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a Mariella





Alle persone speciali – le più avventurose – non rimangono che due pos-
sibilità: o impegnarsi in qualcosa che faccia loro correre dei rischi a livello
fisico – come entrare nelle forze aeree speciali, lanciarsi nello spazio o at-
traversare a piedi il Polo Sud – o esplorare nuove idee, creare forme d’arte,
inventare nuove tecnologie, di conseguenza cambiare lo stile di vita di noi
tutti.1

Desmond Morris

1Unfortunately, I was not able to find the English version of this sentence and I did
not want to guess a translation





Abstract

In the first part of the work we develop a strategy to compute feasi-
ble trajectories of state-input constrained nonlinear control systems. This
strategy is interesting itself in understanding the behavior of the system, es-
pecially in critical conditions, and represents a useful tool that can be used,
in a receding horizon scheme, to perform trajectory tracking in presence of
constraints. The strategy is based on a novel optimization technique, in-
troduced by Hauser, to find a regularized solution for pointwise constrained
optimization of trajectory functionals. We demonstrate the effectiveness of
the proposed strategy. In particular, we prove that for suitable choice of the
constraints, the solution of the regularized optimization problem exists. The
novel concept of operating region is another contribution of the work. Its
importance relies on the property of providing “a priori” a region where a
control engineer can choose (feasible) trajectories that are ensured to be ex-
ponentially stabilizable. We prove some preliminary results in the direction of
characterizing the operating region of nonlinear control-affine systems driven
by (essentially) bounded inputs. The strategy for computation of feasible
trajectories is applied to the PVTOL (Planar Vertical Take Off and Land-
ing) aircraft, a simplified model of a real aircraft that captures the main
features and challenges of the real model.

In the second part of the work we study two different classes of con-
strained optimization problems for robotic networks. First, we address the
connectivity maintenance problem in wireless networks of robotic agents with
double integrator dynamics. We establish an existence theorem for this prob-
lem by defining a novel state-dependent graph. Also, we design a distributed
“flow-control” algorithm to compute optimal connectivity-maintaining con-
trols. Second, we identify a novel class of optimization problems, namely
a networked version of abstract linear programming. For such problems we
propose distributed algorithms for networks with various connectivity and/or
memory constraints. Finally, we show how various minimum time formation
control problems can be tackled through appropriate geometric examples of
abstract linear programs.

Keywords: Nonlinear optimal control, constrained optimization, trajec-
tory tracking, Receding Horizon, PVTOL, multi-agent coordination, robotic
networks, connectivity, abstract linear programming, formation control.





Sommario

Nella prima parte del lavoro viene sviluppata una strategia per il calcolo
di traiettorie ammissibili di un sistema di controllo non lineare con vincoli
puntuali sullo stato e sul controllo. La strategia è utile sia per capire il
comportamento del sistema, specialmente in condizioni limite, sia in uno
schema di controllo predittivo per effettuare inseguimento di traiettorie in
presenza dei suddetti vincoli. La strategia è basata su una nuova tecnica
di ottimizzazione sviluppata da Hauser. Tale tecnica permette di trovare
una soluzione regolarizzata di un problema di controllo ottimo con vincoli.
Viene dimostrata l’efficacia della strategia. In particolare, si dimostra che,
per una opportuna scelta dei vincoli, la soluzione del problema di ottimo
esiste. Il nuovo concetto di regione operativa rappresenta un ulteriore con-
tributo. La sua importanza sta nel fatto che permette ad un ingegnere di
scegliere una traiettoria, sapendo che questa sarà stabilizzabile esponenzial-
mente. Vengono dimostrati alcuni risultati preliminari da utilizzare, in fu-
turo, per caratterizzare la regione operativa per sistemi non lineari affini nel
controllo guidati da ingressi limitati. La strategia descritta in precedenza è
applicata al PVTOL (Planar Vertical Take Off and Landing), un modello
semplificato di un aereo reale che ne cattura le caratteristiche principali.

Nella seconda parte della tesi vengono studiate due classi di problemi
di ottimizzazione per reti di robot. Per primo, viene affrontato il problema
di mantenere la connettività in una rete di robot con dinamica del secondo
ordine (doppio integratore) e comunicazione wireless. Viene dimostrato un
teorema di esistenza basato sull’introduzione di un nuovo grafo (dipendente
dallo stato). Successivamente viene identificata una nuova classe di problemi
di ottimizzazione. In pratica si tratta di una versione su reti di problemi di
“programmazione lineare astratta”. Vengono proposti algoritmi distribuiti
per reti con vari vincoli di connettività e di memoria. Infine, si mostra come
vari problemi di controllo in formazione in tempo minimo possono essere
formulati come problemi di programmazione lineare astratta.

Parole chiave: Controllo ottimo non lineare, ottimizazione vincolata, in-
seguimento di traiettoria, controllo predittivo, PVTOL, coordinazione di sis-
temi multi-agente, reti di robot, connettività, programmazione lineare, con-
trollo in formazione.
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Introduction

Motivations of the work

In the last years many efforts have been done in robotics and aerospace to
design autonomous systems that may substitute humans in performing dan-
gerous or very accurate tasks, e.g., exploration, environmental monitoring or
surgery. A new emerging concept in designing autonomous systems is to sub-
stitute one complex system with a network of simpler subsystems equipped
with local communication capabilities. This should provide robustness to the
system and improve its performance. The emerging discipline of motion co-
ordination starts from this new concept to study how, many control systems
may interact to obtain global performances.

It is clear that two possible points of view arise in the study of autonomous
systems. On one hand, we could pay our attention on the single system and
look for control strategies that allow to execute more complex tasks. On the
other hand, we could try to study the global network in order to obtain an
improvement by cooperation.

In this dissertation we follow both these two perspectives, trying to an-
swer, from different points of view and by use of different tools, to the follow-
ing question. May we find strategies that allow the system (a single agent
or a cooperative network) to execute a task, while satisfying some design
constraints? And may we do it according to some optimal criteria?

As regards the study of the single control system, we focus on the explo-
ration and tracking of trajectories of the system, while satisfying state and
input constraints. Such constraints, we will call them operating conditions,
may arise from diverse causes such as physical bounds on the states and the
inputs or presence of regions where the model is valid or where “bad” phe-
nomena (like loss of controllability) are ensured not to appear. This means
that not only we look for trajectories (curves satisfying the dynamics), but
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furthermore we need feasible trajectories, that is, trajectories lying in a re-
gion where the operating conditions are satisfied. Our first objective is to find
strategies to compute feasible trajectories. In order to develop such strategies
we use techniques for the optimization of trajectory functionals developed by
Hauser in the last ten years. The main references are [28], [27], [25] and [29].
The second objective is to characterize a region of the state-input space, such
that any trajectory remaining in it is uniformly linearly controllable. That
is, we ask the linearization of the nonlinear control system about any of these
trajectories to be uniformly controllable. We call such region an operating
region. The importance of characterizing it relies on the fact that, with this
region in hand, a control engineer knows a priori that any trajectory in it
is, in fact, exponentially stabilizable. We believe that the exploration strat-
egy (to find feasible trajectories) combined with the characterization of an
operating region may provide a tool of great engineering interest.

As regards robotic networks, we focus our attention on two main tasks:
maintaining network connectivity and reaching a desired formation.

The first task is motivated by the following consideration. In order to
ensure a desired emergent behavior (e.g., formation), it is necessary that the
group does not disintegrate into subgroups that are unable to communicate
to each other. In order to do that, restrictions must be applied on the controls
of the agents. In [4], a connectivity constraint was developed for a group of
agents modeled as first-order discrete time dynamic systems. We study this
problem for a group of agents modeled as second order discrete time dynamic
systems, with bounded controls and wireless communication.

The formation task for mobile agents is strongly inspired by nature,
where, e.g., swarms or flocks are examples of complex emerging behaviors just
based on local information. We analyze the problem of reaching a formation
on simple geometric shapes in minimum time. We focus on rendezvous (the
simplest formation), and on formation to a line and a circle. The study of this
problem, even for the centralized solution, results in studying a constrained
optimization problem. The constraints are represented by the positions of the
agents. Therefore, starting from the formation task, we study a more general
problem. That is, find a class of constrained optimization problems that can
be solved by a network, in a distributed way. We found the class of abstract
linear programs to be an interesting one. This is a generalized version of lin-
ear programming that was introduced by Matousĕk, Sharir and Welzl in [49]
and extended by Gärtner in [21]. Abstract linear programming is applicable
also to some geometric optimization problems, such as the minimum enclos-
ing ball, the minimum enclosing stripe and the minimum enclosing annulus.
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These geometric optimization problems are relevant in the design of efficient
robotic algorithms for minimum-time formation control problems.

Main contributions

As regards the study of nonlinear control systems, the contributions are
threefold. First, we develop a strategy to explore feasible trajectories of
constrained nonlinear systems. This strategy is based on techniques for the
optimization of trajectory functionals developed by Hauser. The most re-
cent technique allows to regularize constrained optimal control problems by
adding a parameterized barrier functional. Second, we provide results show-
ing that, for suitable choice of the state-input constraints, the solution of the
regularized optimization problem exists and satisfies second order sufficiency
conditions. The proof relies on an elegant application of the implicit function
theorem. Third, we provide a preliminary characterization of an operating
region, that is a subset of the state-input space where every trajectory (re-
maining in it) is guaranteed to be exponentially stabilizable.

As regards the motion coordination part, the contributions are threefold.
For the connectivity maintenance problem, we establish an existence theorem
by introducing a novel state-dependent graph. We also design distributed
“flow-control” algorithm to compute optimal connectivity-maintaining con-
trols. Second, we identify a novel class of distributed optimization problems,
namely a networked version of abstract linear programming. For such prob-
lems we propose distributed algorithms for networks with various connec-
tivity and/or memory constraints. Third, we apply the previous distributed
computation problems in minimum-time formation control problems, such as
the rendezvous problem and the problems of line and circle formations.

Thesis outline

Chapter 1 is a review of the trajectory tracking projection operator. Through
the use of this tool, a dynamically constrained optimization problem may
be converted in an unconstrained problem. The projection operator based
Newton method is described. This technique is the basis for the strategy
developed in Chapter 2.

In Chapter 2 we provide a new strategy to compute feasible trajectories
of constrained control systems. We start providing a formal definition of the
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task that we want to perform. We describe the exploration strategy and
prove the correctness of the strategy for suitable values of the constraints.
Finally, we briefly discuss how, under suitable stabilizability assumptions, a
receding horizon technique may be implemented to track feasible trajectories.

In Chapter 3 we apply the exploration strategy to the simplified PVTOL
aircraft. After introducing the PVTOL model we show how to compute
trajectories of the unconstrained PVTOL given a desired trajectory of the
center of gravity. We describe two strategies to compute feasible trajectories
of the PVTOL and show some simulations.

In Chapter 4 we introduce the novel concept of operating region. It is a
region where any trajectory is uniformly linearly controllable. We provide a
review of the main controllability notions. Then, we characterize an oper-
ating region for feedback linearizable systems, and for control-affine systems
driven by sampled controls. We also prove that state trajectories generated
by sampled controls converge uniformly to actual state trajectories.

In Chapter 5 we introduce the mathematical model that we will use in the
next chapters to deal with networks. After a brief review on graph definitions
and main properties, we introduce a model for a network of processors. Then,
we define a more complex network model, where the nodes are dynamical
systems, e.g. mobile robots.

In Chapter 6 we address the connectivity maintenance problem in wireless
networks of robotic agents with double integrator dynamics. We establish
an existence theorem for this problem by defining a novel state-dependent
graph. Also, we design a distributed “flow-control” algorithm to compute
optimal connectivity-maintaining controls.

In Chapter 7 we introduce a network version of abstract linear program-
ming. We start introducing abstract linear programs after a short review
on linear programming. Then we define network abstract linear programs
and state the three distributed algorithms. We prove correctness of the al-
gorithms and establish halting conditions.

In Chapter 8 we introduce the problem of minimum time formation for
a robotic network. We focus on the formation control problem for a point
formation (rendezvous), a line formation and a circle formation. We show
that they can be formulated as network abstract linear programs. A control
and communication law based on the distributed algorithm of the previous
chapter is proposed as an approximate solution.



Chapter 1

Projection operator

This chapter is a review of [27] and [25]. A trajectory tracking nonlinear
projection operator is introduced as a powerful tool for the optimization of
trajectory functionals. Through the use of the projection operator, a dynam-
ically constrained optimization problem is converted into an unconstrained
problem that is solved by use of a Newton method. This novel and effective
tool is at the basis of the strategy for computation of feasible trajectories of
constrained systems presented in Chapter 2.

1.1 Introduction

We are interested in studying the nature of the set of trajectories of a non-
linear control system described by an ordinary differential equation on Rn

with inputs lying in Rm. A trajectory of f is a curve η = (x, u) in L∞[0,∞)
such that

ẋ(t) = f(x(t), u(t))

for all t ≥ 0 where f is a Cr mapping of Rn × Rm → Rn with 1 ≤ r ≤ ∞.
With this definition, we explicitly require trajectories to be bounded curves
that satisfy the differential equation. Although we will be mostly interested
in trajectories on the finite horizon [0, T ], it is often useful to consider a finite
length trajectory as a portion of one of infinite extent.

A trajectory ξ = (α, µ) is called exponentially stabilizable if (and only if)
there is a feedback law u(t) = k(t, x(t), α(t), µ(t)) (with k(t, α(t), α(t), µ(t)) =
µ(t) for all t) such that α is an exponentially stable (state) trajectory of the
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closed loop system

ẋ(t) = f(x(t), k(t, x(t), α(t), µ(t))) .

That is, there exist M < ∞, λ > 0, and δ > 0 such that ‖x(t) − α(t)‖ ≤
Me−λ(t−t0)‖x(t0) − α(t0)‖ for all t ≥ t0 ≥ 0 and all x(t0) such that ‖x(t0)−
α(t0)‖ < δ. We would also impose some smoothness and boundedness con-
ditions on k. Since a C1 nonlinear system is exponentially stable if and only
if its linearization is, we may restrict our attention to feedbacks of the form

u(t) = µ(t) + K(t)(α(t)− x(t))

so that ξ is exponentially stabilizable if and only if there is a bounded gain
matrix K that stabilizes the linearization of f about ξ. That is, the linear
system (without input)

ż(t) = Ac(t)z(t) := [A(ξ(t))−B(ξ(t))K(t)]z(t)

is exponentially stable where A(ξ(t)) := D1f(α(t), µ(t)) and B(ξ(t)) :=
D2f(α(t), µ(t)). Thus, the state transition matrix Φ associated with Ac sat-
isfies ‖Φ(t, τ)‖ ≤ Me−λ(t−τ). We will say that “K stabilizes ξ” to indicate
this property.

Let T denote the set of exponentially stabilizable trajectories of f . Clearly
T is a subset of L∞. A fundamental property proved in [27], that we recall in
this chapter, is that T is, in fact, a Cr Banach Manifold. Moreover, the tan-
gent vectors at a given trajectory are precisely the exponentially stabilizable
trajectories of the linearization of the system about the given trajectory. The
key tool in the analysis is a projection operator P that results when the above
type of feedback is used to stabilize a trajectory. Using a family of projection
operators, an atlas of coordinate charts for T may be constructed. These re-
sults provide important insights into the trajectory exploration problem. In
particular, they allow us to use vector space operations [42] to effectively
explore the trajectory manifold. Moreover, the analysis presented here for
trajectories on the infinite time interval [0,∞) lays the foundation for prac-
tical calculations on finite intervals.

Notation

In this dissertation we will often deal with linear vector spaces. In particular
we will consider metric vector spaces (e.g., Banach spaces) and also spaces
with an inner product (e.g., Hilbert spaces). Given a function f : X → Y ,
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where X and Y are two normed spaces, f bounded means that there exists
f̄ ∈ R such that ‖f(x)‖Y ≤ f̄ for every x in the domain of f (dom f).
Clearly we let ‖ · ‖Y denote the norm in the topology of Y . If f is Fréchet
differentiable, we denote with Df(x̄) the derivative of f evaluated at x̄ ∈
X. If x = (x1, x2) ∈ X, we will use either Dx1f(x̄1, x̄2) or D1f(x̄1, x̄2) to
emphasize the differential of f with respect to the variable x1, evaluated at
x̄ = (x̄1, x̄2) ∈ X. As above, we will use ξ to refer to a curve in L∞[0,∞)
and ξ(t) to refer to a point on the curve. To measure the size of things
‖z‖ = sup[0,∞) ‖z(t)‖ where ‖z(t)‖ is the Euclidean norm on Rn+m. Also, we
denote φ(t; x0, u(·)) the solution of the control system at instant t, starting
from the state x0 and driven by the control u(·). For a linear system, we
denote Φ(t, τ), {t, τ} ⊂ R+∪{0}, the state transition matrix. When we want
to underline that the state transition matrix is associated to the linearization
of a nonlinear system about the trajectory ξ, we will use the notation ψt(ξ),
where ψτ (ξ) · (t) = Φξ(t, τ). Finally, ‖Φ(t, τ)‖ is the matrix norm (on Rn×n)
induced by the chosen vector norm.

1.2 Trajectory tracking Projection Operator

In this section we introduce a projection operator P that results from the use
of a trajectory tracking control law and analyze its differentiability properties.

Suppose that K stabilizes ξ0 ∈ T and consider the mapping P : ξ =
(α, µ) 7→ η = (x, u) defined by

ẋ(t) = f(x(t), u(t)), x(0) = α(0),
u(t) = µ(t) + K(t)(α(t)− x(t)) .

(1.1)

Clearly ξ0 = P(ξ0) since ξ0 is a stable (by K) trajectory of f . Moreover, since
ξ0 is an exponentially stable trajectory (of the closed loop system f,K), P is
well defined on an L∞ neighborhood of ξ0, i.e., η = P(ξ) is an exponentially
stable trajectory for any curve ξ such that ‖ξ−ξ0‖ is sufficiently small. That
is, P maps curves ξ into trajectories η. We shall see that P is locally onto T .
We call P a projection operator since P = P2 := P ◦ P which follows from
the fact that every trajectory is a fixed point of P . Note that the specific
behavior of P depends on the choice of K. When it is desirable to emphasize
this dependence, we will write PK .

We are now ready to explore the differentiability properties of P . The
following lemma is a key tool for the proof of the main result. The proof can
be found in [27].
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Lemma 1.1 Consider the nonlinearly perturbed linear system

ẏ(t) = A(t)y(t) + B(t)ζ(t) + R(t, y(t), ζ(t)), y(0) = β(0)

where ζ = (β, ν), A is exponentially stable (‖Φ(t, τ)‖ ≤ Me−λ(t−τ)), B is
bounded (‖B(t)‖ ≤ b), and R is higher order (in its last two arguments,
uniformly in t). The mapping ζ 7→ y is continuous at ζ = 0 with

‖y‖ ≤ [M(1 + b/λ) + ε(δ)] ‖ζ‖

for all ‖ζ‖ < δ where ε is a continuous nondecreasing function with ε(0) = 0.
¤

The following result is fundamental. It shows that P (defined on the
infinite horizon) is Fréchet differentiable with respect to the L∞ norm. We
report the proof of the theorem because it clarifies the structure of the deriva-
tive of P , that is the linear operator DP(ξ), which plays a key role in the
treatment.

Theorem 1.2 (Differentiability of P, [27]) Suppose that f is Cr, 1 ≤
r ≤ ∞, ξ0 ∈ T , and K stabilizes ξ0. Then P = PK is Cr in a neighborhood
of ξ0.

Proof: As noted above, by exponential stability, P is well defined for all
ξ sufficiently close to ξ0. Let ξ be such a curve and set η = P(ξ).

Step 1 . P is continuous at ξ.
Let ξ = (α, µ) and ζ = (β, ν) and set P(ξ) = (x, u) and P(ξ + ζ) = (x +
y, u + w). Then y(0) = β(0) and

ẏ(t) = f(x(t) + y(t), u(t) + w(t))− f(x(t), u(t))
= Ac(t)y(t) + Bc(t)ζ(t) + Rf (t, y(t), w(t))

where Ac(t) = A(η(t))−B(η(t))K(t), Bc(t) = B(η(t))[K(t) I], and Rf (t, y(t), w(t))
is the (obvious) remainder. Since Rf is higher order in (y(t), w(t)) and
w(t) = −K(t)y(t) + [K(t) I] · (β(t), ν(t)), we see that Rf is higher order
in (y(t), ζ(t)) which we will write as R(t, y(t), ζ(t)). The y dynamics are thus
governed by

ẏ(t) = Ac(t)y(t) + Bc(t)ζ(t) + R(t, y(t), ζ(t)), y(0) = β(0) .

Continuity of P at ξ follows from Lemma 1.1.
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Step 2 . P is differentiable at ξ with DP(ξ) · ζ = (z, v) given by

ż(t) = A(η(t))z(t) + B(η(t))v(t), z(0) = β(0),
v(t) = ν(t) + K(t)[β(t)− z(t)] .

(1.2)

Differentiability requires that y − z depends on ζ in a higher order fashion.
Since z satisfies

ż(t) = Ac(t)z(t) + Bc(t)ζ(t), z(0) = β(0),

we see that

(ẏ − ż)(t) = Ac(t)(y − z)(t) + R(t, ζ), (y − z)(0) = 0,

where R satisfies ‖R(t, ζ)‖ ≤ r(‖ζ‖)‖ζ‖ with r continuous, nondecreasing,
and r(0) = 0. Here we have used that fact that y can be linearly bounded
with respect to ζ (see Step 1). Using Lemma 1.1 we see that

‖(y − z)(t)‖
‖ζ‖ ≤ M

λ
r(‖ζ‖)

so that P is differentiable.

Step 3 . Higher derivatives.
The derivative of P defines a linear parameter varying (LPV) system L(η) =
DP(ξ). Here, the bounded linear operator L(η) depends on the parameter
η. Differentiability properties of LPVs are proven in [27]. Using these results
along with the chain rule, it may shown by induction that P is Cr.

Remark 1.3 (Importance of using L∞ norm) It is important to note that
P may not be differentiable if the another norm is used, e.g., the L2 norm.¤

As expected the derivative of the projection operator P is the linear
projection operator DP(ξ) given by the standard linearization. Note that the
character of DP(ξ) depends only on the trajectory η = P(ξ) and not on the
particular ξ = P−1(η). This implies the fundamental property DP(P(ξ)) =
DP(ξ).

We have already seen that P is a projection with P2 = P . Using the
chain rule and the property just stated above, it is easy to see that, given a
bounded curve (not necessarily a trajectory!) ξ,

DP(ξ) = D[P(P(ξ))] = DP(P(ξ)) ·DP(ξ) = DP(ξ) ·DP(ξ)
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so that DP(ξ) is also a projection. That DP(ξ) is a projection can be
seen directly from the differential equations (1.2) that define it. Indeed,
γ = DP(ξ) · ζ is a trajectory of the linearization at ξ. The form of the
feedback law in (1.2) (exactly the same as for the nonlinear system) implies
that any trajectory of the linearization at ξ is a fixed point of DP(ξ), i.e.,

γ = DP(ξ) · γ = DP(ξ) ·DP(ξ) · ζ .

Since this holds for every ζ, we see that DP(ξ) = (DP(ξ))2.

An explicit computation of P derivatives up to third order may be found
in [25].

Given ξ0 ∈ T , we can use tangent vectors ζ ∈ Tξ0T to parametrize ξ ∈ T
near ξ0 according to P(ξ0 + ζ). Clearly, such points lie in T for small ζ. In
fact, every ξ ∈ T near ξ0 can be expressed this way, uniquely.

Proposition 1.4 (Local charts near trajectories, [27]) Suppose that ξ0 ∈
T and let P be a projection operator defined in a neighborhood of ξ0 (e.g.,
P = PK with ξ0 stabilized by K). Then

Qξ0(ζ) := P(ξ0 + ζ)

is a Cr diffeomorphism of a neighborhood of the origin in Tξ0T onto a neigh-
borhood of ξ0 in T . ¤

Using this property a Cr atlas of charts, indexed by trajectories ξ ∈ T , is
available. It is easy to see that these charts are Cr compatible. This proves
the following important theorem.

Theorem 1.5 ([27]) T is a Cr Banach manifold. ¤
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1.3 Projection Operator Newton method

In this section we present the Newton method for optimization of trajectory
functionals introduced in [25].

We are interested in optimal control problems (OCPs) of the form

minimize

∫ T

0

l(τ, x(τ), u(τ)) dτ + m(x(T ))

subject to ẋ(t) = f(x(t), u(t)), x(0) = x0

(1.3)

over the class of (essentially) bounded inputs. This problem is often referred
to as an unconstrained optimal control problem since, under uniqueness con-
ditions and for fixed x0, the state trajectory is completely determined (on its
interval of existence) by the choice of control x(t) ≡ x(t; u(·)) allowing one
to remove the dynamic constraint, writing the objective as a function of u(·)
alone. (Such a shooting approach is, of course, not recommended.)

We are mainly interested in objectives and systems that possess a certain
degree of smoothness: let l(t, x, u), m(x), and f(x, u) be (at least) C3 in x
and u (with l(t, x, u), e.g., continuous in t). To ensure that solutions (should
they exist) of the optimal control are nice (and somewhat likely), we desire
some convexity conditions. We require the set f(x,Rm) ⊂ Rn to be convex
for each x ∈ Rn. We also require the pre-Hamiltonian to be strongly convex
in u, that is, the map

u 7→ l(t, x, u) + pT f(x, u) =: H−(t, x, u, p)

is strictly convex for all (t, x, p) ∈ R+×Rn×Rn, possessing a second deriva-
tive matrix that is uniformly positive definite. This ensures a unique con-
trol ū∗(t, x, p) that minimizes the pre-Hamiltonian providing a C2 (in (x, p))
Hamiltonian H(t, x, p) := H−(t, x, ū∗(t, x, p), p). This property is satisfied
when, e.g., f(x, u) is affine in u and l is quadratic (and positive definite for
t ∈ [0, T ]) in u. To the purpose of existence, we expect the terminal cost
m to be nonnegative (and preferably proper). With sufficient conditions of
f , l, and m, one may guarantee existence of optimal trajectories, see, e.g.,
[39, 10]. Also of interest here are techniques from the direct methods of the
calculus of variations—see [9] for an accessible introduction.

Let X denote the closed subspace of Ln+m
∞ [0, T ] of curves ζ = (β, ν)

with continuous β, β(0) = 0, and bounded ν. Equipped with the norm
‖ζ‖X = ‖ζ‖L∞ , X is a Banach space. Define π1 := [I 0] and π2 := [0 I] so
that β = π1ζ and ν = π2ζ. Trajectories of f through x0 belong to the affine
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subspace X̃ := (x0, 0) + X. Defining the functional

h(ξ) :=

∫ T

0

l(τ, α(τ), µ(τ)) dτ + m(α(T ))

=

∫ T

0

l(τ, ξ(τ)) dτ + m(π1ξ(T ))

for curves ξ = (α, µ) ∈ X̃, we see that the optimal control problem (1.3) is
equivalent to the constrained optimization problems

min
ξ∈T

h(ξ) = min
ξ=P(ξ)

h(ξ)

where the constraint set T is a Banach submanifold of X̃. Defining

g(ξ) := h(P(ξ))

for ξ ∈ U ⊂ X̃ with P(U) ⊂ U ⊂ dom P , we see that the optimization
problems

min
ξ∈T

h(ξ) and min
ξ∈U

g(ξ)

are equivalent in the following sense. If ξ∗ ∈ T ∩ U is a constrained local
minimum of h, then it is an unconstrained local minimum of g. If ξ+ ∈ U is
an unconstrained local minimum of g in U , then ξ∗ = P(ξ+) is a constrained
local minimum of T . This observation is the basis for the development of a
family of quasi-Newton descent methods for the optimization of h over T .

As seen in the previous section the projection operator P provides a
convenient parametrization of the trajectories in the neighborhood of a given
trajectory. Indeed, the tangent space TξT of bounded trajectories of the
linearization of ẋ = f(x, u) about ξ ∈ T can be used to parametrize all
nearby trajectories [27]. That is, given ξ ∈ T , there is an ε > 0 such that, for
each η ∈ T with ‖η−ξ‖ < ε there is a unique ζ ∈ TξT such that η = P(ξ+ζ).
(Of course, there are many other curves ξ̃ ∈ U such that η = P(ξ̃).) Note
also that ζ 7→ DP(ξ) · ζ is the bounded linear projection operator defined
by linearizing (1.1) about ξ and that ζ ∈ TξT if and only if ζ = DP(ξ) · ζ.

Notice that in Section 1.2, following [27], these results were proven for
exponentially stabilizable trajectories defined on the infinite time-interval
[0, +∞). For finite-interval trajectories, stabilizability is not relevant, but
the differentiability properties of P still holds as the properties stated above.
The proof will be given in a forthcoming paper by Hauser.

The Newton method for the optimization of trajectory functionals is the
following.
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Algorithm (projection operator Newton method)

Given initial trajectory ξ0 ∈ T
For i = 0, 1, 2...

design K defining P about ξi

search direction

ζi = arg min
ζ∈TξT

Dg(ξi) · ζ +
1

2
D2g(ξi)(ζ, ζ) (1.4)

step size
γi = arg min

γ∈(0,1]
g(ξ + γζi); (1.5)

project
ξi+1 = P(ξi + γiζi). (1.6)

end

This algorithm is quite similar to the usual Newton method for uncon-
strained optimization of a function g(·) (e.g., in finite dimensions). As usual,
the second order Taylor polynomial is used as a quadratic model function for
determining a descent direction. A pure Newton method would, of course,
use a fixed step size of γi = 1—the line search is common for expanding
the region of convergence. The key differences are that (i) the search direc-
tion minimization (1.4) is performed on the tangent space to the trajectory
manifold and (ii) the update (1.6) projects each iterate on to the trajectory
manifold. The algorithm is easily generalized (or globalized) by replacing
the Newton direction calculation (1.4) by a quasi-Newton search direction
calculation

ζi = arg min
ζ∈Tξi

T
Dg(ξi) · ζ + 1

2
q(ξi) · (ζ, ζ) (1.7)

where q(ξi) is a suitable positive definite (to be defined below) approximation
to D2g(ξi).

Note also that it is not necessary to do an accurate line search as expressed
in 1.5. The standard backtracking line search (see, e.g., [7]) works quite well.





Chapter 2

Exploration and tracking of
feasible trajectories

In this chapter we provide a new strategy to explore feasible trajectories of
nonlinear systems, that is to find curves that satisfy the dynamics as well
as pointwise state-input constraints. This strategy is interesting itself in
understanding the behavior of the system especially in critical conditions
and represents a useful tool that can be used to perform trajectory tracking
in presence of constraints. The strategy is based on a novel optimization
technique, introduced by Hauser, to find a regularized solution for pointwise
constrained optimization of trajectory functionals.

2.1 Introduction

Output tracking is a challenging task in the control of nonlinear systems. It
has interesting practical applications in several fields as aerospace, robotics
and automotive. Given an output reference trajectory, the control objective
is to find a feedback law such that the output asymptotically tracks the refer-
ence trajectory. Some of the most known techniques to solve this and related
control problems may be found for example in [35], [38] and [18]. A more
recent technique for solving trajectory tracking (and also output tracking) is
Receding Horizon control. An excellent survey of various approaches to this
technique is [50]. A non exhaustive literature review includes [14], [37], [36],
[24].

A preliminary step or a different point of view in the solution of the
tracking problem is the exploration of the trajectory manifold of the system,
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that is the characterization of all output trajectories that can be tracked and
the parametrization of the state-input trajectories with respect to the output
ones. An important contribution to the solution of this problem has been
done by Devasia et al. in [16] and successive works.

Having in mind engineering applications, there is an important aspect
to take into account in the solution of exploration and tracking, that is the
presence of constraints in the system. Such constraints, we will call them
operating conditions, may arise from diverse causes such as physical bounds
on the states and the inputs or presence of regions where the model is valid or
where “bad” phenomena (like loss of controllability) are ensured not to ap-
pear. This means that not only we look for trajectories (curves satisfying the
dynamics), but furthermore we need feasible trajectories, that is, trajectories
lying in a region where the operating conditions are satisfied.

A possible way to take into account constraints (especially the input ones)
is to modify the trajectory tracking approach into path following. This point
of view has been largely used in robotics and was formalized in [26]. In this
approach the system dynamics are re-parameterized so that the tangential
velocity along the curve is used as a control input. This provides an extra
degree of freedom in the designer’s hands to satisfy the constraints. However,
this approach strongly relies on the geometric structure of the systems and
provides only one extra degree of freedom. The use of this approach starting
with a naive choice of the desired trajectory could result in a significant loss
of performance, since the velocity profile on the curve is no more assigned.
Moreover, it is not even guaranteed to be successful. There could be situ-
ations in which the velocity (the extra input) has itself strong constraints.
For example, in controlling a rigid aircraft the velocity cannot get down a
reasonable positive value. In other words the path following approach does
not protect very much if the choice of the desired trajectory is naive.

We attack the problem of exploring feasible trajectories by using opti-
mal control. The strategy consists of the following steps. Given a desired
output trajectory, first, a state-input trajectory consistent with the output
is computed as in [53]. Then, a feasible trajectory, close in the L2 norm to
the desired one, is computed by solving a regularized version of an optimal
control problem with pointwise constraints. This regularization is based on
the introduction of a parameterized barrier functional, to a standard L2 func-
tional, that takes into account the constraints. The parameter allows us to
decide the “level” of feasibility of the trajectory, that is how close this is to
the boundary imposed by the operating conditions. The regularization idea
for solving constrained optimal control was introduced in [29]. This effec-
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tive technique is just based on the regularization of a trajectory functional
optimization with pointwise constraints and then on its solution by means
of the projection operator based Newton method described in Chapter 1.
We demonstrate the effectiveness of the proposed strategy. In particular we
provide results showing that for suitable choice of the constraints and the
design parameters, the solution of the regularized optimal control problem
exists and satisfies second order sufficiency conditions. In the next chapter
we show that for the PVTOL example the solution behaves very well even
in presence of relatively tight constraints.

In Section 2.2 we provide a formal definition of the task that we want
to perform. We also review two techniques for trajectory exploration of un-
constrained systems. In Section 2.3 we describe the barrier functional based
exploration strategy. Section 2.4 provides the existence results mentioned
above. In Section 2.5 we briefly show how, under suitable stabilizability as-
sumptions, a receding horizon technique may be implemented to track the
feasible trajectory. Section 2.6 contains a discussion of future perspectives.

2.2 Exploration task definition and trajectory

morphing

In this section we provide a formal definition of what we shall refer to as ex-
ploration task for a nonlinear control system. Then, we review two techniques
to compute a desired (state-input) trajectory of an unconstrained nonlinear
system, provided a desired task is given.

Before defining the exploration task, we suggest the following considera-
tion. The feedback can significantly improve the performance of a system,
allowing it, for example, to work in unstable regions. However, it cannot
enlarge the range of system trajectories. This means that, in general, it is
not suitable to choose arbitrary curves and ask the system to track them.

Usually in the definition of a tracking task, the “final” objective is that a
portion of the state follows a desired curve. We call this portion of the state
objective output to distinguish from the measured output. In this dissertation
we always consider state feedback, thus assuming that the whole state may
be measured. Therefore in the future we will often omit the prefix objective
before output.

If we consider a vehicle, the desired objective could be that the center of
gravity of the vehicle follows a desired curve with an assigned velocity profile.
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Clearly, the dynamics of the vehicle will put severe constraints on the class
of curves that can be tracked.

Remark 2.1 Here, we are not considering (pointwise) constraints of states
and inputs, due, for example, to the existence of safety regions or to actuators
saturation. We are only taking into account (dynamic) constraints imposed
by the dynamics. ¤

In order to guarantee that the desired output curve is not completely
unrelated to the trajectories of the system, we generate the desired curve as
the output of a nonlinear system that captures some of the features of the
target system. This choice relies on the following consideration. Very often
engineers have intuitive notions of dynamics of complicated systems and it
is common to have on hand simplified models that capture many important
features of a system.

In the following we define formally the task and task achievement. Con-
sider the target control system Σ

ẋ(t) =f(x(t), u(t)),

y(t) =p(x(t)), t ≥ 0
(2.1)

where f(x, u) and p(x) are Cr mappings, r ≥ 2, x ∈ Rn is the state, u ∈ Rm

the control input and y ∈ Rp is the objective output, used to define the task.

The task is defined by the tuple (yd(·), Σ0), where yd is the desired output
curve and Σ0 is the task control system defined as

ẋ(t) =f0(x(t), u(t)),

y(t) =p(x(t)), t ≥ 0
(2.2)

where f0(x, u) is Cr, r ≥ 2, x ∈ Rn, u ∈ Rm and y ∈ Rp.

Remark 2.2 (Properties of the task control system) The task control
system is often chosen to be a “special” system, that is, a system for which the
control engineer has an intuitive understanding of interesting class of trajec-
tories. For example we may look for differential flatness or “nice” geometry.
¤

Remark 2.3 (Examples of task control systems) An example of task
system could be the target system without the actuator dynamics. That is,
the task system has the same dynamics as the target system except for the
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actuator transfer function that is taken to be the identity. In flight control,
we could consider a “complicated” model of an aircraft as target system, and
the simplified coordinated flight model as task system. ¤

We assume the desired output curve yd(·) to be an output trajectory of
the task system Σ0, that is, there exists ξ0 = (x0(·), u0(·)) such that ẋ0(t) =
f0(x0(t), u0(t)) (ξ0 is a trajectory of Σ0) and yd(·) = p(x0(·)).

Given a desired output curve (candidate output trajectory) yd(·), we say
that ξd = (xd(·), ud(·)) is a lifted trajectory of yd(·) if ẋd(t) = f(xd(t), ud(t))
(ξd is a trajectory of Σ) and yd(·) = p(xd(·)). If such ξd exists, we call yd(·)
an output trajectory.

If we find such ξd, we say that the task has been exactly achieved. If
we can find a trajectory ξp = (xp(·), up(·)) of Σ, such that for any ε > 0,
‖h(xp(·))− yd(·)‖ < ε (for some norm, e.g., the L2 or the L∞ norms), we say
that the task has been practically achieved.

If the task system, assigned with the task, is exactly the target system,
the exploration strategy described in next section may be directly applied.
However, in many practical applications, this is not the case. In the following
we review two techniques, introduced in [28] and [30] respectively, to find
lifted trajectories of unconstrained nonlinear systems.

One way of obtaining a trajectory that practically achieves the task is to
choose a weighted L2 norm for the distance. That is we may ask to solve the
optimal control problem with quadratic cost

minimize
1

2

∫ T

0

‖x(τ)− x0(τ)‖2
Q + ‖u(τ)− u0(τ)‖2

R dτ +
1

2
‖x(T )− x0(T )‖2

P1

subj. to ẋ(t) = f(x(t), u(t)), t ∈ [0, T ]

x(0) = x0

(2.3)

or in the equivalent form

min
ξ∈T

h(ξ) = min
ξ=P(ξ)

h(ξ)

where ξ = (x(·), u(·)) and h(ξ) is the quadratic cost functional, T is the
trajectory manifold of the (target) system and P is the projection operator
introduced in Chapter 1.

The problem in (2.3) is an “instantaneous morph” in that we attempt
to change ξ0 = (x0(·), u0(·)) into a nearby trajectory of Σ in one step. This
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forces to deal with the vector field f(x + x0(t)) − f0(x0(t), u0(t)), which is
not desirable because of the large difference between f and f0.

The first method, introduced in [28], is a homotopy method. We consider
the λ parameterized family of optimization problems

minimize
1

2

∫ T

0

‖x(τ)− x0(τ)‖2
Q + ‖u(τ)− u0(τ)‖2

R dτ +
1

2
‖x(T )− x0(T )‖2

P1

subj. to ẋ(t) = fλ(x(t), u(t)), t ∈ [0, T ]

x(0) = x0

where fλ(x, u) = λf(x, u)+(1−λ)f0(x, u), λ ∈ [0, 1]. That is, we use a vector
field homotopy fλ combined with the optimization, to obtain a homotopy
curve of local minimizers ξλ = (xλ(·), uλ(·)). For λ = 0, we know the solution
ξ0 = (x0(·), u0(·)). Also, for λ > 0, small, we know that ξλ varies in a smooth
manner since ξ0 is a second order sufficient minimizer (for Q > 0, R > 0,
P1 >= 0).

Remark 2.4 (Design of the weighting matrices) Note that, since our
primary objective is the output to be close to the desired curve yd(·), we
design the matrices Q, R and P1 to weight the outputs more than the other
states. This aspect will be discussed better in the next section. ¤

The second method, introduced in [30], is a dynamics embedding tech-
nique, that relies on embedding the (target) system into a “fully actuated”
system. More formally, given (x0(·), u0(·)), we augment the target system so
that we can solve, for each t ≥ 0,

ẋ0(t) = f(x0(t), u0(t)) + Guext(t)

for uext(t). We choose G to make this possible, providing an appropriate
notion of “fully actuated”. Then, (x0(t), u0(t), uext(t)), t ≥ 0, provides an
initial trajectory of the augmented nonlinear system, from which we may
begin the following optimization

minimize
1

2

∫ T

0

‖x(τ)− x0(τ)‖2
Q + ‖u(τ)− u0(τ)‖2

R + r‖uext(τ)‖2 dτ

+
1

2
‖x(T )− x0(T )‖2

P1

subj. to ẋ(t) = f(x(t), u(t)) + Guext(t), t ∈ [0, T ]

x(0) = x0.
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Here, r > 0 is a weighting parameter that is initially small and then increased
as far as it is sufficiently larger than the norm of Q, R and P1. This provides
a good approximate trajectory of the target system.

Remark 2.5 (Scenarios for dynamics embedding) The dynamics em-
bedding technique is well suited for those systems where the input directly
affects the dynamics of the objective output. This is the case, for example,
of many vehicles, such as the simplified motorcycle model for which the tech-
nique was introduced in [30]. In the next chapter we apply this technique to
the PVTOL for which the same consideration holds. ¤

2.3 Computing feasible trajectories by use of

trajectory optimization

As seen in the previous section, we know strategies for generating trajectories
of the system given a desired output. However, it can easily happen that the
lifted trajectory does not satisfy the operating conditions. In other words
while we have useful tools to parameterize the unconstrained trajectories of
the system with respect to the desired output trajectories, we do not have a
similar tool to impose the operating conditions being satisfied. Therefore we
can informally state our objective.

Objective [informal description] Develop a tool that, given a de-
sired output trajectory, provides a feasible trajectory (state-input),
that meets the operating conditions and is such that its output
part is “close” to the desired one.

Clearly, regarding the objective, we need to define formally the notion
of “closeness” (between the desired and the feasible outputs) and the notion
of feasible trajectory. As in the previous section, we use a weighted L2

norm between the desired trajectory (lifted from the desired output) and the
feasible one. Given a desired trajectory ξd (lifted from a desired output), we
set the distance of a trajectory ξ from ξd to

h(ξ) =

∫ T

0

1

2
‖x(τ)− xd(τ)‖2

Q +
1

2
‖u(τ)− ud(τ)‖2

R dτ +
1

2
‖x(T )− xd(T )‖2

P1

where Q, R and P1 are positive definite matrices. The reason we decide to
fully penalize the state and the input will be clear in the following when we
state the optimal control problem.
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The operating conditions are taken into account defining the following
region in the state-input space

XUρ = {(x, u) ∈ Rn × Rm|cj(x, u; ρ) ≤ 0, ρ > 0, j = 0, 1, ..., k}
where each cj(x, u; ρ) is C2 or better in x and u and varies smoothly with the
parameter ρ. Furthermore, the following assumption holds.

Operating Conditions Assumption (OCA). The region of operating con-
ditions satisfies the following properties:

(i) for any ρ > 0, XUρ, the interior of XUρ, is a nonempty connected set.

(ii) for any 0 < ρ1 < ρ2, XUρ1 ⊂ XUρ2 ;

(iii) the projection of XUρ on the input space

πuXUρ = {u ∈ Rm|(x, u) ∈ XUρ ∀ fixed x}
is convex;

(iv) for every desired output trajectory yd(·), the lifted trajectory ξd =
(xd(·), ud(·)) (if it exists) is such that ∃ ρ0 > 0 such that (xd(t), ud(t)) ∈
XUρ0 for every t ∈ [0, T ]. ¤

Roughly speaking the operating conditions describe a region where the
space and the input must lie at every instant. For theoretical purpose we
parameterize this region with a scaling factor ρ > 0 that allows us to expand
and shrink the region in such a way that we can always entirely include the
desired trajectory in it.

Now it is clear what we mean by feasible trajectory. A trajectory ξ =
(x(·), u(·)) is said a feasible trajectory for Σ with respect to the region XUρ,
if it is a trajectory of Σ and is entirely contained in XUρ. If ξ is entirely
contained in XUρ it is said a strictly feasible trajectory.

We are ready to introduce the exploration strategy. We start defining the
barrier functional associated with the region XUρ, that is

bδc,ρ(ξ) =

∫ T

0

∑
j

βδc(−cj(τ, α(τ), µ(τ); ρ)) (2.4)

where z 7→ βδc(z) is defined as

βδc(z) =





− log z z > δc

k−1
k

[(
z−kδc

(k−1)δc

)k

− 1

]
− log δc z ≤ δc.
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where k > 1 is an even integer. In practice, we have found k = 2 to work
well.

This barrier functional is the key element of the new optimization tech-
nique introduced in [29]. In fact, the C2 function βδc(·) retains many of the
important properties of the usual log barrier function z 7→ log(z) (used in
finite dimension constrained optimization), while expanding the domain of fi-
nite values from ]0,∞[ to ]−∞, +∞[. This ensures that the barrier functional
may be evaluated on any trajectory and not only on feasible ones. Moreover,
both functions defining βδc(·) are (strictly) convex and strictly decreasing on
their domains. Thus, if cj : R → R is a strictly convex proper function, the
function z 7→ βδc(−cj(z)) is also a strictly convex proper function on R.

With this definition in hand we can define the modified cost functional

hεc,ρ(ξ) = h(ξ) + εcbδc,ρ(ξ)

and consistently

gεc,ρ(ξ) = hεc,ρ(P(ξ)).

The exploration strategy is described in the table.

Given

(yd(·), Σ0), an output trajectory and a task system

XUρ, ρ > 0, a set of operating conditions

find ξd ∈ T , such that yd(·) = h(xd(·)) (or its practical version)

solve

minimize hεc,ρ(ξ) = h(ξ) + εcbδc,ρ(ξ)

subj. to ξ = P(ξ)

or the equivalent unconstrained version

minimize g(ξ) = hεc(P(ξ))

tune

Q,R, P1 shaping parameters

εc, δc, ρ closeness parameters



38 2. Exploration and tracking of feasible trajectories

We call Q,R and P1 shape parameters because they are used to weight
some components of the (state-control) trajectory more than others. In our
strategy we penalize the output much more than the other states and the
inputs. The reason we impose Q > 0, R > 0 and P1 > 0 is that this
allows to have second order sufficiency (SSC) of the minimum. The closeness
parameters are used to set the operating conditions (ρ) and to tune the level
of closeness of the feasible trajectory from the boundary of the operating
conditions (εc, δc).

Remark 2.6 (Engineering goal in searching feasible trajectories) It
is important to underline that our goal is not to find the closest trajectory sat-
isfying the operating conditions, that is, we do not want to solve a constrained
optimal control problem. The approach we follow is an engineering point of
view, in the sense that we want a tool that provides feasible trajectories and
where the “closeness” can be tuned by a “knob”. ¤

2.4 Continuity of the minimizer with respect

to parameters

In the following we present results on the existence of solutions of the optimal
control problem for suitable values of the operating conditions.

Next two theorems state that, starting with a feasible trajectory ξd for
some ρ0, we can perturb the cost h(ξ) with a small εc so that the optimization
problem is still solvable. Then, fixing εc, it is possible to decrease ρ of a certain
amount (thus enforcing the operating conditions) and still have a solution.

Theorem 2.7 (Continuity of the minimizer w.r.t. εc) Let ρ0 > 0 be
such that ξd = (xd(·), ud(·)) is a strictly feasible trajectory, that is, ξd ∈ XUρ0.
Then there exist ε > 0, such that for each |εc| < ε

min
ξ∈T

hεc,ρ0(ξ)

has an SSC local minimizer ξεc near ξd.Furthermore εc 7→ ξεc is continuously
differentiable. ¤

Theorem 2.8 (Continuity of the minimizer w.r.t. ρ) Let ρ0 > 0, εc >
0 be such that ξ0 ∈ T is an SSC local minimizer of gεc,ρ0(ξ). Then, there is
an r > 0 such that for each ρ, |ρ − ρ0| < r, there is a local SSC minimizer
ξρ of gεc,ρ(ξ) near ξ0. Furthermore ρ 7→ ξρ is continuously differentiable. ¤
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The proof of the two theorems is based on the same arguments stated in
the following.

We consider the situation where the cost functional depends smoothly on
a finite dimensional parameter and the system is independent of the parame-
ter. In this section, we will refer to this parameter as ρ ∈ Rp. This parameter
may include, for instance, the scalar parameter ρ used for specifying the size
of the feasible region as well as the scalar parameter ε used in determining
strictly feasible trajectories. We will suppose that the scaling and offsets of
the parameters have been chosen in such a manner that the nominal value
of the parameter vector is ρ = 0.

We thus write
gρ(ξ) = h(P(ξ), ρ).

Let ξ0 ∈ T and consider the nature of g0(ξ) on a neighborhood of ξ0. In
particular, we consider ξ of the form ξ0 + ζ where ‖ζ‖ < δ and δ > 0 is such
that ξ0 + ζ ∈ dom P for each such ζ. For C2 g0(·), we have

g0(ξ0 + ζ) = g0(ξ0) + Dg0(ξ0) · ζ +
1

2
D2g0(ξ0) · (ζ, ζ) + r(ξ0, ζ) · (ζ, ζ) (2.5)

where the remainder satisfies

|r(ξ0, ζ) · (ζ, ζ)|/‖ζ‖2 → 0 as ‖ζ‖ → 0 (2.6)

where ‖ · ‖ is the L∞ norm. Using the C2 identity

φ(1) = φ(0) + φ′(0) +

∫ 1

0

(1− s) φ′′(s) ds

together with φ(s) = g0(ξ0 + sζ), we obtain the explicit expression

r(ξ0, ζ) · (ζ1, ζ2) =

∫ 1

0

(1− s)
[
D2g0(ξ0 + sζ)−D2g0(ξ0)

]
ds · (ζ1, ζ2) (2.7)

which has been slightly generalized to depend on three, possibly independent,
perturbations. Using the fact that D2g0(·) is continuous as a mapping from
the trajectory manifold T to set of continuous bilinear functionals on L∞,
we easily verify that the remainder r(ξ0, ζ) · (ζ, ζ) defined by (2.7) satisfies,
as it must, the higher order property (2.6). Equations (2.5), (2.7) provide
a second order expansion with remainder formula for the C2 mapping g0(·),
valid in an L∞ neighborhood of any ξ0 ∈ T . In fact, the formula given by
(2.5), (2.7) is somewhat more general, requiring only that ξ0 ∈ L∞ and δ > 0
are such that Bδ(ξ0) ⊂ dom P .
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Now, since the functional g0(·) is the composition of an integral functional
and a projection operator, the value of the bilinear expression D2g0(ξ)·(ζ1, ζ2)
for ξ ∈ dom P and ζi ∈ L∞ is of the form

D2g0(ξ) · (ζ1, ζ2) =

∫ T

0

γ1(τ)T W (τ)γ2(τ) dτ + (π1γ1(T ))T P1(π1γ2(T ))

where γi = DP(ξ) · ζi and where P1 = P T
1 ∈ Rn×n and the bounded matrix

W (t) = W (t)T ∈ Rn×n, t ∈ [0, T ], depend continuously on η = P(ξ), hence
continuously on ξ. Using these facts, we see that

Lemma 2.9 Let ξ0 ∈ T and suppose that δ > 0 is such that Bδ(ξ0) ⊂ dom P.
Then, there is a nondecreasing function r̄(·) with r̄(0) = 0 such that

|r(ξ0, ζ) · (ζ1, ζ2)| ≤ r̄(‖ζ‖) ‖ζ1‖L2‖ζ2‖L2 (2.8)

for all ζ, ζ1, ζ2 ∈ Bδ.

Proof: Since P is C2, DP(ξ) is a continuous linear projection operator with
respect to the L∞ norm. Using an explicit formula for DP(ξ) · ζ, it is easy to
see that DP(ξ) may be extended to a linear projection operator DP(ξ)L2 on
L2 that is continuous with respect to the L2 norm. The result follows easily
using (2.7).

Suppose now that ξ0 ∈ T is a stationary trajectory of g0(·) so that
Dg0(ξ0) · ζ = 0 for all ζ ∈ L∞ and that δ > 0 is such that Bδ(ξ0) ⊂ dom P .
It follows that

g0(ξ0 + ζ) ≥ g0(ξ0) +
1

2
D2g0(ξ0) · (ζ, ζ)− r̄(‖ζ‖) ‖ζ‖2

L2
(2.9)

for all ‖ζ‖ < δ where r̄(·) is given by Lemma 2.9. Restricting (2.9) to
ζ ∈ Tξ0T , we obtain the fundamental second order sufficient condition (SSC)
for ξ0 to be an isolated local minimizer.

Theorem 2.10 Suppose ξ0 ∈ T is such that Dg0(ξ0) · ζ = 0 for all ζ ∈ L∞
and that there is a c0 > 0 such that

D2g0(ξ0) · (ζ, ζ) ≥ c0‖ζ‖2
L2

for all ζ ∈ Tξ0T . (2.10)

Then ξ0 is an isolated local minimizer in the sense that there is a δ > 0 such
that

g0(ξ0) < g0(ξ)

for all ξ ∈ T with ‖ξ − ξ0‖ < δ, ξ 6= ξ0.
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Proof: Taking δ1 > 0 be such that r̄(δ1) < c0/4, we find that g0(ξ0 + ζ) ≥
g0(ξ0) + (c0/4)‖ζ‖2

L2
for all ζ ∈ Tξ0T with ‖ζ‖ < δ1. Recall that each ξ ∈ T

near ξ0 can be represented by a unique ζ ∈ Tξ0T according to ξ = P(ξ0 + ζ)
and that the mapping ξ 7→ ζ is continuous. Thus there is a δ < δ1 such that
‖ξ − ξ0‖ < δ implies that ‖ζ‖ < δ1. The result follows.

We call a local minimizer ξ0 ∈ T satisfying (2.10) a second order sufficient
condition local minimizer, SSC local minimizer for short. According to the-
orem 2.10, every SSC local minimzer is an isolated local minimizer. We also
note that, in words, the condition (2.10) says that the quadratic functional
ζ 7→ D2g0(ξ0) · (ζ, ζ) is strongly positive on the subspace Tξ0T .

Consider now the (local) minimization of gρ(ξ) as the parameter ρ is
varied on a neighborhood of ρ = 0 where ξ0 is known to be an SSC local
minimizer of g0(ξ). Since D2gρ(ξ) is continuous in both ξ and ρ, we expect
that, for each sufficiently small ρ, there will be a corresponding SSC local
minimizer ξρ near ξ0 and that the mapping ρ 7→ ξρ will be continuous, and
perhaps differentiable. The key idea is to use an appropriate implicit function
theorem (IFT) to solve the first order necessary condition equation

Dgρ(ξρ) = 0 (2.11)

for ξρ as a function of ρ starting from ξ0 at ρ = 0. Proceeding formally, we
differentiate (2.11) with respect to ρ to obtain

∂

∂ρ
Dgρ(ξρ) + D{Dgρ(ξρ)} · ξ′ρ = 0 .

Thus, the derivative of ξρ with respect to ρ, ξ′ρ, if it exists, is given formally
by

ξ′ρ = −[D{Dgρ(ξρ)}]−1 · ∂

∂ρ
Dgρ(ξρ) .

In this case, we might expect that there is an implicit function theorem
that says something like, if D{Dgρ(ξρ)} is invertible at ρ = 0, then there is a
neighborhood of ρ = 0 on which ρ 7→ ξρ is well defined and C1. In what sense
should the operator D{Dg0(ξ0)} be invertible and how can it be ensured? It
turns out that the appropriate condition is that D2g0(ξ0) be strongly positive
on Tξ0T , i.e., that it satisfy (2.10).

Theorem 2.11 Suppose that ξ0 ∈ T is an SSC local minimizer of g0(ξ).
Then, there is a δ > 0 such that, for each ρ such that ‖ρ‖ < δ, there is a
local SSC minimizer ξρ of gρ(ξ) near ξ0. Furthermore ρ 7→ ξρ is continuously
differentiable.
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Proof: The key is to show that, for ρ sufficiently small, we can compute a
ξ ∈ T such that Dgρ(ξ) · ζ = 0 for all ζ ∈ L∞. We proceed by parametrizing
ξ ∈ T locally by γ ∈ Tξ0T according to ξ = P(ξ0 + γ) and searching over γ.
As in the proof of many IFTs, we solve for the desired γ using a contraction
mapping. For simplicity, we will denote Tξ0T by X so that we search for
γ ∈ X such that Dgρ(P(ξ0 + γ)) · ζ = 0 for all ζ ∈ L∞.

First, note that, since D2g0(ξ0) is strongly positive on X, the well-defined
quadratic minimization problem

λ = arg min
ζ∈X

−ω · ζ +
1

2
D2g0(ξ0) · (ζ, ζ)

defines a linear mapping SS : ω 7→ λ : dom SS ⊂ X∗ → X for some
continuous linear functionals ω ∈ X∗. The linear mapping SS provides the
solution λ ∈ X to the functional equation

D2g0(ξ0) · (λ, ζ) = ω · ζ, ζ ∈ X,

effectively providing an inverse to the operator D{Dg0(ξ0)} formally de-
scribed above. We will see that the functionals ω ∈ X∗ of interest belong to
the domain of SS.

Define Fρ : X → X∗ by

Fρ(γ) · ζ = D2g0(ξ0) · (γ, ζ)−Dgρ(ξ0 + γ) · ζ

for all ζ ∈ X. Note that Fρ(γ) · ζ is of the form

Fρ(γ) · ζ =

∫ T

0

a(τ)T z(τ) + b(τ)T v(τ) dτ + rT
1 z(T )

for ζ = (z(·), v(·)) ∈ X where a(·), b(·), and r1 depend smoothly on the
data ρ and γ. It follows that Fρ(γ) ∈ dom SS ⊂ X∗. A straightforward
calculation shows that

Gρ(γ) = SS · Fρ(γ)

defines a continuous operator Gρ : X → X that is also continuous in ρ.

Note that, if γ ∈ X is a fixed point of Gρ(·), γ = Gρ(γ), then Dgρ(ξ0 + γ) · ζ = 0
for all ζ ∈ X. This will imply that Dgρ(ξ0 + γ) · ζ = 0 for all ζ ∈ L∞ pro-
vided that P(ξ0 + γ) is sufficiently near ξ0. In that case, we conclude that
ξρ = P(ξ0+γ). Also, for ρ = 0, we see that γ = 0 is the fixed point, G0(0) = 0
as expected.
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We will show that, for ρ sufficiently small, Gρ(·) is a contraction mapping
with a unique fixed point. For ρ = 0, noting that Dgρ(ξ0+γ) ·(·) = D2g0(ξ0) ·
(γ, ·) + o(‖γ‖), we see that

G0(γ) = SS · (D2g0(ξ0) · (γ, ·)−Dgρ(ξ0 + γ) · (·)) = o(‖γ‖)
where we have used the fact that SS is continuous (bounded) on the elements
of X∗ of the noted form. By continuity in ρ, we see that there exist ρ1, δ > 0
such that

‖Gρ(γ)‖ ≤ δ

whenever ‖ρ‖ ≤ ρ1 and ‖γ‖ ≤ δ. Now, fixing ρ, ‖ρ‖ ≤ ρ1,

Gρ(γ1)− Gρ(γ2) = SS · [Dgρ(ξ0 + γ2) · (·)−Dgρ(ξ0 + γ1) · (·)]

= SS ·
[∫ 1

0

D2gρ(ξ0 + γ1 + s(γ2 − γ1)) ds · (γ2 − γ1, ·)
]

so that there is a k < ∞ such that

‖Gρ(γ1)− Gρ(γ2)‖ ≤ kδ‖γ1 − γ2‖
for ‖γ1‖ ≤ δ and ‖γ2‖ ≤ δ. Shrinking δ, if necessary, so that kδ ≤ 1/2, we
see that Gρ is a contraction with unique fixed point γρ.

To see that ρ 7→ γρ is continuous, write

‖γρ1 − γρ2‖ = ‖Gρ1(γρ1)− Gρ2(γρ2)‖
≤ ‖Gρ1(γρ1)− Gρ1(γρ2)‖+ ‖Gρ1(γρ2)− Gρ2(γρ2)‖
≤ (1/2)‖γρ1 − γρ2‖+ ‖Gρ1(γρ2)− Gρ2(γρ2)‖

so that
‖γρ1 − γρ2‖ ≤ 2‖Gρ1(γρ2)− Gρ2(γρ2)‖

showing that ρ 7→ γρ is continuous since ρ 7→ Gρ(γ) is continous (for fixed γ).

Differentiability is proven just following the second part of the proof of
Theorem 4.E in [65].

2.5 Receding horizon for feasible trajectory

tracking

In this section we briefly discuss how we may use the barrier functional based
optimization in a receding horizon scheme to perform trajectory tracking.
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We assume that we are given a desired feasible trajectory of the nonlinear
system on the positive infinite time interval.

Calling (xdes(·), udes(·)) the desired feasible trajectory, we assume that
(xdes(t), udes(t)) ∈ XU for t ≥ 0, where XU is a simply connected compact
subset of the state input space. We assume that the linearization is expo-
nentially stabilizable or, in other words, that there exists a bounded matrix
function K(·), such that A(·)−B(·)K(·) is exponentially stable.

Under this assumption and the regularity of f(x, u), it can be proven that
the Jacobian matrices

A(t) =D1f(xdes(t), udes(t))

B(t) =D2f(xdes(t), udes(t))

are bounded, that is there exist MA > 0 and MB > 0 such that

∀t ≥ 0 ‖A(t)‖ < MA, ‖B(t)‖ < MB.

Furthermore, denoting x̃(t) = x(t) − xdes(t), ũ(t) = u(t) − udes(t) and
f̃(x̃, ũ, t) = f(x̃ + xdes(t), ũ + udes(t)), we can prove also that f̃2(x̃, ũ, t) =
f̃(x̃, ũ, t)− [A(t)x̃ + B(t)ũ] satisfies

lim
‖(x̃,ũ)‖→0

sup
t≥0

f̃2(x̃, ũ, t)

‖(x̃, ũ)‖ = 0.

That is, in a neighborhood of the origin, the nonlinear error system can be
approximated by its linearization about the origin.

Consider the linear quadratic optimization problem

minimize
1

2

∫ t+T

t

‖z(τ)‖2
Q + ‖v(τ)‖2

R dτ +
1

2
‖z(t + T )‖2

P1

subj. to ż(τ) = A(τ)z(τ) + B(τ)v(τ), τ ∈ [t, t + T ]

z(t) = x(t)− xdes(t)

(2.12)

where Q > 0, R > 0 and P1 ≥ 0. Let t 7→ KT (t) be the feedback of the
receding horizon scheme obtained by (2.12).

We make the following standing assumption.

Assumption 2.12 Given (xdes(t), udes(t)) ∈ XU , t ≥ 0, we assume that
there exists T ∗ > 0 such that for any T ≥ T ∗, A(t) − B(t)KT (t), t ≥ 0, is
exponentially stable.
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Now, we consider the nonlinear optimization problem

minimize

∫ t+T

t

1

2
‖x(τ)− xdes(τ)‖2

Q +
1

2
‖u(τ)− udes(τ)‖2

R

+ εc

∑
j

βδc(−cj(x(τ), u(τ); ρ))dτ + ‖x(T )− xdes(T )‖P1

subj. to ẋ(τ) = f(x(τ), u(τ)), x(t) = xt

with the same notation defined in the previous section. Here, εc > 0 and
δc > 0 are design parameter that need to be fixed.

The nonlinear receding horizon scheme that we propose is the following.
Solve the finite horizon optimization every δ > 0 seconds and use the optimal
control trajectory u∗T (t + τ ; x(t), t), τ ∈ [0, δ], to drive the system from x(t)
at time t to x∗T (t + δ; x(t), t) at time t + δ. We denote this receding horizon
scheme as RH(T, δ)

Using Assumption 2.12 and robustness of exponential stability with re-
spect to perturbation and sampling, we may prove local exponential stability
of RH(T, δ), T ≥ T ∗.

A rigorous proof of this result is behind the goal of this thesis and will
be objective of future work.

2.6 Discussion

We studied the problem of exploring feasible trajectories of nonlinear con-
trol systems, that is trajectories satisfying state and input constraints. We
developed an effective strategy that, in the next chapter, we successfully
apply to the simplified PVTOL aircraft model. An important direction of
investigation is in the area of Receding Horizon Control. It includes (i) devel-
oping a receding horizon scheme, based on the same optimization technique
as the exploration strategy, that allows to track feasible trajectories while
satisfying state and input constraint, (ii) designing a hierarchical strategy
that implements both the exploration and the tracking tasks, and proving
the correctness of such strategies.





Chapter 3

The PVTOL example

3.1 Introduction

One of the field where nonlinear control is more active is aerospace. In the
last years many effort have been done to design unmanned aerial vehicles
(UAV) to perform dangerous and prohibitive tasks. Our objective is to ap-
ply the exploration strategy described in the previous chapter and its related
receding horizon scheme to the model of a real aircraft. As a preliminary
step, we applied the strategy to a simplified system that well models ei-
ther the longitudinal dynamics of the aircraft or the lateral dynamics. This
model is known as PVTOL aircraft. The PVTOL was introduced by Hauser
et al. in [32] in order to capture the lateral non-minimum phase behavior
of a real aircraft. This model has been widely studied in the literature for
its characteristic of combining important features of nonlinear systems with
“tractable” equations. Furthermore, the dynamics of many other mechani-
cal systems can be rewritten in a similar fashion, e.g., the cart-pole system,
the pendubot [59], the bicycle model [23], [30] and, as said, the longitudi-
nal dynamics of a real aircraft. Since the PVTOL has been introduced in
1992, many researchers have studied this system providing different solutions
for trajectory tracking. A non exhaustive literature review of works on the
PVTOL includes [32], [46], [3], [44].

We apply the strategy introduced in the previous chapter to the input
constrained PVTOL aircraft. First, we show that we can use the decoupled
model of the PVTOL as task control system. Starting from trajectories of
the decoupled model we show, using results proven in [31], that there ex-
ists a trajectory of the target system that has exactly the same output as
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the decoupled model. We compute an approximation of this trajectory by
use of the dynamics embedding technique. Then, we use the barrier func-
tional exploration strategy to compute feasible trajectories of the PVTOL.
In particular we use it in two different schemes based on the homotopy and
dynamics embedding methods described in the previous chapters.

In Section 3.2 we introduce the PVTOL model. In Section 3.3 we show
how to compute trajectories of the unconstrained PVTOL given a desired
trajectory of the center of gravity. Section 3.4 describes two strategies to
compute feasible trajectories of the PVTOL and in Section 3.5 simulations
are shown. In Section 3.6 we discuss future perspectives.

3.2 PVTOL modeling

In this section we present the PVTOL dynamics, its flatness property and
its non-minimum phase nature with respect to outputs (center of gravity
position) when εPVTOL 6= 0.

In [32] the model of the PVTOL aircraft was introduced. Using standard
aeronautic conventions the equations of motion are given by

ÿ = u1 sin ϕ− εPVTOL u2 cos ϕ
z̈ = −u1 cos ϕ− εPVTOL u2 sin ϕ + g
ϕ̈ = u2.

(3.1)

The aircraft state is given by the position (y, z) of the center of gravity, the
roll angle ϕ and the respective velocities ẏ, ż and ϕ̇. The control inputs
u1 and u2 are respectively the vertical thrust force and the rolling moment.
The rolling moment u2 generates also a lateral force (because the lift forces
are not perpendicular to the wings) and εPVTOL is the coupling coefficient.
Finally g is the gravity acceleration. In Figure 3.1 the PVTOL aircraft with
the reference system and the inputs is shown.

In [32] the PVTOL was shown to be input-output linearizable when
εPVTOL = 0, while in [46] it was shown that, when εPVTOL is not zero, it is
possible to find suitable outputs (flat outputs) such that the system can be
feedback linearized by means of dynamic extension. Using as flat outputs

yf = y + εPVTOL sin(ϕ)

zf = z + εPVTOL cos(ϕ)



3.2. PVTOL modeling 49

Figure 3.1: PVTOL aircraft.

after some straightforward calculations one can easily show that:

ẏf = ẏ + εPVTOL ϕ̇ cos(ϕ)

ÿf = ũ1 sin(ϕ)

y
(3)
f = ˙̃u1 sin(ϕ) + ũ1ϕ̇ cos(ϕ)

żf = ż − εPVTOL ϕ̇ sin(ϕ)

z̈f = −ũ1 cos(ϕ)

z
(3)
f = − ˙̃u1 cos(ϕ) + ũ1ϕ̇ sin(ϕ),

where ũ1 = u1 − εPVTOL ϕ̇2. Clearly, for all ϕ̇ and u1 such that ũ1 6= 0, the
system is feedback linearizable and in fact equivalent to the two dimensional
forth order integrator

y
(4)
f =v1

z
(4)
f =v2,

with suitable expressions for v1 and v2.

Remark 3.1 For εPVTOL = 0 the condition ũ1 6= 0 reduces to u1 6= 0. This
means that if u1 is positive (physical constrain) and bounded away from zero
the system can be always feedback linearized despite of the value of the states.
¤

The PVTOL has relative degree r = [2, 2]. Posing

[
u1

u2

]
=

[
sin ϕ − cos ϕ

− cos ϕ
εPVTOL

− sin ϕ
εPVTOL

] ([
0

−g

]
+

[
v1

v2

])
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the dynamics of the system become

ÿ = v1

z̈ = v2

ϕ̈ = (g−v2)
εPVTOL

sin ϕ− v1

εPVTOL
cos ϕ.

(3.2)

As expected, the output dynamics are linear, however the zero dynamics is
unstable. Equation (3.2) is the dynamics of a Driven Pushed Pendulum. In
this sense the PVTOL can be seen as a general case of many other mechanical
systems sharing a pendulum-like dynamics.

An important role in the study of the trajectory manifold of the PVTOL
is played by the “quasi trajectory” that (with some abuse of notation) we
call quasi-static trajectory. It is defined as:

tan ϕqs(t) =
ÿ(t)

(g − z̈(t))

and it is a curve built pretending that at each instant the roll angle assumes
the equilibrium value as ÿ(t) and z̈(t) were constant. It is worth noting that
the quasi static roll trajectory is exactly the roll trajectory for the model
with εPVTOL = 0. This provides a further motivation, in the next section, to
search a roll trajectory “close” to the quasi static approximation.

3.3 Trajectory exploration: the unconstrained

PVTOL

In this section we study the trajectory manifold of the unconstrained PV-
TOL.

3.3.1 Dichotomy and existence of a bounded roll tra-
jectory

The objective is to explore the trajectory manifold of the unconstrained PV-
TOL using the y and z trajectories of the center of gravity as “parameters”.
In other words we can summarize our objective as follows:

Problem: Given yd(·) and zd(·) “sufficiently smooth” trajectories
of the center of gravity, we want to find a “bounded” roll trajec-
tory ϕ(·) satisfying

ϕ̈ = 1
εPVTOL

(g − z̈d) sin ϕ− 1
ε
ÿd cos ϕ. (3.3)
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We have to formalize what we mean for “sufficiently smooth” and “bounded”
trajectories. First of all we assume that yd(·) and zd(·) are C2 trajectories.
Moreover we define

α2
PVTOL (t) = ÿ2

d + (z̈d − g)2, (3.4)

and we assume
0 < amin ≤ αPVTOL (t) ≤ amax. (3.5)

Now we rewrite the roll dynamics (3.3) in the form

ϕ̈ = 1
εPVTOL

αPVTOL (t) sin(ϕ− ϕqs(t)). (3.6)

where ϕqs(t) is the quasi-static roll angle and satisfies

tan ϕqs(t) = ÿd(t)
(g−z̈d(t))

. (3.7)

In Figure 3.2 the space of the admissible accelerations is shown with the
quasi-static roll angle. Observe that the quasi static angle is just the angle for
which the pendulum is aligned with the direction of the resultant acceleration
so that at that instant the rolling moment is zero. Hence, the task is to find
a bounded roll trajectory in the sense that the difference

θ(t) = ϕ(t)− ϕqs(t) (3.8)

is bounded. Given a C1 output trajectory (of the center of gravity) on the

Figure 3.2: Acceleration configuration and quasi-static roll angle

infinite time interval R, satisfying

0 < αPVTOL (t) < amax, ∀t ∈ R,

there exists a bounded roll trajectory consistent with the output one.
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Remark 3.2 (Acceleration bound in terms of u1) It is worth noting that
|u1(t)| = αPVTOL (t), therefore, starting with u1(0) > 0, the above condition is
equivalent to 0 < u1(t) < amax, ∀t ∈ R. ¤

The proof of existence is based on the presence of a dichotomy in the
linearization of the pendulum dynamics about the vertical position. The
bounded trajectory is proven to exist as a fixed point of a contraction map-
ping [31].

The roll dynamics in (3.2) can be rewritten in terms of the error from the
quasi-static angle, θ = ϕ− ϕqs, as

θ̈ = α2
PVTOL (t) sin(θ) + ϕ̈qs(t)

= α2
PVTOL (t)θ − α2

PVTOL (t)
(
θ − sin θ + ϕ̈qs(t)

α2
PVTOL

) (3.9)

where α2
PVTOL (t) =

√
(g − v2(t))2 + v2

1(t)/εPVTOL and in the second line we
have rewritten the dynamics in terms of its linearization about the equi-
librium θ = 0. If we consider the linear time-varying system driven by a
bounded external input

γ̈ = α2
PVTOL (t)γ − α2

PVTOL (t)µ(t),

it can be proven [31] that the undriven system admits an exponential di-
chotomy and, therefore that, working in a noncausal fashion, for any bounded
input µ(·) a bounded solution γ(·) exists. The linear map µ(·) → γ(·) is de-
noted by A.
Defining the nonlinear operator N

θ → A [θ − sin θ + ϕ̈qs(t)/α
2
PVTOL (·)] =: N [θ(·)] ,

it is easy to see that a bounded curve θ(·) is a solution of (3.9) if and only if
it is a fixed point of N , i.e. θ(·) = N [θ(·)]. The following theorem is proven
in [31].

Theorem 3.3 (Existence of a bounded roll trajectory) If

‖A [
ϕ̈qs(·)/α2

PVTOL (·)] ‖ < 1

then there is a δ < π/2 such that N is a contraction on the invariant set B̄δ.
The unique fixed point θ(·) of N in B̄δ is a bounded trajectory of (3.9) so
that ϕ(·) = ϕqs(·) + θ(·) is a bounded roll trajectory of (3.2). ¤

We refer the reader to [31] for the proof and [53] for a detailed treatment on
the PVTOL case.
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3.3.2 Bounded roll trajectory computation

In order to compute a bounded roll trajectory on a finite horizon [0, T ], we
use the dynamics embedding technique introduced in [30] and described in
Chapter 2, based on the nonlinear projection operator Newton method. The
method applies to the PVTOL by embedding the original roll dynamics in
the driven system

ϕ̈ = α2
PVTOL (t) sin(ϕ− ϕqs(t)) + uext, (3.10)

where uext is the fictitious input used to drive the system along any desired
feasible trajectory. If the accelerations of the center of gravity vary slowly,
we can imagine the roll trajectory to be close to the quasi-static one. Hence,
we can use the quasi-static as an initial guess to find the real trajectory. If we
rewrite (3.10) in state space form as ẋφ = fφ(t, xφ, uext), where xφ = (ϕ, ϕ̇)
and xqs = (ϕqs, ϕ̇qs), we may pose the following optimization problem:

minimize

h(xφ, uext) = 1
2

∫ T

0
‖xφ(τ)− xqs(τ)‖2

Q + ρ|uext(τ)|2dτ
+ 1

2
‖xφ(T )− xqs(T )‖2

P1

subject to ẋφ = fφ(t, xφ, uext).

where Q, ρ and P1 are weighting parameters. Using a high weight ρ for
the input, we may obtain a trajectory arbitrarily close to the bounded roll
trajectory we are looking for. The optimization problem is solved by using
the projection operator based Newton method described in the next session.

3.3.3 Simulations

We show two examples of maneuvers. We used a value of 0.3 for εPVTOL

and we normalized gravity to one for this simulation. We performed a cir-
cular trajectory in the y − z plane, i.e. we asked the PVTOL to track the
trajectories yd(t) = −zmax/ω

2
0 sin(ω0t) and zd(t) = −zmax/ω

2
0(1 − cos(ω0t))

where ω0 = 2π1.5/10. The vertical acceleration was set to different values in
the two simulations. In particular, in the first case we chose |zmax| = 0.9g,
so that the resulting vertical acceleration g − z̈d(t) remains always positive.
As shown in Figure 3.3 the maneuver results in an upright roll trajectory.
The red dashed lines represent the resulting accelerations. Observe that the
quasi static model (green) is aligned at each instant along the acceleration
direction.
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Figure 3.3: Upright trajectory: optimal (blue) and quasi-static (green)

In Figure 3.4a and Figure 3.4b the roll and roll rate optimal trajectories
are compared with the quasi-static ones. The optimal trajectories display
a degree of anticipation and are smoother than the quasi-static due to the
filtering action of the dynamics.
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Figure 3.4: Quasi-static versus optimal roll and roll-rate trajectories (upright
trajectory)

In the second scenario we set |zmax| = 1.2g. In this way the global vertical
acceleration g− z̈d(t) changes sign. An upright roll trajectory does not exists
and a barrel roll occurs Figure 3.5. In Figure 3.6a and in Figure 3.6b the
optimal and quasi static roll and roll rate trajectories are compared as in the
previous case.
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Figure 3.5: Barrel roll trajectory: optimal (blue) and quasi-static (green)
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Figure 3.6: Quasi-static versus optimal roll and roll-rate trajectories (barrel
roll trajectory)
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3.4 Computing feasible trajectories

In this section we define the operating conditions for the PVTOL and then
apply the strategy described in Chapter 2 to find feasible trajectories.

We start by assigning the task for the constrained PVTOL. As seen in
the previous chapter, we need to specify a desired output curve and a task
control system for the task and then a set of operating conditions. The
objective output of the PVTOL consists of the coordinates of the gravity
center. The task control system that we use for the PVTOL is the model
with εPVTOL = 0. We call it PVTOL0 to distinguish from the nominal model,
that in this section we refer to as PVTOLε. The PVTOL0 is flat with respect
to its output. A bounded roll trajectory may be easily obtained by (3.7).
That is, the quasi-static trajectory is a roll trajectory of PVTOL0.

We set the following operating conditions on the control inputs, parame-
terized by ρ ≥ 1, (

u1 − ρg

ρg
(1 +

1

ρ2
)

)2

≤ 1

and (
u2

ρu2max

)2

≤ 1

where the nominal conditions are obtained for ρ = 1. Notice that starting
with u1(0) > 0 the physical bound of a positive thrust is also ensured.

Using flatness of PVTOL0 with respect to its output, we may easily derive
constraints on the desired output trajectory, so that it satisfies the operating
conditions. The constraints may be imposed by using Remark 3.2 together
with Equation (3.4) for u1 and Equation (3.7) for u2.

In many applications, trying to impose such constraints may be hard
or may result in too conservative desired trajectories. Using the barrier
function based exploration strategy even for the PVTOL0, we may obtain a
desired trajectory that satisfies the operating conditions and is really close
to a desired output trajectory chosen without imposing the constraints.

Remark 3.4 (Operating region for the PVTOL) It is worth noting that
in the input region described by the operating conditions, the PVTOL0 is feed-
back linearizable (u1 > 0). For εPVTOL not zero the constraints may be suitably
modified so that the same holds for the PVTOLε. In the next chapter we will
show that, if we consider a compact subset of the state-input space (such that
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the input portion satisfies the operating conditions), any trajectory of the sys-
tem staying in it is uniformly linearly controllable. That is, the linearization
of the system about any trajectory is uniformly controllable. We will call this
compact set operating region. Interesting features of this region are analyzed
in the next chapter. ¤

In order to explore feasible trajectories we follow two different approaches
based on the homotopy and dynamics embedding methods described in Chap-
ter 2. In the first approach we start computing a feasible trajectory for
PVTOL0 and then we use the homotopy method. Differently from what de-
scribed in the previous chapter the homotopy method is applied by using the
modified cost with the barrier function, so that the trajectories computed
at each step are all feasible. The second approach to solve the problem is
based on the fact that we can find a bounded roll trajectory of the uncon-
strained PVTOLε whose output is exactly the desired one. The strategy is
the following. Given the desired output curve (that we recall is a trajectory
of PVTOL0), we find an unconstrained trajectory of PVTOLε by means of
the dynamics embedding technique described in the previous section. Then,
we use the barrier function based strategy to find a feasible trajectory close
to the unconstrained one.

3.5 Simulations

We present the simulation results for the PVTOL with εPVTOL = 0.05. We
perform a barrel roll subject to the bounds on u1 and u2 defined above. We
used the approach based on dynamics embedding. The desired path is the
one depicted in Figure 3.7a with a dashed line. A velocity profile is also
assigned on the path, Figure 3.7b. The desired velocity profile is constant to
v0 = 6.65m/s in the first and last flat portions of the path and goes smoothly
to v0 = 10.15m/s in the central loop. Figure 3.7 compares the desired path
and velocity with the feasible ones respectively computed for ρ = 4, an
intermediate value for which the constraints are only slightly violated, and
ρ = 1 that provides the specified constraints. In Figure 3.8 the position errors
are shown. Finally, in Figure 3.9 desired and feasible inputs are compared.
The optimization was performed by iterating the barrier function method
starting with εc = 1 up to εc = 0.01. The maximum error on y(·) and z(·) is
found to be 0.5m. The result is quite surprising considering the tight limit
on the thrust and roll moment. As it can be seen in Figure 3.9 the control
tends to hit the boundary for a larger interval of time than the one where
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the constraints are violated (thus working in a noncausal fashion) in order
to compensate the missing availability of input effort in those regions. Also,
since we penalized the difference between feasible and desired controls very
little, they result to be quite different.

3.6 Discussion

In this chapter we have implemented for the PVTOL aircraft the exploration
strategy based on barrier function optimization, described in Chapter 2. A
future direction of research is the application of the strategy to a rigid aircraft
model.
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Chapter 4

Operating region

In this chapter we want to give some preliminary answers to the following
problem. Given a nonlinear control system, can we find a subset of the state-
input space, such that any trajectory remaining in it is uniformly linearly
controllable? That is, we ask the linearization of the system about any of
these trajectories to be uniformly controllable. We believe this problem is of
great engineering interest. In fact, if such a region exists, the barrier func-
tional optimization strategy may be used in this region to find exponentially
stabilizable trajectories, thus obtaining an effective receding horizon scheme.
We characterize an operating region for feedback linearizable systems, and for
control-affine systems driven by sampled controls. We also prove that state
trajectories generated by sampled controls converge uniformly to actual state
trajectories. This suggests us that the operating region for sampled-control
trajectories is a good candidate operating region for any bounded trajectory.

4.1 Introduction

In Chapter 2 we have introduced an optimal control based strategy to find
feasible trajectories, that is, trajectories satisfying bounds on states and/or
inputs. We called such bounds operating conditions to underline their en-
gineering meaning. We have also discussed how to apply this strategy in a
receding horizon scheme to perform trajectory tracking.

In order to apply the receding horizon scheme, we need the desired feasible
trajectory to be exponentially stabilizable. A sufficient condition for that
is uniform linear controllability (ULC) about the feasible trajectory (that is
the time-varying linearization is uniformly linearly controllable). This means
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that every time we compute a new desired feasible trajectory, we must verify
one of such properties before applying the receding horizon control. It is clear
that this is a strong concern, especially if we would implement a hierarchical
strategy that includes both the exploration and the tracking strategies.

Another reason to ask for uniform linear controllability is to apply the ex-
ploration strategy in two point boundary value problems. This could provide,
for example, a useful tool to perform path planning.

In this chapter we study whether we can provide sufficient conditions to
ensure uniform linear controllability on a subset of the state-input space.
If this and other technical conditions are satisfied, we call such subset an
operating region. Two excellent surveys for nonlinear and linear controlla-
bility are [34] and [33]. A similar problem was studied by Sontag in [56].
He characterized the set of nonsingular controls of a real-analytic nonlinear
system. A control is said nonsingular if it produces a trajectory along which
the linearized system is controllable. He showed that if the system is strongly
accessible, the set of smooth universal1 nonsingular controls is generic in C∞.
The proof of this result is based on results proven by Sussmann in [60]. In
[57] a numerical technique for path planning of drift-less systems, relying on
the existence of nonsingular controls, was developed. In [11], Coron used
perturbations of nonsingular controls to asymptotically stabilize nonlinear
control systems.

The study on this problem is still at a preliminary stage. We provide
some prototype results that should help us, in future work, to provide suffi-
cient conditions to characterize an operating region for control affine systems
driven by measurable bounded inputs. The contribution of this chapter is
three-fold. First, we prove the existence of an operating region for feedback
linearizable systems. In particular, we prove that any compact subset of the
state-input space where the system is feedback linearizable, with the addic-
tion of technical assumptions, is in fact an operating region. Second, we
provide sufficient conditions to characterize an operating region for control
affine systems driven by piecewise constant inputs. Third, we show that state
trajectories generated by sampled controls converge uniformly to actual state
trajectories. This suggests us that the operating region for sampled-control
trajectories is a good candidate operating region for any bounded trajectory.

1A control is called a universal nonsingular control if it is nonsingular for every state.
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4.2 Uniform linear controllability of nonlin-

ear systems

In this section we introduce some notions regarding controllability of non-
linear systems and their time-varying linearization about given trajectories.
The main concept introduced in the section is the linear controllability of
nonlinear systems. It will play an important role in defining and character-
izing the notion of operating region.

We begin by recalling some basic notions. We consider nonlinear control
systems, with states lying in Rn and inputs in Rm, of the form

ẋ(t) = f(x(t), u(t)), (4.1)

for all t ≥ 0, where f is a Cr mapping of the states and inputs, r ∈
{1, . . . , +∞}. We recall that a trajectory of system (4.1) is a bounded curve
that satisfies the differential equation, that is ξ = (α(·), µ(·)), µ(·) bounded
(with respect to the L∞ norm), and α̇(t) = f(α(t), µ(t)) for all t ≥ 0.

Given a trajectory ξ = (α(·), µ(·)) of a control system Σ as in (4.1), the
differential equation

ż = A(ξ(t))z + B(ξ(t))v, (4.2)

where A(ξ(t)) = Dxf(α(t), µ(t)) and B(ξ(t)) = Duf(α(t), µ(t)), is called
variational equation or (time-varying) linearization of Σ about ξ, and ζ =
(z(·), v(·)) is called the variation of ξ.

We are now ready to introduce the notion of (uniform) linear controllabil-
ity. Roughly speaking we say that a nonlinear system is (uniformly) linearly
controllable about a trajectory if the time-varying linearization of the sys-
tem about the trajectory is (uniformly) controllable. Formally, we have the
following definition.

Definition 4.1 (Uniform linear controllability (ULC)) Given the time
invariant nonlinear system Σ

ẋ = f(x, u),

as in (4.1) and a trajectory ξ of Σ, the system is “ (uniformly) linearly con-
trollable about ξ(·)” (or ξ is a (uniformly) linearly controllable trajectory of
Σ), if the time-varying linearization

ż = A(ξ(t))z + B(ξ(t))v,
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with A(ξ(t)) = Dxf(α(t), µ(t)) and B(ξ(t)) = Duf(α(t), µ(t)), is (uniformly)
controllable. If the property holds for any ξ = (α(·), µ(·)), such that (α(t), µ(t)) ∈
XU ⊆ Rn × Rm, then the system is said (uniformly) linearly controllable on
XU . ¤

We recall the notion of controllability and uniform controllability for a
linear time-varying system, and some useful properties.

Definition 4.2 (Controllability of LTV systems) A linear time-varying
system

ż = A(t)z + B(t)v, (4.3)

A(t) and B(t) bounded and continuous, is said to be “(completely) control-
lable on [t0, t1]”, 0 ≤ t0 < t1 < ∞, if for each z0 and z1 in Rn, there exists a
bounded measurable control v(·) that drives the system from z0 at time t0 to
z1 at time t1. ¤

The following proposition states some interesting properties of control-
lable linear systems.

Proposition 4.3 (Equivalent conditions for controllability) Let a lin-
ear time-varying system as in Definition 4.2 be given. The following are
equivalent:

(i) the linear time-varying system is (completely) controllable on [t0, t1];

(ii) the reachability grammian

WR(t0, t1) =

∫ t1

t0

Φ(t1, τ)B(τ)BT (τ)ΦT (t1, τ)dτ

is positive definite;

(iii) the grammian

W0(t0, t1) =

∫ t1

t0

Φ(t0, τ)B(τ)BT (τ)ΦT (t0, τ)dτ

is positive definite;

(iv) the rows of Φ(t0, τ)B(τ) are linearly independent on [t0, t1].

¤
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Remark 4.4 (Controllability is preserved on larger intervals) If the
system is (completely) controllable on [t0, t1], then it is (completely) control-
lable on every [t2, t3] ⊃ [t0, t1]. This follows easily by the grammian condition.
¤

Remark 4.5 (Meaning of “completely” about controllability) The
use of “completely” in the controllability definition is archaic — it will be
dropped in the sequel. It was used, in the past, to underline that the property
holds for every pair of states at every initial and final time. If it is not so we
simply say that the system is not controllable. ¤

An important property of the controllability grammian WR is that, it can
be obtained as the state of the dynamic system

Q̇(t) = A(t)Q(t) + Q(t)A(t) + B(t)BT (t), Q(0) = 0, (4.4)

where WR(t, 0) = Q(t).

With the notion of controllability grammian in hand, we may introduce
the definition of uniform controllability of linear time-varying systems. In-
formally, a linear system is said uniformly controllable on the interval [t0, t1[
if there is a δ > 0 such that the norm of the grammian is bounded away
from zero on every sub-interval of [t0, t1[ of length δ. Formally, we have the
following definition.

Definition 4.6 (Uniform controllability of LTV systems) A linear time-
varying system (4.3), with A(t) and B(t) bounded and continuous, is said to
be “uniformly controllable on [t0, t1[”, 0 ≤ t0 < t1 ≤ +∞, if there exist δ > 0
and kδ > 0 such that, for all t ∈ [t0, t1 − δ[,

∫ t+δ

t

Φ(t, τ)B(τ)BT (τ)ΦT (t, τ)dτ ≥ kδI.

Furthermore it is said “ δc-uniformly controllable on [t0, t1[” if it is uniformly
controllable with δ = δc. ¤

Remark 4.7 (Uniform controllability with larger δ) Clearly, if the sys-
tem is δ1-uniformly controllable, then it is δ2-uniformly controllable for any
δ2 ≥ δ1. ¤

The following lemma is due to Silverman and Anderson [55].
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Lemma 4.8 (Condition for uniform controllability of LTV systems)
A linear time-varying system (4.3), with A(t) and B(t) bounded, is uniformly
(completely) controllable if and only if there exist δ > 0 and kδ such that for
every state z̄ ∈ Rn and for any time t, there exists an input v defined on
]t− δ, t[ such that, if z(t− δc) = 0, then z(t) = z̄ and ‖v(τ)‖ ≤ γδ‖z̄‖ for all
τ ∈]t− δ, t[. ¤

A stronger notion than the simple controllability, introduced above, is
the impulsive controllability. It is a point-wise condition that involves the
derivatives of A(·) and B(·). Therefore it can be used only if these are
sufficiently differentiable.

Definition 4.9 (Impulsive controllability of LTV systems) A linear
time-varying system is said to be “impulsively controllable at t” iff, defining
the operator A = d

dt
− A(·),

rank{B(t), (AkB(·))(t), k ≥ 1} = n.

¤

Remark 4.10 (Impulsive and uniform controllability) Even for impul-
sive controllability we can ask whether the property is uniform over some in-
terval (possibly of infinite length). In general impulsive controllability neither
implies or is implied by uniform controllability. ¤

4.3 Definition and characterization of oper-

ating region

In this section we introduce the definition of operating region and provide
sufficient conditions to characterize it for feedback linearizable systems and
for control affine systems driven by piecewise constant inputs.

Here is an informal description of what we shall refer to as operating
region.

Operating region [Informal description] An operating region is a
portion of the state-input space with the property that every ad-
missible trajectory laying in it satisfies some structural properties
of the system. That is, no actuator saturation occurs, the model
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used to represent the system is valid, dynamics constraints are
satisfied and, furthermore, the system is uniformly linearly con-
trollable on it.

An admissible trajectory is simply a trajectory of the system ξ = (α(·), µ(·)),
whose input µ(·) belongs to a class of admissible functions Fu. We are
interested in the class of bounded measurable inputs. A useful class in char-
acterizing an operating region will be the one of piecewise constant inputs.

In the following we define the operating region more formally.

Definition 4.11 (Operating region) Let Σ be a control system as in (4.1)
and Fu ⊂ L∞ the space of admissible input functions. An operating region
for Σ with respect to the admissible input set Fu is an open simply connected
set XU such that

- its closure XU ⊂ Rn × Rm is compact;

- U = {u ∈ Rm | (x, u) ∈ XU for every fixed x} is convex;

- XU ⊂ XUOC, where XUOC ⊂ Rn × Rm is an open simply connected
set of state-input constraints (operating conditions);

- for any trajectory ξ = (α(·), µ(·)) of Σ, such that (α(t), µ(t)) ∈ XU for
all t ≥ 0, then Σ is uniformly linearly controllable about ξ.

¤

Let us comment on the definition. The assumptions XU simply connected
and XU compact are technical assumptions. We ask for convexity of U
because we want to use the operating region as the domain of an optimal
control based strategy to find feasible trajectories of the system. In such
setting convexity of the input portion plays a key role in the existence of
optimal solutions. The set XUOC has an engineering meaning and is basically
the one introduced in Chapter 2. It is a portion of the state-input space that
is characterized in the design of the system or in the definition of its model
representation. It is a region where physical or dynamics constraints are
satisfied. The third ingredient is the one we are more interested on in this
chapter for the reasons discussed in Section 4.1.
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4.3.1 Uniform linear controllability for feedback lin-
earizable systems

Before stating our first result, we recall the notion of feedback linearizable
systems on an open subset of the state space.

We consider a control affine system

ẋ(t) = f0(x(t)) + g(x(t))u(t), (4.5)

where g(x) = [g1(x) . . . gm(x)] and the same assumptions as in (4.1) hold.

In order to state notion of feedback linearizable systems on an open set,
we define the state space exact linearization problem as stated in [35].

Definition 4.12 (State space exact linearization problem) Given a set
of vector fields f0(x) and g1(x), . . . , gm(x) and a initial state x0, find (if pos-
sible) a neighborhood X0 of x0, a pair of feedback functions α(x) and β(x)
defined on X0, a coordinate transformation y = Ψ(x) also defined on X0, a
matrix A ∈ Rn×n and a matrix B ∈ Rn ×m, such that

[DΨ(x)(f0(x) + g(x)α(x))]x=Ψ−1(y) = Ay (4.6)

[DΨ(x)g(x)β(x)]x=Ψ−1(y) = B (4.7)

and
rank(B AB . . . An−1B) = n. (4.8)

¤

Let X ⊂ Rn be a simply connected open set. We say that a system Σ
as in 4.5 is feedback linearizable on X, if the state-space exact linearization
problem is solvable for any x ∈ X.

In the following proposition we prove uniform linear controllability of
feedback linearizable systems over a compact subset of the state-input space.

Proposition 4.13 (Feedback linearization and ULC) Suppose that the
control affine system Σ as in (4.5) is feedback linearizable on the simply
connected open set Xf ⊂ Rn. Let XU = X × U , where X and U are open,
bounded and simply connected sets and the closure of XU , XU = X × U ⊂
Xf ×Rm and is compact. Then, Σ is uniformly linearly controllable on XU .
That is, every trajectory remaining in XU for all t ≥ 0, with u(·) bounded
and measurable, is δ-uniformly linearly controllable for any δ > 0.
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Proof: We start proving linear controllability and then we prove that it
is uniform.

Since Σ is feedback linearizable on Xf ⊃ X, there exist a pair of feedback
functions α(x) and β(x) defined on X, with u = α(x) + β(x)ω, ω ∈ Rm, a
coordinate transformation y = Ψ(x) also defined on X, and a pair of constant
matrices A ∈ Rn×n and B ∈ Rn×m, such that, for x ∈ X, (4.6), (4.7) and
(4.8) hold.

That is, the system
ẏ = Ay + Bω, (4.9)

with y ∈ Rn and ω ∈ Rm, is a (uniformly) controllable linear time-invariant
system.

This implies that there exist W (x) and b(x) defined on X such that

ω = b(x) + W (x)u, (4.10)

where α(x) = −W−1(x)b(x) and β(x) = W−1(x).

Let Fu be the set of (essentially) bounded input functions. If we would
prove (nonlinear) controllability, we should prove that the mappingR : Fu →
Rn, defined as

u(·) 7→ φ(T ; x0, u(·))
is surjective. In order to prove linear controllability, we need to show that
the differential of the mapping R is surjective.

We can consider the mapping R as the composition of three different
mappings. First, we consider the mapping B : Rn × Fu → Rn × Fu defined
as

(x0, u(·)) 7→ (y0, ω(·))
and given by

(y0, ω(·)) = (Ψ(x0), b(x(·)) + W (x(·))u(·)).
The second mapping, Ry : Rn×Fu → Rn×Rn, is the linear mapping defined
as

(y0, ω(·)) 7→ y(T )

and given by
y(T ) = φy(T ; y0, ω(·)).

Here φy is the state transition function for the system (4.9).

The third mapping is defined as y(T ) 7→ x(T ) and is simply the inverse
of Ψ.
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The second mapping, Ry, is linear, therefore it coincides with its differen-
tial. It is clearly surjective due to the (uniform) controllability of the linear
time-invariant system (4.9). Using the fact that the system is feedback lin-
earizable on XU , we can conclude that the mappings B and Ψ−1, and their
differentials exist and are invertible. The proof follows.

In order to prove uniform linear controllability, we explicitly compute the
variation (β, ν) of a trajectory (y, ω) as function of the variation (z, v) of the
trajectory (x, u) of the original system. It can be written as

β = Ψ(x + z)−Ψ(x) = DΨ(x)z + o(‖z‖2)

= T (x)z + o(‖z‖2)

ν = b(x + z) + W (x + z)(u + v)− b(x)−W (x)(u)

=

(
Db(x) +

m∑

l=1

DWl(x)ul

)
z + W (x)v + o(‖(z, v)‖2)

= S(x, u)z + W (x)v + o(‖(z, v)‖2),

where (β, ν) satisfies
β̇ = Aβ + Bν (4.11)

and the matrices T (x) = DΨ(x) ∈ Rn×n and W (x) ∈ Rm×m are invertible
with continuous inverse on X.

Using the above equations we can write the dynamics of z as

ż =
(
T−1(x)AT (x) + T−1(x)BS(x)Ṫ−1(x)T (x)

)
z + BW (x)v + o(‖(z, v)‖2)

Clearly the dynamics of the first variation of (x, u), that is the variational
equation, is given by

ż = (T−1(x)AT (x) + T−1(x)BS(x) + Ṫ−1(x)T (x))z + BW (x)v. (4.12)

Now we use compactness of XU and Lemma 4.8. First, it is clear that a
controllable linear time-invariant system is δ-uniformly controllable for any
δ. Then, take a δ > 0 arbitrarily, there exists γ∗δ such that the following
holds for the system in (4.11). For any t ∈ [0, T [ and any β̄ ∈ Rn, there
exists ω defined on ]t − δ, t[ such that, if β(t − δ) = 0, then β(t) = β̄ and
‖ω(τ)‖ ≤ γ∗δ‖β̄‖ for all τ ∈]t− δ, t[.

Now, consider the same δ. We want to find γδ satisfying the condition
of Lemma 4.8 for (4.12). For any t ∈ [0, T [ and any z̄ ∈ Rn, there exists
v(·) and β̄ ∈ Rn such that, if z(t − δ) = 0, then z(t) = z̄ = T−1(x(t − δ))β̄,
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and ‖v(τ)‖ ≤ ‖W−1(x(τ))‖(γ∗δ‖T (x(τ))‖+‖S(x(τ), u(τ))‖)‖z̄‖. Since T (x),
W−1(x) and S(x, u) are continuous functions of x and u over the com-
pact set XU , there exist lT > 0, lW > 0 and lS > 0 such that ‖v(τ)‖ ≤
lW (γ∗δ lT + lS)‖z̄‖ for all τ ∈]t− δ, t[. Then we can set γδ = lW (γ∗δ lT + lS) to
complete the proof.

4.3.2 Operating region and sampled controls

In order to state our next result, we need to introduce some more notation.
For control affine systems, let G be the linear vector space defined as follows

G (x, u) = span{g1(x), · · · , gm(x), adk
f
(g1(·))(x), · · · , adk

f
(gm(·))(x), k ≥ 1},

(4.13)

where f(x, u) = f0(x) + g(x)u.

Then, let Φx0,u0(t0, τ) and Bx0,u0(τ) be the state-transition and input ma-
trices of the linear time-varying system obtained by linearizing the nonlinear
system (4.5) about the trajectory starting at x(t0) = x0, x0 ∈ X ⊂ Rn, and
generated by the constant control u(·) = u0, u0 ∈ U ⊂ Rm. We define the
mapping (x0, u0) 7→ Wδ(x0, u0) as follows

Wδ(x0, u0) =

∫ t0+δ

t0

Φx0,u0(t0, τ)Bx0,u0(τ)BT
x0,u0

(τ)ΦT
x0,u0

(t0, τ)dτ.

The following lemma states that Wδ is a continuous mapping.

Lemma 4.14 (Continuity of the grammian w.r.t. parameters) Let Σ
be a control-affine system as in (4.5). There exists δ1 > 0 such that for any
0 < δ < δ1, given any (x0, u0) ∈ XU , the mapping Wδ : X × U → Rn×n,
defined as above, is well defined and continuous at (x0, u0).

Proof: From Lipschitz condition on f0(x) and g(x) we know that there
exists δ1 such that the solution of the nonlinear system exists on [0, δ1[. This
ensures that the integral is well defined. Continuity follows by continuity of
the nonlinear and linearized systems with respect to parameters.

We are ready to provide sufficient conditions for uniform linear controlla-
bility of nonlinear control-affine systems driven by piecewise constant inputs.
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Lemma 4.15 (ULC by piecewise constant controls) Let XU = X ×
U , where X ⊂ Rn and U ⊂ Rm are open, bounded and simply connected sets
and XU = X×U is the compact closure of XU . Furthermore, let U be convex.
Suppose that, given the control affine system in (4.5), rank G (x, u) = n for
any (x, u) ∈ XU . Then

(i) every bounded trajectory on [0, δ], δ > 0, arising from x0 ∈ X and
u(·) ≡ u0, u0 ∈ U , is linearly controllable;

(ii) for fixed δu > 0, every trajectory on t ≥ 0, generated by a δu-piecewise
constant control and remaining in XU for all t ≥ 0, is δ-uniformly
linearly controllable for any δ > 0.

Proof: The first part of the proof, regarding the linear controllability by
constant controls, is standard and can be found for example in [34]. We recall
it here for completeness. For general (x(·), u(·)), the variational equation is
given by

ż(t) = A(x(t), u(t))z(t) + B(x(t))v(t),

with the usual expressions A(x, u) = Dxf0(x) +
∑m

l=1 Dxgl(x)ul and B(x) =
g(x). For constant u(·), both A(x(t), u(t)) and B(x(t)) are smooth (f0(x)
and g(x) are smooth). A sufficient condition for controllability of the lin-
ear time-varying system (linear controllability) is given by impulsive linear
controllability at t = 0. That is

rank{B(0), (AkB(·))(0), k ≥ 1} = n, (4.14)

where A = ( d
dt
− A(·)).

This relies on the fact that

dk

dτ k
(Φ(0, τ), Bl(τ)) =

(AkBl(·)
)
(τ).

For the special form of A(t), B(t) as above, we compute

(ABl(·))(0) =
[
f̄(·, u), gl(·)

]
(x0). (4.15)

For constant u(·) ≡ u0, inductively from (4.15)

(AkBl(·))(0) = adk
f̄(·,u0)(gl(·))(x0). (4.16)

But this is just the condition G (x0, u0) to be full rank for any (x0, u0) ∈ XU ,
thus the proof follows.
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As regards statement (ii), we need to prove that fixing δ > 0 arbitrarily,
there exists a kδ > 0 such that, for any t0 ≥ 0, then

∫ t0+δ

t0

Φ(t0, τ)B(τ)BT (τ)ΦT (t0, τ)dτ > kδI.

Since f0(x) and g(x) are locally Lipschitz continuous (in x) it is clear that
there is a δ1 such that for each (x0, u0) ∈ XU , the trajectory

φ(t; x0, u0)

is bounded on [0, δ1].

It follows that for each δ ∈]0, δ1[, there is a kδ such that

Wδ(x0, u0) ≥ kδI

for all (x0, u0) ∈ XU . The desired result follows easily.

4.4 Sampled controls and trajectories approx-

imation

In this section we show that sampled-control state trajectories converge uni-
formly to bounded-control state trajectories.

In order to prove the convergence, we need to introduce a functional norm
that we will call sup average norm.

Definition 4.16 (Sup average norm) Let u(·) be a Lebesgue integrable
function on [0, T ] with values in Rm. We define the sup average norm as
the function norm

‖u(·)‖sa = max
t∈[0,T ]

∥∥∥∥
∫ t

0

u(τ) dτ

∥∥∥∥
where ‖ · ‖ is any norm on Rm. ¤

Clearly

‖u(·)‖sa = ‖U(·)‖∞
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for the absolutely continuous function U(t) =
∫ t

0
u(τ) dτ , where ‖ · ‖∞ is the

sup norm. It is also worth noting that ‖u(·)‖sa ≤ ‖u(·)‖1.

Let B(·) be an absolutely continuous function on [0, T ] with values in
Rn×m so that B(t) = B(0) +

∫ t

0
Ḃ(τ) dτ where the derivative Ḃ(t) is well

defined almost everywhere in [0, T ]. Consider the linear mapping B : u(·) 7→
y(·) given by

y(t) =

∫ t

0

B(τ) u(τ) dτ . (4.17)

It is easy to see that

‖y(·)‖∞ ≤ ‖B(·)‖∞ ‖u(·)‖1 .

We may also obtain an estimate depending on ‖u(·)‖sa. In particular the
following lemma holds.

Lemma 4.17 (Sup average norm bound for linear functionals) Let
B(·) be an absolutely continuous function on [0, T ] with values in Rn×m so
that B(t) = B(0) +

∫ t

0
Ḃ(τ) dτ where the derivative Ḃ(t) is well defined al-

most everywhere in [0, T ]. Consider the linear mapping B defined in (4.17).
Then

‖y(·)‖∞ ≤
(
‖B(·)‖∞ + ‖Ḃ(·)‖1

)
‖u(·)‖sa .

Proof: Set U(t) =
∫ t

0
u(τ) dτ and note that

y(t) =

∫ t

0

B(τ) u(τ) dτ = B(t) U(t)−
∫ t

0

Ḃ(τ) U(τ) dτ

so that
‖y(·)‖∞ ≤

(
‖B(·)‖∞ + ‖Ḃ(·)‖1

)
‖u(·)‖sa .

Integration by parts is applicable since Ḃ(·) and u(·) are (Lebesgue) inte-
grable with absolutely continuous integrals B(·) and U(·).

Remark 4.18 (Lebesgue integrability and L1 norm) Notice that u(·) is
Lebesgue integrable iff u(·) ∈ L1. ¤

Now, we show trajectory convergence. Consider a control affine system
as in (4.5), where the vector fields f0(·), gi(·) are Lipschitz continuous so that

‖f0(x)− f0(y)‖ ≤ lf‖x− y‖, ‖g(x)− g(y)‖ ≤ lg‖x− y‖
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for constants lf , lg. Fix the initial condition x(0) = x0 and the interval of
consideration [0, T ] and suppose that the set of allowable controls is bounded
with ‖u(t)‖ ≤ bu. Then, f0(·) and g(·) are bounded on the compact reach-
able region with ‖f0(x)‖ ≤ bf and ‖g(x)‖ ≤ bg. When f0(·) and g(·) are
only locally Lipschitz, the constants lf , lg, bf , bg will be well defined on the
reachable region for sufficiently small T .

Let u1(·) and u2(·) be controls bounded by bu and let x1(·) and x2(·) be the
corresponding state trajectories starting from x0. Using δx(·) = x2(·)−x1(·)
and δu(·) = u2(·)− u1(·), we have

‖δx(t)‖ =

∥∥∥∥
∫ t

0

{(f0(x
2(τ)) + g(x2(τ))u2(τ))− (f0(x

1(τ)) + g(x1(τ))u1(τ))} dτ

∥∥∥∥

≤
∫ t

0

(lf + lgbu)‖δx(τ)‖ dτ +

∥∥∥∥
∫ t

0

g(x2(τ))δu(τ) dτ

∥∥∥∥ .

Set B(t) = g(x2(t)) and note that

‖B(·)‖∞ ≤ bg

and
‖Ḃ(·)‖1,t ≤ lg(bf + bgbu)t

where ‖·‖1,t is the truncated L1(0, t) norm. Note that these estimates do not
require g(·) to be differentiable, Lipschitz is sufficient. Continuing, we have

‖δx(t)‖ ≤
∫ t

0

(lf + lgbu)‖δx(τ)‖ dτ + (bg + lg(bf + bgbu)t)‖δu(·)‖sa,t

where we have used a truncated norm ‖ · ‖sa,t. Using the Bellman-Gronwall
lemma, we find that

‖δx(t)‖ ≤ (bg + lg(bf + bgbu)t) e(lf+lgbu)t ‖δu(·)‖sa,t

where we have used the fact that final term in the previous estimate is strictly
increasing and so that, for each t, the maximum value (occuring at t) may
be used as a constant in the lemma. Thus

‖δx(·)‖∞ ≤ L ‖δu(·)‖sa

with L = (bg + lg(bf + bgbu)T ) e(lf+lgbu)T .

We wish to consider the approximation of a bounded function u(·) by con-
trol functions uk(·) that are constant on intervals of length T/2k for integers
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k ≥ 0. Let uk
avg(·) be the sampled function obtained by averaging u(·) over

intervals of length T/2k so that, for instance, u0
avg(·) is the constant function

with value uavg = (1/T )
∫ T

0
u(τ) dτ . It is easy to show that

‖uk
avg(·)− u(·)‖sa ≤ Tbu/2

k+1 .

That is, ‖uδ
avg(·)−u(·)‖sa ≤ buδ/2 for sample period δ, independent of interval

length T .

The above arguments prove the following proposition.

Proposition 4.19 The sampled-control state trajectories converge uniformly
to the actual state trajectory with a rate that is at least linear in the sampling
period. ¤

Remark 4.20 (A conjecture) We believe that this proposition could be a
preliminary step on the way of finding sufficient conditions for uniform linear
controllability of control affine systems driven by essentially bounded inputs.
¤

4.5 Discussion

We have introduced the novel notion of operating region meant as a region
where trajectories are ensured to be uniformly linearly controllable and thus
exponentially stabilizable. The characterization of this region for control
affine systems is still preliminary. For future work, we aim to provide suffi-
cient conditions to characterize an operating region for control affine systems
driven by (essentially) bounded inputs.



Chapter 5

Network models

In this chapter we introduce the mathematical model that we will use in the
next chapters to deal with networks. After a brief review on graph definitions
and main properties, we introduce a model for a network of processors. This
model is inspired by the work in [43]. Then, we define a more complex
network model, where the nodes are dynamical systems, e.g. mobile robots.
We use the formal model introduced in [47] modified for the discrete time
case.

5.1 Introduction

Motion coordination is an emerging discipline that combines control and com-
munication problems. For this reason, standard definitions and models from
communication theory or from control theory are not suitable to model the
new entities involved in this discipline. The scope of this chapter is to provide
a good model to work with in studying motion coordination problems.

Notation

We let N, N0, and R+ denote the natural numbers, the non-negative integer
numbers, and the positive real numbers, respectively. We let

∏
i∈{1,...,n} Si

denote the Cartesian product of sets S1, . . . , Sn. For p ∈ R, we let bpc
and dpe denote the floor and ceil of p. For r ∈ R+ and p ∈ Rd, we let
B(p, r) denote the closed ball centered at p with radius r, i.e., B(p, r) = {q ∈
Rd | ‖p − q‖2 ≤ r} For f, g : N → R, we say that f ∈ O(g) (respectively,
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f ∈ Ω(g)) if there exist n0 ∈ N and k ∈ R+ such that |f(n)| ≤ k|g(n)| for
all n ≥ n0 (respectively, |f(n)| ≥ k|g(n)| for all n ≥ n0). If f ∈ O(g) and
f ∈ Ω(g), then we use the notation f ∈ Θ(g).

5.2 Preliminaries on graphs

In this section we introduce the notion of directed graph that will be a key
concept in the definition of network models.

We let G = (V, E) denote a directed graph, where V = {1, . . . , n} is the
set of nodes (or vertices) of the graph and E : V → V × V is the edge map
describing the set of directed edges E(V ) of the graph. For each node i of
G, the number of edges going out from (coming into) node i is called in-
degree (out-degree) and is denoted indeg[i] (outdeg[i]). The set of outgoing
(incoming) neighbors of node i are the set of nodes to (from) which there are
edges from (to) i. They are denoted NO(i) and NI(i), respectively. A direct
graph is called strongly connected if for every pair of nodes (i, j) ∈ V × V ,
there exists a path of directed edges that goes from i to j. The minimum
number of edges between node i and j is called the distance from i to j and
is denoted dist(i, j). The maximum dist(i, j) taken over all pairs (i, j) is the
diameter and is denoted diam(G). Graphs with undirected edges are undi-
rected graphs. Such graphs can be considered a special case of the directed
graphs defined above, in the sense that they are equivalent to directed graphs
with bidirectional edges between all pairs of neighbors. In this case, for each
node i of G, we simply talk of degree, deg[i], and set of neighbors, N (i), of
node i.

The definition of graph given above does not take into account the evo-
lution of the graph with respect to time. It may be imagined just as a
static picture. In order to take into account the time-evolution of the graph
we may allow the edge map to depend on time. In this case the graph is
called time-dependent. If the graph does not depend on time we will call it
time-independent.

If the graph is time-dependent different notions of connectivity may arise.
We could ask the graph to be strongly connected at each time instant. How-
ever, this is a quite strong requirement that could be hard to satisfy in some
applications and that is not necessary for many properties. A weaker notion
of connectivity for time-dependent graphs is the so called joint connectivity.
Roughly speaking, a graph is said to be jointly connected if for every instant
there exists a time interval in the future such that the graph obtained as
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union of the graphs in that interval is connected. A stronger notion is the
uniform joint connectivity. It requires that the length of the interval where
the graph is connected is fixed, that is it does not depend on the instant of
time. Formally we have the following definition.

Definition 5.1 (Connectivity notions) Let t 7→ G(t) = (V, E(t)) be a
time-dependent graph. The graph G is said jointly strongly connected if for
every t ∈ R,

∪+∞
τ=tG(τ)

is strongly connected. Moreover, the graph G is said uniformly strongly con-
nected if there exists S > 0 such that for every t ∈ R

GS = ∪t+S
τ=tG(τ)

is strongly connected. ¤

Graphs could depend not only on time, but also on the “state” where the
nodes live. We call such graphs state-dependent. We introduce this notion
only for undirected graphs. For a set X, let F(X) be the collection of finite
subsets of X; e.g., P ∈ F(Rd) is a set of points. For a finite set X, let G(X)
be the set of undirected graphs whose vertices are elements of X, i.e., whose
vertex set belongs to F(X). For a set X, a state dependent graph on X is a
map G : F(X) → G(X) that associates to a finite subset V of X an undirected
graph with vertex set V and edge set EG(V ) where EG : F(X) → F(X ×X)
satisfies EG(V ) ⊆ V × V . In other words, what edges exist in G(V ) depends
on the elements of V that constitute the nodes.

An example of state dependent graph that will be widely used in the
sequel is the disk graph. Given rpos ∈ R+, the disk graph Gdisk(rpos) is the
state dependent graph on Rd defined as follows: for {p1, . . . , pn} ⊂ Rd, the
pair (pi, pj) is an edge in Gdisk(rpos) · ({p1, . . . , pn}) if and only if

‖pi − pj‖2 ≤ rpos ⇐⇒ pi − pj ∈ B(0d, rpos).

Sometimes, with some abuse of notation, we will use (i, j), instead of (pi, pj),
to indicate the edge between node i and node j.

5.3 Network of processors

Following [43], we define a synchronous network system as a “collection of
computing elements located at nodes of a directed network graph.” These
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computing elements are sometimes called processors, thus suggesting that
they are piece of hardware. However it is useful to think of them as logical
processes running on (but not identical to) the actual hardware processors.

A synchronous network is characterized by two elements: the communi-
cation graph and the processes associated with each node of the communica-
tion graph. A communication graph is a directed graph G = (I, Ecmm), where
I = {1, . . . , n} is the set of identifiers of the computing elements (processes)
and Ecmm : N×I → I×I is called communication edge map and is such that

E(t, I) = {(i, j) ∈ I × I | process i cancommunicate to j at time t}.

If the communication edge map depends explicitly on time, then the network
is said to be time-dependent, otherwise we call it time-independent. Asso-
ciated with each directed edge (i, j) ∈ G there is a channel, also known as
link which is a location that can, at any time, hold at most a single message
of a certain message alphabet M . We underline the fact that in this gen-
eral model each edge, and therefore the associated channel, is directed. This
means that the presence of the edge (i, j) ∈ G implies that process i can send
a message to process j, but not vice-versa.

Next we define the notion of distributed algorithm.

Definition 5.2 Let G = (I, E) be a communication graph. A process i ∈ I
consists of the sets

- W , set of “logical” states w[i], i ∈ I;

- W0 ⊂ W , subset of allowable initial values;

- M , message alphabet, collection of messages y
[i]
j ∈ M , (i, j) ∈ I × I;

and the maps

- msg : W × I → M , called message-generation function;

- stf : W ×Mn → W , called state-transition function. ¤

The above definition may be explained as follows. Each process has a set
of logical states, among which it can be distinguished a subset of initial states,
and an alphabet of possible messages. The message generation function
specifies the message that process i sends to its outgoing neighbors based on
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its current state. The state-transition function specifies, given the current
state and the collection of messages of the incoming neighbors, the new state
to which each process moves.

Execution of the network begins with all processes in their start states
and all channels empty. Then the processes repeatedly perform the following
two actions. First, the ith process sends to each of its outgoing neighbors in
the communication graph a message (possibly the null message) computed
by applying the message-generation function to the current value of w[i]. At
this point new messages are available in each channel. After a negligible
period of time, the ith logical process computes the new value of its logical
variables w[i] by applying the state-transition function to the current value of
w[i], and to the incoming messages (ready in each channel). The combination
of the two actions is called communication round or simply round.

In the execution scheme described above, we have not mentioned any
restrictions on the amount of computation to execute the state-transition and
message-generation functions, implicitly assuming that, at each round, each
process has sufficient time to execute all the calculations. In the design of the
algorithms we will take into account such bounds in two different ways. The
first one is to upper bound the execution-time of the algorithm so that it can
be always solved during a communication round. The second way to do that
is to slightly change the model of the network described above, by allowing
the state-transition function to be executed in multiple rounds. In particular
we imagine that each processor may operate in multi-tasking mode, so that
it can run the message-generation function while keeping executing the state-
transition function if the computation has not ended. If that happens, the
message is generated by using the logical state of the previous round (which
has not been updated yet).

The last aspect to consider is the process halting, that is a situation such
that the network (and therefore each process) is in a idle mode. It is useful
to distinguish such status because it represents an energy-saving status in
which the network may stay “indefinitely”. Also, such status can be used to
indicate the achievement of a prescribed task. Formally, we say that a process
is in halting status if the logical state is a fixed point for the state-transition
function (that becomes a self-loop) and no message (or equivalently the null
message) is generated.
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5.4 Robotic network

In the following we define a more complex architecture than the simple syn-
chronous network defined in the previous section. We call it robotic network.
It is a collection of dynamical systems, with a logical process of a suitable
communication digraph associated to each system. In other words we can
represent a robotic network as in Figure 5.1 with two layers linked to each
other: a physical layer represented by the dynamical systems and a logical
layer represented by the communication graph (i.e., by the logical processes
communicating according to the communication edge map).

Figure 5.1: Robotic network scheme

We describe a (uniform) network of robotic agents using the formal model
introduced in [47] modified for the discrete time case. The network is modeled
as a tuple (I,A, Ecmm). I = {1, . . . , n} is the set of unique identifiers (UIDs);
A = {A[i]}i∈I = {(X,U,X0, f)}i∈I is called the set of physical agents and is a
set of control systems consisting of a differentiable manifold X (state space),
a compact subset U of Rm (input space), a subset X0 of X (set of allowable
initial states) and a (sufficiently smooth) map f : X×U → X describing the
dynamics of ith agent; Ecmm : Xn → I × I is the communication edge map.

The robotic network evolves according to a discrete-time communication
and motion model.

Definition 5.3 (Control and communication law) Let S be a robotic
network. A (uniform, synchronous, dynamic) control and communication
law CC for S consists of the sets M (message alphabet), W (set of logical
states) and W0 ⊆ W (allowable initial values) defined in Definition 5.2 and
of the maps:

(i) msg : X ×W × I → M , called message-generation function;

(ii) stf : W ×Mn → W , called state-transition function;
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(iii) ctl : X ×W ×Mn → U , called control function. ¤

In a robotic network, together with the message-generation function and
the state-transition function (already defined for networks of processors), a
control function is defined. It specifies the new physical state of the (physical)
agents based on the current logical and physical state, and on the incoming
messages. Notice that, with some abuse of notation, we used the same label
for the message-generation function and state-transition function as in the
simple network. However, here these two functions may depend also on the
physical states x[i]. This means that there is a bidirectional relation between
the logical layer and the motion layer, as it appears in Figure 5.1.

Roughly speaking, this definition has the following meaning: for all i ∈
I, to the ith physical agent corresponds a logical process, labeled i, that
performs the following actions. First, at each communication round the ith
logical process sends to each of its outgoing neighbors in the communication
graph a message (possibly the null message) computed by applying the
message-generation function to the current values of x[i] and w[i]. After a
negligible period of time, the ith process resets the value of its logical state
w[i] by applying the state-transition function to the current value of w[i], and
to the messages received at time t. Between communication instants, the
motion of the ith agent is determined by applying the control function to the
current value of x[i], and the current value of w[i]. This idea is formalized as
follows.

Definition 5.4 (Evolution of a robotic network) Let S be a robotic net-
work and CC be a control and communication law for S. The evolution of
(S, CC) from initial conditions x

[i]
0 ∈ X0 and w

[i]
0 ∈ W0, i ∈ I, is the set of

curves x[i] : N→ X and w[i] : N→ W , i ∈ I, satisfying

x[i](t + 1) = f
(
x[i](t), ctl(x[i](t), w[i](t + 1), y[i](t))

)
,

where, for i ∈ I,

w[i](t + 1) = stf(w[i](t), y[i](t)) ,

with the conventions that x[i](t0) = x
[i]
0 and w[i](t0) = w

[i]
0 , i ∈ I. Here, the

function y[i] : N → Mn (describing the messages received by agent i) has
components

y
[i]
j (t) =

{
msg(x[j](t), w[j](t), i), if (i, j) ∈ Ecmm,

null, otherwise.

¤
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We are ready to define the notion of task and of task achievement by a
robotic network.

Definition 5.5 (Coordination task) Let S be a robotic network. A (static)
coordination task for S is a map T : Xn → {true, false}. Additionally, let
CC a control and communication law for S. The law CC achieves the task T
if, for all initial conditions x

[i]
0 ∈ X0 and w

[i]
0 ∈ W0, i ∈ I, the corresponding

network evolution t 7→ (x(t), w(t)) has the property that there exists T ∈ N
such that T(x(t)) = true for all t ≥ T . ¤



Chapter 6

Maintaining connectivity in
second order wireless networks

In this chapter we consider ad-hoc networks of robotic agents with double
integrator dynamics. For such networks, the connectivity maintenance prob-
lems are: (i) do there exist control inputs for each agent to maintain network
connectivity, and (ii) given desired controls for each agent, can one compute
the closest connectivity-maintaining controls in a distributed fashion? The
proposed solution is based on three contributions. First, we define and char-
acterize admissible sets for double integrators to remain inside disks. Second,
we establish an existence theorem for the connectivity maintenance problem
by introducing a novel state-dependent graph, called the double-integrator
disk graph. Finally, we design a distributed “flow-control” algorithm to com-
pute optimal connectivity-maintaining controls.

6.1 Introduction

The motion coordination problem for groups of autonomous agents is a con-
trol problem in the presence of communication constraints. Typically, each
agent makes decisions based only on partial information about the state of
the entire network that is obtained via communication with its immediate
neighbors. One important difficulty is that the topology of the communica-
tion network depends on the agents’ locations and, therefore, changes with
the evolution of the network. In order to ensure a desired emergent behavior
for a group of agents, it is necessary that the group does not disintegrate
into subgroups that are unable to communicate with each other. In other
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words, some restrictions must be applied on the movement of the agents to
ensure connectivity among the members of the group. In terms of design, it is
required to constrain the control input such that the resulting topology main-
tains connectivity throughout its course of evolution. In [4], a connectivity
constraint was developed for a group of agents modeled as first-order dis-
crete time dynamic systems. In [4] and in the related references [40, 13], this
constraint is used to solve rendezvous problems. Connectivity constraints
for line-of-sight communication are proposed in [19]. Another approach to
connectivity maintenance for first-order systems is proposed in [58]. In [64],
a centralized procedure to find the set of control inputs that maintain k-hop
connectivity for a network of agents is given. However, there is no guarantee
that the resulting set of feasible control inputs in non-empty. In this chap-
ter we fully characterize the set of admissible control inputs for a group of
agents modeled as second order discrete time dynamic systems, which ensures
connectivity of the group in the same spirit as described earlier.

The contributions of the chapter are threefold. First, we consider a con-
trol system consisting of a double integrator with bounded control inputs.
For such a system, we define and characterize the admissible set that allows
the double integrator to remain inside disks. Second, we define a novel state-
dependent graph – the double-integrator disk graph – and give an existence
theorem for the connectivity maintenance problem for networks of second
order agents with respect to an appropriate version of this new graph. Fi-
nally, we consider a relevant optimization problem, where given a set of
desired control inputs for all the agents it is required to find the optimal
set of connectivity-maintaining control inputs. We cast this problem into a
standard quadratic programming problem and provide a distributed “flow-
control” algorithm to solve it.

The chapter is organized as follows. In Section 6.2, we define and char-
acterize the admissible sets for a double integrator to remain inside a disk
and based on this we define a new graph – the double-integrator disk graph.
In Section 6.3, we provide an existence theorem for the set of control inputs
for the whole network of second order agents that maintains connectivity
with respect to an appropriately scaled version of this new graph. We also
characterize and give an inner polytopic representation of the constraint set
for these connectivity-maintaining control inputs. In Section 6.4, we consider
the problem of searching this constraint set for the optimal set of controls in
a distributed way. Section 6.5 has some illustrative simulations which also
suggest an alternative way of achieving a weak form of flocking of the agents.
Finally we conclude with a few remarks about future work in Section 6.6.
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6.2 Preliminary developments

We begin with some notations. For d ∈ N, we let 0d and 1d denote the vectors
in Rd whose entries are all 0 and 1, respectively. We let ‖p‖ denote the
Euclidean norm of p ∈ Rd. For r ∈ R+ and p ∈ Rd, we let B(p, r) denote the
closed ball centered at p with radius r, i.e., B(p, r) = {q ∈ Rd | ‖p− q‖ ≤ r}.
For x, y ∈ Rd, we let x ¹ y denote component-wise inequality, i.e., xk ≤ yk

for k ∈ {1, . . . , d}. We let f : A ⇒ B denote a set-valued map; in other
words, for each a ∈ A, f(a) is a subset of B. We identify Rd × Rd with R2d.

6.2.1 Maintaining a double integrator inside a disk

For t ∈ N0, consider the discrete-time control system in R2d

p(t + 1) = p(t) + v(t),

v(t + 1) = v(t) + u(t),
(6.1)

where the norm of the control is upper-bounded by rctr ∈ R+, i.e., u(t) ∈
B(0d, rctr) for t ∈ N0. We refer to this control system as the discrete-time
double integrator in Rd or, more loosely, as a second-order system. Given
(p, v) ∈ R2d and {uτ}τ∈N0 ⊆ B(0d, rctr), let φ(t, (p, v), {uτ}) denote the
solution of (6.1) at time t ∈ N0 from initial condition (p, v) with inputs
u1, . . . , ut−1.

In what follows we consider the following problem: assume that the initial
position of (6.1) is inside a disk centered at 0d, find inputs that keep it inside
that disk. This task is impossible for general values of the initial velocity. In
what follows we identify assumptions on the initial velocity that render the
task possible.

For rpos ∈ R+, we define the admissible set at time zero by

Ad
0(rpos) = B(0d, rpos)× Rd.

For rpos, rctr ∈ R+, we define the admissible set for m time steps by

Ad
m(rpos, rctr) =

{
(p, v) ∈ R2d | ∃{uτ}τ∈[0,m−1] ⊆ B(0d, rctr)

s.t. φ(t, (p, v), {uτ}) ∈ Ad
0(rpos) ∀t ∈ [0,m]

}
,

and the admissible set by

Ad(rpos, rctr) =
{
(p, v) ∈ R2d | ∃{uτ}τ∈N0 ⊆ B(0d, rctr)

s.t. φ(t, (p, v), {uτ}) ∈ Ad
0(rpos), ∀t ∈ N0

}
.
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With slight abuse of notation we shall sometimes suppress the arguments in
the definitions of admissible sets. The following theorem establishes some
important properties of the admissible sets.

Theorem 6.1 (Properties of the admissible sets) For all d ∈ N and
rpos, rctr ∈ R+, the following statements hold:

(i) for all m ∈ N, Ad
m(rpos, rctr) ⊆ Ad

m−1(rpos, rctr) and

Ad(rpos, rctr) = lim
m→+∞

Ad
m(rpos, rctr) = lim

m→+∞
∩m

k=1Ad
k(rpos, rctr) ;

(ii) Ad(rpos, rctr) is a convex, compact set and is the largest controlled-
invariant1 subset of Ad

0(rpos);

(iii) Ad(rpos, rctr) is invariant under orthogonal transformations in the sense
that, if (p, v) ∈ Ad(rpos, rctr), then also (Rp, Rv) ∈ Ad(rpos, rctr) for all
orthogonal2 matrices R in Rd×d;

(iv) if 0 < r1 < r2, then Ad(rpos, r1) ⊂ Ad(rpos, r2) and Ad(r1, rctr) ⊂
Ad(r2, rctr).

Proof: The two facts in statement (i) are direct consequences of the defini-
tions of Ad

m and Ad. Regarding statement (ii), each Ad
m, m ∈ N, is closed, the

intersection of closed sets is closed, and, therefore, Ad = limm→+∞ ∩m
k=1Ad

k is
closed. To show that Ad is bounded it suffices to show that Ad

1 is bounded.
Note that (p, v) ∈ Ad

1 implies that there exists u ∈ B(0d, rctr) such that
(p, v) ∈ Ad

0 and (p+v, v+u) ∈ Ad
0. This, in turn, implies that p ∈ B(0d, rpos)

and p + v ∈ B(0d, rpos). Therefore, Ad
1 is bounded. Next, we prove that Ad

m

is convex. Given (p1, v1) and (p2, v2) in Ad
m, let u1 and u2 be controls that

ensure that φ(t, (pi, vi), {ui}) ∈ Ad
0, t ∈ [0,m], i ∈ {1, 2}. For λ ∈ [0, 1],

consider the initial condition (pλ, vλ) = (λp1 +(1−λ)p2, λv1 +(1−λ)v2) and
the input uλ = λu1 + (1− λ)u2, and note that, by linearity,

φ(t, (pλ, vλ), uλ) = λφ(t, (p1, v1), {u1})+(1−λ)φ(t, (p2, v2), {u2}), t ∈ [0,m].

Because φ(t, (p1, v1), {u1}) and φ(t, (p2, v2), {u2}) belong to the convex set
Ad

0, then also their convex combination does. Therefore, (pλ, vλ) belongs to

1A set is controlled invariant for a control system if there exists a feedback law such
that the set is positively invariant for the closed-loop system.

2A matrix R ∈ Rd×d is orthogonal if RRT = RT R = Id.
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Ad
m, and Ad

m is convex. Finally, Ad is convex because the intersection of
convex sets is convex.

Next, we show that Ad is controlled invariant. Given (p, v) ∈ Ad (with
corresponding control sequence {uτ}τ∈N0), we need to show that there exists a
control input x ∈ B(0d, rctr) such that φ(1, (p, v), x) ∈ Ad. Such input can be
chosen as x = u0. Indeed, the control sequence {uτ+1}τ∈N0 keeps the trajec-
tory starting from φ(1, (p, v), x) inside Ad

0 and, therefore, φ(1, (p, v), x) ∈ Ad.
Additionally, it is easy to see that Ad ⊂ Ad

0. Finally, we need to prove that
Ad is the largest controlled-invariant subset of Ad

0. Assume that there exists
Ad∗ with the same properties and larger than Ad. This means that there ex-
ists (p, v) ∈ Ad∗ \ Ad. This is equivalent to saying that ∃ τ ∗ ∈ N0 such that,
for every choice of the input u, φ(τ ∗, (p, v), u) /∈ Ad

0. But, since Ad∗ ⊂ Ad
0,

this leads to a contradiction.

Regarding statement (iii), observe that, if (p, v) ∈ Ad
0, then (Rp, Rv) ∈ Ad

0

and, if u ∈ B(0, rctr), then Ru ∈ B(0, rctr). Therefore, using again the lin-
earity of the maps φ, the proof follows. Regarding statement (iv), the two
results follow from the definition of Ad(rpos, rctr) and the facts that, for all
0 < r1 < r2, B(0, r1) ⊂ B(0, r2) and Ad

0(r1) ⊂ Ad
0(r2).

Next, we study the set-valued map that associates to each state in
Ad(rpos, rctr) the set of control inputs that keep the state inside Ad(rpos, rctr)
in one step. We define the admissible control set Ud(rpos, rctr) : Ad(rpos, rctr) ⇒
B(0d, rctr) by

Ud(rpos, rctr) · (p, v) = {u ∈ B(0d, rctr) | (p + v, v + u) ∈ Ad(rpos, rctr)},

or, equivalently,

Ud(rpos, rctr) · (p, v) = B(0d, rctr)∩{w− v | (p + v, w) ∈ Ad(rpos, rctr)}. (6.2)

Lemma 6.2 (Properties of the admissible control set) For all (p, v) ∈
Ad(rpos, rctr), the set Ud(rpos, rctr) · (p, v) is non-empty, convex and compact.
For generic (p, v) ∈ Ad(rpos, rctr), the set Ud(rpos, rctr) · (p, v) does not con-
tain 0d.

Proof: The non-emptiness of the set Ud(rpos, rctr)·(p, v) derives directly from
the definition of Ad(rpos, rctr). Clearly, from equation (6.2), Ud(rpos, rctr) ·
(p, v) is closed (it is the intersection of two closed sets). It is also bounded
(Ud(rpos, rctr) · (p, v) ⊂ B(0d, rctr)), hence it is compact. To prove that it is
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convex, we need to show the following: given (p, v) ∈ Ad(rpos, rctr), if there ex-
ist u1 and u2 in Ud(rpos, rctr)·(p, v) such that φ(1, (p, v), u1) and φ(1, (p, v), u2)
belong to Ad(rpos, rctr), then u12 = λu1 + (1 − λ)u2, λ ∈ [0, 1], belongs to
Ud(rpos, rctr) · (p, v), that is, φ(1, (p, v), u12) ∈ Ad(rpos, rctr). But this fact fol-
lows directly from the linearity of φ and the convexity of Ad(rpos, rctr). This
proves that Ud(rpos, rctr) · (p, v) is convex. The fact that it does not neces-
sarily contain the origin can be proven by contradiction as follows. Consider
a (p, v) ∈ Ad(rpos, rctr) such that v 6= 0d and Ud(rpos, rctr) · (p, v) contains
0d. This means that (p + v, v) also belongs to Ad(rpos, rctr). Now, either
Ud(rpos, rctr) · (p + v, v) does not contain 0d, in which case we have proved
the statement, or Ad(rpos, rctr) also contains (p + 2v, v). Continuing along
these lines, if it were true that Ud(rpos, rctr) · (p, v) contains the origin for
all (p, v) ∈ Ad(rpos, rctr), then one could show that (p + tv, v) belongs to
Ad(rpos, rctr) for all t ∈ N. However, Ad(rpos, rctr) is bounded by Theorem 6.1.
Hence, one can always find a t∗ ∈ N such that (p+ t∗v, v) ∈ Ad(rpos, rctr) but
(p+(t∗+1)v, v) /∈ Ad(rpos, rctr), thereby proving that Ud(rpos, rctr)·(p+t∗v, v)
does not contain 0d.

6.2.2 Computing admissible sets

We characterize Ad for d = 1 in the following result and we illustrate the
outcome in Figure 6.1.

Lemma 6.3 (Admissible set in 1 dimension) For rpos, rctr ∈ R+, the
following holds:

(i) A1(rpos, rctr) is the polytope containing the points (p, v) ∈ R2 satisfying

−rpos

m
− m− 1

2
rctr ≤ v +

p

m
≤ rpos

m
+

m− 1

2
rctr, (6.3)

for all m ∈ N, and p ∈ [−rpos, rpos];

(ii) If m̂(rpos, rctr) ∈ N is defined by

m̂(rpos, rctr) =

⌈
−1

2
+

√
1

4
+

4rpos

rctr

⌉
, (6.4)

then A1 = A1
m = A1bm(rpos,rctr)

, for m ≥ m̂(rpos, rctr).
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Proof: Regarding statement (i), it suffices to show that, for m ∈ N,
A1

m(rpos, rctr) is the set of points inA1
m−1(rpos, rctr) that satisfy equation (6.3).

If we show that this property holds for all m, then we can use statement (i)
of Theorem 6.1 to complete the proof. Consider the set of equations (6.1)
for m consecutive time indices after t. The solution of the linear system can
be written in terms of the state at instant t as

[
p(t + m)
v(t + m)

]
=

[
1 m
0 1

] [
p(t)
v(t)

]
+

m−1∑
τ=0

[
1 (m− 1− τ)
0 1

] [
0
1

]
u(t + τ), (6.5)

where we used the equality

Aτ =

[
1 1
0 1

]τ

=

[
1 τ
0 1

]
, τ ∈ N.

It is clear that the points on the boundary of A1
m have the property that the

maximum control effort is needed to enforce the constraint. In other words
we look for the points (p(t), v(t)) ∈ A1

0 with v(t) ≥ 0 (the case v(t) ≤ 0 can
be solved in a similar way) such that the points p(t + m) ≤ rcmm are reached
by using the maximum control effort u(t + τ) = −rctr, τ ∈ {0, . . . , m− 1}.

Substituting the expression of the control in (6.5) we obtain

p(t + m) = p(t) + mv(t)− rctr

m−1∑
τ=0

(m− 1− τ),

v(t + m) = v(t)−mrctr,

and using the equality
∑m−1

τ=0 (m− 1− τ) = m(m−1)
2

, we have

p(t + m) = p(t) + mv(t)− rctr
m(m− 1)

2
,

v(t + m) = v(t)−mrctr,
(6.6)

In order to belong to A1
m, the point (p(t), v(t)) must satisfy the constraint

p(t + τ) ≤ rcmm, τ ∈ {1, . . . , m}, or equivalently

v(t) ≤ −p(t)

τ
+

rcmm

τ
+ rctr

(τ − 1)

2
, τ ∈ {1, . . . ,m}.

Using the same procedure for the points in the half plane v(t) ≤ 0 (in this
case the control is u(t + τ) = rctr, τ ∈ {0, . . . ,m− 1}), it turns out that A1

m

is equal to the set of all pairs (p, v) ∈ A1
0 satisfying

−p

τ
− rcmm

τ
− τ − 1

2
rctr ≤ v ≤ −p

τ
+

rcmm

τ
+

τ − 1

2
rctr, τ ∈ {1, . . . , m}.
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By using statement (i) of Theorem 6.1 the proof is complete.

Regarding statement (ii), let us consider the case v(t) ≥ 0 and evaluate
the points on the boundary such that (p(t+m), v(t+m)) = (rcmm, 0), m ∈ N.
These points are obtained by substituting the above value of (p(t+m), v(t+
m)) in (6.6). The points obtained are (p, v) such that

p = rcmm −m
(m + 1)

2
rctr, m ∈ N0.

It is easy to see that m̂(rpos, rctr), as defined in equation (6.4), is the lowest
m such that p ≤ −rcmm.

p

v

m
=

1

m
=

1

m
= 2

m
= 2

m = 3

m = 3

−rpos

rpos

Figure 6.1: The admissible set A1 for generic values of rpos and rctr

Remarks 6.4 (i) If rctr ≥ 2rpos, then A1 = A1
1, that is, for sufficiently

large rctr/rpos, the admissible set is equal to the admissible set in 1 time
step.

(ii) The methodology for constructing A1(rpos, rctr) is related to the proce-
dure for constructing the so-called isochronic regions for discrete time
optimal control of double integrators, as outlined in [20]. ¤

Next, we introduce some definitions useful to provide an inner approxi-
mation of Ad when d ≥ 2. Given p ∈ Rd and v ∈ Rd \ {0d}, define p‖ ∈ R
and p⊥ ∈ Rd by

p = p‖
v

‖v‖ + p⊥,
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where p⊥ · v = 0. For rpos, rctr ∈ R+, define

Ad
‖(rpos, rctr) =

{
(p, v) ∈ B(0d, rpos)× Rd | v = 0d or

(p‖, ‖v‖) ∈ A1
(√

r2
pos − ‖p⊥‖2, rctr

)}
. (6.7)

Lemma 6.5 For rpos, rctr ∈ R+, Ad
‖(rpos, rctr) is a compact subset of Ad(rpos, rctr).

Proof: We begin by showing that definition (6.7) is equivalent to

Ad
‖(rpos, rctr) =

{
(p, v) ∈ Ad

0 | v = 0d or ∃{u‖τ}τ∈N0 ⊆ [−rctr, rctr]

s.t. φ
(
t, (p, v), {u‖τ} v

‖v‖
)
∈ Ad

0(rpos), ∀t ∈ N0

}
. (6.8)

To establish this equivalence, we use the definition of the set A1. For v 6= 0d,
we rewrite the solution of the system as

φ(t, (p, v), {uτ}) = φ‖(t, (p, v), {uτ}) v

‖v‖ + φ⊥(t, (p, v), {uτ}),

where φ⊥(t, (p, v), {uτ}) · v = 0 for all t ∈ N0. It is easy to see that, if
{uτ}τ∈N0 = {u‖τ}τ∈N0

v
‖v‖ , then φ⊥(t, (p, v), {uτ}) = (p⊥, 0d) for all t ∈ N0.

Therefore,

φ(t, (p, v), {uτ}) = φ‖(t, (p, v), {uτ}) v

‖v‖ + (p⊥, 0d).

Note that, if p = p‖ v
‖v‖+p⊥, then ‖p‖ ≤ rpos if and only if p‖ ≤

√
r2
pos − ‖p⊥‖2.

Therefore, the property φ
(
t, (p, v), {u‖τ} v

‖v‖

)
∈ Ad

0(rpos) is equivalent to

φ‖
(
t, (p, v), {u‖τ}

v

‖v‖
)
∈ A1

0

(√
r2
pos − ‖p⊥‖2

)
,

and, in turn, definitions (6.7) and (6.8) are equivalent. In order to prove that
Ad
‖(rpos, rctr) is compact, we simply observe that it is a closed subset of the

compact set Ad(rpos, rctr).

Remark 6.6 In what follows we use our representation of Ad
‖ to compute an

inner approximation for the convex set Ad, for d ≥ 2. For example, for fixed
p ∈ B(0d, rpos), we compute velocity vectors v such that (p, v) ∈ Ad by con-
sidering a sample of unit-length vectors w ∈ Rd and computing the maximum
allowable velocity v parallel to w according to equation (6.7). Furthermore,
we perform computations by adopting inner polytopic representations for the
various compact convex sets. ¤
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6.2.3 The double-integrator disk graph

We are now ready to introduce the notion of double integrator disk graph.

The following three examples of state dependent graphs play an important
role. First, given rpos ∈ R+, the disk graph Gdisk(rpos) is the state dependent
graph on Rd defined as follows: for {p1, . . . , pn} ⊂ Rd, the pair (pi, pj) is an
edge in Gdisk(rpos) · ({p1, . . . , pn}) if and only if

‖pi − pj‖ ≤ rpos ⇐⇒ pi − pj ∈ B(0d, rpos).

Second, given rpos, rctr ∈ R+, the double-integrator disk graph Gdi-disk(rpos, rctr)
is the state dependent graph on R2d defined as follows: for {(p1, v1), . . . , (pn, vn)} ⊂
R2d, the pair ((pi, vi), (pj, vj)) is an edge if and only if the relative positions
and velocities satisfy

(pi − pj, vi − vj) ∈ Ad(rpos, rctr).

Third, it is convenient to define the disk graph also as a state dependent
graph on R2d by stating that ((pi, vi), (pj, vj)) is an edge if and only if (pi, pj)
is an edge of the disk graph on Rd. We illustrate the first two graphs in
Figure 6.2.

Figure 6.2: The disk graph and the double-integrator disk graph in R2 for 20
agents with random positions and velocities.

Remark 6.7 As it is well known, the disk graph is invariant under rigid
transformations and reflections. Loosely speaking, the double integrator disk
graph is invariant under the following class of transformations: position and
velocities of the agents may be expressed with respect to any rotated and trans-
lated frame that is moving at constant linear velocity. These transformations
are related to the classic Galilean transformations in geometric mechanics.¤
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6.3 Connectivity constraints among second-

order agents

In this section we state the model, the notion of connectivity, and a sufficient
condition that guarantees connectivity can be preserved.

6.3.1 The connectivity maintenance problem

We begin by introducing the notion of network of robotic agents with second-
order dynamics in Rd. Let n be the number of agents. Each agent has the
following computation, motion control, and communication capabilities. For
i ∈ {1, . . . , n}, the ith agent occupies a location p[i] ∈ Rd, moves with velocity
v[i] ∈ Rd, according to the discrete-time double integrator dynamics in (6.1),
i.e.,

p[i](t + 1) = p[i](t) + v[i](t),

v[i](t + 1) = v[i](t) + u[i](t),
(6.9)

where the norm of all controls u[i](t), i ∈ {1, . . . , n}, t ∈ N0, is upper-bounded
by rctr ∈ R+. The communication model is the following. The processor of
each agent has access to the agent location and velocity. Each agent can
transmit information to other agents within a distance rcmm ∈ R+. We
remark that the control bound rctr and the communication radius rcmm are
the same for all agents.

Remarks 6.8 (i) Our network model assumes synchronous execution, al-
though it would be important to consider more general asynchronous
networks.

(ii) We will not address the correctness of our algorithms in the presence
of measurement errors or communication quantization. ¤

We now state the control design problem of interest.

Problem 6.9 (Connectivity maintenance) Choose a state dependent graph
Gtarget on R2d and design (state dependent) control constraints sets with the
following property: if each agent’s control takes values in the control con-
straint set, then the agents move in such a way that the number of connected
components of Gtarget (evaluated at the agents’ states) does not increase with
time. ¤
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This objective is to be achieved with the limited information available
through message exchanges between agents. This problem was originally
stated and solved for first-order agents in [4].

6.3.2 A known result for first-order agents

In [4], a connectivity constraint was developed for a set of agents modeled
by first-order discrete-time dynamics:

p[i](t + 1) = p[i](t) + u[i](t).

Here the graph whose connectivity is of interest, is the disk graph Gdisk(rcmm)
over the vertices {p[1](t), . . . , p[n](t)}. Network connectivity is maintained by
restricting the allowable motion of each agent. In particular, it suffices to
restrict the motion of each agent as follows. If agents i and j are neighbors
in the rcmm-disk graph Gdisk(rcmm) at time t, then their positions at time t+1

are required to belong to B
(

p[i](t)+p[j](t)
2

, rcmm

2

)
. In other words, connectivity

between i and j is maintained if

u[i](t) ∈ B
(p[j](t)− p[i](t)

2
,
rcmm

2

)
,

u[j](t) ∈ B
(p[i](t)− p[j](t)

2
,
rcmm

2

)
.

The constraint is illustrated in Figure 6.3.

pj

pi

Figure 6.3: Starting from p[i] and p[j], the agents are restricted to move inside the
disk centered at p[i]+p[j]

2 with radius rcmm
2 .

Note that this constraint takes into account only the positions of the
agents; this fact can be attributed to the first-order dynamics of the agents.
We wish to construct a similar constraint for agents with second order dy-
namics. It is reasonable to expect that this new constraint will depend on
positions as well as velocities of the neighboring agents.
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6.3.3 An appropriate graph for the connectivity main-
tenance problem for second-order agents

We begin working on the stated problem with a negative result regarding
two candidate target graphs.

Lemma 6.10 (Unsuitable graphs) Consider a network of n agents with
double integrator dynamics (6.9) in Rd. Let rcmm be the communication range
and let rctr be the control bound. Let Gtarget be either Gdisk(rcmm) on R2d or
Gdi-disk(rcmm, 2rctr). There exist states {(p[i], v[i])}i∈{1,...,n} such that

(i) the graph Gtarget at {(p[i], v[i])}i∈{1,...,n} is connected, and

(ii) for all {u[i]}i∈{1,...,n} ⊆ B(0d, rctr), the graph Gtarget at {(p[i] + v[i], v[i] +
u[i])}i∈{1,...,n}, is disconnected.

Proof: The proof of the statement for Gtarget = Gdisk(rcmm) is straightfor-
ward. Consider two agents whose relative position and velocity belong to
Ad

0 \ Ad
1. Then, after one time step, the two agents will not be connected

in Gdisk(rcmm) no matter what their controls are. Next, consider the case
Gtarget = Gdi-disk(rcmm, 2rctr). For d = 1, let v̄ be the maximal velocity in
A1(rcmm, 2rctr) at p = 0, that is, v̄ = min{rcmm/m + (m− 1)rctr | m ∈ N}.
Take three agents with positions p[1] = p[2] = p[3] = 0 and velocities v[1] = −v̄,
v[2] = 0, and v[3] = v̄. At this configuration, the graph Gdi-disk(rcmm, 2rctr)
contains two edges: between agent 1 and 2 and between agent 2 and 3. Con-
nectivity is preserved after one time step if agent 2 remains connected to
both agents 1 and 3 after one time step. However, to remain connected with
agent 1, its control u[2] must be equal to −rctr and, analogously, to remain
connected with agent 3, its control u[2] must be equal to +rctr. Clearly this
is impossible.

Remarks 6.11 (i) The result in Lemma 6.10 on the double integrator
graph has the following interpretation. Assume that agent i has two
neighbors j and k in the graph Gdi-disk(rcmm, rctr). By definition of the
neighboring law for this graph, we know that there exists bounded con-
trols for i and j to maintain the ((p[i], v[i]), (p[j], v[j])) link and that there
exists bounded controls for i and k to maintain the ((p[i], v[i]), (p[k], v[k]))
link. The lemma states that, for some states of the agents i, j, and k,
there might not exist controls that maintain both links simultaneously.



98 6. Maintaining connectivity in second order wireless networks

(ii) In other words, Lemma 6.10 shows how the disk graph Gdisk(rcmm) and
the double integrator disk graph Gdi-disk(rcmm, 2rctr) are not appropriate
choices for the connectivity maintenance problem. ¤

The following theorem suggests that an appropriate scaling of the control
bound is helpful in identifying a suitable state dependent graph for Prob-
lem 6.9.

Theorem 6.12 (A scaled double-integrator disk graph is suitable)
Consider a network of n agents with double integrator dynamics (6.9) in Rd.
Let rcmm be the communication range and let rctr be the control bound. For
k ∈ {1, . . . , n− 1}, define

ν(k) =
2

k
√

d
.

Assume that k ∈ {1, . . . , n − 1} and the state {(p[i], v[i])}i∈{1,...,n} together
have the property that the graph Gdi-disk(rcmm, ν(k)rctr) at {(p[i], v[i])}i∈{1,...,n}
contains a spanning tree T with diameter at most k. Then there exists
{u[i]}i∈{1,...,n} ⊆ B(0d, rctr) such that if ((p[i], v[i]), (p[j], v[j])) is an edge of T ,
then ((p[i]+v[i], v[i]+u[i]), (p[j]+v[j], v[j]+u[j])) is an edge of Gdi-disk(rcmm, ν(k)rctr)
at {(p[i] + v[i], v[i] + u[i])}i∈{1,...,n}.

These results are based upon Shostak’s Theory for systems of inequalities,
as exposed in [5]. We provide the proof in Appendix B. The following results
are immediate consequences of this theorem.

Corollary 6.13 (Simple sufficient condition) With the same notation in
Theorem 6.12, define νmin = 2

(n−1)
√

d
. Assume that the state {(p[i], v[i])}i∈{1,...,n}

is such that the graph Gdi-disk(rcmm, νminrctr) is connected at {(p[i], v[i])}i∈{1,...,n}.
Then

(i) there exists {u[i]}i∈{1,...,n} ⊆ B(0d, rctr), such that Gdi-disk(rcmm, νminrctr)
is also connected at {(p[i] + v[i], v[i] + u[i])}i∈{1,...,n}; and

(ii) if T is a spanning tree of Gdi-disk(rcmm, νminrctr) at {(p[i], v[i])}i∈{1,...,n},
then there exists {u[i]}i∈{1,...,n} ⊆ B(0d, rctr), such that, for all edges
((p[i], v[i]), (p[j], v[j])) of T , it holds that ((p[i] + v[i], v[i] + u[i]), (p[j] +
v[j], v[j] + u[j])) is an edge of Gdi-disk(rcmm, νminrctr) at {(p[i] + v[i], v[i] +
u[i])}i∈{1,...,n}.
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Remark 6.14 (Scaling of νmin with n) The condition νmin = 2√
d(n−1)

im-

plies that according to the sufficient conditions in Corollary 6.13, as the num-
ber of agents grows, the velocities of the agents must be closer and closer in
order for the agents to be able to remain connected.

If Gdi-disk(rcmm, ν(k)rctr) at {(p[i], v[i])}i∈{1,...,n} is not connected for some
k, then Theorem 6.12 applies to its connected components. In what follows
we fix k and without loss of generality assume the graph Gdi-disk(rcmm, ν(k)rctr)
at {(p[i], v[i])}i∈{1,...,n} to be connected. ¤

Remark 6.15 (Distributed computation of connectivity) Each agent
can compute its neighbors in the graph Gdi-disk(rcmm, ν(k)rctr) just by commu-
nicating with its neighbors in Gdisk(rcmm) and exchanging with them position
and velocity information. Alternatively, this computation may also be per-
formed if each agent may sense relative position and velocity with all other
agents at a distance no larger than rcmm. ¤

Remark 6.16 (Distributed computation of spanning trees) It is pos-
sible to compute spanning trees in networks via standard depth-first search
distributed algorithms. It is also possible [8] to distributively compute a min-
imum diameter spanning tree in a network. ¤

6.3.4 The control constraint set

We now concentrate on two agents with indices i and j. For t ∈ N0, we
define the relative position, velocity and control by p[ij](t) = p[i](t) − p[j](t),
v[ij](t) = v[i](t) − v[j](t) and u[ij](t) = u[i](t) − u[j](t), respectively. It is easy
to see that

p[ij](t + 1) = p[ij](t) + v[ij](t),

v[ij](t + 1) = v[ij](t) + u[ij](t).

Assume that agents i, j are connected in Gdi-disk(rcmm, ν(k)rctr) at time t.
By definition, this means that the relative state (p[ij](t), v[ij](t)) belongs to
Ad(rcmm, ν(k)rctr). If this connection is to be maintained at time t + 1, then
the relative control at time t must satisfy

u[i](t)− u[j](t) ∈ Ud(rcmm, ν(k)rctr) · (p[ij](t), v[ij](t)). (6.10)

Also, implicit are the following bounds on individual control inputs u[i](t)
and u[j](t):

u[i](t) ∈ B(0d, rctr), u[j](t) ∈ B(0d, rctr). (6.11)
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This discussion motivates the following definition.

Definition 6.17 Given rcmm, rctr, ν(k) ∈ R+ and given a set E of edges
in Gdi-disk(rcmm, ν(k)rctr) at {(p[i], v[i])}i∈{1,...,n}, the control constraint set is
defined by

Ud
E(rcmm, rctr, ν(k)) · ({p[i], v[i]}i∈{1,...,n})

= {(u[1], . . . , u[n]) ∈ B(0d, rctr)
n | ∀((p[i], v[i]), (p[j], v[j])) ∈ E,

u[i] − u[j] ∈ Ud(rcmm, ν(k)rctr) · (p[i] − p[j], v[i] − v[j])}.

In other words, the control constraint set for an edge set E is the set
of controls for each agent with the property that all edges in E will be
maintained in one time step.

Remark 6.18 We can now interpret the results in Theorem 6.12 as follows.

(i) To maintain connectivity between any pair of connected agents, we
should simultaneously handle constraints corresponding to all edges of
Gdi-disk(rcmm, ν(k)rctr). This might render the control constraint set
empty.

(ii) However, if we only consider constraints corresponding to edges be-
longing to a spanning tree T of Gdi-disk(rcmm, ν(k)rctr), then the set
Ud

T (rcmm, ν(k)rctr) · ({p[i], v[i]}i∈{1,...,n}) is guaranteed to be nonempty.
¤

Let us now provide a concrete representation of the control constraint set.
Given a pair i, j of connected agents, the admissible control set Ud(rcmm, ν(k)rctr)·
(p[ij], v[ij]) is convex and compact (Lemma 6.2). Hence, we can fit a polytope
with Npoly sides inside it. This approximating polytope leads to the following
tighter version of the constraint in (6.10):

(Cη
ij)

T (u[i] − u[j]) ≤ wη
ij, η ∈ {1, . . . , Npoly}, (6.12)

for some appropriate vector Cη
ij ∈ Rd and scalar wη

ij ∈ R. Similarly, one can
compute an inner polytopic approximation of the closed ball B(0d, rctr) and
write the following linear vector inequalities:

(Cη
iθ)

T u[i] ≤ wη
iθ, η ∈ {1, . . . , Npoly}, (6.13)

where the symbol θ has the interpretation of a fictional agent. In this way,
we have cast the original problem of finding a set of feasible control inputs
into a satisfiability problem for a set of linear inequalities.
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Remark 6.19 Rather than a network-wide control constraint set, one might
like to obtain decoupled constraint sets for each individual agent. However,
(1) it is not clear how to design a distributed algorithm to perform this com-
putation, (2) such an algorithm will likely have large communication require-
ments, and (3) such a calculation might lead to a very conservative estimate
for the decoupled control constraint sets. Therefore, rather than explicitly de-
coupling the control constraint sets, we next focus on a distributed algorithm
to search the control constraint set for feasible controls that are optimal ac-
cording to some criterion. ¤

6.4 Distributed control computation

In this section we formulate and solve the following optimization problem:
given an array of desired control inputs Udes = (u

[1]
des, . . . , u

[n]
des)

T ∈ (Rd)n, find,
via local computation, the array U = (u[1], . . . , u[n]) belonging to the control
constraint set, that is closest to the desired array Udes. To formulate this
problem precisely, we need some additional notations. Let E be a set of edges
in the undirected graph Gdi-disk(rcmm, ν(k)rctr) at {(p[i], v[i])}i∈{1,...,n}. To deal
with the linear inequalities of the form (6.12) and (6.13) associated to each
edge of E, we introduce an appropriate multigraph. A multigraph (or multiple
edge graph) is, roughly speaking, a graph with multiple edges between the
same vertices. More formally, a multigraph is a pair (Vmult, Emult), where
Vmult is the vertex set and the edge set Emult contains numbered edges of the
form (i, j, η), for i, j ∈ V and η ∈ N, and where Emult has the property that
if (i, j, η) ∈ Emult and η > 1, then also (i, j, η − 1) ∈ Emult. In what follows,
we let Gmult denote the multigraph with vertex set {1, . . . , n} and with edge
set Emult = {(i, j, η) ∈ {1, . . . , n}2 × {1, . . . , Npoly} | ((p[i], v[i]), (p[j], v[j])) ∈
E, i > j}. Note that to each element (i, j, η) ∈ Emult is associated the
inequality (Cη

ij)
T (u[i] − u[j]) ≤ wη

ij. We are now ready to formally state
the optimization problem at hand in the form of the following quadratic
programming problem:

minimize
1

2

n∑
i=1

‖u[i] − u
[i]
des‖2,

subj. to (Cη
ij)

T (u[i] − u[j]) ≤ wη
ij, for (i, j, η) ∈ Emult,

(Cη
iθ)

T u[i] ≤ wη
iθ, for i ∈ {1, . . . , n}, η ∈ {1, . . . , Npoly}.

(6.14)
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Here, somehow arbitrarily, we have adopted the 2-norm to define the cost
function.

Remark 6.20 (Feasibility) If E is a spanning tree of Gdi-disk(rcmm, νrctr)
at a connected configuration {(p[i], v[i])}i∈{1,...,n}, then the control constraint
set Ud

E(rcmm, rctr, ν(k)) · ({p[i], v[i]}i∈{1,...,n}) is guaranteed to be non-empty by
Theorem 6.12. In turn, this implies that the optimization problem (6.14) is
feasible. ¤

6.4.1 Solution via duality: the projected Jacobi method

The problem (6.14) can be written in a compact form as:

minimize
1

2
‖U − Udes‖2,

subj. to BT
multU ¹ w,

for appropriately defined matrix Bmult and vector w. A dual “projected
Jacobi method” algorithm for the solution of this standard quadratic program
is described in Appendix A. According to this algorithm, let λ∗ be the value
of Lagrange multipliers at optimality. Then the global minimum for U is
achieved at

U∗ = Udes −Bmultλ
∗. (6.15)

The projected Jacobi iteration for each component of λ is given by

λα(t + 1) = max
{

0, λα(t)− τ

(BT
multBmult)αα

(
(w −BT

multUdes)α

+

Npoly(e+n)∑

β=1

(BT
multBmult)αβλβ(t)

)}
, (6.16)

where α ∈ {1, . . . , Npoly(e + n)} and τ is the step size parameter. We can
select τ = 1

Npoly(e+n)
to guarantee convergence.

6.4.2 A distributed dual algorithm

Because of the particular structure of the matrix BT
multBmult, the iterations

(6.16) can be implemented in a distributed way over the original graph G.
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To highlight the distributed structure of the iteration we denote the com-
ponents of λ by referring to the nodes that they share and the inequal-
ity they are related to. In particular for each edge in Gmult, the corre-
sponding Lagrange multiplier will be denoted as λη

ij if the edge goes from
node i to node j, i > j, and the edge is associated to the inequality con-
straint Cη

ij(u
[i] − u[j]) ≤ wη

ij. This makes up the first Npolye entries of
the vector λ. To be consistent with this notation, the next Npolyn en-

tries will be denoted λ1
1θ, . . . , λ

Npoly

1θ , . . . , λ1
nθ, . . . , λ

Npoly

nθ . Additionally, define
N (i) = {j ∈ {1, . . . , n} | {(p[i], v[i]), (p[j], v[j])} ∈ E}∪{θ}. The symbol θ has
the interpretation of a fictional node.

Defining λη
ij := λη

ji and Cη
ij := −Cη

ji for i < j, we can write equations
(6.15) and (6.16) in components as follows. Equation (6.15) reads, for i ∈
{1, . . . , n},

u[i]∗ = u
[i]
des −

∑

k∈N (i)

Npoly∑
η=1

Cη
ikλ

η
ik.

One can easily work an explicit expression for matrix product BT
multBmult

in (6.16). Then, equation (6.16) reads, for (i, j, η) ∈ Emult,

λη
ij(t + 1) = max



0, λη

ij(t)−
τ

2(Cη
ij)

T Cη
ij

·

 ∑

k∈N (i)

Npoly∑
σ=1

(
(Cη

ij)
T Cσ

ikλ
σ
ik

)
+

∑

k∈N (j)

Npoly∑
σ=1

(
(Cη

ji)
T Cσ

jkλ
σ
jk

)

+ wη
ij − (Cη

ij)
T (u

[i]
des − u

[j]
des)






 ,

together with, for i ∈ {1, . . . , n}, η ∈ {1, . . . , Npoly},

λη
iθ(t + 1) = max

{
0, λη

iθ(t)

− τ

(Cη
iθ)

T Cη
iθ

( ∑

k∈N (i)

Npoly∑
σ=1

((Cη
iθ)

T Cσ
ikλ

σ
ik) + wη

iθ − (Cη
iθ)

T u
[i]
des

)}
.

We distribute the task of running iterations for these Npoly(e + n) La-
grange multipliers among the n agents as follows: an agent i carries out the
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updates for all quantities λη
iθ and all λη

ij for which i > j. By means of this
partition and by means of iterated one-hop communication among agents, it
is possible to compute the global solution for the optimization problem (6.14)
in a distributed fashion over the double integrator disk graph.

6.5 Simulations

To illustrate our analysis we focus on the following scenario. For the two
dimensional setting, i.e., for d = 2, we assume that there are n = 5 agents
with (randomly chosen) initial condition and such that they are connected
according to Gdi-disk. The bound for the control input is rctr = 2 and the
communication radius is rcmm = 10.

In the first scenario we assign to each agent a random value, chosen from
a normal distribution with zero mean and r2

ctr variance, at each time step as
desired control. In Figures 6.4a and 6.4b the positions and velocities of the
agents with respect to time are plotted. In Figure 6.4c the distances between
agents which are neighbors in the spanning tree are shown. The distances are
always less than rcmm = 10, which means that the graph remains connected.
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Figure 6.4: Random connected motion for 5 agents in the plane (d = 2)
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In the second scenario we assigned to one of the agents a derivative feed-
back control ux(p, v) = (vx− 2), uy(p, v) = (vy − 5) as desired input. For the
other agents the desired input is set to zero. We show the agent trajectories
in Figure 6.5a, the velocities of the agents with respect to time in Figure 6.5b,
and the distances between agents which are neighbors in the spanning tree
in Figure 6.5c. Notice that the agents move with approximately identical ve-
locity reaching a configuration in which all of them are at the limit distance
rcmm = 10. The interesting aspect of this simulation is that the mainte-
nance of connectivity leads to the accomplishment of apparently unrelated
coordination tasks as velocity alignment and cohesiveness. This numerical
result illustrate how our connectivity maintenance approach might indeed
be a starting point for novel investigations into the problem of flocking with
connectivity.
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Figure 6.5: Velocity alignment and cohesiveness for 5 agents in the plane (d = 2)
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6.6 Discussion

We provide distributed algorithms to enforce connectivity among networks of
agents with double-integrator dynamics. Future directions of research include
(i) evaluating the communication complexity of the proposed distributed dual
algorithm and possibly designing faster ones, (ii) studying the relationship
between the connectivity maintenance problem and the platooning and mesh
stability problem, and (iii) investigating the flocking phenomenon and de-
signing flocking algorithms which do not rely on a blanket assumption of
connectivity.



Chapter 7

Network abstract linear
programming

In this chapter we identify a novel class of distributed optimization prob-
lems, namely a networked version of abstract linear programming. For such
problems we propose distributed algorithms for networks with various con-
nectivity and/or memory constraints.

7.1 Introduction

This chapter focuses on a class of distributed optimization problems. We
study abstract linear programming, that is, a generalized version of linear
programming that was introduced by Matousĕk, Sharir and Welzl in [49]
and extended by Gärtner in [21]. Abstract linear programming is applicable
also to some geometric optimization problems, such as the minimum enclos-
ing ball, the minimum enclosing stripe and the minimum enclosing annulus.
These geometric optimization problems are relevant in the design of efficient
robotic algorithms for minimum-time formation control problems.

Linear programming and its generalizations have received widespread at-
tention in the literature. The following references are most relevant in our
treatment. The earliest (deterministic) algorithm that solves a linear pro-
gram in a fixed number of variables subject to n linear inequalities in time
O(n) is given in [51]. An efficient randomized incremental algorithm for lin-
ear programming is proposed in [49], where a linear program in d variables
subject to n linear inequalities is solved in expected time O(d2n+eO(

√
d log d));

the expectation is taken over the internal randomizations executed by the al-
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gorithm. An elegant survey on randomized methods in linear programming
is [22]. The survey [1] discusses the application of abstract linear program-
ming to a number of geometric optimization problems. Regarding parallel
computation approaches to linear programming, we only note that linear
programs with n linear inequalities can be solved [2] by n parallel processors
in time O((log log(n))d). The approach in [2] and the ones in the references
therein are, however, limited to parallel random-access machines (usually
denoted PRAM), where a shared memory is readable and writable to all pro-
cessors. In this chapter, we focus on networks described by arbitrary graphs
and on robotic networks described by geometric graphs.

The contributions of this chapter are two-fold. First, we identify a class
of distributed optimization problems that appears to be novel and of intrin-
sic interest. Basically, we show how to formulate an abstract linear program
over a network of processors. Second, we propose a novel simple algorithmic
methodology to solve these problems in networks with various connectivity
and/or memory constraints. Specifically, we propose three algorithms. The
first algorithm is suitable for time-dependent networks, whose nodes have
bounded in-degree that has to be designed in order to deal with bounded
computation time between two communication rounds. The second algo-
rithm, for time-dependent networks, manages bounded computation time
while allowing free in-degree. However it needs arbitrarily large memory
(depending on the maximum in-degree). Finally, the third algorithm man-
ages both bounded computation time and bounded memory with arbitrarily
large in-degree, but works only on time-independent networks. We prove
correctness of the algorithms and establish halting conditions.

The chapter is organized as follows. Section 7.2 introduces abstract linear
programs after a short review on linear programming. Section 7.3 contains
the definition of network abstract linear programs and the proposed dis-
tributed algorithms. Finally, in Section 7.4 we draw conclusions and suggest
future perspectives.

7.2 Abstract linear programming

In this section we present an abstract framework that captures a wide class of
optimization problems including linear programming and various geometric
optimization problems. These problems are known as abstract linear pro-
grams (or LP-type problems). They can be considered a generalization of
linear programming in the sense that they share some important properties.
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A comprehensive analysis of these problems may be found for example in [1].

7.2.1 Linear Programming

Before describing this abstract framework, we revise main features of Linear
Programming. LP problems are probably the most studied optimization
problems.

We refer to the linear programming problem in the following standard
form. Given variables x = (x1, . . . , xd) and constraints aix ≤ bi, i ∈ {1, . . . , n},
find x which maximizes the value {c·x|Ax ≤ b}. Geometrically, this is equiva-
lent to finding a vertex x∗ extreme in some direction φ within the polyhedron
P defined by the intersection of a set H of n closed halfspaces in Rd. Fig-
ure 7.1 provides an example. An good reference for linear programming and,
in general, convex programming is [7].

Figure 7.1: Geometric linear program

7.2.2 Abstract framework

Let us consider optimization problems specified by a pair (H, ω), where H is
a finite set, and ω : 2H → Ω is a function with values in a linearly ordered set
(Ω,≤); we assume that Ω has a minimum value −∞. The elements of H are
called constraints, and for G ⊂ H, ω(G) is called the value of G. Intuitively,
ω(G) is the smallest value attainable by a certain objective function while
satisfying the constraints of G. An optimization problem of this sort is called
abstract linear program if the following axioms are satisfied:

(i) Monotonicity : if F ⊂ G ⊂ H, then

ω(F ) ≤ ω(G);
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(ii) Locality : if F ⊂ G ⊂ H with −∞ < ω(F ) = ω(G), then, for all h ∈ H,

ω(G) < ω(G ∪ {h}) =⇒ w(F ) < w(F ∪ {h}).

A set B ⊂ H is minimal if ω(B) > ω(B′) for all proper subsets B′ of B. A
minimal set B with −∞ < ω(B) is a basis. Given G ⊂ H, a basis of G is
a minimal subset of constraints B ⊂ G, such that −∞ < ω(B) = ω(G). A
constrained h is said to be violated by G, if ω(G) < ω(G∪{h}). A constraint
h is extreme in G if ω(G) < ω(G \ {h}).

The solution of an abstract linear program (H,ω) is a minimal set BH ⊂
H with the property that ω(BH) = ω(H). The combinatorial dimension δ of
(H,ω) is the maximum cardinality of any basis. Finally, an abstract linear
program is called basis regular if for any basis with card(B) = δ and any
constraint h ∈ H, every basis of B ∪ {h} has the same cardinality of B. We
now define two important primitive operations that are useful in the solution
of the abstract linear program:

(i) Violation test : given a constraint h and a basis B, it tests whether h
is violated by B; we denote this primitive by Viol(B, h);

(ii) Basis computation: given a constraint h and a basis B, it computes a
basis of B ∪ {h}. we denote this primitive by Basis(B, h).

Remark 7.1 (Examples of abstract linear programs) We present three
geometric examples that will be useful later in the chapter.

(i) Smallest enclosing ball: Given n points in Rd, compute the center and
radius of the ball of smallest volume containing all the points. This
problem has combinatorial dimension d + 1.

(ii) Smallest enclosing stripe: Given n points in R2 in generic positions1,
compute the center and the width of the stripe of smallest width con-
taining all the points. This problem has combinatorial dimension 5.

(iii) Smallest enclosing annulus: Given n points in R2, compute the center
and the two radiuses of the annulus of smallest area containing all the
points. This problem has combinatorial dimension 4.

These three problems are illustrated in Figure 7.2. Numerous other geomet-

1The notion of generic positions will be clarified in the next chapter
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Figure 7.2: Smallest enclosing ball, stripe and annulus

ric optimization problems can be cast as abstract linear programs. Exam-
ples include computing the smallest enclosing ellipsoid, the largest ellipsoid
in a polytope, the smallest enclosing orthotope, the distance between convex
polytopes and others. More examples are discussed in [49, 21, 22, 1] and
references therein. ¤

Remark 7.2 A surprising feature of abstract linear programs is that some
of them are nonlinear and non-convex programs; see [1]. ¤

7.2.3 Randomized sub-exponential algorithm

A randomized algorithm for solving abstract linear programs has been pro-
posed in [49]. Such algorithm has linear expected running time in terms of
the number of constraints whenever the combinatorial dimension δ is fixed
and subexponential in δ. The model of computation used to determine the
complexity is the real RAM, which is widely used in computational geom-
etry: each arithmetic operation with real numbers (the allowed inputs of
the algorithm) is charged unit cost. Sometimes this is also referred to as
combinatorial complexity.

The algorithm, called SUBEX lp, has a recursive structure and is based
on the two primitives introduced above, i.e., the violation test and the basis
computation primitives. For simplicity, we assume here that such primitives
may be implemented in time Θ(1) with respect to the number of constraints.
Given a set of constraints G and a candidate basis C ⊂ G, the recursive
algorithm is as follows.
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function
SUBEX lp(G,C)

if G = C, then
return C

else
choose a random h ∈ G \ C
B := SUBEX lp(G \ {h}, C)
if Viol(B, h), i.e., h is vio-
lated by B, then

return
SUBEX lp(G, Basis(B, h))

else
return B

end if
end if

For the abstract linear program (H, ω), the algorithm is invoked with

SUBEX lp(H, B),

given any initial candidate basis B.

In [49] the expected completion time for the SUBEX lp algorithm was
shown to be in O(d2n+eO(

√
d log d)) for basis regular abstract linear programs.

In [22] the result was extended to problems that are not basis regular.

7.3 Network abstract linear programming

In this section we define a network abstract linear program and propose novel
distributed algorithms to solve it.

7.3.1 Problem statement

Informally we can say that a network abstract linear program consists of three
main elements: a network, an abstract linear program and a mapping that
associates to each constraint of the abstract linear program a node of the
network. A more formal definition is the following.

Definition 7.3 A network abstract linear program (NALP) is a tuple (G, (H, ω),B)
consisting of
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(i) G = (I, E), a communication digraph;

(ii) (H, ω), an abstract linear program;

(iii) B : H → I, a surjective map called constraint distribution map. ¤

The solution of the network abstract linear program is attained when all
processor in the network have computed a solution to the abstract linear
program.

Remark 7.4 Our definition allows for various versions of network abstract
linear programs. Regarding the constraint distribution map, the most natural
case to consider is when the constraint distribution map is bijective. In this
case one constraint is assigned to each node. A similar situation occurs when
multiple constraints are assigned to each node. More complex distribution
laws are also interesting depending on the computation power and memory
of the processors in the network. In what follows, we assume B to be bijective.
¤

7.3.2 Distributed algorithms

Next we define three distributed algorithms that solve network abstract lin-
ear programs. First, we describe a synchronous version that is well suited for
time-dependent networks whose nodes have bounded computation time and
memory, but also bounded in-degree or equivalently arbitrary in-degree, but
also arbitrary computation time and memory. Then we describe two varia-
tions that take into account the problem of dealing with arbitrary in-degree
versus short computation time and small memory. The second version of
the algorithm is suited for time-dependent networks that have arbitrary in-
degree and bounded computation time, but are allowed to store arbitrarily
large amount of information, in the sense that the number of stored messages
may depend on the number of nodes of the network. The third algorithm
considers the case of time-independent networks with arbitrary in-degree and
bounded computation time and memory.

In the algorithms we consider a uniform network S with communication
digraph G = (I, Ecmm) and a network abstract linear program (G, (H, ω),B).
We assume B to be bijective, that is, the set of constraints H has dimension
n, H = {h1, · · · , hn}. The combinatorial dimension is δ.

Here is an informal description of what we shall refer to as the FloodBasis
algorithm:
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[Informal description] Each process has a logical state of δ + 1
variables taking values in H. The first δ components represent the
current value of the basis to compute, while the last element is the
constraint assigned to that node. At the start round the process
initializes every component of the basis to its constraint, then, at
each communication round, performs the following tasks: (i) it
acquires from its neighbors (a message consisting of) their current
basis; (ii) it executes the SUBEX lp algorithm over the constraint
set given by the collection of its and its neighbors’ basis and its
constraint (that it maintains in memory), thus computing a new
basis; (iii) it updates its logical state and message using the new
basis obtained in (ii).

The algorithm is described formally in the table.

Distributed algorithm: FloodBasis

Goal: Solve NALP

Message alphabet: M = H ∪ {null}
Logical state: w[i] = (B[i], h[i])

B[i] ∈ Hδ, h[i] ∈ H

Initialization: B[i] = (h[i], · · · , h[i]), h[i] = hi

function msg(w[i], j)

1: return B[i]

function stf(w[i], y)

1: collect y[i] := {msg(w[j], i) | j ∈ NI(i)}
2: collect Hi := (y[i], w[i])

3: compute B[i] := SUBEX lp(Hi, B
[i])

4: return (B[i], h[i])

In the second scenario we work with a time-dependent network with no
bounds on the in-degree of the nodes and on the memory size. In this setting
the execution of the SUBEX lp may exceed the communication round length.
In order to deal with this problem, we slightly change the network model as
described in Section 5.3 of Chapter 5, so that each process may execute the
state transition function “asynchronously”, in the sense that the time-length
of the execution may take multiple rounds. If that happens, the message
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generation function in each intermediate round is called using the logical
state of the previous round. Here is an informal description of what we shall
refer to as the FloodBasisMultiRound algorithm:

[Informal description] Each process has the same message alpha-
bet and logical state as in FloodBasis and also the same state
initialization. At each communication round it performs the fol-
lowing tasks: i) it acquires the messages from its in-neighbors; ii)
if the execution of the SUBEX lp at the previous round was over
it starts a new instance, otherwise it keeps executing the one in
progress; iii) if the execution of the SUBEX lp ends it updates
the logical state and runs the message-generation function with
the new state, otherwise it generates the same message as in the
previous round.

As regards the sets and functions, the second algorithm has exactly the
same message alphabet, logical state, message function and state transition
function as the FloodBasis, therefore the formal scheme is the same as in the
FloodBasis table with the remark on the process structure said above.

In the third scenario we work with a time-independent network with no
bounds on the in-degree of the nodes. We suppose that each processor has
limited memory capacity, so that it can store at most D messages. The
memory is dimensioned so to guarantee that the SUBEX lp is always solvable
during two communication rounds. The memory constraint is solved by
processing only part of the incoming messages at each round and cycling in
a suitable way in order to process all the messages in multiple rounds.

Here is an informal description of what we shall refer to as the FloodBa-
sisCycling algorithm:

[Informal description] The first δ + 1 components of the logical
state are the same as in FloodBasis and are initialized in the
same way. A further component is added. It is simply a counter
variable that keeps trace of the current round. At each commu-
nication round each process performs the following tasks: (i) it
acquires from its neighbors (a message consisting of) their current
basis; (ii) it chooses D messages according to a scheduled proto-
col, e.g. it labels its in-neighboring edges with natural numbers
from 1 up to indeg[i] and cycles over them in increasing order;
(iii) it executes the SUBEX lp algorithm over the constraint set
given by the collection of the D messages plus its basis and its
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constraint (that it maintains in memory), thus computing a new
basis; (iv) it updates its logical state and message using the new
basis obtained in (iii).

The algorithm is described formally in the table.

Distributed algorithm: FloodBasisCycling

Goal: Solve NALP with bounded memory and
computation time

Message alphabet: M = H ∪ {null}
Logical state: w[i] = (B[i], h[i], round[i])

B[i] ∈ Hδ, h[i] ∈ H, round[i] ∈ N0

Initialization: B[i] := (h[i], · · · , h[i]), h[i] = hi, round
[i] := 0

function msg(w[i], j)

1: return B[i]

function stf(w[i], y)

1: define y[i] := {msg(w[j], i) | j ∈ NI(i)}
2: compute roundMOD := round[i] mod

⌈
indeg[i]

D

⌉

3: set k := D roundMOD

4: collect Hi :=
(
y

[i]
(k+1), · · · , y

[i]

min{indeg[i]−1,k+D}, w
[i]

)

5: compute B[i] := SUBEX lp(Hi, B
[i])

6: return (B[i], h[i], round[i] + 1)

Remark 7.5 For the algorithm to converge it is important that each agent
keeps in memory its constraint and thus implements the SUBEX lp on the
bases received from its neighbors together with its constraint. This require-
ment is important because of the following reason: no element of a basis B
for a set G ⊂ H needs to be an element in the basis of G ∪ {h} for any
h ∈ H \G. ¤

We are now ready to prove the algorithms’ correctness.

Proposition 7.6 (Correctness of FloodBasis) Let S be a synchronous
time-dependent network with communication digraph G = (I, Ecmm) and let



7.3. Network abstract linear programming 117

(G, (H,ω),B) be a network abstract linear program. If G is jointly strongly
connected, then the FloodBasis algorithm solves (G, (H, ω),B), that is, in
a finite number of communication rounds each node acquires a copy of the
solution of (H, ω), i.e., the basis B of H. ¤

Proof: In order to prove correctness of the algorithm, observe, first of all,
that each law at every node converges in a finite number of steps. In fact,
using axioms from abstract linear programming and finiteness of H, each
sequence ω(B[i](t)), t ∈ N, is monotone nondecreasing, upper bounded and
can assume a finite number of values. Then we proceed by contradiction
to prove that all the laws converge to the same ω(B) and that it is exactly
ω(B) = ω(H). Suppose that for t > t0 > 0 all the nodes have converged
to their limit basis and that there exist at least two nodes, call them i and
j, such that ω(B[i](t)) = ω(B[i]) 6= ω(B[j]) = ω(B[j](t)), for all t ≥ t0. For
t = t0 + 1, for every k1 ∈ NO(i), B[i] does not violate B[k1], otherwise they
would compute a new basis thus violating the assumption that they have
converged. Using the same argument at t = t0 + 2, for every k2 ∈ NO(k1),
B[k1] does not violate B[k2]. Notice that this does not imply that B[i] does
not violate B[k2], but it implies that ω(B[i]) ≤ ω(B[k2]). Iterating this argu-
ment we can show that for every S > 0, every k connected to i in the graph
∪t0+S

t=t0 G(t) must have a basis B[k] such that ω(B[i]) ≤ ω(B[k]). However, using

the joint connectivity assumption, there exists S0 > 0 such that ∪t0+S0
t=t0 G(t)

is strongly connected and therefore i is connected to j, thus showing that
ω(B[i]) ≤ ω(B[j]). Repeating the same argument by starting from node j
we obtain that ω(B[j]) ≤ ω(B[i]), that implies ω(B[i]) = ω(B[j]), thus giving
the contradiction. Now, the basis at each node satisfies, by construction, the
constraints of that node. Since the basis is the same for each node, it satisfies
all the constraints, then ω(B) = ω(H).

Remark 7.7 Correctness of the other two versions of the FloodBasis algo-
rithm may be established along the same lines. For example, it is immediate
to establish that the basis at each node reaches a constant value in finite time.
It is easy to show that this constant value is the solution of the abstract linear
program for the FloodBasisMultiRound algorithm. For the FloodBasisCy-
cling algorithm we note that the procedure used to process the incoming data
is equivalent to considering a time-dependent graph whose edges change with
that law. ¤

Proposition 7.8 (Halting condition) Consider a network S with time-
independent, strongly connected digraph G where the FloodBasis algorithm



118 7. Network abstract linear programming

is running. Each process can halt the algorithm execution if the value of its
basis has not changed after 2 diam(G) + 1 communication rounds. ¤

Proof: First, notice that, for all t ∈ N0 and for every (i, j) ∈ Ecmm,

ω(B[i](t)) ≤ ω(B[j](t + 1)). (7.1)

This holds by simply noting that B[j](t+1) is not violated by B[i](t) by con-
struction of the FloodBasis algorithm. Assume that node i satisfies B[i](t) =
B for all t ∈ {t0, . . . , t0+2 diam(G)}, and pick any other node j. Without loss
of generality assume that t0 = 0. Because of equation (7.1), if k1 ∈ NO(i),
then ω(B[k1](1)) ≥ ω(B) and, recursively, if k2 ∈ NO(k1), then ω(B[k2](2)) ≥
ω(B[k1](1)) ≥ ω(B). Iterating this argument dist(i, j) times, the node j sat-
isfies ω(B[j](dist(i, j))) ≥ ω(B). Now, consider the out-neighbors of node j.
For every k3 ∈ NO(j), it must hold that ω(B[k3](dist(i, j) + 1)) ≥ ω(B[j](t)).
Iterating this argument dist(j, i) times, the node i satisfies ω(B[i](dist(i, j)+
dist(j, i))) ≥ ω(B[j](dist(i, j))). In summary, because dist(i, j) + dist(j, i) ≤
2 diam(G), we know that B[i](dist(i, j) + dist(j, i)) = B and, in turn, that

ω(B) ≥ ω(B[j](dist(i, j))) ≥ ω(B).

This shows that, if basis i does not change for a duration 2 diam(G)+1, then
it will never change afterwards because all bases B[j], for j ∈ {1, . . . , n}, have
cost equal to ω(B) at least as early as time equal to diam(G)+ 1. Therefore,
node i can safely stop after a 2 diam(G) + 1 duration.

7.4 Discussion

We identified a class of distributed optimization problems that appears to be
novel and of intrinsic interest. In the next chapter we apply these distributed
computation problems in minimum time formation control problems. In par-
ticular, we study the rendezvous problem, and the line and circle formation
problems. Future directions of research include (i) studying the time com-
plexity of the proposed distributed algorithms, and (ii) finding interesting
applications for these optimization problems possibly in the area of sensor
networks. We have strong feeling (and some sketches of proof enforcing this
feeling) that the time-complexity is Θ(n).
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Formation control

In this chapter we introduce the problem of minimum time formation for a
robotic network. We focus on the formation control problem for a point for-
mation (rendezvous), a line formation and a circle formation. We show that
they can be formulated as network abstract linear programs, the exception
being the line formation control problem, where suitable conditions on the
initial configuration are required. A control and communication law based
on the distributed algorithm of the previous chapter is proposed as an ap-
proximate solution. This law is basically an extension to this more general
setting of the one proposed in [52] for the rendezvous problem.

8.1 Introduction

The main reason for the increasing interest in motion coordination in recent
years relies on the desire of trying to accomplish complex tasks by use of
many simple and, therefore, cheap systems. An inspiration for this comes
from nature where such principle seems to be very common and successful.
One of the most interesting and fascinating tasks, very common in nature, is
certainly the pattern formation. In particular we ask if formation to simple
geometric shapes may be reached by minimizing some objective. In this
chapter we are interested in minimum time formation control.

The literature on formation control for robotic networks is vast. Regard-
ing the rendezvous problem, i.e., the problem of gathering the robots at a
common location, an early reference is [4]. In this paper Ando and cowork-
ers introduced the “multi-agent rendezvous” problem and a “circumcenter
algorithm” to solve it. The algorithm proposed in [4] has been extended
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to various synchronous and asynchronous stop-and-go strategies in [40]. A
related algorithm, in which connectivity constraints are not imposed, is pro-
posed in [41]. In [13] the class of “circumcenter algorithms” has been studied
in networks of agents whose state space is Rd, for arbitrary d, and with com-
munication topology characterized by proximity graphs spatially distributed
over the disk graph. In [48] the (time and communication) complexity of this
and other algorithms has been studied. All these coordination schemes are
memoryless (static feedback). In our work we explore dynamic control and
communication laws. In particular the laws are based on agreeing on some
logic variables and at the same time moving toward the current estimation.
A similar approach was used in [54] where the agents try to reach a consensus
on a set of variables called coordination variables.

An early reference on distributed algorithms for the formation of geo-
metric patterns is [61]. The “circle formation control” problem, i.e., the
problem of steering the robots to a circle formation, is discussed in [15]. A
control-Lyapunov function approach to formation control is discussed in [17].
An input-to-state stability approach is taken in [63]. Cyclic formations are
studied in [45]. Feasible motions of formations are characterized in [62].

The main contribution of this chapter is the application of the distributed
computation problems introduced in the previous chapter in minimum-time
formation control problems, such as the rendezvous problem and the prob-
lems of line and circle formations. Specifically, we show that the centralized
minimum time performance of these three tasks is an abstract linear pro-
gram. Then we design some joint communication and motion coordinations
schemes in which robots move towards the estimated final shape while the
final shape is being computed as the solution of a network abstract linear
program.

In Section 8.2 we describe the robotic network of first order agents that
we use in the formation control scenario. In Section 8.3 and Section 8.4
we introduce the definition of formation task (focusing on rendezvous and on
line and circle formation) and we state the minimum time formation problem.
Section 8.5 contains the proposed control and communication law. Finally
in Section 8.6 we show simulations for the rendezvous case and in Section 8.7
we discuss possible future scenarios.
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8.2 Wireless robotic network of first order

agents

In this section we briefly describe the model of robotic network that we are
using to perform formation control.

The scenario that we want to model is the one of vehicles that move in Rd,
d ∈ N, (usually d = 2 or d = 3) and communicate by wireless communication.
Moreover such vehicles have a bound on the maximum velocity and have the
capability of hovering, that is they may hang over in some position with zero
velocity.

Remark 8.1 (Examples of vehicles with hovering capability) Many
vehicles have the capability of hovering. For example, mobile wheeled robots
have such property. As regards aerial vehicles, helicopters are suitable for
this setting, while rigid aircraft are not. Observe that the PVTOL model
introduced in Chapter 3 satisfies this condition. ¤

One of the simplest deterministic models that captures these properties
is a robotic network with agents whose dynamics is described by a first order
integrator and that communicate to each other if their distance is less than
an upper bound.

Formally, we consider the following network. Each agent i occupies a
location p[i] ∈ Rd, d ∈ N, and moves according to the first order discrete-
time integrator

p[i](t + 1) = p[i](t) + u[i](t). (8.1)

The communication edge map is the one arising according to the disk graph,
Edisk. Each control u[i] takes values in the bounded subset of Rd B(0, rctr),
that is, ‖u[i]‖2 ≤ rctr. The control and communication law will be defined
depending on the coordination task.

We recall that, given rcmm ∈ R+, two agents i and j, {i, j} ⊂ {1, . . . , n},
share an edge in the disk graph if and only if

‖pi − pj‖2 ≤ rcmm ⇐⇒ pi − pj ∈ B(0d, rcmm).

8.3 Formation tasks

In the literature many definitions of formation have been given and studied.
Here we provide a definition of formation based on the network model and
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the task definition stated in Section 5.4 of Chapter 5. We consider a quite
general notion of formation. Roughly speaking, we want to include both the
case of agents deployed randomly in a desired subset of the state space and
the more rigid scenario of agents fixed in a more structured configuration,
e.g., a lattice.

In order to do that we divide the formation task in two tasks. The first is
the following. Let F0 ⊂ Rd be a “nominal” subset of the state space and α 7→
Fα, α ∈ Rm, m ∈ N a mapping that provides a parametrization of F0. For
example F0 could be the x axis in the plane and Fα the set of lines translated
and rotated in the plane. We ask the network to reach the configuration
where all the agents’ states belong to the same subset Fα (for some α).
The second task, that could be also missing, regards the configuration of the
agents in the subset. In the following we consider only the first task. In order
to perform the second one, once the first has been accomplished, one could
use for example the deployment control and communication law proposed in
[12]. From now on we call formation task only the first part.

Formally, let α 7→ Fα, α ∈ Rm, m ∈ N, a parametrization of a nominal
set F0. The formation task is defined as

Tform(x) =





true, if x[i] ∈ Fα, x[j] ∈ Fα

for some Fα

for all (i, j) ∈ Ecmm(x),

false, otherwise.

Remark 8.2 According to the definition given above, if the graph is not
connected, the formation task is achieved if the agents of each connected
component belong to the same subset. ¤

In the following we are interested in formation to a point (rendezvous), a
line and a circle for d = 2. Formally, the rendezvous task is defined as

Trndzvs(x) =





true, if x[i] = x[j],

for all (i, j) ∈ Ecmm(x),

false, otherwise.

The line-formation task is defined as

Tlform(x) =





true, if ∃v ∈ R2 s.t. ∀ (i, j) ∈ Ecmm(x),

x[i] = x[j] + αv, α ∈ R
false, otherwise.
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Finally, the circle-formation task is defined as

Tcform(x) =





true, if ∃p ∈ R2 s.t. ∀ (i, j) ∈ Ecmm(x),

‖x[i] − p‖ = ‖x[j] − p‖
false, otherwise.

Remark 8.3 For rendezvous, line-formation and circle-formation we could
consider the set F0 as the origin of the plane, the x axis and the unit circle
centered at the origin respectively. For the first case the mapping α 7→ Fα

maps the origin into the points of the plane. For the second case it maps the
x axis into all the translated and rotated lines in the plane. Finally, for the
third case it maps the unit circle into all the translated circles with different
radii. ¤

8.4 Minimum-time formation

Having defined the formation tasks for the robotic network, we ask whether
such tasks can be accomplished in minimum time. The problem may be
formalized as follows.

minimize T,
u(·), x(T ), T

subj. to

(i) (x(·), u(·)) is a trajectory of A = {A[i]}i∈I ;

(ii) i and j can communicate if and only if
(i, j) ∈ Ecmm(x[1](t), . . . , x[n](t));

(iii) Tform(x(t)) = true for all t ≥ T , T ∈ N.

We say that a control and communication law CC is optimal if it solves
the above optimal control and communication problem.

An important property of the minimum time formation to a point, a
line and a circle is that the centralized version of the problem may be re-
formulated as an abstract linear program. It turns out that the optimal
rendezvous point, the optimal line and the optimal circle are uniquely identi-
fied by the smallest enclosing ball, stripe and annulus, respectively, enclosing
the n agents. Recall from Chapter 7 that the problems of finding the small-
est enclosing ball, smallest enclosing stripe (for points in generic position),
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and smallest enclosing annulus of a point set are found to be abstract linear
programs. The property is formalized in the following proposition. Before
stating the proposition, we observe that, for first order integrators, minimum
time problems are equivalent to minimum distance ones.

Lemma 8.4 Let P ⊂ Rd be the set of points in Rd, L ⊂ R2 the set of
lines in R2 and C the set of circles in R2. Given the set of points Pn ⊂ P ,
Pn = {p1, · · · , pn}, n ∈ N, consider the problems:

(i) min
p∈P

max
pj∈Pn

‖pj − p‖;

(ii) min
l∈L

max
pj∈Pn

dist(pj, l), d = 2;

(iii) min
c∈C

max
pj∈Pn

dist(pj, c), d = 2;

where, given a set S and a point p, dist(p, S) is the distance of p from S,
that is dist(p, S) = min

s∈S
‖p− s‖.

These are equivalent to the problems of finding the smallest enclosing ball,
stripe and annulus of the point set, which are abstract linear programs. For
Problem (ii) we need the further assumption that the point set is in generic
position. ¤

Remark 8.5 (Generic positions and locality assumption) As regards
the smallest enclosing stripe problem, the assumption that the points are in
generic positions ensures that, for any subset of points, the smallest enclosing
stripe is unique, thus saving the locality property that is not true in the general
setting. As counter example, it suffices taking the points on the vertices of a
regular polygon. ¤

8.5 Move-toward-estimate control and com-

munication law

We have shown that the centralized solution of the minimum time formation
to point, line and circle can be found by solving an abstract linear program.
In Chapter 7 we have shown that given a network and an abstract linear
program we can define a network abstract linear program which is basically
a distributed version of the optimization problem over the network. We have
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also provided a distributed algorithm (with two possible variants) to solve it.
With such tool in hand we can build a control and communication law that
approximates the optimal solution of the minimum time formation problem
by “emulating” the centralized solution. The law is based on the scheme
depicted in Figure 8.1. In the task layer, that coincides with the logical layer

Figure 8.1: Hierarchical scheme of the control and communication law

(recall Section 5.4 in Chapter 5), each agent runs the FloodBasis algorithm to
solve the network abstract linear program. At each communication round the
current estimate of the solution is provided to the physical layer (connectivity
and motion layers). Using this estimate each agent computes, at each instant,
a target state. This target state is exactly the final state to reach if the
execution of the FloodBasis is over. This signal is filtered by the connectivity
layer. Each agent modifies the target state so that network connectivity
is maintained. Finally the motion layer tracks the “filtered” target point
computed by the connectivity layer. In order to speed up the process and
to guarantee convergence, the connectivity layer is bypassed once the task
layer reaches the halting condition (meaning that the network abstract linear
program has been solved).

Before stating the algorithm formally, we need to describe how connec-
tivity is maintained in first order networks. The idea has been already intro-
duced in Section 6.2 of Chapter 6.

In a network with communication edge map Ecmm = Edisk, if agents i and
j are neighbors at time t ∈ N0, then we require their subsequent positions to

belong to B(p[i](t)+p[j](t)
2

, 1
2
rcmm). If an agent i has its neighbors at locations



126 8. Formation control

{q1, . . . , ql} at time t, then its constraint set Dx[i](t),rcmm
({q1, . . . , ql}) is

Dp[i](t),r({q1, . . . , ql}) =
⋂

q∈{q1,...,ql}
B

(p[i](t) + q

2
,
1

2
rcmm

)
.

In order to maximize the displacement toward the desired point, each agent
solves a convex optimization problem that can be stated in general as follows.
For q0 and q1 in Rd, and for a convex closed set Q ⊂ Rd with q0 ∈ Q, let
λ(q0, q1, Q) denote the solution to the strictly convex problem:

maximize λ

subj. to λ ≤ 1, (1− λ)q0 + λq1 ∈ Q.

We call λ∗(x[i], xtrgt) the solution of the convex problem for q0 = x[i], q1 = xtrgt

and Q = Dx[i](t),rcmm

({p[j]}j∈N (i)

)
.

One more notion is needed. Let Tform be either Trndzvs, Tlform or Tcform,
and B the basis that solves the associated network abstract linear program.
The function target(B) computes the center of the minimal enclosing ball,
the central line of the minimal enclosing stripe and the central circle of the
minimal enclosing annulus respectively.

The control and communication law is described formally in the following
table.

Remark 8.6 The move-toward-estimate control and communication law, as
stated in the table, does not guarantee connectivity of the network once for-
mation has been reached. For the rendezvous case connectivity is trivially
obtained (the agents are at the same point). For the line-formation it can
be easily shown that the same holds. In fact, once the halting condition has
been reached, the agents are connected. But, using a reference system with
the horizontal axis coincident with the optimal line, it turns out that the final
distance between the agents (when they reach the optimal line) is just the pro-
jection of the distance, at the halting instant, on the horizontal axis. Finally,
for the circle, connectivity is not guaranteed in general, but it can be easily
regained by use of a deployment algorithm (the agents are on a bounded set).
¤

The correctness of the control and communication laws is proven in the
following proposition.

Proposition 8.7 (Move-toward-estimate correctness) On the network
S with communication edge map Edisk and bound on the ith control input
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Control and comm. law: Move-toward-estimate

Goal: Approximate minimum time formation

Message alphabet: M = H ∪ {null}, H = {x[i](0)}i∈{1,...,n}

Logical state: w[i] = (B[i], h[i], halt[i]), B[i] ∈ Hδ, h[i] ∈ H

Physical state: x[i] = p[i], p[i] ∈ Rd

Initialization: B[i] = (x[i](0), · · · , x[i](0)), h[i] = x[i](0),

halt[i] = 0

function msg(w[i], j)

1: if halt[i] < 2 diam(G(0)) then
2: return B[i]

3: else
4: return null

5: end if

function stf(w[i], y)

1: collect y[i] := {msg(w[j], i) | j ∈ N (i)}
2: collect Hi := (y[i], w[i])

3: save B
[i]
temp := B[i]

4: compute B[i] := SUBEX lp(Hi, B
[i])

5: if B[i] = B
[i]
temp & halt[i] < 2 diam(G(0)) then

6: halt[i] = halt[i] + 1
7: else if halt[i] < 2 diam(G(0)) then
8: halt[i] = 0
9: else

10: halt[i] = halt[i]

11: end if
12: return (B[i], h[i], halt[i])

function ctl(x[i], w[i], y)

1: Strgt = target(B[i])

2: ptrgt = arg min
p∈Strgt

‖x[i] − p‖
3: if halt[i] < 2 diam(G(0)) then
4: λ = λ∗(x[i], ptrgt)
5: else
6: λ = 1
7: end if
8: return max{λ · (ptrgt − x[i]), rctr} · vers(ptrgt − x[i])
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u[i] ∈ B(0, rctr), the move-toward-estimate control and communication laws
achieve the task Trndzvs, Tlform and Tcform respectively. For the line-formation
task we need the further assumption that the point set of initial conditions is
in generic position. ¤

Proof: By the connectivity arguments done before and by Proposition 7.6
we know that there exists T ∈ N such that for t = T the network is connected
and all the agents have solved the network abstract linear program. Since
this instant all the agents can move toward the target set (point, line or cir-
cle) at maximum speed without enforcing connectivity constraint anymore.
Thus, they achieve the task.

8.6 Simulations

In this section we show simulations for the rendezvous problem. We imple-
mented the move-toward-estimate law, based on the FloodBasis algorithm for
the smallest enclosing ball problem (we call it FloodMEB). We implemented
it in the plane, d = 2, over the disk graph. In [52] a detailed version of the
algorithm can be found together with its equivalent version for the problem
with bounds on the infinity norm of the control.

The simulation run is illustrated in Figure 8.2. The 32 agents have a
bound on the control inputs rctr = 0.1, and a communication radius rcmm = 3.
The initial positions of the agents were randomly generated over the rectangle
[−6, 6]× [−3, 3].

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

Figure 8.2: Evolution of the network (in filled blue) with evolution of Flood-
MEB (green circles connected by dashed red line)
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The FloodMEB law converges in five steps, while the rendezvous is achieved
at T = 58. As it clearly appears in the figure, once the consensus on the
minimal enclosing ball is reached, all the agents move toward the center.

8.7 Discussion

We provided a distributed control and communication law to perform ren-
dezvous and, line and circle formation. The law is based on the distributed
algorithms introduced in the previous chapter to solve network abstract lin-
ear programming. Future directions of this work include: (i) applying the
proposed law to networks whose agents have more complex dynamics, e.g. a
second order integrator, (iii) studying the complexity of this law and look-
ing for algorithms that solve the exact minimum time problem, (ii) use the
distributed algorithm for network abstract linear programming to estimate a
shape that includes the agents at each time-instant (e.g. the smallest ball).





Perspectives

In the first part of the dissertation we studied the problem of exploring fea-
sible trajectories of nonlinear control systems, that is trajectories satisfying
state and input constraints. We developed an effective strategy that was
successfully applied to the simplified PVTOL aircraft model. An impor-
tant direction of investigation is in the area of Receding Horizon Control. It
includes (i) developing a receding horizon scheme, based on the same opti-
mization technique as the exploration strategy, that allows to track feasible
trajectories while satisfying the state and input constraint, (ii) designing a
hierarchical strategy that implements both the exploration and the tracking
tasks and proving its effectiveness and correctness. Another direction of re-
search regards the applications of such strategy. It is under development a
simulation test bed for trajectory exploration and tracking of a rigid aircraft
model.

We have also introduced the novel notion of operating region meant as a
region where trajectories are ensured to be exponentially stabilizable. The
characterization of this region for control affine systems is still preliminary.
We aim to provide sufficient conditions to characterize an operating region
for control affine systems driven by (essentially) bounded inputs.

In the second part of the thesis we studied optimization problems in
robotic networks. First, we provided distributed algorithms to enforce con-
nectivity among networks of agents with double-integrator dynamics. Future
directions of research include (i) evaluating the communication complexity
of the proposed distributed algorithm and (ii) investigating the flocking phe-
nomenon emerging from the enforcement of connectivity. Second, we iden-
tified a class of distributed optimization problems that appears to be novel
and of intrinsic interest. We have applied these distributed computation
problems in minimum time formation control problems. Future directions of
research include (i) studying the time complexity of the proposed distributed
algorithms, and (ii) finding interesting applications for these optimization
problems possibly in the area of sensor networks.





Appendix A

Projected Jacobi method

We briefly review here a parallel algorithm for the solution of a quadratic
optimization problem. The technique is known as the projected Jacobi method
in the literature on network flow control problems ([6], Section 3.4).

Consider the quadratic programming problem

minimize
1

2
xT Qx− bT x,

subj. to Ax ¹ c,

where Q is a given n × n symmetric positive definite matrix, A is a given
m× n matrix, and b ∈ Rn and c ∈ Rm are given vectors. The dual problem
is

minimize
1

2
yT Fy + sT y,

subj. to y º 0,

for F = AQ−1AT and s = c − AQ−1b. If y∗ solves the dual problem, then
x∗ = Q−1(b− AT y∗) solves the primal problem.

For a step size parameter τ > 0 and for j ∈ {1, . . . , n}, the projected
Jacobi iteration, when the jth coordinate is updated, has the form

yj(t + 1) = max
{

0, yj(t)− τ

fjj

(
sj +

m∑

k=1

fjkyk(t)
)}

, (A.1)

where fjk is the j, kth element of the matrix F . As discussed in [6], this
algorithm converges to the global solution of the dual problem if the step
size τ is chosen sufficiently small; in particular, convergence is guaranteed
for τ = 1/m.





Appendix B

Appendix on Shostak’s test

This section provides a proof for Theorem 6.12. The proof amounts to show-
ing that if E is the edge set of a spanning tree T in Gdi-disk(rcmm, ν(k)rctr)
at {(p[i], v[i])}i∈{1,...,n}, then the control constraint set Ud

E(rcmm, rctr, ν(k)) ·
({p[i], v[i]}i∈{1,...,n}) is non-empty. We first consider a polytopic approxima-
tion of constraints (6.10) and (6.11). Among all possible choices, we use
the conservative orthotope approximation that allows us to decouple the
constraints into d independent sets of linear inequalities (one for each dimen-
sion). Then we use Shostak’s theory to obtain sufficient conditions for the
feasibility of these linear inequalities. For brevity, we drop the dependence
of the quantities on t and we assume that the variables u[i] are scalars, for
all i ∈ {1, . . . , n} and t ≥ 0. The resulting sets of linear inequalities for one
particular dimension are

δl
i,j ≤ u[i] − u[j] ≤ δu

i,j, and − rctr√
d
≤ u[i] ≤ rctr√

d
. (B.1)

where −ν(k)rctr ≤ δl
i,j ≤ δu

i,j ≤ ν(k)rctr, for all i, j ∈ {1, . . . , n} and i 6= j.

B.0.1 Shostak Theory

In this section we present Shostak’s theory for feasibility of linear inequalities
involving at most two variables, similar to the ones in (B.1). These ideas will
then be used to prove Theorem 6.12. The notations used in [5] adapted to our
case are presented next. Let u[0] be an auxiliary zero variable that always
occurs with zero coefficient - the only variable that can do this. Without
loss of generality, we can thus assume that all the inequalities in L contain
two variables. As a result of this, the inequalities in (B.1) can be succinctly
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written as
u[i] − u[j] ≤ δi,j, ∀i, j ∈ {0, . . . , n}, (B.2)

where for all i, j ∈ {1, . . . , n}, i 6= j,−ν(k)rctr ≤ δi,j ≤ ν(k)rctr and for
all i ∈ {1, . . . , n}, δi,0 = δ0,i = rctr√

d
. Also implicit in this formulation is the

relation that δi,j + δj,i ≥ 0 for all i, j ∈ {0, . . . , n} and i 6= j.

Let L denote the system of inequalities in (B.2). We construct the graph
G(L) with n+1 vertices and 2(2n−1) edges as follows: (a) For each variable
u[i] occurring in L, add a vertex i to G(L). (b) For each inequality of the form
ai,ju

[i] + bi,ju
[j] ≤ δi,j in L, add an undirected edge between i and j to G(L),

and label the edge with the inequality (see Figure B.1). It is easy to see the
following relation between the spanning tree T in Gdi-disk(rcmm, ν(k)rctr) at
{(p[i], v[i])}i∈{1,...,n} that is used to derive the constraints in the inequalities
(B.2) and the graph G(L): (a) The vertex set of G(L) is the union of the
vertex set of T and the auxiliary vertex 0 (b) For every edge {i, j} in T , there
are two edges between the vertices i and j in G(L) (c) Additionally, G(L)
contains two edges between 0 and every other vertex i, for all i ∈ {1, . . . , n}.

ui − uj ≤ δi,j

uj − ui ≤ δj,i−ui ≤ rctr√
d

−uj ≤ rctr√
d

uj ≤ rctr√
d

ui ≤ rctr√
d

0
i

j

Figure B.1: Snippet of the graph G(L) for the system of inequalities in (B.2)

To every edge represented by the inequality of the form ai,ju
[i] + bi,ju

[j] ≤
δi,j, we associate a triple 〈ai,j, bi,j, δi,j〉. Note that 〈bi,j, ai,j, δi,j〉 is also a
triple associated with the same edge. Without loss of generality, consider
a path of G(L) determined by the vertices {1, 2, . . . , l + 1} and the edges
e1,2, e2,3, . . . , el,l+1 between them. A triple sequence, P , associated with the
path is defined as

〈a1,2, b1,2, δ1,2〉, 〈a2,3, b2,3, δ2,3〉, . . . , 〈al,l+1, bl,l+1, δl,l+1〉,
where, for 1 ≤ i ≤ l, ai,i+1u

[i] + bi,i+1u
[j] ≤ δi,i+1 is the inequality associated

with the edge ei,i+1. If ai+1,i+2 and bi,i+1 have opposite signs for 1 ≤ i < l,
then P is called admissible.
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Define 〈aP , bP , δP 〉, the residue of P , as

〈aP , bP , δP 〉 = 〈a1,2, b1,2, δ1,2〉 ¯ 〈a2,3, b2,3, δ2,3〉 ¯ . . .¯ 〈al,l+1, bl,l+1, δl,l+1〉,

where ¯ is the associativity binary operator defined on triples by

〈a, b, δ〉 ¯ 〈a′, b′, δ′〉 = 〈κaa′,−κbb′, κ(δa′ − δ′b)〉,
where κ = a′/|a′|.

Intuitively, the operator ¯ takes two inequalities and derives a new in-
equality by eliminating a common variable; e.g., ax+by ≤ δ and a′y+b′z ≤ δ′

imply −aa′x + bb′z ≤ −(δa′ − δ′b) if a < 0 and b > 0. Note that the signs of
aP and a1,2 agree, as do the signs of bP and b1,2.

A path is called a loop if the initial and final vertices are identical. (A
loop is not uniquely specified unless its initial vertex is given.) If all the
intermediate vertices of a path are distinct, the path is simple. An admissible
triple sequence P associated with a loop with initial vertex x is infeasible if its
residue satisfies aP + bP = 0 and δP < 0. A loop which contains an infeasible
triple sequence is called an infeasible loop. Thus if G(L) has an infeasible
loop, the system of inequalities L is unsatisfiable. However, the converse
is not true in general. Next, we show how to extend L to an equivalent
system L′ such that G(L′) has an infeasible simple loop if and only if L is
unsatisfiable.

For each vertex i of G(L) and for each admissible triple sequence P with
aP + bP 6= 0 associated with a simple loop of G(L) and initial vertex i, add
a new inequality (aP + bP )u[i] ≤ δP to L. This new system L′ is referred
to as the Shostak extension of L. We now state the necessary and sufficient
condition on the extended system of inequalities L′ for the satisfiability of
the original system L.

Theorem B.1 (Shostak’s Theorem [5]) Let L′ be the Shostak extension
of L. The system of inequalities L is satisfiable if and only if G(L′) contains
no infeasible simple loop.

B.0.2 Satisfiability test

In this section we use the Shostak criterion to derive conditions for the sat-
isfiability of the inequalities in (B.2).
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Lemma B.2 Let L be the system of inequalities of the form (B.2) obtained
by considering pairwise neighbors in a spanning tree T in Gdi-disk(rcmm, ν(k)rctr)
at {(p[i], v[i])}i∈{1,...,n}. Then the Shostak extension of L is itself.

Proof: Consider a simple loop of G(L) with the initial vertex i ∈ {0, 1, . . . , n}.
Consider an admissible triple sequence P associated with the loop. Since
ai,j, bi,j ∈ {−1, +1}, for all i, j ∈ {1, . . . , n}, i 6= j, and a0,i, ai,0, bi,0, b0,i ∈
{−1, 0, +1}, for all i ∈ {1, . . . , n}, the residue of P , 〈aP , bP , δP 〉, is such that
ap + bp = 0. Hence, no new inequality must be added to obtain the Shostak
extension of L.

Lemma B.3 Let L be the system of inequalities of the form (B.2) obtained
by considering pairwise neighbors in a spanning tree T of depth at most k in
Gdi-disk(rcmm, ν(k)rctr) at {(p[i], v[i])}i∈{1,...,n}. If ν(k) = 2

k
√

d
, then there is no

infeasible simple loop in G(L).

Proof: Looking at figure B.1 it is clear that there are two types of simple
loops with admissible triple sequences in G(L):

(i) 〈+1,−1, δi,j〉, 〈+1,−1, δj,i〉 or 〈−1, +1, δi,j〉, 〈−1, +1, δj,i〉,
where i, j ∈ {0, . . . , n− 1} and {i, j} is an edge in T .

(ii) 〈0,−1, rctr√
d
〉, 〈+1,−1, δi1,i2〉, . . . , 〈+1,−1, δil−1,il〉, 〈+1, 0, rctr√

d
〉 or

〈0, +1, rctr√
d
〉, 〈−1, +1, δi2,i1〉, . . . , 〈−1, +1, δil,il,l−1

〉, 〈−1, 0, rctr√
d
〉,

where il ∈ {1, . . . , ζ} for all l ∈ {1, . . . , ζ} and {il, il+1} is an edge in T .

The residue for the first set of loops is 〈+1,−1, δi,j+δj,i〉 or 〈−1, +1, δi,j+δj,i〉.
The feasibility condition is trivially satisfied by construction since δi,j +δj,i ≥
0. For the second set of loops, the residue is:

〈
0,−1,

rctr√
d

〉
¯ 〈+1,−1, δi1,i2〉 ¯ . . .¯ 〈+1,−1, δiζ−1,iζ〉 ¯

〈
+ 1, 0,

rctr√
d

〉

=
〈
0, 0, 2

rctr√
d

+

ζ−1∑

l=1

δil,il+1

〉
,

or
〈
0, +1,

rctr√
d

〉
¯ 〈−1, +1, δi2,i1〉 ¯ . . .¯ 〈−1, +1, δiζ ,iζ−1

〉 ¯
〈
− 1, 0,

rctr√
d

〉

=
〈
0, 0, 2

rctr√
d

+

ζ−1∑

l=1

δil,il+1

〉
.
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In order to guarantee the feasibility of the second set of loops, we need that
2 rctr√

d
+

∑ζ−1
l=1 δil,il+1

≥ 0. We derive conditions for the worst case which occurs
when the loop is written for the longest path in T , i.e., when ζ = k + 1
and when δil,il+1

= −ν(k)rctr, for all l ∈ {1, . . . , k}. In this case, there is no
infeasible simple loop if and only if

2
rctr√

d
− kν(k)rctr ≥ 0,

that is, if and only if ν(k) = 2
k
√

d
.

Finally, the proof of Theorem 6.12 follows from Theorem B.1, Lemma B.2
and Lemma B.3.
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[19] A. Ganguli, J. Cortés, and F. Bullo. On rendezvous for visually-guided
agents in a nonconvex polygon. In IEEE Conf. on Decision and Con-
trol and European Control Conference, pages 5686–5691, Seville, Spain,
December 2005.

[20] Z. Gao. On discrete time optimal control: A closed-form solution. In
American Control Conference, pages 52–58, Boston, MA, 2004.
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