results in inherent collision prevention over more complex scenarios.

We can also compare the coverage regions produced by Algorithm 7 to those produced

by the partitioning algorithm in [1]. The two algorithms were simulated in parallel, per-

forming updates with the same randomly chosen agent-cloud exchange orderings across

the two conditions. The left and the right plots in Figure 4.7 show the mean coverage

cost over 50 simulation runs, calculated using Hmin (defined in [1], Section II-C) and H

(Section 4.3.2), respectively (portions of the curves extending above the axes indicate

an infinite value). The function Hmin is defined nearly identically to H, but uses global

graph distances, rather than subgraph distances. It is clear that the evolution produced

by the algorithm in [1] converges to a final configuration slightly faster than that pro-

duced by Algorithm 7 partitioning whenever costs are quantified using Hmin. However,

when costs are calculated using H, the algorithms in [1] produced intermediate configu-

rations with infinite cost, indicating disconnected regions, while Algorithm 7 maintained

97

Cloud-Supported Coverage Control for Multi-Agent Surveillance Chapter 4

connectivity. In contrast to [1], our surveillance framework allows for complete coverage

without requiring the agents to leave their assigned regions, allowing it to operate more

effectively within a decomposition-based, multi-agent surveillance scheme.

0 10 20 30 40 5023.5

24

24.5

25

25.5

26

26.5

27

Number of Updates

C
ov

er
ag

e
C

os
t

Algorithm 1
Algorithm from [12][1]

7

0 10 20 30 40 5023.5

24

24.5

25

25.5

26

26.5

27

Number of Updates
C

ov
er

ag
e

C
os

t

Algorithm 1
Algorithm from [12][1]

7

Figure 4.7: Comparison of coverage cost between [1] and Algorithm 7. Coverage costs
are calculated with Hmin ([1], Section II-C) on the left and with H (Section 4.3.2)
on right in the 4 agent simulated sample mission.

4.5.2 Time-Varying Likelihood

We now illustrate how the proposed coverage framework reacts to changes in the

underlying likelihood. Specifically, we study a particular type of time-varying likelihood

in which the spatial distribution only changes at discrete time-points, i.e., Φ(k, ·) is piece-

wise constant for any k ∈ V . This type of scenario is common in realistic missions, e.g.,

when the cloud’s estimate of the global likelihood is only re-formulated if some agent’s

sensor data indicates a drastic change in the underlying landscape. For this purpose, we

adopt identical parameters as in the first example, with the exception of the likelihood

Φ, whose spatial distribution abruptly switches at select time-points. If the switches are

sufficiently spaced in comparison to the rate of convergence, then the coverage regions

dynamically adjust to an optimal configuration that is reflective of the current state. For

example, Figure 4.9 shows the coverage region evolution after the underlying likelihood

98

Cloud-Supported Coverage Control for Multi-Agent Surveillance Chapter 4

undergoes a single switch between the likelihoods in Figure 4.8 at time t = 2000.

Initial Likelihood Final Likelihood

Figure 4.8: The initial and final likelihood Φ(·, t) for the sample mission with time–
varying density (Figure 4.9).

t = 2000 t = 2100 t = 2200 t = 4000

Figure 4.9: Coverage regions after the likelihood switches (see Figure 4.8) during the
simulated sample mission.

In contrast, if the likelihood changes faster than the rate of convergence, coverage

regions are constantly in a transient state. Despite this, the proposed framework still

provides some degree of load-balancing. To illustrate, the left plot in Figure 4.10 shows

the value of H during a simulation in which the underlying likelihood switches at 12 ran-

domly chosen time-points over a 1000 unit horizon. Each switch re-defined the spatial

likelihood as a Gaussian distribution centered at a randomly selected location. Notice

that the cost is non-increasing between the abrupt spikes caused by changes in the under-

lying likelihood. A convergent state is never reached; however, coverage regions quickly

shift away from high-cost configurations, as seen in the right plot of Figure 4.10, which

shows the average percentage drop in the value of the cost H as a function of the number

of non-trivial updates, i.e., updates that did not execute of Algorithm 7, line 3, following

an abrupt switch in the likelihood. The percentage drop is calculated with respect to the

cost immediately following the most recent switch. During the first nontrivial update,

99

Cloud-Supported Coverage Control for Multi-Agent Surveillance Chapter 4

the cost drops on average 21.8% of the initial post-switch value, indicating a quick shift

away from high-cost configurations.

0 200 400 600 800 1000
10

20

30

40

50

60

Time

C
o
s
t

0 10 20 30

0

5

10

15

20

Number of Nontrivial Updates
P

e
rc

e
n

t
D

ro
p

 i
n

 C
o

s
t

Figure 4.10: Evolution of the cost H using a piecewise-constant likelihood with 12
random switches (indicated by the stars)(left), and the average percent decrease in H
following each switch (right).

4.6 Chapter Summary

Robotic coverage control problems often play a key role in supervisory control sys-

tems. This chapter discusses cloud-supported, decomposition-based, coverage control

framework for multi-agent surveillance. In particular, a dynamic partitioning strategy

balances the surveillance load across available agents, requiring only sporadic and un-

planned agent-cloud exchanges. The partitioning update algorithm also manages high-

level logic parameters to guarantee that the resulting coverage assignments have geomet-

ric and temporal properties that are amenable for combination with generic single vehicle

trajectory planners. In certain cases, the proposed algorithms produce a Pareto optimal

configuration, while ensuring collision avoidance throughout.

Future work should further relax communication assumptions to reflect additional

limitations, e.g., directional antennae for wireless transmission. Other areas of future

100

Cloud-Supported Coverage Control for Multi-Agent Surveillance Chapter 4

research include the combination of peer-to-peer and cloud-based communication, perfor-

mance comparisons between specific trajectory planners when used within our framework,

e.g., those involving Markov chains, and further theoretical performance characterization.

101

Chapter 5

UAV Surveillance Under Visibility

and Dwell-Time Constraints

Continuing our exploration into intelligent, sensor-focused coordination schemes, this

chapter considers a different type of multi-agent mission that involves persistent surveil-

lance of static, discrete points, rather than planar regions (as in the previous chapter).

This scenario typically arises in missions where key targets or points of interest have

known locations, and thus exploration of large geographic areas is not necessary. For

example, if a particular target of interest is known to reside within one of a set of 3

buildings, the mission planner may wish to use the autonomous sensors to provide con-

tinuous surveillance of those particular geographic locations. If the number of available

agents is smaller than the number of discrete points of interest, this brings about a diffi-

cult combinatorial routing problem to determine the manner in which the targets should

be visited. To further complicate matters, realistic surveillance missions often also possess

additional routing constraints and multiple, conflicting performance objectives.

This chapter considers one such multi-objective, discrete surveillance problem that

is motivated by supervisory missions involving fixed-wing UAVs, in which the vehicles

102

UAV Surveillance Under Visibility and Dwell-Time Constraints Chapter 5

are required to visit a set of targets for the purpose of collecting and transmitting visual

imagery to a remotely located human operator for analysis. We assume that particular

imaging behaviors are required at each target, e.g., specific camera angles or views, and

that, due to the need to transmit real-time visual imagery to the operator, the UAVs

are required to dwell at each target for some amount of time. The ideal UAV routes

would allow all viewing and dwell-time constraints to be satisfied, while simultaneously

minimizing both the total amount of time to visit all of the targets and the time required

to reach the first target. Here, the presence of multiple objectives and various imaging

constraints makes existing methods for similar combinatorial routing problems ill-suited

for use in this domain. In response, this chapter develops novel heuristics for generating

high-quality UAV routes within a simple, practical, and modular framework.

We note that this chapter focuses exclusively on coordinating autonomous agents,

and thus does not explicitly consider operator behavior. Extensions that directly include

the operator within a joint optimization framework are considered in Chapter 6.

5.1 Problem Formulation

We start by rigorously formulating the discrete surveillance problem for a single UAV

mission. We then extend to the multi-UAV case in Section 5.5.

5.1.1 UAV Specifications

Consider a single fixed-wing UAV, equipped with a GPS location device and a gim-

baled, omnidirectional camera. The camera is steered by a low-level controller, which

is independent of the vehicle motion controller. For simplicity, neglect the possibility of

camera occlusions that are brought about by vehicle motion (usually not a restrictive

assumption, provided the vehicles fly at sufficiently high altitudes and reasonable target

103

UAV Surveillance Under Visibility and Dwell-Time Constraints Chapter 5

imaging specifications are given). The work herein focuses on high-level UAV trajectory

planning, rather than low-level vehicle or camera motion control. We consider planar

motion in a global, ground-plane reference frame, assuming the UAV maintains a fixed

altitude a and a fixed speed s. We model the UAV as a Dubins vehicle [154] with mini-

mum turning radius r, neglecting dynamic effects caused by wind, e.g. drift or drag. Let

v0 ∈ R2 × [0, 2π) denote the UAV’s initial configuration (location, heading).

5.1.2 Target Specifications

Consider M ∈ N static targets, each with associated imaging, i.e., visibility and dwell-

time, requirements. Each target1 Tj is associated with the following (fixed) parameters:

1. tj ∈ R2, the location of the target in the ground-plane reference frame,

2. BEHj ∈ {ANY, ANGLE, FULL}, the required viewing behavior, where ANY indicates no

preference for the azimuth of the collected images, ANGLE indicates that the target

should be imaged at a specific azimuth, and FULL indicates that a 360-degree view

of the target should be provided,

3.
[
φAz
j −∆Az

j , φ
Az
j + ∆Az

j

]
⊂ R, a range of acceptable azimuths when BEHj = ANGLE,

as measured with respect to a reference ray in the ground plane (Figure 5.1, left),

4.
[
φT
j −∆T

j , φ
T
j + ∆T

j

]
⊂ (0, π

2
], acceptable camera tilt angles as measured with re-

spect to a plane parallel to the ground-plane (Figure 5.1, right), and

5. τj ∈ Z≥0, the required number of dwell-time “loops.”

1Notice that we have used the symbol Tj to denote the j-th target, whereas in Chapter 3 the symbol
Tj denoted a task to be completed by the operator. This usage is strategic, since, in the motivating
supervisory mission, each target corresponds to an image analysis task to be completed by the operator.
This relationship is explored more explicitly in Chapter 6.

104

UAV Surveillance Under Visibility and Dwell-Time Constraints Chapter 5

φAz
j

φT
j

Tj

a

Figure 5.1: An illustration of key imaging parameters associated target Tj . Parameters
are measured with respect to a fixed, global reference frame.

Figure 5.2: Example visibility region VISj (green shaded area) associated with some
target Tj when BEHj 6= ANGLE (left), and when BEHj = ANGLE (right). Notice that the
visibility region forms either a full annulus or an annular sector in the ground plane.

Define the visibility region, VISj ⊂ R2, for target Tj as the set of locations from which the

UAV is able to image the target with an acceptable tilt angle and azimuth (that is, a tilt

angle within the interval
[
φT
j −∆T

j , φ
T
j + ∆T

j

]
and, if BEHj = ANGLE, an azimuth within

the interval
[
φAz
j −∆Az

j , φ
Az
j + ∆Az

j

]
; if BEHj 6= ANGLE, then any azimuth is acceptable).

Each VISj is uniquely defined by the UAV altitude a, the location tj, the behavior BEHj,

and the intervals
[
φT
j −∆T

j , φ
T
j + ∆T

j

]
,
[
φAz
j −∆Az

j , φ
Az
j + ∆Az

j

]
. Algorithm 10 presents

the methodology for constructing visibility regions. Notice that, if BEHj 6= ANGLE, then

VISj is a full annulus centered at tj; otherwise, VISj is an annular sector (Figure 5.2). As

such, fixing target locations, each visibility region is parameterized by two radii (lower

and upper limits) together with two angles (lower and upper angular limits).

105

UAV Surveillance Under Visibility and Dwell-Time Constraints Chapter 5

Algorithm 10: Visibility Region Construction

Input : a; φTj , φ
Az
j ,∆T

j ,∆
Az
j for each j ∈ {1, . . . ,M}

Output : {VISj}j∈{1,...,M}
for Each Tj do

if BEHj 6= ANGLE then
1 Define VISj as the annulus in R2 centered at tj with lower, upper

radial limits a/ tan(φTj + ∆T
j), a/ tan(φTj −∆T

j), resp.

else
2 Define VISj as the annular sector in R2 centered at tj with lower, upper

radial limits a/ tan(φTj + ∆T
j), a/ tan(φTj −∆T

j), resp., and

lower, upper angular limits equivalent to φAz
j −∆Az

j , φAz
j + ∆Az

j , resp.

3 return {VISj}j∈{1,...,M}

BEHj = FULL, τj != 0 BEHj = ANGLE, τj != 0 BEHj = ANY, τj != 0 BEHj = ANGLE, τj = 0

Figure 5.3: Example imaging behaviors at target Tj for various choices of BEHj and
τj . The cases where τj = 0 and BEHj ∈ {ANY, FULL} are very similar to the τj = 0,
BEHj = ANGLE case, and are thus omitted from the illustration.

The variable2 τj ∈ Z≥0 indicates the number of dwell-time “loops” that are required

at the target Tj. If τj = 0, then the UAV is only required to pass over any point within

VISj. If τj > 0, i.e., non-trivial dwell time is specified, assume the UAV images Tj as

follows: If BEHj = FULL, the UAV makes τj full circles around the target location at

some constant radius; if BEHj 6= FULL, then the UAV selects a pivot point within VISj

and makes τj circles about the selected point at radius r. Each non-trivial dwell-time

maneuver must be performed entirely within the appropriate visibility region. Figure 5.3

shows example imaging behavior for various choices of τj and BEHj. For the remaining

analysis, assume that imaging parameters are chosen to ensure problem feasibility, i.e.,

2Once again, since, in the motivating supervisory application, the dwell-time required at a target
corresponds to the time required by the human operator for image analysis, the use of τj here to
represent the number of dwell-time loops required and the use of τj in Chapter 3 to represent a task
processing time is strategic. This is explored further in Chapter 6.

106

UAV Surveillance Under Visibility and Dwell-Time Constraints Chapter 5

there exists at least 1 valid dwell-time maneuver at each target satisfying the required

constraints.

Remark 14 (Feasibility) Feasibility can always be achieved by choosing tolerance pa-

rameters sufficiently large.

5.1.3 Problem Statement

The goal is to construct an optimal UAV trajectory with the following characteristics:

The UAV begins its tour by moving from its initial configuration v0 to a configuration

where it can begin imaging a target and, after the initial maneuver, the UAV follows

a closed trajectory, along which it images each target to specification. By separating

the initial maneuver from the remaining closed route, we ensure that imaging behaviors

can be effectively repeated if necessary (since the UAV finishes the closed portion of the

tour at the initial imaging location, rather than unnecessarily returning to v0). Recall

the metrics to be minimized: (i) the time required for the UAV to traverse the closed

portion of its trajectory (beginning/ending at the first target), and (ii) the time required

for the UAV to perform its initial maneuver, i.e., move from v0 to the starting point of

the closed portion. Since the metrics are conflicting in general, a tradeoff must be made

in formulating the optimization problem. Consider the following generic formulation.

107

UAV Surveillance Under Visibility and Dwell-Time Constraints Chapter 5

Problem 1 (Optimal UAV Tour) Find a UAV tour (consisting of an initial maneu-

ver, and a closed trajectory) that solves the following optimization problem:

Minimize: Closed Trajectory Time

Subject To: Initial Maneuver Time ≤ ε

UAV Dynamic Constraints Satisfied (Section 5.1.1)

Correct Dwell-Time Maneuvers Performed at Each Target (Section 5.1.2),

(5.1)

where ε ≥ 0 is a fixed parameter.

Remark 15 (Scalarization) The problem (5.1) is an ε-constraint scalarization of the

multi-objective problem (see Section 1.2). A typical alternative scalarization would instead

account for the initial maneuver time within a linear objective: α (Initial Maneuver Time)+

β (Closed Trajectory Time) where α, β are constant parameters. For fixed α, β, any op-

timal solution to an instance of the alternative formulation is also an optimal solution

to an instance of (5.1) for some choice of ε. Since parameter selection and subsequent

solution of the linear alternative typically requires construction of a Pareto optimal front

by solving instances of (5.1), we restrict our attention to the ε constraint scalarization.

Remark 16 (Relation to [124]) If (i) the parameter ε is sufficiently large (the initial

maneuver is inconsequential), and (ii) τj = 0 for all j (dwell-times are trivial), then solv-

ing Problem 1 is equivalent to solving a Polygon-Visiting Dubins Traveling Salesperson

Problem, as in [124]. Our methods are loosely based on [124], though we consider a more

general multi-objective framework that also incorporates non-trivial dwell-times.

108

UAV Surveillance Under Visibility and Dwell-Time Constraints Chapter 5

5.2 Discrete Approximation

Problem 1, which explicitly considers all target imaging constraints, has an infinite

number of potential solutions and is difficult to solve. However, by carefully sampling

the UAV configuration space, we can pose a finite, discrete alternative whose optimal

solutions approximate those of the original problem. The discrete approximation is still

a combinatorial search; however, it is closely related to standard path-finding problems,

allowing us to leverage existing solvers to produce high-quality sub-optimal solutions.

This section develops the discrete approximation of interest.

5.2.1 Configuration Space Sampling

Recalling the Dubins vehicle model, we sample the UAV configuration space to obtain

a finite collection of points of the form v := (x, θ) ∈ R2 × [0, 2π). These points serve as

the basis for the discrete approximation to Problem 1. Specifically, we sample points that

each represent the starting and ending configuration of an appropriate dwell-time “loop”

at some target (valid dwell-time maneuvers each start and end at the same configuration).

That is, each sampled point v := (x, θ) has heading θ that points in a direction tangent to

a valid dwell-time loop (associated with some target TARv) passing through the location

x ∈ VISj (Remark 17). By explicitly pairing each v with its target TARv, this procedure

creates a one-to-one mapping between the generated points and a set of feasible dwell-

time maneuvers. As such, subsequent graph formulations can “disregard” dwell-time

constraints by using an augmented distance metric. Figure 5.4 shows examples of valid

sampled sets associated with some Tj, for various BEHj and τj values.

Algorithm 11 outlines the sampling process. Here, each set DWLj is defined thusly: If

τj 6= 0, let DWLj be the set of points v := (x, θ) ∈ VISj× [0, 2π) having location x that lies

on the circular image of an appropriate dwell-time maneuver and heading θ that points in

109

UAV Surveillance Under Visibility and Dwell-Time Constraints Chapter 5

BEHj = ANGLE, τj != 0 BEHj = ANGLE, τj = 0 BEHj = ANY, τj = 0

BEHj = ANY, τj != 0 BEHj = FULL, τj != 0

Figure 5.4: Examples of valid configuration samples associated with the target Tj
for various choices of BEHj and τj . Here, the red dot is the sampled point’s location
and the arrow represents its heading (distinct points can have the same planar loca-
tion). Notice that each discrete point has a location and heading that represents the
beginning and ending configuration of a valid dwell-time loop at the target Tj .

a direction tangent to the same circular image at x. If τj = 0, let DWLj := VISj × [0, 2π).

Notice Algorithm 11 allows multiple “copies” of the same configuration be sampled,

provided each is associated with a distinct target, i.e., there may exist vk1 , vk2 ∈ V with

identical locations and headings so long as TARvk1 6= TARvk2 .

Algorithm 11: Configuration Space Sampling
Input : Ns ∈ N; a; VISj , τj for all j ∈ {1, . . . ,M}
Output : V , {TARv}v∈V

1 Initialize V = ∅;
2 for Each Tj do
3 Construct and parameterize DWLj by considering images of valid dwell-time maneuvers at Tj ;
4 for k ∈ {1, . . . , Ns} do
5 Sample vk ∈ DWLj , associate the target Tj to vk (define TARvk := Tj), and add vk to V ;

6 return V , {TARv}v∈V

Remark 17 (Dwell-Time Loops) Under the sampling scheme in Algorithm 11, it is

possible that some v ∈ V is tangent to multiple, distinct dwell-time loops associated with

TARv. Notice that all such loops have identical radii, i.e., the UAV requires the same

110

UAV Surveillance Under Visibility and Dwell-Time Constraints Chapter 5

amount of time to traverse each. Thus, we can assume without loss of generality that

each v is the starting and ending configuration of a single loop associated with TARv.

5.2.2 Graph Construction

Algorithm 11 returns a discrete set V , where each individual configuration v ∈ V

represents a point in the UAV configuration space R2 × [0, 2π) that is the starting and

ending point of a valid dwell-time maneuver at its associated target TARv. Recalling that

the optimal Dubins path between any two configurations vk1 , vk2 ∈ R2 × [0, 2π) is well

defined (and easily computed) [154], we can utilize Algorithm 12 to construct a weighted,

directed graph G := (V,E,W) that effectively discretizes the feasible region of Problem 1.

Here, the edge set E contains directed edges connecting each pair of nodes in V that are

associated with distinct targets, along with directed edges connecting the initial UAV

configuration v0 with each node in V . Weights are defined via an augmented Dubins

distance that includes both the time required to complete the dwell-time maneuver at the

source node and the time required to travel between configurations (recall that optimal

Dubins paths are asymmetric in general). We are now ready to formally define the

discrete approximation to Problem 1 using the graph G.

Problem 2 (Discrete Approximation) Consider the graph G := (V,E,W) resulting

from Algorithm 12. Find a sequence v1, v2, . . . , vM ∈ V that solves

Minimize: W (vM , v1) +
M−1∑
k=1

W (vk, vk+1)

Subject To: W (v0, v1) ≤ ε

TARvk1 6= TARvk2 , for any k1 6= k2

(5.2)

where v0 ∈ V corresponds to the initial UAV location and ε ≥ 0 is a constant parameter.

111

UAV Surveillance Under Visibility and Dwell-Time Constraints Chapter 5

Algorithm 12: Graph Construction
Input : V , {TARv}v∈V ; v0, s, a, r
Output : G

1 Initialize the edge set E = ∅;
for Each pair of distinct points vk1 , vk1 ∈ V do

2 Add the directed edges (vk1 , vk2) and (vk2 , vk1) to E;
3 Set the weight W (vk1 , vk2) equal to the sum of:

(i) the time required to perform the dwell-time maneuver associated with vk1 , and
(ii) the time required to traverse the optimal Dubins path from vk1 to vk2 ;

4 Set the weight W (vk2 , vk1) equal to the sum of:
(i) the time required to perform the dwell-time maneuver associated with vk2 , and
(ii) the time required to traverse the optimal Dubins path from vk2 to vk1 ;

5 Add the UAV’s initial configuration v0 to V ;
6 for Each node v ∈ V do
7 Add the directed edges (v0, v) to E;
8 Set W (v0, v) equal to the time required to traverse the optimal Dubins path from v0 to v;

9 return G = (V,E,W)

5.3 UAV Tour Construction

Feasible solutions to Problem 1 can be recovered from feasible solutions to Problem 2.

Indeed, given a feasible solution v1, . . . , vM to (5.2), we recover a feasible solution to (5.1)

by: (i) concatenating the optimal Dubins paths between adjacent nodes in the sequence

(appending the path from v0 to v1 at the start and the path from vM with v1 at the end)

and (ii) appending the dwell-time trajectory associated to each node v1, . . . , vM . The

remainder of our analysis studies the discrete approximation (Problem 2) and its relation

to the non-discrete analog (Problem 1).

5.3.1 Solving the Discrete Problem

We leverage solutions of a classic graph path-finding problem to construct solutions

to (5.2). In particular, we propose a heuristic framework that relates solutions of (5.2)

112

UAV Surveillance Under Visibility and Dwell-Time Constraints Chapter 5

to those of an (asymmetric) Generalized Traveling Salesperson Problem (GTSP) (see

Section 1.2), which is defined for convenience here.

Problem 3 (GTSP) Given a complete, weighted, directed graph3 G(V) := (V , E ,W),

and a family of finite, non-empty subsets {Vj ⊆ V}j∈{1,...,M}, find a minimum weight,

closed path within G(V) that visits exactly one node from each subset Vj.

Remark 18 (GTSP Formulation) A common alternative GTSP formulation requires

the closed path to visit at least one node from each Vj, rather than exactly one node from

each Vj as in Problem 3. However, if edge weights satisfy a triangle inequality, then this

alternative and Problem 3 are identical. In what follows, we define GTSP instances on

an induced subgraph G(V) ⊆ G, where G is the graph constructed in Algorithm 12. In

this case, edge weights in G(V) represent an augmented Dubins distance and, since the

Dubins distance function satisfies a triangle inequality [125], edge weights in G(V) also

satisfy a triangle inequality. Thus, we consider Problem 3 without loss of generality.

Remark 19 (GTSP Solutions) The standard GTSP is NP-hard. However, practical

strategies exist for quickly constructing high-quality solutions, e.g., transformation of the

problem into a standard ATSP and application of a heuristic solver (see Section 1.2).

Note that, in general, Problem 2 is not equivalent to a GTSP, due to the constraint on

the initial maneuver. Despite this fact, we can still leverage GTSP solution procedures

in constructing solutions to the constrained problem. Indeed, a heuristic procedure for

constructing solutions to Problem 2 using the solutions to related GTSP instances is

outlined in Algorithm 13. Here, INLε denotes the set of all nodes in V \{v0} that can be

reached from v0 in time less than ε.

3We use the symbol G(V) here strategically, since all GTSP instances in subsequent algorithms are
defined over an induced subgraph of the larger graph G.

113

UAV Surveillance Under Visibility and Dwell-Time Constraints Chapter 5

Algorithm 13: Heuristic Solution to Problem 2
Input : G = (V,E,W), {TARv}v∈V \{v0}
Output : v1, . . . , vM

1 Construct the set INLε := {v ∈ V \{v0} |W (v0, v) ≤ ε};
if INLε is empty then

2 return “Problem 2 Infeasible”

else
3 Select a subset INL∗ε ⊆ INLε, whose elements are all associated with a single target T̂;
4 Construct the subgraph G(V) := (V, E ,W) of the graph G that is induced by the

node set V, where V := V \ ({v | TARv = T̂, v /∈ INL∗ε} ∪ {v0});
5 Formulate and construct a solution to the GTSP (Problem 3) using the graph G(V)

and subsets Vj := {v ∈ V | TARv = Tj};
6 Cyclically permute the GTSP solution to obtain a sequence v1, v2, . . . , vM with TARv1 = T̂
7 return v1, . . . , vM

In general, the sequences produced by Algorithm 13 will not be optimal with respect

to Problem 2. They will, however, be feasible. Further, if INLε has a particular structure,

then the subset INL∗ε (see Algorithm 13) can be chosen to ensure that the GTSP instance

(line 5) is equivalent to Problem 2. The following results make this discussion precise.

Theorem 6 (Feasibility) Algorithm 13 produces a feasible solution to Problem 2.

Proof: The GTSP solution (line 5) will contain some v ∈ INL∗ε ⊆ INLε. Thus, the

permutation operation in line 6 will produce v1, v2, . . . , vM with v1 ∈ INLε. It follows

readily that the algorithmic output is feasible with respect to Problem 2

Remark 20 (Feasibility) The feasibility result of Theorem 6 does not require the con-

struction of an optimal GTSP solution; that is, the theorem result holds provided that

any feasible GTSP solution is produced in line 5.

Theorem 7 (Equivalence) Consider Algorithm 13. Suppose INLε is nonempty and

that there exists an index ̂ ∈ {1, . . . ,M} satisfying either:

1. all nodes in INLε are associated with target T̂, or

2. all nodes in V that are associated with T̂ belong to INLε.

114

UAV Surveillance Under Visibility and Dwell-Time Constraints Chapter 5

Then, if INL∗ε (line 3) is chosen as the set of all nodes in INLε that are associated with

some such T̂, then optimal solutions of the GTSP in line 5 map to those of Problem 2 via

the operation in line 6. That is, if a globally optimal solution to the GTSP is produced,

then the output v1, . . . , vM of Algorithm 13 is a globally optimal solution to Problem 2.

Proof: Any feasible solution v1, v2, . . . , vM to Problem 2 must contain exactly one

node associated to each target, where v1 ∈ INLε. If INLε contains only nodes associated

to T̂ (condition (i)), then no feasible solution to Problem 2 contains any v /∈ INLε with

TARv = T̂. Thus, there is no loss of generality in considering the modified graph G(V)

when INL∗ε = INLε. The same applies when INLε satisfies condition (ii) and INL∗ε equals

the set of all nodes associated with T̂, as this implies G(V) = G(V \{v0}). Since cyclic

permutation of the node sequence does not affect the cost, any optimal solution to the

GTSP in line 5 maps to an optimal solution of Problem 2 via the operation in line 6.

Figure 5.5 shows a graphical illustration of the theorem conditions 1 and 2. We note

that the conditions required by Theorem 7 are frequently met when target spacing is

large, a condition that is common in realistic supervisory surveillance missions.

Figure 5.5: Diagrams illustrating two cases when INLε (blue nodes), i.e., the set of
nodes that the UAV can reach from its initial configuration, satisfies condition 1 (left)
and 2 (right) of Theorem 7.

115

UAV Surveillance Under Visibility and Dwell-Time Constraints Chapter 5

5.3.2 Complete Tour Construction

Algorithm 14 is a heuristic procedure that leverages solutions to the discrete ap-

proximation (Problem 2) to construct solutions to the full routing problem (Problem 1).

Solutions produced by Algorithm 14 are not optimal in general, though they will exhibit

structural characteristics that will generally improve in quality (with respect to Prob-

lem 1) as the sampling granularity is made increasingly fine. That is, Algorithm 14 is

resolution complete in some sense, providing justification for the sampling-based approx-

imation approach. A precise characterization of the resolution completeness properties

is somewhat tedious, and thus is postponed until Appendix B.

Algorithm 14: Heuristic Tour Construction Using GTSPs
Input : v0, s, a, r;Ns; {Tj}j∈{1,...,M}
Output : Complete UAV Route

% Create visibility regions;
1 Create target visibility regions via Algorithm 10;

% Create the discrete approximation;
2 Sample the configuration space and create the graph G via Algorithms 11 and 12;
3 Formulate Problem 2;

% Solve the discrete approximation;
4 Construct a solution v1, . . . , vM to Problem 2 via Algorithm 13;

if Algorithm 13 returns an error (Problem 2 is infeasible) then
5 return “Error: Discrete Approximation Infeasible”

% Convert the solution of Problem 2 into a solution to Problem 1;
6 Construct the optimal Dubins path that visits the nodes in the following order: v0, v1, . . . , vM , v1;
7 Recover a feasible solution to Problem 1 by appending dwell-time maneuvers.;

8 return Complete UAV Tour: Initial Maneuver + Closed Trajectory

5.4 Numerical Examples

We illustrate our algorithms through numerical examples. For each simulated mission,

solutions to Problem 1 are constructed via Algorithm 14, where GTSPs are solved through

transformation into an equivalent ATSP (see [128]) that is subsequently solved using

116

UAV Surveillance Under Visibility and Dwell-Time Constraints Chapter 5

Table 5.1: Target Input Data (Pareto-Optimality Study)

Tj tj Behj τj
[
φAz
j −∆Az

j , φ
Az
j + ∆Az

j

] [
φT
j −∆T

j , φ
T
j + ∆T

j

]
T1 (5000,−5000) m FULL 2 − [π

8
, 3π

8
]

T2 (4300,−1750) m ANGLE 1 [π
4
, 3π

4
] [π

8
, 3π

8
]

T3 (0, 4000) m FULL 3 - [π
8
, 3π

8
]

T4 (−8000,−2000) m ANY 1 - [π
8
, 3π

8
]

T5 (−2000, 8000) m ANGLE 0 [3π
2
, 2π] [π

8
, 3π

8
]

the Lin-Kernighan heuristic (as implemented by LKH [87]). In all cases, the set INL∗ε

(Algorithm 13) is chosen as the set of all points in INLε associated with some single

target (satisfying Theorem 7 conditions whenever possible). A slightly modified version

of Algorithm 11 is used for sampling in which the number of samples, Ns, associated

with each target is not fixed a priori, but instead is determined by creating a grid of

samples within the appropriate sampling subsets. The grid spacing is determined by

3 parameters δr, δθ, and δα, which represent, loosely, the radial location spacing, the

angular location spacing, and the angular heading spacing, resp. The parameters δr,

δθ, and δα are inversely proportional to the number of samples at each target, and the

sampled set is dense in the limit as spacing parameters jointly tend to 0.

5.4.1 Pareto-Optimal Front

The first example is a 5 target mission with the following UAV parameters: r = 750 m,

a = 1000 m, s = 39 m/s, and v0 = ((−2500, 500) m, 0) ∈ R2× [0, 2π). Target parameters

are shown in Table 5.1. The approximate Pareto-optimal front (with respect to ε)

for Problem 1 as a function of the sampling granularity is shown in Figure 5.6. The

figure also shows illustrations of solutions produced at spacing condition 5 when ε = 65

s (left) and ε = 205 s (right). Recalling that (i) Theorem 7 does not hold for all ε,

and (ii) heuristic solvers for GTSPs do not guarantee the production of global optima,

117

UAV Surveillance Under Visibility and Dwell-Time Constraints Chapter 5

Spacing Condition δr δθ δα

1 1000 m π π
2 500 m π π
3 500 m π/2 π/2
4 250 m π/2 π/2
5 250 m π/4 π/4
6 125 m π/4 π/4
7 125 m π/8 π/8

60 80 100 120 140 160 180 200

1800

2000

2200

2400

2600

2800

3000

ǫ

C
lo

s
e

d
 T

ra
je

c
to

ry
 T

im
e

Spacing Condition 1

Spacing Condition 2

Spacing Condition 3

Spacing Condition 4

Spacing Condition 5

Spacing Condition 6

Spacing Condition 7

60 80 100 120 140 160 180 200
60

80

100

120

140

160

180

200

220

ǫ

In
it
ia

l
T

ra
je

c
to

ry
 T

im
e

Spacing Condition 1

Spacing Condition 2

Spacing Condition 3

Spacing Condition 4

Spacing Condition 5

Spacing Condition 6

Spacing Condition 7

Epsilon Bound

0

0

5000-5000-10000

-5000

5000

-10000 -5000 0 5000

-5000

0

5000

-10000 -5000 0 5000

-5000

0

5000

0-5000 5000-10000

-5000

5000

0

Figure 5.6: Approximate Pareto-optimal front and example routes for a 5-target ex-
ample mission. The table contains the spacing parameters considered, the middle
plots show the closed trajectory times produced (left) and the corresponding initial
maneuver times produced (right), and the bottom diagrams shows the optimal routes
produced for spacing condition 5 when ε = 65 s (left) and ε = 205 s (right).

118

UAV Surveillance Under Visibility and Dwell-Time Constraints Chapter 5

to obtain the best approximation of the Pareto-optimal front, the following steps were

taken to generate each curve: First, Algorithm 14 was called for a series of ε values,

and the resulting initial maneuver/closed trajectory times were recorded. Then, in post-

processing, the approximate Pareto-optimal curve was generated by selecting, for each

ε, the lowest cost route satisfying the initial maneuver constraint out of the solutions

produced in the computation stage. Note that increasing ε corresponds to relaxing the

initial maneuver constraint, and thus the cost is non-increasing in ε. Notice also the

Pareto-optimal fronts shift toward zero as the sampling spacing is decreased.

Remark 21 (Pareto-optimal Fronts) The optimal cost of Problem 1 is only sensitive

to changes in ε over some finite set
⋃M
j=1[εj, εj] that depends primarily on target and UAV

locations. This structure can be exploited to efficiently compute Pareto-optimal fronts.

5.4.2 Performance

The next example illustrates the performance of Algorithm 14 in comparison to an

incremental, “greedy” alternative that operates as follows: Visibility region creation and

configuration space sampling are done using Algorithms 10 and 11. Starting with the

initial UAV configuration, each successive UAV destination is chosen by selecting the

closest node (Dubins distance, neglecting dwell-times) associated with a target that has

not yet been imaged. A valid route is constructed by appending dwell-time maneuvers

and connecting the last selected configuration (vM) with the first (v1). We consider a 5

target mission with the same UAV parameters and the same target locations, imaging

behaviors, and tolerances as in the previous example. However, we vary the number

of dwell-time loops associated with each target (though we assume each target requires

same number of loops).

The difference between the closed trajectory times produced by the greedy method

119

UAV Surveillance Under Visibility and Dwell-Time Constraints Chapter 5

60 80 100 120 140 160 180 200
0

2000

4000

6000

8000

10000

ǫ

C
lo

s
e

d
 T

ra
je

c
to

ry
 T

im
e

 E
rr

o
r

0 Loops

2 Loops

4 Loops

6 Loops

8 Loops

10 Loops

Figure 5.7: Performance of the greedy algorithm with respect to optimal routes. No-
tice that, when measured as the difference between the total tour lengths, the relative
performance of the greedy algorithm in this example can be made arbitrarily poor by
increasing the number of dwell-time loops to be performed at each target.

and those produced by Algorithm 14 as a function of ε under the spacing condition 5

(Figure 5.6) is shown in Figure 5.7. Notice that the relative performance of Algorithm 14

improves as both ε and the number of dwell-time loops at each target are increased. In

this example, the performance of the greedy search method can be made arbitrarily poor

by increasing the number of dwell-time loops. This result is primarily due to targets that

require a 360-degree view, since the greedy heuristic generally chooses those points lying

on the perimeter of the visibility region, which are very far from the target location.

Thus, increasing the number of dwell-time loops (performed at constant radius) can

dramatically increase tour times. As such, Algorithm 14 provides a significant advantage

over similar incremental planning strategies when non-trivial dwell-times are required.

5.4.3 Resolution Completeness

To illustrate resolution completeness (see Appendix B), consider a mission with 2 tar-

gets whose relevant data is in Table 5.2. The UAV has the same altitude, velocity, and

minimum turning radius as the UAVs in the previous examples, but has initial configu-

120

UAV Surveillance Under Visibility and Dwell-Time Constraints Chapter 5

Table 5.2: Target Input Data (Resolution Completeness Study)

Tj tj Behj τj
[
φAz
j −∆Az

j , φ
Az
j + ∆Az

j

] [
φT
j −∆T

j , φ
T
j + ∆T

j

]
T1 (2131.8, 1026.7) m ANY 0 − [π

6
, π
3
]

T2 (−13840,−5833) m ANY 1 − [π
8
, 3π

8
]

ration v0 = ((0, 0) m, π/7) ∈ R2 × [0, 2π). This example has been carefully constructed

so that the optimal solution is easily deduced for select ε conditions. In particular, when

ε ≥ 25 s, the optimal tour involves the UAV making an immediate left turn at minimum

radius, and then visiting the remaining target for a total closed tour length of 848.62 s.

When ε = 16.26 s, the UAV is constrained to make a shorter initial maneuver, so the UAV

travels straight until it hits the visibility region, and then proceeds with the remainder

of the tour for an optimal closed tour length of 881.14 s. A schematic showing optimal

routes for these two ε conditions is shown in the top left portion of Figure 5.8. (the red

curve corresponds to the initial turn for the ε = 16.26 s case; the remainder of the route

is identical). When ε ≥ 25 s, the problem instance is non-degenerate (Definition 8) and

satisfies the conditions required for resolution completeness (Theorem 9). Therefore, if

a reasonable sampling method and GTSP solver are used, we expect the solutions pro-

duced by Algorithm 14 will tend toward the global optimum with finer sampling. This

behavior is illustrated by the top right plot in Figure 5.8, which shows the relative error

(difference divided by the optimum) between the cost produced via Algorithm 14 and

the globally optimal cost for the sampling conditions listed in the table when ε = 130

s. Notice that the relative error tends to zero with finer discretization. Also note that,

for this example, the optimal solution to the discrete approximation involved vertices lo-

cated on visibility region boundaries, resulting in an insensitivity to radial grid spacing.

In contrast, when ε = 16.26 s, the problem becomes degenerate, since there is a single

configuration to which the UAV can travel in order to satisfy the ε bound. In this case,

121

UAV Surveillance Under Visibility and Dwell-Time Constraints Chapter 5

Horizontal Position (m)
-20000-15000-10000 -5000 0 5000

Ve
rti

ca
l P

os
itio

n
(m

)

-10000

-5000

0

5000
5000

1 2 3 4 5 6 70

0.01

0.02

0.03

0.04

0.05

0.06

R
el

at
iv

e
Er

ro
r

Spacing Condition

Figure 5.8: Optimal routes when ε = 16.26, 25 s (left) and relative cost error when
ε = 130 s (right) for the example mission described in Section 5.4.3.

Problem 2 is infeasible for any sampling scheme that does not choose configuration in

question. Therefore, Algorithm 14 is not resolution complete in the sense of Theorem 9

when ε = 16.26. Note, however, that resolution completeness holds if ε is increased by

any arbitrarily small positive amount.

5.5 Extensions for Multiple Vehicle Missions

Even though the strategies discussed in this chapter thus far are, strictly speaking,

only applicable to single vehicle missions, they can easily be paired with a target assign-

ment heuristic in order to address similarly structured multiple-vehicle problems. Indeed,

using a decomposition-based solution strategy (similar to that discussed in Chapter 4),

multiple-vehicle problems can be addressed by first assigning a subset of the targets to

each vehicle and subsequently solving each of the resultant single vehicle problems.

We briefly discuss this type of decomposition-based extension here. In addition to

their expository value, the following sections also provide the strategies that will be used

as a basis of comparison for the joint optimization methods introduced in Chapter 6.

122

UAV Surveillance Under Visibility and Dwell-Time Constraints Chapter 5

5.5.1 Multi-Vehicle Problem Description

We consider a multiple-vehicle surveillance mission that is analogous to that of Sec-

tion 5.1. That is, consider a team of N ∈ N UAVs, each modeled as in Section 5.1.1,

that is responsible for providing surveillance of a set of M ∈ N targets, each of which

requiring a specific imaging behavior (as in Section 5.1.2). For simplicity, we make the

following assumptions: First, suppose that any target is allowed to be imaged by any of

the available UAVs, i.e., there is no preference for which particular UAV images a given

target. Second, assume that all UAVs are homogenous4, i.e., all UAVs identically fly

at an altitude a with forward airspeed s and have minimum turning radius r. Lastly,

we neglect the possibility of UAV collisions in the optimization, i.e., there is no penalty

assessed for two UAVs being colocated at some point in time.

Similar to the single-vehicle case, we seek a tour for each UAV (initial maneuver

and closed trajectory) that together accomplish the desired imaging behavior at each

target. While there are multiple possible formulations of the multi-vehicle problem, for

illustrative purposes, we consider minimizing two metrics that are analogous in some

sense to those considered in the single vehicle problem: (i) the delay between the mission

onset and the first time that one of the UAVs reaches a target, and (ii) total time that

it takes to execute 1 iteration of the tour, i.e., the maximum time that it takes any

single UAV to complete both its initial maneuver and one iteration of its assigned closed

trajectory. This formulation of the multi-vehicle problem is summarized in Problem 4.

Problem 4 (Multi-UAV Tour) Find a tour for each UAV (consisting of an initial

maneuver and a closed trajectory), so that the set of UAV tours collectively solves the

4The methods here readily extend to the heterogenous case with intuitive modifications.

123

UAV Surveillance Under Visibility and Dwell-Time Constraints Chapter 5

following optimization problem:

Minimize: Max Time Required for Any Single UAV to Complete Tour

Subject To: At least One UAV’s Initial Maneuver Time ≤ ε

UAV Dynamic Constraints Satisfied (Section 5.1.1)

Correct Dwell-Time Maneuvers Performed at Each Target (Section 5.1.2),

(5.3)

where ε ≥ 0 is a fixed parameter.

As in the single vehicle case, we assume that target parameters are chosen sufficiently

large to ensure problem feasibility. Notice that the objective function in (5.3) is subtly

different than that of (5.1), since it considers the time to complete the total tour, i.e.,

the sum of the initial maneuver time and the closed trajectory time, rather than just

the time required for the closed portion. However, for single-vehicle problems, the two

formulations (Problem 1 and Problem 4) are equivalent in some sense when addressing

the multi-objective problem: any solution to an instance of Problem 4 is also a solution

to an instance of Problem 1 for some (possibly different) choice5 of ε. We choose the

formulation of Problem 4 since it directly reflects the goals of many typical multi-UAV

surveillance missions. Indeed, the primary performance metric in the multi-vehicle case

is usually the time to complete the entire mission, rather than simply the closed portion.

5.5.2 Decomposition-Based Solution

A typical decomposition-based solution for Problem 4 is outlined in Algorithm 15.

Here, vn0 represents the initial configuration of the n-th UAV.

5This equivalence is similar to the relation between scalarization methods of the muli-objective prob-
lem (see Remark 15).

124

UAV Surveillance Under Visibility and Dwell-Time Constraints Chapter 5

Algorithm 15: Decomposition-Based Tour Construction Using GTSPs
Input : {vn0 }n∈{1,...,N}, s, a, r;Ns; {Tj}j∈{1,...,M}
Output : Complete Multi-UAV Route

% Create visibility regions;
1 Create target visibility regions via Algorithm 10;

% Sample configuration space;
2 Sample the configuration space via Algorithm 11;

%Assign Targets to UAVs;
3 Find Target/UAV Pairings;

%Solve individual UAV routing problems;
for Each UAV n do

4 Create the graph G via Algorithm 12;
5 Choose an appropriate ε value;
6 Formulate single-vehicle problem (Problem 1), only considering targets paired to UAV n;
7 Formulate Problem 2 using previously constructed sampling sets;
8 Construct a solution to Problem 2 via Algorithm 13;

if Algorithm 13 returns an error (Problem 2 is infeasible) then
9 return “Error: Discrete Approximation Infeasible”;

10 Construct the UAV tour (initial maneuver + closed trajectory) associated with the
solution constructed in step 8;

11 return UAV Tours

5.5.3 Target Assignment

The only significant algorithmic difference between the decomposition-based, multi-

vehicle solution framework of Algorithm 15 and the single vehicle strategy presented in

Algorithm 14 is the need to assign targets to the UAVs (line 3). Indeed, after assignment,

each of the resultant single vehicle problems are solved as in the previous sections.

This target assignment can be done in a number of ways, and there are efficient, intu-

itive heuristics that can be used to obtain reasonable performance. However, care must

be taken in constructing these heuristics to ensure that Algorithm 15 always produces a

feasible solution to Problem 4 whenever such a solution exists. As an example, consider

the greedy assignment procedure outlined in Algorithm 16. Here, we assume that (i)

the variable vn0 ∈ R2 × [0, 2π) is the initial configuration of the n-th UAV, (ii) visibility

regions have been constructed using Algorithm 11 and (iii) the configuration space has

125

UAV Surveillance Under Visibility and Dwell-Time Constraints Chapter 5

been sampled using Algorithm 11. This greedy strategy operates by sequentially assign-

ing targets to UAVs in a way that locally maximizes the rate of information provided to

the user. That is, the algorithm recursively chooses the next UAV-target pairing as the

assignment that minimizes the time at which an unserviced target can be reached, given

the (theoretical) current system state. Note that this process is purely for assignment, as

the single-vehicle protocol of Section 5.3.2 is used to construct final vehicle routes. This

construction guarantees that the desired feasibility property of the resultant solution is

satisfied whenever ε is chosen carefully, as shown by the following Lemma.

Algorithm 16: Target Assignment
Input : a, s, r, {vn0 }n∈{1,...,N};{Tj}j∈{1,...,m}, V , {TARv}v∈V
Output : Target/UAV Pairings

1 Set theoretical UAV positions v̂n = vn0 and the timing statistic timen = 0 for all n ∈ {1, . . . , N}
2 while There are still unassigned targets do
3 Reset the statistic t0 =∞.
4 for Each UAV n do
5 for Each vertex v ∈ V associated with an unassigned target do
6 Set opt equal to the time required UAV n to traverse the optimal Dubins path

between v̂n and v;
7 if v̂n 6= vn0 then
8 Set dwell equal to time required for dwell-time maneuver associated with v̂n.

else
9 Set dwell = 0.

10 if timen + opt + dwell < t0 then
11 Set ̂ = TARv, n̂ = n, v̂ = v, and t0 = timen + opt + dwell

12 Assign target T̂ to UAV n̂, and set tn̂ = t0, v̂n̂ = v̂;
13 return Target/UAV Pairings

Lemma 3 (Multi-Vehicle Feasibility) Suppose Problem 4 is feasible. If target as-

signment is performed using Algorithm 16 and, for each UAV, the value of ε (line 5)

is taken equal to the minimum time required for the UAV to reach any vertex in V as-

sociated with one of its assigned targets, then the collection of routes produced by the

decomposition-based strategy of Algorithm 15 is a feasible solution to Problem 4.

126

UAV Surveillance Under Visibility and Dwell-Time Constraints Chapter 5

Table 5.3: Target Input Data (Multi-Vehicle Study)

Tj tj Behj τj
[
φAz
j −∆Az

j , φ
Az
j + ∆Az

j

] [
φT
j −∆T

j , φ
T
j + ∆T

j

]
T1 (10000, 0) FULL 5 − [π

6
, π
3
]

T2 (0, 500) ANGLE 1 [π
4
, 3π

4
] [π

6
, π
3
]

T3 (1200, 5000) FULL 2 - [π
6
, π
3
]

T4 (−4000,−1500) ANY 0 - [π
6
, π
3
]

T5 (−2000, 8000) ANGLE 0 [3π
2
, 2π] [π

6
, π
3
]

T6 (3500,−4000) ANGLE 5 [−π
4
, π
4
] [π

6
, π
3
]

Proof: By the heuristic assignment method of Algorithm 16, the first target-UAV

pairing will be chosen by minimizing the time for any UAV to reach any target. Suppose

the UAV involved in this pairing is UAV n and the target involved in the pairing is

target Tj. If Problem 4 is feasible, then the time that it takes UAV n to reach target Tj

is less than the specified constraint in Problem 4. It follows that readily that, if initial

maneuvers are constrained to be minimum by appropriate choice of ε, then the result of

Algorithm 15 is a feasible solution of Problem 4.

In addition to ensuring feasibility, the greedy heuristic of Algorithm 16 also tends

to provide reasonable performance with respect to the maximum individual UAV tour

length when compared to other assignment strategies. To illustrate, consider the following

example problem containing 6 targets and 3 homogenous UAVs. In this example, each

UAV has a minimum turning radius of 750 m, an altitude of 1000 m, and a constant speed

of 39 m/s. The UAV initial configurations are v10 = ((0, 0) m, 0), v20 = ((1000, 0) m, 0),

and v30 = ((−1000, 0) m, 0) ∈ R2 × [0, 2π). Relevant data concerning the targets is in

Table 5.3. We consider 3 different implementations of the decomposition-based strategy

in Algorithm 15, each employing a different target assignment strategy. In the first

implementation, the greedy heuristic (Algorithm 16) is used (“Greedy” assignment). In

the second implementation, an alternative strategy is used in which each target is paired

with the UAV that is closest to the target’s physical location according to the Euclidean

127

UAV Surveillance Under Visibility and Dwell-Time Constraints Chapter 5

distance at the onset of planning (“Closest” assignment). In the third implementation,

targets are paired to UAVs randomly via pseudorandom groupings of the set {1, . . . ,M}

(“Random” assignment). In all cases, the resultant single vehicle problems are solved by

choosing ε equal to the minimum time required for the UAV in question to reach any node

associated with one of its assigned targets, i.e., the initial maneuver is constrained to be

as short as possible, given the target-UAV pairings. As in Section 5.4, discretization of

visibility regions is performed using a slightly modified version of Algorithm 11 in which

the number of discrete samples, Ns, associated with each target is not fixed a priori,

but instead is determined by creating a grid of samples within the appropriate sampling

subsets with spacing that is determined by the 3 fixed parameters δr, δθ, and δα. We

let δr = 250 m, δθ = π/4, and δα = π/4 in all trials.

Illustrations of the solution produced using a single instance of each of the aforemen-

tioned algorithmic implementations is shown in Figure 5.9. In the figure, the top left,

top right, and bottom schematics depict the routes constructed using Algorithm 15 in

conjunction with the “Greedy,” “Closest,” and “Random” assignment strategies, resp.

Black dots represent target locations, while the shaded annular areas represent visibility

regions. Solid lines each represent one UAV tour, with the colored squares marking the

initial UAV locations. Figure 5.10 shows a comparison of the maximum individual UAV

tour lengths contained in the solutions to each of 2000 simulation runs computed using

the 3 implementations of Algorithm 15 (“Greedy,” “Closest,” and “Random”). The his-

togram shows the result of each simulation run using the “Random” target assignment

strategy, while the dashed lines illustrate the mean maximum individual tour time con-

tained in the solutions produced using the “Greedy” and “Closest” strategies. Note that,

in Figure 5.10, we have omitted a histogram of the costs produced using the “Greedy”

and “Closest” algorithms for clarity, as there was very little variance in the costs pro-

duced for these two alternatives (“Greedy”: 95% of trials had a cost of 1694 s, with a

128

UAV Surveillance Under Visibility and Dwell-Time Constraints Chapter 5

Horizontal Position (m)

-5000 0 5000 10000

V
e
rt

ic
a
l
P

o
s
it
io

n
 (

m
)

-5000

0

5000

Figure 5.9: Illustration of solutions produced using the decomposition-based solution
strategy of Algorithm 15 when target assignment is performed using the “Greedy”
strategy (top left), the “Closest” strategy (top right), and the “Random” strat-
egy(bottom).

maximum produced cost of 1702 s; “Closest”: all trials produced a cost of 2645 s).

It is clear from Figure 5.9 that the chosen target assignment strategy has a drastic

effect on the resultant UAV routes. At first glance, it may seem that the solution produced

by the “Greedy” strategy is somewhat counterintuitive, and possibly even inferior to the

solution produced by the “Closest” strategy. However, it is important to recall that (i)

the UAV is required to make multiple “loops” at some of the targets, (ii) the “Greedy”

algorithm is designed to address two conflicting performance metrics simultaneously,

namely, the closed trajectory time and the initial maneuver length, and (iii) due to

these conflicting performance metrics and the heuristic nature of the algorithm, the

“Greedy” algorithm is not guaranteed to provide the global optimum with respect to

either of the performance metrics, but simply to provide a reasonable balance between

129

UAV Surveillance Under Visibility and Dwell-Time Constraints Chapter 5

1500 2000 2500 3000
0

50

100

150

200

250

300

Total Tour Time (s)

C
o
u
n

t

Greedy

Closest

Figure 5.10: Maximum individual UAV tour times (i.e., the value of the objective
function in (5.3)), computed over 2000 simulation runs of each implementation of
Algorithm 15 for an example surveillance mission.

them. The global time at which a UAV reaches the first target is minimized with the

“Greedy” strategy. Further, from Figure 5.10, we see that although, on average, the

“Greedy” strategy does not produce the global minimum with respect to the maximum

individual UAV tour length, it does produce a tour that has reasonable length. Indeed,

even though the mean is about 17.7% longer than the shortest tour produced using

random assignment, the mean tour produced using the “Greedy” strategy is shorter than

about 82% of the tours produced using the “Random” strategy, and is about 36% shorter

than tours produced using the “Closest” strategy. Thus, the “Greedy” strategy provides

a reasonable balance between the performance objectives. Of course, the meaning of

“reasonable” is dependent upon the application, the system designer, and the end-user.

Notice also that, in some instances of Problem 4, the “Closest” and “Random” strategies

may not guarantee the feasibility of the produced solutions, while the “Greedy” strategy

as implemented here does guarantee feasibility (Lemma 3).

130

UAV Surveillance Under Visibility and Dwell-Time Constraints Chapter 5

5.6 Chapter Summary

This chapter explored a novel algorithmic framework for constructing unmanned

aerial vehicle trajectories for a visibility-constrained, persistent surveillance mission in-

volving static targets. By adopting reasonable constraints on optimal dwell-time behavior

and UAV maneuvers, the framework works to balance mission goals, namely, the closed

trajectory and the initial maneuver times, while simultaneously accommodating both

viewing and dwell-time constraints. In particular, an ε-constraint scalarization method

is applied to rigorously pose the multi-objective problem as a constrained optimization,

which is then approximated by a finite, path-planning problem that results from careful

sampling of the UAV configuration space. Solutions to related GTSP problems can then

be utilized to construct solutions to the discrete approximation which, in many cases,

map directly to globally optimal solutions of the discrete problem. These solutions were

then mapped to solutions of the continuous problem. It was shown that, under cer-

tain conditions, the complete heuristic procedure is resolution complete in the sense that

solution quality generally increases with increasingly fine sampling. A brief expository

discussion was also presented to illustrate how the proposed single-vehicle solutions can

be paired with target assignment strategies to address certain multi-vehicle extensions in

a decomposition-based framework.

Avenues of future research include the expansion to the multi-vehicle case, explicit

comparisons with other routing schemes (e.g., Markov chain-based schemes), and an in-

vestigation of alternative discretization strategies. In addition, incorporation of uncertain

dwell-times and the explicit pairing with other facets of complex missions, e.g. operator

analysis of imagery, should be explored.

131

Part III

Joint Methods

132

Chapter 6

Joint Scheduling and Routing for

Supervisory Surveillance Missions

As discussed in Chapter 1, coordination strategies for supervisory mobile sensor systems

must consider several factors. From a human factors perspective, the coordination scheme

should help create a high-performance work environment for the operator. In particular,

for human processing of sensory data, smart strategies should be employed to ensure

that (i) the required tasks are completed, (ii) the operator’s cognitive state remains in

a high-performance regime, and (iii) performance is robust to behavioral uncertainties.

This is the primary goal of the operator-focused methods discussed in Part I. From a

robotics perspective, mobile sensor behavior must be coordinated to accomplish mission

objectives within an environment that may be large and time-varying. This is the primary

goal of the sensor-focused methods discussed in Part II. However, behaviors should also

be planned so that (i) tasks requiring operator attention are generated so as to not create

bottlenecks, and (ii) uncertainty does not cause undesirable configurations.

While these operator and sensor-focused methods each individually have their own

merit, in large part, they do not explicitly take into account the inherent coupling be-

133

Joint Scheduling and Routing for Supervisory Surveillance Missions Chapter 6

tween the operator and sensor behavior. As such, the full benefit of the human-centered

autonomous sensor system may still go unrealized, even if each individual system com-

ponent is optimized on its own. This chapter seeks to alleviate this issue by jointly

optimizing both the operator and sensor behavior within a single coordination frame-

work. In particular, we illustrate this joint optimization approach within the context

of a discrete surveillance mission involving a single operator, a team of UAVs, and a

set of static ground targets. We note that the problem considered here is derived from

the discrete surveillance problem of Chapter 5, together with the scheduling problem of

Chapter 3, and the proposed solution framework can, in some sense, be considered as a

combination of the methodologies of those two chapters.

6.1 Problem Formulation

6.1.1 Mission Overview and Solution Approach

A team of UAVs, each equipped with a gimbaled, on-board camera, is tasked with

collecting surveillance imagery of a set of static targets with known locations. The

targets are distributed over a large planar area, so that the UAVs must move within the

environment in order to collect complete sensory data. There are no restrictions on which

UAV images any particular target, and no single UAV can simultaneously image more

than one target. When a UAV reaches a target, it loiters in place (see Section 6.1.3) while

simultaneously transmitting its camera feed to a remotely located operator, who takes

some amount of time to process the image. The mission is complete when the operator

has processed each target exactly once.

We seek a framework to simultaneously generate (i) UAV routes to visit/image the

targets, and (ii) the operator’s task-processing schedule, i.e., the time at which the oper-

134

Joint Scheduling and Routing for Supervisory Surveillance Missions Chapter 6

Rest
Process
Target 3

Process
Target 1

Increasing Time

Traveling
Loitering At

Target 1

Traveling
Loitering At

Target 2
Traveling

Loitering At
Target 3

Rest Rest
Process
Target 2

Figure 6.1: Illustration of the coupling between UAV and operator behavior. Notice
that the operator cannot start a task until the corresponding UAV reaches the appro-
priate target, and that the UAV cannot leave the target until the operator finishes
processing the task.

ator processes each task. Since target imagery is transmitted in real-time, the availability

of target imagery (operator tasks) is determined by the time that the UAVs arrive at

each target and, conversely, the required UAV dwell-time at each target is determined

by the operator processing time. A diagram illustrating the coupling between the vehi-

cle and operator schedules is shown in Figure 6.1. This relationship introduces a set of

constraints to govern the synchronization of human and robotic resources. In addition to

satisfying synchronization constraints, the ideal routes/schedule would be such that (i)

the operator’s task load stays within a high-performance regime, and (ii) the time that the

UAVs spend loitering unnecessarily, i.e., when the operator is not analyzing their video

feed, is minimized. The following subsections expand the mission setup mathematically.

6.1.2 Human Operator Specifications

A single human operator sequentially processes the visual sensory data collected by

the UAVs. Assume that all image analysis tasks are of equal importance, and that no

two tasks can be executed simultaneously. Further assume that, once a task is started,

it must be completed before another task is initiated. As in Chapter 3, we are interested

in moderating the operator’s task load, under the assumption that task load is directly

correlated with operator stress and thus, by the typical interpretation of the Yerkes-

135

Joint Scheduling and Routing for Supervisory Surveillance Missions Chapter 6

Dodson law [76], moderate task-load levels lead to the best performance [18, 76].

We use the same trend-based task-load model as was used in Chapter 3: We represent

the operator’s task load level as a scalar variable, which, ideally, should be maintained

within the finite interval [W,W]. The interval bounds are chosen a priori ; however, they

are treated as “soft” constraints in subsequent optimizations, and thus high precision is

not generally required. The operator’s task load level evolves as follows (similar to [137,

135]): when the operator is busy, i.e., working on a task, the imposed task load increases

by some (task-dependent) amount, and when the operator is idle, the imposed task load

decreases by some amount. In this chapter, we assume that task load decrements linearly

during idle time with a fixed rate δ− ∈ R>0, e.g., if the operator is idle for time t, then the

task load decrement is δ−t. Task load increments are discussed further in Section 6.1.4.

6.1.3 UAV Specifications

Suppose there are N ∈ N UAVs, each responsible for visiting a subset of the targets

and transmitting real-time video data to the operator. A UAV must loiter at the target

location while the operator processes the associated task. We do not assume a particular

dynamic model, although we assume that the time required for traversal of the optimal

path between any two UAV configurations can be quantified using a known time-invariant

function, i.e., the travel time between two fixed configurations is fixed and known. We

collect each UAV’s initial configuration in a set V0 (having size N : create copies if two

UAVs share a common initial configuration).

We develop the framework of this chapter under the simplifying assumptions that (i)

the UAVs are homogenous, i.e., have identical dynamic and sensing capabilities, and (ii)

each UAV is able to “hover” in place. However, some comments are in order: First, het-

erogenous vehicles can be accommodated via straightforward extensions of the presented

136

Joint Scheduling and Routing for Supervisory Surveillance Missions Chapter 6

V1

V2

V3

V4

Figure 6.2: Illustration of the sets Vj associated with each target j

methods. Second, the “hovering” assumption is not necessary when using the dynamic

strategy of Sections 6.3 and 6.4. As such, the strategies of these sections can also be

applied to fixed-wing UAVs, as we demonstrate in Section 6.5.

6.1.4 Target Specifications

A set of M targets must be imaged and analyzed. Associate each target Tj with

a finite set Vj of configurations from which the UAV is able to provide the required

imagery. That is, to image target j, the UAV must travel to one of the configurations

in Vj and hover until the operator processing is complete (see Figure 6.2). Each target

Tj can equivalently be considered as an image analysis task, which takes the operator

time τj ∈ R≥0 to complete. Initially, assume that τj is fixed and known a priori for each

target (this is relaxed in Section 6.4). As in Chapter 3, let ∆Wj ∈ R≥0, represent task

load increment that results from the operator working on task Tj for the time τj.

Remark 22 (Configuration Clusters) The discrete “clusters” (V1, V2, . . . , VM) arise

naturally in sampling-based approximations to continuous planning problems, e.g.,[124].

In our case, these clusters can be thought of as resulting from a discretization procedure

similar to that of Section 5.2.1.

137

Joint Scheduling and Routing for Supervisory Surveillance Missions Chapter 6

6.1.5 Objectives and Performance Metrics

The goal is to develop an algorithmic framework that simultaneously manages both

human and autonomous resources. We consider two performance metrics: (i) the max-

imum amount (absolute value) by which the operator’s task load bounds are violated

(both upper and lower) during the mission, and (ii) the aggregate time that the UAVs

spend loitering unnecessarily, i.e., loitering at a target before the operator begins process-

ing the video feed. The first metric is considered due to the relation between task load

and performance mentioned in Section 6.1.2. The second metric is considered since it is

often undesirable to have UAVs spend excessive time loitering at a target, particularly

when the target is hostile, e.g., in many military reconnaissance operations [155]. Indeed,

unnecessary loitering increases target awareness through increased noise signature, etc.

We wish to minimize these metrics by jointly optimizing over (i) the operator schedule,

and (ii) the UAV routes.

Using a linear scalarization of the multi-objective problem, the full, continuous joint

optimization problem is described mathematically as follows.

Problem 5 (Joint Human/UAV Optimization) Determine both an operator sched-

ule, which dictates when the operator should process each task (target image), and a set

of UAV target visitation routes, that together minimize the metric

Mission Cost = pβ(Max upper task load bound violation)

+ pγ(Max lower task load bound violation)

+ pλ(Total unnecessary loiter time)

where pβ, pγ, pλ > 0 are fixed parameters.

The remainder of our analysis is focused on the development of methods for constructing

practical solutions to Problem 5. In particular, under a few additional constraints on

138

Joint Scheduling and Routing for Supervisory Surveillance Missions Chapter 6

UAV behavior, Problem 5 is equivalently represented as a mixed-integer program (MIP),

which can be solved using discrete programming methods. In addition, in Section 6.4,

we show how these heuristic methods allow the introduction of straightforward, scenario-

based techniques for mitigating operator uncertainty.

6.2 Mixed-Integer Programming Formulation

This section develops a MIP approximation to Problem 5. This formulation is based

on the following assumptions: (i) each UAV departs its initial location immediately,

and departs each successive target viewpoint in its route immediately after the operator

completes the associated analysis task, (ii) the time that any UAV takes to travel from a

given starting configuration to a given ending configuration is fixed and known, and (iii)

travel times satisfy a triangle inequality.

Let V0 be the set containing the initial configuration of each UAV. We also define a

variable K to represent the number tasks in the operator schedule that results from the

optimization problem. In this section, we consider the full scheduling operation and thus

set K := M .

6.2.1 Graph Construction

Under the aforementioned assumptions, the problem of finding appropriate UAV tar-

get visitation orders reduces to a path-finding problem over a graph. Define the complete,

weighted, directed graph G := (V,E,W), where V := V0∪V1∪· · ·∪VM is the union of the

clusters V0, V1, . . . , VM defined in Sections 6.1.3 and 6.1.4, and the weight W (i, j) of edge

(i, j) equals the travel time from node i to node j. Assume G also contains zero-weight

self-loops, i.e., (i, i) ∈ E and W (i, i) := 0 for all i ∈ V . For each UAV n, a valid target

visitation order is specified by a path that starts at its initial configuration (contained in

139

Joint Scheduling and Routing for Supervisory Surveillance Missions Chapter 6

the set V0), and visits at most one node from any of the clusters V1, . . . , VM . Aggregating

individual routes, exactly one node from each cluster should be visited by some UAV.

Remark 23 (GTSP) The UAV route-finding problem is similar to a multi-vehicle,

open, GTSP. Indeed, we seek paths on G so that exactly one configuration associated

to each target is visited by some UAV, and the UAVs need not return to their initial

depot. However, the problem of interest herein differs from typical GTSP instances due

to operator considerations: the performance metrics considered depend jointly on vehicle

behavior and operator behavior, which is not fixed a priori.

6.2.2 Decision Variables

Let xi,j,k ∈ {0, 1} be a binary decision variable that equals 1 if and only if (i, j) ∈ E

appears in some UAV’s route, and the target associated with node j represents the

k-th task in the operator schedule (Figure 6.3). The remaining decision variables are

continuous: Let Ak ∈ R≥0 be the time that some UAV arrives at the target representing

the k-th task in the operator schedule, and let Bk, Ck ∈ R≥0 be the time that the operator

begins and completes the k-th task, resp. Next, let W k,W k ∈ R represent the operator’s

task load level immediately before and after processing the k-th task. Note that the

subscript k indicates the order in which the operator processes tasks, and not the order

in which any single vehicle visits its assigned targets. Finally, define β, γ, λ ∈ R≥0 to

act as surrogates to each performance metric: max upper and lower task load bound

violation (absolute value), and total unnecessary loiter time. Table 6.1 summarizes the

decision variables.

140

Joint Scheduling and Routing for Supervisory Surveillance Missions Chapter 6

Process
Target 1

Process
Target 3

V1

V2

V3

v10 = 1

3

4

x1,3,1 = 1

x3,4,3 = 1x2,7,2 = 1

Increasing Time

Loitering At
Target 1

Loitering At
Target 2

Loitering At
Target 3

Process
Target 2

v20 = 2
56

7 8

Figure 6.3: Relation between binary decision variables and resulting solution. Notice
that xi,j,k = 1 if and only if the edge (i, j) ∈ E is included in some UAV’s tour, and
the target associated with node j represents the k-th task in the operator’s schedule.

Table 6.1: Decision Variables

Variable Index Set Description

xi,j,k ∈ {0, 1} (i, j) ∈ E
k ∈ {1, . . . , K}

Indicates if: edge (i, j) is contained
in some vehicle’s tour and the target
associated with j is the k-th operator task

Ak ∈ R≥0 k ∈ {1, . . . , K} The time that a UAV arrives at the target
representing the k-th operator task

Bk, Ck ∈ R≥0 k ∈ {1, . . . , K} The time the operator begins and completes
the k-th scheduled task, resp.

W k,W k ∈ R≥0 k ∈ {1, . . . , K}
The operator’s task load level immediately
before and after competing the k-th
scheduled task, resp.

β, γ, λ ∈ R≥0 - Variables quantifying performance metrics

141

Joint Scheduling and Routing for Supervisory Surveillance Missions Chapter 6

6.2.3 Constraints

UAV Path Constraints: The first constraints ensure that a valid UAV tour can be

extracted from the decision vector.

∑
i∈V

∑
j∈Vm

K∑
k=1

xi,j,k = 1 ∀m ∈ {1, . . . ,M} (6.1)

∑
i∈Vm

∑
j∈V

K∑
k=1

xi,j,k ≤ 1 ∀m ∈ {1, . . . ,M} (6.2)

∑
i∈V

∑
j∈V0

K∑
k=1

xi,j,k = 0 (6.3)

∑
i∈V

xj,i,k − k−1∑
k̂=1

xi,j,k̂

 ≤ 0 j /∈ V0, k ∈ {1, . . . , K} (6.4)

K∑
k=1

∑
j∈V

xi,j,k ≤ 1 ∀i ∈ V0 (6.5)

∑
(i,j)∈E

xi,j,k = 1 ∀k ∈ {1, . . . , K} (6.6)

Equation (6.1) ensures that exactly one node from each cluster is visited, and Equa-

tion (6.2) ensures that at most one edge leaves any cluster. Equation (6.3) ensures that

vehicles do not return to the initial location set once they leave (we seek open UAV

paths). Equation (6.4) says that any vehicle leaving a node (excluding the initial node)

must enter the same node at an earlier time (let
∑0

k̂=1 xj,i,k̂ := 0). This constraint also en-

sures that the first task in the operator schedule coincides with the first target that some

UAV visits, and that each UAV’s route must begin at its initial node. Equation (6.5) en-

sures that there is at most one edge leaving each initial configuration, and Equation (6.6)

ensures that a single target is chosen for each “slot” in the operator schedule.

142

Joint Scheduling and Routing for Supervisory Surveillance Missions Chapter 6

UAV Arrival Time Constraint: The following governs the UAV arrival times.

∑
(i,j)∈E

xi,j,k

W (i, j) +
∑
̂∈V

k−1∑
k̂=1

x̂,i,k̂Ck̂

 = Ak ∀k ∈ {1, . . . , K} (6.7)

Equation (6.7) says that a UAV’s arrival time at a target must equal the time that the

operator completes the UAV’s previously generated task plus the required travel time.

Task Processing Constraints: The following constraints govern the operator schedule

induced by the decision vector.

Bk +
∑

(i,j)∈E

xi,j,kτj = Ck ∀k ∈ {1, . . . , K} (6.8)

Ak ≤ Bk ∀k ∈ {1, . . . , K} (6.9)

Ck−1 ≤ Bk ∀k ∈ {2, . . . , K} (6.10)

Equation (6.8) relates the completion time of a task to the time that processing begins.

Equations (6.9) and (6.10) indicate that the operator cannot start a task until (i) a UAV

arrives at the target, and (ii) the previous task is complete.

Task Load Evolution Constraints: The following constraints govern the evolution of

the operator’s task load during the mission.

W k +
∑

(i,j)∈E

xi,j,k∆Wj = W k ∀k ∈ {1, . . . , K} (6.11)

W0 − δ−B1 = W 1 (6.12)

W k−1 − δ−(Bk − Ck−1) = W k ∀k ∈ {2, . . . , K} (6.13)

143

Joint Scheduling and Routing for Supervisory Surveillance Missions Chapter 6

Equation (6.11) ensures that workload increments are allocated properly while Equa-

tions (6.12) and (6.13) ensure that workload decrements are defined allocated properly.

Performance Constraints: The final constraints quantify performance metrics.

W k −W ≤ β ∀k ∈ {1, . . . , K} (6.14)

W −W k ≤ γ ∀k ∈ {1, . . . , K} (6.15)

K∑
k=1

Bk − Ak = λ (6.16)

6.2.4 MIP Formulation

A mixed-integer nonlinear program (MINLP) approximation of Problem 5 is defined

in Problem 6.

Problem 6 (Scheduling/Routing MINLP) Determine values for each of the deci-

sion variables (Table 6.1) that are optimal with respect to the following problem:

Minimize: pββ + pγγ + pλλ

Subject To: Constraints (6.1)− (6.16),

(6.17)

where K := M , and pβ, pγ, pλ > 0 are constant parameters.

Notice that the only nonlinearity in (6.17) is due to (6.7). In general, the non-linearity can

be eliminated by augmenting the problem with a set of auxiliary variables and constraints,

although this linearization results in significantly larger problems in general. However,

when N = 1, additional problem structure emerges that allows for elimination of the

non-linearity without increasing the problem size. These results are formalized here.

Theorem 8 (Linearization) The non-linear program (6.17) is equivalent to a MILP.

144

Joint Scheduling and Routing for Supervisory Surveillance Missions Chapter 6

Moreover, in the single vehicle case (N = 1), an equivalent MILP exists with the same

number of binary decision variables, continuous decision variables, and algebraic con-

straints as its non-linear counterpart (6.17).

Proof: Let I := {(i, j, k, ̂, k̂) | i, j, ̂ ∈ V, k ∈ {2, . . . ,M}, k̂ ∈ {1, . . . , k − 1}}, and

define decision variables yi,j,k,̂,k̂ ∈ {0, 1}, Di,j,k,̂,k̂ ∈ R≥0 for each (i, j, k, ̂, k̂) ∈ I. Notice

|I| = |V |3∑M
k=2(k − 1) = 1

2
(M(M − 1))|V |3. Let Ĉ > 0 be a very large constant and

define constraints:

∑
i∈V

∑
j∈V

xi,j,kW (i, j) +
∑
i∈V

∑
j∈V

∑
̂∈V

k−1∑
k̂=1

Di,j,k,̂,k̂ =Ak ∀k ∈ {2, . . . , K} (6.18)

yi,j,k,̂,k̂ ≤xi,j,k ∀(i, j, k, ̂, k̂) ∈ I (6.19)

yi,j,k,̂,k̂ ≤x̂,i,k̂ ∀(i, j, k, ̂, k̂) ∈ I (6.20)

x̂,i,k̂ + xi,j,k − 1 ≤yi,j,k,̂,k̂ ∀(i, j, k, ̂, k̂) ∈ I (6.21)

Di,j,k,̂,k̂ ≤Ĉyi,j,k,̂,k̂ ∀(i, j, k, ̂, k̂) ∈ I (6.22)

Di,j,k,̂,k̂ ≤Ck̂ ∀(i, j, k, ̂, k̂) ∈ I (6.23)

Ck̂ − Ĉ(1− yi,j,k,̂,k̂) ≤Di,j,k,̂,k̂ ∀(i, j, k, ̂, k̂) ∈ I (6.24)

This linear constraint set is equivalent to (6.7) for Ĉ sufficiently large: under (6.19) -

(6.24), we have Di,j,k,̂,k̂ = yi,j,k,̂,k̂Ck̂ = xi,j,kx̂,i,k̂Ck̂; thus, (6.18) is equivalent to (6.7).

Thus, an equivalent MILP results from replacing (6.7) with (6.18) - (6.24) in (6.17).

If N = 1, the operator’s task processing order is identical to the UAV’s target vis-

itation order. As such, the arrival time Ak equals the time that the operator finishes

the k − 1-st task, plus the required UAV travel time to the next target. Formally, when

145

Joint Scheduling and Routing for Supervisory Surveillance Missions Chapter 6

N = 1, Equation (6.7) is equivalent to

∑
i∈V

∑
j∈V

xi,j,1W (i, j) = A1

Ck−1 +
∑
i∈V

∑
j∈V

xi,j,kW (i, j) = Ak ∀k ∈ {2, . . . , K}.

Replacing (6.7) with this linear alternative in (6.17), results in a MILP.

The proof of Theorem 8 also provides a better understanding of the size of the equivalent

MILPs. For instance, notice that, since the number of vehicles N is typically small, the

problem size is typically dominated by the number of targets M and the size of the graph

G (which depends on M and the number of viewpoints associated with each target). If

each target has P ∈ N associated viewpoints, i.e., |Vj| = P for all j ∈ {1, . . . ,M}, and

the number of vehicles N is fixed, then, as M and P jointly tend to infinity, the number of

binary decision variables, continuous decision variables, and algebraic constraints in the

MINLP (6.17) are O(M3P 2), O(M), and O(M2P). When N = 1, an equivalent MILP of

the same size exists; however, by the proof of Theorem 8, we see that for general, multi-

vehicle missions, the number of binary decision variables, continuous decision variables,

and algebraic constraints required in an equivalent MILP are each O(M5P 3). Due to

the availability of high-quality MILP solvers, such as GLPK [149], CPLEX [156], and

MATLAB’s INTLINPROG solver [157], Theorem 8 may evoke a practical strategy for some

missions. However, even when N = 1, problems may become large and computationally

complex. In response, the following section develops a dynamic, heuristic strategy for

constructing solutions to general instances of Problem 6.

146

Joint Scheduling and Routing for Supervisory Surveillance Missions Chapter 6

6.3 Dynamic Solution Strategy

This section proposes a dynamic framework to construct solutions to Problem 6.

Here, each time the operator finishes a task, a comparatively small-scale MILP is solved

to select the next UAV destinations and the impending portion of the operator schedule.

In particular, each re-planning operation results in a partial operator schedule containing

at most N tasks, the first of which is the next task to be executed. In this section, we let

K := min{N,M}, where M is understood here as the number of targets that have not

yet been processed when a re-plan operation is initiated.

The MILP governing each re-plan operation depends on the UAV statuses. Consider

three status classifications: (i) AVAILABLE: the UAV has not been assigned any targets or

the operator has just finished processing the UAV’s imagery, (ii) ARRIVED: the UAV has

reached its destination and is awaiting the operator’s attention, and (iii) TRANSIT: the

UAV is en route to its next destination. Assume that the status of each UAV is available

to the optimizer during any re-planning operation. Further, the re-planning operation

is performed under the following behavioral assumptions: (i) if its status is ARRIVED,

then the UAV should remain loitering until the operator processes its task, and (ii) if

its status is TRANSIT, then the UAV should continue on to its destination, i.e., the UAV

should not be re-routed. These are natural assumptions that serve the dual purpose of

both reducing computation and preventing excessive changes to UAV routes that may be

undesirable from an operator or mission-planning standpoint1. We note, however, that

these assumptions can be relaxed through straightforward manipulations to the proposed

methods (Remark 24).

Broadly, the proposed dynamic solution strategy uses the following procedure:

1. Initialize each UAV status as AVAILABLE,

1These assumptions also serve to prevent “switching” behavior that may emerge in dynamic extensions
in which new targets arrive dynamically, although this case is not considered here.

147

Joint Scheduling and Routing for Supervisory Surveillance Missions Chapter 6

2. Formulate and solve the re-planning MILP,

3. Direct the UAVs for to their first destination, and instruct the operator to execute

the first task in the resulting schedule,

4. When the first task is complete, reformulate and solve the re-planning MILP, and

5. Repeat steps 3 and 4 until all tasks are complete.

The remainder of this section details the formulation and solution of the re-planning

MILP described in step 2 and 4.

6.3.1 Graph Modifications

Consider some instant at which the re-planning operation is to be executed, and

assume, without loss of generality, that V1, V2, . . . , VM represent the node clusters asso-

ciated with the targets that have not yet been processed (we retain this assumption for

the remainder of this section). We reconstruct the graph G as follows: First, re-define

V0 := {i1, i2, . . . , iN}, where in represents UAV n’s current configuration. Second, for

each n ∈ {1, . . . , N}, define a set V Dest
n consisting of nodes to which UAV n can travel

prior to another re-assignment. That is, define each set V Dest
n as follows:

1. if UAV n has status AVAILABLE, then V Dest
n := V1∪· · ·∪VM̂ , where we have assumed,

without loss of generality, that {V1, V2, · · · , VM̂} collects all node clusters that have

not yet been visited by a UAV and are not the destination of any UAV with status

TRANSIT, and

2. if UAV n has status ARRIVED, then V Dest
n := {in}, where in is UAV n’s current

configuration, and

148

Joint Scheduling and Routing for Supervisory Surveillance Missions Chapter 6

3. if UAV n has status TRANSIT, then V Dest
n := {jn}, where jn ∈ V is UAV n’s current

destination.

Redefine V := V0 ∪
(⋃N

n=1 V
Dest
n

)
, and redefine the edge set E := {(in, j) | in ∈ V0, j ∈

V Dest
n }. Finally, define the weight operator W to be consistent with the new edges.

The remaining sections formulate the re-planning MILP using the modified graph G.

Remark 24 (Re-Routing) The set V Dest
n contains a single element whenever UAV n

has status ARRIVED or TRANSIT. As such, UAV n will not be directed to a new destination

by the re-planning operation (see (6.27)). Alternatively, one could allow re-routing by

instead defining each V Dest
n to contain all nodes that are associated with some target that

has not yet been processed, regardless of UAV status.

6.3.2 Optimization Variables

The decision variables are defined identically to those of section 6.2.2. However,

there are two subtle differences: First, the value of the index k refers to the post-re-

plan processing order, rather than the global processing order as before. Second, for

re-planning, we only require a variable xi,j,k ∈ {0, 1} for each index triplet in the set

{(i, j, k) | i = in, j ∈ V Dest
n , k ∈ {1, . . . , K}, n ∈ {1, . . . , N}}. Notice also that, for dy-

namic re-planning, the value of k corresponds to the post-replan processing order. This

restriction typically produces a significantly smaller problem in comparison to (6.17). For

instance, when N is fixed and |Vj| = P for all j ∈ {1, . . . ,M}, then, as M and P jointly

tend to infinity, the number of binary decision variables, continuous decision variables,

and algebraic constraints are O(MP), O(M), and O(M), resp.

149

Joint Scheduling and Routing for Supervisory Surveillance Missions Chapter 6

6.3.3 Constraints

UAV Path Constraints: Define N as the set of UAV indices with status AVAILABLE,

and consider the following constraints.

∑
n∈N

∑
j∈Vm

K∑
k=1

xin,j,k ≤ 1 ∀m ∈ {1, . . . , M̂} (6.25)

∑
j∈V Dest

n

K∑
k=1

xin,j,k ≤ 1 ∀n ∈ N (6.26)

∑
j∈V Dest

n

K∑
k=1

xin,j,k = 1 ∀n /∈ N (6.27)

∑
(i,j)∈E

xi,j,k = 1 ∀k ∈ {1, . . . , K} (6.28)

Constraint (6.25) says that at most one node from any cluster can be visited. Con-

straint (6.26) says that any AVAILABLE UAV is assigned at most one new destination,

while constraint (6.27) says that UAVs with status WAITING or TRANSIT do not get

re-routed. Constraint (6.28) ensures that the maximum number of UAVs are assigned a

destination, i.e., if at least N targets have not been processed, then N UAVs are assigned

a destination; otherwise, all remaining targets are assigned a UAV.

Remark 25 (Running Cost) Constraint (6.28) ensures that a meaningful solution is

produced by the re-planning MILP: Without (6.28), UAVs may remain unassigned when

there are still unprocessed targets, in which case the running cost is not a meaningful

predictor of the overall mission cost. For example, if all UAVs are AVAILABLE, then,

without (6.28), the zero vector is an optimal choice for the binary variables, making the

running cost predicted by the re-planning MILP equal to zero.

150

Joint Scheduling and Routing for Supervisory Surveillance Missions Chapter 6

UAV Arrival Time Constraints: The following govern the UAV arrival times:

N∑
n=1

∑
j∈V Dest

n

xin,j,kW (in, j) = Ak ∀k ∈ {1, . . . , K}. (6.29)

Recall that, if UAV n has status ARRIVED, then V Dest
n := {in}. Since W (in, in) = 0,

Equation (6.29) implies that the arrival time associated a UAV having status ARRIVED

is zero. As such, the operator is permitted to begin processing any task associated with

such a UAV immediately. In contrast, if a UAV has status TRANSIT or AVAILABLE, then

the weight W (in, j) captures the time required for the UAV to travel from its current

location, in, to its new destination in the set V Dest
n . As such, the operator cannot start

any such task until the corresponding UAV arrives at its destination.

Task Processing, Task Load Evolution, and Performance Constraints: As be-

fore, we enforce the constraints (6.8)- (6.16), where W0 is understood as the operator

task load level at the re-plan onset. Define β0, γ0 ∈ R≥0 as the maximum upper and

lower task load bound violations that have occurred prior to the current re-plan, and

introduce two final constraints:

β ≥ β0 (6.30)

γ ≥ γ0. (6.31)

These constraints ensure that the running cost is correlated with the global mission cost.

6.3.4 MILP Formulation

The MILP governing the re-plan operation is formally expressed as Problem 7.

Problem 7 (Re-planing operation as a MILP) Determine values for each of the

151

Joint Scheduling and Routing for Supervisory Surveillance Missions Chapter 6

decision variables in Table 6.1 that are optimal with respect to the following problem:

Minimize: pββ + pγγ + pλλ

Subject To: Constraints (6.8)− (6.16) and (6.25)− (6.31),

(6.32)

where K := min{N,M}, W0 is the operator’s current task load, and pβ, pγ, pλ > 0 are

fixed parameters.

Remark 26 (Task Processing) The optimization problem (6.32) predicts the incre-

mental cost over the impending portion of the operator’s schedule under the implicit

assumption that the operator processes one task generated by each UAV before processing

any other tasks (see (6.28)). However, this assumption does not place an explicit con-

straint on the global structure of the operator schedule. That is, assuming Problem 7 is

solved each time a task is completed, then it is still possible for the operator process two

tasks in a row that are generated by the same UAV.

6.4 Uncertain Processing Times

The analysis presented thus far has assumed that the processing time associated with

each target is known a priori. Indeed, strictly speaking, known processing times are

required to ensure that the optimization framework correctly relates task start times

and completion times (see (6.8)), which are used to predict subsequent UAV arrival

times. This assumption does not hold in most realistic systems, since operator behavior

is subject to various types of uncertainty.

The most common approach to addressing processing time uncertainty is to use a

single realization of each uncertain parameter within the optimization framework, e.g.,

152

Joint Scheduling and Routing for Supervisory Surveillance Missions Chapter 6

use expected values. Sophisticated robust optimization schemes may be useful (see [158]),

although these methods generally require bounded uncertainty sets and very particular

problem structure. In contrast, scenario-based robust optimization schemes use discrete

samples as approximations to the uncertainty sets, and require optimization constraints

to be satisfied for all of the sampled conditions, rather than just one [159, 160]. As a

result, solutions produced by scenario-based schemes are likely to be of a high quality for

many realizations of uncertain parameters.

This section introduces a straightforward, scenario-based extension, similar to that

of Chapter 3, to the framework of Section 6.3, with the goal of achieving robustness

to uncertainty in operator processing times. That is, the optimization problem devel-

oped here is a robust alternative to (6.32). We use a sampling-based method since (i)

the complex, coupled nature of the joint routing/scheduling problem makes it difficult

to predict “worst”-case parameter values directly, (ii) typical processing time distribu-

tions used to model perceptual decision-making are skewed and have unbounded sup-

port [152, 32]; as such, expected values may be inaccurate processing time predictors

and methods requiring bounded support would require enforcement of additional con-

straints, (iii) sampling parameters allow a straightforward means of tuning the “degree

of robustness” provided in order to strike a balance with computational complexity, and

(iii) scenario-based schemes are simple, intuitive, and use a straightforward procedure

that does not require any particular uncertainty distribution.

6.4.1 Constructing Scenarios

Suppose the operator’s processing time for each target (task) Tj is realized according

to a probability density function fj : R≥0 → R≥0. For each j, generate a set of Q ∈ N

possible processing times {τ 1j , τ 2j , . . . , τQj }, where τ qj ∼ fj for q ∈ {1, . . . , Q}. For each

153

Joint Scheduling and Routing for Supervisory Surveillance Missions Chapter 6

q ∈ Q, the set {τ q1 , τ q2 , . . . , τ qM} defines a scenario. Note that this sampling process

associates each target Tj with a set of processing times, rather than a single realization.

6.4.2 Optimization Variables

The scenario-based extension of the MILP (6.32) contains only slightly modified de-

cision variables to accommodate the generated processing time sets. In particular, the

binary variables {xi,j,k ∈ {0, 1}}, the arrival time variables {Ak}, and the performance

variables β, γ, λ are identical to those of (6.32). For the remaining decision variables,

we introduce duplicates, indexed by the superscript q, that are each associated with

one scenario. That is, for each q ∈ {1, . . . , Q}, we define unique decision variables

Bq
k, C

q
k ,W

q

k,W
q
k that are associated with the q-th scenario.

Remark 27 (Arrival Times) Scenario-dependent arrival times Ak are not required,

since each re-plan only selects each UAV’s next destination. Since UAVs begin moving

immediately, the arrival times calculated by the re-plan operation are independent of

previous operator processing times.

6.4.3 Constraints

The decision variables are subject to constraints (6.14), (6.15), and (6.25) - (6.29).

The scenario-based analogs of the remaining constraints are written as follows:

Bq
k +

∑
(i,j)∈E

xi,j,kτ
q
j = Cq

k ∀k ∈ {1, . . . , K}, q ∈ {1, . . . , Q} (6.33)

Ak ≤ Bq
k ∀k ∈ {1, . . . , K}, q ∈ {1, . . . , Q} (6.34)

Cq
k−1 ≤ Bq

k ∀k ∈ {2, . . . , K}, q ∈ {1, . . . , Q} (6.35)

W q
k +

∑
(i,j)∈E

xi,j,k∆Wj = W
q

k ∀k ∈ {1, . . . , K}, q ∈ {1, . . . , Q} (6.36)

154

Joint Scheduling and Routing for Supervisory Surveillance Missions Chapter 6

W
q

k −W ≤ β ∀k ∈ {1, . . . , K}, q ∈ {1, . . . , Q} (6.37)

W −W q
k ≤ γ ∀k ∈ {1, . . . , K}, q ∈ {1, . . . , Q} (6.38)

K∑
k=1

Bq
k − Ak ≤ λ ∀q ∈ {1, . . . , Q} (6.39)

Bq
1 −Bq−1

1 = 0 ∀q ∈ {2, . . . , Q} (6.40)

Constraints (6.33) - (6.39) are analogous to those in Section 6.3. Constraint (6.40)

ensures that a unique start time is produced for the first task in the operator’s new

schedule (other start times should remain scenario-dependent). Since a re-plan operation

is performed whenever a task is completed, an unambiguous operator schedule can always

be extracted from the MILP solution as a result of this setup.

Remark 28 (Task Load Increments) The scenario-based scheme also allows the pos-

sibility of scenario (time)-dependent increments ∆Wj. For example, if g : R≥0 → R≥0

captures the relationship between processing time and the resultant task load increment,

then for each q, one can define {∆W q
1 ,∆W

q
2 , . . . ,∆W

q
M}, where ∆W q

j := g(τ qj) for each

j ∈ {1, . . . ,M}. The subsequent robust MILP is formulated by replacing each instance of

∆Wj with ∆W q
j in the optimization constraints.

6.4.4 Scenario-based, Robust MILP

The scenario-based extension to Problem 7 is stated as follows.

Problem 8 (Robust Re-planning as an MILP) Determine values for the decision

variables described in Section 6.4.2 that are optimal with respect to the following problem:

155

Joint Scheduling and Routing for Supervisory Surveillance Missions Chapter 6

Minimize: pββ + pγγ + pλλ

Subject To: Constraints (6.14), (6.15), (6.25)− (6.29), (6.33)− (6.39)

(6.41)

where K := min{N,M}, W0 is the operator’s current task load, and pβ, pγ, pλ > 0 are

fixed parameters.

6.5 Simulation Studies and Discussion

This section contains simulations studies and discussion to illustrate the advantages

and limitations of the proposed solution strategies. In all studies, optimal MILP solu-

tions were estimated using the stand-alone glpsol solver, which is included in GLPK v.

4.60 [149].

6.5.1 Performance of the Dynamic Solution Strategy

The first study compares the performance of the receding-horizon strategy of Sec-

tion 6.3 to that of an a priori planning method, which constructs a complete solution by

solving the MINLP (6.17) at the mission onset. To allow direct computation of solutions

to (6.17), we consider a small-scale mission with 2 UAVs (with “hovering” capability) and

4 targets, each with a single viewpoint (|Vj| = 1 for all j). The UAVs move with speed 39

m/s, and travel times are defined as the minimal straight-line travel time between con-

figurations. The initial task load is W0 = 0.5, with an increment/decrement rate of 0.001

during busy/idle times, and the operator takes exactly 483.32 s to complete each task

(τj = 483.32 s ∀j). The desired task-load range is [W,W] = [0.2, 0.8] and pβ = pγ = 1.

In each simulation run, UAV initial locations and target locations are selected randomly

156

Joint Scheduling and Routing for Supervisory Surveillance Missions Chapter 6

0 1 2
0

50

100

150

200

250

C
o

u
n

t

RPD
0 1 2

0

50

100

150

200

250

C
o

u
n

t

RPD
0 1 2

0

50

100

150

200

250

C
o

u
n

t

RPD
0 1 2

0

50

100

150

200

250

C
o

u
n

t

RPD

10 15 20 25
0

0.5

1

1.5

2

Avg. Travel Time (min)

R
P

D

10 15 20 25
0

0.5

1

1.5

2

Avg. Travel Time (min)

R
P

D

10 15 20 25
0

0.5

1

1.5

2

Avg. Travel Time (min)

R
P

D

10 15 20 25
0

0.5

1

1.5

2

Avg. Travel Time (min)

R
P

D

Figure 6.4: Relative percent difference (RPD) between solutions produced using the
dynamic routing framework of Section 6.3 and the a priori scheme for (left to right)
pβ = 0.1, 0.01, 0.001, 0.0001.

(uniform distribution) within an 80, 000 × 80, 000 m region, and an overall mission cost

was calculated under both dynamic re-planning (Section 6.3) and a priori planning for

each of 4 pλ values: 0.1, 0.01, 0.001, 0.0001. Direct solutions to (6.17) were constructed

by solving the equivalent MILP (Theorem 8).

Figure 6.4 shows the error generated, for each of 500 simulated missions, between the

dynamic and a priori strategies in the form of a histogram and as a scatter plot (plotted

against the average travel times, i.e., edge weight in the complete graph G), for each of

the pλ conditions. The error is reported as the relative percent difference (RPD), defined

RPD = 2 (dynamic cost− a priori cost)/(dynamic cost + a priori cost).

Figure 6.4 suggests that the solutions provided by the dynamic heuristic are closest

to the optimal solution to (6.17) when: (i) UAV travel times between destinations are

large, and (ii) pλ is small in comparison to pβ, pγ, i.e., workload considerations are more

prominent than unnecessary loitering considerations. Outside of these regimes, the dy-

namic heuristic performs significantly worse than the a priori method. However, a few

157

Joint Scheduling and Routing for Supervisory Surveillance Missions Chapter 6

comments are in order: First, the very small size of this example allows for accurate

estimation of optimal solutions to Problem 6 through transformation to and subsequent

solution of an equivalent MILP. In general, the computational burden involved with this

and other similar methods will not allow for the direct construction of a high-quality,

complete solution to (6.17) in reasonable time. Thus, a priori methods are often imprac-

tical for general use. Second, instances in which the dynamic heuristic performs poorly

are often a result of unnecessary UAV utilization. For example, the dynamic heuristic

often assigns the same number of targets to each UAV, which, when targets are close

together, forces the UAVs to loiter at target destinations for long time intervals while

awaiting operator attention. In contrast, the a priori method will avoid these penalties

by leaving a subset of the UAVs un-utilized. Therefore, performance of the dynamic

heuristic could be improved by simply considering only a subset of the available UAVs

when planning. This is illustrated by Figure 6.5, which shows the relative error produced

for the pλ = 0.1 case when one of the UAVs is omitted, i.e., errors are reported for 500

simulation runs for a single-vehicle mission (N = 1) using the same mission setup as

before. We note that the analogous plots for the other pλ conditions are nearly identical

and are thus omitted. This discussion suggests that poor performance of the dynamic

heuristic is potentially an indicator of a poorly designed mission, i.e., too many UAVs are

assigned to the mission. Finally, a priori methods that seek to solve Problem 6 directly

do not readily extend to cases in which processing times are uncertain or in which UAVs

do not have hovering capability, whereas the dynamic scheme easily extends to incorpo-

rate these scenarios (Section 6.5.2). A thorough exploration of alternative formulations

to improve performance with respect to direct solution methods is left as a topic of future

work.

158

Joint Scheduling and Routing for Supervisory Surveillance Missions Chapter 6

0 1 2
0

100

200

300

400

C
o

u
n

t

RPD
10 15 20 25

0

0.5

1

1.5

2

Avg. Travel Time (min)

R
P

D

Figure 6.5: RPD between the solutions produced by the dynamic planning scheme of
Section 6.3 and the a priori planning scheme for a single-vehicle mission with pλ = 0.1.

6.5.2 Scenario-Based Planning

The next study demonstrates the utility of the scenario-based scheme of Section 6.4.

We consider a realistic example which relaxes many assumptions on UAV and operator

behavior that were used in formulating the solution methods discussed in this chapter.

Thus, this study not only shows robustness qualities of the scenario-based method, but

also illustrates its flexibility in accommodating constraints such as (i) fixed-wing UAVs,

which cannot “hover” and have a minimum turning radius, (ii) user-specified imaging

constraints, and (iii) uncertain processing times.

Mission Setup: We consider a mission involving N = 3 fixed-wing UAVs and M = 6

static ground targets. The UAVs are each modeled as a Dubins vehicle, which flies with a

fixed forward speed of 39 m/s, a fixed altitude of 1000 m, and a minimum turning radius

of 750 m. The initial location and heading of each UAV is (0, 0) and 0, resp. We neglect

all other dynamic effects, e.g., drag or wind, and we do not consider the possibility of

collision. The mission requires that each target be imaged with a tilt-angle (measured

below the horizontal flight plane) within the range [π/8, 3π/8], similar to the BEHj = ANY

case from the problem discussed in Chapter 5. The location of each target is presented

in the table on the left-side of Figure 6.6.

159

Joint Scheduling and Routing for Supervisory Surveillance Missions Chapter 6

Index, j Location, tj

1 (10000, 0) m
2 (5000, 500) m
3 (1200, 5000) m
4 (−400,−15000) m
5 (3000,−5000) m
6 (−3000,−4000) m

0 100 200 300
0

0.2

0.4

0.6

0.8

1

Time (s)

C
D

F
 V

a
lu

e

Completed
Dwell−Time
Loop

Figure 6.6: Target locations (left) and processing time cumulative distribution func-
tion (CDF) (right) for the example surveillance mission

Processing times are modeled as random variables, each realized according to a prob-

ability density function f : R>0 → R≥0. More specifically, for each j ∈ {1, . . . ,M}, the

processing time is log-normally distributed with parameters µ = 5.044, σ = 0.25 (log

mean and log standard deviation). Intuitively, these parameters indicate that, at any

single target, the operator will usually (∼ 75% probability) require the UAV to make

between 1 and 2 complete dwell-time loops in order to complete the analysis task. The

cumulative distribution function (CDF) generated by f is shown in the right side of Fig-

ure 6.6. Let W0 = 0.2, and [W,W] = [0.2, 0.8], and assume a time-dependent, linear

task load evolution model, in which task-load levels increment or decrement by 0.001t

when the operator is busy or idle for time t, resp. Select pβ = pγ = 10 and pλ = 0.01.

Solution Approach: We apply the dynamic scheduling/routing framework to the ex-

ample mission using the following steps: First, we construct V1, . . . , Vn by applying ap-

plying the discretization strategy of Chapter 5; namely, each set Vj consists of discrete

points in the configuration space (R2 × [0, 2π)) from which the UAV is able to immedi-

ately begin an appropriate loitering pattern at the target j. More precisely, each sample

(x, θ) ∈ Vj ⊂ R2 × [0, 2π) has a heading θ that points in a direction tangent, at the

location x, to a circle of radius 750 m (the minimum possible turning radius), which lies

entirely within the annulus of locations from which the tilt-angle specification is met.

160

Joint Scheduling and Routing for Supervisory Surveillance Missions Chapter 6

Travel times are defined as the time required for the UAV to traverse the optimal Dubins

path between configurations. We then apply the scenario-based scheme of Section 6.4

to dynamically find UAV routes and operator schedules, using scenario-dependent task

load increments according to the linear model, i.e., for each sampled processing time τ qj ,

we let ∆W q
j := 0.001τ qj (see Remark 28).

Performance Analysis: For comparison, we consider a baseline solution method that

ignores task load levels, as well as the need to synchronize operator and robotic resources.

In particular, the chosen baseline method constructs UAV routes according to a dynamic

implementation of the multi-vehicle method of Section 5.5 (where straightforward modi-

fications have been made to produce open, rather than closed, routes). Namely, each time

the baseline planner is called, complete UAV paths are constructed under an assumed

processing time of 362.49 s at each target (the time required for the UAV to complete

3 dwell-time loops). Intuitively, this choice can be thought of as a type of “worst”-case

processing time, since the probability of realizing a longer processing time is < .01. The

baseline solution then assumes that the operator processes tasks as soon as possible, in

a first-come first-serve basis. UAVs dwell at each successive target destination until the

operator processes the task. Each time the operator finishes a task, the planner is called

once again and the assignment/routing process is repeated over the remaining targets.

For consistency with the methods of Section 5.5, the baseline method selects ε to be as

small as possible during initial route construction (see Lemma 5.5), while each successive

re-plan selected ε =∞.

We compare the baseline method to the scenario-based method over multiple simu-

lated mission executions. Here, the “actual” processing times (unknown to the planner)

were sampled from the distribution f (whose CDF is shown in Figure 6.6). Figure 6.7

shows an example mission progression for the baseline solution (left column) and for the

161

Joint Scheduling and Routing for Supervisory Surveillance Missions Chapter 6

scenario-based strategy of Section 6.4 (right column), using identical “actual” processing

times (processing time realizations) in each case. Figure 6.8 depicts the utilization of

UAV and human resources during the same mission. Notice, in particular, how the opti-

mal routing strategy differs when using the joint optimization as opposed to the baseline.

Indeed, in the joint optimization case, longer UAV routes between targets may be cho-

sen if the operator’s task load level is high or to avoid unnecessary loitering times. In

contrast, the baseline solution attempts to minimize route lengths and ignores operator

behavior.

Figure 6.9 shows the costs obtained over 100 simulated missions using various plan-

ning strategies, in both tabular and graphical form. The strategies included are: (i) the

baseline method, (ii) two instances of the dynamic scheme of Section 6.3, one of which

assuming expected processing time values (labeled “Expect”) and one assuming “worst”-

case processing times (as in the baseline case), and (iii) three instances of the scenario-

based method of Section 6.4 corresponding to Q = 1, 5, and 10. Different “actual”

processing times were sampled for each run, but were held constant across conditions,

i.e., each simulation run was performed by first sampling f to obtain “actual” processing

times, and subsequently testing each condition using the realized values. Any points

whose distance from the median is further than 2.5 times the inter-quartile range (IQR)

are considered outliers. As expected, all of the joint optimization schemes performed sig-

nificantly better than the baseline, and larger numbers of scenarios typically reduced the

cost variance, indicating increased robustness. Using expected values generally produced

higher costs and much higher cost variance than the scenario-based scheme, highlighting

the risk involved with this type of naive sampling in the presence uncertainty.

With respect to the “worst”-case approach, we remark that, due to the potentially

conflicting nature of the performance metrics (upper/lower task load bound violation

and unnecessary loiter), longer processing times do not necessarily translate into inferior

162

Joint Scheduling and Routing for Supervisory Surveillance Missions Chapter 6

-6000 -4000 -2000 0 2000 4000 6000 8000 10000 12000 14000

-2

-1.5

-1

-0.5

0

0.5

1

×10
4

2 1

3

4

5
6

0 500 1000 1500
0

0.5

1

1.5

T
a
s
k
 L

o
a
d

0 500 1000 1500
0

200

400

600

800

1000

1200

U
n
n
e
c
e
s
s
a
ry

 L
o
it
e
r

0 500 1000 1500

Time (s)

0

5

10

15

C
o
s
t

Operator Processing: 2

-6000 -4000 -2000 0 2000 4000 6000 8000 10000 12000 14000

-2

-1.5

-1

-0.5

0

0.5

1

×10
4

2 1

3

6
5

4

0 500 1000 1500
0

0.5

1

1.5

T
a

s
k
 L

o
a

d

0 500 1000 1500
0

200

400

600

800

1000

1200

U
n

n
e

c
e

s
s
a

ry
 L

o
it
e

r

0 500 1000 1500

Time (s)

0

5

10

15

C
o

s
t

Operator Processing: 5

-6000 -4000 -2000 0 2000 4000 6000 8000 10000 12000 14000

-2

-1.5

-1

-0.5

0

0.5

1

×10
4

2 1

3

6
5

4

0 500 1000 1500
0

0.5

1

1.5

T
a

s
k
 L

o
a
d

0 500 1000 1500
0

200

400

600

800

1000

1200

U
n
n
e

c
e
s
s
a

ry
 L

o
it
e

r

0 500 1000 1500

Time (s)

0

5

10

15

C
o
s
t

Operator Processing: 4

0 500 1000 1500
0

0.5

1

1.5

T
a
s
k
 L

o
a
d

0 500 1000 1500
0

200

400

600

800

1000

1200

U
n
n
e
c
e
s
s
a
ry

 L
o
it
e
r

0 500 1000 1500

Time (s)

0

5

10

15

C
o
s
t

-6000 -4000 -2000 0 2000 4000 6000 8000 10000 12000 14000

-2

-1.5

-1

-0.5

0

0.5

1

×10
4

6

2

4

1

3

5

Operator Processing: 2

0 500 1000 1500
0

0.5

1

1.5

T
a
s
k
 L

o
a
d

0 500 1000 1500
0

200

400

600

800

1000

1200

U
n
n
e
c
e
s
s
a
ry

 L
o
it
e
r

0 500 1000 1500

Time (s)

0

5

10

15

C
o
s
t

-6000 -4000 -2000 0 2000 4000 6000 8000 10000 12000 14000

-2

-1.5

-1

-0.5

0

0.5

1

×10
4

6

12

5

4

3

Operator Processing: 4

0 500 1000 1500
0

0.5

1

1.5

T
a
s
k
 L

o
a
d

0 500 1000 1500
0

200

400

600

800

1000

1200

U
n
n
e
c
e
s
s
a
ry

 L
o
it
e
r

0 500 1000 1500

Time (s)

0

5

10

15

C
o
s
t

-6000 -4000 -2000 0 2000 4000 6000 8000 10000 12000 14000

-2

-1.5

-1

-0.5

0

0.5

1

×10
4

6

12

5

4

3

Operator Processing: 3

Figure 6.7: An example mission progression for the baseline solution, which ignores
task load and resource synchronization issues (left column), and the scenario-based
solution (right column).

163

Joint Scheduling and Routing for Supervisory Surveillance Missions Chapter 6

Time (s)

Baseline

Joint
Optimization

2 3 1 4

500 1000 1500

1

6

4

2

3

5

16

2

5 6

4

2 6 4

5

5

3

1 3

Figure 6.8: Resource utilization during the mission depicted in Figure 6.9. Notice how
the scenario-based optimization synchronizes resources to avoid bottlenecks during the
mission.

Method Median IQR Whisker Span

Baseline 11.2053 3.2488 11.7385
Expect 3.3812 2.7701 7.7412

“Worst” Case 2.7247 2.1602 6.5284
Q = 1 2.9615 2.2192 6.7322
Q = 5 2.7821 2.2750 5.6693
Q = 10 2.9158 1.9449 5.4648

0

2

4

6

8

10

12

14

16

Baseline Expect "Worst"
Case

Q = 1 Q = 5 Q = 10

C
o

s
t

Figure 6.9: Cost statistics obtained over 100 simulation runs for the (i) baseline
method, (ii) the dynamic method using “worst”-case processing times, (iii) the dy-
namic method using expected processing times, and (iv) the dynamic, scenario-based
scheme using Q = 1, 5, and 10 scenarios.

164

Joint Scheduling and Routing for Supervisory Surveillance Missions Chapter 6

performance. As such, the 10-scenario method often out-performed the “worst”-case

method. As the number of scenarios is increased, one would expect the appearance of poor

solutions (outliers) to become less frequent, which generally results in a further decrease

in cost variance. This property is an inherent benefit of the scenario-based method: it

protects against poor quality solutions even in complex missions where it is not straight-

forward to assess what conditions will produce the worst-case mission cost. The scenario-

based method also allows the user to tune the degree of robustness, by using greater or

fewer numbers of scenarios. Note, however, that the increased robustness introduced by

higher numbers of scenarios may be at the expense of inferior mean performance.

Although the trends illustrated in this example are somewhat typical, it is important

to note that the benefit that is gained from implementing a scenario-based approach as

oppose to, e.g., choosing expected values, is sensitive to the particular problem at hand.

That is, there may be missions in which choosing expected or “worst”-case processing

times may actually result in very high-quality solutions, in which case the benefit gained

by the scenario-based method may be offset by the added computation. We leave a

thorough study of the sensitivity of the scenario-based optimization scheme to problem

parameters as a topic of future work.

6.6 Chapter Summary

In many supervisory missions, a tighter coupling between the human and mobile

sensor behavior can be obtained by simultaneously coordinating both components within

a single planning framework. This chapter explored this concept by developing a joint

scheduling and routing framework for a discrete surveillance mission involving a set of

static targets, a team of UAVs, and a human operator. The complete operation was

formulated as a MINLP, which can be equivalently represented as a MILP of much larger

165

Joint Scheduling and Routing for Supervisory Surveillance Missions Chapter 6

size. However, when N = 1, an equivalent MILP of identical size exists. For scalability, a

dynamic heuristic has been developed for constructing solutions within a receding-horizon

framework. This framework can provide robustness to uncertainty in processing times by

introducing a straightforward scenario-based re-planning operation. Numerical examples

illustrated the potential advantages of this joint approach over alternative methods that

do not explicitly consider the synchronization of human and autonomous resources.

Future work should include a thorough study of the scenario-based scheme in order

to generate performance bounds and quantify its sensitivity to problem parameters. The

development of alternative heuristics for solving the full MINLP could also be useful.

Adaptations to the optimization framework to allow higher-fidelity task load evolution

models could improve performance as well. Finally, validation of the proposed framework

on human-test subjects is crucial to further development.

166

Chapter 7

Conclusions and Future Work

Autonomous mobile sensor teams are already prevalent within a number of current civil-

ian and military applications, and the use of such teams will only grow as technology

improves. Despite the maturity of modern hardware and algorithms, however, it is still

somewhat rare in practice that these types of autonomous teams operate as completely

isolated systems; that is, unmanned or autonomous systems are usually only a small part

of a much larger, complex system which usually operates within a dynamic environment

and contains diverse system components. In particular, practical engineering systems

that utilize autonomous mobile sensors often require some degree of feedback from a

human operator in order to function effectively. In this case, the interactions between

the human operator and the autonomous agents must be carefully coordinated to avoid

bottlenecks and ensure that mission goals are met in an efficient and reliable way.

As a result of the inherent complexities of realistic applications, it is clear that the

design process involved with human-centered systems requires the solution of a number

of subproblems, each focusing on improving one or multiple system sub-components. The

particular design approach usually depends on mission goals, as well as the particular

role that the humans and autonomous agents play within the overall system. In this dis-

167

Conclusions and Future Work Chapter 7

sertation, we have focused on the development of coordination strategies for supervisory

systems involving mobile sensors, particular UAVs, in which human operators are respon-

sible for analyzing sensory data generated by the vehicles’ on-board cameras. Through a

number of illustrative sub-problems, we have demonstrated different approaches to im-

proving overall system effectiveness. Some of these strategies, such as those in Part I,

focused primarily on understanding and improving operator behavior by analyzing sen-

sory data, improving user interfaces, and managing data presentation. Other strategies,

such as those in Part II, focus on improving the effectiveness of the mobile sensors, by

achieving a more balanced workload, preventing undesirable configurations, and opti-

mizing vehicle routes. Finally, in Part III, we studied joint approaches, which sought to

simultaneously optimize the vehicle and operator behavior.

We present a brief recap of the main ideas from each chapter here, and finish by

discussing some directions of future work.

7.1 Summary

Part I by explored operator-focused methods for improving system performance. We

started in Chapter 2 by studying the use of physiological sensing as a means of better un-

derstanding operator behavior and interactions with supervisory interfaces. In particular,

we presented a very brief pilot usability study in which eye-tracking data was recorded as

users interacted with a particular interface for supervisory control of unmanned vehicles

(RESCHU). From the data sets, we illustrated how both qualitative and quantitative

differences emerged between each user’s physiological characteristics during visual search

and non-search tasks. Despite the fact that our data did not allow us to draw statistically

significant conclusions, this study provided valuable insight into user behavior, demon-

strated the processing and analysis of physiological data, and highlighted potential areas

168

Conclusions and Future Work Chapter 7

of future research.

In Chapter 3, we studied a different approach to improving human performance in a

sequential task analysis mission, which focused on optimizing the operator’s schedule, i.e.,

the order in which the operator processed tasks. We presented a MILP solution approach,

which sought to maximize the reward achieved by the operator (or operators) while

simultaneously attempting to maintain the task-load imposed on the operator within

pre-specified bounds. Using a scenario-based strategy, we showed how robustness to

uncertain processing times could be incorporated into the MILP framework. With this

in hand, we then illustrated the addition of a number of layers of complexity into the

framework to enhance robustness and performance.

Part II shifted our focus to sensor-focused methods for improving the supervisory sys-

tem. The purpose of the subproblems in this chapter was to illustrate the development

of robotic algorithms for common surveillance tasks that arise in supervisory missions.

Chapter 4 studied a particular type of persistent surveillance mission in which a team

of UAVs is tasked with endlessly surveying a planar region in space for the purpose of

detecting some event of interest. We developed a cloud-based coverage control strategy to

dynamically update agent coverage assignments while only requiring sporadic and unreli-

able exchanges with a central cloud (repository). This strategy was rigorously analyzed,

and shown to have a number of desirable components. In particular, we showed that

the coverage regions maintained connectivity, evolved at a timescale appropriate for use

within a decomposition-based surveillance framework, and, for certain cases, converged

to a configuration that was both Pareto-optimal and a multiplicatively weighted Voronoi

partition. Further, when paired with an appropriate trajectory planner, the algorithm

provided inherent collision (redundant sensing) avoidance.

In Chapter 5, we studied a different type of surveillance mission, which operates over

a discrete region. Here, a single UAV (modeled as a Dubins vehicle) is tasked with pro-

169

Conclusions and Future Work Chapter 7

viding visual imagery of a set of targets, each requiring particular imaging behaviors. By

placing appropriate restrictions on UAV behaviors, the problem was rigorously posed as

a constrained optimization that sought to minimize the total closed tour time, subject to

a constraint on the initial maneuver time. We presented a sampling-based approximation

of the continuous problem, and developed a heuristic solution method that used solu-

tions to related GTSP instances. We showed how this framework can be used to recover

reasonable solutions to the full, continuous routing problem. We then briefly discussed

how the single-vehicle solution strategy can be paired with target assignment heuristics

in a decomposition-based framework in order to address multi-vehicle problems.

Finally, Part III focused on joint optimization methods for simultaneously construct-

ing UAV routes and operator schedules for a discrete surveillance mission. The sub-

problem considered in Chapter 6 is essentially a combination of those from Chapters

3 and 5 in a unified framework. Indeed, this chapter considered a mission in which

the UAVs were required to visit discrete targets to collect imagery, which was sent to

a remotely-located human operator for analysis. We proposed a single, mixed-integer

programming-based solution framework for simultaneously constructing vehicle routes

and generating the operator’s schedule, with the goal of maintaining the operator’s task-

load within a high-performance regime and reducing unnecessary UAV loitering time. We

proved that the full MINLP could be equivalently represented as a MILP, although at

the expense of increased complexity in all except the single-vehicle case. We proceeded

to develop dynamic heuristics for tractably solving the full problem, and introducing

robustness to uncertain operator processing times. We finished by demonstrating the

potential advantages of this method in a series of example missions.

170

Conclusions and Future Work Chapter 7

7.2 Future Work

The diverse facets of practical, human-centered engineering systems evoke a dense

web of design problems that are generally interconnected and span multiple scientific

disciplines. As such, multi-disciplinary research is crucial to the maturation of relevant

technologies moving forward. In particular, when developing effective human supervisory

systems, elements from fields such as control systems, human factors, psychology, opera-

tions research, among others, play a crucial role in ensuring that each individual system

component is optimized, and can be seamlessly integrated into the overall system.

With regard to supervisory systems, particularly those involving mobile sensors, the

broad idea of simultaneously optimizing over operator and autonomous behavior is one

that is largely unexplored in the engineering community. Indeed, most existing work

in this area assumes only a very “loose” coupling between the two components, e.g.

autonomous agent motion is fixed and optimization is performed over operator behavior

or vice versa, rather than explicitly addressing the interplay between the two. There is

potentially a large benefit to this type of “systems engineering” approach to supervisory

design, and thus this reasoning provides a promising avenue of future research.

The work in Part III of this dissertation takes the aforementioned “systems engineer-

ing” approach to the design of a discrete persistent surveillance mission; however, there

are a number improvements to be made. For example, the framework of Chapter 6 uses

a relatively simplistic task-load model, whereas joint optimization frameworks that bet-

ter capture lower level dynamics of human cognitive processing may boost performance.

Physiological sensing, such as eye-tracking, may also be helpful for assessing operator

states in real-time, which can, in turn be used within optimization frameworks. How-

ever, as suggested by the study in Chapter 2, determining the most beneficial use of

eye-tracking within supervisory missions is not straightforward.

171

Conclusions and Future Work Chapter 7

In addition, more sophisticated vehicle dynamics could also be integrated into both

sensor-focused and joint optimization schemes, and coordination schemes could poten-

tially be developed to better distribute autonomous resources, particularly if the mission

contains additional layers of complexity. For example, one could envision an “explore”

vs. “exploit” scenario, in which autonomous vehicles are in charge of visiting pre-set

targets, but also exploring unknown regions of the map whenever possible. Here, strate-

gic planning is required to determine when and how agents should explore, so as not to

create bottlenecks with respect to the overall mission. Future research should also seek

to develop similar schemes for autonomous missions outside the realm of surveillance.

There are also many additional considerations that can be added to individual sub-

problems in order to enhance realism and to boost performance, both with respect to

operator and agent behavior. From a human factors and psychology standpoint, rich

research areas include the deeper integration of physiological sensing into supervisory

operations and interface design, the incorporation of computer-vision tools and decision

aids, and the implementation of adaptive schemes to react to operator behavior. From a

control systems standpoint, research efforts should strive to improve coordination strate-

gies for sensor teams, and to develop robust strategies that are equipped to operate

within dynamic and unpredictable environments. The summary sections at the end of

each chapter provide a number of other suggestions for interesting research avenues with

respect to particular sub-problems.

Finally, experimental testing of supervisory control teams will undoubtedly play a

crucial role in developing systems for practical use. Indeed, due to the uncertainties that

are involved with both human behavior and operational environments, simulations alone

often are not enough to verify that a method can be effectively deployed in the field.

Therefore, experimental studies will ultimately be a driving factor in understanding the

value of human supervisory systems in a given application domain.

172

Appendix A

Proof of Results from Chapter 4

This chapter provides rigorous proofs of key results from Chapter 4, namely Theorems 1

- 5, Proposition 2, and necessary intermediate results.

We start with one of the aforementioned intermediate results.

Proposition 3 (Sets) Suppose Assumption 1 holds, and that, at the time of each ex-

change occurring prior to time t ≥ 0, required algorithmic constructions are well-posed

and the cloud performs updates via Algorithm 7. Then, for any k ∈ V at any time t ≤ t:

1. k ∈ PIDk
,

2. k belongs to at most 2 elements of PPP ,

3. if ΓIDk
= 0, then k /∈ P` for any ` 6= IDk, and

4. if k ∈ Pj, j 6= IDk, then Pj ∩ P ID
` = ∅ for ` /∈ {j, IDk}

Proof: Fix t ≥ 0, k ∈ V . When t = 0, PPP = PPP ID is an N -partition of V , implying

the proposition. Since k is not removed from PIDk
or added to any Pi with i 6= IDk

until its first reassignment, i.e., when IDk is changed, the proposition is true for all t

173

Proof of Results from Chapter 4 Appendix A

prior to the first reassignment. Suppose the proposition holds for all t prior to the p-th

reassignment, which occurs at time t0. Suppose ID−k = j, ID+
k = i 6= j. Algorithm 7

defines P ID,+
i = P+

i = P+

ID+
k

. Thus, k ∈ P+

ID+
k

= P+
i and remains in these sets until another

reassignment. Thus, statement 1 holds for all t prior to the p + 1-st reassignment. Now

note that, by Algorithm 8, reassignment cannot occur at t0 unless Γ−j = 0. By inductive

assumption, statement 3 of the proposition holds when t = t−0 , implying k /∈ P−` for any

` 6= j. Upon reassignment, the timers Γj,Γi are modified such that Γ+
j ,Γ

+
i > ω+

j +∆−t0.

Since (i) IDk cannot change when Γj > 0, and (ii) agent j exchanges data with the cloud

and removes k from Pj prior to time ω+
j + ∆, we deduce that k solely belongs to Pj, Pi

until the p+ 1-st reassignment. Further, for any t ≥ t+0 at which Γi = 0 and the p+ 1-st

reassignment has not yet occurred, k ∈ Pi exclusively (addition to other sets in PPP without

reassignment is impossible). We deduce statements 2 and 3 for any t prior to the p+ 1-st

reassignment. Finally, considering Algorithm 8, it is straightforward to show that Γ−j = 0

implies P−j = P ID,−
j (Γj = 0 only if the most recent exchange that manipulated elements

of P ID
j involved agent j, after which Pj = P ID

j). Further, (i) no agent claims vertices from

P+
j unless Γj = 0, and (ii) no vertex is added to a coverage region without reassignment.

As such, Pj ∩ P ID
` = ∅ for any ` /∈ {j, IDk = i} prior to another update in which some

other agent claims vertices from Pj. Extending this logic and noting the bound ∆, we

deduce the same result for any t prior to the p+ 1-st reassignment of k. Noting ∆ once

again, the proposition follows by induction.

Proof of Theorem 1. It suffices to show that Definition 1 is well-posed (Proposition 1)

whenever additive sets are required. We proceed by induction. When t = 0, PPP ID = PPP is a

connected N -partition of V ; thus, for any i, P ID
i ∩(

⋃
j 6=i Pj) = ∅. The same holds prior to

the first agent-cloud exchange, so the first call to Algorithm 7 is well-posed. Now assume

that, for all t prior to the p-th call to Algorithm 7, (i) PPP ID is a connected N -partition of V ,

174

Proof of Results from Chapter 4 Appendix A

and (ii) if an exchange that requires P add
i occurs, then P ID

i ∩
(⋃

j 6=i Pj

)
= ∅. This implies

that Proposition 3 holds at any t prior to the p+1-st exchange. Assume the p-th exchange

occurs at time t0 and involves agent i. It is trivial to show PPP ID,+ is an N -partition of

V . To show PPP ID,+ is connected, first notice P ID,+
i = P+

i . Since either P+
i = P add

i (c+i)

(connected by Definition 1) or P ID,+
i = P ID,−

i (connected by assumption), connectivity

of P ID,+
i follows. Now consider P ID

j , j 6= i. If Γ−j 6= 0, then P ID,+
j = P ID,−

j is connected.

Suppose Γ−j = 0 and P ID,+
j is not connected. By Proposition 3, P+

j ∩ P ID,+
` = ∅ for any

` /∈ {i, j}. Thus, there exists k1 ∈ P ID,+
j such that (i) k1 /∈ P add

i (c+i), and (ii) any optimal

path in G(P+
j) spanning k1 and c+j contains some k2 ∈ P add

i (c+i) = P+
i . Select one

such path and vertex k2. Without loss of generality, assume {k1, k2} ∈ E. Definition 1

implies 1
si
dP+

i
(k2, c

+
i) < min{ 1

s`
dP+

`
(k2, c

+
`) | ` 6= i, k2 ∈ P+

` } and thus 1
si
dP+

i ∪{k1}
(k1, c

+
i) <

1
sj
dP+

j
(k1, c

+
j). Since Γ−j = 0 and ID−k1 = j, Proposition 3 implies 1

si
dP+

i ∪{k1}
(k1, c

+
i) <

1
sj
dP+

j
(k1, c

+
j) = min{ 1

s`
dP+

`
(k1, c

+
`) | ` 6= i, k1 ∈ P+

` }, contradicting k1 /∈ P add
i (c+i). Thus,

P ID,+
j is connected. Invoking Proposition 3, the inductive assumption holds for all t prior

to the p+ 1st exchange, implying well-posedness of the first p+ 1 exchanges. �

We proceed to the proof of Theorem 2.

Proof of Theorem 2.

Statement 1 : The proof of Theorem 1 implies the statement.

Statement 2 : PPP is an N -covering of V since PPP ID is an N -partition of V , and P ID
i ⊆

Pi for any i (Proposition 3, statement 1). The covering PPP is connected, since Pi =

P ID
i (connected by statement 1) immediately following any agent-cloud exchange and is

unchanged in between updates.

Statement 3 : It suffices to show IDci = i for any t, i: this implies ci 6= cj for any i 6= j,

and ci ∈ Pi (Proposition 3). Since IDci = i for all i at t = 0, the same holds for any t

prior to the first agent-cloud exchange. Suppose IDci = i for all i (thus ci 6= cj for any

175

Proof of Results from Chapter 4 Appendix A

i 6= j) prior to the p-th exchange. If agent i is the p-th communicating agent, lines 2, 9

of Algorithm 7 imply ID+

c+i
= i. Since dP−j (c−j , c

−
j) = 0 for any j, we have c+j /∈ P add

i (c+i).

Thus, ID+

c+j
= j, and induction proves the statement.

Statements 4 and 5 : Statement 4 follows from (4.1), noting that PA
i = Pi. Statement 5

holds by assumption when t = 0. Let k ∈ V , and consider times when IDk changes (k

is re-assigned). Since supp(ΦA
j (·, t)) = Pj = PA

j for any j at t = 0, statement 4 implies

that, for any t prior to the first reassignment, k belongs exclusively to supp(ΦA
IDk

(·, t)).

Suppose statement 5 holds for all t prior to the p-th reassignment (occurring at time t0),

and ID−k = j, ID+
k = i 6= j. Then, Γ−j = 0 and k belongs exclusively to P−j when t = t−0

(Proposition 3). By Algorithm 7 and 8, k ∈ PA,pd,+
i and Γ+

i > ω+
j + ∆− t0 ≥ γA,+i . Since

supp(ΦA
i (·, t)) is unchanging over an interval of length at least Γ+

i ≥ γA,+i , Equation (4.1)

implies k /∈ supp(ΦA
i (·, t)) when t ∈ [t+0 , t

+
0 + γA,+i]. Since k is re-assigned when t = t0,

k ∈ P+
i \P ID,−

i and Γ+
j = ω+

j + ∆− t0. Agent j will communicate with the cloud at some

time t1 < t0 + Γ+
j = ω+

j + ∆ < t0 + Γ+
i . Thus, Γi > 0 when t = t1, and k is removed from

both Pj and supp(ΦA
j (·, t)). Thus, for all t > t0+γ+i and before the p+1-st reassignment,

k belongs exclusively to supp(φi(·, t)). �

Next, we prove Theorem 3.

Proof of Theorem 3. Theorem 2 implies statement 1.

Statement 2 : For any i, (i) Γi = 0 when t = 0, and (ii) 1
si
dV ′(k1, k2) ≤ d for any

connected V ′ ⊆ V , k1, k2 ∈ V ′. Thus, it is straightforward to show, for any i, t, we

have the bound Γi ≤ ∆ + ∆H + d. We show by induction that, for any i, t, the bound

γAi − t+ ωAi ≤ Γi−∆H also holds: Γi = 0 and γAi = −∆H when t = 0 , so γAi − t+ ωAi =

γAi ≤ Γi − ∆H, and the bound holds prior to the first cloud-agent exchange involving

any agent, since γAi − t = γAi − t + ωAi ≤ −∆H ≤ Γi − ∆H at any such time. Assume

the bound holds prior to the p-th exchange (occuring at t = t0). Consider 2 cases: if

176

Proof of Results from Chapter 4 Appendix A

agent i is the communicating agent, then γA,+i − t + ωAi = γ+i := T+
i − ∆H; if not,

then γA,+i = γA,−i and either 1) Γ−i = Γ+
i implying the desired bound, or 2) Γ−i = 0 and

γA,+i − t0+ωA,+i = γA,−i − t+ωA,−i ≤ Γ−i −∆H = −∆H ≤ (ωA,+i +∆− t0)−∆H = Γ+
i −∆H.

This logic extends to all t prior to the p + 1-st exchange and the desired bound follows

from an inductive argument.

Using the aforementioned two bounds, we have γAi + ωAi ≤ t + ∆ + d. Fix t and

k ∈ Prohi(t) ∩ Pi. Then, k ∈ PA,+
i = P+

i , k ∈ PA,pd,+
i , and t− ωA,+i < γA,+i (‘+’ is with

respect to the fixed time t). Further, over the interval [t, ωA,+i +γA,+i], the vertex k is not

re-assigned, Pi is not augmented, and γAi is unchanged. Therefore, k /∈ Prohi(ω
A,+
i +γA,+i).

Setting t0 := ωA,+i +γA,+i , we have t < t0 ≤ t+∆+d. Since Γi ≥ γAi +∆H at time ωA,+i , k

is not re-assigned during the interval [ωA,+i , ωA,+i + T+
i] ⊇ [ωA,+i , t0 + ∆H] ⊇ [t0, t0 + ∆H].

Thus k ∈ Pi\Prohi(·) over the same interval.

Statement 3 : Fix t and suppose k ∈ P−i \P+
i (in this proof, ‘+,−’ are with respect to t).

Then, (i) IDk changed (k was reassigned) at time t0 < t, (ii) agent i exchanges data with

the cloud at time t, and (iii) no exchanges involving agent i occurred during the interval

[t0, t). Upon reassignment at time t0, Algorithm 8 specifies that (i) Γi is reset to value

ωA,−i + ∆ − t0, thus P ID
i is unchanged over the interval [t0, t), (ii) k is added to PA,pd

IDk
,

and (iii) γAIDk
, TIDk

are given values of at least

ω̃ := max
k̃∈P−i \P

+
i

{
ωA,−i + ∆ +

1

si
dP−i

(
k̃, P ID,−

i

)
− t0

}
,

implying that PIDk
, ProhIDk

(·) remain unchanged over the interval (t0, ω̃] ⊇ (t0, t +

1
si
dP−i (k, P ID,−

i)] ⊇ (t0, t].

Since coverage regions are connected and non-empty (Theorem 2), and P−i ∩P ID
` = ∅

for any ` /∈ {i, ID+
k } on the interval (t0, t] (Proposition 3), (i) there exists a path of

length dP−i (k, P ID,−
i) from k into P ID,−

i and every vertex along any such path (except the

177

Proof of Results from Chapter 4 Appendix A

terminal vertex) lies within P−i \P+
i , and (ii) P−i \P+

i ⊆ ProhID+
k

over the interval (t0, ω̃] ⊇

[t, t+ 1
si
dP−i (k, P ID,−

i)]. Since (i) each vertex belongs to no more than two coverage regions

(Proposition 3), (ii) k ∈ P−i \P+
i , and (iii) no agent claims vertices in ProhID+

k
(·) ∩ PID+

k

when ΓID+
k
> 0, vertices along the path (excluding the terminal vertex) do not belong to

Pj with j 6= IDk over [t, t+ 1
si
dP−i (k, P ID,−

i)]. To complete the proof, Algorithm 8 implies

Γ+
i >

1
si
dP−i (k, P ID,−

i), and thus P ID,−
i ⊆ P ID

i over [t, t+ 1
si
dP−i (k, P ID,−

i)]. �

The following proposition characterizes a key property of the cost H.

Proposition 4 (Cost) Suppose Assumption 1 holds and that, during each agent-cloud

exchange, the cloud updates relevant global and local coverage variables via Algorithm 7.

If Φ(·, t1) = Φ(·, t2) for all t1, t2, then H(ccc,PPP ID, ·) = H(ccc,PPP , ·).

Proof: Since Φ is time-invariant, H(·, ·, t1) = H(·, ·, t2) for any t1, t2. When t = 0,

PPP = PPP ID and H(ccc,PPP ID, 0) = H(ccc,PPP , 0). The same is true prior to the first agent-cloud

exchange. Suppose that, prior to the p-th exchange (occurring at t = t0, involving agent

i), we have H(ccc−,PPP ID,−, t0) = H(ccc−,PPP−, t0). Recall that, for any j, Pj and P ID
j coin-

cide immediately following any exchange involving agent j and, if agent j claims vertices

from Pi, then Algorithm 8 ensures that agent i exchanges data with the cloud before

additional vertices are claimed by other agents. Considering the p-th update, this logic,

along with Proposition 3, implies that P ID,−
i ∩ P−j = ∅, for all j 6= i. Noting that

c+i ∈ P ID,−
i , we deduce that any k ∈ P ID,−

i contributes equivalently to H(ccc+,PPP ID,+, t0)

and H(ccc+,PPP+, t0). If k ∈ P add
i (c+i)\P ID,−

i , then for any j 6= i such that k ∈ P+
j , we

have 1
si
dP+

i
(k, c+i) < 1

sj
dP+

j
(k, c+j) (Definition 1), implying k contributes equivalently to

H(ccc+,PPP ID,+, t0) and H(ccc+,PPP+, t0). Now suppose k ∈ P+
j \P+

i , where P+
j ∩ P+

i 6= ∅.

We show that dP ID,+
j

(c+j , k) = dP+
j

(c+j , k): if a length-minimizing path in G(P+
j) be-

tween c+j and k is also contained in G(P ID,+
j), the result is trivial. Suppose that every

such minimum length path leaves G(P ID,+
j). By Proposition 3, every k ∈ P+

j must sat-

178

Proof of Results from Chapter 4 Appendix A

isfy ID+

k
∈ {i, j}. Thus, assume without loss of generality that k is adjacent to P+

i .

Let k ∈ P+
i be a vertex that is adjacent to k and lies along a minimum-length path

in G(P+
j) spanning c+j and k. Since k ∈ P+

i \P ID,−
i , we have k ∈ P add

i (c+i) as con-

structed during the update, implying 1
si
dP+

i
(k, c+i) < min{ 1

s`
dP+

`
(k, c+`) | ` 6= i, k ∈ P+

` }

and thus 1
si
dP+

i ∪{k}
(k, c+i) < 1

sj
dP+

j
(k, c+j). Since Γ−j = 0 and ID−k = j, Proposition 3

implies 1
si
dP+

i ∪{k}
(k, c+i) < 1

sj
dP+

j
(k, c+j) = min{ 1

s`
dP+

`
(k, c+`) | ` 6= i, P+

` }, contradicting

k /∈ P add
i (c+i) ⊂ P+

i . Thus, dP ID,+
j

(c+j , k) = dP+
j

(c+j , k), which, by inductive assumption,

implies that k contributes equally to the value of both H(ccc+,PPP ID,+, t0) and H(ccc+,PPP+, t0).

We conclude H(ccc+,PPP ID,+, t0) = H(ccc+,PPP+, t0). Since PPP , PPP ID, and ccc are static between

updates, the statement follows by induction.

With this result in hand, we are in position to complete the proof of Theorem 4.

Proof of Theorem 4. The cost H(ccc,PPP , t) is static in between agent-cloud exchanges, as

PPP and ccc are unchanged. Consider an exchange occurring at time t0 involving agent i. By

Proposition 4, we have H(ccc+,PPP+, t0) ≤ H(ccc−,PPP ID,−, t0) = H(ccc−,PPP−, t0). Thus, the cost

H(ccc,PPP , t) is non-increasing in time. Since CovN(V) is finite, there is some time t0 after

which the value ofH is static. Consider fixed t > t0 at which some agent i exchanges data

with the cloud. Since the value of H is unchanging, Algorithm 7 implies that PPP ID and ccc

are unchanged by the update. It follows that ccc and PPP ID converge in finite time. Further,

since P ID
i ⊆ Pi for any i (Proposition 3), we have P ID,−

i = P ID,+
i = P ID,−

i ∪P add
i (c+i) = P+

i .

By persistence of exchanges imposed by ∆, this implies that after some finite time, PPP

and PPP ID are concurrent.

To prove Pareto optimality of the limiting configuration, consider t0, such that for

all t > t0, the pair (ccc,PPP) is unchanging and PPP is an N -partition of V . Timers are only

reset when PPP is altered, so assume without loss of generality that Γi = 0 for all i at

any t > t0. Suppose agent i exchanges data with the cloud at time t > t0. Algorithm 7

179

Proof of Results from Chapter 4 Appendix A

implies that there is no k ∈ Pi such that
∑

h∈Pi
dPi

(h, k)Φ(h, t) <
∑

h∈Pi
dPi

(h, ci)Φ(h, t)

(if not, the cost is lowered by moving ci). Similarly, for k ∈ Pj with j 6= i that is adja-

cent to Pi, we have 1
si
dPi∪{k}(ci, k) ≥ 1

sj
dPj

(cj, k) (if not, there exists k ∈ P add
i (c+i)\P−i ,

contradicting convergence). As such, for any i, there is no V ′ ⊂ V \Pi such that∑
k∈V ′

1
si
dPi∪V ′(ci, k) <

∑
k∈V ′ min{ 1

sj
dPj

(cj, k) | k ∈ Pj, j 6= i}, implying statement 2

of Definition 2. �

We now prove Proposition 2, which relates the notion of Pareto-optimality and that

of a (multiplicatively-weighted) centroidal Voronoi partition.

Proof of Proposition 2. Since PPP is an N -partition of V by assumption, we have

H(ccc,PPP , t) =
N∑
i=1

∑
k∈Pi

dPi
(k, ci)Φ(k, t).

Thus it is clear that each ci must be a centroid of the respective region in order for the pair

(ccc,PPP) to satisfy property 1 in Definition 2. We show that PPP is a multiplicatively-weighted

Voronoi partition generated by ccc and weighted by sss by contradiction. Suppose that (ccc,PPP)

satisfies property 2 of Definition 2 and that ci ∈ C(Pi, t) for all i. This implies that for any

i, there is no V ′ ⊂ V \Pi such that
∑

k∈V ′
1
si
dPi∪V ′(ci, k) <

∑
k∈V ′ min{ 1

sj
dPj

(cj, k)|k ∈

Pj, j 6= i}. Now suppose that PPP is not a multiplicatively-weighted Voronoi partition

generated by ccc and weighted by sss: There exists k ∈ Pj and i 6= j satisfying 1
si
dV (k, ci) <

1
sj
dV (k, cj). Let ρ := (ci := k1, k2, . . . , kn := k) be the shortest path in G(V) spanning k

and ci (notice this also implies (kp1 , kp1+1, . . . , kp2) is a length minimizing path spanning

kp1 and kp2 for any p1, p2 ∈ {1, . . . , n}, p1 < p2). Let p ∈ {1, . . . , n} be the first index

satisfying kp /∈ Pi, i.e., kr ∈ Pi for all r < p. Assume kp ∈ P`. Then, ρ̃ := (k1, k2, . . . , kp)

is a length minimizing path in G(V) spanning ci and kp. Since kp /∈ Pi and is adjacent

180

Proof of Results from Chapter 4 Appendix A

to Pi, we have by assumption 1
s`
dP`

(c`, kp) ≤ 1
si
dV (ci, kp). Indeed, if 1

s`
dP`

(c`, kp) >

1
si
dV (ci, kp), then 1

s`
dP`

(c`, kp) >
1
si
dPi∪{kp}(ci, kp) which is a contradiction. If kp+1 ∈ P`,

then 1
s`
dP`

(c`, kp+1) ≤ 1
si
dV (ci, kp+1). If kp+1 ∈ Pz, z 6= `, then (ci := k1, k2, . . . , kp+1)

is a length minimizing path between ci and kp+1 and, by similar logic, we must have

1
sz
dPz(cz, kp+1) ≤ 1

s`
dP`∪{kp+1}(c`, kp+1) ≤ 1

si
dV (ci, kp+1). Building inequalities inductively

yields 1
sj
dV (cj, k) ≤ 1

sj
dPj

(cj, k) ≤ 1
si
dV (ci, k), which is a contradiction. Thus, PPP must be

a multiplicatively-weighted Voronoi partition, generated by ccc and weighted by sss. �

Finally, we conclude the appendix with the proof of Theorem 5.

Proof of Theorem 5. By Assumption 2, local trajectory planners never direct an agent

into its prohibited region, so if no exchange occurs that removes the vertex corresponding

to the relevant agent’s location from its coverage region, the statement is immediate. Sup-

pose, at some t0, agent i, which is located at k ∈ PA,−
i , exchanges data with the cloud and

k is removed, i.e., k /∈ PA,+
i . At time t+0 , agent i executes Algorithm 9, lines 5 and 6. Theo-

rem 3 ensures (i) there exists a path in G(PA,−
i) between k and P ID,−

i , (ii) all vertices along

the path belong to ProhID+
k
\⋃j 6=ID+

k
P+
j during the interval (t0, t0+ 1

si
dPA,−

i
(k, P ID,−

i)], and

(iii) P ID,−
i ⊆ Pi := PA

i over the same interval. Thus, if agent i immediately moves along

the path, it lies exclusively within ProhID+
k

until it reaches PA,+
i . It remains to show

that the agent does not enter Prohi(·) ∩ P+
i while traversing the aforementioned path.

Without loss of generality, consider the update at time t0 previously described. Since

k is re-assigned prior to the update, we have Prohi(t
−
0) ∩ P−i = ∅ (vertices in Pi are

not claimed unless Γi = 0, implying t0 − ωA,−i > γA,−i). By Proposition 3, we deduce

Γ+

ID+
k

> 0, so no vertices in PA,−
i ∩ P+

ID+
k

can belong to PA,pd,+
i , and no vertex on the

constructed path belongs to Prohi(t
+
0). Since Γ+

i > γA,+i > 1
si
dPA,−

i
(k, P ID,−

i), Prohi(·)

remains unchanged over (t0, t0 + 1
si
dPA,−

i
(k, P ID,−

i)]. �

181

Appendix B

Resolution Completeness of

Algorithm 14

In this appendix, we rigorously characterize the resolution completeness properties of

Algorithm 14. These properties essentially serve to justify the use of the discrete ap-

proximation of Problem 2 for the purpose of approximating solutions to Problem 1, by

showing that, loosely, the quality of solutions produced by Algorithm 14, in typical cases,

improves with finer discretization granularity.

We start with some preliminary notions. For this appendix, we assume that all angles

θ ∈ [0, 2π) are equivalently represented as points on the unit circle S1 := {x ∈ R2 | ‖x‖ =

1} via the relation θ 7→ (cos(θ), sin(θ)). As such, we assume without loss of generality

that the UAV configuration space is R2 × S1. Recall that DWLj is defined as the set of

configurations from which a UAV can begin executing a feasible dwell-time maneuver at

Tj. We start by parameterizing the set of feasible UAV initial maneuvers and the set of

feasible closed trajectories with respect to Problem 1.

Definition 5 (Initial Maneuver) The initial maneuver parameterization set is de-

182

Resolution Completeness of Algorithm 14 Appendix B

fined

INLε :=

{
v ∈

M⋃
j=1

DWLj

∣∣∣∣∣ DIST(v0, v) ≤ ε

}
,

where DIST(v0, v) is the time required for the UAV to traverse the optimal Dubins path

from v0 to v.

Notice that, with slight abuse of notation, we have re-defined INLε as the continuous

analog of the discrete set of Section 5.2.

Definition 6 (Closed Trajectory) The closed trajectory parameterization set is de-

fined

CLSε :=
{
v ∈ (DWLσ(1) ∩ INLε)× DWLσ(2) × · · · × DWLσ(M) | σ permutes the set {1, . . . ,M}

}
.

With this definition, we can associate to each v := (v1, v2, . . . , vM) ∈ CLSε a feasible

solution of Problem 1 by (i) appending the initial configuration v0, (ii) constructing op-

timal Dubins routes between successive nodes (connecting vM to v1), and (iii) appending

dwell-time maneuvers. Strictly speaking, the set CLSε does not completely parameterize

the solution set of Problem 1, since, for some j, there may exist v ∈ DWLj that is the

starting configuration for multiple distinct dwell-time maneuvers. However, this ambi-

guity is inconsequential to the present analysis, so we can assume that, for each j, the

correspondence between DWLj and the set of dwell-time maneuvers at Tj is bijective (see

Remark 17). We now assign an appropriate cost to each element of CLSε.

Definition 7 (Cost) Define the map LGTH : CLSε → R≥ where LGTH((v1, v2, . . . , vM)) is

the time required for the UAV to traverse the closed tour (beginning at v1) that sequentially

touches and performs the dwell-time maneuver associated with all vertices v1, . . . , vM .

183

Resolution Completeness of Algorithm 14 Appendix B

For each Tj, the length of an appropriate dwell-time maneuver varies continuously as

a function of the maneuver’s starting configuration (element in DWLj). As such, results

in [124] imply that (i) the map LGTH is well-defined and continuous except on a finite

set of (3M − 1)-dimensional smooth surfaces embedded in (R2 × S1)M , and (ii) in the

limit from one side of each discontinuity surface, LGTH is continuous up to and on the

surface. The presence of discontinuity sets necessitates the following definition. Here,

LGTH∗ := min LGTH.

Definition 8 (Degeneracy) An instance of Problem 1 is called degenerate if, for every

sequence v1, v2, . . . ∈ CLSε such that LGTH(vk) → LGTH∗ and v∗ := limk→∞ vk exists, the

limit v∗ either (i) is not contained in CLSε, (ii) belongs to a discontinuity set of LGTH, or

(iii) has a first component (corresponding to the starting point of the closed trajectory)

that is isolated in the set INLε.

Finally, we introduce the notion of a dense sampling procedure.

Definition 9 (Dense Sampling Procedure) Suppose that, for each Ns ∈ N, a set

A ⊂ R2×S1 is sampled Ns times to form a discrete subset ANs, i.e. |ANs| = Ns for each

Ns. Such a procedure is called a dense sampling procedure if, for any a ∈ A and any

open neighborhood U of a, there exists N̂s ∈ N such that ANs ∩ U is non-empty for all

Ns > N̂s.

We are now ready to rigorously characterize resolution completeness of Algorithm 14.

Theorem 9 (Resolution Completeness) If Problem 1 is not degenerate, and the set

INLε is such that: (i) INLε 6= ∅, and (ii) there exists ̂ ∈ {1, . . . ,M} such that either

INLε ⊆ DWL̂ or DWL̂ ⊆ INLε, then Algorithm 14 is resolution complete in the following

sense:

Construct a sequence {(INL MNVRNs , CLS TRAJNs)}Ns∈N, where each element

(INL MNVRNs , CLS TRAJNs) represents the output of a call to Algorithm 14 when: (i) the

184

Resolution Completeness of Algorithm 14 Appendix B

number of discrete samples at each target is Ns, (ii) INL∗ε (Algorithm 13, line 3) is

chosen to satisfy the conditions of Theorem 7, and (iii) an optimal GTSP solution is

found (Algorithm 13, line 5). Then, (INL MNVRNs , CLS TRAJNs) is a feasible solution

to Problem 1 for each Ns, and if a dense sampling procedure is used to generate the

discrete node sets at each target, then the length of the tours in the sequence {CLS TRAJNs}

approaches the length of an optimal solution to (5.1) as Ns →∞.

Proof: First note that the notion of resolution completeness described here is well-

defined under the specified assumptions. Indeed, if the (non-discrete) set INLε satisfies

the necessary assumptions, then the discrete analog always has the properties required for

Theorem 7 to hold, and INL∗ε can be chosen accordingly when constructing the sequence

{(INL MNVRNs , CLS TRAJNs)}Ns∈N.

Feasibility of each INL MNVRNs follows from Theorem 6, and the fact that feasible

solutions to Problem 2 map to feasible solutions to Problem 1.

Let v1,v2, . . . ∈ CLSε be a sequence such that LGTH(vi) → LGTH∗. Note that CLSε ⊆

(R2× S1)M can be represented as a bounded subset in (R2× S1)M ⊆ R4M . Invoking the

Bolzano-Weierstrass theorem and compactness of S1, any sequence in CLSε contains a

subsequence that converges to some point in (R2×S1)M . Thus, recalling that Problem 1

is non-degenerate, we can assume without loss of generality that v∗ = limi→∞ vi exists,

is contained in CLSε, does not belong to a discontinuity sets of LGTH, and has a first

component that is not isolated in INLε. Since the function LGTH is continuous at the

point v∗, for any δ > 0, there exists an open neighborhood U ⊂ {(DWLσ(1) ∩ INLε)× · · · ×

DWLσ(M) | σ permutes the set {1, . . . ,M}} of v∗, within which LGTH takes values within

δ of LGTH∗. Since the sampling procedure is dense, for some N̂s, there will be a discrete

node placed inside of the set U for all Ns ≥ N̂s. Since the GTSP is solved exactly, it

follows that |LGTH(CLS TRAJNs)− LGTH∗| < δ for Ns > N̂s, proving convergence.

185

Theorem 9 states that, under a non-degeneracy assumption about the problem struc-

ture, a reasonable implementation of Algorithm 14 will produce solutions that approx-

imate the optimal solutions to the full, multi-objective routing problem. Indeed, the

resolution completeness property ensures that Problem 2 will be appropriately reflective

of Problem 1.

A few final comments are in order. First, note that degenerate problems occur only

in very select situations: a degenerate problem instance is made non-degenerate by per-

turbing target locations by an arbitrarily small amount (example degenerate problem

instances for particular cases are shown in [124]). Thus, the non-degeneracy condition in

Theorem 9 is not typically restrictive. Second, if INLε does not satisfy the conditions of

Theorem 9, then resolution completeness does not hold in general since Algorithm 13 is

not guaranteed to find an optimal solution to Problem 2 (Theorem 7). Nevertheless, the

quality of solutions produced by Algorithm 14 generally increase as sampling granularity

is made increasingly fine. Finally, it is not generally possible to find optimal solutions to

GTSPs. Therefore, the utility of Theorem 9 is its ability to provide intuition about qual-

itative solution behavior, and to ensure that the discrete method herein is an appropriate

approximation.

186

Bibliography

[1] R. Patel, P. Frasca, J. W. Durham, R. Carli, and F. Bullo, Dynamic partitioning
and coverage control with asynchronous one-to-base-station communication, IEEE
Transactions on Control of Network Systems 3 (2016), no. 1 24–33.

[2] J. Roberts, Special issue on uninhabited aerial vehicles, Journal of Field Robotics
23 (2006), no. 3–4.

[3] K. P. Valavanis, Advances in Unmanned Aerial Vehicles: State Of The Art And
the Road To Autonomy. Springer, 2008.

[4] US Air Force, Report on technology horizons, a vision for Air Force Science And
Technology during 2010–2030, tech. rep., AF/ST-TR-10-01-PR, United States Air
Force., 2010. Retrieved from
http://www.defenseinnovationmarketplace.mil/resources/AF TechnologyHorizons2010-
2030.pdf on Feb. 8,
2016.

[5] W. M. Bulkeley, “Chicago’s camera network is everywhere.” The Wall Street
Journal, November 17,, 2009.

[6] C. Drew, “Military taps social networking skills.” The New York Times, June 7,,
2010.

[7] T. Shanker and M. Richtel, “In new military, data overload can be deadly.” The
New York Times, January 16,, 2011.

[8] E. Guizzo, “Obama commanding robot revolution announces major robotics
initiative.” IEEE Spectrum, June, 2011.

[9] T. B. Sheridan, Telerobotics, Automation, and Human Supervisory Control. MIT
press, 1992.

[10] M. Lind, Plant modelling for human supervisory control, Transactions of the
Institute of Measurement and Control 21 (1999), no. 4-5 171–180.

187

[11] M. A. Goodrich and M. L. Cummings, Human factors perspective on next
generation unmanned aerial systems, Handbook of Unmanned Aerial Vehicles
(2015) 2405–2423.

[12] S. R. Dixon and C. D. Wickens, Automation reliability in unmanned aerial vehicle
control: A reliance-compliance model of automation dependence in high workload,
Human Factors: The Journal of the Human Factors and Ergonomics Society 48
(2006), no. 3 474–486.

[13] R. Parasuraman, M. Barnes, K. Cosenzo, and S. Mulgund, Adaptive automation
for human-robot teaming in future command and control systems, tech. rep.,
Defense Technical Information Center (DTIC), 2007. Available at
http://www.dtic.mil/dtic.

[14] A. Poole and L. J. Ball, Eye tracking in hci and usability research, Encyclopedia
of Human Computer Interaction 1 (2006) 211–219.

[15] R. B. Towal, M. Mormann, and C. Koch, Simultaneous modeling of visual saliency
and value computation improves predictions of economic choice, Proceedings of the
National Academy of Sciences 110 (2013), no. 40 E3858–E3867.

[16] S. Djamasbi, M. Siegel, and T. Tullis, Generation Y, web design, and eye tracking,
International Journal of Human-Computer Studies 68 (2010), no. 5 307–323.

[17] A. T. Duchowski, A breadth-first survey of eye-tracking applications, Behavior
Research Methods, Instruments, & Computers 34 (2002), no. 4 455–470.

[18] C. E. Nehme, Modeling Human Supervisory Control in Heterogeneous Unmanned
Vehicle Systems. PhD thesis, Department of Aeronautics and Astronautics, MIT,
Feb., 2009.

[19] M. L. Cummings and P. Mitchell, Automated scheduling decision support for
supervisory control of multiple UAVs, Journal of Aerospace Computing,
Information, and Communication 3 (2006), no. 6 294–308.

[20] M. Freed, R. Harris, and M. Shafto, Human-interaction challenges in UAV-based
autonomous surveillance, in Proceedings of the 2004 Spring Symposium on
Interactions Between Humans and Autonomous Systems Over Extended
Operations, 2004.

[21] A. Pereira, H. Heidarsson, C. Oberg, D. Caron, B. Jones, and G. Sukhatme, A
communication framework for cost-effective operation of AUVs in coastal regions,
in Field and Service Robotics (A. Howard, K. Iagnemma, and A. Kelly, eds.),
vol. 62 of Tracts in Advanced Robotics, pp. 433–442. Springer, 2010.

188

http://www.dtic.mil/dtic

[22] R. C. Shah, S. Roy, S. Jain, and W. Brunette, Data MULEs: modeling and
analysis of a three-tier architecture for sparse sensor networks, Ad Hoc Networks
1 (2003), no. 2-3 215–233.

[23] US Office of the Secretary of Defense, Unmanned aircraft systems (UAS)
roadmap, 2005-2030, 2005.

[24] L. J. Sorensen, K. I. Overgaard, and T. J. S. Martinsen, Understanding human
decision making during critical incidents in dynamic positioning, in Contemporary
Ergonomics and Human Factors 2014 (S. Sharples and S. Shorrock, eds.), p. 359,
CRC Press, 2014. Proceedings of the International Conference on Ergonomics &
Human Factors, Southampton, UK, 7-10 April 2014.

[25] D. C. Klein, Using Adaptive Automation to Increase Operator Performance and
Decrease Stress in a Satellite Operations Environment. PhD thesis, Colorado
Technical University, 2014.

[26] V. A. Banks, N. A. Stanton, and C. Harvey, Sub-systems on the road to vehicle
automation: Hands and feet free but not mind free driving, Safety Science 62
(2014) 505–514.

[27] B. Terwilliger, D. Vincenzi, D. Ison, K. Witcher, D. Thirtyacre, and A. Khalid,
Influencing factors for use of unmanned aerial systems in support of aviation
accident and emergency response, Journal of Automation and Control
Engineering 3 (2015), no. 3.

[28] U. E. Franke, Drones, drone strikes, and us policy: The politics of unmanned
aerial vehicles, Parameters 44 (2014), no. 1 121.

[29] S. M. Astley, Evaluation of computer-aided detection (CAD) prompting techniques
for mammography, The British Journal of Radiology 78 (2014), no. suppl 1
S20–S25.

[30] W. Barfield and T. A. Dingus, Human Factors in Intelligent Transportation
Systems. Psychology Press, 2014.

[31] C. Nehme, B. Mekdeci, J. W. Crandall, and M. L. Cummings, The impact of
heterogeneity on operator performance in futuristic unmanned vehicle systems,
The International C2 Journal 2 (2008), no. 2 1–30.

[32] L. F. Bertuccelli, N. Pellegrino, and M. L. Cummings, Choice modeling of relook
tasks for UAV search missions, in American Control Conference, (Baltimore, MD,
USA), pp. 2410–2415, June, 2010.

[33] L. F. Bertuccelli, N. W. M. Beckers, and M. L. Cummings, Developing operator
models for UAV search scheduling, in AIAA Conf. on Guidance, Navigation and
Control, (Toronto, Canada), Aug., 2010.

189

[34] K. Savla, C. Nehme, T. Temple, and E. Frazzoli, On efficient cooperative
strategies between UAVs and humans in a dynamic environment, in AIAA Conf.
on Guidance, Navigation and Control, (Honolulu, HI, USA), 2008.

[35] K. Savla, T. Temple, and E. Frazzoli, Human-in-the-loop vehicle routing policies
for dynamic environments, in IEEE Conf. on Decision and Control, (Cancún,
México), pp. 1145–1150, Dec., 2008.

[36] J. W. Crandall, M. L. Cummings, M. Della Penna, and P. M. A. de Jong,
Computing the effects of operator attention allocation in human control of
multiple robots, IEEE Transactions on Systems, Man & Cybernetics. Part A:
Systems & Humans 41 (2011), no. 3 385–397.

[37] K. Savla and E. Frazzoli, Maximally stabilizing task release control policy for a
dynamical queue, IEEE Transactions on Automatic Control 55 (2010), no. 11
2655–2660.

[38] K. Savla and E. Frazzoli, A dynamical queue approach to intelligent task
management for human operators, Proceedings of the IEEE 100 (2012), no. 3
672–686.

[39] N. D. Powel and K. A. Morgansen, Multiserver queueing for supervisory control of
autonomous vehicles, in American Control Conference, (Montréal, Canada),
pp. 3179–3185, June, 2012.

[40] V. Srivastava, R. Carli, C. Langbort, and F. Bullo, Attention allocation for
decision making queues, Automatica 50 (2014), no. 2 378–388.

[41] V. Srivastava and F. Bullo, Knapsack problems with sigmoid utility:
Approximation algorithms via hybrid optimization, European Journal of
Operational Research 236 (2014), no. 2 488–498.

[42] M. Majji and R. Rai, Autonomous task assignment of multiple operators for
human robot interaction, in American Control Conference, (Washington, DC),
pp. 6454–6459, June, 2013.

[43] V. Srivastava, A. Surana, and F. Bullo, Adaptive attention allocation in
human-robot systems, in American Control Conference, (Montréal, Canada),
pp. 2767–2774, June, 2012.

[44] V. Srivastava, F. Pasqualetti, and F. Bullo, Stochastic surveillance strategies for
spatial quickest detection, International Journal of Robotics Research 32 (2013),
no. 12 1438–1458.

[45] V. Srivastava, K. Plarre, and F. Bullo, Randomized sensor selection in sequential
hypothesis testing, IEEE Transactions on Signal Processing 59 (2011), no. 5
2342–2354.

190

[46] K. Cosenzo, R. Parasuraman, and E. De Visser, Automation strategies for
facilitating human interaction with military unmanned vehicles, in Human-robot
Interactions in Future Military Operations (M. Barnes and F. Jentsch, eds.),
pp. 103–124. Ashgate Publishing, 2010.

[47] M. Scerbo, Adaptive automation, in Neuroergonomics: The Brain At Work
(R. Parasuraman and M. Rizzo, eds.), pp. 239–252. Oxford University Press,
2001.

[48] K. M. Feigh, M. C. Dorneich, and C. C. Hayes, Toward a characterization of
adaptive systems a framework for researchers and system designers, Human
Factors: The Journal of the Human Factors and Ergonomics Society 54 (2012),
no. 6 1008–1024.

[49] P. R. Murphy, J. Vandekerckhove, and S. Nieuwenhuis, Pupil-linked arousal
determines variability in perceptual decision making, PLOS Computational
Biology 10 (2014), no. 9 e1003854.

[50] T. Judd, K. Ehinger, F. Durand, and A. Torralba, Learning to predict where
humans look, in Computer Vision, 2009 IEEE 12th international conference on,
(Kyoto, Japan), pp. 2106–2113, IEEE, 2009.

[51] A. Borji and L. Itti, Defending yarbus: Eye movements reveal observers’ task,
Journal of Vision 14 (2014), no. 3 29.

[52] R. Peters and L. Itti, Beyond bottom-up: Incorporating task-dependent influences
into a computational model of spatial attention, in Computer Vision and Pattern
Recognition, 2007. IEEE Conference on, (Minneapolis, MN, USA), pp. 1–8,
IEEE, 2007.

[53] G. Zelinsky, W. Zhang, and D. Samaras, Eye can read your mind: Decoding eye
movements to reveal the targets of categorical search tasks, Journal of Vision 8
(2008), no. 6 380–380.

[54] M. A. Recarte and L. M. Nunes, Mental workload while driving: effects on visual
search, discrimination, and decision making., Journal of Experimental
Psychology: Applied 9 (2003), no. 2 119.

[55] W. Einhäuser, J. Stout, C. Koch, and O. Carter, Pupil dilation reflects perceptual
selection and predicts subsequent stability in perceptual rivalry, Proceedings of the
National Academy of Sciences 105 (2008), no. 5 1704–1709.

[56] T. de Greef, H. Lafeber, H. van Oostendorp, and J. Lindenberg, Eye movement as
indicators of mental workload to trigger adaptive automation, in Foundations of
augmented cognition. neuroergonomics and operational neuroscience, pp. 219–228.
Springer, 2009.

191

[57] B. P. Bailey and S. T. Iqbal, Understanding changes in mental workload during
execution of goal-directed tasks and its application for interruption management,
ACM Transactions on Computer-Human Interaction (TOCHI) 14 (2008), no. 4
21.

[58] L. Fern and R. J. Shively, A comparison of varying levels of automation on the
supervisory control of multiple UASs, in AUVSI’s Unmanned Systems North
America, (Washington, DC, USA), Aug., 2009.

[59] V. Srivastava, A. Surana, M. P. Eckstein, and F. Bullo, Mixed human-robot team
surveillance, arXiv preprint arXiv:1311.2796 (2013).

[60] M. L. Cummings, L. F. Bertucelli, J. Macbeth, and A. Surana, Task versus
vehicle-based control paradigms in multiple unmanned vehicle supervision by a
single operator, IEEE Transactions on Human-Machine Systems 44 (2014), no. 3
353–361.

[61] D. Gartenberg, L. A. Breslow, J. Park, J. M. McCurry, and J. G. Trafton,
Adaptive automation and cue invocation: The effect of cue timing on operator
error, in Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, (Paris, France), pp. 3121–3130, ACM, 2013.

[62] M. Pickett, D. W. Aha, and J. G. Trafton, Acquiring user models to test
automated assistants., in FLAIRS Conference, (Orlando, FL , USA), pp. 112–117,
AAAI, 2013.

[63] C. Heitmeyer, M. Pickett, L. Breslow, D. Aha, J. G. Trafton, and E. Leonard,
High assurance human-centric decision systems, in Realizing Artificial Intelligence
Synergies in Software Engineering (RAISE), 2013 2nd International Workshop
on, (San Francisco, CA, USA), pp. 35–41, IEEE, 2013.

[64] E. Lawler, J. K. Lenstra, A. H. R. Kan, and D. B. Shmoys, Sequencing and
scheduling: Algorithms and complexity, Handbooks in operations research and
management science 4 (1993) 445–522.

[65] T. Yamada and R. Nakano, Job shop scheduling, IEE control Engineering series
(1997) 134–134.

[66] B. Alidaee and H. Li, Parallel machine selection and job scheduling to minimize
sum of machine holding cost, total machine time costs, and total tardiness costs,
Automation Science and Engineering, IEEE Transactions on 11 (2014), no. 1
294–301.

[67] S. Mason and K. Oey, Scheduling complex job shops using disjunctive graphs: A
cycle elimination procedure, International Journal of Production Research 41
(2003), no. 5 981–994.

192

[68] R. Cheng, M. Gen, and Y. Tsujimura, A tutorial survey of job-shop scheduling
problems using genetic algorithms-I. Representation, Computers & Industrial
Engineering 30 (1996), no. 4 983–997.

[69] D. Ouelhadj and S. Petrovic, A survey of dynamic scheduling in manufacturing
systems, Journal of Scheduling 12 (2009), no. 4 417–431.

[70] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski, Robust Optimization. Princeton
University Press, 2009.

[71] M. Zimmerman, Task load, in Encyclopedia of Clinical Neuropsychology
(J. Kreutzer, J. DeLuca, and B. Kaplan, eds.), pp. 2469–2470. Springer, 2011.

[72] M. L. Cummings and P. J. Mitchell, Operator scheduling strategies in supervisory
control of multiple UAVs, Aerospace Science and Technology 11 (2007), no. 4
339–348.

[73] D. Broadbent, Differences and interactions between stresses, Quarterly Journal of
Experimental Psychology 15 (1963), no. 3 205–211.

[74] P. A. Hancock, A dynamic model of stress and sustained attention, Human
Factors: The Journal of the Human Factors and Ergonomics Society 31 (1989),
no. 5 519–537.

[75] M. Westman and D. Eden, The inverted-U relationship between stress and
performance: A field study, Work & Stress 10 (1996), no. 2 165–173.

[76] K. H. Teigen, Yerkes-Dodson: A law for all seasons, Theory & Psychology 4
(1994), no. 4 525–547.

[77] S. Rathinam, R. Sengupta, and S. Darbha, A resource allocation algorithm for
multi-vehicle systems with non holonomic constraints, IEEE Transactions on
Automation Sciences and Engineering 4 (2007), no. 1 98–104.

[78] D. B. Kingston, R. W. Beard, and R. S. Holt, Decentralized perimeter surveillance
using a team of UAVs, IEEE Transactions on Robotics 24 (2008), no. 6
1394–1404.

[79] J. Las Fargeas, P. Kabamba, and A. Girard, Cooperative surveillance and pursuit
using unmanned aerial vehicles and unattended ground sensors, Sensors 15
(2015), no. 1 1365–1388.

[80] C. A. Rabbath, C. Y. Su, and A. Tsourdos, Guest editorial introduction to the
special issue on multivehicle systems cooperative control with application, IEEE
Transactions on Control Systems Technology 15 (2007), no. 4 599–600.

193

[81] G. Gutin and A. P. Punnen, The Traveling Salesman Problem and Its Variations.
Springer, 2007.

[82] K. Savla, E. Frazzoli, and F. Bullo, Traveling Salesperson Problems for the Dubins
vehicle, IEEE Transactions on Automatic Control 53 (2008), no. 6 1378–1391.

[83] J. J. Enright, K. Savla, E. Frazzoli, and F. Bullo, Stochastic and dynamic routing
problems for multiple UAVs, AIAA Journal of Guidance, Control, and Dynamics
34 (2009), no. 4 1152–1166.

[84] W. Malik, S. Rathinam, and S. Darbha, An approximation algorithm for a
symmetric generalized multiple depot, multiple travelling salesman problem,
Operations Research Letters 35 (2007), no. 6 747–753.

[85] M. Niendorf, P. T. Kabamba, and A. R. Girard, Stability of solutions to classes of
traveling salesman problems, IEEE Transactions on Cybernetics 46 (2016), no. 4.

[86] M. Alighanbari and J. P. How, A robust approach to the UAV task assignment
problem, International Journal on Robust and Nonlinear Control 18 (2008), no. 2
118–134.

[87] K. Helsgaun, An effective implementation of the Lin–Kernighan traveling
salesman heuristic, European Journal of Operational Research 126 (2000), no. 1
106–130.

[88] R. Patel, P. Agharkar, and F. Bullo, Robotic surveillance and Markov chains with
minimal weighted Kemeny constant, IEEE Transactions on Automatic Control 60
(2015), no. 12 3156–3157.

[89] M. Younis and K. Akkaya, Strategies and techniques for node placement in
wireless sensor networks: A survey, Ad Hoc Networks 6 (2008), no. 4 621–655.

[90] F. Bullo, E. Frazzoli, M. Pavone, K. Savla, and S. L. Smith, Dynamic vehicle
routing for robotic systems, Proceedings of the IEEE 99 (2011), no. 9 1482–1504.

[91] N. Mathew, S. L. Smith, and S. L. Waslander, Multirobot rendezvous planning for
recharging in persistent tasks, IEEE Transactions on Robotics 31 (2015), no. 1
128–142.

[92] F. Bullo, R. Carli, and P. Frasca, Gossip coverage control for robotic networks:
Dynamical systems on the space of partitions, SIAM Journal on Control and
Optimization 50 (2012), no. 1 419–447.

[93] J. G. Carlsson, Dividing a territory among several vehicles, INFORMS Journal on
Computing 24 (2012), no. 4 565–577.

194

[94] J. Peng and S. Akella, Coordinating multiple robots with kinodynamic constraints
along specified paths, International Journal of Robotics Research 24 (2005), no. 4
295–310.

[95] B. P. Gerkey and M. J. Matarić, Sold!: Auction methods for multirobot
coordination, IEEE Transactions on Robotics and Automation 18 (2002), no. 5
758–768.

[96] E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm Intelligence: From Natural to
Artificial Systems. No. 1 in Santa Fe Institute Studies in the Sciences of
Complexity. Oxford University Press, 1999.

[97] J. H. Reif and H. Wang, Social potential fields: A distributed behavioral control for
autonomous robots, Robotics & Autonomous Systems 27 (1999), no. 3 171–194.

[98] N. Kariotoglou, D. Raimondo, S. J. Summers, and J. Lygeros, Multi-agent
autonomous surveillance: A framework based on stochastic reachability and
hierarchical task allocation, ASME Journal of Dynamic Systems, Measurement,
and Control 137 (2015), no. 3 031008.

[99] T. Shima and P. R. Pagilla, Special issue on analysis and control of multi-agent
dynamic systems, ASME Journal of Dynamic Systems, Measurement, and Control
129 (2007), no. 5 569–570.

[100] N. Nigam, The multiple unmanned air vehicle persistent surveillance problem: A
review, Machines 2 (2014), no. 1 13–72.

[101] A. Almeida, G. Ramalho, H. Santana, P. Tedesco, T. Menezes, V. Corruble, and
Y. Chevaleyre, Recent advances on multi-agent patrolling, in Advances in
Artificial Intelligence, vol. 3171 of Lecture Notes in Computer Science,
pp. 474–483. Springer, 2004.

[102] F. Pasqualetti, F. Zanella, J. R. Peters, M. Spindler, R. Carli, and F. Bullo,
Camera network coordination for intruder detection, IEEE Transactions on
Control Systems Technology 22 (2014), no. 5 1669–1683.

[103] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu, Spatial Tessellations: Concepts
and Applications of Voronoi Diagrams. Wiley Series in Probability and Statistics.
John Wiley & Sons, 2 ed., 2000.

[104] J. Cortés, S. Mart́ınez, T. Karatas, and F. Bullo, Coverage control for mobile
sensing networks, IEEE Transactions on Robotics and Automation 20 (2004),
no. 2 243–255.

[105] R. Patel, P. Frasca, and F. Bullo, Centroidal area-constrained partitioning for
robotic networks, ASME Journal of Dynamic Systems, Measurement, and Control
136 (2014), no. 3 031024–031024–8.

195

[106] J. Cortés, Coverage optimization and spatial load balancing by robotic sensor
networks, IEEE Transactions on Automatic Control 55 (2010), no. 3 749–754.

[107] P. O. Fjällström, Algorithms for graph partitioning: A survey, Linköping
Electronic Articles in Computer and Information Science 3 (1998), no. 10.

[108] J. W. Durham, R. Carli, P. Frasca, and F. Bullo, Discrete partitioning and
coverage control for gossiping robots, IEEE Transactions on Robotics 28 (2012),
no. 2 364–378.

[109] G. Laporte, The vehicle routing problem: An overview of exact and approximate
algorithms, European Journal of Operational Research 59 (1992), no. 3 345–358.

[110] P. Toth and D. Vigo, eds., The Vehicle Routing Problem. Monographs on Discrete
Mathematics and Applications. SIAM, 2001.

[111] J. Ousingsawat and M. G. Earl, Modified lawn-mower search pattern for areas
comprised of weighted regions, in American Control Conference, (New York,
USA), pp. 918–923, July, 2007.

[112] D. E. Soltero, M. Schwager, and D. Rus, Generating informative paths for
persistent sensing in unknown environments, in IEEE/RSJ Int. Conf. on
Intelligent Robots & Systems, (Vilamoura, Portugal), pp. 2172–2179, Oct., 2012.

[113] X. Lan and M. Schwager, Planning periodic persistent monitoring trajectories for
sensing robots in Gaussian random fields, in IEEE Int. Conf. on Robotics and
Automation, (Karlsruhe, Germany), pp. 2415–2420, May, 2013.

[114] G. Mathew and I. Mezić, Metrics for ergodicity and design of ergodic dynamics for
multi-agent systems, Physica D: Nonlinear Phenomena 240 (2011), no. 4 432–442.

[115] J. F. Araujo, P. B. Sujit, and J. B. Sousa, Multiple UAV area decomposition and
coverage, in IEEE Symposium on Computational Intelligence for Security and
Defense Applications, (Singapore), pp. 30–37, Apr., 2013.

[116] N. Nigam and I. Kroo, Persistent surveillance using multiple unmanned air
vehicles, in IEEE Aerospace Conference, (Big Sky, MT, USA), pp. 1–14, Mar.,
2008.

[117] I. Maza and A. Ollero, Multiple UAV cooperative searching operation using
polygon area decomposition and efficient coverage algorithms, in Distributed
Autonomous Robotic Systems 6 (R. Alami, R. Chatila, and H. Asama, eds.),
pp. 221–230. Springer, 2007.

[118] J. Wood and J. K. Hedrick, Space partitioning and classification for multi-target
search and tracking by heterogeneous unmanned aerial system teams, Infotech@
Aerospace (March, 2011).

196

[119] B. Bethke, M. Valenti, and J. P. How, UAV task assignment, IEEE Robotics &
Automation Magazine 15 (2008), no. 1 39–44.

[120] B. Kehoe, S. Patil, P. Abbeel, and K. Goldberg, A survey of research on cloud
robotics and automation, IEEE Transactions on Automation Science and
Engineering 12 (2015), no. 2 398–409.

[121] M. T. Hale and M. Egerstedt, Differentially private cloud-based multi-agent
optimization with constraints, in American Control Conference, (Chicago, USA),
pp. 1235–1240, July, 2015.

[122] A. Adaldo, D. Liuzza, D. V. Dimarogonas, and K. H. Johansson, Control of
multi-agent systems with event-triggered cloud access, in European Control
Conference, (Linz, Austria), pp. 954–961, July, 2015.

[123] K. Obermeyer, Path planning for a uav performing reconnaissance of static
ground targets in terrain, in AIAA Guidance, Navigation, and Control
Conference, (Chicago, USA), pp. 10–13, Aug., 2009.

[124] K. J. Obermeyer, P. Oberlin, and S. Darbha, Sampling-based path planning for a
visual reconnaissance UAV, AIAA Journal of Guidance, Control, and Dynamics
35 (2012), no. 2 619–631.

[125] J. Isaacs and J. P. Hespanha, Dubins traveling salesman problem with
neighborhoods: A graph-based approach, Algorithms 6 (2013), no. 1 84–99.

[126] S. M. LaValle, Planning Algorithms. Cambridge University Press, 2006.

[127] P. Oberlin, S. Rathinam, and S. Darbha, A transformation for a heterogeneous,
multiple depot, multiple traveling salesmen problem, in American Control
Conference, (St. Louis, MO, USA), pp. 1292–1297, June, 2009.

[128] C. E. Noon and J. C. Bean, A Lagrangian based approach for the asymmetric
generalized traveling salesman problem, Operations Research 39 (1991), no. 4
623–632.

[129] L. V. Snyder and M. S. Daskin, A random-key genetic algorithm for the
generalized traveling salesman problem, European Journal of Operational Research
174 (2006), no. 1 38–53.

[130] R. T. Marler and J. S. Arora, Survey of multi-objective optimization methods for
engineering, Structural and multidisciplinary optimization 26 (2004), no. 6
369–395.

[131] P. J. Fleming, R. C. Purshouse, and R. J. Lygoe, Many-objective optimization:
An engineering design perspective, in Evolutionary Multi-Criterion Optimization
(C. A. C. Coello, A. H. Aguirre, and E. Zitzler, eds.), pp. 14–32. Springer, 2005.

197

[132] D. Grundel and D. Jeffcoat, Formulation and solution of the target visitation
problem, in Proceedings of the AIAA 1st Intelligent Systems Technical Conference,
(Chicago, USA), Sept., 2004. AIAA 2004-6212.

[133] K. Miettinen, Nonlinear Multiobjective Optimization. Springer, 1998.

[134] S. Ponda, H. Choi, and J. How, Predictive planning for heterogeneous
human-robot teams, in AIAA Infotech@ Aerospace, (Atlanta, GA, USA), April,
2010. AIAA 2010-3349.

[135] C. Murray and W. Park, Incorporating human factor considerations in unmanned
aerial vehicle routing, IEEE Transactions on Systems, Man, and Cybernetics:
Systems 43 (2013), no. 4 860–874.

[136] J. Peters, V. Srivastava, G. Taylor, A. Surana, M. P. Eckstein, and F. Bullo,
Mixed human-robot team surveillance: Integrating cognitive modeling with
engineering design, IEEE Control Systems 35 (2015), no. 6 57–80.

[137] J. Peters and L. Bertuccelli, Robust task scheduling for multi-operator supervisory
control missions, Journal of Aerospace Information Systems (2016) 393–406.

[138] J. R. Peters, S. Wang, A. Surana, and F. Bullo, Cloud-supported coverage control
for persistent surveillance missions, ASME Journal of Dynamic Systems,
Measurement, and Control 139 (2017), no. 8 081011–081011–12.

[139] User Manual: Tobii X60 and X120 Eye Trackers, 2008. http://www.tobii.com.

[140] J. Slooter and D. Van Norren, Visual acuity measured with pupil responses to
checkerboard stimuli., Investigative Ophthalmology & Visual Science 19 (1980),
no. 1 105–108.

[141] K. Savla and E. Frazzoli, A dynamical queue approach to intelligent task
management for human operators, Proceedings of the IEEE 100 (2012), no. 3
672–686.

[142] M. Neerincx, Cognitive task load design: Model, methods and examples, Handbook
of cognitive task design (2003) 283–305.

[143] Y.-F. Tsai, E. Viirre, C. Strychacz, B. Chase, and T.-P. Jung, Task performance
and eye activity: Predicting behavior relating to cognitive workload, Aviation,
Space, and Environmental Medicine 78 (2007), no. Supplement 1 B176–B185.

[144] J. Peters and L. Bertuccelli, Robust scheduling strategies for collaborative
human-uav missions, in American Control Conference (ACC), 2016, (Boston,
MA, USA), pp. 5255–5262, IEEE, July, 2016.

198

http://www.tobii.com

[145] D. Bertsimas and J. N. Tsitsiklis, Introduction to Linear Optimization, vol. 6.
Athena Scientific, Belmont, MA, 1997.

[146] E. Lawler and D. Wood, Branch-and-bound methods: A survey, Operations
Research 14 (1966), no. 4 699–719.

[147] T. Achterberg, T. Berthold, and G. Hendel, Rounding and propagation heuristics
for mixed integer programming, in Operations Research Proceedings 2011,
pp. 71–76. Springer, 2012.

[148] MathWorks, “Linear programming and mixed-integer linear programming.”
http://www.mathworks.com/help/optim/

linear-programming-and-mixed-integer-linear-programming.html.
Accessed: 2015-08-29.

[149] A. Makhorin, “GNU linear programming kit.”
https://www.gnu.org/software/glpk/, 2000–2012. Accessed 2017-02-22.

[150] M. Grant and S. Boyd, Graph implementations for nonsmooth convex programs,
in Recent Advances in Learning and Control (V. Blondel, S. Boyd, and
H. Kimura, eds.), Lecture Notes in Control and Information Sciences, pp. 95–110.
Springer-Verlag Limited, 2008. http://stanford.edu/~boyd/graph_dcp.html.

[151] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex
programming, version 2.1.” http://cvxr.com/cvx, Mar., 2014.

[152] D. N. Southern, Human-guided management of collaborating unmanned vehicles
in degraded communication environments, Master’s thesis, Electrical Engineering
and Computer Science, Massachusetts Institute of Technology, May, 2010.

[153] C. E. Nehme, Modeling human supervisory control in heterogeneous unmanned
vehicle systems. PhD thesis, Massachussetts Institute of Technology, 2009.

[154] L. E. Dubins, On curves of minimal length with a constraint on average curvature
and with prescribed initial and terminal positions and tangents, American Journal
of Mathematics 79 (1957) 497–516.

[155] U. Army, Attack reconnaissance helicopter operations, Tech. Rep. FM 3-04.126,
Department of the Army (US), Feb., 2007. Retrieved from
http://usacac.army.mil/sites/default/files/misc/doctrine/CDG/fms.html on Dec.
5, 2016.

[156] ILOG, Mountain View, CA, ILOG CPLEX User’s guide, 1999.

199

http://www.mathworks.com/help/optim/linear-programming-and-mixed-integer-linear-programming.html
http://www.mathworks.com/help/optim/linear-programming-and-mixed-integer-linear-programming.html
https://www.gnu.org/software/glpk/
http://stanford.edu/~boyd/graph_dcp.html
http://cvxr.com/cvx

[157] MathWorks, “Linear programming and mixed-integer linear programming.”
http://www.mathworks.com/help/optim/

linear-programming-and-mixed-integer-linear-programming.html.
Accessed: 2015-08-29.

[158] A. Ben-Tal, L. El-Ghaoui, and A. Nemirovski, Robust Optimization. Princeton
University Press, 2009.

[159] G. C. Calafiore and M. C. Campi, The scenario approach to robust control design,
IEEE Transactions on Automatic Control 51 (2006), no. 5 742–753.

[160] P. Kouvelis, R. Daniels, and G. Vairaktarakis, Robust scheduling of a
two-machine flow shop with uncertain processing times, IIE Transactions 32
(2000), no. 5 421–432.

200

http://www.mathworks.com/help/optim/linear-programming-and-mixed-integer-linear-programming.html
http://www.mathworks.com/help/optim/linear-programming-and-mixed-integer-linear-programming.html

	Curriculum Vitae
	Abstract
	List of Tables
	List of Figures
	Introduction
	Subproblem Descriptions
	Literature Review
	Contributions
	Permissions and Attributions

	Part I Operator-Focused Methods
	Human Modeling and Usability Analysis Using Physiological Sensing
	The RESCHU Interface
	Experimental Setup
	Results
	Discussion
	Chapter Summary

	Robust Task-Scheduling Strategies for Multi-Operator Missions
	Multiple Operator Scheduling
	Adaptive Scheduling Scheme
	Heuristic Approach
	Chapter Summary

	Part II Sensor-Focused Methods
	Cloud-Supported Coverage Control for Multi-Agent Surveillance
	Mission Overview and Solution Approach
	Problem Setup
	Dynamic Coverage Update Scheme
	Decomposition-Based Surveillance.
	Numerical Examples
	Chapter Summary

	UAV Surveillance Under Visibility and Dwell-Time Constraints
	Problem Formulation
	Discrete Approximation
	UAV Tour Construction
	Numerical Examples
	Extensions for Multiple Vehicle Missions
	Chapter Summary

	Part III Joint Methods
	Joint Scheduling and Routing for Supervisory Surveillance Missions
	Problem Formulation
	Mixed-Integer Programming Formulation
	Dynamic Solution Strategy
	Uncertain Processing Times
	Simulation Studies and Discussion
	Chapter Summary

	Conclusions and Future Work
	Summary
	Future Work

	Proof of Results from Chapter 4
	Resolution Completeness of Algorithm 14
	Bibliography

