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Abstract

Secure Control Systems: A Control-Theoretic Approach to

Cyber-Physical Security

Fabio Pasqualetti

Cyber-physical systems and networks form a ubiquitous computing substrate

that underlies much of modern technological society. Examples include embedded

systems, such as medical devices, communication peripherals, smart vehicles, and

large-scale systems, such as transportation networks, power generation grids, and

water distribution systems. Researchers and hackers have recently shown that

cyber-physical systems are vulnerable to remote attacks targeting their physical

infrastructure or their data management and communication layer. Due to the

crucial role of cyber-physical systems in everyday life, the development of advanced

security monitors is of utmost importance.

This thesis addresses problems concerning security of cyber-physical systems.

Our contribution is threefold. First, we propose a unified modeling framework

for cyber-physical systems, monitors, and attacks. For our model we define the

notions of detectability and identifiability of an attack by its effect on output mea-

surements, and we characterize fundamental monitoring limitations. Additionally,

we provide algebraic and graph-theoretic tests for the existence of undetectable

xiv



and unidentifiable attacks in cyber-physical systems. Second, we design central-

ized and distributed monitors for the detection and identification of attacks from

output measurements. Our monitors leverage on tools from control theory and

distributed computing, such as conditioned invariant subspaces and waveform re-

laxation techniques. Our monitors are provably correct, and effective against at-

tacks targeting both the physical infrastructure and the communication layer.

Third, we exploit our findings to design undetectable attack strategies. Our at-

tack design method relies upon the control-theoretic notion of controlled invariant

subspace. Our attack strategy is specific, in the sense that the attack signal is cast

to alter the system functionality in a pre-specified manner. Finally, we present

several illustrative examples. Besides showing the effectiveness of our methods for

the analysis of systems vulnerabilities, the design of security monitors, and the

synthesis of attack strategies, our numerical examples confirm that our methods

are effective also in the presence of system noise and unmodeled dynamics.

Professor Francesco Bullo

Dissertation Committee Chair
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Chapter 1

Introduction

“... fare come gli arcieri prudenti, e quali parendo el loco dove diseg-
nano ferire troppo lontano e conoscendo fino a quanto va la virtù del
loro arco, pongono la mira assai più alta che il loco destinato, non per
aggiungere con la loro freccia a tanta altezza, ma per potere con l’aiuto
di s̀ı alta mira pervenire al disegno loro.”1

Niccolò Machiavelli, “De Principatibus” (1532)

Cyber-physical systems arise from the tight integration of physical processes,

computational resources, and communication capabilities: processing units mon-

itor and control physical processes by means of sensor and actuator networks.

Examples of cyber-physical systems include transportation networks, power gen-

eration and distribution networks, water and gas distribution networks, and ad-

vanced communication systems. Due to the crucial role of cyber-physical systems

in everyday life, cyber-physical security needs to be promptly addressed.

1... to act like the clever archers who, designing to hit the mark which yet appears too far
distant, and knowing the limits to which the strength of their bow attains, take aim much higher
than the mark, not to reach by their strength or arrow to so great a height, but to be able with
the aid of so high an aim to hit the mark they wish to reach.

1



Chapter 1. Introduction

Besides failures and attacks on the physical infrastructure, cyber-physical sys-

tems are also prone to cyber attacks on their data management and commu-

nication layer. Recent studies and real-world incidents have demonstrated the

inability of existing security methods to ensure a safe and reliable functionality of

cyber-physical infrastructures against unforeseen failures and, possibly, external

attacks [15, 64, 101, 103]. The protection of critical infrastructures is, as of today,

one of the main focuses of the Department of Homeland Security [4].

Concerns about security of control systems are not new, as the numerous

manuscripts on systems fault detection, isolation, and recovery testify; see for

example [7, 28]. Cyber-physical systems, however, suffer from specific vulnera-

bilities which do not affect classical control systems, and for which appropriate

detection and identification techniques need to be developed. For instance, the

reliance on communication networks and standard communication protocols to

transmit measurements and control packets increases the possibility of intentional

and worst-case (cyber) attacks against physical plants. On the other hand, infor-

mation security methods, such as authentication, access control, message integrity,

and cryptography methods, appear inadequate for satisfactory protection of cyber-

physical systems. Indeed, these security methods do not exploit the compatibility

of the measurements with the underlying physical process and control mechanism,

which are the ultimate objective of a protection scheme [16]. Moreover, such in-

2



Chapter 1. Introduction

formation security methods are not effective against insider attacks carried out

by authorized entities, as in the famous Maroochy Water Breach case [101], and

they also fail against attacks targeting directly the physical dynamics [26].

1.1 Literature Synopsis

In this section we review the existing literature in the area of cyber-physical

security, distributed estimation, and secure consensus computation. This will

allow for a more concrete statement of the contributions of this thesis.

1.1.1 Cyber-physical security

The analysis of vulnerabilities of cyber-physical systems to external attacks

has received increasing attention in the last years. The general approach has been

to study the effect of specific attacks against particular systems. For instance,

in [2] deception and denial of service attacks against a networked control system

are introduced, and, for the latter ones, a countermeasure based on semi-definite

programming is proposed. Deception attacks refer to the possibility of compro-

mising the integrity of control packets or measurements, and they are cast by

altering the behavior of sensors and actuators. Denial of service attacks, instead,

compromise the availability of resources by, for instance, jamming the communi-

3



Chapter 1. Introduction

cation channel. In [56] false data injection attacks against static state estimators

are introduced. False data injection attacks are specific deception attacks in the

context of static estimators. It is shown that undetectable false data injection at-

tacks can be designed even when the attacker has limited resources. In a similar

fashion, stealthy deception attacks against the Supervisory Control and Data Ac-

quisition system are studied, among others, in [3,110]. In [69] the effect of replay

attacks on a control system is discussed. Replay attacks are cast by hijacking the

sensors, recording the readings for a certain amount of time, and repeating such

readings while injecting an exogenous signal into the system. It is shown that this

type of attack can be detected by injecting a signal unknown to the attacker into

the system. In [102] the effect of covert attacks against networked control systems

is investigated. Specifically, a parameterized decoupling structure allows a covert

agent to alter the behavior of the physical plant while remaining undetected from

the original controller. In [121] a resilient control problem is studied, in which

control packets transmitted over a network are corrupted by a human adversary.

A receding-horizon Stackelberg control law is proposed to stabilize the control

system despite the attack. Recently the problem of estimating the state of a lin-

ear system with corrupted measurements has been studied [40]. More precisely,

the maximum number of faulty sensors that can be tolerated is characterized,

and a decoding algorithm is proposed to detect corrupted measurements. Finally,
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security issues of some specific cyber-physical systems have received considerable

attention, such as power networks [25,26,64,70,77,80,97,103,110], linear networks

with misbehaving components [78,105], and water networks [3, 32,101,102].

1.1.2 Distributed estimation and false data detection

Starting from the eighties, the problem of distributed estimation has attracted

intense attention from the scientific community, generating through the years a

very rich literature. More recently, because of the advent of highly integrated and

low-cost wireless devices as key components of large autonomous networks, the

interest for this classical topic has been renewed. For a wireless sensor network,

novel applications requiring efficient distributed estimation procedures include,

for instance, environment monitoring, surveillance, localization, and target track-

ing. Considerable effort has been devoted to the development of distributed and

adaptive filtering schemes, which generalize the notion of adaptive estimation to

a setup involving networked sensing and processing devices [18]. In this context,

relevant methods include incremental Least Mean-Square [57], incremental Recur-

sive Least-Square [94], Diffusive Least Mean-Square [94], and Diffusive Recursive

Least-Square [18]. Diffusion Kalman filtering and smoothing algorithms are pro-

posed, for instance, in [17, 19], and consensus based techniques in [95, 96]. We

remark that the strategies proposed in the aforementioned references could be
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adapted for the solution of our estimation problems. Their performance, however,

appears not to be well suited in our context for the following reasons. First, the

convergence of the above estimation algorithms is only asymptotic, and it depends

upon the communication topology. As a matter of fact, for many communication

topologies, such as Cayley graphs and random geometric graphs, the convergence

rate is very slow and scales badly with the network dimension. Such slow conver-

gence rate is clearly undesirable because a delayed state estimation could lead the

power plant to instability. Second, approaches based on Kalman filtering require

the knowledge of the global state and observation model by all the components of

the network, and they therefore violate our assumptions. An exception is consti-

tuted by [104], where an estimation technique based on local Kalman filters and a

consensus strategy is developed. This latter method, however, besides exhibiting

asymptotic convergence, does not offer guarantees on the final estimation error.

Third and finally, the application of these methods to the detection of cyber at-

tacks, which is also our goal, is not straightforward, especially when detection

guarantees are required.

The estimation technique we developed here belongs to the family of Kaczmarz

(row-projection) methods for the solution of a linear system of equations. See

[20, 38, 44, 108] for a detailed discussion. Differently from the existing row-action

methods, our algorithms exhibit finite time convergence, and they can be used to
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compute the weighted least squares solution to a system of linear equations with

arbitrary weights.

1.1.3 Secure consensus computation

Distributed systems and networks have received much attention in the last

years because of their flexibility and computational performance. One of the

most frequent tasks to be accomplished by autonomous agents is to agree upon

some parameters. Agreement variables represent quantities of interest such as the

work load in a network of parallel computers, the clock speed for wireless sensor

networks, the velocity, the rendezvous point, or the formation pattern for a team

of autonomous vehicles; e.g., see [12,73,89].

Several algorithms achieving consensus have been proposed and studied in

the computer science community [61]. In this work, we consider linear consensus

iterations, where, at each time instant, each node updates its state as a weighted

combination of its own value and those received from its neighbors [43, 74]. The

choice of algorithm weights influences the convergence speed toward the steady

state value [118].

Because of the lack of a centralized entity that monitors the activity of the

nodes of the network, distributed systems are prone to attacks and component

failure, and it is of increasing importance to guarantee trustworthy computation
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even in the presence of misbehaving parts [66]. Misbehaving agents can interfere

with the nominal functions of the network in different ways. In this thesis, we

consider two extreme cases: that the deviations from their nominal behavior are

due to genuine, random faults in the agents; or that agents can instead craft mes-

sages with the purpose of disrupting the network functions. In the first scenario,

faulty agents are unaware of the structure and state of the network and ignore

the presence of other faults. In the second scenario, the worst-case assumption is

made that misbehaving agents have knowledge of the structure and state of the

network, and may collude with others to produce the biggest damage. We refer

to the first case as non-colluding, or faulty; to the second case as malicious, or

Byzantine.

Reaching unanimity in an unreliable system is an important problem, well

studied by computer scientists interested in distributed computing. A first char-

acterization of the resilience of distributed systems to malicious attacks appears

in [50], where the authors consider the task of agreeing upon a binary message

sent by a “Byzantine general,” when the communication graph is complete. In [30]

the resilience of a partially connected2 network seeking consensus is analyzed, and

2The connectivity of a graph is the maximum number of disjoint paths between any two
vertices of the graph. A graph is complete if it has connectivity n − 1, where n is the number
of vertices in the graph.
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it is shown that the well-behaving agents of a network can always agree upon a

parameter if and only if the number of malicious agents

(i) is less than 1/2 of the network connectivity, and

(ii) is less than 1/3 of the number of processors.

This result has to be regarded as a fundamental limitation of the ability of a

distributed consensus system to sustain arbitrary malfunctioning: the presence of

misbehaving Byzantine processors can be tolerated only if their number satisfies

the above threshold, independently of whatever consensus protocol is adopted.

We consider linear consensus algorithms in which every agent, including the

misbehaving ones, are assumed to send the same information to all their neigh-

bors. This assumption appears to be realistic for most control scenarios. In a

sensing network for instance, the data used in the consensus protocol consist of

the measurements taken directly by the agents, and (noiseless) measurements re-

garding the same quantity coincide. Also, in a broadcast network, the information

is transmitted using broadcast messages, so that the content of a message is the

same for all the receiving nodes. The problem of characterizing the resilience

properties of linear consensus strategies has been partially addressed in recent

works [76, 106, 107], where, for the malicious case, it is shown that, despite the

limited abilities of the misbehaving agents, the resilience to external attacks is
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still limited by the connectivity of the network. In [76] the problem of detecting

and identifying misbehaving agents in a linear consensus network is first intro-

duced, and a solution is proposed for the single faulty agent case. In [106, 107],

the authors provide one policy that k malicious agents can follow to prevent some

of the nodes of a 2k-connected network from computing the desired function of

the initial state, or, equivalently, from reaching an agreement. On the contrary, if

the connectivity is 2k+ 1 or more, then the authors show that generically the set

of misbehaving nodes is identified independent of its behavior, so that the desired

consensus is eventually reached.

1.2 Contributions of this Thesis

The main contributions of each chapter are as follows.

Chapter 2 In this chapter we introduce the notation, some preliminary defini-

tions, and some important results about control theory, algebraic graph theory,

and distributed computing. These notions will be intensively applied in the sub-

sequent chapters for our analysis.

Chapter 3 In this chapter we formally model power networks, water networks,

and sensor networks. These prototypical examples of cyber-physical systems will

be used in the subsequent chapters to illustrate our findings and techniques.
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Chapter 4 The contributions of this chapter are threefold. First, we describe a

unified modeling framework for cyber-physical systems and attacks. Motivated by

existing cyber-physical systems and proposed attack scenarios, we model a cyber-

physical system under attack as a descriptor system subject to unknown inputs

affecting the state and the measurements. For our model, we define the notions of

detectability and identifiability of an attack by its effect on output measurements.

Our framework is general, and it includes the scenarios in [2,25,56,68,69,102,110]

as special cases. Second, we characterize fundamental limitations of static, dy-

namic, and active detection and identification procedures. Specifically, we show

that static detection procedures are unable to detect any attack affecting the dy-

namics, and that attacks corrupting the measurements can be easily designed to

be undetectable. On the contrary, we show that undetectability in a dynamic

setting is much harder to achieve for an attacker: a cyber-physical attack is un-

detectable if and only if the attackers’ signal excites uniquely the zero dynamics

of the input/output system. Additionally, we show that active monitors capable

of injecting test signals are as powerful as dynamic (passive) monitors, since an

attacker can design undetectable and unidentifiable attacks without knowing the

signal injected by the monitor into the system. Third, we provide a graph theo-

retic characterization of undetectable attacks. Specifically, we borrow some tools

from the theory of structured systems, and we identify conditions on the system
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interconnection structure for the existence of undetectable attacks. These con-

ditions are generic, in the sense that they hold for almost all numerical systems

with the same structure, and they can be efficiently verified. Finally, we illustrate

the potential impact of our theoretical findings through compelling examples.

Chapter 5 The contributions of this chapter are threefold. First, we adopt the

static state network estimation model, in which the state vector is linearly related

to the network measurements. We develop two methods for a group of intercon-

nected control centers to compute an optimal estimate of the system state via

distributed computation. Our first estimation algorithm assumes an incremental

mode of cooperation among the control centers, while our second estimation al-

gorithm is based upon a diffusive strategy. Both methods are shown to converge

in a finite number of iterations, and to require only local information for their

implementation. Differently from [86], our estimation procedures assume neither

the measurement error covariance nor the measurements matrix to be diagonal.

Furthermore, our algorithms are advantageous from a communication perspective,

since they reduce the distance between remote terminal units and the associated

control center, and from a computational perspective, since they distribute the

measurements to be processed among the control centers. Second, we describe a

finite-time algorithm to detect via distributed computation if the measurements

have been corrupted by a malignant agent. Our detection method is based upon
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our state estimation technique, and it inherits its convergence properties. Notice

that, since we assume the measurements to be corrupted by noise, the possibility

exists for an attacker to compromise the network measurements while remain-

ing undetected (by injecting for instance a vector with the same noise statistics).

With respect to this limitation, we characterize the class of corrupted vectors that

are guaranteed to be detected by our procedure, and we show optimality with re-

spect to a centralized detection algorithm. Third, we study the scalability of

our methods in networks of increasing dimension, and we derive a finite-memory

approximation of our diffusive estimation strategy. For this approximation proce-

dure we show that, under a reasonable set of assumptions and independently of

the network dimension, each control center is able to recover a good approxima-

tion of the state of a certain subnetwork through little computation. Moreover,

we provide bounds on the approximation error for each subnetwork. Finally, we

illustrate the effectiveness of our procedures on the IEEE 118 bus system.

Chapter 6 The main contributions of this chapter are as follows. First, for our

differential-algebraic model of cyber-physical systems under attacks developed in

Chapter 4, we design centralized monitors for attack detection and identification.

With respect to the existing solutions, in this thesis we propose attack detec-

tion and identification filters that are effective for both state and output attacks

against linear continuous-time differential-algebraic cyber-physical systems. Our
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monitors are designed by using tools from geometric control theory; they extend

the construction of [62] to descriptor systems with direct feedthrough matrix, and

they are guaranteed to achieve optimal performance, in the sense that they detect

(respectively identify) every detectable (respectively identifiable) attack. Second,

we develop a fully distributed attack detection filter with optimal (centralized)

performance. Specifically, we provide a distributed implementation of our cen-

tralized attack detection filter based upon iterative local computations by using

the Gauss-Jacobi waveform relaxation technique. For the implementation of this

method, we rely upon cooperation among geographically deployed control centers,

each one responsible for a part of the system. In particular, we require each con-

trol center to have access to the measurements of its local subsystem, synchronous

communication among neighboring control centers at discrete time instants, and

ability to perform numerical integration. Third, we show that the attack identi-

fication problem is inherently computationally hard. Consequently, we design a

distributed identification method that achieves identification, at a low computa-

tional cost and for a class of attacks, which can be characterized accurately. Our

distributed identification methods is based upon a divide and conquer procedure,

in which first corrupted regions and then corrupted components are identified

by means of local identification procedures and cooperation among neighboring

regions. Due to cooperation, our distributed procedure provably improves upon
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the fully decoupled approach advocated in decentralized control [93]. Fourth, we

present several illustrative examples, which show the robustness of our methods

in the presence of system noise, nonlinearities, and modeling uncertainties.

Chapter 7 In this chapter we exploit our previous findings to cast malicious

attacks. In particular, we use the geometric notion of controlled invariant subspace

to design attack signals, which are undetectable at some observing stations. We

illustrate this technique in a competitive power generation scenario [26], in which

a coalition of generators aim to destabilize other machines in the network.

Chapter 8 In this chapter we study linear consensus networks with misbehaving

agents. By recasting the problem of linear consensus computation in an unreliable

system into a system theoretic framework, we provide alternative and constructive

system-theoretic proofs of existing bounds on the number of identifiable misbe-

having agents in a linear network, i.e., k Byzantine agents can be detected and

identified if the network is (2k+1)-connected, and they cannot be identified if the

network is 2k-connected or less. Moreover, we exhaustively describe the strate-

gies that misbehaving nodes can follow to disrupt a linear network that is not

sufficiently connected. We provide a novel and comprehensive analysis on the de-

tection and identification of non-colluding agents. We show that k faulty agents

can be identified if the network is (k + 1)-connected, and cannot if the network

is k-connected or less. For both the cases of Byzantine and non-colluding agents,
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we prove that the proposed bounds are generic with respect to the network com-

munication weights, i.e., given an (unweighted) consensus graph, the bounds hold

for almost all (consensus) choices of the communication weights. In other words,

if we are given a (k + 1)-connected consensus network for which k faulty agents

cannot be identified, then a random and arbitrary small change of the commu-

nication weights (within the space of consensus weights) make the misbehaving

agents identifiable with probability one. In the last part of this chapter, we dis-

cuss the problem of detecting and identifying misbehaving agents when either the

partial knowledge of the network or hardware limitations make it impossible to

implement an exact identification procedure. We introduce a notion of network

decentralization in terms of relatively weakly connected subnetworks. We derive

a sufficient condition on the consensus matrix that allows one to identify a certain

class of misbehaving agents under local network model information. Finally, we

describe a local algorithm to promptly detect and identify corrupted components.

Chapter 9 This chapter concludes the thesis and discuss some aspects for future

research in the area of secure control systems and secure distributed computing.
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Chapter 2

Preliminaries in Control Theory,
Algebraic Graph Theory, and
Distributed Computing

In this chapter we review some basic results in linear dynamical systems, graph

theory, and distributed computing. The notation introduced in this chapter will

be used consistently throughout the remaining chapters.

2.1 Control Theory and Graph Definitions

2.1.1 Linear dynamical systems

Let R, R≥0, C, and N denote the set of real numbers, the set of non-negative

real numbers, the set of complex numbers, and the set of positive integers, respec-
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tively. A continuous time invariant system is defined by the equations

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),

(2.1)

where x : R≥0 → Rn, u : R≥0 → Rm, y : R≥0 → Rp, and A, B, C, and D are

constant matrices of appropriate dimensions. The signals x, u, and y are called

the state, input, and output of the system, respectively. Analogously, a discrete

time invariant system is defined by the equations

x(t+ 1) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),

(2.2)

where, differently than the continuous time case, the domain of signals is N instead

of R≥0. Equations (2.1) express an input-output relationship between the input u

and the output y. In particular, for t ∈ R≥0 it holds

x(t) = expAt x(0) +

∫ t

0

expA(t−τ) Bu(τ)dτ,

y(t) = C expAt x(0) +

∫ t

0

C expA(t−τ) Bu(τ)dτ,

where x(0) is referred to as the system initial condition or initial state, and expA

denotes the matrix exponential function on A. Analogously, for the system (2.2)
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and for t ∈ N it holds

x(t) = Atx(0) +
t−1∑

τ=0

At−τBu(τ),

y(t) = CAtx(0) +
t−1∑

τ=0

CAt−τBu(τ).

The input-output relation for the systems (2.1) can be equivalently written in

the Laplace domain. In particular,

X(s) = (sI − A)−1BU(s),

Y (s) = C(sI − A)−1BU(s),

where X(s) = L (x(t)), U(s) = L (u(t)), and Y (s) = L (y(t)). Analogous ex-

pressions are obtained for the discrete time case by using the Z-transform.

2.1.2 Basic linear algebra definitions

In the field of geometric control theory for linear dynamical systems, system

properties are expressed in terms of subspaces. Likewise, analysis and synthe-

sis algorithms rely on operations on subspaces, such as sum, intersection, and

orthogonal complement. We will only be dealing with finite-dimensional spaces.

Let A be a matrix describing a linear map between two subspaces X and Y , i.e.,

A : X → Y . The kernel or null space of A is defined as

Ker(A) := {x ∈ X : Ax = 0},
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and the image or range space of A is defined as

Im(A) := {Ax : x ∈ X}.

We say that A is surjective if Im(A) = Y and injective if Ker(A) = 0. Also, the

map A is called bijective (or invertible) if A is injective and surjective. In this

case, the map A has an inverse map, usually denoted by A−1. In general, if A

is a (not necessarily invertible) linear map and if V is a subspace of Y , then the

inverse image of V through A is the subspace of X defined by

A−1V := {x ∈ X : Ax ∈ V}.

A subspace V ⊆ X is A-invariant if AV ⊆ V . A matrix V is a basis of a subspace

V if the columns of V span the subspace V , i.e., if Im(V ) = V . Let V be A-

invariant, let T = [V V̄ ], with Im(V ) = V , and V̄ such that T is invertible. Then,

because of the invariance of V , the change of coordinates via T yields

T−1AT =



A11 A12

0 A22


 .

The matrix A11 is also denoted as A | V , while the matrix A22 as A | X \ V . For

a matrix A, λ ∈ C is an eigenvalue of A if there exists a nonzero vector v ∈ X

such that Av = λv. The set of eigenvalues, which contains at most n elements,

is called the spectrum of A and is denoted by σ(A). The matrix A is Hurwitz

stable if Real(λ) < 0 for all λ ∈ σ(A); the matrix A is Schur stable if |λ| < 1 for
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all λ ∈ σ(A). An invariant subspace V is called internally Hurwitz stable (resp.

internally Schur stable) if the matrix A | V is Hurwitz stable (resp. Schur stable).

An invariant subspace V is called externally Hurwitz stable (resp. externally Schur

stable) if the matrix A | X \ V is Hurwitz stable (resp. Schur stable).

2.1.3 Controlled and conditioned invariant subspaces

Consider the time invariant system described by the matrices (A,B,C) (D =

0), where A : Rn → Rn, B : Rm → Rn, C : Rn → Rp, and D : Rm → Rp. A

subspace V ⊆ Rn is an (A, Im(B))-controlled invariant subspace [6, Chapter 4] if

AV ⊆ V + ImB,

or, equivalently, if there exists a matrix F such that

(A+BF )V ⊆ V .

The notion of controlled invariant subspace refers to the possibility of confining the

state trajectory of the system (A,B,C) within a subspace. Specifically, a subspace

V ⊆ Rn×n is an (A,B)-controlled invariant if, for every initial state x(0) ∈ V , there

exists a control input u such that x(t) ∈ V at all times t ∈ R≥0. For instance, the

controllability subspace Im([BAB · · ·An−1B]) is an (A,B)-controlled invariant

subspace. The set of controlled invariant subspaces contained in E ⊆ Rn×n admits

a supremum V∗, i.e., an (A, Im(B))-controlled invariant subspace satisfying V ⊆
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V∗ ⊆ E , for any (A, Im(B))-controlled invariant subspace V . If E = Ker(C), then

V∗ contains all the state trajectories driven by the input u and resulting in the

output y being identically zero. In the case D 6= 0, the largest controlled invariant

subspace V∗ contained in Ker(C) also needs to satisfy CV ⊆ Im(D).

A subspace S ⊆ Rn is an (A,Ker(C))-conditioned invariant subspace [6,

Chapter 4] if

A(S ∩Ker(C)) ⊆ S,

or, equivalently, if there exists a matrix G such that

(A+GC)S ⊆ S,

Condition invariant subspaces arise in the context of state estimation. Specifically,

the subspace S is an (A, C)-conditioned invariant if it is possible to estimate the

trajectory x \ S by processing the initial condition x(0) \ S, the input u and the

measurements y through an observer [112, Chapter 5]. For instance, the unobserv-

ability subspace Ker([CTATCT · · · (An−1)TCT]T) is an (A,Ker(C))-conditioned in-

variant subspace. The set of conditioned invariant subspaces containing E ⊆ Rn×n

admits an infimum S∗, i.e., an (A,Ker(C))-conditioned invariant subspace satis-

fying E ⊆ S∗ ⊆ S, for any (A,Ker(C))-conditioned invariant subspace S. If

E = Im(B), then S∗ defines the largest subspace of the state space that can be

estimated in the presence of an unknown input signal u. In the case D 6= 0, the
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smallest conditioned invariant subspace containing Im(B) also needs to satisfy

Ker(D) ⊆ B−1S.

2.1.4 Invariant zeros, zero dynamics, and left-invertibility

Consider the time invariant system described by the matrices (A,B,C,D),

and the associated Rosenbrock matrix

P (s) =



sI − A −B

C D


 .

The invariant zeros of (A,B,C,D) are the complex values z ∈ C satisfying

Rank(P (z)) < maxs∈C Rank(P (s)). Let z be an invariant zeros, and let x0 and

u0 be such that (zI − A)x0 − Bu0 = 0 and Cx0 +Du0 = 0. Then, x0 and u0 are

referred to as state-zero direction and input-zero direction. Moreover, z, x0, and

u0 can be used to generate a state trajectory x yielding y(t) = 0 at all times t.

For instance, in the case of continuous time systems, the system (A,B,C,D) with

input t → eztu0 and initial state x0 yields the state trajectory x(t) = expzt x0,

with t ∈ R≥0, and output y(t) = 0 at all times. The trajectory x is called zero

dynamics. A system is left-invertible if it has a finite number of invariant zeros.
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2.1.5 Geometric fault detection and isolation

In the classical Fault Detection and Isolation (FDI) setup, the presence of

sensor failures and actuator malfunctions is modeled by adding unknown and

unmeasurable inputs fi : R≥0 → Rmi to the nominal system. Hence we have

ẋ(t) = Ax(t) +
k∑

i=1

Bifi(t),

y(t) = Cx(t),

where k ∈ N denotes the number of possible actuators and sensors failures, and

Bi ∈ Rn×mi , i ∈ {1, . . . , k}, are known matrices reflecting the failures input

directions. The FDI problem is to design, for each failure i, a filter of the form

ẇi(t) = Fiwi(t) + Eiy(t),

ri(t) = Miw(t) +Hiy(t),

(2.3)

also known as residual generator, that takes the observables y (and the known

input u if present) and generates a residual vector ri that allows to uniquely

identify if fi becomes nonzero, i.e., if the failure i occurred in the system. As a

result of [6, 62], the i-th failure can be correctly identified if and only if

Im(Bi) ∩ (V∗K\{i} + S∗K\{i}) = ∅,

where V∗K\{i} and S∗K\{i} are the maximal controlled and minimal conditioned

invariant subspaces associated with the system (A, [B1 · · ·Bi−1 Bi+1 · · ·Bk], C).
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2.1.6 Basic graph definitions

A directed graph G = (VG, EG) consists of a set of vertices VG and a set of

directed edges EG ⊆ VG × VG. An edge (v, w) ∈ EG is directed from vertex v to

vertex w. A subgraph of a graph G = (VG, EG) is a graph H = (VH , EH) such

that VH ⊆ VG and EH ⊆ EG. A graph is undirected if (v, w) ∈ EG implies that

(w, v) ∈ EG, and in this case we write {v, w} ∈ EG. For a vertex v ∈ VG, the set

of in-neighbors of v is defined as N in
v = {w ∈ VG : (w, v) ∈ EG}, and the set of

out-neighbors as N out
v = {w ∈ VG : (v, w) ∈ EG}. The in-degree of v ∈ VG equals

|N in
v |, whereas the out-degree of v ∈ VG equals |N out

v |. The complete graph is an

undirected graph G such that for every u, v ∈ V (G), it holds u, v ∈ E(G).

A path in G is a subgraph P = ({v1, . . . , vk+1}, {e1, . . . , ek}) such that vi 6= vj

for all i 6= j, and ei = (vi, vi+1) for each i ∈ {1, . . . , k}. We say that the path starts

at v1 and ends at vk+1, and at times we will simply identify a path by its vertex

sequence v1, . . . , vk+1. A cycle or closed path is a path in which the first and last

vertex in the sequence are the same, i.e., v1 = vk+1. A graph G is acyclic if it

contains no cycles. A weighted graph is a graph G in which each edge (v, w) ∈ EG

is associated with the weight zvw ∈ R.
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Figure 2.1: Illustration of the Kaczmarz method in iteration (2.4).

2.2 Distributed Computing

2.2.1 The Kaczmarz method

The Kaczmarz method is an iterative algorithm for solving systems of linear

equations of the form Ax = b, with A ∈ Rn×m and b ∈ Rn [44]. Assume that

the system Ax = b is consistent (b ∈ Im(A)). Then, the solution to Ax = b is

computed as the limit of the iteration

x(k+1) = x(k) +
bi − aTi x(k)

‖ai‖2
2

ai, k = {0, 1, . . . }, (2.4)

where x(0) ∈ Rm is an arbitrary vector, i = mod(k, n) + 1, aTi denotes the i-

th row of A, and bi denotes the i-th component of b. The iteration (2.4) has a

geometric interpretation which is next illustrated. Given x(k) and the hyperplane

Hik = {x ∈ Rm : aTikx = bik}, with iik = mod(k, n) + 1, the vector x(k+1) is the

orthogonal projection of x(k) onto Hik (see Fig. 2.1).
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In the case the system Ax = b is consistent and admits several solutions,

then the Kaczmarz iteration (2.4) converges to the minimum norm solution x̂ to

Ax = b, provided that x(0) ∈ Im(AT). In other words, if x(0) ∈ Im(AT), then

lim
k→∞

x(k) = x̂,

with Ax̂ = b and x̂ ⊥ Ker(A).

2.2.2 The Jacobi method for linear systems

The Jacobi method is an iterative algorithm for solving systems of linear equa-

tions of the form Ax = b, with A ∈ Rn×n and b ∈ Rn. At each iteration k, the

i-th component of the unknown vector is updated as

x
(k+1)
i =

1

aii

(
bi −

∑

j 6=i

aijx
(k)
j

)
, i ∈ {1, . . . , (}n),

where aij is the (i, j) entry of A, and x(0) is an arbitrary initial vector. Let

A = D +R, where D is a diagonal matrix with diagonal elements {a11, . . . , ann}.

The Jacobi iteration in vector form reads as

x(k+1) = −D−1Rx(k) +D−1b.

Hence, the Jacobi iteration is convergent if and only if ρ(D−1R) < 1, that is, if

and only if the matrix D−1R is Schur stable.
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Figure 2.2: Generals can agree on a common plan only if more than two-thirds
of the generals are loyal.

2.2.3 The Byzantine Generals problem

Any distributed system relies on the assumption that each single entity in-

volved in the computation behaves as expected. It is often the case, however, that

components fail, either due to genuine malfunction, or due to malicious tamper-

ing. An important problem studied first by computer scientists is to guarantee

trustworthy computation in the face of components misbehaviors.

At a more abstract level, this situation can be expressed in terms of a group

of generals of the Byzantine army camped with their troops around an enemy

city [30,50]. Generals communicate only via messages exchanged through a com-

munication network G, and they aim at agreeing upon a common battle plan. The

assumption is made that one or more of them may be traitors who try to confuse

the others. Despite its simplicity, the Byzantine Generals problem has important

implications in the field of secure distributed computing.
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Subnetwork 1 Subnetwork 2Vertex cut

Figure 2.3: Generals can agree on a common plan only if the traitors are less
than one-half of the connectivity of the communication network. The black nodes
represent traitor generals.

A simple counterexample shows that generals can agree (through some al-

gorithm) on a common plan only if more than two-thirds of generals are loyal.

To see this, consider the scenarios depicted in Fig. 2.2. Notice that General 3

cannot decide from the received messages whether the General 1 is loyal, and,

consequently, it cannot decide upon a battle plan.

Let G be the communication graph among the generals. Recall that the con-

nectivity of a graph equals the cardinality of the smallest set of nodes whose

removal disconnect the graph. Such set of vertices is called vertex cut. Then, an

agreement among the generals can be achieved only if the number of traitors is

less than one-half of the connectivity of the communication graph. To see this,

consider now the scenario in Fig. 2.3, where the graph connectivity is four, and

where half nodes in a vertex cut represent traitor generals (black nodes). Suppose

that the generals in Subnetwork 1 agree on “attack”, and that all the traitors
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deliver the message “retreat” to the generals in Subnetwork 2. Notice that the

generals in Subnetwork 2 cannot decide which general on the vertex cut is loyal,

and hence cannot agree on the correct battle plan.

In summary, the loyal generals can agree on a common plan only if (i) more

than two-thirds of generals are loyal, and (ii) the number of traitors is less than

one-half of the connectivity of the communication graph. This result has to be re-

garded as a fundamental limitation of the ability of a distributed consensus system

to sustain arbitrary malfunctioning: the presence of misbehaving Byzantine pro-

cessors can be tolerated only if their number satisfies the above threshold, indepen-

dently of whatever agreement protocol is adopted. Finally, the references [30, 50]

contain agreement algorithms with optimal resilience to Byzantine failures.
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Chapter 3

Examples of Cyber-Physical
Systems

In this chapter we describe cyber-physical systems requiring advanced security

mechanisms, namely power networks, water networks, and sensor networks. The

mathematical models described in this chapter, which will subsequently be used

to illustrate our findings, neglect system nonlinearities and the presence of noise in

the dynamics and the measurements. Nevertheless, such simplified models have

long proven useful in studying stability, faults, and attacks in power networks,

water networks, and sensor networks among others. It is our premise that more

detailed models are unlikely to change the basic conclusions of this thesis.
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3.1 Power Networks

Future power grids will combine physical dynamics with a sophisticated coor-

dination infrastructure. The cyber-physical security of the grid has been identified

as an issue of primary concern [64,103], which has recently attracted the interest

of the control and power systems communities, see [25,70,77,80,97,110].

During the last decades, a big effort has been devoted to the modeling of the

dynamic behavior of a power network, e.g., see [47]. In this thesis, we consider

a classical linearized version of the swing model, which we now briefly derive.

Consider a connected power network with n generators and m > n buses indexed

by g1, . . . , gn and b1, . . . , bm, respectively. Let b1, . . . , bn be the generator terminal

buses, each one connected to exactly one generator, and let bn+1, . . . , bm be the

load buses. As usual in transient stability studies, the generator dynamics are

given by the transient constant-voltage behind reactance model. With the i-th

machine, we associate the the voltage modulus Ei, the rotor angle δi, the inertia

Mi, the damping coefficient Di, the transient reactance zi, and the mechanical

power input Pg,i. With the i-th bus we associate the voltage modulus Vi, the

phase angle θi, the active and the reactive power demands Pi and Qi, respectively.
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With the above notation, the i-th generator dynamics, i = 1, . . . , n, become

δ̇i(t) = ωi(t),

Miω̇i(t) = Pg,i(t)−
EiVi
zi

sin(δi(t)− θi(t))−Diωi(t).

(3.1)

We adopt a ZP load model for every bus, and we denote with Gij and Bij the

conductance and susceptance of the transmission line {bi, bj} [47]. Then, for

k = 1, . . . , n the power flow equation at the k-th generator terminal bus is1

Pk =
EkVk
zk

sin(θk − δk) +
m∑

j=1,j 6=k

VkVjBkj sin(θk − θj)

+ V 2
k Gkk +

m∑

j=1,j 6=k

VkVjGkj cos(θk − θj),

Qk =− EkVk
zk

cos(θk − δk) +
m∑

j=1,j 6=k

VkVjGkj sin(θk − θj)

− V 2
k Bkk −

m∑

j=1,j 6=k

VkVjBkj cos(θk − θj)−
1

xdi
V 2
k .

(3.2)

Analogously, for k = n+ 1, . . . ,m, the power flow equation at the k-th load bus is

Pk =
m∑

j=1,j 6=k

VkVjBkj sin(θk − θj) + V 2
k Gkk +

m∑

j=1,j 6=k

VkVjGkj cos(θk − θj),

Qk =
m∑

j=1,j 6=k

VkVjGkj sin(θk − θj)− V 2
k Bkk −

m∑

j=1,j 6=k

VkVjBkj cos(θk − θj).
(3.3)

A linear small signal model can be derived from the nonlinear model (3.1) - (3.3)

under the usual assumptions that all angular differences are small, that the net-

work is lossless, and that the voltages are close to their nominal rated value. In

other words, the assumption is made that for all generators gi and all pairs of

1For brevity, the dependence of the variables on the time t is here omitted.

33



Chapter 3. Examples of Cyber-Physical Systems

buses bj, bk it holds |δi − θj| � 1, |θj − θk| � 1, Gjk = 0, and Ei = Vi = 1. With

these assumptions, linearization of equations (3.1) - (3.3) about the (synchronized)

network steady state condition yields the dynamic linearized swing equation and

the algebraic DC power flow equation2




I 0 0

0 M 0

0 0 0




︸ ︷︷ ︸
E




δ̇(t)

ω̇(t)

θ̇(t)




= −




0 −I 0

Lgg D Lgl

Llg 0 Lll




︸ ︷︷ ︸
A




δ(t)

ω(t)

θ(t)




+ [0T
n , Pg,1, . . . , Pg,n, P1, . . . , Pm]T︸ ︷︷ ︸

P (t)

, (3.4)

where M = diag(M1, . . . ,Mn) and D = diag(D1, . . . , Dn). By letting x =

[δT ωT θT]T, the model (3.4) can be written as the linear continuous-time de-

scriptor system

Eẋ(t) = Ax(t) + P (t). (3.5)

As a result of the above simplifying assumptions, the matrix L =
[
Lgg Lgl

Llg Lll

]
∈

R(n+m)×(n+m) is a Laplacian matrix, Lgg is diagonal, Lll is invertible, and Llg = LT
gl.

2After linearization, the reactive power equations become independent of the variations of
the voltage angles.
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3.2 Mass Transport Networks

Mass transport networks, such as gas transmission and distribution networks

[75], large-scale process engineering plants [46], and water networks, are prototyp-

ical examples of cyber-physical systems. Examples of water networks include open

channel flows [55] for irrigation purposes and municipal water networks [11, 13].

The vulnerability of open channel networks to cyber-physical attacks has been

studied in [3, 102]. Municipal water networks are also known to be susceptible to

attacks on the hydraulics [101], and to biochemical contamination threats [32].

We focus on the hydraulics of a municipal water distribution network [11,13].

This water network can be modeled as a directed graph with node set consisting of

reservoirs, junctions, and storage tanks, and with edge set given by pipes, pumps,

and valves that are used to convey water from source points to consumers. The

state variables are the pressure head hi at each node i in the network and the

flows Qij from node i to j. The hydraulic model governing the network dynamics

includes constant reservoir heads, flow balance equations at junctions and tanks,
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and pressure difference equations along all edges:

reservoir i : hi = hi
reservoir = constant ,

junction i : di =
∑

j→i
Qji −

∑
i→k

Qik ,

tank i : Aiḣi =
∑

j→i
Qji −

∑
i→k

Qik ,

pipe (i, j) : Qij = Qij(hi − hj) ,

pump (i, j) : hj − hi = +∆hij
pump = constant ,

valve (i, j) : hj − hi = −∆hij
valve = constant .

(3.6)

Here di is the demand at junction i, Ai is the (constant) cross-sectional area of

storage tank i, and the notation “j → i” denotes the set of nodes j connected to

node i. The flow Qij depends on the pressure drop hi − hj along pipe according

to the Hazen-Williams equation

Qij(hi − hj) = gij|hi − hj|1/1.85−1 · (hi − hj),

where gij > 0 is the pipe conductance.

3.3 Linear Consensus Networks

Networks of autonomous agents or sensors have recently attracted the interest

of the computer science and control communities. In networks of autonomous

agents, an important task is to reach agreement or consensus upon the value of
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a variable of interest, such as the work load in a network of parallel computers,

the clock speed for wireless sensor networks, the velocity, the rendezvous point,

or the formation pattern for a team of autonomous vehicles; e.g., see [12, 73,89].

A consensus algorithm is an algorithm for the agents of a consensus networks

to reach the desired consensus. Let the graph G = (V , E) denote a network of

interacting autonomous agents, where V = {1, . . . , n}, and E ⊂ V × V . We let

each vertex j ∈ V denote an autonomous agent, and we associate a real number xj

with each agent j. Let the vector x ∈ Rn contain the values xj. A linear iteration

over G is an update rule for x and is described by the linear discrete time system

x(t+ 1) = Ax(t), (3.7)

where the (i, j)-th entry of A is nonzero only if (j, i) ∈ E . If the matrix A is

row stochastic and primitive, then, independent of the initial values of the nodes,

the network asymptotically converges to a configuration in which the state of the

agents coincides. In the latter case, the matrix A is referred to as a consensus ma-

trix, and the system (3.7) is called consensus system. The graph G is referred to

as the communication graph associated with the consensus system (3.7) or, equiv-

alently, with the consensus matrix A. A detailed treatment of the applications,

and the convergence aspects of the consensus algorithm is in [12,73,89].
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Other interesting examples of cyber-physical systems captured by our modeling

framework are dynamic Leontief models of multi-sector economies, mixed gas-

power energy networks, and large-scale control systems.
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Chapter 4

Fundamental Attack Detection
and Identification Limitations

In this chapter we characterize fundamental attack detection and identification

limitations from system-theoretic and graph-theoretic perspectives. We start by

presenting a framework for cyber-physical systems, monitors, and attacks.

4.1 Mathematical Models

In this section we model cyber-physical systems under attack as linear time-

invariant descriptor systems subject to unknown inputs. This modeling frame-

work is very general and includes most of the existing cyber-physical models,

attacks, and fault scenarios. Indeed, as shown in Chapter 3, many interesting

real-world cyber-physical systems contain conserved physical quantities leading
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to differential-algebraic system descriptions, and, as we show later, most attacks

and faults can be modeled by additive inputs on the state and the measurements.

4.1.1 Model of cyber-physical systems under attack

We consider the linear time-invariant descriptor system1

Eẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),

(4.1)

where x : R≥0 → Rn, y : R≥0 → Rp, E ∈ Rn×n, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n,

and D ∈ Rp×m. Here the matrix E is possibly singular, and the inputs Bu

and Du are unknown signals describing disturbances affecting the plant. Besides

reflecting the genuine failure of systems components, these disturbances model

the effect of an attack against the cyber-physical system (see below for our attack

model). For notational convenience and without affecting generality, we assume

that each state and output variable can be independently compromised by an

attacker. Thus, we let B =
[
I, 0
]

and D =
[
0, I
]

be partitioned into identity and

zero matrices of appropriate dimensions, and, accordingly, u =
[
uTx , u

T
y

]
. Hence,

the attack (Bu,Du) = (ux, uy) can be classified as state attack if it affects the

1The results stated in this thesis for continuous-time descriptor systems hold also for discrete-
time descriptor systems and nonsingular systems. Moreover, we neglect the presence of known
inputs, since, due to the linearity of system (4.1), they do not affect our results on the detectabil-
ity and identifiability of unknown input attacks.
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system dynamics, and as output attack if it corrupts directly the measurements

vector.

The attack signal u : R≥0 → Rn+p depends upon the specific attack strategy.

In particular, if K ⊆ {1, . . . , n + p} is the attack set, with |K| = k, then all

(and only) the entries of u indexed by K are nonzero over time, that is, for each

i ∈ K, there exists a time t such that ui(t) 6= 0, and uj(t) = 0 for all j 6∈ K and

at all times. To underline this sparsity relation, we sometimes use uK to denote

the attack mode, that is the subvector of u indexed by K. Accordingly, the pair

(BK , DK), where BK and DK are the submatrices of B and D with columns in K,

to denote the attack signature. Hence, Bu = BKuK , and Du = DKuK . Since the

matrix E may be singular, we make the following assumptions on system (4.1):

(A1) the pair (E,A) is regular, that is, the determinant |sE−A| does not vanish

identically,

(A2) the initial condition x(0) ∈ Rn is consistent, that is,

(Ax(0) +Bu(0)) ∈ Im(E);

(A3) the input u is smooth.

The regularity assumption (A1) ensures the existence of a unique solution x to

(4.1). Assumptions (A2) and (A3) simplify the technical presentation in this thesis
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since they guarantee smoothness of the state trajectory x and the measurements

y; see [35, Lemma 2.5] for further details. The degree of smoothness in assumption

(A3) depends on the index of (E,A), see [48, Theorem 2.42], and continuity of u

is sufficient for the index-one examples presented in Chapter 3. In Section 4.2.5

we discuss the case when assumptions (A2) and (A3) are dropped.

4.1.2 Model of static, dynamic, and active monitors

A monitor is a deterministic pair (Φ, γ), where Φ : Λ → Ψ is an algorithm,

and γ : R≥0 → Rn+p is an input signal. In particular, Λ is the algorithm input,

which we specify later, Ψ = {ψ1, ψ2}, with ψ1 ∈ {True,False} and ψ2 ⊆ {1, . . . , n+

p}, is the algorithm output, and γ is an auxiliary input injected by the monitor

into the system (4.1). We consider the following classes of monitors.

Definition 1 (Static monitor) A static monitor is a monitor with

γ(t) = 0 ∀t ∈ R≥0, and Λ = {C, y(t) ∀t ∈ N}.

Note that static monitors do not exploit relations among measurements taken

at different time instants. An example of static monitor is the bad data detector [1].

Definition 2 (Dynamic monitor) A dynamic monitor is a monitor with

γ(t) = 0 ∀t ∈ R≥0, and Λ = {E,A,C, y(t) ∀t ∈ R≥0}.
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Differently from static monitors, dynamic monitors have knowledge of the sys-

tem dynamics generating y and may exploit temporal relations among different

measurements. The filters defined in [80] are examples of dynamic monitors.

Definition 3 (Active monitor) An active monitor is a monitor with γ(t) 6= 0

for some t ∈ R≥0, and Λ = {E,A,C, y(t) ∀t ∈ R≥0}.

Active monitors are dynamic monitors with the ability of modifying the system

dynamics through an input. An example of active monitor is presented in [69] to

detect replay attacks.

Since we only consider deterministic cyber-physical systems, we assume mon-

itors to be consistent, that is,

(i) ψ1 = True only if the attack set K is nonempty (ψ1 = False, otherwise),

(ii) ψ2 = ∅ if and only if ψ1 = False, and

(iii) ψ2 = K only if K is the (unique) smallest subset S ⊆ {1, . . . , n + p}

satisfying y(t) = y(x1, uS, t) for some initial state x1 and at all times (ψ2 =

{1, . . . , n+ p}, otherwise).

Due to consistency, the above monitors do not trigger false-alarms.

The objective of a monitor is twofold:
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Definition 4 (Attack detection) A nonzero attack (BKuK , DKuK) is detected

by a monitor if ψ1 = True.

Definition 5 (Attack identification) A nonzero attack (BKuK , DKuK) is iden-

tified by a monitor if ψ2 = K.

An attack is called undetectable (respectively unidentifiable) by a monitor if it

fails to be detected (respectively identified) by every monitor in the same class.

Of course, an undetectable attack is also unidentifiable, since it cannot be dis-

tinguished from the zero attack. By extension, an attack set K is undetectable

(respectively unidentifiable) if there exists an undetectable (respectively uniden-

tifiable) attack (BKuK , DKuK). Notice that no assumptions are made on the

algorithm Φ and the input signal γ. Hence, the monitoring limitations we will

discuss are fundamental, and they apply to any monitoring algorithm.

4.1.3 Model of attacks

In this work we consider colluding omniscient attackers with the ability of

altering the cyber-physical dynamics through exogenous inputs. In particular we

let the attack (Bu,Du) in (4.1) be designed based on knowledge of the system

structure and parameters E,A,C, and the full state x at all times. Additionally,

attackers have unlimited computation capabilities, and their objective is to disrupt
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(a) Static stealth attack

(sE − A)−1 C
x(t)
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Bū(t)

Du(t)

x̃(0) +
−

(sE − A)−1 C

(b) Replay attack

(sE − A)−1 C
x(t)

+ y(t)
x(0)

Bū(t)

Du(t)

−
(sE − A)−1 C

(c) Covert attack

(sE − A)−1 C
x(t)

+ y(t)x(0)

Du(t)

C(sE − A)−1
�
(s − p) − 1

�

(d) Dynamic false data injection

Figure 4.1: A block diagram illustration of prototypical attacks is here reported.
In Fig. 4.1(a) the attacker corrupts the measurements y with the signal DKuK ∈
Im(C). Notice that in this attack the dynamics of the system are not considered.
In Fig. 4.1(b) the attacker affects the output so that y(t) = y(x(0), [ūTK uTK ]T, t) =
y(x̃(0), 0, t). The covert attack in Fig. 4.1(c) is a feedback version of the replay
attack, and it can be explained analogously. In Fig. 4.1(d) the attack is such that
the unstable pole p is made unobservable.

the physical state or the measurements while avoiding detection. Clearly, specific

attacks may require weaker attack capabilities to be cast.

Remark 1 (Existing attack strategies as subcases) The following proto-

typical attacks can be modeled and analyzed through our theoretical framework:

(i) stealth attacks defined in [25] correspond to output attacks compatible with

the measurements equation;
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(ii) replay attacks defined in [69] are state and output attacks which affect the

system dynamics and reset the measurements;

(iii) covert attacks defined in [102] are closed-loop replay attacks, where the out-

put attack is chosen to cancel out the effect on the measurements of the state

attack; and

(iv) (dynamic) false-data injection attacks defined in [68] are output attacks ren-

dering an unstable mode (if any) of the system unobservable.

A possible implementation of the above attacks is illustrated in Fig. 4.1. �

To conclude this section we remark that the examples presented in Chapter

3 are captured in our framework. In particular, classical power networks fail-

ures modeled by additive inputs include sudden change in the mechanical power

input to generators, lines outage, and sensors failure; see [80] for a detailed dis-

cussion. Analogously, for a water network, faults modeled by additive inputs

include leakages, variation in demand, and failures of pumps and sensors. Possi-

ble cyber-physical attacks in both power and water networks include comprising

measurements [3, 56, 110] and attacks on the control architecture or the physi-

cal state itself [26, 70, 101, 103]. Similar situations are envisioned for consensus

networks.
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4.2 Limitations of Static, Dynamic and Active

Monitors

The objective of this section is to highlight fundamental detection and identifi-

cation limitations of static, dynamic, and active monitors. In particular, we show

that the performance of widely used static monitors can be improved by exploiting

the system dynamics. On the other hand, the possibility of injecting monitoring

signals does not improve the detection capabilities of a (passive) dynamic monitor.

Observe that a cyber-physical attack is undetectable if there exists a normal

operating condition of the system under which the output would be the same as

under the perturbation due to the attacker. Let y(x0, u, t) be the output sequence

generated from the initial state x0 under the attack signal u.

Lemma 4.2.1 (Undetectable attack) For the linear descriptor system (4.1),

the attack (BKuK , DKuK) is undetectable by a static monitor if and only if

y(x1, uK , t) = y(x2, 0, t),

for some initial condition x1, x2 ∈ Rn and for all t ∈ N0. If the same holds for

t ∈ R≥0, then the attack is also undetectable by a dynamic monitor.

Lemma 7 follows from the fact that our monitors are deterministic, so that

y(x1, uK , t) and y(x2, 0, t) lead to the same output ψ1. A more general concern
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than detectability is identifiability of attackers, that is, the possibility to distin-

guish from measurements between the action of two distinct attacks. We quantify

the strength of an attack through the cardinality of the attack set. Since an at-

tacker can independently compromise any state variable or measurement, every

subset of the states and measurements of fixed cardinality is a possible attack set.

Lemma 4.2.2 (Unidentifiable attack) For the linear descriptor system (4.1),

the attack (BKuK , DKuK) is unidentifiable by a static monitor if and only if

y(x1, uK , t) = y(x2, uR, t),

for some initial condition x1, x2 ∈ Rn, attack (BRuR, DRuR) with |R| ≤ |K| and

R 6= K, and for all t ∈ N0. If the same holds for t ∈ R≥0, then the attack is also

unidentifiable by a dynamic monitor.

Lemma 8 follows analogously to Lemma 7. We now elaborate on the above

results to derive fundamental monitoring limitations for the considered monitors.

4.2.1 Fundamental limitations of static monitors

Following Lemma 7, an attack is undetectable by a static monitor if and only

if, for all t ∈ N0, there exists a vector ξ(t) such that y(t) = Cξ(t). Notice that

this condition is compatible with [56], where an attack is detected if and only if
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the residual r(t) = y(t)− Cx̂(t) is nonzero for some t ∈ N0, where x̂(t) = C†y(t).

Let ‖v‖0 denote the number of nonzero components of the vector v.

Theorem 4.2.3 (Static detectability of cyber-physical attacks) For the

cyber-physical descriptor system (4.1) and an attack set K, the following state-

ments are equivalent:

(i) the attack set K is undetectable by a static monitor;

(ii) there exists an attack mode uK satisfying, for some x(t) and at every t ∈ N0,

Cx(t) +DKuK(t) = 0. (4.2)

Moreover, there exists an attack set K, with |K| = k ∈ N0, undetectable by a

static monitor if and only if there exist x ∈ Rn such that ‖Cx‖0 = k.

Before presenting a proof of the above theorem, we highlight that a necessary

and sufficient condition for the equation (4.2) to be satisfied is that DKuK(t) =

uy,K(t) ∈ Im(C) at all times t ∈ N0, where uy,K(t) is the vector of the last p

components of uK(t). Hence, statement (ii) in Theorem 4.2.3 implies that no state

attack can be detected by a static detection procedure, and that an undetectable

output attack exists if and only if Im(DK) ∩ Im(C) 6= {0}.

Proof of Theorem 4.2.3: As previously discussed, the attack K is undetectable

by a static monitor if and only if for each t ∈ N there exists x(t), and uK(t) such
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that

r(t) = y(t)− CC†y(t) = (I − CC†) (Cx(t) +DKuK(t))

vanishes. Consequently, r(t) = (I − CC†)DKuK(t), and the attack set K is

undetectable if and only if DKuK(t) ∈ Im(C), which is equivalent to statement

(ii). The last necessary and sufficient condition in the theorem follows from (ii),

and the fact that every output variable can be attacked independently of each

other since D =
[
0, I
]
.

We now focus on the static identification problem. Following Lemma 8, the

following result is stated.

Theorem 4.2.4 (Static identification of cyber-physical attacks) For the

cyber-physical descriptor system (4.1) and an attack set K, the following state-

ments are equivalent:

(i) the attack set K is unidentifiable by a static monitor;

(ii) there exists an attack set R, with |R| ≤ |K| and R 6= K, and attack modes

uK, uR satisfying, for some x(t) and at every t ∈ N0,

Cx(t) +DK (uK(t) + uR(t)) = 0.
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Moreover, there exists an attack set K, with |K| = k ∈ N0, unidentifiable by a

static monitor if and only if there exists an attack set K̄, with |K̄| ≤ 2k, which is

undetectable by a static monitor.

Similar to the fundamental limitations of static detectability in Theorem 4.2.3,

Theorem 4.2.4 implies that, for instance, state attacks cannot be identified and

that an undetectable output attack of cardinality k exists if and only if Im(DK̄)∩

Im(C) 6= {0}, for some attack set K̄ with |K̄| ≤ 2k.

Proof of Theorem 4.2.4: Due to linearity of the system (4.1), the unidentifiability

condition in Lemma 8 is equivalent to y(xK −xR, uK −uR, t) = 0, for some initial

conditions xK , xR, and attack modes uK , uR. The equivalence between statements

(i) and (ii) follows. The last statement follows from Theorem 4.2.3.

4.2.2 Fundamental limitations of dynamic monitors

As opposed to a static monitor, a dynamic monitor checks for the presence of

attacks at every time t ∈ R≥0. Intuitively, a dynamic monitor is harder to mislead

than a static monitor. The following theorem formalizes this expected result.

Theorem 4.2.5 (Dynamic detectability of cyber-physical attacks) For

the cyber-physical descriptor system (4.1) and an attack set K, the following state-

ments are equivalent:
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(i) the attack set K is undetectable by a dynamic monitor;

(ii) there exists an attack mode uK satisfying, for some x(0) and for every t ∈

R≥0,

Eẋ(t) = Ax(t) +BKuK(t) ,

0 = Cx(t) +DKuK(t) ;

(iii) there exist s ∈ C, g ∈ R|K|, and x ∈ Rn, with x 6= 0, such that (sE −A)x−

BKg = 0 and Cx+DKg = 0.

Moreover, there exists an attack set K, with |K| = k, undetectable by a dynamic

monitor if and only if there exist s ∈ C and x ∈ Rn such that ‖(sE − A)x‖0 +

‖Cx‖0 = k.

Before proving Theorem 4.2.5, some comments are in order. First, differently

from the static case, state attacks can be detected in the dynamic case. Second,

in order to mislead a dynamic monitor an attacker needs to inject a signal which

is consistent with the system dynamics at every instant of time. Hence, as op-

posed to the static case, the condition DKuK(t) = uy,K(t) ∈ Im(C) needs to be

satisfied for every t ∈ R≥0, and it is only necessary for the undetectability of an

output attack. Indeed, for instance, state attacks can be detected even though

they automatically satisfy the condition DKuK = 0 ∈ Im(C). Third and finally,
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according to the last statement of Theorem 4.2.5, the existence of invariant zeros2

for the system (E,A,BK , C,DK) is equivalent to the existence of undetectable

attacks. As a consequence, a dynamic monitor performs better than a static mon-

itor, while requiring, possibly, fewer measurements. We refer to Section 4.4.2 for

an illustrative example of this last statement.

Proof of Theorem 4.2.5: By Lemma 7 and linearity of the system (4.5), the

attack mode uK is undetectable by a dynamic monitor if and only if there exists

x0 such that y(x0, uK , t) = 0 for all t ∈ R≥0, that is, if and only if the system (4.1)

features zero dynamics. Hence, statements (i) and (ii) are equivalent. For a linear

descriptor system with smooth input and consistent initial condition, the existence

of zero dynamics is equivalent to the existence of invariant zeros [35, Theorem 3.2

and Proposition 3.4]. The equivalence of statements (ii) and (iii) follows. The last

statement follows from (iii), and the fact that B =
[
I, 0
]

and D =
[
0, I
]
.

We now consider the identification problem.

Theorem 4.2.6 (Dynamic identifiability of cyber-physical attacks) For

the cyber-physical descriptor system (4.1) and an attack set K, the following state-

ments are equivalent:

(i) the attack set K is unidentifiable by a dynamic monitor;

2For the system (E,A,BK , C,DK), the value s ∈ C is an invariant zero if there exists x ∈ Rn,
with x 6= 0, g ∈ R|K|, such that (sE −A)x−BKg = 0 and Cx+DKg = 0.
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(ii) there exists an attack set R, with |R| ≤ |K| and R 6= K, and attack modes

uK, uR satisfying, for some x(0) and for every t ∈ R≥0,

Eẋ(t) = Ax(t) +BKuK(t) +BRuR(t) ,

0 = Cx(t) +DKuK(t) +DRuR(t) ;

(iii) there exists an attack set R, with |R| ≤ |K| and R 6= K, s ∈ C, gK ∈ R|K|,

gR ∈ R|R|, and x ∈ Rn, with x 6= 0, such that (sE−A)x−BKgK−BRgR = 0

and Cx+DKgK +DRgR = 0.

Moreover, there exists an attack set K, with |K| = k ∈ N0, unidentifiable by a

dynamic monitor if and only if there exists an attack set K̄, with |K̄| ≤ 2k, which

is undetectable by a dynamic monitor.

Proof: Notice that, because of the linearity of the system (4.1), the unidentifiabil-

ity condition in Lemma 8 is equivalent to the condition y(xK−xR, uK−uR, t) = 0,

for some initial conditions xK , xR, and attack modes uK , uR. The equivalence

between statements (i) and (ii) follows. Finally, the last two statements follow

from Theorem 4.2.5, and the fact that B =
[
I, 0
]

and D =
[
0, I
]
.

In other words, the existence of an unidentifiable attack set K of cardinality k

is equivalent to the existence of invariant zeros for the system (E,A,BK̄ , C,DK̄),

for some attack set K̄ with |K̄| ≤ 2k. We conclude this section with the following
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remarks. The existence condition in Theorem 3.4 is hard to verify because of

its combinatorial complexity: in order to check if there exists an unidentifiable

attack set K, with |K| = k, one needs to certify the absence of invariant zeros for

all possible 2k-dimensional attack sets. Thus, a conservative verification scheme

requires
(
n+p
2k

)
tests. In Section 4.3 we present intuitive graph-theoretic conditions

for the existence of undetectable and unidentifiable attack sets for a given sparsity

pattern of the system matrices and generic system parameters. Finally, Theorem

4.2.6 includes as a special case Proposition 4 in [40], which considers exclusively

output attacks.

4.2.3 Fundamental limitations of active monitors

An active monitor uses a control signal (unknown to the attacker) to reveal

the presence of attacks; see [69] for the case of replay attacks. In the presence of

an active monitor with input signal γ = [γTx γ
T
y ]T, the system (4.1) reads as

Eẋ(t) = Ax(t) +BKuK(t) + γx(t),

y(t) = Cx(t) +DKuK(t) + γy(t).

Although the attacker is unaware of the signal γ, active and dynamic monitors

share the same limitations.

Theorem 4.2.7 (Limitations of active monitors) For the cyber-physical

descriptor system (4.1), let γ be an additive signal injected by an active monitor.
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The existence of undetectable (respectively unidentifiable) attacks does not depend

upon the signal γ. Moreover, undetectable (respectively unidentifiable) attacks can

be designed independently of γ.

Proof: For the system (4.1), let u be the attack mode, and let γ be the monitoring

input. Let y(x, u, γ, t) denotes the output generated by the inputs u and γ with

initial condition x = x1 + x2. Observe that, because of the linearity of (4.1), we

have y(x, u, γ, t) = y(x1, u, 0, t)+y(x2, 0, γ, t), with consistent initial conditions x1

and x2. Then, an attack u is undetectable if and only if y(x, u, γ, t) = y(x̄, 0, γ, t),

or equivalently y(x1, u, 0, t) + y(x2, 0, γ, t) = y(x̄1, 0, 0, t) + y(x2, 0, γ, t), for some

initial conditions x and x̄ = x̄1 + x2. The statement follows, since, from the

equality above, the detectability of u does not depend upon w.

As a consequence of Theorem 4.2.7, the existence of undetectable attacks is

independent of the presence of known control signals. Therefore, in a worst-

case scenario, active monitors are as powerful as dynamic monitors. Since replay

attacks are detectable by an active monitor [69], Theorem 4.2.7 shows that replay

attacks are not worst-case attacks.

Remark 2 (Undetectable attacks in the presence of state and measure-

ments noise) The input γ in Theorem 4.2.7 may represent sensors and actuators

noise. In this case, Theorem 4.2.7 states that the existence of undetectable attacks
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for a noise-free system implies the existence of undetectable attacks for the same

system driven by noise. The converse does not hold, since attackers may remain

undetected by injecting a signal compatible with the noise statistics. �

4.2.4 Specific results for index-one singular systems

For many interesting real-world descriptor systems, including the examples in

Section 3.1 and Section 3.2, the algebraic system equations can be solved explicitly,

and the descriptor system (4.1) can be reduced to a nonsingular state space system.

For this reason, this section presents specific results for the case of index-one

systems [53]. In this case, without loss of generality, we assume the system (4.1)

to be written in the canonical form


E11 0

0 0






ẋ1

ẋ2


 =



A11 A12

A21 A22






x1

x2


+



B1

B2


uK(t),

y(t) =

[
C1 C2

]


x1

x2


+DKuK(t),

(4.3)

where E11 is nonsingular and A22 is nonsingular. Consequently, the state x1 and

x2 are referred to as dynamic state and algebraic state, respectively. The algebraic

state can be expressed via the dynamic state and the attack mode as

x2(t) = −A−1
22 A21x1(t)− A−1

22 B2uK(t). (4.4)
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The elimination of the algebraic state x2 in the descriptor system (4.3) leads to

the nonsingular state space system

ẋ1 = E−1
11

(
A11 − A12A

−1
22 A21

)
︸ ︷︷ ︸

Ã

x1(t) + E−1
11

(
B1 − A12A

−1
22 B2

)
︸ ︷︷ ︸

B̃K

uK(t),

y(t) =
(
C1 − C2A

−1
22 A21

)
︸ ︷︷ ︸

C̃

x1(t) +
(
DK − C2A

−1
22 B2

)
︸ ︷︷ ︸

D̃K

uK(t).

(4.5)

This reduction of the algebraic states is known as Kron reduction in the liter-

ature on power networks and circuit theory [31]. Hence, we refer to (4.5) as the

Kron-reduced system.

Clearly, for any state trajectory x1 of the Kron-reduced system (4.5), the corre-

sponding state trajectory [xT1 x
T
2 ]T of the (non-reduced) cyber-physical descriptor

system (4.1) can be recovered by identity (4.4) and given knowledge of the input

uK . The following subtle issues are easily visible in the Kron-reduced system (4.4).

First, a state attack affects directly the output y, provided that C2A
−1
22 B2uK 6= 0.

Second, since the matrix A−1
22 is generally fully populated, an attack on a single

algebraic component can affect not only the locally attacked state or its vicinity

but larger parts of the system.

According to the transformations in (4.5), for each attack set K, the attack

signature (BK , DK) is mapped to the corresponding signature (B̃K , D̃K) in the

Kron-reduced system. As an apparent disadvantage, the sparsity pattern of the

original (non-reduced) cyber-physical descriptor system (4.1) is lost in the Kron-
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reduced representation (4.5), and so is, possibly, the physical interpretation of

the state and the direct representation of system components. However, as we

show in the following lemma, the notions of detectability and identifiability of an

attack set K defined for the original descriptor system (4.1) are equivalent for

the Kron-reduced system (4.5). This property renders the low-dimensional and

nonsingular Kron-reduced system (4.5) attractive from a computational point of

view to design attack detection and identification monitors; see Chapter 6.

Lemma 4.2.8 (Preservation of detectability and identifiability under

Kron reduction) For the cyber-physical descriptor system (4.3), the attack set

K is detectable (respectively identifiable) if and only if it is detectable (respectively

identifiable) for the associated Kron-reduced system (4.5).

Proof: The lemma follows from the fact that the input and initial condition to

output map for the system (4.1) coincides with the corresponding map for the

Kron-reduced system (4.5) and equation (4.4). Indeed, according to Theorem

4.2.5, the attack set K is undetectable if and only if there exist s ∈ C, g ∈ R|K|,

and x = [xT1 x
T
2 ]T ∈ Rn, with x 6= 0, such that

(sE − A)x−BKg = 0 and Cx+DKg = 0 .
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Equivalently, by eliminating the algebraic constraints as in (4.4), the attack set

K is undetectable if and only if the conditons

(sI − Ã)x1 − B̃Kg = 0 and C̃x1 + D̃Kg = 0

are satisfied together with x2 = −A−1
22 A21x1 − A−1

22 B2g. Notice that the latter

equation is always satisfied due to the consistency assumption (A2), and the

equivalence of detectability of the attack set K follows. The equivalence of attack

identifiability follows by analogous arguments.

4.2.5 The case of inconsistent initial states and impulsive

inputs

We now discuss the case of non-smooth attack signal and inconsistent initial

condition. If the consistency assumption (A2) is dropped, then discontinuities in

the state x(t ↓ 0) may affect the measurements y(t ↓ 0). For instance for index-one

systems, an inconsistent initial condition leads to an initial jump for the algebraic

variable x2(t ↓ 0) to obey equation (4.4). Consequently, the inconsistent initial

value [0T x2(0)T]T ∈ Ker(E) cannot be recovered through measurements.

Assumption (A4) requires the attack signal to be sufficiently smooth such

that x and y are at least continuous. Suppose that assumption (A3) is dropped

and the input u belongs to the class of impulsive smooth distributions Cimp =
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Csmooth∪Cp-imp, that is, loosely speaking, the class of functions given by the linear

combination of a smooth function on R≥0 (denoted by Csmooth) and Dirac impulses

and their derivatives at t = 0 (denoted by Cp-imp), see [35], [48, Section 2.4]. In

this case, an attacker commanding an impulsive input u(0) ∈ Cimp can reset the

initial state x(0) and, possibly, evade detection.

The discussion in the previous two paragraphs can be formalized as follows.

Let Vc be the subspace of points x0 ∈ Rn of consistent initial conditions for

which there exists an input u ∈ Cmsmooth and a state trajectory x ∈ Cnsmooth to the

descriptor system (4.1) such that y(t) = 0 for all t ∈ R≥0. Let Vd (respectively

W) be the subspace of points x0 ∈ Rn for which there exists an input u ∈ Cn+p
imp

(respectively u ∈ Cn+p
p-imp) and a state trajectory x ∈ Cnimp (respectively x ∈ Cnp-imp)

to the descriptor system (4.1) such that y(t) = 0 for all t ∈ R≥0. The output-

nulling subspace Vd can be decomposed as follows:

Lemma 4.2.9 (Decomposition of output-nulling space [35, Theorem

3.2 and Proposition 3.4])) Vd = Vc +W + Ker(E).

In words, from an initial condition x(0) ∈ Vd the output can be nullified by a

smooth input or by an impulsive input (with consistent or inconsistent initial

conditions in Ker(E)).

In this work we focus on the smooth output-nulling subspace Vc, which is

exactly space of zero dynamics identified in Theorems 4.2.5 and 4.2.6. Hence,
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by Lemma 4.2.9, for inconsistent initial conditions, the results presented in this

section are valid only for strictly positive times t > 0. On the other hand, if an

attacker is capable of injecting impulsive signals, then it can avoid detection for

initial conditions x(0) ∈ W .

4.3 Graph Theoretic Detectability Conditions

In this section we characterize undetectable attacks against cyber-physical

systems from a structural perspective. In particular, we derive detectability con-

ditions based upon a connectivity property of a graph associated with the system.

For the ease of notation, we now drop the subscript K from BK , DK , and uK .

4.3.1 Preliminary notions

We start by recalling some useful facts about structured systems and structural

properties [87, 117]. Let a structure matrix [M ] be a matrix in which each entry

is either a fixed zero or an indeterminate parameter. The system

[E]ẋ(t) = [A]x(t) + [B]u(t),

y(t) = [C]x(t) + [D]u(t).

(4.6)

is called structured system, and it is sometimes referred to with the tuple

([E], [A], [B], [C], [D]) of structure matrices. A system (E,A,B,C,D) is an admis-
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sible realization of ([E], [A], [B], [C], [D]) if it can be obtained from the latter by

fixing the indeterminate entries at some particular value. Two systems are struc-

turally equivalent if they are both an admissible realization of the same structured

system. Let d be the number of indeterminate entries of a structured system al-

together. By collecting the indeterminate parameters into a vector, an admissible

realization is mapped to a point in the Euclidean space Rd. A property which can

be asserted on a dynamical system is called structural if, informally, it holds for

almost all admissible realizations. To be more precise, we say that a property is

structural if and only if the set of admissible realizations satisfying such property

forms a dense subset of the parameters space.3 For instance, left-invertibility of a

nonsingular system is a structural property with respect to Rd [29].

Consider the structured cyber-physical system (4.6). It is often the case that,

for the tuple (E,A,B,C,D) to be an admissible realization of (4.6), the numerical

entries need to satisfy certain algebraic relations. For instance, for (E,A,B,C,D)

to be an admissible power network realization, the matrices E and A need to be

of the form (3.4). Let S ⊆ Rd be the admissible parameter space. We make the

following assumption:

(A4) the admissible parameters space S is a polytope of Rd, that is, S = {x ∈

Rd : Mx ≥ 0} for some matrix M .

3A subset S ⊆ P ⊆ Rd is dense in P if, for each r ∈ P and every ε > 0, there exists s ∈ S
such that the Euclidean distance ‖s− r‖ ≤ ε.
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It should be noticed that assumption (A4) is automatically verified for the case

of power networks [77, Lemma 3.1]. Unfortunately, if the admissible parameters

space is a subset of Rd, then classical structural system-theoretic results are, in

general, not valid [87, Section 15].

We now define a mapping between dynamical systems in descriptor form and

digraphs. Let ([E],[A],[B],[C],[D]) be a structured cyber-physical system under at-

tack. We associate a directed graphG = (V , E) with the tuple ([E],[A],[B],[C],[D]).

The vertex set is V = U ∪ X ∪ Y , where U = {u1, . . . , um} is the set of input ver-

tices, X = {x1, . . . , xn} is the set of state vertices, and Y = {y1, . . . , yp} is the set

of output vertices. If (i, j) denotes the edge from the vertex i to the vertex j, then

the edge set E is E[E] ∪ E[A] ∪ E[B] ∪ E[C] ∪ E[D], with E[E] = {(xj, xi) : [E]ij 6= 0},

E[A] = {(xj, xi) : [A]ij 6= 0}, E[B] = {(uj, xi) : [B]ij 6= 0}, E[C] = {(xj, yi) : [C]ij 6=

0}, and E[D] = {(uj, yi) : [D]ij 6= 0}. In the latter, for instance, the expression

[E]ij 6= 0 means that the (i, j)-th entry of [E] is a free parameter.

Example 1 (Power network structural analysis) Consider the power net-

work illustrated in Fig. 4.2, where, being ei the i-th canonical vector, we take

[E] = blkdiag(1, 1, 1,M1,M2,M3, 0, 0, 0, 0, 0, 0), [B] = [e8 e9], [C] = [e1 e4]T,
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Figure 4.2: WSSC power network with 3 generators and 6 buses. The numerical
value of the network parameters can be found in [97].

[D] = 0, and [A] equal to




0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
a4,1 0 0 a4,4 0 0 a4,7 0 0 0 0 0

0 a5,2 0 0 a5,5 0 0 a5,8 0 0 0 0
0 0 a6,3 0 0 a6,6 0 0 a6,9 0 0 0
a7,1 0 0 0 0 0 a7,7 0 0 a7,10 a7,11 0

0 a8,2 0 0 0 0 0 a8,8 0 a8,10 0 a8,12
0 0 a9,3 0 0 0 0 0 a9,9 0 a9,11 a9,12
0 0 0 0 0 0 a10,7 a10,8 0 a10,10 0 0
0 0 0 0 0 0 a11,7 0 a11,9 0 a11,11 0
0 0 0 0 0 0 0 a12,8 a12,9 0 0 a12,12




The digraph associated with ([E], [A], [B], [C], [D]) is shown in Fig. 4.3. �

4.3.2 Network vulnerability with known initial state

We derive graph-theoretic detectability conditions for two different scenarios.

Recall from Lemma 7 that an attack u is undetectable if y(x1, u, t) = y(x2, 0, t)

for some initial states x1 and x2. In this section, we assume that the system
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θ1ω1

δ1

y2 u2θ5

δ3

ω3θ3

u1 θ4

δ2

ω2 θ2

y1

θ6

Figure 4.3: The digraph associated with the network in Fig. 4.2. The self-loops
of the vertices {δ1, δ2, δ3}, {ω1, ω2, ω3}, and {θ1, . . . , θ6} are not drawn. The inputs
u1 and u2 affect respectively the bus b4 and the bus b5. The measured variables are
the rotor angle and frequency of the first generator.

state is known at the failure initial time,4 so that an attack u is undetectable if

y(x0, u, t) = y(x0, 0, t) for some system initial state x0. The complementary case

of unknown initial state is studied in Section 4.3.3.

Consider the cyber-physical system described by the matrices (E,A,B,C,D),

and notice that, if the initial state is known, then the attack undetectability con-

dition y(x0, u, t) = y(x0, 0, t) coincides with the system being not left-invertible.5

Recall that a subset S ⊆ Rd is an algebraic variety if it coincides with the locus

of common zeros of a finite number of polynomials [117].

4The failure initial state can be estimated through a state observer [97].
5A regular descriptor system is left-invertible if and only if its transfer matrix G(s) is of full

column rank for all almost all s ∈ C, or if and only if
[
sE−A −B
C D

]
has full column rank for almost

all s ∈ C [35, Theorem 4.2].
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Lemma 4.3.1 (Polytopes and algebraic varieties) Let S ⊆ Rd be a poly-

tope, and let T ⊆ Rd be an algebraic variety. Then, either S ⊆ T , or S \ (S ∩ T )

is dense in S.

Proof: Let T ⊆ Rd be the algebraic variety described by the locus of common

zeros of the polynomials {φ1(x), . . . , φt(x)}, with t ∈ N, t < ∞. Let P ⊆ Rd be

the smallest vector subspace containing the polytope S. Then P ⊆ T if and only

if every polynomial φi vanishes identically on P . Suppose that the polynomial φi

does not vanish identically on P . Then, the set T ∩P is contained in the algebraic

variety {x ∈ P : φi(x) = 0}, and, therefore [117], the complement P \ (P ∩ T ) is

dense in P . By definition of a dense set, the set S \ (S ∩ T ) is also dense in S.

In Lemma 4.3.1 interpret the polytope S as the admissible parameters space

of a structured cyber-physical system. Then we have shown that left-invertibility

of a cyber-physical system is a structural property even when the admissible pa-

rameters space is a polytope of the whole parameters space. Consequently, given

a structured cyber-physical system, either every admissible realization admits an

undetectable attack, or there is no undetectable attack in almost all admissible

realizations. Moreover, in order to show that almost all realizations have no un-

detectable attacks, it is sufficient to prove that this is the case for some specific

admissible realizations. Before presenting our main result, we recall the following
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result. Let Ē and Ā be N -dimensional square matrices, and let G(sĒ − Ā) be

the graph associated with the matrix sĒ − Ā that consists of N vertices, and an

edge from vertex j to i if Āij 6= 0 or Ēij 6= 0. The matrix s[Ē] − [Ā] is said to

be structurally degenerate if, for any admissible realization Ē (respectively Ā) of

[Ē] (respectively [Ā]), the determinant |sĒ − Ā| vanishes for all s ∈ C. Recall

the following definitions from [29]. For a given graph G, a path is a sequence of

vertices where each vertex is connected to the following one in the sequence. A

path is simple if every vertex on the path (except possibly the first and the last

vertex) occurs only once. Two paths are disjoint if they consist of disjoint sets of

vertices. A set of l mutually disjoint and simple paths between two sets of vertices

S1 and S2 is called a linking of size l from S1 to S2. A simple path in which the

first and the last vertex coincide is called cycle; a cycle family of size l is a set of

l mutually disjoint cycles. The length of a cycle family equals the total number

of edges in the family.

Theorem 4.3.2 (Structural rank of a square matrix [88]) The structure

N-dimensional matrix s[Ē] − [Ā] is structurally degenerate if and only if there

exists no cycle family of length N in G(s[Ē]− [Ā]).

We are now able to state our main result on structural detectability.
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Theorem 4.3.3 (Structurally undetectable attack) Let the parameters space

of the structured cyber-physical system ([E], [A], [B], [C], [D]) define a polytope in

Rd for some d ∈ N0. Assume that s[E]− [A] is structurally non-degenerate. The

system ([E], [A], [B], [C], [D]) is structurally left-invertible if and only if there ex-

ists a linking of size |U| from U to Y.

Theorem 4.3.3 can be interpreted in the context of cyber-physical systems.

Indeed, since |sE −A| 6= 0 by assumption (A1), and because of assumption (A4),

Theorem 4.3.3 states that there exists a structural undetectable attack if and only

if there is no linking of size |U| from U to Y , provided that the network state at

the failure time is known.

Proof: Because of Lemma 4.3.1, we need to show that, if there are |U| dis-

joint paths from U to Y , then there exists admissible left-invertible realizations.

Conversely, if there are at most |U| − 1 disjoint paths from U to Y , then every

admissible realization is not left-invertible.

(If) Let (E,A,B,C,D), with |sE − A| 6= 0, be an admissible realization, and

suppose there exists a linking of size |U| from U to Y . Without affecting generality,

assume |Y| = |U|. For the left-invertibility property we need

∣∣∣∣∣∣∣∣



sE − A −B

C D




∣∣∣∣∣∣∣∣
= |sE − A|

∣∣D + C(sE − A)−1B
∣∣ 6= 0,
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and hence we need |D + C(sE − A)−1B| 6= 0. Notice that D + C(sE − A)−1B

corresponds to the transfer matrix of the cyber-physical system. Since there are

|U| independent paths from U to Y , the matrix D+C(sE −A)−1B can be made

nonsingular and diagonal by removing some connection lines from the network.

In particular, for a given linking of size |U| from U to Y , a nonsingular and

diagonal transfer matrix is obtained by setting to zero the entries of E and A

corresponding to the edges not in the linking. Then there exist admissible left-

invertible realizations, and thus the system ([E], [A], [D], [C], [D]) is structurally

left-invertible.

(Only if) Take any subset of |U| output vertices, and let |U| − 1 be the max-

imum size of a linking from U to Y . Let [Ē] and [Ā] be such that s[Ē] − [Ā] =

[
s[E]−[A] [B]

[C] [D]

]
. Consider the previously defined graph G(s[Ē] − [Ā]), and notice

that a path from U to Y in the digraph associated with the structured system

corresponds, possibly after relabeling the output variables, to a cycle in involving

input/output vertices in G(s[Ē]− [Ā]). Observe that there are only |U| − 1 such

(disjoint) cycles. Hence, there is no cycle family of length N , being N the size of

[Ā], and the statement follows from Theorem 4.3.2.

To conclude this section, note that Theorem 4.3.3 extends [115] to regular

descriptor systems with constraints on parameters.
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4.3.3 Network vulnerability with unknown initial state

If the failure initial state is unknown, then a vulnerability is identified by the

existence of a pair of initial conditions x1 and x2, and an attack u such that

y(x1, 0, t) = y(x2, u, t), or, equivalently, by the existence of invariant zeros for

the given cyber-physical system. We will now show that, provided that a cyber-

physical system is left-invertible, its invariant zeros can be computed by simply

looking at an associated nonsingular state space system. Let the state vector x

of the descriptor system (4.1) be partitioned as [xT1 xT2 ]T, where x1 corresponds

to the dynamic variables. Let the network matrices E, A, B, C, and D be

partitioned accordingly, and assume, without loss of generality, that E is given as

E = blkdiag(E11, 0), where E11 is nonsingular. In this case, the descriptor model

(4.1) reads as

E11ẋ1(t) = A11x1(t) +B1u(t) + A12x2(t) ,

0 = A21x1(t) + A22x2(t) +B2u(t) ,

y(t) = C1x1(t) + C2x2(t) +Du(t) .

(4.7)

Consider now the associated nonsingular state space system which is obtained by

regarding x2 as an external input to the descriptor system (6.30) and the algebraic
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constraint as output:

ẋ1(t) = E−1
11 A11x1(t) + E−1

11 B1u(t) + E−1
11 A12x2(t),

ỹ(t) =



A21

C1


x1(t) +



A22 B2

C2 D






x2(t)

u(t)


 .

(4.8)

Theorem 4.3.4 (Equivalence of invariant zeros) Consider the descriptor

system (4.1) partitioned as in (6.30). Assume that, for the corresponding struc-

tured system ([E], [A], [B], [C], [D]), there exists a linking of size |U| from U to Y.

Then, in almost all admissible realizations, the invariant zeros of the descriptor

system (6.30) coincide with those of the associated nonsingular system (6.31).

Proof: From Theorem 4.3.3, the structured descriptor system ([E], [A], [B], [C], [D])

is structurally left-invertible. Let (E,A,B,C,D) be a left-invertible realization.

The proof now follows a procedure similar to [111, Proposition 8.4]. Let s ∈ C

be an invariant zero for the nonsingular system (6.31) with state-zero direction

x1 6= 0 and input-zero direction u, that is




0

0

0




=




sI − E−1
11 A11 −E11A12 −E−1

11 B1

A21 A22 B2

C1 C2 D




︸ ︷︷ ︸
Pnonsingular(s)




x1

x2

u



.

72



Chapter 4. Fundamental Attack Detection and Identification Limitations

A multiplication of the above equation by blkdiag(E11,−I, I) and a re-partioning

of the resulting matrix yields



0

0

0




=




sE11 − A11 −A12 −B1

−A21 −A22 −B2

C1 C2 D




︸ ︷︷ ︸
Psingular(s)




x1

x2

u



. (4.9)

Since x1 6= 0, we also have x = [xT1 xT2 ]T 6= 0. Then, equation (4.9) implies

that s ∈ C is an invariant zero of the descriptor system (6.30) with state-zero

direction x 6= 0 and input-zero direction u. We conclude that the invariant zeros

of the nonsingular system (6.31) are a subset of the zeros of the descriptor system

(6.30). In order to continue, suppose that there is s ∈ C which is an invariant

zero of the descriptor system (6.30) but not of the nonsingular system (6.31). Let

x = [xT1 xT2 ]T 6= 0 and u be the associated state-zero and input-zero direction,

respectively. Since Ker(Psingular(s)) = Ker(Pnonsingular(s)) and s is not a zero of

the nonsingular system (6.31), it follows that x1 = 0 and x2 6= 0. Accordingly, we

have that

Ker







−A12 −B1

−A22 −B2

C2 D






6= {∅} .

It follows that the vector [0T xT2 uT]T lies in the nullspace of Psingular(s) for each

s ∈ C, and thus the descriptor system (6.30) is not left-invertible. In conclusion,
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if the descriptor system (6.30) is left-invertible, then its invariant zeros coincide

with those of the nonsingular system (6.31).

It should be noticed that, because of Theorem 4.3.4, under the assumption

of left-invertibility, classical linear systems results can be used to investigate the

presence of structural undetectable attacks in a cyber-physical system; see [29] for

a survey of results on generic properties of linear systems.

4.4 Illustrative Examples

4.4.1 A state attack against a power network

Consider the power network model analyzed in Example 1 and illustrated in

Fig. 4.2, and let the variables θ4 and θ5 be affected, respectively, by the unknown

and unmeasurable signals u1 and u2. Suppose that a monitoring unit is allowed

to measure directly the state variables of the first generator, that is, y1 = δ1 and

y2 = ω1. Notice from Fig. 4.4 that the maximum size of a linking from the failure

to the output vertices is 1, so that, by Theorem 4.3.3, there exists a structural

vulnerability. In other words, for every choice of the network matrices, there exist

nonzero u1 and u2 that are not detectable via the measurements.6

6When these ouput-nulling inputs u1, u2 are regarded as additional loads, then they are
entirely sustained by the second and third generator.

74



Chapter 4. Fundamental Attack Detection and Identification Limitations

θ1ω1

δ1

y2 u2θ5

δ3

ω3θ3

u1 θ4

δ2

ω2 θ2

y1

θ6

Figure 4.4: In the above network, there is no linking of size 2 from the input
to the output vertices. Indeed, the vertices θ1 and ω1 belong to every path from
{u1, u2} to {y1, y2}. Two input to output paths are depicted in red.

We now consider a numerical realization of this system. Let the input matrices

be B = [e8 e9] and D = [0 0]T, the measurement matrix be C = [e1 e4]T, and

the system matrix A be as in equation (3.4) with Mg = blkdiag(.125, .034, .016),

Dg = blkdiag(.125, .068, .048), and

L =




.058 0 0 −.058 0 0 0 0 0
0 .063 0 0 −.063 0 0 0 0
0 0 .059 0 0 −.059 0 0 0

−.058 0 0 .235 0 0 −.085 −.092 0
0 −.063 0 0 .296 0 −.161 0 −.072
0 0 −.059 0 0 .330 0 −.170 −.101
0 0 0 −.085 −.161 0 .246 0 0
0 0 0 −.092 0 −.170 0 .262 0
0 0 0 0 −.072 −.101 0 0 .173


 .

Let U1(s) and U2(s) be the Laplace transform of the attack signals u1 and u2, and

let


U1(s)

U2(s)


 =



−1.024s4−5.121s3−10.34s2−9.584s−3.531

s4+5s3+9.865s2+9.173s+3.531

1




︸ ︷︷ ︸
N (s)

Ū(s),
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2

3

ω1
ω2
ω3

Figure 4.5: The velocities ω2 and ω3 are driven unstable by the signals u1 and
u2, which are undetectable from the measurements of ω1 and δ1.

for some arbitrary nonzero signal Ū(s). Then it can be verified that the failure

cannot be detected through the measurements y1 and y2. In fact, N (s) coincides

with the null space of the input/output transfer matrix. An example is in Fig.

4.5, where the second and the third generators are driven unstable by the attack,

yet the first generator does not deviate from the nominal operating condition.

Suppose now that the rotor angle of the first generator and the voltage angle

at the 6-th bus are measured, that is, C =
[
e1 e12

]T
. Then, there exists a linking

of size 2 from U to Y , and the system (E,A,B,C) is left-invertible. Following

Theorem 4.3.4, the invariant zeros of the power network can be computed by

looking at its reduced system, and they are −1.6864 ± 1.8070i and −0.8136 ±

0.2258i. Consequently, if the network state is unknown at the failure time, there

exists vulnerabilities that an attacker may exploit to affect the network while
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G

G

bus 1

bus 2 bus 3

bus 4bus 5

bus 6

bus 7 bus 8

bus 9

bus 10bus 11

bus 12

bus 13 bus 14

Figure 4.6: For the here represented IEEE 14 bus system, if the voltage angle
of one bus is measured exactly, then a cyber attack against the measurements
data is always detectable by our dynamic detection procedure. In contrary, as
shown in [56], a cyber attack may remain undetected by a static procedure if it
compromises as few as four measurements.

remaining undetected. Finally, we remark that such state attacks are entirely

realizable by cyber attacks [70].

4.4.2 An output attack against a power network

Let the IEEE 14 bus power network (Fig. 4.6) be modeled as a descriptor

system as in Section 3.1. Following [56], let the measurement matrix C consist of

the real power injections at all buses, of the real power flows of all branches, and

of one rotor angle (or one bus angle). We assume that an attacker can compromise

all the measurements, independently of each other, except for one referring to the

rotor angle.
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Let k ∈ N0 be the cardinality of the attack set. It is known that an attack

undetectable to a static detector exists if k ≥ 4 [56]. In other words, due to

the sparsity pattern of C, there exists a signal uK , with (the same) four nonzero

entries at all times, such that DuK(t) ∈ Im(C) at all times. By Theorem 4.2.3

the attack set K remains undetected by a Static Detector through the attack

mode uK . On the other hand, following Theorem 4.2.5, it can be verified that,

for the same output matrix C, and independent of the value of k, there exists no

undetectable (output) attacks for a dynamic monitor.

It should be notice that this result relies on the fact that the rotor angle

measurement is known to be correct, because, for instance, it is protected using

sophisticated and costly security methods [64]. Since the state of the IEEE 14

bus system can be reconstructed by means of this measurement only (in a system

theoretic sense, the system is observable by measuring one generator rotor angle),

the output attack Du is easily identified as Du(t) = y(t)−Cx̂(t), where x̂(t) = x(t)

is the reconstructed system state at time t.

4.4.3 A state and output attack against a water supply

network

Consider the water supply network EPANET 3 linearized at a steady state

with non-zero pressure drops [91]. The water network model as well as a possible
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R1

R2

T2

T1

T3
P1

P2

S1

S2

S3

S4

S5

S6

u2

u1

u3

S7

Figure 4.7: This figure shows the structure of the EPANET water supply network
model # 3, which features 3 tanks (T1, T2, T3), 2 reservoirs (R1, R2), 2 pumps
(P1, P2), 96 junctions, and 119 pipes. Seven pressure sensors (S1, . . . , S7) have
been installed to monitor the network functionalities. A cyber-physical attack
to steal water from the reservoir R2 is reported. Notice that the cyber-physical
attack features two state attacks (u1, u2) and one output attack (u3).

cyber-physical attack are illustrated in Fig. 4.7. The considered cyber-physical

attack aims at stealing water from the reservoir R2 while remaining undetected

from the installed pressure sensors S1, . . . , S7. In order to achieve its goal, the

attacker corrupts the measurements of sensor S1 (output attack), it steals water

from the reservoir R2 (state attack), and, finally, it modifies the input of the

control pump P2 to restore the pressure drop due to the loss of water in R2 (state

attack). We now analyze this attack in more details.

Following the modeling in Section 3.2, an index-one descriptor model describ-

ing the evolution of the water network in Fig. 4.7 is computed. For notational
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convenience, let x1(t), x2(t), x3(t), and x4(t) denote, respectively, the pressure at

time t at the reservoir R2, at the reservoir R1 and at the tanks T1, T2 and T3, at

the junction P2, and at the remaining junctions. The index-one descriptor model

reads as



ẋ1(t)

Mẋ2(t)

0

0




=




0 0 0 0

0 A22 0 A24

A31 0 A33 A34

0 A42 A43 A44







x1(t)

x2(t)

x3(t)

x4(t)




,

where the pattern of zeros is due to the network interconnection structure, and

M = diag(1, A1, A2, A3) corresponds to the dynamics of the reservoir R1 and the

tanks T1, T2, and T3. With the same partitioning, the attack signature reads as

B =
[
B1 B2 0

]
and D =

[
0 0 D1

]
, where

B1 =

[
1 0 0 0

]T
, B2 =

[
0 0 1 0

]T
, and D1 =

[
1 0 . . . 0

]T
.

Let the attack u2 be chosen as u2(t) = −A31x1(t). Then, the state variables x2,

x3, and x4 are decoupled from x1. Consequently, the attack mode u1 does not

affect the dynamics of x2, x3, and x4. Let u1 = −1, and notice that the pressure

x1 decreases with time (that is, water is being removed from R2). Finally, for

the attack to be undetectable, since the state variable x1 is continuously moni-

tored by S1, let u3 = −x1. It can be verified that the proposed attack strategy
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allows an attacker to steal water from the reservoir R2 while remaining unde-

tected from the sensors measurements. In other words, the attack (Bu,Du), with

u =
[
uT1 u

T
2 u

T
3

]T
, excites only zero dynamics for the water network system in Fig.

4.7.

We conclude this section with the following remarks. First, for the implemen-

tation of the proposed attack strategy, neither the network initial state, nor the

network structure besides A31 need to be known to the attacker. Second, the

effectiveness of the proposed attack strategy is independent of the sensors mea-

suring the variables x3 and x4. On the other hand, if additional sensors are used

to measure the flow between the reservoir R2 and the pump P2, then an attacker

would need to corrupt these measurements as well to remain undetected. Third

and finally, due to the reliance on networks to control actuators in cyber-physical

systems, the attack u2 on the pump P2 could be generated by a cyber attack [70].
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Chapter 5

Static Monitors for State
Estimation and False Data
Detection

In this chapter we design a distributed static monitor for state estimation and

false data detection. We start by introducing the mathematical models and the

necessary notation. We focus on power networks, although our method applies to

general models described by systems of linear equations.

5.1 Problem Setup

For a power network, an example of which is reported in Fig. 5.1, the state at

a certain instant of time consists of the voltage angles and magnitudes at all the

system buses. The (static) state estimation problem introduced in the seminal

work by Schweppe [98] refers to the procedure of estimating the state of a power
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Figure 5.1: This figure shows the diagram of the IEEE 118 bus system (courtesy
of the IIT Power Group). The network has 118 buses, 186 branches, 99 loads, and
54 generators.

network given a set of measurements of the network variables, such as voltages,

currents, and power flows along the transmission lines. To be more precise, let

x ∈ Rn and z ∈ Rp be, respectively, the state and measurements vectors. Then,

the vectors x and z are related by the relation

z = h(x) + η, (5.1)

where h(·) is a nonlinear measurement function, and where η, which is traditionally

assumed to be a zero mean random vector satisfying E[ηηT] = Ση = ΣT
η > 0, is the

measurements noise. An optimal estimate of the network state coincides with the
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most likely vector x̂ that solves equation (5.1). It should be observed that, instead

of by solving the above estimation problem, the network state could be obtained by

measuring directly the voltage phasors by means of phasor measurement devices.1

Such an approach, however, would be economically expensive, since it requires a

phasor measurement device at each network bus, and it would be very vulnerable

to communication failures [1]. In this work, we adopt the approximated estimation

model presented in [99], which follows from the linearization around an operating

point of equation (5.1). Specifically, we have

z = Hx+ v, (5.2)

where H ∈ Rp×n and where v, the measurements noise, is such that E[v] = 0 and

E[vvT] = Σ = ΣT > 0. Observe that, because of the interconnection structure

of a power network, the measurement matrix H is usually sparse. Let Ker(H)

denote the null space of H, and assume Ker(H) = {0}. Recall from [59] that the

vector

xwls = (HTΣ−1H)−1HTΣ−1z (5.3)

minimizes the weighted variance of the estimation error, i.e., xwls = arg minx̂(z −

Hx̂)TΣ−1(z −Hx̂).

1Phasor measurement units are devices that synchronize by using GPS signals, and that
allow for a direct measurement of voltage and current phasors.
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The centralized computation of xwls assumes the complete knowledge of the

matrices H and Σ, and it requires the inversion of the matrix HTΣ−1H. For a

large power network, such computation imposes a limitation on the dimension

of the matrix H, and hence on the number of measurements that can be effi-

ciently processed to obtain a real-time state estimate. Since the performance of

network control and optimization algorithms depend upon the precision of the

state estimate, a limitation on the number of network measurements constitutes

a bottleneck toward the development of a more efficient power grid. A possible

solution to address this complexity problem is to distribute the computation of

xwls among geographically deployed control centers (monitors), in a way that each

monitor is responsible for a subpart of the whole network. To be more precise, let

the matrices H and Σ, and the vector z be partitioned as2

H =




H1

H2

...

Hm




, Σ =




Σ1

Σ2

...

Σm




, z =




z1

z2

...

zm




, (5.4)

where, for i ∈ {1, . . . ,m}, mi ∈ N, Hi ∈ Rmi×n, Σi ∈ Rmi×p, zi ∈ Rmi , and

∑m
i=1mi = p. Let G = (V, E) be the connected graph in which each vertex

i ∈ V = {1, . . . ,m} denotes a monitor, and E ∈ V ×V denotes the set of monitors

2In most application the error covariance matrix is assumed to be diagonal, so that each
submatrix Σi is very sparse. However, we do not impose any particular structure on the error
covariance matrix.
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interconnections. For i ∈ {1, . . . ,m}, assume that monitor i knows the matrices

Hi, Σi, and the vector zi, and that two neighboring monitors are allowed to

cooperate by exchanging information. Notice that, if the full matrices H and Σ

are nowhere available, and if they cannot be used for the computation of xwls, then,

with no cooperation among the monitors, the vector xwls cannot be computed by

any of the monitor. Hence we consider the following problem.

Problem 1 (Distributed state estimation) Design an algorithm for the mon-

itors to compute the minimum variance estimate of the network state via dis-

tributed computation.

We now introduce the second problem addressed in this work. Given the

distributed nature of a power system and the increasing reliance on local area

networks to transmit data to control centers, there exists the possibility for an at-

tacker to compromise the network functionalities by corrupting the measurements

vector. When a malignant agent corrupts some of the measurements, the state to

measurements relation becomes

z = Hx+ v + w,

where the vector w ∈ Rp is chosen by the attacker, and, consequently, it is un-

known and unmeasurable by any of the monitoring stations. We refer to the vector
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w to as false data. From the above equation, it should be observed that there ex-

ist vectors w that cannot be detected through the measurements z. For instance,

if the false data vector is intentionally chosen such that w ∈ Im(H), then the

attack cannot be detected through the measurements z. Indeed, denoting with

† the pseudoinverse operation, the vector x + H†w is a valid network state. We

assume that the vector w is detectable from the measurements z, and we consider

the following problem.

Problem 2 (Distributed detection) Design an algorithm for the monitors to

detect the presence of false data in the measurements via distributed computation.

As it will be clear in the sequel, the complexity of our methods depends upon

the dimension of the state, as well as the number of monitors. In particular, few

monitors should be used in the absence of severe computation and communica-

tion contraints, while many monitors are preferred otherwise. We believe that a

suitable choice of the number of monitors depends upon the specific scenario, and

it is not further discussed in this work.

Remark 3 (Generality of our methods) In this thesis we focus on the state

estimation and the false data detection problems for power systems. The methods

described in the following sections, however, are general, and they have applicabil-

ity beyond the power network scenario. For instance, our procedures can be used
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for state estimation and false data detection in dynamical system, as described

in [79] for the case of sensors networks.

5.2 Distributed State Estimation and False Data

Detection

The objective of this section is the design of distributed methods to compute

an optimal state estimate from measurements. With respect to a centralized

method, in which a powerful central processor is in charge of processing all the

data, our procedures require the computing units to have access to only a subset

of the measurements, and are shown to reduce significantly the computational

burden. In addition to being convenient for the implementation, our methods are

also optimal, in the sense that they maintain the same estimation accuracy of a

centralized method.

For a distributed method to be implemented, the interaction structure among

the computing units needs to be defined. Here we consider two modes of coopera-

tions among the computing units, and, namely, the incremental and the diffusive

interactions. In an incremental mode of cooperation, information flows in a se-

quential manner from one node to the adjacent one. This setting, which usually

requires the least amount of communications [84], induces a cyclic interaction
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graph among the processors. In a diffusive strategy, instead, each node exchanges

information with all (or a subset of) its neighbors as defined by an interaction

graph. In this case, the amount of communication and computation is higher

than in the incremental case, but each node possesses a good estimate before the

termination of the algorithm, since it improves its estimate at each communication

round. This section is divided into three parts. In Section 5.2.2, we first develop

a distributed incremental method to compute the minimum norm solution to a

set of linear equations, and then exploit such method to solve a minimum vari-

ance estimation problem. In Section 5.2.3 we derive a diffusive strategy which is

amenable to asynchronous implementation. Finally, in Section 5.2.4 we propose

a distributed algorithm for the detection of false data among the measurements.

Our detection procedure requires the computation of the minimum variance state

estimate, for which either the incremental or the diffusive strategy can be used.

5.2.1 Incremental solution to a set of linear equations

We start by introducing a distributed incremental procedure to compute the

minimum norm solution to a set of linear equations. This procedure constitutes

the key ingredient of the incremental method we later propose to solve a minimum

variance estimation problem. Let H ∈ Rp×m and let z ∈ Im(H), where Im(H)

denotes the range space spanned by the matrix H. Consider the system of linear
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Algorithm 1: Incremental minimum norm solution (i-th monitor)

Input : Matrices Hi, zi;

Require :
[
zT1 . . . zTm

]T ∈ Im(
[
HT

1 . . . HT
m

]T
);

1 if i = 1 then x̂0 := 0, K0 := In;

2 else receive x̂i−1 and Ki−1 from monitor i− 1;

3 x̂i := x̂i−1 +Ki−1(HiKi−1)†(zi −Hix̂i−1);

4 Ki := Basis(Ki−1 Ker(HiKi−1));

5 if i < m then transmit x̂i and Ki to monitor i+ 1;

6 else return x̂m;

equations z = Hx, and recall that the unique minimum norm solution to z = Hx

coincides with the vector x̂ such that z = Hx̂ and ‖x̂‖2 is minimum. It can

be shown that ‖x̂‖2 being minimum corresponds to x̂ being orthogonal to the

null space Ker(H) [59]. Let H and z be partitioned in m blocks as in (5.4),

and let G = (V, E) be a directed graph such that V = {1, . . . ,m} corresponds

to the set of monitors, and, denoting with (i, j) the directed edge from j to i,

E = {(i + 1, i) : i = 1, . . . ,m − 1} ∪ {(1,m)}. Our incremental procedure to

compute the minimum norm solution to z = Hx̂ is in Algorithm 1, where, given a

subspace V , we write Basis(V) to denote any full rank matrix whose columns span

the subspace V . We now proceed with the analysis of the convergence properties

of the Incremental minimum norm solution algorithm.
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Theorem 5.2.1 (Convergence of Algorithm 1) Let z = Hx, where H and z are

partitioned in m row-blocks as in (5.4). In Algorithm 1, the m-th monitor returns

the vector x̂ such that z = Hx̂ and x̂ ⊥ Ker(H).

Proof: See Section 5.5.1.

It should be observed that the dimension of Ki decreases, in general, when the

index i increases. In particular, Km = {0} and K1 = Ker(H1). To reduce the

communication burden of the algorithm, monitor i could transmit the smallest

among Basis(Ki−1 Ker(HiKi−1)) and Basis(Ki−1 Ker(HiKi−1)⊥), together with a

packet containing the type of the transmitted basis.

Remark 4 (Computational complexity of Algorithm 1) In Algorithm 1,

the main operation to be performed by the i-th agent is a singular value decomposi-

tion (SVD).3 Indeed, since the range space and the null space of a matrix can be ob-

tained through its SVD, both the matrices (HiKi−1)† and Basis(Ki−1 Ker(HiKi−1))

can be recovered from the SVD of HiKi−1. Let H ∈ Rm×n, m > n, and as-

sume the presence of dm/ke monitors, 1 ≤ k ≤ m. Recall that, for a matrix

M ∈ Rk×p, the singular value decomposition can be performed with complexity

3The matrix H is usually very sparse, since it reflects the network interconnection structure.
If the matrices HiKi−1 are also sparse, then efficient SVD algorithms for very large sparse
matrices can be employed (cf. SVDPACK). In general, if the dimension of HiKi−1 is too large
for an SVD algorithm to be numerically reliable, then additional monitors should be used to
reduce the dimension of HiKi−1.
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O(min{kp2, k2p}) [37]. Hence, the computational complexity of computing a min-

imum norm solution to the system z = Hx is O(mn2). In Table 5.1 we report the

computational complexity of Algorithm 1 as a function of the block size k.

Table 5.1: Computational complexity of Algorithm 1.

Block size i-th complexity Total complexity
k ≤ n O(k2n) O(mkn)
k > n O(kn2) O(mn2)

The following observations are in order. First, if k ≤ n, then the computa-

tional complexity sustained by the i-th monitor is much smaller than the complexity

of a centralized implementation, i.e., O(k2n) � O(mn2). Second, the complexity

of the entire algorithm is optimal, since, in the worst case, it maintains the com-

putational complexity of a centralized solution, i.e., O(mkn) ≤ O(mn2). Third

and finally, a compromise exists between the blocks size k and the number of com-

munications needed to terminate Algorithm 1. In particular, if k = m, then no

communication is needed, while, if k = 1, then m− 1 communication rounds are

necessary to terminate the estimation algorithm.4

4Additional m−1 communication rounds are needed to transmit the estimate to all monitors.
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5.2.2 Incremental estimation via distributed computation

We now focus on the computation of the weighted least squares solution to a

set of linear equations. Let v be an unknown and unmeasurable random vector,

with E(v) = 0 and E(vvT) = Σ = ΣT > 0. Consider the system of equations

z = Hx+ v, (5.5)

and assume Ker(H) = 0. Notice that, because of the noise vector v, we generally

have z 6∈ Im(H), so that Algorithm 1 cannot be directly employed to compute the

vector xwls defined in (5.3). It is possible, however, to recast the above weighted

least squares estimation problem to be solvable with Algorithm 1. Note that,

because the matrix Σ is symmetric and positive definite, there exists5 a full row

rank matrix B such that Σ = BBT. Then, equation (5.5) can be rewritten as

z =

[
H εB

]


x

v̄


 , (5.6)

where ε ∈ R>0, E
[
v̄
]

= 0 and E
[
v̄v̄T
]

= ε−2I. Observe that, because B has

full row rank, the system (5.6) is underdetermined, i.e., z ∈ Im(
[
H εB

]
) and

Ker(
[
H εB

]
) 6= 0. Let



x̂(ε)

ˆ̄v


 =

[
H εB

]†
z. (5.7)

5Choose for instance B = WΛ1/2, where W is a basis of eigenvectors of Σ and Λ is the
corresponding diagonal matrix of the eigenvalues.
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The following theorem characterizes the relation between the minimum variance

estimate xwls and x̂(ε).

Theorem 5.2.2 (Convergence with ε) Consider the system of linear equations

z = Hx+ v. Let E(v) = 0 and E(vvT) = Σ = BBT > 0 for a full row rank matrix

B. Let

C=ε(I −HH†)B, E=I − C†C,

D=εE[I+ε2EBT(HHT)†BE]−1BT(HHT)†(I−εBC†).

Then

[
H εB

]†
=



H† − εH†B(C† +D)

C† +D


 ;

and

lim
ε→0+

H† − εH†B(C† +D) = (HTΣ−1H)−1HTΣ−1.

Proof: See Section 5.5.2.

Throughout the proof, let x̂(ε) be the vector defined in (5.7), and notice that

Theorem 5.2.2 implies that

xwls = lim
ε→0+

x̂(ε).
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Remark 5 (Incremental state estimation) For the system of equations z =

Hx+ v, let BBT be the covariance matrix of the noise vector v, and let

H =




H1

H2

...

Hm




, B =




B1

B2

...

Bm




, z =




z1

z2

...

zm




, (5.8)

where mi ∈ N, Hi ∈ Rmi×n, Bi ∈ Rmi×p, and zi ∈ Rmi. For ε > 0, the estimate

x̂(ε) of the weighted least squares solution to z = Hx + v can be computed by

means of Algorithm 1 with input
[
Hi εBi

]
and zi.

Observe now that the estimate x̂(ε) coincides with x̂wls only in the limit for ε→

0+. When the parameter ε is fixed, the estimate x̂(ε) differs from the minimum

variance estimate x̂wls. We next characterize the approximation error xwls− x̂(ε).

Corollary 5.2.1 (Approximation error) Consider the system z = Hx + v, and

let E
[
vvT
]

= BBT for a full row rank matrix B. Then

xwls − x̂(ε) = εH†BDz,

where D is as in Theorem 5.2.2.

Proof: With the same notation as in the proof of Theorem 5.2.2, for every value

of ε > 0, the difference xwls − x̂(ε) equals

(
(HTΣ−1H)−1HTΣ−1 −H† + εH†B(C† +D)

)
z.
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Since (HTΣ−1H)−1HTΣ−1 −H† + εH†BC† = 0 for every ε > 0, it follows xwls −

x̂(ε) = εH†BDz.

Therefore, for the solution of system (5.5) by means of Algorithm 1, the param-

eter ε is chosen according to Corollary 5.2.1 to meet a desired estimation accuracy.

It should be observed that, even if the entire matrix H needs to be known for the

computation of the exact parameter ε, the advantages of our estimation tech-

nique are preserved. Indeed, if the matrix H is unknown and an upper bound for

‖H†BDz‖ is known, then a value for ε can still be computed that guarantees the

desired estimation accuracy. On the other hand, if H is entirely known, it may be

inefficient to use H to perform a centralized state estimation over time. Instead,

a suitable parameter ε needs to be computed only once. To conclude this section

we characterize the estimation residual z −Hx̂. This quantity plays an important

role for the synthesis of a distributed false data detection algorithm.

Corollary 5.2.2 (Estimation residual) Consider the system z = Hx+ v, and let

E
[
vvT
]

= Σ = ΣT > 0. Then6

lim
ε→0+

‖z −Hx̂(ε)‖ ≤ ‖(I −HW )‖‖v‖,

where W = (HTΣ−1H)−1HTΣ−1.

6Given a vector v and a matrix H, we denote by ‖v‖ any vector norm, and by ‖H‖ the
corresponding induced matrix norm.
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Proof: By virtue of Theorem 5.2.2 we have

lim
ε→0+

x̂(ε) = xwls = (HTΣ−1H)−1HTΣ−1z = Wz.

Observe that HWH = H, and recall that z = Hx+ v. For any matrix norm, we

have

‖z −Hxwls‖ = ‖z −HWz‖ = ‖(I −HW )(Hx+ v)‖

= ‖Hx−Hx+ (I −HW )v‖

≤ ‖(I −HW )‖‖v‖,

and the theorem follows.

5.2.3 Diffusive estimation via distributed computation

The implementation of the incremental state estimation algorithm described in

Section 5.2.2 requires a certain degree of coordination among the control centers.

For instance, an ordering of the monitors is necessary, such that the i-th monitor

transmits its estimate to the (i + 1)-th monitor. This requirement imposes a

constraint on the monitors interconnection structure, which may be undesirable,

and, potentially, less robust to link failures. In this section, we overcome this

limitation by presenting a diffusive implementation of Algorithm 1, which only

requires the monitors interconnection structure to be connected.7 To be more

7An undirected graph is said to be connected if there exists a path between any two vertices
[36].
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precise, let V = {1, . . . ,m} be the set of monitors, and let G = (V , E) be the

undirected graph describing the monitors interconnection structure, where E ⊆

V × V , and (i, j) ∈ E if and only if the monitors i and j are connected. The

neighbor set of node i is defined as Ni = {j ∈ V : (i, j) ∈ E}. We assume that

G is connected, and we let the distance between two vertices be the minimum

number of edges in a path connecting them. Finally, the diameter of a graph G,

in short diam(G), equals the greatest distance between any pair of vertices. Our

diffusive procedure is described in Algorithm 2, where the matrices Hi and εBi are

as defined in equation (5.8). During the h-th iteration of the algorithm, monitor

i, with i ∈ {1, . . . , N}, performs the following three actions in order:

(i) transmits its current estimates x̂i and Ki to all its neighbors;

(ii) receives the estimates x̂j from neighbors Ni; and

(iii) updates x̂i and Ki as in the for loop of Algorithm 2.

We now show the convergence properties of Algorithm 2.

Theorem 5.2.3 (Convergence of Algorithm 2) Consider the system of lin-

ear equations z = Hx+ v, where E[v] = 0 and E[vvT] = BBT. Let H, B and z be

partitioned as in (5.8), and let ε > 0. Let the monitors communication graph be

connected, let d be its diameter, and let the monitors execute the Diffusive state
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Algorithm 2: Diffusive state estimation (i-th monitor)

Input : Matrices Hi, εBi, zi;

1 x̂i := [Hi εBi]
†zi;

2 Ki := Basis(Ker([Hi εBi]));

while Ki 6= 0 do

for j ∈ Ni do

3 receive x̂j and Kj ;

4 x̂i := x̂i + [Ki 0][−Ki Kj ]
†(x̂i − x̂j);

5 Ki := Basis(Im(Ki) ∩ Im(Kj));

6 transmit x̂i and Ki;

estimation algorithm. Then, each monitor computes the estimate x̂(ε) of x in d

steps.

Proof: Let x̂i be the estimate of the monitor i, and let Ki be such that
[
xT vT

]T−

x̂i ∈ Im(Ki), where x denotes the network state, v is the measurements noise

vector, and x̂i ⊥ Im(Ki). Notice that zi =
[
Hi εBi

]
x̂i, where zi it the i-th

measurements vector. Let i and j be two neighboring monitors. Notice that there

exist vectors vi and vj such that x̂i+Kivi = x̂j+Kjvj. In particular, those vectors

can be chosen as


vi

vj


 = [−Ki Kj]

†(x̂i − x̂j).
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It follows that the vector

x̂+
i = x̂i + [Ki 0][−Ki Kj]

†(x̂i − x̂j)

is such that zi =
[
Hi εBi

]
x̂+
i and zj =

[
Hj εBj

]
x̂+
i . Moreover we have x̂+

i ⊥

(Im(Ki) ∩ Im(Kj)). Indeed, notice that



vi

vj


 ⊥ Ker(

[
−Ki Kj

]
) ⊇







wi

wj


 : Kiwi = Kjwj




.

We now show that Kivi ⊥ Im(Kj). By contradiction, if Kivi 6⊥ Im(Kj), then

vi = ṽi + v̄i, with Kiṽi ⊥ Im(Kj) and Kiv̄i ∈ Im(Kj). Let v̄j = K†jKiv̄i, and ṽj =

vj−v̄j. Then,
[
v̄Ti v̄

T
j

]T ∈ Ker(
[
−Ki Kj

]
), and hence

[
vTi v

T
j

]T 6⊥ Ker(
[
−Ki Kj

]
),

which contradicts the hypothesis. We conclude that
[
Ki 0

][
−Ki Kj

]†
(x̂i− x̂j) ⊥

Im(Kj), and, since x̂i ⊥ Im(Ki), it follows x̂+
i ⊥ (Im(Ki)∩ Im(Kj)). The theorem

follows from the fact that after a number of steps equal to the diameter of the

monitors communication graph, each vector x̂i verifies all the measurements, and

x̂i ⊥ Im(K1) ∩ · · · ∩ Im(Km).

As a consequence of Theorem 5.2.2, in the limit for ε to zero, Algorithm 2

returns the minimum variance estimate of the state vector, being therefore the

diffusive counterpart of Algorithm 1. A detailed comparison between incremen-

tal and diffusive methods is beyond the purpose of this work, and we refer the

interested reader to [57, 58] and the references therein for a thorough discussion.
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Here we only underline some key differences. While Algorithm 1 requires less

operations, being therefore computationally more efficient, Algorithm 2 does not

constraint the monitors communication graph. Additionally, Algorithm 2 can be

implemented adopting general asynchronous communication protocols. For in-

stance, consider the Asynchronous (diffusive) state estimation algorithm, where,

at any given instant of time, at most one monitor, say j, sends its current esti-

mates to its neighbors, and where, for i ∈ Nj, monitor i performs the following

operations:

(i) x̂i := x̂i +
[
Ki 0

][
−Ki Kj

]†
(x̂i − x̂j),

(ii) Ki := Basis(Im(Ki) ∩ Im(Kj)).

Corollary 5.2.3 (Asynchronous estimation) Consider the system of linear

equations z = Hx + v, where E
[
v
]

= 0 and E
[
vvT
]

= BBT. Let H, B and

z be partitioned as in (5.8), and let ε > 0. Let the monitors communication graph

be connected, let d be its diameter, and let the monitors execute the Asynchronous

(diffusive) state estimation algorithm. Assume that there exists a duration T ∈ R

such that, within each time interval of duration T , each monitor transmits its cur-

rent estimates to its neighbors. Then, each monitor computes the estimate x̂(ε)

of x within time dT .
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Proof: The proof follows from the following two facts. First, the intersection

of subspaces is a commutative operation. Second, since each monitor performs a

data transmission within any time interval of length T , it follows that, at time

dT , the information related to one monitor has propagated through the network

to all monitors.

5.2.4 Detection of false data via distributed computation

In the previous sections we have shown how to compute an optimal state

estimate via distributed computation. A rather straightforward application of

the proposed state estimation technique is the detection of false data among the

measurements. When the measurements are corrupted, the state to measurements

relation becomes

z = Hx+ v + w,

where w is the false data vector. As a consequence of Corollary 5.2.2, the vector

w is detectable if it affects significantly the estimation residual, i.e., if limε→0 ‖z−

Hx̂(ε)‖ > Γ, where the threshold Γ depends upon the magnitude of the noise

v. Notice that, because false data can be injected at any time by a malignant

agent, the detection algorithm needs to be executed over time by the control

centers. Let z(t) = Hx(t) + v(t) + w(t) be the measurements vector at a given
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Algorithm 3: False data detection (i-th monitor)

Input : Matrices Hi, εBi, Γ;

while True do

1 collect measurements zi(t);

2 estimate network state x̂(t) via Algorithm 1 or 2;

if ‖zi(t)−Hix̂(t)‖∞ > Γ then

3 return false data detected;

time instant t. Based on these considerations, our distributed detection procedure

is in Algorithm 3, where the matrices Hi and εBi are as defined in equation (5.8),

and Γ is a predefined threshold.

In Algorithm 3, the value of the threshold Γ determines the false alarm and

the missed detection rates. Clearly, if Γ ≥ ‖(I − HW )‖‖v(t)‖ at all times t,

and ε is sufficiently small, then no false alarm is triggered, at the expenses of

the missed detection rate. By decreasing the value of Γ the sensitivity to failures

increases together with the false alarm rate. Notice that, if the magnitude of the

noise signals is upper bounded by γ, then a reasonable choice of the threshold is

Γ = γ‖(I − HW )‖∞, where the use of the infinity norm in Algorithm 3 is also

convenient for the implementation. Indeed, since the condition ‖z(t)−Hx̂(t)‖∞ >

Γ is equivalent to ‖zi(t)−Hix̂(t)‖∞ > Γ for some monitor i, the presence of false

data can be independently checked by each monitor without further computation.
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Notice that an eventual alarm message needs to be propagated to all control

centers.

Remark 6 (Statistical detection) A different strategy for the detection of false

data relies on statistical techniques, e.g., see [1]. In the interest of brevity, we do

not consider these methods, and we only remark that, once the estimation residual

has been computed by each monitor, the implementation of a (distributed) statisti-

cal procedure, such as, for instance, the (distributed) χ2-Test, is a straightforward

task.

5.3 A Finite-memory Estimation Technique

The procedure described in Algorithm 1 allows each agent to compute an

optimal estimate of the whole network state in finite time. In this section, we

allow each agent to handle only local and of small dimension vectors, and we

develop a procedure to recover an estimate of only a certain subnetwork. We

envision that the knowledge of only a subnetwork may be sufficient to implement

distributed estimation and control strategies.

We start by introducing the necessary notation. Let the measurements matrix

H be partitioned into m2 blocks, being m the number of monitors in the network,
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as

H =




H11 · · · H1m

...
...

Hm1 · · · Hmm



, (5.9)

where Hij ∈ Rmi×ni for all i, j ∈ {1, . . . ,m}. The above partitioning reflects a

division of the whole network into competence regions: we let each monitor be

responsible for the correct functionality of the subnetwork defined by its blocks.

Additionally, we assume that the union of the different regions covers the whole

network, and that different competence regions may overlap. Observe that, in

most of the practical situations, the matrix H has a sparse structure, so that many

blocks Hij have only zero entries. We associate an undirected graph Gh with the

matrix H, in a way that Gh reflects the interconnection structure of the blocks Hij.

To be more precise, we let Gh = (Vh, Eh), where Vh = {1, . . . ,m} denotes the set

of monitors, and where, denoting by (i, j) the undirected edge from j to i, it holds

(i, j) ∈ Eh if and only if ‖Hij‖ 6= 0 or ‖Hji‖ 6= 0. Noticed that the structure of

the graph Gh, besides reflecting the sparsity pattern of the measurement matrix,

describes also the monitors interconnections. By using the same partitioning as
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in (5.9), the Moore-Penrose pseudoinverse of H can be written as

H† = H̃ =




H̃11 · · · H̃1m

...
...

H̃m1 · · · H̃mm



, (5.10)

where H̃ij ∈ Rni×mi . Assume that H has full row rank,8 and observe that H† =

HT(HHT)−1. Consider the equation z = Hx, and let H†z = x̂ =
[
x̂T1 . . . x̂Tm

]T
,

where, for all i ∈ {1, . . . ,m}, x̂i ∈ Rni . We employ Algorithm 2 for the computa-

tion of the vector x̂, and we let

x̂(i,h) =




x̂
(i,h)
1

...

x̂
(i,h)
m




be the estimate vector of the i-th monitor after h iterations of Algorithm 2, i.e.,

after h executions of the while loop in Algorithm 2. In what follows, we will show

that, for a sufficiently sparse matrix H, the error ‖x̂i − x̂(i,h)
i ‖ has an exponential

decay when h increases, so that it becomes negligible before the termination of

Algorithm 2, i.e., when h < diam(Gh). The main result of this section is next

stated.

Theorem 5.3.1 (Local estimation) Let the full-row rank matrix H be parti-

tioned as in (5.9). Let
[
a, b
]
, with a < b, be the smallest interval containing the

8The case of a full-column rank matrix is treated analogously.
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spectrum of HHT. Then, for i ∈ {1, . . . ,m} and h ∈ N, there exist C ∈ R>0 and

q ∈ (0, 1) such that

‖x̂i − x̂(i,h)
i ‖ ≤ Cq

h
2

+1.

For the readers convenience, before proving the above result, we recall the

following definitions and results. Given an invertible matrix M of dimension n,

let us define the support sets

Sh(M) =
h⋃

k=0

{(i, j) : Mk(i, j) 6= 0},

being Mk(i, j) the (i, j)-th entry of Mk, and the decay sets

Dh(M) = ({1, . . . , n} × {1, . . . , n}) \ Sh(M).

Theorem 5.3.2 (Decay rate [27]) Let M be of full row rank, and let
[
a, b
]
,

with a < b, be the smallest interval containing the spectrum of M . There exist

C ∈ R>0 and q ∈ (0, 1) such that

sup{|M †(i, j)| : (i, j) ∈ Dh(MMT)} ≤ Cqh+1.

For a graph Gh and two nodes i and j, let dist(i, j) denote the smallest number

of edges in a path from j to i in Gh. The following result will be used to prove

Theorem 5.3.1. Recall that, for a matrix M , we have ‖M‖max = max{|M(i, j)|}.
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Lemma 5.3.3 (Decay sets and local neighborhood) Let the matrix H be par-

titioned as in (5.9), and let Gh be the graph associated with H. For i, j ∈

{1, . . . ,m}, if dist(i, j) = h, then

‖H†ij‖max ≤ Cq
h
2

+1.

Proof: A proof of this result follows from simple inspection and it is omitted

here.

Lemma 5.3.3 establishes a relationship between the decay sets of an invertible

matrix and the distance among the vertices of a graph associated with the same

matrix. By using this result, we are now ready to prove Theorem 5.3.1.

Proof of Theorem 5.3.1: Notice that, after h iterations of Algorithm 2, the i-th

monitor has received data from the monitors within distance h from i, i.e., from

the monitors T such that, for each j ∈ T , there exists a path of length up to h

from j to i in the graph associated with H. Reorder the rows of H such that the

i-th block come first and the T -th blocks second. Let H =
[
HT

1 HT
2 HT

3

]T
be the

resulting matrix. Accordingly, let z =
[
zT1 zT2 zT3

]T
, and let x =

[
xT1 xT2 xT3

]T
,

where z = Hx.
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Because H has full row rank, we have



H1

H2

H3







P11 P12 P13

P21 P22 P23

P31 P32 P33




=




I1 0 0

0 I2 0

0 0 I3



,

where I1, I2, and I3 are identity matrices of appropriate dimension, and

H† =




P11 P12 P13

P21 P22 P23

P31 P32 P33



.

For a matrix M , let col(M) denote the number of columns of M . Let T1 =

{1, . . . , col(P11)}, T2 = {1 + col(P11), . . . , col(
[
P11 P12

]
)}, and

T3 = {1 + col(
[
P11 P12

]
), . . . , col(

[
P11 P12 P13

]
)}.

Let T1, T2, and T3, be, respectively, the indices of the columns of P11, P12, and

P13. Notice that, by construction, if i ∈ T1 and j ∈ T3, then dist(i, j) > h. Then,

by virtue of Lemma 5.3.3 and Theorem 5.3.2, the magnitude of each entry of P13

is bounded by C̄q̄b
h
2
c+1, for C̄, q̄ ∈ R.

Because H has full row rank, from Theorem 5.2.1 we have that

x̂ = H†z = ˆ̄x+K1(H3K1)†(z3 −H3x̂
1), (5.11)

where

ˆ̄x =
[
HT

1 HT
2

]T†[
zT1 zT2

]T
and K1 = Basis(Ker(

[
HT

1 HT
2

]T
)).
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With the same partitioning as before, let x̂ =
[
x̂T1 x̂

T
2 x̂

T
3

]T
. In order to prove the

theorem, we need to show that there exists C ∈ R>0 and q ∈ (0, 1) such that

‖x̂1 − ˆ̄x1‖ ≤ Cqb
h
2
c+1.

Notice that, for (5.11) to hold, the matrix K1 can be any basis of Ker([HT
1 HT

2 ]T).

Hence, let K1 =
[
PT

13 P
T
23 P

T
33

]
. Because every entry of P13 decays exponentially,

the theorem follows.

In Section 5.4.2 we provide an example to clarify the exponential decay de-

scribed in Theorem 5.3.1.

5.4 Illustrative Examples

The effectiveness of the methods developed in the previous sections is now

shown through some examples.

5.4.1 Estimation and detection for the IEEE 118 system

The IEEE 118 bus system represents a portion of the American Electric Power

System as of December, 1962. This test case system, whose diagram is reported

in Fig. 5.1, is composed of 118 buses, 186 branches, 54 generators, and 99 loads.

The voltage angles θbus and the power injections Pbus at the network buses are
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Figure 5.2: In this figure the normalized euclidean norm of the error vector
θbus(ε) − θbus,wls is plotted as a function of the parameter ε. Here, θbus(ε) is
the estimation vector computed according to Theorem 5.2.2, and θbus,wls is the
minimum variance estimate of θbus. As ε decreases, the vector θbus(ε) converges
to the minimum variance estimate θbus,wls.

assumed to be related through the linear relation

Pbus = Hbusθbus,

where the matrix Hbus depends upon the network interconnection structure and

the network admittance matrix. For the network in Fig. 5.1, let z = Pbus − v

be the measurements vector, where E
[
v
]

= 0 and E
[
vvT
]

= σ2I, σ ∈ R. Then,

following the notation in Theorem 5.2.2, the minimum variance estimate of θbus

can be recovered as

lim
ε→0+

[
Hbus εσI

]†
z.

In Fig. 5.2 we show that, as ε decreases, the estimation vector computed according

to Theorem 5.2.2 converges to the minimum variance estimate of θbus.
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Figure 5.3: In this figure the IEEE 118 bus system has been divided into 5
areas. Each area is monitored and operated by a control center. The control
centers cooperate to estimate the state and to assess the functionality of the
whole network.

In order to demonstrate the advantage of our decentralized estimation algo-

rithm, we assume the presence of 5 control centers in the network of Fig. 5.1, each

one responsible for a subpart of the entire network. The situation is depicted in

Fig. 5.3. Assume that each control center measures the real power injected at the

buses in its area, and let zi = Pbus,i − vi, with E
[
vi
]

= 0 and E
[
viv

T
i

]
= σ2

i I, be

the measurements vector of the i-th area. Finally, assume that the i-th control

center knows the matrix Hbus,i such that zi = Hbus,iθbus + vi. Then, as discussed

in Section 5.2.2, the control centers can compute an optimal estimate of θbus by
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Figure 5.4: For a fixed value of ε, Fig. 5.4 shows the average (over 100 tests) of
the norm of the error (with respect to the network state) of the estimate obtained
by means of Algorithm 1. The estimation error decreases with the number of
measurements. Because of the presence of several control centers, our algorithm
processes more measurements (up to 5N̄) while maintaining the same (or smaller)
computational complexity of a centralized estimation with N̄ measurements.

means of Algorithm 1 or 2. Let ni be the number of measurements of the i-th

area, and let N =
∑5

i=1 ni. Notice that, with respect to a centralized computation

of the minimum variance estimate of the state vector, our estimation procedure

obtains the same estimation accuracy while requiring a smaller computational

burden and memory requirement. Indeed, the i-th monitor uses ni measurements

instead of N . Let N̄ be the maximum number of measurements that, due to hard-

ware or numerical contraints, a control center can efficiently handle for the state

estimation problem. In Fig. 5.4, we increase the number of measurements taken

by a control center, so that ni ≤ N̄ , and we show how the accuracy of the state

estimate increases with respect to a single control center with N̄ measurements.
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To conclude this section, we consider a security application, in which the con-

trol centers aim at detecting the presence of false data among the network mea-

surements via distributed computation. For this example, we assume that each

control center measures the real power injection as well the current magnitude

at some of the buses of its area. By doing so, a sufficient redundancy in the

measurements is obtained for the detection to be feasible [1]. Suppose that the

measurements of the power injection at the first bus of the first area is corrupted

by a malignant agent. To be more precise, let the measurements vector of the

first area be z̄i = zi + e1wi, where e1 is the first canonical vector, and wi is a

random variable. For the simulation we choose wi to be uniformly distributed in

the interval [0, wmax], where wmax corresponds approximately to the 10% of the

nominal real injection value. In order to detect the presence of false data among

the measurements, the control centers implement Algorithm 3, where, being H

the measurements matrix, and σ, Σ the noise standard deviation and covariance

matrix, the threshold value Γ is chosen as 2σ‖I−H(HTΣ−1H)−1HTΣ−1‖∞.9 The

residual functions ‖zi − Hx̂‖∞ are reported in Fig. 5.5. Observe that, since the

first residual is greater than the threshold Γ, the control centers successfully de-

tect the false data. Regarding the identification of the corrupted measurements,

we remark that a regional identification may be possible by simply analyzing the

9For a Gaussian distribution with mean µ and variance σ2, about 95% of the realizations are
contained in [µ− 2σ, µ+ 2σ].
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Figure 5.5: Fig. 5.5 shows the residual functions computed by the 5 control
centers. Since the first residual is greater than the threshold value, the presence
of false data is correctly detected by the first control center. A form of regional
identification is possible by simple identifying the residuals above the security
threshold.

residual functions. In this example, for instance, since the residuals 2 to 5 are

below the threshold value, the corrupted data is likely to be among the measure-

ments of the first area. This important aspect is left as the subject of future

research.

5.4.2 Scalability property of finite-memory estimation

Consider an electrical network with (ab)2 buses, where a, b ∈ N. Let the buses

interconnection structure be a two dimensional lattice, and let G be the graph

whose vertices are the (ab)2 buses, and whose edges are the network branches. Let

G be partitioned into b2 identical blocks containing a2 vertices each, and assume

the presence of b2 control centers, each one responsible for a different network

115



Chapter 5. Static Monitors for State Estimation and False Data Detection

C9 C10 C11

C13 C14 C15

C1 C2 C3 C4

C5 C6 C7 C8

C12

C16

Figure 5.6: In Fig. 5.6, a two dimensional power grid with 400 buses. The
network is operated by 16 control centers, each one responsible for a different
subnetwork. Control centers cooperate through the red communication graph.
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Figure 5.7: Fig. 5.7 shows the norm of the estimation error of the local subnet-
work as a function of the number of iterations of Algorithm 2. The considered
monitors are C1 ,C6, C11, and C15. As predicted by Theorem 5.3.1, the local
estimation error becomes negligible before the termination of the algorithm.
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part. We assume the control centers to be interconnected through an undirected

graph. In particular, being Vi the set of buses assigned to the control center Ci,

we let the control centers Ci and Cj be connected if there exists a network branch

linking a bus in Vi to a bus in Vj. An example with b = 4 and a = 5 is in Fig.

5.6. In order to show the effectiveness of our approximation procedure, suppose

that each control center Ci aims at estimating the vector of the voltage angles

at the buses in its region. We assume also that the control centers cooperate,

and that each of them receives the measurements of the real power injected at

only the buses in its region. Algorithm 2 is implemented by the control centers to

solve the estimation problem. In Fig. 5.7 we report the estimation error during

the iterations of the algorithm. Notice that, as predicted by Theorem 5.3.1, each

leader has a good estimate of the state of its region before the termination of the

algorithm.

5.5 Proofs of Main Results

5.5.1 Proof of Theorem 5.2.1

Proof: LetH i =
[
HT

1 · · · HT
i

]T
, zi =

[
zT1 · · · zTi

]T
. We show by induction that

zi = H ix̂i, Ki = Basis(Ker(H i)), and x̂i ⊥ Ker(H i). Note that the statements
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are trivially verified for i = 1. Suppose that they are verified up to i, then we need

to show that Ki+1 = Basis(Ker(H i+1)), x̂i+1 ⊥ Ker(H i+1), and zi+1 = H i+1x̂i+1.

We start by proving that Ki+1 = Basis(Ker(H i+1)). Observe that Ker(Ki) = 0

for all i, and that

Ker(Hi+1Ki) = {v : Kiv ∈ Ker(Hi+1)}. (5.12)

Hence,

Im(Ki+1) = Im(Ki Ker(Hi+1Ki))

= Im(Ki) ∩Ker(Hi+1)

= Ker(H i) ∩Ker(Hi+1) = Ker(H i+1).

We now show that xi+1 ⊥ Ker(H i+1), which is equivalent to

(x̂i +Ki(Hi+1Ki)
†(zi+1 −Hi+1x̂i)) ∈ Ker(H i+1)⊥.

Note that

Ker(H i+1) ⊆ Ker(H i) ⇔ Ker(H i+1)⊥ ⊇ Ker(H i)⊥.

By the induction hypothesis we have x̂i ∈ Ker(H i)⊥, and hence x̂i ∈ Ker(H i+1)⊥.

Therefore, we need to show that

Ki(Hi+1Ki)
†(zi+1 −Hi+1x̂i) ∈ Ker(H i+1)⊥.
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Let w = (Hi+1Ki)
†(zi+1 − Hi+1x̂i), and notice that w ∈ Ker(Hi+1Ki)

⊥ due to

the properties of the pseudoinverse operation. Suppose that Kiw 6∈ Ker(Hi+1)⊥.

Since Ker(Ki) = {0}, the vector w can be written as w = w1 +w2, where Kiw1 ∈

Ker(Hi+1)⊥ and Kiw2 = Kiw − Kiw1 6= 0, Kiw2 ∈ Ker(Hi+1). Then, it holds

Hi+1Kiw2 = 0, and hence w2 ∈ Ker(Hi+1Ki), which contradicts the hypothesis

w ∈ Ker(Hi+1Ki)
⊥. Finally Kiw ∈ Ker(Hi+1)⊥ ⊆ Ker(H i+1)⊥.

We now show that zi+1 = H i+1x̂i+1. Because of the consistency of the system

of linear equations, and because zi = H ix̂i by the induction hypothesis, there

exists a vector vi ∈ Ker(H i) = Im(Ki) such that zi+1 = H i+1(x̂i + vi), and hence

that zi+1 = Hi+1(x̂i + vi). We conclude that (zi+1 −Hi+1x̂i) ∈ Im(Hi+1Ki), and

finally that zi+1 = H i+1x̂i+1.

5.5.2 Proof of Theorem 5.2.2

Before proceeding with the proof of the above theorem, we recall the following

fact in linear algebra.

Lemma 5.5.1 Let H ∈ Rn×m. Then Ker((H†)T) = Ker(H).

Proof: We first show that Ker((H†)T) ⊆ Ker(H). Recall from [9] that H =

HHT(H†)T. Let x be such that (H†)Tx = 0, then Hx = HHT(H†)Tx = 0, so

that Ker((H†)T) ⊆ Ker(H). We now show that Ker(H) ⊆ Ker((H†)T). Recall
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that (H†)T = (HT)† = (HHT)†H. Let x be such that Hx = 0, then (H†)Tx =

(HHT)†Hx = 0, so that Ker(H) ⊆ Ker((H†)T), which concludes the proof.

We are now ready to prove Theorem 5.2.2.

Proof: The first property follows directly from [9] (cfr. page 427). To show the

second property, observe that C† = 1
ε
((I −HH†)B)†, so that

lim
ε→0+

εD = 0.

For the theorem to hold, we need to verify that

H† −H†B((I −HH†)B)† = (HTΣ−1H)−1HTΣ−1,

or, equivalently, that

(
H† −H†B((I −HH†)B)†

)
HH† = (HTΣ−1H)−1HTΣ−1HH†, (5.13)

and

(
H† −H†B((I −HH†)B)†

)
(I −HH†) = (HTΣ−1H)−1HTΣ−1(I −HH†).

(5.14)

Consider equation (5.13). After simple manipulation, we have

H† −H†B((I −HH†)B)†HH† = H†,

so that we need to show only that

H†B((I −HH†)B)†HH† = 0.
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Recall that for a matrix W it holds W † = (WTW )†WT. Then the term

((I −HH†)B)†HH† equals

(
((I−HH†)B)T((I−HH†)B)

)†
BT(I−HH†)HH†=0,

because (I −HH†)HH† = 0. We conclude that equation (5.13) holds. Consider

now equation (5.14). Observe that HH†(I −HH†) = 0. Because B has full row

rank, and Σ = BBT, simple manipulation yields

−HT(BBT)−1HH†B
[
(I −HH†)B

]†
(I −HH†)B = HT(BBT)−1(I −HH†)B,

and hence

HT(BBT)−1
{
I+HH†B

[
(I−HH†)B

]†}
(I−HH†)B=0.

Since HH† = I − (I −HH†), we obtain

HT(BBT)−1B
[
(I −HH†)B

]†
(I −HH†)B = 0.

A sufficient condition for the above equation to be true is

([
(I −HH†)B

]†)T
BT(BBT)−1H = 0.

From Lemma 5.5.1 we have.

Ker

(([
(I − AA†)B

]†)T
)

= Ker((I − AA†)B).
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Since

(I −HH†)BBT(BBT)−1H = (I −HH†)H = 0,

we have that

HT(BBT)−1B
[
(I −HH†)B

]†
(I −HH†)B = 0,

and that equation (5.14) holds. This concludes the proof.
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Chapter 6

Dynamic Monitors for Attack
Detection and Identification

In this chapter we design centralized and distributed monitors for attack de-

tection and identification. Following the discussion in Chapter 4, we do not design

active monitors. In particular, the algorithms presented in this chapter constitute

dynamic monitors. We start with the design of dynamic detection monitors.

6.1 Monitors for Attack Detection

6.1.1 A centralized attack detection monitor

In the following we present a centralized attack detection filter based on a

modified Luenberger observer.

Theorem 6.1.1 (Centralized attack detection filter) Consider the descrip-

tor system (4.1) and assume that the attack set K is detectable, and that the
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network initial state x(0) is known. Consider the centralized attack detection

filter

Eẇ(t) = (A+GC)w(t)−Gy(t),

r(t) = Cw(t)− y(t),

(6.1)

where w(0) = x(0) and the output injection G ∈ Rn×p is such that the pair (E,A+

GC) is regular and Hurwitz. Then r(t) = 0 at all times t ∈ R≥0 if and only if

uK(t) = 0 at all times t ∈ R≥0. Moreover, in the absence of attacks, the filter

error w − x is exponentially stable.

Proof: Consider the error e = w−x between the dynamic states of the filter (6.1)

and the descriptor system (4.1). The error dynamics with output r are given by

Eė(t) = (A+GC)e(t)− (BK +GDK)uK(t),

r(t) = Ce(t)−DKuK(t),

(6.2)

where e(0) = 0. To prove the theorem we show that the error system (6.2) has no

invariant zeros, that is, r(t) = 0 for all t ∈ R≥0 if and only if uK(t) = 0 for all t ∈

R≥0. Since the initial condition x(0) and the input uK are assumed to be consistent

(A2) and non-impulsive (A3), the error system (6.2) has no invariant zeros if and

only if [35, Proposition 3.4] there exists no triple (s, w̄, gK) ∈ C×Rn×Rp satisfying


sE − (A+GC) BK +GDK

C −DK






w̄

gK


 =




0

0


 . (6.3)
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The second equation of (6.3) yields Cw̄ = DKgK . Thus, by substituting Cw̄ by

DKgK in the first equation of (6.3), the set of equations (6.3) can be equivalently

written as 

sE − A BK

C −DK






w̄

gK


 =




0

0


 . (6.4)

Finally, note that a solution (s,−w̄, gK) to above set of equations would yield

an invariant zero, zero state, and zero input for the descriptor system (4.1). By

the detectability assumption,1 the descriptor model (4.1) has no zero dynamics

and the matrix pencil in (6.4) necessarily has full rank. It follows that the triple

(E,A,C) is observable, so that G can be chosen to make the pair (E,A + GC)

Hurwitz [24, Theorem 4.1.1], and the error system (6.2) is stable and with no zero

dynamics.

Remark 7 (Detection and identification filters for unknown initial

condition and noisy dynamics) If the network initial state is not available,

then, since (E,A + GC) is Hurwitz, an arbitrary initial state w(0) ∈ Rn can be

chosen. Consequently, the filter converges asymptotically, and some attacks may

remain undetected or unidentified. For instance, if the eigenvalues of the detection

filter matrix have real part smaller than c < 0, with c ∈ R, then, in the absence of

1Due to linearity of the descriptor system (4.1), the detectability assumption reads as “the
attack (Bu,Du, ) is detectable if there exist no initial condition x0 ∈ Rn, such that y(x0, u, t) = 0
for all t ∈ R≥0.”
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attacks, the residual r exponentially converges to zero with rate less than c. Hence,

only inputs u that vanish faster or equal than e−ct may remain undetected by the

filter (6.1). Alternatively, the detection filter can be modified so as to converge in

a predefined finite time, see [63,85]. In this case, every attack signal is detectable

after a finite transient.

If the dynamics and the measurements of (4.1) are affected by modeling un-

certainties and noise with known statistics, then the output injection matrix G in

(6.1) should be chosen as to optimize the sensitivity of the residual r to attacks ver-

sus the effect of noise. Standard robust filtering or model matching techniques can

be adopted for this task [100]. Statistical hypothesis techniques can subsequently be

used to analyze the residual r [7]. Finally, attacks aligned with the noise statistics

turn out to be undetectable. �

Observe that the design of the filter (6.1) is independent of the particular attack

signature (BK , DK) and its performance is optimal in the sense that any detectable

attack set K can be detected. We remark that for index-one descriptor systems

such as power system models, the filter (6.1) can analogously be designed for the

corresponding Kron-reduced model; see also [80]. In this case, the resulting attack

detection filter is low-dimensional and non-singular but also non-sparse, see [80].

In comparison, the presented filter (6.1), although inherently centralized, features
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the sparse matrices (E,A,C). This sparsity will be key to develop a distributed

attack detection filter.

6.1.2 A decentralized attack detection monitor

Let Gt = (V , E) be the directed graph associated with the pair (E,A), where

the vertex set V = {1, . . . , n} corresponds to the system state, and the set of

directed edges E = {(xj, xi) : eij 6= 0 or aij 6= 0} is induced by the sparsity

pattern of E and A; see also Section 4.3. Assume that V has been partitioned

into N disjoint subsets as V = V1 ∪ · · · ∪ VN , with |Vi| = ni, and let Gi
t = (Vi, Ei)

be the i-th subgraph of Gr with vertices Vi and edges Ei = E ∩(Vi×Vi). According

to this partition, and possibly after relabeling the states, the system matrix A in

(4.1) can be written as

A =




A1 · · · A1N

...
...

...

AN1 · · · AN




= AD + AC ,

where Ai ∈ Rni×ni , Aij ∈ Rni×nj , AD is block-diagonal, and AC =A−AD. Notice

that, if AD = blkdiag(A1, . . . , AN), then AD represents the isolated subsystems

and AC describes the interconnection structure among the subsystems. Addition-

ally, if the original system is sparse, then several blocks in AC vanish. We make

the following assumptions:
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(A4) the matrices E, C are block-diagonal, that is E = blkdiag(E1, . . . , EN),

C = blkdiag(C1, . . . , CN), where Ei ∈ Rni×ni and Ci ∈ Rpi×ni ,

(A5) each pair (Ei, Ai) is regular, and each triple (Ei, Ai, Ci) is observable.

Given the above structure and in the absence of attacks, the descriptor system

(4.1) can be written as the interconnection of N subsystems of the form

Eiẋi(t) = Aixi(t) +
∑

j∈N in
i

Aijxj(t),

yi(t) = Cixi(t), i ∈ {1, . . . , N},

(6.5)

where xi and yi are the state and output of the i-th subsystem and N in
i = {j ∈

{1, . . . , N} \ i : ‖Aij‖ 6= 0} are the in-neighbors of subsystem i. We also define

the set of out-neighbors as N out
i = {j ∈ {1, . . . , N} \ i : ‖Aji‖ 6= 0}. We

assume the presence of a control center in each subnetwork Gi
t with the following

capabilities:

(A6) the i-th control center knows the matrices Ei, Ai, Ci, as well as the neigh-

boring matrices Aij, j ∈ N in
i ; and

(A7) the i-th control center can transmit an estimate of its state to the j-th

control center if j ∈ N out
i .

Before deriving a fully-distributed attack detection filter, we explore the ques-

tion of decentralized stabilization of the error dynamics of the filter (6.1). For each
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subsystem (6.5), consider the local residual generator

Eiẇi(t) = (Ai +GiCi)wi(t) +
∑

j∈N in
i

Aijxj(t)−Giyi(t),

ri(t) = yi(t)− Ciwi(t), i ∈ {1, . . . , N}, (6.6)

where wi is the i-th estimate of xi and Gi ∈ Rni×pi . In order to derive a compact

formulation, let w = [wT
1 · · · wT

N ]T, r = [rT1 · · · rTN ]T, andG = blkdiag(G1, . . . , GN).

Then, the overall filter dynamics (6.6) are

Eẇ(t) = (AD +GC)w(t) + ACw(t)−Gy(t) ,

r(t) = y(t)− Cw(t) .

(6.7)

Due to the observability assumption (A5) an output injection matrix Gi can be

chosen such that each pair (Ei, Ai−GiCi) is Hurwitz [24, Theorem 4.1.1]. Notice

that, if each pair (Ei, Ai + GiCi) is regular and Hurwitz, then (E,AD + GC) is

also regular and Hurwitz since the matrices E and AD + GC are block-diagonal.

We are now ready to state a condition for the decentralized stabilization of the

filter (6.7).

Lemma 6.1.2 (Decentralized stabilization of the attack detection fil-

ter) Consider the descriptor system (4.1), and assume that the attack set K is

detectable and that the network initial state x(0) is known. Consider the attack

detection filter (6.7), where w(0) = x(0) and G = blkdiag(G1, . . . , GN) is such

129



Chapter 6. Dynamic Monitors for Attack Detection and Identification

that (E,AD +GC) is regular and Hurwitz. Assume that

ρ
(
(jωE − AD −GC)−1AC

)
< 1 for all ω ∈ R , (6.8)

where ρ(·) denotes the spectral radius operator. Then r(t) = 0 at all times t ∈ R≥0

if and only if uK(t) = 0 at all times t ∈ R≥0. Moreover, in the absence of attacks,

the filter error w − x is exponentially stable.

Proof: The error e = w − x obeys the dynamics

Eė(t) = (AD + AC +GC)e(t)− (BK +GDK)uK(t),

r(t) = Ce(t)−DKuK(t) . (6.9)

A reasoning analogous to that in the proof of Theorem 6.1.1 shows the absence of

zero dynamics. Hence, for r(t) = 0 at all times t ∈ R≥0 if and only if uK(t) = 0 at

all times t ∈ R≥0.

To show stability of the error dynamics in the absence of attacks, we employ

the small-gain approach to large-scale interconnected systems [116] and rewrite

the error dynamics (6.9) as the closed-loop interconnection of the two subsystems

Γ1 : Eė(t) = (AD +GC)e(t) + v(t) ,

Γ2 : v(t) = ACe(t) .

Since both subsystems Γ1 and Γ2 are causal and internally Hurwitz stable, the

overall error dynamics (6.9) are stable if the loop transfer function Γ1(jω) · Γ2
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satisfies the spectral radius condition ρ(Γ1(jω)·Γ2) < 1 for all ω ∈ R [100, Theorem

4.11]. The latter condition is equivalent to (6.8).

Observe that, although control centers can compute the output injection ma-

trix independently of each other, an implementation of the decentralized attack

detection filter (6.7) requires control centers to continuously exchange their local

estimation vectors. Thus, this scheme has high communication cost, and it may

not be broadly applicable. A solution to this problem is presented in the next

section.

6.1.3 A distributed attack detection monitor

In this subsection we exploit the classical waveform relaxation method to de-

velop a fully distributed variation of the decentralized attack detection filter (6.7).

We refer the reader to [23, 52] for a comprehensive discussion of waveform relax-

ation methods. The Gauss-Jacobi waveform relaxation method applied to the

system (6.7) yields the waveform relaxation iteration

Eẇ(k)(t) = ADw
(k)(t) + ACw

(k−1)(t)−Gy(t) , (6.10)

where k ∈ N denotes the iteration index, t ∈ [0, T ] is the integration interval for

some uniform time horizon T > 0, and w(k) : [0, T ]→ Rn is a trajectory with the

initial condition w(k)(0) = w0 for each k ∈ N. Notice that (6.10) is a descriptor
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system in the variable w(k) and the vector ACw
(k−1) is a known input, since the

value of w at iteration k− 1 is used. The iteration (6.10) is said to be (uniformly)

convergent if

lim
k→∞

max
t∈[0,T ]

∥∥w(k)(t)− w(t)
∥∥
∞ = 0 ,

where w is the solution of the non-iterative dynamics (6.7). In order to obtain

a low-complexity distributed detection scheme, we use the waveform relaxation

iteration (6.10) to iteratively approximate the decentralized filter (6.7).

We start by presenting a convergence condition for the iteration (6.7). Recall

that a function f : R≥0 → Rp is said to be of exponential order β if there exists β ∈

R such that the exponentially scaled function t→ f(t)e−βt and all its derivatives

exist and are bounded. An elegant analysis of the waveform relaxation iteration

(6.10) can be carried out in the Laplace domain [5], where the operator mapping

w(k−1) to w(k) is (sE − AD − GC)−1AC . Similar to the regular Gauss-Jacobi

iteration, convergence conditions of the waveform relaxation iteration (6.10) rely

on the contractivity of the iteration operator.

Lemma 6.1.3 (Convergence of the waveform relaxation [5, Theorem

5.2]) Consider the waveform relaxation iteration (6.10). Let the pair (E,AD +

GC) be regular, and the initial condition w0 be consistent. Let y : [0, T ] → Rp

be of exponential order β. Let α be the least upper bound on the real part of the
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spectrum of (E,A), and define σ = max{α, β}. The waveform relaxation method

(6.10) is convergent if

ρ
(
((σ + jω)E − AD −GC)−1AC

)
< 1 for all ω ∈R. (6.11)

In the reasonable case of bounded (integrable) measurements y(t), t ∈ [0, T ],

and stable filter dynamics, we have that σ ≤ 0, and the convergence condition

(6.11) for the waveform relaxation iteration (6.10) equals the condition (6.8) for

decentralized stabilization of the filer dynamics. We now propose our distributed

attack detection filter.

Theorem 6.1.4 (Distributed attack detection filter) Consider the descrip-

tor system (4.1) and assume that the attack set K is detectable, and that the

network initial state x(0) is known. Let assumptions (A1) through (A7) be satis-

fied and consider the distributed attack detection filter

Eẇ(k)(t) =
(
AD +GC

)
w(k)(t) + ACw

(k−1)(t)−Gy(t) ,

r(t) = y(t)− Cw(k)(t) , (6.12)

where k ∈ N, t ∈ [0, T ] for some T > 0, w(k)(0) = x(0) for all k ∈ N, and

G = blkdiag(G1, . . . , GN) is such that the pair (E,AD +GC) is regular, Hurwitz,

and

ρ
(
(jωE − AD −GC)−1AC

)
< 1 for all ω ∈ R . (6.13)
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Then limk→∞ r
(k)(t) = 0 at all times t ∈ [0, T ] if and only if uK(t) = 0 at all

times t ∈ [0, T ]. Moreover, in the absence of attacks, the asymptotic filter error

limk→∞(w(k)(t)− x(t)) is exponentially stable for t ∈ [0, T ].

Proof: Since w(k)(0) = x(0), it follows from Lemma 6.1.3 that the solution

w(k) of the iteration (6.12) converges, as k → ∞, to the solution w of the non-

iterative filter dynamics (6.7) if condition (6.11) is satisfied with σ = 0 (due to

integrability of y(t), t ∈ [0, T ], and since the pair (E,AD +GC) is Hurwitz). The

latter condition is equivalent to condition (6.13).

Under condition (6.13) and due to the Hurwitz assumption, it follows from

Lemma 6.1.2 that the error e = w − x between the state w of the decentralized

filter dynamics (6.7) and the state x of the descriptor model (4.1) is asymptoti-

cally stable in the absence of attacks. Due to the detectability assumption and

by reasoning analogous to the proof of Theorem 6.1.1, it follows that the error

dynamics e have no invariant zeros. This concludes the proof of Theorem 6.1.4.

Remark 8 (Distributed attack detection) The waveform relaxation iteration

(6.10) can be implemented in the following distributed fashion. Assume that each
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control center i is able to numerically integrate the descriptor system

Eiẇ
(k)
i (t) =(Ai +GiCi)w

(k)
i (t) +

∑

j∈N in
i

Aijw
(k−1)
j (t)−Giyi(t) , (6.14)

over a time interval t ∈ [0, T ], with initial condition w
(k)
i (0) = wi,0, measurements

yi, and the neighboring filter states w
(k−1)
j as external inputs. Let w

(0)
j be an initial

guess of the signal wj. Each control center i ∈ {1, . . . , N} performs the following

operations assuming k = 0 at start:

(1) set k := k + 1, and compute the signal w
(k)
i by integrating the local filter

equation (6.14),

(2) transmit w
(k)
i to the j-th control center if j ∈ N out

i

(3) update the input w
(k)
j with the signal received from the j-th control center,

with j ∈ N in
i , and iterate.

If the waveform relaxation is convergent, then, for k sufficiently large, the resid-

uals r
(k)
i = yi − Ciw

(k)
i can be used to detect attacks; see Theorem 6.1.4. In

summary, our distributed attack detection scheme requires integration capabilities

at each control center, knowledge of the measurements yi(t), t ∈ [0, T ], as well as

synchronous discrete-time communication between neighboring control centers. �

Remark 9 (Distributed filter design) As discussed in Remark 8, the filter

(6.12) can be implemented in a distributed fashion. In fact, it is also possible to
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design the filter (6.12), that is, the output injections Gi, in an entirely distributed

way. Since ρ(A) ≤ ‖A‖p for any matrix A and any induced p-norm, condition

(6.13) can be relaxed by the small gain criterion to

∥∥(jωE − AD −GC)−1AC
∥∥
p
< 1 for all ω ∈ R . (6.15)

With p = ∞, in order to satisfy condition (6.15), it is sufficient for each control

center i to verify the following quasi-block diagonal dominance condition [72] for

each ω ∈ R:

∥∥∥(jωEi − Ai −GiCi)
−1
∑n

j=1,j 6=i
Aij

∥∥∥
∞
< 1. (6.16)

Note that condition (6.16) can be checked with local information, and it is a con-

servative relaxation of condition (6.13). �

6.2 Monitors for Attack Identification

6.2.1 Complexity of the attack identification problem

In this section we study the problem of attack identification, that is, the prob-

lem of identifying from measurements the state and output variables corrupted by

the attacker. We start our discussion by showing that this problem is generally

NP-hard. For a vector x ∈ Rn, let supp(x) = {i ∈ {1, . . . , n} : xi 6= 0}, let

‖x‖`0 = |supp(x)| denote the number of non-zero entries, and for a vector-valued
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signal v : R≥0 → Rn, let ‖v‖L0 = | ∪t∈R≥0
supp(v(t))|. We consider the follow-

ing cardinality minimization problem: given a descriptor system with dynamic

matrices E,A ∈ Rn×n, measurement matrix C ∈ Rp×n, and measurement signal

y : R≥0 → Rp, find the minimum cardinality input signals vx : R≥0 → Rn and

vy : R≥0 → Rp and an arbitrary initial condition ξ0 ∈ Rn that explain the data y,

that is,

min
vx, vy , ξ0

‖vx‖L0 + ‖vy‖L0

subject to Eξ̇(t) = Aξ(t) + vx(t),

y(t) = Cξ(t) + vy(t),

ξ(0) = ξ0 ∈ Rn .

(6.17)

Lemma 6.2.1 (Problem equivalence) Consider the system (4.1) with identi-

fiable attack set K. The optimization problem (6.17) coincides with the problem

of identifying the attack set K given the system matrices E, A, C, and the mea-

surements y, where K = supp([vTx v
T
y ]).

Proof: Due to the identifiability of K, the attack identification problem consists

of finding the smallest attack set capable of injecting an attack (BKuK , DKuK)

that generates the given measurements y for the given dynamics E, A, C, and

some initial condition; see Definition 8. The statement follows since B = [I, 0]

and D = [0, I] in (4.1), so that (BKuK , DKuK) = (vx, vy).

137



Chapter 6. Dynamic Monitors for Attack Detection and Identification

As it turns out, the optimization problem (6.17), or equivalently our identifi-

cation problem, is generally NP-hard [34].

Corollary 6.2.1 (Complexity of the attack identification problem) Con-

sider the system (4.1) with identifiable attack set K. The attack identification

problem given the system matrices E, A, C, and the measurements y is NP-hard.

Proof: Consider the NP-hard [14] sparse recovery problem minξ̄∈Rn ‖ȳ − C̄ξ̄‖`0 ,

where C̄ ∈ Rp×n and ȳ ∈ Rp are given and constant. In order to prove the claimed

statement, we show that every instance of the sparse recovery problem can be cast

as an instance of (6.17). Let E = I, A = 0, C = C̄, and y(t) = ȳ at all times.

Notice that vy(t) = ȳ − Cξ(t) and ξ(t) = ξ(0) +
∫ t

0
vx(τ)dτ . The problem (6.17)

can be written as

min
vx, ξ
‖vx‖L0 + ‖ȳ − C̄ξ(t)‖L0 = min

vx(t), ξ̄
‖vx(t)‖L0 + ‖ȳ − C̄ξ̄ − C̄

∫ t
0
vx(τ)dτ‖L0 ,

(6.18)

where ξ̄ = ξ(0). Notice that there exists a minimizer to problem (6.18) with

vx(t) = 0 for all t. Indeed, since ‖ȳ − C̄ξ̄ − C̄
∫ t

0
vx(τ)dτ‖L0 = | ∪t∈R≥0

supp(ȳ −

C̄ξ̄− C̄
∫ t

0
vx(τ)dτ)| ≥ |supp(ȳ− C̄ξ̄− C̄

∫ 0

0
vx(τ)dτ)| = ‖ȳ− C̄ξ̄‖`0 , problem (6.18)

can be equivalently written as minξ̄ ‖ȳ − C̄ξ̄‖`0 .

By Corollary 6.2.1 the general attack identification problem is combinatorial

in nature, and its general solution will require substantial computational effort.
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In the next sections we propose an optimal algorithm with high computational

complexity, and a sub-optimal algorithm with low computational complexity. We

conclude this section with an example.

Example 2 (Attack identification via `1 regularization) A classical proce-

dure to handle cardinality minimization problems of the form minv∈Rn ‖y −Av‖`0

is to use the `1 regularization minv∈Rn ‖y − Av‖`1 [14]. This procedure can be

adapted to the optimization problem (6.17) after converting it into an algebraic

optimization problem, for instance by taking subsequent derivatives of the output y,

or by discretizing the continuous-time system (4.1) and recording several measure-

ments. As shown in [40], for discrete-time systems the `1 regularization performs

reasonably well in the presence of output attacks. However, in the presence of

state attacks such an `1 relaxation performs generally poorly. In what follows, we

develop an intuition when and why this approach fails.

Consider a consensus system with underlying network graph (sparsity pattern

of A) illustrated in Fig. 6.1. The dynamics are described by the nonsingular matrix

E = I and the state matrix A depending on the small parameter 0 < ε� 1 as

A =




−0.8 0.1 0 0.2 0.5 0 0 0
0.1 −0.4−ε ε 0 0 0.3 0 0
0 3ε −9ε 0 0 0 6ε 0

0.1 0 ε −0.5−ε 0 0 0 0.4
0.1 0 0 0 −0.6 0.2 0 0.3
0 0.4 0 0 0.1 −0.6 0.1 0
0 0 3ε 0 0 0.4 −0.6−3ε 0.2
0 0 0 0.3 0.2 0 0.2 −0.7


 .

The measurement matrix C and the attack signature BK are

C =
[

0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0

]
, BT

K = [ 0 0 1 0 0 0 0 0 ] ,
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1
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34
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Figure 6.1: A regular consensus system (A,B,C), where the state variable 3 is
corrupted by the attacker, and the state variables 2, 4, and 7 are directly measured.
Due to the sparsity pattern of (A,B,C) any attack of cardinality one is generically
detectable and identifiable, see [78, 81] for further details.

and we let G(s) = C(sI−A)−1BK. It can be verified that the state attack K = {3}

is detectable and identifiable.

Consider also the state attack K̄ = {2, 4, 7} with signature

BT
K̄ =

[
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0

]
,

and let Ḡ(s) = C(sI − A)−1BK̄. We now adopt the shorthands u(t) = uK(t)

and ū(t) = uK̄(t), and denote their Laplace transforms by U(s) and Ū(s), re-

spectively. Notice that Ḡ(s) is right-invertible [6]. Thus, Y (s) = G(s)U(s) =

Ḡ(s)
(
Ḡ−1(s)G(s)U(s)

)
. In other words, the measurements Y (s) generated by the

attack signal U(s) can equivalently be generated by the signal Ū(s) = Ḡ−1(s)G(s)U(s).

Obviously, we have that ‖ū‖L0 = 3 > ‖u‖L0 = 1, that is, the attack set K achieves

a lower cost than K̄ in the optimization problem (6.17).
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Figure 6.2: Plot of the attack mode ū(t) for the attack set K̄ = {2, 4, 7} to
generate the same output as the attack set K = {3} with attack mode u(t) = 1.
Although |K̄| > |K|, we have that |ūi(t)| < |u(t)|/3 for i ∈ {1, 2, 3}.

Consider now the numerical realization ε = 0.0001, x(0) = 0, and u(t) = 1

for all t ∈ R≥0. The corresponding attack mode ū is shown in Fig. 6.2. Since

|ūi(t)| < 1/3 for i ∈ {1, 2, 3} and t ∈ R≥0, it follows that ‖u(t)‖`p > ‖ū(t)‖`p

point-wise in time and ‖u(t)‖Lq/`p>‖ū(t)‖Lp/`q , where p, q ≥ 1 and ‖u(t)‖Lq/`p =

(∫∞
0

(
∑n+p

i=1 |ui(τ)|p)q/pdτ
)1/q

is the Lq/`p-norm. Hence, the attack set K̄ achieves

a lower cost than K for any algebraic version of the optimization problem (6.17)

penalizing a `p cost point-wise in time or a Lq/`p cost over a time interval. Since

‖ū‖L0 > ‖u‖L0, we conclude that, in general, the identification problem cannot be

solved by a point-wise `p or Lq/`p regularization for any p, q ≥ 1.

Notice that, for any choice of network parameters, a value of ε can be found

such that a point-wise `p or a Lq/`p regularization procedure fails at identifying
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the attack set. Moreover, large-scale stable systems often exhibit this behavior

independently of the system parameters. This can be easily seen in discrete-time

systems, where a state attack with attack set K affects the output via the matrix

CAr−1BK, where r is the relative degree of (A,BK , C). Hence, if A is Schur

stable and thus limk→∞A
k = 0, then CAr−1BK converges to the zero matrix for

increasing relative degree. In this case, an attack closer to the sensors may achieve

a lower Lq/`p cost than an attack far from sensors independently of the cardinality

of the attack set. In short, the ε-connections in Fig. 6.1 can be thought of as the

effect of a large relative degree in a stable system. �

6.2.2 A centralized attack identification monitor

As previously shown, unlike the detection case, the identification of the at-

tack set K requires a combinatorial procedure, since, a priori, K is one of the

(
n+p
|K|

)
possible attack sets. The following centralized attack identification proce-

dure consists of designing a residual filter to determine whether a predefined set

coincides with the attack set. The design of this residual filter consists of three

steps – an input output transformation (see Lemma 6.2.2), a state transformation

to a suitable conditioned-invariant subspace (see Lemma 6.2.3), and an output

injection and definition of a proper residual (see Theorem 6.2.4).
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As a first design step, we show that the identification problem can be carried

out for a modified system without corrupted measurements, that is, without the

feedthrough matrix D.

Lemma 6.2.2 (Attack identification with safe measurements) Consider

the descriptor system (4.1) with attack set K. The attack set K is identifiable

for the descriptor system (4.1) if and only if it is identifiable for the following

descriptor system:

Eẋ(t) = (A−BKD
†
KC)x(t) +BK(I −D†KDK)uK(t),

ỹ(t) = (I −DKD
†
K)Cx(t). (6.19)

Proof: Due to the identifiability hypothesis, there exists no attack set R with

|R| ≤ |K| and R 6= K, s ∈ C, gK ∈ R|K|, gR ∈ R|R|, and x ∈ Rn \ {0} such that




sE − A −BK −BR

C DK DR

C DK DR







x

gK

gR




=




0

0

0



, (6.20)

where we added an additional (redundant) output equation; see Chapter 4. A

multiplication of equation (6.20) from the left by the projectors
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blkdiag
(
I , DKD

†
K , (I −DKD

†
K)
)

yields




sE − A −BK −BR

DKD
†
KC DK DKD

†
KDR

(I −DKD
†
K)C 0 (I −DKD

†
K)DR







x

gK

gR




=




0

0

0



.

The variable gK can be eliminated in the first redundant (corrupted) output equa-

tion according to

gK = −D†KCx−D†KDRgR + (I −D†KDK)gK .

Thus, P (s)[xT gTK gTR]T = 0 has no solution, where P (s) is



sE −A+BKD

†
KC −BK(I −D†KDK) −BR +BKD

†
KDR

(I −DKD
†
K)C 0 (I −DKD

†
K)DR




The statement follows.

The second design step of our attack identification monitor relies on the con-

cept of conditioned invariant subspace. We refer to [6,35,54] for a comprehensive

discussion of conditioned invariant subspaces. Let S∗ be the conditioned invariant

subspace associated with the system (E,A,B,C,D), that is, the smallest subspace

of the state space satisfying

S∗ =

[
A B

]





E−1S∗

Rm


 ∩Ker

[
C D

]

 , (6.21)
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and let L be an output injection matrix satisfying

[
A+ LC B + LD

]


E−1S∗

Rm


 ⊆ S

∗. (6.22)

We transform the descriptor system (6.19) into a set of canonical coordinates rep-

resenting S∗ and its orthogonal complement. For a nonsingular system (E = I)

such an equivalent state representation can be achieved by a nonsingular transfor-

mation of the form Q−1(sI−A)Q. However, for a singular system different trans-

formations need to be applied in the domain and codomain such as PT(sE−A)Q

for nonsingular P and Q.

Lemma 6.2.3 (Input decoupled system representation) For the system

(6.19), let S∗ and L be as in (6.21) and (6.22), respectively. Define the unitary ma-

trices P =
[

Basis(S∗), Basis((S∗)⊥)
]

and Q =
[

Basis(E−1S∗), Basis((E−1S∗)⊥)
]
.

Then

PTEQ=



Ẽ11 Ẽ12

0 Ẽ22


 , P

T(A−BKD†KC + LC)Q=



Ã11 Ã12

0 Ã22


 ,

PTBK(I −D†KDK)=



B̃K(t)

0


 , (I −DKD

†
K)C)Q=

[
C̃1 C̃2

]
.
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The attack set K is identifiable for the descriptor system (4.1) if and only if it is

identifiable for the descriptor system



Ẽ11 Ẽ12

0 Ẽ22






ẋ1(t)

ẋ2(t)


 =



Ã11 Ã12

0 Ã22






x1(t)

x2(t)


+



B̃K(t)

0


 ,

y(t) =

[
C̃1 C̃2

]


x1(t)

x2(t)


 . (6.23)

Proof: Let L = E−1S∗ and M = S∗. Notice that (A + LC)E−1S∗ ⊆ S∗ by

the invariance property of S∗ [35,54]. It follows that L andM are a pair of right

deflating subspaces for the matrix pair (A+LC,E) [41], that is,M = AL+EL and

dim(M) ≤ dim(L). The sparsity pattern in the descriptor and dynamic matrices

Ẽ and Ã of (6.23) arises by construction of the right deflating subspaces P and

Q [41, Eq. (2.17)], and the sparsity pattern in the input matrix arises due to the

invariance properties of S∗ containing Im(BK). The statement follows because the

output injection L, the coordinate change x 7→ Q−1x, and the left-multiplication

of the dynamics by PT does not affect the existence of zero dynamics.

We call system (6.23) the conditioned system associated with (4.1). For the

ease of notation and without affecting generality, the third and final design step

of our attack identification filter is presented for the conditioned system (6.23).
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Theorem 6.2.4 (Attack identification filter for attack set K) Consider

the conditioned system (6.23) associated with the descriptor system (4.1). Assume

that the attack set is identifiable, the network initial state x(0) is known, and the

assumptions (A1) through (A3) are satisfied. Consider the attack identification

filter for the attack signature (BK , DK)

Ẽ22ẇ2(t) = (Ã22 + G̃(I − C̃1C̃
†
1)C̃2)w2(t)− G̃ȳ(t),

rK(t) = (I − C̃1C̃
†
1)C̃2w2(t)− ȳ(t), with

ȳ(t) = (I − C̃1C̃
†
1)y(t),

(6.24)

where w2(0) = x2(0), and G̃ is such that (Ẽ22, Ã22 + G̃(I − C̃1C̃
†
1)C̃2) is Hurwitz.

Then rK(t) = 0 for all times t ∈ R≥0 if and only if K coincides with the attack

set.

Proof: Let w = [wT
1 w

T
2 ]T, where w1 obeys

Ẽ11ẇ1(t) + Ẽ12ẇ2(t) = Ã11w1(t) + Ã12w2(t).

Consider the filter error e = w − x, and notice that


Ẽ11 Ẽ12

0 E22






ė1(t)

ė2(t)


 =



Ã11 Ã12

0 Ā22






e1(t)

e2(t)


−



B̃K

0


uK(t),

rK(t) = (I − C̃1C̃
†
1)C̃2e2(t),

where Ā22 = Ã22 + G̃(I − C̃1C̃
†
1)C̃2. Notice that rK is not affected by the input

uK , so that, since e2(0) = 0 due to w2(0) = x2(0), the residual rK is identically
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zero when K is the attack set. In order to prove the theorem we are left to show

that for every set R, with |R| ≤ |K| and R∩K = ∅, every attack mode uR results

in a nonzero residual rK . From the discussion in Chapter 4, and the identifiability

hypothesis, for any R 6= K, there exists no solution to




sẼ11 − Ã11 sẼ12 − Ã12 B̃K −BR1

0 sẼ22 − Ā22 0 −BR2

C̃1 C̃2 0 DR







x1

x2

gK

gR




=




0

0

0

0




.

A projection of the equation 0 = C̃1x1 + C̃2x2 + DRgR onto the image of C̃1 and

its orthogonal complement yields




sẼ11 − Ã11 sẼ12 − Ã12 BK −BR1

0 sẼ22 − Ā22 0 −BR2

C̃1 C̃1C̃
†
1C̃2 0 C̃1C̃

†
1DR

0 (I − C̃1C̃
†
1)C̃2 0 (I − C̃1C̃

†
1)DR







x1

x2

gK

gR




=




0

0

0

0




. (6.25)

Due to the identifiability hypothesis the set of equations (6.25) features no solution

[xT1 x
T
2 g

T
K gTR]T with [xT1 x

T
2 ]T = 0.

Observe that, for every x2 and gR, there exists x1 ∈ Ker(C̃1)⊥ such that the

third equation of (6.25) is satisfied. Furthermore, for every x2 and gR, there exist

x1 ∈ Ker(C̃1) and gK such that the first equation of (6.25) is satisfied. Indeed,

since QE−1S∗ =
[

Im(I) 0
]T

and PTS∗ =
[

Im(I) 0
]T

, the invariance of S∗ implies
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Algorithm 4: Identification Monitor for (BK , DK)

Input : Matrices E, A, BK , and DK ,;

Require : Identifiability of attack set K;

1 From system (4.1) define the system (6.19);

2 Compute S∗ and L for system (6.19) as in (6.21) and (6.22);

3 Apply L, P , and Q as in Lemma 6.2.3 leading to system (6.23);

4 For (6.23), define rK and apply the output injection Ḡ as in (6.24).

that S∗ = A(E−1S∗ ∩ Ker(C)) + Im(BK), or equivalently in new coordinates,

Im(I) = Ã11 Ker(C̃1) + Im(B̃K). Finally note that
[
(sẼ11 − Ã11) Ker(C̃1) B̃K

]
is

of full row rank due to the controllability of the subspace S∗ [35]. We conclude

that there exist no vectors x2 and gR such that (sẼ22 − Ā22)x2 − BR2gR = 0 and

(I − C̃1C̃
†
1)(C̃2x2 +DRgR) = 0 and the statement follows.

Our identification procedure is summarized in Algorithm 4. Observe that

the proposed attack identification filter extends classical results concerning the

design of unknown-input fault detection filters. In particular, our filter generalizes

the construction of [62] to descriptor systems with direct feedthrough matrix.

Additionally, we guarantee the absence of invariant zeros in the residual dynamics.

By doing so, our attack identification filter is sensitive to every attack mode.

Notice that classical fault detection filters, for instance those presented in [62],
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are guaranteed to detect and isolate signals that do not excite exclusively zero

dynamics. Finally, an attack identification filter for the case of state space or

index-one systems is presented in our previous work [80].

Remark 10 (Complexity of centralized identification) Our centralized iden-

tification procedure assumes the knowledge of the cardinality k of the attack set,

and it achieves identification of the attack set by constructing a residual genera-

tor for
(
n+p
k

)
possible attack sets. Thus, for each finite value of k, our procedure

constructs O(nk) filters. If only an upper bound k̄ on the cardinality of the attack

set is available, identification can be achieved by constructing
(
n+p
k̄

)
filters, and by

intersecting the attack sets generating zero residuals. �

Remark 11 (Attack identification filter in the presence of noise) Let

the dynamics and the measurements of the system (4.1) be affected, respectively,

by the additive white noise signals η, with E[η(t)ηT(τ)] = Rηδ(t − τ), and ζ(t),

with E[ζ(t)ζT(τ)] = Rζδ(t− τ). Let the state and output noise be independent of

each other. Then, simple calculations show that the dynamics and the output of

the attack identification filter (6.24) are affected, respectively, by the noise signals

η̂(t) = PTη(t) + PT(L(I −DKD
†
K)−BKD

†
K)ζ(t),

ζ̂(t) = −
(
I −

[
(I −DKD

†
K)CQ1

] [
(I −DKD

†
K)CQ1

]†
(I −DKD

†
K)

)
ζ(t),
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where Q1 = Basis(E−1S∗). Define the covariance matrix

Rη̂,ζ̂ = E






η̂(t)

ζ̂(t)



[
η̂T(t) ζ̂T(t)

]

 .

Notice that the off-diagonal elements of Rη̂,ζ̂ are in general nonzero, that is, the

state and output noises of the attack identification filter are not independent of

each other. As in the detection case, by using the covariance matrix Rη̂,ζ̂, the

output injection matrix G̃ in (6.24) can be designed to optimize the robustness of

the residual rK against noise. A related example is in Section 4.4. �

We conclude this section by observing that a distributed implementation of

our attack identification scheme is not practical. Indeed, even if the filters pa-

rameters may be obtained via distributed computation, still
(
n+p
k

)
filters would

need to be implemented to identify an attack of cardinality k. Such a distributed

implementation results in an enormous communication effort and does not reduce

the fundamental combinatorial complexity.

6.2.3 A fully decoupled attack identification monitor

In the following sections we develop a distributed attack identification proce-

dure. Consider the decentralized setup presented in Section 6.1.2 with assump-
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tions (A4)-(A7). The subsystem assigned to the i-th control center is

Eiẋi(t) = Aixi(t) +
∑

j∈N in
i

Aijxj(t) +BKi
uKi

(t),

yi(t) = Cixi(t) +DKi
uKi

(t), i ∈ {1, . . . , N},

(6.26)

where Ki = (K ∩ Vi) ∪Kp
i with K being the attack set and Kp

i being the set of

corrupted measurements in the region Gi
t.

As a first distributed identification method we consider the fully decoupled

case (no cooperation among control centers). In the spirit of [93], the neighboring

states xj affecting xi are treated as unknown inputs (fi) to the i-th subsystem:

Eiẋi(t) = Aixi(t) +Bb
i fi(t) +BKi

uKi
(t),

yi(t) = Cixi(t) +DKi
uKi

(t), i ∈ {1, . . . , N},
(6.27)

where Bb
i = [Ai1 · · · Ai,i−1Ai,i+1 · · · AiN ]. We refer to (6.27) as to the i-th decou-

pled system, and we let Kb
i ⊆ Vi be the set of boundary nodes of (6.27), that is,

the nodes j ∈ Vi with Ajk 6= 0 for some k ∈ {1, . . . , n} \ Vi.

If the attack identification procedure in Section 6.2.2 is designed for the i-th

decoupled system (6.27) subject to unknown inputs fi and uKi
, then a total of only

∑N
i=1

(
ni+pi
|Ki|

)
<
(
n+p
|K|

)
need to be designed. Although the combinatorial complexity

of the identification problem is tremendously reduced, this decoupled identification

procedure has several limitations. The following fundamental limitations follow

from the discussion in Chapter 4:
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(L1) if (Ei, Ai, BKi
, Ci, DKi

) has invariant zeros, then Ki is not detectable by the

i-th control center;

(L2) if there is an attack set Ri, with |Ri| ≤ |Ki|, such that

(Ei, Ai, [BKi
BRi

], Ci, [DKi
DRi

]) has invariant zeros, then Ki is not identifi-

able by the i-th control center;

(L3) if Ki 6⊆ Kb
i and (Ei, Ai, [B

b
i BKi

], Ci, DKi
) has no invariant zeros, then Ki is

detectable by the i-th control center; and

(L4) if Ki 6⊆ Kb
i and there is no attack set Ri, with |Ri| ≤ |Ki|, such that

(Ei, Ai, [B
b
i BKi

BRi
], Ci, [DKi

DRi
]) has invariant zeros, then Ki is identi-

fiable by the i-th control center.

Whereas limitations (L1) and (L2) also apply to any centralized attack detection

and identification monitor, limitations (L3) and (L4) arise by naively treating the

neighboring signals as unknown inputs. Since, in general, the i-th control center

cannot distinguish between an unknown input from a safe subsystem, an unknown

input from a corrupted subsystem, and a boundary attack with the same input

direction, we can further state that

(L5) any (boundary) attack set Ki ⊆ Kb
i is not detectable and not identifiable

by the i-th control center, and

153



Chapter 6. Dynamic Monitors for Attack Detection and Identification

(L6) any (external) attack set K \ Ki is not detectable and not identifiable by

the i-th control center.

We remark that, following our graph-theoretic analysis in Section 4.3, the attack

Ki is generically identifiable by the i-th control center if the number of attacks

|Ki| on the i-th subsystem is sufficiently small, the internal connectivity of the

i-th subsystem (size of linking between unknown inputs/attacks and outputs)

is sufficiently high, and the number of unknown signals |Kb
i | from neighboring

subsystems is sufficiently small. These criteria can ultimately be used to select an

attack-resilient partitioning of a cyber-physical system.

6.2.4 A cooperative attack identification monitor

In this section we improve upon the naive fully decoupled method presented

in Subsection 6.2.3 and propose an identification method based upon a divide and

conquer procedure with cooperation. This method consists of the following steps.

(S1: estimation and communication) Each control center estimates the state

of its own region by means of an unknown-input observer for the i-th subsystem

subject to the unknown input Bb
i fi. For this task we build upon existing unknown-

input estimation algorithms (see the Section 6.3 for a constructive procedure).

Assume that the state xi is reconstructed modulo some subspace Fi.2 Let Fi =

2For nonsingular systems without feedthrough matrix, Fi is the largest (Ai, B
b
i )-controlled

invariant subspace contained in Ker(Ci) [6].

154



Chapter 6. Dynamic Monitors for Attack Detection and Identification

Basis(Fi), and let xi = x̃i + x̂i, where x̂i is the estimate computed by the i-th

control center, and x̃i ∈ Fi. Assume that each control center i transmits the

estimate x̂i and the uncertainty subspace Fi to every neighboring control center.

(S2: residual generation) Observe that each input signal Aijxj can be writ-

ten as Aijxj = Aijx̃j + Aijx̂j, where x̃j ∈ Fj. Then, after carrying out step

(S1), only the inputs Aijx̃j are unknown to the i-th control center, while the

inputs Aijx̂j are known to the i-th center due to communication. Let Bb
i Fi =

[Ai1F1 · · · Ai,i−1Fi−1Ai,i+1Fi+1 · · · AiNFN ], and rewrite the signal Bb
i x̃ as Bb

i x̃ =

Bb
i Fifi, for some unknown signal fi. Then the dynamics of the i-th subsystem

read as

Eiẋi(t) = Aixi(t) +Bb
i x̂(t) +Bb

i Fifi(t) +BKi
uKi

(t).

Analogously to the filter presented in Theorem 6.2.4 for the attack signature

(BK , DK), consider now the following filter (in appropriate coordinates) for (6.27)

for the signature (Bb
i Fi, 0)

Eiẇi(t) = (Ai + LiCi)wi(t)− Ly(t) +Bb
i x̄(t),

ri(t) = Mwi(t)−Hy(t),

(6.28)

where Li is the injection matrix associated with the conditioned invariant subspace

generated by Bb
i Fi, with (Ei, Ai + LiCi) Hurwitz, and x̄ is the state transmitted

to i by its neighbors. Notice that, in the absence of attacks in the regions N in
i ,
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we have Bb
i x̄ = Bb

i x̂. Finally, let the matrices M and H in (6.28) be chosen so

that the input Bb
i Fifi does not affect the residual ri.

3 Consider the filter error

ei = wi − xi, and notice that

Eiėi(t) = (Ai + LiCi)ei(t) +Bb
i (x̄(t)− x̂(t))−BKi

uKi
(t) −Bb

i Fifi(t), (6.29)

ri(t) = Mei(t),

(S3: cooperative residual analysis) We next state a key result for our dis-

tributed identification procedure.

Lemma 6.2.5 (Characterization of nonzero residuals) Let each control

center implement the distributed identification filter (6.28) with wi(0) = xi(0).

Assume that the attack K affects only the i-th subsystem, that is K = Ki. Assume

that (Ei, Ai, [B
b
i FiBKi

], Ci) and (Ei, Ai, B
b
i , Ci) have no invariant zeros. Then,

(i) ri(t) 6= 0 at some time t, and

(ii) either rj(t) = 0 for all j ∈ N out
i at all times t, or rj(t) 6= 0 for all j ∈ N out

i

at some time t.

Proof: Notice that the estimation computed by a control center is correct pro-

vided that its area is not under attack. In other words, since K = Ki, we have

that Bb
i x̂ = Bb

i x̄ in (6.29). Since (Ei, Ai, [B
b
i FiBKi

], Ci) has no invariant zeros,

3See Section 6.2.2 for a detailed construction of this type of filter.

156



Chapter 6. Dynamic Monitors for Attack Detection and Identification

statement (i) follows. In order to prove statement (ii), consider the following two

cases: the i-th control center provides the correct estimation x̂i = x̄i or an incor-

rect estimation x̂i 6= x̄i. For instance, if Im(BKi
) ⊆ Im(Bb

i ), that is, the attack set

Ki lies on the boundary of the i-th area, then x̂i = x̄i. Notice that, if x̂i = x̄i, then

each residual rj, j 6= i, is identically zero since the associated residual dynamics

(6.29) evolve as an autonomous system without inputs. Suppose now that x̂i 6= x̄i.

Notice that Bb
i Fifi + Bb

i (x̂ − x̄) ∈ Im(Bb
i ). Then, since (Ei, Ai, B

b
i , Ci) has no

invariant zeros, each residual rj(t) is nonzero for some t.

As a consequence of Lemma 6.2.5 the region under attack can be identified

through a distributed procedure. Indeed, the i-th area is safe if either of the

following two criteria is satisfied:

(C1) the associated residual ri is identically zero, or

(C2) the neighboring areas j ∈ N out
i feature both zero and nonzero residuals rj.

Consider now the case of several simultaneously corrupted subsystems. Then,

if the graphical distance between any two corrupted areas is at least 2, that is,

if there are at least two uncorrupted areas between any two corrupted areas,

corrupted areas can be identified via our distributed method and criteria (C1)

and (C2). An upper bound on the maximum number of identifiable concurrent
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corrupted areas can consequently be derived (see the related set packing problem

in [34]).

(S4: local identification) Once the corrupted regions have been identified, the

identification method in Section 6.2 is used to identify the local attack set.

Lemma 6.2.6 (Local identification) Consider the decoupled system (6.27).

Assume that the i-th region is under the attack Ki whereas the neighboring regions

N out
i are uncorrupted. Assume that each control center j ∈ N in

i transmits the

estimate x̂j and the uncertainty subspace Fi to the i-th control center. Then, the

attack set Ki is identifiable by the i-th control center if, for any attack set Ri, with

|Ri| ≤ |Ki|, (Ei, Ai, [B
b
i Fi BKi

BRi
], Ci, [DKi

DRi
]) has no invariant zeros.

Proof: Notice that each control center j, with j 6= i, can correctly estimate the

state xj modulo Fj. Since this estimation is transmitted to the i-th control center,

the statement follows from the discussion in Chapter 4.

The final identification procedure (S4) is implemented only on the corrupted

regions. Consequently, the combinatorial complexity of our distributed identi-

fication procedure is
∑`

i=1

(
ni+pi
|Ki|

)
, where ` is the number of corrupted regions.

Hence, the distributed identification procedure greatly reduces the combinatorial

complexity of the centralized procedure presented in Subsection 6.2.2, which re-

quires the implementation of
(
n+p
|K|

)
filters. Finally, the assumptions of Lemma
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6.2.5 and Lemma 6.2.6 clearly improve upon the limitations (L3) and (L4) of the

naive decoupled approach presented in Subsection 6.2.3. We conclude this sec-

tion with an example showing that, contrary to the limitation (L5) of the naive

fully decoupled approach, boundary attacks Ki ⊆ Kb
i can be identified by our

cooperative attack identification method.

6.3 State Reconstruction for Descriptor Systems

In this section we present an algebraic technique to reconstruct the state of a

descriptor system. Our method builds upon the results presented in [8]. Consider

the descriptor model (4.1) written in the form

ẋ1(t) = A11x1(t) + A12x2(t) +B1u(t) ,

0 = A21x1(t) + A22x2(t) +B2u(t) ,

y(t) = C1x1(t) + C2x2(t) +Du(t) .

(6.30)

We aim at characterizing the largest subspace of the state space of (6.30) that

can be reconstructed through the measurements y. Consider the associated non-

singular system

˙̃x1(t) = A11x̃1(t) +B1ũ(t) + A12x̃2(t), (6.31)

ỹ(t) =



ỹ1(t)

ỹ2(t)


 =



A21

C1


 x̃1(t) +



A22 B2

C2 D






x̃2(t)

ũ(t)


 .
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Recall from [6, Section 4] that the state of the system (6.31) can be reconstructed

modulo its largest controlled invariant subspace V∗1 contained in the null space of

the output matrix.

Lemma 6.3.1 (Reconstruction of the state x1) Let V∗1 be the largest con-

trolled invariant subspace of the system (6.31). The state x1 of the system (6.30)

can be reconstructed only modulo V∗1 through the measurements y.

Proof: We start by showing that for every x1(0) ∈ V∗1 there exist x2 and u such

that y is identically zero. Due to the linearity of (6.30), we conclude that the

projection of x1(t) onto V∗1 cannot be reconstructed. Notice that for every x̃1(0),

x̃2, and ũ yielding ỹ1(t) = 0 at all times, the state trajectory [x̃1 x̃2] is a solution

to (6.30) with input u = ũ and output y = ỹ2. Since for every x̃1(0) ∈ V∗1 ,

there exists x̃2 and ũ such that ỹ is identically zero, we conclude that every state

x1(0) ∈ V∗1 cannot be reconstructed.

We now show that the state x1 can be reconstructed modulo V∗1 . Let x1(0)

be orthogonal to V∗1 , and let x1, x2, and y be the solution to (6.30) subject to

the input u. Notice that x̃1 = x1, ỹ1 = 0, and ỹ2 = y is the solution to (6.31)

with inputs x̃2 = x2 and ũ = u. Since x̃1(0) is orthogonal to V∗1 , we conclude that

x̃1(0) = x1(0), and in fact the subspace (V∗)⊥, can be reconstructed through the

measurements ỹ2 = y.

160



Chapter 6. Dynamic Monitors for Attack Detection and Identification

In Lemma 6.3.1 we show that the state x1 of (6.30) can be reconstructed

modulo V∗1 . We now show that the state x2 can generally not be completely

reconstructed.

Lemma 6.3.2 (Reconstruction of the state x2) Let V∗1 = Im(V1) be the

largest controlled invariant subspace of the system (6.31). The state x2 of the

system (6.30) can be reconstructed only modulo V∗2 = A−1
22 Im

([
A21V1 B2

])
.

Proof: Let x1 = x̄1 + x̂1, where x̄1 ∈ V∗1 and x̂1 is orthogonal to V∗1 . From Lemma

6.3.1, the signal x̂1 can be entirely reconstructed via y. Notice that

0 = A21x1(t) + A22x2(t) +B2u(t),

= A21V1v1(t) + A21x̂1(t) + A22x2(t) +B2u(t).

Let W be such that Ker(W ) = Im([A21V1 B2]). Then, 0 = WA21x̂1 + WA22x2,

and hence x2 = x̄2 + x̂2, where x̂2 = (WA22)†WA21x̂1, and x̄2 ∈ Ker(WA22) =

A−1
22 Im

([
A21V1 B2

])
. The statement follows.

To conclude this part, we remark the following points. First, our characteriza-

tion of V∗1 and V∗2 is equivalent to the definition of weakly unobservable subspace

in [35], and of maximal output-nulling subspace in [54]. Hence, we proposed an

optimal state estimator for our distributed attack identification procedure, and

the matrix Vi in (S1: estimation and communication) can be computed as
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in [35, 54]. Second, a reconstruction of x1 modulo V∗1 and x2 modulo V∗2 can be

obtained through standard algebraic techniques [6]. Third and finally, Lemma

6.3.1 and Lemma 6.3.2 extend the results in [8] by characterizing the subspaces of

the state space that can be reconstructed with an algebraic method by processing

the measurements y and their derivatives.

6.4 Illustrative Examples

6.4.1 An example of centralized detection and identifica-

tion

In this section we apply our centralized attack detection and identification

methods to the IEEE RTS96 power network [39] illustrated in Fig. 6.3. In par-

ticular, we first consider the nominal case, in which the power network dynamics

evolve as nominal linear time-invariant descriptor system, as described in Section

3.1. Second, we consider the case of additive state and measurement noise, and we

show the robustness of the attack detection and identification monitors. Third,

we consider the case of nonlinear differential-algebraic power network dynamics

and show the effectiveness of our methods in the presence of unmodeled nonlinear

dynamics.
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(optional DC link)
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Figure 6.3: Diagram of the IEEE RTS96 power network [39]. The dynamics of
the generators {101, 102} are affected by an attacker.
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Figure 6.4: In this figure we report our simulation results for the case of linear
network dynamics without noise and for the proposed detection monitor (6.1) and
identification monitor (6.24), respectively. The state trajectory x consists of the
generators angles and frequencies. The detection residual r becomes nonzero after
time 15s, and it reveals the presence of the attack. The identification residual
rK is identically zero even after time 15s, and it reveals that the attack set is
K = {101, 102}. The identification residual rR is nonzero after time 15s, and it
reveals that R is not the attack set.
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Figure 6.5: In this figure we report our simulation results for the case of linear
network dynamics driven by state and measurements noise. For this case, we
choose the output injection matrices of the detection and identification filters as
the corresponding optimal Kalman gain (see Remark 7 and Remark 11). Due to
the presence of noise, the residuals deviate from their nominal behavior reported in
Fig. 6.4. Although the attack is clearly still detectable and identifiable, additional
statistical tools such as hypothesis testing [7] may be adopted to analyze the
residuals r, rK , and rR.
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For our numerical studies, we assume the angles and frequencies of every gen-

erator to be measured. Additionally, we let the attacker affect the angles of the

generators {101, 102} with a random signal starting from time 15s. Since the

considered power network dynamics are of index one, the filters are implemented

using the nonsingular Kron-reduced system representation. The results of our

simulations are in Fig. 6.4, Fig. 6.5, and Fig. 6.6. In conclusion, our centralized

detection and identification filters appears robust to state and measurements noise

and unmodeled dynamics.

6.4.2 An example of distributed detection

The IEEE 118 bus system shown in Fig. 5.1 represents a portion of the Mid-

western American Electric Power System as of December 1962. This test case

system is composed of 118 buses and 54 generators, and its parameters can be

found, for example, in [122]. A linear continuous-time descriptor model of the

network dynamics under attack assumes the form (4.1).

For estimation and attack detection purposes, we partition the IEEE 118 bus

system into 5 disjoint areas, we assign a control center to each area, and we im-

plement our detection procedure via the filter (6.12); see Fig. 5.3 for a graphical

illustration. Suppose that each control center continuously measures the angle of

the generators in its area, and suppose that an attacker compromises the measure-
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Figure 6.6: In this figure we report our simulation results for the case of nonlinear
network dynamics without noise. For this case, the detection and identification
filters are designed for the nominal linearized dynamics with output injection
matrices as the corresponding optimal Kalman gain (see Remark 7 and Remark
11). Despite the presence of unmodeled nonlinear dynamics, the residuals reflect
their nominal behavior reported in Fig. 6.4.
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ments of all the generators of the first area. In particular, starting at time 30s, the

attacker adds a signal uK to all measurements in area 1. It can be verified that

the attack set K is detectable. According to assumption (A3), the attack signal

uK needs to be continuous to guarantee a continuous state trajectory (since the

power network is a descriptor system of index 1). In order to show the robustness

of our detection filter (6.12), we let uK be randomly distributed in the interval

[0, 0.5] rad.

The control centers implement the distributed attack detection procedure de-

scribed in (6.12), with G = ACT. It can be verified that the pair (E,AD + GC)

is Hurwitz stable, and that ρ (jωE − AD −GC)−1AC) < 1 for all ω ∈ R. As

predicted by Theorem 6.1.4, our distributed attack detection filter is convergent;

see Fig. 6.7. For completeness, in Fig. 6.8 we illustrate the convergence of our

waveform relaxation-based filter as a function of the number of iterations k. No-

tice that the number of iterations directly reflects the communication complexity

of our detection scheme.

6.4.3 An example of distributed identification

Consider the sensor network in Fig. 6.9, where the state of the blue nodes

{2, 5, 7, 12, 13, 15} is measured and the state of the red node {3} is corrupted by

an attacker. Assume that the network evolves according to nonsingular, linear,
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Figure 6.7: In this figure we show the residual functions computed through the
distributed attack detection filter (6.12). The attacker compromises the mea-
surements of all the generators in area 1 from time 30 with a signal uniformly
distributed in the interval [0, 0.5]. The attack is correctly detected, because the
residual functions do not decay to zero. For the simulation, we run k = 100
iterations of the attack detection method.
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Figure 6.8: The plot represents the error of our waveform relaxation based filter
(6.12) with respect to the corresponding decentralized filter (6.7). Here the error
is maxt∈[0,T ]

∥∥w(k)(t)−w(t)
∥∥
∞, that is, the worst-case difference of the outputs of

the two filters. As predicted by Theorem 6.1.4, the error is convergent.
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Figure 6.9: This figure shows a network composed of two subsystems. A con-
trol center is assigned to each subsystem. Each control center knows only the
dynamics of its local subsystem. The state of the blue nodes {2, 5, 7, 12, 13, 15} is
continuously measured by the corresponding control center, and the state of the
red node {3} is corrupted by an attacker. The decoupled identification procedure
presented in Subsection 6.2.3 fails at detecting the attack. Instead, by means of
our cooperative identification procedure, the attack can be detected and identified
via distributed computation.

time-invariant dynamics. Assume further that the network has been partitioned

into the two areas V1 = {1, . . . , 8} and V2 = {9, . . . , 16} and at most one area is

under attack. Since {3, 4} are the boundary nodes for the first area, the attack

set K = 3 is neither detectable nor identifiable by the two control centers via the

fully decoupled procedure in Section 6.2.3.
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Consider now the second subsystem with the boundary nodes Kb
2 = {9, 10}.

It can be shown that, generically, the second subsystem with unknown input

Bb
2f2 has no invariant zeros. Hence, the state of the second subsystem can be

entirely reconstructed. Analogously, since the attack is on the boundary of the

first subsystem, the state of the first subsystem can be reconstructed, so that the

residual r2 is identically zero; see Lemma 6.2.5.

Suppose that the state of the second subsystem is continuously transmitted to

the control center of the first subsystem. Then, the only unknown input in the

first subsystem is due to the attack, which is now generically detectable and iden-

tifiable, since the associated system has no invariant zeros; see Lemma 6.2.6. We

conclude that our cooperative identification procedure outperforms the decoupled

counterpart in Section 6.2.3.
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Synthesis of Attacks

In this chapter we propose a geometric-based technique to design undetectable

and unidentifiable attacks. Differently from the existing literature, where specific

attacks have been designed [2,40,69], we provide a general characterization of all

undetectable and unidentifiable attacks. We focus on attacks that can be cast

without knowledge of the system state, and, for the ease of notation, we only

consider non-descriptor systems.

7.1 Problem Setup

Consider the system

ẋ(t) = Ax+Bu(t),

y(t) = Cx(t) +Du(t),

(7.1)

where x ∈ Rn, u ∈ Rm, y ∈ Rp, and A, B, C, and D are constant matrices of

appropriate dimension. The signal u represent a known control input, while the
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signal y is a measurement output. Consider the case of an attacker able to affect

the evolution of some states and measurements. In particular, let the dynamics

under attack be

ẋ(t) = Ax+Bu(t) + Ew(t),

y(t) = Cx(t) +Du(t) +Hw(t),

(7.2)

where w : [0,∞) → Rk is the attack signal, and E, H are constant matrices of

appropriate dimension. The objective is for the attacker to inject a nonzero signal

w to compromise the system dynamics while avoiding detection or identification by

a dynamic monitor (see Chapter 4). We remark that the attack design described

in the following section for continuous time system is also applicable to discrete

time systems.

7.2 Design of Undetectable and Unidentifiable

Attacks

In this section we design undetectable and unidentifiable attacks. We start

from undetectable attacks.

173



Chapter 7. Synthesis of Attacks

Theorem 7.2.1 (Design of undetectable malicious attacks) Consider the

system under attack (7.2). Let V∗ ⊆ Rn be the largest subspace satisfying

AV∗ ⊆ V∗ + Im(E), and Ker(C)V∗ ⊆ Im(H),

and let F be such that

(A+ EF )V∗ ⊆ V∗, and V∗ ⊆ Ker(C +HF ).

Let Ē = Basis(V∗ ∩ Im(E)), and let S∗ be the smallest subspace of the state space

satisfying

A(S∗ ∩Ker(C)) ⊆ S∗, (and) Ker(H) ⊆ E−1S∗.

Then,

(i) for every input v of appropriate dimension, the attack w = Fx + Ē†v is

undetectable;

(ii) the subspace V∗∩S∗ denotes the set of states reachable by the attacker while

remaining undetected; and

(iii) any state in V∗ ∩ S∗ can be reached with an input w = Fx+ Ē†v.

Proof: Define the nonsingular transformation matrix T = [T1, T2, T3], with T1 =

Basis(V∗ ∩ S∗), T2 = Basis(V∗), and T3 such that T is nonsingular. In the new
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z = T−1x coordinates, the system matrices are

T−1(A+BF )T =




A11 A12 A13

0 A22 A23

0 0 A33



, T−1E =




E1

0

E3



,

(C +HF )T =

[
0 0 C3

]
, Basis(T−1EB̄†) =

[
ET

1 0 0

]T
, (7.3)

where the zero pattern is due to the invariance properties of V∗ and S∗. As a

consequence of the above decomposition, any input u = Fx+ Ē†v does not affect

the output, and therefore it is undetectable. Statements (ii) and (iii) are a direct

consequence of the above decomposition; see [6].

The following remarks are in order. First, Theorem 7.2.1 characterizes the

states reachable by an attacker with input matrices (E,H). If a specific desired

state should be contained within this reachable set, then the attack matrices

should be selected accordingly. We leave this interesting aspect of coordinated

attack design as the subject of future research. Second, the inputs w in Theorem

7.2.1 correspond to the attacks that can be cast by the attacker independently of

the system state while remaining undetectable; see Theorem 4.2.5 and the notions

of left-invertibility [6]. Third, as a consequence of Theorem 4.3.3, if H = 0 and

Rank(E) > Rank(C), then there exist attacks as in Theorem 7.2.1. Finally, the

input v can be designed as to optimize some performance function, such as, for
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instance, the effect of the malicious control on the sacrificial machines, the energy

of the malicious control, or the information pattern required to implement the

malicious control. A relative example is in Section 7.3.

We now focus on the design of unidentifiable attacks.

Theorem 7.2.2 (Design of unidentifiable malicious attacks) Consider

the system under attack (7.2). Let M ∈ Rn×k, where k = Rank(E) and Im(M) ∩

Im(E) = {0}. Let V∗ ⊆ Rn be the largest subspace satisfying

AV∗ ⊆ V∗ + Im([E M ]), and Ker(C)V∗ ⊆ Im([H N ]),

and let F = [FT
1 FT

2 ]T be such that

(A+ EF1 +MF2)V∗ ⊆ V∗, and V∗ ⊆ Ker(C +HF1 +NF2).

Let Ē = Basis(V∗ ∩ Im(E)), and let S∗ be the smallest subspace of the state space

satisfying

A(S∗ ∩Ker(C)) ⊆ S∗, (and) Ker(H) ⊆ E−1S∗.

Then,

(i) for every input v, the attack w = F1x+ Ē†v is unidentifiable;

(ii) the subspace V∗∩S∗ denotes the set of states reachable by the attacker while

remaining unidentified; and
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(iii) any state in V∗ ∩ S∗ can be reached with an input w = F1x+ Ē†v.

Proof: From Theorem 7.2.1, the attack signal ŵ = EF1x + MF2x + Ê†v̂, where

Ê = Basis
(
V∗ ∩ Im

([
E M

]))
, is undetectable from the output for any signal

v̂. Then, the output y(0, w, t) generated by the input w from the zero state

is identically zero. Due to linearity of (7.2), it follows y(0, EF1x + Ê†v̂, t) =

−y(0,MF2x, t) at all times t. Hence the attacker with input matrices (E,H) and

signal w = EF1x + Ê†v̂ is unidentifiable from an attacker with input matrices

(M,N) and signal w = −EF2x, independently of v̂. To conclude the proof, notice

that Im(Ē) ⊆ Im(Ê), and that statements (ii) and (iii) follow from Theorem 7.2.1.

7.3 An Illustrative Example

Motivated by [26], in this section we study malicious attacks in a competitive

power generation environment. Consider a connected power transmission network

with n generators Gm = {g1, . . . , gn}, where the rotor dynamics of each generator

are modeled by second-order linear swing equations subject to governor control,

and the power flows along lines are modeled by the DC approximation. Assume

that a subset K = {k1, . . . , km} of m generators is driven by an additional control

action besides the primary frequency control. After elimination of the load bus
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variables through Kron reduction, the power network dynamics subject to the

additional control u at the generators K read as (see Chapter 3)

ẋ(t) = Ax(t) +Bu(t), (7.4)

where x = [θT, ωT]T contains the generator rotor angles and frequencies at time

t, A ∈ R2n×2n, C ∈ Rm×2n, and B = IK ∈ R2n×m, where IK = [en+k1 · · · en+km ]

with ei being the i-th canonical vector in R2n.

In [26] the following competitive scenario is considered: the group of generators

K form a coalition, one sacrificial machine k̄ ∈ K is selected in the coalition, and a

specific coordinated control strategy is proposed for the generatorsK to destabilize

the other machines Gm\K, while maintaining satisfactory performance within the

group K \{k̄}. It can be shown that the result in [26] is a special case of Theorem

7.2.1, since a destabilizing state feedback can be obtained by properly choosing v.

For illustration purposes, consider an aggregated model of the Western North

American power grid as illustrated in Fig. 7.1. This model is often studied [113] in

the context of wide-area oscillations. Assume that the generators {1, 9} are being

controlled, and that generator 9 is the sacrificial machine. Following Theorem

7.2.1, a malicious attack u = Fx+ B̄†v is cast by the generators {1, 9} such that

generator 1 is not affected by the attack. Additionally, the input v is optimally

chosen such that generator 2 maintains an acceptable working condition even

in the presence of the attack, and large frequency deviations are induced at all
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Figure 7.1: A schematic diagram of the Western North American power grid.

other generators Gm \K. As a consequence, the linear model (7.4) is driven far

away from the operating point, and the corresponding original nonlinear model

eventually loses synchrony. In a real-world scenario the affected generators Gm\K

would be disconnected for safety reasons.

In the above scenario, assume that each generator monitors its own state vari-

ables, and that at most two generators may be colluding to disrupt the network.

Notice that detectability of the malicious attacks designed in Theorem 7.2.1 is

guaranteed for each generator affected by the attack. Unfortunately, no generator

can identify the colluding generators while relying only on its own measurements.
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Figure 7.2: The deviations of the generators frequencies from their steady state
value induced by a malicious attack is here reported. The attack is designed by
using the result in Theorem 7.2.1. In particular, the input v is chosen such that
the infinity norm of ω9 is minimized, subject to the infinity norm of ω16 being
no less than 1. Notice that generator 1 is not affected by the attack, and that
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Figure 7.3: This figures shows the governor control input injected by generator
1 (solid) and by generator 9 (dashed). Both plots are in p.u. values and for the
linear system (7.4), that is, measured as deviation from the steady state.
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To see this, let BK be the input matrix associated with any set K of two gener-

ators, and let Ci = eTi be the output matrix associated with generator i. It can

be verified that for every K and i the system (A,BK , Ci) is right-invertible [6].

Hence, no generator alone can identify the malicious generators, and a coalition

of multiple sensors becomes necessary.
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Chapter 8

Consensus Computation with
Misbehaving Agents

In this Chapter we specify the previously presented results on security to

the important case of linear consensus algorithms with misbehaving agents. We

will consider discrete-time linear consensus algorithms, for which we will first

characterize the resilience to Byzantine attacks as a function of the connectivity of

the underlying network. Then, we will exploit a notion of network decentralization

to develop an efficient decentralized detection and identification algorithm.

8.1 Problem Setup

Consider the consensus system (3.7). We allow for some agents to update

their state differently than specified by the matrix A by adding an exogenous

input to the consensus system. Let ui, i ∈ V , be the input associated with the
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i-th agent, and let u be the vector of the functions ui. The consensus system

becomes x(t+ 1) = Ax(t) + u(t).

Definition 6 (Misbehaving agent) An agent j is misbehaving if there exists

a time t ∈ N such that uj(t) 6= 0.

In Section 8.2 we will give a precise definition of the distinction, made already in

the Introduction, between faulty and malicious agents on the basis of their inputs.

Let K = {i1, i2, . . . } ⊆ V denote a set of misbehaving agents, and let

BK =
[
ei1 ei2 · · ·

]
, where ei is the i-th vector of the canonical basis. The con-

sensus system with misbehaving agents K reads as

x(t+ 1) = Ax(t) +BKuK(t). (8.1)

As it is shown in [76], algorithms of the form (3.7) have no resilience to malfunc-

tions, and the presence of a misbehaving agent may prevent the entire network

from reaching consensus. As an example, let c ∈ R, and let ui = −Aix+ c, being

Ai the i-th row of A. After reordering the variables in a way that the well-behaving

nodes come first, the consensus system can be rewritten as

x̃(t+ 1) =



Q R

0 1


 x̃(t), (8.2)
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where the matrix Q corresponds to the interaction among the nodes V \{i}, while

R denotes the connection between the sets V \ {i} and {i}. Recall that a matrix

is said to be Schur stable if all its eigenvalues lie in the open unit disk.

Lemma 8.1.1 (Quasi-stochastic submatrices) Let A be an n × n consensus

matrix, and let J be a proper subset of {1, . . . , n}. The submatrix with entries

Ai,k, i, k ∈ J , is Schur stable.

Proof: Reorder the nodes such that the indexes in J come first in the matrix A.

Let AJ be the leading principal submatrix of dimension |J |. Let ÃJ =
[
AJ 0
0 0

]
,

where the zeros are such that ÃJ is n × n, and note that ρ(AJ) = ρ(ÃJ), where

ρ(AJ) denotes the spectral radius of the matrix AJ [65]. Since A is a consensus

matrix, it has only one eigenvalue of unitary modulus, and ρ(A) = 1. Moreover,

A ≥ |ÃJ |, and A 6= |ÃJ |, where |ÃJ | is such that its (i, j)-th entry equals the

absolute value of the (i, j)-th entry of ÃJ , ∀i, j. It is known that ρ(AJ) ≤ ρ(A) = 1,

and that if equality holds, then there exists a diagonal matrix D with nonzero

diagonal entries, such that A = DÃJD
−1 [65, Wielandt’s Theorem]. Because A

is irreducible, there exists no diagonal D with nonzero diagonal entries such that

A = DÃJD
−1 and the statement follows.

Because of Lemma 8.1.1, the matrix Q in (8.2) is Schur stable, so that the

steady state value of the well-behaving agents in (8.2) depends upon the action
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of the misbehaving node, and it corresponds to (I −Q)−1Rc. In particular, since

(I−Q)−1R = [1 · · · 1]T, a single misbehaving agent can steer the network towards

any consensus value by choosing the constant c.1

It should be noticed that a different model for the misbehaving nodes consists

in the modification of the entries of A corresponding to their incoming communi-

cation edges. However, since the resulting network evolution can be obtained by

properly choosing the input uK and letting the matrix A fixed, our model does

not limit generality, while being convenient for the analysis. For the same reason,

system (8.1) also models the case of defective communication edges. Indeed, if

the edge from the node i to the node j is defective, then the message received by

the agent j at time t is incorrect, and hence also the state xj(t̄), t̄ ≥ t. Since the

values xj(t̄) can be produced with an input uj(t), the failure of the edge (i, j) can

be regarded as the j-th misbehaving action. Finally, the following key difference

between our model and the setup in [30] should be noticed. If the communica-

tion graph is complete, then up to n − 1 (instead of bn/3c) misbehaving agents

can be identified in our model by a well-behaving agent. Indeed, since with a

complete communication graph the initial state x(0) is correctly received by every

1If the misbehaving input is not constant, then the network may not achieve consensus. In
particular, the effect of a misbehaving input uK on the network state at time t is given by∑t
τ=0A

t−τBKuK(τ) (see also Section 8.3).
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node, the consensus value is computed after one communication round, so that

the misbehaving agents cannot influence the dynamics of the network.

8.2 Detection and Identification of Misbehaving

Agents

The problem of ensuring trustworthy computation among the agents of a net-

work can be divided into a detection phase, in which the presence of misbehaving

agents is revealed, and an identification phase, in which the identity of the intrud-

ers is discovered. A set of misbehaving agents may remain undetected from the

observations of a node j if there exists a normal operating condition under which

the node would receive the same information as under the perturbation due to

the misbehavior. To be more precise, let Cj = [en1 . . . enp ]T, {n1, . . . , np} = Nj,

denote the output matrix associated with the agent j, and let yj = Cjx denote the

measurements vector of the j-th agent at time t. Let x(x0, ū, t) denote the network

state trajectory generated from the initial state x0 under the input sequence ū,

and let yj(x0, ū, t) be the sequence measured by the j-th node and corresponding

to the same initial condition and input.

Definition 7 (Undetectable input) For a linear consensus system of the form

(8.1), the input uK introduced by a set K of misbehaving agents is undetectable
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if

∃x1, x2 ∈ Rn, j ∈ V : ∀t ∈ N, yj(x1, uK , t) = yj(x2, 0, t).

A more general concern than detection is identifiability of intruders, i.e. the

possibility to distinguish from measurements between the misbehaviors of two

distinct agents, or, more generally, between two disjoint subsets of agents. Let

K ⊂ 2V contain all possible sets of misbehaving agents.2

Definition 8 (Unidentifiable input) For a linear consensus system of the form

(8.1) and a nonempty set K1 ∈ K, an input uK1 is unidentifiable if there exist

K2 ∈ K, with K1 6= K2, and an input uK2 such that

∃x1, x2∈ Rn, j ∈ V :∀t ∈ N, yj(x1, uK1 , t) = yj(x2, uK2 , t).

Of course, an undetectable input is also unidentifiable, since it cannot be distin-

guished from the zero input. The converse does not hold. Unidentifiable inputs

are a very specific class of inputs, to be precisely characterized later in this section.

Correspondingly, we define

Definition 9 (Malicious behaviors) A set of misbehaving agents K is mali-

cious if its input uK is unidentifiable. It is faulty otherwise.

2An element of K is a subset of {1, . . . , n}. For instance, K may contain all the subsets of
{1, . . . , n} with a specific cardinality.

187



Chapter 8. Consensus Computation with Misbehaving Agents

We provide now a characterization of malicious behaviors for the particularly

important class of linear consensus networks. Notice however that, if the matrix

A below is not restricted to be a consensus matrix, then the following Theorem

extends the results in [107] by fully characterizing the inputs for which a group of

misbehaving agents remains unidentified from the output observations of a certain

node.

Theorem 8.2.1 (Characterization of malicious behaviors) For a linear con-

sensus system of the form (8.1) and a nonempty set K1 ∈ K, an input uK1 is

unidentifiable if and only if

CjA
t+1x̄ =

t∑

τ=0

CjA
t−τ (BK1uK1(τ)−BK2uK2(τ)) ,

for all t ∈ N, and for some uK2, with K2 ∈ K, K1 6= K2, and x̄ ∈ Rn. If the same

holds with uK2 ≡ 0, the input is actually undetectable.

Proof: By definitions 7 and 8, an input uK1 is unidentifiable if yj(x1, uK1 , t) =

yj(x2, uK2 , t), and it is undetectable if yj(x1, uK1 , t) = yj(x2, 0, t), for some x1, x2,

and uK2 . Due to linearity of the network, the statement follows.

Remark 12 (Malicious behaviors are not generic) Because an unidentifiable

input must satisfy the equation in Theorem 8.2.1, excluding pathological cases,

unidentifiable signals are not generic, and they can be injected only intentionally
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by colluding misbehaving agents. This motivates our definition of “malicious” for

those agents which use unidentifiable inputs. �

We consider now the resilience of a consensus network to faulty and mali-

cious misbehaviors. Let I denote the identity matrix of appropriate dimensions.

The zero dynamics of the linear system (A,BK , Cj) are the (nontrivial) state

trajectories invisible at the output, and can be characterized by means of the

(n+ p)× (n+ |K|) pencil

P (z) =



zI − A BK

Cj 0


 .

The complex value z̄ is said to be an invariant zero of the system (A,BK , Cj) if

there exists a state-zero direction x0, x0 6= 0, and an input-zero direction g, such

that (z̄I−A)x0+BKg = 0, and Cjx0 = 0. Also, if rank(P (z)) = n+|K| for all but

finitely many complex values z, then the system (A,BK , Cj) is left-invertible, i.e.,

starting from any initial condition, there are no two distinct inputs that give rise

to the same output sequence [112]. We next characterize the relationship between

the zero dynamics of a consensus system and the connectivity of the consensus

graph.

Lemma 8.2.2 (Zero dynamics and connectivity) Given a k-connected linear

network with matrix A, there exists a set of agents K1, with |K1| > k, and a node
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j such that the consensus system (A,BK1 , Cj) is not left-invertible. Furthermore,

there exists a set of agents K2, with |K2| = k, and a node j such that the system

(A,BK2 , Cj) has nontrivial zero dynamics.

Proof: Let G be the digraph associated with A, and let k be the connectivity of

G. Take a set K of k + 1 misbehaving nodes, such that k of them form a vertex

cut S of G. Note that, since the connectivity of G is k, such a set always exists.

The network G is divided into two subnetworks G1 and G3, which communicate

only through the nodes S. Assume that the misbehaving agent K \ S belongs to

G3, while the observing node j belongs to G1. After reordering the nodes such

that the vertices of G1 come first, the vertices S come second, and the vertices of

G3 come third, the consensus matrix A is of the form
[
A11 A12 0
A21 A22 A23

0 A32 A33

]
, where the zero

matrices are due to the fact that S is a vertex cut. Let uS = −A23x3, where x3 is

the vector containing the values of the nodes of G3, and let uK\S be any arbitrary

nonzero function. Clearly, starting from the zero state, the values of the nodes of

G1 are constantly 0, while the subnetwork G3 is driven by the misbehaving agent

K \ S. We conclude that the triple (A,BK , Cj) is not left-invertible.

Suppose now that K ≡ S as previously defined, and let uK = −A23x3. Let the

initial condition of the nodes of G1 and of S be zero. Since every state trajectory

generated by x3 6= 0 does not appear in the output of the agent j, the triple

(A,BK , Cj) has nontrivial zero dynamics.
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Following Lemma 8.2.2, we next state an upper bound on the number of mis-

behaving agents that can be detected.

Theorem 8.2.3 (Detection bound) Given a k-connected linear consensus net-

work, there exist undetectable inputs for a specific set of k misbehaving agents.

Proof: Let K , with |K| = k, be the misbehaving set, and let K form a vertex

cut of the consensus network. Because of Lemma 8.2.2, for some output matrix

Cj, the consensus system has nontrivial zero dynamics, i.e., there exists an initial

condition x(0) and an input uK such that yj(t) = 0 at all times. Hence, the input

uK is undetectable from the observations of j.

We now consider the identification problem.

Theorem 8.2.4 (Identification of misbehaving agents) For a set of mis-

behaving agents K1 ∈ K, every input is identifiable from j if and only if the

consensus system (A, [BK1 BK2 ], Cj) has no zero dynamics for every K2 ∈ K.

Proof: (Only if) By contradiction, let x0 and [uTK1
− uTK2

]T be a state-zero

direction, and an input-zero sequence for the system (A, [BK1 BK2 ], Cj). We have

yj(t) = 0

= Cj

(
Atx0 +

t−1∑

τ=0

At−τ−1
(
BK1uK1(τ)−BK2uK2(τ)

))
.
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Therefore,

Cj

(
Atx1

0 +
t−1∑

τ=0

At−τ−1BK1uK1(τ)

)
= Cj

(
Atx2

0 +
t−1∑

τ=0

At−τ−1BK2uK2(τ)

)
,

where x1
0 − x2

0 = x0. Clearly, since the output sequence generated by K1 coincide

with the output sequence generated by K2, the two inputs are unidentifiable.

(If) Suppose that, for any K2 ∈ K, the system (A[BK1 BK2 ]) has no zero

dynamics, i.e., there exists no initial condition x0 and input [uTK1
uTK2

]T that result

in the output being zero at all times. By the linearity of the network, every input

uK1 is identifiable.

As a consequence of Theorem 8.2.4, if up to k misbehaving agents are allowed

to act in the network, then a necessary and sufficient condition to correctly identify

the set of misbehaving nodes is that the consensus system subject to any set of

2k inputs has no nontrivial zero dynamics.

Theorem 8.2.5 (Identification bound) Given a k-connected linear consensus

network, there exist unidentifiable inputs for a specific set of bk−1
2
c+1 misbehaving

agents.

Proof: Since 2(bk−1
2
c+ 1) ≥ k, by Lemma 8.2.2 there exist K1, K2, with |K1| =

|K2| = bk−1
2
c + 1, and j such that the system (A, [BK1 BK2 ], Cj) has nontrivial

zero dynamics. By Theorem 8.2.4, there exists an input and an initial condition

such that K1 is undistinguishable from K2 to the agent j.

192



Chapter 8. Consensus Computation with Misbehaving Agents

In other words, in a k-connected network, at most k − 1 (resp. bk−1
2
c) misbe-

having agents can be certainly detected (resp. identified) by every agent. Notice

that, for a linear consensus network, Theorem 8.2.5 provides an alternative proof

of the resilience bound presented in [30] and in [107].

We now focus on the faulty misbehavior case. Notice that, because such agents

inject only identifiable inputs by definition, we only need to guarantee the exis-

tence of such inputs. We start by showing that, independent of the cardinality

of a set K, there exist detectable inputs for a consensus system (A,BK , Cj), so

that any set of faulty agents is detectable. By using a result from [111], an input

uK is undetectable from the measurements of the j-th agent only if for all t ∈ N,

it holds CjA
vBKuK(t) = CjA

v+1x(t), where CjA
vBK is the first nonzero Markov

parameter, and x(t) is the network state at time t. Notice that, because of the

irreducibility assumption of a consensus matrix, independently of the cardinality

of the faulty set and of the observing node j, there exists a finite v such that

CjA
vBK 6= 0, so that every input uK 6= (CjA

vBK)†CjA
v+1x is detectable. We

show that, if the number of misbehaving components is allowed to equal the con-

nectivity of the consensus network, then there exists a set of misbehaving agents

that are unidentifiable independent of their input.
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Theorem 8.2.6 (Identification of faulty agents) Given a k-connected linear

consensus network, there exists no identifiable input for a specific set of k misbe-

having agents

Proof: Let K1, with |K1| = k, form a vertex cut. The network is divided into

two subnetworks G1 and G2 by the agents K1. Let K2, with |K2| ≤ k, be the

set of faulty agents, and suppose that the set K2 belongs to the subnetwork G2.

Let j be an agent of G1. Notice that, because K1 forms a vertex cut, for every

initial condition x(0) and for every input uK2 , there exists an input uK1 such that

the output sequences at the node j coincide. In other words, every input uK2 is

unidentifiable.

Hence, in a k-connected network, a set of k faulty agents may remain uniden-

tified independent of its input function. It should be noticed that Theorems 8.2.5

and 8.2.6 only give an upper bound on the maximum number of concurrent misbe-

having agents that can be detected and identified. In Section 8.4 it will be shown

that, generically, in a k-connected network, there exists only identifiable inputs

for any set of bk−1
2
c misbehaving agents, and that there exist some identifiable

inputs for any set of k−1 misbehaving agents. In other words, if there exists a set

of misbehaving nodes that cannot be identified by an agent, then, provided that

the connectivity of the communication graph is sufficiently high, a random and
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arbitrarily small change of the consensus matrix makes the misbehaving nodes

detectable and identifiable with probability one.

8.3 Effects of Unidentified Misbehaving Agents

In the previous section, the importance of zero dynamics in the misbehavior

detection and identification problem has been shown. In particular, we proved

that a misbehaving agent may alter the nominal network behavior while remaining

undetected by injecting an input-zero associated with the current network state.

We now study the effect of an unidentifiable attack on the final consensus value.

As a preliminary result, we prove the detectability of a consensus network.

Lemma 8.3.1 (Detectability) Let the matrix A be row stochastic and irre-

ducible. For any network node j, the pair (A,Cj) is detectable.

Proof: If A is stochastic and irreducible, then it has at least h ≥ 1 eigenvalues of

unitary modulus. Precisely, the spectrum of A contains {1 = eiθ0 , eiθ1 , . . . , eiθh−1}.

By Wielandt’s theorem [65], we have ADk = eiθkDkA, where k ∈ {0, . . . , h − 1},

and Dk is a full rank diagonal matrix. By multiplying both sides of the equality

by the vector of all ones, we have ADk1 = eiθkDkA1 = eiθkDk1, so that Dk1 is

the eigenvector associated with the eigenvalue eiθk . Observe that the vector Dk1

has no zero component, and that, by the eigenvector test [112], the pair (A,Cj) is
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detectable. Indeed, since A is irreducible, the neighbor set Nj is nonempty, and

the eigenvector Dk1, with k ∈ {0, . . . , h− 1}, is not contained in Ker(Cj).

Observe that the primitivity of the network matrix is not assumed Lemma

8.3.1. By duality, a result on the stabilizability of the pair (A,Bj) can also be

asserted.

Lemma 8.3.2 (Stabilizability) Let the matrix A be row stochastic and irre-

ducible. For any network node j, the pair (A,Bj) is stabilizable.

Remark 13 (State estimation via local computation) If a linear system is

detectable (resp. stabilizable), then a linear observer (resp. controller) exists to

asymptotically estimate (resp. stabilize) the system state. By combining the above

results with Lemma 8.1.1, we have that, under a mild assumption on the matrix A,

the state of a linear network can be asymptotically observed (resp. stabilized) via

local computation. Consider for instance the problem of designing an observer [6],

and let Cj = eTj . Take G = −Aj, where Aj denotes the j-th column of A. Notice

that the matrix A+GCj can be written as a block-triangular matrix, and it is stable

because of Lemma 8.1.1. Finally, since the nonzero entries of G correspond to the

out-neighbors3 of the node j, the output injection operation GCj only requires local

information. �

3The agent i is an out-neighbor of j if the (i, j)-th entry of A is nonzero, or, equivalently, if
(j, i) belongs to the edge set.
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A class of undetectable attacks is now presented. Notice that misbehaving

agents can arbitrarily change their initial state without being detected during the

consensus iterations, and, by doing so, misbehaving components can cause at most

a constant error on the final consensus value. Indeed, let A be a consensus matrix,

and let K be the set of misbehaving agents. Let x(0) be the network initial state,

and suppose that the agents K alter their initial value, so that the network initial

state becomes x(0) +BKc, where c ∈ R|K|. Recall from [65] that limt→∞A
t = 1π,

where 1 is the vector of all ones, and π is such that πA = π. Therefore , the

effect of the misbehaving set K on the final consensus state is 1πBKc. Clearly,

if the vector x(0) + BKc is a valid initial state, the misbehaving agents cannot

be detected. On the other hand, since it is possible for uncompromised nodes

to estimate the observable part of the initial state of the whole network, if an

acceptability region (or an a priori probability distribution) is available on initial

states, then, by analyzing the reconstructed state, a form of intrusion detection

can be applied, e.g., see [71]. We conclude this paragraph by showing that, if the

misbehaving vector BKc belongs to the unobservability subspace of (A,Cj), for

some j, then the misbehaving agents do not alter the final consensus value. Let v

be an eigenvector associated with the unobservable eigenvalue z̄, i.e., (z̄I−A)v = 0

and Cjv = 0. We have π(z̄I − A)v = (z̄ − 1)πv = 0, and, because of the

detectability of (A,Cj), |z̄| < 1 (cf. Lemma 8.3.1). Hence πv = 0. Therefore, if
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the attack BKc is unobservable from any agent, then limt→∞A
tBKc = 1πBKc = 0,

so that the change of the initial states of misbehaving agents does not affect the

final consensus value.

A different class of unidentifiable attacks consists of injecting a signal corre-

sponding to an input-zero for the current network state. We start by characterizing

the potential disruption caused by misbehaving nodes that introduce nonzero, but

exponentially vanishing inputs.4

Lemma 8.3.3 (Exponentially stable input) Let A be a consensus matrix, and

let K be a set of agents. Let u : N 7→ R|K| be exponentially decaying. There exists

z ∈ (0, 1) and ū ∈ R|K| such that

lim
t→∞

t∑

τ=0

At−τBKu(τ) � (1− z)−11πBK ū,

where � denotes component-wise inequality, 1 is the vector of all ones of appro-

priate dimension, and π is such that πA = π.

Proof: Let z ∈ (0, 1) and 0 � u0 ∈ R|K| be such that u(k) � zku0. Then, since

A is a nonnegative matrix, for all t, τ ∈ N, with t ≥ τ , we have At−τBKu(τ) �

At−τBKz
τu0, and hence limt→∞

∑t
τ=0A

t−τBKu(τ) � limt→∞
∑t

τ=0 A
t−τBKz

τu0.

4An output-zeroing input can always be written as u(k) = −(CAνB)†CAν+1(KνA)kx(0) −
(CAνB)†CAν+1

(∑k−1
l=0 (KνA)k−1−lBuh(l)

)
+ uh(h), where ν ∈ N, (CAνB) is the first nonzero

Markov parameter, Kν = I − B(CAνB)†CAν is a projection matrix, x(0) ∈ ⋂νl=0 Ker(CAl) is
the system initial state, and uh(k) is such that CAνBuh(k) = 0 [111].
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Notice that (1−z)−1 = limt→∞
∑t

τ=0 z
τ . We now show that limt→∞

∑t
τ=0 z

τ (1π−

At−τ ) = limt→∞
∑t

τ=0E(t, τ) � 0, from which the theorem follows. Let e(t, τ) be

any component of E(t, τ). Because limt→∞A
t = 1π, there exist c and ρ, with

|z| ≤ |ρ| < 1, such that e(t, τ) ≤ czτρt−τ . We have

lim
t→∞

t∑

τ=0

czτρt−τ = lim
t→∞

cρt
t∑

τ=0

zτρ−τ = 0,

so that
∑t

τ=0E(t, τ) converges to zero as t approaches infinity.

Following Lemma 8.3.3, if the zero dynamics are exponentially stable, then

misbehaving agents can affect the final consensus value by a constant amount

without being detected, if and only if they inject vanishing inputs along input-

zero directions. If an admissible region is known for the network state, then a

tight bound on the effect of misbehaving agents injecting vanishing inputs can

be provided. Notice moreover that, in this situation, a well-behaving agent is

able to detect misbehaving agents whose state is outside an admissible region by

simply analyzing its state. Finally, for certain consensus networks, the effect of an

exponentially stable input decreases to zero with the cardinality of the network.

Indeed, let π = π̄/n, where π̄ is a constant row vector and n denotes the cardinality

of the network. For instance, if A is doubly stochastic, then π = 1T/n [65]. Then,

when n grows, the effect of the input u(t) = ztū, with |z| < 1, on the consensus

value becomes negligible.
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4 51 36 7 2

8

Figure 8.1: The agents {1, 2} are misbehaving. The consensus system
(A,B{1,2}, C3) has unstable zeros.

The left-invertibility and the stability of the zero dynamics are not an inherent

property of a consensus system. Consider for instance the graph of Fig. 8.1, where

the agents {1, 2} are malicious. If the network matrices are

A =




1/2 0 1/2 0 0 0 0 0
0 1/2 0 0 0 1/2 0 0
0 0 1/3 1/3 1/3 0 0 0

1/16 0 5/8 1/16 0 1/4 0 0
0 1/16 1/4 0 5/16 0 3/8 0

1/2 0 0 1/2 0 0 0 0
0 1/3 0 0 2/3 0 0 0

1/2 1/2 0 0 0 0 0 0



, B{1,2} =




1 0
0 1
0 0
0 0
0 0
0 0
0 0
0 0


 ,

C3 =
[

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0

]
,

then the system (A,B{1,2}, C3) is left-invertible, but the invariant zeros are {0,+2,−2}.

Hence, for some initial conditions, there exist non vanishing input sequences that

do not appear in the output. Moreover, for the graph in Fig. 8.2, let the network

matrices be

A =




1/3 1/3 0 0 0 0 0 0 1/3
1/3 1/3 1/3 0 0 0 0 0 0
0 1/4 1/4 1/4 0 0 0 1/4 0
0 0 1/4 1/4 1/4 0 0 0 1/4
0 0 0 1/3 1/3 1/3 0 0 0
0 0 0 0 1/3 1/3 1/3 0 0
0 0 0 0 0 1/3 1/3 1/3 0
0 0 1/4 0 0 0 1/4 1/4 1/4

1/4 0 0 1/4 0 0 0 1/4 1/4



, B{1,2} =




1 0
0 1
0 0
0 0
0 0
0 0
0 0
0 0
0 0


 ,

C6 =
[

0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0

]
.
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Figure 8.2: The agents {1, 2} are misbehaving. The consensus system
(A,B{1,2}, C6) is not left-invertible.

It can be verified that the system (A,B{1,2}, C6) is not left-invertible. Indeed, for

zero initial conditions, any input of the form u1 = −u2 does not appear in the

output sequence of the agent 6. In some cases, the left-invertibility of a consensus

system can be asserted independently of the consensus matrix.

Theorem 8.3.4 (Left-invertibility, single intruder case) Let A be a consen-

sus matrix, and let Bi = ei, Cj = eTj . Then the system (A,Bi, Cj) is left-invertible.

Proof: Suppose, by contradiction, that (A,Bi, Cj) is not left-invertible. Then

there exist state trajectories that, starting from the origin, are invisible to the

output. In other words, since the input is a scalar, the Markov parameters CjA
tBi

have to be zero for all t. Notice the (i, k)-th component of At is nonzero if there

exists a path of length t from i to k. Because A is irreducible, there exists t such

that CjA
tBi 6= 0, and therefore the consensus system is left-invertible.

If in Theorem 8.3.4 one identifies the i-th node with a single intruder, and

the j-th node with an observer node, the theorem states that, for known initial
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conditions of the network, any two distinct inputs generated by a single intruder

produce different outputs at all observing nodes, and hence can be detected. Con-

sider for example a flocking application, in which the agent are supposed to agree

on the velocity to be maintained during the execution of the task [89]. Suppose

that a linear consensus iteration is used to compute a common velocity vector,

and suppose that the states of the agents are equal to each other. Then no single

misbehaving agent can change the velocity of the team without being detected,

because no zero dynamic can be generated by a single agent starting from a con-

sensus state.

We now consider the case in which several misbehaving agents are allowed to

act simultaneously. The following result relating the position of the misbehaving

agents in the network and the zero dynamics of a consensus system can be asserted.

Theorem 8.3.5 (Stability of zero dynamics) Let K be a set of agents and

let j be a network node. The zero dynamics of the consensus system (A,BK , Cj)

are exponentially stable if one of the following is true:

(i) the system (A,BK , Cj) is left-invertible, and there are no edges from the

nodes K to V \ {Nj ∪K};

(ii) the system (A,BK , Cj) is left-invertible, and there are no edges from the

nodes V \ {Nj ∪K} to Nj; or
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(iii) the sets K and Nj are such that K ⊆ Nj.

Proof: Let z be an invariant zero, x and u a state-zero and input-zero direction,

so that

(zI − A)x+BKu = 0, and Cjx = 0 (8.3)

Reorder the nodes such that the set K comes first, the set Nj \K second, and the

set V \ {K ∪ Nj} third. The consensus matrix and the vector x are accordingly

partitioned as

A =




A11 A12 A13

A21 A22 A23

A31 A32 A33



, x =




x1

x2

x3



,

and the input and output matrices become BK = [I 0 0]T and Cj = [∗ I 0]. For

equations (8.3) to be verified, it has to be x2 = 0, zx1 = A11x1 +A13x3 − uk, and




0

zx3


 =



A21 A23

A31 A33






x1

x3


 .

Case (i). Since there are no edges from the nodes K to V \ {Nj ∪ K}, we

have A31 = 0, and hence it has to be (zI − A33)x3 = 0, i.e., z needs to be an

eigenvalue of A33. We now show that x3 6= 0. Suppose by contradiction that

x3 = 0, and that z is an invariant zero, with state-zero and input-zero direction
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x = [xT1 0 0]T and uK = (zI − A11)x1, respectively. Then, for all complex value z̄,

the vectors x and uK = (z̄I −A11)x1 constitute the state-zero and the input-zero

direction associated with the invariant zero z̄. Because the system is assumed to

be left-invertible, there can only be a finite number of invariant zeros [111], so

that we conclude that x3 6= 0 or that the system has no zero dynamics. Because z

needs to be an eigenvalue of A33, and because of Lemma 8.1.1, we conclude that

the zero dynamics are asymptotically stable.

Case (ii). Since there are no edges from the nodes V \ {Nj ∪ K} to Nj, we

have A23 = 0. We now show that Ker(A21) = 0. Suppose by contradiction that

0 6= x1 ∈ Ker(A21). Consider the equation (zI − A33)x3 = A31x1, and notice

that, because of Lemma 8.1.1, for all z with |z| ≥ 1, the matrix zI − A33 is

invertible. Therefore, if |z| ≥ 1, the vector [(x1)T 0 ((zI − A33)−1A31x1)T]T is a

state-zero direction, with input-zero direction uK = −(zI − A11)x1 + A13x3. The

system would have an infinite number of invariant zeros, being therefore not left-

invertible. We conclude that Ker(A21) = 0. Consequently, we have x1 = 0 and

(zI − A33)x3 = 0, so that |z| < 1.

Case (iii). Reorder the variables such that the nodes Nj come before V \Nj.

For the existence of a zero dynamics, it needs to hold x1 = 0 and (zI−A22)x2 = 0.

Hence, |z| < 1.
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j

i1

i2

K Nj V \ {Nj ∪ K}

(a)

j

i1

i2

i3

Nj K V \ {Nj ∪ K}

(b)

j

i1

i2

Nj V \ {Nj ∪ K}K

(c)

Figure 8.3: The stability of the zero dynamics of a left-invertible consensus
system can be asserted depending upon the location of the misbehaving agents
in the network. Let j be the observer agent, and let K be the misbehaving set.
Then, the zero dynamics are asymptotically stable if the set Nj separates the sets
K and V \ {Nj ∪K} (cfr. Fig. 8.3(a)), or if the set K separates the sets Nj and
V \{Nj ∪K} (cfr. Fig. 8.3(b)), or if the set K is a subset of Nj (cfr. Fig. 8.3(c)).

We are left to study the case of a network with zeros outside the open unit disk,

where intruders may inject non-vanishing inputs while remaining unidentified. For

this situation, we only remark that a detection procedure based on an admissible

region for the network state can be implemented to detect inputs evolving along

unstable zero directions.

8.4 Generic Detection and Identification of Mis-

behaving Agents

In this section we adopt the theory of structured system presented in Sec-

tion 4.3 to investigate the resilience of consensus algorithms from a structural

perspective. Let the connectivity of a structured system ([A], [B], [C]) be the
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connectivity of the graph defined by its nonzero parameters. In what follows, we

assume [D] = 0, and we study the zero dynamics of a structured consensus system

as a function of its connectivity. Let the generic rank of a structure matrix [M ]

be the maximal rank over all possible numerical realizations of [M ].

Lemma 8.4.1 (Generic zero dynamics and connectivity) Let ([A], [B], [C])

be a k-connected structured system. If the generic rank of [B] is less than k, then

almost every numerical realization of ([A], [B], [C]) has no zero dynamics.

Proof: Since the system ([A], [B], [C]) is k-connected and the generic rank r of [B]

is less than k, there are r disjoint paths from the input to the output [114]. Then,

from Theorem 4.3 in [114], the system ([A], [B], [C]) is generically left-invertible.

Additionally, by using Lemma 3 in [106], it can be shown that ([A], [B], [C])

has generically no invariant zeros. We conclude that almost every realization of

([A], [B], [C]) has no nontrivial zero dynamics.

Given a structured triple ([A], [B], [C]) with d nonzero elements, the set of

parameters that make ([A], [B], [C]) a consensus system is a subset S of Rd, be-

cause the matrix A needs to be row stochastic and primitive. A certain property

that holds generically in Rd needs not be valid generically with respect to the

feasible set S. Let ([A], [B], [C]) be structure matrices, and let S ⊂ Rd be the set

of parameters that make ([A], [B], [C]) a consensus system. We next show that
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the left-invertibility and the number of invariant zeros are generic properties with

respect to the parameter space S.

Theorem 8.4.2 (Genericity of consensus systems) Let ([A], [B], [C]) be a k-

connected structured system. If the generic rank of [B] is less than k, then almost

every consensus realization of ([A], [B], [C]) has no zero dynamics.

Proof: Let d be the number of nonzero entries of the structured system

([A], [B], [C]). From Theorem 8.4.1 we know that, generically with respect to the

parameter space Rd, a numerical realization of ([A], [B], [C]) has no zero dynam-

ics. Let S ⊂ Rd be the subset of parameters that makes ([A], [B], [C]) a consensus

system. We want to show that the absence of zero dynamics is a generic property

with respect to the parameter space S. Observe that S is dense in Rd̄, where

d̄ ≤ d − n and n is the dimension of [A]. Then [45, 109], it can be shown that,

in order to prove that our property is generic with respect to S, it is sufficient to

show that there exist some consensus systems which have no zero dynamics. To

construct a consensus system with no zero dynamics consider the following proce-

dure. Let (A,B,C) be a nonnegative and irreducible linear system with no zero

dynamics, where the number of inputs is strictly less that the connectivity of the

associated graph. Notice that, following the above discussion, such system can

always be found. The Perron-Frobenius Theorem for nonnegative matrices en-
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sures the existence of a positive eigenvector x of A associated with the eigenvalue

of largest magnitude r [65]. Let D be the diagonal matrix whose main diagonal

equals x, then the matrix r−1D−1AD is a consensus matrix [67]. A change of co-

ordinates of (A,B,C) using D yields the system (D−1AD,D−1B,CD), which has

no zero dynamics. Finally, the system (r−1D−1AD,D−1B,CD) is a k-connected

consensus system with, generically, no zero dynamics. Indeed, if there exists a

value z̄, a state-zero direction x0, and an input-zero direction g for the system

(r−1D−1AD,D−1B,CD), then the value z̄r, with state direction x0/r and input

direction g, is an invariant zero of (D−1AD,D−1B,CD), which contradicts the

hypothesis.

Because a sufficiently connected consensus system has generically no zero dy-

namics, the following remarks about the robustness of a generic property should

be considered. First, generic means open, i.e. some appropriately small perturba-

tions of the matrices of the system having a generic property do not destroy this

property. Second, generic implies dense, hence any consensus system which does

not have a generic property can be changed into a system having this property just

by arbitrarily small perturbations. We are now able to state our generic resilience

results for consensus networks.

Theorem 8.4.3 (Generic identification of misbehaving agents) Given a

k-connected consensus network, generically, there exist only identifiable inputs for
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any set of bk−1
2
c misbehaving agents. Moreover, generically, there exist identifiable

inputs for every set of k − 1 misbehaving agents.

Proof: Since 2bk−1
2
c < k, by Lemma 8.4.1 the consensus system with any set

of 2bk−1
2
c has generically no zero dynamics. By Theorem 8.2.4, any set of bk−1

2
c

malicious agents is detectable and identifiable by every node in the network. We

now consider the case of faulty agents. Let V be the set of nodes, and K1, K2 ⊂ V ,

with |K1| = |K2| = k − 1, be two disjoint sets of faulty agents. Let j ∈ V . We

need to show the existence of identifiable, i.e., faulty, inputs. By using a result

of [114] on the generic rank of the matrix pencil of a structured system, since the

given consensus network is k-connected and |K1| = k − 1, it can be shown that

the system (A, [BK1 Bi], Cj), for all i ∈ K2, is left-invertible, which confirms the

existence of identifiable inputs for the current network state. By Definition 9, we

conclude that the faulty set K1 is generically identifiable by any well-behaving

agent.

In other words, in a k-connected network, up to bk−1
2
c (resp. k− 1) malicious

(resp. faulty) agents are generically identifiable by every well behaving agent.

Analogously, it can be shown that generically up to k− 1 misbehaving agents are

generically detectable. In the next section, we describe three algorithms to detect

and identify misbehaving agents.
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8.5 Intrusion Detection Algorithms

In this section we present three decentralized algorithms to detect and identify

misbehaving agents in a consensus network. Although the first two algorithms

require only local measurements, the complete knowledge of the consensus network

is necessary for the implementation. The third algorithm, instead, requires the

agents to know only a certain neighborhood of the consensus graph, and it allows

for a local identification of misbehaving agents. As it will be clear in the sequel, the

third algorithm overcomes, under a reasonable set of assumptions, the limitations

inherent to centralized detection and identification procedures. Our first algorithm

is based upon the following result.

Theorem 8.5.1 (Detection filter) Let K be the set of misbehaving agents. As-

sume that the zero dynamics of the consensus system (A,BK , Cj) are exponentially

stable, for some j. Let ANj
denote the Nj columns of the matrix A. The filter

z(t+ 1) = (A+GCj)z(t)−GCjx(t),

x̃(t) = Lz(t) +HCjx(t),

(8.4)

with G = −ANj
, H = CT

j , and L = I−HCj, is such that, in the limit for t→∞,

the vector x̃(t+ 1)−Ax̃(t) is nonzero only if the input uK is nonzero. Moreover,

if K ⊂ Nj, then the filter (8.4) asymptotically estimates the state of the network,

independent of the behavior of the misbehaving agents K.
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Proof: Let G = −ANj
, and consider the estimation error e(t + 1) = z(t + 1) −

x(t + 1) = (A + GCj)e(t) − BKuK(t). Notice that Le = Lz + CT
j Cjx − x, and

hence x̃ = x+Le. Consequently, x̃(t+1)−Ax̃(t) = BKuK(t)+Le(t+1)−ALe(t).

By using Lemma 8.1.1, it is a straightforward matter to show that (A + GCj) is

Schur stable. If uK = 0, then x̃(t + 1) − Ax̃(t) converges to zero. Suppose now

that K ⊆ Nj. The reachable set of e, i.e., the minimum (A + GCj) invariant

containing BK , coincides with BK . Indeed (A+GCj)BK = ∅. Since BK ⊆ Ker(L)

by construction, the vectors Le and x̃− x converge to zero.

By means of the filter described in the above theorem, a distributed intrusion

detection procedure can be designed, see [76]. Here, each well-behaving agent

only implements one detection filter, making the asymptotic detection task com-

putationally easy to be accomplished. We remark that, since the filter converges

exponentially, an exponentially decaying input of appropriate size may remain

undetected (see Lemma 8.3.3 for a characterization of the effect of exponentially

vanishing inputs on the final consensus value). For a finite time detection of mis-

behaving agents, and for the identification of misbehaving components, a more

sophisticated algorithm is presented in Algorithm 5.

Theorem 8.5.2 (Complete identification) Let A be a consensus matrix, let

K be the set of misbehaving agents, and let c be the connectivity of the consensus

network. Assume that:
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(i) every agent knows the matrix A and k ≥ |K|, and

(ii) k < c, if the set K is faulty, and 2k < c if the set K is malicious.

Then the Complete Identification algorithm allows each well-behaving agent to

generically detect and identify every misbehaving agent in finite time.

Proof: We focus on agent j. Let k = |K|, and let K be the set containing all the

(
n−1
k+1

)
combinations of k + 1 elements of V \ {j}. For each set K̃ ∈ K, consider

the system ΣK̃ = (A,BK̃ , Cj), and compute5 a set of residual generator filters

for ΣK̃ . If the connectivity of the communication graph is sufficiently high, then,

generically, each residual function is nonzero if and only if the corresponding input

is nonzero. Let K be the set of misbehaving nodes, then, whenever K ⊂ K̃, the

residual function associated with the input K̃ \ K becomes zero after an initial

transient, so that the agent K̃ \K is recognized as well-behaving. By exclusion,

because the residuals associated with the misbehaving agents are always nonzero,

the set K is identified.

By means of the Complete Identification algorithm, the detection and the iden-

tification of the misbehaving agents take place in finite time, because the residual

generators can be designed as dead-beat filters, and independent of the misbe-

5We refer the interested reader to [62] for a design procedure of a dead beat residual generator.
Notice that the possibility of detecting and identifying the misbehaving agents is, as discussed
in Section 8.2 and 8.4, guaranteed by the absence of zero dynamics in the consensus system.
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Algorithm 5 Complete Identification (j-th agent)

Input : A; k ≥ |K|;

Require : The connectivity of A to be k + 1, if K is faulty, and

2k + 1 otherwise;

Compute the residual generators for every set of k + 1 misbehaving

agents;

while the misbehaving agents are unidentified do

Exchange data with the neighbors;

Update the state;

Evaluate the residual functions;

if every ith residual is nonzero then

Agent i is recognized as misbehaving.

having input. It should be noticed that, although no communication overhead

is introduced in the consensus protocol, the Complete Identification procedure

relies on strong assumptions. First, each agent needs to know the entire graph

topology, and second, the number of residual generators that each node needs to

design is proportional to
(
n−1
k

)
. Because an agent needs to update these filters

after each communication round, when the cardinality of the network grows, the

computational burden may overcome the capabilities of the agents, making this

procedure inapplicable.
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In the remaining part of this section, we present a computationally efficient

procedure that only assumes partial knowledge of the consensus network but yet

allows for a local identification of the misbehaving agents. Let A be a consensus

matrix, and observe that it can be written as Ad+ε∆, where ‖∆‖∞ = 2, 0 ≤ ε ≤ 1,

and Ad is block diagonal with a consensus matrix on each of the N diagonal blocks.

For instance, let A = [akj], and let V1, . . . , VN be the subsets of agents associated

with the blocks. Then the matrix Ad = [ākj] can be defined as

(i) ākj = akj if k 6= j, and k, j ∈ Vi, i ∈ {1, . . . , N},

(ii) ākk = 1−∑j∈Vi,j 6=k akj, and

(iii) ākj = 0 otherwise.

Moreover, ∆ = 2(A − Ad)/‖(A − Ad)‖∞, and ε = 1
2
‖A − Ad‖∞. Note that, if

ε is “small”, then the agents belonging to different groups are weakly coupled.

We assume the groups of weakly coupled agents to be given, and we leave the

problem of finding such partitions as the subject of future research, for which the

ideas presented in [21,83] constitute a very relevant result.

We now focus on the h-th block. Let K = v ∪ l be the set of misbehaving

agents, where v = Vh ∩K, and l = K \ v. Assume that the set v is identifiable by

agent j ∈ Vh (see Section 8.2). Then, agent j can identify the set v by means of a

set of residual generators, each one designed to decouple a different set of |v|+ 1
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inputs. To be more precise, let i ∈ Vh \ v, and consider the system



x

wv




+

=



Ad 0

EvCj Fv






x

wv


+



Bv Bi

0 0






uv

ui


 ,

rv =

[
HvCj Mv

]


x

wv


 ,

(8.5)

and the system



x

wi




+

=



Ad 0

EiCj Fi






x

wi


+



Bv Bi

0 0






uv

ui


 ,

ri =

[
HiCj Mi

]


x

wi


 ,

(8.6)

where the quadruple (Fv, Ev,Mv, Hv) (resp. (Fi, Ei,Mi, Hi)) describes a filter of

the form (2.3), and it is designed as in [62]. Then the misbehaving agents v are

identifiable by agent j because v is the only set such that, for every i ∈ Vh \ v,

it holds rv 6≡ 0 and ri ≡ 0 whenever uv 6≡ 0. It should be noticed that, since Ad

is block diagonal, the residual generators to identify the set v can be designed by

only knowing the h-th block of Ad, and hence only a finite region of the original

consensus network. By applying the residual generators to the consensus system
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Ad + ε∆ with misbehaving agents K we get



x̂

ŵv




+

= Āε,v



x̂

ŵv


+



Bv Bl Bi

0 0 0







uv

ul

ui



,

r̂v =

[
HvCj Mv

]


x̂

ŵv


 ,

and



x̂

ŵi




+

= Āε,i



x̂

ŵi


+



Bv Bl Bi

0 0 0







uv

ul

ui



,

r̂i =

[
HiCj Mi

]


x̂

ŵi


 ,

where

Āε,v =



Ad + ε∆ 0

EvCj Fv


 , Āε,i =



Ad + ε∆ 0

EiCj Fi


 .

Because of the matrix ∆ and the input ul, the residual ri is generally nonzero

even if ui ≡ 0. However, the misbehaving agents v remain identifiable by j if for

each i ∈ Vh \ v we have ‖r̂v‖∞ > ‖r̂i‖∞ for all uv 6≡ 0.

Theorem 8.5.3 (Local identification) Let V be the set of agents, let K be

the set of misbehaving agents, and let Ad + ε∆ be a consensus matrix, where
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Algorithm 6 Local Identification (j-th agent)

Input : Ah; kj ≥ |K ∩ Vh|; threshold Th

Require : The connectivity of Ajd to be kj + 1, if K is faulty, and

2kj + 1 otherwise;

while the misbehaving agents are unidentified do

Exchange data with the neighbors;

Update the state;

Evaluate the residual functions;

if ith residual is greater than Th then

Agent i is recognized as misbehaving.

Ad is block diagonal, ‖∆‖∞ = 2, and 0 ≤ ε ≤ 1. Let each block h of Ad be a

consensus matrix with agents Vh ⊆ V , and with connectivity |K ∩ Vh|+ 1. There

exists α > 0 and umax ≥ 0, such that, if each input signal ui, i ∈ K, takes

value in U = {u : εαumax ≤ ‖u‖∞ ≤ umax},6 then each well-behaving agent j ∈ Vh

identifies in finite time the faulty agents K∩Vh by means of the Local Identification

algorithm.

Proof: We focus on the agent j ∈ Vh, and, without loss of generality, we assume

that uK(0) 6= 0, and that the residual generators have a finite impulse response.

6The norm ‖u‖∞ is intended in the vector sense at every instant of time. The misbehaving
input is here assumed to be nonzero at every instant of time.
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Let dj = ‖Vh‖, and note that dj time steps are sufficient for each agent j ∈ Vh

to identify the misbehaving agents. Let ut denote the input sequence up to time

t. Let v = K ∩ Vh, l = K \ v, and observe that r̂v(dj) = [HvCj Mv ] Ā
dj
ε,vx̄(0) +

ĥv ? u
dj−1
v + ĥl ? u

dj−1
l , where ĥv and ĥl denote the impulse response from uv and

ul respectively, and ? denotes the convolution operator. We now determine an

upper bound for each term of r̂v(dj). Let the misbehaving inputs take value in

U = {u : εαumax ≤ ‖u‖∞ ≤ umax}. By using the triangle inequality on the

impulse responses of the residual generator, it can be shown that ‖ĥl ? udj−1
l ‖∞ ≤

‖hl ? udj−1
l ‖∞ + εc1umax = εc1umax, where hl denotes the impulse response form

ul to rv of the system (8.5), and c1 is a finite positive constant independent of ε.

Moreover, it can be shown that there exist two positive constant c2 and c3 such

that ‖ [HvCj Mv ] Ā
dj
ε,vx̄(0)‖∞ ≤ εc2umax, and minuv∈U ‖ĥv?u

dj−1
v ‖∞ ≥ minuv∈U ‖hv?

u
dj−1
v ‖∞ − εc3umax. Analogously, for the residual generator associated with the

well-behaving agent i, we have r̂i(dj) = [HiCj Mi ] Ā
dj
ε,ix̄(0) + ĥv ? u

dj−1
v + ĥl ? u

dj−1
l ,

and hence r̂i(dj) ≤ ε(c
(i)
4 + c

(i)
5 + c

(i)
6 )umax. Let c̄ = c1 + c2 + c3 + maxi∈Vh\v(c

(i)
4 +

c
(i)
5 + c

(i)
6 ), and let β be such that minuv∈U ‖hv ? u

dj−1
v ‖∞ > βumin. Then a correct

identification of the misbehaving agents v takes place if βumin = βεαumax >

εc̄umax, and hence if α > c̄/β.

Notice that the constant α in Theorem 8.5.3 can be computed by bounding

the infinity norm of the impulse response of the residual generators. An example
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is in Section 8.6.2. A procedure to achieve local detection and identification of

misbehaving agents is in Algorithm 6, where Ahd denotes the h-th block of Ad, and

Th the corresponding threshold value. Observe that in the Local Identification

procedure an agent only performs local computation, and it is assumed to have

only local knowledge of the network structure.

Remark 14 (Local identifiability) It is a nontrivial fact that the misbehaving

agents become locally identifiable depending on the magnitude of ε. Indeed, as

long as ε > 0, the effect of the perturbation ε∆ on the residuals becomes even-

tually relevant and prevents, after a certain time, a correct identification of the

misbehaviors [83]. �

8.6 Numerical Examples

8.6.1 Complete detection and identification

Consider the network of Fig. 8.4, and let A be a randomly chosen consensus

matrix. In particular, let

A =




0.2795 0.1628 0 0.1512 0.4066 0 0 0
0.0143 0.3363 0.3469 0 0 0.3025 0 0

0 0.0718 0.1904 0.2438 0 0 0.4941 0
0.0844 0 0.4457 0.0660 0 0 0 0.4040
0.1709 0 0 0 0.2694 0.2472 0 0.3125

0 0.4199 0 0 0.1575 0.3293 0.0932 0
0 0 0.0174 0 0 0.4241 0.2850 0.2735
0 0 0 0.3024 0.2039 0 0.2065 0.2873


 .

The network is 3-connected, and it can be verified that for any set K of 3 misbe-

having agents, and for any observer node j, the triple (A,BK , Cj) is left-invertible.
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Also, for any set K of cardinality 2, and for any node j, the triple (A,BK , Cj) has

no invariant zeros. As previously discussed, any well-behaving node can detect

and identify up to 2 faulty agents, or up to 1 malicious agent. Consider the obser-

vations of the agent 1, and suppose that the agents {3, 7} inject a random signal

into the network. As described in Algorithm 5, the agent 1 designs the residual

generator filters and computes the residual functions for each of the
(

7
3

)
possible

sets of misbehaving nodes, and identify the well-behaving agents. Consider for

example the system x(t+ 1) = Ax(t) +B3u3(t) +B4u4(t) +B7u7(t), and suppose

we want to design a filter of the form (2.3) which is only sensible to the signal u4.

The unobservability subspace SM{3,7} = (V∗{3,7} + S∗{3,7}), is

SM{3,7} = Im







0 0 0 0 0
0 0 0 −0.6624 0
0 1 0 0 0
0 0 −0.4740 −0.6597 0
0 0 −0.8798 0.3548 0

0.4116 0 −0.0327 0.0132 0
0 0 0 0 1

0.9114 0 0.0148 −0.0060 0





 ,

and a possible choice for the matrices of the residual generator is

F =
[

0 0 0
0.0014 −0.3222 −0.3424
−0.0013 0.3031 0.3222

]
,

E =
[

0.2795 0.1628 0.1512 0.4066
0.0138 0.4982 −0.2280 0.2003
0.0082 −0.6095 0.3012 −0.1568

]
,

M = [ −1 0 0
0 0.9999 0.0128 ] , and H = [ 1 0 0 0

0 −0.7491 0.5832 −0.3142 ] .

It can be checked that, independent of the initial condition of the network, the

residual function associated with the input 4 is zero, as in 8.5, so that the agent
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1

65

8 7

34

2

Figure 8.4: A consensus network where the nodes 3 and 7 are faulty.

4 is regarded as well-behaving. Agents 3, 7, instead, have always nonzero residual

functions, and are recognized as misbehaving.

If the misbehaving nodes are allowed to be malicious, then no more than 1

misbehaving node can be tolerated. Indeed, because of Theorem 8.2.2, there

exists a set K̄ of 4 misbehaving agents such that the system (A,BK̄ , C1) exhibits

nontrivial zero dynamics. For instance, let K̄ = {2, 4, 6, 8}, and note that if the

initial condition x(0) belongs to

V∗ = Im







0 0 0
0 0 0
1 0 0
0 0 0
0 0 0
0 0.7842 0
0 0 1
0 −0.6205 0





 ,

then the input uK = Fbx,7 where

Fb =

[
0 0 −0.3469 0 0 −0.1860 0 0.1472
0 0 −0.4457 0 0 0.1966 0 −0.1555
0 0 0 0 0 −0.1063 −0.1148 0.0841
0 0 0 0 0 0.0636 −0.1894 −0.0503

]
,

7The malicious agents need to know the entire state to implement this feedback law. The
case in which only local feedback is allowed is left as a direction for future research, for which
the result in [107] is meaningful.
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Figure 8.5: Residual functions computed by the agent 1 under the hypothesis
that the misbehaving set is {3, 4, 7}.

is such that y1(t) = 0 for all t ≥ 0. Therefore, the two systems (A,B{2,4}, C1) and

(A,B{6,8}, C1), with initial conditions x1(0) and x2(0) = x1(0)− x(0), and inputs

u{2,4}(t) = [ 1 0 0 0
0 1 0 0 ]Fb(x1(t)− x2(t)),

u{6,8}(t) = [ 0 0 1 0
0 0 0 1 ]Fb(x2(t)− x1(t)),

have exactly the same output dynamics, so that the two sets {2, 4} and {6, 8} are

indistinguishable by the agent 1.
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1

5

6

4

7

2

3
ε

ε

Figure 8.6: Consensus network with weak connections and misbehaving agents.

8.6.2 Local detection and identification

Consider the consensus network in Fig. 8.6, where A = Ad + ε∆, ε ∈ R,

0 ≤ ε ≤ 1, and

Ad =




1
3

1
3

1
3

0 0 0 0
1
3

1
3

1
3

0 0 0 0
1
3

1
3

1
3

0 0 0 0

0 0 0 1
4

1
4

1
4

1
4

0 0 0 1
4

1
4

1
4

1
4

0 0 0 1
4

1
4

1
4

1
4

0 0 0 1
4

1
4

1
4

1
4



,∆ =




0 0 0 0 0 0 0
0 −1 0 1 0 0 0
0 0 −1 0 0 0 1
0 0 1 0 −1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 0 0 0 −1


 .

Let K = {2, 7} be the set of misbehaving agents, let 0.1 ≤ u2(t), u7(t) ≤ 3 at

each time t, and let ‖x(0)‖∞ ≤ 1. Consider the agent 1, and let (F2, E2,M2, H2)

and (F3, E3,M3, H3) be the residual generators as in (8.5) and (8.6), respectively,

where

F2 =
[
−1/3 −1/3
1/3 1/3

]
, E2 =

[
−2/3 0 −1/3
2/3 0 1/3

]
,

M2 = [ 1 0
0 −1 ] , H2 = [ 1 0 0

0 1 0 ] ,
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and

F3 =
[
−1/3 1/3
−1/3 1/3

]
, E3 =

[
−2/3 −1/3 0
−2/3 −1/3 0

]
,

M3 = [ −1 0
0 1 ] , H3 = [ −1 0 0

0 0 1 ] .

Let ĥ3
2 (resp. ĥ3

7) be the impulse response from the input u2 (resp. u7) to r̂3, and

let u1
2 (resp. u1

7) denote the input signal u2 (resp. u7) up to time 1. Note that

the misbehaving agent can be identified after 2 time steps, and that the residual

associated with the agent 3 is

r̂3(2) = [H3C1 M3 ]
[
Ad+ε∆ 0
E3C1 F3

]2 [ x(0)
0

]
+ ĥ3

2 ? u
1
2 + ĥ3

7 ? u
1
7,

where ? denotes the convolution operator. After some computation we obtain

r̂3(2) = ε [H3C1 M3 ]
[
Ad∆+∆Ad+ε∆2 ∆B2 ∆B7

E3C1∆ 0 0

] [ x(0)
u2(0)
u7(0)

]

and, analogously,

r̂2(2) = ε [H2C1 M2 ]
[
Ad∆+∆Ad+ε∆2 ∆B2 ∆B7

E2C1∆ 0 0

] [ x(0)
u2(0)
u7(0)

]

+ [H2C1 M2 ]
[

AdB2 B2
E2C1B2 0

] [ u2(0)
u2(1)

]

Recall that the agent 1 is able to identify the misbehaving agent 2 if, independent

of u1
2 and u1

7, there exists a threshold T such that ‖r̂2(2)‖∞ ≥ T , and ‖r̂3(2)‖∞ <

T . The behavior of ‖r̂2(2)‖∞ and ‖r̂3(2)‖∞ as a function of ε is in Fig. 8.7. Note

that for ε = ε∗ = 0.026 we have ‖r̂2(2)‖∞ = ‖r̂3(2)‖∞ = 0.07. For instance, if
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Figure 8.7: In this figure, the solid line corresponds to the largest magnitude
of the residual associated with the well-behaving agent 3, while the dashed line
denotes the smallest magnitude of the residual associated with the misbehaving
agent 2, both as a function of the parameter ε. If ε ≤ ε∗, then there exists a
threshold that allows to identify the misbehaving agent 2.

ε = 0.01, then it can be verified that ‖r̂2(2)‖∞ > 0.1, and ‖r̂3(2)‖∞ < 0.05. It

follows that a threshold T = 0.1 allows the agent 1 to identify the misbehaving

agent 2. On the other hand, if ε = 0.03, then ‖r̂2(2)‖∞ ≥ 0.01, and ‖r̂3(2)‖∞ ≤

0.12, so that the misbehaving agent 2 may remain unidentified. Indeed, if x(0) =

[ 1 1 1 −1 −1 −1 −1 ], u1
2 = u1

7 = [ 0.1 0.1 ], then ‖r̂2(2)‖∞ = 0.01 and ‖r̂3(2)‖∞ = 0.12,

so that the agent 3 is recognized as misbehaving instead of the agent 2.

As a final remark, note that the larger the consensus network, the more con-

venient the proposed approximation procedure becomes. For instance, consider

the network presented in [10], and here reported in Fig. 8.8. Such a clustered

interconnection structure, in which the edges connecting different clusters have a

small weight, may be preferable in many applications because much simpler and

efficient protocols can be implemented within each cluster. Assume the presence
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Figure 8.8: A consensus network partitioned into 3 areas. Each agent iden-
tifies the neighboring misbehaving agents by only knowing the topology of the
subnetwork it belongs to.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0
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0.1

0.15
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0.25

Figure 8.9: For the network in Fig. 8.8, the smallest magnitude of the residual
associated with a misbehaving agent (dashed line) and the largest magnitude of
the residual associated with a well-behaving agent (solid line) are plotted as a
function of ε.
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of a misbehaving agent in each cluster, and consider the residuals computed after

5 steps of the consensus algorithm. Let ε be the weight of the edges connecting

different clusters. Fig. 8.9 shows, as a function of ε, the smallest magnitude of

the residual associated with a misbehaving agent (dashed line) versus the largest

magnitude of the residual associated with a well-behaving agent (solid line). If ε is

sufficiently small, then our local identification method allows each well-behaving

agent to promptly detect and identify the misbehaving agents belonging to the

same group, and hence to restore the functionality of the network. For instance,

if ε ≤ 0.01, then, following Theorem 8.5.3, if the misbehaving input take value in

{u : 0.1 ≤ |u| ≤ 3}, then a misbehaving agent is correctly detected and identified

by a well-behaving agent.
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Chapter 9

Conclusion and Future Work

One fundamental challenge for modern cyber-physical systems is to ensure a

correct and reliable functionality in the face of failures and attacks. As recently

highlighted by the Maroochy water breach [101] in March 2000, multiple recent

power blackouts in Brazil [22], the SQL Slammer worm attack on the Davis-Besse

nuclear plant in January 2003 [49], the StuxNet computer worm [33] in June

2010, and by various industrial security incidents [90], current security systems

are not offering an adequate protection. This thesis has focused on (i) develop-

ing a comprehensive mathematical framework for the analysis of control systems

vulnerabilities, (ii) designing advanced centralized and distributed monitors for

attack detection and isolation, and (iii) constructing attack signals to avoid de-

tection and identification. Our results have been rigorously constructed by relying

on tools from geometric control theory, algebraic graph theory, and distributed
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computation. Finally, several illustrative examples show the effectiveness of our

methods for several control systems.

9.1 Summary

In Chapter 3 we present several cyber-physical system, which are used in

the subsequent chapters to illustrate our findings. In particular, we derive a

mathematical model for power networks, water networks, and consensus networks.

In Chapter 4 we describe our modeling framework for cyber-physical systems,

attacks, and monitors. In particular, we model cyber-physical systems under

attack as linear descriptor systems subject to unknown inputs. We derive funda-

mental limitations for several classes of monitors. Finally we characterize system-

theoretic and graph-theoretic conditions for the existence of undetectable and

unidentifiable attacks for cyber-physical systems. We illustrate our techniques on

examples of power and water networks.

In Chapters 5 and 6 we design monitors for attack detection and identification.

In particular, Chapter 5 contains a distributed static monitor, which has proven

useful for state estimation and false data detection in power networks. Chapter 6,

instead, contains centralized and distributed dynamic monitors. These dynamic

monitors outperform the static counterpart, and, in fact, are shown to achieve
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optimal detection and identification performance. These monitors have been suc-

cessfully implemented for power networks, water networks, and sensor networks.

Chapter 7 contains our method to cast undetectable and unidentifiable attacks

against cyber-physical systems. We show the effectiveness of this method to design

attacks in a competitive power generation scenario.

Finally, in Chapter 8 we specialize some of our results to linear consensus

systems. we provide alternative and constructive system-theoretic proofs of exist-

ing bounds on the number of identifiable misbehaving agents in a linear network,

i.e., k Byzantine agents can be detected and identified if the network is (2k + 1)-

connected, and they cannot be identified if the network is 2k-connected or less.

We characterize the effect of specific attacks on the final consensus value, and we

analyze the case of non-colluding (faulty) agents. We conclude the chapter by

designing a distributed monitor based on a notion of network decentralization.

9.2 Directions for Future Research

In this Thesis we have studied various security issues for cyber-physical sys-

tems. Based on our models, we have characterized systems vulnerabilities, de-

signed monitors, and cast undetectable and unidentifiable attacks. However, while
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this research has solved many security problems for cyber-physical systems, it has

raised new questions. We next discuss some aspects requiring future investigation.

Nonlinearities and noisy dynamics. In our analysis we focused on cyber-

physical systems described by linear descriptor systems. It is often the case,

however, that complex systems obey nonlinear dynamics, and are affected by

state and measurement noise. Although our main findings should apply despite

nonlinearities and noise, it is an interesting direction to develop mathematical

tools for the security assessment of nonlinear models driven by noise. We envision

that the theory developed in [42,82] may be useful for this extension.

Attackers with limited capabilities and specific goals. In this thesis we

assume that attackers are omniscient and have unlimited computation capabilities.

These assumptions allow us to understand fundamental limitations in monitoring

and attack design. However, in general attackers have limited capabilities, and

they have access only to an approximate model of the system or a part of it. In

this situation it is not clear whether and how undetectable attacks can be cast.

Preliminary results in this area are discussed in [51,120].

Attackers with specific goals. We have considered attackers whose goal is

to alter the system functionality while avoiding detection or identification. In a

more realistic scenario, however, attackers may have specific goals, for instance

driving the system to a particular state, or affecting only certain components.
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Additionally, attack signals should be compared according to a properly defined

notion of cost. In this case, attacks should be designed not only to be undetectable

or unidentifiable, but also to achieve the desired goal while minimizing the attack

cost. Our preliminary results for this aspect are in Chapter 7.

Efficient identification algorithm. In Chapter 4 we show that the attack

identification problem is computationally hard. An interesting research direc-

tion consists of developing efficient approximation algorithms for this problem.

In Chapter 6 we design a monitor that achieves exact attack identification at a

high computational cost, and an efficient monitor for the identification of certain

attacks. The problem of identifying output attacks is also studied in [40].

Optimal network for distributed monitors. In Chapters 5, 6, and 8 we

have developed distributed monitors for attack detection and identification. For

our monitors, we assume the network to be partitioned among geographically

deployed control centers, which implement cooperative algorithms. As a matter

of fact, the network partition affect the performance of our monitors. Hence, it

is of interest to optimally partition the network to improve the performance of

our monitors. Preliminary results in network partitioning can be found, among

others, in [60,92,119].
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