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Abstract

Bilevel Optimization in Learning and Control with Applications to Network Flow

Estimation

by

Francesco Seccamonte

The proliferation of complex interconnected systems in today’s world has necessitated

the development of advanced methods for optimizing their operation and management.

Bilevel Optimization (BO), a powerful mathematical framework that considers optimiza-

tion problems within optimization problems, has emerged as a promising approach to

tackle these challenges. This thesis delves into the realm of BO with a primary focus on

its application to learning and control in complex systems, particularly addressing the

critical problem of network flow estimation.

The core objective of this thesis is to develop novel physics-inspired learning tech-

niques, to provide high-performing and explainable network flow estimators. In Chapter

1, a comprehensive overview of BO is provided, emphasizing its relevance and signifi-

cance in real-world scenarios. The mathematical foundations of BO problems and the

challenges posed by their computational complexity are elucidated, and some numerical

schemes to solve them, in exact or approximate form, are reviewed. A collection of some

known BO problems in machine learning is presented, and novel connections between

BO and problems in machine learning and control are established.

In Chapters 2 and 3 two novel flow estimation algorithms are proposed, addressing

different nuances of the flow estimation problem. Both algorithms are rooted in first

principles physics, and result into two different Implicit Neural Network Layers. Our

approach enables high modularity, and its effectiveness is validated both theoretically

viii



as well as empirically. Extensive experiments across different application domains are

presented, namely power systems, water distribution networks and traffic systems.

Finally, Chapter 4 summarizes the findings of this thesis, and highlights potential

future research directions.
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Chapter 1

Bilevel Optimization in Learning

and Control

This chapter presents an overview of Bilevel Optimization (BO), including numerical

methods to solve BO problems. Example BO problems in machine learning and control

are presented. Convex optimization is not the main focus of this chapter, but sometimes

properties of convex problems are mentioned. The interested reader is referred to [1].

Additionally, a comprehensive review of BO in machine learning can be found at [2].

1.1 An Introduction to Bilevel Optimization

Bilevel Optimization (BO) [3] is a branch of mathematical programming focusing

on the interconnection of two nested optimization problems, where the solution to one

problem depends on the solution of the other. It stemmed from the seminal work [4] on

Stackelberg games, which are examples of BO problems.

Formally, a BO problem can be defined as follows:
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Bilevel Optimization in Learning and Control Chapter 1

z∗ =argmin
z∈Z

J(z, x∗) (Outer Cost)

st. g(z, x∗) ≤ 0 (Outer Constraints)

x∗ = argmin
x∈X

L(x, z∗) (Inner Cost)

st. h(x, z∗) ≤ 0 , (Inner Constraints)

where z ∈ Z is the outer (vector-valued) optimization variable, x ∈ X is the inner (vector-

valued) optimization variable, J and L are the outer and inner cost functions, and g and h

are the optional (equality and inequality) outer and inner constraints; the inner problem

is itself a constraint for the outer problem. The outer and inner problems and variables

are often referred to as upper and lower problems and variables, respectively.

Zucchet and Sacramento [2, Sec. 2] intuitively show how, in general, “[...] the inner

optimization process describes what the system does and the outer loss function ulti-

mately measures how good the result of this process is”. Depending on the context,

the “system” can be a dynamical system responding to an external excitation, a con-

trolled dynamical system, a general optimization problem, a (machine learning) model

performing regression or classification, etc. .

1.2 Numerical Methods for Bilevel Optimization

Without any further assumption, BO problems are in general NP-hard to solve [5].

In the following relevant solution approaches are presented, relying either on additional

problem assumptions or on numerical approximations to render BO problems tractable.

2
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1.2.1 Approximate Solutions via Gradient Unrolling

The key idea behind [6, 7] is to consider the inner problem as a dynamical system.

Loosely speaking, if the state x of an autonomous discrete-time dynamical system is

observed for many time steps T , it reaches a fixed point x∗ (provided the system has at

least a stable one). The evolution of the state towards the fixed point is governed by the

dynamics itself, meaning it can be “reversed” in order to compute ∂x∗

∂x0
via the chain rule.

Once the gradient is available, standard gradient-based methods can be applied to the

overall BO problem. We now formalize this summary, following the treatment in [7] and

the unpublished notes [8].

It is assumed that the inner optimization problem has a unique minimizer for any

fixed outer variable value zj (i.e., the value of z at outer gradient step j), as it is the case

in convex problems. The two approximation schemes discussed in the following consist

of two distinct phases: a common forward phase, corresponding to a forward pass when

embedded in a Neural Network; and a backward phase, corresponding to the backward

pass (i.e., gradient computation) when in a Neural Network context.

Forward Phase In the forward phase, the goal is to solve the inner problem for a given

value of the outer variable zj. By denoting the initial value of the inner optimization

variable as x0, a gradient based method is applied for T steps, resulting in the following

intermediate iterates:

xk+1 = Γ(xk, zj) , k = {0, . . . , T − 1} .

At the end of the forward phase, xT denotes the approximate solution to the inner

problem, which is arbitrarily close to the optimal value x∗.

3
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Backward Phase Once the forward phase is complete, the goal is to compute an

expression for ∇zJ , in order to apply gradient based methods to the overall BO problem.

By denoting

Bk =
∂Γ(xk, zj)

∂xk

, k = {0, . . . , T − 1}

Ck =
∂Γ(xk, zj)

∂zj
, k = {0, . . . , T − 1} ,

an expression for ∇zJ is given by:

∇zJ =
∂J

∂xT

T−1∑
k=0

(
T−1∏
s=k

Bs

)
Ck . (1.2.1)

Depending on how the terms in Eq. (1.2.1) are computed, Forward- or Reverse Mode

Differentiation (FMD, RMD) are obtained.

In FMD, an intermediate quantity Zk+1 =
∂xk+1

∂zj
is computed on the fly, resulting in

Algorithm 1:

Algorithm 1 FMD, joint forward and backward phases.

Require: Current value of zj, x0

Ensure: ∇zJ
1: Z0 ← 0
2: for k=0 to T-1 do
3: xk+1 = Γ(xk, zj)

4: Bk+1 =
∂Γ(xk+1,zj)

∂xk+1

5: Ck+1 =
∂Γ(xk+1,zj)

∂zj

6: Zk+1 = Bk+1Zk + Ck+1

7: end for
8: return ∇xT

J · ZT

For this reason, FMD as shown in Algorithm 1 is appealing in streaming applications;

however, it comes with a high computational cost, due to the matrix multiplication
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performed at line 6.

On the other hand, to better understand the RMD algorithm it is useful to write the

approximate BO problem as follows (dropping the constraints for ease of exposition):

z∗ = argmin
z∈Z,x1,...,xT∈X

J(z, xT ) (1.2.2a)

st. xk+1 = Γ(xk, z), k ∈ {0, . . . , T − 1} (1.2.2b)

The Lagrangian associated to problem (1.2.2) is:

L(x, z, α) = J(z, xT )−
T−1∑
k=0

αk (Γ(xk, z)− xk+1) , (1.2.3)

with αk being the Lagrange multipliers.

Computing the partial derivatives of the Lagrangian (1.2.3) and setting the relative

quantities to 0 leads to the same expression as Eq. (1.2.1); however, it is now easier

to instantiate the RMD algorithm with distinct forward and backward phases, as in

Algorithm 2:

RMD as detailed in Algorithm 2 shows two separate loops for the forward (line 1) and

backward (line 8) phases, and compared to FMD has lower computation due to fewer ma-

trix multiplications; however, it is not suitable for streaming applications and it has high

memory requirements, due to the need to store the entire inner optimization trajectory

(lines 3-4).

Effectiveness of FMD and RMD Researchers in [7] show how the FMD and RMD

approximation procedures are effective even when the inner problem does not possess
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Algorithm 2 RMD, forward and backward phases.

Require: Current value of zj, x0

Ensure: ∇zJ
1: for k=0 to T-1 do
2: xk+1 = Γ(xk, zj)

3: Bk+1 =
∂Γ(xk+1,zj)

∂xk+1

4: Ck+1 =
∂Γ(xk+1,zj)

∂zj

5: end for
6: αT ← ∇xT

J
7: ∇zJ ← 0
8: for k=T-1 to 0 do
9: ∇zJ = ∇zJ + αk+1Ck+1

10: αk = αk+1Bk+1

11: end for
12: return ∇zJ

a unique minimizer, and empirically analyze the effect of varying the number of inner

iterations T (which is itself a hyperparameter to be tuned manually).

However, recent research [9] shows how approximation methods may introduce bias

in the gradient estimate, especially when the inner problem does not possess a unique

minimizer.

1.2.2 Solution via Implicit Differentiation

The approximations presented in the previous section rely on the assumption of a

differentiable inner problem having a unique minimizer, but have been shown to be quite

effective even when that is not the case in practice. When the inner problem possesses

the additional property of convexity, an exact solution approach to a BO problem can

be derived by using Implicit Differentiation (ID).

The optimizer of a strongly convex and differentiable optimization problem satis-

fies the system of linear equations given by its Karush–Kuhn–Tucker (KKT) conditions

equaling the zero vector [1, Ch. 5]. In the remainder of this section, we follow the deriva-
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tion in [10, 11] adapting it to our framework. For ease of exposition, we drop the Inner

Constraints; a more detailed derivation involving constraints is given in Chapter 2.

The Lagrangian associated to the inner problem of (1.1.1) without constraints is

Lin(x, z) = J(x, z)

At the optimum, we have ∇xLin(x, z)|x∗ = 0. We are now left with computing the

derivative of the inner problem with respect to the parameter z: once available, standard

gradient based methods can be applied for solving the overall BO problem.

To this end, we can alternatively view the inner problem in (1.1.1) as a mapping s : Z →

X from parameters z to solution x∗; our goal is to compute ∂s
∂z
.

Thanks to the implicit function theorem [12, Ch. 9] this quantity is equal to:

∂s

∂z
= −

(
∂

∂x
∇xLin(x, z)

)−1
∂

∂z
∇xLin(x, z)

∣∣∣∣∣
x=x∗

, (1.2.4)

The gradient of the overall BO problem is then given by

∇zJ =
∂J

∂x

∣∣∣∣
x=x∗

∂s

∂z

and it can be used for standard gradient based methods.

The main disadvantage of ID lies in the computation of the matrix inverse in (1.2.4),

which renders it intractable for large-scale problems.

1.2.3 Notes on Numerical Solution Schemes

When looking at the solutions schemes to BO problems reviewed in this section, an

interesting observation arises when adopting a dynamical system perspective.

7
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It is possible to consider a BO problem as the interconnection of two dynamical systems,

corresponding to the outer and inner optimization problems, respectively. Then, when

adopting FMD/RMD, we are essentially assuming that the dynamics of the inner problem

is much faster than the outer problem, or at least fast enough given a specific value of

inner iterations T . When adopting ID, the assumption is pushed even further: The inner

problem is considered to have negligible dynamics, as it always operates at its optimum

(that is, its KKT conditions are enough to characterize it, and there is no transient). We

elaborate more on this topic in section 1.4.

1.3 Bilevel Optimization in Machine Learning

1.3.1 Hyperparameter Optimization

In machine learning, hyperparameters are parameters that are not learned from data

but are set prior to the training process. They control various aspects of the learning

process, such as the learning rate, the number of hidden layers and units in a neural net-

work, the regularization weight, etc. . Hyperparameter Optimization (HO) [13] involves

searching through a predefined space of hyperparameters to find the combination that

results in the best performance for a given machine learning task. The goal is to max-

imize the model’s performance metrics, such as accuracy, precision, or F1 score, while

avoiding overfitting or underfitting.

Example 1.3.1 (Tikhonov Regularization). Regularized least squares, also known as

Ridge Regression or Tikhonov Regularization [14, Chapter 6], is a classical approach to

finding the coefficients x∗ ∈ Rn satisfying the underdetermined system of linear equations

Ax = b, A ∈ Rm×n, b ∈ Rm. The approach amounts to computing x∗ by solving the

8
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optimization problem

x∗ = argmin
x
∥Ax− b∥22 + ∥x∥2Q .

Even though not explicitly stated, the optimizer x∗ is a function of the hyperparameter

Q, corresponding to the weight of the regularizer’s 2-norm.

Early works employing bilevel optimization techniques for HO date back almost

twenty years. [15] and [16] perform HO for Support Vector Machines. The former uses

the implicit function theorem under the hood to solve the optimization problem, even

though not all of its assumptions are satisfied nor are they stated. On the other hand,

the latter employs a carefully designed grid search approach.

More recently, HO formulated as a BO problem has been solved approximately for

the case of Kernel Ridge Regression [17] and generic Deep Learning architectures [7].

The former uses the implicit function theorem, whereas the latter applies forward- and

reverse-mode differentiation.

Example 1.3.2 (HO for Tikhonov Regularization). Elaborating further on Example

1.3.1, we are interested in optimally choosing the 2-norm regularizer weight Q. The

optimality criterion is the cross-validation error J(Q, x∗, x̄), which is computed by holding

out some data x̄ for validation. The HO problem can be reformulated in BO terms as

follows:

Q∗ =argmin
Q

J(Q, x∗, x̄)

st. x∗ = argmin
x
∥Ax− b∥22 + ∥x∥2Q∗

9
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1.3.2 Meta-learning

Meta-learning [18], often referred to as “learning to learn”, is a subfield of machine

learning that focuses on designing algorithms and models that can learn and adapt to

new tasks or domains more efficiently and effectively. The key idea behind meta-learning

is to leverage prior learning experiences to improve the learning process for new, unseen

tasks.

From a BO standpoint, the meta-learning objective corresponds to the outer loss func-

tion, whereas the inner loss functions amounts to the sum of the task-specific objectives.

The inner optimization variables are task-specific parameters to be learned, whereas the

outer ones are learnable parameters to be shared across tasks [7].

1.3.3 Model-based Reinforcement Learning

Model-based reinforcement learning (MBRL) [19] is an approach in the field of re-

inforcement learning (RL) where an agent learns a predictive model of the environment

and uses this model to make decisions and plan actions. In contrast to model-free RL,

where the agent directly learns a policy or value function from interaction with the en-

vironment, MBRL involves constructing a model of how the environment behaves and

then using that model for decision-making.

Typically, MBRL is mathematically formulated as:

min
π

J(π, x1:T )

s. t. xt+1 ∼ P (x+|xt, at)

at ∼ π(a, xt) ,

where J is the cost (or a negative reward) to be minimized, π is the policy to be learned,

10
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x is the state of the environment, at is the action at time t drawn from policy π, and P

the (known) transition dynamics.

Oftentimes, the transition dynamics is modeled as a Markov Decision Process (MDP)

[20], to better capture the uncertainty and stochasticity of the environment. However,

many dynamical systems tend to evolve towards minimal energy states [21, 22, 23, 24],

and the correspondence between certain contracting dynamics and optimization prob-

lems has been established [25]. This observation allows us to reformulate the transition

dynamics of MBRL as an optimization problem, recovering the standard BO formulation.

1.4 Bilevel Optimization in Systems and Control

1.4.1 Differentiable Model Predictive Control

Model Predictive Control (MPC) [26, 27] is a control strategy widely used in en-

gineering and control systems. It is a mathematical optimization-based approach that

repeatedly solves an optimization problem over a finite prediction horizon to determine

control inputs for a dynamical system. The primary goal of MPC is to optimize a speci-

fied performance criterion while satisfying system constraints. At each time step, MPC

uses a model of the system’s behavior to predict future states and then calculates control

inputs that minimize a cost function, subject to constraints, based on these predictions.

In recent years, there has been an interest for MPC problems where cost, constraints

and/or dynamics are only partially known, and parametrized by a certain parameter

z. Determining the optimal value of such parameter z requires differentiating through

the solution of the MPC problem: this formulation is referred to as Differentiable MPC

(Diff-MPC).

Given a dynamical system xk+1 = Axk + Buk, Diff-MPC can be instantiated as

11
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follows:

u∗(z) = argmin
u

J(u, x(z)) (Cost function)

st. xk+1 = A(z)xk +B(z)uk, k = {0, . . . , N − 1} (Dynamics)

(xk, uk) ∈ X (z)× U(z), k = {0, . . . , N − 1} (Constraints)

xN ∈ XN(z) (Terminal Constraints)

The above formulation can be seen as the inner problem of a BO problem; it is a simpli-

fication of the imitation learning frameworks in [28, 29], and of the Diff-MPC based on

Neural State-Space Models in [30].

1.4.2 Feedback Optimization

Similarly to Diff-MPC, the recent research area of Feedback Optimization [31] (also

known as Online Optimization or Closed-loop Optimization) focuses on the interconnec-

tion of an optimization algorithm with a dynamical system, where data used for training

comes from the system itself, in an online fashion.

For the two classes of nonlinear systems of the form

ẋ = f(x, u)

y = g(x) + d ,

and linear time-invariant systems with additional process disturbance, the goal is to

12
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simultaneously compute an optimal input u and trajectory y minimizing a cost function,

make the system track such a trajectory, and reject disturbances. Extensions to handle

some constraints have recently been proposed [32].

To achieve the above mentioned goals, the system dynamics is generally assumed to be

much faster than the process optimizing u and y, with a negligible transient. If the

system can be expressed as a gradient flow, the assumption corresponds to solving a BO

problem via ID, as shown in Sec. 1.2.

1.4.3 Time-varying Optimization

A slightly different thrust is presented in [25], where the authors focus on time-varying

optimization problems, i.e., optimization problems which are parametrized by a quantity

that changes over time. By considering the time-varying convex optimization problem

as a dynamical system, the goal is to quantify the tracking error of such a system, where

the tracking signal is parameter-dependent.

Rather than assuming an extremely fast dynamics, authors focus on bounding the track-

ing error of the dynamical system in terms of its contraction factor [33].

Their time-varying optimization problem can be seen as the inner problem of a BO

scheme, and the analysis can be useful when applying approximate schemes to solve BO

problems, such as FMD/RMD.

1.5 Open Software for Bilevel Optimization

Traditionally, the Machine Learning community has been notorious for sharing soft-

ware and data with permissive open source licenses. Since it has taken interest in BO, a

plethora of free software packages have become available.

In recent years, qpth [10] has been the first effort towards providing differentiable
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quadrati programs layers in pytorch. It leverages ID, and the authors released also

an extension tailored to Diff-MPC (mpc.pytorch, [28] ). Similarly, cvxpylayers [34]

provides differentiable convex optimization layers by leveraging ID with integration for

pytorch, Tensorflow and JAX. Compared to qpth, it can handle a broader variety of

convex problems. JAXopt [35] enables differentiating through fixed point maps (including

convex problems) via implicit differentiation, and it targets the JAX ecosystem.

higher [36] is a Python package specifically designed for meta-learning, and can be

used to automatically and efficiently track gradients in pytorch via FMD/RMD.

theseus [37] is the latest effort from Facebook Research, superseding higher and

providing tools for Differentiable Nonlinear Least-Squares by leveraging both ID as well

as FMD/RMD. Similarly, TorchOpt [38] is a differentiable optimization package built on

top of pytorch, with an emphais on a functional programming API and including both

ID as well as FMD/RMD as BO solution methods.

NeuroMANCER [39] is an ongoing effort at Pacific Northwest National Laboratory tai-

loring generic differentiable programming, including convex problems. As of now, the

solutions to BO is obtained by reversing the inner gradient iterations via the built-in

pytorch’s autograd module.
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Chapter 2

Flow Estimation in Infrastructure

Networks

The content of this chapter is based on the peer-reviewed publication [40]1.

2.1 Introduction

Many societal engineered systems can be described as a flow network carrying a

commodity. Physical infrastructures belong to this class: traffic, power, water, and gas

distribution systems all have in common (i) an underlying network structure and (ii) an

ability to carry flows of commodities according to some physical law. Oftentimes, only

limited sensing is available on these infrastructures so that not all flows are available

and accurately measured. In short, the problem of estimating flows of commodities in

a network based upon partial and noisy observations is an important task of potential

societal value.

1©2023 IEEE. Reprinted, with permission, from F. Seccamonte, A. K. Singh, and F. Bullo, Inference
of infrastructure network flows via physics-inspired implicit neural networks, in 2023 IEEE Conference
on Control Technologies and Applications (CCTA), 2023.
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The Control Engineering community has long taken interest in infrastructure networks

for several monitoring, estimation and control tasks: load forecasting [41] and admittance

estimation [42] in power networks, leak detection [43] and state estimation [44] in water

networks, traffic estimation [45] in road networks. Many of the aforementioned works,

however, are heavily task-specific, and are of difficult applicability even in case different

sensor data is available.

On the other hand, the Deep Learning community has only recently become interested

in the flow estimation problem, initially adapting recurrent architectures for this task

[46, 47]. More recent approaches belong to the rising physics-cognizant learning field,

which aims at integrating domain knowledge in learning algorithms [48, 49, 50].

A first attempt at estimating flows by assuming conservation of mass has been pro-

posed in [51]. Mass conservation is encouraged by solving a regularized divergence mini-

mization problem, however network parameters are not accounted for. [52] extends the

divergence minimization problem by learning a regularizer as a function of edge fea-

tures, and currently achieves state of the art results. In Chapter 3, we look at the flow

estimation problem in the presence of unknown network parameters; however, the full

injection (also known as supply/demand) vector is assumed to be known. None of the

aforementioned approaches is able to handle edge capacities or operational constraints.

This work contributes a framework to jointly learn network parameters and infer

missing flows and injections in an infrastructure network. The resulting architecture is

highly modular, and consists of two main components: an upstream block learns network

parameters from node and edge features, and a downstream block infers missing flows

and injections, while accounting for physical laws and enforcing constraints satisfaction.

The architecture can be trained in an end-to-end fashion with standard gradient-based

methods; at the same time, the two clearly disjoint but synergistic modules greatly lend

explainability to the approach. While being physics-inspired, the proposed architecture
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is application-agnostic, hence it is suitable for different infrastructures.

Specifically, our contributions can be summarized as follows: 1) we establish a con-

nection between flow estimation problems and the Thomson’s Principle from the circuits

theory literature; 2) we generalize the flow estimation problem to also include injections

and account for edge capacities and more general operational constraints; 3) leveraging

recent results [10, 11] on implicit differentiation, we propose an end-to-end architecture,

composed of a Graph Neural Network and an Implicit Layer, to jointly estimate missing

flows, injections as well as network parameters from graph structure, node and edge fea-

tures; 4) we empirically show how the proposed approach outperforms the state of the

art on two different case studies (power and traffic networks).

2.2 Notation and Problem Statement

An n-dimensional column vector of (positive) real numbers is denoted as x ∈ Rn

(x ∈ Rn
>0). An n-dimensional column vector of ones (zeros) is denoted as 1n (0n). The

symbol Im×m denotes the identity matrix of size m. The symbol 0m×n denotes a matrix

of zeros of size m× n. Given two vectors a,b, we define (a,b) = [aT bT ]T . The symbol

1⊥
n denotes the subset of Rn orthogonal to the vector 1n. The symbol ∥ · ∥A denotes

the Euclidean 2-norm weighted by A, with A positive definite. We denote a graph as

G(V , E), its oriented incidence matrix is B ∈ Rn×m, its node and edge sets as V , |V| = n

and E , |E| = m, respectively.

We are given an infrastructure network represented as a (directed) graph G(V , E).

Both node and edge sets are known. The flows and injections of the network are collected

in the vectors f ∈ Rm, p ∈ Rn. When in operation, some sensors allow to measure

p′ ∈ Rn′
injections and f ′ ∈ Rm′

flows, n′ ≤ n, m′ ≤ m. The goal is to infer missing

flows f̂ ∈ Rm−m′
and injections p̂ ∈ Rn−n′

.
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2.3 Physics of Infrastructure Networks

Generally speaking, infrastructure networks are often characterized by both flow (f ∈

Rm) and effort (x ∈ Rn) variables, which are usually linked through a constitutive relation

of the form f = Ah(BTx), h : Rm → Rm.

The function h is usually monotone strictly increasing, with h(0) = 0. Linearizing

the map h around the origin, the relations in a lossless network read as follows:

p = BABTx , f = ABTx , (1a, 1b)

Bf = p , p ∈ 1⊥
n , (1c, 1d)

with A = diag(a), a ∈ Rm
>0. In power networks, A is the line admittance matrix [53, Sec.

7.4]; for consistency, we refer to it as admittance matrix for other networks as well.

Equations (1c, 1d) denote flow conservation, and in [52, 51] are collectively referred

to as the divergence-free condition, assuming p = 0n. Note that even networks without

a constitutive relation, such as traffic [54], satisfy (1c, 1d).

2.3.1 The Thomson’s Principle for Linear Laplacian Flows

We recall a classical result about the exact solution to linear Laplacian flow networks,

as originally stated for DC power networks [55, Sec. 1.3.5].

Theorem 2.3.1 (Thomson’s principle and Laplacian flows). Let p ∈ 1⊥
n be a given

injection vector. Then the following statements are equivalent:

(i) f∗ satisfies the DC-power flow equations (Kirchoff and Ohm), i.e., ∃ f ∈ 1⊥
m such
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that

p = BABTx, f = ABTx . (2.3.2)

(ii) f∗ is the unique solution to the optimization problem

min
f
∥f∥2A−1 , s.t. p = Bf . (2.3.3)

Intuitively, Theorem 2.3.1 shows how power flows through the path of minimum

effective resistance. Such flows can be recovered via the convex optimization problem

(2.3.3): While effort variables are latent, the availability of the admittance matrix is

essential.

2.3.2 Operational Constraints in an Infrastructure Network

Beside the fundamental equations (2.3.1), operational constraints are often to be

considered as well. For instance, in some applications such as traffic networks, flows are

non-negative. Additionally, capacity and/or lower bounds could be available via system

specifications or inferred thanks to expert knowledge. Such constraints can be collected

into the linear inequality c ≤ G(f ,p), with G ∈ Rd×(m+n).

2.4 End-to-end Optimal Flow Inference

In the previous section, we showed how inferring missing flows while enforcing flow

conservation via problem (2.3.3) requires knowledge of the admittance matrix A. How-

ever, often times admittances are not readily available; other times, they are a (possibly

empirical or unknown) function of node and edge features N f , Ef .

We therefore propose an architecture to model the function (f̂ , p̂) = F (G,N f , Ef , f ′,p′),
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accompanied by an algorithm to efficiently learn such function in an end-to-end fashion

from limited data.

2.4.1 Jointly Learning Admittances and Network Flows

Optimizing problem (2.3.3) over admittances as well as missing flows and injections

would result in a nonconvex problem. Such an approach trivially pushes the admittance

vector to the zero vector, and disregards node and edge features. For this reason, we

define a soft constrained version of problem (2.3.3) with the additional linear inequalities

as (2.4.1b) and embed it within another optimization problem:

min
θ∈Rm

>0

E
[
∥z∗ − ẑ∥2

]
=: Ψ(z∗(θ)) (2.4.1a)

s.t. z∗=argmin
z
∥
[
Im×m 0m×n

]
z∥2A(θ)−1+∥Dz∥22

s.t. c ≤ Gz ,

(2.4.1b)

where for ease of notation we define the state z := (f ,p), D =

[
B −In×n

]
and the

admittance matrix A is parametrized by θ. The cost function (2.4.1a) represents the

mismatch between the inferred state z∗ and (a subset of) missing states ẑ, and problem

(2.4.1b) optimizes on the missing flows and efforts only. Imposing flow conservation as a

soft constraint is beneficial when dealing with noisy observations.

Problem (2.4.1) is a bilevel optimization problem [3]: solving the outer problem

(2.4.1a) requires knowledge of the solution of the inner problem (2.4.1b), which in turn

depends on the outer problem solution. Bilevel optimization problems naturally arise in

meta-learning and hyperparameter optimization [7]. They are NP hard in general, how-

ever gradient based approaches have been developed to compute approximate solutions
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[7]. In the following, we adopt a different approach based on implicit differentiation (ID),

enabling an efficient solution of problem (2.4.1) to a local minimum.

Remark 2.4.1 (More on the Outer Problem). The objective function of the outer prob-

lem (2.4.1a) represents a cross-validation error, and can be obtained as follows: Some

measured flows and injections are randomly held out, and treated as states to be esti-

mated in the inner problem (2.4.1b). This approach allows the generation of multiple

inner problem instances, even when data is extremely limited.

Remark 2.4.2 (Extension to efforts inference). Despite being mainly interested in the

flows and injections inference, it is possible to extend the problem formulation (2.4.1)

to include also effort variables. The variable z can be defined as z := (f ,p,x), the zero

matrix in problem (2.4.1b) can be modified to 0m×2n and the relations between efforts

and flows and injections, as specified in Eq. (2.3.1), can be accounted for by suitably

modifying the matrix D in problem (2.4.1b). Similarly, constraints on efforts (e.g., nodal

pressures in water networks) can be accounted for by modifying the inequality c ≤ Gz

in (2.4.1b).

2.4.2 Leveraging Convexity of the Inner Problem

The inner problem (2.4.1b) is strongly convex and differentiable. Therefore we can

replace it with a system of linear equations, corresponding to its Karush–Kuhn–Tucker

(KKT) conditions equaling the zero vector. In the remainder of this section, we adapt

the derivation in [10, 11] to our framework.

The Lagrangian associated to the inner problem (2.4.1b) is

L(z,λ,θ) = J(z,θ)− λT (Gz− c),
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with J(z,θ) being the cost function of (2.4.1b) and λ ∈ Rd
≥0 the Lagrange multiplier

associated to the inequality constraints. For such problem, the KKT conditions are

necessary and sufficient for optimality; they can be compactly rewritten as

g(z,λ,θ) :=

 ∇zL(z,λ,θ)

−diag(λ)(Gz− c)

 , (2.4.2)

and at the optimum we have g(z∗,λ∗,θ) = 0m+n+d.

In order to make the inner problem amenable to standard training via gradient-based

methods, typically used in machine learning architectures, the derivative of the inner

problem with respect to the parameter θ needs to be computed.

To this end, we can alternatively view the problem (2.4.1b) as a mapping s : Rm → R(m+n)

from parameters θ to solution z∗. Let κ := (z,λ); our goal is to compute ∂s
∂θ
. Thanks to

the implicit function theorem this quantity is equal to:

∂s

∂θ
= −

(
∂g(κ,θ)

∂κ

)−1
∂g(κ,θ)

∂θ

∣∣∣∣∣
κ=κ∗

, (2.4.3)

with

∂g(κ,θ)

∂κ
=

 ∂
∂z
∇zL(z,λ,θ) −GT

−diag(λ)G −diag(Gz− c)

 ,

∂g(κ,θ)

∂θ
=

 ∂
∂θ
∇zL(z,λ,θ)

0d×(m+n)

 .

In summary, the inner problem (2.4.1b) has been cast to an implicit layer (IL) [56],

which can be easily embedded in a variety of learning architectures.
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GNN
z
∗
= argmin

z
∥
[
Im×m 0m×n

]
z∥2

A(θ)−1 + ∥Dz∥2
2

s.t. c ≤ Gz

Implicit Layer (IL)

A(θ)
G

N f , Ef z′

z∗

Figure 2.1: Schematics of the proposed architecture. A graph representation of the
infrastructure G is given as input to a Graph Neural Network GNN, together with node
and edge features N f , Ef . The GNN outputs admittances A(θ), which are used as
inputs to the implicit layer IL. Additionally, IL takes the graph G and the measured
(i.e., known) states z′ as inputs, and produces the estimated states z∗ as outputs.
During training, IL outputs the estimated states z∗ for multiple problem instances,
which can then be employed to compute a cross-validation error as loss criterion.

2.4.3 Integrating the IL in a Deep Learning pipeline

The Implicit Layer developed in the previous subsection models problem (2.4.1b),

and allows computation of gradients with respect to the parameter θ.

The task of modeling a learnable function to estimate admittances can now be addressed.

We employ a graph neural network (GNN), motivated by its expressivity, its ability to

process node and edge features as well as graph structures in an explainable way, and its

modularity and the possibility of training it via gradient descent.

GNN on Graph vs. Line Graph Beside the choice of the specific GNN layers,

our architecture differs from the one in [52] for the representation of the infrastructure

network in the GNN. In [52], the GNN acts on the line graph L(G) [57] associated to the

physical network, neglecting node features. Only for some networks, e.g. traffic networks,

representing links as nodes is a commonly accepted choice [54].

However, a GNN acting on the line graph is potentially unable to distinguish two

very different graphs, as highlighted in the following lemma:

Lemma 2.4.3. The map G 7→ L(G) is not injective.
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Figure 2.2: Proof of Lemma
2.4.3 by counterexample. Two
distinct graphs G1, G2 (left) as-
sociated to the same line graph
L(G) (right). Notice how con-
nectivity of the infrastructure
network - the only graph prop-
erty we can assume - is not suf-
ficient for the map G 7→ L(G) to
be injective.

Proof: Proof by counterexample. See Fig. 2.2.

Lemma 2.4.3 motivates the choice of employing a GNN acting on the original graph.

Specifically, we adopt a GNN with 2 graph attention (GAT) layers accounting also for

edge features [58] and relu activations. Since the network needs to output line admit-

tances (that is, an edge-related quantity), on top of the GAT layers we add a Multi-Layer

Perceptron consisting of one linear layer and relu activation applied edge-wise. The GNN

outputs the vector θ ∈ Rm
>0 which parametrizes the admittance matrix A(θ) = diag(θ).

The end-to-end architecture is depicted in Fig. 2.1.

Remark 2.4.4 (Comparison with RMD [52]). Albeit based on different theoretical

grounds, the proposed architecture shares similarities with the state of the art [52], which

relies on approximate solutions to the inner problem via Reverse-Mode Differentiation

(RMD) [7]. The main differences with the RMD-based approach are as follows. First, ID

allows us to compute an exact derivative (instead of approximate), and to avoid unrolling

the inner gradient iterations to apply the chain rule for gradient computation. Second,

when nonnegativity constraints are added, there is no need to perform projections after

each inner gradient step in ID. Third, more general linear inequalities can be included in

ID. Finally, there are two fewer hyperparameters to select in ID - the number of inner

iterations to be performed and the learning rate of the inner problem. The computation
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of the matrix inverse in (2.4.3) can be efficiently handled via a LU decomposition, as

implemented in qpth [10].

Remark 2.4.5 (Modularity of the proposed approach). As shown in Fig. 2.1, there is

a clear separation between admittances computation (GNN), and physics-based states

estimates (IL). This modularity in principle allows the GNN block to be replaced with

any other module whose outputs are generalized admittances. Moreover, employing IL

instead of RMD as in [52] lowers the interplay between the two blocks during training: ID

loosens the interdependence between hyperparameters of the two blocks, since the number

of iterations performed in IL does not affect the choice of learning rate and/or number

of iterations for the GNN. Such modularity is beneficial in terms of ease and speed of

hyperparameter tuning, and empowers the user to effortlessly try different admittances

estimators. Finally, the output of the GNN block can easily be inspected to ensure

admittances obey prior/expert knowledge, benefiting the explainability of the approach.

2.4.4 Lowering the Complexity of the Inner Problem via Divide

and Conquer

Computing a forward pass of IL requires solving a constrained convex problem. The

backward pass requires computing the matrix inverse in Eq. (2.4.3). algorithms to

perform such tasks scale roughly cubically in the number of optimization variables.

To reduce the computational complexity of IL, we propose a divide and conquer ap-

proach, consisting of exploiting the available measurements to split the problem into

multiple subproblems. Given a weakly connected digraph describing the infrastructure

network, we remove all directed edges with measured flows, obtaining a spanning sub-

graph [59]. We then decompose the spanning subgraph into its weakly connected com-

ponents and define an appropriate decoupled divergence minimization problem (2.4.1b)
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Figure 2.3: Divide and conquer: Splitting a graph G (left) into two weakly con-
nected components G1,G2 (right). Injections are denoted with arrows, edges con-
necting two nodes with simple links. Red and black denotes measured and unknown
flows/injections, respectively.

for each of them. These problems are based upon absorbing the removed measured flows

into the injections vector, as illustrated in Fig. 2.3.

2.5 Experiments

In this section we perform several experiments to assess the validity of the proposed

approach. We use the publicly available power and traffic data from [52] in a transductive

setting (i.e., training and inference on the same network).

The traffic network roughly corresponds to the Los Angeles county area, and data was

collected by the California Department of Transportation; edge features used in traffic

are latitude and longitude coordinates, number of lanes, maximum speed, and highway

type (motorway, motorway link, trunk, etc.). The power network corresponds to the

PyPSA-Eur model in PyPSA [60]; edge features used in power are resistance, reactance,

length, and number of parallel lines, nominal power. As node feature, we use the node

degree.

We compare our algorithm to the Minimum Divergence (Min-Div) approach [51]
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Table 2.1: Flow estimation results for power and traffic datasets. For Bilevel ap-
proaches, RMSE is followed by its standard deviation in parentheses. Bold denotes
best performance.

Power Traffic

Method RMSE (SD) CORR RMSE (SD) CORR

Min-Div [51] 0.034 0.93 0.071 0.76
MLP 0.069 0.61 0.083 0.00
GCN 0.064 0.64 0.066 0.00

Bil-GCN [52] 0.027 (0.009) 0.94 0.062 (0.008) 0.79

Bil-GCN-IMP 0.026 (0.008) 0.96 0.060 (0.008) 0.85
Bil-GAT-IMP 0.025 (0.008) 0.96 0.062 (0.004) 0.82

Bil-GAT-IMP-C 0.023 (0.007) 0.97 0.059 (0.004) 0.87

and to the bilevel optimization with Graph Convolutional Network and Reverse Mode

Differentiation (Bil-GCN) [52]. Similarly to [52], we add two physics-unaware baselines:

a Multi-Layer Perceptron (MLP) and a Graph Convolutional network (GCN). MLP and

GCN attempt to predict flows based on edge features, but ignore flow conservation.

Training the end-to-end architecture is performed by using the Adam optimizer with

a learning rate of 10−2 selected via grid search. 10-fold cross-validation is employed

for each experiment, and the results presented are averaged on the 10 folds. Results

are discussed in the relevant subsections.All the code and data is available at: https:

//github.com/francescoseccamonte/bilevelflow .

2.5.1 Results: Accuracy

We start by presenting the achieved accuracy in Table 2.1. We run Bil-GCN as in

[52], a bilevel optimization architecture with two Graph Convolutional layers (8 hidden

neurons) and RMD for the inner problem, and compare it with a similar architecture Bil-

GCN-IMP. Practically speaking, we replace the flow estimation layer of Bil-GCN with

the IL designed in Sec. 2.4, and leave the rest of the architecture unaltered. In both
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Bil-GCN and Bil-GCN-IMP we use the GCN designed in [52], which works by computing

the line graph [57] associated to the infrastructure network, and using it in place of the

original graph. Only edge features are considered. We employ the hyperparameters

chosen in [52]. Notably, in Bil-GCN the number of inner iterations is the same for both

experiments. We additionally test the proposed architecture (Bilevel Optimization based

on GAT layers and Implicit Differentiation), with only 4 neurons in the hidden layer,

when constraints c ≤ Gz are included (Bil-GAT-IMP) or not (Bil-GAT-IMP-C). The

proposed architecture acts on the original graph and has 30% fewer trainable parameters

than Bil-GCN, despite accounting for both node and edge features. The metrics included

are Root Mean Square Error (RMSE) and Pearson Correlation (CORR).

As expected, we can observe how Bil-GCN-IMP outperforms Bil-GCN, since Bil-

GCN-IMP always computes an exact solution to the inner problem. The two physics-

unaware baselines MLP and GCN are unable to accurately predict flows. Additionally,

Table 2.1 shows how the bilevel architecture based on GAT achieves the highest accuracy,

and how the inclusion of constraints proves to be beneficial.

2.5.2 Results: Complexity of RMD vs. ID

We now analyze the training times of the architectures employed. The experiments

are performed in a Colab notebook on a Tesla T4 with 16 GB of memory, and Table 2.2

summarizes the results. Times showed are obtained by timing the entire training loop

with 10-fold cross validation, which includes the update of the trainable parameters of

the neural network and the execution of auxiliary functions in addition to the forward

and backward passes of the inner problem.

For RMD, the same number of inner iterations is performed in both problems, despite

the different inner problem sizes (|E| ≈ 103 for power, |E| ≈ 104 for traffic). This
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Table 2.2: End-to-end training time for RMD vs. IMP. RMD performs a fixed num-
ber of inner iterations, whereas IMP always solves the inner problem to numerical
optimality.

Method Training time power
|E| ≈ 103

Training time traffic
|E| ≈ 104

Bil-GCN [52] 244 [s] 84 [min]

Bil-GCN-IMP 77 [s] 104 [min]
Bil-GAT-IMP 72 [s] 102 [min]
Bil-GAT-IMP-C 86 [s] 308 [min]

hyperparameter choice results in RMD approximating the optimal solution in the smaller

problem with high accuracy. A coarser approximation of the solution of the inner problem

via RMD results in a lower computational burden (see, e.g., traffic), but it might lower

the accuracy of the final flow estimate. Tuning the hyperparameters of the inner problem

to compute a sufficiently good approximation is a downside of RMD, that is eliminated

altogether in the proposed approach.

As the problem size gets larger (as in traffic), ID becomes computationally more

intense, mainly due to the computation of the matrix inverse in Eq. (2.4.3). However,

as highlighted in Table 2.1, we note the accuracy given by ID is consistently higher than

RMD. Lowering the complexity of ID with techniques similar to [61] is subject of ongoing

research.

When dealing with large inner problems as in traffic, empirical evidence showed that

the choice of the GNN architecture (GCN, ChebCN, GAT) has little impact on the

training time, as solving multiple instances of the inner problem constitutes the main

computational bottleneck.

Bil-GAT-IMP-C (the most computationally expensive approach proposed) achieved

inference times < 100 ms on power, and < 10 s on traffic.
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2.5.3 GAT on Graph vs. GCN on Line Graph

Interestingly, in Table 2.1 we note how the Bil-GAT-IMP architecture, despite having

30% fewer trainable parameters than Bil-GCN, achieves almost identical performance on

power, and does only slightly worse on traffic. We believe the high expressivity of GAT

allows using a smaller architecture.

2.5.4 Embedding Prior Knowledge in Linear Inequalities

From Table 2.1 we observe how including operational constraints improves perfor-

mance of the proposed architecture. The constraints are of the form fa + fb ≥ lab, with

lab being a lower bound (non tight). We randomly sample approximately 0.2× (m−m′)

constraints. However, Table 2.2 shows how this comes at a high computational cost dur-

ing training, especially in large networks. A possible trade-off would be selecting only

the d most informative ones. Defining which constraints are informative is subject of

ongoing research.
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Chapter 3

Flow Networks with Nonlinear

Constitutive Relationships

The content of this chapter is based on the peer-reviewed publication [62].

3.1 Introduction

Similarly to Chapter 2, we are interested in the problem of infrastructure networks

flow estimation. Specifically, our aim is to incorporate physical knowledge in the flow

estimator, and the starting point is once again conservation of flows.

But the conservation law alone is not enough to uniquely determine flow, which is

why [51], [52] and [40] rely on heuristic regularizers to select the “best” conservation-

respecting flow. In fact, physical networks are often governed by a pair of physical laws:

the conservation law, and a constitutive relationship, which specifies the magnitude and

direction of each edge flow based on “effort” variables at each incident node (e.g., pressure

or voltage). For example, in DC circuits, currents are conserved according to Kirchoff’s

current law, and Ohm’s law is the constitutive relationship that relates current flows to
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nodal potentials. The conservation law and the constitutive relationship together define

the unique edge flows (and nodal efforts).

3.1.1 Contributions

This paper proposes a model for network flows that embeds both the conservation

law and existence of a constitutive relationship. Our model, which we call an Implicit

Flow Network (IFN), predicts each edge flow using a trainable nonlinear function of la-

tent nodal variables. These latent variables are constrained to a manifold wherein the

conservation law is satisfied. In addition to introducing IFN, we offer the following con-

tributions: (i) a contraction algorithm that is able to both evaluate the IFN layer and

backpropagate gradients through it, (ii) an explicit upper bound on the number of it-

erations required by this algorithm, (iii) a rigorous theoretical comparison between IFN

and the state-of-the-art flow estimation methods in [51, 52], and (iv) numerical experi-

ments from several AC power networks and water distribution systems that indicate IFN

can significantly outperform these baselines on the flow estimation task. Additionally,

because IFN requires a nonlinearity with a constrained slope, we provide (v) a novel

“derivative-constrained perceptron”, which is essentially a trainable activation function

with upper and lower bounds on its slope.

3.1.2 Related Work

Network Flow Estimation Flows on graphs are a classical topic in computer science

[63], and flow forecasting has long been studied in specific domains like traffic [64], but

interest in the flow estimation task from a machine learning perspective appears to be

relatively recent. Deep learning algorithms have been used to predict traffic flows [47, 65]

and power flows [66], but [51] and [52] appear to be the first papers to propose methods
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for domain-agnostic flow prediction, based on the notion of divergence minimization.

Implicit Neural Networks IFN belongs to a growing class of models called implicit

neural networks, which do not explicitly state the output of the model; rather, they

describe a desired relationship between the model’s inputs and outputs. In the prevailing

implicit framework, the output is defined as a fixed point of a trainable perceptron. This

approach was introduced in [67] as a “deep equilibrium network”. Subsequent work has

developed new frameworks for ensuring the existence of the fixed point and computing

it [68, 69, 70, 71, 72]. Other types of implicit neural networks include neural ODEs [73]

and layers that solve convex optimization problems [34] and Nash equilibria [74].

Graph Neural Networks Graph neural networks (GNN) are a diverse family of mod-

els for network-related learning tasks that incorporate graph structure directly into the

model. GNNs can typically be classified into three types, in increasing order of generality

[75, §5.3]: convolutional models [76, 77], attentional models [78], and message-passing

models [79, 80]. Recently, [81] proposed an implicit graph convolutional network. Anal-

ogously, IFN can be interpreted as an implicit message-passing GNN, with flows serving

as messages and latent nodal variables acting as an embedding.

3.1.3 Preliminaries and Notation

We follow the same notation adopted in Chapter 2. Additionally, given a directed

graph G = (V , E), the signed incidence matrix B ∈ {−1, 0, 1}|V|×|E| is the matrix with

entries

Bi,e =


1, i is the head of e

−1, i is the tail of e

0, else

, ∀i ∈ V and e ∈ E
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Flow Nodal Variable h(y) =

DC Current Voltage y
DC Power Voltage y2

AC Power (lossless) Voltage Angle sin(y)
Water Flow Rate Hydraulic Head sign(y)|y|0.54
Mechanical Force Networks Position y

Table 3.1: Examples of physical flow networks and their constitutive relationships.

For an undirected graph, the signed incidence matrix is obtained by assigning an aribtrary

orientation to each edge. For each i ∈ V , let Nin(i),Nout(i) ⊂ V be the in-neighbors and

out-neighbors of i.

Given a vector x ∈ Rn, we use the notation [x] to denote the diagonal matrix diag(x) ∈

Rn×n. Where such notation would be unclear (e.g., may be confused with brackets to

indicate order of operations), we fall back on the diag(·) notation. We write x⊥ to refer

to the vector space that is orthogonal to x, i.e., the space {x′ ∈ Rn : xTx′ = 0}. Given

a positive definite diagonal matrix D ∈ Rn×n, we write ||x||2,D to represent the weighted

2-norm ||D 1
2x||2. Given any matrix M , Mi is the ith column vector of M , and M (j) is

the transpose of the jth row vector.

3.2 Implicit Flow Networks

IFN is inspired by the physics of network systems. In many physical networks, nodes

“communicate” through the exchange of a commodity, like power, water, or force, which

can be represented as edge flows. Flows obey a conservation law: for all i ∈ V ,

0 =

net inflow︷ ︸︸ ︷
ui +

∑
j∈Nin(i)

f(i,j)−
net outflow︷ ︸︸ ︷∑

j′∈Nout(i)

f(i,j′), (3.2.1)

34



Flow Networks with Nonlinear Constitutive Relationships Chapter 3

where u ∈ R|V| are nodal inflows from outside the network, and f ∈ R|E| are the edge flows.

Furthermore, the flows are related to nodal variables through a constitutive relationship

(CR); there is some strictly increasing function h such that, for all (i, j) ∈ E ,

f(i,j) = a(i,j)h(xi − xj), (3.2.2)

where a ∈ R|E| are edge weights and x ∈ R|V| are nodal “efforts” or “potentials.” For

example, in DC power networks, the CR is Ohm’s law f(i,j) = r−1
(i,j)(xi − xj), where r

are resistances and x are voltages. In lossless AC networks, the CR is the active power

flow equation f(i,j) = a(i,j) sin(xi − xj), where the edge weights are a function of line

parameters and x are voltage angles [82, §6.4]. In water distribution systems, the CR

is the Hazen-Williams formula [83, Sec. 8.15]. Table 3.1 lists several flow networks, the

physical interpretation of the effort variables x, and the flow function h.

We propose IFN as a layer that predicts edge flows based on these two physical

laws—conservation and the existence of a CR:

Definition 3.2.1 (Implicit Flow Network). An implicit flow network (IFN) is a module

with the following components:

(i) fixed parameters 0 < dmin ≤ dmax,

(ii) trainable parameters θ ∈ Rr for some r, and

(iii) a family of differentiable functions hθ : R → R such that dmin ≤ h′
θ(y) ≤ dmax for

all y ∈ R and θ ∈ Rr, which we call flow functions.

The module requires each of the following inputs:

(i) a weighted, connected, undirected graph G = (V , E , a) with edge weights a ∈ R|E|
>0,

and
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(ii) a supply / demand vector u ∈ R|V| such that
∑

i∈V ui = 0.

The module outputs the unique vector f ∈ R|E| for which there exists x ∈ R|V| such that

Bf = u (3.2.3)

f = [a]hθ(B
Tx) (3.2.4)

where B ∈ {−1, 0, 1}|V|×|E| is the signed incidence matrix of G, and hθ is applied element-

wise. We use the notation FNh,θ(G, u) to represent the solution f given inputs G and u,

flow functions h, and parameters θ.

We will prove that IFNs are well-posed in Theorem 3.2.2. Note that (3.2.3) and (3.2.4)

are just vectorized statements of the conservation law (3.2.1) and the CR (3.2.2), so these

two physical laws directly define the output. The IFN’s only trainable component is its

flow function, parameterized by θ. In practice, we will only make calls to the inverse

of the flow function when evaluating and backpropagating through IFN layers, so it is

convenient to learn the inverse flow function directly.

We emphasize that IFNs are layers that can be situated in more complex architectures,

with other models upstream estimating the supply / demand vector, edge weights, or even

the topology. For example, in power systems, demand forecasting is a very well-studied

problem [41, 84], and one can solve the economic dispatch problem to forecast power

generation at each node [85], collectively leading to an estimate of the supply / demand

vector.

3.2.1 Evaluating the Implicit Flow Network

Our approach to evaluating the implicit flow network is adapted from [86] and is

illustrated in Figure 3.1. Any undirected graph G induces a direct decomposition of
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B (incidence matrix)

a (edge weights)

f (flows)u (supply / demand)
Cutset Component

Cycle Component

Inverse Flow Fnc.

Inputs (From data or 

upstream models)

Implicit Flow Network Layer

Figure 3.1: Diagram of the IFN. Inputs are the supply / demand vector u, incidence
matrix B, and edges weights a, which are either known or output from upstream mod-
els. The IFN layer separately computes the cutset component and cycle component of
the flows, with a trainable model for the inverse of the flow function in the CR. These
components are summed and output as the flow prediction, for downstream use.

the edge flow space R|E|: given the incidence matrix B ∈ {−1, 0, 1}|V|×|E|, the cycle space

ker(B) and cutset space Img(BT) are orthogonal, and R|E| = ker(B)⊕ Img(BT). We refer

the reader to [59, §9.4] for a primer on cycle and cutset spaces. Accordingly, we decompose

the vector f = FNh,θ(G, u) as f = fcyc + fcut, where fcyc ∈ ker(B) and fcut ∈ Img(BT).

The cutset component is readily determined from (3.2.3), since Bf = Bfcut = u implies

that fcut = B†u. Then we must analyze (3.2.4) to solve for fcyc. Define a cycle projection

matrix P ∈ Rm×m as the oblique projection onto ker(B) parallel to Img([a]BT):

P = Im − [a]BT
(
B[a]BT

)†
B (3.2.5)

Based on this projection, we define a map T : ker(B)→ ker(B) for all fcyc ∈ ker(B) by

T (fcyc) = P
(
fcyc − dmin[a]h

−1
θ ([a]−1fcyc + [a]−1B†u)

)
(3.2.6)
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We can show that fcyc is the unique fixed point of T , and that T is a contraction mapping,

leading to a simple algorithm to compute this fixed point.

Theorem 3.2.2 (Properties of T ). Consider an implicit flow network with parameters

dmin, dmax, and θ, with flow functions hθ. Suppose that the inputs G = (V , E , a) and

u ∈ 1⊥
|V| are given, and let B ∈ {−1, 0, 1}|V|×|E| be the signed incidence matrix of G. The

following are true:

(i) T is a contraction mapping with respect to || · ||2,[a]−1, with Lipschitz constant

Lip(T ) ≤ 1− dmin

dmax

,

(ii) the sequence of iterates f
(k+1)
cyc = T (f

(k)
cyc) starting from any initial condition f

(0)
cyc ∈

ker(B) converges to a unique fixed point fcyc,

(iii) the output of the implicit flow network is unique and given by

FNh,θ(G, u) = fcyc +B†u (3.2.7)

Consequently, IFN is well-posed.

Proof: To prove statement (i), choose any fcyc ∈ ker(B), let y = [a]−1fcyc+[a]−1B†u

for brevity, and observe that

∣∣∣∣∣∣∣∣∂T (fcyc)∂fcyc

∣∣∣∣∣∣∣∣
2,[a]−1

=

∣∣∣∣∣∣∣∣[a]− 1
2P

(
Im − dmin[a]

∂h−1
θ (y)

∂y
[a]−1

)
[a]

1
2

∣∣∣∣∣∣∣∣
2

≤ ||[a]− 1
2P [a]||2

∣∣∣∣∣∣∣∣[a](Im − dmin[a]
∂h−1

θ (y)

∂y
[a]−1

)
[a]

1
2

∣∣∣∣∣∣∣∣
2

=

∣∣∣∣∣∣∣∣[a]− 1
2

(
Im − dmin[a]

∂h−1
θ (y)

∂y
[a]−1[a]−1

)
[a]

1
2

∣∣∣∣∣∣∣∣
2
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where ||[a]− 1
2P [a]

1
2 ||2 = 1 because [a]−

1
2P [a]

1
2 is a symmetric and idempotent matrix, i.e.,

an orthogonal projection. Then

∣∣∣∣∣∣∣∣∂T (fcyc)∂fcyc

∣∣∣∣∣∣∣∣
2,[a]−1

= max
e∈E

∣∣1− dmin(h
−1
θ )′(ye)

∣∣ ≤ 1− dmin

dmax

Hence

Lip(T ) = sup
fcyc∈Rm

∣∣∣∣∣∣∣∣∂T (fcyc)∂fcyc

∣∣∣∣∣∣∣∣
2,[a]−1

≤ 1− dmin

dmax

< 1

Then statement (ii) follows from statement (i) and the Banach fixed point theorem. To

prove statement (iii), observe that fcyc = Pfcyc, so fcyc = T (fcyc) if and only if

P [a]h−1
θ

(
[a]−1f

)
= 0m (3.2.8)

where f = fcyc+B†u. But ker(P [a]) = Img(BT), so (3.2.8) is equivalent to the existence

of x ∈ Rn such that

h−1([a]−1f) = BTx (3.2.9)

and (3.2.9) is equivalent to (3.2.4).

Theorem 3.2.2 provides a simple algorithm for computing the IFN output f : pick

any f
(0)
cyc ∈ ker(B), repeatedly apply the map T until approximate convergence, then add

B†u. Some care is required when implementing this map. Since P is a dense matrix with

|E|2 entries, it is undesirable to explicitly construct the cycle space projection matrix for

large networks. Instead, in order to project a vector v ∈ R|E|, we can use the fact that

w ≜ (B[a]BT)†Bv = argmin
w∈Rn

{
||B[a]BTw −Bv||2

}
so the projection is evaluated as Pv = v − [a]BTw. Using this method of projection to

implement T , the fixed point iteration to compute FNh,θ(G, u) is stated in Algorithm 3.
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Algorithm 3 Evaluating the implicit flow network.

1: B ← signed incidence matrix of G
2: fcut ← argminfcut∈Rm {||Bfcut − u||2}
3: fcyc ← 0m

4: ∆fcyc ←∞1m

5: while ||∆fcyc||2,[a]−1 > ϵ do
6: v ← dmin[a]h

−1
θ ([a]−1fcyc + [a]−1fcut)

7: w ← argminw∈Rn

{
||B[a]BTw −Bv||2

}
8: ∆fcyc ← v − [a]BTw
9: fcyc ← fcyc −∆fcyc
10: end while
11: f ← fcyc + fcut
12: return f

Theorem 3.2.3 (Implicit Flow Networks, Forward Pass). Consider an implicit flow

network with parameters dmin, dmax, and θ, with flow functions hθ. Suppose that the

inputs G = (V , E , a) and u ∈ 1⊥
|V| are given, and let B ∈ {−1, 0, 1}|V|×|E| be the signed

incidence matrix of G. The following are true of Algorithm 3, with a tolerance of ϵ > 0:

(i) for each iteration k = 1, 2, . . . of the loop, let f
(k)
cyc represent the new value of fcyc

defined on line 9; and let f
(0)
cyc = 0m. Then

f (k+1)
cyc = T (f (k)

cyc), ∀k ≥ 0;

(ii) the algorithm converges with at most k∗ iterations of the while loop, where

k∗ = 1 +
log
(
d−1
minρ

−1ϵ
)

log
(
1− dmin

dmax

) (3.2.10)

and ρ = ||[a] 12h−1
θ ([a]−1B†u)||2; and
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(iii) the algorithm returns f ∈ R|E|, where

||f − FNh,θ(G, u)||2,[a]−1 ≤
(
dmax − dmin

dmin

)
ϵ (3.2.11)

Proof: To prove statement (i), let k ≥ 0 and consider iteration k + 1 of the loop.

The iteration first defines v = dmin[a]h
−1
θ

(
[a]−1f

(k)
cyc + [a]−1fcut

)
on line 6. Then on line

7,

w = argmin
w∈Rn

{
||B[a]BTw −Bv||2

}
=
(
B[a]BT

)†
Bv

and line 8 defines

∆fcyc = v − [a]BTw =
(
Im − [a]BT

(
B[a]BT

)†)
v = Pv

Finally, on line 9,

f (k+1)
cyc = f (k)

cyc − Pv = f (k)
cyc − dminP [a]h−1

θ

(
[a]−1f (k)

cyc + [a]−1fcut
)

A simple inductive argument shows that f
(k)
cyc ∈ ker(B). The base case f

(0)
cyc = 0m is

trivial, for all k′ ≥ 0, line 9 ensures that f
(k′+1)
cyc ∈ ker(B) so long as f

(k′)
cyc ∈ ker(B). Hence

f
(k)
cyc = Pf

(k)
cyc , and we conclude that

f (k+1)
cyc = P

(
f (k)
cyc − dmin[a]h

−1
θ

(
[a]−1f (k)

cyc + [a]−1fcut
))

= T (f (k)
cyc)

To prove statement (ii), recall from Theorem 3.2.2 that Lip(T ) ≤ 1−d−1
maxdmin, which
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(together with statement (i)) implies that, for all k ≥ 0,

||f (k+1)
cyc − f (k)

cyc||2,[a]−1 ≤
(
1− dmin

dmax

)k

||f (1)
cyc − f (0)

cyc||2,[a]−1

= dmin

(
1− dmin

dmax

)k

||P [a]h−1
θ

(
[a]−1B†u

)
||2,[a]−1

= dmin

(
1− dmin

dmax

)k

ρ

The algorithm terminates after iteration k if and only if ||f (k)
cyc − f

(k−1)
cyc ||

2,[a]−
1
2
≤ ϵ, so the

algorithm will have terminated after k∗ iterations if

dmin

(
1− dmin

dmax

)k∗−1

ρ ≤ ϵ

which is equivalent to

k∗ ≥ 1 +
log
(
d−1
minρ

−1ϵ
)

log
(
1− dmin

dmax

)
Finally, to prove statement (iii), note that the algorithm terminates after iteration k as

soon as

||f (k)
cyc − f (k−1)

cyc ||2,[a]−1 ≤ ϵ

If fcyc is the true fixed point of T , then using a general property of contraction mappings,

||f (k)
cyc − fcyc||2,[a]−1 ≤ Lip(T )

1− Lip(T )
||f (k)

cyc − f (k−1)
cyc ||2,[a]−1

≤
(
dmax − dmin

dmin

)
ϵ

Therefore, the vector f returned by the algorithm satisfies

||f − FNh,θ(G, u)||2,[a]−1 = ||f (k)
cyc − fcyc||2,[a]−1 ≤

(
dmax − dmin

dmin

)
ϵ
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If evaluating h−1
θ is sufficiently simple, then the most expensive step in the iteration is

solving the ordinary least squares problem on line 7. Using a general-purpose solver, the

complexity of this operation is roughly O(|V|3). But B[a]BT is a sparse Laplacian matrix,

so we can use a specialized Laplacian solver that reduces the complexity to O(|E| logk |E|)

for some constant k [87].

The bound on the number of iterations k∗ can be computed before any forward pass,

since evaluating h−1
θ does not require solving the IFN equations. But we can further

simplify the bound by approximating h−1
θ (0) = 0, which is often justified because physical

flow functions generally have a root at the origin. Using the fact that (h−1
θ )′(y) ≤ d−1

miny,

we can then eliminate the dependence on h−1
θ :

k∗ ≤ 1 + log

(
1− dmin

dmax

)(
log ϵ− log

(
||[a]− 1

2B†u||2
))

3.2.2 Computing the Gradients

In order to train the flow function and any upstream models, it is necessary to back-

propagate gradients through the IFN layer. We can perform this backward pass using

implicit differentiation, and it turns out that the gradients of FNh,θ(G, u) with respect

to the parameters θ, a, and u can also be computed using Algorithm 3, i.e., by writing

the gradient as the output of an auxiliary implicit flow network.

Theorem 3.2.4 (Gradients). Consider an implicit flow network with parameters dmin,

dmax, and θ, with flow functions hθ. Suppose that the inputs G = (V , E , a) and u ∈ 1⊥
|V|

are given, and let B ∈ {−1, 0, 1}|V|×|E| be the signed incidence matrix of G. Let f =

FNh,θ(G, u), and let w be a scalar entry of θ, a, or u. We can compute the derivatives

df
dw

as follows.
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Define a vector of flow functions g : R|E| → R|E| by

g(η) = D−1

(
η − [a]−1 ∂v

∂w

)
, ∀η ∈ R|E| (3.2.12)

where D ∈ R|E|×|E| is the diagonal matrix with entries

Dee =
dh−1

θ (ye)

dye

∣∣∣∣
ye=a−1

e fe

, ∀e ∈ E (3.2.13)

and v = [a]h−1
θ ([a]−1fcyc + [a]−1B†u). Then

df

dw
= FNg,·(G, 0n) +B† du

dw
(3.2.14)

(We use the notation · in place of θ, since g has no trainable parameters.) Furthermore,

the derivative constraint parameters dmin, dmax from the original implicit flow network are

valid for the new implicit flow network.

Proof: Let v = [a]h−1
θ ([a]−1fcyc + [a]−1B†u). From Theorem 3.2.2, we can write

f = fcyc + B†u, where fcyc is the unique fixed point of T . Therefore df
dw

= dfcyc
dw

+ B† du
dw
,

so the remainder of the proof is to show that dfcyc
dw

= FNg,·(G, 0n).

Since fcyc = T (fcyc), and Pfcyc = fcyc, we have

fcyc = P (fcyc − dminv) = fcyc − dminPv

so an equivalent characterization of fcyc is the unique solution to the equations

Bfcyc = 0n

Pv = 0m
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Since

dv

dw
=

∂v

∂w
+

∂v

∂fcyc

dfcyc
dw

=
∂v

∂w
+Ddfcyc

dw

then differentiating and factoring out [a], we obtain

B
dfcyc
dw

= 0n

P [a]

(
[a]−1 ∂v

∂w
+ [a]−1Ddfcyc

dw

)
= 0m

Since ker(P [a]) = Img(BT), there exists x ∈ Rn such that

[a]−1 ∂v

∂w
+ [a]−1Ddfcyc

dw
= BTx

which we can re-write as

dfcyc
dw

= [a]D−1

(
BTx− [a]−1 ∂v

∂w

)
= [a]g(BTx)

Hence dfcyc
dw

is the solution to

B
dfcyc
dw

= 0n (3.2.15)

dfcyc
dw

= [a]g(BTx) (3.2.16)

which is identical to (3.2.3)–(3.2.4) with dfcyc
dw

in place of f , 0n in place of u, and g in place

of hθ. Furthermore, g respects the same dmin, dmax derivative constraints as hθ, since for

each e ∈ E ,

g′e(ηe) =
1

Dee

=
dhθ(ye)

dye

∣∣∣∣
ye=a−1

e fe

∈ [dmin, dmax]

It follows that dfcyc
dw

is the output of the implicit flow network with flow functions g and

parameters dmin, dmax, evaluated on the original graph G and nodal demands 0n.
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In other words, to compute the gradient with respect to a parameter, we perform a

single evaluation of the implicit flow network. In order to compute the derivatives with

respect to some parameter or input w, we first evaluate the partial derivatives ∂v
∂w

and

the total derivatives du
dw
. Then we construct the flow functions g according to (3.2.12),

and solve an implicit flow network to find df
dw

according to (3.2.14). It is easy to evaluate

du
dw
, but for convenience, we provide the values of ∂v

∂w
below:

∂v

∂θi
= [a]

dh−1
θ ([a]−1f)

dθi
,

∂v

∂ae
= diag

(
h−1
θ ([a]−1f)− [a]−1Df

)
e
,

∂v

∂ui

=
(
DB†)

i

3.3 Comparison with Optimization Models

The state-of-the-art methods for flow estimation [51] and [52] use an optimization

problem to predict flows. The approach presented in Chapter 2 (based on [40]) falls

within the same category. After a suitable transformation to incorporate external flow

injections u, we can state this optimization problem as

f̂ = argmin
f∈R|E|

{
||f ||22,[q] + λ2||Bf − u||22 s.t. fe = f̃e, ∀ labeled edges e ∈ E

}
(3.3.1)

where λ > 0, and q > 0m is some vector of edge weights. In [51], q = 1m, while [52, 40]

allows q to be the output of a neural network. IFN is not explicitly an optimization

problem, but it can be cast as one that is similar to (3.3.1):

Theorem 3.3.1 (Optimization Form of IFN). Consider an IFN with flow function hθ.

Suppose that the inputs G = (V , E , a) and u ∈ 1⊥
|V| are given, and let B ∈ {−1, 0, 1}|V|×|E|

be the signed incidence matrix of G. Then the IFN output can be stated as the solution
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of a convex optimization problem:

FNh,θ(G, u) = argmin
f∈Rm

{∑
e∈E

∫ fe

0

h−1
θ (a−1

e z) dz s.t. Bf = u

}
(3.3.2)

Proof: Since h−1
θ is increasing, the optimization problem in (3.3.2) has a convex

cost function with linear constraints, so the KKT conditions are necessary and sufficient.

Letting x ∈ Rm be a vector of Lagrange multipliers, the Lagrangian is

L =
∑
e∈E

∫ fe

0

h−1
θ (a−1

e z) dz − xT (Bf − u)

leading to the stationarity condition

0T
m =

∂L
∂f

= h−1
θ (fT[a]−1)− xTB

which is equivalent to (3.2.4). Additionally, the primal constraint Bf = u is equivalent

to (3.2.3), so the minimizer of the optimization problem is identical to the output of the

IFN.

Theorem 3.3.1 can be interpreted as a nonlinear generalization of the Thomson prin-

ciple from electrical circuits theory [55]. Interestingly, the theorem sets up a direct

comparison between IFN and the models in [51, 52, 40]. If the flow function hθ is the

identity map, then (3.3.2) can be simplified as

FNh,θ(G, u) = argmin
f∈Rm

{∑
e∈E

||f ||22,[a]−1 s.t. Bf = u

}
(3.3.3)

Ignoring the constraints from labeled flows, we can interpret (3.3.1) as using a penalty

method to approximate the output of an IFN with a linear flow function. Thus, we have

three distinct differences between IFN and the optimization-based approaches. First,
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IFN allows for a nonlinear flow function, while [51, 52, 40] implicitly assume a linear CR.

Second, IFN imposes flow conservation as a hard constraint rather than an approximate

constraint (which is a limitation if u is uncertain). Finally, IFN does not incorporate flow

measurements directly; rather, the model exploits these measurements during training

to learn the proper flow function (and train any upstream models for the IFN inputs),

making it less sensitive to noise in the labeled flows.

3.4 Models for Flow Functions

In order to implement an IFN, it is necessary to parameterize its inverse flow function

h−1
θ . Since the flow function is essentially a trainable activation function, i.e., a scalar

nonlinearity, simple models are likely to be sufficient. The main difficulty with selecting

a flow function is that its slope must be bounded by dmin ≤ h′
θ(y) ≤ dmax for all y ∈ R.

This section proposes a simple scalar nonlinearity that is guaranteed to respect arbitrary

upper and lower bounds on its slope.

Definition 3.4.1 (Derivative-Constrained Perceptron). Let k ∈ Z>0 be a hidden layer

size, let a, b, c ∈ Rk be freely trainable parameters (encoded within the parameter vector

θ), and let σ be a non-expansive activation. Let p, q ≥ 1 such that p−1 + q−1 = 1, and

let d̄min ≤ d̄max ∈ R. Then the derivative-constrained perceptron N(x, θ) is the 3-layer

neural network defined by

c̄(θ) =

(
1−

(||c||p||a||q − 1)+
||c||p||a||q

)
c (L1)

N0(x, θ) = c̄T(θ)σ(ax+ b) (L2)

N(x, θ) =

(
d̄max − d̄min

2

)
N0(x, θ) +

(
d̄max + d̄min

2

)
x (L3)

Intuitively, (L1) re-scales c so that the perceptron in (L2) is guaranteed to be non-
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expansive in x. Then (L3) re-centers and re-scales the derivatives of the perceptron from

the range [−1, 1] to [d̄min, d̄max].

Theorem 3.4.2 (Derivative-Constrained Perceptron). Let N(x, θ) be a derivative-

constrained perceptron with d̄min ≤ d̄max ∈ R. Then for all parameter values θ,

d̄min ≤
d

dx
N(x, θ) ≤ d̄max, ∀x ∈ R (3.4.1)

Proof: Due to (L3), it is clear that the derivative bounds (3.4.1) hold if and only if

∣∣∣∣dN0(x, θ)

dx

∣∣∣∣ ≤ 1, ∀x ∈ R (3.4.2)

For all x, x′ ∈ R, by Hölder’s inequality,

|N0(x, θ)− N0(x
′, θ)| =

∣∣c̄T(θ) (σ(ax+ b)− σ(ax′ + b))
∣∣

≤ ||c̄(θ)||p ||σ(ax+ b)− σ(ax′ + b)||q

Since σ is non-expansive, its Lipschitz constant with respect to the q-norm is

Lip(σ) = sup
η∈Rk

∣∣∣∣∣∣∣∣∂σ(η)∂η

∣∣∣∣∣∣∣∣
q

= sup
η0∈R
|σ′(η0)| ≤ 1

and thus

||σ(ax+ b)− σ(ax′ + b)||q ≤ ||a(x− x′)||q ≤ ||a||q|x− x′|
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Furthermore, by (L1),

||c̄(θ)||p||a||q =
(
1−

(||c||p||a||q − 1)+
||c||p||a||q

)
||c||p||a||q

= ||c||p||a||q − (||c||p||a||q − 1)+

= min {1, ||c||p||a||q}

so that

|N0(x, θ)− N0(x
′, θ)| ≤ min {1, ||c||p||a||q} |x− x′| ≤ |x− x′|

for all x, x′. Hence (3.4.2) is satisfied.

Note that the values d̄min, d̄max in Definition 3.4.1 and Theorem 3.4.2 are distinct from

the IFN parameters dmin, dmax. Since we parameterize the inverse flow function h−1
θ in

IFN, one shoudl set d̄min = d−1
max and d̄max = d−1

min to implement h−1
θ with a derivative-

constrained perceptron.

3.5 Numerical Experiments

We studied the transductive task of predicting unlabeled flows, given that some la-

beled flows in the same network are known. If the edges E are partitioned into a labeled

set El and an unlabeled set Eu, the task is to predict the missing flows {fe : e ∈ Eu} given

the labeled flows {fe : e ∈ El}. For each network, we randomly selected a fraction of the

edges to be labeled edges, and we trained IFN and baselines on the labeled edges. Then

we evaluated the RMSE of the flows predicted for the unlabeled edges Eu to compute

the testing error. See Appendix A in the supplementary material for full details. Code

is available at https://github.com/KevinDalySmith/implicit-flow-networks.
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3.5.1 Datasets

AC Power We selected 6 standard power network test cases. The first 4 test cases

(IEEE-57, IEEE-118, IEEE-145, and IEEE-300) are synthetic transmission system test

cases, while the remaining cases ACTIVSg200 and ACTIVSg500 are similar to the Illinois

and South Carolina power grids, respectively [88]. Each test case contains the topology

and electrical parameters of the power network, as well as baseline demands and power

injections at each node. While branch resistances are typically small, we set them to

zero to ensure lossless transmission lines. We used the MATPOWER toolbox [89] to

solve the power flow equations, then recorded the active power flows on each branch (f),

computed the net active power injections at each node (u), and selected relevant electrical

parameters as edge attributes (series reactance, tap ratio, and voltage magnitude at the

two incident nodes).

Water Distribution We selected 3 sample water distribution networks from the ASCE

Task Committee on Research Databases for Water Distribution Systems database [90],

representing municipal water distribution systems in Fairfield, CA, Bellingham, WA, and

Harrisburg, PA. Each network contains the topology of the distribution system, as well

as the characteristics of pipes and other network elements and nodal demands. We used

the WNTR package [91] to compute the flow rates through each pipe (f), net inflow rate

at each node (u), and edge weights associated with each pipe.

3.5.2 Models and Experiment Details

IFN Architecture In order to use the IFN layer to predict power flows, we created

a two-layer model. The first layer estimates positive edge weights a ∈ R|E| according to

ae = exp (L(ze)) for all e ∈ E , where L is a linear module, and ze is the log-transformed
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vector of edge attributes. The second layer is an IFN. To predict water flows, we used

an IFN layer alone, supplying the edge weights from the dataset as input (rather than

learning them from other edge attributes). For both water and power, the IFN layer uses

a derivative-constrained perceptron as the inverse flow function (k = 128, p = q = 1
2
)

with a ReLU activation function. For power, we set dmin = 0.4 and dmax = 2; and for

water, dmin = 0.2 and dmax = 20.

Baselines We compared the IFN model against four baselines. The minimum diver-

gence method (Div) from [51] minimizes the nodal divergence ||Bf ||22 and a regularization

term λ||f ||22. The bilevel optimization methods from [52] replace the uniform regularizer

with a weighted regularizer ||f ||22,[q], where q is a vector of weights. In Bil-MLP and

Bil-GCN, q is the output of either a 2-layer MLP or GCN model with edge attributes as

inputs (we use 64 nodes in each hidden layer with ReLU activations). In Bil-True, we

specify q as the reciprocal of the coefficient in the linearized CR for AC power networks,

so that Bil-True approximates (3.3.3) with a as the ground-truth edge weight. For water

experiments, Bil-True uses the same edge weights as the IFN model.

All of the baselines assume that nodal divergence Bf should be approximately zero,

but nodes in power networks inject and withdraw power according to the supply / demand

vector u, resulting in nonzero divergence. Thus, when we evaluate the baselines, we

transform the power network into a divergence-free network by introducing a “source

node”, adding an edge from the source node to all nodes in V , and treating the entries

of u as the flows along each corresponding virtual edge.

3.5.3 Results

Figure 3.2 reports the results for the AC power networks, and Figure 3.3 reports

the results for water distribution systems. In both types of networks, the IFN model
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Figure 3.2: Results for missing flow prediction in AC power networks. Reported values
are the RMSE (in units of MW) on the testing set, averaged across 10 trials. Note
the vertical axis is in a log scale.
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Figure 3.3: Results for missing flow prediction in water distribution systems. Reported
values are the RMSE (in units of m3/s) on the testing set, averaged across 10 trials.
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significantly outperforms the baselines on all of the networks when a small fraction of

edges are labeled (less than 80% in power and less than 60% in water). While the other

baselines tend to improve as more labeled edges are made available for training, IFN

achieves near-optimal performance with as few as 10% of the edges labeled.
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Conclusion and Future Directions

4.1 Thesis Summary

In this dissertation, we proposed two end-to-end architectures and their corresponding

learning algorithms to infer missing flows in infrastructure networks based on partial

observations. Both algorithms belong to a broad family of machine learning models

called implicit neural networks.

As opposed to existing works, the first framework is directly based on classical re-

sults in the circuits theory literature and can handle operational constraints, greatly

benefiting its explainability. Such a framework is highly modular, and integrates Graph

Neural Networks and a physics-inspired Implicit Layer. Through extensive comparisons

with state-of-the-art approaches, we have empirically shown that our framework achieves

higher accuracy. Moreover, we discussed scenarios where employing the Implicit Layer

leads to a substantial speedup in training compared to the state of the art. While our

experiments focused on a transductive setting, we anticipate strong performance in in-

ductive scenarios as well, which are pertinent to the infrastructure networks domain.

As for the second model, we focused on the scenario where a) all the network supplies
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and demands are known, and b) the infrastructure is characterized by a nonlinear con-

stitutive relationship (CR). The proposed implicit model incorporates physics through

a conservation law and through the existence of a (latent) constitutive relationship be-

tween flows and nodal variables. We have demonstrated that a simple architecture using

this model can learn to accurately predict active power flows in AC networks and water

distribution systems.

The two proposed architectures target different aspects of the flow estimation prob-

lem, and share some similarities in terms of how the physics is embedded, and how they

give rise to non-traditional implicit neural network layers.

4.2 Future Directions

A limitation of our approaches consists of considering the equilibrium scenario only:

Networks with dynamic states (that are potentially available as a stream of data) are

subject of ongoing research. Finally, the proposed approaches are limited to lossless net-

works; adapting them to networks with losses constitutes a compelling research direction.

Future work may investigate more elaborate architectures using the implicit layers

as a layer, wherein the supply / demand vector, edge weights, or even the graph itself

could be predicted from upstream models, and the flows themselves used for downstream

tasks. Another interesting extension may be to extend our methods to networks with

higher-order interactions, i.e., hypergraphs [92] and simplicial complexes [93, 94].

Specifically to IFN, some additional limitations should also be addressed in future

work. IFN assumes that the graph is undirected, which does not adequately model

networks with unidirectional flows (e.g., traffic) or lossy flows (e.g., resistive power grids).

IFN also assumes a CR that depends on the difference between nodal variables. This form

appears frequently in physical systems, but in other network flow models (like Daganzo
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traffic models [54]), the CR has a more general dependence on the nodal variables. These

limitations may be addressed with extensions of IFN’s contraction algorithm.
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Appendix A

Experiments Details on IFN

A.1 AC Power Datasets

We created datasets from 6 AC power network test cases. Each dataset that we cre-

ated represents a snapshot of an AC power network in its steady state, consisting of four

components: the network topology (as an oriented, undirected graph), four attributes on

each edge (voltage magnitude at the two incident nodes, series reactance, and tap ratio),

the net power injection at each node, and the active power flow through each branch.

Original Data We generated our datasets using MATPOWER, an open-source toolbox

for power system simulation in MATLAB [89]. The toolbox includes many standard test

Test Case MATPOWER Case Name |V| |E|
IEEE-57 case57 57 135
IEEE-118 case118 118 297
IEEE-145 case145 145 567
IEEE-300 case300 300 709
ACTIVSg200 case ACTIVSg200 200 445
ACTIVSg500 case ACTIVSg500 500 1084

Table A.1: MATPOWER test case details.
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cases, which contain a network topology and tables of electrical and economic parameters

for each bus (node), branch (edge), and generator. We selected 6 test cases, listed in Table

A.1. The raw data files for these test cases are available from the MATPOWER source1,

and details on the test case file format are contained in Appendix B of the user manual2.

Data Generation After loading each test case into MATPOWER, we performed the

following two modifications of the network parameters:

(i) We set branch resistances (column 3 in the branch data table) to zero, so that

transmission lines in the system are lossless. This step was necessary because IFN

is limited to undirected graphs, while lossy lines are more appropriately modeled

with a pair of directed edges, since the power injected at one endpoint does not equal

the power withdrawn from the other endpoint. Fortunately, branch resistances are

typically small before this modification.

(ii) We replaced any negative series reactances (column 4 in the branch data table)

with a positive value, chosen as the median of the positive series reactances in the

same network. We performed this modification because negative series reactances

results in decreasing constitutive relationships on the corresponding edges, whereas

IFN assumes that the constitutive relationship is increasing. This modification only

affected two networks: IEEE-145, in which 24 (4.2%) of the branches were assigned

a series reactance of 0.2306; and IEEE-300, in which 1 (0.1%) of the branches was

assigned a series reactance of 0.059.

We then computed the resulting power flows using the runpf function and recorded the

results.

1https://github.com/MATPOWER/matpower/tree/master/data
2https://matpower.org/docs/MATPOWER-manual.pdf
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Pre-Processing Finally, we converted the results from the MATPOWER simulation

into a PyTorch Geometric data object, with the following attributes:

• edge index, the edge index tensor, containing the topology from the test case.

• x, a tensor of net active power injections at each node, which has the property that

1T
nx = 0. (This tensor is identical to the supply / demand vector u in the paper.)

• edge attr, a tensor of four relevant attributes for each edge: the voltage magni-

tudes at the two incident nodes, the series reactance, and the tap ratio.

• f true, the tensor of active power flows on each edge simulated by MATPOWER.

The net active power injections at each node are computed according to

ui = PGi − PDi −GSiVM
2
i

where PGi is active power generated at i, PDi is active power demanded, GSi is shunt

conductance, and VMi is the voltage magnitude.

A.2 Water Distribution Dataset

We created 3 datasets representing snapshots of municipal water distribution networks

in their steady state, consisting of four components: the network topology (as an oriented,

undirected graph), weights for each edge, the net inflow rates at each node, and the flow

rate through each pipe.

Original Data Each of the datasets is based on a network from the ASCE Task Com-

mittee on Research Databases for Water Distribution Systems database [90]. Networks in

this database contain a distribution network topology and tables of hydraulic parameters
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Test Case |V| |E|
Fairfield 111 125
Bellingham 121 162
Harrisburg 261 286

Table A.2: Water distribution network details.

and operating characteristics for each node, pipe (edge), pump, reservoir, and storage

tank in the network. We selected 3 networks, listed in Table A.2 and plotted in Figure

A.1. The raw data files are available online3.

Data Generation and Preprocessing We loaded each network INP file into WNTR

and ran the WNTR simulator with a hydraulic accuracy of 10−8. We then converted the

results into a PyTorch Geometric data object, with the following attributes:

• edge index, the edge index tensor, containing the topology from the test case.

• x, a tensor of net inflows at each node, which has the property that 1T
nx = 0.

• edge attr, a tensor of three relevant attributes for each edge: the pipe length, pipe

diameter, and pipe roughness coefficient.

• f true, the tensor of flow rates through each pipe simulated by WNTR.

Edge weights are computed according to the formula

ae = (0.27855)CeD
2.63
e L−0.54

e (A.2.1)

where Ce is the roughness coefficient (unitless), De is the diameter (meters), and Le is

the pipe length (meters) 4.

3http://www.uky.edu/WDST/index.html
4https://wntr.readthedocs.io/en/latest/hydraulics.html
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Figure A.1: Network maps of the three water distribution systems: Fairfield (upper
left), Bellingham (upper right), and Harrisburg (bottom).
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A.3 Details on IFN

Our IFN implementation uses Algorithm 3 to compute the layer’s forward pass. We

set the maximum number of iterations in this algorithm to 100, with a tolerance of

ϵ = 10−2 for power and ϵ = 10−4 for water. With the release of PyTorch 1.11.0, the

torch.linalg.lstsqmethod5 now supports automatic differentiation, allowing PyTorch

to automatically backpropagate through the Algorithm 3 iterations, instead of using

Theorem 3.2.4. We found that Algorithm 3 terminated with a small enough number of

iterations that automatic differentiation was faster, so we opted to use this rather than

the method from Theorem 3.2.4. We trained the IFN models to minimize the RMSE loss

function by minimizing the RMSE loss function

ℓrmse =

√
1

|El|
∑
e∈E

(fe − FNh,θ(G, u)e)
2

A.4 Details on Baselines

Analogously to the baselines implementation in [40], we implemented all of the base-

lines by adapting Silva’s code6 from [52], refactoring some utility functions to decrease

runtime. Following [52], we perform the following two data normalization steps:

(i) negative flows are converted into positive flows by flipping the orientation of the

corresponding edges and replacing the entries of f true with their absolute value,

and

(ii) flows are proportionally normalized to the range [0, 1] within each network.

After training with the normalized flows and computing the missing flow predictions, the

5https://pytorch.org/docs/stable/generated/torch.linalg.lstsq.html
6https://openreview.net/forum?id=l0V53bErniB
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predictions are denormalized before computing the testing RMSE.

Div The minimizing divergence baseline from [51] has a single hyperparameter, λ, from

the regularization term λ2||f ||22 in the loss function. We set λ = 0.1 for all networks and

fractions of labeled edges by hand-tuning the parameter to the proper order of magnitude.

Bilevel Baselines All three of the bilevel baselines (Bil-MLP, Bil-GCN, and Bil-True)

have several hyperparameters related to the bilevel optimization algorithm. For most of

these parameters, we use the same settings as [52]: the number of iterations for the inner

optimization problem is 300 during training and 3000 during evaluation, and the number

of k-fold cross validation folds is 10; however, we increased the number of iterations of

the outer optimization problem from 10 to 100, with an early stopping interval of 10,

to ensure that the outer optimization problem was given sufficient time to converge. As

with [52], we used a 2-layer MLP and GCN in Bil-MLP and Bil-GCN, respectively, but

we increased the size of the hidden layer to 64.

Bil-True Like IFN, the baselines Bil-MLP and Bil-GCN train a model to predict edge

weights from side information (if we interpret Q as a diagonal matrix of edge weights).

We devised Bil-True as a third baseline to use the “ground-truth edge weights” instead

of training a model. For water experiments, these ground-truth edge weights are given

by (A.2.1). For the power experiments, we compute these edges weights from the AC

active power flow equation: in a lossless AC power grid, active power flows fij on each

edge {i, j} ∈ E are given by

fij =
vivj
xijτij

sin(θi − θj) ≈
vivj
xijτij

(θi − θj) (A.4.1)
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where vi, vj are the voltage magnitudes on incident nodes, xij is the series reactance, τij

is the tap ratio, and θi, θj are the incident voltage angles. Since (A.4.1) is the constitutive

relationship for AC power networks, examining its linear approximation in light of (3.3.3)

suggests using xijτij/vivj as the regularizer weight on fij.

A.5 Details on Training

We trained all models in a Google Colab notebook, using the Adam optimizer. We

used an initial learning rate of 0.01, which we found to have good performance for all

of the models. Training was terminated when the training loss had not decreased for 10

epochs.
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F. Pedregosa, and J.-P. Vert, Efficient and modular implicit differentiation, arXiv
preprint arXiv:2105.15183 (2021).

[36] E. Grefenstette, B. Amos, D. Yarats, P. M. Htut, A. Molchanov, F. Meier,
D. Kiela, K. Cho, and S. Chintala, Generalized inner loop meta-learning, arXiv
preprint arXiv:1910.01727 (2019).

[37] L. Pineda, T. Fan, M. Monge, S. Venkataraman, P. Sodhi, R. T. Q. Chen, J. Ortiz,
D. DeTone, A. Wang, S. Anderson, J. Dong, B. Amos, and M. Mukadam, Theseus:
A library for differentiable nonlinear optimization, 2023.

68



[38] J. Ren, X. Feng, B. Liu, X. Pan, Y. Fu, L. Mai, and Y. Yang, Torchopt: An
efficient library for differentiable optimization, arXiv preprint arXiv:2211.06934
(2022).

[39] A. Tuor, J. Drgona, J. Koch, M. Shapiro, D. Vrabie, and S. Briney,
NeuroMANCER: Neural Modules with Adaptive Nonlinear Constraints and
Efficient Regularizations, .

[40] F. Seccamonte, A. K. Singh, and F. Bullo, Inference of infrastructure network
flows via physics-inspired implicit neural networks, in 2023 IEEE Conference on
Control Technologies and Applications (CCTA), 2023.

[41] A. K. Singh, Ibraheem, S. Khatoon, M. Muazzam, and D. K. Chaturvedi, Load
forecasting techniques and methodologies: A review, in 2012 2nd International
Conference on Power, Control and Embedded Systems, IEEE, 2012.

[42] J.-S. Brouillon, E. Fabbiani, P. Nahata, F. Dörfler, and G. Ferrari-Trecate,
Bayesian methods for the identification of distribution networks, in IEEE
Conference on Decision and Control, pp. 3646–3651, 2021.

[43] S. G. Vrachimis, D. G. Eliades, and M. M. Polycarpou, Leak detection in water
distribution systems using hydraulic interval state estimation, in IEEE Conference
on Control Technology and Applications (CCTA), pp. 565–570, 2018.

[44] B. S. Rego, S. G. Vrachimis, M. M. Polycarpou, G. V. Raffo, and D. M. Raimondo,
State estimation and leakage detection in water distribution networks using
constrained zonotopes, IEEE Transactions on Control Systems Technology 30
(2022), no. 5 1920–1933.

[45] D. B. Work, S. Blandin, O.-P. Tossavainen, B. Piccoli, and A. M. Bayen, A Traffic
Model for Velocity Data Assimilation, Applied Mathematics Research eXpress 2010
(04, 2010) 1–35.

[46] B. Yu, H. Yin, and Z. Zhu, Spatio-temporal graph convolutional networks: A deep
learning framework for traffic forecasting, in International Joint Conference on
Artificial Intelligence, p. 3634–3640, AAAI Press, 2018.

[47] Y. Li, R. Yu, C. Shahabi, and Y. Liu, Diffusion convolutional recurrent neural
network: Data-driven traffic forecasting, in International Conference on Learning
Representations, 2018.

[48] A. A. Ahmadi and B. E. Khadir, Learning dynamical systems with side
information, in Learning for Dynamics and Control, vol. 120, pp. 718–727, PMLR,
2020.

69



[49] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang,
Physics-informed machine learning, Nature Reviews Physics 3 (2021), no. 6
422–440.

[50] E. Inanc, Y. Gurses, A. Habboush, Y. Yildiz, and A. M. Annaswamy, Neural
network adaptive control with long short-term memory, 2023.

[51] J. Jia, M. T. Schaub, S. Segarra, and A. R. Benson, Graph-based semi-supervised &
active learning for edge flows, in ACM International Conference on Knowledge
Discovery and Data Mining (SIGKDD), p. 761–771, July, 2019.

[52] A. Silva, F. Kocayusufoglu, S. Jafarpour, F. Bullo, A. Swami, and A. K. Singh,
Combining physics and machine learning for network flow estimation, in
International Conference on Learning Representations, (Online), May, 2021.

[53] C. A. Desoer and E. S. Kuh, Basic Circuit Theory. IEEE Press, 1969.

[54] G. Como, On resilient control of dynamical flow networks, Annual Reviews in
Control 43 (2017) 80–90.

[55] P. G. Doyle and J. L. Snell, Random Walks and Electric Networks. Mathematical
Association of America, 1984.

[56] D. Duvenaud, Z. J. Kolter, and M. Johnson, Deep implicit layers tutorial - neural
ODEs, deep equilibirum models, and beyond., in Advances in Neural Information
Processing Systems, Tutorial, 2020.

[57] F. Harary and R. Z. Norman, Some properties of line digraphs, Rendiconti del
Circolo Matematico di Palermo 9 (1960) 161–168.

[58] L. Gong and Q. Cheng, Exploiting edge features for graph neural networks, in
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 9203–9211, 2019.

[59] F. Bullo, Lectures on Network Systems. Kindle Direct Publishing, 1.6 ed., Jan.,
2022.
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[66] L. Böttcher, H. Wolf, B. Jung, P. Lutat, M. Trageser, O. Pohl, X. Tao, A. Ulbig,
and M. Grohe, Solving ac power flow with graph neural networks under realistic
constraints, in 2023 IEEE Belgrade PowerTech, pp. 1–7, 2023.

[67] S. Bai, J. Z. Kolter, and V. Koltun, Deep equilibrium models, in Advances in
Neural Information Processing Systems, 2019.

[68] E. Winston and J. Z. Kolter, Monotone operator equilibrium networks, in Advances
in Neural Information Processing Systems, 2020.

[69] M. Revay, R. Wang, and I. R. Manchester, Lipschitz bounded equilibrium networks,
.

[70] L. El Ghaoui, F. Gu, B. Travacca, A. Askari, and A. Tsai, Implicit deep learning,
SIAM Journal on Mathematics of Data Science 3 (2021), no. 3 930–958.

[71] S. Jafarpour, A. Davydov, A. V. Proskurnikov, and F. Bullo, Robust implicit
networks via non-Euclidean contractions, in Advances in Neural Information
Processing Systems, Dec., 2021.

[72] S. W. Fung, H. Heaton, Q. Li, D. McKenzie, S. Osher, and W. Yin, Fixed point
networks: Implicit depth models with Jacobian-free backprop, 2021. ArXiv e-print.

[73] R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud, Neural ordinary
differential equations, in Advances in Neural Information Processing Systems, 2018.

[74] H. Heaton, D. McKenzie, Q. Li, S. W. Fung, S. J. Osher, and W. Yin, Learn to
predict equilibria via fixed point networks, CoRR abs/2106.00906 (2021)
[arXiv:2106.0090].

[75] M. M. Bronstein, J. Bruna, T. Cohen, and P. Veličković, Geometric deep learning:
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