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Abstract

Nonlinear control of mechanical systems is a challenging discipline that lies at the intersec-
tion between control theory and geometric mechanics. This thesis sheds new light on this
interplay while investigating motion control problems for Lagrangian systems. Both stabil-
ity and motion planning aspects are treated within a unified framework that accounts for
a large class of devices such as robotic manipulators, autonomous vehicles and locomotion
systems.

One distinguishing feature of mechanical systems is the number of control forces. For sys-
tems with as many input forces as degrees of freedom, many control problems are tractable.
One contribution of this thesis is a set of trajectory tracking controllers designed via the
notions of configuration and velocity error. The proposed approach includes as special cases
a variety of results on joint and workspace control of manipulators as well as on attitude
and position control of vehicles.

Whenever fewer input forces are available than degrees of freedom, various control ques-
tions arise. The main contribution of this thesis is the design of motion algorithms for
vehicles, i.e., rigid bodies moving in Euclidean space. First, an algebraic controllability
analysis characterizes the set of reachable configurations and velocities for a system start-
ing at rest. Then, provided a certain controllability condition is satisfied, various motion
algorithms are proposed to perform tasks such as short range reconfiguration and hovering.

Finally, stabilization techniques for underactuated systems are investigated. The empha-
sis is on relative equilibria, i.e., steady motions for systems that have a conserved momen-
tum. Local exponential stabilization is achieved via an appropriate splitting of the control
authority.
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Chapter 1

Introduction

Mechanical control systems provide an important and challenging research area that fall
between the study of classical mechanics and modern nonlinear control. Mechanical and
more generally Lagrangian systems pervade modern applications in science and industry
and this thesis aims towards the development of a rigorous control theory applicable to this
large class of systems.

From a theoretical standpoint, the geometric structure of mechanical systems gives way
to stronger control algorithms than those obtained for generic nonlinear systems. In other
words, it is precisely because we specialize to this rich class that we can exploit a typical
structure and solve relevant control problems.

1.1 Nonlinear Control and Mechanics

The history of mechanics is extraordinarily rich and varied. Unlike a more classic ap-
proach in the works of Whittaker [105] and Goldstein [41], recent books by Marsden and
co-workers [1], [71] and [72] develop a geometric, covariant theory that emphasizes the role
of symmetry and reduction. Both Hamiltonian and Lagrangian viewpoints benefit greatly
from this renewed attention to the more geometric aspects.

Similarly, control theory is also a well developed field. Beginning in the late 1970s, the
results of numerous authors such as Brockett, Hermann, Isidori, Krener and Sussmann,
e.g., [18], [44], [46], [93], have brought the methods of differential geometry to bear on
nonlinear control problems. The classic feedback linearization problem is just an example of
control theory understood as a geometric equivalence problem. Now, various books describe
nonlinear control in a geometric light: Isidori [45], Nijmeijer and van der Schaft [78], and
Sontag [90] are examples. Recent years have also witnessed large amounts of activity on
nonlinear stability and stabilization; see for example the contribution in Khalil [51], the
development of backstepping [55] and the theory on input-to-state stability [91].

The study of mechanical control systems has always been an elegant and exciting disci-
pline that has taken advantage of, and sometimes inspired, this large body of literature. One
early reference is the work of Brockett on control theory and analytical mechanics [17], and
the related contributions [15], [16] on systems defined on groups and spheres. Optimal con-
trol, integrability, Hamiltonian and gradient flows, rigid body dynamics, and nonholonomic
constraints are only a few of the subjects treated by various authors. A very incomplete list
includes Baillieul [7], Bloch [9], Crouch [32], [34], Koditschek [53], Krishnaprasad [54], Mars-
den [10], and van der Schaft [97], [98]. Finally, recent exciting results obtained at Caltech
by Murray’s group and at Princeton by Leonard’s group are surveyed in [75] and [61].

As a side note it is worth mentioning that a number of application areas is affected by
both nonlinear control and mechanics: examples are robotic manipulation, see Murray and
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2 1 Introduction

co-workers [76] and Craig [31], design and control of aircrafts, see Etkin [37], and of ocean
vehicles see Fossen [40], control of electro-mechanical systems, see Arimoto [4].

Modeling via Riemannian Geometry Tools

This thesis investigates various control problems for a large class of mechanical systems.
The latter are roughly classified as robotic manipulators and multibody systems, aerospace
and underwater vehicles, and devices that locomote via nonholonomic constraints. All these
systems are described by a second order nonlinear differential equation on a manifold, and
a unified modeling approach is provided in this dissertation via some geometric tools.

In our investigation the geometry of affine connections plays a key role in modeling and
characterizing control problems for this class of systems. As opposed to the more com-
mon languages of variational principles or symplectic geometry, the treatment in this thesis
relies on some notions from Riemannian geometry, see [52] and the review in Chapter 2.
These are efficient tools, as numerous contributions on modeling [9], stabilization [53], con-
trollability [64], and [67], interpolation [79], [106] and dynamic feedback linearization [83]
attest.

It is originally in the work of Smale [89] that the notion of simple mechanical system
was formalized. These are systems whose configuration space is a tangent bundle (i.e., the
phase space is divided into configuration and velocity variables) and whose Lagrangian is
composed of kinetic and potential energy. Here we extend this definition by introducing
forces. For example we describe a robotic manipulator in terms of a configuration space, a
kinetic and a potential energy and a set of input forces. These four objects characterize a
simple mechanical control system.

Underwater vehicles, satellites, surface vessels, airships and hovercrafts are all examples
of simple mechanical control systems of a special kind. Their configuration space is endowed
with a natural group operation, e.g., composition of rotations and translations in the Eu-
clidean space. Also, their kinetic energy is invariant under this operation and the forces
applied to the vehicle are fixed with respect to a body frame. Accordingly, we say that
these are mechanical control systems on a Lie group; see Chapter 3 for a precise definition.
One fundamental assumption on these systems is that lift/drag type effects are negligible,
so that the first principle models we derive describe accurately the system’s dynamics.

Finally, constraints of both holonomic and nonholonomic type, i.e., constraints on con-
figuration or velocity variables, can also be treated within the affine connection framework.
This is obtained by means of the procedure called elimination of multipliers, see [66] and [9]
for an intrinsic exposition.

Motion Control Problems and Applications

After introducing the basic models, we now describe various control problems of interest. In
this dissertation we put the emphasis on motion control problems, where motion is intended
as movement in Euclidean space. In other words, a prototypical problem is how to steer
the configuration of a mechanical system from one point to another, either in a planar
or in a three-dimensional setting. It goes without saying that the geometry of group of
rigid displacements plays an important role. It is precisely this geometric structure that we
exploit for advantage in control.

Both theoretical and practical motivations inspire our work. The more theoretical mo-
tivations involve the desire to formalize a set of loosely connected results from the robotic
and the vehicle control literature, see Section 1.2.1, and to bring to bear some powerful
mechanics on some stabilization problems, see Section 1.2.2. In addition, inspired by the
field of robotic locomotion, we investigate how to design motion algorithms for so-called
underactuated systems; see Section 1.2.3.
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The driving applications are motion control problems that arise in the study and de-
sign of aerospace and underwater vehicles. Recent important trends in this field include a
push toward the design of increasingly autonomous vehicles, an emphasis on reconfigurable
systems and on control schemes amenable to implementation on-line. Additionally, the
availability of inexpensive computing devices and sensors is leading to a renewed attention
on how to design, deploy and utilize actuators.

All these factors make it possible to introduce innovative concepts in the control design
phase. The goal of this dissertation is a deeper understanding of the interaction between
control forces and Lagrangian dynamics. We believe this will lead to improved control algo-
rithms for existing mechanisms and novel design schemes for future devices, see for example
the work on underwater vehicles [61] and carangiform locomotion [50], on nonholonomic
and multi-legged robots [42, 80], and on flatness for aerial vehicles [83, 99, 100].

1.2 Statement of Contributions

This section presents a brief outline of the contributions in this dissertation and a more
detailed description in the following three subsections. One salient feature of mechanical
control systems is the number of input forces. Control design based on Lyapunov functions
has proven successful with fully actuated systems, that is, systems with as many inputs as
degrees of freedom. More sophisticated tools are required in the underactuated case.

The first contribution of this dissertation consists of a trajectory tracking controller for
fully actuated systems. The structure of the controller is traditional in that it is the sum of
so-called proportional, derivative and feedforward terms. The way these terms are designed,
however, is innovative. The key concepts are how to define state errors on a nonlinear
space and how to perform the Lyapunov analysis in a coordinate-independent fashion. In
other words, the synthesis of the control law is intrinsic and it therefore applies to robotic
manipulators and multibody systems, as well as aerospace and underwater vehicles.

Despite the large number of fully actuated systems, the study of underactuated systems
has gained much attention in the recent literature. From a practical point of view, we
are motivated by vehicles that are underactuated either because of an actuator failure or
because of a design choice. In the former case, our results will improve robustness to
actuator failure and thus will provide autonomous vehicles with greater reliability. In the
latter case, our results may allow for vehicle designs that include fewer actuators than typical
leading to lighter, less costly designs. From a theoretical perspective, these systems when
underactuated offer a control challenge as they have non-zero drift, the linearization at
zero velocity is not controllable, and they are not stabilizable by continuous state feedback.
Further, they are generically not feedback linearizable, not “configuration flat,” as defined
in [83], and no test is available to establish whether they are differentially flat.

The second contribution of this dissertation is a systematic procedure for the exponen-
tial stabilization of relative equilibria of underactuated systems. A key design idea is to
distinguish between horizontal forces, which preserve the momentum, and vertical forces
that affect it. A proportional, derivative control in the horizontal directions and a first
order regulator in the vertical direction lead to exponential stability of the closed loop pro-
vided some assumptions hold. In particular, two necessary conditions are that the relative
equilibrium be Lyapunov stable and that the system satisfy a certain linear controllability
test.

The main contribution of this thesis is a controllability analysis and some motion control
algorithms for underactuated vehicles in the small velocity regime. Since these systems have
a non—controllable linearization at zero velocity, only a nonlinear analysis can determine
what configurations and velocities can be reached. The contribution lies in some algebraic
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tests that characterize these controllability properties. These results indicate the location
and number of actuators needed for controllability.

Based on the controllability analysis, two motion primitives are designed to perform
the basic tasks of changing and maintaining the system’s velocity. This is achieved by a
perturbation analysis under the assumption of small amplitude input and velocity. The
primitives rely on in-phase sinusoidal inputs that exploit the system’s dynamics, as opposed
to traditional out-of-phase controls for kinematic systems. Using multiple calls to the motion
primitives, motion algorithms are designed to steer the system from point to point and to
exponentially stabilize the system to a fixed location.

In what follows we present a more detailed account and a review of the relevant literature
for the various contributions in the thesis.

1.2.1 Tracking for Fully Actuated Systems

Chapter 4 deals with the trajectory tracking problem for fully actuated systems: the control
objective is to track a trajectory with exponential convergence rates in order to guarantee
performance and robustness. The tracking problem for robot manipulators has received
much attention in the literature. Examples are the contributions in [95], [102] and [88],
where asymptotic, exponential and adaptive tracking are achieved via a nonlinear analysis.
These results are now standard in textbooks on control [78] and robotics [76]. Since then,
similar techniques have been applied to the attitude control problem for satellites [103], and
likewise to the attitude and position control for underwater vehicles [40, Section 4.5.4]. A
further example is the spin axis stabilization problem for satellites [96]. A common feature
in all these works is the preliminary choice of a parametrization, i.e., a choice of coordinates
for the configuration manifold. The synthesis of both control law and corresponding Lya-
punov function is performed in this specific parametrization. This set of coordinate plays
then an important role, when the control system is characterized in terms of, for example,
singularities and exponential convergence, and when adaptive capabilities are included.

In this thesis we propose a unifying framework that applies to a large class of mechanical
systems. In the spirit of Koditschek [53], this is achieved by avoiding the parametrization
step. Our design algorithm focuses on basic, intrinsic issues such as how to define a state
error and how to exploit the Lagrangian dynamics. The notions of “error function” and
“transport map” yield to a coordinate-free definition of errors between configurations and
between velocities. Together with a dissipation function these ingredients determine the
feedback law. The feedforward control is devised using the theory of Riemannian connec-
tions. Provided a compatibility condition between error function and transport map holds,
our control strategy achieves globally stable tracking. As discussed in [53], (possible) topo-
logical properties of the configuration manifold preclude global asymptotic stabilization.
However, we prove local exponential stability under some boundedness conditions and we
provide an estimate of the region of attraction. Useful extensions to adaptive control and
to more general mechanical systems can be included via standard techniques. We remark
that the design process, the statement and the proof of the main theorem are all performed
without choosing coordinates on the configuration manifold.

The resulting design algorithm is then set to work in a variety of applications, recovering
previous controllers and suggesting new ones. Examples are the standard “augmented PD
control” for robot manipulators, see [76], and the novel tracking controller for systems on
the two sphere. Most instructive is the treatment of the tracking problem on the group
of rigid rotations SO(3) and on the group of rigid motions SE(3). In the latter case, for
example, we design a large set of error functions with matrix gains and we characterize
transport maps as changes of reference frame. These ideas lead to a comparison of various
previous approaches and to new results. Finally, some computationally simple feedforward
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controls are derived via an extension of the main theorem.

1.2.2 Stabilization of Relative Equilibria for Underactuated Sys-
tems

Chapter 5 presents some stabilization techniques for the steady motions called relative
equilibria. This family of trajectories is of interest in vehicle control applications; see for
example the gliding underwater motions in [61] and the so-called spin axis stabilization
problem for satellites in [96].

Point stabilization of underactuated Hamiltonian systems was originally investigated
in [98]; see [78] for a standard treatment. Recently, geometric tools have been employed to
address the class of mechanical systems with symmetries. Stability of underwater vehicles
is studied in [60] where symmetry breaking potentials were employed to shape the energy of
the closed loop system. In Bloch, Leonard and Marsden [11], a novel and powerful approach
is introduced to deal with an even larger class of systems. In Jalnapurkar and Marsden [47]
the authors obtain stabilizing controllers for underactuated mechanical systems with non-
Abelian symmetry. In their treatment the family of input forces is assumed momentum
preserving and stability in the reduced space is characterized in terms of certain Poisson
brackets.

In this thesis we build on the work of Leonard in [60] and focus on the exponential
stabilization problem (as opposed to Lyapunov or asymptotic stabilization). The control
design is based on ideas from two areas: the theory of Hamiltonian reduction (and the
Energy-Momentum method in particular), see [86], and the theory of passive nonlinear
systems, see [98]. We divide the control synthesis into three steps: first we split the control
authority along the momentum-preserving subspace and its orthogonal complement. Then
we design a controller for the reduced system employing only the momentum-preserving
forces, and finally we regulate the value of the momentum with the remaining control
authority. A set of intrinsic conditions ensures the exponential stability for the full (internal
variables and momentum) system. A key feature of this approach is that we focus on one-
dimensional (Abelian) symmetries because applications to control of vehicles usually satisfy
this assumption. This restriction leads to strong results and a simple exposition.

1.2.3 Controllability and Motion Planning for Underactuated Sys-
tems

Chapter 6 and Chapter 7 present controllability tests and motion algorithms for underactu-
ated vehicles. Relevant past contributions include work on both the nonlinear controllability
problem and the constructive controllability problem (including both motion planning and
stabilization). Within the context of this thesis, the important references for controllability
are the works of Sussmann on small-time local controllability [93] and of Lewis and Murray
on configuration controllability for simple mechanical systems [67, 68]. Other contributions
include local controllability results for other classes of mechanical systems, see [49, 80],
and work on global controllability issues, see [12, 33, 70]. Regarding the constructive con-
trollability problem, we employ the same approach as Leonard and Krishnaprasad in [62]
and [58], where motion algorithms for a class of kinematic systems on Lie groups were de-
signed with small-amplitude periodic inputs. In a later work [84] similar techniques were
applied to a different class of mechanical system. Other contributions on oscillatory controls
and Lagrangian systems include [7], [43] and [94]. A somewhat different approach, based
on homogeneous time-varying strategies, was employed in [74, 82] to design exponentially
stabilizing control laws for underactuated satellites and surface vessels.
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To derive controllability tests for our class of systems, we apply the controllability anal-
ysis described in [93] and [67] to simple mechanical control systems on Lie groups. Key
features of the analysis are a focus on the evolution of the system’s configuration when the
initial velocity is zero and the result that computations are performed on the Lie algebra of
the Lie group. The local controllability properties are characterized by the algebraic opera-
tions of symmetric product and Lie bracket. The symmetric product, which is defined more
formally in Section 2.3, depends upon the metric that defines the kinetic energy and, as
we shall see, explicitly describes motions that involve both input vector fields and the drift
dynamics. Our tests describe which velocities and configurations are reachable, independent
of the initial configuration. The notions of good and bad symmetric products play a central
role.

Guided by our interpretation of the controllability tests, we apply perturbation theory
to investigate the response of the mechanical system to small-amplitude forcing. The initial
velocity is also assumed to have small amplitude. The approximations we obtain give further
insight into the controllability tests and are instrumental in the subsequent control design.
Numerous examples illustrate the meaning of good and bad symmetric products and the
effects of in-phase and out-of-phase sinusoidal inputs.

On the basis of a controllability assumption, we design two motion primitives that per-
form the basic tasks of changing and maintaining velocity. These motion primitives use
in-phase inputs and compensate for contributions along bad symmetric product directions
(see also [22]). The two motion primitives synthesize the controllability analysis and are
the building blocks for designing high-level motion procedures. Using discrete-time feed-
back and multiple calls to the motion primitives, we design motion algorithms to solve the
point-to-point reconfiguration problem (i.e., how to steer the system to a desired configu-
ration) and the static interpolation problem (i.e., how to steer the system through a set of
desired configurations). We solve point-to-point reconfiguration using a constant velocity
algorithm. A second approach to point-to-point reconfiguration consists of interpolating a
sequence of segments connecting initial to final configuration. We show the advantage of
the latter solution in the case the segments are steady motions of the unforced mechanical
system. Next, iterating an approximate stabilization step we design an algorithm that lo-
cally exponentially stabilizes the system to a desired configuration. Recall that exponential
stabilization cannot be achieved by smooth time-varying feedback, and indeed our motion
primitives are continuous, but not smooth, functions of the state. Accordingly, our approach
relies on discrete-time continuous feedback, see [92], and on the iteration of a motion plan-
ning step, see [56]. Finally, the three algorithms are implemented numerically to verify the
approximations and illustrate the control design.

1.3 Outline of the Thesis

A brief outline of the content of the various chapters is as follows:

Chapter 2:  Here we review the necessary mathematical tools from differential geometry,
Lie group theory and Riemannian geometry.

Chapter 3:  In this chapter we present models based on Riemannian geometry for general
second order differential equations on a manifold. The treatment includes the notion
of simple mechanical control system, some extensions and numerous examples.

Chapter 4:  This chapter presents the solution to the trajectory tracking problem for
fully actuated mechanical systems.

Chapter 5:  Here we presents some stabilization techniques for underactuated systems
moving along a relative equilibrium.
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Chapter 6:  This chapter contains a review of the theory of nonlinear controllability and
of configuration controllability. In addition, we present a novel treatment for systems
on Lie groups and some initial results for systems that undergo impacts.

Chapter 7:  In this chapter we present some approximate solutions to forced mechanical
systems and some motion algorithms for underactuated systems.

Chapter 8:  The chapter presents some conclusions, a summary and some directions for
future research.



1 Introduction



Chapter 2

Mathematical Preliminaries

In this chapter we review some mathematical tools. For an introduction to Riemannian
geometry, we refer to [13], [35] and [52]. For an introduction to Lie group theory, we refer
to [85] and [101].

The chapter is organized as follows. In Section 2.1 we review some notation in differential
geometry. Section 2.2 presents some notions in Lie group theory and Section 2.3 some
notions in Riemannian geometry. Finally, Section 2.4 presents some illustrative examples.

2.1 Differential Geometry

We assume the reader to be familiar with some differential geometry, to the extent presented
for example in the appendices of [76] or [78]. A complete reference is [2]. We here quickly
review some notation and state the results we will need later.

Manifolds and Tensor Fields

A smooth manifold @ is a locally Euclidean space, i.e., a space that is locally homeomorphic
to R™ via a diffeomorphism. A local coordinate chart is a pair (U, ¢), where U is an open
subset of @ and ¢ is a smooth map from U to R™. In what follows, a differentiable object
is smooth whenever it is analytic.

We let C*°(Q) denote the set of a smooth real valued functions on Q). The tangent space
T,Q to the manifold @) at the point ¢ is the set of all derivations on C*(Q). Elements of
the tangent space are tangent vectors. The cotangent space T; @ is the dual space to T,Q,
i.e., the set of linear functionals on T;Q). We let (-,-) denote the standard pairing between
tangent and cotangent spaces. The tangent (and cotangent) bundle TQ (respectively T*Q)
is defined as the union over all ¢ € @ of tangent (respectively cotangent) space.

A wector field X on @) is a smooth map that associates to each point ¢ € () a tangent
vector X, € T,Q. Similarly, a one-form a on () associates to each g € () a cotangent vector
ay. Finally, a tensor field t of contravariant order r and covariant order s associates to each
g € @ a multi-linear map ¢t : T*Q x --- X T*Q X TQ x --- x TQ — R (with r copies of T*Q
and s copies of T'Q).

Given a function f in C*°(Q), we let Lx f denote the Lie derivative of f with respect
to X and we let df denote the one-form such that for all vector fields X:

(df,X) =Lx f.
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Given a smooth function ® : Q — @, define its tangent map T® : TQ — TQ as
(TQ(qu)féXq(foé)a vqa

where f is a real valued function in C*°(Q) and X, is a tangent vector in T,Q).
Given a pair of smooth vector fields X,Y", we let [X,Y] denote their Lie bracket and let
LxY denote the Lie derivative of Y with respect to X.

Distributions and Integrable Manifolds
Given a pair of vector fields X,Y, their Lie bracket is the vector field defined by

Lixyif =LxLyf—-LyLxf, VfelC®(Q). (2.1)

The Lie bracket operation satisfies two fundamental properties: skew symmetry and the
Jacobi identity:

[X,Y], Z] + [[Z, X, Y] + [[Y; Z], X] = 0.

A distribution D on @ is a subbundle of T'Q), i.e., the union over all ¢ € @ of linear
subspaces of T,Q. The rank of D at ¢ is the dimension of the subspace D(g). Given a
family of vector fields X = {X3,... , X}, we can define a distribution by

DX = spancm(Q){Xl, ce ka}-

In what follows, we assume that distributions have constant rank and that it is possible to
find a family of smooth vector fields that span them.

A distribution Dy is involutive if for any pair of vector fields X,Y € X, their Lie
bracket [X,Y] also belongs to X. An integral manifold N of D is a submanifold of @ such
that T,N C D(q) for all ¢ € N. A distribution D is integrable if, for all ¢ € @, there exist
an integrable manifold with the same dimension as the rank of D. This submanifold of @
is called the mazimal integral manifold. Involutivity and integrability of a distribution are
proven equivalent in Frobenius Theorem.

Codistributions

Similarly to the notion of distribution, a codistribution Z on @ is a subbundle of T*Q, i.e.,
the union over all ¢ € @ of linear subspaces of 7,;/Q). The rank of 7 at ¢ is the dimension of
the subspace Z(q).

Given a distribution D on a manifold @, we define its annihilator Ker D as the set of
one-forms « such that (o, X) = 0, for all X € D. Similarly, given a codistribution Z, we
define its annihilator KerZ as the set of vector fields X such that (o, X) =0, for all a € 7.

The k dimensional codistribution 7 is integrable if there exist k functions ¢1, .. ., ¢, such
that Z = span{d¢y, ...,d¢, }. Integrability of the codistribution Z is equivalent to the inte-
grability of its annihilator KerZ. Computable tests for the integrability of a codistribution
are found in [38].

2.2 Lie Groups

A Lie group G is a smooth manifold endowed with a smooth binary operation called group
multiplication (satisfying associativity and existence of identity and inverse elements). A Lie
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algebra is a vector space endowed with a skew symmetric, bilinear operation called the Lie
bracket (satisfying the Jacobi identity).

The letters g, h denote elements in the group G and e = Id is the group identity. The
map Ly, : G = G;h — gh is called left translation. A vector field X is said to be left
invariant if it satisfies the equality

X(gh) = TpLy X (h),

where T}, L, is the tangent map to L, at h. We let Greek letters denote vectors in the tangent
space at the identity T.G, for example X (e) = £, and we denote left invariant vector fields
as

X(g):Tengég'g-

Since the value of X (g) is uniquely determined by its values at g = e, we identify T.G with
the set of left invariant vector fields g. It can be shown that the Lie bracket of two left
invariant vector fields is still left invariant, so that we can define a Lie bracket on g by

g-Em=1lg-€, g-m) (2.2)

Therefore, the set of left invariant vector fields g is a (finite dimensional) Lie algebra.

We let adgn = [€,n]. Let g* denote the dual space of g, that is the set of covectors o
such that (@, §) is a linear function of £ € g. Let ad : g* — g* be the dual operator of adg
defined by (adg a,n) = (a, [¢,7]) for all a € g*.

In a matriz Lie group the group operation is matrix multiplication. The corresponding
Lie algebra g is also a matrix Lie algebra with Lie bracket given by matrix commutation,

ie., [§m] =&n—né.

The Rotation and Rigid Displacement Groups

An example of a matrix Lie group is the rotation group
SO(3) = {R € R***| RRT =I5, det(R) = +1}.

(SO stands for special orthogonal group; more details are available in [101]). Its associated
matrix Lie algebra is the space of skew symmetric matrices

50(3) = {S e R**®| 8T = —5}.

Let x denote the cross product on R® and define the operator ~: R® — s0(3) by Zy £ z x y
for all z,y € R®. The ~ operator is a Lie algebra isomorphism between s0(3) (with matrix
commutator) and R® (with cross product). Under this identification, the adjoint operator
on s0(3) is ad, = 7, for all z € R3.

The special Euclidean group SE(n) is the group of rigid displacements, that is rotations
and translations, on R”. In the three-dimensional case, this set of matrices has the structure
of a Cartesian product between SO(3) and R3. As a Lie group SE(3) has the structure of
a semi-direct product between SO(3) and R®. The corresponding Lie algebra se(3) also
has the structure s0(3) x R® and it is isomorphic to R®. We represent a group element
g = (R,p) € SO(3) x R? and an algebra element £ = (€, V) € s0(3) x R® using homogeneous

coordinates:
[ R p Y 1%
9= [01x3 1] and £ = [01><3 0] )
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The adjoint operator on se(3) = R® is

ad(q,v) =

< 2
DYoo

Exponential Coordinates

On a matrix Lie group we define the exponential map exp: g — G as

expé = Z %
k=0

If the set G is the Cartesian product of an arbitrary number of copies of SE(3) and its
proper subgroups, then the exponential map is surjective and it is a local diffeomorphism
between the group and its algebra. We refer to [72] for more details. For example, given
7 € 50(3), Rodrigues’ formula gives

~ ~2

. . z z
exp(z) = I3 + sin ||m||m + (1 — cos||z||) T
where || - || is the standard Euclidean norm. The logarithmic map is the local inverse of the

exponential map and provides us with a local chart on the manifold G. In other words, in
an open neighborhood of the origin Id € G, we define z = log(g) € g to be the exponential
coordinates of the group element g. For example, if R € SO(3) is such that tr(R) # —1,
then

__ ¢
2 sin(¢)

where ¢ satisfies 2cos(¢) = tr(R) — 1 and |¢| < . In other words, log(R) is the product
of the axis and angle of rotation of R. Corresponding definitions for the group SE(3) are
presented in [76].

log(R) (R — RT) € 50(3),

Metrics on Lie Groups

On the Lie algebra g an inner product is defined by a self-adjoint positive definite tensor
I:g— g*, so that, for example, the inner product between £ and 7 is (I€, ) and the norm of
Eis ||€|| = (T€, 5)1/ % Locally, this induces a metric on the group G using the logarithm map
as d(g,h) = ||log(gh™1)||- We refer to [62] and to [81] for a detailed treatment on metrics
on Lie groups, and we investigate in the next section Riemannian metrics on Lie groups.

2.3 Riemannian Geometry

A Riemannian metric on a manifold () is a smooth map that associates to each tangent
space T,@ an inner product (-, -));. A manifold endowed with a Riemannian metric is said
to be a Riemannian manifold.

Definition 2.1. An affine connection on @ is a smooth map that assigns to each pair of
smooth vector fields X,Y a smooth vector field VxY such that for all functions f,g on Q
and for all vector fields X,Y, Z:

(i) fo+gyZ = fVXZ + gVyZ,
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(ii) Vx(Y + Z) =VxY +VxZ, and
(iii) VxfY = fVxY + (Lxf)Y.

We also say that VxY is the covariant derivative of Y with respect to X. Given any
three vector fields X,Y, Z on @), we say that the affine connection V on @ is torsion-free if

[X,Y]=VxY - VyX, (2.3)
and is compatible with the metric (-, -)) if
Lx{Y,Z) ={(VxY,Z)+ (Y, VxZ). (2.4)

The Levi-Civita theorem states that on the Riemannian manifold @) there exists a unique
affine connection which is torsion-free and compatible with the metric. Indeed, combining
equations (2.3), (2.4) and their permutations, one obtains the equality

22X, VzY) =Lz(X, V) +(Z, [X,Y]) + Ly (X, Z))

(Y, [X,Z]) — Lx (Y, Z) — (X, [V, Z]), (25)
which uniquely determines the connection V as a function of the metric (-, -)). We call this
V the Riemannian (or Levi-Civita) connection on Q.

In the remainder of the section, we present various constructions related to the notion of

an affine connection. First we define various covariant derivatives with respect to a vector
field X:

(i) the covariant derivative of a function f is the function defined by Vx f = Lx f,

(ii) the covariant derivative of one-form w is the one-form Vxw such that
(wa,Y) = VX (w,Y) - <w,VXY), VY,

(iii) the covariant derivative of a tensor field Z : T*Q x T'Q, i.e., of a tensor field of order
(1,1), is the (1,1) tensor field V xt such that

(VxZ2)(w,Y) = Vx(Z(w,Y)) - Z(Vxw,Y) — Z(w, VxY).

In addition, it is possible to define covariant derivatives along curves. Consider a smooth
curve ¢ = {c(t) € Q,t € [0,1]}, and a vector field {v(t) € Ty)@,t € [0,1]} defined along
the curve ¢. Let X and Y be two vector fields such that X (c(t)) = é(t) and Y (c(t)) = v(?).
The covariant derivative of the vector field v along c is defined by

Vc(t) ’l)(t) = vva(q) |q=c(t) ’

Finally, we introduce the useful operation of symmetric product, see [67] and [32] for
more details. Given a pair of smooth vector fields X,Y on @, the symmetric product (X : Y)
is the smooth vector field defined by

(X :Y)=VxY + VyX. (2.6)

2.4 Examples of Covariant Derivatives

Loosely speaking, covariant derivatives are directional derivatives of quantities defined on
manifolds. Equation (2.3) relates them to the notion of Lie differentiation, whereas equa-
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tion (2.4) plays the role of the Leibniz rule. In the following we present some useful ap-
proaches on how to compute covariant derivatives.

2.4.1 On a Submanifold of R®

A first instructive case is when the manifold () is a submanifold of R™. In this case the Eu-
clidean norm ||-|| on R” induces a Riemannian metric and connection on the submanifold Q.
Let m, denote the orthogonal projection from R™ onto the tangent space T,(. Given any
two vector fields X,Y on @, it holds that

(Vx¥) @) = 7o (g ¥ (a®)) .)

where {q(t),t € R} is any curve on @ with ¢(0) = go and ¢(0) = X(go). We refer to [13,
Chapter VII] for more details on this description of covariant differentiation.

We further illustrate these ideas applying them to the two sphere S2 £ {p € R®?| pTp =
1}. Since S? is embedded in R?, we identify points, tangent and cotangent vectors on the
sphere with their corresponding components in R®. If {g(t),t € R} is a curve and Y (q) is a
vector field on S2 C R?, then

(Vq¥) @ =m, (V@) = ¥(a®) - (¢®T¥ (a®)) a(t),
where both ¢(t) and Y (q(t)) are thought of as vectors on R3.

2.4.2 1In a System of Local Coordinates

In full generality we can express covariant derivatives in a system of local coordinates. Given
the chart (¢',...,¢"), we define the Christoffel symbols T}; by

0 v O
V4 (o) =T
where the summation convention is enforced here and in what follows. The Christoffel

symbols of a Riemannian connection are computed from equation (2.5) as follows. Let M
be a matrix representation of the metric; in other words let M;; = ((aiq,- , 6%j)). We have

(2.8)

o _ Lymi (6Mmj OMmi aM,-j)
1) 2 Y

oq’ Oq? oqm
where M¥ is the inverse of the tensor M;;. The covariant derivative of a vector field is then
written as

&
O’

X7 + r;ikXJ'Yk> a%i’ (2.9)

var = (

and of a one-form as

Vxw = (6”; X7 - rfjwkxf) dq'. (2.10)
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2.4.3 On a Lie Group

Finally, we describe Riemannian connections within the context of Lie groups. Invariant
connections on Lie groups are nicely described in [85] and employed by V. I. Arnold in the
study of hydrodynamic of ideal fluids, see [5] and [6, Appendix 1 and 2].

As in the previous section, g is an element in G and Greek letters denote vectors in the
Lie algebra g. An inner product on the Lie algebra g, that is a tensor I: g — g*, induces a
left invariant Riemannian metric on G by left translation:

(X(9),Y(@) 21(g - X(9)- (97" Y(9)).

The Riemannian connection V associated to this metric is of interest. An application of
equation (2.5) shows that this connection satisfies

Ve lg-n=g- (ngn) ; (2.11)

where the map ;V : g x g — g is defined by
1 1.4 " "
Ve = 5l = 51 (adg In+ ad; I€). (2.12)

Connections that satisfy equation (2.11) are said to be left invariant. Such connections
have the property that the Lie bracket, see equation (2.2), and the covariant derivative, see
equation (2.11), of two left invariant vector fields are still left invariant. This also applies
to the symmetric product. Specifically, it holds

(9-&:9-m=g-(:m,
where the symmetric product between two vectors on g is defined as:

(€ :m) & —17"(adg In+ ad} I€). (2.13)

For example, on s0(3) ~ R® with the inertia tensor J and with the equality adz = —é, we
compute (€ : n) =T 71(& x In+n x JE).
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Chapter 3

Models of Mechanical Control Systems

In this chapter we introduce models for various classes of mechanical systems. We focus on
writing the equations of motion for a mechanical system in a coordinate free fashion. The
key idea is to regard the kinetic energy of the system as a Riemannian metric and to write
the Euler-Lagrange equations in terms of the associated Riemannian connection. A similar
approach is taken in the dissertation of A. D. Lewis [64]. For an introduction to geometric
mechanics we refer to [72] and [6], and for a modern introduction to robotics we refer to [76].

The chapter is organized as follows. In Section 3.1 we define a mechanical control system.
Section 3.2 treats the additional structure of mechanical systems on Lie groups. Finally in
Section 3.3 and 3.4 we present mechanical systems subject to constraints and impacts. Most
of the content in this chapter is taken from the literature. For example, the treatment on
constrained mechanical systems follow the approach advocated in [9, 66]. The treatment on
hybrid mechanical systems in Section 3.4 is joint work with Milo§ Zefran; see [29].

3.1 Simple Mechanical Control Systems

A simple mechanical control system is defined by the following objects:
(i) an n-dimensional configuration manifold @, with local coordinates ¢ = {¢',... ,q"},

(i) a Riemannian metric M, : TQ x TQ — R on @ (the kinetic energy), alternatively
denoted by -, -),

(iii) a function V on @ describing the potential energy, and
(iv) an m-dimensional codistribution F = span{F,..., F™} defining the input forces.

The word “simple” refers to the Lagrangian being equal to kinetic minus potential energy
and comes originally from the definition in Smale [89]. Let ¢(¢) € @ be the configuration of
the system and ¢(t) € T,Q its velocity. In a system of local coordinates, the Lagrangian is
written as

La,d) = 5(My)ig 48 = V(a).

(Note that the summation convention is assumed throughout the dissertation.) We let
I'i;(g) denote the Christoffel symbols of the Levi-Civita connection associated with Mg,
see equation (2.8), and we let M% denote the inverse matrix of M;;. Then the forced

17
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Euler-Lagrange equations are

¢+mwwk=Mﬁ(—?§+F) i=1,...,n, (3.1)
where Fj is the jth component of the resultant force F(g,t) = Y| F¥(q)ux(t) and where
the controls {ui(t),... ,um(t),t € Rt} belong to the space of piecewise smooth functions
U™. Note that the Euler-Lagrange equations are coordinate independent (intrinsic), in the
sense that they are satisfied in every system of local coordinates.

Using the formalism introduced in the previous chapter, these equations can be written
in a coordinate independent form. We let V denote the Riemannian connection of the metric
M, on @, and with a slight abuse of notation, we let M, denote the map M, : TQ — T*Q
defined by M (X,Y) = (M,X,Y). The forced Euler-Lagrange equations in intrinsic form
are then

Vgi = M (- V(g + Y Fr@w), (3.2)

where dV (q) is the differential of the potential function V.
One distinguishing feature of Lagrangian control systems is the number of input forces.
Accordingly we have the two definitions:

(i) A mechanical control system is said to be fully actuated if for all ¢ € @, the family of
covectors {F(q),...,F™(q)} spans the whole cotangent space T;Q. In other words,
a system is fully actuated if there exists an independent input force corresponding to
each degree of freedom.

(ii) A mechanical control system is said to be underactuated if the number of available
input forces m is less than the degrees of freedom n.

Remark 3.1 (Time scaling). Consider a mechanical system without potential energy V', and
for A > 0 define 7 = At. The following property holds: if (g(¢), ¢(t)) is a solution for ¢ € [0, 1]
to the forced system (3.2) with external forcing u;(t), then (g(7/X), §(7/A)/A) is a solution
for 7 € [0, \] with external forcing u;(7/X)/A2. In other words, if we find an input u(t) that
achieves a desired motion in time 1, then u(t/X)/A? achieves the same motion in time \.

3.1.1 Robotic Manipulators

In this section we relate the abstract definition above to the classical coordinate-based
description of robotic manipulators. As Figure 3.1 illustrates, the configuration of a robotic
manipulator can be described by n generalized joint angles § = (6*,... ,6") € S™, where S
is the torus. The kinetic energy is described by the inertia matrix M (6) and the joint forces
are F = {df',... ,df"}. The equations of motion eqrefeq:mechsys:coords are then written
in vector form as

M@6)6 +C(9,0)0 = F, (3.3)

where both left and right hand side have been pre-multiplied by the inertia matrix M (6).
C(6,0) is the Coriolis matriz and can be related to the inertia matrix M and its Christoffel
symbols by:

8M,J 6Mzk 6Mkj) 6'“ (3 4)

) n ] 1
k=1 k



3.1 Simple Mechanical Control Systems 19

The fundamental difference between equation (3.2) and equation (3.3) is that the latter is a
coordinate-dependent representation of the Euler-Lagrange differential equation, while the
first one is coordinate-free.

02

61

03
04

Tool

Figure 3.1: A Robotic Manipulator

3.1.2 A Pointing Device on the Two Sphere

An alternative way of controlling a manipulator is to focus on the motion of the end effector,
for example the Tool in Figure 3.1. In the robotics literature this is referred to as “workspace
control.” The key idea is to rewrite the equations of motion and to specify the control goal
in terms of the end-effector variables, as opposed to the joint variables. As an example,
we study here a system whose configuration space is the two sphere S2: a fully actuated
spherical pendulum in absence of gravity. This example is motivated by applications to
workspace control of a robot manipulator such as a pan tilt unit and the so called “spin
axis stabilization” problem for a satellite.
Let q € S? be the configuration and consider a latitude/longitude parametrization:

cos(¢) cos(6)
q = | cos(¢)sin(0)

where (¢,6) € [0,27]>. This parametrization has a singularity at cos(¢) = 0. The kinetic
energy of the system is 1||¢||? = 3(¢? + cos(¢)6?). The unforced Euler-Lagrange equations
for the spherical pendulum are written in coordinates as

é + cos(¢) sin(¢)8? = 0,

. . (3.5)
§ — 2tan(4)¢d = 0,

or coordinate-free as
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where the Riemannian connection V on S2 is induced by the natural metric on R*. One
additional way of writing the equations of motion involves parametrizing S? by means of
q € R®. There is of course a redundancy, but the advantage is the simple expression the
equation of motion have:

i+ (d"q)q=0. (3.6)

By workspace control, we mean a strategy that specifies the desired task in terms of the
end-effector ¢ € S C R® as opposed to some joint space coordinates as for example (¢, 6).
Accordingly, the focus is the formulation in equation (3.6) and not on equation (3.5).

3.2 Vehicles as Mechanical Systems on Lie Groups

A large class of vehicle models fit our definition of simple mechanical control systems.
Since their configuration manifold is also a group, the equations of motion of these systems
enjoy additional structure and properties. In this section we describe these properties and
illustrate them via numerous examples.

A simple mechanical control system on a Lie group is described by the following objects:

(i) an n-dimensional matrix Lie group G, defining the configuration space,
(ii) an inertia tensor I : g — g* on the Lie algebra g, defining the kinetic energy, and

(iii) a set of input covectors F = {f1,...,fm} C g*, defining the body-fixed forces. To
simplify notation, we denote the covectors f; with subscripts instead of superscripts.

Potential energy effects are neglected in order to preserve full symmetry of the system.

As described in Section 2.4.3, the inertia tensor I defines via left translation a Riemannian
metric (representing the kinetic energy on G). In other words, let g : [0,1] — G be a smooth
curve in G, and define the velocity in body frame as the vector in g defined by

&(t) = Tyy Lg—11) 9(2).

On a matrix Lie group this corresponds to the matrix equation £ = g~1§. Then the kinetic
energy associated with the curve is KFE = % (IE,&). We refer to the treatment in [76] for
the standard notion of “body frame.”

Let g € G be the configuration of the mechanical system and let £ € g be its veloc-
ity in body frame. The kinematic and dynamic equations of motion for the system with
Lagrangian equal to the kinetic energy are given by

I€ = ad; 1€+ Y fiui(t), (3.8)
i=1
where the controls {uj(t),...,umn(t),t € RT} belong to the space of piecewise smooth

functions U™, and >°7" fiui(t) is the resultant force acting on the mechanical system. In
geometric mechanics, the dynamic equation (3.8) is called the Euler-Poincaré equation; in
robotics, the kinematic equation (3.7) is usually expressed in some choice of coordinate
system, for example, Euler angles for SO(3).

For later reference it is useful to rewrite the dynamic equation (3.8) in terms of the
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inverse inertia I L. If we define b; £ I1f;, we have

§=T""ad; 16+ ) bius(t).

i=1

Remark 3.2 (Relative equilibria). For any vector n with the property that ad;‘, In = 0, the
curve t € R — (exp(tn),n) is a solution to the system (3.7)—(3.8) with no inputs. These
curves are studied in mechanics [72] under the name of relative equilibria and describe
motion that corresponds to constant body-fixed velocity for the uncontrolled system.

We conclude this section with a few examples of mechanical control systems in Lie
groups. We present models for planar bodies, satellites and underwater vehicles. They
will be referred to later, as we study controllability and design control laws. To simplify
notation, we let {e;,...,e,} denote the standard basis on R"; for example, for n = 3 we
set e; = (1,0,0), e2 = (0,1,0) and e3 = (0,0, 1).

3.2.1 A Planar Rigid Body

Let g = (6,z,y) € SE(2) denote the configuration of the planar body and £ = (w, vy, vs)
its body-fixed velocity. The kinetic energy is KE = $Jw? + 1m(v} 4 v3) where J is the
moment of inertia and m the mass of the body. On se(2) the adjoint operator is computed
as

0 0 0
a,d(w,vl,w) = (%) 0 —w
—v; w 0

The two control inputs consist of forces applied at a distance h from the center of mass, see
Figure 3.2. After inverting I = diag {J,m, m}, we have b; = %eg and by = _Thel + %e3. In
coordinates the equations of motion (3.7)—(3.8) read

f=w Jw = —husy(t)
% = cos(f)vy — sin(f)vy mo; = mwus + uy(t)
y = sin(f)vy + cos(0)vs moy = —mwvy + us(t).

These equations provide a model for planar vehicles, for example, a hovercraft that glides
on the surface of a body of water with negligible friction.

3.2.2 Satellites with Thrusters or Rotors on the Rotation Group

The configuration of the satellite (rigid body) is the rotation matrix R representing the
position of a frame fixed with the rigid body with respect to an inertially fixed frame. The
kinematic equation describing the evolution of R(t) is

R=RQ,

where 2 € R? is the body angular velocity expressed in the body frame, and where 0 belongs
to the space of skew symmetric matrices s0(3) ~ R®, see Section 2.2. The kinetic energy of
the rigid body is $Q7JQ, where the inertia matrix J = diag {.J1,J2, J3} is symmetric and
positive definite. The adjoint operator is adg = Q. The Euler equations describing the time



22 3 Models of Mechanical Control Systems

‘_ z:spat;ial

Figure 3.2: Rigid body in SE(2) with two forces f; and f» applied at a point a distance h
from the center of mass CM. Xgpatial denotes an inertial reference system, ¥poqy denotes a
reference frame fixed with the body. g = (0, z,y) denotes the position of the body.

evolution of ) are
IN=JaxQ+ 7, (3.9)

where f € (R3 ) * is the resultant torque acting on the body. For example, assuming we have
two thrusters aligned with the first two principal axes, the equations of motion are

R = RQ,
.,]]Q =JOx O + elul(t) + GQUQ(t). (310)
Accordingly, by = %161 and by = J%eg.

Satellites can alternatively be equipped with internal rotors (momentum wheels). Con-
sider the case in which there are two rotors aligned with two principal axes of the satel-
lite. The configuration of the satellite plus rotor system is described by R € SO(3) and
(61,02) € R? (describing the angular position of the wheels). Let Quor = (61,62,0) denote
the angular velocities of the rotors and 2 the angular velocities of the carrier. The kinetic
energy is

1 1
KE = §QT(Jlock - Jrot)g + E(Q + Qrot)Tn]Irot(Q + Qrot):

where Jioex = diag{J1, J2, J3} is the inertia of the satellite-rotors system with the rotors
locked, while J,ot = diag(Jrot1, Jrot2,0) is the inertia of the rotors about their spin axes.
From the kinetic energy we compute the inertia matrix as

_ u]]lock u]]rot
Jsatimt N [ Jrot a]]rot ] ’

Also, the adjoint operator satisfies ad(q,q,.,)(v,w) = (2 x v,0). The dynamic equations are

u]]lock u]]rot Q _ (u]IlockQ + Jrothot) x Q + 0
n]]rot u]]rot Qrot B 0 €Uy (t) + esus (t) ’
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and, by inverting the inertia matrix, the input vectors are

1 J1

b = e + €4,
Jrot1—J1 Jrot1 (Jrot1—J1)
1 Ja
by = e + es.
Jrot2—J2 Jrot2 (Jrot2—J2)

3.2.3 A Six DOF Underwater Vehicle in Ideal Fluid

This example is motivated by recent interest in the area of underwater vehicle dynamics,
see [59], [63] and [40]. The configuration of an underwater vehicle is described by the
position p and attitude R of a body frame with respect to an inertial frame. Therefore the
configuration manifold is the group of rigid displacement SE(3). As described in Section 2.2,
we introduce the so-called homogeneous coordinates:

[ R p [ 1%
9= |:01><3 1] and £ = [01x3 0] )

Accordingly, the standard kinematic equations are

R_’ = R, (3.11)
p=RYV,
where £ = (ﬁ, V) € s5¢(3) = s50(3) x R? is the body velocity expressed in the body frame.
The motion of a rigid body in incompressible, irrotational and inviscid fluid is Hamilto-
nian with an inertia tensor which includes added masses and inertias, see [57], [59] or the
original work of Kirchhoff. If the underwater vehicle is an ellipsoidal body with uniformly
distributed mass, the kinetic energy of the body-fluid system is QT JQ+1VIMV = 1¢71¢,
the mass and inertia matrices of the body-fluid system are M = diag {m;, m2, m3} and
J = diag{Ji, J2, J3}. The Kirchhoff equations describing the time evolution of the body
velocity & are

I = JOxQ+MV xV +  fo,

MV =MV xQ Ay (3.12)

where f = [fo fv] € se(3)* is the resultant generalized force acting on the body. For
example, we can assume there are three body-fixed forces applied at a point a distance h
from the center of mass, as depicted in Figure 3.3. The corresponding input vectors are

1

h 1 h 1
by = —ey, by = ——e3+ —es5, and b3 = —ey + —eg.
mi J3 mo Jo ms3

3.3 Locomotion Devices as Constrained Mechanical Sys-
tems

In this section we model mechanical devices subject to constraints. OQur interest is motivated
by locomotion devices that interact with the surrounding environment via holonomic and
nonholonomic constraints. Since the underlying Lagrange-d’Alembert principle applies to
both type of constraints, this section presents a unified treatment.

The most common constraints on mechanical systems are of the following two types:
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Figure 3.3: Rigid body in SE(3) with three forces applied at a point a distance h from the
center of mass.

(i) Clamping a sliding body to a surface is an example of a constraint on the configuration
variables ¢q. Such constraints are called holonomic. Formally, a holonomic constraint
is described by the equation ¢(g) = 0 where the map ¢ : @ — R*? is smooth. We
assume that 0 is a regular value of ¢ so that R = ¢~1(0) defines a submanifold R C Q.
The constraint on ¢(t) induces constraint on ¢(¢) via

d . .
0=—¢"(q(t)) =dy’-q.
¥ () =d¢"-¢
This implies that at each point ¢ € R, the set of feasible velocities D(q) is the annihi-
lator of {dp'(q),... ,dp"P(q)}.

In this thesis we are interested in holonomic constraints which are defined at each
point. Heuristically, we model the possibility of clamping a sliding object at any point
of its path over a smooth surface: at each point go, the constraint is ¢(q) = ¢(qo)-
In this case, we assume that the set of regular values of ¢ contains an open non-
empty neighborhood of ¢(go) € R*P. Correspondingly, at each configuration ¢ in
a neighborhood W C @ of go the constraint distribution D(q) is defined as the
annihilator of {dy!(q),... ,dp" P(q)}.

(ii) Non-integrable constraints on the evolution of the velocity variable ¢ are called non-
holonomic. Rolling without sliding is one such case. We describe a nonholonomic
constraint by a p-dimensional constraint distribution D. At each point ¢ € @, D(q)
describes the set of feasible velocities.

Both holonomic and nonholonomic constraints can therefore be written in the form
G € D(q), for an appropriate distribution D(g). A mechanical control system together with
a constrained distribution is said to be a constrained mechanical control system. In what
follows we denote one such system as

z:CMCS = {Qanay:a D} (313)
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Let D+ denote the orthogonal complement to D with respect to the metric M,. Accord-
ingly, let P : TQ — D and P+ : TQ — D denote the orthogonal projections onto D and
its complement, P+ = I — P. The (Lagrange-d’Alembert) constrained variational principle
leads to the equations of motion

Vd = At) + (M, F*yuy, (3.14)
P+(§) =0, (3.15)

where \(t) € Dt is the Lagrange multiplier enforcing the constraint.

3.3.1 Control Systems Described by Affine Connections

In this section we provide a unified treatment of both constrained and unconstrained me-
chanical control systems. The key idea is to allow for general affine connections and not
only for Riemannian connections. The treatment in this section follows the work of Lewis
and Murray [66, 68], and is similar in spirit to the work of Bloch and Crouch [9].

Given a simple mechanical control system {Q, M,,V,F}, let the input vector fields be
Y, = M, ! F*. Then the Euler-Lagrange equations (3.2) can be written as

m
Vi = > Yius, (3.16)
k=1

where for simplicity we assume zero potential energy. When a constraint is present, the
Lagrange-d’Alembert equations can be simplified by eliminating the multiplier. We formal-
ize this concept following the treatment in [66]:

Lemma 3.3. Given a constrained mechanical system {Q, My, F, D}, let P be the orthogonal
projection onto the constraint distribution and let the input vector fields be Yy, = P(M;le).
The equations of motion (3.14)—(3.15) can be written as

m
Vgd = Yeur, (3.17)
k=1
or equivalently in coordinates as
- m
i +Tid " =) (Vew),
k=1

where the affine connection V and its Christoffel symbols f‘;k are defined according to

VxY = VxY + (VxPt) V), (3.18)
for any pair X,Y of vector fields on Q, and

~. . O(P+)i . .
=Tt g TEP - TH (P

Proof. First, start by noting that V, as defined in equation (3.18), is in fact an affine
connection. The proof is a direct verification of the three conditions in Definition 2.1 and

is omitted.
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By projecting equation (3.14) onto D+ and by covariantly differentiating equation (3.15)
we obtain

PH(V4d) = A(t) + P (Yius),
P4(V4d) = — (V4P*) (@)
Hence it holds that
A = - (V4P") @ - P* (Yews),
and equation (3.14) becomes
Vi + (VgP*) @) = P(Viws).

According to equation (3.18), we therefore have ﬁq-q = P(Yjuy). This concludes the proof.
O

We summarize the result in this section as follows. In both constrained and uncon-
strained regimes, let Y = span{Y7,...,Y;, } denote the input distribution. In both cases the
equations of motion are

m
qu = Zquk, (3.19)
k=1

and are determined by the three objects: the configuration manifold @, the affine connection
V, and the input distribution ). We call one such system a control system on a manifold
with an affine connection.

Remark 3.4. If the constraint is holonomic, we can write Euler-Lagrange equations on a re-
duced space R, instead of invoking the Lagrange-d’Alembert principle on the full space [72].
Let r € R, let M be the restriction of the metric M, on TR C T,Q, and let VE denote the
corresponding Riemannian connection. The unforced equations for the constrained system
can be then written as
Ry _
V,r. r=0.

It can be shown [66] that on the equations of motion obtained on reduced space via the
connection V¥ agree with the ones provided by the constraint connection V.

3.4 Locomotion Devices as Mechanical Control Systems
with Impacts

In this section we model mechanical devices that locomote via impacts with the surrounding
environment. We start by presenting a geometric treatment of the classical model of impacts,
see for example in [19]. Loosely speaking, an impact results when an impulsive force that
enforces a constraint acts on the system. Accordingly, an impact in general causes a switch
in the equations of motions and a jump in the system’s velocity.

Let {Q, M,, F} be a mechanical control system, let D~ and D be two constraint distri-
butions, and let (V~=,)Y~) and (VT, Y1) be the corresponding affine connections and input
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distributions. We say that the mechanical systems undergoes an impact at time t if the
following events occur:

(i) the dynamic equations switch from (V—,)7) to (V*, V),

(ii) the state (g,¢) undergoes a discontinuous change in velocity described by a tensor
field J, : T,Q — T,Q. In other words, if we let ¢(¢t~) and g(t*) refer to the limiting
processes lim,_< ;- ¢(s) and lim,_+;+ ¢(s), we have:

q(t") = qt),
q(t) = Jy (4(t7)) -

This definition of impact describes both holonomic and nonholonomic impacts, since the
nature of the constraint distribution D1 is unspecified. Additionally, this definition embeds
the classic notions of purely plastic and elastic impacts as special cases. For example, if
a particle hits a surface with nonzero velocity, then the linear operator J; annihilates the
normal component of the velocity in the plastic impact case and reverses it in the elastic
impact case (a coefficient of restitution 0 < e < 1 can be included). Formally, we define:

Plastic impact: The two constraint distributions D~ and DT are distinct (for example
D~ =TQ and D = TR is the tangent space of a submanifold R C Q). The operator
Jy = Pp+ is the orthogonal projection onto DF.

Elastic impact: The equations of motion do not change, as connection and input distri-
butions are the same before and after the impact. There exists a submanifold R such
that

Jq = Prgr + (—€)Pip,

where Prpg is the orthogonal projection onto the tangent space to R and where 0 <
e < 1 is the coefficient of restitution.

Notice that these definitions are in agreement with the classic simplified models of elastic
and plastic impacts, see [19].

3.4.1 Hybrid Mechanical Control Systems

In this section we expand on the notion of control systems on manifolds with an affine
connection and we construct a special class of hybrid systems. In this construction we adapt
some ideas from the notion of “controlled general hybrid dynamical system” as described
in [14].

The fundamental discrete phenomena we want to model are controlled jumps between
distinct sets of constraints. Our setting is therefore a mechanical control system (Q, My, F)
with a given set of D;, where ¢ belongs to an index set I. For each constraint D;, we
consider the constrained mechanical control system ¥; = {Q, M,,F,D;}, with associated
affine connection V; and input distribution ).

Formally we define the hybrid mechanical control system as

EHMCS = {I,Q,EQ,V,A}, (320)
where:

(i) I is the index set of constraints,
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Figure 3.4: Sliding and clamping device with two legs. Leg #2 is allowed to fully clamp
on the floor reducing the system’s degrees of freedom from 4 to 1 (only the joint angle).
Alternatively we pin only its center and allow two angles to change.

(ii) @ is the n-dimensional configuration manifold,

(ili) g = {%; = {Q, M,,F,D;}}ier is the collection of constrained mechanical control
systems on @,

(iv) V = {Vi;}ijer is the set of discrete controls. We require V;; # 0.

(v) A ={0;;li,j € I} is the set of jump transition maps, where &;; : Vi; x Uge@Di(q) —
Uge@D;(q), and 6;5(v)(q, §) = (¢, Jij(g,v) - §)- The operator J;;(g, v) is linear for each
g € @ and each v € V;;.

The evolution of a hybrid mechanical control system can be described as follows. The system
starts in the state ((g,¢),7) € TQ x I and it evolves according to the dynamics given by V;
and the chosen set of continuous controls. At any point, we can choose to jump to any other
discrete state through impact. This is modeled by the discrete control V;;. Additionally we
allow for different possible impacts to choose from: for example, we can choose to undergo
an elastic impact and thus remain in the same discrete state. This is modeled by the jump
transition map d;;.

Remark 3.5 (Autonomous jumps). It would be possible to augment the model with au-
tonomous jumps by adding a collection A = {A;};cr of autonomous jump set and a collec-
tion 04 = {04, }icr of autonomous jump transition maps as described in [14]. However, in
this dissertation we concentrate on the controlled jumps and do not pursue this matter any
further.

3.4.2 A Sliding and Clamping Device

We study a simple example: two homogeneous bars of unit density and lengths (211, 2l5),
connected by a joint. See Figure 3.4 for a representation where CM is the center of mass
of the two body system. We denote with (6;,;,y;) the center of mass of the jth joint and
with (Zca, Yen) the position of CM. We assume that we can actuate the joint and that we
can at any point in time and space enforce one of the following two constraints. First, we
can instantaneously clamp position and orientation the second bar to the ground, resulting
in fixing the position ¢1(g) = (02, z2,y2) of the second bar. Alternatively, we can clamp
only the center of mass of the second bar ¢3(q) = (x2,y2)-
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Constrained Mechanical Control Systems

The mechanical control system is defined according to the treatment in the previous sections
by the following objects: The configuration manifold of the two body system is Q = T? x R?
and we let ¢ = (01,602, Tcm, You) be the configuration. The inertia matrix is

SU4 + 51212 + 121413 121313 cos(6: — 62) 0 0
o1 12313 cos(6y — 6)  5IZ3 + 5I4 + 121213 0o 0
T6(F +13) 0 0 12 +13) 0

0 0 0 12 (2 +13)*

The input force is F' = df; — d6s.

Next, we characterize the two constrained regimes. Recall that two constrained me-
chanical control systems are defined by the two submanifolds R;(q) = {¢ € Q | ¢1(q) =
©1(g0) = (020, 20,20)} and R2(qo) = {q € Q | 92(q) = ¥2(q0) = (T20,¥20)}. As discussed
in Section 3.3, these holonomic constraints induce two constraint distributions D1 (g) and
D>(g). We compute them as:

0 . 0 0
Dula) = spen { (1 + 1) g+ Esin(60) 57— B osltn) 5 }.
CM CM

D2(g) = span {(lf + lg)i + B sin(f;) =— — I3 cos(81)

601 alL'CM ayCM ’

=
O0Yom '

Summarizing, if we label with 0 the unconstrained system and if we set Dy = TQ, we
formally have a set of three distinct constrained mechanical control systems {Q, My, F,D;},
for i € {0,1,2}.

9 g O . o}
(3 + 15)6—02 +13 sm(%)E — 13 cos(6-)

Constrained Dynamics and Projected Inputs

Next, we compute the dynamics on the three distinct regimes. We start by exhibiting the
Christoffel symbols for the un-clamped regime. The only non-vanishing symbols are

T} (q) = 727(61,62) 1115 sin(26, — 26y),
T31(q) = 127(61,6,) {12 (513 + 517 + 121315) sin(6: — 62),
T32(q) = 120(61,02) W13 (513 + 517 + 121713) sin(62 — 61),
I2,(q) = 721(01,02) I115 sin(26; — 265),

where 7(61,62) = = (121213 cos(6; — 62))” — (512 + 512 + 121212))”.

The Christoffel symbols of the two constrained connections can be computed via a sym-
bolic manipulation software. We do not present these values here for brevity’s sake, but
we emphasize that the computations are performed on the reduced space, as described in
Remark 3.4.

Next we present the input vector field on each of the three regimes. We call Y; the input
vector field corresponding to the ith regime. We start by inverting the kinetic energy and
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defining the input in the unconstrained regime as

Yo = n(61,62) (6 (13 +13) (513 + 17 (5 + 1203) + 121315 cos(61 — 62)) a%
1
. 0
—6 (17 +13) (513 + 13 (5 + 1213) + 12413 cos(61 — 65)) 67) )
2
By projecting Yy onto the appropriate constraint distributions, we compute
0 . 0 0
Y1 = ((61,09) ((lf + l%)a—g1 +13 sm(01)m -3 cos(01)6yCM) ,
for an appropriate scalar function ((6;,62). Additionally, assuming l; =l =1
Yy = £(61,602) 6i —6i + 3l (sin(f1) — sin(6s)) 9 — 3l (cos(f1) — cos(6-)) 9
2 = §(01,02 30, 50, 1 ) Sren 1 2 o)’

where we set £(61,62)7" =12 (5 + 121% — 121% cos(61 — 62)).



Chapter 4

Tracking for Fully Actuated Systems

In this chapter we assume that the mechanical control system is fully actuated, i.e., there
exist an independent control input for each degree of freedom. Under this assumption we
show how it is possible to design a trajectory tracking controller that achieves exponential
stability.

The chapter is organized as follows. First we introduce the notions of error function and
transport map and we illustrate them by means of the two sphere example. These ideas
lead to the main theorem, with proof and comments, in Section 4.3. Finally, we present
numerous examples and applications of the main result. The content of this chapter is
joint work with Richard M. Murray and was originally presented at various conferences;
see [28, 25, 27], and the final journal version is [26].

4.1 Review of Stabilization Theory for Mechanical Sys-
tems

In this section we review some classic notion useful in the stabilization of mechanical systems.
Main concept is the use of the total energy, i.e., the Hamiltonian of the system, as Lyapunov
function. Our main reference is the work of Koditschek [53].

The setting is as follows. Consider a simple mechanical system with no potential energy

. —1
qu =M, "F,

where ¢(t) € @ is the configuration, M and V are the kinetic energy metric and the cor-
responding connection, and F' € TQ is the input force. The control goal is to design a
stabilizing controller for a point go.

The following two objects are instrumental in the control design. Let ¢ : @ € R be
a smooth real valued function on ). We shall say that ¢ is positive definite about qg, if
v(g) > 0 for all ¢, and (q) = 0 if and only if ¢ = go. Let (Ky)(q) : T,Q — T;Q be
a smooth, self-adjoint (i.e., symmetric in a matrix representation), positive definite tensor
field on Q.

These two objects play the role of a potential and dissipation function in the classic
proportional (PD) control:

Fpp = —dyp(q) — Kaq.-
Closed loop stability is assessed as follows. Consider the candidate Lyapunov function

¢+ 1||¢||. Since both a potential and a kinetic energy like term are present, the function is

31
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positive definite in both the configuration and the velocity. Its time derivative is computed
using the tools from Chapter 2 as:

Lo+ gl = Vg + 2V glall”
= (dy,q) + (—de(q) — Kagd, §) = — (Kad, q) -

Since the time derivative of the Lyapunov function is negative semi-definite, the closed loop
is Lyapunov stable. Asymptotic stability is usually proven via Lasalle principle, see for
example [53].

In the following sections we extend this classic result in various directions. In particular,
we focus on tracking as opposed to stabilization and exponential convergence as opposed to
asymptotic.

4.2 Configuration and Velocity Errors

In this section we study the geometric objects involved in the design of a tracking controller.
To measure the distance between reference and actual configuration, we introduce the no-
tion of error function. To measure the distance between reference and actual velocity, we
introduce the notion of transport map. A design on two sphere manifold provides an exam-
ple of our definitions. Finally we study the time derivative of the transport map. Together
with a dissipation function, these ingredients are crucial in designing a tracking controller.

4.2.1 Error Function and Configuration Error

Let ¢ be a smooth real valued function on @) x ). We shall call ¢ an error function if it is
positive definite, that is ¢(gq,r) > 0 for all ¢ and r, and ¢(g,r) = 0 if and only if ¢ =r. We
shall say that the error function ¢ is symmetric, if ¢(q,r) = ¢(r,q) for all g and r.

Let dip and dag denote the differential of ¢(g,r) with respect to its first and second
argument. We shall say that the error function ¢ is (uniformly) quadratic with constant L
if for all € > 0 there exist two constants by > by > 0 such that ¢(g,r) < L — € implies

billdip(a, )3, = @(@,r) > balldig(e, )%, - (A1)
Here and in what follows, the tag (An) denotes design assumptions that will play a crucial
role in later sections.

Remark 4.1. The quadratic assumption on the error function is necessary in order to prove
exponential convergence rates. This is a weak requirement, since smooth positive definite
functions are always of at least quadratic order in a neighborhood of their critical point.

When ¢ and r are actual and reference configuration, we will sometimes call the quantity
(g, r) configuration error. As mentioned above, the error function ¢ will be instrumental
in designing the proportional action.

4.2.2 Transport Map and Velocity Error

Given two points ¢,r € @, we shall call a linear map 7y, : T,Q — T,Q a transport map if
it is compatible with the error function, that is if

d2‘10(q7r) = _ﬁz’r)dlcp(qar)v (A2)
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where T ok 1 T;Q — T7°Q is the dual map of 7(4 ). The transport map 7 is also requ1red to
be smooth ie., for all points 7 in () and tangent vectors Y, in T,.@), the vector field 7, Y,
is smooth.

Given a transport map, velocities belonging to different tangent bundles can be com-
pared. In the following, we shall call velocity error the quantity

€2 G—Tunt €T,0Q. (4.1)

Note the slight abuse of terminology, given that the velocity error is not the time derivative
of a position error. Also note that since the definition of 7 and é are equivalent, we will
sometimes talk about compatibility between configuration and velocity errors. The next
lemma provides some insight into the meaning of the velocity error and of condition (A2).

Lemma 4.2 (Time derivative of an error function). Let {¢(t),t € R} and {r(t),t €
Ry} be two smooth curves in Q. Let ¢ be an error function and T a compatible transport
map. Then

d

7a0),r(0) = dip(a(t),r(1)) -é(t), Ve Ry.

Proof. Applying the compatibility condition (A2), we have:

7Pa),r(#)) = dip(g,r) - ¢ + daplg,r) -7
=dip(g,;r) -4 + (=T ndielg,r)) -7
=dip(q,7) - (¢ = Tigr)T)-
O

The result can be restated as follows. As both ¢ and r are functions of time, the time
derivative of ¢ : @ x ) — R reduces to a derivative only with respect to the first argument

L, me = L 09 (4.2)

where (X, Y') denotes a vector field on the product manifold @ x Q.

Last, we introduce the notion of dissipation function, which will be useful in defining
a derivative action. We define a (linear Rayleigh) dissipation function as a smooth, self-
adjoint, positive definite tensor field (K4)(q) : T,Q — T, Q. We shall say that K is bounded
if there exist ds > d; > 0 such that

dy > sup [|K4(q)l|as, 2 inf ||Ka(q)lla, 2 du, (B1)
qEQ qEQ

where || - ||, is the operator norm for (1,1) type tensors on T,@ induced by the metric M,
on T,Q. Here and in what follows, the tag (Bn) denotes boundedness assumptions that will
play a crucial role in later sections.

4.2.3 Example Design for the Two Sphere

To illustrate the previous ideas we apply them to the two sphere S 2 {p € R®| p"p = 1}.
Since S? is embedded in R?, we identify points, tangent and cotangent vectors on the sphere,
with their corresponding components in R®. Note that the Euclidean norm ||-|| on R? induces
a metric on the submanifold S2. Given an error function ¢ : S x S2 — R, , the norm of its
differential ||d;¢|| is therefore well defined. Recall that we let a x b denote the outer product
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between the two vectors a,b € R3, and we let @ or a”~denote the 3 x 3 skew symmetric
matrix such that ab = a x b.

Lemma 4.3 (Design on the sphere). Let g and r belong to S®. It holds that

(i) olg,r) £ 1—4qTr is a symmetric error function with differential
dip(g,r) =@r = -1+ (¢"r)g,

() ¢(q,r) is a quadratic error function with constant L = 2, and
(i) T(q,r) 2 (¢"r)Iz + (r x q)"is a compatible transport map.

Proof. As mentioned above, recall that we identify points, tangent and cotangent vectors
on the sphere, with their corresponding components in R?. Since the orthogonal projection
of r € S% onto span{q}* is r — (¢¥'r)qg = —¢*r, we have

Loy =—d"r==¢"(r—(¢"rg) = @r)"q

This proves (i). We prove (ii) as follows. By assumption we are given an € > 0 such that
0 < p(g,r) <2 —¢, or equivalently 1 > g'r > —1 + €. The differential of the error function
satisfies

lldiell> = lIr — (¢"m)all> =1 = (¢"r)* = (1 + ¢"r)p(q, 7).

Since at ¢(g,r) = 0 the bounds in assumption (A1) are verified, we only need to check that
there exist by > by > 0 such that

bi(1+q7r) > 1> bo(1+¢7r).

This holds true for by = 1/2 and by = 1/¢, proving (ii). Next we show that ¢ and T are
compatible (A2). This is verified with some algebraic simplifications based on the equality

v X (wx 2z) = (WT2)w— (vTw)z. We have

T*dip(g,r) = —(q"r)r + (¢"r)*q — (r — (¢"r)q) x (r x q)
—(¢")r+(q"r) g - (r = (") ) r - ((r — (")) 7) q
=—(@"r)r+(@"r)’q+ (1—(¢"r)*)q
=q—(¢"r)r = —dap(g, 7).

O

Next, we present some figures to compare our design with a traditional one. To warn of
the effects of a design performed in local coordinates, Fig. 4.1 shows various paths connecting
the same two points on a sphere. In each figure we employ a different projection, that is
a different set of coordinates z(q), and we draw the flow of the gradient! of the (error)
function ||z(q) —z(r)||?, that is a straight line in the particular set of coordinates. Note how
the resulting paths depend on the choice of projection.

In Fig. 4.2, we focus on two different choices of transport map and velocity error. Given
a fixed reference velocity 7 (which is represented in both pictures by a thick arrow on top of
the sphere), we draw for various points ¢ the vector field 7, ,#. The left picture portrays
the global, smooth design described above. On the right picture, we show the velocity error

I The gradient of a scalar function f is the vector field Vf such that {Vf, X)) £ Lxf.
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Figure 4.1: Comparison of error functions based on four coordinate systems: the flow of
their gradient is depicted . As expected, straight lines in different coordinate systes give
rise to different curves.

computed in a latitude, longitude parametrization. This is the procedure: if (61, 6,) are the
local coordinates, then we can write

= 7'“1—(1") +1;2i(7‘).

06, 06

We computed the “velocity error” vector field as
., . 0 . 0
Tiat /long™ = T1 6—01(‘1) + 12 6—92('1)
At the north pole of the latitude, longitude chart the singularity is evident.

4.2.4 Derivatives of the Transport Map

So far we have introduced configuration and velocity errors that will be key ingredients in
designing a proportional and derivative feedback in the next section. We now study how
the quantity (7,,,7) varies as a function of both ¢(t) and (r,#)(t). This will be useful in
designing the feedforward action. Let the total derivative of (7(, ,)7) be

D gt”) vy (TH) + % T, (4.3)

where the two terms are described as follows:

(i) At (r,7) fixed, 74,7 is a vector field on @) and therefore its covariant derivative
Vq (T7r) is well-defined on Q. We call the covariant derivative of the transport map
the map VT : T,Q x T.Q — T,Q defined as

(VXT)YT £ VX(T}/?"):

for all tangent vectors X € T, and Y, € T,Q.
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Figure 4.2: Transport maps on S2. We depict the vector T(q,ry7 for two different transport
maps: on the left our smooth global design, on the right a design based on a latitude,
longitude chart, with the north pole denoted by the letter N.

(ii) At q fixed, 74,7 is a vector on the vector space T;@Q) and therefore its time derivative
is well-defined. We denote it with the symbol:

d

— Tr) €T,Q.
dt q ﬁxed( ) qQ
Next, we compute coordinate expressions for the previous quantities. Let {%, . %
be a basis for T,Q and {8%1, ... %} a basis for T,.QQ. Then we have the decompositions

F=r50, and Ti =T % 50
If I‘fj are the Christoffel symbols of V and if X is a tangent vector in T,(, then we have

wxr)t = Ty 4 pgis (4.4)
X1 )a = 3qj ij la . .

Regarding the time derivative at ¢ fixed, we have

d N\ otk
(a‘qﬁxed(’]—r)) - 87"5

Remark 4.4. Assume for an instant that the reference trajectory r(t) obeys the same equa-
tions of motion as the actual mechanical system, that is

7o 4 TR (4.5)

Vi = M, 'F.(t),

for some appropriate reference force F,.(t) € TQ. Since in coordinates we have (V;7)* =
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#* + g, (r)777, then we can rewrite the equation (4.5) as

d N
7 qﬁxed(’Tr) = TVir + (

T4
ors
= T(MT_IFT(t)) + (V(o,r-)T) 7,

- ﬂkrgﬁ(r)) O o

where the last equality defines implicitly the map V(o ~7 : T,Q — T,Q. Note that the
definition is coordinate independent, hence well-posed. Roughly speaking, this map is the
covariant derivative of 7 with respect to 7. This statement can be made precise by defining
T as a tensor on the product Riemannian manifold @ x ). We do not pursue this direction
here.

We conclude the section with some boundedness assumptions. We shall say that the
transport map 7 has bounded covariant derivative and that the error function ¢ has
bounded second covariant derivative if

sup  |IVT(g,mllm < 00, (B2)
(¢,r)EQXQ
and
sup  ||Vdip(g,7)|lm < 00, (B3)
(¢,7)EQXQ

where || - ||, is the operator norm on the inner product space (T,Q, M,). We shall say that
the twice differentiable curve {r(t),t € Ry} C @ is a reference trajectory with bounded
time derivative if

sup ||7|ar, < 00. (B4)
teR

Given the equalities (2.10) and (4.4), a sufficient condition for the bounds (B2)-(B3) to
hold, is that the quantities M;;, M, T'F;, 8T} /8¢" and 8%¢/(8¢'d¢?) are bounded over
(¢,7) € Q x Q for all 4,5, k, @. On a compact manifold these conditions are implied by the
smoothness of M, K4, T and ¢.

4.3 Tracking on Manifolds

In this section we state and solve the exponential tracking problem for general mechanical
control systems on manifolds.
4.3.1 Problem Statement and Control Design

In what follows we let {r(t),t € Ry} denote a reference trajectory, (¢, 7) denote a pair of
error function and transport map and we focus on a simple mechanical control system with
no potential energy:

Vi = M;'F, qgeQ. (4.6)
We loosely state the control objective as follows:

Problem 4.5. Design a control law F' = F(q, ¢; r,7) such that the configuration ¢(t) tracks
r(t) with an exponentially decreasing error.
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Special care is needed to make this statement precise, as no trivial definition of ex-
ponential stability exists for systems on manifolds. We start by introducing a total energy
function, defined as the sum of a generalized potential (the configuration error) and a kinetic
energy function (the norm of the velocity error):

. . 1. . e
Whotat (¢, 45 7,7) £ olg,r) + illq - 7—(q,r)7'||zzv1q' (4.7)

Alternatively we will write Wiota) (t) for Wioeai(q(t), ¢(t); r(t),7(t)). Next we introduce the
following definitions:

(i) the curve g(t) = r(t) is stable with Lyapunov function Wigea if it holds W(t) <
Wiota1(0) from all initial conditions (g(0), ¢(0)).

(ii) the curve q(t) = r(t) is exponentially stable with Lyapunov function Wiea if there
exist two positive constants X,k such that Wistai(t) < &k Wiotar(0)e ™, from all
initial conditions (q(0), ¢(0)).

We are now ready to state the main result.

Theorem 4.6 (Bullo and Murray [26]). Consider the control system in equation (4.6),
and let {r(t),t € Ry} be a twice differentiable reference trajectory. Let ¢ be an error
function, T be a transport map satisfying the compatibility condition (A2) and K4 be a
dissipation function.

If the control input is defined as F' = Fpp + Frr with

FPD(Q;Q; 7',7.') = —dl‘P(Q;T) _Kd éa

L . d .
Frr(g,¢; %) = M, ((Vq’r(q,r))r + at qﬁxed(tr(qﬂr)r)) )
then the curve q(t) = r(t) is stable with Lyapunov function Wiota .

In addition, if the error function ¢ satisfies the quadratic assumption (A1) with a con-
stant L, and if the boundedness assumptions (B1-B4) hold, then the curve q(t) = r(t) is
exponentially stable with Lyapunov function Wietar from all initial conditions (¢(0),¢(0))
such that

2(4(0),7(0) + SI€(O)I2, < L.

Proof. The proof is divided into three parts: first we prove Lyapunov stability using the total
energy as a Lyapunov function. Second, we add an additional “cross” term to the Lyapunov
function. Finally, we conclude local exponential stability with a bounding argument.

The proof is based on the properties of covariant derivatives described in Section 2.3
and on the definitions in Section 4.2.4. This approach makes the proof straightforward and
independent from any choice of local coordinates: the Lyapunov function, its time derivative
and the final bounding argument are coordinate-free.

Part I: Lyapunov Stability from Total Energy

We employ the total energy function Wigta = ¢ + %||e||§lq as candidate Lyapunov function.
By Lemma 4.2 the time derivative of the first term is ¢ = d;p - é. We compute the time
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derivative of the second term in two steps. At r fixed, the equality (2.4) allows us to write

4 1

AP
L e, = 2tale, e = e, Ve

~ (e, V4 (a-TH)

= «é, Mq_l(FPD + FFF) — (VqT)r))

At ¢ fixed, we have instead

d Lo . d . . . d _
T meaalelie, = (60 | @ TR) = ~te, | (TR,
Plugging in we have
Weat = dip & + (e, M, (Fon + Fre) = (Vg T)i = 5| (T#)
gporel T Q1P eT e, Mg EPD T EER " Gt et

=dip-é+ (M, Fpp, é)
=dip-é+(—dip—Kqé)-é6 = —Kgé-é

so that %Wtotal is negative semidefinite and Lyapunov stability as defined in Theorem 4.6
is proven.

Part II: Introduction of Cross Term

To construct a strict Lyapunov function (i.e., a function with a time derivative strictly
definite), we add a “small” cross term to Wiota1- Let € be a positive constant, let

Wcross(t) = ¢ = dip-é¢,
and consider the candidate Lyapunov function
w £ Wiotal + € Weross-

We need to show that there exists a sufficiently small €, such that W is positive definite
in ¢ and |||, We start by noting that from Part T and the assumptions on the initial
conditions, we have

Wiotal (t) < Wtotal(o) <L - (,D(t) < L,

which implies that the bounds (A1) on the differential of the error function hold for all time.
Then we have

1. .
W 2@+ Slléll, — elldipll, - léll,
1. .
> ¢+ 5lléll, = e/vVb2) Ve [l

and therefore

Wzé[néﬁﬁ—jm B ) 2 [||Z|&]T7’[||e“u‘i]-
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By choosing € < 2v/ba, the matrix P and the function W are positive definite with respect

to /¢ and [|é]|a,-
Next, we compute the time derivative of Wepess. At r fixed, we have

d

a rﬁxed(p - Vq (dl(,O ’ e) = (qulﬂo) -e+dip- (qu)

= (Vgdip) &+ dig- (M;'F = (V4T)i). (4.8)

At ¢ fixed, we have

d d .
E‘q fixed (dlw) B dl (E‘q ﬁxedSO) N dl (d1Q0 - (_TT)) ’

and therefore

i‘ ) = i‘ digp)-é+d i‘ é
dt qﬁxed(p o dt q fixed e 1y dt q fixed

=di (dip- (=T7))-é+dip- (_% q ﬁxed(T,';))
——Laldip- (T) = dip- (] (7))
=— (Véd190) (T7) —dip- (Vé(Tﬁ)) —dip- (%‘q ﬁxed(Ti‘)> '

Summing the previous equation with equation (4.8) we obtain

a

dt

d : - : '
—p= (Vedl(.p) -e+ dl‘P ) (Mq 1F - (vqT)T a qﬁxed(T,r))

dt

and substituting the control force F

= (Vedip) - é+dig- (M, Fop) —digp- (V4(T7))
= —||d190||f/1q + (Vedip) -é+dip- (Mq_leé) —dip- (Vo).

Next, by means of the quadratic assumption (A1) on ¢, we can express Weross = @ as a
function of ¢ and ||€||x,. It holds that

T
W :--<_\/¢]Qr [W],
cross 2B |:||e||Mq cross ”e”Mq

where the symmetric matrix Qcross has the following entries:
(choss)l,l = l/bla

(Qeross)21 = — (sugllelqu + SUp [[7lla, - sup QIIVTIIM> Vo
S

(¢,r)€Q X

(choss)Z,Q = - sup ”le(p”M
(9,7)EQXQ

Note that the operators in Qcross are bounded: (Qeross)1,2 is upper bounded due to assump-
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tions (B1), (B4) and (B2), (Qcross)2,2 is upper bounded due to the assumption (B3).

Part ITI: Bounding Arguments

As alast step, we bound the time derivative of the Lyapunov function W = Wygga1 + €Weross-

We have
d N ]T [W]
—WwW < — |, ) ,
@ < [nean 2l

where the symmetric matrix Q is positive definite for small enough e, since

Ql,l = 6(choss)l,l;
Q1,2 = €(choss)l,Za
Q2,2 = qlgg ||Kd||Mq + €(choss)2,2a

and Qs 5 is bounded away from zero thanks to (B1). Hence, there exist a A > 0 such that
W < —AW. Finally, it holds that

won= [0 ] [ S [0

and for an appropriate positive kq

T
<k [ Ve ] P[ a ]
- [1€[] 1€l ae,
< kiW({t) < kW (0)e ™™ < 2k Wigpar (0)e ™A,

where we used the fact that Wiota1(0) + €Weross(0) < 2Wiota1 (0). O

4.3.2 Remarks

The design process and the theorem’s results are global in the reference position r(t) but
only local in the configuration ¢ (the error function ¢(g,r) must remain smaller than the
parameter L). This limitation cannot be avoided because of possible topological properties
of the manifold Q. For additional details we refer to [53], where the author discusses the
global aspects of the point stabilization problem and describes the usefulness of the so-called
Morse property.

Theorem 4.6 achieves Lyapunov and exponential stability with respect to the particular
total energy Wioia1 we synthesized. Therefore, the design of error function and transport
map plays a central role in imposing performance requirements. For example the choice
of error function ¢(g,r) affects the type of convergence we obtain: the configuration ¢
converges to the reference r in the topology induced by ¢. Additionally, the choice of
(¢, T) determines the (computational) complexity of the control action. For example, one
particular transport map might be desirable since it generates a “simple” velocity error and
a “simple” feedforward control. However, the compatibility condition (A2) constitutes a
constraint on the set of admissible pairs (¢, 7). The next section, and in particular the
SO(3) and SE(3) cases, illustrates some of the tradeoffs involved in the control design.

As expected, the final control law is sum of a feedback and a feedforward term. This
is in agreement with the ideas exposed in [75] on “two degree of freedom system design”
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for mechanical systems. While the feedforward term depends on the geometry of both
the manifold and the mechanical system, the feedback term is designed knowing only the
configuration manifold ). We expect the ideas of configuration and velocity error to be
relevant for more general second order nonlinear systems on manifolds.

Note finally that, while the theorem is stated for mechanical systems with Lagrangian
equal to kinetic energy, it can be generalized to systems with potential functions, viscous
forces and gyroscopic forces, by pre-compensating for these extra terms.

4.3.3 Extensions to Model-Based Adaptive Control

Since the control law in Theorem 4.6 requires full knowledge of the inertia tensor M(q),
our approach is of limited relevance whenever an exact measurement of this quantity is
not available. Well-known solutions to this problem rely on model-based adaptive schemes.
Three examples are the composite adaptive controller in [88], the passivity-based controller
in [4] and the indirect adaptive controller in [104].

In what follows, we sketch the basic common idea behind these treatments. The key
simplifying assumption is that the unknown parameters enter linearly the Euler-Lagrange
equations. In particular, assume that the inertia tensor M(q) satisfies M (q) =), A\iM;i(q),
where \; € R are unknown parameters and M;(q) are known tensors. Let X,(t) be the
estimate of A; and define the tensor M (g,t) =>; Xi(t)M;(q).

Lemma 4.7 (Stable adaptive tracking). Under the same setting as in Theorem 4.6,
define the control input as

D (T+)
s’
where D (T7+) /dt is defined in equation (4.3), and set the update law

F=—dyp—Kqé+ M(q,t)

d~ . D(T7)
%)\1 = —Mze . dt .

Then the curve q(t) = r(t) is stable with Lyapunov function

1 ~ 1, 1 -
Wadap = Wtotal + 5 Z(/\z - /\z)2 = (‘P + 5”6”?\4(1) + 5 Z(/\z - /\z')2;

2

in the sense that Wadap(t) < Wadap(0) from all initial conditions (¢(0),¢(0)) and all initial
estimates (A;(0)).

Proof. Following the steps described in Part I of the previous proof, we have:

d T . D(Tv
EWtotal =-—Kjé-ée+ (M — M)e . %
e+ G DT
=-Kgqé-e+ i ()\, — /\,) (Mie . 7dt )

=—Kge-e—Y (hi— )\i)%xia

7

where in the last step we have plugged in the update law for Xz Finally, since %Xi =
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(X, — Ai), we have

&=

—Wadap = —Kg4é - €.

4.4 Applications and Extensions

In what follows we describe examples of the design techniques and of the stability results
presented so far. We start by describing some general issues in the design of error functions
and transport maps.

4.4.1 On the Design of Error Functions and Transport Maps

As briefly mentioned in Section 4.3.2, criteria for the design of error functions are studied by
Koditschek [53], where certain topological properties are suggested to obtain large regions
of attraction. A second, often useful criteria for the design of an error function is the
availability of matrix, rather than scalar, gains as a way of enforce different weighting onto
different “error directions.”

Methods for the design of transport map are more difficult to describe. First of all, the
compatibility condition must be examined:

dQ(;D(q: ’I‘) = _7‘(2,7‘)(1190(% T)'

This equation can be read in two ways: First, given a transport map 7, a compatible
error function is computed via a partial differential equation. Alternatively, given an error
function ¢, a transport map is computed via a under-determined set of linear equations.
Clearly, the latter method is usually preferred. In fact, all the examples we shall present in
the next sections share this feature: the error function is designed first, and a compatible
transport map later.

The search for an algebraically simple transport map is usually aided by the properties
of the error function and of the manifold in question. Incidentally, this method is also
silently employed in the literature, see for example the treatment we provide in Section 4.4.4.
However, the current literature does not give any attention on this design issue and on the
freedom in choosing 7.

Finally, given an error function and given a set of compatible transport maps, one
imagines chosing the optimal one with respect to some appropriate cost criteria. In what
follows, we do not investigate this issue and we focus on computing computationally simple
transport maps.

4.4.2 A Pointing Device on the Two Sphere

We start by applying the main theorem to the sphere example described in Section 3.1.2
and Section 4.2.3. Form the Section 3.1.2, recall that there exist a natural Riemannian
metric and corresponding connection on the sphere. Exploiting this structure the equations
of motion have the simple expression

Vyi=F, (4.9)

where, for simplicity, we identify tangent and cotangent space of the sphere and write the
input force F as living on T,S% In Section 4.2.3 we designed a quadratic error function and
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a compatible transport map as

e(g,r) £ 1—¢"r and  Tn 2 @1+ (rxq)]

where r is the reference configuration on S2.

Lemma 4.8 (Tracking on the sphere). Consider the system in equation (4.9) and let
{r(t),t € Ry} be a reference trajectory with sup, ||#|| bounded . Let k, and kq be two
positive constants. Then the control law F = Fpp + Frr, with

Foo = k' — kald =g r %)
Frp = (iTrxq)(qxq) + g x (rx Vir),

ezponentially stabilizes kyp(q, ) + 3|l¢ — Tia,r)lI? to zero from any initial condition q(0) #
—r(0) and for all ¢(0),7(0), k, such that

114(0) — T(g,n?(O)]I*
2(1+4¢(0)r(0))

Proof. In Section 4.2.3 we proved that ¢ is quadratic (A1) and T is compatible (A2). Addi-
tionally, since S? is compact, the conditions (B1-3) are satisfied, because of the smoothness
of the metric, of kg, of 7 and of . The assumption (B4) is explicitly made in the text.
Hence we only need to prove that the Fpp and the Frr above are designed as prescribed
by Theorem 4.6. Applying twice the equality v x (w x 2) = (vT

kp >

vT2)w — (vTw)z, we have
T = (q"r)i + (r x q) x i = (¢" )i — (FTq)r
=gx(rxr),

and

4
dt

e Tlan)T) = @ (1 X 7) = g (r X V).

Finally, following the description in Section 2.4, we compute the covariant derivative of
the vector field (77)(g) by differentiating it with respect to time and then projecting the
result onto the tangent plane at ¢. In formulas this reads as:

. d . d .,
(VqT)T =T (E rﬁxedTr> a q (dt rﬁxedTr> )

Summarizing some algebraic equalities, we have
g x (rxr)) =-g(gx (¢ x(rxi)))

d
2
(V T) (E r fixed

—q(q"(r x 1)g— ¢ q(r x 7)) = (¢"r x #)(¢ x q).

This completes the proof. O

4.4.3 A Robotic Manipulator

In this section, we shall recover the standard results on tracking control of manipulators
contained in [76]. As in Section 3.1.1, let § € R™ be the joint variables and M (6) be the
inertia matrix of the manipulator. The design described in Section 4.2 is performed as
follows.
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Let K be a symmetric positive definite matrix and let ¢(6,r) = 1(8 — r)TK,(6 —r) be
a quadratic error function. Thanks to the identification TyR" = T,.R", we let the transport
map be equal to the identity matrix: 7(y,) = I,,. Assumptions (A1) and (A2) are easily
verified. To design the feedforward action, we compute the covariant derivative of I,,. Let
{6%1, e, %} be the standard basis in R”, let {i, j, &, ... } be indices over § and {«, 3, ...}
be indices over r. Then, from equation (4.4)

(1),
J 00i

Therefore, in contrast to a naive guess, the covariant derivative of the identity map is
different from zero. Given a symmetric positive definite K4, the control law is

(VL) = +I‘ W (I)E =T

jo

Fep = —K,(0 — 1) — K46 — 1)

Frr = M(Q)((Ve-ln)f + %‘9 ﬁxedr)
= M(0)(T%,071* 2 +7) = M(6)i + C(6,0)r, (4.10)

a6*
where C(-,-) is the Coriolis matrix typically encountered in robotics. The control law
F = Fpp + Frr agrees with the one presented in [76, Chapter 4, Section 5.3] under the
name of augmented PD control. The assumptions (B1-B4) can be written in terms of Ffj
and 7 being bounded over ¢ € R and 6 € R".

Linearization by state transformations and by feedback

Sometimes a simple state transformation suffices for the linearization of the Euler-Lagrange
equations. This happens when there exists a choice of local coordinates such that the
Christoffel symbols vanish. If the designed described above is performed in this specific set
of coordinates, the expression (4.10) for the feedforward control simplifies considerably since
the cross term (6, 7) vanishes. More details on this case are discussed in [8].

More generally the Euler-Lagrange equations can be linearized by means of a feedback
transformation. By setting

F=M"9) (U - 0(0,0')) é, (4.11)
we have that the equations of motion
M(6)4 +C(8,6)8 =

become )
0="U.

A tracking controller can then be designed using linear techniques. This design procedure is
the so-called computed torque method; see [76, Chapter 4, Section 5.2]. Note that a controller

designed this way depends on the initial choice of the coordinates system 6, ...,6m).
We reconcile this method with our framework as follows. Let V be the connection
characterized by vanishing Christoffel symbols in the chart {6%,...,0"}. Then the equality

6 = U can be written as V 6 = U, hence as a mechanical system. In other words, we regard
the feedback transformatlon (4.11) as a “change of connection” from V to V. ThlS idea is
described in some theoretical details in [52, Proposition 7.10]. Summarizing, the computed
torque method falls within the scope of Theorem 4.6 if feedback pre-transformations are
allowed.
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4.4.4 A Satellite with Three Thrusters

In the next two sections we design tracking controllers for mechanical systems defined on
the group of rotations SO(3) and on the group of rigid motions SE(3). We focus on rigid
bodies with body-fixed forces and invariant kinetic energy, as satellites and underwater
vehicles. Nevertheless our treatment is relevant also for workspace control of robotic ma-
nipulators. This section presents the attitude control problem for a fully actuated satellite;
see Section 3.2.2 for the model.

Error Functions

Let {R4(t),t € R} } denote the reference trajectory corresponding to a desired or reference
frame and let Q; = RT R, denote the reference velocity in the reference frame. Using the
group operation, we define right and left attitude errors as

R.,2R¥R and R.,% RR}. (4.12)

The matrix R, , is the relative rotation from the body frame to the reference frame. Two
error functions are then defined as ¢,.(R, Rq) £ ¢(R..) and @¢(R, Rs) £ ¢(R. ), where
¢: SO(3) —» Ry is defined as [53]

d(Re) £ - tr (Kp(Is — Re)).

DN | =

If the eigenvalues {kq, k2, k3} of the symmetric matrix K, satisfy k; + k; > 0 for ¢ # j, then
both error functions ¢, and g are symmetric, positive definite and quadratic with constant
L = min;4;(k; + k;). Locally near the identity the function ¢ assigns a weight ks + k3 to a
rotation error about the first axis (and similarly for the other axes). Appendix A contains
the proof of these facts and the expression of ¢ in the unit quaternion representation.

Velocity Errors

To define compatible velocity errors, we compute the time derivative of the two error func-
tions. Let the matrix skew(A4) denote 3 (4 — AT) and let -V denote the inverse operator to
T:R® — 50(3). We have

d
797 = (Skew(K,Re)Y) Qer, (4.13)
G0t = (skew(K,Re.0)")" Rae, (4.14)

where we define right and left velocity errors in the body frame as
Qer £Q—RL Q4 and Q.. 20Q-0Q,

Note the slightly improper wording, since a velocity error ¢ = R — T Ry lives on the tangent
bundle TgSO(3). A precise statement is

é( = Rﬁeie = R - (RR;) Rd,
é, = RQO., = R— Ry (RYR).

These equalities also motivate the names “left” and “right.” A left (right) velocity error is
obtained by left (right) translation of the velocity Rgy.
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Next we describe compatible couples of configuration and velocity errors. Equation (4.13)
suggests that a right attitude error RY R and a right velocity error @ — RT R4 are compati-
ble. This couple is the most common choice in the literature; see for example [73, 53, 103, 36].

Left attitude and velocity error appear less frequently [69]. With this choice both the
velocity error and, as we show below, the feedforward control have a simple expression.
Remarkably, when the gain K, is a scalar multiple of the identity k,I3, the left and right
error functions are equal and the couple (e, Q¢ ¢) is compatible. Finally, coordinate based
approaches are also possible. The velocity error in [87] is taken to be the difference between
the rate of change of the Gibbs vectors for actual and reference attitude. Similarly, in the
flight control literature, Euler angles and their rates are often used; see Etkin [37].

Control Laws and Simulations

Finally we summarize the design process.

Lemma 4.9. Consider the system in equation (3.9). Let {R4(t),t € Ry} denote the refer-
ence trajectory and let Qg = Rng denote its bounded body-fized velocity. Corresponding to
the two choices of attitude error, we define

fr= —skew(KpR.,)" —KaQer + Qx J(RE Qq) + I(RE,Q4),
fo= —RY skew(KpRe )" —KqQ%e o + Qq x IQ+ Iy,

where Kq is a positive definite matriz and K, is a symmetric matriz with eigenvalues
{k1,k2,ks} such that k; + k; > 0 for i # j.

Then, for both choices of attitude error, the total emergy ¢(Re) + 3[|Qe||? converges
exponentially to zero from all initial conditions (R(0),2(0)) such that

HR0) + 51O < min(k: +1).
7]

This lemma is a direct consequence of Theorem 4.6, except for the design of the feedfor-
ward control which is discussed in the next section. To the authors’ knowledge, both control
laws are novel: f; in the choice of velocity error, f, in the expression of the feedforward
control.

To illustrate the difference between the two velocity errors, we run simulations without
the PD action. The reference trajectory is a 27 radians rotation about the vertical Z
axis performed in 10 seconds with velocity profile of 2m(3t? — )/100 radians per second.
The initial attitude error is a rotation of 7/4 radians about the X axis. Both the angular
velocity and the reference angular velocity are zero at time ¢ = 0 and therefore the velocity
error is zero for all times. Indeed, the latter property characterizes the two simulations
completely: on the left side of Figure 4.4 we have R(t) = R(t)Qq4(t), on the right side
R(t) = (Ra(t)Q4(t)) "R(t). We note the very different qualitative behavior of the two closed-
loop simulations.

4.4.5 An Underwater Vehicle with Six Actuators

In this section we extend the treatment of the attitude tracking problem to the group of
rigid rotations and translations SE(3) = SO(3) x R®. We focus on the idealized model of an
underwater vehicle, described in Section 3.2.3.
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Reference trajectory

10

Figure 4.3: Bricks represent rotation matrices. On the left we depict initial reference attitude
and initial error (i.e., a rotation of /4 about the X axis). On the right we depict the
reference attitude trajectory.

Left transport map: trajectory Right transport map: trajectory

Figure 4.4: Trajectories in the closed loop help us compare feedforward policies. Left and
right velocity errors are employed correspondingly on the left and right picture.

Error Functions

Let {94 = (R4, pa),t € Ry} denote the reference trajectory corresponding to a desired frame
and let & = (g4, Vy) denote the reference velocity expressed in the desired frame, that is
9gd = ga - €4- As in the SO(3) case, we design an error function ¢ by composing a group
error ge(g,gq) and a positive definite function ¢ : SE(3) — R.

The group operation on SE(3) provides us with right and left group errors

ger £ 9779 = (RIR, R} (p—pa)),
ger 2 99,1 = (RR], p— RR}pa) -

The group element g, , is the relative motion from the body frame to the desired frame.
Disregarding the group structure, two other group errors are

ge1 £ (RJR, p—pa) and ge» = (RR], R"p— Rlpa).
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T

(((V
LR

Figure 4.5: From left to right the functions ¢;, ¢ and ¢35 are compared in terms of the flow
of their gradient. Each frame on the plane represents a configuration on SE(2).

Next we design some positive definite functions on SE(3). We set

1 1 1
o1(R,p) = Str(Ki(Ils — R) + 5p Kop 2 61(R) + SlIpll%.

6a(Rp) = 91 (R) + 3 |E %,
63(R.p) = $1(B) + 51I(Ts + R Yol

where the eigenvalues {k1, k2, k3 } of the symmetric matrix K; satisfy k; + k; > 0 for ¢ # j,
and where K> is positive definite. The presence of matrix gains in both the attitude and
position variables is useful in applications.

In Fig. 4.5 we attempt to portray these functions restricted to SE(2), the group of rigid
motions on the plane. We equip this space with an invariant metric (kinetic energy) of
the form Jw? + mgv} + myv?, where (w,vz,v,) is the velocity in the body frame. Then
we compute the gradient vector field for each of the three error functions and we draw
their flow fields. The gains on rotational and translational components are chosen equal to
(J7 Mg, my) -

Finally we design error functions by combining a group error g, with a function ¢. For all
choices of g, and ¢, the resulting error function ¢ is quadratic with constant min;«; (k; +k;),
where {ki, ko2,k3} are the eigenvalues of the matrix K;. Since many combinations are
possible, we report only the most instructive ones in the first column of Table 4.1. In the
third column we characterize the error functions in terms of various properties. For example,
we call ¢ invariant if it is invariant under changes in the inertial coordinate frame. Also
recall that ¢ is symmetric if ¢(g, g4) = ©(94, 9)- Additionally, we specify the frame in which
the proportional gains K7 and K, are expressed.

Velocity Errors

We start by recalling some kinematics [76, Chapter 2]. We are interested in the adjoint
map Ad, : se(3) — se(3) that transforms velocity vectors (elements in se(3)) from the body
coordinate frame to the inertial coordinate frame. Identifying se(3) with RS, this map is

R 0
Ady = Ad(ryp) = [ﬁR R] :
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Table 4.1: Error functions and transport elements on SE(3).

Error function Transport element Comments

¢1(RIR) + 5llp — pall%, (R" Ra4,0) ¢1(ge,1), not invariant,
symmetric, gains
expressed in inertial frame.
¢1(R{ R) + 311RG (p — pa)llk, 9794 ¢1(ge,), invariant,
not symmetric, gains
expressed in reference frame.
$1(RGR)+5lIRT (p — pa) %, 97" 94 $2(ge.r), invariant,
not symmetric, gains
expressed in body frame.

¢1(RY R)+35||(R" +RY)(p - pa) %, 9 94 $3(9e,r), invariant,
symmetric.

$1(RRY) + 5/I(R +Ra)(p — pa)lli, (Is,0) $3(ge¢), not invariant,
symmetric.

¢ (RR?;) + %”RTP - RdTde%(,Z (I3, RS pa—RTp) ©1(ge,2), not invariant,
symmetric.

More generally, since g , = g;l g is the relative motion from the body frame to the desired
frame, the reference velocity in the desired frame &; is expressed in the body frame via the
map Adg-1,, = Ad ,-1- These ideas lead to a natural definition of velocity error as

§e,r = § - Adge—’} §da

where the body and the reference velocities are expressed in the same frame. We call &,
the right velocity error. This is a useful definition since, with the aid of the homogeneous
representation and some matrix algebra, we have

, L /d d _ _ _
Jer = 97" (E9> + (agJ)g:gdlg-f—E-ydlg
= geor (€~ Ady-s &)

Therefore, every error function that relies on the right group error g, is compatible with
the right velocity error.

More generally the adjoint map is useful in describing transport maps. In what follows,
we parametrize the set of transport maps with the set of change of frames, that is with
SE(3). For each transport map 7, we call transport element the unique motion 7 € SE(3)
such that

g—Tga=9-(€—Ad;&).

In the Table 4.1, we report compatible transport elements for each error function. For each
couple (¢, 7), the compatibility is verified with some straightforward algebra. Note that the
choice of 7 depends only on the group error g, employed to define ¢.
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Control Laws

We here summarize the ideas exposed so far and design a proportional derivative feedback.
Additionally we devise a set of feedforward control laws by means of a minor extension
of Theorem 4.6. Let (-,-) denote the natural pairing between se(3) and its dual se(3)*,
and let (p,7) be a compatible pair of error function and transport element. We define
/P, /D € $¢(3)* by means of

<fP ) 77) = _L(g-n, 0)()0(97911)7 VT’ € 53(3),

fo=-Kq(—Ad; &), (4.15)

where K : 5¢(3) — s¢(3)* is a self-adjoint (symmetric) and positive definite. For example,
from the first row of Table 4.1 we compute

_ SkEW(KlRe)V _ Q- RZQd

where (Re,pe) = (RTR, p — pa), and likewise from the third row

fot fo = — skew(K1Re)" + (Kaope) X pe| % Q - RTQ,
P D RTK2pe d vV — Rz" (Vd + Qg x pe) )

where (Re,pe) = (RYR, RT(p — pg)). Next, we define a family of feedforward control laws
as

d
fFF = — ad’fAdT £4) € + ]IE (Ad-,— gd) +S; (687 gd)a (416)

where the bilinear operator S, : s¢(3) x s¢(3) — se(3)* is skew symmetric with respect to
its first argument, i.e., it holds

(Sr(&esm),€e) = 0, Vi € se(3). (4.17)

For example, corresponding to 7 = g~1g4, (second, third and fourth row in Table 4.1, right
group error g, r) and 7 = (I3, 0), (fifth row in Table 4.1, left group error g, ¢), an appropriate
choice of S; leads to the simple feedforward controls:

frrr = —adfTAdy-1,, & + TAdg-1y, &,
frre = —adg, T6 + T&,.

Note that, with the corresponding definition of Ad and ad operators, these choices are the
same employed for the attitude tracking problem in Lemma 4.9.

Lemma 4.10. Consider the system in equation (3.11) and (3.12). Let {ga(t),t € Ry}
denote the reference trajectory and let £ = gd_lgd € s5¢(3) denote its bounded body-fized ve-
locity. From Table 4.1, let ¢ be a quadratic error function with constant min,;(k; +k;), and
let 7 be a compatible transport element. Also, let S, be a bilinear operator satisfying (4.17),
and according to equations (4.15) and (4.16), let

f=fe+ o+ frr € se(3)".

Then the total energy v(g,94) + %H{ — Ad; &4||? converges exponentially to zero from all
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ingtial conditions (9(0),£(0)) such that

#(9(0),4(0)) + 5160) — Ad (o) GO < muin(li + ky)

In what follows we present a sketch of the proof. First, the proportional and derivative
feedback are devised according to the design procedure in Section 4.2, so that the only
difference with the design in Theorem 4.6 regards the feedforward control. In fact, the
latter theorem can be extended as follows.

Lemma 4.11. Let the map Sy, : TyQ X TrQ — T;Q satisfy
S(q,r) (XQ7 1/7‘) : Xq =0,
for all X4 € T,Q and Y, € T;.Q. Also consider the boundedness condition:

sup  [|[VTqm + M(I’lSHM < oo0. (B2)
(¢,r)EQXQ

The statement of Theorem 4.6 holds true if we set F = Fpp + Fyr + S(é,7) instead of
F = Fpp + Frr, and if we assume (B2’) instead of condition (B2).

The proof of this statement is a straightforward modification of the proof of Theorem 4.6.
Thus we only need to show that feedforward action frr in equation (4.16) differs from the
one defined in the main theorem, call it ffg, by a skew symmetric operator. Indeed, using
some of the tools introduced in Section (2.4), we compute

d
frr = 1V (Adi &a) + - (Adi&a)

where the map ,V : g x g — g is defined in equation (2.12), and frr = fip when the
operator S; is defined as

(Tlee, Ads €] +ad{a, ¢, TE — adg, (Ads €0) ) -

N | =

Sr(€e,€a) =



Chapter 5

Exponential Stabilization of Relative
Equilibria of Underactuated Systems

In this chapter we present some stabilization techniques for underactuated mechanical sys-
tems. We focus on relative equilibria arising from one-dimensional symmetries. Recall
that a mechanical system admits a symmetry whenever the Lagrangian is invariant under
a group action on the configuration manifold. When this happens, it is possible to have
steady motions, called relative equilibria, along the group action. The key design idea is
to distinguish between horizontal forces, which preserve the momentum, and vertical forces
that affect it.

The chapter is organized as follows. In Section 5.1 we review some key notions on the
theory of nonlinear stabilization. Section 5.2 presents some concepts about symmetries and
relative equilibria. An effort is made to present only the necessary notions. Section 5.3
presents the control design with assumptions, statement of the main result and proof. Fi-
nally, in Section 5.4 we apply the technique to a planar body with two forces and a satellite
with two thrusters. A preliminary version of this chapter was presented in [20]; the treat-
ment builds on the previous contributions in [60, 47].

5.1 Review of Stabilization Theory for Nonlinear Sys-
tems

In this section we review some basic tools in stabilization of nonlinear control systems.
A combination of Lyapunov techniques and controllability analysis turns out to be quite
useful.

Nonlinear analysis

Let M be a smooth n-dimensional manifold and consider the smooth control system
&= f(z)+ > gi(@)ui. (5.1)
i

Let z¢ be an equilibrium point for f, and assume V : M — R, is a smooth function and
€ > 0 such that

V(z) >0,  Vz#um € Be(ao), (5.2)

53
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where B¢(zg) is a neighborhood of zq. If

0=L,V(@) 659

ui(z) = —Lg, V(z),

the solution z(t) of the differential equation above with initial condition in a neighborhood

of zo will converge to the largest invariant set contained in L4, V() = 0. This is proven via
Lasalle’s principle.
Additionally, if

dim{g;,ady gi, - .. ,ad} gi, Vi}(zo) = n, (5.4)

the solution z(t) will converge asymptotically to the point zo. This is proven as follows.
Points z in the invariant set of f that satisfy Ly, V() = 0 must also satisfy L5L,,V (x) =0
for all k. But this is equivalent to satisfying Lad;; 5.V (z) = 0 for all k. Equation (5.4) says

that the distribution {ad’} 9i, Vi, k} has full rank at z¢ and therefore in a neighborhood of the
point. It follows that the invariant set is locally characterized by 0 = LxV(z) = (dV, X) (z)
for any tangent vector X, € T, M. Therefore, the invariant set coincides with the isolated
solution of dV(z) = 0, which is zg, thanks to equation (5.2).

More refined tests are discussed in Section 10.2 in [78]. We summarize the previous
discussion as follows.

Lemma 5.1. Consider the nonlinear control system (5.1) with x taking values on a smooth
manifold M and let o be an equilibrium point. Assume the function V and the feedback law
u(z) satisfy the conditions in (5.2) and (5.3). The point xq is locally asymptotically stable
if the rank condition (5.4) holds.

Linearized Analysis

Next we examine the stability properties of the linearization of the control system (5.1).
This analysis leads to a stronger stability result for the original nonlinear system.

Consider a local chart about the point 2¢. With no loss in generality we let € R" denote
a coordinate system about the point ¢ = 0. In addition, we let f, g;,V and so forth denote
the corresponding quantities in the coordinate system. The first observation is that the
rank condition in equation (5.4) correspond exactly to the so-called linear controllability
test. In other words, if condition (5.4) holds, then the nonlinear control system (5.1) is
linearly controllable at the point zg; see Section 3.1 in [78].

To linearize the system in equation (5.1) and the feedback in equation (5.3), we introduce
the symbol O(z*) to denote a quantity that is of the same order as ||z||*. We compute the
necessary Taylor series and employ the following standard notation:

f(z) = Az + O(z?),
gi(x) = b; + O(z),
V(z) = %xTPm + O(z?).

Accordingly, we compute



5.1 Review of Stabilization Theory for Nonlinear Systems 55

and we can now state the following result.

Lemma 5.2. Consider the nonlinear control system (5.1) with z € R™ and let 0 be an
equilibrium point. Assume the conditions in equations (5.2), (5.3) and (5.4). If the second
variation of V. at x = 0 is positive definite, i.e., if

8’V
0x0x

(0)=P>0, (5.7)

then the point x = 0 is locally exponentially stable.

Proof. We claim that the point 2 = 0 is asymptotically stable for the linear system & =
Az +>" biu;. But, because the system is linear, the convergence is exponential and therefore
x = 0 is an exponentially stable point for the original nonlinear system.

To prove that x = 0 is an asymptotically stable point for the linear system & = Az +
> bju;, we need to show that the triplet (A4, b;, P) satisfies the assumptions in the previous
lemma;

(i) The condition in equation (5.2) on 27 Pz being positive definite is explicitly assumed
as equation (5.7).

(ii) The two equalities in equation (5.3) become
1 - . 1 7
0=2L4, 5:1: Px ), and u; = Ly, ix Pzx ),

where ; is now the linearization of the input for the nonlinear system u; = L,V ().
Both these equalities are consequences of equations (5.5) and (5.6).

(iii) Regarding the condition in equation (5.4), it is a well-known fact that ad']i gi(zo) =
(—1)kA*b; when A and b; are defined as above; see [78].

O

Remark 5.8 (On exponential versus asymptotic stability). Exponential stability is a much
stronger property than asymptotic stability, since an exponentially stable system automat-
ically enjoys various robustness and optimality properties; see for example the treatment in
Chapter 4 in [51].

A specific result we will need later is the following. Consider an interconnected system
of the form

&= f(z) +yg(z,y)
Z) = h(y)7

where z € R",y € R, and f, g, h are smooth vector fields of the appropriate dimensions.
If £ = 0 is an exponentially stable equilibrium point for f and similarly y = 0 is an
exponentially stable equilibrium point for h, then the point (z,y) = (0,0) is exponentially
stable for the interconnected system above. The direct proof is based on linearizing both
vector fields and recalling that the eigenvalue of a matrix in upper block triangular form
coincides with the eigenvalues of the diagonal blocks.
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5.2 Mechanical Systems with Abelian Symmetries

Consider a simple mechanical control system with equations of motion

m

M, Vi = —dV(g) + Y F*(q)us. (5.8)
k=1

Roughly speaking, a symmetry of the mechanical system is a group action that leaves
kinetic and potential energy invariant. We refer to [52, 72] for the most general definition of
group action and principal fiber bundle. In what follows, we present a simplified treatment
for the trivial one-dimensional case.

The mechanical system (5.8) is said to have a trivial Abelian symmetry if the following
two fact hold. First, the manifold ) can be written as @ = R X G, where (G, +) is either
the torus or the real line. Correspondingly, the configuration is ¢ = (r,z) € R x G, and the
smooth diffeomorphism of @ defined by (y, (r,z)) = (r,z+y) is called group action. Second,
the kinetic energy (M,q, ¢) and potential energy V' (q) are invariant under the action of G,
that is

LBQVZO, and QBLMZO.

The vector field 0/0x is called an infinitesimal isometry or the infinitesimal generator of the
group action.

Whenever a symmetry is present, the momentum map p is defined as a one-form, that
is a map T'QQ — R, that satisfies

W) 2 (X, ) X, €T,Q

The well-known Noether’s theorem states that the value of the momentum map is constant
along the solutions to the unforced mechanical system.

Theorem 5.4. Consider the mechanical control system in equation (5.8) with a Abelian
symmetry. It holds

D) = (P (59

Proof. As described in [35], the vector field 8/0z enjoys the so-called Killing property

d
(Xy, Vx, 50 =0, VX, €T,Q.

Using this property and some equalities described in Section 2.3, we compute:

%u(d) = Vn(d) = Vyd. 8%» = (Vy4d, %» + (4, Vq'%»
= (M (—dV(g)+ > Fruy), %))
k=1

= —(V(0), )+ 3, T

k=1

The result follows from 8V /dz = 0. O
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Given po € R, we define the locked inertia I(r) and the amended potential V,,,(r) as

10) = (o o),

Vio(r) = V() + 57() 7,

where we write V(q) = V(r) thanks to 0V/dz = 0. A relative equilibrium is a pair (uo, 7o),
where po € R and 79 € R is a critical point of V,,, i.e., a point such that dV),,(ro) vanishes.
Notice that, while this definition differs from the one presented in Chapter 3, the two can
be reconciled within the more general framework presented in [72].

If (po,70) is a relative equilibrium, then any curve of the form {(r(t),z(t)) € Q|r(t) =
ro, £(t) = po/I(ro), t € R} is a solution to the unforced mechanical system (i.e., equa-
tion (5.8) with ug = 0). In other words, a relative equilibrium is an “equilibrium solution”
in the reduced space R x G that corresponds to a family of solutions in the full phase space.

Horizontal and Vertical Codistributions

Finally, we introduce the notion of momentum preserving forces. We define the horizontal
codistribution hor, as the annihilator of the distribution spanned by 8/0z, that is:

)
hor, = Ker spange g){ %}

According to equation (5.9), a force F is horizontal, i.e., it takes values in horg, if and only
if it preserves the momentum p. Next, we let hor, F denote the largest horizontal subspace
(subbundle) of F. The dimension of this subspace is either m — 1 or m, depending on
whether the external forces affect the momentum or not.

5.3 Exponential Stabilization of Relative Equilibria

In this section we set up and solve a stabilization problem for an underactuated mechanical
system moving along a relative equilibrium.

5.3.1 Problem Statement and Control Design

In what follows we let (o, 70) be a relative equilibrium for the mechanical system with
Abelian symmetry in equation (5.8). We loosely state the control objective as follows:

Problem 5.5. Design a feedback law u = u(g, ¢) such that (p(4(t)),r(t)) converges expo-
nentially fast to (uo,7o)-

We devise our control strategy on the basis of the following assumptions. First, we
assume that the horizontal input codistribution is (m — 1)-dimensional and integrable, i.e.,
we assume that there exist m — 1 functions ¢’ : R — R such that

hory F = spange(gy{d¢’, ... ,d¢"™'}. (A1)

The dimensionality assumption implies that there exists a covector field FV** that completes
F and such that in a neighborhood of r¢ the following holds

9
" Ox

<FVel'

V) = 1. (5.10)
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Therefore we have decomposed the set of inputs F into horizontal forces (momentum
preserving) and a complementary force acting on the momentum. Accordingly, we re-
parameterize the input force as

m m—1 )
ZFkuk = F""Uyer + Z d¢z Uhoriz,i
k=1 i=1
so that the following holds
[t = Uvyer- (5.11)

Condition (A1) implies that the set of allowable inputs F can exert a force of the form dViqpk,
for any function Vigpk = Viabk(9', ... ,#™1). Notice that this is a different requirement
than asking for F itself to be integrable.

Next, we require the second variation of the amended potential V,,(r) to be positive
definite over the “uncontrolled” subspace Ker{hor, 7} C T,.R. More precisely, we require

that
0V
<87‘i67'j (7‘0)) > 07 (A2)

when restricted to the subspace
Ker spange ) {d¢' (ro), . .. ,d¢™ ' (ro)} C Tr, R.

This requirement is closely related to the condition given in [86] for the notion of orbital
stability of a relative equilibrium. Additionally, this requirement is the translation to the
present setting of the condition in Proposition 2.3 of [98]. As in the latter reference, this
property allows us to render positive definite the (amended) potential and to prove Lyapunov
stability.

We are designing a Lyapunov function for the closed loop system which is positive definite
in all (n — 1) directions (one less than the dimension of the configuration space: it is the
symmetry direction). In the language employed in [60], all symmetries of the mechanical
system are broken and neither drift nor any constant final error is allowed.

Finally, we require the following controllability condition. Set uye; = 0 (i.e., only
horizontal forces are allowed) and let (A, Bhoriz) denote the linearization about the point
(r,7, p) = (0,0, po) of the mechanical system in equation (5.8). We say that the horizontal
forces have full linear controllability rank if

rank [Bhoriz ABhoriz Tt AQ(n_l)Bhoriz] = 2(” - ]-) (AS)

This condition allows us to prove asymptotic and exponential stability. A similar statement
can be expressed in terms of an involutivity condition of certain Poisson brackets, see [98],
or in terms of the notion of zero-output detectability, see [30]. Our version is motivated by
the treatment in [78, Chapter 3]. Note that in assuming (A1) and (A3) we are excluding
single input (m = 1) systems.

Finally, we state the main result.

Theorem 5.6. Consider the simple mechanical control system in equation (5.8) and let
(10, 70) be a relative equilibrium. Let assumptions (A1,A2,A8) hold. Then there exist (m—1)
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positive constants kpi1, ... ,kp(m—1) such that

m—1
Vuo (T) + Z kpi¢i(r)2 >0,
i=1

for all v # Ty in a neighborhood of ro. Let kyer and kq1,- .. , kqim—1) be positive constants
and define

Uyer = _kver(ﬂ(q.) - ,U/O)a
Uhoriz,; = _kpi¢i(r) + kdiqai(ra 'f'), Vi= ]-a e, MM — 1.

Then (ug, o) is locally exponentially stable.

Proof. The proof is organized in two steps. First we examine the evolution of the momentum
p. From assumptions (A1), equation (5.11), and the definition of uyer, the closed loop system
is given by

fo = —kver(1t — po),

and therefore u converges exponentially fast to ug-

Next we examine the evolution of the variable r under the assumption of constant mo-
mentum p(0) = p(t) = po. Because of the symmetry we can perform the so-called Hamilto-
nian reduction procedure and from the full system in equation (5.8) we obtain a mechanical
system defined on the manifold R. This procedure is described in detail for example in
Chapter 4 in [1]. According to this treatment, there exists a Riemannian metric M/ on the
manifold R such that the following quantity, called the reduced Hamiltonian, is a constant
of motion:

3 1.
Hy(r,7) = 5”7'”?\4; + Vio (1)
In addition, the unforced system has equations of motion of the form
M V3t = =V, + By, (7), (5.12)

where the (gyroscopic) force G, is a tensor field T R — T*R and depends linearly on pq.
Similarly, the closed loop reduced system can be written as

m—1

M}Vl = =dViy + Buo(F) = 3 (kpiqﬁi + kd,-qB,-)dqsi. (5.13)

i=1

At kq; = 0, this reduced system admits the conserved quantity H,(r,7)+ 3 3" kpi(¢*)%. Due
to assumption (A2) and Proposition 2.3 in [98], there exist sufficiently large kp; such that
this conserved quantity is a positive definite function (i.e., it satisfies equation (5.2)). This
is the first statement in the theorem above.

Setting kq; > 0 the system is a Hamiltonian system with dissipation and also the re-
lationship in equation (5.3) holds. Next, due to the controllability assumption (A3), the
result in Lemma 5.1 applies to the closed loop system in equation (5.13) and (rg,0) is an
asymptotically stable equilibrium point. This is the same analysis in [98] and [47]. Local ex-
ponential stability can be proven because the reduced Hamiltonian (plus potential shaping)
is a quadratic Lyapunov function; see Lemma, 5.2.

Finally, since u(¢(0)) # o, the full system consists of an exponentially stable subsystem



60 5 Exponential Stabilization of Relative Equilibria of Underactuated Systems

forced by an exponentially decaying perturbation. To prove local exponential stability, we
recall the discussion at the end of Section 5.1, with z = (r,7) and y = p — po. That
discussion applies because the perturbation to the reduced Hamiltonian system is of order
at least linear on p — po. O

5.3.2 Remarks

There are two advantages of the controller described in the previous theorem over a standard
linear controller based on linearization: First, by investigating the amended potential V,,,
we can establish the region of attraction of our controller. Second, our design is indepen-
dent of the exact knowledge of the inertia coefficients, leading to robustness to parameter
uncertainty.

The assumption that the amended potential be positive definite over the “uncontrolled
subspace” is quite strong. In some examples our requirement is that the unforced system
has an “orbitally stable” (roughly the equivalent of Lyapunov stable) relative equilibria;
for more details see [86]. Should this condition fail, we refer the reader to the “controlled
Lagrangians” methodology introduced in [11].

In the models of mechanical systems described so far, we have always neglected dissipa-
tive effects. In fact, it would not be difficult to include them into the analysis in Theorem 5.6.
A simple strategy would consist of canceling the vertical component of the dissipative force
in order to maintain the existence of the relative equilibrium. The effect of the horizontal
dissipative component is stabilizing.

5.4 Applications to Vehicle Control

We present two design examples for models of vehicles. While both the planar body and
the satellite have a full SE(2) and SO(3) symmetry, we focus on the stabilization of a one-
dimensional symmetry: translation (or rotation) along the major axis for the planar body
(for the satellite).

As a side comment, we emphasize that our analysis of the positive definiteness of the
amended potential agrees with the results in [71], [59] and [60].

5.4.1 A Planar Rigid Body with Two Forces

We consider the model of a planar body moving in an idealized fluid; see [60] for more
details. This is the example in Section 3.2.1 except for a different Lagrangian L = £ Jw? +
Fmgv? + %myvj where we assume J > 0 and m, > my > 0. The two control inputs
consist of forces {f1, f2} applied at a distance h from the center of mass; see Figure 3.2 in
Section 3.2.1. The equations of motion are written as:

f=uw Jw = (Mg — my)vgvy — huo
& = vy cos(f) — vy sin(9) MgV = MyWy + Uy
§ = vy sin(#) + vy cos(d) Myly = —MgWvy + Us.

Even though the planar body has a full SE(2) symmetry, we focus on the Abelian group
action (x, (6, z,v)) — (6,2 + x,y). According to the definitions in Section 5.2, we compute:

p = (my cos®(8) +my sin®(0))& + (my — my) sin() cos(8)y,
I(r) = my cos*(8) + my sin®(6),
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Figure 5.1: Force decomposition and integrability in the planar body example.

and V,,,(r) = § p¢/I(r). The control goal is to stabilize the relative equilibrium described
by r = (0,y) = (0,0) and p = po = mao.
Assumption (A1) holds because

F = spance (sp(2)){f1, f2}
= spalce (sp(2)){c0s(#)dz + sin(f)dy , — sin(f)dz + cos(f)dy — hdf}
= Spalce (sg(2)) 1Y — hcos(0)d6} + spance g2y {dz + hsin(6)do},
where one can verify that hory ' = spange(sg2)){d(y — hsin(f))} and where we have

chosen dz + h cos(6)dé to complete the input codistribution. Regarding (A2), we compute
the second variation of V,, as

02V, 0,0)) = Mo [me—my 0 ’
00 By m2 0 0
and we verify that it is positive definite for m, > m, and po # 0, when restricted to

the subspace Kerspange (gg(s)) (dy — hcos(0)dd) = spancm(SE@)){a% + hcos(d)Z}. The
controllability assumption (A3) can be easily verified. Summarizing, the control law

) = (o8 ooy | bty = homs bty o contoy.

achieves local exponential stability, provided pg = mgvy # 0.

5.4.2 A Satellite with Two Thrusters

We consider the model of a satellite with two thrusters described in Section 3.2.2. The
attitude and the body fixed velocity are (R, ), the kinetic energy is $Q7J(Q, and the two
inputs consist of torques about the first and second axes. The equations of motion (3.10)
are:

R=RQ
IQ=JAxQ +ejuy(t) + eus(t), (5.14)
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where {e1,es,e3} denotes the standard basis on R?, i.e., e = (1,0,0), e2 = (0,1,0) and
es = (0,0,1). We assume J = diag {J1, J2, J3} with J1 > Jo > Js.

Even though the satellite has a full SO(3) symmetry, we focus on the Abelian group
action (x,R) — exp(xe1)R where the exponential map exp : s0(3) — SO(3) is defined in
Section 2.2.

Because the later computations are better performed in coordinates, we now choose a
convenient parameterization and obtain various coordinate expressions. We write R as

R(a, B,7) = exp(a &) exp(3&,) exp(783),

that is, we parameterize! SO(3) by a set of Euler angles (o, 3,7), that is singular at 8 =
+7/2. The unusual order of rotation is well-suited to the symmetry we consider and to
the set of input vector fields. The one-dimensional symmetry reads in these coordinates
as (x, (a,8,7)) = (a+ x,8,7)- The Jacobian relating Euler angles rates and body fixed
velocity is

cos(f) cos(y) sin(y) 0| &
Q= |—cos(f)sin(y) cos(y) 0| (B8],
sin(Q) 0 1| |y

and accordingly the inertia matrix M (with respect to the basis {%, %, %}) is:

Js sin?(B) + cos?(B)(J1 cos?(y) + Jasin®(7))  (Ji — J2) cos(B) cos(y) sin(y)  J3sin(B3)
(J1 — Jo) cos(B) cos(7y) sin() Jy cos?(y) + Jy sin?(y 0
J3 Sin(ﬂ) 0 Ja

The one-dimensional symmetry is illustrated by 0M/0a = 0. One way to write the two
input one-forms with respect to the basis {da,dg,dv} is to exploit the notion of “work.”
This way it is possible to show that:

! = (cos(B) cos(y))da + sin(y)d
f2 = (—cos(B) sin(y))da + cos(y)dg.

According to the definitions in Section 5.2, we compute:

p = (Jssin(B)? + cos(8)?(Ji cos(y)? + Jo sin(v)?)) &
+3(J1 = J2) cos(B) sin(27)B + Jz sin(6)7,
I(r) = Jy cos?(B) cos®(7y) + Js sin?(B) + J» cos®(B) sin? (7),
and V,,(r) = 1 p¢/I(r). The control goal is to stabilize the relative equilibrium described
by r = (8,7) = (0,0) and p = Jidp. This problem is often referred to as “spin axis

stabilization.”
Assumption (A1) holds because

F = spance(sos) /1, f2}
= spange so(3)) 1 (cos(B) cos(v))der + sin(y)dB, (—cos(B)sin(y))de + cos(vy)dB}
= spange 50(3)) {48} + spance so(s) {dal,

IThis local chart of SO(3), obtained via repeated single exponentials, is referred to as “exponential
coordinates of the second kind.”
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where one can verify that hor, F = spange(so(3)){d8} and where we have chosen da to
complete the input codistribution. Regarding (A2), we compute the second variation of V,,

as
62VHO(O 0) _ M [h=J 0
8oy Bl 0 SL-h)

and we verify that it is positive definite for J; > Jy and pg # 0, when restricted to the sub-
space Ker spange sos)) (d8) = spancm(so(3)){%}. The controllability assumption (A3)
can be easily verified. Summarizing, the control law

) = ) [l

achieves local exponential stability, provided po = Jidg # 0.
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Chapter 6

Controllability of Underactuated Systems

In this chapter we investigate the local controllability properties of underactuated mechan-
ical systems starting at rest and present various tests for controllability of these systems.
We also present numerous examples that provide insight into these controllability results.

The chapter is organized as follows. In Section 6.1 we review the notions of local con-
trollability following Sussmann [93] and Kawski [48], and in Section 6.2, we review the
notion of local configuration controllability originally developed by Lewis and Murray [67].
Section 6.3 presents an extension to systems on Lie groups and Section 6.4 is dedicated
to systems with impacts. The results on controllability on Lie groups are joint work with
Andrew Lewis; the results on systems with impacts are joint work with Milo§ Zerfan. These
results were originally presented in [24, 29].

6.1 Review of Local Controllability Theory for Nonlin-
ear Systems

In this section we review some local nonlinear controllability tests as presented in [48]. For
the more basic aspects we refer to [78]. Consider the nonlinear control system

m
i=X(g) + ) Yi(quy, (6.1)
j=1
where ¢ takes values in the n dimensional manifold @, the vector fields {X,Y1,...,Y,,} are

analytic, the controls u are bounded and measurable, and ¢(0) = ¢ is an equilibrium point,
ie., X(go) =0. We let Y = (Y1,...,Y,,;) denote the family of input vector fields.

For T > 0, a solution of a control system of the system (6.1) is a pair of piecewise curves
{(g,u)(t),t € [0,T]} that satisfy the equation (6.1). Let V C @ be a neighborhood of go,
and define the set of reachable states as

Rg(qg, <T)= U {¢1 € Q| 3 (g,u)(7) solution to (6.1) such that
0<t<T
q(0) = qo, q(7) € V for 7 € [0,t] and q(t) = ¢ }-

The system (6.1) is small time locally accessible from qq if the set ’Rg (g0, < T) has a non-
empty interior for every T' > 0. The system (6.1) is small time locally controllable (STLC)
from qq if it is accessible and if gy belong to the interior of Rg(qg, <T) for every T > 0.
Recall the definition of Lie bracket in equation (2.1) and define the involutive closure
Lie(X,Y) as the family of vector fields obtained by taking iterated Lie bracket of vector

65
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fields in {X,Y}. Chow’s theorem leads to the following characterization: the system (6.1)
is locally accessible from gqp if and only if

dim Lie(X, Y)(q0) = n.

This is the so-called Lie algebra rank condition (LARC).

Only sufficient conditions for local controllability are currently known and they re-
quire a much more refined approach. In particular, we need the following two definitions.
Given the (m + 1)tuple of non-negative integers (k,l1,... ,lm) = (k,1), let the distribution
Lie®) (X)) be the linear span of all the Lie brackets that contain the X factor! k times
and the Y; factor [; times for all j. Given a weight 8 € [0,1], and two (m + 1)tuples
of non-negative integers (k,l) and (k',l'), define the ordering (k,l) <4 (k',1') whenever
Ok + 3, 1; <Ok + 32,15

Theorem 6.1 (Sussmann [93]). The system (6.1) is STLC from qq if it is accessible from
go and if there exists a weight 6 € [0,1] such that whenever k is odd and ly,... ,l,, are all
even, then

L (X, M)(@) € 37 L™ 2)(a).
(k' 0") <o (k1)

Two important examples are particular cases of the theorem:

(i) By setting € equal to zero and considering brackets with only one factor from J, i.e.,
brackets with ) j l; = 1, one can recover the fact that linearly controllable systems
are STLC.

(ii) For driftless systems, i.e., systems with X (¢) = 0, local accessibility is equivalent to
STLC since in the theorem & is always necessarily zero (hence never odd).

Remark 6.2 (Good versus bad brackets). This condition for controllability can be equiva-
lently stated as follows. We say that a Lie bracket is bad if it contains an odd number
of X factors and an even number of each Y; factors. Otherwise we say it is good. The
system (6.1) is STLC from g if there exists a weight € such that every bad Lie bracket
is a linear combination of lower order good Lie brackets, where the order of a bracket is
Ok + 3,15

6.2 Controllability of Mechanical Control Systems

In this section we investigate the controllability properties of a control system described by
an affine connection. Given a manifold @), an affine connection V and a family of input

vector fields Y = {Y1,...,Yn}, the (generalized Euler-Lagrange) equations of motion are
m
Vi =3 Y(@)u;. (6:2)
j=1

In what follows, we consider initial states that have zero velocity, and we focus on the
evolution of the configuration variables as opposed to the full state. In other words, one
question of interest is how to characterize the set of reachable configurations when the initial
velocity of the system is zero.

IThis heuristic definition can be made precise via the notion of free Lie algebra, see [93].
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For T > 0, a solution of the system (6.2), is a pair (q,u), where ¢ : [0,7] — @ is a
piecewise smooth curve on @, u : [0,7] = R™ is an admissible input in 4™ and (g(¢), u(t))
is a solution to the equations (6.2). Let go € @, let V' C @ be a neighborhood of ¢o and
let W C T'Q be a neighborhood of (go,0), where 0 here denotes the zero vector in T, Q.
For T > 0, define the set of reachable configurations as

RZ)(KIO; <T)= U {¢1 € Q| 3 (g, u)(7) solution to (6.2) such that
st (,)(0) = (0,0), q(r) € V for 7 € [0,4] and q(t) = ¢ }-

Similarly, define the set of reachable states as

R%VQ (g, <T) = U {(q1,41) € TQ| 3 (g, u)(7) solution to (6.2) such that
0<t<T

(¢,9)(0) = (90,0), (¢,4)(r) € W for 7 € [0,1] and (g,¢)(t) = (g1,41)}-

The following two definitions characterize different notions of accessibility for mechanical
systems:

Definition 6.3. The system (6.2) is small-time locally accessible at qo and zero velocity if
RZ,VYQ(qo7 < T) contains a non-empty open subset of T'Q) for all T > 0 and for all neighbor-
hoods W of (go,0).

Definition 6.4. The system (6.2) is small-time locally configuration accessible at qo if
’Rg (g0, < T) contains a non-empty open subset of @) for all T > 0 and for all neighbor-
hoods V of ¢q.

Recall from the previous section that, corresponding to the operation of Lie bracket
between vector fields, we defined the involutive closure of X, denoted by Lie(X), as the
family of vector fields obtained by taking iterated Lie brackets of the fields in X. Now we
perform the equivalent construction for the symmetric product. The latter was defined in
equation (2.6) as

(X:Y)=VxY +VyX.

We define the symmetric closure of X', denoted by Sym(X), as the family of vectors obtained
by taking iterated symmetric products of the fields {Xy,... , X}

Theorem 6.5 (Lewis and Murray [67]). Consider the system in equation (6.2) and let
Y={%,...,Yn}.

(i) The system is locally accessible at qo and at zero velocity if and only if
dim Sym(Y)(go) = n.
(i) The system is locally configuration accessible at qo if and only if

dim Lie(Sym(})))(qo) = n.

Next, we present three notions of controllability for the mechanical system (6.2). In
addition to the “classic” small-time local controllability, we also consider two weaker versions
called small-time local configuration controllability and equilibrium controllability. Notice
that the latter property is not a local notion.
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Definition 6.6. The system (6.2) is small-time locally controllable at qo and at zero velocity
if, for all T > 0 and for all neighborhoods W of (go, 0), the set of reachable states R%VQ(qo, <
T) contains a non-empty open set and if (go,0) belongs to this set.

The system (6.2) is small-time locally configuration controllable at go (STLCC) if, for all
T > 0 and for all neighborhoods V of ¢g, the set of reachable configurations ’Rg (q,<T)
contains a non-empty open set and if go belongs to this set.

The system (6.2) is equilibrium controllable on V' C Q, if, for ¢1,q2 € V, there exists
an input {u(t),t € [0,T]} and a solution {g¢(t),t € [0,T]} such that ¢(0) = ¢1, ¢(T) = ¢o,
q(t) € V for all ¢t € [0,T], and ¢(0) = 0, ¢(T') = 0.

Similarly to the STLC treatment in the previous section, we establish sufficient condi-
tions for controllability via two additional notions. Given an m-tuple of non-negative inte-
gers I = (I1, ... ,lm), let the distribution Sym" () be the linear span of all the symmetric
products that contain the Y; factor ; times for all j2. Given two mtuples of non-negative
integers [ and /', define the ordering I < 1" whenever 3. 1; < 3, 1}.

Theorem 6.7 (Lewis and Murray [67]). Consider the system (6.2):
(i) The system is STLC (or STLCC) from qq if it is locally accessible from qo (respectively

locally configuration accessible) and if whenever Iy, ... 1, are all even then
Sym@(W)(g0) € Y Sym™)(¥)(q0)-
<1

(i) The system is equilibrium controllable on V, if it is STLCC at each q.

The statements in Theorem 6.5 and 6.7 are direct consequences of the results in [93]
and [67]. Notice that these tests are performed on a reduced space, i.e., on @) as opposed
to T'Q). Additionally, they have have a simple interpretation; symmetric products of input
vectors identify which velocities are reachable, whereas Lie brackets of reachable velocities
identify which configurations are reachable.

Single-input systems (with n > m = 1) always fail the sufficient condition for both
controllability notions. Indeed, if only one input Y vector is available, then accessibility
implies span{Y} C Sym® (Y) and this violates the sufficient condition from the theorem:
Sym® (Y) € Sym™ (V) = span{Y'}. Further, it can be proven that single-input systems are
neither STLC at zero velocity nor STLCC, see [65]. Incidentally, notice that more general
single-input systems (e.g., an inverted pendulum on a cart) are possibly linearly controllable
and therefore STLC.

Bad versus Good Symmetric Products

This condition for controllability can be stated equivalently as follows. The order of an
iterated symmetric product of factors from Sym(X) is the total number of factors. We say
that a symmetric product from Sym(X) is bad if it contains an even number of each of the
vector fields in X'. Otherwise, we say that the symmetric product is good. For example, the
symmetric product ((Y7 : Y3) : Y1) has order three and it is good; the symmetric product
(({(Y1 : Y3) : Y3) : Y1) has order four and it is bad.

Finally, the system (6.2) is STLC (or STLCC) from ¢ if it is locally accessible (re-
spectively locally configuration accessible) and if every bad symmetric product is a linear
combination of lower-order good symmetric products.

2This heuristic definition can be made precise via the notion of symmetric algebra, see [67].



6.3 Controllability of Mechanical Control Systems on Lie Groups 69

6.3 Controllability of Mechanical Control Systems on
Lie Groups

This section deals with the controllability properties of mechanical systems on Lie groups

as described in Section 3.2. For the sake of brevity, we present directly the controllability

results, and the corresponding accessibility results are obvious. Given a Lie group G and

corresponding algebra g, an inertia tensor I and a set of input vectors, the Euler-Poincaré
equations of motion are:

g=9g-§

§=T"ad; IE+ ) byu,(t),

j=1

(6.3)

where £ is the body fixed velocity and takes values on the Lie algebra g.

As discussed in Chapter 2, the equations (6.3) are of the form of equations (6.2). There-
fore, the controllability definitions and tests from the previous section apply to the new
setting unchanged. However, some important simplifications take place. In particular, re-
call that the input vector fields and the inertia metric are left invariant and that all of the
relevant computations can be performed on the Lie algebra g. For example, from equa-
tion (2.13) the symmetric product between vectors in g is

(€:m) £ —1""(adg In+ adj I€).

Therefore, symmetric and involutive closures can be computed by algebraic means on g.

We present the tests in terms of the notion of bad and good symmetric product. Given a
family B of vectors in g, we denote by Lieg () and by Sym(B) the involutive and symmetric
closure of B in g. The order of a symmetric product from Sym(B) is the total number of
factors, and a symmetric product is bad if it contains an even number of each of the vectors
in B; otherwise, it is good. We can now state a stronger version of Theorem 6.7:

Proposition 6.8. Consider the system (6.3):

(i) The system is STLC at zero velocity if the subspace defined by Sym,(B) has full rank
and every bad symmetric product is a linear combination of lower-order good symmet-
ric products.

(i) The system is both STLCC and equilibrium controllable if the subspace defined by
Liey (Sym,(B)) has full rank and every bad symmetric product is a linear combination
of lower-order good symmetric products.

Proof. The proof is a straightforward translation of the results in Theorems 6.5 and 6.7 to
the setting of invariant affine connections. O

Notice that the various controllability conditions are now expressed in a purely algebraic
way (no differentiation is required). This is remarkable since the system of equations (6.3)
presents strong nonlinearities. Additionally, the controllability conditions in the theorem
are independent of the base point g € G, as the invariance of the original system suggests.

Remark 6.9 (Comparison with literature). It is instructive to remark similarities and differ-
ences of our analysis with respect to the works in [12], [33] and [70]: while the accessibility
computations turn out to be similar, the key difference lies in our interest in the local
configuration controllability properties (as opposed to global full-state controllability).
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We conclude this section by investigating the controllability properties of the various
examples introduced in Section 3.2. We label various instructive choices of systems and
input forces and provide a catalog of accessible, controllable and configuration controllable
systems.

6.3.1 Planar Rigid Bodies with Combinations of Forces

Consider the planar rigid body described in Section 3.2.1 with input vectors by = %eg and
b = _Thel + %63. The relevant symmetric products are computed as follows:

(bl : bl) = 0,
—h
(bl : bz) = J—e3,
<b2 : bz) = ﬂ62,
(ba : (b2 1 b2)) = ;jh e3

We distinguish the following cases which depend on the availability of the two input vectors:

[PRB1] B = {b1}: the system is neither accessible at zero velocity nor configuration ac-
cessible, as all symmetric products and Lie brackets vanish. An interpretation of this
result is that, for all possible inputs, the body is only allowed to translate parallel to
the body fixed z-axis.

[PRB2] B = {b2}: the system is (small-time locally) accessible at zero velocity since the
subspace generated by the vectors {be, (b2 : b2}, (ba : {ba : b2)) } has full rank. However,
the sufficient condition for controllability fails to hold, as (b2 : b2) is a bad symmetric
product and it is not a multiple of any lower-order symmetric product (by is the only
one). Additionally, as mentioned above, the results in [65] show that the system is
neither STLC at zero velocity nor STLCC.

[PRB3] B = {b1,b2}: the system is STLC at zero velocity, since the subspace generated by
the vectors {by, by, (b1 : by)} has full rank and the bad symmetric product (bs : by) is
a linear combination of lower-order good symmetric products: by = —2b;.

6.3.2 A Satellite with Two Thrusters or with Two Rotors

Consider the satellite with thrusters described in Section 3.2.2. The input vectors are

by = Jilel and by = Jigeg. The relevant symmetric products and Lie brackets are computed
as

<b1 : bl) = <b2 : bz) = 0,

Jo—J1
<b1 : b2> = €3,

[b1,b2] = J

The controllability properties are as follows:

[ST] B = {b1,b2} and J; # Jo: if the satellite is not axisymmetric, then the rank of
{b1,ba,{by : ba)} is full and there are no bad symmetric products. Therefore, the
system is STLC at zero velocity. If the satellite is axisymmetric, i.e., J; = Ja, then a
simple analysis shows that the system is STLCC.
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Next, we consider a satellite with two rotors as introduced in Section 3.2.2. We compute
symmetric products and Lie brackets as

<b1 : bl) = <b2 : bz) = <b1 : bz) = 0,

and
1

€3,
(Jrot1—J1)(Jrot2—J2)
1

b1, ba],b1] =
[[ 1, 2]7 1] (Jrotl_.]l)2(.]2—-]rot2)e27

1
261.
(Jrot1—J1)(Jrot2—J2)

[b1,b2] =

[[b1,b2] , b2] =

[SR] B = {b1,b2}: the system is not accessible at zero velocity (every symmetric product
vanishes) and hence not STLC, but it is STLCC since the involutive closure has full
rank.

This result was partly expected but not trivial. Since the satellite-rotors system is not
subject to any external force, its total angular momentum is conserved. Therefore, it is
intuitively clear that the system cannot be accessible in both configurations and velocities.
However, the less trivial fact is that the system is STLCC. This means that, despite the
conservation law, any configuration can be reached, that is, any orientation R together with
any rotor angles (61,65).

6.3.3 An Underwater Vehicle with Three Thrusters

Consider the underwater vehicle introduced in Section 3.2.3, with the input forces depicted
in Figure 3.3. We compute some good symmetric products as

mao—mi h
(b1 : by) = e3 — es,
J3m1m2 Jsmz
mi—ms3 h
<b1 b3) = 2 — €6,
Jamims Jams
1 [ hn? h2 1 1
(bpibg)=—(—————+—)e
J1 J3 Jo m3 ma
and some bad ones as
2h 2h
<b1 : bl) = 0, <b2 : bz) = €4, <b3 : b3) = e4.
Ism1 Iamy

[UV] B = {b1,bs,b3}: Consider the 6 x 6 matrix defined by the good symmetric products of
order one and two, that is {b1, b2, b3, (b1 : b2}, (b1 : b3}, {ba : b3)}. This matrix is gener-
ically nonsingular.® Hence, the system is small-time locally accessible at zero velocity.
Additionally, since the bad second-order symmetric products are proportional to by,
they are spanned by good lower-order symmetric products (b; is a good symmetric
product of order 1). Therefore, the system is generically STLC at zero velocity.

Notice that this is a 12-dimensional nonlinear system with 3 inputs, and controllability
is established via a few intuitive and simple algebraic computations.

3The matrix is singular when h2mims + J3(m1 —ma) = 0 or when h2mims + Ja(m1 —mg3) = 0 or when
h2(1/J3 — 1/J2) = 1/m3 — 1/ma.
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6.4 Controllability for Hybrid Mechanical Control Sys-
tems

In this section we provide an algebraic procedure for testing sufficient conditions for equilib-
rium controllability of hybrid mechanical systems, i.e., for systems with impacts as described
in Section 3.4.1. We rely on the notion of equilibrium controllability and therefore only con-
sider the case when the velocity at the impact is zero. Since the definition of equilibrium
controllability 6.6 relies only on the properties of the solutions {q(t),t € [0,T]}, the defini-
tion above is also applicable in the setting of hybrid systems.

According to the definition in equation (3.20), a hybrid mechanical control system is a
finite collection of constrained mechanical control systems (CMCS) together with a set of
jump transition maps. Any CMCS X; = {Q, M,, F,D;} (discrete regime i) is characterized
by a connection V¢ and an input distribution ;. The equations of motion are therefore:

Vii= ;;1 Yiug(t). (6.4)

where {Y{,... Y%} is a base for ;.

For each discrete regime 4, we can repeat the construction in the previous sections and
introduce the notion of symmetric closure, of bad and good product, and of order of a
product. Given the family of input vector fields };, we let Sym;();) denote its symmetric
closure. The index denotes that when computing symmetric closures, the connection V?
(different for different regimes i) must be used.

Proposition 6.10. The hybrid mechanical control system (3.20) is equilibrium controllable
on an open set W if the following two conditions hold:

(i) in each discrete regime i, every bad symmetric product is a linear combination of lower
order good symmetric products

(ii) the rank of Lie(} ., Sym;(Y;))(q) is full for all g € W.

The two conditions have the following interpretation. Condition (ii) guarantees that by
combining subsequent motions that are feasible in different regimes, a full neighborhood of
the initial point is accessible. Condition (i) is the functional equivalent of the usual bad
versus good Lie bracket condition and guarantees that the system is controllable as opposed
to accessible.

Proof. We start by examining the set of configurations reachable at zero velocity for the ith
constrained system. For any point go € W, consider the distribution Lie(Sym;(Y{,...,Y)),
and let V; C @ be its maximal integral manifold through the point ¢y. Consider the trajec-
tories of the control system in equation (6.4) starting from point gq at zero velocity; they
are constrained to remain on N; (see Theorem 6.5 on configuration accessibility). Addition-
ally, because each bad symmetric product is compensated by a lower order, good symmetric
product, each configuration on N; N W is reachable at zero velocity; see Theorem 6.7.

By relying on configuration controllability and thereby exploring the fact that any con-
figuration can be reached at zero velocity, we essentially reduced the computation of the
reachable configurations for a second order control system (with drift) to those for a fisrt
order (kinematic) control system (without drift). More precisely, the set of configurations
that can be reached starting and finishing at rest for the control system

Vi =Yiui + ...+ You, (6.5)
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is equal to the set of configurations that can be reached for the control system

G=X{vi+...+ X0, (6.6)
where the family of vector fields {X7, ..., X} spans the distribution Lie(Sym,(YY,...,Y}.)).
Remarkably, equation(6.5) evolves on T'Q while equation (6.6) evolves on Q.

In the second half of the proof, consider the first order control system

qg= Z(X}v{ +...+X;v;), (6.7)
il

where vector fields from all regimes ¢ € I are present. Since
Lie(U;Lie(Sym, (Y, ..., Y}}))) = Lie(U;Sym, (Y{, ..., Y1),

and since Lie(U;Sym;(Y¥,...,Y}:)) is full rank by assumption, the system in equation (6.7)
is locally controllable by Chow’s theorem. Therefore, for any point ¢; € W, there exist piece-
wise constant inputs {vj(t)} that steer the state of the previous control system from go to g .
Specifically, there exist a sequence of vector fields X, belonging to U;Lie(Sym, (Y, ...,Y.}))
and positive scalar values € such that

Xa X
q1 :¢€1 * O"'OQGNN(qO)a

where ®X= (q) denotes the flow along the vector field X, for time € starting from point g.
The following two observations then complete the proof. First, each flow ®X=(g) of the
kinematic system (6.7) can be realized by the dynamic system (6.5), as discussed above.
Second, since we assume V;; # () in point (iv) of the definition of HMCS, system (6.5) can
switch at any time from each smooth regime to any other regime and therefore it can flow
along the sequence of regimes {ay}. O

This result can be interpreted as follows. Because of condition (¢) each regime is equi-
librium controllable when restricted to the integral manifold of Lie(Sym;(};)). Hence, if we
can reach a certain configuration, then we can reach it at zero velocity. Finally, since we can
switch at zero velocity and at any desired point in time and configuration, we can combine
the flows on each regime. But combining flows is equivalent to computing the involutive
closure in the ambient space.

6.4.1 A Sliding and Clamping Device

We now have the tools to check for equilibrium controllability of the device described in
Section 3.4.2. In particular, we perform the operation of symmetric closure on the three
regimes: Sym,(Y;) for i = 0,1, 2. It holds that for all i, we have

(Y; 1Y;);, = 2VL.Y; € span{Y;}.

Therefore, in each regime all (good and bad) symmetric products are linear combination
of lower order symmetric products. Next we look at the Lie brackets computations on the
manifold Q). The brackets are not reported here for the sake of brevity. It is straightforward
to compute that

rank {Lie(Yo, Y1)(q)} = rank {Y, Y1, [Yo, Y1], [Yo, [Yo, Y1]]} (¢) = 4,
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in a neighborhood of the point (61,02, Zcm, Yeu) = (0,0,0,0). Regarding the second con-
strained regime, one can show that if [ = l»

rank {Lie(Yy, Y2)(¢)} < 4, Vg € Q.

Incidentally, the involutive closure of {Yp,Y>} cannot have full rank since it holds d(6; +
02) - Yo = d(61 +62) - Yo = 0, and therefore (61 + 62) is a conserved quantity for the control
system ¥ = {¥o,X5}. Since the tests presented in Section 6.4 are only sufficient, we can
only state that the hybrid mechanical control systems ¥ = {3, %1} and ¥ = {X¢, %1, X2}
are equilibrium controllable.



Chapter 7

Motion Algorithms for Underactuated
Systems on Lie Groups

In this chapter we design motion algorithms for underactuated mechanical systems on Lie
groups. We rely on the controllability analysis in the previous chapter and design global
algorithms based on local motion primitives of motion.

The chapter is organized as follows. In Section 7.1 we compute approximate expan-
sions that describe the evolution of a mechanical system forced by small amplitude forcing.
Numerous examples provide intuition about the expansions. Then, on the basis of a con-
trollability assumption, we design two basic motion primitives for maintaining and changing
the velocity of a system. Finally, in Section 7.2 we combine the motion primitives to obtain
control algorithms. The treatment in this chapter is joint work with Naomi Ehrich Leonard,
see [22, 23, 24].

7.1 Small-Amplitude Forcing and Approximate Solu-
tions

In this section we study the behavior of system
9=9-¢ (7.1)

1§ =ad; 1+ ) fiui(t), (7.2)

i=1

under small-amplitude forcing. The key analysis tool is the standard perturbation method
as described, for example, in [51]. Assuming a small-amplitude input (say of order ¢, for
0 < € € 1), this method provides us with a solution to system (7.1)—(7.2) in the form of a
Taylor series in €. Since the computation of only a few terms in the series is tractable, we
obtain an approximate expansion. However, this estimate illustrates the role of symmetric
products and Lie brackets in determining the solution of the forced system (7.1)—(7.2).
Therefore, this estimate provides insight into the controllability tests introduced in the
previous chapter and, as we shall see, it is instrumental in designing the motion algorithms
of the next section.

75
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7.1.1 Notation and Results

We introduce the following notation. Given a possibly vector-valued function h(t) with
t € Ry, define its first integral function h(t) with ¢ € Ry, as the finite integral from 0 to ¢

= /015 h(r)dr

Higher-order integrals, as for example i(t), are defined recursively. In the following, we
consider inputs of the form

ui(t,€) = euj (t) + e2ul(t),

where 0 < € < 1 and where u},u? are O(1). Accordingly, we write the resultant forcing

> biui(t,€) as the sum of two terms of different order in €

Z biu;(t,€) = Z b; (euzl (t) + e2uf (t))
= eb'(t) + €2 b%(2), (7.3)

where we define b'(¢) = Y7 bui(t) and b*(¢) = Y., bjuZ(t). In the following, given any
quantity y(e), we let y* denote the kth term in the Taylor expansion of y(€) about € = 0; for
example, we will write £(¢,€) = £ (t) + €2£2(t) + O(€?). The following proposition describes
the system’s behavior when forced by small (order € and order €2) amplitude inputs as
defined in equation (7.3).

Proposition 7.1 (Approximate evolution). For 0 < € < 1 and for inputs of the form
in equation (7.3), let (g(t),&(t)) be the solutions of system (7.1)—(7.2). Let x(t) be the
exponential coordinates of g(t) about the initial condition g(0) = Id. Also, write the initial
velocity as £(0) = €&} + €2&2 where & and & are O(1).
Then for t € [0,27] it holds that £(t,€) = e£'(t) + €262(t) + €3€3(t) + O(e*), with
£t = 51 +b1(b),
eW=g-(&: &) -(4:70)+ (r- 1 (T:7)) 0

—— (@Dt (g @ an T+ (8 (8:70))

12
1
(& (#- () 0) - (0 8) + 1{@ e 0100)

2\ (1) = &t + (1),
20 =6e—(&: @) 5+ (11 (7)) 0 - (& :70) + [ + 70,8+ 0

Note that both symmetric products and Lie brackets show up in the Taylor expansions
and this agrees with the controllability tests presented above. Also, note that the approx-
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imations in Proposition 7.1 hold only over a finite period of time and particular care is
needed in order to compute approximations valid over a time interval of order 1/e.

Proof. The proof is based on the standard perturbation method as described in [51] and on
the approximate solutions for the kinematic system obtained in [39]. We start by proving
the validity of the expansion in £(t,€). Consider the ordinary differential equation

&= f(z) +9g(te),

and let x(¢,€) denote the solution from initial condition zo(€). At € = 0, suppose that
f(20(0)) = g(t,0) = 0, so that z(¢,0) = 20(0) is a constant solution. We now expand z(t, €)
and g(t,€) in a Taylor series about the value e = 0 and write

x(t,e) = Zeixi(t) and g(t,€) = Zeigi(t).
i=0 =0

As shown in [51], the components in the expansion of z satisfy the following differential
equations

107

n! dem
10"

nl Bem 620.’13'0 (6)
The differential equation of interest in our case is equation (7.2), which we rewrite as

@ (t) = fa(t,€)) +9"(1),

e=0

with initial condition z™(0) =

: 1
&= -3 (€:6) + b (t) + 2b%(t).
The initial condition is £(0,€) = €&} + €2€2. The constant solution we expand about is

£(t,0) =&°(t) =
Differentiating the function f(£(e)) = —1 (€ : ), we have

of _ 9
a6 a)
*f _ <a§ i3

Oe? < Oe? > ’

O°F .0 % 9%
w—‘3<a-@>‘<€ a>

& =nl&™, we have
0

and noting that %
=

el =€),
2
T =) -2,

i -6 <§1 . £Z> —6<§0 . §3>
0€3 le=o ' ' '

Next, we write the differential equations as described above. Recalling that £°(t) = 0 we
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have
=1,
£=—2(e: )+,
&€=-(:8).

Initial conditions are £1(0) = &, €2(0) = &, £2(0) = 0. Finally, we employ the notation
introduced in Section 7.2 to integrate the three differential equations:

£(1) = & + 5101,
€)= 8 — 5 (6 +510): 8 +51(1)) + B0,

_ 1 — — _
ew=-(4+70 : §-3(@+70:4+70)+F0).
Expanding the terms on the right-hand side, one recovers all of the terms in the expansions
of £(t,€) in Proposition 7.1.
In the second part of the proof we prove the validity of the expansion of z(t, €) by means

of the approximate solutions for kinematic systems obtained in [39] and used in [62]. From
these references we know that, if £(¢,€) = O(e), then

o(t,6) =€) + 3 6] 0) + O,
Substituting £(¢,€) = €€ (t) + €2£2(t) + O(€?), we have:
2(t,0) = €€1(1) + B (1) + 56 [€1,8T] (1) + O(eY)

And substituting the values for £!(¢) and £2(t), and writing z(t,€) = ex'(t) +22%(t) + O(€®),
we have

o' (t) = & + (1),
2
20 = (G- (&) - (8

1 — —
+ 56+ + ] .

<l

o+ (FE 7))

Expanding the terms on the right-hand side, one recovers all of the terms in the expansions
of z(t, €) in Proposition 7.1. O

7.1.2 Examples and Remarks

We now relate the approximations above to the controllability tests of the previous section.
To simplify the expansions above and to investigate the nonlinear second-order effects of
the inputs, we let the initial velocity vanish, £(0) = 04, and the first order input b'(t) verify
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Figure 7.1: Planar rigid body with single input: PRB1 and PRB2.

bl (2m) = b1 (2m) = 04. It holds that

£2m) ~ € (b2 -1 <b_1 : b_1>)(27r), and z(27) ~ € (b:2— %<b_1 : b_1> +1 F,b_l]) (27),
(7.4)

where, for the remainder of this section, the symbol = denotes an equality up to a third
order error in €. Also, if we set b?(t) = Oy, it holds that

£(2r) z—%62<b_1:b_1>(27r), and  z(21) ~ —1e? <<b_1:b_1>+ [bzl,b_l]) @r). (7.5

Up to a higher-order error in €, the final velocity £(27) is determined by certain symmetric
products and the final configuration variable z(27) is determined by certain symmetric
products and Lie brackets. Next, we study in more detail these remaining terms to gain
some insight into what terms are “good,” what are “bad” and which ones we can exploit to
design motion algorithms.

Single-Input Systems: Relative Equilibria and Bad Symmetric Products

Both examples of planar rigid bodies, [PRB1] and [PRB2], are single-input systems. Recall
that [PRB1] denotes the system with a single force b, with the line of action through the
center of mass, and [PRB2] denotes the system with the single force bs applied at a point a
distance h from the center of mass and perpendicular to by, as shown in Figure 7.1.

Let by denote the single input vector, e.g., b = by in [PRB1] and bs; = be in [PRB2].
If the symmetric product (bg; : bs;) vanishes, see the [PRB1] example, the system is neither
accessible nor configuration accessibility, and the final state (z,&)(27) vanishes. Recall
from Section 3.2 that for any vector n such that (n:n) = ad;In = 0, the curve t €
R — (exp(tn),n) is a relative equilibria, i.e., a motion corresponding to constant body-fixed
velocity. Thus, an actuator bs; aligned with a relative equilibria has vanishing bad symmetric
product (b; : bs;)-

Also instructive is the case in which the bad symmetric product (bs; : bs;) does not vanish,
e.g., the [PRB2] system. Assuming b'(t) = bs¢(t) and #(27) = ¢(27) = 0, equations (7.5)
lead to

27 27 s .
£(2m) ~ — 162 / Bt (b : by), and z(2m) & —1e? / / Fdsdt (b bs). (7.6)
0 0 0

As already mentioned, configuration and velocity change an amount proportional to €2 along
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€3 e
Fresultant = Le(sin(t) — 2sin(26)) o \69/

CM

ot
A

Figure 7.2: Planar rigid body with single forcing [PRB2]. With a periodic resultant external
force and after a period 27, the body has moved to the left of the initial configuration.

the direction (bg; : bsi). Additionally, notice that it is impossible to change the sign of the
motion, which will always be along — (bg; : bs;). For example, the [PRB2] system with forcing
amplitude e cos(t) always moves in the direction —eo, i.e., to the left (see Figure 7.2). This
phenomenon suggests that the system is not locally controllable, as certain configurations
appear to be not reachable. However, equation (7.6) does not prove this claim as it only
specifies the final value (27). The sharper analysis in [65] is needed to show that single-
input systems are neither STLC at zero velocity nor STLCC.

Multi-Input Systems with No Bad Symmetric Products

Next we examine systems with (at least) two input forces. We focus on an example with two
input vectors b; and b, that have vanishing bad symmetric products (by : b1) = (b2 : b2) =0
and either non-zero good symmetric product (by : b2) # 0 or non-zero Lie bracket [b, bs] # 0.
The satellite with two thrusters [ST] and the satellite with two rotors [SR] are such examples.
Plugging b'(t) = byuy(t) + bauy(t) into equations (7.5), we have

5(271') I~ —%€2<U1b1 + ugby t u1by + u2b2>(271')
= —€ (b : bo) Uz ua(27),
and
z(2m) & —3€ (<b_1 : b_1> + F,b_l]) (2m)

e (b1 : be) Uy Uz (2m) — €2 [b1, ba] Ut wa — uy uz(2m).

We interpret the operations performed on the input signals uq(t) and us(t) as follows:
U1 Uz (27) is the inner product in the L»[0,27] function space between wi(t) and wus(t),
whereas u; Uz — Uy uz(27) is the area enclosed by the plot of signals w1 (t) versus uz(t). We
distinguish two cases:

o Qut-of-phase sinusoidal inputs generate motion along Lie brackets: First, consider the
satellite with rotors [SR] example that is STLCC but not STLC at zero velocity. The
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symmetric product (by : by) vanishes, so that we have from equation (7.5)
E2m)~0 and x(27) ~ —€2[by,bo]Ur Uz — Uy Uz (27).

If we want to steer the configuration z(27) in the direction [b1, by], sinusoidal signals
at the same frequency and out-of-phase are a simple standard choice. This is one of
the basic ideas behind the algorithms presented in [62] and other literature on motion
planning for driftless control systems.

e In-phase sinusoidal inputs generate motion along good symmetric products: Second,
consider the satellite with thrusters example [ST] that is STLC at zero velocity since
the symmetric product (by : b2) # 0. If we pick sinusoidal inputs at the same frequency
and in-phase, e.g., u1(t) = ua(t) = cos(t), the contribution proportional to the Lie
bracket [b1, b2] vanishes, since the area included by two identical signal is zero. Further,
it holds that

£2m) = —€* (by : by) (@7)2(27) and z(27) & —€® (by : by) (wW1)2(27),

and both velocity and configuration variables vary along — (by : bo). Motion in the
symmetric product direction is generated with sinusoidal inputs at the same frequency
and in-phase. This is in contrast with the previous case and it is reminiscent of some
results on gait selection for locomotion systems with drift, see the 1:1 gait in [80].

Multi-Input Systems with Bad Symmetric Products

Finally, we examine systems with non-vanishing bad symmetric products. We focus on the
planar rigid body with two forces applied at a point distant from the center of mass [PRB3].
Recall that this system is STLC at zero velocity since the subspace {by, ba, (b1 : by)} has full
rank and since the good/bad products condition is verified by the equality (bs : bo) = %bl.
Setting b' = byus (t) + baua(t) as above, the existence of a non-vanishing bad symmetric
product causes

—%e2<b_1 : b_1>(27r) =~ (by : bo) T (27) — 162 (by : b)) T2 (27),

where the sign of the second term is independent of uy(t). However, motion in the (b, : bs)
direction can be affected by a second-order input along b;. In particular, by setting

we obtain from equation (7.4)

£(2m) = —€? (by : by) Uz Uz (27),

recovering this way the result for the case without bad symmetric products. In other words,
the “bad” contribution due to (b : bs) is “annihilated” by means of the second-order input
b%(t), and this is possible only because the good/bad products condition is verified.

7.1.3 Inversion Algorithm for Systems Controllable with Second-
Order Symmetric Products

In this section we build on previous analysis and investigate ways of determining the final
velocity of a forced mechanical system undergoing small amplitude forcing. The expansions
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above provide an approximation of the function that maps the time evolution of the force to
the final displacement. Our goal is to focus on this “force to displacement map” and invert
it.

Motivated by the heuristic analysis in the last two examples and by the controllability
analysis in the previuos chapter, we introduce an additional definition. A system is STLC
at zero velocity with second-order symmetric products if it satisfies the following property:

The subspace span{b;, (b; : bx) ,1 <i <m,1 < j <k <m} has full rank
and each bad symmetric product (b; : b;) is a linear combination of the (A3)
vectors {b1,... by}

The planar rigid body with two forces [PRB3], the satellite with two thrusters [ST] and
the underwater vehicle [UV] satisfy this controllability condition. On the basis of this
assumption, we design inputs (b'(t),b%(t)), that allow us to simplify the approximations in
Proposition 7.1 and steer the velocity of the system to an arbitrary value.

Lemma 7.2 (Inversion Algorithm). Let the assumption (A3) hold and let n be an ar-
bitrary element in g. Define the input functions (b'(t), b*(t)) as follows:

(i) Set N =m(m—1)/2 and let P denote the set of ordered pairs {(j,k) | 1 < j < k < m}.
Identify the elements in P with the set of integers 1,... ,N, and let a(j,k) be the
integer associated with the pair (j, k). In other words, a : P — {1,...,N} is a
enumeration of P. For a =1,... ,N, define the scalar functions

o (t) = ﬁ-ﬂ(asin(at) — (a+ N)sin((a + N)t)).

(i) Given the assumption (A3), the matriz with columns b;,1 <7 <m, and (b; : by),1 <
Jj < k < m, has full rank. By means of its pseudo-inverse, compute (m + N) real
numbers z; and z;, such that

n= Z 2;b; + Z Zjk <bj : bk) .

1<i<m 1<j<k<m

(%) Finally, set

b'(t) = Z \/ |ij|(bj — sign (zjk)bk)%(j,k) (1), (7.7)

1<j<k<m

b2(t)Eb2:% Z zibi+£ Z |z,-k|(<bj:bj)+<bk;bk)). (7.8)

1<i<m 1<j<k<m
The input functions (b'(t),b%(t)) designed in equation (7.7) and (7.8) verify
(b2 1t b_l)) (27) = 1. (7.9)

Proof. Start by studying the properties of the functions 4 (t). A direct computation shows
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that for all a, b, c

D (27) = 10 (27) = Do (27) = 0, (7.10)
Do Up(t) = ‘;L;t +rap(t),  where  714(27) = Fap(21) =0, (7.11)
Pat (2m) = Pa Yy (27) = g rpe(2m) = 0, (7.12)

where d,p is the Kronecker delta function. The proof of these properties is straightfor-
ward but tedious. Next, we prove the claim in equation (7.9). Given the definition in
equation (7.7) and the property (7.11) of the functions 1, (t), we compute:

<b_1:b_1>(27r)= > D RRVIETE
1<j<k<m 1<p<g<m

((b; — sign(zjx)be) = (bp — sign(zpq)bq)) Pa(ik) Ya(p.g) (27)
Z |ij| <(b] — Sign(ij)bk) : (bj — Sign(ij)bk)>

1<j<k<m
= >zl ((b) : b) — 2sign(z;x) (b : b) + (br = b))
1<j<k<m
= -2 Z Zjk <bj 2be) + Z |ij| ( <bj : bj) + (by, : bk>)
1<j<k<m 1<j<k<m

Summing up with b2(27) = 27b?, we have

(-0 ) @ = 3 mbit D ze(byihe),

1<i<m 1<j<k<m
which proves equation (7.9). O

In what follows, we denote the procedure described in the Inversion Algorithm with the
notation:
(b'(t),b*(t)) = Inverse(n).

A direct manipulation of equation (7.7) and of b'(t) = Y7, bju} (t) leads to the equivalent
statement

i—1 m
ui(t) = =D \/lzilsign(zi)baia @) + D V1261 Yag (@)-
j=1

j=it+1

Note that motion along the good symmetric product direction (b; : b;) (for i < j) is gener-
ated by the term \/[2ij[tqi,5)(t) in u}(t) and the term —/|z;;]sign(zi;)¥q(,5) (t) in u;(t)
Hence the inputs u;(t) and uj(t) have the common factor 9 j). The other terms in the
definition of u}(t) for all k are at different frequencies. Therefore, they are orthogonal to
Ya(i,j) in the inner product space L [0, 27}, and so do not generate motion in any other sym-
metric product direction. The second term in the second order input > compensates for
the motion excited along bad symmetric product directions. Its presence is a key difference
with respect to the algorithms in [62] for driftless systems.

One of the drawbacks of the previous algorithm is that the input functions contain
relatively high frequencies, e.g., in an m = 3 input system, the input functions contain
sinusoids with frequency from 1 to m(m — 1) = 6. This can be mitigated by optimizing the
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design of the coefficients {z;, z;;} and the numbering of the set P. For example, the design
of the coefficients can be optimized by employing a weighted pseudo-inverse.

7.2 Control Algorithms from Motion Primitives

In this section we design motion control algorithms based on the approximations in Propo-
sition 7.1 and the Inversion Algorithm in Lemma 7.2. OQur design is based on the con-
trollability condition (A3), and as mentioned in Chapter 2, on the assumption that the
group G be the Cartesian product of an arbitrary number of copies of SE(3).! We start by
designing two primitive motion patterns, Maintain-Velocity and Change-Velocity, that
provide the system with some basic motion capabilities. We then focus on more complex
control algorithms to solve the point-to-point reconfiguration problem, the local exponential
stabilization problem and the static interpolation problem.

7.2.1 Primitives of Motion

We describe two basic maneuvers that each last 27 units of time. The parameter o < 1
is a small positive constant. To maintain a velocity of order O(c), an input of order O(o)
suffices, while to obtain a change in velocity of order O(c), we employ a control input of
order O(y/o). Each primitive is described in terms of initial configuration and velocity,
input design, and final configuration and velocity.

Maintain-Velocity(o, &rer): keeps the body velocity £(t) close to a reference value gé&yet.
9(0) = go,
6(0) =08t + 0-2£err0r>

€e=o,

(bla b2) = Inverse(w <€ref : é-ref> - é-error);

log(go_lg(%')) =270 et + T2 Eerror + O(02),
£(27) = 06yt 4 O(0%).

Initial state:
Input:

Final state:

Change-Velocity(o,&nnal): steer the body velocity £(t) to a final value o&gpal-
g(O) = 9o,
5(0) = U§07

e=+/0,

(b",b%) = Inverse(&anal — o),

log(go '9(2m)) =70 (€0 + &anar) + O(0%/?),
£(27) = 0gna + O(0?).

The statements on the final configuration and velocity of the primitives are direct extensions
of the Inversion Lemma and are therefore proved in Appendix A.2. Note that the magnitude
of control input is

Initial state:
Input

Final state:

[|7 {Eret : &ret) — Eerror||O(0), during a Maintain-Velocity(o,&er) primitive,
[1inal — &llO(Vo), during a Change-Velocity(o, &anal) primitive.
We conclude this section by showing how to compute estimates of final configurations af-

ter multiple periods of control. The following result is a direct consequence of the Campbell—
Baker—-Hausdorff formula, see for example [85].

I This guarantees that the exponential map be a local diffeomorphism between the group and its algebra.
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Goal: drive system from (go,04) to (91,04).
Arguments: (go,91,0).
Require: log(gg ' g1) well defined.

1: N < Floor(||log(gy *g1)|l/(2m0)) {Floor(z) is the greatest integer less than or equal
to z.}

€nom = log(gg ' 91)/(2moN)
Change-Velocity(o, &nom) {start maneuver}
for k=1to (N —1) do
Maintain-Velocity(o, &nom)
end for
Change-Velocity(o,0q) {stop maneuver}

Table 7.1: Constant Velocity Algorithm for point-to-point reconfiguration.

Lemma 7.3. Let 0 < 1 be a positive constant and let go, g1 be group elements. Define the
exponential coordinates yo = log(go) € g and y1 =log(g1) € g. If the vector [yo,y1] is higher
order in o than (Yo + y1), then it holds

log(gog1) = yo + y1 + O([yo, y1])-

7.2.2 Control Algorithms

We present three algorithms to solve various motion control problems. These algorithms
combine the two motion primitives with a discrete-time feedback. This makes the approxi-
mations hold over multiple time intervals; for example, over a time interval of order 1/o.

Point-to-Point Reconfiguration Problem

This motion task reconfigures the system, i.e., changes its position and orientation, starting
and ending at zero velocity. We assume that the initial state is (g(0),£(0)) = (go,04) and
the final desired state is (g1,0q). For simplicity, we require log(gy 'g1) to be well defined,
even though this assumption can be removed. For example, on SO(3) the logarithm is well
defined whenever the change in attitude is less than 7.

The algorithm consists of three steps. Over the first time interval, we change the velocity
to an appropriate reference value. We then maintain the velocity close to this constant
reference value for an appropriate number of periods. Finally, we stop the system when
close to the desired configuration. The details are described in Table 7.1 and the proof of
the following lemma can be found in Appendix A.3.

Lemma 7.4 (Constant Velocity Algorithm). Let o be a sufficiently small positive con-
stant, let (9(0),£(0)) = (g0, 0(0?)), and let g1 be a group element such that log(gy *g1) is
well defined. Let N € N and the inputs (b*,b?)(t) for t € [0,2(N + 1)7] be determined
according to the algorithm in Table 7.1. At the final time,

log (92(N +1)m) "' g1) = 0(6*/%),

§<2(N + 1)71') = 0(c?).

The final state is not exactly as desired; instead there are errors of order O(c%/?)
and O(0?). This undesirable feature can be compensated for by solving the next motion
problem, the point stabilization problem.
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Goal: drive system to the state (Id,04) exponentially as t — co.
Arguments: o.
Require: [I(log(9(0)), £(0))]| < o
1: for k=1 to +oco0 do
ty < 4km {tr, is the current time}

3: oy <= [|(log(g(tk), £(tx)))l

& Change—Velocity(ak, — (log(g(ts)) + & (ts)) /(27rak))
5:  Change-Velocity(oy,0g)

6: end for

Table 7.2: Local Exponential Stabilization Algorithm.

Point Stabilization Problem

This motion task asymptotically stabilizes the configuration g(t) to a desired value that we
assume without loss of generality to be the identity. Convergence is ensured as long as the
initial condition satisfies

ll(log(g(0)), £(O)I| < o, (7.13)

where o is a sufficiently small positive constant. Should equation (7.13) not hold, then the
previous algorithm can be employed to steer the state to an admissible value.

The key idea of the algorithm is to iterate the following procedure: measure the state
at time ¢, and design control inputs that try to steer the state to the desired value (Id, 0g)
at time tg41 = tx + 47. Since we impose two requirements, one on the final configuration
and one on the final velocity, two calls to the Change-Velocity primitive are needed. The
idea of iterating an approximate stabilization step for fast convergence can be found, for
example, in [56]. The details are described in Table 7.2 and the proof of the following lemma,
is in Appendix A.4.

Lemma 7.5 (Local Exponential Stabilization Algorithm). Let o be a positive con-
stant and assume the initial condition satisfies equation (7.13). Let the inputs (b'(t),b%(t))
be determined according to the algorithm in Table 7.2 and let ty, = 4kw. Then there exists a
A > 0 such that

|| (log(g(tx)), €(t)) || < || (log(g(0)),(0))[| e,  VkeN

Additionally, for t € [4km,4(k + 1)7] it holds that ||(log(g(t),£(t)) || = O(e=**/2).

Static Interpolation Problem

This motion task steers the system’s configuration along a path connecting the set of the
ordered points {go,91,--. ,9m}. As above, we require log(g,;_l1 gx) to be well defined for
1 < k < M. The algorithm consists of M repeated constant velocity (point-to-point)
maneuvers (Table 7.1), with the only difference being that when the configuration reaches
the the kth desired value gy, the velocity gets changed directly to the reference value for the
next interval, i.e., without stopping. The details are described in Table 7.3. It can be shown
that the configuration g(t) follows a path passing through the points {go, g1,... , gm} with
an error of order . We do not include a full proof of convergence as it is very similar to
the one for Lemma, 7.4.

Remark 7.6 (Sequences of relative equilibria versus constant velocity motions). Tt is of in-
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Goal: drive system through points {go, 91,--- ,9m}-
Arguments: (go,91,.-.,9Mm, 0)-
Require: (9(0),£(0)) = (go,0q) and log(g; " g;) well defined for 0 < i < M.
1: for j =1to M do
2t gimp,; < 9(t) exp(né(t)) {t is the current time}
N; <= Floor(||108(gemp, ;95 / (279))
€nom,j = 108(gymp 195/ (270 N)
Change-Velocity(c, &nom,;)
for k=1to (N; —1) do
Maintain-Velocity(o, &nom,;)
8: end for
9: end for
10: Change-Velocity(o,0y)

N2 w

Table 7.3: Static Interpolation Algorithm.

terest to compare the Constant Velocity and the Static Interpolation Algorithms, since
they provide two different solutions to the reconfiguration problem. These two algorithms
can be compared on the basis of an input cost of the form

lull oy = / L(u(t))dt,

where T' = T'(o) is the time required to complete the maneuver and L : U™ +— R is a
cost on the space of input functions. In the following we let g; and gy denote initial and
final (desired) configurations and we let P = {go = gi,91,-.- ,9m = g} be a sequence of
configurations such that log(gj__l1 g;j) is a relative equilibrium vector for all j = 1,..., M.
Recall that 7 € g is a relative equilibrium vector if (n : ) vanishes.

(i) The Constant Velocity Algorithm applied to the reconfiguration problem from go
to gy involves 2 calls to the Change-Velocity primitive and (N — 1) calls to the
Maintain-Velocity primitive. Using notation from Table 7.1 and some of the details
in Appendix A.3, the cost of the complete maneuver can be computed as

llullio,r = 20(vo) + (N = 1)|| {€nom : &nom) [[0(0) = O(1),
since || {€nom : &nom) || is of order 1 and N is of order 1/o.

(ii) The Static Interpolation Algorithm applied to the interpolation problem across the
set of configurations P involves (M + 2) calls to the Change-Velocity primitive and
(Zj‘il Nj) calls to the Maintain-Velocity primitive. With the notation in Table 7.3,
a little algebra shows that

llullio,ry = (M + 2)0(V) + (3 ;Nj)|l {€nom,j * &nom.) 10(0).

Since the configuration g(t) follows the path determined by the set P with an error of
order o, and since log(gj__l1 g9;) is a relative equilibrium vector, it can be shown that
(énom,j : €nom,j) = O(0). Summarizing, the total cost is

lullio,r) = (M +2)0(Vo) + (3;N;)0(0*) = O(+/a).

We conclude that for small o (or equivalently, for long final times T' = O(1/0)), moving along
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Figure 7.3: Constant Velocity Algorithm. The bullet-shaped objects drawn in the left
picture represent the location of the planar body. Darker objects correspond to the location
of the body at the beginning and end of a primitive. The plots on the right display the
time-evolution of variables (u1, u2,w, vy, v2).

a set of relative equilibria is a more efficient strategy than the Constant Velocity Algorithm.
In other words, planning a path along relative equilibria takes into proper account the full
system’s dynamics and leads to some notion of optimality.

7.2.3 Numerical Simulations

The three algorithms introduced above have been implemented on a planar rigid body with
two forces a distance h from the center of mass and with two different masses along the
body-fixed axes (to account for added mass when the body is in a fluid). This example
is very similar to [PRB3] of Section 6.3.1. The parameter values in normalized units were
chosen to be J = 1,m; = .6,m2 = 1, h = 2. For both the Constant Velocity Algorithm and
the Static Interpolation Algorithm, we let the initial configuration be the identity and the
final (desired) configuration consists of a rotation of 7 and a translation of 2 units along the
Y-axis, i.e., Giitial = (0,0,0) and ggna = (7,0,2). We set o = .1. For all three algorithms,
the numerical results were in agreement with the theoretical analysis presented above.

Constant Velocity, Table 7.1: Figure 7.3 illustrates how the velocity variables have a
constant average value plus an oscillatory component. Despite the oscillations (see
the light gray configurations in Figure 7.3), the configuration variables evolve along a
screw motion toward the desired configuration.

Static Interpolation, Table 7.3: For comparison, we next present the numerical results
of the Static Interpolation Algorithm. The initial and final (desired) configurations
are the same as in the previous run. The set of ordered configuration points is
{(0,0,0),(0,0,2),(7,0,2)}. In Figure 7.4 one can notice the path in the z, y plane (con-
sisting of a straight line and a rotation) and the various calls to the Change-Velocity
and Maintain-Velocity primitives (for example, the time history of ui,us(t) shows
peaks whenever a Change-Velocity maneuver occurs).

Local Exponential Stabilization, Table 7.2: Finally, we present the Stabilization Al-
gorithm. Starting from the final condition of the Constant Velocity Algorithm, we
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Figure 7.4: Static Interpolation Algorithm. See Figure 7.3 for an explanation of pictures.

The planar body moves first along the y-axis (from (0,0,0) to (0,0,2)) and then rotates to
the desired final configuration (x,0, 2).

applied the local Stabilization Algorithm to steer the system exactly to the identity.
Figure 7.5 illustrates how the convergence is exponential.
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Figure 7.5: Local Stabilization Algorithm. We show only the configuration variables 6 (with
a solid line),  (with a dashed line) and y (with a light gray line). The initial condition of
the simulation is the final state from the simulation of the Constant Velocity Algorithm.



Chapter 8

Conclusions

In this thesis we have presented a number of results in the area of nonlinear control of
mechanical systems. Some of the contributions are stability type results, where the total
energy of the system plays the role of a Lyapunov function, other contributions are control-
lability and motion planning type results, where the forced response of a mechanical system
is characterized in terms of certain Lie algebra computations.

These contributions rely on various tools from nonlinear control theory and are all pre-
sented within the same modeling framework. The geometry of affine connections plays a
central role both in the stability and in the motion planning chapters.

8.1 Summary

In Chapter 3 we have presented a rigorous and comprehensive framework for the study
of mechanical control systems. The Euler-Lagrange equations are written in an intrinsic
fashion by means of affine connections. The role of symmetry, constraints and impacts is
examined in detail, leading to models useful for control purposes.

In Chapter 4 we have unveiled the geometry and the mechanics of the tracking problem
for fully actuated Lagrangian systems. The design process in Section 4.2 allows us to
characterize in an intrinsic way a tracking controller. The basic answered questions concern
how to define configuration and velocity errors and how to compute the feed-forward control.
Almost global stability and local exponential convergence are proven in full generality. Our
framework successfully unifies a variety of examples: a robot manipulator on the Euclidean
space R™, a pointing device on the two sphere S2, a satellite on the group of rotations SO(3)
and an underwater vehicle on the group of rigid motions SE(3). Case by case, we provide
new insight into previous results and introduce novel viewpoints.

In Chapter 5 we have investigated some stabilization techniques for relative equilibria of
mechanical systems. We focused on one-dimensional symmetries for simplicity and in the
interest of vehicle control applications. The novel contribution is the decomposition of the
force codistribution onto the subspace of momentum-preserving forces and its orthogonal
complement. Under specific assumptions, we prove exponential stability of the full system:
the momentum converges to its desired value and all the other error variables converge to
zero. The analysis in this chapter complements the results in [11, 47, 60].

In Chapter 6 and 7 we have studied motion planning and control of underactuated me-
chanical systems with a focus on underactuated vehicles. We have developed a geometric
framework encompassing analysis and synthesis tools and showed its application to numer-
ous examples. First, the controllability properties of these systems are characterized and
their behavior under small-amplitude forcing is investigated. The perturbation method and
the use of in-phase forcing turn out to play a key role. Finally, we have designed two motion

91
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primitives to use in higher-level motion control algorithms. The latter steer the vehicle from
point to point, and provide exponential stabilization of the vehicle to a desired configuration.
Exponential stabilization is achieved using time-varying, continuous feedback control. The
results in these chapters complement the controllability analysis of [67] and the averaging
techniques of [62].

8.2 Future Directions

Despite the recent progresses in the study of mechanical control systems, numerous open
questions of scientific and practical interest remain unanswered. For example, in the areas
of autonomous vehicles and robotic locomotion, rigorous motion planning schemes for un-
deractuated vehicles and satisfactory tools to analyze and design walking machines are not
available. In what follows, we describe various promising projects, emphasizing motivations,
prospects and potential rewards for each of them.

Applications of Series Expansions for Forced Lagrangian Dynamics

A key contribution in this dissertation is the series expansion that describes the forced
evolution of a mechanical system on a Lie group. In fact, this contribution raises more
questions than it answers. For example, it is not yet known how to apply this methodology
to mechanical systems defined on general manifold and subject perhaps to non-holonomic,
dissipative or conservative forces. Such expansions would help in the study of gaits and
of optimal forcing for locomotion. Also not clear is the relationship of our treatment with
numerous results in averaging, vibrational stabilization and impulsive control of Lagrangian
dynamics.

In these areas lots of work remains to be done and a methodic application of theoretical
tools should result profitable. In particular, the theory of so-called “chronological calculus”
might turn out to play a useful role, see [3] for a rigorous description and [21] for some
initial results. However, some fundamental challenges and question remain in applying
these expansions in new contexts (e.g., non-zero initial velocity) and with new purposes
(e.g., vibrational stabilization).

Motion Planning via Relative Equilibria for Underactuated Vehicles

As illustrated in the chapters on stability methods and in the recent literature [60, 11, 47],
great progress has been made on the use of the Hamiltonian in the role of control Lyapunov
function. These techniques rely on an appropriate “shaping” of the potential and kinetic
energy in order to achieve stabilization of relative equilibria even though the control system
is underactuated.

Despite these advances, two fundamental problems have not been tackled yet. First,
no on-line method for switching from one relative equilibria to another is known. This
problem is similar in its nature to the mode—switching and orbit transfer problems that
arise respectively in flight control and aerospace navigation contexts. In fact, the literature
on trajectory tracking for non-minimum phase systems describes some of the difficulty posed
by this problem. A second shortcoming of the current techniques is that they do not apply
to flight control problems with aerodynamic forces such as lift and drag. Understanding
relative equilibria and their stabilization in this extended context is a difficult and potentially
rewarding problem.
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Hybrid Aspects in Robotic Locomotion and Biomechanics

An area of increasing interest is modeling and control of hybrid mechanical systems, that
is, locomotion and grasping devices that interact with the environment via contacts and
collisions. Examples are hopping and walking robots, robots that progress by swinging
arms, and devices that switch between clamped, sliding and rolling regimes.

Within this context, the engineering goal is to analyze and design systems that accom-
plish various tasks by means of their hybrid nature. This motivation leads to a number of
problems that arise in the interaction of discontinuities, locomotion and stability. Topics of
interest include stabilization via multiple Lyapunov functions, motion planning across differ-
ent regimes, and numerical integrators for mechanical systems subject to impacts and forces.
From a broader perspective, some of these challenges are of even deeper and independent
interest because of their connection with the field of hybrid control systems.

Finally, a related interdisciplinary area is the study of biomechanics and its applications
to rehabilitation engineering. Areas of current research include posture control, that is,
human stability and balance, dynamic walking with and without feedback mechanisms,
and stress analysis at bones and joints. An open and challenging research direction is to
investigate these problem relying on the geometric understanding of motion presented in
this dissertation.

Beyond A Nonlinear Control Theory for Mechanical Systems

The topics described above are all part of a rigorous theoretical framework that encompasses
mechanical control systems and their applications in various disciplines. It is the hope of
the author that these themes will play a key role also in more general settings. For example,
the theoretical understanding of mechanical systems turns out to be useful in the designing
devices with appropriate locomotion or stability characteristics; see for example the work on
underwater locomotion and on passive walking. A second way of extending these results is
to investigate control problems for more general physical systems. Three important classes
are aerial vehicles, micro-electromechanical systems, and distributed parameter systems.
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Appendix A

Proofs of Some Results in Chapters 4 and 7

A.1 The Error Function on the Rotation Group

We here study the modified trace function on SO(3) that we introduced in Section 4.4.4
and that was studied for example in [53]. Given a 3 x 3 symmetric matrix K, we define

¢:50(3) = Ry as

G(R) £ L tr (K(I; - R)),

and, given any 3 x 3 matrix A, we defined skew(A) = 1(A — AT).
Recall that the linear space of 3 x 3 matrix R®*3 has an inner product given by the trace
operation:

(A, BY = %tr(ATB).

With respect to this inner product, the space decomposes into the direct sum of symmetric
and skew symmetric matrices s0(3). In particular, it holds

(@,9)=2"y and 3] = ||z,

for all z,y in R3®. Therefore, we can use this inner product to identify s0(3) and its dual:
(o, &) = Ltr(a &), where a is in 50(3)* and £ in s0(3).

Lemma A.1. Let the eigenvalues {ki,ko,ks} of the matriz K satisfy k; + k;j > 0 for all
i # j, and define do € s0(3)* such that ¢ = <d¢, (RTR)>. It holds

(i) #(R) = ¢(RT) > 0 and ¢(R) = 0 if and only if R = I3,

(11) d¢ = skew(KR), and

(iit) for all € > 0 there exist by > by > 0 such that ¢(R) < min;,;(k; + k;) — € implies
billdol* > ¢ > baldel.

Additionally, we have the following coordinate expressions. Let R be a rotation of
angle 6 about the unit vector k and define the unit quaternion representation of R by

¢ = [0 &1 & g3] = [0, qu]; where

go = cos(8/2) and q, =sin(6/2)k.
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Finally define K as the matriz with the same eigenvectors as K and with eigenvalues
{(kg + k3), (k’l =+ k3), (k’l + k‘Q)} Then it holds

(w) ¢(R) = ”qv“%([z]; and

(v) d¢ = % (g KPq, — G, Kq,)

Proof. We start by proving (ii). It holds:

~

. X 1 i
¢ = %tr (K(=R)) = —5tr (KR R"R).
If we let skew(A) = 2(A — AT) and sym(4) = 2(4 + A7), it holds

§ = —5 tr (skew(K R) + sym(K R)) (RR))
= —% tr (skew(KR) (RTR))
= (skew(KR), (RTR)),

where we have employed the properties of the trace pairing. This proves (ii). Next we
introduce the unit quaternion representation. By Rodrigues’ formula, it holds that R =
I3 + 2¢0q, + 2q2. Hence we have

bso() = — tr(Kqoqu) — tr(K q°)
=—tr(Kq’) = q"KPlq,

where the second equality can be proved in coordinates. This proves (iv) and (v) can be
verified by recalling the kinematic equation for R in terms of the unit quaternion represen-
tation. Regarding (i), it is straightforward that ¢(R) = ¢(RT) > 0. Also if ¢(R) = 0, then
gy is the zero vector and R is the identity matrix.

Last, we prove the claim in (iii), that is that ¢ is quadratic with constant equal to the
minimum eigenvalue of K2, Since the two terms in the equation in (v) are orthogonal, we
have

2dgl* = llgoKPla, |1 + (|G, K Plqu 1.
Since [|GoKPqu[* < llau PIEPau|l® < Amax (K1) llqol5, we have

¢ = ||Qv||§([2]

\Y%

1. 1

5‘15“%”%([21 + 5”%”%{[2]
1, 1
> _ - @
2 2‘10||qu||m21 + A mae (K1)

> min (1, 1/ Amax (K?)) ||do||?.

”avK[z]qv”2

This proves one direction of the bound. Next, recall that we are assuming that, given an
€ > 0, we have the inequality ¢ < Amin (K [2]) — €. Hence it holds that

e >0 st @] <1—e,
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and this implies that
de; >0 s.t. ||qO||2 > €.

However, it holds that ||dg||? > %||goK?q,||* = 2g3¢, and therefore

1
gl > Serd

This completes the proof of (iii) and of the whole Lemma. O

A.2 Primitives of Motion

The statements in the description of both primitives are direct consequences of the following
result.

Proposition A.2. With the notation adopted in Chapter 7, let the assumptions in Propo-
sition 7.1 hold and let (b1(t),b%(t)) = Inverse(n). If £(0) = €& + €2£2, we have

£(2m) = & + ¢ (€8 —m (& : &) +)
+ e (n (e (g e)) —2(e @) — (& em) ) + O, (A1)
z(27) = e27EL + 6271'(2§g —m (& &) + 77) + O(€). (A.2)

[

Proof. Note that property (7.10) implies directly that bl (27) = b:1(27r) =b

that the terms in the Taylor expansion in Proposition 7.1 simplify to
& (2m) = &,
eon) =& - (g )+ (-1 (To7) ) 2m)
&em) = -2 (eh: )+ (6 (&) - (& (2 -1 (T 7)) )
+ <(§6 RE b_1> %(27r) + <b_1 : <§é :b:1>>(27r)
- <b_1 : (b2 -1 <b_ : b_>)>(271'),
a!(2m) = 2n&g,

2%(21) = 2n€l — 7 <§é : §é> + <b2 -1 <b_1 : b_1>) (27) + %[53 + b1, &+ bt (27).

(27) = 0, so

Hence, ¢'(27) and z'(27) are as computed above. We employ Lemma 7.2 and prop-
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erty (7.11) to simplify the remaining terms into
§(m) = & —m (& : &)+,
£(2m) = —2r (6 : ) + 72 (& : (&5 &) —m (& :m) + ({64 : &) : )
(57 (g 77 2m) - <b_1 (23 (o7 b_1>)>(27r),

z?(2m) = 2m&3 — w2 (&5 1 &) + 7 + %[63 + 0%, €3t +b:1] (27).

(2m)

N | =+

Regarding the term £3(t), the claim is proven if

<<§3 €1 :b_1> %(%) - <b_1: <§3 :b:1>>(27r) - <b_1: (b2 —1 <b_1 : b_1>)>(27r) —0.

However, since b'(t) is linear combination of the functions 1, (t), the latter relations cor-
respond equality sign by equality sign to the properties in equation (7.12). Regarding the
term x2(t), it holds that

[ + BT, €t + b1 (2m) =

2 [6},68] + 6512 + [T i) 2m) + [T m) =0, (49

as all terms in the middle expression vanish. O

A.3 Lemma 7.4

In what follows we abbreviate Maintain-Velocityto Maintain(and similarly for Change).

Proof. Given the descriptions of the primitives Change and Maintain, we compute the
evolution of £(t) as follows. Starting from £(0) = O(0?), we have:

after first Change (o, &nom) : E2m) = 0&nom + O0(0?),
after first Maintain(o,&nom) £Am) = o&uom + O(d?),
after kth step in the for loop : ER(k+ 1)) = obhom + O(c?),

after the final Change(o,0) o 2N+ D7) = 0(d?).
The final value of £ is therefore as in the claim. Similarly, we can compute the change in
configuration during each interval:

after first Change(o, {nom) : log (h(0)) = 7o&wom + O(0%/?),
after first Maintain(o, &nom) : log (h(2m)) = 27w0&mom + O(0?),
after kth step in the for loop :  log (h(2k7))) = 2m0&nom + O(0?),
after final Change(o,0) : log (h(2N7)) = 70&nom + O(0%/?).

where we let h(t) = g(t)'g(t + 2r).

We now need to sum the changes in configuration due to each interval by means of the
approximation in Lemma 7.3. Combining the contributions during the first two intervals,
and recalling that [£nom; énom] Vanishes, we have

log (9619(471')) = 37T0€n0m + 0(0—3/2) = 371'0’51‘101‘[1 + 03/2771, (A4)

where n; = O(1) is an appropriate vector in g. Next, we claim that forall k =1,... |N —1,
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it holds

IOg (g()_lg(Q(k + l)ﬂ-)) = akEnom + U3/277k7

where the scalar ay and the vector 7, are of order at most 1. We prove the claim by induction.
At k = 1, we recover equation (A.4), with a; = 3wo. Next, we assume that the claim holds
at k, and we prove it for k+ 1. As dictated by Lemma 7.3, we compute the bracket between
the current value ag&om +0°/?n;, and the contribution 276 €n0m +0(0°) =: 270 €nem + 0°(x,
where (, = O(1) is an appropriate vector in g. We have:

[ax&nom + 03/2nk , 2m0&nom + o'3<'k] = 0(05/2)’
so that
log (95 9(2(k + 2)7)) = (araom + 0**nk) + (270 €nom + 0°¢) + O(0%/?)
= (ak + 27Ta)§nom + g3/? (nk +03/2¢, + oyk),

where v, = O(1) is an appropriate vector in g. Hence, the claim holds at k + 1, with
apy1 = ay, + 2mo and N1 = g + 0%/2¢, + ovg. At the end of the for loop, as k= N — 1,
we have

10g (g()_lg(2N7r)) = aNflgnom + 03/2771\/'71:

where we can compute the coefficients as

N-1
an—1 =a1 + Z 270 = (2N - 1)7o,
k=2
and
N-1
nN-1 =1 + Z (03/2Ck + o) = O(1).
k=2

The contribution of the last interval is ow€yom plus some higher-order terms, so that
log (9 '9(2(N + 1)7)) = 2N70&nom + O(0*?).
Finally, we apply the approximation in Lemma 7.3 for a last time to obtain

log(9(2(N + 1)m) " g1) =log (95 ' 9@V + 1)m) " (95 "1) ) = O(0*/2),

where we recall that log(gy '91) = 2N70€nem and log(h™") = —log(h). O

A.4 Lemma 7.5

Proof. We start by investigating the two Change primitives described inside the for loop in
Algorithm 7.2. Assuming that at time ¢, it holds

|| (log(g(tx)), () || = o0 < 1,



100 A Proofs of Some Results in Chapters 4 and 7

we claim that

| (log(g(trs1)), E(tesr)) || = O(2?). (A.5)

This can be seen as follows. By assumption there exist two vectors Ze, and e, of order
O(1) such that

log(g(tk)) = OkZerr,
E(t) = orerr-

With this notation, it holds —(log(g(tk)) + 7&(tr))/(2mok) = —(Tere + Téerr) /(27). After
the primitive Change(oy, — (Jterr + W&err) /(27)), we compute

log(g(t +2)) = 10%(Terr + There) + O(0?)
f(tk + 27() = —0g (merr + 7ré‘err)/(27r) + O(U]%),
and after the final Change(oy, 0), we have
log(g(ty + 4m)) = O(a}*),
&(ty +4m) = O(o}).

As tp1 = t + 47, this proves equation (A.5). The latter equations are equivalent to

|| (10g(g(tr41))s Etrin)) || < Miol'?, (A.6)

where the positive scalar My, depends continuously on initial state and parameters of the
system of ordinary differential equations (3.7) and (3.8). The parameters are o and the
coefficients in the design of (b(t),b%(t)), for ¢, < t < tg41. By looking at the details of the
inversion algorithm in Lemma 7.2, these parameters are seen to be continuous function of
the initial conditions (log(g(tx),&(tx))). Hence, we know that My (g(te),&(tx)) is a contin-
uous function of its arguments and it is therefore bounded in a neighborhood of the point
(g(tr),&(tr)) = (1d, 0). In other words, there exist positive constants By, By such that

| (log(g(tx)),€(tK)) || < Br = My(g(ts), &(tr)) < Ba.

Finally, for some a < 1, we set ¢ = amin(B;,1/B3) and we prove by induction that
o < o and Mka,ls/2 < a. At k =0, we have by assumption

oo = ||(log(9(0)),£(0))|| < o < By,
so that My < By and
Moog”? < Byo'? < a < 1.

Therefore, the claim holds at ¥ = 0. Next, we assume it at k, and prove it for k + 1. We
rewrite equation (A.6) as

orrr = || (log(g(tir), E(ter1)) | < (Mroy*)or < a0 < By



A.4 Lemma 7.5 101

Hence, My1 is also bounded by B, and we have
0—]1;./|_21Mk+1 < 0’1/232 < a.

This proves that M ko,i/ ? < afor all k. In other words, we have that the sequence {ok,k >0}
satisfies 011 < a0y with a < 1, or equivalently o}, < a*aq. Therefore, for A = —Ina > 0,

| (Tog(g(tx)), £t)) || < || (1og(g(0)), £(0)) || e **.

Finally we prove the last statement in Lemma 7.5. From time tj; to tgy1, the system
undergoes two Change primitives and evolves starting from a state of order O(o}) = O(e™**)
to a final state of higher order. During the two Change primitives, the input is of order
\/or = e /2 (with the notation in Section 7.2.1 and in Proposition 7.1, it holds € = /o).
Therefore, the expansions in Proposition 7.1 show that the state is of order /o5 = e /2

from time t to tg41.
O
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amended potential, 57
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Campbell-Baker-Hausdorff
formula, 84
change of connection, 45
Christoffel symbols, 14
closure
involutive, 65, 67
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codistribution, 10, 17, 57
horizontal, 57
integrable, 57
compatibility condition,
32, 41
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configuration manifold, see
manifold,
configuration
connection
affine, 12, 25
invariant, 15
Riemannian, 13
systems on manifold
with, 26
constraint
distribution, 24, 27
holonomic, 24
nonholonomic, 24
controllability, see local
controllability
controllability assumption,
82
controlled Lagrangians, 60

coordinate independence,
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Coriolis matrix, 45
cotangent space, 9
covariant derivative, 13
along a curve, 13
cross product, 11

displacement group, 11

dissipation function, 33

dissipative force, 60

distribution, 10, 54, 66, 68
constraint, 24
integrable, 10
involutive, 10

driftless systems, 66

energy
invariant, 56
kinetic, 17
potential, 17
total, 38
equations
Euler-Lagrange, 18, 25
Euler-Poincaré, 20
Lagrange-d’Alembert,
25
equilibrium point, 53, 65
equilibrium controllability,
68, 72
error estimates, 84
error function, 32
examples, 50
quadratic, 32
examples
a pointing device, 19,
43
planar body, 21, 60
robotic manipulator,
18, 44
satellite with rotors, 22
satellite with thrusters,
21, 46, 61
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sliding and clamping
device, 28
underwater vehicle, 23,
47
exponential coordinates,
12
second kind, 62
exponential map, 12, 62
exponential stability, 38

force, 17, 18, 70
body-fixed, 20
resultant, 18, 20
single, 79

Frobenius theorem, 10

good

bracket, 66

symmetric product, 68
gradient, 34
group action, 56

Hamiltonian reduction, 59
high frequency inputs, 83
homogeneous coordinates,
11
horizontal
codistribution, 57
horizontal and vertical
decomposition, 58
hybrid, see mechanical
control system

impact, 27

elastic, 27

plastic, 27

zero velocity, 72
impulsive

force, 26
in-phase inputs, 81
index set, 27
inertia matrix, 18
infinitesimal isometry, 56
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inner product, 83
input

codistribution, 61

distribution, 26
integrable

codistribution, 10

distribution, 10
integral function, 76
integral manifold, 10
invariant

connection, 15

Hamiltonian, 56

metric, 15

vector field, 11
inversion, 82
involutive

distribution, 10
isomorphism, 11
iterative steering, 86

Jacobi identity, 10
jump transition map, 28

Killing property, 56
kinetic, see energy

LARGC, see Lie algebra
rank condition

latitude longitude
parametrization, 35

left translation, 11

Levi Civita theorem, 13

Lie

algebra, 11

algebra rank condition,
66

bracket, 10, 11, 76

group, 10

Lie bracket, 10
linear controllability, 58
local accessibility, 65, 67
local configuration
accessibility, 67
local configuration
controllability, 68
local controllability, 65, 68
local coordinate chart, 9
locked inertia, 57
locomotion device, see
constrained
mechanical control
system, see hybrid

Index

mechanical control
system
locomotion gait, 81
logarithmic map, 12
Lyapunov function, 38, 59
cross term, 39
Lyapunov stability, 38

manifold, 9
configuration, 17
integral, 10
maximal integral, 10,
72
Riemannian, 12
with affine connection,
26
matrix Lie group, see Lie
group
maximal integral manifold,
10
mechanical control system,
17
constrained, 24
fully actuated, 18, 31
hybrid, 27
on a Lie group, 20
underactuated, 18
metric, 12
invariant, 20
Riemannian, 12
momentum map, 56
motion algorithms, 85
motion primitives, 84

one-dimensional
symmetry, 53, 60

orbital stability, 58

out-of-phase inputs, 80

perturbation method, 75,
77

potential, see energy

primitive of motion, 84

quadratic function, 32, 40

reachable set, 65
configurations, 67
relative equilibrium, 21,
57, 79, 87
efficient motions, 88
Riemannian
connection, 13

manifold, 12
metric, 12
rotation group, 11

simple, see mechanical
control systems
single input systems, 68,
79
small amplitude forcing,
75
small parameter, 75, 84
small time local, see local
solution
of a control system, 65
of a mechanical control
system, 67
spin axis stabilization, 62
stability
exponential and
asymptotic, 55
exponential on
manifolds, 38
STLC, see local
controllability
STLCC, see local
configuration
controllability
symmetric product, 13, 15,
67, 76, 79, 81
symmetry, 56

tangent map, 10

tangent space, 9

tensor field, 9

time scaling, 18

topological limitations, 41

transport map, 32
covariant derivative, 35
derivative, 35
examples, 50

two degre of freedom

system design, 41
two sphere, 14, 19, 33

uncontrolled subspace, 58

vehicle, see
mechanical control
system on a Lie
group

velocity error, 33

velocity in body frame, 20



