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Abstract

Dynamics and Control in Power Grids and Complex

Oscillator Networks

Florian Anton Dörfler

The efficient production, transmission and distribution of electrical power un-

derpins our technological civilization. Public policy and environmental concerns

are leading to an increasing adoption of renewable energy sources and the deregu-

lation of energy markets. These trends, together with an ever-growing power de-

mand, are causing power networks to operate increasingly closer to their stability

margins. Recent scientific advances in complex networks and cyber-physical sys-

tems along with the technological re-instrumentation of the grid provide promising

opportunities to handle the challenges facing our future energy supply. In this the-

sis, we discuss the synchronization problem in power networks, which is central

to their operation and functionality. We identify and exploit a close connection

between the mathematical models for power networks and complex oscillator net-

works. Our main contributions are concise, sharp, and purely-algebraic conditions

that relate synchronization in a power grid to graph-theoretical properties of the

underlying electric network. Our novel conditions hold for arbitrary intercon-

nection topologies and network parameters, and they significantly improve upon

xiv



previously-available tests. We illustrate how our results help in the analysis of

large-scale transmission systems and lead to novel control strategies and their

implementation in microgrids. Our approach combines traditional power engi-

neering methods, synchronization theory for coupled oscillators, and control in

multi-agent dynamical systems. Beside their applications in power networks, our

mathematically-appealing results are also broadly applicable in synchronization

phenomena ranging from natural and life sciences to engineering disciplines.

Professor Francesco Bullo

Dissertation Committee Chair
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Chapter 1

Introduction

On 1 March 1665, Sir Robert Moray read to the Royal Society a letter
from Christiaan Huygens, dated 27 February 1665, reporting of

[. . . ] an odd kind of sympathy perceived by him in these watches.

(A comment on the interaction of two maritime pendulum clocks
suspended by the side of each other [26].)

Synchronization in networks of coupled oscillators is a pervasive topic in vari-

ous scientific disciplines ranging from biology, physics, and chemistry to social

networks and technological applications. A coupled oscillator network is charac-

terized by a population of heterogeneous oscillators and a graph describing the

interaction among the oscillators. These two ingredients give rise to a rich dynamic

behavior that keeps on fascinating the scientific community.

Within the rich modeling phenomenology on synchronization among coupled

oscillators, this thesis focuses on the canonical model of a continuous-time limit-

cycle oscillator network with continuous, bidirectional, and sinusoidal coupling.

1



Chapter 1. Introduction

We consider a system of n oscillators, each characterized by a phase angle θi ∈ S1

and a natural rotation frequency ωi ∈ R. We assume that the set of oscillators

V = {1, . . . , n} is partitioned into the sets V1 and V2, which we will later identify

with mechanical and kinematic oscillators, respectively. The interaction topol-

ogy and coupling strength among the oscillators are modeled by a connected,

undirected, and weighted graph G = (V , E , A) with nodes V = {1, . . . , n}, edges

E ⊂ V ×V , and positive weights aij = aji > 0 for each undirected edge {i, j} ∈ E .

The interaction between neighboring oscillators is assumed to be additive, anti-

symmetric, diffusive,1 and proportional to the coupling strengths aij. In this

case, the simplest 2π-periodic interaction function between neighboring oscilla-

tors {i, j} ∈ E is aij sin(θi− θj), and the overall model of coupled oscillators reads

Miθ̈i +Diθ̇i = ωi −
∑n

j=1
aij sin(θi − θj) , i ∈ V1, (1.1a)

Diθ̇i = ωi −
∑n

j=1
aij sin(θi − θj) , i ∈ V2, (1.1b)

where θi ∈ S1 and θ̇i ∈ R1 are the phase and frequency of oscillator i ∈ V , ωi ∈ R1

and Di > 0 are the natural frequency and damping coefficient of oscillator i ∈ V ,

and Mi > 0 is the inertial constant of a mechanical oscillator i ∈ V1.

Despite its apparent simplicity, this coupled oscillator model gives rise to rich

dynamic behavior, and it is encountered in ubiquitous scientific disciplines rang-

1The interaction between two oscillators is diffusive if its strength depends on the corre-
sponding phase difference; such interactions arise for example in the discretization of the Laplace
operator in diffusive partial differential equations.
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Chapter 1. Introduction

ing from natural and life sciences to engineering. In particular, the models en-

countered in power network stability studies can be cast as variations and special

instances of the oscillator network (1.1). In the following, we present a mechanical

analog of the coupled oscillator model (1.1) to illustrate its basic phenomenology.

Mechanical Analog and Basic Phenomenology

A mechanical analog of a coupled oscillator network is the spring network

shown in Figure 1.1. This network consists of a group of kinematic particles

constrained to move on the unit circle S1 and assumed to move without colliding.

Each particle is characterized by its angle θi ∈ S1, its inertia coefficient Mi > 0, a

ω1

ω3ω2

a12

a13

a23

Figure 1.1: Mechanical analog of a coupled oscillator network

viscous damping force Diθ̇i (with Di > 0) opposing the direction of motion, and it

is subject to an external driving torque ωi ∈ R. Pairs of interacting particles i and

j are coupled through a linear-elastic spring with stiffness aij > 0. The overall

3



Chapter 1. Introduction

spring network is modeled by a graph, whose nodes are the kinematic particles,

whose edges are the linear-elastic springs, and whose edge weights are the positive

stiffness coefficients aij = aji. Under these assumptions, it can be shown that the

system of spring-interconnected particles obeys the coupled oscillator dynamics

(1.1a) with V2 = ∅, see [89, Supplementary Information] for a detailed derivation.

The mechanical analog in Figure 1.1 illustrates the basic phenomenology dis-

played by the oscillator network (1.1). The spring-interconnected particles are

subject to a competition between the external driving forces ωi and the internal

restoring torques aij sin(θi− θj). Hence, the interesting coupled oscillator dynam-

ics (1.1) arise from a trade-off between each oscillator’s tendency to align with

its natural frequency ωi and the synchronization-enforcing coupling aij sin(θi−θj)

with its neighbors. Intuitively, a weakly coupled and strongly heterogeneous (that

is, with strongly dissimilar natural frequencies) network does not display any co-

herent behavior, whereas a strongly coupled and sufficiently homogeneous network

is amenable to synchronization, where all frequencies θ̇i(t) or even all phases θi(t)

become aligned. For the spring network in Figure 1.1, these two qualitatively

distinct regimes are illustrated in a dynamic simulation in Figure 1.2.

4
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Figure 1.2: Dynamics of mechanical spring network
The two subfigures display a dynamic simulation of the spring-interconnected
particles in Figure 1.1. With exception of the coupling weights (stiffness constants)
aij, all parameters and the initial conditions in both simulations (a) and (b) are
identical. In the case of strong coupling in Subfigure (a), the particles synchronize
their frequencies. In the case of weak coupling in Subfigure (b), the oscillators do
not show any coherent behavior.

1.1 Literature Synopsis

In this section we give an overview of the existing literature for the problems

considered in this thesis.

1.1.1 Synchronization in Complex Oscillator Networks

In this subsection, we consider the complex oscillator network (1.1) and review

its history, related applications, and theoretical developments.

A Brief Historical Account

The scientific interest in synchronization of coupled oscillators can be traced

back to the work by Huygens [134] on “an odd kind of sympathy” between cou-

5
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pled pendulum clocks, locking phenomena in circuits and radio technology [4],

the analysis of brain waves and self-organizing systems [290,291], and it still fasci-

nates the scientific community nowadays [260,295]. A variation of the considered

coupled oscillator model (1.1) was first proposed by Winfree [294]. Winfree con-

sidered general (not necessarily sinusoidal) interactions among the oscillators. He

discovered a phase transition from incoherent behavior with dispersed phases to

synchrony with aligned frequencies and coherent (i.e., nearby) phases. Winfree

found that this phase transition depends on the trade-off between the heterogene-

ity of the oscillator population and the strength of the mutual coupling, which

he could formulate by parametric thresholds. However, Winfree’s model was too

general to be analytically tractable. Inspired by these works, Kuramoto [158]

simplified Winfree’s model and arrived at the coupled oscillator dynamics (1.1b)

with purely kinematic oscillators V = V2 = {1, . . . , n}, with unit time constants

Di = 1, with a complete interaction graph, and with uniform weights aij = K/n:

θ̇i = ωi −
K

n

∑n

j=1
sin(θi − θj) , i ∈ {1, . . . , n} . (1.2)

In an insightful and ingenious analysis, Kuramoto [158,159] showed that synchro-

nization occurs in the model (1.2) if the coupling strength K exceeds a certain

critical threshold Kcritical depending on the distribution of the natural frequencies

ωi. The dynamics (1.2) are nowadays known as Kuramoto model of coupled os-

cillators, and Kuramoto’s original work initiated a broad stream of research. A
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compelling historical perspective is offered by Strogatz [258]. We also recommend

the surveys by Acebrón et al. [3] and Arenas et al. [18, Section 3]. A recent survey

by the author provides a systems and control perspective [88].

Related Applications in Sciences

The coupled oscillator model (1.1) and its variations appear in the study of

biological synchronization and rhythmic phenomena. Example systems include

pacemaker cells in the heart [182], circadian cells in the brain [168], coupled

cortical neurons [70], Hodgkin-Huxley neurons [34], brain networks [280], yeast

cells [106], flashing fireflies [36, 96], chirping crickets [284], central pattern gen-

erators for animal locomotion [152], particle models mimicking animal flocking

behavior [117, 120], and fish schools [209], among others. The coupled oscilla-

tor model (1.1) also appears in physics and chemistry in modeling and analysis

of spin glass models [72, 141, 245], flavor evolution of neutrinos [210], coupled

Josephson junctions [292], coupled metronomes [211], Huygen’s coupled pendu-

lum clocks [26, 144], micromechanical oscillators with optical [303] or mechani-

cal [246] coupling, and in the analysis of chemical oscillations [147, 159]. Finally,

oscillator networks of the form (1.1) also serve as phenomenological models for

synchronization phenomena in social networks, such as rhythmic applause [196],

7
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opinion dynamics [216,217], pedestrian crowd synchrony on London’s Millennium

bridge [261], and decision making in animal groups [163].

Related Applications in Engineering

Some technological applications of the coupled oscillator model (1.1) include

deep brain stimulation [195, 267], locking in solid-state circuit oscillators [1, 186],

planar vehicle coordination [148,149,209,242,243], carrier synchronization without

phase-locked loops [220], synchronization in semiconductor laser arrays [155], and

microwave oscillator arrays [301]. Since alternating current (AC) circuits are natu-

rally modeled by equations similar to (1.1), some electric applications are found in

structure-preserving [27, 236] and network-reduced power system models [50, 85],

and droop-controlled inverters in microgrids [249]. Algorithmic applications of the

coupled oscillator model (1.1) include limit cycle estimation through particle fil-

ters [272], clock synchronization in decentralized computing networks [23,247,288],

central pattern generators for robotic locomotion [15,135,224], decentralized max-

imum likelihood estimation [25], and human-robot interaction [187]. Further envi-

sioned applications of oscillator networks obeying equations similar to (1.1) include

generating music [133], signal processing [246], and neuro-computing through mi-

cromechanical [131] or laser [130,285] oscillators.

8
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Canonical Model and Prototypical Example

The importance of the coupled oscillator model (1.1) does not stem only from

the various examples listed above. Even though this model appears to be quite

specific (a phase oscillator with constant driving term and diffusive sinusoidal cou-

pling), it is the canonical model for coupled limit-cycle oscillators [129]. This fact

is established, for example, in work by the computational neuroscience commu-

nity which has developed different approaches [97,129,137,138] to reduce general

oscillator and interaction models to phase oscillator networks of the form (1.1).

Finally, the coupled oscillator model (1.1) serves as the prototypical example for

synchronization in complex networks [18, 31, 203, 259, 264], and its linearization

is the well-known consensus protocol studied in networked control, see the sur-

veys and monographs [37, 104, 180, 200, 221]. Indeed, numerous control scientists

explored the coupled oscillator model (1.1) as a nonlinear generalization of the

consensus protocol [58,139,166,191,199,233,238,241].

Theoretical investigations

Coupled oscillator models of the form (1.1) are studied from a purely theoret-

ical perspective in the physics, dynamical systems, and control communities. At

the heart of the coupled oscillator dynamics is the transition from incoherence to

synchrony. Here, different notions and degrees of synchronization can be distin-

9
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guished, and the apparently incoherent state features rich dynamics, as well. In

this thesis, we will be particularly interested in the notion of frequency synchro-

nization, that is, in the property of certain solutions to reach equal frequencies θ̇i(t)

among all oscillators. We will also establish conditions under which the angles θi(t)

synchronize. We refer to the surveys and tutorials [3,18,31,84,88,160,177,258,259]

for an incomplete set of recent theoretical research activities. We will review and

attribute relevant results throughout the course of this thesis.

1.1.2 Synchronization and Stability in Power Networks

Electrical energy is the underpinning of our civilization as we know it. Vir-

tually all infrastructures critical to our daily lives heavily rely on it. Despite its

large scale, heterogeneity, and complexity, the power grid has been able to reliably

provide energy making it arguably “the most valuable engineering achievement”2

as well as as “the largest and most complex machine” engineered by humankind.3

The Importance of Power Network Stability – Today and Tomorrow

The interconnected power grid is a complex and large-scale system with rich

nonlinear dynamic behavior. Local instabilities arising in such a power network

2We refer the reader to the book [66] and also to the website http://www.

greatachievements.org/ for a list of the greatest engineering achievements of the 20th century.
This list is compiled by the National Academy of Engineering and led by “Electrification.”

3This statement is attributed to the renowned electrical engineer Charles Steinmetz [156].
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can trigger cascading failures and ultimately result in wide-spread blackouts [13,

68, 197, 219]. The detection and rejection of such instabilities is one of the major

challenges faced by the power system operators and control system designers.

Stability is a classical topic in power systems engineering [12,48,156,157,207,236,

276], but it is also of major importance in the envisioned smart power grid.

Recent political and societal developments are leading to the deregulation of

energy markets and the increasing adoption of renewables. In face of the ever-

increasing power demand, these developments are also leading to more stressed

power networks operating near their stability margins, as documented by recent

outages and the accompanying economic losses. Additional expected develop-

ments in future smart power grids include the paradigm of autonomously managed

microgrids, the coordination of distributed sources and loads through a communi-

cation infrastructure, and the deployment of power electronics control devices (for

example, inverters and flexible AC transmission system) and new measurement

technologies (for example, phasor measurement units and smart meters).

In face of the increasing complexity of future smart grids, the volatility of

deregulated energy markets, the ever-increasing power demand, and the integra-

tion challenges posed by renewable energy sources, a deeper understanding of the

dynamical network phenomena as well as their control is increasingly important.

11
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Synchronization in Electric Power Networks

Power system stability is broadly subdivided into rotor angle stability and volt-

age stability, see [157] for a comprehensive classification of power system stability.

Here, we are particularly interested in rotor angle stability, which is the ability

of the power system to remain in synchronism when subjected to disturbances.

Rotor angle stability is further classified as transient stability for large distur-

bances and contingencies such as severe fluctuations in generation or load, faults

on transmission elements, or loss of system components such as transformers or

transmission lines. For example, a recent major blackout in 2003 was caused by

tripping of a tie-line and resulted in a cascade of events leading to the loss of

synchronism of the Italian power grid with the rest of Europe [219].

The mechanism by which interconnected synchronous machines are able to

maintain and restore synchronism depends on the balance between the electro-

magnetic and the mechanical torque of each machine [12, 156, 236]. Even if each

machine achieves such a balance, but the overall power generation and consump-

tion (including demand at the loads and dissipation in the transmission network)

are not balanced, then the power system frequency drifts away from its nominal

frequency (60 Hz in North America). Since each component connected to an AC

power grid is designed to operate in synchrony with the nominal carrier frequency,

long-term frequency deviations may result in frequency instabilities [122].

12
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At this point, it is instructive to point out that the mathematical models used

for the analysis of synchronization problems in power networks can be cast as

variations of the coupled oscillator model (1.1). Notice that both the transient

stability problem and the frequency stability problem are aspects of the synchro-

nization problem in complex oscillator networks. In a classic power systems set-

ting, both problems are analyzed separately and typically on different time scales.

We will detail the modeling of power networks in Subsection 2.2.1.

Transient stability analysis is mainly concerned with the problem of estimat-

ing the region of attraction of a given synchronous solution (or operating point)

of the power grid, which arises after a fault is restored. To solve this problem, a

direct numerical integration of a detailed power system model is often computa-

tionally too expensive and not feasible in real-time. Thus, various sophisticated

analysis methods and numerical algorithms have been developed as alternatives.

Reviews, tutorials, and survey articles on transient stability analysis can be found

in [48, 50, 61, 207, 278]. Typically, the synchronization problem is recast as a sta-

bility problem in relative (or incremental) coordinates, the dynamics are cast as

Hamiltonian or gradient-like systems, and computational methods are employed

to compute or approximate the separatices and the level sets of potential functions.

These approaches are termed energy function methods or direct methods and will

be reviewed throughout the course of this thesis. Unfortunately, the existing ap-

13
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proaches do not provide simple conditions to check if a power system synchronizes

for a given system state and parameters. In particular, an open problem recog-

nized by the power system community and not resolved yet by classical methods

is the quest for explicit and concise conditions relating transient stability to the

parameters and graph-theoretical properties of the underlying network [123].

In comparison to transient stability, frequency stability is primarily concerned

with the existence, local exponential stability, and robustness of solutions to the

steady state power flow equations (possibly formulated in a rotating frame to

include the frequency drift). A central question is “under which conditions on

the network parameters and topology and the current load and generation profile,

does there exist an optimal [162], stable [47,234], and robust [16,136,140,298,299]

synchronous operating point”. A more general concern is whether the power flow

equations admit any solution [53,164] or an existing solution vanishes in a saddle

node bifurcation [78,112]. Various security indices have been proposed to quantify

the robustness margin of a particular operating condition [121]. In comparison to

transient stability analysis, these approaches rely on network and circuit-theory,

algebraic problem formulations, and analytic solution approaches.

Historically, power systems were designed and operated conservatively in a

region where the system behavior was fairly linear. With the steadily growing

power demand, the deployment of renewables in remote areas, and the increasing

14
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deregulation of energy markets, power networks are forced to operate near their

stability and capacity margins. For heavily loaded and stressed power networks,

the system nonlinearities and nonlocal network effects play a dominant role and

the complex dynamics are only poorly understood [124]. The assessment of an

acceptable synchronous operating point, the computation of its region of attrac-

tion, and the quantification of its robustness margin will become more and more

important in an increasingly complex, volatile, and stressed power grid.

1.2 Contributions and Organization

The contents of this thesis are organized into four main chapters, followed by a

shared conclusion. In the following, we briefly outline the contents of each chapter.

Chapter 2 – Preliminaries, Models, and Synchronization Notions: In

this chapter, we present some tools from algebraic graph theory which are essential

for the analysis of interconnected dynamical systems. We introduce different

dynamic models of electric power systems and show how they can be naturally

cast as instances of the coupled oscillator model (1.1). We briefly review further

applications of the coupled oscillator model (1.1), we justify its importance as a

canonical model, and we discuss different synchronization notions. Additionally,

we introduce a few basic analysis methods from consensus protocols, we state
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some basic insights and results, and we illustrate the basic phenomenology of the

coupled oscillator dynamics (1.1) with a simple two-dimensional example.

Chapter 3 – Mechanical and Kinematic Oscillator Networks: In this

chapter, we study the relationships between mechanical oscillator models (1.1a)

with second-order dynamics and purely kinematic oscillator models (1.1b) with

first-order dynamics. The bulk of the literature on synchronization and the the-

oretic analysis methods have been developed mainly for first-order oscillator net-

works (1.1b). On the other hand, many interesting applications of complex os-

cillator networks include oscillators with second-order mechanical dynamics, for

instance, electric power networks. In this chapter, we show under which assump-

tions the two models can be related, and also demonstrate when their dynamic

behavior is qualitatively different. In particular, we present two approaches that

allow to extend the analysis methods and results from first-order kinematic oscil-

lator models to second-order mechanical oscillator models.

Our first approach is based on topological equivalence and shows that both

models share the same equilibria, the same local stability properties, as well as

all local bifurcations. As a consequence, all local synchronization conditions hold

equivalently for both models and without any further assumptions, but the results

are only locally valid and restricted to forced gradient and Hamiltonian systems.
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On the other hand, our second approach applies to general vector fields and allows

to relate the dynamics and trajectories of the two models. This approach relies

on singular perturbation methods and additionally requires that each mechani-

cal oscillator is strongly overdamped. We discuss the applicability of these two

approaches to electric power systems and relate them to the existing literature.

Throughout this chapter, we also develop important insights into the potential

landscape of the coupled oscillator model (1.1), we state some key lemmas, and

present a result on phase synchronization in homogeneous oscillator networks.

Chapter 4 – The Critical Coupling for Kuramoto Oscillators: In this

chapter, we study the classic Kuramoto model (1.2) with a heterogeneous oscil-

lator population and a complete and uniformly weighted network. We consider

both finite and infinite oscillator populations. We review different synchronization

notions, relate different performance metrics for synchronization, and present a

comprehensive review of estimates on the critical coupling strength in a unified

language. In our review, we cover necessary, sufficient, explicit, and implicit

bounds on the critical coupling. In this effort, we collect contributions from sev-

eral references and arrive at novel results within a unified perspective.

By making use of recently developed tools in the consensus literature, we also

arrive at new estimates of the critical coupling as well as new insights into the
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transient dynamics. Our approach relies on the contraction property and Jacobian

arguments and results in a novel and explicit bound on the critical coupling. In

particular, we require the coupling to dominate the worst-case dissimilarity in

natural frequencies. The proposed bound is tight and thus necessary and sufficient

when evaluated over arbitrary distributions with compact support of the natural

frequencies. Additionally, we state tight bounds on the region of attraction for a

synchronized solution and on the asymptotic performance metrics. We compare

our result to the existing literature and present statistical studies for a uniform

sampling distribution of the natural frequencies. We also present extensions of our

result to second-order Kuramoto oscillators and time-varying natural frequencies.

We conclude this chapter by extending our analysis framework to so-called

network-reduced power system models and non-uniform Kuramoto oscillators.

Chapter 5 – Synchronization in Complex Oscillator Networks: In this

chapter, we study heterogeneous oscillator populations with distinct natural fre-

quencies and a nontrivial coupling topology. We review the extensive literature

proposing synchronization conditions based on different metrics for coupling and

heterogeneity. Similar to every review article on complex oscillator networks, we

conclude that the existing synchronization conditions are either not concise or

only conservative estimates on the threshold from incoherence to synchrony.
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Here, we present a set of necessary and a set of sufficient conditions for synchro-

nization in complex oscillator networks. To the best of the author’s knowledge,

these are the sharpest explicit conditions known to date. The sufficient condi-

tions are based on analysis approaches using two-norm-type metrics, Lyapunov

methods, and fixed-point theorems. Additionally, we develop a novel algebraic

analysis approach emphasizing the crucial role of cut-sets and cycles in the graph.

As a result, we propose a concise and sharp synchronization condition, which can

be stated elegantly in terms of the network topology and parameters. Our re-

sults significantly improve upon the existing conditions advocated thus far, they

are provably exact for various interesting network topologies and parameters, and

they are statistically correct for a broad range of nominal random network models.

We illustrate the validity, the accuracy, and the practical applicability of our

results in complex networks scenarios and in smart grid applications including a

set of standard IEEE power system test cases. Finally, we illustrate the utility

of our approach through a contingency screening case study in the RTS 96 power

network and conclude by summarizing further applications.

Chapter 6 – Conclusions: This chapter concludes the thesis and discusses

some aspects for future research in the area of complex oscillator networks and

applications to electric power grids.
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Chapter 2

Preliminaries, Models, and
Synchronization Notions

In this chapter, we recall some preliminaries, introduce different models, and

review the synchronization notions of interest. Additionally, we introduce a few

basic analysis methods and state some basic results.

2.1 Preliminaries in Algebraic Graph Theory

In this section, we introduce some notation and preliminary results from al-

gebraic graph theory. Algebraic graph theory provides a link between matrix

theory and graph theory, and it is an essential tool for the analysis and control of

large-scale interconnected systems. Our notation is mostly standard, and we only

introduce the essential concepts necessary to develop the results in this thesis.
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We refer to [29, 30, 107] for further details on algebraic graph theory and to the

monographs [37,103,180] for connections with distributed control systems.

Vector and matrix notation: The following notation for vectors and matrices

will be used throughout this thesis. Let 1n ∈ Rn and 0n ∈ Rn be the n-dimensional

vectors of unit and zero entries, and let 1⊥n be the orthogonal complement of 1n in

Rn, that is, 1⊥n , {x ∈ Rn | x ⊥ 1n}. Accordingly, let 0n×n and 1n×n denote the

(n×n)-dimensional matrix with unit entries, respectively. We denote the (n×n)-

dimensional identity matrix by In. Given an n-tuple (x1, . . . , xn), let x ∈ Rn be

the associated vector with maximum and minimum elements xmax and xmin.

For p ∈ N, a vector x, and a matrix A, let ‖x‖p be the the p-norm of x,

and ‖A‖p denotes the induced p-norm of A. The nullspace and image of A are

denoted by Ker (A) and Im (A), respectively. The inertia of a matrix A ∈ Rn×n is

given by the triple {νs, νc, νu}, where νs (respectively νu) denotes the number of

stable (respectively unstable) eigenvalues of A in the open left (respectively right)

complex half plane, and νc denotes the number of center eigenvalues with zero

real part. Given an ordered index set I of cardinality |I| and a one-dimensional

array {xi}i∈I , let diag({xi}i∈I) ∈ R|I|×|I| be the associated diagonal matrix. For

a symmetric matrix A = AT ∈ Rn×n, we implicitly assume that its eigenvalues

λi(A) are arranged in increasing order, that is, λ1(A) ≤ · · · ≤ λn(A).
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Digraphs, associated matrices, and their properties: A weighted directed

graph (or simply digraph) with n nodes is a triple G(V , E , A), where V = {1, . . . , n}

is the set of nodes, E ⊂ V × V is the set of directed edges, and A ∈ Rn×n is the

adjacency matrix. The entries of A satisfy aij > 0 for each directed edge (i, j) ∈ E

and are zero otherwise. Any nonnegative matrix A induces a weighted directed

graph G. Unless stated otherwise, we restrict ourselves to digraphs without self-

loops, that is, (i, i) 6∈ E and aii = 0 for all i ∈ V . If for any two distinct nodes

i, j ∈ V , we have that (i, j) ∈ E , then G is referred to as a complete graph.

A directed path on a digraph G of length ` from node vi0 to node vi` is an

ordered set of distinct nodes {vi0 , vi1 , . . . , vi`} ⊂ V such that (vij−1
, vij) ∈ E for

j ∈ {1, . . . , `}. If there is a directed path in G from one node i ∈ V to another

node j ∈ V , then j is reachable from i. If a node i ∈ V is reachable from any

other node j ∈ V \ {i} in the digraph, then we say it is globally reachable.

For each node i ∈ V , we define the weighted out-degree by degi =
∑n

j=1 aij, and

the associated out-degree matrix diag({degi}ni=1) ∈ Rn×n. Define the Laplacian

matrix by L = diag({degi}ni=1) − A ∈ Rn×n. Since the Laplacian matrix L can

be identified with the adjacency matrix A (up to self-loops), we say the L also

induces the graph G(V , E , A). By construction, we have that Ker (L) = 1n, by the

Geršgorin disk theorem [28,132] we have that all eigenvalues of L have nonnegative
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real part, and additionally the zero eigenvalue is simple if and only if the digraph

features a globally reachable node [165, Lemma 2].

Undirected graphs, associated matrices, and their properties: Of par-

ticular interested in this thesis are undirected and weighted graphs G(V , E , A). A

weighted digraph is said to be undirected if (i, j) ∈ E and aij > 0 implies that

(j, i) ∈ E and aji = aij. Equivalently, the unordered pair {i, j} ∈ E is in the edge

set and will simply be referred to as edge, the adjacency matrix A = AT and the

Laplacian matrix L = LT are symmetric, and node k is reachable from node ` if

and only if ` is reachable from k. If each node i ∈ V is reachable from any other

node j ∈ V\{i}, then the graph G is said to be connected. Unless stated otherwise,

we assume throughout this thesis that all graphs are undirected and connected.

If a unique number ` ∈ {1, . . . , |E|} and an arbitrary direction are assigned

to each edge {i, j} ∈ E , the (oriented) incidence matrix B ∈ Rn×|E| is defined

component-wise by Bk` = 1 if node k is the sink node of edge ` and by Bk` = −1

if node k is the source node of edge `; all other elements are zero. The associated

orthogonal vector spaces Ker (B) and Ker (B)⊥ = Im (BT ) are spanned by vectors

associated to cycles and cut-sets in the graph, see [29, Section 4]. In the following,

we refer Ker (B) and Im (BT ) as the cycle space and the cut-set space, respectively.
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If A = diag({aij}{i,j}∈E) is the diagonal matrix of edge weights, then one can show

L = BABT .

If the graph is connected, then Ker (BT ) = Ker (L) = span(1n), and all n−1 non-

zero eigenvalues of L are strictly positive. The second-smallest eigenvalue λ2(L)

and is a spectral connectivity measure termed the algebraic connectivity [98,188].

Since the Laplacian L is singular, we will frequently use its Moore-Penrose

pseudo inverse [181] denoted by L†. If V ∈ Rn×n is an orthonormal matrix of eigen-

vectors of L, its singular value decomposition is L = V diag(0, {λi}i∈{2,...,n})V T ,

and its Moore-Penrose pseudo inverse L† is given by

L† = V diag(0, {1/λi}i∈{2,...,n})V T .

A direct consequence of the singular value decomposition are the identities L·L† =

L† ·L = In− 1
n
1n×n. For any two nodes i, j ∈ V , we define their effective resistance

Rij = L†ii + L†jj − 2L†ij .

If a resistive circuit with conductance matrix L is associated to the graph, the

effective resistance Rij is the potential difference between the nodes i and j when

a unit current is injected in i and extracted in j. We refer to [86, 94, 105, 114] for

further information on Laplacian inverses and on the resistance distance.
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2.2 Oscillator Network Models and Synchroniza-

tion Problems

In this section, we detail the mathematical models used in this thesis. We

demonstrate that a variety of power network models can be cast as special in-

stances or variations of the coupled oscillator model (1.1). We further justify the

importance of the coupled oscillator (1.1) through other examples, and we show

that it is the canonical model of coupled limit cycle oscillators.

2.2.1 Electric Power Networks

For our purposes, an AC power network is a large-scale circuit, with different

types of power sources and loads attached, see Figure 2.1. We model this circuit

as an undirected, connected, and complex-weighted weighted graph with the n

buses forming the node set V = {1, . . . , n}, the transmission lines forming the

undirected edge set E ⊂ V×V , and with each edge {i, j} we associate the nonzero

complex-valued admittance Yij ∈ C. Here, the real part <(Yij) is the conductance

and the imaginary part =(Yij) is the susceptance of the transmission line. We also

allow for self-loops in the graph corresponding to nonzero shunt admittances, that

is, loads modeled as impedances to ground. Typically, a high-voltage transmission

network can be regarded as a lossless and purely inductive circuit.
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Figure 2.1: Illustration of different power network diagrams
Subfigures (a), (b), and (c) show the IEEE 39 New England power grid [207].
Subfigure (a) shows the single line diagram, Subfigure (b) shows an equivalent
schematic illustration, where the (red) squares depict synchronous generators
and the (blue) circles are load buses, and Subfigure (c) shows the correspond-
ing network-reduced model, where the load buses have been removed through
Kron reduction [86]. Finally, Subfigure (d) shows a microgrid based on the IEEE
37 feeder [145], where the (yellow) diamonds depict DC/AC inverters and the
(black) circles are passive junctions.

Pm,i |Vi| eiθi Yij

|Vj | eiθjYij|Vi| eiθi

aij sin(θi − θj)

(a) (b)

(c)

aij sin(θi − θj)
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YijYik

DiPl,i

|Vi| eiθi

YijYik
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|Vi| eiθi

YijYik

IiYi,shunt

Figure 2.2: Illustration of the power network devices as circuit elements
Subfigure (a) shows a transmission element connecting nodes i and j. Subfig-
ure (b) shows an inverter controlled according to (2.2). Subfigure (c) shows the
synchronous generator model (2.1). Subfigure (d) shows the frequency-dependent
load model (2.3). Subfigure (e) shows the constant power load model (2.4). Fi-
nally, Subfigure (f) shows a constant current and constant impedance load.

26



Chapter 2. Preliminaries, Models, and Synchronization Notions

For each node, consider the voltage phasor Vi = |Vi|eiθi corresponding to the

phase θi ∈ S1 and magnitude |Vi| ≥ 0 of the sinusoidal solution to the circuit

equations. For a lossless network, the active power flow from node i to j is

aij sin(θi − θj), where we adopt the shorthand aij = |Vi| · |Vj| · =(Yij) for the

maximum active power transfer, see Figure 2.2.(a). The node set is partitioned

as V = V1 ∪V2 ∪V3, where V1 are synchronous generators, V2 are grid-connected

direct current (DC) power sources, and V3 are load buses. We assume that all volt-

age levels |Vi| are constant, see Remark 2.2.1 for a discussion of this assumption.

Synchronous generators: We use the conventional of model a synchronous

generator as a constant voltage source behind a transient reactance, see Figure 2.2(c)

for a circuit diagram and [156, 236] for a detailed derivation. If the generator

transient reactances are absorbed into the network admittance matrix, then the

electromechanical swing dynamics of the synchronous generators are obtained as

Miθ̈i +Diθ̇i = Pm,i −
∑n

j=1
aij sin(θi − θj) , i ∈ V1, (2.1)

where θi ∈ S1 and θ̇i ∈ R1 are the generator rotor angle and frequency, Pm,i > 0 is

the mechanical power input from the prime mover, and Mi > 0, and Di > 0 are

the inertia and damping coefficients, respectively.
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DC/AC inverters: We assume that each DC source V2 is connected to the AC

grid via a DC/AC inverter. For the purposes of this work, and as widely adopted

in the microgrid literature, we will consider the class of voltage controlled voltage

source inverters with purely sinusoidal voltage output, see Figure 2.2(b). We

assume the inverter output impedances are absorbed into the network admittance

matrix, and each inverter is controlled with a conventional frequency droop control

law [46, 275]. For a droop-controlled inverter i ∈ V2 with droop-slope 1/Di > 0,

the deviation of the inverter power output
∑n

j=1 aij sin(θi − θj) from its nominal

value Pd,i > 0 is proportional to the frequency deviation Diθ̇i. As shown in [249],

the droop-controlled inverter then obeys the closed-loop dynamics

Diθ̇i = Pd,i −
∑n

j=1
aij sin(θi − θj) , i ∈ V2 . (2.2)

In the following, we complete our list of power network components with differ-

ent load models, and we show that in each case the overall network dynamics can

be cast as a special instance or a variation of the coupled oscillator model (1.1).

Load models: We consider the following load models illustrated in Figure 2.2.

1) PV buses with frequency-dependent loads: All load buses are PV buses, that

is, the active power demand Pl,i and the voltage magnitude |Vi| are specified for

each bus. The active power drawn by load i consists of a constant term Pl,i > 0

and a frequency dependent term Diθ̇i with Di > 0, as illustrated in Figure 2.2(d).
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The resulting real power balance equation is

Diθ̇i + Pl,i = −
∑n

j=1
aij sin(θi − θj) , i ∈ V3 . (2.3)

The dynamics (2.1), (2.2), (2.3) are known as the structure-preserving power net-

work model. The model has been proposed in [27] for bulk power systems, and a

derivation from first principles can be found in [236, Chapter 7]. Observe that the

power network dynamics (2.1), (2.2), (2.3) are obtained as the coupled oscillator

model (1.1) with ωi ∈ {Pm,i, Pd,i,−Pl,i} as power injections and with the coupling

coefficients aij corresponding to the maximum active power transfers.

2) PV buses with constant power loads: All load buses are PV buses and each

load demands a constant amount of active power Pl,i > 0, that is,

Pl,i = −
∑n

j=1
aij sin(θi − θj) , i ∈ V3 . (2.4)

The corresponding circuit-theoretic model is shown in Figure 2.2(e). If the angular

distances |θi(t) − θj(t)| < π/2 are bounded for each transmission line {i, j} ∈ E

(these conditions will be precisely established in the next chapters), then it is

known that the resulting differential-algebraic system (2.1), (2.2), (2.4) has the

same local stability properties as the dynamics (2.1), (2.2), (2.3) with frequency-

dependent loads [234,249]. Additionally, as shown in [234], the transient dynamics

of the ODE system (2.1), (2.2), (2.3) and the DAE system (2.1), (2.2), (2.4) can be

mapped to another through a singular perturbation analysis for Dmax sufficiently
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small. Hence, all results derived for the coupled oscillator model (1.1) apply locally

also to the differential-algebraic power network model (2.1), (2.2), (2.4).

3) Constant current and constant admittance loads: Assume that each load

i ∈ V3 is modeled as a constant current demand Ii and a shunt admittance Yi,shunt,

as illustrated in Figure 2.2(f). In this case, the current-balance equations are

I = LV , where I ∈ Cn and V ∈ Cn are the vectors of nodal current injections

and voltages, and L is the network admittance matrix with off-diagonal elements

Lij = −Yij and diagonal elements Lii =
∑n

j=1 Yij + Yi,shunt. After elimination of

the bus variables Vi (for i ∈ V3) through Kron reduction, we obtain the reduced

current balance equations as Ired = LredVred. We will not detail the reduced

quantities here and refer to the author’s article [86] for details. We want to

remark two crucial properties of the reduced network. First, even if the original

transmission network is lossless, then the presence of resistive shunt loads leads

to a lossy reduced network, that is, the resistive loads in the original network are

absorbed in the form of line losses in the reduced network. Second, even if the

original topology is sparse, then the topology induced by the reduced admittance

matrix Y is dense, see Figures 2.1(b) and 2.1(c). In fact, for most power networks

the subgraph induced by the load buses V3 is connected, and it follows that the

topology of the reduced network is complete in this case [86, Theorem 3.4].
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After Kron reduction, the generator and inverter dynamics take the form

Miθ̈i +Diθ̇i = P̃i −
∑n

j=1
ãij sin(θi − θj − ϕij) , i ∈ V1, (2.5)

Diθ̇i = P̃i −
∑n

j=1
ãij sin(θi − θj − ϕij) , i ∈ V2. (2.6)

Here, ãij = |Vi| · |Vj| · =(Yred,ij) are the maximal active power flows in the reduced

network, and the phase shifts ϕij = − arctan(<(Yred,ij)/=(Yred,ij)) ∈ [0, π/2[ re-

flect the transfer conductance in the reduced network. The effective power in-

jections P̃i take the form P̃i = Pm,i − Pred,1 − <(Yred,ii)|Vi|2 for i ∈ V1, and

P̃i = Pd,i − Pred,2 − <(Yred,ii)|Vi|2 for i ∈ V2, where the terms Pred,1 and Pred,2

result from the constant current and possibly constant inductance loads in the

original network, and <(Yred,ii)|Vi|2 reflects the constant impedance loads.

The model (2.5)-(2.6) is known as network-reduced power system model. We

refer to [86, 156, 236] for a detailed derivation of the network-reduced model and

an analysis of the reduced circuit and graph-theoretic properties. Observe that,

with exception of the phase shifts ϕij, the network-reduced model (2.5)-(2.6) is

again an instance of the coupled oscillator model (1.1).

4) Synchronous motor loads: Synchronous motors are synchronous machines

which are modeled as synchronous generators (2.1) with a mechanical load, that

is, the term Pm,i in (2.1) is negative [156], see Figure 2.2(a). The resulting power

network model is a perfect electrical analog of the coupled oscillator model (1.1).
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Finally, combinations of the different load models are possible as well.

Remark 2.2.1 (Voltage dynamics). To conclude this modeling paragraph, we

want to state a word of caution regarding the assumption of constant voltage mag-

nitudes. This assumption is well justified for synchronous generators, motor loads,

and inverters, where the voltage magnitudes |Vi| are tightly controlled.

Under normal operating conditions, the active power flow aij sin(θi − θj) =

|Vi|·|Vj|·=(Yij)·sin(θi−θj) between two nodes i, j ∈ V1∪V2 is primarily governed by

the angular difference θi−θj and not by the voltage magnitudes |Vi|, |Vj|. The latter

assumption is known as “decoupling assumption” in the power systems community.

Whereas the PV load models 1) and 2) are well-adopted for power systems stability

studies, the assumption of constant load voltage magnitudes at these buses ceases to

hold in a heavily stressed grid (near a bifurcation point), where additional dynamic

phenomena can occur such as voltage collapse at the loads [78]. In short, the

coupling weights aij are not necessarily constant. Likewise, if the shunt admittance

loads in the load model model 3) are not constant (e.g., constant power loads can

be transformed to voltage-dependent shunt admittances), then the Kron reduction

process may be ill-posed, or the elements of the admittance matrix of the network-

reduced model depend on the load voltages. In the latter case, the coupling weights

aij are again not constant but depend on the load voltages.
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To explicitly account for such unmodeled voltage dynamics affecting the cou-

pling weights aij, the coupled oscillator model (1.1) can be studied with interval-

valued parameters, where each aij takes value in the range 0 < aij ≤ aij ≤ aij. We

refer to the author’s article [89, Supplementary Information] for details. Through-

out this thesis, we assume that all parameters aij are constant and known. �

Synchronization is central to the operation and functionality of power net-

works. All generating units of an interconnected grid must remain in strict fre-

quency synchronism while continuously following demand and rejecting distur-

bances. The power network dynamics presented here are all instances of the

coupled oscillator model (1.1). Thus, it is not surprising that scientists from dif-

ferent disciplines recently advocated coupled oscillator approaches to analyze syn-

chronization in power networks, see [40,99,100,123,193,228,263,266,296] among

others. The theoretical tools presented in this thesis establish how synchroniza-

tion in power networks depends on the nodal parameters (Pl,i, Pm,i, Pd,i) as well

as the interconnecting electrical network with weights aij.

2.2.2 Additional Examples of Complex Oscillator Networks

In this subsection, we briefly review two additional examples of the coupled

oscillator model (1.1), and we justify its importance as a canonical model.
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Flocking, Schooling, and Vehicle Coordination

A recent research field in control is the coordination of autonomous vehicles

based on locally available information and inspired by biological flocking phenom-

ena. Consider a set of n particles in the plane R2, which we identify with the

complex plane C. Each particle i ∈ V = {1, . . . , n} is characterized by its position

ri ∈ C, its heading angle θi ∈ S1, and a steering control law ui(r, θ) depending

on the position and heading of itself and other vehicles, see Figure 2.3.(a) for a

schematic illustration of the model. For simplicity, we assume that all particles

have unit speed. The particle kinematics are then given by [142]

ṙi = eiθi ,

θ̇i = ui(r, θ) ,

(2.7)

where i ∈ {1, . . . , n} and i =
√
−1 is the imaginary unit. If no control is applied,

then particle i travels in a straight line with orientation θi(0), and if ui = ωi ∈ R

is a nonzero constant, then particle i traverses a circle with radius 1/|ωi|.

The interaction among the particles is modeled by a possibly time-varying

interaction graph G(V , E(t), A(t)) determined by communication and sensing pat-

terns. Interesting motion patterns emerge if the controllers use only relative

phase information between neighboring particles, that is, ui = ω0(t) + fi(θi − θj)

for {i, j} ∈ E(t) and ω0 : R≥0 → R. For example, the steering control ui =
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Figure 2.3: Illustration of controlled planar particle dynamics
Panel (a) illustrates the particle kinematics (2.7). Panels (b)-(e) illustrate the
controlled dynamics (2.7)-(2.8) with n=6 particles, a complete interaction graph,
and identical and constant natural frequencies: ω0(t) = 0 in panels (b) and (c)
and ω0(t) = 1 in panels (d) and (e). The values of K are K = 1 in panel (b)
and (d) and K=−1 in panel (c) and (e). The arrows depict the orientation, the
dashed curves show the long-term position dynamics, and the solid curves show
the initial transient position dynamics. As illustrated, the resulting motion dis-
plays “synchronized” or “balanced” heading angles for K = ±1, and translational
motion for ω0(t) = 0, respectively circular motion for ω0(t) = 1.

ω0(t)−K ·
∑n

j=1 aij(t) sin(θi− θj) with gain K ∈ R results in the phase dynamics

θ̇i = ω0(t)−K ·
∑n

j=1
aij(t) sin(θi − θj) , i ∈ {1, . . . , n} . (2.8)

The controlled phase dynamics (2.8) form a network of purely kinematic oscillators

(1.1b) with a time-varying interaction graph with weights K ·aij(t) and identically

time-varying natural frequencies ωi = ω0(t). The controlled phase dynamics (2.8)

give rise to elegant and useful coordination patterns that mimic animal flock-

ing behavior [163] and fish schools [209]. A few representative trajectories are

illustrated in Figure 2.3. Inspired by these biological phenomena, scientists have

studied the controlled phase dynamics (2.8) and their variations in the context of

tracking and formation controllers in swarms of autonomous vehicles. We refer

to [148,149,163,209,237,242,243] for further control laws and motion patterns.
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Clock Synchronization in Decentralized Networks

Another emerging technological application of oscillator networks is clock syn-

chronization in decentralized computing networks. A natural approach to clock

synchronization is to treat each clock as an oscillator and follow a diffusion-based

(or pulse-coupling) protocol to synchronize them, see the surveys [167, 247] and

the interesting recent results [23,128,174,287,288].

For illustration, consider a set of distributed processors V = {1, . . . , n} con-

nected by a (possibly directed) communication network. Each processor is equipped

with an internal clock. These clocks need to be synchronized for distributed com-

puting and network routing tasks. As discussed in the surveys [167, 247], we

consider only analog clocks with continuous coupling since digital clocks are es-

sentially discretized analog clocks, and pulse-coupled clocks can be modeled con-

tinuously after a phase reduction and averaging analysis. For our purposes, the

clock of processor i is a voltage-controlled oscillator (VCO) generating a harmonic

waveform si(t) = sin(θi(t)), where θi(t) is the accumulated instantaneous phase.

For uncoupled clocks, each phase θi(t) evolves according to

θi(t) =

(
θi(0) +

2π

Tnom + Ti
t

)
mod(2π) , i ∈ {1, . . . , n}.

where Tnom > 0 is the nominal period, Ti ∈ R is an offset (or skew), and θi(0) ∈ S1

is the initial phase. To synchronize their internal clocks, the processors follow a
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diffusion-based protocol. In a first step, neighboring oscillators communicate their

respective waveforms si(t) to another. Second, through a phase detector (PD) each

node measures a convex combination of phase differences

cvxi(θ(t)) =
∑n

j=1
aijf(θi(t)− θj(t)) , i ∈ {1, . . . , n} ,

where f : S1 → R is an odd 2π-periodic function, and aij≥0 are detector-specific

convex weights satisfying
∑n

j=1 aij =1. Finally, cvxi(θ(t)) is fed to a phase-locked

loop filter (PLL) whose output drives the local phase. A first-order and constant

PLL with gain K results in

θ̇i(t) =
2π

Tnom + Ti
+K · cvxi(θ(t)) , i ∈ {1, . . . , n} . (2.9)

The diffusion-based synchronization protocol (2.9) is illustrated in Figure 2.4,

and its objective is to synchronize the frequencies θ̇i(t) and possibly also the

phases θi(t) in the processor network. For an undirected communication protocol,

symmetric weights aij = aji, and a sinusoidal coupling function f(·) = sin(·), the

synchronization protocol (2.9) equals the coupled oscillator model (1.1).

Canonical Coupled Oscillator Model

In the preceding subsections we have seen how the coupled-oscillator model

(1.1) appears naturally in various applications. We now illustrate how this ap-

parently specific model can be derived as a canonical model of coupled limit-cycle
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Figure 2.4: Schematic illustration of diffusion-based clock synchronization
The figure shows a schematic illustration of the diffusion-based synchronization
protocol (2.9) for two coupled analog clocks.

oscillators [129] through a standard reduction procedure from general limit-cycle

oscillator and interaction models. Our presentation is informal, we schematically

follow the approaches developed in the computational neuroscience community,

and we refer to the textbooks [129,137], the tutorials [138,177], and the pioneering

papers [97, 294] for further details.

Consider a limit-cycle oscillator modeled as a dynamical system with state

x ∈ Rm and nonlinear dynamics ẋ = f(x). Assume that this system admits a

locally exponentially stable periodic orbit S ⊂ Rm with period T > 0. By a local

change of variables, any trajectory in a neighborhood of S can be characterized

by a phase variable ϕ ∈ S1 with dynamics ϕ̇ = Ω, where Ω = 2π/T . Now consider

a weakly-forced oscillator of the form

ẋ(t) = f(x(t)) + εg(t) , (2.10)
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where ε > 0 is sufficiently small and g(t) is a time-dependent external forcing

term. For sufficiently small forcing εg(t), the attractive limit cycle S persists, and

the local phase dynamics are obtained as

ϕ̇(t) = Ω + εQ(ϕ(t))g(t) ,

where ϕ 7→ Q(ϕ) is the infinitesimal phase response curve (iPRC) and we dropped

higher order terms O(ε2). The iPRC is a linear response function that associates

to each point on the periodic orbit S (parameterized by the phase ϕ) the phase

shift induced by the input εg(t).

Now consider n such limit-cycle oscillators. Let xi ∈ Rm be the state of

oscillator i with limit cycle Si ⊂ Rm and period Ti > 0. We assume that the

oscillators are weakly coupled with interaction graph G(V , E) and dynamics

ẋi = fi(xi) + ε
∑

{i,j}∈E
gij(xi, xj) , i ∈ {1, . . . , n} , (2.11)

where gij is the coupling function for the pair {i, j} ∈ E . This coupling function

may be continuous or impulsive. The weak coupling in (2.11) can be identified

with the weak forcing in (2.10), and a transformation to phase coordinates yields

ϕ̇i = Ωi + ε
∑

{i,j}∈E
Qi(ϕi)gij(xi(ϕi), xj(ϕj)) ,

where Ωi = 2π/Ti. The local change of variables θi(t) = ϕi(t) − Ωit then yields

the coupled phase dynamics

θ̇i = ε
∑

{i,j}∈E
Qi(θi + Ωit)gij(xi(θi + Ωit), xj(θj + Ωjt)).
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An averaging analysis applied to the θ-dynamics yields

θ̇i = εωi + ε
∑

{i,j}∈E
hij(θi − θj) , (2.12)

where the averaged coupling functions hij are

hij(χ)= lim
T→∞

1

T

∫ T

0

Qi(Ωiτ)gij(xi(Ωiτ), xj(Ωjτ − χ))dτ,

and ωi = hii(0). Notice that the averaged coupling functions hij are 2π-periodic

and the coupling in (2.12) is diffusive. If the interaction among the oscillators is

anti-symmetric, then all functions hij are odd, and a first-order Fourier series ex-

pansion yields hij(·) ≈ aij sin(·) as first harmonic with coefficient aij. In this case,

the dynamics (2.12) in the slow time scale τ = εt reduce exactly to the coupled

oscillator model (1.1). This analysis justifies calling (1.1) the canonical model for

coupled limit-cycle oscillators. It also explains the widespread adoption of the

oscillator network (1.1) as phenomenological model in synchronization studies.

For example, for two coupled van der Pol oscillators (with parameters in the

quasi-harmonic limit) the above procedure results exactly in the coupled oscillator

model (1.1), see the elegant analysis in [177]. In general, the coupling functions

hij depend on the iPRC, may not be sinusoidal or antisymmetric, and include

higher-order harmonics. Hence, the iPRC serves as a natural analysis [35, 231]

and design [287,288] tool for general limit-cycle oscillator models.
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2.3 Synchronization Notions and Concepts

In this section, we introduce different notions of synchronization illustrated

in Figure 2.5. We address various commonly-studied notions of synchronization

associated with coherent behavior, cohesive phases, and aligned frequencies. We

relate these concepts and synchronization notions to our enabling application of

interest – synchronization in power networks. We do not touch upon related

concepts such as phase balancing, splay state stabilization, and pattern formation

since they are not relevant to our particular application.

θi = ∠eiψ

X(a) (b) (c)

γ

γ

Figure 2.5: Illustration of synchronization concepts
Frequency-synchronized solutions of the oscillator network (1.1) can exhibit dif-
ferent phase configurations: (a) phase synchronization, (b) phase cohesiveness,
and (c) arc invariance.

2.3.1 Synchronization Notions

Before beginning our discussion, we review some terminology and geometric

concepts: The set S1 denotes the unit circle, an angle is a point θ ∈ S1, and an arc

is a connected subset of S1. The n-torus is the Cartesian product Tn = S1×· · ·×S1.
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The geodesic distance between two angles θ1, θ2 is the minimum of the counter-

clockwise and the clockwise arc lengths connecting θ1 and θ2. With slight abuse of

notation, let |θ1 − θ2| denote the geodesic distance between the angles θ1, θ2 ∈ S1.

The coupled oscillator model (1.1) evolves on Tn × R|V1| and features an im-

portant symmetry, namely, the rotational invariance of the angular variable θ,

that is, the oscillator network dynamics (1.1) remain invariant under a rotation

of all oscillators by the same constant angle. This symmetry gives rise to the

structure of the state space and the different synchronization properties that the

model (1.1) can display. All notions of synchronized solutions share the common

property that the frequencies are equal to a constant synchronization frequency.

Definition 2.3.1 (Frequency synchronization). A solution (θ, θ̇) : R≥0→(Tn,R|V1|)

achieves frequency synchronization if all frequencies θ̇i(t) converge to a common

constant frequency ωsync ∈ R as t→∞.

The explicit synchronization frequency ωsync ∈ R of the coupled oscillator

model (1.1) can be obtained by exploiting its rich symmetry properties.

Lemma 2.3.2 (Explicit synchronization frequency). If a solution of the coupled

oscillator model (1.1) achieves frequency synchronization, then it does so with

synchronization frequency equal to ωsync =
∑n
i=1 ωi∑n
i=1Di

.
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Proof. By summing over all equations in (1.1), we obtain
∑|V1|

j=1Mj θ̈j+
∑n

i=1Diθ̇i =

∑n
i=1 ωi. In the frequency-synchronized case, this sum simplifies to

∑n
i=1Diωsync =

∑n
i=1 ωi, and we obtain the synchronization frequency stated in the lemma.

By transforming to a rotating frame with frequency ωsync and by replacing ωi

with ωi −Diωsync, we obtain ωsync = 0 (or equivalently ω ∈ 1⊥n ). In what follows,

without loss of generality, we assume that ω ∈ 1⊥n so that ωsync = 0.

Remark 2.3.3 (Synchronization frequency in power networks). For the consid-

ered lossless power network models in Subsection 2.2.1, the assumption ωsync = 0

translates to balanced power injections
∑

i∈V1 Pm,i +
∑

i∈V2 Pd,i +
∑

i∈V2 Pl,i = 0.

If this assumption is not satisfied, for example, the total load exceeds the total

generation, then the network frequency drifts away from the nominal frequency.

In the presence of losses, as in the model (2.5)-(2.6), the arguments in the

proof of Lemma 2.3.2 lead to an additional term depending on the losses and the

steady state power flows, and we obtain the synchronization frequency

ωlossy
sync =

∑
i∈V1 P̃m,i +

∑
i∈V2 P̃d,i −

∑
i,j∈V1∪V2 ãij sin(θ∗i − θ∗j − ϕij)∑

i∈V1∪V2 Di

,

where θ∗ ∈ Tn is the steady state angle defined modulo rotational symmetry. Com-

pared to the lossless synchronization frequency ωsync, the additional term in ωlossy
sync

arises from the impedance loads or losses in the reduced transmission network.

These losses need to be balanced by the generation such that ωlossy
sync = 0. �
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The definition of a frequency-synchronized solution allows for multiple phase

configurations, for example, synchronized phases, see Figure 2.5(a).

Definition 2.3.4 (Phase synchronization). A solution (θ, θ̇) : R≥0 → (Tn,R|V1|)

to the coupled oscillator model (1.1) achieves phase synchronization if all phases

θi(t) become identical as t→∞.

Remark 2.3.5 (Terminology). Alternative terminologies for phase synchroniza-

tion include full, exact, or perfect synchronization. For a frequency-synchronized

solution all phase distances |θi(t)− θj(t)| are constant, and the terminology phase

locking is sometimes used instead of frequency synchronization. Other commonly

used terms instead of frequency synchronization include frequency locking, fre-

quency entrainment, or also partial synchronization. �

It can be easily verified that for non-zero and dissimilar natural frequencies

ω ∈ 1⊥n , the coupled oscillator model (1.1) does not admit a phase-synchronized

solution of the form θi(t) = θj(t) for all i, j ∈ {1, . . . , n}. If the natural frequencies

are dissimilar, then each pairwise distance |θi(t)−θj(t)| can converge to a constant

but not necessarily zero value. The concept of phase cohesiveness formalizes this

possibility. For γ ∈ [0, π[, let ∆̄G(γ) ⊂ Tn be the closed set of angle arrays

(θ1, . . . , θn) with the property |θi− θj| ≤ γ for all {i, j} ∈ E , that is, each pairwise

phase distance is upper bounded by γ. Also, let ∆G(γ) be the interior of ∆̄G(γ).
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Definition 2.3.6 (Phase cohesiveness). A solution (θ, θ̇) : R≥0 → (Tn,R|V1|) of

the coupled oscillator model (1.1) is said to be phase cohesive if there exists a

length γ ∈ [0, π[ such that θ(t) ∈ ∆̄G(γ) for all t ≥ 0.

Notice that a phase cohesive solution is also phase synchronous when γ = 0.

The main object under study in most applications and theoretic analyses are

phase-cohesive and frequency-synchronized solutions, where all oscillators rotate

with the same frequency and all the pairwise phase distances are upper bounded.

In the following, we restrict our attention to synchronized solutions with suffi-

ciently small phase distances |θi − θj| ≤ γ < π/2 for {i, j} ∈ E . Of course, there

may exist other synchronized solutions with larger phase distances, but these are

not necessarily stable (see Lemma 3.2.1) and not relevant in our application of

interest, see Remark 2.3.7 below. In what follows, in the interest of brevity, we

call a solution synchronized if it is frequency synchronized and phase cohesive.

Remark 2.3.7 (Steady state phase distances in power networks). In power net-

work applications the coupling terms aij sin(θi − θj) are the active power flows

along transmission lines {i, j} ∈ E. Hence, the case of phase synchronization is

not of interest since there is no active power flow in steady state. Also, for a

transmission line {i, j} ∈ E, the steady state phase distances |θ∗i − θ∗j | need to be

bounded well below π/2 due to thermal constraints. The bounds on the angular
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differences are known as security constraints and play an important role in the

operation of a power system [297], for example, in power flow optimization. �

A geometric object of interest is the synchronization manifold. Given a point

r ∈ S1 and an angle s ∈ [0, 2π], let rots(r) ∈ S1 be the rotation of r counterclock-

wise by the angle s. For (r1, . . . , rn) ∈ Tn, define the equivalence class

[(r1, . . . , rn)]={(rots(r1), . . . , rots(rn))∈Tn |s∈ [0, 2π]}.

Clearly, if (r1, . . . , rn) ∈ ∆̄G(γ) for some γ ∈ [0, π/2[, then [(r1, . . . , rn)] ⊂ ∆̄G(γ).

Definition 2.3.8 (Synchronization manifold). Given θsync ∈ ∆̄G(γ) for some

γ ∈ [0, π/2[, the set ([θsync], ωsync1|V1|) ⊂ Tn ×R|V1| is a synchronization manifold

of the coupled oscillator model (1.1).

Note that a synchronized solution takes value in a synchronization manifold

due to rotational symmetry, and for ω ∈ 1⊥n (implying ωsync = 0) a synchronization

manifold is also an equilibrium manifold of the coupled oscillator model (1.1).

These geometric concepts are illustrated in Figure 2.6 for the two-dimensional case.

To conclude our list of synchronization notions, we introduce the concept of

arc invariance. For γ ∈ [0, 2π[, let Arcn(γ) ⊂ Tn be the closed set of angle arrays

θ = (θ1, . . . , θn) with the property that there exists an arc of length γ containing all

θ1, . . . , θn. Thus, an angle array θ ∈ Arcn(γ) satisfies maxi,j∈{1,...,n} |θi − θj| ≤ γ.

Finally, let Arcn(γ) be the interior of the set Arcn(γ). Notice that Arcn(γ) ⊆
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∆G(π/2)

[θ∗]

12

θ∗

Figure 2.6: Illustration of the geometric concepts in the configuration space T2

Illustration of the state space T2, the set ∆G(π/2) (red set), the synchronization
manifold [θ∗] associated to a phase-synchronized angle array θ∗ = (θ∗1, θ

∗
2) ∈ ∆̄G(0)

(blue curve), and the tangent space with translation vector 12 at θ∗.

∆̄G(γ) but the two sets are generally not equal. For a complete coupling graph,

sufficiently many oscillators, and for sufficiently small γ, the two sets become

equal, and arc invariance is an appropriate synchronization notion.

Definition 2.3.9 (Arc invariance). A solution (θ, θ̇) : R≥0 → (Tn,R|V1|) to the

coupled oscillator model (1.1) said to be arc invariant if there exists a length γ ∈

[0, 2π[ such that θ(t) ∈ Arcn(γ) for all t ≥ 0.

2.3.2 A Simple yet Illustrative Example

The following example illustrates different notions of synchronization and

points out various important geometric subtleties occurring on the compact state

space T2. Consider n = 2 oscillators with first-order dynamics V1 = ∅ and

ω2 ≥ 0 ≥ ω1 = −ω2. We restrict our attention to angles contained in Arcn(π): for
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angles θ1, θ2 with |θ2 − θ1| < π, the angular difference θ2 − θ1 is the number in

]−π, π[ with magnitude equal to the geodesic distance |θ2 − θ1| and with positive

sign if and only if the counter-clockwise path length from θ1 to θ2 is smaller than

the clockwise path length. With this definition the two-dimensional oscillator dy-

namics can be reduced to the scalar dynamics of the angular difference θ2 − θ1.

After scaling time as t 7→ t(ω2−ω1) and introducing κ = 2a12/(ω2−ω1), we obtain

d

dt
(θ2 − θ1) = fκ(θ2 − θ1) , 1− κ sin(θ2 − θ1) . (2.13)

The dynamics (2.13) can be analyzed graphically by plotting the scalar vector field

fκ(θ2 − θ1), for θ2 − θ1 ∈ [0, π], see Figure 2.7(a). Figure 2.7 displays a saddle-

node bifurcation at κ = 1. For κ < 1 no equilibria exist. For κ > 1 we have

an asymptotically stable equilibrium θstable = arcsin(κ−1) ∈ ]0, π/2[ together with

an unstable equilibrium θunstable = arcsin(κ−1) ∈ ]π/2, π[. For κ > 1 and θ(0) ∈

[0, θunstable[, all trajectories converge to θstable, that is, the oscillators synchronize

and remain phase cohesive (or arc invariant). For θ(0) 6∈ [0, θunstable] the difference

θ2(t)− θ1(t) increases beyond π, and θ2(t)− θ1(t) converges asymptotically to the

equilibrium θstable in the set where θ2 − θ1 < 0. Equivalently in the configuration

space S1, the oscillators revolve once around the circle before converging to [θstable].

Since sin(θstable) = sin(θunstable) = κ−1, in the limit κ→∞ the oscillators achieve

phase synchronization from every initial condition in an open semi-circle Arc2(π).
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[θsaddle]

θ(t)

θ(0)

! !"# $ $"# % %"# &
!$

!!"#

!

!"#

$

$"#

κ = 1
κ > 1

κ < 1

θ2 − θ1

θstable θunstableθsaddlef κ
(θ

2
−

θ 1
)

(a) (b)

Figure 2.7: Graphical analysis of two coupled oscillators
Subfigure (a) shows a plot of the vector field (2.13) for θ2 − θ1 > 0 and different
values of κ. Subfigure (b) displays a trajectory θ(t) ∈ T2 for the critical case
κ = 1. Here, the dashed line is the saddle equilibrium manifold and � and •
depict the initial angles θ(0) and the asymptotic angles limt→∞ θ(t).

In the critical case, κ = 1, the saddle equilibrium manifold at [θsaddle] is globally

attractive but not stable, see the trajectory in Figure 2.7(b).

In conclusion, the simple but already rich 2-dimensional case shows that two

oscillators are phase cohesive and synchronize if and only if κ > 1, that is, if and

only if the coupling dominates the heterogeneity as 2a12 > ω2−ω1. The ratio 1/κ

determines the asymptotic phase cohesiveness as well as the set of admissible ini-

tial conditions. More general oscillator networks display the same phenomenology,

but the threshold from incoherence to synchrony is generally unknown. Finally,

we remark that for oscillator networks of dimension n ≥ 3, this loss of synchrony

via a saddle-node bifurcation is only the starting point of a series of bifurcations

occurring if the coupling is further decreased, see [172,218,264,273].
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2.4 Consensus, Convexity, & Contraction

In this section, we present the consensus protocol as a linear counterpart to the

coupled oscillator model (1.1). We review some properties and analysis methods

for the linear consensus protocol, and we show how these methods extend to

networks of identical first-order oscillators.

2.4.1 Consensus Protocols

In a system of n autonomous agents, each characterized by a state variable

xi ∈ R, a basic task is to achieve a consensus on a common state value. Given

a digraph G(V , E , A) with adjacency matrix A ∈ Rn×n describing the interaction

between agents, this consensus objective can be achieved by the consensus protocol

ẋi = −
∑n

j=1
aij(xi − xj), i ∈ {1, . . . , n} . (2.14)

The consensus protocol (2.14) is well-studied in the control literature [37,104,180,

200, 221], and it can be regarded as linear counterpart to the coupled oscillator

model (1.1b) with first-order dynamics evolving on a Euclidean state space Rn,

without drift terms, and with identical and unit rates Di = 1 for all i ∈ {1, . . . , n}.

In vector notation the consensus protocol (2.14) takes the form ẋ = −Lx. Due

to the properties of the Laplacian matrix L listed in Section 2.1, the consensus

dynamics (2.14) are translationally invariant, that is, 1n is an equilibrium subspace
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and the change of variables x 7→ x+c1n, where c ∈ R, does not alter the consensus

protocol (2.14). Additionally, the equilibrium subspace 1n is exponentially stable

if and only if the graph G has a globally reachable node. The equilibrium subspace

1n is sometimes termed agreement subspace or the consensus space.

Consensus can also be established for digraphs with time-varying and non-

negative weights aij : R≥0 → R≥0 for all i, j ∈ {1, . . . , n}. Of particular interest

here is a union δ-digraph: given an interval T > 0 and a threshold δ > 0, the

union δ-digraph is the graph induced by the matrix Ã =
∫ t+T
t

A(τ) dτ , where we

additionally set ãij = 0 if ãij ≤ δ. Under a joint connectivity assumption on the

union δ-digraph for some T > 0 and δ > 0, we can state the following result.

Theorem 2.4.1. (Convergence of the consensus protocol, [190, Theorems 1], [166,

Theorem 3.6 and 3.7]) Consider the time-varying consensus protocol

ẋi(t) = −
∑n

j=1
aij(t)(xi(t)− xj(t)), i ∈ {1, . . . , n} , (2.15)

where each aij(t) ≥ 0 is a bounded and piecewise continuous function of time for

all i, j ∈ {1, . . . , n}. If there is T > 0 and δ > 0 such that for each t ≥ 0 the union

δ-digraph induced by
∫ t+T
t

A(τ) dτ has a globally reachable node, the time-varying

consensus protocol (2.14) features the uniformly exponentially stable equilibrium

subspace 1n, the convex hull of all states xi(t) is non-increasing, and all states

xi(t) will exponentially reach a consensus value x∞ ∈ [xmin(0) , xmax(0)].
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The proof of Theorem 2.4.1 relies on the contraction Lyapunov function

V (x(t)) = max
i,j∈{1,...,n}

|xi(t)− xj(t)| , (2.16)

which is a measure for the size of the convex hull of all agents’ states at time t. If

V (x(t)) is a decreasing function of time, then the agents will asymptotically reach

consensus. The technical analysis showing the decay of V (x(t)) is slightly more

subtle since the function V (x(t)) is continuous but not necessarily differentiable

when the maximum distance is attained by more than one pair of agents. The

proof strategies rely on non-smooth analysis. The linear continuous-time case

can be found in [190, Theorems 1], the linear discrete-time case can be found

in [191, Theorems 1 and 2], the nonlinear case can be found in [166, Theorem 3.6

and 3.7], and we also recommend the review in [244, Section 2].

If the graph G is undirected and connected, then further conclusions can be

drawn by symmetry considerations. In this case, 1Tn ẋ(t) = 1TnLx(t) = 0n, and

we conclude that
∑n

i=1 xi(t) is a conserved quantity for all t ≥ 0. By applying

this argument for t = 0 and t → ∞, we conclude that, if the consensus protocol

is convergent to x∞ ∈ [xmin(0) , xmax(0)], we have that the asymptotic consensus

value is the average of the initial values x∞ =
∑n

i=1 xi(0)/n. The appropriate error

coordinate is then given by the disagreement vector δ = x − x∞1n living in the

disagreement space 1⊥n . The quadratic disagreement Lyapunov function ‖δ‖22 can
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be adopted to show that the rate of convergence is no worse than λ2(L), that is,

‖δ(t)‖2 ≤ ‖δ(0)‖2 e−λ2(L)t for all t ≥ 0, see [201, Theorem 8] and [200, Corollary 1].

2.4.2 Homogeneous Oscillator Networks as Nonlinear Con-

sensus Protocols

The interest of the control community in oscillator networks (1.1) was ini-

tially sparked by the articles [139] and [191], which analyzed networks of identical

oscillators as nonlinear extensions of the consensus protocol (2.14). Indeed, for

identical oscillators with first-order dynamics V = V2 = {1, . . . , n}, with zero nat-

ural frequencies ω = 0n, and with unit speeds Di = 1 for all i ∈ {1, . . . , n}, the

coupled oscillator model (1.1) simplifies to

θ̇i = −
∑n

j=1
aij sin(θi − θj) , i ∈ {1, . . . , n} . (2.17)

If all angles are contained in an open semicircle θ ∈ Arcn(π), the dynamics

(2.17) can be projected onto the real line via the local coordinate map ϕ :

]− π/2, π/2[n → Rn defined by xi = ϕi(θi) = tan(θi). With this projection

proposed in [191], the dynamics (2.17) are rewritten as the consensus-type model

ẋi = −
∑n

j=1
bij(x)(xi − xj) , (2.18)

where bij(x)=aij
√

(1 + x2i )/(1 + x2j) ≥ 0. In particular, for θ ∈ Arcn(γ) for some

γ ∈ [0, π[, we have that bij(x) ≥ aij/ sec(γ/2) > 0 is strictly positive for {i, j} ∈ E .
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A similar viewpoint is taken in [139], where the coupled oscillator model (2.17)

is equivalently written as

θ̇i = −
∑n

j=1
cij(θ)(θi − θj) , (2.19)

where cij(θ) = aij sinc(θi−θj) ≥ 0. Again, we have that cij(θ) ≥ aij sinc(γ) > 0 for

{i, j} ∈ E and θ ∈ Arcn(γ), γ ∈ [0, π[. Further consensus-theoretical derivations

of the oscillator network (2.17) can be found in [199,233,241].

In both formulations (2.18) and (2.19), the dynamics (2.17) are regarded as a

consensus protocol (2.14) with strictly positive weights whose values are time-

varying or state-dependent. This interpretation is well defined provided that

θ(t) ∈ Arcn(γ) for all t ≥ 0 and for some γ ∈ [0, π[. Different Lyapunov functions

can be used to assure this boundedness. One natural Lyapunov function relying

upon the contraction property is simply the length of the shortest arc containing

all oscillators. We will revisit these ideas in detail in Chapter 4.

The following result follows from the analysis of nonlinear consensus protocols,

see [166, Theorem 3.6 and 3.7] and [191, Theorems 1 and 2], and the convergence

rate estimate can be obtained along the lines of [139, Theorem 1].

Theorem 2.4.2 (Contraction in Open Semicircle Arcn(π)). Consider the coupled

oscillator model (2.17) with a weighted digraph G(V , E , A) and ω = 0n, and as-

sume that G has a globally reachable node. Then each set Arcn(γ), for γ ∈ [0, π[,
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is positively invariant, and each trajectory originating in Arcn(γ) achieves expo-

nential phase synchronization. Moreover, if G is undirected then

‖θ(t)− θavg1n‖2 ≤ ‖θ(0)− θavg1n‖2eλpst , (2.20)

where λps = −λ2(L) sinc(γ) and θavg =
∑n

i=1θi(0)/n is the average initial phase.1

Theorem 2.4.2 also applies to more general interaction functions, and it can

be extended to time-delays and time-varying graphs. Applications to oscillator

networks and extensions can be found in [116, 116, 166, 191, 194, 232, 240]. In

Chapter 4, we revisit this literature and adopt the contraction Lyapunov function

and the quadratic disagreement Lyapunov function to complex oscillator networks.

Remark 2.4.3 (A control-theoretical perspective on synchronization). As estab-

lished in Theorems 2.4.2, the phase-synchronized set ∆̄G(0) = Arcn(0) is locally

exponentially stable provided all natural frequencies are identical. While phase

synchronization is not possible for dissimilar natural frequencies, a certain degree

of phase cohesiveness can still be achieved. Indeed, the coupled oscillator model

(1.1) can be regarded as an exponentially stable system subject to the disturbance

ω ∈ 1⊥n and synchronization can be studied using classic control-theoretical con-

cepts such as input-to-state stability, practical stability, ultimate boundedness [146]

1This “average” of angles (points on S1) is well-defined for angles in an open semi-circle.
If the parametrization of θ has no discontinuity inside the arc containing all angles, then the
average can be obtained by the usual formula.
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or their incremental versions [14]. In control-theoretical terminology, phase cohe-

siveness can then be described as “practical phase synchronization.” Compared to

prototypical nonlinear control examples, additional challenges arise in the analysis

of the oscillator network (1.1) due to the bounded and non-monotone sinusoidal

coupling, the compact state space, and the coexistence of multiple equilibria. �
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Chapter 3

Mechanical and Kinematic
Oscillator Networks

Inertia is a mixed blessing.

(An apparently common insight in economics and rediscovered here.)

The bulk of the literature on synchronization of coupled oscillators considers

a particular instance of the coupled oscillator model (1.1), namely first-order os-

cillator models with identical unit time-scales, that is, V = V2 = {1, . . . , n} and

Di = 1 for all i ∈ {1, . . . , n}. The resulting dynamics take the form

θ̇i = ωi −
∑n

j=1
aij sin(θi − θj) , {1, . . . , n} . (3.1)

The first-order oscillator network model (3.1) is studied primarily in the dynamics,

control, and physics communities, but also many approaches to transient stability

analysis in power networks rely on the first-order model (3.1). On the other hand,

many interesting applications of coupled oscillator networks include oscillators
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with second-order mechanical dynamics, for instance, the power system models

developed in Subsection 2.2.1.

The theoretic analysis methods for coupled oscillators have been developed

mainly for first-order models of the form (3.1) and cannot be extended in a

straightforward way to second-order models or only under conservative condi-

tions. Nevertheless, the results and insights gained from the first-order oscillator

network (3.1) carry over to the coupled oscillator model (1.1). In this chapter, we

build bridges between the original coupled oscillator model (1.1) and its first-order

variant (3.1). We show under which assumptions the two models can be related,

and we also demonstrate when their dynamic behavior is qualitatively different.

3.1 Introduction

3.1.1 Relevant Literature

The coupled oscillator model (1.1) with both first and second-order dynamics

appears directly in structure-preserving power network models [27,47,234]. Purely

second-order oscillator networks (1.1a) appear in synchronization phenomena in

populations of fireflies [96], in coupled Josephson junctions [292], in network-

reduced power system models [49, 50], in animal flocking behavior [117, 120], in
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laser oscillators [130], in micromechanical oscillators [246,303], in coupled pendu-

lum clocks [26,144], in metronomes [211], and in crowd synchrony [261].

Multiple disciplines study the relationships between the first-order kinematic

systems and the associated second-order Newtonian system, such as the coupled

oscillator model (1.1) and its first-order variant (3.1). Clearly, both systems have

the same equilibria. If the first-order vector field is a gradient system and admits

a finite number of isolated and hyperbolic equilibria, then various similarities be-

tween the first-order gradient flow and the second-order dissipative Newtonian

systems are known in mechanical control systems [150,151], in dynamic optimiza-

tion [10,20,109], and in transient stability studies for power networks [49,51,61].

These results do generally not extend to the coupled oscillator model (1.1) and its

first-order variant (3.1). In order to overcome these difficulties in transient stabil-

ity analysis, the dynamics are formulated in relative coordinates, for example, by

pinning one generator angle to a fixed value or by assuming a uniform inertia over

damping ratio for all generators. We remark that these mathematical assump-

tions are not necessarily physically justified. Additionally, the cited results do not

extend to symmetry-breaking transfer conductances, or do so only for sufficiently

small conductances. We will detail these shortcomings in Subsection 3.2.1.

The Kuramoto model (1.2) is a particular instance of the first-order coupled

oscillator model (3.1). Likewise, a particular instance of the coupled oscillator
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model (1.1) is given by the multi-rate Kuramoto model:

Miθ̈i +Diθ̇i = ωi −
K

n

∑n

i=1
sin(θi − θj) , i ∈ V1, ,

Diθ̇i = ωi −
K

n

∑n

i=1
sin(θi − θj) , i ∈ V2 .

(3.2)

For V2 = ∅, unit damping Di = 1, and uniform inertia Mi = M > 0, the second-

order Kuramoto system (3.2) has received some attention in the recent litera-

ture [2, 3, 57, 126, 127, 265, 266]. The cited results on the inertial effects on syn-

chronization are controversial and report that synchronization is either enhanced

or inhibited by sufficiently large (or also sufficiently small) inertial coefficients.

In [57] two sufficient synchronization conditions are derived via second-order

Gronwall’s inequalities resulting in an explicit bound on the critical coupling to-

gether with conditions on sufficiently small inertia or sufficiently large inertia [57,

Theorems 5.1 and 5.2]. In [57, Theorem 4.1 and 4.2] phase synchronization was

also found to depend on the inertia, whereas phase synchronization was found to

be independent of the inertia in the corresponding continuum limit model [2, 3].

References [265, 266] observe a discontinuous first-order phase transition (where

the incoherent state looses its stability), which is independent of the distribution

of the natural frequencies when the inertia M is sufficiently large. This result is

also confirmed in [2,3]. In [127] a second-order Kuramoto model with time delays

is analyzed, and a correlation between the inertia and the asymptotic synchro-

nization frequency and asymptotic magnitude of the order parameter magnitude
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is observed. In [2, 3, 126] it is reported that inertia suppress synchronization for

an externally driven or noisy second-order Kuramoto model, and [2, 3] explicitly

show that the critical coupling Kcritical increases with the inertia coefficient M for

a Lorentzian or a bipolar distribution of the natural frequencies.

The cited results [2, 3, 57, 126, 127, 265, 266] on the inertial effects on synchro-

nization appear conflicting. Possible reasons for this controversy include that

the cited articles consider slightly different scenarios (time delays, noise, external

forcing), the cited results are only sufficient, the analyses are based on the infinite-

dimensional continuum-limit approximation of the finite-dimensional model (3.2),

and some results stem from insightful but partially incomplete numerical obser-

vations and physical intuition.

3.1.2 Contributions and Organization

In the following sections, we present different methods to relate the coupled

oscillator model (1.1) and its first-order variant (3.1).

Section 3.2: We begin our discussion by introducing a forced Hamiltonian

and forced gradient formulation of the coupled oscillator model (1.1). We find

that this formulation is very versatile for the latter analysis. Since the classic

transient stability analysis literature also makes use of Hamiltonian methods, we

present a brief review in Subsection 3.2.1. Additionally, we state some key prop-
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erties resulting from a potential landscape and Jacobian analysis of the first-order

coupled oscillator model (3.1), see Lemma 3.2.1.

Section 3.3: In this section, we prove a general result that relates the equilib-

ria and local stability properties of forced gradient systems to those of dissipative

Hamiltonian systems together with gradient-like dynamics and external forcing,

see Theorem 3.3.1. Our method of proof relies on homotopy methods, topolog-

ical conjugacy arguments, and matrix theory. As a special case, we are able to

show that the coupled oscillator model (1.1) is locally topologically conjugate to

its first-order variant (3.1), see Theorem 3.3.3. As a corollary of this topological

conjugacy and our analysis of the potential landscape, we are able to state a result

on phase synchronization in the coupled oscillator model (1.1), see Theorem 3.3.4.

Our results show that the inertial coefficients Mi do not affect the local syn-

chronization conditions in the coupled oscillator model (1.1). In particular, the

location and local stability properties of all equilibria are independent of the in-

ertial coefficients Mi and so are all local bifurcations. Rather, these quantities

depend on the viscous damping parameters Di and the natural frequencies ωi.

These interesting and provably correct findings contradict prior observations on

the role of inertia inhibiting or enhancing synchronization in second-order multi-

rate Kuramoto models (3.2). Of course, these conclusions are valid only locally,

and the inertial terms still affect the transient synchronization behavior. Addition-
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ally, the topological conjugacy results strongly rely on the fact that the coupled

oscillator model (1.1) can be formulated as a forced gradient and Hamiltonian

system. The equivalence of local stability conditions may not be true otherwise.

We conclude Section 3.3 by highlighting the role of inertia and damping terms in

transient stability analysis in power networks.

Section 3.4: In this section, we present a reduction method that allows to

relate transient dynamics and the trajectories of first and second-oder oscillator

networks. We consider a system of coupled oscillators with second-order dynamics

and with phase shifts in the coupling functions. This model is found in the de-

scription of network-reduced power system models (2.5). The symmetry-breaking

phase shifts imply that the model is not Hamiltonian, and the topological con-

jugacy results cannot be applied. We assume that each oscillator is strongly

overdamped, that is, the ratio of inertia and damping is sufficiently small. This

assumption allows us to relate the second-order oscillator dynamics to an associ-

ated first-order oscillator model through a singular perturbation analysis.

In order to apply a singular perturbation analysis by Tikhonov’s method, we

reformulate the first and second-order oscillator networks in grounded coordinates,

which take value in Euclidean space and remove the rotational symmetry. Our

main result, Theorem 3.4.2, shows that for a sufficiently overdamped oscillators,

the trajectories of the first and second-order oscillator network can be related up
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to an error of the order of the perturbation parameter. We illustrate the quality of

the singular perturbation approximation through a simulation study, and discuss

the validity of the singular perturbation assumption in power network models.

Section 3.5: This section concludes this chapter by comparing the singu-

lar perturbation and topological conjugacy approaches as well as alternative ap-

proaches suggested in the literature.

3.2 Hamiltonian and Gradient Formulation

Recall the mechanical analog in Figure 1.1. The potential energy U : Tn → R

of the elastic springs is, up to an additive constant,

U(θ) =
∑

{i,j}∈E
aij
(
1− cos(θi − θj)

)
. (3.3)

For the complete graph with uniform weights K/n, the magnitude r of the order

parameter and the potential energy U(θ) are related by 2
n
U(θ) = 1− r2. One can

easily verify that the phase-synchronized state is a local minimum of the potential.

In general, for an undirected graph, the coupled oscillator model (1.1) can

be rewritten as a mixed gradient and Newtonian (or second-order Hamiltonian)

system with dissipation and external forcing terms:

Miθ̈i +Diθ̇i = ωi −
∂

∂θi
U(θ) , i ∈ V1,

Diθ̇i = ωi −
∂

∂θi
U(θ) , i ∈ V2.

(3.4)
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Likewise, the first-order coupled oscillator model (3.1) can be reformulated as the

forced gradient flow

θ̇i = ωi −
∂

∂θi
U(θ) , i ∈ {1, . . . , n} . (3.5)

3.2.1 Classic Transient Stability Analysis Approaches

As discussed in Subsection 3.1.1, non-gradient-like vector fields and non-isolated

equilibria pose challenges in the analysis of the coupled oscillator model (1.1) and

its first-oder variant (3.1). In the following, we show how the transient stability

literature circumvents these obstacles and which assumptions are typically made.

In order to remove the rotational symmetry and to render the synchronization

problem to a stability problem, the power system dynamics are usually formulated

in relative coordinates. Sometimes, the existence of an infinite bus (a stationary

bus with fixed angle and without dynamics) as reference is postulated [52, 278].

Some other times, the center of angle coordinates θi− (
∑

jMjθj/
∑

jMj) are cho-

sen or machine n is selected as reference in the coordinates θi−θn, i ∈ {1, . . . , n−

1} [6, 268]. Since the resulting dynamics under these approaches are not self-

contained, a common (and historically debated [206]) assumption is that of uni-

form damping, that is, Di/Mi is assumed to be constant for all generators. We

remark that the assumption of uniform damping and the existence of an infinite

bus are mathematical simplifications that are not necessarily physically justified.
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For dissimilar forcing terms, the vector field (3.5) is not a gradient system, and

the second-order vector field (3.4) is not a Hamiltonian system. Dissimilar forcing

terms correspond to the distinct natural frequencies in a heterogeneous oscillator

network or to active power injections (positive for sources and negative for sinks)

in a power network. In the transient stability literature, the forcing terms are

usually absorbed into the potential energy, such that it reads

Ũ(θ) = U(θ)−
∑n

i=1
ωi · θi.

Notice that Ũ(θ) is not a 2π-periodic function, it is only locally defined on Tn, and

its level sets are not necessarily compact. Hence, even though Ũ(θ) is decreasing

along solutions of (3.1), it cannot be used as a standard Lyapunov function whose

level sets guarantee a bounded evolution. On the other hand, it can be used within

the energy function framework [8, 48, 50, 207, 278], which led to the development

of various sophisticated analytic and computational methods.

In presence of transmission line losses or impedance load models, the power

network equations feature nontrivial (transfer) conductances <(Yij) > 0 (or equiv-

alently nonzero phase shifts ϕij > 0) and read as in (2.5)-(2.6). Since Hamiltonian

formulations for lossy power network models do not exist [62], early analysis ap-

proaches neglect the conductances [52,278]. While this assumption is fairly realis-

tic for the line losses in high-voltage transmission networks, it cannot be made for
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transfer conductances arising from impedance loads. These obstacles led to the

development of structure-preserving models and their analysis [27,48,50,274,305].

Finally, we highlight the PEBS [52] and the BCU [49] analysis methods, which

relate the first and second-order systems (3.4)-(3.5) under the above assumptions.

We list the following results: (θ∗,0|V1|) is a hyperbolic type-k equilibrium of (3.4),

that is, the Jacobian has k stable eigenvalues, if and only if θ∗ is a hyperbolic

type−k equilibrium of (3.5). Additionally, if a generic transversality condition

holds, then the regions of attractions of both equilibria are bounded by the stable

manifolds of the same unstable equilibria [52, Theorems 6.2-6.3]. By means of

structural stability arguments, these results can also be extended for “sufficiently

small” phase shifts ϕij [49, Theorem 5.7]. Based on these results, sophisticated

computational methods were developed to approximate the stability boundaries

of (3.4) by level sets of energy functions and separatrices of (3.5).

We remark that for sufficiently large conductances and sufficiently small damp-

ing, the local stability properties do not translate between the two models (3.4)-

(3.5), see [252]. Additionally, power network models sometimes feature “degener-

ate” vector fields, where the generic transversality conditions fail, and sufficiently

large damping is required to relate the regions of attractions of the two models

(3.4)-(3.5), see [7, 9, 63,205,208]. We revisit these issues in Subsection 3.3.4.
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3.2.2 Potential Landscape and Jacobian Analysis

In this subsection, we review a few fundamental insights, we state some key

properties, and we introduce some analysis methods which will be exploited in

this section and throughout the rest of this thesis.

The formulation (3.5) of the first-order oscillator network (3.1) as a forced

gradient system clarifies the competition between the synchronization-enforcing

coupling through U(θ) and the synchronization-inhibiting heterogeneous natural

frequencies ωi. The unforced system (3.5) with ω = 0n is simply a negative

gradient flow θ̇ = −∂U(θ)/∂θ with U(θ) as natural Lyapunov function.

Since the Jacobian J(θ) is the negative Hessian of the potential U(θ), we

continue by drawing some insights from a Jacobian analysis. The following results

are known in the synchronization literature [85, 139] as well as in power systems,

where the saturation of a transmission line corresponds to a singularity of the

load flow Jacobian and results in a saddle node bifurcation [16,27,47,78,112,136,

234, 235, 269, 270, 298, 299]. To the best of the author’s knowledge the following

insights date back to in [269,270] and have been rediscovered several times.

Lemma 3.2.1 (Stable synchronization in ∆G(π/2)). Consider the coupled oscil-

lator model (1.1) with an undirected, connected, and weighted graph G(V , E , A)

and frequencies ω ∈ 1⊥n . If there exists an equilibrium θ∗ ∈ ∆G(π/2), then
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(i) The Jacobian J(θ∗) is a negative Laplacian matrix:

J(θ) = −B diag({aij cos(θ∗i − θ∗j )}{i,j}∈E)BT ; (3.6)

(ii) the equilibrium manifold [θ∗] ⊂ ∆G(π/2) is locally exponentially stable (mod-

ulo rotational symmetry).

Proof. The right-hand side of (1.1) defines the vector field f : Tn → Rn with

components

fi(θ) = ωi −
∑n

j=1
aij sin(θi − θj) , i ∈ {1, . . . , n} . (3.7)

Since we have that ∂
∂θi
fi(θ) = −∑n

j=1 aij cos(θi − θj) and ∂
∂θj
fi(θ) = aij cos(θi −

θj), the negative Jacobian −J(θ) of the coupled oscillator model (1.1) equals

the Laplacian of the connected graph G(V , E , Ã) where ãij = aij cos(θi − θj).

Equivalently, in compact notation the Jacobian is given by J(θ) in (3.6).

The Jacobian J(θ) evaluated at an equilibrium point θ∗ ∈ ∆̄G(γ) is negative

semidefinite with rank n−1. Its nullspace 1n arises from the rotational symmetry,

see Figure 2.6. Consequently, the equilibrium θ∗ ∈ ∆̄G(γ) is locally (transversally)

exponentially stable, and the corresponding equilibrium manifold [θ∗] ⊂ ∆̄G(γ) is

locally exponentially stable. This completes the proof of statement 2).

Remark 3.2.2 (Uniqueness in ∆̄G(π/2)). In earlier work [89], we also stated that

the equilibrium manifold [θ∗] is unique in ∆̄G(π/2) (modulo rotational symmetry).
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The proof of this statement was based on [16, Corollary 1], which states that

the vector field f − ω is a one-to-one function on ∆̄G(π/2) modulo rotational

symmetry, that is, for θ1 ∈ ∆̄G(π/2) and θ2 ∈ ∆̄G(π/2), we have that f(θ1) =

f(θ2) if and only if [θ1] = [θ2]. However, the result [16, Corollary 1] is erroneous

when carefully treating the angles as elements on the unit circle S1 rather than

numbers on the real axis R. A simple counter-example is given by a ring graph with

n ≥ 5 nodes, with identical unit weights, and with ω = 0n. In this case, the phase-

synchronized set ∆̄G(0) ⊂ ∆̄G(π/2) is one stable solution in ∆̄G(π/2). Yet another

stable solution in ∆̄G(π/2) is given by a loop flow [154], that is, the set of uniformly

spaced angles [θ∗] =
[
(0, 2π/n, . . . , (n− 1) · 2π/n)

]
∈ ∆̄G(2π/n) ⊂ ∆̄G(π/2). �

These basic results in Lemma 3.2.1 are fundamental to various analysis ap-

proaches. Further consequences of the particular form of the Jacobian (3.6) in

∆G(π/2) are collected in Chapter 4. The results in Lemma 3.2.1 are appli-

cable only to angles inside the phase cohesive set ∆G(π/2), where all weights

ãij(θ
∗) = aij cos(θ∗i − θ∗j ) are strictly positive for {i, j} ∈ E and the Laplacian

properties of the Jacobian J(θ) can be exploited. Outside the set ∆G(π/2), the

weighs ãij(θ
∗) = aij cos(θ∗i − θ∗j ) can be zero or negative for {i, j} ∈ E , and

the associated state-dependent graph (induced by Ã(θ∗)) may be disconnected.

In this more general setting, the standard methods from algebraic and spectral

graph theory cannot be applied and many puzzling examples are known [16]. A

70



Chapter 3. Mechanical and Kinematic Oscillator Networks

necessary condition for stability of arbitrary equilibrium manifolds [θ∗] ⊂ Tn is

that the graph induced by the Jacobian J(θ∗) possesses a spanning tree with

strictly positive weights ãij(θ
∗) > 0 along its edges [77]. Sufficient stability and

instability conditions can be derived if the graph induced by J(θ∗) admits cer-

tain cutsets [16,27,47,173]. Finally, for the complete graph with uniform weights

(see the Kuramoto model (1.2)), additional insights and identities related to the

Jacobian (3.6) can be found in [5, 33,185,281].

Since the Jacobian matrix J(θ) is the negative Hessian matrix of the potential

U(θ), Lemma 3.2.1 implies that any equilibrium in ∆G(π/2) is a local minimizer

of U(θ). Of particular interest are so-called S1-synchronizing graphs for which all

critical points of (3.3) are hyperbolic, the phase-synchronized state is the global

minimum of U(θ), and all other critical points are local maxima or saddle points.

The class of S1-synchronizing graphs includes, among others, complete graphs and

acyclic graphs [42–44, 189, 232]. These basic results motivated the study of the

critical points and of the curvature of the potential energy U(θ) in the literature on

the theory and applications of synchronization, including, for example, the study

of transient stability in power systems and the design of motion coordination

controllers for planar vehicles, see Subsections 2.2.2 and 2.2.1.
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3.3 Topological Conjugacy

In this section we show that the location, local stability conditions, and local

bifurcations are identical in the coupled oscillator model (1.1) and its first-order

variant (3.1). In Subsection 3.3.1, we prove a general theorem that relates the local

stability properties of first-order gradient-like systems and second-order dissipa-

tive Hamiltonian systems. In Subsection 3.3.2, we specialize this result to complex

oscillator networks. In Subsection 3.3.3, we further refine this result for homoge-

neous oscillator networks. As a consequence, the local synchronization conditions

are independent of the inertiae, but transient dynamics and non-gradient-like dy-

namics strongly depend on the inertial terms, as discussed in Subsection 3.3.4.

The treatment in this section slightly differs from the author’s article [83] and

contains a simpler problem setup and more compact proof methods.

3.3.1 A One-Parameter Family of Dynamical Systems and

its Properties

In this subsection, we apply homotopy methods to link the coupled oscillator

model (1.1) and its first-order variant (3.1) through a parametrized system.

Consider for n1, n2 ≥ 0 and λ ∈ [0, 1] the following one-parameter family Hλ of

dynamical systems combining dissipative Hamiltonian and gradient-like dynamics
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together with external forcing as

Hλ :

(
λIn1 + (1− λ)D1

)
ẋ1 = F1 −

∂H(x)

∂x1
,



In2 0

0
(
λIn2 + (1− λ)M

)






ẋ2

ẋ3


 =




λF2

(1− λ)F2


+


(1− λ)




0 In2

−In2 0


−



λIn2 0

0
(
λIn2 + (1− λ)D2

)









∂H(x)
∂x2

∂H(x)
∂x3


 ,

(3.8)

where x = (x1, x2, x3) ∈ X1×X2×Rn2 = X . Here, X1 and X2 are smooth manifolds

of dimensions n1 and n2, respectively. The matrices D1 ∈ Rn1×n1 , D2 ∈ Rn2×n2 ,

and M ∈ Rn2×n2 are positive definite. The symbol 0 denotes zero matrices of ap-

propriate dimension1, F1 ∈ Rn1 and F2 ∈ Rn2 are constant forcing terms, and H :

X → R is a smooth potential function with gradient ∇H(x) = (∂H(x)/∂x)T ∈

R(n1+2n2)×1 and Hessian matrix ∇2H(x) = ∂2H(x)/∂x2 ∈ R(n1+2n2)×(n1+2n2).

The parameterized system (3.8) continuously interpolates, as a function of

λ ∈ [0, 1], between gradient and mixed dissipative Hamiltonian/gradient-like dy-

namics. For λ = 0, the dynamics (3.8) reduce to gradient-like dynamics for x1

1In this subsection, we do not index the zero matrices according to their dimension to avoid
notational clutter.
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and dissipative Hamiltonian (or Newtonian) dynamics for (x2, x3) written as

H0 :

D1ẋ1 = F1 −
∂H(x)

∂x1
,



In2 0

0 M






ẋ2

ẋ3


 =




0

F2


+







0 In2

−In2 0


−




0 0

0 D2









∂H(x)
∂x2

∂H(x)
∂x3


 .

(3.9)

For λ=1, (3.8) reduces to gradient dynamics with external forcing F=(F1, F2,0n2):

H1 : ẋ = F−∇H(x) . (3.10)

It turns out that, independently of λ ∈ [0, 1], all parameterized systems of the form

(3.8) have the same equilibria with the same local stability properties determined

by potential function H(x). The following theorem summarizes these facts.

Theorem 3.3.1 (Properties of the Hλ family). Consider for λ ∈ [0, 1] the one-

parameter family Hλ of dynamical systems (3.8) with arbitrary positive definite

matrices D1, D2, and M . The following statements hold:

(i) Invariance of equilibria: For all λ ∈ [0, 1], the equilibria of Hλ are given

by the set E , {x ∈ X : ∇H(x) = F}; and

(ii) Invariance of local stability: For any equilibrium x∗ ∈ E and for all

λ ∈ [0, 1], the inertia of the Jacobian of Hλ equals the inertia of −∇2H(x∗)

and the corresponding center-eigenspace is the nullspace of ∇2H(x∗).
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Statements 1) and 2) assert that normal hyperbolicity of the critical points of

H(x) can be directly related to local exponential (set) stability for any λ∈ [0, 1].

This implies that all vector fields Hλ, λ ∈ [0, 1], are locally topologically con-

jugate [226] near a hyperbolic equilibrium point x∗ ∈ E . In particular, near

x∗ ∈ E , trajectories of the gradient vector field (3.10) can be continuously de-

formed to match trajectories of the Hamiltonian vector field (3.9) while preserv-

ing parameterization of time. This topological conjugacy holds also for hyper-

bolic equilibrium trajectories [65, Theorem 6] considered in synchronization. The

similarity between second-order Hamiltonian systems and the corresponding first-

order gradient flows is well-known in mechanical control systems [150, 151], in

dynamic optimization [10, 20, 109], and in transient stability studies for power

networks [49, 51, 61], but we are not aware of any result as general as Theorem

3.3.1. In [49, 51, 61], statements 1) and 2) are proved under the more stringent

assumptions that Hλ has a finite number of isolated and hyperbolic equilibria.

Remark 3.3.2 (Extensions on Euclidean state spaces). If the dynamical sys-

tem Hλ is analyzed on the Euclidean space Rn1+2n2 , then it can be verified

that the modified potential function H̃ : Rn1+2n2 → R, H̃(x) = −F T
1 x1 −

F T
2 x2 + H(x1, x2,M

1/2x3) is non-increasing along any forward-complete solution

x : R≥0 → Rn1+2n2 and for all λ ∈ [0, 1]. Furthermore, if the sublevel set

Ωc = {x ∈ X : H̃(x) ≤ c} is compact, then every solution initiating in Ωc is

75



Chapter 3. Mechanical and Kinematic Oscillator Networks

bounded and forward-complete, and by the invariance principle [146, Theorem 4.4]

it converges to the set E ∩ Ωc, independently of λ ∈ [0, 1]. These statements can

be refined under further structural assumptions on the potential function H̃(x),

and various other minimizing properties can be deduced, see [10, 20, 109]. Addi-

tionally, if H̃(x) constitutes an energy function, if all equilibria are hyperbolic, and

if a one-parameter transversality condition is satisfied, then the separatrices of sys-

tem (3.8) can be characterized accurately [49,51,61]. For zero forcing F = 0n1+2n2 ,

these convergence statements also hold on the possibly non-Euclidean space X ,

see Theorem 3.3.4 for an analysis of phase synchronization. �

Proof of Theorem 3.3.1: For notational simplicity, consider the matrices Dλ,1 =

(
λIn1 + (1 − λ)D1

)
, Dλ,2 =

(
λIn2 + (1 − λ)D2

)
, and Mλ =

(
λIn2 + (1 − λ)M

)
.

Notice that for all λ ∈ [0, 1], the matrices Dλ,1, Dλ,2, and Mλ are positive definite.

To prove statement 1), we reformulate the parameterized dynamics (3.8) as




Dλ,1ẋ1

ẋ2

Mλẋ3




=




In1 0 0

0 λIn,2 (λ− 1)In2

0 (1− λ)In2 Dλ,2




︸ ︷︷ ︸
,Wλ




F1 − ∂H(x)
∂x1

F2 − ∂H(x)
∂x2

−∂H(x)
∂x3




︸ ︷︷ ︸
=F−∇H(x)

.

It follows from the Schur determinant formula [302] that det(Wλ) = det(λDλ,2 +

(1−λ)2In,2) is positive for all λ ∈ [0, 1]. Hence, Wλ is nonsingular for all λ ∈ [0, 1],

and the equilibria of (3.8) are given by the set E = {x ∈ X : ∇H(x) = F}.
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For the proof of statement 2), consider the Jacobian Jλ(x
∗) of Hλ at an equi-

librium x∗ ∈ E , which is given by

Jλ(x
∗) =




D−1λ,1 0 0

0 λIn,2 (λ− 1)M−1
λ

0 (1− λ)M−1
λ M−1

λ Dλ,2M
−1
λ




︸ ︷︷ ︸
,Sλ



−In1+n2 0

0 −Mλ


∇

2H(x∗)

︸ ︷︷ ︸
,S(x∗)

.

(3.11)

Again, we obtain det(Sλ) = det(D−1λ,1) det(λ·M−1
λ Dλ,2M

−1
λ +(1−λ)2In2). Thus, for

for all λ ∈ [0, 1], the matrix Sλ is nonsingular and the nullspace of Jλ(x
∗) equals

Ker (∇2H(x∗)). To show that the stability properties of the equilibrium x∗ ∈ E

are independent of λ ∈ [0, 1], we prove that the inertia of the Jacobian Jλ(x
∗)

depends only on S(x∗) and not on λ ∈ [0, 1]. For the invariance of the inertia we

invoke the main inertia theorem for positive semi-definite matrices [45, Theorem

5]. Note that Jλ(x
∗) and Jλ(x

∗)T have the same eigenvalues. Let A , Jλ(x
∗)T

and P , S(x∗), and consider the matrix Q defined via Lyapunov’s equation as

Q , 1

2

(
AP + PAT

)
= P




D−1λ,1 0 0

0 λIn,2 0

0 0 M−1
λ Dλ,2M

−1
λ



P .

Note that Q is positive semidefinite for λ ≥ 0, and for λ 6= 0 the nullspaces

of Q and P coincide, that is, Ker (Q) = Ker (P ). Hence, for λ ∈ ]0, 1] the

assumptions of [45, Theorem 5] are satisfied, and it follows that the non-zero
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inertia of A = Jλ(x
∗)T (restricted to image of A) corresponds to the non-zero

inertia of P . Hence, the non-zero inertia of Jλ(x
∗) is independent of λ ∈ ]0, 1], and

possible zero eigenvalues correspond to Ker (Jλ(x
∗)) = Ker (∇2H(x∗)).

To handle the case λ = 0 we invoke continuity arguments. Since the eigenvalues

of Jλ(x
∗) are continuous functions of the matrix elements and the inertia of Jλ(x

∗)

is constant for all λ ∈ ]0, 1], the inertia of J0(x
∗) is either the same as the inertia

of Jλ(x
∗) for λ > 0 sufficiently small or at least one eigenvalue becomes zero. The

latter case is not possible since the zero eigenspace of the Jacobian Jλ(x
∗) is given

by Ker (∇2H(x∗)) and remains unchanged as λ ↓ 0. It follows that the inertia of

Jλ(x
∗) equal the inertia of P for all λ ∈ [0, 1].

Finally, since blkdiag(In1+n2 ,M) is positive definite, Sylvester’s inertia theorem

[45] asserts that the inertia of P = blkdiag(In1+n2 ,M)(−∇2H(x∗)) equals the

inertia of −∇2H(x∗). In conclusion, the inertia and the nullspace of Jλ(x
∗) equal

the inertia of −∇2H(x∗) and Ker (∇2H(x∗)), and the proof is complete.

3.3.2 Equivalence of Local Synchronization Conditions

As a consequence of Theorem 3.3.1, we can link synchronization in the cou-

pled oscillator model (1.1) and its first-order variant (3.1). Since Theorem 3.3.1

is valid only for equilibria, we change coordinates to a rotating frame. By Lemma

2.3.2, the explicit synchronization frequency of the coupled oscillator model (1.1)
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is given by ωsync =
∑n

i=1 ωi/
∑n

i=1Di, that is, it depends only on the natural fre-

quencies and damping coefficients of the oscillators. As discussed in Subsection

2.3.1, by transforming to a rotating frame with frequency ωsync, stable synchro-

nization is equivalent to stability of a synchronization (or equilibrium) manifold.

Equivalently, assume that each ωi is replaced ωi −Diωsync, such that ω ∈ 1⊥n .

In the following, we consider the coupled oscillator model (1.1) and its first-

order variant (3.1) with ω ∈ 1⊥n . Additionally, we consider the the globally expo-

nentially stable, linear, and fully decoupled frequency dynamics

d

dt
θ̇i = −θ̇i , i ∈ {1, . . . ,m} , (3.12)

Notice that the coupled oscillator model (1.1) and its first-order variant (3.1) to-

gether with frequency dynamics (3.12) are instances of the parameterized system

(3.8) with x1 being associated with the angles θi for i ∈ V2, (x2, x3) being asso-

ciated with (θi, θ̇i) for i ∈ V1, the forcing terms F = (ω,0|V1|), and the potential

H : Tn × R|V1| → R, H(θ, θ̇) = 1
2
θ̇T θ̇ + U(θ) defined up to a constant value. The

following result is obtained by applying Theorem 3.3.1 to these two models.

Theorem 3.3.3 (Synchronization Equivalence). Consider the coupled oscillator

model (1.1) and its first-order variant (3.1) together with frequency dynamics

(3.12) with an undirected, connected, and weighted graph G(V , E , A). Assume
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that ω ∈ 1⊥n , and let γ ∈ [0, π[. The following statements are equivalent for any

γ ∈ [0, π/2[ and any synchronization manifold ([θ],0|V1|) ⊂ ∆̄G(γ)× R|V1|.

(ii) ([θ],0|V1|) is a locally exponentially stable synchronization manifold of the

coupled oscillator model (1.1); and

(ii) [θ] is a locally exponentially stable synchronization manifold of the first-order

coupled oscillator model (3.1).

If the equivalent statements (i) and (ii) are true, then, locally near their respective

synchronization manifolds, the coupled oscillator model (1.1) and its first-order

variant (3.1) together with frequency dynamics (3.12) are topologically conjugate.

For purely second-order oscillator networks (1.1) (V = V1), Theorem 3.3.1 and

Theorem 3.3.3 essentially state that the locations and stability properties of the

foci of second-order oscillators (with damped oscillatory dynamics) are equiva-

lent to those of the nodes of the first-order oscillator network (3.1) and the fre-

quency dynamics (3.12) (with overdamped dynamics), as illustrated in Figure 3.1.

Loosely speaking, the topological conjugacy result means that the trajectories of

the two phase space plots in Figure 3.1 can be continuously deformed to match

each other while preserving parameterization of time.

Proof of Theorem 3.3.3: Recall from Subsection 2.3.1 that a synchronized trajec-

tory of the coupled oscillator model (1.1) with ω ∈ 1⊥n takes value in a synchroniza-

80



Chapter 3. Mechanical and Kinematic Oscillator Networks

0.5 1 1.5

−0.5

0

0.5

0.5 1 1.5

−0.5

0

0.5

θ̇(
t)

θ(t) [rad] θ(t) [rad]

θ̇(
t)

[r
a
d
/s

]

θ̇(
t)

[r
a
d
/
s]

Figure 3.1: Topological conjugacy of first and second-order oscillator dynamics
The left plot shows the phase space dynamics of a network of n = 4 second-
order multi-rate Kuramoto oscillators (3.2) with V2 = ∅ and Kuramoto-type cou-
pling aij = K/n for all distinct i, j ∈ V1 = {1, . . . , 4} and for K ∈ R. The
right plot shows the phase space dynamics corresponding to first-order Kuramoto
oscillators (1.2) together with the frequency dynamics (3.12). The natural fre-
quencies ωi and the coupling strength K are chosen such that ωsync = 0 and
K = 1.1 · maxi,j∈{1,...,4} |ωi − ωj|. From the same initial configuration θ(0) (de-
noted by �) both first and second-order oscillators converge exponentially to the
same synchronized equilibria (denoted by •), as predicted by Theorem 3.3.3.

tion manifold of the form ([θsync],0|V1|) ⊂ Tn×R|V1| for some for some γ ∈ [0, π/2[

and θsync ∈ ∆̄G(γ). The synchronization manifold is also an equilibrium manifold.

In the quotient space Tn\S1×R|V1|, after factoring out the rotational invariance

of the angular variable θ, the synchronization manifold ([θsync],0|V1|) is an isolated

equilibrium point of the coupled oscillator model (1.1). Recall that an isolated

equilibrium of a smooth nonlinear system with bounded and Lipschitz Jacobian is

exponentially stable if and only if the Jacobian is a Hurwitz matrix [146, Theorem
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4.15]. Therefore, the synchronization manifold is hyperbolic in the quotient space

Tn \ S1 × Rm if and only if the Jacobian of the coupled oscillator model (1.1)

evaluated in ([θsync],0|V1|) ⊂ Tn × R|V1|, has exactly |V1| + 2 · |V2| − 1 stable

eigenvalues and one zero eigenvalue due to rotational symmetry. Equivalently,

the synchronization manifold ([θsync],0|V1|) is locally exponentially stable if and

only if the inertia of the Jacobian is {|V1| + 2 · |V2| − 1, 0, 1}. By an analogous

reasoning we reach the same conclusion for the first-order coupled oscillator model

(3.1): the synchronization manifold [θsync] ⊂ Tn is exponentially stable if and only

if the inertia of the Jacobian evaluated in [θsync] is {|V1|+ |V2| − 1, 0, 1}.

Finally, recall that the coupled oscillator model (1.1) and its first-order variant

(3.1) together with frequency dynamics (3.12) are instances of the parameterized

system (3.8). Therefore, by Theorem 3.3.1, both systems have the same equilibria

and the corresponding Jacobians (evaluated at these equilibria) have the same

inertia. Thus, the equilibrium manifold ([θsync],0|V1|) ⊂ Tn×R|V1| is locally expo-

nentially stable for the system (1.1) if and only if it is locally exponentially stable

for the system (3.1),(3.12). This concludes the proof of the equivalence (i)⇔ (ii).

We now prove the final conjugacy statement. By the generalized Hartman-

Grobman theorem [65, Theorem 6], the trajectories of the coupled oscillator model

(1.1) and its first-order variant (3.1) together with frequency dynamics (3.12) are

topologically conjugate to the flow generated by their respective linearized vec-
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tor fields locally near the exponentially stable equilibrium ([θsync],0|V1|). Since the

two vector fields (1.1) and (3.1),(3.12) are hyperbolic with respect to ([θsync],0|V1|)

and their respective Jacobians have the same hyperbolic inertia (besides the com-

mon one-dimensional center eigenspace arising from the rotational symmetry),

the corresponding two linearized dynamics are topologically conjugate [226, The-

orem 7.1]. In summary, the two vector fields (1.1) and (3.1),(3.12) are locally

topologically conjugate near the equilibrium manifold ([θsync],0|V1|).

The following remarks concerning Theorem 3.3.3 are in order. The above

results are valid only for equilibria. Thus, the coupled oscillator model (1.1) and

its first-order variant (3.1) possibly have to be transformed to a rotating frame by

replacing ωi by ωi −Diωsync. The existence and location of equilibria, their local

stability properties, as well as all local bifurcations in the coupled oscillator model

(1.1) are then independent of the inertial coefficients Mi since they can be analyzed

by means of the first-order variant (3.1). Rather they depend only on the nodal

parameters ωi −Diωsync and the interaction topology among the oscillators with

coupling gains aij. Theorem 3.3.3 is also in perfect agreement with the results

derived in [126] for the case of two second-order Kuramoto oscillators, which

arrives at the same synchronization conditions as our analysis of two first-order

oscillators in Subsection 2.3.2. In Theorem 3.3.4 (respectively, Theorem 4.4.4),
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we also show that the synchronization conditions of homogeneous (respectively,

heterogeneous) oscillator networks are independent of the inertial terms Miθ̈i.

3.3.3 Phase Synchronization in Oscillator Networks

In this subsection, we consider homogeneous oscillator networks with identical

natural frequencies and study the problem of phase synchronization. In this case,

an elegant analysis of the coupled oscillator model (2.17) follows the insights from

the potential function and Jacobian analysis in Subsection 3.2.2 and the topolog-

ical conjugacy results developed in Subsection 3.3.2. In the following theorem,

we adopt the more general notion of a phase-synchronized solution with not nec-

essarily zero synchronization frequency. We do so to emphasize the homogeneity

aspect, and we will not use this concept outside of this subsection.

Theorem 3.3.4 (Phase synchronization). Consider the coupled oscillator model

(1.1) with a connected, undirected, and weighted graph G(V , E , A), with natural

frequencies ω ∈ Rn, and positive inertial and damping coefficients Mi > 0 and

Di > 0, respectively. The following statements are equivalent:

(i) Homogeneity: there exists a constant ω0 ∈ R such that ωi/Di = ω0 for all

i ∈ {1, . . . , n}; and
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(ii) Local phase synchronization: there exists a locally exponentially stable

phase-synchronized solution with constant frequency ωsync ∈ R.

If the two equivalent cases (i) and (ii) are true, then ωsync ≡ ω0, and the following

statements hold:

1) Global convergence: For all initial conditions, the frequencies θ̇(t) con-

verge to ω01n and the phases θ(t) converge to {θ ∈ Tn | ∂U(θ)/∂θ = 0n}; and

2) Almost global stability: If G(V , E , A) is S1-synchronizing, the region of

attraction of the phase synchronized solution is almost all of Tn × R|V1|.

Proof. We first prove the implication (ii) =⇒ (i). By assumption, θi = θj for all

i, j ∈ V and θ̇i = ω0 for i ∈ V . In the phase-synchronized case, the dynamics (1.1)

then read as ωi = Diωsync for all i ∈ {1, . . . , n}. Hence, a necessary condition for

the existence of phase-synchronized solutions is that all ratios ωi/Di are identical.

In order to prove the converse implication (i) =⇒ (ii), notice that by Lemma

2.3.2 and under the assumption ωi/Di = ω0 for all i ∈ {1, . . . , n}, we obtain

the explicit synchronization frequency by ωsync = ω0. Now, consider the coupled

oscillator model (1.1) written in a rotating frame with frequency ω0 = ωi/Di:

Mθ̈i +Diθ̇i = −
∑n

j=1
aij sin(θi − θj) , i ∈ V1 ,

Diθ̇i = −
∑n

j=1
aij sin(θi − θj) , i ∈ V2 .

(3.13)
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Note that (3.13) is a dissipative Hamiltonian system, and the corresponding energy

function H : Tn × R|V1| → R, H(θ, θ̇) = 1
2
θ̇T θ̇ + U(θ), is non-increasing along

trajectories. Since the sublevel sets ofH(θ, θ̇) are compact, the invariance principle

[146, Theorem 4.4] asserts that every solution converges to set of equilibria.

By Theorem 3.3.3, we conclude that the phase synchronization manifold of

the homogeneous oscillator network (3.13), given by
(
∆̄G(0),0|V1|

)
, is locally ex-

ponentially stable if and only if the phase-synchronized equilibrium ∆̄G(0) of the

corresponding first-order oscillator network (3.1) with ωi = 0 is exponentially

stable. From the Jacobian arguments in Lemma 3.2.1 it follows again that the

phase-synchronized equilibrium manifold ∆̄G(0) is locally exponentially stable.

Moreover, for an S1-synchronizing graph, all other equilibria are unstable. This

concludes the proof of the implication (i) =⇒ (ii) as well as of statements 1) and

2), which are stated in the original (non-rotating) coordinate frame.

Theorem 3.3.4 has been presented for first-order oscillator networks (3.1) in

[139, 189, 238, 242], and we followed the respective proof strategies. The corre-

sponding discrete-time analog to Theorem 3.3.4 for first-order oscillators can be

found in [148,149,238]. If higher order models with dynamic coupling are consid-

ered, then almost global stable phase synchronization can be achieved for arbitrary

connected (and also directed) graphs, see [170,238,243].
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With regards to multi-rate Kuramoto oscillators (3.2) (with a complete and

uniformly weighted graph), Theorem 3.3.4 shows that phase synchronization is

independent of the inertial coefficients Mi, thereby improving the sufficient con-

ditions presented in [57, Theorems 4.1 and 4.2] and confirming the results in [2,3]

derived for a continuum limit model with infinitely many oscillators. Furthermore,

since the complete and uniformly weighted graph is S1-synchronizing, Theorem

3.3.4 guarantees almost global phase synchronization, which improves upon the

estimate of the region of attraction presented in [57] and in Theorem 2.4.2.

3.3.4 The Role of Inertia and Dissipation for Transient

and Non-Symmetric Dynamics

Based on Theorem 3.3.3 we conclude that the inertial terms do not affect the

location and local stability properties of synchronized trajectories in the coupled

oscillator model (1.1) . However, the inertial terms may still affect the transient

synchronization behavior, for example, the convergence rates, the shape of separa-

trices and basins of attractions, and the qualitative (possibly oscillatory) transient

dynamics. These points will be briefly discussed in this subsection.

Kinetic energy is a mixed blessing. The inertial terms in the coupled oscillator

model (1.1) are sometimes beneficial, for example, disturbances acting on the

on the second-order dynamics (1.1a) will be integrated twice before affecting the
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angles, and stable oscillator networks with large inertial terms will not be affected

by minor disturbances. At other times the kinetic energy associated with the

inertial terms leads to adverse affects, for example, the region of attraction of

a synchronized solution heavily depends on the ratio of damping and inertial

coefficients, and can diminish significantly if this ratio is too small. To illustrate

the latter point consider the forced pendulum equation with dissipation given by

mθ̈ + dθ̇ = p− a sin(θ) , (3.14)

where m, d, and a are positive scalar constants and p ∈ R is an external forcing

term. The forced pendulum dynamics (3.14) can be thought of as a single oscillator

coupled to a stationary reference oscillator. An electrical analog of the forced-

pendulum dynamics (3.14) is the single machine infinite bus model in the power

systems literature [156]. We assume that a > p, such that the forced pendulum

dynamics admit a stable and an unstable stationary solution given by (θ∗, θ̇∗) =

(arcsin(p/a), 0), where the arcsin function takes value in [0, π/2[ for the stable

solution and in ]π/2, π] for the unstable solution.

The first-order kinematics associated to the pendulum dynamics (3.14) are

θ̇ = p− a sin(θ) . (3.15)

By Theorem 3.3.1, the first-order kinematics (3.15) feature the same equilibria

with the same stability properties as the forced pendulum dynamics (3.14). How-
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Figure 3.2: Region of attraction of the forced pendulum dynamics
The subfigures illustrate the state space topology for the forced pendulum dy-
namics (3.14) under different parametric settings and in the lifted state space R2,
where the vector field is 2π-periodic in the θ-direction. The lifted state space
of the first-order kinematics is simply the θ-axis. The stable (respectively, un-
stable) equilibrium of the forced pendulum dynamics (3.14) and its associated
first-order kinematics (3.1) is shown as solid red disc (respectively, red circle). For
the first-order kinematics (3.1) the region of attraction of the stable equilibrium
(and its 2π-periodic multiples) is the entire θ-axis (marked in red) with exception
of the unstable equilibrium (and its 2π-periodic multiples). In comparison, for the
second-order forced pendulum dynamics (3.15), the region of attraction (displayed
as grey shaded area) depends heavily on d/m, the ratio of inertia and damping.
At the critical value (d/m)critical > 0, the basin of attraction qualitatively changes.

ever, the global behavior and the region of attraction is different. It can be verified,

that the equilibrium arcsin(p/a) ∈ [0, π/2[ is almost globally stable for the first-

order kinematics (3.15). As shown in Figure 3.2, the region of attraction for the

second-order pendulum dynamics (3.14) severely depends on the ratio d/m.

The non-local bifurcation phenomena illustrated in Figure 3.2 is analyzed ex-

tensively in the power systems community [7, 9, 63, 205, 208] and shows that the

basin of attraction of the coupled oscillator model (1.1) and its first-order variant

(3.1) can be qualitatively different unless the damping is sufficiently large.
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We emphasize that the conclusions of Theorem 3.3.1 require the coupling

among the oscillators to be the gradient of a potential function. Indeed, the appli-

cation to oscillator networks in Theorem 3.3.3 applies only for undirected graphs

and symmetric coupling. It may not be true for directed graphs and asymmetric

coupling functions. For example, the lossy network-reduced power system model

(2.5)-(2.6) features the coupling terms aij sin(θi−θj−ϕij) and aij sin(θj−θi−ϕij)

between oscillators i and j. These coupling terms are not antisymmetric and the

overall model is not of Hamiltonian nature. If the phase shifts are zero, then the

equilibrium (θ∗,0|V1|) is stable provided that |θ∗i − θ∗j | < π/2 for all {i, j} ∈ E , by

Lemma 3.2.1. Surprisingly, there are parametric instances (with sufficiently large

phase shifts and sufficiently small damping), where the corresponding condition

|θ∗i − θ∗j −ϕij| < π/2 does not guarantee local stability of the second-order system

(2.5) while it does guarantee stability of a pure first-order system (2.6).

The above examples show that the transient dynamics in of the coupled oscil-

lator model (1.1) and its first-order variant (3.1) can be severely different in the

case of small damping, large inertia, and in presence of symmetry-breaking phase

shifts. On the other hand, for overdamped systems with small inertia and large

damping, the following subsection shows that the trajectories of the two models

can be related, even in the presence of symmetry-breaking terms.
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3.4 Approximation by Singular Perturbation Meth-

ods

Motivated by the lossy network-reduced power system model (2.5)-(2.6), we

study the following instance of the coupled oscillator model (1.1):

Miθ̈i +Diθ̇i = ωi −
∑n

j=1
aij sin(θi − θj − ϕij) . (3.16)

We refer to (3.16) as second-order lossy oscillator network and repeat the para-

metric assumptions for the reader’s convenience: Mi > 0, Di > 0, and ωi ∈ R

for all i ∈ {1, . . . , n}, ϕij ∈ [0, π/2[ and aij = aji ≥ 0 for all {i, j} ∈ E , and the

weights aij induce an undirected and connected graph. By convention, aii = 0 for

all i ∈ {1, . . . , n}. Associated to the second-order lossy oscillator network (3.16),

we define the first-order non-uniform Kuramoto model by

Di θ̇i = ωi −
∑n

j=1
aij sin(θi − θj − ϕij), i ∈ {1, . . . , n} , (3.17)

where the parameters take the same values as in (3.16).

For zero phase shifts ϕij, the non-uniform Kuramoto model (3.17) coincides

with the first-order coupled oscillator model (3.1) up to the system metric D.

Additionally, for zero phase shifts ϕij and by Theorem 3.3.3, the two models (3.16)

and (3.17) are topologically conjugate locally near their respective equilibrium

manifolds. As shown in the previous subsection, this connection is only locally

91



Chapter 3. Mechanical and Kinematic Oscillator Networks

valid and for zero phase shifts. Under the assumption that the second-order lossy

oscillator network (3.16) is strongly overdamped, its dynamics can be related to

the non-uniform Kuramoto dynamics (3.17) via a singular perturbation analysis.

3.4.1 Symmetry Reduction and Grounded Variables

The singular perturbation analysis by Tikhonov’s method [146, 202] requires

a system evolving on Euclidean space and an exponentially stable and isolated

fixed point. In order to satisfy these assumptions, we introduce two concepts.

As first concept, we introduce a map from a suitable subset of Tn to a compact

subset of the Euclidean space Rn−1. For γ ∈ [0, π[, define the grounded map

grnd : Arcn(γ)→ Arcgrnd(γ)

,
{
δ̄ ∈ Rn−1 : |δ̄i| < γ, max

i,j
|δ̄i − δ̄j| < γ, i, j ∈ {1, . . . , n− 1}

}
(3.18)

that associates to the array of angles (θ1, . . . , θn) ∈ Arcn(γ) the array of angle

differences δ̄ with components δ̄i = θi−θn, for i ∈ {1, . . . , n−1}. This map is well

defined, that is, δ̄ ∈ Arcgrnd(γ) since |δ̄i| = |θi−θn| < γ and |δ̄i− δ̄j| = |θi−θj| < γ

for all distinct i, j ∈ {1, . . . , n−1}. Also, this map is smooth because γ < π implies

that all angles take value in an open semi-circle and their pairwise differences are

smooth functions. In the spirit of circuit theory, we refer to the angle differences

δ̄ as grounded angles. The map θ 7→ δ̄ = grnd(θ) is illustrated in Figure 3.3.
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δ̄j = grnd(θj)δ̄i = grnd(θi)
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S1
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Figure 3.3: Illustration of the grounded map
Illustration of the map grnd : Arcn(γ) → Arcgrnd(γ). The map grnd can be
thought of as as a symmetry-reducing projection from Arcn(γ) (illustrated as
subset of S1) to Arcgrnd(γ) (illustrated as subset of R1), where θn is projected to
the origin 0. The set Arcn(γ) and the map grnd are invariant under translations
on Tn that is, under maps of the form (θ1, . . . , θn) 7→ (θ1 + α, . . . θn + α).

As second concept, by formally computing the difference between the angles

θ̇i and θ̇n, we define grounded Kuramoto model with state δ ∈ Rn−1 by

δ̇i =
ωi
Di

− ωn
Dn

−
∑n−1

j=1,j 6=i

(aij
Di

sin(δi − δj − ϕij) +
anj
Dn

sin(δj + ϕjn)
)

−
(ain
Di

sin(δi − ϕin) +
ain
Dn

sin(δi + ϕin)
)
, i ∈ {1, . . . , n− 1} . (3.19)

The grounded Kuramoto model (3.19) with solution δ(t) and the non-uniform

Kuramoto model (3.17) with solution θ(t) appear to be directly related via δ(t) =

grnd(θ(t)) – provided that the grounded map (involving angular differences) is

indeed well-defined for all t ≥ 0. The following lemma shows that the equal-

ity δ(t) = grnd(θ(t)) holds under an arc invariance assumption. Furthermore,

the lemma establishes the equivalence of exponential synchronization in the non-
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uniform Kuramoto model (3.17) and exponential stability of equilibria in the

grounded Kuramoto model (3.19). These equivalences will put us in a convenient

position to apply Tikhonov’s theorem.

Lemma 3.4.1 (Properties of grounded Kuramoto model). Let γ ∈ [0, π[ and let

θ : R≥0 → Tn be a solution to the non-uniform Kuramoto model (3.17) satisfying

θ(0) ∈ Arcn(γ). Let δ : R≥0 → Rn−1 be the solution to the grounded Kuramoto

model (3.19) with initial condition δ(0) = grnd(θ(0)) ∈ Arcgrnd(γ). Then, δ(t) =

grnd(θ(t)) for all t ≥ 0, if any one of the two following equivalent conditions holds:

1) arc invariance: the angles θ(t) take value in Arcn(γ) for all t ≥ 0; and

2) well-posedness: the grounded angles δ(t) take value in Arcgrnd(γ) for

all t ≥ 0.

Moreover, the following two statements are equivalent for any γ ∈ [0, π[:

3) exponential frequency synchronization: every trajectory of the non-

uniform Kuramoto model satisfying the arc invariance property 1) achieves

exponential frequency synchronization; and

4) exponential convergence to equilibria: each trajectory of the grounded

Kuramoto model satisfying the well-posedness property 2) converges expo-

nentially to an equilibrium point.
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Finally, each trajectory of the grounded Kuramoto model as in 4) satisfying prop-

erty 2) with γ ∈ [0, π/2− ϕmax] converges to an isolated exponentially stable equi-

librium point.

Proof. Since both vector fields (3.17) and (3.19) are locally Lipschitz, existence

and uniqueness of the corresponding solutions follow provided that the correspond-

ing evolutions are bounded. Now, assume that 1) holds, that is, θ(t) ∈ Arcn(γ)

(bounded) for all t ≥ 0. Therefore, δ̄(t) = grnd(θ(t)) ∈ Arcgrnd(γ) for all

t ≥ 0. Also recall that the map grnd is smooth over Arcn(γ). These facts and

the definition of the grounded Kuramoto model (3.19) imply that d
dt

grnd(θ(t))

is well defined and identical to δ̇(t) for all t ≥ 0. In turn, this implies that

δ(t) = grnd(θ(t)) ∈ Arcgrnd(γ) holds for all t ≥ 0.

Conversely, assume that 2) holds, that is, δ(t) ∈ Arcgrnd(γ) (bounded) for all

t ≥ 0. Due to existence and uniqueness and since δ(0) = grnd(θ(0)) with θ(0) ∈

Arcn(γ), a set of angles θ(t) ∈ Arcn(γ) can be associated to δ(t) ∈ Arcgrnd(γ) such

that δ(t) = grnd(θ(t)) for all t ≥ 0. By construction of the grounded Kuramoto

model (3.19), we have that θ(t) is identical to the solution to the non-uniform

Kuramoto model (3.17). Thus, statement 2) implies statement 1) and δ(t) =

grnd(θ(t)) for all t ≥ 0. Having established the equivalence of 1) and 2), we do

not further distinguish between δ(t) and grnd(θ(t)).
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Assume that 3) holds, that is, all θ̇i(t) converge exponentially fast to some

θ̇∞ ∈ R. It follows that each δ̇i(t) = θ̇i(t) − θ̇n(t) converges exponentially fast

to zero, and δ(t) = δ(0) +
∫ t
0
δ̇(τ)dτ converges exponentially fast to some δ∞ ∈

Arcgrnd(γ) due to property 2). Since the vector field (3.19) is continuous and

limt→∞
(
δ(t), δ̇(t)

)
= (δ∞,0n−1), the vector δ∞ is necessarily an equilibrium of

(3.19), and property 4) follows.

Assume that 4) holds, that is, all angular differences δi(t) = θi(t) − θn(t)

converge exponentially fast to constant values δi,∞ for i ∈ {1, . . . , n − 1}. This

fact and the continuity of the vector field in equation (3.19) imply that the array

with entries δi,∞ is an equilibrium for (3.19) and that each frequency difference

δ̇i(t) = θ̇i(t) − θ̇n(t) converges to zero. Moreover, because the vector field in

equation (3.19) is analytic and the solution converges exponentially fast to an

equilibrium point, the right-hand side of equation (3.19) converges exponentially

fast to zero and thus also the time-derivative of the solution, that is, the array of

frequency differences, converges exponentially fast.

To prove the final statement, assume that the non-uniform Kuramoto model

(3.17) achieves frequency synchronization and arc invariance in Arcn(π/2−ϕmax).

Thus, when formulated in a rotating coordinate frame, all trajectories converge

exponentially to an equilibrium manifold [θ∗] ∈ Arcn(π/2−ϕmax). In the following,

we additionally establish local exponential stability of this equilibrium manifold
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by Jacobian arguments. The negative Jacobian of the non-uniform Kuramoto

model evaluated at [θ∗] is given by the Laplacian matrix with weights ãij(θ
∗) =

(aij/Di) cos(θ∗i − θ∗j − ϕij). Since the weights aij induce a connected graph, it

follows, for θ∗ ∈ Arcn(π/2−ϕmax), that the weights ãij(θ
∗) are positive for {i, j} ∈

E and induce a directed graph with a globally reachable node. From the Laplacian

properties in Subsection 2.1, we conclude that [θ∗] is locally exponentially stable

with respect to the non-uniform Kuramoto dynamics (3.17). Because of this and

due to property 4), the corresponding point δ∗ = grnd(θ∗(t)) ∈ Arcgrnd(π/2−ϕmax)

(the rotational symmetry is removed by the grounded map) is an exponentially

stable and thus isolated equilibrium of the grounded Kuramoto model (3.19).

3.4.2 Singular Perturbation Analysis

The nonuniform Kuramoto model (3.17) may be seen as a long-time approxi-

mation of the second-order lossy oscillator network(3.16), or spoken differently, it

is the reduced system obtained by a singular perturbation analysis. A physically

reasonable singular perturbation parameter is the worst-case choice of Mi/Di,

that is, ε = Mmax/Dmin. The dimension of ε is in seconds, which makes sense

since time still has to be normalized with respect to ε. If we reformulate (3.16) in

grounded angular coordinates with the state (δ, θ̇) ∈ Rn−1 × Rn, then we obtain
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the following system in singular perturbation standard form

d

dt
δi = fi(θ̇) , θ̇i − θ̇n , i ∈ {1, . . . , n− 1} , (3.20)

ε
d

dt
θ̇i = gi(δ, θ̇) , −Fi θ̇i +

Fi
Di

(
ωi −

∑n

j=1
aij sin(δi − δj − ϕij)

)
,

i ∈ {1, . . . , n} , (3.21)

where Fi = (Di/Dmin)/(Mi/Mmax) and δn = 0 in equation (3.21). For ε suffi-

ciently small, the long-term dynamics of (3.20)-(3.21) can be approximated by

the grounded Kuramoto model (3.19) and the frequencies of the non-uniform Ku-

ramoto model (3.17) written in δ-coordinates:

hi(δ) ,
ωi
Di

−
∑n

j=1

aij
Di

sin(δi − δj − ϕij) ≡ 0, i ∈ {1, . . . , n} . (3.22)

Theorem 3.4.2 (Singular Perturbation Approximation). Consider the second-

order lossy oscillator network(3.16) written as the singular perturbation problem

(3.20)-(3.21) with bounded initial conditions (δ(0), θ̇(0)), and the grounded non-

uniform Kuramoto model (3.19) with initial condition δ(0) and solution δ̄(t). As-

sume that there exists an exponentially stable fixed point δ∞ of (3.19) and δ(0) is

in a compact subset Ωδ of its region of attraction. Then, for each Ωδ

1) there exists ε∗ > 0 such that for all ε < ε∗, the system (3.20)-(3.21) has

a unique solution (δ(t, ε), θ̇(t, ε)) for all t ≥ 0, and for all t ≥ 0 it holds

uniformly in t that

δ(t, ε)− δ̄(t) = O(ε), and θ̇(t, ε)− h(δ̄(t))− y(t/ε) = O(ε) , (3.23)
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where yi(t/ε) , (θ̇i(0)− hi(δ(0))) e−Fit/ε and hi(δ) is given in (3.22).

2) For any tb>0, there exists ε∗≤ε∗ such that for all t≥ tb and whenever ε<ε∗

it holds uniformly that

θ̇(t, ε)− h(δ̄(t)) = O(ε) . (3.24)

3) Additionally, there exist ε and ϕmax sufficiently small such that the approx-

imation errors (3.23)-(3.24) converge exponentially to zero as t→∞.

Proof. To prove statements 1) and 2) we will follow Tikhonov’s theorem [146, The-

orem 11.2] and show that the singularly perturbed system (3.20)-(3.21) satisfies

all assumptions of [146, Theorem 11.2] when analyzing it on Rn−1 × Rn.

Exponential stability of the reduced system: The quasi-steady-state of (3.20)-

(3.21) is obtained by solving gi(δ, θ̇) = 0 for θ̇, resulting in the unique (and thus

isolated) root θ̇i = hi(δ) for i ∈ {1, . . . , n}. The reduced system is obtained as

δ̇i = fi(h(δ)) = hi(δ) − hn(δ), i ∈ {1, . . . , n − 1}, which is equivalent to the

grounded non-uniform Kuramoto model (3.19). The reduced system is smooth,

evolves on Rn−1, and by assumption its solution δ̄(t) is bounded and converges

exponentially to the stable equilibrium δ∞. Define the error coordinates x(t) ,

δ̄(t)−δ∞ and the resulting system ẋ = f(h(x+δ∞)) with state in Rn−1 and initial

value x(0) = δ(0)− δ∞. Notice that x(t) is bounded and converges exponentially

to the stable equilibrium x = 0n−1.
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Exponential stability of the boundary layer system: Consider the error coor-

dinate yi = θ̇i − hi(δ), which shifts the error made by the quasi-stationarity as-

sumption θ̇i(t) ≈ hi(δ(t)) to the origin. After stretching time to the dimensionless

variable τ = t/ε, the quasi-steady-state error obeys the dynamics

d

d τ
yi = gi(δ, y + h(δ))− ε∂hi

∂δ
f(y + h(δ)) = −Fi yi − ε

∂h

∂δ
fi(y + h(δ)) , (3.25)

where yi(0) = θ̇i(0)−hi(δ(0)). For ε = 0, (3.25) reduces to the boundary layer model

d

d τ
yi = −F yi , yi(0) = θ̇i(0)− hi(δ(0)) . (3.26)

The boundary layer model (3.26) is globally exponentially stable with solution

yi(t/ε) = yi(0)e−Fit/ε and bounded yi(0). In summary, the singularly perturbed

system (3.20)-(3.21) is smooth on Rn−1 × Rn, and the origins of the reduced sys-

tem (in error coordinates) ẋ = f(h(x+ δ∞)) and the boundary layer model (3.26)

are exponentially stable (Lyapunov functions are readily existent by converse ar-

guments [146, Theorem 4.14]). Thus, all assumptions of [146, Theorem 11.2] are

satisfied and statements 1)-2) follow.

To prove statement 3), note that δ̄(t) converges to an exponentially stable

equilibrium point δ∞, and (δ(t, ε), θ̇(t, ε)) converges to an O(ε) neighborhood of

(
δ∞, h(δ̄∞)

)
, where h(δ̄∞) = 0n. We now invoke topological equivalence arguments

[49,52]. Both the second-order system (3.20)-(3.21) as well as the reduced system

δ̇ = f(h(δ)) correspond to the perturbed Hamiltonian system (8)-(9) in [49] and
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the perturbed gradient system (10) in [49], where the latter is considered with

unit damping Di = 1 in [49]. Consider for a moment the case when all ϕij = 0.

In this case, the reduced system has a locally exponentially stable fixed point δ∞

(for any Di > 0 due to [52, Theorem 3.1]), and by [49, Theorem 5.1] we conclude

that (δ∞,0n) is also a locally exponentially stable fixed point of the second order

system (3.20)-(3.21). Furthermore, due to structural stability [49, Theorem 5.7,

R1], this conclusion holds also for sufficiently small ϕij. Thus, for sufficiently small

ε and ϕmax, the solution of (3.20)-(3.21) converges exponentially to (δ∞,0n). In

this case, the approximation errors δ(t, ε) − δ̄(t) and θ̇(t, ε) − h(δ̄) as well as the

boundary layer error y(t/ε) vanish exponentially.

It is instructive to note that the reduced slow system (3.19) and the fast

boundary layer model (3.26) in the singular perturbation approach correspond to

the first-order oscillator dynamics (3.1) and the frequency dynamics (3.12) (in the

time-scale t/ε) in the topological conjugacy approach.2

We illustrate the singular perturbation approximation in Theorem 3.4.2 through

a simulation study. Figure 3.4 shows a simulation of the second-order lossy oscil-

lator network (3.16) with n = 10 oscillators and the corresponding non-uniform

Kuramoto model (3.17), where all initial angles θ(0) are tightly clustered with

2This analogy is perfect only if Dλ,1, Dλ,2, and Mλ in (3.8) are replaced by D1, D2, and M ,
respectively. It can be verified, that the proofs of all results in Section 3.3 still hold without
major modifications, see [83] for further details.
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exception of the first one (red dashed curves) and the initial frequencies θ̇(0)

are drawn from a uniform distribution over [−0.1, 0.1] rad/s, which we denote by

unif(−0.1, 0.1) rad/s. Additionally, at two-third of the simulation interval a time-

varying high frequency disturbance is introduced at ωn−1 (yellow dotted curve).

For illustration, relative angular coordinates are defined as δi(t) = θi(t) − θn(t),

i ∈ {1, . . . , n−1}. The network parameters are chosen randomly ωi ∈ unif(−5, 5),

aij ∈ unif(0.7, 1.2), and tan(ϕij) ∈ unif(0, 0.25), which match typical line and gen-

eration data for network-reduced power system models [11, 156,207].

For the simulation in Figure 3.4(a), we chose Mi ∈ unif(2, 12)/(2π60) s and

Di ∈ unif(20, 30)/(2π60) resulting in the rather large perturbation parameter

ε = 0.58. The angles δ̄(t) of the non-uniform Kuramoto model synchronize very

fast from the non-synchronized initial conditions (within 0.05 s), and the transient

disturbance around t = 2 s does not severely affect the synchronization dynamics.

The same findings hold for the quasi-steady state h(δ̄(t)) depicting the frequencies

of the non-uniform Kuramoto model, where the disturbance acts directly without

being integrated. Since ε is large the trajectories (δ(t), θ̇(t)) show the expected un-

derdamped behavior and synchronize with oscillatory dynamics. As expected, the

disturbance at t = 2 s does not affect the second-order power network δ-dynamics

as much as the first-order non-uniform Kuramoto δ̄-dynamics. Nevertheless, after
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(a) Weakly damped simulation with ε = 0.58 s
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(b) Strongly damped simulation with ε = 0.18 s

Figure 3.4: Illustration of the singular perturbation approximation
The simulation shows the second-order lossy oscillator network (3.16) and the
non-uniform Kuramoto model (3.17) in a weakly damped case (subfigure (a)) and
a strongly damped (yet oscillatory) case (subfigure (b)).

103



Chapter 3. Mechanical and Kinematic Oscillator Networks

the initial and mid-simulation transients the singular perturbation errors δ(t)−δ̄(t)

and θ(t)− h(δ̄(t)) quickly become small and ultimately converge.

Figure 3.4(b) shows the exact same simulation as in Figure 3.4(a), except that

the simulation time is halved, the inertiae are Mi ∈ unif(2, 6)/(2π60) s, and the

damping is chosen uniformly as Di = 30/(2π60), which gives the small perturba-

tion parameter ε = 0.18 s. The resulting second-order lossy oscillator dynamics

(δ(t), θ̇(t)) are strongly damped (note the different time scales), and the non-

uniform Kuramoto dynamics δ̄(t) and the quasi-steady state h(δ̄(t)) have smaller

time constants. As expected, the singular perturbation errors remain smaller dur-

ing transients and converge faster than in the weakly damped case in Figure 3.4(a).

3.4.3 Discussion of the Perturbation Assumption

By Theorem 3.4.2, the transient dynamics of the second-order lossy oscillator

network (3.16) and the first-order grounded Kuramoto model (3.19) can be related

up to an approximation error of order ε – even in the presence of the symmetry-

breaking conductances. The key assumption is that each oscillator is strongly

overdamped, which is captured by the smallness of the perturbation parameter ε =

Mmax/Dmin. This choice of the perturbation parameter is similar to the analysis

of Josephson arrays [292], coupled overdamped mechanical pendula [73], flocking

models [120], and also classic transient stability analysis [52, Theorem 5.2], [263].
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In the linear case, this analysis resembles the well-known overdamped harmonic

oscillator, which features one slow and one fast eigenvalue. The overdamped

harmonic oscillator exhibits two time-scales and the fast eigenvalue corresponding

to the frequency damping can be neglected in the long-term phase dynamics.

In the application to power network models one has to be careful under which

operating conditions ε is indeed a small physical quantity. For synchronous gen-

erators, Mi is typically of the order [2s, 12s]/(2πf0) depending on the type of

generator and the damping is poor: Di ∈ [1, 3]/(2πf0). However, for the syn-

chronization problem also the generator’s internal excitation control have to be

considered, which increases the damping torque to Di ∈ [10, 35]/(2πf0) depending

on the system load [11,156,236]. In this case, ε ∈ O(0.1) is indeed a small quantity

and a singular perturbation approximation is accurate. In fact, the recent power

systems literature discusses the need for sufficiently large damping to enhance

transient stability, see [7, 63] and references therein.

We note that our simulation studies in Figure 3.4 show an accurate approxi-

mation of the power network by the non-uniform Kuramoto model also for values

of ε ∈ O(1), which indicate that the threshold ε∗ may be sizable. The theoret-

ical reasoning is the topological equivalence between the power network model

(3.16) and the non-uniform Kuramoto model (3.17), as discussed in Theorem

3.3.3, [52, Theorems 3.1-3.4], [49, Theorem 5.7], and [83, Theorem 4.1].
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The analogies between the second-order lossy oscillator network (3.16) and the

non-uniform Kuramoto model (3.17), are directly employed in the PEBS [52] and

BCU algorithms [49]. These algorithms are not only scholastic but applied by

the power industry [48], which additionally supports the validity of the singular

perturbation approximation in power network models.

3.5 Comparison and Alternative Relations

In this chapter, we introduced two methods to relate coupled oscillator model

(1.1) and its first-order variant (3.1). The first method in Section 3.3 built on local

topological conjugacy and showed, among others, that synchronization conditions

in the two models (1.1) and (3.1) are identical and independent of the inertial

coefficients, as seen in our analysis of phase synchronization. On the other hand,

this approach yields only local conclusions, and it is restricted to Hamiltonian and

gradient systems, which excludes lossy power network models, among others.

Alternatively, the singular perturbation approach presented in Section 3.4 is

applicable to non-Hamiltonian systems and it allows for a dynamic comparison

between the trajectories of the coupled oscillator model (1.1) and its first-order

variant (3.1). On the other hand, the singular perturbation approach relies on the

assumption of a sufficiently small inertia over damping ratio. Even though simu-
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lation studies suggest that the critical threshold may be sizable, this assumption

may be restrictive in some applications.

Alternative methods to relate stability properties of the coupled oscillator

model (1.1) and its first-order variant (3.1) include second-order Gronwall’s in-

equalities [57] and strict Lyapunov functions for mechanical systems [150,151]. It

should be noted that the approaches [57, 150, 151] are limited to purely second-

order systems, the second-order Gronwall inequality approach [57] has been carried

out only for uniform inertia Mi = M and unit damping Di = 1. The Lyapunov ap-

proach [150,151] is limited to potential-based Lyapunov functions, and it does not

extend to the contraction-based Lyapunov functions which we use in Chapter 4.

In summary, the author’s investigations showed that the topological conjugacy

approach reveals strong connections between the coupled oscillator model (1.1)

and its first-order variant (3.1). On the other hand, this approach is only locally

valid, and a global connection between the two models necessarily requires strongly

overdamped dynamics, as suggested by the one-dimensional example in Figure 3.2.

In this case, the singular perturbation approximation is a feasible alternative.
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The Critical Coupling for
Kuramoto Oscillators

Surprisingly enough, this seemingly obvious fact seems difficult to prove.

Yoshiki Kuramoto (1984)

(A comment on the rigorous mathematical treatment of the emergence
of synchronization in a network of coupled oscillators.)

In this chapter, we study heterogeneous oscillators with first-order dynamics, unit

time constants Di = 1, and coupled in a complete and uniformly weighted graph.

In this case, the coupled oscillator model (1.1) reduces to the celebrated Kuramoto

model (1.2). For the reader’s convenience, we briefly reintroduce the Kuramoto

model here. Consider n ≥ 2 heterogeneous oscillators with distinct natural fre-

quencies ω ∈ 1⊥n and coupled in a complete graph with uniform weights aij = K/n,

where K > 0 is the coupling strength among the oscillators:

θ̇i = ωi −
K

n

∑n

j=1
sin(θi − θj) , i ∈ {1, . . . , n} ,
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The Kuramoto model will reach synchronization provided that the coupling K is

larger than a critical value Kcritical, which depends on the dissimilarity among the

natural frequencies ω. Starting from Winfree’s and Kuramoto’s pioneering work

[158,159,294], this trade-off has been characterized by parametric inequalities.

In this chapter, we present various estimates of the critical coupling strength

Kcritical to characterize the on-set of synchronization as well as the ultimate stage of

synchronization. We consider both finite-dimensional as well as infinite-dimensional

oscillator populations. We present a comprehensive review of the literature in a

unified language. In this effort, we collect contributions from several references

and arrive at novel results within a unified perspective. By making use of re-

cently developed tools in the consensus literature, we arrive at new estimates of

the critical coupling strength as well as new insights into the transient dynamics.

4.1 Introduction

4.1.1 Relevant Literature

An elegant and insightful analysis of the Kuramoto model (1.2) is based on

the order parameter introduced by Kuramoto [158,159] as

reiψ =
1

n

∑n

j=1
eiθj . (4.1)
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The order parameter (4.1) is the centroid of all oscillators represented as points

on the unit circle in C1. The magnitude r ∈ [0, 1] of the order parameter is

a synchronization measure whose extremal characteristics are as follows: if the

oscillators are phase-synchronized, then r = 1, and if the oscillators are spaced

equally on the unit circle, then r = 0. The latter case is referred to as phase

balancing and is of importance in neuroscience applications [34,70,280], deep-brain

stimulation [195, 267], vehicle coordination [148, 149, 209, 242, 243], and central

pattern generators for locomotion purposes [15,135,224].

By means of the order parameter reiψ defined in equation (4.1), the Kuramoto

model (1.2) can be rewritten in the insightful form

θ̇i = ωi −Kr sin(θi − ψ) , i ∈ {1, . . . , n} . (4.2)

Equation (4.2) gives the intuition that the oscillators synchronize because of their

coupling to a mean field represented by the order parameter reiψ, which itself is a

function of θ(t). Intuitively, for small coupling strength K each oscillator rotates

with its distinct natural frequency ωi, whereas for large coupling strength K all

angles θi(t) will entrain to the mean field reiψ, and the oscillators synchronize.

The transition from incoherence to synchronization occurs at a critical threshold

value of the coupling strength, denoted by Kcritical.

This phase transition has been the source of numerous research papers starting

with Kuramoto’s own insightful and ingenious analysis [158, 159]. For instance,
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since r ≤ 1, no frequency-synchronized solution of (4.2) of the form θ̇i(t) = θ̇j(t)

can exist if K < |ωi−ωj|/2. Hence, K ≥ |ωi−ωj|/2 provides a necessary synchro-

nization condition and a lower bound for Kcritical. Various necessary, sufficient,

implicit, and explicit estimates of the critical coupling strength Kcritical been de-

rived in the vast literature on the Kuramoto model both for oscillator networks

of finite size as well in the continuum limit of infinitely many oscillators.

We will detail the existing results and analysis methods as well as their short-

comings throughout this chapter.

4.1.2 Contributions and Organization

The remainder of this chapter is organized as follows:

Section 4.2: In this section, we introduce the continuum limit model of

an infinite-dimensional oscillator population and present its synchronization phe-

nomenology including partial synchronization and full phase-locking. Further-

more, we present a set of implicit and explicit conditions on the critical coupling

strength Kcritical for the partial synchronization threshold and the full phase-

locking threshold. In this effort, we collect contributions from several references

in a unified language, which allows for a comparison of our latter results on finite-

dimensional Kuramoto oscillator networks.
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Section 4.3: In this section, we review the extensive literature on the Ku-

ramoto model, and present various necessary, sufficient, implicit, and explicit

estimates of the critical coupling strength for the finite and infinite-dimensional

Kuramoto model in a unified language. Aside from the comparison of the differ-

ent estimates of the critical coupling strength, the second purpose of this review

is the comparison of the different analysis techniques. We collect contributions

from several references and arrive at novel results within a unified perspective, see

Lemma 4.3.3 and Theorem 4.3.4.

Section 4.4: In this section, we derive an explicit, necessary, and sufficient

condition on the critical coupling strength to achieve exponential synchronization

in the finite-dimensional Kuramoto model with an arbitrary distribution of the

natural frequencies ωi, see Theorem 4.4.2. Our technical approach is based on

Jacobian insights on the transient dynamics, see Lemma 4.4.1, and an adoption

of the contraction Lyapunov function (2.16) (originally developed for consensus

protocols) to heterogeneous oscillator networks with dissimilar natural frequencies.

We show that synchronization occurs for K > Kcritical = ωmax − ωmin, where

ωmax and ωmin are the maximum and minimum natural frequency, respectively.

The multiplicative gap Kcritical/K determines the admissible initial and the guar-

anteed asymptotic level of arc invariance as well as the guaranteed asymptotic

magnitude r of the order parameter. In particular, the asymptotic level of arc in-
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variance can be made arbitrary small by increasing this multiplicative gap. This

result resembles the concept of practical stability in dynamics and control if K and

Kcritical are understood as a synchronization-enhancing gain and as a measure for

the desynchronizing dissimilar natural frequencies. Additionally, our main result

includes estimates on the exponential rate of frequency synchronization, and our

analysis also applies to switching and smoothly time-varying natural frequencies

We show that our proposed condition also provides a worst-case upper bound

on the critical coupling, which is saturated in case of a bipolar distribution of the

natural frequencies, see Corollary 4.4.3. In statistical studies, we compare our

condition to other necessary and explicit or implicit and exact conditions pro-

posed in the literature. Finally, we also extend our synchronization condition to

frequency synchronization of multi-rate Kuramoto oscillators (3.2). Previously, no

exact or tight synchronization conditions were known for the multi-rate Kuramoto

model (3.2). Again, the inertial coefficients Mi do not affect the local synchro-

nization conditions. These interesting and provably correct findings contradict

prior observations on the role of inertia inhibiting or enhancing synchronization

in second-order Kuramoto models, as summarized in Subsection 3.1.1.

Section 4.5: In this section, we show an application of the analysis methods

in Section 4.4 and Section 3.4 to the network-reduced power system model (3.16)

and the non-uniform Kuramoto model (3.17).
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4.2 Infinite-Dimensional Kuramoto Oscillator Net-

works

The formulation (4.1)-(4.2) of the Kuramoto model by means of the order pa-

rameter suggests that the oscillators synchronize by coupling to a mean field repre-

sented by the order parameter reiψ. The analysis of this phase transition based on

a mean-field and statistical mechanics viewpoint has been the subject of numerous

investigations, starting with Kuramoto’s own ingenious analysis in [158, 159]. As

neatly described in [258], Kuramoto assumed the a priori existence of solutions

to (4.2) which feature a stationary order parameter r(t)eiψ(t) = constant. Follow-

ing this assumption and his intuition, Kuramoto derived a set of self-consistency

equations. A rigorous mathematical underpinning to Kuramoto’s mean-field ap-

proach can be established by a time-scale separation [119] or in the continuum

limit as the number of oscillators tends to infinity, and the natural frequencies ω

are sampled from a distribution function g : R→ R≥0.

The continuum-limit model has enjoyed a considerable amount of attention by

the physics and dynamics communities. Infinite-dimensional oscillator networks

are surveyed in detail in [3, 24, 258] Related control-theoretical applications of

the continuum limit can be found in [272, 300]. In this section, introduce the

continuum limit model and describe its synchronization phenomenology. We do

114



Chapter 4. The Critical Coupling for Kuramoto Oscillators

not aim at a comprehensive treatment of infinite-dimensional oscillator networks

and discuss them only briefly for the sake of comparing our latter results.

4.2.1 The Continuum Limit Model

In what follows, we present an informal Eulerian derivation of the continuum-

limit model. We also remark that a treatment of (4.2) as a stochastic differential

equation (in the limit of zero additive white noise) results in a Fokker-Planck

equation analogous to the continuum-limit model [3, 69, 258].

Consider an infinite population of oscillators, and let ρ : S1×R≥0×R→ R≥0 be

the probability density function of the oscillators, that is,
∫ γ
0

∫ ω
ω
ρ(θ, t, ω)g(ω) dωdθ

denotes the fraction of oscillators in Arcn(γ) ⊆ S1, at time t, and with frequencies

ω ∈ [ω, ω]. Hence, the order parameter is given by

r(t)eiψ(t) =

∫ 2π

0

∫ ∞

−∞
eiθρ(θ, t, ω)g(ω) dωdθ. (4.3)

Notice that in the discrete (finite-dimensional) case ρ(θ, t, ω) = 1
n

∑n
j=1 δ(θ − θj)

(where δ is the Dirac δ-distribution) the order parameters (4.1) and (4.3) coincide.

According to (4.2), the instantaneous velocity of an oscillator at position θ, at time

t, and with natural frequency ω is given by v(θ, t, ω) = ω−Kr(t) sin(θ−ψ(t)). The

evolution of the probability density is then governed by the continuity equation

∂

∂t
ρ+

∂

∂θ
(ρv) = 0, (4.4)
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subject to the conservation of the oscillators at time t and with frequency ω:

∫ 2π

0

ρ(θ, t, ω) dθ = 1.

We remark that the continuum-limit model (4.3)-(4.4) is presented sometimes

with the density ρ̃(θ, t, ω) = ρ(θ, t, ω)g(ω) satisfying
∫ 2π

0
ρ̃(θ, t, ω)dθ=g(ω).

4.2.2 Synchronization Phenomenology in the Continuum-

Limit Model

Similar to the finite-dimensional model (4.1)-(4.2), the continuum-limit model

(4.3)-(4.4) displays a rich set of symmetries [204] and dynamics [24, 175]. The

saddle-node bifurcation from incoherence to synchrony in the finite-dimensional

model (4.1)-(4.2) (see Subsection 2.3.2) manifests itself in the infinite-dimensional

model (4.3)-(4.4) as a phase transition from the uniform incoherent state with

density ρ(θ, t, ω) = 1/(2π) to the so-called partially synchronized state. The par-

tially synchronized state is characterized by a subset of phase-locked oscillators

rotating in unison whereas the remaining oscillators are incoherent. The synchro-

nized set of oscillators are those satisfying Kr > |ω| such that v(θ, t, ω) = 0, and

the incoherent ones are uniformly spread over the circle, see Figures 4.1(a) and

4.1(b) for a schematic illustration. This phase transition occurs when K exceeds

some critical value Kcritical. When K is further increased, more and more oscil-
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ρ(θ, t,ω) ρ(θ, t,ω)

X X

r eiψ
r eiψ

(a) (b)

ρ(θ, t,ω)

Xr eiψ

(c)

Figure 4.1: Synchronization in the continuum limit model
Subfigure (a) displays the uniform incoherent state ρ(θ, t, ω) = 1/(2π). Subfigure
(b) illustrates the partially synchronized state, where a subset of oscillators rotates
in unison and the remaining oscillators are incoherent. Subfigure (c) illustrates
the fully phase-locked state.

lators become entrained by the mean field (4.3) and join the set of phase-locked

oscillators. For a frequency distribution g(ω) with bounded support, there exists

a second critical parameter Klock ≥ Kcritical, such that for K > Klock all oscilla-

tors are phase-locked. This final stage of synchronization is illustrated in Figure

4.1(c). It is often referred to as the fully phase-locked state, and it is reminiscent of

frequency synchronization as displayed in the finite-dimensional model (4.1)-(4.2).

Whereas the majority of the literature on the continuum-limit model (4.3)-

(4.4) focuses on the first phase transition and the calculation of Kcritical, see [3,

24, 54, 69, 159, 183, 204, 258] and references therein, the articles [95, 183, 185, 225,

277, 283] discuss the fully phase-locked state and the calculation of Klock. An

extensive line of recent research in dynamics has been triggered by the work [204],

which exploits the extensive symmetries of the continuum-limit model (4.3)-(4.4)
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to construct simple solutions obeying low-dimensional ODE dynamics. Finally,

we remark that the continuum-limit model and its analysis can be extended to

second-order mechanical oscillator models [3].

4.2.3 Estimates on the Critical Coupling Strength

In his ingenious analysis of the continuum-limit model (4.3)-(4.4) Kuramoto

considered continuous, even, and unimodal distributions g(ω) of the natural fre-

quencies (achieving their maximum at g(0)), and found that phase-locked solutions

(if existent) must satisfy the self-consistency equation [159, Eq. (5.4.26)]

r = Kr

∫ π/2

−π/2
cos2(θ)g(Kr sin(θ)) dθ . (4.5)

One trivial solution to the self-consistency equation (4.5) is r = 0 corresponding

to the uniform incoherent state shown in Figure 4.1(a). The second solution for

r > 0 corresponds to the partially synchronized state illustrated in Figure 4.1(b).

When canceling the variable r from both sides of (4.5) and taking the limit r ↘ 0,

the self-consistency equation (4.5) delivers the bifurcation parameter

Kcritical =
2

πg(0)
. (4.6)

Kuramoto conjectured that the uniform incoherent state would become unstable

for K > Kcritical and concluded famously that “surprisingly enough, this seem-

ingly obvious fact seems difficult to prove.” The resolution of this long-standing
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conjecture and Kuramoto’s ingenious yet incomplete analysis inspired generations

of scientists, see [258] for an historical account. We present the following general

result taken from the recent article [54, Theorem 3.5].

Theorem 4.2.1 (Instability of the incoherent state). Consider the infinite-dimensional

Kuramoto model (4.3),(4.4) with coupling gain K and frequency distribution g :

R→ R≥0. Let {y1, y2, . . . } be the roots of the equation

lim
x↘0

∫ ∞

−∞

ω − y
x2 + (w − y)2

g(ω) dω = 0 , (4.7)

and assume g(ω) is continuous at {y1, y2, . . . }. If

K > Kcritical =
2

π supj g(yj)
,

then the incoherent state ρ(θ, t, ω) = 1/(2π) is unstable.

It can be shown that for a continuous, even, and unimodal distribution g(ω),

the unique root of (4.7) is given by y1 = 0, see [54, Corollary 3.6]. This observation

leads to the following corollary, which can be found in [3, 24, 54, 69, 175, 183, 204]

and references therein.

Corollary 4.2.2 (Instability beyond Kuramoto’s critical transition point). Con-

sider the infinite-dimensional Kuramoto model (4.3)-(4.4) with coupling gain K

and frequency distribution g : R → R≥0. Suppose that g(ω) is continuous at the

origin, even, and unimodal. If K is greater than Kcritical as given in (4.6), then

the incoherent state ρ(θ, t, ω) = 1/(2π) is unstable.
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A linear stability analysis of the associated partially-synchronized state illus-

trated in Figure 4.1(b) is discussed in [183] and reveals linear neutral stability. To

the best of the author’s knowledge, a nonlinear stability analysis of the partially-

synchronized state is still outstanding.

If the distribution g(ω) is restricted to have bounded support, then the fully

phase-locked state (illustrated in Figure 4.1(c)) can be achieved when the coupling

K is larger than the second critical threshold Klock ≥ Kcritical. In this case, two

distributions of interest are the uniform and the bipolar distribution given by

gunif : [−ω0,+ω0]→ R , gunif(ω) =
1

2ω0

,

gbip : [ωmin, ωmax]→ R ,

gbip(ω) = p · δ(ω − ωmax) + (1− p) · δ(ω − ωmin),

where ω0 > 0, ωmax > ωmin, and p ∈ [0, 1]. These two distributions are particularly

interesting since they yield the smallest and the largest threshold Klock.

Theorem 4.2.3 (Full phase locking thresholds). Consider the infinite-dimensional

Kuramoto model (4.3),(4.4) with coupling gain K and frequency distribution g :

R→ R≥0 with bounded support. The following statements hold for the full phase-

locking threshold Klock:
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(i) Lower bound: For any continuous, even, and unimodal g : [−ω0,+ω0] →

R, where ω0 > 0, we have Klock ≥ 4ω0/π. Moreover, for the uniform

distribution gunif(ω), we have Klock = 4ω0/π.

(ii) Upper bound: For any g : [ωmin, ωmax] → R≥0, where ωmax > ωmin, we

have Klock ≤ ωmax − ωmin. Moreover, for the bipolar distribution gbip(ω) we

have Klock = ωmax − ωmin.

A proof of the lower bound (i) can be found in [95, Corollary 2(b)] and in [183].

Notice that the two thresholds Kcritical (reported in (4.6)) and Klock coincide for

the uniform distribution:

Klock =
2

πgunif(0)
= Kcritical .

This remarkable identity was also observed in [183, 225, 277, 283]. The upper

bound (ii) on bipolar distributions has been proved in [277] and earlier in [95]

for the symmetric case (p = 1/2 and ωmax = −ωmin = ω0). Bipolar and more

general bimodal frequency distributions g(ω) have attracted tremendous research

interest by dynamicists thanks to their rich bifurcation diagram, see [3,175]. The

uniform and bipolar distributions are shown in Figure 4.2 together with the as-

sociated stationary phase distributions in the critical case K ↘ Klock (explicitly

calculated in [277]). For later reference, Figure 4.2 also shows the tripolar distri-
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bution gtrip,n(ω) = 1
n
δ(ω − ω0) + n−2

n
δ(ω0) + 1

n
δ(ω + ω0) and its associated phase

distribution (calculated by [58, Proof of Theorem 2.1]) for n→∞.

4.3 Finite-Dimensional Kuramoto Oscillator Net-

works

In this section, we present and compare different synchronization metrics tai-

lored to the Kuramoto model (1.2), and we review a set of necessary, sufficient,

implicit, and explicit estimates of the critical coupling strength. Finally, we also

state a key lemma on the frequency synchronization of Kuramoto oscillators, which

we will exploit in the following section.

4.3.1 Synchronization Metrics in Kuramoto Oscillator Net-

works

The notions of phase cohesiveness and arc invariance are performance mea-

sures for synchronization, and phase synchronization is the extreme case of phase

cohesiveness with limt→∞ θ(t) ∈ ∆̄G(0) = Arcn(0). An alternative performance

measure is the magnitude of the order parameter reiψ introduced in (4.1): if the

oscillators are phase-synchronized, then r = 1, and if the oscillators are spaced

equally on the unit circle, then r = 0. For a complete graph, the magnitude r of
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Figure 4.2: Extremal distributions of the natural frequencies and phases
Extremal distributions g(ω) of the natural frequencies and their stationary phase
distributions in the critical case K ↘ Klock: Panels (a) and (b) show the non-
symmetric bipolar distribution gbip(ω) = p · δ(ω−ωmax) + (1−p) · δ(ω−ωmin) and
its associated bipolar phase distribution. Panels (c) and (d) show the uniform
gunif(ω) = 1/(2ω0) and its associated uniform phase distribution. Finally, panels
(e) and (f) show the tripolar distribution gtrip,n(ω) = 1

n
δ(ω − ω0) + n−2

n
δ(ω0) +

1
n
δ(ω + ω0) and its associated tripolar phase distribution for n→∞.
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X

rmin

rmax

γ

Figure 4.3: Arc invariance and order parameter
Schematic illustration of an arc of length γ ∈ [0, π], its convex hull (shaded), and
the value ⊗ of the corresponding order parameter reiψ with minimum magnitude
rmin = cos(γ/2) and maximum magnitude rmax = 1.

the order parameter is an average performance index for synchronization, and arc

invariance can be understood as a worst-case performance index.

The order parameter (4.1) is the centroid of the oscillators (when represented

as points on the unit circle), and is contained in the convex hull (in the complex

plane) of the smallest arc containing all oscillators, see Figure 4.3. Hence, the

magnitude r of the order parameter can be related to the arc length γ as follows:

Lemma 4.3.1 (Shortest arc length and order parameter). Given an angle array

θ = (θ1, . . . , θn) ∈ Tn with n ≥ 2, let r(θ) = 1
n
|∑n

j=1 e
iθj | be the magnitude of

the order parameter, and let γ(θ) be the length of the shortest arc containing all

angles, that is, θ ∈ Arcn(γ(θ)). The following statements hold:

1) if γ(θ) ∈ [0, π], then r(θ) ∈ [cos(γ(θ)/2), 1]; and

2) if θ ∈ Arcn(π), then γ(θ) ∈ [2 arccos(r(θ)), π].
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Proof. The order parameter reiψ is the centroid of all phasors eiθj represented as

points on the unit circle in C1. Hence, for θ ∈ Arcn(γ), γ ∈ [0, π], r is contained

in the convex hull of the arc of length γ, as illustrated in Figure 4.3. Let γ ∈ [0, π]

be fixed and let θ ∈ Arcn(γ). It follows from elementary geometric arguments

that cos(γ/2) = rmin ≤ r ≤ rmax = 1, which proves statement 1). Conversely, if

r is fixed and θ ∈ Arcn(π), then the centroid reiψ is always contained within the

convex hull of the semi-circle Arcn(π) (centered at ψ). The smallest arc whose

convex hull contains the centroid reiψ is the arc of length γ = 2 arccos(r) (centered

at ψ), as illustrated in Figure 4.3. This proves statement 2).

Appropriate definitions of the order parameter tailored to non-complete graphs

have been proposed, among others, in [139,209,222,238].

4.3.2 Estimates on the Critical Coupling Strength

In the finite-dimensional case, various necessary, sufficient, implicit, and ex-

plicit estimates of the critical coupling strength Kcritical have been proposed.

Necessary, explicit, and tight conditions:

In the finite dimensional case, the following well known conditions show that

the natural frequencies ω have to be absolutely and incrementally bounded for

frequency synchronization to be feasible.
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Lemma 4.3.2 (Necessary synchronization conditions). Consider the Kuramoto

model (1.2) with ω ∈ 1⊥n . The following statements hold:

1) Absolute boundedness: If there exists a frequency-synchronized solution,

then

K ≥ Kcritical ,
n

n− 1
· max
i∈{1,...,n}

|ωi| . (4.8)

2) Incremental boundedness: If there exists a frequency-synchronized solu-

tion, then

K ≥ Kcritical ,
n

2(n− 1)
(ωmax − ωmin) (4.9)

Proof. Recall from Subsection 2.3.1 that, if the Kuramoto model (1.2) synchro-

nizes, then the explicit synchronization frequency is zero since ω ∈ 1⊥n . Hence,

the fixed-point equations of the Kuramoto model (1.2) read as

ωi =
K

n

∑n

j=1
sin(θi − θj) , i ∈ {1, . . . , n} . (4.10)

Since the sinusoidal interaction between the oscillators is bounded, sin(θi − θj) ∈

[−1,+1] for all θi, θj ∈ S1, the fixed-point equations (4.10) have no solution if

condition (5.1) is not satisfied. Alternatively, a subtraction of the ith and jth

fixed-point equation (4.10), yields the following equation for all {i, j} ∈ E :

ωi − ωj =
K

n

∑n

`=1

(
sin(θi − θ`)− sin(θj − θ`)

)
. (4.11)

Again, equation (4.11) has no solution if condition (4.9) is not satisfied.
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By Lemma 4.3.2, the natural frequencies necessarily need to be supported on a

compact interval, ωi ∈ [ωmax, ωmin] ⊂ R for all i ∈ {1, . . . , n}. The necessary con-

dition (4.9) then states the critical coupling in terms of the width of the interval

[ωmax, ωmin]. In the limit as n→∞, this bound reduces to (ωmax−ωmin)/2, the sim-

ple bound derived in the introduction of this chapter. A looser but still insightful

necessary condition is K ≥ 2σ, where σ is the variance of the ωi [277], [281, Corol-

lary 2]. For bipolar distributions ωi ∈ {ωmin, ωmax}, necessary explicit conditions

similar to (4.9) can be derived for non-complete and highly symmetric coupling

topologies [40]. Of course, this often-reported lower bound (4.9) is generally con-

servative. The following tighter lower bound has been constructed in [58].

Lemma 4.3.3 (Explicit, necessary, and tight critical coupling). Consider the

Kuramoto model (1.2) with n ≥ 2 oscillators, natural frequencies ω ∈ 1⊥n , and

coupling strength K. Define γ ∈ [π/2, π] by

γ = 2 arcos

(
−(n− 2) +

√
(n− 2)2 + 32

8

)
. (4.12)

The Kuramoto model has a frequency-synchronized solution only if the coupling

strength K is larger than a critical value, that is,

K ≥ Kcritical ,
n · (ωmax − ωmin)

2 (sin(γ) + (n− 2) sin(γ/2))
. (4.13)
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Moreover, condition (4.13) is tight: for ω = ωtrip , ω0 ·(+1,−1,0n−2) with ω0 ∈ R

and for any of its permutations, there exists a synchronous solution if and only if

K ≥ Kcritical.

Notice that the bound (4.13) equals the bound (4.9) for n = 2 and for n→∞,

and it is a strict improvement otherwise. The bound (4.13) is reported in [58, Eqs.

(8) and (11)] and is computed using optimization techniques. Though not explic-

itly stated in [58], it can be verified from the derivation that the lower bound

(4.12)-(4.13) is tight for ω=ωtrip. In the critical case K=Kcritical, the associated

arc-invariant equilibrium manifold is given by [θ∗] = [(+γ/2,−γ/2,0n−2)]. In the

limit n→∞ this choice of natural frequencies ω corresponds to the tripolar distri-

bution in Figure 4.2(e), and the associated phases [θ∗] are shown in Figure 4.2(f).

Sufficient and explicit conditions:

Besides the necessary conditions in Lemmas 4.3.2 and 4.3.3, various bounds

sufficient for synchronization have been derived including estimates of the region of

attraction. Typically, these sufficient bounds are derived via incremental stability

arguments and are of the form

K > Kcritical = ‖V ω‖p · f(n, γ) , (4.14)

where ‖·‖p is the p-norm and V is a matrix (of yet unspecified row dimension)

measuring the dissimilarity among the ωi. For instance, V = In− (1/n)1n×n gives
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the deviation from the average natural frequency, V ω = ω − ωavg1n. Finally, the

function f : N×[0, π/2[→ [1,∞[ captures the dependence of Kcritical on the number

of oscillators n and the scalar γ determining a bound on the admissible pairwise

phase differences, which is, for instance, of the form
∥∥(. . . , |θ∗i − θ∗j |, . . . )

∥∥
p
≤ γ.

Two-norm bounds, that is, p = 2 in condition (4.14) can be derived using

quadratic Lyapunov functions in [58, proof of Theorem 4.2] and [85, Theorem 4.4]

(see Theorem 5.2.2 in the next chapter) and fixed-point theorems [139, Condition

(11)] and [84, Theorem 4.7] (see also Theorem 5.2.3 in the next chapter), where

the matrix V ∈ Rn(n−1)/2×n is the incidence matrix of the complete graph, and

V ω is the vector of n(n−1)/2 pairwise differences ωi−ωj. A sinusoidal Lyapunov

function [102, Proposition 1] leads to a two-norm bound with V = In−(1/n)1n×n.

Similar two-norm bounds can be obtained by contraction mapping [139, Theorem

2] and by contraction analysis [64, Theorem 8], where V ∈ Rn−1×n is an orthonor-

mal projector on 1⊥n . For all cited references the region of attraction is given by

the n(n − 1)/2 initial phase differences in two-norm or ∞-norm balls satisfying

‖V θ(0)‖2,∞ < π. Unfortunately, none of these bounds scales independently of n

since ‖V ω‖22 is a sum of at least n− 1 terms in all cited references and f(n, γ) is

either an increasing [139] or a constant function of n [58, 64,85,102].

A scaling of condition (4.14) independently of n has been achieved only when

considering the width ωmax − ωmin = ‖(. . . , ωi − ωj, . . . )‖∞, that is, for V ω being
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the vector of all n(n−1)/2 pairwise frequency differences and p =∞ in condition

(4.14). A quadratic Lyapunov function leads to f(n, γ) = n/(2 sin(γ)) [58, proof

of Theorem 4.1], a contraction argument leads to f(n, γ) = n/((n − 2) sin(γ))

[239, Lemma 9], and a geometric argument leads to the scale-free bound f(γ) =

1/(2 sin(γ/2) cos(γ)) [74, proof of Proposition 1]. In [116, Theorem 3.3] and in the

author’s work [85, Theorem 2.4] and [83, Theorem 4.1] (to be presented in the next

section), the simple and scale-free bound f(γ) = 1/ sin(γ) has been derived by

analyticity and contraction arguments. In our notation, the region of attraction

for synchronization in references [58, 74, 116, 239] is given as θ(0) ∈ Arcn(γ) for

γ ∈ [0, π/2[ determined from condition (4.14).

Exact and implicit conditions:

The articles [5, 185, 281] derive a set of implicit consistency equations for the

exact critical coupling strength Kcritical for which frequency-synchronized solutions

exist. The consistency equation can be easily motivated. Each equilibrium solu-

tion to the Kuramoto model (4.1),(4.2) is characterized by [θ∗] ∈ Tn such that

the left-hand side of (4.2) equals zero. We denote the corresponding value of the

order parameter (4.1) by r∞ ∈ [0, 1] and, without loss of generality, we assume
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that its phase ψ is zero. Hence, we arrive at the equations

ωi = Kr∞ sin(θ∗i ) ,

r∞ =
1

n

∑n

j=1
cos(θ∗i ) .

(4.15)

The equations (4.15) are solvable only if Kr∞ ≥ ‖ω‖∞, and thus necessarily

r∞ > 0 unless ω = 0n. By eliminating θ∗ from (4.15), we arrive at the often-

stated consistency equation

r∞ =
1

n

∑n

j=1
±
√

1− (ωi/Kr∞)2 , (4.16)

where the ± signs are due to the equality: cos(arcsin(x)) = ±
√

1− x2 for x ∈

]− 1, 1[. In fact, the consistency equation (4.16) is a set of 2n equations corre-

sponding to different possible equilibria θ∗ in (4.15) and thus different choices of

the ± signs, although not all choices yield feasible solutions satisfying r∞ ≥ 0.

We refer to [5] for a discussion of the consistency equation (4.16) and its infinite-

dimensional counterpart (4.5). The implicit consistency equation (4.16) marks

the starting point for the analyses in [5,185,281]. By collecting various results in

these three references, we arrive at the following statement, which has not been

presented in this complete and self-contained form so far.

Theorem 4.3.4 (Implicit formulae for the exact critical coupling). Consider the

Kuramoto model (1.2) with n ≥ 2 oscillators, natural frequencies ω ∈ 1⊥n \ {0n},

and coupling strength K. Compute u∗ ∈ [‖ω‖∞ , 2 ‖ω‖∞] as unique solution to the
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equation

2
∑n

i=1

√
1− (ωi/u)2 =

∑n

i=1
1/
√

1− (ωi/u)2 . (4.17)

The following statements are equivalent:

(i) Critical coupling: the coupling strength K is larger than a critical value,

that is,

K > Kcritical , nu∗/
∑n

i=1

√
1− (ωi/u∗)2 ; (4.18)

(ii) Stable frequency synchronization: there exists at least one locally ex-

ponentially stable equilibrium manifold [θ∗] ⊂ Tn.

The implicit formulae (4.17)-(4.18) have been established in [281, Theorem 3],

who showed that Kcritical is the smallest nonnegative value of the coupling strength

for which the Kuramoto model (1.2) admits a frequency-synchronized solution.

We remark that Verwoerd and Mason also extended the implicit formulae (4.17)-

(4.18) to complete bipartite graphs [282, Theorem 3] and infinite-dimensional net-

works [283, Theorem 4]. Moreover, they provided bisection algorithms to compute

Kcritical with predefined precision in a finite number of iterations. Similar implicit

formulae are found in [5] and [185], where additionally a local stability analysis is

carried out [5, Theorems 1 and 3] and [185, Sections 3 and 4] showing a saddle-node

bifurcation for K = Kcritical: for K < Kcritical no frequency-synchronized solution

(that is, equilibrium manifolds) exists and for K > Kcritical a locally stable (cor-
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responding to all + signs in (4.16)) and multiple unstable phase-locked solutions

co-exist. As shown in [225], the Kuramoto model (1.2) can be embedded into a

higher-dimensional, linear, and complex-valued system, and the above stability

results can also be elegantly established via linear systems theory, see [67].

4.4 Explicit and Tight Conditions on the Criti-

cal Coupling

In the finite dimensional case various necessary or sufficient explicit bounds on

the coupling strength Kcritical are known as well as the implicit formulae (4.17)-

(4.18) to compute Kcritical which is provably a threshold for local stability. For the

purpose of analyzing and selecting a sufficiently strong coupling in applications,

the exact conditions in Theorem 4.3.4 have three drawbacks. The stability re-

sults are local and the region of attraction of a synchronized solution is unknown.

Second, the exact formulae (4.17)-(4.18) are implicit and thus not suited for per-

formance estimates. For example, it is unclear which value of asymptotic arc

invariance can be achieved if K > c ·Kcritical for some c > 1. Third and finally, the

natural frequencies ωi are often time-varying or uncertain in most applications.

In this case, the exact value of Kcritical needs to be estimated in continuous time,

or a conservatively strong coupling K � Kcritical has to be chosen.
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Recall from the two-dimensional example in Subsection 2.3.2 that two os-

cillators synchronize if and only if K > Kcriticial , |ω2 − ω1|, and the ratio

κ−1 = Kcriticial/K < 1 determines the asymptotic arc invariance as well as the

set of admissible initial conditions. In other words, practical phase synchroniza-

tion is achieved for K � Kcriticial, and arc invariance occurs only for initial angles

θ(0) ∈ Arcn(γ), where γ = arcsin(Kcriticial/K) ∈ ]π/2, π[. This set of admissi-

ble initial conditions Arcn(γ) can be enlarged to an open semi-circle by increas-

ing K/Kcriticial. Finally, synchronization is lost in a saddle-node bifurcation at

K = Kcriticial. In this section, we will generalize all outcomes of this simple two-

dimensional example to the case of n oscillators.

4.4.1 Boundedness and Contraction Analysis Insights

We start our analysis gaining further insights into the transient dynamics of

first-order coupled oscillator systems. For the sake of generality and for later

applications, we consider the first-order coupled oscillator model (3.1) here. We

repeat the model for the reader’s convenience:

θ̇i = ωi −
∑n

j=1
aij sin(θi − θj) , {1, . . . , n} .

The following lemma shows that frequency synchronization of first-order coupled

oscillators can be achieved if the dynamics are confined to a subset of the phase

cohesive set ∆G(π/2).
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Lemma 4.4.1 (Frequency sync and contraction in ∆G(π/2)). Consider the first-

order coupled oscillator model (3.1) with an undirected, connected, and weighted

graph G(V , E , A) and natural frequencies ω ∈ Rn. Assume that the phase cohesive

set ∆̄G(γ) is forward invariant and θ(0) ∈ ∆̄G(γ) for some γ ∈ [0, π/2[. Then

all frequencies θ̇i(t) synchronize exponentially to the average frequency ωavg =

∑n
i=1 ωi/n with convergence rate no worse than λfe = −λ2(L) cos(γ), that is,

∥∥∥θ̇(t)− ωsync1n

∥∥∥
2
≤
∥∥∥θ̇(0)− ωavg1n

∥∥∥
2
eλfet .

Proof. By differentiating the first-order coupled oscillator model (3.1), we obtain

its frequency dynamics as

d

dt
θ̇i = −

∑n

j=1
ãij(θ(t))(θ̇i − θ̇j) , i ∈ {1, . . . , n} , (4.19)

where ãij(θ(t)) = aij cos(θi(t) − θj(t)). The frequency dynamics (4.19) evolve

on the tangent space of Tn, that is, the Euclidean space Rn. If the set ∆̄G(γ)

is forward invariant and θ(0) ∈ ∆̄G(γ) for some γ ∈ [0, π/2[, then aij(θ(t)) ≥

aij cos(γ) > 0 for all {i, j} ∈ E . Thus, the frequency dynamics (4.19) can be

regarded as linear consensus protocol (2.14) with time-varying and strictly-positive

weights. Based on this observation, it follows from the consensus convergence

result (in Theorem 2.4.1) that all frequencies θ̇i(t) synchronize exponentially.
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To obtain the explicit convergence rate, notice that for θ(t) ∈ ∆̄G(γ) the

frequency dynamics (4.19) read in vector form as

d

dt
θ̇ = J(θ(t))θ̇ = −B diag({ãij(θ(t))}{i,j}∈E)BT

︸ ︷︷ ︸
L(t)

θ̇ , (4.20)

where L(t) is a time-varying Laplacian matrix, as discussed in Lemma 3.2.1. By

Lemma 2.3.2 and its proof, the explicit synchronization frequency is given by

the average frequency ωavg and
∑n

i=1 θ̇i(t) =
∑n

i=1 ωi = n · ωavg is a conserved

quantity for all t ≥ 0. Consider the disagreement vector δ̇ = θ̇ − ωavg1n, as an

error coordinate satisfying 1Tn δ̇ = 0, that is, δ̇ lives in the disagreement eigenspace

of dimension n−1 with normal vector 1n. Since ωavg is constant and Ker (L(t)) =

Span(1n) for all t ≥ 0 the dynamics (4.20) read in δ̇-coordinates as

d

dt
δ̇ = −L(t) δ̇ . (4.21)

Consider the disagreement function δ̇ 7→ ‖δ̇‖22 and its derivative along the disagree-

ment dynamics (4.21): d
dt
‖δ̇‖22 = −2 δ̇TL(t)δ̇. By the Courant-Fischer Theorem

[181], the derivative of the disagreement function can be upper-bounded (point-

wise in time) by the second-smallest eigenvalue of the time-invariant Laplacian L:

d

dt
‖δ̇‖22 = −2 δ̇TL((t))δ̇ = −2(BT δ̇)T diag({aij cos(θi(t)− θj(t))}{i,j}∈E)(BT δ̇)

≤ −2 min
{i,j}∈E

{cos(θi − θj) : θ ∈ ∆̄G(γ)} · δ̇TLδ̇ ≤ 2λfe‖δ̇‖22 .

The Bellman-Gronwall Lemma [146, Lemma A.1] yields that the disagreement

vector δ(t) satisfies ‖δ̇(t)‖≤‖δ̇(0)‖eλfet. This concludes the proof.
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The key ideas of Lemma 4.4.1 have first been presented in [58, Theorem 3.1],

and we refer to [85, Theorem 4.1] and [240, Lemma 3.5] for extensions to digraphs,

more general coupling functions, and time-delays.

Contraction Analysis

The proof of Lemma 4.4.1 is essentially based on the particular form of the

Jacobian J(θ), which is negative semidefinite for θ ∈ ∆̄G(γ). If ∆̄G(γ) is a forward

invariant set, it also follows that the first-order coupled oscillator dynamics (3.1)

are contracting1 relative to the nullspace 1n. Consequently, the dynamics (3.1)

are incrementally exponentially stable (modulo symmetry), that is, given any two

initial values θ(0), θ̃(0) ∈ ∆̄G(γ), there is a pseudo-metric d : Tn × Tn → R≥0 (a

metric modulo symmetry)2 and constants c1 ≥ 1 and c2 > 0 such that

d
(
θ(t), θ̃(t)

)
≤ c1e

−c2td
(
θ(0), θ̃(0)

)
, ∀ t ≥ 0 . (4.22)

The application of contraction analysis to the coupled oscillator model (1.1) yields

the incremental exponential stability (4.22) in `2-type metrics [64, Theorem 7] or

in `∞-type metrics [101, Example 6]. [55, Theorem 4.1] report the incremental

stability (4.22) in an `1-metric. Finally, for discontinuous and monotone coupling

1We refer the reader to [169,254] for a treatment of contraction analysis and to [101,230,286]
for its extension to systems with symmetries.

2The pseudo-metric d is a nonnegative and symmetric function (d(θ1, θ2) = d(θ2, θ1)) sat-
isfying the triangle inequality d(θ1, θ2) ≤ d(θ1, θ3) + d(θ3, θ2) and d(θ1, θ1) = 0 if and only if
[θ1] = [θ2]. The pseudo-metric d is a proper distance function on the quotient manifold Tn/S1.
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functions and complete interaction graphs the total variation distance provides

yet another `1-type contraction metric [178].

4.4.2 The Contraction Property and the Main Synchro-

nization Result

The results in the previous subsection show that frequency synchronization

and incremental stability can be achieved if the dynamics are confined to a subset

of the phase cohesive set ∆G(π/2), respectively, a subset of the arc invariant

set Arcn(π/2) ⊆ ∆G(π/2) for the complete graph case. In order to show this

boundedness, different Lyapunov functions can be adopted which generally lead

to only sufficient (and possibly conservative) conditions. Here, we adopt the

contraction property presented for consensus networks in Subsection 2.4.1. Recall

the geodesic distance on S1 and define the continuous function V : Tn → [0, π] by

V (ψ) = max{|ψi − ψj| | i, j ∈ {1, . . . , n}}. (4.23)

If all angles at time t are contained in an arc of length strictly less than π, then the

arc length V (θ(t)) = maxi,j∈{1,...,n} |θi(t)− θj(t)| is a Lyapunov function candidate

to show arc invariance, see Figure 4.4. Intuitively, the oscillators θ`(t) and θr(t) at

both boundaries are pulled towards their neighbors in the interior Arcn(V (θ(t)),

and the Lyapunov function V (θ(t)) is non-increasing.
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V (θ(t))

θℓ(t) θr(t)

Figure 4.4: Illustration of the contraction Lyapunov function
The Lyapunov function candidate V (θ(t)) is shown for angles in an open semi-
circle θ(t) ∈ Arcn(π). The oscillators at the boundaries of the arc containing all
oscillators Arcn(V (θ(t)) are denoted by θ`(t) and θr(t).

Based on these observations, the following theorem provides an explicit upper

bound on the critical coupling together with performance estimates, convergence

rates, and a guaranteed semi-global region of attraction. This bound is tight

and thus necessary and sufficient when considering arbitrary distributions with

compact support of the natural frequencies.

Theorem 4.4.2 (Explicit, sufficient, & tight critical coupling and practical phase

sync). Consider the Kuramoto model (1.2) with n ≥ 2 oscillators, natural frequen-

cies ω ∈ 1⊥n and coupling strength K. The following statements are equivalent:

(i) Critical coupling: the coupling strength K is larger than a critical value,

that is,

K > Kcritical , ωmax − ωmin ; (4.24)
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(ii) Admissible initial arc invariance: there exists γmax ∈ ]π/2, π] such that

the Kuramoto model (1.2) synchronizes exponentially for all possible dis-

tributions of the natural frequencies ωi supported on the compact interval

[ωmin, ωmax] and for all initial phases θ(0) ∈ Arcn(γmax); and

(iii) Arc invariance of sync manifold: there exists γmin ∈ [0, π/2[ such that

the Kuramoto model (1.2) has a locally exponentially stable synchronization

manifold in Arcn(γmin) for all possible distributions of the natural frequencies

ωi supported on the compact interval [ωmin, ωmax].

If the equivalent conditions (i), (ii), and (iii) hold, then the ratio Kcritical/K

and the arc lengths γmin ∈ [0, π/2[ and γmax ∈ ]π/2, π] are related uniquely via

sin(γmin) = sin(γmax) = Kcritical/K, and the following statements hold:

1) practical phase synchronization: the set Arcn(γ) is positively invariant

for every γ ∈ [γmin, γmax], and each trajectory originating in Arcn(γmax)

approaches asymptotically Arcn(γmin);

2) order parameter: the asymptotic value of the magnitude of the order pa-

rameter denoted by r∞ , limt→∞
1
n
|∑n

j=1 e
iθj(t)|is bounded as

1 ≥ r∞ ≥ cos
(γmin

2

)
=

√
1 +

√
1− (Kcritical/K)2

2
;
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3) frequency synchronization: the asymptotic synchronization frequency is

ωsync =
∑n

i=1 ωi/n, and, given arc invariance in Arcn(γ) for some fixed

γ < π/2, the exponential synchronization rate is no worse than λfe.

The proof of Theorem 4.4.2 relies on the contraction property. Since the proof

of Theorem 4.4.2 is rather lengthy, we present a brief outline here. If all angles at

time t ≥ 0 belong to a closed arc of length γ ∈ [0, π[, that is, θ(t) ∈ Arcn(γ), then

the arc length t 7→ V (θ(t)) is non-increasing provided that K sin(γ) ≥ ωmax−ωmin.

This inequality holds true for γ ∈ [γmin, γmax] if and only if condition (4.24) holds

true. Additionally, t 7→ V (θ(t)) is strictly decreasing for γ ∈ ]γmin, γmax[, the

angles θ(t) reach the set Arcn(γmin) ∈ ∆G(π/2), and frequency synchronization

and stability follow from the results developed in Lemma 4.4.1. The converse

implications follow since condition (4.24) is also necessary for synchronization

with bipolar natural frequencies ω = ωbip , ω0 · (−p · 1n−p,+(n − p) · 1p) with

ω0 ∈ R, p ∈ {1, . . . , n− 1}, and for any of its permutations.

Proof of Theorem 4.4.2. Sufficiency (i) =⇒ (ii): We start by proving the pos-

itive invariance of Arcn(γ), that is, arc invariance in Arcn(γ) for some γ ∈ [0, π].

Recall the contraction Lyapunov function (4.23) depicting the length of the arc

containing all angles. This arc has two boundary points: a counterclockwise max-

imum and a counterclockwise minimum. If we let Imax(ψ) (respectively, Imin(ψ))
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denote the set indices of the angles ψ1, . . . , ψn that are equal to the counterclock-

wise maximum (respectively, the counterclockwise minimum), then we may write

V (ψ) = |ψm′ − ψ`′|, for all m′ ∈ Imax(ψ) and `′ ∈ Imin(ψ).

By assumption, the angles θi(t) belong to the set Arcn(γ) at time t = 0. We aim to

show that they remain so for all subsequent times t > 0. Note that θ(t) ∈ Arcn(γ)

if and only if V (θ(t)) ≤ γ ≤ π. Therefore, Arcn(γ) is positively invariant if and

only if V (θ(t)) does not increase at any time t such that V (θ(t)) = γ. The upper

Dini derivative of V (θ(t)) along the Kuramoto dynamics (1.2) is [166, Lemma 2.2]

D+V (θ(t)) = lim
h↓0

sup
V (θ(t+ h))− V (θ(t))

h
= θ̇m(t)− θ̇`(t) ,

where m ∈ Imax(θ(t)) and ` ∈ Imin(θ(t)) are indices with the properties that

θ̇m(t) = max{θ̇m′(t) | m′ ∈ Imax(θ(t))} and θ̇`(t) = min{θ̇`′(t) | `′ ∈ Imin(θ(t))}.

Written out in components D+V (θ(t)) takes the form

D+V (θ(t)) = ωm − ω` −
K

n

n∑

i=1

(
sin(θm(t)− θi(t)) + sin(θi(t)− θ`(t))

)
.

Note that the index i in the upper sum can be evaluated for i ∈ {1, . . . , n}, and for

i = m and i = ` one of the two sinusoidal terms is zero and the other one achieves

its maximum value in Arcn(γ). The trigonometric identity sin(x) + sin(y) =
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2 sin(x+y
2

) cos(x−y
2

) then leads to

D+V (θ(t)) = ωm − ω` −
K

n

n∑

i=1

(
2 sin

(
θm(t)− θ`(t)

2

)

× cos

(
θm(t)− θi(t)

2
− θi(t)− θ`(t)

2

))
. (4.25)

The equality V (θ(t)) = γ implies that, measuring distances counterclockwise and

modulo additional terms equal to multiples of 2π, we have θm(t) − θ`(t) = γ,

0≤θm(t)− θi(t)≤γ, and 0≤θi(t)− θ`(t)≤γ. Therefore, D+V (θ(t)) simplifies to

D+V (θ(t)) ≤ ωm − ω` −
K

n

n∑

i=1

(
2 sin

(γ
2

)
cos
(γ

2

))
.

Reversing the identity from above as 2 sin(x) cos(y) = sin(x−y)+sin(x+y) yields

D+V (θ(t)) ≤ ωm − ω` −
K

n

n∑

i=1

sin(γ) = ωm − ω` −K sin(γ) .

Therefore, the length of the arc formed by the angles is non-increasing in Arcn(γ)

if for any pair {m, `} it holds that K sin(γ) ≥ ωm−ω`, which is true if and only if

K sin(γ) ≥ Kcritical , (4.26)

where Kcritical is as stated in equation (4.24). For γ ∈ [0, π] the left-hand side

of (4.26) is a concave function of γ that achieves its maximum at γ∗ = π/2.

Therefore, there exists an open set of arc lengths γ ∈ [0, π] satisfying equation

(4.26) if and only if equation (4.26) is true with the strict equality sign at γ∗ =

π/2, which corresponds to inequality (4.24) in the statement of Theorem 4.4.2.
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Additionally, if these two equivalent statements are true, then there exists a unique

γmin ∈ [0, π/2[ and a unique γmax ∈ ]π/2, π] that satisfy equation (4.26) with

the equality sign, namely sin(γmin) = sin(γmax) = Kcritical/K. For every γ ∈

[γmin, γmax] it follows that the arc-length V (θ(t)) is non-increasing, and it is strictly

decreasing for γ ∈ ]γmin, γmax[.

Among other things, this reasoning shows that statement (i) implies statement

1). Additionally, the oscillators are asymptotically phase cohesive in Arcn(γmin).

It follows from Lemma 4.3.1 that the asymptotic magnitude r of the order pa-

rameter satisfies 1 ≥ r ≥ cos(γmin/2). The trigonometric identity cos(γmin/2) =

√
(1 + cos(γmin))/2 together with a Pythagorean identity yields then the bound

in statement 2). Finally, since for θ(0) ∈ Arcn(γmax) and for all γ ∈ ]γmin, γmax]

there exists a finite time T ≥ 0 such that θ(t) ∈ Arcn(γ) for all t ≥ T , the fre-

quency synchronization statement 3) then follows directly from Lemma 4.4.1 This

concludes the proof of the sufficiency (i) =⇒ (ii) and the statements 1), 2), and 3).

Necessity (ii) =⇒ (i): To show that the critical coupling in condition (4.24)

is also necessary for synchronization, it suffices to construct a counter example for

which K ≤ Kcritical and the oscillators do not achieve exponential synchronization

even though all ωi ∈ [ωmin, ωmax] and θ(0) ∈ Arcn(γ) for every γ ∈ ]π/2, π].

A basic instability mechanism under which synchronization breaks down is

caused by a bipolar distribution of the natural frequencies. Let the index set
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{1, . . . , n} be partitioned by the two non-empty sets I1 and I2. Let ωi = ωmin

for i ∈ I1 and ωi = ωmax for i ∈ I2, and assume that at some time t ≥ 0 it

holds that θi(t) = −γ/2 for i ∈ I1 and θi(t) = +γ/2 for i ∈ I2 and for some

γ ∈ [0, π[. By construction, at time t all oscillators are contained in an arc of

length γ ∈ [0, π[. Assume now that K <Kcritical and the oscillators synchronize.

Consider the evolution of the arc length V (θ(t)) given as in (4.25) by

D+V (θ(t)) = ωm − ω` −
K

n

∑

i∈I1

(
2 sin

(
θm(t)− θ`(t)

2

)

× cos

(
θm(t)− θi(t)

2
− θi(t)− θ`(t)

2

))

− K

n

∑

i∈I2

(
2 sin

(
θm(t)− θ`(t)

2

)
cos

(
θm(t)− θi(t)

2
− θi(t)− θ`(t)

2

))
,

where the summation is split according to the partition of {1, . . . , n} into I1 and

I2. By construction, we have that ` ∈ I1, m ∈ I2, ω` = ωmin, ωm = ωmax,

θi(t) = θ`(t) = −γ/2 for i ∈ I1, and θi(t) = θm(t) = +γ/2 for i ∈ I2. Thus,

D+V (θ(t)) simplifies to

D+V (θ(t)) = ωmax−ωmin−
K

n

∑

i∈I1

(
2 sin

(γ
2

)
cos
(γ

2

))
−K
n

∑

i∈I2

(
2 sin

(γ
2

)
cos
(γ

2

))
.

Again, we reverse the trigonometric identity via 2 sin(x) cos(y) = sin(x − y) +

sin(x+ y), unite both sums, and arrive at

D+V (θ(t)) = ωmax − ωmin −K sin(γ) . (4.27)
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Clearly, for K < Kcritical the arc length V (θ(t)) = γ is increasing for any arbi-

trary γ ∈ [0, π]. Thus, the phases are not bounded in Arcn(γ). This contradicts

the assumption that the oscillators synchronize for K < Kcritical from every ini-

tial condition θ(0) ∈ Arcn(γ). Thus, Kcritical provides the exact threshold. For

K = Kcritical, we know from [5,185] that phase-locked equilibria have a zero eigen-

value with a two-dimensional Jacobian block, and thus synchronization cannot

occur. This instability via a two-dimensional Jordan block is also visible in (4.27)

since (for K = Kcritical) D
+V (θ(t)) is increasing for θ(t) ∈ Arcn(γ), γ ∈ ]π/2, π]

until all oscillators change orientation, just as in the two-dimensional example in

Subsection 2.3.2. This concludes the proof of the necessity (ii) =⇒ (i).

Sufficiency (i),(ii) =⇒ (iii): Assume that (i) and (ii) hold and exponential

synchronization occurs. When formulating the Kuramoto model (1.2) in a rotat-

ing frame with frequency ωavg, statement 3) implies exponential convergence of

the frequencies θ̇i(t) to zero. Hence, for all θ(0) ∈ Arcn(γmax) every phase θi(t)

converges exponentially to a constant limit phase given by θi,sync , limt→∞ θi(t) =

θi(0) +
∫∞
0
θ̇i(τ) dτ , which corresponds to an equilibrium of the Kuramoto model

(1.2) in a rotating frame. Furthermore, statement 1) implies that these equilibria

(θ1,sync, . . . , θn,sync) are contained in Arcn(γmin). Finally, these equilibria are stable

(modulo symmetry) by Lemma 3.2.1. Hence, if conditions (i)-(ii) hold, then there

exists a locally exponentially stable synchronized solution [θsync] ⊂ Arcn(γmin).
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Necessity (iii) =⇒ (i),(ii): Conversely, assume that condition (i) does

not hold, that is, K ≤ Kcritical = ωmax − ωmin. We prove the necessity of (iii)

again by invoking a bipolar distribution of the natural frequencies. In this case,

it is known that for K = Kcritical = ωmax − ωmin there exists a unique equilibrium

(in a rotating frame with frequency ωavg), and for K < Kcritical there exists no

equilibrium [277, Section 4]. In the latter case, synchronization cannot occur. In

the former case, the equilibrium configuration corresponds to the phases arranged

in two groups (sorted according to the bipolar distribution) which are exactly π/2

apart, see Figure 4.2(a). Finally, note that such an equilibrium configuration is

unstable, as shown by equality (4.27). We remark that the same conclusions can

alternatively be drawn from the implicit conditions (4.17)-(4.18) for the critical

coupling. This proves the necessity (iii)⇒ (i),(ii).

We make the following remarks concerning Theorem 4.4.2. Besides establish-

ing a tight condition for Kcritical, Theorem 4.4.2 establishes some properties of the

transient evolution of the Kuramoto dynamics (1.2) and a practical stability result.

The multiplicative gap Kcritical/K in the bound (4.24) determines the admissible

initial and the guaranteed asymptotic arc invariance as well as the guaranteed

asymptotic magnitude of the order parameter. In view of this result, the asymp-

totic synchronization behavior of the Kuramoto model (1.2) is best described by

the control-theoretic terminology practical phase synchronization.
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Notice that Theorem 4.4.2 fully generalizes the observations from the two-

dimensional example in Subsection 2.3.2 to the n-dimensional case. Moreover,

Theorem 4.4.2 reduces to the phase synchronization result in Theorem 2.4.2 for

identical natural frequencies. We remark that similar synchronization conditions

are reported in [55,74,116,240], the contraction Lyapunov function (4.23) can be

partially extended to second-order oscillators [57] for sufficiently small or suffi-

ciently large inertiae, and the bound γmin on the asymptotic phase distances can

be improved for particular pairs of oscillators, see [55, Theorem 5.2] for details.

The proof of Theorem 4.4.2 uses the bipolar distribution ωbip as a worst-case

instance to show that the bound (4.24) is also saturated. The recent analysis [56]

shows that ωbip is indeed the worst-case selection of natural frequencies: if there

are more than three distinct natural frequencies, then the bound (4.24) is not sat-

urated and only sufficient. To compare the bound (4.24) to the bounds presented

in Section 4.3, we note from the proof of Theorem 4.4.2 that condition (4.24) can

be equivalently stated as K > (ωmax − ωmin)/ sin(γ) and thus improves upon the

sufficient bounds [58, 64, 74, 102, 139, 239]. In the simple case n = 2 analyzed in

Subsection 2.3.2 , the bound (4.24) is exact and also equals the necessary bound

(4.9). In the infinite-dimensional case the bound (4.24) is tight with respect to the

necessary bound for a bipolar distribution ωi ∈ {ωmin, ωmax} in Theorem 4.2.3.
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Note that condition (4.24) also guarantees synchronization for arbitrary dis-

tributions of ωi supported in [ωmin, ωmax], which can possibly be uncertain or

even unknown. Additionally, Theorem 4.4.2 also guarantees a larger region of at-

traction θ(0) ∈ Arcn(γmax) for synchronization than [58, 64, 74, 102, 116, 139, 239].

Finally, we remark that the proof strategy via the contraction Lyapunov function

(4.23) can be adapted to more general cases, for example, the conclusions of Theo-

rem 4.4.2 can be extended to time-varying natural frequencies, see the illustration

in Figure 4.5. We refer to the author’s article [83] for further details. The authors

of [71,102] come to a similar conclusion when analyzing the effects of time-varying

frequencies via input-to-state stability arguments or in simulations.

4.4.3 Comparison and Statistical Analysis

Theorem 4.4.2 states the tight and explicit upper bound (4.24) on the critical

coupling strength Kcritical. Likewise, Lemma 4.3.3 states the tight and explicit

lower bound (4.13) on Kcritical. The exact critical coupling lies somewhere in-

between and can be obtained from the implicit formulae (4.17)-(4.18). By collect-

ing these results, we can state the following corollary, which improves upon the

explicit bounds proposed by [281, Corollary 7].

Corollary 4.4.3 (Tight explicit bounds). Consider the Kuramoto model (1.2)

with n ≥ 2 oscillators, natural frequencies ω ∈ 1⊥n \ {0n}, and coupling strength
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Figure 4.5: Kuramoto oscillators with time-varying natural frequecies
Simulation of a network of n = 10 Kuramoto oscillators (1.2) satisfying K = 1.1 ·
(ωmax−ωmin). In panel (a), the natural frequencies ωi : R≥0 → [ωmin, ωmax] = [0, 1]
are smooth, bounded, and distinct sinusoidal functions. Each natural frequency
ωi(t) asymptotically converges to ω̃i + sin(πt) with constant and randomly chosen
ω̃i ∈ [0, 1]. In panel (b), the natural frequencies ωi(t) of oscillators 1 and 10 (dis-
played in red dashed lines) switch between constant values in [ωmin, ωmax] = [0, 1].
The simulations illustrate the phase cohesiveness of the angles θ(t) in Arcn(γmin),
the boundedness and convergence of the frequency variations (between consecutive
switching instances) θ̇(t)−ωavg(t)1n, as well as the monotonicity of the Lyapunov
function V (θ(t)) in Arcn(γ) for γ ∈ [γmin, γmax].
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K. Compute the exact critical coupling Kcritical according to (4.17)-(4.18). The

explicit necessary condition (4.13) and sufficient condition (4.24) provide tight

upper and lower bounds on the exact critical coupling Kcritical, that is,

n · (ωmax − ωmin)

2 (sin(γ) + (n− 2) sin(γ/2))
≤ Kcritical ≤ ωmax − ωmin , (4.28)

where γ ∈ [π/2, π] is defined in (4.12). Moreover, the lower bound is tight for

ω = ωtrip , ω0 · (+1,−1,0n−2), and the upper bound is tight for ω = ωbip ,

ω0 · (−p ·1n−p,+(n− p) ·1p), where ω0 ∈ R, p ∈ {1, . . . , n− 1}, and both ωtrip and

ωbip are defined modulo index permutations.

Corollary 4.4.3 is the finite-dimensional counterpart to Theorem 4.2.3 and

identifies bipolar and tripolar frequencies as the extreme choices for the resulting

critical coupling Kcritical. These two distributions of natural frequencies are illus-

trated in Figure 4.2(a) and 4.2(e). We remark that for natural frequencies sampled

from a particular distribution g(ω) the critical quantity in Corollary 4.4.3, the sup-

port ωmax−ωmin, can be estimated by extreme value statistics, see [33] for details.

By Theorem 4.2.3, for infinite-dimensional models the uniform distribution

gunif(ω) = 1/2 yields the smallest synchronization threshold Klock = 4ω0/π over

all continuous, symmetric, and unimodal distributions g(ω) with bounded sup-

port ω ∈ [−ω0,+ω0]. Hence, the uniform distribution is an interesting choice

to compare the three conditions (4.13), (4.17)-(4.18), and (4.24) in a statistical
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Figure 4.6: Statistical analysis of the critical coupling estimates
Statistical analysis of the necessary, tight, and explicit bound (4.13) (♦), the
exact and implicit formulae (4.17)-(4.18) (◦), and the sufficient, tight, and explicit
bound (4.24) (�) for n ∈ [2, 300] oscillators, where the coupling gains for each n
are averaged over 1000 samples of randomly uniformly generated frequencies.

analysis. Figure 4.6 reports our numerical findings. All three displayed conditions

are identical for n = 2 oscillators. As n increases, the sufficient bound (4.24)

converges to the width ωmax − ωmin = 2ω0 of the support of gunif(ω), and the nec-

essary bound (4.13) converges to half of that width. The exact value of Kcritical

given by (4.17)-(4.18) converges to 4(ωmax − ωmin)/(2π) = 4ω0/π in agreement

with condition (4.6) predicted for the continuum limit.

4.4.4 Frequency Synchronization of Multi-Rate Kuramoto

Oscillators

In this section, we extend the results in Theorem 4.4.2 to the multi-rate Ku-

ramoto model (3.2). As discussed in Subsection 3.1.1, the literature [2, 3, 57, 126,
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127,265,266] on second-order Kuramoto oscillators reports partially controversial

results on the inertial effects on synchronization. As a corollary of Theorem 4.4.2

together with the topological equivalence results in Theorems 3.3.1 and 3.3.3,

we can show that frequency synchronization conditions for multi-rate Kuramoto

oscillators (3.2) are indeed independent of the inertial coefficients:

Theorem 4.4.4 (Frequency Synchronization in the Multi-Rate Kuramoto Model).

Consider the multi-rate Kuramoto model (3.2) with n ≥ 2 oscillators, natural fre-

quencies ω ∈ 1⊥n , coupling strength K, and positive inertial and damping coeffi-

cients Mi > 0 and Di > 0, respectively. The following statements are equivalent:

(i) tthe coupling strength K is larger than a critical value, that is, K > Kcritical ,

ω̃max − ω̃min; and

(ii) there exists an arc length γmin ∈ [0, π/2[ such that each multi-rate Kuramoto

model (3.2) satisfying ω̃i = ωi − Di ωsync ∈ [ω̃max, ω̃min], i ∈ {1, . . . , n},

has a locally exponentially stable synchronized solution with synchronization

frequency ωsync and arc invariant in Arcn(γmin).

Moreover, in either of the two equivalent cases (i) and (ii), the ratio Kcritical/K

and the arc length γmin ∈ [0, π/2[ are related uniquely via Kcritical/K = sin(γmin).

Proof. By Theorem 3.3.3, a locally exponentially stable synchronized trajectory

of the multi-rate Kuramoto model (3.2) exists if and only if there exists a lo-
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cally exponentially stable equilibrium of the corresponding first-order Kuramoto

model (1.2). By Theorem 4.4.2, the latter is true if and only if statement (i) holds.

Moreover, Theorem 4.4.2 asserts that a synchronized solution is arc invariant in

Arcn(γmin), where sin(γmin) = Kcritical/K. This concludes the proof.

The following remarks concerning Theorem 4.4.4 are in order. As noted in

Theorem 3.3.3, the synchronization condition in statement (i) is independent of

the inertial coefficients. Of course, the transient synchronization dynamics of

multi-rate Kuramoto oscillators (3.2) strongly depend on the damping and the

inertial coefficients, see the simulation in Figure 3.1. If the inertial coefficients are

sufficiently small, then the contraction Lyapunov function (4.23) can be extended

to second-order Kuramoto dynamics, which then show a similar transient behavior

as the first-order Kuramoto dynamics (1.2), see [57] for further details.

Finally, as discussed in Section 4.4, the bound on Kcritical presented in (i)

is only sufficient and tight, and it may be conservative for a particular set of

natural frequencies. Since the multi-rate Kuramoto model (3.2) is an instance of

the parameterized system considered in Theorem 3.3.1, it has the same equilibria

and the same stability properties as the Kuramoto model (1.2) (together with the

frequency dynamics (4.19)). Hence, the implicit formulae (4.17)-(4.18) can also be

applied to multi-rate Kuramoto oscillators (3.2) to find the exact critical coupling

for a given set of natural frequencies.
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4.5 Applications to Network-Reduced Power Sys-

tem Models

The author has adapted the analysis framework contained in this section to

network-reduced power system models (3.16) and to the non-uniform Kuramoto

model (3.17). Of course, the results have to be modified but the analysis methods

can be applied nevertheless – provided that the network-reduced power system

model features a complete coupling topology, such as the New England power grid

illustrated in Figure 2.1. In fact, for most power networks the subgraph induced

by the load buses V3 is connected, which implies that the coupling topology of the

network-reduced model is complete [86, Theorem 3.4]. The singular perturbation

approximation in Theorem 3.4.2 together with an adaption of the contraction-

based proof of Theorem 4.4.2 lead to the following result [85, Theorem 2.4].

Theorem 4.5.1 (Synchronization in Network-Reduced Power Systems). Consider

the network-reduced power system model (3.16) and the non-uniform Kuramoto

model (3.17) with a complete coupling graph, that is, aij ≥ 0 for all distinct

i, j ∈ {1, . . . , n}. Assume that the minimal lossless coupling of any oscillator to
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the network is larger than a critical value, that is,

Γmin , nmin
i 6=j

{
aij
Di

cos(ϕij)

}

> Γcritical ,
1

cos(ϕmax)

(
max
i 6=j

∣∣∣∣
ωi
Di

− ωj
Dj

∣∣∣∣+ 2 max
i∈{1,...,n}

∑n

j=1

aij
Di

sin(ϕij)
)
. (4.29)

Accordingly, define γmin ∈ [0, π/2− ϕmax[ and γmax ∈ ]π/2, π] as unique solutions

to the equations sin(γmin) = sin(γmax) = cos(ϕmax) Γcritical/Γmin.

For the non-uniform Kuramoto model,

1) arc invariance: the set Arcn(γ) is positively invariant for all γ ∈ [γmin, γmax],

and each trajectory starting in Arcn(γmax) asymptotically reaches Arcn(γmin);

and

2) frequency synchronization: for every θ(0) ∈ ∆(γmax), the frequencies

θ̇i(t) synchronize exponentially to some frequency θ̇∞ ∈ [θ̇min(0), θ̇max(0)].

For the network-reduced power system model, for all θ(0) ∈ Arcn(γmax) and for

all initial frequencies θ̇(0),

3) approximation errors: there exists a constant ε∗ > 0 such that, if ε ,

Mmax/Dmin < ε∗, then the solution (θ(t), θ̇(t)) of (3.16) exists for all t ≥ 0,

and it holds uniformly in t that

(
θi(t)− θn(t)

)
=
(
θ̄i(t)− θ̄n(t)

)
+O(ε), ∀ t≥0, i ∈ {1, . . . , n− 1},

θ̇(t) = h(θ̄(t)) +O(ε), ∀t > 0 ,

(4.30)
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where θ̄(t) is the solution to the non-uniform Kuramoto model (3.17) with

initial condition θ̄(0) = θ(0) and h(θ) is defined in (3.22); and

4) asymptotic approximation errors: there exists ε and ϕmax sufficiently

small, such that the O(ε) errors in equation (4.30) converge to zero as t→∞.

The proof of can be found in the author’s article [85] and will not be repeated

here. We state the following remarks to Theorem 4.5.1:

Remark 4.5.2 (Physical interpretation and refinement of Theorem 4.5.1). The

right-hand side of condition (4.29) states the worst-case dissimilarity in natural

frequencies (the difference in effective power inputs) and the worst-case lossy cou-

pling of a generator to the network (aij sin(ϕij) = EiEj<(−Yij) is the transfer

conductance), both of which are scaled with the rates Di. The term cos(ϕmax) =

sin(π/2−ϕmax) corresponds to arc invariance in Arcn(π/2−ϕmax), which is nec-

essary to apply Lemma 4.4.1. These negative effects have to be dominated by the

left-hand side of (4.29), which is a lower bound for mini
{∑n

j=1

(
aij cos(ϕij)/Di

)}
,

the worst-case lossless coupling of a node to the network. The multiplicative gap

Γcritical/Γmin between the right- and the left-hand side in (4.29) can be understood

as a robustness margin that additionally gives a practical stability result determin-

ing the admissible initial and the possible asymptotic lack of arc invariance.
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In summary, the conditions of Theorem 4.5.1 read as “the network connectivity

has to dominate the network’s heterogeneity and the network’s losses.” In Theorem

4.5.1 we present the scalar synchronization condition (4.29), the estimate for the

region of attraction Arcn(γmax), and the ultimate phase cohesive set Arcn(γmin).

In the derivations leading to Theorem 4.5.1 it is possible to trade off a tighter

synchronization condition against a looser estimate of the region of attraction, or

a single loose scalar condition against n(n− 1)/2 tight pairwise conditions. These

tradeoffs are explored in [81]. We remark that the coupling weights aij in condition

(4.29) are not only the reduced power flows but reflect for uniform voltages Ei and

phase shifts ϕij also the effective resistance of the original (non-reduced) network

topology [86]. Moreover, condition (4.29) indicates at which generator the damping

torque has to be changed (for example, via local power system stabilizers) in order

to meet the sufficient synchronization condition.

The network-reduced power system model (3.16) inherits the synchronization

condition (4.29) in the (well-posed) relative coordinates θi − θn and up to the

approximation error (4.30) which is of order ε and eventually vanishes for ε and

ϕmax sufficiently small. When specialized to the classic Kuramoto model (1.2), the

sufficient condition (4.29) reduces to the sufficient and tight bound (4.24). �
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Chapter 5

Synchronization in Complex
Oscillator Networks

The coupled oscillator model considered in this thesis is a variation of
a well studied and still poorly understood spin glass model [245]:

Spin glasses: still complex after all these years?

Daniel Stein in Decoherence and Entropy in Complex Systems [256].

This chapter considers the first-order coupled oscillator model (3.1)

θ̇i = ωi −
∑n

j=1
aij sin(θi − θj) , {1, . . . , n} .

featuring de-synchronizing dissimilar natural frequencies ω ∈ 1⊥n and the synchro-

nizing coupling through a graph G(V , E , A) with a nontrivial topology. The net-

work science and physics communities coined the term complex for such non-trivial

topologies to distinguish them from long-range (that is, complete) and short-range

(that is, lattice-type) interaction topologies. The interest of the control commu-

nity in such complex oscillator networks has been sparked by the seminal arti-
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cle [139] and the widespread scientific attention given to complex network stud-

ies [18,31,203,259,264], and consensus and its applications [37,104,180,200,221].

5.1 Introduction

5.1.1 Relevant Literature

The mechanical analog in Figure 1.1 and the formulation of the coupled oscil-

lator model (3.1) as a forced gradient flow (3.5) clarifies the competition between

the synchronization-enforcing coupling aij sin(θi − θj) and the synchronization-

inhibiting dissimilar natural frequencies ωi. For arbitrary network topologies and

weights the equilibrium and potential landscape of the complex oscillator network

(3.1) has been studied by different communities [16,22,179,269]. We particularly

recommend the article [16], where various surprising and counter-intuitive exam-

ples are reported. Loosely speaking, the oscillator network (3.1) achieves synchro-

nization when the coupling dominates the dissimilarity in natural frequencies.

Various conditions have been proposed to quantify this trade-off for sparse

graphs, both in theoretical studies as well as in power network applications. The

coupling is typically quantified by the algebraic connectivity λ2(L) [18, 31, 85,

139, 193, 198, 215, 222, 299], the weighted nodal degree degi =
∑n

j=1 aij [40, 85, 86,

108, 153, 253, 298], or various metrics related to the notion of effective resistance
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[86,153,298]. The dissimilarity among the natural frequencies is quantified either

by absolute norms ‖ω‖p or by incremental norms1 ‖BTω‖p, for p ∈ N. Here, we

specifically consider the three incremental norms:

‖ω‖E,∞ , ‖BTω‖∞ = max{i,j}∈E |ωi − ωj| ,

‖ω‖E,2 , ‖BTω‖2 =

(∑
{i,j}∈E

|ωi − ω2|2
)1/2

,

‖ω‖Ecplt,2 , ‖BT
cpltω‖2 =

1

2

(∑n

i,j=1
|ωi − ω2|2

)1/2
,

where the subscript cplt stands for the complete graph. With slight abuse of

notation, we also adopt these incremental norms for angular differences. For

example, for γ ∈ [0, π[, the incremental ∞-norm ball {θ ∈ Tn | ‖θ‖E∞ ≤ γ} is

identical to the phase cohesive set ∆̄G(γ). Some of the aforementioned conditions

will be developed within this section.

As every review article on synchronization [3, 18, 31, 89, 258, 259], let us state

here that the problem of finding sharp and provably correct synchronization con-

ditions is not yet completely solved. Some of the proposed synchronization con-

ditions for complex oscillator networks can be evaluated only numerically since

they are state-dependent [298,299] or arise from a non-trivial linearization process,

such as the Master stability function formalism [18,31, 193,215]. In general, con-

cise and accurate results are known only for specific topologies such as complete

1More precisely, the incremental norms ‖BTω‖p are seminorms in Rn and proper norms in
the quotient space 1⊥n .
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graphs discussed in the previous chapter, linear chains [262], highly symmetric ring

graphs [40], acyclic graphs [75], and complete bipartite graphs [282] with uniform

weights. For arbitrary coupling topologies, the literature contains only sufficient

conditions [85,139,298,299] as well as numerical and statistical investigations for

large random networks indicating certain (for example, degree-dependent) scal-

ing laws [108, 143, 192, 198, 222, 253]. Numerical studies indicate that all known

and provably-correct synchronization conditions are conservative estimates on the

threshold from incoherence to synchrony. Our recently-proposed condition [89]

(see also Section 5.3) is provably correct for various extremal network topologies

and weights, and is numerically accurate for a broad range of random networks;

a complete analytic treatment is missing at this time. In this chapter, we present

a set of provably correct synchronization conditions and analysis concepts.

5.1.2 Contributions and Organization

The remainder of this chapter is organized as follows:

Section 5.2: As summarized in Subsection 5.1.1, the quest for sharp and

concise synchronization conditions is an important and outstanding problem em-

phasized in every review article on complex oscillator networks. The approaches

known for phase synchronization in homogeneous oscillator networks or the con-

traction approach to frequency synchronization in heterogeneous Kuramoto os-
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cillator networks do not generally extend to arbitrary network parameters and

topologies, or do so only under extremely conservative conditions.

In this section, we present a set of necessary conditions (see Lemma 5.2.1) and a

set of sufficient conditions for synchronization in the coupled oscillator model (3.1).

The sufficient conditions are based on an analysis approach using two-norm-type

metrics. In particular, Theorem 5.2.2 is based on a Lyapunov approach and results

in a synchronization condition based on the algebraic connectivity. Additionally,

the Lyapunov approach gives some insights into the transient dynamics of the

oscillator network (3.1). Theorem 5.2.2 is based on a fixed-point approach and

results in a sharper synchronization condition, which is also based on the algebraic

connectivity. On the other hand, the stability result is only local. We conclude

this section, by emphasizing the conservatism of these results. Even though, we

present the best known – to the best of the author’s knowledge – conditions valid

for arbitrary network parameters and topologies, they are fairly conservative.

Section 5.3: In this section, we improve upon the previously available neces-

sary and sufficient conditions. Our approach is based on the fixed-point equations

of the coupled oscillator model (3.1). We begin our analysis by stating a set of key

insights in Lemma 5.3.1. The insights obtained from Lemma 5.3.1 emphasize the

crucial role of cut-sets and cycles in the graph, they directly result in an optimal

necessary condition (see Corollary 5.3.3), and they suggest the concise and scalar
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synchronization condition ‖L†ω‖E,∞ < 1. This condition relaxes the known con-

ditions based on the algebraic connectivity, the effective resistance, and the nodal

degree. For a complete and uniformly weighted graph, this condition reduces to

the sufficient and tight condition (4.24) known for classic Kuramoto oscillators.

We prove that our proposed condition guarantees the existence of a locally

exponentially stable synchronization manifold for the sparsest (acyclic) and dens-

est (homogeneous) network topologies, for the best (phase synchronizing) and the

worst (cut-set inducing) network parameters (see Theorem 5.3.5), for cycles with

symmetric parameters or of length strictly less than five (see Theorem 5.3.7), and

one-connected combinations of these networks (see Corollary 5.3.8). In all of these

cases, our condition is either necessary and sufficient or at least sufficient and tight.

Furthermore, by extensive Monte Carlo simulation studies, we establish the statis-

tical correctness of our condition for a set of nominal random network topologies

and parameters. As a negative result, we show the existence of possibly-thin sets

of topologies and parameters for which our condition is not sufficiently tight.

Section 5.4: In this section, we demonstrate the applicability of the syn-

chronization condition developed in Section 5.3 to complex and large-scale power

network examples. In Subsection 5.4.1, we show how the proposed condition

is connected to the well known DC power flow approximation, and how it can

be effectively evaluated for large sparse networks by solving an associated set of
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sparse and linear equations. We validate the predictive power and high accu-

racy of our condition for the IEEE power system test cases 14, RTS 24, 30, New

England 39, 57, RTS 96, 118, 300, the 9 bus system by Chow, and the Polish

2383 bus system. In Subsection 5.4.2, we demonstrate the utility of our proposed

synchronization condition for monitoring and contingency screening applications.

We study the RTS 96 power network model under two severe contingencies and

demonstrate that our condition accurately predicts a limit-induced bifurcation.

Finally, in Subsection 5.4.3 we briefly outline further applications of our analysis

and the proposed synchronization conditions.

5.2 Some Necessary or Sufficient Conditions

In this section, we present a set of necessary and a set of sufficient conditions

for synchronization in the coupled oscillator model (3.1).

5.2.1 Absolute and Incremental Boundedness

We start our investigation from the basic observation that the sinusoidal in-

teraction terms in equation (3.1) are upper bounded by the nodal degree degi =

∑n
j=1 aij of each oscillator. Hence, the natural frequencies ω have to satisfy certain

bounds, relative to the nodal degree such that synchronized solutions exist.

165



Chapter 5. Synchronization in Complex Oscillator Networks

Lemma 5.2.1 (Necessary sync condition). Consider the coupled oscillator model

(3.1) with graph G(V , E , A) and natural frequencies ω ∈ 1⊥n . If there is a synchro-

nized solution θ ∈ ∆̄G(γ) for some γ ∈ [0, π/2], then the following conditions hold:

1) Absolute bound: For each node i ∈ {1, . . . , n},

degi sin(γ) ≥ |ωi| ; (5.1)

2) Incremental bound: For distinct i, j ∈ {1, . . . , n},

(degi + degj) sin(γ) ≥ |ωi − ωj| . (5.2)

Lemma 5.2.1 follows from the fact that synchronized solutions must satisfy

θ̇i = 0 and θ̇i = θ̇j for all i, j ∈ {1, . . . , n}, see [89, Lemma 3] for a proof along

the lines of the proof of Lemma 4.3.2. Lemma 5.2.1 has long been known in the

power systems community [269] since it defines the maximal nodal power injection

|ωi| in relation to the line capacities given by degi. The necessary conditions

(5.1) and (5.2) are conservative since they can be attained only if all angular

distances |θi − θk| and |θj − θk| take the value γ, which is generally not possible.

In Corollary 5.3.3, we show how to improve upon these necessary conditions.

5.2.2 Sufficient Synchronization Conditions

To the best of the authors’ knowledge, the conditions (5.1)-(5.2) in Lemma 5.2.1

are the best known explicit necessary conditions for the existence of equilibria for
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arbitrary topologies and weights. In what follows, we focus on sufficient condi-

tions guaranteeing frequency synchronization and we restrict ourselves to phase

cohesive synchronous solutions within the set ∆G(π/2). There three two reasons

for this choice. First, as discussed in Subsections 3.2.2 and 4.4.1, the equilibria in

∆G(π/2) are exponentially stable, and the forward invariance of the set ∆G(π/2)

leads to stable synchronization by incremental stability or frequency dynamics

arguments. Second, from a pragmatic point of view, there are few analysis results

and conditions for equilibria outside ∆G(π/2), with the treatment of (directed)

ring graphs in [118, 227] being a notable exception. Third and finally, only equi-

libria in ∆G(π/2) are of interest in power network applications.

The approaches to phase synchronization (in Theorems 2.4.2 and 3.3.4) and

to frequency synchronization in complete graphs (in Chapter 4) are generally not

applicable to dissimilar natural frequencies and sparse coupling graphs, or are so

only under very conservative conditions. For example, in the presence of dissimilar

natural frequencies ω ∈ 1⊥n , a Lyapunov analysis of the forced gradient system

(3.5) via the trigonometric potential U(θ) (as defined in (3.3)) is very involved

since the level sets of U(θ) are hard to characterize. Likewise, the Lyapunov

analysis based on the contraction Lyapunov function (4.23) inherently requires

arc-invariance of all angles, and does not easily extend to arbitrary topologies.

One quadratic Lyapunov function advocated by [58, 139] for classic Kuramoto
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oscillators (1.2) is W : Arcn(π)→ R defined by

W (θ) =
1

4

∑n

i,j=1
|θi − θj|2 =

1

2
‖θ‖2Ecplt,2 . (5.3)

This Lyapunov function is useful to analyze the more general oscillator network

(3.1), and yields the following result.

Theorem 5.2.2 (Practical phase synchronization in sparse graphs I). Consider

the coupled oscillator model (3.1) with a connected graph G(V , E , A) and frequen-

cies ω ∈ 1⊥n . There exists a locally exponentially stable equilibrium manifold

[θ∗] ⊂ ∆G(π/2) if the algebraic connectivity is larger than a critical value, that is,

λ2(L) > λcritical , ‖ω‖Ecplt,2 . (5.4)

Moreover, if condition (5.4) holds, then the coupled oscillator model (3.1) achieves

practical phase synchronization in the following sense. Given γmax ∈ ]π/2, π] and

γmin ∈ [0, π/2[ as unique solutions to (π/2)·sinc(γmax) = sin(γmin) = λcritical/λ2(L),

the set
{
θ ∈ Arcn(π) | ‖θ‖2Ecplt,2 ≤ γ

}
⊆ ∆̄G(γ) is positively invariant for all

γ ∈ [γmin, γmax], and each trajectory starting in
{
θ ∈ Arcn(π) | ‖θ‖2Ecplt,2 < γmax

}

asymptotically reaches
{
θ ∈ Arcn(π) | ‖θ‖2Ecplt,2 ≤ γmin

}
.

The analysis leading to Theorem 5.2.2 is similar to the proof of Theorem 4.4.2:

the Lyapunov function (5.3) is used to guarantee the ultimate boundedness of

the phases in
{
θ ∈ Arcn(π) | ‖θ‖Ecplt,2 ≤ γmin

}
⊂ ∆̄G(γmin), and the Jacobian
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arguments in Lemma 4.4.1 guarantee frequency synchronization. We remark that

the following proof can be extended to non-uniform Kuramoto oscillators (3.17)

with multiple rates and phase shifts, see [85, Theorem 4.4] for details.

Proof of Theorem 5.2.2. Assume that θ(0) ∈ Arcn(ρ) for ρ ∈ [0, π[. Recall that

the angular differences are well defined for θ in the open semi-circle Arcn(π),

and define the vector of all phase differences δ , BT
cpltθ = (θ2 − θ1, . . . ) ∈

[−π,+π]n(n−1)/2, where Bcplt ∈ Rn×(n(n−1)/2) is the incidence matrix of the com-

plete graph. By taking the derivative d/dt δ(t) the phase differences satisfy

δ̇ = BT
cpltω −BT

cpltB diag({aij}{i,j}∈E) sin(BT θ)

= BT
cpltω −BT

cpltBcplt diag({aij}i,j∈{1,...,n},i<j) sin(δ), (5.5)

where sin(x) = (sin(x1), . . . , sin(xn)) for a vector x ∈ Rn. Notice that for θ(0) ∈

Arcn(π) the δ-dynamics (5.5) are well-defined for an open interval of time. In the

following, we will show that the set {δ ∈ Rn : ‖δ‖2 < γmax} is positively invariant

under condition (5.4). As a consequence, the set {δ ∈ Rn : ‖δ‖∞ < γmax ≤ π} is

positively invariant as well, and the δ-coordinates are well defined for all t ≥ 0.

The Lyapunov function (5.3) reads in δ-coordinates as W (δ) = 1
2
‖δ‖2, and its

derivative along trajectories of (5.5) is given by

Ẇ (δ) = δTBT
cpltω − δTBT

cpltBcplt diag({aij}i,j∈{1,...,n},i<j) sin(δ)

= δTBT
cpltω − n δT diag({aij}i,j∈{1,...,n},i<j) sin(δ) , (5.6)
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where the second equality follows from the identity

δTBT
cpltBcplt =θTBcpltB

T
cpltBcplt =θT (nIn − 1n×n)Bcplt =nθTBcplt =nδ.

For ‖δ2‖ ≤ ρ, ρ ∈ [0, π[, consider the following inequalities

n δT diag({aij}i<j) sin(δ) = n (BT
cpltθ)

T diag({aij sinc(θi − θj)}i<j)(BT
cpltθ)

≥ n sinc(ρ) (BT
cpltθ)

T diag({aij}i<j)(BT
cpltθ)

≥ λ2(L) sinc(ρ)‖BT
cpltθ‖22 = λ2(L) sinc(ρ)‖δ‖22 ,

where the last inequality follows from [85, Lemma 4.7]. Hence, the derivative (5.6)

of W (δ) can be further upper-bounded as

Ẇ (δ) ≤ δTBT
cpltω − λ2(L) sinc(ρ)‖δ‖22. (5.7)

In the following we regard BT
cpltω as external disturbance affecting the otherwise

stable δ-dynamics (5.5) and apply ultimate boundedness arguments [146]. Note

that the right-hand side of (5.7) is strictly negative for

‖δ‖2 > µc ,
‖BT

cpltω‖2
λ2(L) sinc(ρ)

=
λcritical

λ2(L) sinc(ρ)
.

Pick ε ∈]0, 1[. If ρ ≥ ‖δ‖2 ≥ µc/ε, then the right-hand side of (5.7) is upper-

bounded by

Ẇ (δ) ≤ −
(
1− ε) · λ2(L) sinc(ρ)W (δ) .

Now choose µ such that ρ > µ > µc and let ε = µc/µ ∈ ]0, 1[. By standard

ultimate boundedness arguments [146, Theorem 4.18], for ‖δ(0)‖2 ≤ ρ, there is
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T ≥ 0 such that ‖δ(t)‖2 is exponentially decaying for t ∈ [0, T ] and ‖δ(t)‖2 ≤ µ for

all t ≥ T . For the choice µ = γ with γ ∈ [0, π/2[, the condition µ > µc reduces to

γ sinc(ρ) > λcritical/λ2(L) . (5.8)

Now, we perform a final analysis of the bound (5.8). The left-hand side of (5.8)

is an increasing function of γ and a decreasing function of ρ. Therefore, there

exists some (ρ, γ) in the convex set Λ , {(ρ, γ) : ρ ∈ [0, π[ , γ ∈ [0, π/2[ , ρ > γ}

satisfying equation (5.8) if and only if the inequality (5.8) is true at ρ = γ = π/2,

where the left-hand side of (5.8) achieves its supremum in Λ. The latter condition

is equivalent to inequality (5.4). Additionally, if these two equivalent statements

are true, then there is an open set of points in Λ satisfying (5.8), which is bounded

by the unique curve that satisfies inequality (5.8) with the equality sign, namely

f(ρ, γ) = 0, where f : Λ→ R, f(ρ, γ) = γ sinc(ρ)− λcritical/λ2(L). Consequently,

for every (ρ, γ) ∈ {(ρ, γ) ∈ Λ : f(ρ, γ) > 0}, it follows for ‖δ(0)‖2 ≤ ρ that there

is T ≥ 0 such that ‖δ(t)‖2 ≤ γ for all t ≥ T . The supremum value for ρ is given

by ρmax ∈ ]π/2, π] solving the equation f(ρmax, π/2) = 0 and the infimum value

of γ by γmin ∈ [0, π/2[ solving the equation f(γmin, γmin)=0.

Hence, for ‖BT
cpltθ(0)‖2 ≤ ρmax and θ(0) ∈ Arcn(ρmax), there is T ≥ 0 such that

‖BT
cpltθ(t)‖∞≤‖BT

cpltθ(t)‖2 ≤ γmin < π/2 for all t ≥ T , which proves the claimed

statement on practical phase synchronization.2 Since θ(t) ∈ ∆̄G(γmin) for t ≥ T ,

2In the statement of Theorem 5.2.2, we replaced ρmax by γmax.
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exponential frequency synchronization follows from Lemma 4.4.1. Exponential

frequency synchronization implies convergence of the phases, and boundedness of

the phase differences in a subset of ∆̄G(γmin) implies convergence of the phases to

a locally exponentially stable synchronization manifold by Lemma 3.2.1.

For classic Kuramoto oscillators (1.2), the key condition (5.4) reduces to K >

‖ω‖Ecplt,2. Clearly, this condition is more conservative than the tight bound (4.24)

which reads K > ‖ω‖E,∞ = ωmax − ωmin. One reason for this conservatism is that

condition (5.4) guarantees that the two-norm of the vector of all phase differences

|θi − θj| is bounded. However, by Lemma 3.2.1, we know that bounded phase

differences |θi−θj| only for edges of the graph {i, j} ∈ E are sufficient to establish

the existence of a locally exponentially stable synchronized solution.

In what follows, we adopt a fixed-point approach to study the equilibrium

equations of the coupled oscillator model (3.1). In matrix notation, these equilib-

rium equations read as

ω = BA sin(BT θ) , (5.9)

where A = diag({aij}{i,j}∈E) is the diagonal matrix of weights. We next follow

the ingenious analysis of (5.9) suggested in [139, Section IIV.B]. For the sake of a

streamlined presentation, we treat the angles θ as vectors in 1⊥n . Recall the state-

dependent weights cij(θ) = aij sinc(θi−θj) from the consensus formulation (2.19),

and define the state-dependent Laplacian L(BT θ) = B diag({cij(θ)}{i,j}∈E)BT .
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Hence, equations (5.9) can be rewritten compactly as ω = L(BT θ) θ. Since ω ∈ 1⊥n

(without loss of generality) and L(BT θ)† · L(BT θ) = In − 1
n
1n×n, we arrive at

θ = L(BT θ)†ω . (5.10)

The following result is obtained by applying to equation (5.10) a fixed point

theorem in the incremental two norm ‖ · ‖E,2. It has originally been presented by

the author [84, Theorem 4.7], and the proof strategy is inspired by [139].

Theorem 5.2.3 (Practical phase synchronization in sparse graphs II). Consider

the coupled oscillator model (3.1) with a connected graph G(V , E , A) and frequen-

cies ω ∈ 1⊥n . There exists a locally exponentially stable equilibrium manifold

[θ∗] ⊂ ∆G(π/2) if the algebraic connectivity is larger than a critical value, that is,

λ2(L) > λcritical , ‖ω‖E,2 . (5.11)

Moreover, if condition (5.11) holds, then [θ∗] is phase cohesive in the following

sense: [θ∗] ⊂ {θ ∈ Tn | ‖θ‖E,2 ≤ γmin} ⊆ ∆̄G(γmin), where γmin ∈ [0, π/2[ satisfies

sin(γmin) = λcritical/λ2(L).

Proof. By Lemma 3.2.1, existence of an equilibrium θ ∈ ∆̄G(γ) implies local

exponentially stability of the synchronization manifold [θ] ⊂ ∆̄G(γ), γ ∈ [0, π/2[.

A multiplication of the fixed-point equations (5.10) from the left by BT yields

BTL(BT θ)†ω = BT θ . (5.12)
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Note that the left-hand side of equation (5.12) is a continuous3 function of θ ∈

∆̄G(γ). Consider the formal substitution x = BT θ, the compact and convex set

S∞(γ) = {x ∈ BTRn : ‖x‖∞ ≤ γ}, and the continuous map f : S∞(γ)→ R given

by f(x) = BTL(x)†ω. Then equation (5.12) reads as f(x) = x, and we can invoke

Brouwers’s Fixed Point Theorem which states that every continuous map from a

compact and convex set to itself has a fixed point, see [255, Section 7, Corollary 8].

Since the analysis of the map f in the ∞-norm is very hard in the general

case, we resort to a 2-norm analysis and restrict ourselves to the set S2(γ) = {x ∈

BTRn : ‖x‖2 ≤ γ} ⊆ S∞(γ). By Brouwer’s Fixed Point Theorem, there exists a

solution x ∈ S2(γ) to the equations x = f(x) if and only if ‖f(x)‖2 ≤ γ for all

x ∈ S2(γ), or equivalently if and only if

max
x∈S2(γ)

∥∥BTL(x)†ω
∥∥
2
≤ γ . (5.13)

In the following we show that (5.11) is a sufficient condition for inequality (5.13).

First, we establish some identities. For a Laplacian matrix L, we obtain L† =

V ΛV T , where Λ = diag(0, {1/λi(L)}i=2,...,n) is the diagonal matrix of zero and

inverse positive eigenvalues of L, and V ∈ Rn×n is an associated orthonormal

matrix of eigenvectors. It follows that V diag (0, 1, . . . , 1)V T = In − (1/n)1n×n.

By means of these identities, the left-hand side of (5.13) can be simplified and

3The continuity can be established when re-writing equations (5.12) (or the equations ω =
L(BT θ) θ) in the quotient space 1⊥n , where L(θ) is nonsingular, and using the fact that the
inverse of a matrix is a continuous function of its elements.
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upper-bounded for all x ∈ S2(γ) as follows:

∥∥BTL(x)†ω
∥∥
2

=

∥∥∥∥BTV (x) diag

(
0,

1

λ2(L(x))
, . . . ,

1

λn(L(x))

)
V (x)T ω

∥∥∥∥
2

≤ 1

λ2(L(x))
·
∥∥BTV (x) diag (0, 1, . . . , 1)V (x)Tω

∥∥
2

= (1/λ2(L(x))) ·
∥∥BTω

∥∥
2
, (5.14)

where the inequality arises from the transformation y = V (x)Tω and the in-

equality ‖BTV (x)Λy‖22 = (Λy)T (V (x)TBBTV (x))(Λy) ≤ yT (V (x)TBBTV (x))y ·

(1/λ2(L(x))) = (1/λ2(L(x)))‖BTV (x)y‖22. Thus, by inequality (5.14), a sufficient

condition for inequality (5.13) to hold can be derived as follows:

max
x∈S2(γ)

∥∥BTL(x)†ω
∥∥
2
≤
∥∥BTω

∥∥
2

max
x∈S2(γ)

(
1/λ2

(
L(x)

)
)
)

≤
∥∥BTω

∥∥
2

max
x∈{x∈R|E|: ‖x‖∞≤γ}

(
1/λ2

(
L(x)

)
)
)

=
∥∥BTω

∥∥
2
/ (λ2(L) · sinc(γ))

!

≤ γ ,

where we enlarged the domain S2(γ) to {x ∈ R|E| : ‖x‖∞ ≤ γ} and used4

λ2(L(x)) ≥ λ2(L) · sinc(γ) for ‖x‖∞ ≤ γ. In summary, there is a locally exponen-

tially stable synchronization manifold [θ] ⊂ {θ ∈ Tn : ‖BT θ‖2≤γ} ⊆ ∆̄G(γ) if

λ2(L) sin(γ) ≥ ‖BTω‖2 . (5.15)

Since the left-hand side of (5.15) is a concave function of γ ∈ [0, π/2[, there

exists an open set of γ ∈ [0, π/2[ satisfying equation (5.15) if and only if equation

4This fact follows from λ2(L(x)) = minv∈1⊥
n ,‖v‖2=1(vTB) diag({aij sinc(x)}{i,j}∈E)(BT v) ≥

sinc(γ) · (vTB) diag({aij}{i,j}∈E)(BT v) = sinc(γ)λ2(L) for ‖x‖∞ ≤ γ.
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(5.15) is true with the strict equality sign at γ∗ = π/2, which corresponds to

condition (5.11). Additionally, if these two equivalent statements are true, then

there exists a unique γmin ∈ [0, π/2[ that satisfies equation (4.26) with the equality

sign, namely sin(γmin) = ‖BTω‖2/λ2(L). This concludes the proof.

Clearly, condition (5.11) is sharper than condition (5.4), but the stability re-

sult is only local. The synchronization condition (5.11) is the sharpest sufficient

condition for general graphs known to the authors, but it is still a conservative

estimate for most network topologies and weights. Indeed, the necessary condi-

tion (5.2) and sufficient condition (5.11) are separated by a tremendous gap for

n > 2 oscillators. The reasons for this conservatism are manifold. First, condition

(5.11) guarantees the bound ‖θ∗‖E,2 ≤ arcsin(λcritical/λ2(L)). This incremental

two-norm bound is a very strong property, and only the incremental ∞-norm

‖θ‖E,∞ needs to be bounded to conclude synchronization by the Jacobian argu-

ments in Lemma 3.2.1. Second, the derivation of the conditions (5.1), (5.2), (5.4),

and (5.11) involves conservative bounding of the trigonometric nonlinearities and

network interactions. Third, Lemma 3.2.1, Theorem 2.4.2, and Theorem 4.4.2

hint at the incremental ∞-norm as a natural metric, whereas an analysis using

two-norm type metrics inherently leads to more conservative results.
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5.3 Towards an Exact Synchronization Condition

An analysis of the fixed-point equations (5.10) using two-norm bounding of

‖L(BT θ)†ω‖E,2 results in the condition ‖ω‖E,2/λ2(L) < 1 in Theorem 5.2.3. As dis-

cussed above, an∞-norm analysis of equations (5.10) and the term ‖L(BT θ)†ω‖E,∞

should likely yield a less conservative condition, possibly of the form ‖L†ω‖E,∞ < 1.

Indeed, in this section, we derive the condition ‖L†ω‖E,∞ < 1 for particular net-

works as well as rand network models.

5.3.1 Norm and Cycle Constraints

By formally replacing each term sin(θi − θj) in the fixed-point equations (5.9)

by an auxiliary scalar variable ψij we arrive at

ω = BAψ , (5.16)

ψ = sin(BT θ) , (5.17)

where ψ ∈ R|E| is a vector with elements ψij. We refer to equations (5.16) as the

auxiliary-fixed point equation. It can be easily verified that every solution of the

auxiliary fixed-point equations (5.16) is of the form

ψ = BTL†ω + ψhom , (5.18)

where the homogeneous solution ψhom ∈ R|E| satisfies Aψhom ∈ Ker (B). Since

the orthogonal vector spaces Ker (B) and Ker (B)⊥ = Im (BT ) are spanned by
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vectors associated to cycles and cut-sets in the graph, see [29, 30], we arrive at a

graph-theoretic characterization of the fixed points.

To state the following result, recall that arcsin : ]− 1, 1[→ ]− π/2, π/2[ is the

unique inverse of the sine function in ]−π/2, π/2[ (modulo 2π), that is, the roots of

x = sin(θ) for x ∈ ]− 1, 1[, are given by θ ∈
{

arcsin(x)+k·2π, π−arcsin(x)+k·2π
}

,

where k ∈ Z. We also define arcsin(x) = (arcsin(x1), . . . , arcsin(xn)) for x ∈

]− 1, 1[n ⊂ Rn, and the vector-valued modulo operation that identifies x, y ∈ Rn

via x = y (mod 2π) if xi = yi + ki · 2π for some ki ∈ Z and for all i ∈ {1, . . . , n}.

Lemma 5.3.1 (Properties of the fixed-point equations). Consider the coupled

oscillator model (3.1) with graph G(V , E , A) and ω ∈ 1⊥n , its fixed-point equations

(5.9), and the auxiliary fixed-point equations (5.16). The following statements

hold:

1) Exact solution: Every solution of the auxiliary fixed-point equations (5.16)

is of the form

ψ = BTL†ω + ψhom , (5.19)

where the homogeneous solution ψhom ∈ R|E| satisfies Aψhom ∈ Ker (B).

2) Exact synchronization condition: Let γ ∈ [0, π/2[. The following three

statements are equivalent:

(i) There exists a solution θ∗ ∈ ∆̄G(γ) to the fixed-point equation (5.9);
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(ii) There exists a solution θ ∈ ∆̄G(γ) to

BTL†ω + ψhom = sin(BT θ) . (5.20)

for some ψhom ∈ A−1 ker(B); and

(iii) There exists a solution ψ ∈ R|E| to the auxiliary fixed-point equation

(5.16) of the form (5.19) satisfying the norm constraint ‖ψ‖∞ ≤ sin(γ)

and the cycle constraint arcsin(ψ) ∈ Im (BT ) (mod 2π).

If the three equivalent statements (i), (ii), and (iii) are true, then we have the

identities BT θ∗ = BT θ = arcsin(ψ) (mod 2π). Additionally, [θ∗] ⊂ ∆̄G(γ)

is a locally exponentially stable synchronization manifold.

Proof. Statement 1): Every solution ψ ∈ R|E| to the auxiliary fixed-point equa-

tions (5.16) is of the form ψ = ψhom + ψpt, where ψhom is the homogeneous

solution and ψpt is a particular solution. The homogeneous solution satisfies

BAψhom = 0n. One can easily verify that ψpt = BTL†ω is a particular solu-

tion5, since BAψpt = BABTL†ω = LL†ω =
(
In − 1

n
1n×n

)
ω = ω.

Statement 2), equivalence
(
(i) ⇔ (ii)

)
: If there exists a solution θ∗ of the

fixed-point equations (5.9), then θ∗ can be equivalently obtained from equation

5Likewise, it can also be shown that (B diag({aij}{i,j}∈E))†ω as well as

diag({aij}{i,j}∈E)−1B†ω are other possible particular solutions. All of these solutions
differ only by addition of a homogenous solution. Each one can be interpreted as solution
to a weighted least squares problem, see [110]. Further solutions can also be constructed
in a graph-theoretic way by a spanning-tree decomposition, see [30]. Our specific choice
ψpt = BTL†ω has the property that ψpt ∈ Im (BT ) lives in the cut-set space, and it is the most
useful particular solution in order to proceed with our synchronization analysis.
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(5.17) together with the solution (5.19) of the auxiliary equations (5.16). These

two equations directly give equation (5.20).

Equivalence
(
(ii) ⇔ (iii)

)
: For θ∗ ∈ ∆̄G(γ), we have from equation (5.20)

that ‖ψ‖∞ ≤ sin(γ) and arcsin(ψ) = BT θ∗ (mod 2π), that is, arcsin(ψ) ∈

Im (BT ) (mod 2π). Conversely, if the norm constraint ‖ψ‖∞ ≤ sin(γ) and the

cycle constraint arcsin(ψ) ∈ Im (BT ) (mod 2π) are met, then equation (5.20) is

solvable in ∆̄G(γ), and there is θ∗ ∈ ∆̄G(γ) such that arcsin(ψ) = BT θ∗ (mod 2π).

Local exponential stability of the associated synchronization manifold [θ∗] follows

then directly from Lemma 3.2.1.

Remark 5.3.2 (Parameterizations and the modulo operation). The importance of

the modulo operation in Lemma 5.3.1 can be illustrated by recalling the example in

Remark 3.2.2. Consider a ring graph with n ≥ 5 nodes, with identical unit weights,

and with ω = 0n. In this case, the phase-synchronized set [θ∗] = ∆̄G(0) and the

set of uniformly spaced angles (or loop flow [154]) [θ̃∗] = [(0, 2π/n, . . . , (n − 1) ·

2π/n)] ∈ ∆̄G(2π/n) are two stable solutions in ∆̄G(π/2). Depending on the choice

of coordinate chart (parameterization of the angles), the second solution [θ̃∗] has

angular differences BT θ̃∗ given by (2π/n, . . . , 2π/n, 2π/n) (which sum up to 2π)

or by (2π/n, . . . , 2π/n, 2π/n− 2π) (which sum up to 0). The latter is a vector in

Im (BT ) whereas the former one is not. Hence, the modulo operation is necessary
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to capture the solution [θ̃∗] independent of the parameterization. Otherwise, only

the solution [θ∗] = ∆̄G(0) is characterized by Lemma 5.3.1. �

The particular solution BTL†ω to the auxiliary fixed-point equations (5.16)

lives in the cut-set space Ker (B)⊥ and the homogenous solution ψhom lives in the

weighted cycle space ψhom ∈ A−1Ker (B). As a consequence, by statement (iii)

of Lemma 5.3.1, for each cycle in the graph, we obtain one degree of freedom

in choosing the homogeneous solution ψhom as well as one nonlinear constraint

cT arcsin(ψ) = 0 (mod 2π), where c ∈ ker(B) is a signed path vector correspond-

ing to the cycle [29, 30]. Hence, the cycle space Ker (B) of the graph serves as

a degree of freedom to find a minimum ∞-norm solution ψ∗ ∈ R|E| to equations

(5.16), which yields an optimal necessary synchronization condition.

Corollary 5.3.3 (Optimal necessary synchronization condition). Consider the

coupled oscillator model (3.1) with a connected graph G(V , E , A) and ω ∈ 1⊥n .

Compute ψ∗ ∈ R|E| as solution to the optimization problem

minimizeψ∈R|E| ‖ψ‖∞ s.t. ω = BAψ. (5.21)

Let γ ∈ [0, π/2[. There exists a locally exponentially stable equilibrium manifold

[θ∗] ⊂ ∆̄G(γ) only if ‖ψ∗‖∞ ≤ sin(γ).

The optimization problem (5.21) – the minimum∞-norm solution to an under-

determined and consistent system of linear equations – is well studied in the
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context of kinematically redundant manipulators. Its solution is known to be non-

unique and contained in a disconnected solution space [110, 115]. Unfortunately,

there is no “a priori” analytic formula to construct a minimum ∞-norm solution,

but the optimization problem is computationally tractable via its dual problem

maximizeu∈Rn u
Tω s.t. ‖ABTu‖1 = 1 .

The optimal necessary condition ‖ψ∗‖∞ ≤ sin(γ) improves upon the conditions

(5.1)-(5.2) but it is still conservative since ψ∗ does not necessarily satisfy the cycle

constraint arcsin(ψ) ∈ Im (BT ) (mod 2π) in Lemma 5.3.1.

5.3.2 Synchronization Assessment for Specific Networks

If the graph is acyclic, then there are no cycle constraints, and the norm

constraint in Lemma 5.3.1 reduces to

∥∥L†ω
∥∥
E,∞ ≤ sin(γ) (5.22)

In this subsection we seek to establish that the condition (5.22) is sufficient for the

existence of locally exponentially stable equilibria in ∆̄G(γ). Since the right-hand

side of (5.22) is a concave function of γ ∈ [0, π/2[ that achieves its supremum

value at γ∗ = π/2, it follows that the condition

∥∥L†ω
∥∥
E,∞ < 1 (5.23)
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is sufficient for the existence of locally exponentially stable equilibria in ∆G(π/2).

We establish the broad applicability of the proposed condition (5.22) to various

classes of networks via analytical and statistical methods in this section. Before

continuing our theoretical analysis, we summarize different interpretations of the

conditions (5.23) and (5.22), provide some equivalent formulations, and compare

them to existing synchronization conditions proposed in the literature.

Remark 5.3.4 (Interpretation of the sync condition). Complex network in-

terpretation: Surprisingly, topological or spectral connectivity measures such as

nodal degree or algebraic connectivity are not key to synchronization. In fact, these

often advocated [18, 31, 84, 85, 139, 298, 299] connectivity measures turn out to be

conservative estimates of the synchronization condition (5.22). This statement

can be seen by introducing the matrix V of orthonormal eigenvectors of the net-

work Laplacian matrix L with corresponding eigenvalues 0 = λ1 < λ2 ≤ · · · ≤ λn.

From this spectral viewpoint, condition (5.22) can be equivalently written as

∥∥V diag
(
0, 1/λ2, . . . , 1/λn

)
·
(
V Tω

)∥∥
E,∞ ≤ sin(γ) . (5.24)

In words, the natural frequencies ω are projected on the network modes V , weighted

by the inverse Laplacian eigenvalues, and ‖ · ‖E,∞ evaluates the worst-case dissim-

ilarity of this weighted projection. A sufficient condition for inequality (5.24) is

λ2(L) > ‖ω‖E,∞, which strictly improves upon the algebraic connectivity conditions
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(5.4) and (5.11). Likewise, a necessary condition for (5.24) is 2 ·maxi∈V degi ≥

λn ≥ ‖ω‖E,∞, resembling the degree-dependent conditions (5.1) and (5.2). When

compared to (5.24), this sufficient condition and this necessary condition feature

only one of n−1 non-zero Laplacian eigenvalues and are overly conservative. We

conclude that condition (5.23) strongly improves upon the conditions (5.1), (5.2),

(5.4), and (5.11). On the other hand, as we will see later, a complete analytic

characterization of its applicability is still open.

Kuramoto oscillator perspective: For classic Kuramoto oscillators (1.2)

coupled in a complete graph with uniform weights aij = K/n, the synchronization

condition (5.23) reduces to the condition K > maxi,j∈{1,...,n} |ωi−ωj|, which equals

the sufficient and tight condition (4.24) in Theorem 4.4.2.

Power network perspective: In power systems engineering, the equilibrium

equations of the coupled oscillator model (3.1), given by ωi =
∑n

j=1 aij sin(θi−θj),

are referred to as the AC power flow equations, and they are often approximated by

their linearization ωi =
∑n

j=1 aij(θi − θj), known as the DC power flow equations

[16,136,257,298,299]. In vector notation the DC power flow equations are ω = Lθ,

and their solution satisfies max{i,j}∈E |θi−θj| = ‖L†ω‖E,∞. According to condition

(5.22), the worst phase distance ‖L†ω‖E,∞ obtained by the DC power flow needs to

be less or equal than sin(γ), such that the solution to the AC power flow satisfies
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max{i,j}∈E |θi− θj| ≤ γ. Hence, our condition extends the common DC power flow

approximation from infinitesimally small angles γ � 1 to large angles γ ∈ [0, π/2[.

Auxiliary linear perspective: As detailed in the previous paragraph, the key

term L†ω in condition (5.22) equals the phase differences obtained by the linear

Laplacian equation ω = Lθ. This linear interpretation is not only insightful but

also practical since condition (5.22) can be quickly evaluated by numerically solving

the linear system ω = Lθ. This linear system is possibly of high dimension, but

it inherits the sparsity of the graph G(V , E , A). Thus, condition (5.22) can be

verified efficiently even for large-scale sparse networks.

Energy landscape perspective: Condition (5.22) can also be understood

in terms of an appealing energy landscape interpretation. The coupled oscillator

model (3.1) is a system of particles that aim to minimize the energy function

Ũ(θ) =
∑

{i,j}∈E
aij
(
1− cos(θi − θj)

)
−
∑n

i=1
ωi · θi ,

where the first term is the nonlinear spring potential U(θ) representing the pair-

wise nonlinear attraction among the particles, and the second term represents the

external force driving the particles away from the “all-aligned” state. Since the

energy function Ũ(θ) is difficult to study, it is natural to look for a minimum of its

second-order approximation Ũ0(θ) =
∑
{i,j}∈E aij(θi−θj)2/2−

∑n
i=1 ωi·θi, where the

first term corresponds to a Hookean potential. Condition (5.22) is then restated

as follows: Ũ(θ) features a phase cohesive minimum with interacting particles no
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Figure 5.1: Energy landscape interpretation of the synchronization condition

The energy function Ũ(θ) and its quadratic approximation Ũ0(θ) for a two-particle
system are shown as solid and dashed curves, respectively, for the stable (blue),
marginal (green) and unstable (red) cases. The circles and diamonds represent
stable critical points of Ũ(θ) and Ũ0(θ), respectively.

further than γ apart if Ũ0(θ) features a minimum with interacting particles no

further from each other than sin(γ), as illustrated in Figure 5.1.

Circuit-theoretic interpretation: In a power network, ω ∈ Rn are the

nodal power injections. Let x ∈ R|E| satisfy Bx = ω, then x are the equivalent

power injections along lines {i, j} ∈ E.6 Condition (5.23) can then be rewritten as

∥∥BTL†Bx
∥∥
∞ < 1. The matrix BTL†B ∈ R|E|×|E| has elements (ein−ejn)TL†(ekn−e`n)

for {i, j}, {k, `} ∈ E, its diagonal elements are the effective resistances Rij, and its

off-diagonal elements are the network distribution (sensitivity) factors [297, Ap-

pendix 11A]. Hence, from a circuit-theoretic perspective, condition (5.23) restricts

the pair-wise effective resistances and the routing of power through the network

6Notice that x is not uniquely determined if the circuit features loops.
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similar to the resistive synchronization conditions in [86,153,298]. For an acyclic

graph, condition (5.23) simply corresponds to feasibility of the flow, see also [249].

Graph-theoretic interpretation: With regards to the exact norm and cycle

conditions in statement (iii) of Lemma 5.3.1, the proposed condition (5.22) is

simply a norm constraint on the network parameters in cut-set space Im (BT )

of the graph topology, and cycle components are discarded. For acyclic graphs,

condition (5.23) is equivalent to the cut-set condition [75, Lemma 1]. �

As it turns out, the norm and cycle conditions in Lemma 5.3.1 can be easily

evaluated for the sparsest (acyclic) and densest (homogeneous) topologies and for

“worst-case” (cut-set inducing) and “best” (identical) natural frequencies. For

all of these cases the synchronization condition (5.22) is sharp. To quantify a

“sharp” condition in the following theorem, we distinguish between exact (neces-

sary and sufficient) conditions and tight conditions, which are sufficient in general

and become necessary over a set of parametric realizations.

Theorem 5.3.5 (Synchronization condition for extremal network topologies and

parameters). Consider the coupled oscillator model (3.1) with connected graph

G(V , E , A) and ω ∈ 1⊥n . Let γ ∈ [0, π/2[. The following statements hold:

(G1) Exact synchronization condition for acyclic graphs: Assume that

G(V , E , A) is acyclic. There exists a locally exponentially stable equilibrium
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manifold [θ∗] ⊂ ∆̄G(γ) if and only if condition (5.22) holds. Moreover, in

this case we have that BT θ∗ = arcsin(BTL†ω) ∈ ∆̄G(γ);

(G2) Tight synchronization condition for homogeneous graphs: Assume

that G(V , E , A) is a homogeneous graph, that is, there is K > 0 such that

aij = K for all distinct i, j ∈ {1, . . . , n}. Consider a compact interval

Ω ⊂ R, and let Ω = (Ω1, . . . ,Ωn) ⊂ Rn be the set of all vectors with

components Ωi ∈ Ω for all i ∈ {1, . . . , n}. For all ω ∈ Ω there exists a

locally exponentially stable equilibrium manifold [θ∗] ⊂ ∆̄G(γ) if and only if

condition (5.22) holds;

(G3) Exact synchronization condition for cut-set inducing frequencies:

Let Ω1, Ω2 ∈ R, and let Ω = (Ω1, . . . ,Ωn) ⊂ Rn be the set of bipolar

vectors with components Ωi ∈ {Ω1,Ω2} for i ∈ {1, . . . , n}. For all ω ∈ LΩ

there exists a locally exponentially stable equilibrium manifold [θ∗] ⊂ ∆̄G(γ)

if and only if condition (5.22) holds. Moreover, Ω induces a cut-set: if

|Ω2 −Ω1| = sin(γ), then for any particular Ω∗ ∈ Ω and ω = LΩ∗ we obtain

the equilibrium θ∗ ∈ ∆̄G(γ) satisfying BT θ∗ = arcsin(BTΩ∗), that is, for

all {i, j} ∈ E, |θ∗i − θ∗j | = 0 if Ω∗i = Ω∗j and |θ∗i − θ∗j | = γ if Ω∗i 6= Ω∗j ; and

(G4) Asymptotic correctness: In the limit ‖BTL†ω‖∞ → 0, that is, for identi-

cal natural frequencies and/or asymptotically strong network coupling, there
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is a locally exponentially stable equilibrium manifold [θ∗] satisfying

lim
‖BTL†ω‖∞→0

(BT θ∗)i
(arcsin(BTL†ω))i

= 1 , i ∈ {1, . . . , |E|} .

Proof. Statement (G1): For an acyclic graph, we have that Ker (B) = ∅. Ac-

cording to Lemma 5.3.1, there exists an equilibrium θ∗ ∈ ∆̄G(γ) if and only if

condition (5.22) is satisfied. In this case, we obtain BT θ∗ = arcsin(BTL†ω).

Statement (G2): In the homogeneous case, we have that L = K
(
nIn − 1n×n

)

and L† = 1
Kn

(
In − 1

n
1n×n

)
, see [86, Lemma 3.13]. Thus, the inequality condition

(5.22) can be equivalently rewritten as sin(γ) ≥
∥∥BTL† · ω

∥∥
∞ = 1

Kn

∥∥BTω
∥∥
∞.

According to Theorem 4.4.2, the Kuramoto model (1.2) with homogenous coupling

aij = K features a locally exponentially stable equilibrium manifold [θ∗] ⊂ ∆̄G(γ),

γ ∈ [0, π/2[, for all ω ∈ Ω if and only if the condition K >
∥∥BTω

∥∥
∞ /n is satisfied.

Statement (G3): For notational convenience, let c , Ω1 − Ω2. Then, for

any Ω∗ ∈ Ω and for ω = LΩ∗, we have that BTL†ω = BTL†LΩ∗ = BTΩ∗ is a

vector with components {−c, 0,+c}. Now consider the solution ψ = BTL†ω =

BTΩ∗ to the auxiliary fixed point equations (5.16), and notice that arcsin(ψ) =

arcsin(BTΩ∗) has components {− arcsin(c), 0,+ arcsin(c)}. In particular, we

have that arcsin(ψ) ∈ Im (BT ), and the exact synchronization condition from

Lemma 5.3.1 is satisfied if and only if ‖ψ‖∞ = c ≤ sin(γ), which corresponds
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to condition (5.22). The cut-set property follows since BT θ∗ = arcsin(ψ) has

components {− arcsin(c), 0,+ arcsin(c)} = {−γ, 0,+γ}.

Statement (G4): Since arcsin(x)/x = 1 + x2/6 +O(x)4, we have that

(arcsin(BTL†ω))i/(B
TL†ω)i = 1 +O((BTL†ω)2i )

for each component i ∈ {1, . . . , |E|}. Thus, in the limit BTL†ω → 0|E|, it

follows that arcsin(BTL†ω) ∈ Im (BT ), and the cycle constraint arcsin(ψ) =

arcsin(BTL†ω+ψhom) ∈ Im (BT ) is met with ψhom = 0|E|. For BTL†ω → 0|E| the

norm constraint ‖BTL†ω‖∞ ≤ sin(γ) is also satisfied with γ ↘ 0, and we obtain7

for each i ∈ {1, . . . , |E|} that limBTL†ω→0|E|

(
BT θ∗

)
i
/
(
arcsin(BTL†ω)

)
i

= 1 .

Lemma 5.3.1 shows that the solvability of the fixed-point equations (5.9) is

inherently related to the cycle constraints. The following lemma establishes fea-

sibility of a single cycle and offers a checkable condition.

Lemma 5.3.6 (Single cycle feasibility). Consider the coupled oscillator model

(3.1) with a cycle graph G(V , E , A) and ω ∈ 1⊥n . Without loss of generality,

assume that the edges are labeled by {i, i + 1} (mod n) for i ∈ {1, . . . , n} and

Ker (B) = span(1n). Define x ∈ 1⊥n and y ∈ Rn
>0 uniquely by x , BTL†ω and

yi , a−1i,(i+1) (mod n) > 0 for i ∈ {1, . . . , n}. Let γ ∈ [0, π/2[.

The following statements are equivalent:

7The limit ‖BTL†ω‖∞ → 0 implies that the resulting equilibrium θ∗ ∈ ∆̄G(0) corresponds
to phase synchronization θi = θj for all i, j ∈ {1, . . . , n}. The converse statement θ∗ ∈ ∆̄G(0)
=⇒ ω = 0n is also true and its proof can be found in Theorem 3.3.4.
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(i) There is a locally exponentially stable equilibrium manifold [θ∗] ⊂ ∆̄G(γ); and

(ii) The function f : [λmin, λmax] → R defined by f(λ) =
(∑n

i=1 arcsin(xi +

λyi)
)

and with the domain boundaries λmin = max
i∈{1,...,n}

− sin(γ)−xi
yi

and λmax =

min
i∈{1,...,n}

sin(γ)−xi
yi

satisfies

f(λmin) < 0 < f(λmax) (mod 2π).

If both equivalent statements 1) and 2) are true, then we have that BT θ∗ =

arcsin(x+ λ∗y) (mod 2π), where λ∗ ∈ [λmin, λmax] satisfies f(λ∗)=0.

Proof. According to Lemma 5.3.1, there exists an equilibrium θ∗ ∈ ∆̄G(γ) if and

only if there exists a solution ψ = x + λy, λ ∈ R, to the auxiliary fixed-point

equations (5.16) satisfying the norm constraint ‖ψ‖∞ ≤ sin(γ) and the cycle con-

straint arcsin(ψ) ∈ Im (BT ) (mod 2π). Equivalently, since Ker (B) = span(1n),

there is λ ∈ R satisfying the norm constraint ‖x+λy‖∞ ≤ sin(γ) < 1 and the cycle

constraint 1Tn arcsin(x + yλ) = 0 (mod 2π). Equivalently, the function f(λ) =

1Tn arcsin(x+ yλ) features a zero λ∗ ∈ [λmin, λmax] (modulo 2π) corresponding to

the cycle constraint, where the constraints on λmin and λmax guarantee the norm

constraints xi + yiλmax ≤ sin(γ) and xi + yiλmin ≥ − sin(γ) for all i ∈ {1, . . . , n}.

Equivalently, by the intermediate value theorem and due to continuity and (strict)

monotonicity of the function f , we have that f(λmin) < 0 < f(λmax) (mod 2π).
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Finally, if λ∗ ∈ [λmin, λmax] is found such that f(λ∗) = 0 (mod 2π), then, by

Lemma 5.3.1, BT θ∗ = arcsin(ψ) = arcsin(x+ λ∗y) (mod 2π).

Lemma 5.3.6 offers a simple condition for cycles, which leads to the next result.

Theorem 5.3.7 (Synchronization conditions for cycle graphs). Consider the cou-

pled oscillator model (3.1) with a cycle graph G(V , E , A) and ω ∈ 1⊥n . Consider

the inequality condition (5.22) for γ ∈ [0, π/2[. The following statements hold.

(C1) Exact sync condition for symmetric natural frequencies: Assume

that ω ∈ 1⊥n is such that BTL†ω is a symmetric vector.8There is a locally

exponentially stable equilibrium manifold [θ∗] ⊂ ∆̄G(γ) if and only if condi-

tion (5.22) holds. Moreover, in this case BT θ∗=arcsin(BTL†ω).

(C2) Tight sync condition for low-dimensional cycles: Assume the network

contains n ∈ {3, 4} oscillators. Consider a compact interval Ω ⊂ R, and let

Ω = (Ω1, . . . ,Ωn) ⊂ Rn be the set of vectors with components Ωi ∈ Ω for

all i ∈ {1, . . . , n}. For all ω ∈ LΩ there exists a locally exponentially stable

equilibrium manifold [θ∗] ⊂ ∆̄G(γ) if and only if condition (5.22) holds.

(C3) General cycles and network parameters: In general for n ≥ 5 os-

cillators, condition (5.23) does not guarantee existence of an equilibrium

8A vector x ∈ 1⊥n is symmetric if its histogram is symmetric, that is, up to permutation
of its elements, x is of the form x = [−c,+c]T for n even and some vector c ∈ Rn/2 and
x = [−c, 0,+c]T for n odd and some c ∈ R(n−1)/2.
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θ∗ ∈ ∆G(π/2). As a sufficient condition, there exists a locally exponentially

stable equilibrium manifold [θ∗] ⊂ ∆̄G(γ), γ ∈ [0, π/2[ , if

∥∥BTL†ω
∥∥
∞ ≤

min{i,j}∈E aij
max{i,j}∈E aij + min{i,j}∈E aij

· sin(γ) . (5.25)

We omit the proof of Theorem 5.3.7 here and refer to [89, Theorem 3] for details.

In the following, define a patched network {G(V , E , A), ω} as a collection of

subgraphs and natural frequencies ω ∈ 1⊥n , where (i) each subgraph is connected,

(ii) in each subgraph one of the conditions (G1),(G2),(G3),(G4), (C1), or (C2) is

satisfied, (iii) the subgraphs are connected to another through edges {i, j} ∈ E

satisfying ‖(e|E|i − e|E|j )TL†ω‖∞ ≤ sin(γ), and (iv) the set of cycles in the overall

graph G(V , E , A) is equal to the union of the cycles of all subgraphs. Since a

patched network satisfies the synchronization condition (5.22) as well the norm

and cycle constraints, we can state the following result.

Corollary 5.3.8 (Synchronization condition for patched networks). Consider the

coupled oscillator model (3.1) with a patched network {G(V , E , A), ω}, and let γ ∈

[0, π/2[. There is a locally exponentially stable equilibrium manifold [θ∗] ⊂ ∆̄G(γ)

if condition (5.22) holds.

Example 1 (Cyclic counterexample). In the proof of Theorem 5.3.7 (see [89, The-

orem 3] for details), we provide an analytic counterexample which demonstrates

that condition (5.22) is not sufficiently tight for synchronization in sufficiently
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Figure 5.2: Cycle graph with n = 5 nodes and non-symmetric choice of ω.

large cyclic networks. Here, we provide an additional numerical counterexample.

Consider a cycle family of length n = 5 + 3 · p, where p ∈ N0 is a nonnegative

integer. Without loss of generality, assume that the edges are labeled by {i, i+ 1}

(mod n) for i ∈ {1, . . . , n} such that Ker (B) = span(1n). Assume that all edges

are unit-weighed ai,i+1 (mod n) = 1 for i ∈ {1, . . . , n}. Consider α ∈ [0, 1[, and let

ω = α ·
[
−1/2 2 0p+1 3/2 02p+1

]T
.

For n = 5 (p = 1) the graph and the network parameters are illustrated in Figure

5.2. For the given network parameters, we obtain the non-symmetric vector

BTL†ω = α ·
[
1 −1 −1(n−2)/3 1/2 · 12(n−2)/3

]T
.

Analogously to the example provided in the proof of Theorem 5.3.7, ‖BTL†ω‖∞ =
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α and BTL†ω is the minimum∞-norm vector BTL†ω+λ1n for λ ∈ R. In the limit

α ↑ 1, the necessary condition (5.1) is satisfied with equality. In Figure 5.2, for

α ↑ 1, we have that ω2 = 2, and the necessary condition (5.1) reads as a12 + a23 =

|ω2| = 2, and the corresponding equilibrium equation sin(θ1−θ2)+sin(θ3−θ2) = 2

can only be satisfied if θ1−θ2 = π/2 and θ3−θ2 = π/2. Thus, with two fixed edge

differences there is no more “wiggle room” to compensate for the effects of ωi,

i ∈ {1, 3, 4, 5}. As a consequence, there is no equilibrium θ∗ ∈ ∆̄G(π/2) for α = 1

or equivalently ‖BTL†ω‖∞ = 1. Due to continuity of the equations (5.9) with

respect to α, we conclude that for α < 1 sufficiently large there is no equilibrium

either. Numerical investigations show that this conclusion is true, especially for

very large cycles. For the extreme case p = 107, we obtain the critical threshold

α ≈ 0.9475 where θ∗ ∈ ∆̄G(π/2) ceases to exist. �

Both the counterexample used in the proof of Theorem 5.3.7 and the one in

Example 1 are at the boundary of the admissible parameter space, where the

necessary condition (5.1) is marginally satisfied. In the next section, we establish

through Monte Carlo simulation studies that such “degenerate” counterexamples

almost never occur for generic network topologies and parameters.

To conclude this subsection, we remark that the main technical difficulty in

proving sufficiency of the condition (5.22) for arbitrary graphs is the compact state

space Tn and the non-monotone sinusoidal coupling among the oscillators. Indeed,
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if the state space was Rn and if the oscillators were coupled via non-decreasing

and odd functions, then the synchronization problem simplifies tremendously and

the counterexamples in the proof of Theorem 5.3.7 and in Example 1 do not occur.

We refer the reader to [38,39] for an elegant analysis based on optimization theory.

5.3.3 Statistical Synchronization Assessment

After having analytically established condition (5.22) for a variety of particular

network topologies and parameters, we establish its correctness and predictive

power for a broad range of networks.

Statistical Assessment of Correctness

Extensive simulation studies lead us to the conclusion that condition (5.22) is

correct in general and guarantees the existence of a stable equilibrium θ∗ ∈ ∆̄G(γ).

In order to validate this hypothesis we invoke probability estimation through

Monte Carlo techniques, see [271, Section 9] and [41, Section 3] for a review.

We conducted Monte Carlo simulation studies over a wide range of natural

frequencies ωi, network sizes n, coupling weights aij, and different random graph

models of varying degrees of sparsity and randomness. We select a set of nominal

network models with topologies constructed from Erdös-Rényi graphs, random

geometric graphs, and Watts-Strogatz small world networks, and the natural fre-
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quencies and coupling weights are sampled from uniform distributions. In total,

we constructed 1.2 · 106 samples of such nominal networks, each with a connected

graph G(V , E , A) and natural frequencies ω satisfying ‖L†ω‖E,∞ ≤ sin(γ) for some

γ < π/2. We will not detail the construction of the nominal network models here

and refer to [89] for further information. For each sample, we numerically solve

the fixed equation (5.9) with accuracy 10−6 and test the hypothesis

H :
∥∥L†ω

∥∥
E,∞ ≤ sin(γ) =⇒ ∃ θ∗ ∈ ∆̄G(γ)

with an accuracy 10−4. The results are reported in detail in [89] together with

the empirical probability that the hypothesis H is true:

P̂rob
(
H is true

)
=

number of samples satisfying
(
H is true

)

total number of samples
.

Given an accuracy level ε ∈ ]0, 1[ and a confidence level η ∈ ]0, 1[, we ask for the

number of samples N such that the true probability Prob
(
H is true

)
equals the

empirical probability P̂rob
(
H is true

)
with confidence level greater than 1 − η

and accuracy at least ε, that is,

Prob
(∣∣Prob

(
H is true

)
− P̂rob

(
H is true

)∣∣ < ε
)
> 1− η .

By the Chernoff-Hoeffding bound (see [271, Equation (9.14)] and [125, Theorem

1]), the number of samples N for a given accuracy ε and confidence η is given as

N ≥ 1

2ε2
log

2

η
. (5.26)
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For ε = η = 0.01, inequality (5.26) is satisfied for N ≥ 26492 samples. By in-

voking the Chernoff-Hoeffding bound (5.26), our Monte Carlo simulations studies

establish the following statement:

With 99% confidence level, there is at least 99% accuracy that the

hypothesis H is true with probability 99.97 % for a nominal network

From this statistical result, we deduce that the proposed synchronization condition

(5.22) holds true for “almost all” topologies and parameters of the considered

nominal network models. Indeed, in Subsection 5.3.2, we also show the existence

of possibly-thin sets of “degenerate” network topologies and parameters for which

our condition (5.22) is not sufficiently tight. Overall, our analytical and statistical

results validate the correctness of the proposed condition (5.22).

We refer the interested reader to [89, Supplementary Information] for further

details on the construction of the nominal network models, probability estimation

through Monte Carlo techniques, and the detailed outcomes of our simulations.

Statistical Assessment of Accuracy

After having established the statistical correctness of condition (5.22), we now

investigate its predictive power for arbitrary networks. Since we analytically es-

tablish in statement (G4) of Theorem 5.3.5 that condition (5.22) is exact for

sufficiently small pairwise phase cohesiveness |θi−θj| � 1, we now investigate the

198



Chapter 5. Synchronization in Complex Oscillator Networks

other extreme, max{i,j}∈E |θi − θj| = π/2. To test the corresponding synchroniza-

tion condition (5.23) in a low-dimensional parameter space, we consider a complex

network of Kuramoto oscillators given by

θ̇i = ωi −K ·
∑n

j=1
aij sin(θi − θj) , i ∈ {1, . . . , n} , (5.27)

where all coupling weights aij are either zero or one, and the coupling gain K >

0 serves as control parameter. If L is the corresponding unweighted Laplacian

matrix, then condition (5.23) reads as K > Kcritical , ‖L†ω‖E,∞. Of course,

the condition K > Kcritical is only sufficient and the critical coupling may be

smaller than Kcritical. In order to test the accuracy of the condition K > Kcritical,

we numerically found the smallest value of K leading to synchrony with phase

cohesiveness π/2. In the following, we present only the main results and refer

to [89, Supplementary Information] for the details of our numerical investigations.

Figure 5.3 reports our findings for various network sizes, connected random

graph models, and sample distributions of the natural frequencies. First, notice

from Subfigures (a),(b),(d), and (e) that condition (5.23) is extremely accurate for

a sparse graph, that is, for small p and n, as expected from our analytical results.

Second, for a dense graph with p ≈ 1, Subfigures (a),(b),(d), and (e) confirm the

results known for classic Kuramoto oscillators (1.2): for a bipolar distribution

condition (5.23) is exact, and for a uniform distribution a small critical coupling

is obtained. Third, Subfigures (c) and (d) show that condition (5.23) is scale-free
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for a Watts-Strogatz small world network, that is, it has almost constant accuracy

for various values of n and p. Fourth and finally, observe that condition (5.23)

is always within a constant factor of the exact critical coupling, whereas other

proposed conditions [18, 31, 84, 85, 139, 298, 299] on the nodal degree or on the

algebraic connectivity scale poorly with respect to network size n.

5.4 Applications to Structure-Preserving Power

System Models

We envision that condition (5.22) can be applied to quickly assess synchro-

nization and robustness in power networks under volatile operating conditions. In

this section, we present a set of examples to demonstrate how the results in this

chapter can be applied to power networks. We will only outline a few selected

applications here, and refer to the corresponding articles for further details.

5.4.1 Synchronization and Security Assessment

Since real-world power networks are carefully engineered systems with par-

ticular network topologies and parameters, we do not extrapolate the statistical

results from the previous section to power grids. Rather, we consider ten widely-

established IEEE power network test cases provided by [111,304].
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Figure 5.3: Synchronization threshold in a complex Kuramoto oscillator network
Numerical evaluation of the exact critical coupling K in a complex Kuramoto
oscillator network. The subfigures show the critical coupling gain K normalized
by ‖L†ω‖E,∞ for an Erdös-Rényi graph with probability p of connecting two nodes,
for a random geometric graph with connectivity radius p, and for a Watts-Strogatz
small world network with rewiring probability p. Each data point is the mean over
100 samples of the respective random graph model, for values of ωi sampled from
a bipolar distribution or a uniform distribution supported on [−1, 1], and for the
network sizes n ∈ {10, 20, 40, 80, 160}, respectively.
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Under nominal operating conditions, the power generation is optimized to meet

the forecast demand, while obeying the AC power flow laws and respecting the

thermal limits of each transmission line. Thermal limits constraints are precisely

equivalent to phase cohesiveness requirements, and they are a subset of the so-

called security constraints (limiting the branch power flows and the nodal voltages)

which guarantee the robust operation of the power grid.

In order to test the synchronization condition (5.22) in a volatile smart grid

scenario, we make the following changes to the nominal network: 1) We assume

fluctuating demand and randomize 50% of all loads to deviate from the forecasted

loads. 2) We assume that the grid is penetrated by renewables with severely

fluctuating power outputs, for example, wind or solar farms, and we randomize

33% of all generating units to deviate from the nominally scheduled generation.

3) Following the paradigm of smart operation of smart grids [279], the fluctuations

can be mitigated by fast-ramping generation, such as fast-response energy storage

including batteries and flywheels, and controllable loads, such as large-scale server

farms or fleets of plug-in hybrid electrical vehicles. Here, we assume that the grid

is equipped with 10% fast-ramping generation and 10% controllable loads, and

the power imbalance (caused by fluctuating demand and generation) is uniformly

dispatched among these adjustable power sources. A detailed description of the

simulation setup can be found in [89, Supplementary Information].
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For each of the ten IEEE test cases, we construct 1000 random realizations of

the scenario 1), 2), and 3) described above. For each realization, we numerically

check for the existence of a solution θ∗ ∈ ∆̄G(γ), γ ∈ [0, π/2[ to the AC power flow

equations, the right-hand side of the power network dynamics (2.1),(2.3), given by

Pi =
∑n

j=1
aij sin(θi − θj) , i ∈ {1, . . . , n} , (5.28)

where Pi = Pm,i for generators i ∈ V1 and Pi = Pl,i for loads i ∈ V3. The solution

to the AC power flow equations (5.28) is found via the AC power flow solver

provided by MATPOWER [304]. Notice that, by Lemma 3.2.1, if such a solution

θ∗ exists, then it is locally exponentially stable. Next, we compare the numerical

solution θ∗ with the results predicted by our synchronization condition (5.22). As

discussed in Remark 5.3.4, a physically insightful and computationally efficient

way to evaluate condition (5.22) is to solve the sparse and linear DC power flow:

Pi = −
∑n

j=1
aij(δi − δj) , i ∈ {1, . . . , n} . (5.29)

In vector form, the DC power flow equations (5.29) read as ω = Lδ, and their solu-

tion δ∗ = L†ω is defined uniquely up to translational invariance. Given the solution

δ∗ of the DC power flow equations (5.29), the left-hand side of our synchronization

condition (5.22) evaluates to ‖L†ω‖E,∞ = ‖BTL†ω‖∞ = max{i,j}∈E |δ∗i − δ∗j |.

Finally, we compare our prediction with the numerical results. If ‖L†ω‖E,∞ ≤

sin(γ) for some γ ∈ [0, π/2[, then condition (5.22) predicts that there exists a
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stable solution θ ∈ ∆̄G(γ), or alternatively θ ∈ ∆̄G(arcsin(‖L†ω‖E,∞)). To validate

this hypothesis, we compare the numerical solution θ∗ to the AC power flow

equations (5.28) with our prediction θ ∈ ∆̄G(arcsin(‖L†ω‖E,∞)).

Randomized test case Numerical worst-case Analytic prediction Accuracy of condition:

(1000 instances) angle differences: of angle differences: arcsin(‖L†ω‖E,∞)

max
{i,j}∈E

|θ∗i − θ∗j | arcsin(‖L†ω‖E,∞) − max
{i,j}∈E

|θ∗i − θ∗j |

9 bus system 0.12889 rad 0.12893 rad 4.1218 · 10−5 rad

IEEE 14 bus system 0.16622 rad 0.16650 rad 2.7995 · 10−4 rad

IEEE RTS 24 0.22309 rad 0.22480 rad 1.7089 · 10−3 rad

IEEE 30 bus system 0.16430 rad 0.16456 rad 2.6140 · 10−4 rad

New England 39 0.16821 rad 0.16828 rad 6.6355 · 10−5 rad

IEEE 57 bus system 0.20295 rad 0.22358 rad 2.0630 · 10−2 rad

IEEE RTS 96 0.24593 rad 0.24854 rad 2.6076 · 10−3 rad

IEEE 118 bus system 0.23524 rad 0.23584 rad 5.9959 · 10−4 rad

IEEE 300 bus system 0.43204 rad 0.43257 rad 5.2618 · 10−4 rad

Polish 2383 bus system 0.25144 rad 0.25566 rad 4.2183 · 10−3 rad

(winter peak ’99/’00)

Table 5.1: Evaluation of the synchronization condition (5.22) for ten IEEE power
network test cases under volatile operating conditions. The results are averaged
over 1000 instances of randomized load and generation.

Our findings and the detailed statistics are reported in Table 5.4.1. It can be

observed that condition (5.22) predicts the worst-case phase cohesiveness |θ∗i −θ∗j |

along all transmission lines {i, j} ∈ E with extremely high accuracy even for

large-scale networks, such as the Polish power grid model featuring 2383 nodes.
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The results given in Table 5.4.1 are averaged over 1000 instances of randomized

load and generation. The detailed histograms of the prediction errors

arcsin(‖L†ω‖E,∞)−max
{i,j}∈E

|θ∗i − θ∗j | (5.30)

are shown in Figure 5.4 for two representative large-scale models – the IEEE 118

bus system and the Polish 2383 bus system. It can be observed that the error

histogram is very narrow, it has very thin tails, and our synchronization condition

(5.22) predicts the correct phase cohesiveness with high accuracy and few outliers.
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Figure 5.4: Histogram of the prediction errors
This figure shows the detailed histogram of the prediction errors (5.30) for 1000
instances of randomized load and generation. Panel (a) shows the error histogram
for the the IEEE 118 bus system and the Polish 2383 bus system, and panel (b)
shows the error histogram for the Polish 2383 bus system.

These conclusions can also be extended to power network models with variable

parameters which account for uncertainty in load power demand or unmodeled

voltage dynamics. We refer to the author’s articles [87, 89] for further details.
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5.4.2 Monitoring and Contingency Screening

As a final test, we validate the synchronization condition (5.22) in a stressed

power grid case study. We consider the IEEE Reliability Test System 96 (RTS 96)

illustrated in Figure 5.5. The RTS 96 is a widely adopted and relatively large-

scale power network test case featuring 40 load buses and 33 generation buses.

The RTS 96 has been designed as a benchmark model for power flow and stability

studies, and its network and dynamic generator parameters can be found in [111].

The dynamic power system model of the RTS 96 can be obtained as structure-

preserving power network model (2.1),(2.3), which is a particular instance of the

coupled oscillator model (1.1), as discussed in Subsection 2.2.1. The quantities

aij in the coupled oscillator model (1.1) correspond to the product of the voltage

magnitudes at buses i and j as well the susceptance of the transmission line con-

necting buses i and j. For a given set of power injections at the buses and branch

parameters, the voltage magnitudes and initial phase angles were calculated using

the optimal power flow solver provided by MATPOWER [304]. The quantities ωi,

i ∈ V3, are the real power demands at loads, and ωi, i ∈ V1, are the real power

injections at the generators, which were found through the optimal power flow

solver provided by MATPOWER [304].
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Figure 5.5: Illustration of contingencies the RTS 96 power network.
This figure illustrates the RTS 96 power network and two contingencies. Here,
the square nodes are generators and the round nodes are loads, large amounts of
power are exported from the Northwestern (blue) area to the Southeastern (red)
area, and generator 323 is tripped.

We made the following changes in order to adapt the detailed RTS 96 model

to the classic structure-preserving power network model (2.1),(2.3). First, we

replaced the synchronous condenser in the original RTS 96 model [111] by a U50

hydro generator. Second, since the numerical values of the damping coefficients Di

are not contained in the original RTS 96 description [111], we chose the following

values to be found in [156]: for the generator damping, we chose the uniform

damping coefficient Di = 1 in per unit system and for i ∈ V1, and for the load
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frequency coefficient we choseDi = 0.1 s for i ∈ V2. Third and finally, we discarded

an optional high voltage DC link for the branch {113, 316}.

We assume the following two contingencies have taken place and we character-

ize the remaining safety margin. First, we assume generator 323 is disconnected,

possibly due to maintenance or failure events. Second, we consider the follow-

ing imbalanced power dispatch situation: the power demand at each load in the

Southeastern (red) area deviates from the nominally forecasted demand by a uni-

form and positive amount, and the resulting power deficiency is compensated by

uniformly increasing the generation in the Northwestern (blue) area. This imbal-

ance can arise, for example, due to a shortfall in predicted load and renewable

energy generation. Correspondingly, power is exported from the Northwestern to

the Southeastern area via the transmission lines {121, 325} and {223, 318}.

At a nominal operating condition, the RTS 96 power network is sufficiently

robust to tolerate each single one of these two contingencies, but the safety margin

is now minimal. When both contingencies are combined, then our synchronization

condition (5.22) predicts that the thermal limit of the transmission line {121, 325}

is reached at an additional loading of 22.20%. Indeed, the dynamic simulation

scenario shown in Figure 5.6 validates the accuracy of this prediction. It can be

observed, that synchronization is lost for an additional loading of 22.33%, and

the areas separate via the transmission line {121, 325}. This separation triggers a
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cascade of events, such as the outage of the transmission line {223, 318}, and the

power network is en route to a blackout.

In the power system literature, the above scenario is sometimes referred to

as a limit-induced bifurcation [79, 113] since the loss of synchrony is triggered by

the thermal constraints limiting the maximal power transfer. We remark that,

if generator 323 is not disconnected and there are no thermal limit constraints,

then, by increasing the loading, we observe the classic loss of synchrony through a

saddle-node bifurcation [78]. Also this bifurcation can be predicted accurately by

our synchronization condition (5.22), see the the author’s article [89] for a detailed

description. In summary, this transmission line scenario illustrates the accuracy

and applicability of the proposed synchronization condition (5.22)

5.4.3 Further Applications

The results in this section confirm the validity, the applicability, and the accu-

racy of the synchronization condition (5.22) in complex power network scenarios.

We envision that our analysis and the proposed synchronization condition

(5.22) finds further applications in power networks. Together with collabora-

tors the author further exploited the insights obtained in Section 5.3 to develop

new control and analysis methods for power network applications. In particu-

lar, we identified a tight connection between the solutions of the AC power flow
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Figure 5.6: The RTS 96 dynamics at the transition to instability
The RTS 96 dynamics for a continuous load increase from 22.19% to 22.24%.
Subfigure (a) shows the angles θ(t) which loose synchrony at t∗ = 18.94 s, when
the thermal limit γ∗ = 0.1977 rad of the transmission line {121, 325} is reached.
Subfigure (b) shows the angles θ(t) at t = t∗. Subfigure (c) depicts the angu-
lar distances and the thermal limits γ∗ and γ∗∗, where the lines {121, 325} and
{223, 318} are plotted as dashed curves. Subfigures (d) and (e) show the gen-
erator phase space

(
θ(t), θ̇(t)

)
before and after t∗, where the loss of a common

synchronization frequency can be observed.

210



Chapter 5. Synchronization in Complex Oscillator Networks

equations (5.28) and the DC power flow equations (5.29) through the arcsin-

nonlinearity. These insights can be further exploited to develop an improved DC

power flow approximation, see [87] for details. Our analysis of coupled oscillator

models and the resulting synchronization condition (5.22) can be directly exploited

in the analysis and control design of drooped-controlled inverters in microgrids.

We refer the reader to [32, 248–251] for further details on primary and secondary

control design strategies and connections to coupled oscillator networks.

Finally, we envision further applications of the results developed in this chapter

to the following power network problems: security-constrained optimal power flow,

design of remedial action schemes (in particular islanding and load shedding),

online contingency screening, continuous control design for FACTS (flexible AC

transmission system) devices, and primary and secondary control strategies.
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Conclusions

In this thesis we studied synchronization in complex oscillator networks and ap-

plications in electric power grids. On the theory side, we studied homogeneous

and heterogeneous oscillator networks, with finite or infinite-dimensional oscillator

populations, and with complete or complex interaction topologies. Additionally,

we showed how our theoretic results can be applied to different power system

problems and different dynamic power network models.

In the following two sections, we summarize the contributions of this thesis,

we briefly summarize a few of the author’s side projects related to the contents of

this thesis, and we suggest a few directions for future research.

6.1 Summary

Synchronization in networks of coupled oscillators is a pervasive topic in var-

ious scientific disciplines. Within the rich modeling phenomenology on synchro-
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nization among coupled oscillators and within the broad range of application

domains, we focused on the coupled oscillator model

Miθ̈i +Diθ̇i = ωi −
∑n

j=1
aij sin(θi − θj) , i ∈ V1,

Diθ̇i = ωi −
∑n

j=1
aij sin(θi − θj) , i ∈ V2

and its applications in electric power networks.

In Chapter 1, we gave a broad motivation for the study of complex oscillator

networks, we emphasized the importance of the synchronization problem in power

networks, and we outlined the contents and contributions of this thesis.

In Chapter 2, we reviewed several applications of the coupled oscillator model

and showed how dynamic power network models can be naturally cast as cou-

pled oscillators. Additionally, we discussed different synchronization notions and

introduced some analysis methods from algebraic graph theory and consensus

protocols, which proved to be valuable tools throughout this thesis.

In Chapter 3, we studied static and dynamic relationships between mechanical

and kinematic oscillator models. We established the local topological equivalence

between these models and proved that they feature the same synchronization con-

ditions independent of the inertial terms. Next, we showed that mechanical oscil-

lator networks can be dynamically approximated by kinematic oscillator networks,

provided that the mechanical oscillators are strongly overdamped. We concluded
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our analysis in Chapter 3 with a word of caution and demonstrated that the quali-

tative dynamic behavior of the two models can be severely different in some cases.

Finally, we discussed the applicability of these results to power network models.

In Chapter 4, we studied the classic Kuramoto model. We discussed differ-

ent synchronization notions, we related different synchronization metrics, and re-

viewed various estimations on the critical coupling strength. We also established

an explicit, necessary, and sufficient synchronization condition for Kuramoto os-

cillators with natural frequencies supported on a compact interval. Our main

result also included tight estimates of the region of attraction and the asymptotic

performance metrics achieved by the oscillator network. We further extended this

result to higher-order multi-rate Kuramoto oscillators. Finally, we presented an

extension of the results and the analysis framework contained in this chapter to

non-uniform Kuramoto models and network-reduced power system models.

In Chapter 5, we analyzed heterogeneous oscillators interacting through a com-

plex network. We reviewed numerous synchronization conditions based on differ-

ent metrics quantifying the coupling and the heterogeneity in the network. We

presented a set of necessary and a set of sufficient conditions for synchronization.

We proposed a novel algebraic analysis approach emphasizing the role of cycles

and cut-sets in the graph. Our approach suggests a novel synchronization condi-

tion, which significantly improves upon the existing conditions advocated thus far.
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The proposed condition is provably exact for various interesting network topolo-

gies and parameters, and it is statistically correct for a broad range of nominal

random network models. Finally, we illustrated the practical applicability of our

proposed condition in complex networks scenarios and in smart grid applications.

6.2 Tangential and Related Contributions

In this subsection, we briefly summarize the author’s side projects that are

related to the contributions of this thesis.

Kron reduction: In order to relate synchronization conditions in network-

reduced power system models (2.5)-(2.6) and in the associated structure-preserving

model, we studied the Kron reduction process relating the two models [80,82]. On

the matrix-theoretic side, Kron reduction is based on a Schur complement of the

graph Laplacian matrix. Since graph-theoretic modeling and model reduction is

an interesting topic in its own right, we also studied the Kron reduction process

in a more general framework and from a purely theoretic perspective [86].

Control of inverters in microgrids: Microgrids are autonomously managed

low-voltage distribution networks that can operate in an islanded mode, that is,

disconnected from the main transmission grid. Microgrids typically feature mul-

tiple small heterogeneous power sources (possibly of DC type) that are interfaced
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with the microgrid through power converters (or simply inverters). These inverters

are controlled voltage sources. In Subsection 2.2.1, we showed that the classic fre-

quency droop control [46,275] gives rise to the closed-loop dynamics (2.2), which

are an instance of the coupled oscillator model (1.1). In subsequent work, we in-

vestigated the stability of this closed loop [248], designed secondary controllers for

frequency restoration [32,249], implemented them in simulations and experimental

testbeds [251], and also studied voltage droop control strategies [250].

Slow Coherency and Wide-Area Control: Bulk power systems typically ex-

hibit multiple electromechanical oscillations. Of particular interest are inter-area

oscillations, which are associated with the dynamics of power transfers and involve

groups of generators oscillating relative to each other. In the classic slow coherency

and area aggregation problem [59, 60], groups of coherently swinging generators

are aggregated to equivalent machines and a reduced model is constructed. Given

our insights into the power network dynamics, we revisited this model reduction

process using consensus methods and algebraic graph theory [229]. Since inter-

area oscillations are only poorly controllable by means of local control, we further

designed a distributed wide-area controllers. The design relies on simultaneous

optimization of the communication architecture and the closed-loop performance,

and it yields optimal controllers with sparse communication structures [90,91].
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Monitoring and cyber-physical security: Distributed control strategies are

enabled and complemented by distributed estimation, monitoring, and informa-

tion fusion. We developed a distributed estimation algorithm based on local

continuous-time filtering and information fusion at discrete time instants, and

we applied it to sensor and power transmission networks [92,93]. Finally, a major

concern in the implementation of distributed algorithms is cyber-physical secu-

rity. We proposed a mathematical framework for cyber-physical systems subject to

attacks affecting their control, communication, and monitoring system. We estab-

lished the fundamental limitations of attack detection and identification systems,

we designed centralized and distributed attack detection and identification moni-

tors, and we applied our results to sensor, water, and power networks [212–214].

6.3 Future Research Directions

Despite the vast literature, the countless applications, and the numerous the-

oretical results on the synchronization properties of model (1.1), many interesting

and important problems are still open. In the following, we summarize limita-

tions of the existing analysis approaches and present a few worthwhile directions

for future research with particular emphasis on power network applications.
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Asymmetric interactions: Most of the results presented in this thesis can

be extended to more general anti-symmetric and 2π-periodic coupling functions

as long as the coupling is diffusive and bidirectional. In some applications, the

coupling topology is inherently directed, such as transcriptional, metabolic, or

neuronal networks [176]. In this case, there are only a few theoretical investigations

including ring graphs [118,227], results on the synchronization frequency [19,85],

and statistical analysis of large graphs [223]. Also, in many applications the

coupling between the oscillators is not purely diffusive. For instance, mutual

excitatory or inhibitory synaptic organizations in neuroscience [70], time delays in

sensor networks [247], or transfer conductances in power networks [50] lead to a

shifted coupling of the form sin(θi − θj − ϕij) with ϕij ∈ [−π/2, π/2]. In these

cases and also for other “skewed” or “symmetry-breaking” interactions among

the oscillators, many of the presented analysis schemes either fail or lead to overly

conservative results. In summary, the extension of the present work to symmetry-

breaking coupling functions is a challenging yet tremendously important problem.

Pulse coupling: Though not related to power network applications, another

interesting class of oscillator networks are systems of pulse-coupled oscillators

featuring hybrid dynamics: impulsive coupling at discrete time instants and un-

coupled continuous dynamics otherwise [184]. This class of oscillator networks

displays a very interesting phenomenology which is qualitatively different from

218



Chapter 6. Conclusions

diffusive and continuous coupling, see [177]. For instance, the behavior of iden-

tical oscillators coupled in a complete graph strongly depends on the curvature

of the uncoupled dynamics. As discussed in Subsection 2.2.2, such pulse-coupled

oscillator models can be reduced to the canonical model (2.12) through a phase

reduction and averaging analysis. For certain pulse-coupled oscillators the cou-

pling functions hij(·) turn out to be monotone and discontinuous, and they result

in finite-time convergent dynamics [161, 178]. Most of the results and analysis

methods known for continuously-coupled oscillators still need to be extended to

pulse-coupled oscillators, especially in the case of dissimilar natural frequencies.

Transient dynamics: For dissimilar oscillators, most results presented here

pertain to existence, uniqueness, and local stability of synchronous solutions, with

the exception of Theorems 4.4.2 and 5.2.2. In a next major step, the rich transient

dynamics in oscillator networks need to be analyzed. Such an investigation is of

tremendous value for transient stability problems in volatile power grids. The on-

line assessment of transient stability (in real-time) is one of the major outstanding

problems in power system stability studies and in industrial applications [48, 50].

Even for the classic Kuramoto model (1.2), many problems pertaining to the

transient dynamics still need to be fully resolved. For instance, most known es-

timates on the region of attraction of a synchronized solution are conservative,

such as the semi-circle estimates given in Theorems 2.4.2 and 4.4.2. We refer
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to [50,293] for a set of interesting results and conjectures on the region of attrac-

tion. As shown in Theorem 4.4.2, for complete graphs, the region of attraction

of a synchronous solution always includes ∆G(π/2) for any K > Kcritical. It is

unclear if an analogous result holds for sparse graphs or if the region of attrac-

tion severely depends on the topology. When the Kuramoto dynamics (1.2) are

subject to additive noise, they can be analyzed through Fokker-Planck equations

similar to the continuum-limit model (4.3)-(4.4) or in the limit of small stochastic

perturbations, see [21, 76]. In this case, there are various interesting transitions

between wells of the potential landscape and only few analytic investigations.

Also the sub-synchronous regime for K < Kcritical is vastly unexplored, and par-

tial synchronization or clustering (similar to the partially-synchronized state for

infinite-dimensional models) [5,74] or chaotic motion [172,218,264,273] can occur.

Finally, the incremental stability results referenced in Subsection 4.4.1 appear

to be a promising direction that still needs to be fully explored.

Higher-order and state space oscillators: For the mechanical analog in

Figure 1.1, the power network models detailed in Subsection 2.2.1, and the pre-

viously listed applications [26, 96, 117, 120, 130, 144, 211, 224, 246, 261, 292, 303],

the coupled oscillator dynamics are of second order as in (1.1a). The analysis of

second-order oscillator networks has also received a lot of attention and many tools

can be extended from first to second-order dynamics, see Chapter 3 for the local
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topological equivalence of first and second-order oscillator networks, the singular

perturbation approximation, and a comprehensive literature overview.

As shown in Subsection 3.3.4, the transient dynamics of second-order oscillator

networks have their own characteristics, especially for large inertia and small

damping. Thus, many of the presented results and the analysis of the transient

dynamics still need to be extended to second-order oscillator networks. In other

oscillator network models, there is no readily available phase variable to describe

the limit cycle dynamics of the coupled system, and the model (1.1) is valid only

after a phase reduction and averaging analysis. Since features of the original

model may be poorly preserved in the canonical model (2.12), a direct analysis of

the state space model is preferred. In the case of linear or passive systems, state

or output synchronization are well understood [17, 38, 171, 289], but the analysis

of synchronization problems in more general heterogeneous state space oscillator

networks remains a challenging and important problem.

Sparse and heterogeneous networks: Despite the vast scientific interest

the quest for sharp, concise, and closed-form synchronization conditions for arbi-

trary connected graphs has been so far in vain. As suggested by our discussion in

Chapter 5, the proper metric for the analysis of synchronization problem appears

to be the incremental ∞-norm. In the author’s opinion, an analysis with the

incremental ∞-norm will most likely deliver the sharpest possible conditions. We
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believe that the norm and cycle constraints developed in Section 5.3 are a fruitful

approach towards a more complete understanding of sparse topologies.

For the transient analysis, the `∞-type contraction Lyapunov function (4.23) is

a powerful analysis concept for complete graphs and still needs to be extended to

arbitrary connected graphs. Regarding the potential and equilibrium landscape, a

few interesting and still unresolved conjectures can be found in [16,22,154,179,269]

and pertain to the number of (stable) equilibria and topological properties of the

equilibrium set. Finally, the complex networks and statistical physics communities

found various interesting scaling laws in their statistical and numerical analyses of

random graph models, such as conditions depending on the spectral ratio λ2/λn of

the Laplacian eigenvalues, interesting results for correlations between the degree

degi and the natural frequency ωi, and degree-dependent synchronization condi-

tions [18, 31, 108, 143, 192, 198, 222, 253]. It is unclear which of these results and

findings are amenable to an analytic and quantitative investigation.

Specific applications in power networks: This thesis focused primarily

on the analysis of synchronization in complex oscillator networks and power grids.

In Subsection 5.4.2, we also showed how our results can be used for contingency

screening. We believe that there is great potential to use our results not only

for online monitoring purposes but also for remedial action schemes, such as is-

landing and load shedding. In Subsection 5.4.1, we outlined how our proposed
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synchronization condition can be related to predict solutions to the AC power flow

equations via the DC power flow equations, see also [87]. We believe that these

insights are of great value in applications, where the numerical solution to the AC

power flow is computationally expensive or even unfeasible, such as real-time se-

curity assessment, transmission planning, or large-scale power flow optimization,

among others. Finally, we recently turned our analysis insights into control design

strategies for inverters in microgrids [32,248–250]. We found that synchronization

theory provides a valuable tool for the analysis and control of microgrids. Some

open and important problems include analysis and control of network models with

conductances and with coupled active and reactive power flows.

We sincerely hope that the results contained in this thesis stimulate further

research on synchronization in coupled oscillators. We believe that the identified

connection between coupled oscillators and electric power networks provides a

fruitful ground for exciting interdisciplinary research problems, both on the theo-

retical side as well as in the challenging and inspiring power network applications.
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network theory in passivity-based cooperative control. arXiv preprint
arXiv:1301.3676, 2013.

[40] L. Buzna, S. Lozano, and A. Diaz-Guilera. Synchronization in symmetric
bipolar population networks. Physical Review E, 80(6):66120, 2009.

[41] G. C. Calafiore, F. Dabbene, and R. Tempo. Research on probabilistic
methods for control system design. Automatica, 47(7):1279–1293, 2011.

[42] E. Canale and P. Monzón. Almost global synchronization of symmetric
Kuramoto coupled oscillators. In Systems Structure and Control, chapter 8,
pages 167–190. InTech Education and Publishing, 2008.

[43] E. A. Canale, P. Monzón, and F. Robledo. On the complexity of the classifi-
cation of synchronizing graphs. In Grid and Distributed Computing, Control
and Automation, pages 186–195, Jeju Island, Korea, December 2010.

[44] E. A. Canale, P. A. Monzón, and F. Robledo. The wheels: an infinite family
of bi-connected planar synchronizing graphs. In IEEE Conf. Industrial Elec-
tronics and Applications, pages 2204–2209, Taichung, Taiwan, June 2010.

[45] D. Carlson and H. Schneider. Inertia theorems for matrices: The semidef-
inite case. Journal of Mathematical Analysis and Applications, 6:430–446,
1963.

[46] M. C. Chandorkar, D. M. Divan, and R. Adapa. Control of parallel con-
nected inverters in standalone AC supply systems. IEEE Transactions on
Industry Applications, 29(1):136–143, 1993.

[47] K. S. Chandrashekhar and D. J. Hill. Cutset stability criterion for power sys-
tems using a structure-preserving model. International Journal of Electrical
Power & Energy Systems, 8(3):146–157, 1986.

227



Bibliography

[48] H.-D. Chiang. Direct Methods for Stability Analysis of Electric Power Sys-
tems. Wiley, 2011.

[49] H.-D. Chiang and C. C. Chu. Theoretical foundation of the BCU method
for direct stability analysis of network-reduction power system models with
small transfer conductances. IEEE Transactions on Circuits and Systems I:
Fundamental Theory and Applications, 42(5):252–265, 1995.

[50] H.-D. Chiang, C. C. Chu, and G. Cauley. Direct stability analysis of electric
power systems using energy functions: Theory, applications, and perspec-
tive. Proceedings of the IEEE, 83(11):1497–1529, 1995.

[51] H. D. Chiang and F. F. Wu. Stability of nonlinear systems described by
a second-order vector differential equation. IEEE Transactions on Circuits
and Systems, 35(6):703–711, 2002.

[52] H.-D. Chiang, F. F. Wu, and P. P. Varaiya. Foundations of the potential en-
ergy boundary surface method for power system transient stability analysis.
IEEE Transactions on Circuits and Systems, 35(6):712–728, 1988.

[53] H.D. Chiang and M.E. Baran. On the existence and uniqueness of load
flow solution for radial distribution power networks. IEEE Transactions on
Circuits and Systems, 37(3):410–416, 1990.

[54] H. Chiba. A proof of the Kuramoto’s conjecture for a bifurcation structure
of the infinite dimensional Kuramoto model, August 2010. Available at
http://arxiv.org/abs/1008.0249.

[55] Y. P. Choi, S. Y. Ha, S. Jung, and Y. Kim. Asymptotic formation and
orbital stability of phase-locked states for the Kuramoto model. Physica D:
Nonlinear Phenomena, 241(7):735–754, 2011.

[56] Y. P. Choi, S. Y. Ha, M. Kang, and M. Kang. Exponential synchronization
of finite-dimensional Kuramoto model at critical coupling strength. Com-
munications in Mathematical Sciences, 11(2):385–401, 2013.

[57] Y.-P. Choi, S.-Y. Ha, and S.-B. Yun. Complete synchronization of Kuramoto
oscillators with finite inertia. Physica D, 240(1):32–44, 2011.

[58] N. Chopra and M. W. Spong. On exponential synchronization of Kuramoto
oscillators. IEEE Transactions on Automatic Control, 54(2):353–357, 2009.

[59] J. H. Chow, J. J. Allemong, and P. V. Kokotović. Singular perturbation
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[231] P. Sacré and R. Sepulchre. System analysis of oscillator mod-
els in the space of phase response curves, 2012. Available at
http://arxiv.org/abs/1206.4144.

[232] A. Sarlette. Geometry and Symmetries in Coordination Control. PhD thesis,
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synchronization and phase agreement in Kuramoto oscillator networks with
delays. Automatica, 48(12):3008–3017, 2012.

242



Bibliography

[241] R. Sepulchre. Consensus on nonlinear spaces. Annual Reviews in Control,
35(1):56–64, 2011.

[242] R. Sepulchre, D. A. Paley, and N. E. Leonard. Stabilization of planar col-
lective motion: All-to-all communication. IEEE Transactions on Automatic
Control, 52(5):811–824, 2007.

[243] R. Sepulchre, D. A. Paley, and N. E. Leonard. Stabilization of planar collec-
tive motion with limited communication. IEEE Transactions on Automatic
Control, 53(3):706–719, 2008.

[244] R. Sepulchre, A. Sarlette, and P. Rouchon. Consensus in non-commutative
spaces. In IEEE Conf. on Decision and Control, pages 6596–6601, Atlanta,
GA, USA, December 2010.

[245] D. Sherrington and S. Kirkpatrick. Solvable model of a spin-glass. Physical
Review Letters, 35(26):1792–1796, 1975.

[246] S. B. Shim, M. Imboden, and P. Mohanty. Synchronized oscillation in cou-
pled nanomechanical oscillators. Science, 316(5821):95–99, 2007.

[247] O. Simeone, U. Spagnolini, Y. Bar-Ness, and S. H. Strogatz. Distributed
synchronization in wireless networks. IEEE Signal Processing Magazine,
25(5):81–97, 2008.

[248] J. W. Simpson-Porco, F. Dörfler, and F. Bullo. Droop-controlled inverters
are Kuramoto oscillators. In IFAC Workshop on Distributed Estimation and
Control in Networked Systems, pages 264–269, Santa Barbara, CA, USA,
September 2012.

[249] J. W. Simpson-Porco, F. Dörfler, and F. Bullo. Synchronization and power
sharing for droop-controlled inverters in islanded microgrids. Automatica,
49(9):2603–2611, 2013.

[250] J. W. Simpson-Porco, F. Dörfler, and F. Bullo. Voltage stabilization in
microgrids using quadratic droop control. In IEEE Conf. on Decision and
Control, Florence, Italy, December 2013. To appear.

[251] J. W. Simpson-Porco, F. Dörfler, Q. Shafiee, J. M. Guerrero, and F. Bullo.
Stability, power sharing, & distributed secondary control in droop-controlled
microgrids. In IEEE Int. Conf. on Smart Grid Communications, Vancouver,
BC, Canada, October 2013. To appear.

[252] Sherwin J Skar. Stability of multi-machine power systems with nontrivial
transfer conductances. SIAM Journal on Applied Mathematics, 39(3):475–
491, 1980.

243



Bibliography

[253] P. S. Skardal, J. Sun, D. Taylor, and J. G. Restrepo. Effects of degree-
frequency correlations on network synchronization: Universality and full
phase-locking. Europhysics Letters, 101(2):20001, 2013.

[254] E. D. Sontag. Contractive systems with inputs. In J. C. Willems, S. Hara,
Y. Ohta, and H. Fujioka, editors, Perspectives in Mathematical System The-
ory, Control, and Signal Processing, pages 217–228. Springer, 2010.

[255] E. H. Spanier. Algebraic Topology. Springer, 1994.

[256] Daniel L Stein. Spin glasses: still complex after all these years? In Deco-
herence and Entropy in Complex Systems, pages 349–361. Springer, 2004.

[257] B. Stott, J. Jardim, and O. Alsac. DC power flow revisited. IEEE Trans-
actions on Power Systems, 24(3):1290–1300, 2009.

[258] S. H. Strogatz. From Kuramoto to Crawford: Exploring the onset of syn-
chronization in populations of coupled oscillators. Physica D: Nonlinear
Phenomena, 143(1):1–20, 2000.

[259] S. H. Strogatz. Exploring complex networks. Nature, 410(6825):268–276,
2001.

[260] S. H. Strogatz. SYNC: The Emerging Science of Spontaneous Order. Hy-
perion, 2003.

[261] S. H. Strogatz, D. M. Abrams, A. McRobie, B. Eckhardt, and E. Ott. The-
oretical mechanics: Crowd synchrony on the Millennium Bridge. Nature,
438(7064):43–44, 2005.

[262] S. H. Strogatz and R. E. Mirollo. Phase-locking and critical phenomena in
lattices of coupled nonlinear oscillators with random intrinsic frequencies.
Physica D: Nonlinear Phenomena, 31(2):143–168, 1988.

[263] D. Subbarao, R. Uma, B. Saha, and M. V. R. Phanendra. Self-organization
on a power system. IEEE Power Engineering Review, 21(12):59–61, 2001.

[264] J. A. K. Suykens and G. V. Osipov. Introduction to focus issue: Synchro-
nization in complex networks. Chaos, 18(3):037101–037101, 2008.

[265] H. A. Tanaka, A. J. Lichtenberg, and S. Oishi. First order phase transition
resulting from finite inertia in coupled oscillator systems. Physical Review
Letters, 78(11):2104–2107, 1997.

[266] H. A. Tanaka, A. J. Lichtenberg, and S. Oishi. Self-synchronization of cou-
pled oscillators with hysteretic responses. Physica D: Nonlinear Phenomena,
100(3-4):279–300, 1997.

244



Bibliography

[267] P. A. Tass. A model of desynchronizing deep brain stimulation with a
demand-controlled coordinated reset of neural subpopulations. Biological
Cybernetics, 89(2):81–88, 2003.

[268] C. J. Tavora and O. J. M. Smith. Characterization of equilibrium and
stability in power systems. IEEE Transactions on Power Apparatus and
Systems, 91(3):1127–1130, 1972.

[269] C. J. Tavora and O. J. M. Smith. Equilibrium analysis of power sys-
tems. IEEE Transactions on Power Apparatus and Systems, 91(3):1131–
1137, 1972.

[270] C. J. Tavora and O. J. M. Smith. Stability analysis of power systems. IEEE
Transactions on Power Apparatus and Systems, 91(3):1138–1144, 1972.

[271] R. Tempo, G. Calafiore, and F. Dabbene. Randomized Algorithms for Anal-
ysis and Control of Uncertain Systems. Springer, 2005.

[272] A. K. Tilton, E. T. Hsiao-Wecksler, and P. G. Mehta. Filtering with
rhythms: Application to estimation of gait cycle. In American Control
Conference, pages 3433–3438, Montréal, Canada, June 2012.
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