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Abstract

Opinion Dynamics with Heterogeneous Interactions and

Information Assimilation

Anahita MirTabatabaei

In any modern society, individuals interact to form opinions on various topics,

including economic, political, and social aspects. Opinions evolve as the result of

the continuous exchange of information among individuals and of the assimilation

of information distributed by media. The impact of the individuals’ opinions on

each other forms a network, and as the time progresses, their opinions change

as a function of structure of such network. It is a central question whether this

interaction and assimilation process leads to a socially beneficial aggregation of

information. Considering a large population allows approximation of the deci-

sion making rules with Non-Bayesian “rule of thumb” methods without relying

on detailed social psychological findings. This thesis mainly addresses complex

problems in the analysis of opinion evolution in (a) heterogeneous societies and

(b) societies with large population under the influence of exogenous events.

In the study of opinion dynamics in heterogeneous social networks, we mod-

eled the system as follows: the neighbors of each agent can be defined as either (1)

those agents whose opinions are in its confidence range, or (2) those agents whose
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influence range contain the agents opinion. The former definition is employed in

Hegselmann and Krauses bounded confidence model, and the latter is novel in our

work. As the confidence and influence ranges are distinct for each agent, the het-

erogeneous state-dependent interconnection topology leads to a poorly-understood

complex dynamic behavior. For both models, we have classified the agents via

their interconnection topology and, accordingly, characterized the equilibria of

the system. Additionally we have introduced a notion of a positive-invariant set

centered at each equilibrium point: if a trajectory enters one such set, it converges

to a steady state with constant interconnection topology. This result gives us a

novel sufficient condition for both models to establish convergence.

In the study of opinion dynamics in societies with large population, we analyze

the behavior of an Eulerian bounded confidence model of opinion dynamics with

time-varying input. In this model, a population is distributed over an opinion set

and updates its opinion via 1) the opinion of the population inside the confidence

range, and 2) the information from an exogenous input in that range. First, we

prove some fundamental properties of this system’s dynamics with time-varying

input. We derive a simple sufficient condition for opinion consensus, and prove

the convergence of population’s distribution under time-invariant input to a sum

of Dirac Delta functions. We compute an empirical upper bound on the largest

range of opinions that a fixed Gaussian distributed input can attract to its center.

ix



Finally, we define the attraction range of an input, and for a normally distributed

input and uniformly distributed initial population, respectively, we conjecture a

linear relation between this range’s length, population’s confidence bound, and

input’s variance. Accordingly to the limited attraction range of manipulator, we

compare different manipulation strategies.
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Chapter 1

Introduction

After recent cases of bankruptcy in the western countries, many have been

interested in anticipating the final decision made by individuals in a society or the

directors of the largest corporations of a country. The impact of the individuals’

opinions on each other forms a network, and as the time progresses, their opinions

change as a function of structure of such network. One important question is

that how the topological properties of the network can affect the individuals’ final

decisions, and how long it takes them to reach final decisions. Decision-making

is a complex process, which is led to the final state by endogenous and exogenous

factors. The interaction of people via in person meetings or online social networks

is an endogenous factor. One of the most influential exogenous factors is the

mainstream media that acts as a real-time input owing to its easy access to the

1



Chapter 1. Introduction

public. “After introduction and expansion of Fox News, between 1996 and 2000, it

is estimated that 3-28 percent of the audiences was persuaded to vote Republican”

[18]. Owing to the media’s easy access to the public, they can quickly get out their

message and hence act as a real-time input in the opinion evolution of decision

makers. Models of social networks and opinion dynamics are structures made up

of individuals that are tied based on their interdependency. Such models explain

the confidence or influence flow in populations without relying on detailed social

psychological findings.

1.1 Literature Review

In this section we give a brief literature review of the main references of the

various topics or tools mentioned in this thesis.

1.1.1 Opinion Dynamics: A Brief History

In the field of social networks, opinion dynamics is of high interest in many

areas including: politics, as in voting prediction [3]; physics, as in spinning par-

ticles [4]; sociology, as in the diffusion of innovation [52], the electronic exchange

of personal information [40], and language change [17, 50]; and finally economics,

as in price change [49]. The study of opinion dynamics and social networks goes

2
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back to the early work by J.R.P. French [20] on “a formal theory of social power.”

This work explores the patterns of interpersonal relations and agreements that can

explain the influence process in groups of agents. Subsequently, F. Harary pro-

vides a necessary and sufficient condition to reach a consensus in French’s model

of power networks [24]. Later in 1959, Harary and Cartwright introduced signed

graphs to handle a problem in social psychology. Modeling of “continuous opinion

dynamics”, in which opinions are represented by real positive numbers, is initially

studied in [15, 28, 48]. In contrast to the classical case of “binary opinion dynam-

ics” [22, 54], the continuous case deals with the problem of what happens to the

worthiness of a choice or the probability of choosing one decision over another.

1.1.2 Opinion Evolution of a Finite Population

A popular opinion update rule is the non-Bayes method of averaging neighbors’

opinions [1]. This “rule of thumb” method provides a good approximation to the

behavior of a large population without relying on detailed social psychological

findings. In social interaction networks, a common way of defining neighboring

relation is based on bounded confidence (BC), a label coined by Krause in 1998

[29]. BC models are models of continuous opinion dynamics in which an individual

only interacts with those whose opinions are close enough to its own. This idea

reflects: 1) filter bubbles, a phenomenon in which websites use algorithms to show

3
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users only information that agrees with their past viewpoints [44]; and 2) selective

exposure, a psychological concept broadly defined as “behaviors that bring the

communication content within reach of one’s sensory apparatus” [39, 59].

Recently, Hegselmann and Krause formulated a bounded confidence model

(HK model) where agents synchronously update their opinions by averaging all

opinions in their confidence bound [25]. In the online world, individuals gather

information from their friends synchronously as opposed to a pairwise gossip man-

ner. Another popular version of BC models was developed and investigated by

Deffuant and Weisbuch [55], called DW model. The HK and DW models are very

similar, they differ in their update rule: in the DW model a pairwise-sequential up-

dating procedure is employed instead of the synchronized one. In the HK model,

the set of neighbors of the ith agent is defined as those agents whose opinions differ

from the ith opinion by less than the ith confidence bound. Hence, this model is

dealing with endogenously changing topologies, that is, state dependent or chang-

ing from inside, in contrast to the exogenously changing topologies. For instance,

[14, 17, 27, 42] study a synchronized linear averaging model with time-dependent

exogenously changing topologies. The HK models are classified based on various

factors: a model is called agent- or density-based if its number of agents is finite

or infinite, respectively; and a model is called homogeneous or heterogeneous if

its confidence bounds are uniform or agent-dependent, respectively. The conver-
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gence of both agent- and density-based homogeneous HK models are discussed

in [6]. The agent-based homogeneous HK system is proved to reach a fixed state

in finite time [19], the time complexity of this convergence is discussed in [37],

its stabilization theorem is given in [31], and its rate of convergence to a global

consensus is studied in [43]. The heterogeneous HK model is studied by Lorenz

who reformulated the HK dynamics as an interactive Markov chain [32], analyzed

the effects of heterogeneous confidence bounds [36], and characterized the sets of

fixed points [35]. The convergence of the agent-based heterogeneous HK systems

is experimentally observed, but its proof is still an open problem.

1.1.3 Opinion Evolution of an Infinite Population

According to [13, 26], models of continuous opinion dynamics can be described

by either a Lagrangian or an Eulerian method. “In fluid dynamics, the fluid mo-

tion is described in a Lagrangian way if the observer follows an individual fluid

parcel as it moves through space and time. On the other hand, the fluid mo-

tion is described in an Eulerian way if the observer is is fixed at one location

through which the fluid flows as time passes” [57]. A Lagrangian description fo-

cuses on changes in each agent’s opinion; however, an Eulerian description focuses

on changes in population or the probability distribution associated to each opinion

interval. A Lagrangian model of opinion dynamics is defined over a continuous [6]

5
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or discrete state space [6, 25, 36, 43] if the number of agents are infinite or finite,

respectively. An Eulerian model of opinion dynamics is defined over a continuous

[13, 16, 34, 35] or discrete state space [2] depending on whether the opinion grid

size is converging to zero or not, respectively. The behavior of both discrete and

continuous Lagrangian models of opinion dynamics under homogeneous bounds

of confidence is discussed in [5].

Similar to the Lagrangian HK model of opinion dynamcis, an Eulerian HK

model is defined over a continuous state space [13, 34], where a mass distribution

over an opinion set is being updated by a flow map. The flow map for any

opinion value is a function of the average opinion of the population inside the

confidence range of that opinion value. Previously, (Canuto et al, 2008) proved the

convergence of a variation of Eulerian HK model both in discrete and continuous

time. In their model, the weights that two opinion values assign to each other are

equal, and this symmetry preserves the global average during the evolution. In

this context, we consider a more general Eulerian HK model where the symmetric

weight constraint has been relaxed. Specifically, the weight an opinion assigns to

other opinions is a function of the integral of the mass distribution (and of the

exogenous input measure in our model) in that opinion’s confidence bound. Since,

the measures on different opinions’ confidence bounds are not necessarily equal,

6
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the weights assigned to different opinions are generally asymmetric, and thus the

global average is not preserved.

1.2 Contribution of the Thesis

The organization of the thesis, and the contributions of each chapter can be

summarized as follows.

Chapter 2 - Finite Homogeneous Population: We first establish some

fundamental properties of the Lagrangian homogeneous HK model. Previously,

(Mart́ınez et al. 2007) proved that the Lagrangian homogeneous HK model of

opinion dynamics has a time complexity of order O(n5) [38], where n is the number

of agents. Here, we prove that this time complexity is of the lower order O(n4).

Chapter 3 - Finite Heterogeneous Population: We focus on heteroge-

neous HK models, and in order to distinguish between the HK and DW models, we

call a discrete-time agent-based heterogeneous HK model a synchronized bounded

confidence (SBC ) model. Additionally, we introduce a model similar to the SBC

model and call it the synchronized bounded influence (SBI ) model. The differ-

ence is that in an SBI model the set of neighbors of the ith agent is defined as

those agents j whose influence range contain the ith agent’s opinion. We ana-

lyze SBC and SBI models with heterogeneous bounds of confidence or influence,

7
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respectively. Indeed, if the SBC and SBI models have agents with homogeneous

bounds, then both models are equivalent to the homogeneous HK model. These

heterogeneous models of opinion dynamics, in spite of the considerable complexity

of their dynamics, describe features of a real society that cannot be explained by

homogeneous models. Specifically, the behavior of a heterogeneous opinion dy-

namics model is richer than that of a homogeneous model in the following ways:

(1) an agent may trust an individual but not be trusted back by that same in-

dividual; (2) in steady state, an agent can keep its own opinion constant while

listening to dissimilar opinions, (whereas, in the steady state of a homogeneous so-

ciety, any two agents are either disconnected or in consensus); (3) one can observe

pseudo-stable configurations, i.e., “configurations that have a subset of agents that

is stationary, and the rest are the reason for further dynamics” [51]; (4) it is pos-

sible for two disconnected agents to reconnect, and an agent with a large bound

of confidence or influence can pull clusters of agents towards or away from each

other; (5) the order of opinions is not preserved along the system evolution; (6)

“given an average level of confidence, diversity of bounds of confidence enhances

the chances for consensus” [36]; and (7) convergence in infinite time is possible.

Based on numerical evidence, we formulate our main conjecture that along

the evolution of an SBC or SBI system there exists a finite time, after which

the topology of the interconnection network remains unchanged, and as a result,

8



Chapter 1. Introduction

the trajectory converges to a limiting opinion vector. We also observe that each

trajectory either reaches a fixed state in finite time or exhibits a pseudo-stable

behavior. This observation is verified assuming that the main conjecture is true.

Furthermore, the following results put together partly prove our main conjec-

ture: (1) We design an appropriate classification of agents in both SBC and SBI

systems. This classification is a function of state-dependent interconnection topol-

ogy of the system, and can explain the observed pseudo-stable behavior. (2) We

introduce the new notion of final value at constant topology, and based on our

classification, we formulate the map under which this value is an image of the

current opinion vector. The set of final values at constant topology is a superset

of the equilibria of the system. We derive necessary and sufficient conditions for

the final value at constant topology to be an equilibrium vector. (3) For each

equilibrium opinion vector, we define its equi-topology neighborhood and invari-

ant equi-topology neighborhood. We show that if a trajectory enters the invariant

equi-topology neighborhood of an equilibrium vector, then it remains confined to

its equi-topology neighborhood, and sustains an interconnection topology equal

to that of the equilibrium vector. This fact establishes a novel and simple suffi-

cient condition under which: the initial opinion vector converges to a steady state;

the topology of the interconnection network remains unchanged; and the limit-

ing opinion vector is equal to the final value at constant topology of the initial

9



Chapter 1. Introduction

opinion vector. (4) We define a rate of convergence as a function of final value at

constant topology. Based on the direction of convergence and the defined rate, we

derive a sufficient condition under which the trajectory monotonically converges

to a steady state, and the topology of the interconnection network remains un-

changed. (5) We explore some interesting behavior of classes of agents when they

update their opinions under fixed interconnection topology for infinite time. For

instance, we compute agents’ rates and directions of convergence, and show the

existence of a leader group for each group of agents that determines the follower’s

rate and direction of convergence. In our extensive simulation results, we observe

that for uniformly randomly generated initial opinion vector and bounds vector,

the SBC and SBI trajectories eventually satisfy our novel sufficient condition for

convergence with probability one. We give some intuitive explanation for this

observation. Finally, we conjecture that the SBI trajectories reach a fixed state

in finite time more often than the SBC trajectories. To substantiate this con-

jecture, we present sufficient conditions for SBC and SBI systems that guarantee

convergence in finite time.

Chapter 4 - Infinite Population: We study the opinion evolution among a

large population via the Eulerian HK model of opinion dynamics. First, we derive

a simple sufficient condition for the system to reach opinion consensus. Second,

we establish some important properties of the Eulerian HK model. Finally, this

10



Chapter 1. Introduction

analysis also leads to a convergence proof of the mass distribution to a sum of

Dirac Delta functions.

Chapter 5 - Opinion Manipulation in Infinite Population: The con-

tributions are mainly four-fold. 1) We propose a reasonable model for exogenous

inputs in the Eulerian HK opinion-dynamics model. We derive a simple sufficient

condition for the system to reach opinion consensus. 2) We establish some im-

portant properties of the Eulerian HK model with a time-varying input. Under

mild technical assumptions (the initial opinion is a finite and absolutely contin-

uous mass distribution over the opinion set), we show that the opinion update

via an Eulerian flow map has the following properties: i) the mass distribution

on opinions remains finite and absolutely continuous; ii) the flow map preserves

opinion order, due to the homogeneity of confidence bounds; and iii) the flow map

is bi-Lipschitz. 3) We represent the exogenous input by a background Gaussian

distribution centered at the advertised opinion. We introduce the attraction range

of an input, which is the largest range of opinions that the input can attract to

its center. We conjecture a linear relation between attraction range, input’s vari-

ance, and confidence bound. Accordingly, we compare two different manipulation

strategies that aim to increase the size of population who votes positively in finite

time. 4) We present a real world example of decision making in a committee of ex-

perts, whose interconnection network is constructed via their meetings transcripts.

11
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In [10], the medical device advisory panel in the US Food and Drug Administra-

tion is analyzed, and a novel method in construction of experts’ interconnection

network via employing the Author-Topic model to their meetings documents is

presented. However, the dynamics of the process of decision making by the com-

mittee is not analyzed in [10]. Here, we introduce a Lagrangian mutli-dimensional

HK model whose interconnection network is strongly correlated with the real ex-

ample’s network. We highlight common features between the dynamics of the

introduced model and the presented real world example. We approximate the

Lagrangian model with an Eulerian HK model, and then we discuss manipulation

strategies that can alter the final state of opinion evolution process.

Finally, Chapter 6 presents summaries of the results and suggested future

research directions.

12



Chapter 2

Finite Homogeneous Population

In the study of Lagrangian homogeneous HK models of opinion dynamics, re-

cently introduced by Hegselmann and Krause, the focus is on the changes in each

agent’s opinion as agents synchronously update their opinions by averaging all

opinions in their neighborhood. The set of neighbors of the ith agent is defined as

those agents whose opinions differ from the ith opinion by less than its confidence

bound, where the confidence bounds are uniform. Previously, (Mart́ınez et al.

2007) proved that the Lagrangian homogeneous HK model of opinion dynamics

has a time complexity of order O(n5), where n is the number of agents. “The time

complexity of an algorithm is the minimum number of communication rounds re-

quired by the agents to achieve the task” [38]. For the Lagrangian homogeneous

HK models of opinion dynamics, time complexity is the minimum iterations for

13



Chapter 2. Finite Homogeneous Population

the agents to achieve either consensus or local rendezvous. By local rendezvous

we mean separate agent clusters rendezvous at multiple final opinions while pre-

serving disconnectivity. In this chapter, we prove that the time complexity of the

Lagrangian homogeneous HK model is of the lower order O(n4).

2.1 Homogeneous HK Model

Given the confidence bound r ∈ R>0, we associate to each opinion vector

x(t) = y ∈ Rn the proximity graph Gr(y) with nodes {1, . . . , n} and edge set

defined as follows: the set of out-neighbors of node i is Ni(y) = {j ∈ {1, . . . , n} :

|yi − yj| ≤ r}. The Lagrangian homogeneous HK model of opinion dynamics

updates x(t) according to

x(t+ 1) = A(x(t))x(t), (2.1)

where, denoting the cardinality of Ni(y) by |Ni(y)|, the i, j entry of A(x(t) = y)

is defined by

aij(y) =





1

|Ni(y)| , if j ∈ Ni(y),

0, if j /∈ Ni(y).

Notice that since each agent is its own out-neighbor, Ni(y)’s are nonempty. From

here on, we call the set of xi(t)’s with i ∈ {1, . . . , n} the opinion profile at time t,

14



Chapter 2. Finite Homogeneous Population

and the opinion difference between minimum and maximum values of the opinion

profile the opinion range. An opinion sub-profile is a subset of the main profile,

associated with a connected sub-graph of the main proximity graph.

Lemma 2.1.1 (Properties of homogeneous HK). For any y ∈ Rn, the trajectory

x(t) of a homogeneous HK system (2.1) with x(0) = y, satisfies the following

properties for all t ≥ 0:

(i) Given the initial profile is ordered in the sense that x1(0) ≤ x2(0) ≤, . . . , xn(0),

then the order will be preserved over time.

(ii) If two immediate neighbors split, they will no longer interact.

(iii) The maximum convergence time and the minimum change in the opinion of

agents 1 and n are increasing and decreasing functions of number of agents,

respectively.

Proof. Regarding part (i), by induction, assume that the opinion profile is ordered

at time t. Then, for any m ∈ {1, . . . , n}, let U1, U2, and U3 denote the three

sets Nm(x(t))−Nm+1(x(t)), Nm(x(t))∩Nm+1(x(t)), and Nm+1(x(t))−Nm(x(t)),

respectively. Under ordered opinion profile, for nonempty sets U1,2,3,

∑
j∈U1

xi(t)

|U1|
<

∑
j∈U2

xi(t)

|U2|
<

∑
j∈U3

xi(t)

|U3|
.

15
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Hence, for any two nonempty sets Ui,j, where i < j, it holds that

|Uj|
∑

k∈Ui

xk(t) < |Ui|
∑

k∈Uj

xk(t).

Consequently, knowing that at least two out of the three sets Ui’s are nonempty,

the following inequality holds

|U2|
∑

k∈U1

xk(t) + |U3|
∑

k∈U1

xk(t) + |U2|
∑

k∈U2

xk(t) + |U3|
∑

k∈U2

xk(t)

≤ |U1|
∑

k∈U2

xk(t) + |U2|
∑

k∈U2

xk(t) + |U1|
∑

k∈U3

xk(t) + |U2|
∑

k∈U3

xk(t),

⇒
∑

k∈U1
xk(t) +

∑
k∈U2

xk(t)

|U1|+ |U2|
≤
∑

k∈U2
xk(t) +

∑
k∈U3

xk(t)

|U2|+ |U3|
,

⇒ xm(t+ 1) ≤ xm+1(t+ 1).

Regarding part (ii), according to [25], “the extreme opinions of a split opinion

(sub-)profile are under one sided influences and converge toward the center of the

(sub-)profile. As a consequence the range of the (sub-)profile shrinks.”

Regarding part (iii), refer to (Mart́ınez et al. 2007).

Corollary 2.1.2. It can be concluded from Lemma 2.1.1 part (i) that for any two

opinions xi(t) < xj(t) we have:

|Nj(x(t))|
∑

k∈Ni(x(t))

xk(t) < |Ni(x(t))|
∑

k∈Nj(x(t))

xk(t).
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2.2 Time Complexity

In this section, we compute the time complexity of the Lagrangian homoge-

neous HK models in achieving consensus or local rendezvouses.

Theorem 2.2.1. The time complexity of homogeneous HK system (2.1) is of

order O(n4), where n is the number of agents.

Proof. We follow a similar approach to the proof by (Mart́ınez et al. 2007),

that is, knowing the maximum opinion range, we compute a lower bound on the

reduction rate of opinion range. Assuming that the initial profile is connected,

the opinion range is less than nr. Otherwise, according to Lemma 2.1.1 part (ii),

separated sub-profiles will converge toward the stable state synchronously with

smaller number of agents, thus in fewer time steps, and total convergence time

will be lower. Consider one of sub-profiles at any time t, whose opinion range is less

than nr. Let x1(t) denote the smallest opinion of the opinion (sub-)profile under

discussion, αi+1 denote the cardinality of N1(x(t+ i)), ki+1 denote the cardinality

of the set of agent 1’s neighbors that are not agent αi+1 + 1’s neighbors at time

t+ i for i = 0, . . . . One can show that the initial opinion range is less than or to

equal (n − 2α1)r + 2r, however, substituting this upper bound with nr does not

affect the order of complexity.

17



Chapter 2. Finite Homogeneous Population

•

•

•
...

•

•

�
⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⇤
⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⇥

�1

...

•

•

�
⇤
⇥k1

r

r

x1(t)

x↵1+1(t)

Figure 2.1: An illustration of the lower extreme agent in an opinion profile with

opinion x1(t), where α1 = |N1(x(t))| and k1 is the number of agent 1’s neighbors

that are not agent α1 + 1’s neighbors.
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Here, we discuss the behavior of the system after every m iterations, where

m ≤ n. At any time step, if the sub-profile undergoes separation, then the opinion

range shrinks r units. Therefore, the reduction rate of opinion range will be at

least r/n. This value is larger than the minimum rate obtained in the following by

assuming that the sub-profile is connected. Under the assumption of continuity

of the opinion sub-profile, it holds that αi > ki for all 1 ≤ i ≤ m. According to

Lemma 2.1.1 part (i),

xi(t+ 1) ≥ xk1+1(t+ 1) ≥ x1(t) + · · ·+ xα1+1(t)

α1 + 1
i ≥ k1 + 1.

Now, two possible cases exist:

1) If α2 > k1, then for the next iteration we can write:

x1(t+ 2) =
x1(t+ 1) + · · ·+ xk1(t+ 1) + xk1+1(t+ 1) + · · ·+ xα2(t+ 1)

α2

≥ 1

α2

(
k1
x1(t) + · · ·+ xα1(t)

α1

+ (α2 − k1)
x1(t) + · · ·+ xα1+1(t)

α1 + 1

)

Our goal is to find a lower bound on agent 1’s opinion change after two time steps.

Opinions x1(t), . . . , xα1(t) are lower bounded by x1(t), and since α1 + 1 is not a

neighbor of agent 1 at time t, xα1+1(t) is lower bounded by x1(t) + r. Therefore

x1(t+ 2) ≥ 1

α2

(
k1
α1x1(t)

α1

+ (α2 − k1)
(α1 + 1)x1(t) + r

α1 + 1

)

=
1

α2

(
k1x1(t) + (α2 − k1)x1(t) +

(α2 − k1)r

α1 + 1

)

= x1(t) +
(α2 − k1)r

(α1 + 1)α2

.
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According to our assumption that α2 > k1, α2− k1 is lower bounded by 1, and α1

and α2 are upper bounded by n, hence,

x1(t+ 2)− x1(t) ≥ r

n2
.

2) If α2 ≤ k1, then |N1(x(t+1))| ≤ k1 < |N1(x(t))|, and thus number of neighbors

of agent 1 strictly decreases in one iteration. Clearly, case (2) can hold for at

most n iterations, after which, under the continuity assumption, case (1) holds.

Therefore, minimum decrease in opinion range in n time steps will be equal to r
n2 .

So far, we have shown that for all sub-profiles, the opinion range reduces

at least r
n2 units in every n iteration, and this reduction occurs synchronously.

Knowing that the opinion range of any sub-profile is upper bounded by nr, the

time needed for the system to convergence to a steady state is upper bounded by

nr

r/n3
= n4

2.3 Summary

We analyzed a model of opinion dynamics recently introduced by Hegselmann

and Krause: each agent in a group maintains a real number describing its opinion;
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and each agent updates its opinion by averaging all other opinions that are within

some given confidence range. HK models can be classified into heterogeneous and

homogeneous models, if the confidence bounds are uniform or agent-dependent,

respectively. Previously, (Mart́ınez et al. 2007) proved that the Lagrangian ho-

mogeneous HK model of opinion dynamics has a time complexity of order O(n5),

where n is the number of agents. In this chapter, we proved that this time com-

plexity is of the lower order O(n4).
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Finite Heterogeneous Population

In this chapter, we analyze heterogeneous models of opinion dynamics with

finite number of agents, in which opinions are described by real numbers, and

agents update their opinions synchronously by averaging their neighbors’ opin-

ions. The neighbors of each agent can be defined as either (1) those agents whose

opinions are in its “confidence range,” or (2) those agents whose “influence range”

contain the agent’s opinion. The former definition is employed in bounded confi-

dence models, and the latter is novel here. As the confidence and influence ranges

are distinct for each agent, the heterogeneous state-dependent interconnection

topology leads to a poorly-understood complex dynamic behavior.

Mathematical models of opinion dynamics under bounded confidence have

been presented independently by: Hegselmann and Krause (HK model) [25], where

22



Chapter 3. Finite Heterogeneous Population

agents synchronously update their opinions by averaging all opinions in their con-

fidence bound, and by Deffuant and Weisbuch and others (DW model) [55], where

a pairwise-sequential updating procedure is employed instead of the synchronized

one. Here, we focus on HK models, and in order to distinguish between the HK

and DW models, we call a discrete-time agent-based heterogeneous HK model

a synchronized bounded confidence (SBC ) model. Additionally, we introduce a

model similar to the SBC model and call it the synchronized bounded influence

(SBI ) model. The difference is that in an SBI model the set of neighbors of the

ith agent is defined as those agents j whose influence range contain the ith agent’s

opinion. We analyze SBC and SBI models with heterogeneous bounds of confi-

dence or influence, respectively. Indeed, if the SBC and SBI models have agents

with homogeneous bounds, then both models are equivalent to the homogeneous

HK model. These heterogeneous models of opinion dynamics, in spite of the con-

siderable complexity of their dynamics, describe features of a real society that

cannot be explained by homogeneous models. Specifically, the behavior of a het-

erogeneous opinion dynamics model is richer than that of a homogeneous model in

the following ways: (1) an agent may trust an individual but not be trusted back

by that same individual; (2) in steady state, an agent can keep its own opinion

constant while listening to dissimilar opinions, (whereas, in the steady state of

a homogeneous society, any two agents are either disconnected or in consensus);
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(3) one can observe pseudo-stable configurations, i.e., “configurations that have a

subset of agents that is stationary, and the rest are the reason for further dynam-

ics” [51]; (4) it is possible for two disconnected agents to reconnect, and an agent

with a large bound of confidence or influence can pull clusters of agents towards or

away from each other; (5) the order of opinions is not preserved along the system

evolution; (6) ”given an average level of confidence, diversity of bounds of con-

fidence enhances the chances for consensus” [36]; and (7) convergence in infinite

time is possible.

Based on numerical evidence, we formulate our main conjecture that along

the evolution of an SBC or SBI system there exists a finite time, after which

the topology of the interconnection network remains unchanged, and as a result,

the trajectory converges to a limiting opinion vector. We also observe that each

trajectory either reaches a fixed state in finite time or exhibits a pseudo-stable

behavior. This observation is verified assuming that the main conjecture is true.

Furthermore, the following results put together partly prove our main conjec-

ture: (1) We design an appropriate classification of agents in both SBC and SBI

systems. This classification is a function of state-dependent interconnection topol-

ogy of the system, and can explain the observed pseudo-stable behavior. (2) We

introduce the new notion of final value at constant topology, and based on our

classification, we formulate the map under which this value is an image of the
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current opinion vector. The set of final values at constant topology is a superset

of the equilibria of the system. We derive necessary and sufficient conditions for

the final value at constant topology to be an equilibrium vector. (3) For each

equilibrium opinion vector, we define its equi-topology neighborhood and invari-

ant equi-topology neighborhood. We show that if a trajectory enters the invariant

equi-topology neighborhood of an equilibrium vector, then it remains confined to

its equi-topology neighborhood, and sustains an interconnection topology equal

to that of the equilibrium vector. This fact establishes a novel and simple suffi-

cient condition under which: the initial opinion vector converges to a steady state;

the topology of the interconnection network remains unchanged; and the limit-

ing opinion vector is equal to the final value at constant topology of the initial

opinion vector. (4) We define a rate of convergence as a function of final value at

constant topology. Based on the direction of convergence and the defined rate, we

derive a sufficient condition under which the trajectory monotonically converges

to a steady state, and the topology of the interconnection network remains un-

changed. (5) We explore some interesting behavior of classes of agents when they

update their opinions under fixed interconnection topology for infinite time. For

instance, we compute agents rates and directions of convergence, and show the

existence of a leader group for each group of agents that determines the follower’s

rate and direction of convergence.
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In our extensive simulation results, we observe that for uniformly randomly

generated initial opinion vector and bounds vector, the SBC and SBI trajectories

eventually satisfy our novel sufficient condition for convergence with probability

one. We give some intuitive explanation for this observation. Finally, we conjec-

ture that the SBI trajectories reach a fixed state in finite time more often than the

SBC trajectories. To substantiate this conjecture, we present sufficient conditions

for SBC and SBI systems that guarantee convergence in finite time.

This chapter is organized as follows. In Section 3.1, the mathematical models,

conjectures, agents classification, and spectral properties of the adjacency matrices

are presented. In Section 3.2, the final value at constant topology is introduced

and characterized. Section 3.3 contains novel sufficient conditions for constant

topology and convergence, for constant topology and monotonic convergence, and

for convergence in finite time. In Section 3.4, the simulation results and intuitive

explanations are presented. In Section 3.5, the behavior of the system assuming

that its interconnection topology remains unchanged in a long run is analyzed.

Finally, Section 6 contains the conclusion and open questions.
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3.1 SBC and SBI Models

Consider n interacting agents and assume that each agent’s opinion is ex-

pressed by a real number, say yi for agent i ∈ {1, . . . , n}. In bounded confidence

interaction, the opinion yi is affected by the opinion yj if |yi − yj| ≤ ri, where

the positive number ri is the confidence bound of agent i. In bounded influence

interaction, the opinion yi is affected by the opinion yj if |yi − yj| ≤ rj, where

the positive number rj is the influence bound of agent j. The opinion vector

y ∈ Rn and the bounds vector r ∈ Rn
>0 are obtained by stacking all yi’s and ri’s,

respectively. We associate to each opinion vector y two digraphs, both with nodes

{1, . . . , n} and edge set defined as follows: denoting the set of out-neighbors of

node i by Ni(y)

• in a synchronized bounded confidence (SBC) digraph, Ni(y) = {j ∈ {1, . . . , n} :

|yi − yj| ≤ ri}; and

• in a synchronized bounded influence (SBI) digraph, Ni(y) = {j ∈ {1, . . . , n} :

|yi − yj| ≤ rj}.

We let Gr(y) denote one of the two proximity digraphs, its precise meaning being

clear from the context.

We associate to the SBC and SBI digraphs two dynamical systems, called the

SBC and SBI systems respectively. Both dynamical systems update a trajectory
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x : N→ Rn according to the discrete-time and continuous-state rule

x(t+ 1) = A(x(t))x(t), (3.1)

where the i, j entry of the adjacency matrix A(y) ∈ Rn×n for any y ∈ Rn is defined

by

aij(y) =





1

|Ni(y)| , if j ∈ Ni(y),

0, if j /∈ Ni(y),

and |Ni(y)| is the cardinality of Ni(y). Note that i ∈ Ni(y), in other words,

every agent has some self-confidence or self-influence. This assumption is a key

factor in the convergence of infinite products of adjacency matrices [33]. In the

following, we present some interesting conjectures on SBC and SBI systems, and

the trajectories of Figure 3.1 support these conjectures.

Conjecture 3.1.1 (Existence of a limiting opinion vector). Every trajectory of

an SBC or SBI system converges to a limiting opinion vector.

Conjecture 3.1.2 (Constant-topology in finite time). For any trajectory x(t) of

an SBC or SBI system, there exists a finite time τ after which the state-dependent

interconnection topology, or equivalently Gr(x(t)), remains constant.

Before proceeding, let us define a term borrowed from [51]. A trajectory

x(t) ∈ Rn that is converging to limiting opinion vector x∞ ∈ Rn is said to have a
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pseudo-stable behavior after τ , if the node set V = {1, . . . , n} is composed of two

non-empty subsets Vfixed and Vconverging such that, for all t ≥ τ ,





xi(t) = x∞,i, if i ∈ Vfixed,

xi(t) < xi(t+ 1) < x∞,i or xi(t) > xi(t+ 1) > x∞,i, if i ∈ Vconverging.

(3.2)

Conjecture 3.1.3 (Pseudo-stable behavior). For any SBC or SBI trajectory,

there exists a finite time after which the trajectory either reaches a fixed state or

exhibits a pseudo-stable behavior.

Conjecture 3.1.4 (Convergence of SBI systems versus SBC systems). For any

uniformly-randomly generated initial opinion vector and bounds vector (in compact

sets), the SBI system converges in finite time with higher probability than the SBC

system.

In the remainder of this chapter, we are going to analyze the trajectories of

SBI and SBC systems and establish some of their convergence properties. In

Section 3.3 we establish convergence under some necessary conditions, but we will

not fully establish the conjectures. In Section 3.4 we verify our theoretical results

and provide some numerical evidence in support of the conjectures. Finally, in

the concluding Section 6 we discuss the relationships among the conjectures and

the convergence properties we rigorously establish.
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Figure 3.1: The trajectory of an SBC system (left) and an SBI system (right)

are illustrated. Both systems have the same initial opinion vector and bounds

vectors that are randomly generated. However, the SBI trajectory reaches a fixed

state in six time steps, while the SBC trajectory converges in infinite time. The

interconnection topology of the agents in the SBC system remains constant after

t = 64, and hence its trajectory exhibits a pseudo-stable behavior.
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3.1.1 Agents Classification

In this section, we introduce a classification of agents for both SBC and SBI

systems based on their state-dependent interaction topology at each time step.

This classification is used later to find the limiting opinion vector and explain

the pseudo-stable behavior. First, let us quote some relevant definitions from

graph theory, e.g. see [12]. A node of a digraph is globally reachable if it can be

reached from any other node by traversing a directed path. A digraph is strongly

connected if every node is globally reachable. A digraph is weakly connected if

replacing all of its directed edges with undirected edges produces a connected

undirected graph. A maximal subgraph which is strongly or weakly connected

forms a strongly connected component (SCC) or a weakly connected component

(WCC), respectively. Every digraph G can be decomposed into either its SCC’s

or WCC’s. Accordingly, the condensation digraph of G, denoted C(G), is defined

as follows: the nodes of C(G) are the SCC’s of G, and there exists a directed edge

in C(G) from node H1 to node H2 if and only if there exists a directed edge in G

from a node of H1 to a node of H2. A node with out-degree zero is named a sink.

Knowing that the condensation digraphs are acyclic, each WCC of C(G) is also

acyclic and thus has at least one sink. In a digraph, i is a predecessor of j and j

is a successor of i if there exists a directed path from node i to node j.
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For opinion vector y ∈ Rn, let Gr(y) denote either of its SBC or SBI digraphs.

We classify the SCC’s of Gr(y) into three classes. An SCC of Gr(y) is called a

closed-minded component if it is a complete subgraph of Gr(y) and corresponds to

a sink of C(Gr(y)). An SCC ofGr(y) is called a moderate-minded component if it is

a non-complete subgraph of Gr(y) and corresponds to a sink of C(Gr(y)). The rest

of SCC’s of Gr(y) are called open-minded SCC’s. Now, the open-minded subgraph

of Gr(y) is the remaining subgraph after removing Gr(y)’s closed- and moderate-

minded components and their edges. A WCC of the open-minded subgraph of

Gr(y) will be called an open-minded WCC, see Figure 3.2.

Remark 3.1.5. Previously, (Lorenz, 2006) classified the agents of an SBC system

into two classes of essential and inessential. An agent is essential if any of its

successors is also a predecessor, and an agent is inessential if it has a successor

who is not a predecessor [33]. This classification is similar to the one used for

Markov chains [47, Chapter 1.2]. It is easy to see that the closed- and moderate-

minded components are in essential class, and the open-minded components are

inessential.

3.1.2 Spectral Properties of Adjacency Matrix

For any opinion vector y ∈ Rn in an SBC or SBI system (3.1), the adjacency

matrix A(y) is a non-negative row-stochastic matrix, and its nonzero diagonal
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x1

x2

x3 x4
x5 x6

x7

x8

x9

x10

x11

x12

x13x14

x15

x17

x16

x1

x9

x13

x17

(a)

(b)

(c)

Figure 3.2: Consider the opinion vector x = [0.1 0.24 0.27 0.3 0.34 0.37 0.39 0.4 0.5

0.6 0.67 0.68 0.75 0.85 0.86 0.87 1]T and bounds vector r =[0.5 0.04 0.04 0.04 0.031

0.021 0.011 0.061 0.25 0.01 0.04 0.03 0.3 0.07 0.07 0.07 0.135]T : (a) shows the SBC

digraph of x, Gr(x), with its closed- (red), moderate- (green), and open-minded

(blue) components, and each thick gray edge represents multiple edges to all agents

in one component; (b) shows the condensation digraph of Gr(x); and (c) shows the

open-minded subgraph of Gr(x) that is composed of two open-minded WCC’s.
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establishes its aperiodicity. Since C(Gr(y)) is an acyclic digraph, its adjacency

matrix is lower-triangular in an appropriate ordering [12]. In such ordering, the

adjacency matrix of Gr(y) is lower block triangular. Based on the classification of

the SCC’s in Gr(y), we put A(y) into the canonical form A(y), by an appropriate

canonical permutation matrix P (y),

A(y) = P (y)A(y)P T (y) =




C(y) 0 0

0 M(y) 0

ΘC(y) ΘM(y) Θ(y)



. (3.3)

The submatrices C(y), M(y), and Θ(y) are block diagonal. Each diagonal block

Ci(y), with size ni(y), is the adjacency matrix of the ith closed-minded component,

and is equal to Ci(y) = 1ni(y)1
T
ni(y)/ni(y). Let us call a matrix with such structure a

complete consensus matrix, whose spectrum is found to be {1, 0, . . . , 0}. Similarly,

each diagonal block Mi(y) is the adjacency matrix of the ith moderate-minded

component. Each entry in ΘC(y) or ΘM(y) represents an edge from an open-

minded node to a closed- or moderate-minded node, respectively. Finally, in

the submatrix Θ(y), each diagonal block Θi(y) corresponds to one open-minded

WCC, and is block lower triangular and strictly row-substochastic. By strictly

row-substochastic we mean a square matrix with nonnegative entries so that every

row adds up to at most one, and there exists at least one row whose sum is strictly

less than one. Note that the adjacency matrix of each SCC in Gr(y) is a diagonal
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block of A(y) and is row-stochastic, nonnegative and primitive. On account of the

properties of the open-minded class, the following lemma is proved.

Lemma 3.1.6. For any row k of the submatrix Θ(y), there exists pk ∈ N such

that the kth row sum of Θ(y)pk is strictly less than 1.

Proof. Every WCC of C(Gr(y)) contains at least one sink. Hence, from any open-

minded agent k, there exists a directed path of length pk to an agent s in either

a closed- or moderate-minded component. Now, consider the canonical adjacency

matrix to the power pk,

A(y)pk =




C(y)pk 0 0

0 M(y)pk 0

Θ
(pk)
C (y) Θ

(pk)
M (y) Θ(y)pk



.

Existence of such directed path, by [12, Lemma 1.32], implies that the (k, s)

entry of A(y)pk , which belongs to either of the submatrices Θ
(pk)
C (y) or Θ

(pk)
M (y),

is nonzero. Consequently, the kth row sum of Θ(y)pk is strictly less than 1.

It follows from Lemma 3.1.6 that limt→∞Θ(y)t = 0, for a proof of which refer

to [47, Theorem 4.3]. Therefore, the spectral radius of Θ(y) is strictly less than

one.

Example 3.1.7. Consider the SBC system of Figure 3.2 with the permuted opin-

ion vector x = [x2 x3 x4 x5 x6 x7 x8 x10 x11 x12 x14 x15 x16 x17 x9 x1]T .
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Then, the canonical form of the adjacency matrix A(x) contains the following

submatrices:

C(x) =




1

1
2

1
2

1
2

1
2

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3




, M(x) =




1
2

1
2

1
3

1
3

1
3

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
4

1
4

1
4

1
4




,

Θ(x) =




1
2

1
8

1
8

1
11

1
11

1
10

1
10




, ΘC(x) =




1
2

1
8

1
8

1
8

1
8

1
8

1
8

1
11

1
11

1
11

1
11

1
10




,

ΘM(x) =




0 . . . 0

0 . . . 0

1
11

1
11

1
11

1
11

1
10

1
10

1
10

1
10

1
10

1
10

1
10




.
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3.2 Equilibria and Final Value at Constant Topol-

ogy

An opinion vector y0 is an equilibrium opinion vector of the dynamical sys-

tem (3.1) if and only if y0 is an eigenvector of the adjacency matrix A(y0) for the

eigenvalue one or, equivalently, y0 = A(y0)y0. Next, based on Conjecture 3.1.2,

we introduce the following definition.

Definition 3.2.1 (Final value at constant topology). For any opinion vector

y ∈ Rn we define its final value at constant topology fvct : Rn → Rn to be the

limiting opinion vector of an SBC or SBI system whose initial opinion vector is

y and the interconnection topology of its agents remains unchanged for all t ≥ 0.

That is,

fvct(y) = lim
t→∞

A(y)ty ∈ Rn.

The final value at constant topology of any equilibrium opinion vector is equal

to itself, that is, fvct(y0) = limt→∞A(y0)ty0 = y0. Therefore, the set of final values

at constant topology is a superset of the equilibria of the system and the limiting

opinion vectors. However, not all limiting opinion vectors are the equilibria of the

system, see Example 3.3.8. The condition under which a final value at constant

topology is an equilibrium is discussed as follows.

37



Chapter 3. Finite Heterogeneous Population

Proposition 3.2.2 (Properties of the final value at constant topology). For any

opinion vector y ∈ Rn in an SBC or SBI system, whose adjacency matrix can be

found from equation (3.3):

(i) fvct(y) is well defined, and is equal to

fvct(y) = P T (y)




C 0 0

0 M∗ 0

(I −Θ)−1ΘCC (I −Θ)−1ΘMM
∗ 0




(y)P (y)y,

(3.4)

where the submatrix M∗(y) is set equal to limt→∞M(y)t and is well defined.

(ii) If the two networks of agents with opinion vectors y and fvct(y) have the

same interconnection topology or, equivalently, Gr(y) = Gr(fvct(y)), then

(a) fvct(y) is an equilibrium opinion vector,

(b) Gr(y) contains no moderate-minded component, and

(c) in any WCC of Gr(fvct), the maximum and minimum opinions belong

to its closed-minded components.
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Proof. Let us first drop the y argument for matrices for readability. Regarding

part (i),

fvct(y) = lim
t→∞

Aty = P T lim
t→∞

A
t
Py = P T lim

t→∞




Ct 0 0

0 M t 0

Θ
(t)
C Θ

(t)
M Θt



Py.

From Section 3.1.2, Ct = C for any t ≥ 1, limt→∞Θt = 0, and each diagonal

block Mi, with size ni, is a row-stochastic primitive nonnegative matrix. For such

matrices the Perron-Frobenius Theorem tells us that the spectral radius is equal

to one, and the essential spectral radius (i.e., the second largest eigenvalue) is

strictly less than one. Thus, if we let νi ∈ Rni be a left eigenvector of Mi for the

eigenvalue one, then from [12, Remark 1.69],

M∗
i = lim

t→∞
M t

i = (νi1ni
)−11ni

νi. (3.5)

Using the solution to the infinite products of transition matrices of a Markov chain,

given in [23, Chapter 5], it can be shown that limt→∞Θ
(t)
C = (I −Θ)−1ΘCC, and

limt→∞Θ
(t)
M = (I −Θ)−1ΘMM

∗.

Regarding part (ii)a, Gr(y) = Gr(fvct(y)) results in A(y) = A(fvct(y)), and

hence

A(fvct(y)) fvct(y) = A(y) lim
t→∞

A(y)ty = lim
t→∞

A(y)ty = fvct(y).
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Regarding part (ii)b, by contradiction assume that Gr(y) contains at least

one moderate-minded component with the opinion vector yM1 and the adjacency

matrix M1. The trajectory of each sink in C(Gr(y)) is independent of other

nodes, hence fvctM1(y) = limt→∞M
t
1yM1 , and by equation (3.5), fvctM1(y) =

(ν11n1)
−11n1ν1yM1 . Since (ν11n1)

−1ν1yM1 is a scalar, all agents in one moderate-

minded component are in consensus in final value at constant topology, and their

adjacency matrix is no longer M1, but rather a complete consensus matrix, which

contradicts the assumption of Gr(y) = Gr(fvct(y)).

Regarding part (ii)c, let i denote the agent with the minimum final value at

constant topology in one WCC of Gr(fvct(y)). By contradiction, assume that i is

open-minded. Granted that the confidence or influence bounds are strictly greater

than zero, in the set of out-neighbors of each open-minded agent there exists at

least one agent with distinct opinion. Since i has the smallest opinion among its

neighbors, fvcti(y) increases after taking an average of i’s out-neighbors opinions.

In other words, the ith entry in the vector A(fvct(y)) fvct(y) is strictly larger than

fvcti(y), which contradicts the fact that fvct(y) is an equilibrium opinion vector

and invariant under matrix A(fvct(y)). Same can be proved for the agent with

the maximum opinion.
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3.3 Convergence Analysis

In this section, motivated by Conjectures 3.1.1 and 3.1.2, we drive two separate

set of sufficient conditions that guarantee that an SBC or SBI trajectory converges

to a limiting opinion vector. Next, to explain Conjecture 3.1.4, we study sufficient

conditions for SBC and SBI systems separately that guarantee reaching a fixed

state in finite time.

3.3.1 Convergence and Constant Topology

Our sufficient condition is based on specific neighborhoods of each opinion

vector, which is introduced in the following.

Definition 3.3.1 (Equi-topology distances and neighborhoods). Consider an

SBC or SBI system with opinion vector z ∈ Rn.

(i) The equi-topology distance of z is a non-negative vector ε(z) ∈ Rn
≥0 whose

entries are defined by

εi(z) = 0.5 min{||zi − zj| −R| : j ∈ {1, . . . , n} \ {i}, R ∈ {ri, rj}}, (3.6)
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and the equi-topology neighborhood of z is the set Bet(z) of opinion vectors

y ∈ Rn such that

|yi − zi| < εi(z), for all i ∈ {1, . . . , n} with εi(z) > 0, and

|yi − zi| = εi(z), for all i ∈ {1, . . . , n} with εi(z) = 0.

(ii) The invariant equi-topology distance of z is a non-negative vector δ(z) ∈

Rn
≥0 whose entries are defined by

δi(z) = min{εj(z) : j is a predecessor of i in the graph Gr(z)}, (3.7)

and the invariant equi-topology neighborhood of z is the set Biet(z) of opin-

ion vectors y ∈ Rn such that

|yi − zi| < δi(z), for all i ∈ {1, . . . , n} with δi(z) > 0, and

|yi − zi| = δi(z), for all i ∈ {1, . . . , n} with δi(z) = 0.

Note that in any SBC or SBI digraph, each node has a self-loop, and hence

each agent is a predecessor of itself. Therefore, for any opinion vector z ∈ Rn and

for all i ∈ {1, . . . , n}, we have δi(z) ≤ εi(z), which results in Biet(z) ⊂ Bet(z).

Lemma 3.3.2 (Sufficient condition for equal topologies). Consider an SBC or

SBI system with opinion vectors y, z ∈ Rn. If y belongs to the equi-topology

neighborhood of z, then the two networks of agents with opinion vectors y and z

have the same interconnection topology, or equivalently Gr(y) = Gr(z).
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Proof. For any i, j ∈ {1, . . . , n} two cases exists:

1. j is an out-neighbor of i in Gr(z), hence |zi− zj| ≤ r, where in an SBC system

r = ri and in an SBI system r = rj. In either system, since y ∈ Bet(z),

|yi − yj| ≤ |zi − zj|+ εi(z) + εj(z) ≤ |zi − zj|+ ||zi − zj|| − r| = r.

2. j is not an out-neighbor of i in Gr(z), hence |zi− zj| > r, with r defined above.

If both εi(z) and εj(z) are zero, then y ∈ Bet(z) gives us

|yi − yj| = |zi − zj| > r,

and if at least one is nonzero, then

|yi − yj| > |zi − zj| − εi(z)− εj(z) ≥ |zi − zj| − ||zi − zj| − r| = r.

Therefore, the neighboring relation of agents in Gr(z) is preserved in Gr(y). One

can also prove that any neighboring relation in Gr(y) is preserved in Gr(z).

Remark 3.3.3. For any y ∈ Rn, if y ∈ Bet(fvct(y)), then by Lemma 3.3.2 we

have Gr(y) = Gr(fvct(y)). Hence, by Proposition 3.2.2, fvct(y) is an equilibrium

opinion vector, and Gr(y) contains no moderate-minded component.

Theorem 3.3.4 (Sufficient condition for constant topology and convergence).

Consider a trajectory x(t) of an SBC or SBI system. Assume that there exists an

equilibrium opinion vector z ∈ Rn for the system such that x(0) ∈ Rn belongs to

the invariant equi-topology neighborhood of z. Then, for all t ≥ 0:
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(i) x(t) takes value in the equi-topology neighborhood of z, and hence Gr(z) =

Gr(x(t));

(ii) Gr(x(t)) contains no moderate-minded component; and

(iii) x(t) converges to fvct(x(0)) as time goes to infinity.

Remark 3.3.5 (Interpretation of Theorem 3.3.4). This theorem tells us that if the

trajectory of an SBC or SBI system enters a specific ball around any equilibrium

opinion vector of that system, then it remains in some larger ball around that

vector for all future iterations. Moreover, the proximity digraph of the trajectory

and the equilibrium opinion vector remain equal.

Remark 3.3.6. Under the condition of Theorem 3.3.4, a trajectory x(t) converges

to its final value at constant topology fvct(x(t)) = fvct(x(0)). However, fvct(x(t))

is not necessarily equal to the equilibrium opinion vector z, and the proximity

digraphs Gr(fvct(x(t))) and Gr(x(t)) can be different, see Example 3.3.8.

Remark 3.3.7. One special case of Theorem 3.3.4 is when x(0) ∈ Biet(fvct(x(0))),

which implies that fvct(x(0)) is an equilibrium opinion vector, again see Exam-

ple 3.3.8.

Example 3.3.8. Consider an SBC trajectory with x(0) = [0 0.6 1]T and con-

fidence bounds r = [0.5 1 0.25]T , which converges with constant topology after
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t = 0. It can be computed that fvct(x(0)) = [0 0.5 1]T and δ(fvct(x(0))) =

[0.25 0.25 0.25]T . Clearly, x(0) ∈ Biet(fvct(x(0))), i.e., the initial vector satisfies

the special case of Theorem 3.3.4 stated in Remark 3.3.7. Hence, x(t) converges

to fvct(x(0)), and their proximity digraphs are equal. However, if the confidence

bounds are equal to r = [0.5 1 0.25]T , then δ(fvct(x(0))) = [0 0 0]T , and

x(t) /∈ Biet(fvct(x(0))) for all t ≥ 0. Therefore, x(t) converges to fvct(x(0)), while

their proximity digraphs are different. Both trajectories with the two confidence

bounds vectors are the same, see Figure 3.3.
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Figure 3.3: The SBC trajectory of Example 3.3.8 is

illustrated.

Proof of Theorem 3.3.4. Regarding statement (i), by induction we prove that

x(t) ∈ Bet(z) for all t ≥ 0, which by Lemma 3.3.2 results in Gr(x(t)) = Gr(z). The

first induction step is x(0) ∈ Bet(z), which is true knowing that x(0) ∈ Biet(z)

and Biet(z) ⊂ Bet(z). To complete the induction argument, assume that the

statement (i) holds at times t = 0, . . . , τ , which implies that A(z) = A(x(t)). The

equilibrium opinion vector z satisfies z = A(z)z, thus we have x(t + 1) − z =
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A(x(t))x(t)− A(z)z = A(z)(x(t)− z) or, equivalently

xi(t+ 1)− zi =
1

|Ni(z)|
∑

j∈Ni(z)

(xj(t)− zj). (3.8)

One can see that

|xi(τ + 1)− zi| ≤ max
j∈Ni(z)

|xj(τ)− zj| ≤ max
`∈Nj(z),j∈Ni(z)

|x`(τ − 1)− z`|

≤ · · · ≤ max
k∈M
|xk(0)− zk|, (3.9)

where M is a subset of successors of i in Gr(z), and thus for any k ∈ M, equa-

tion (3.7) tells us that δk(z) ≤ εi(z). Here again two cases exists: First, if for all

k ∈ M, δk(z) = 0, then the condition x(0) ∈ Biet(z) implies that xk(0) − zk = 0,

and it follows from inequality (3.9) that xi(τ + 1)− zi = 0. Second, if there exists

` ∈M such that δ`(z) > 0, then εi(z) > 0 and

|xi(τ + 1)− zi| ≤ max
k∈M
|xk(0)− zk| < max

k∈M
δk(z) ≤ εi(z).

Therefore, x(τ + 1) ∈ Bet(z).

Regarding statement (ii), according to Section 3.2, an equilibrium opinion vec-

tor is equal to its own final value at constant topology. Hence Gr(z) = Gr(z
∗(z)),

and by Proposition 3.2.2, Gr(z) and thus Gr(x(t)) contain no moderate-minded

component.

Regarding statement (iii), according to the definition of the final value at con-

stant topology, if the topology remains constant for all t ≥ 0, then x(t) converges

to fvct(x(0)).
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Motivated by Conjecture 3.1.1, the existence of a limiting opinion vector is

required in the following lemma.

Lemma 3.3.9 (Sufficient condition for a limiting opinion vector to be an equilib-

rium). Pick a trajectory x(t) of an SBC or SBI system that is convergent. Denote

the limiting opinion vector of x(t) by x∞. If mini∈{1,...,n} εi(x∞) > 0, where ε(x∞)

is the equi-topology distance of x∞ , then there exists time T such that for all

t ≥ T :

(i) Gr(x∞) = Gr(x(t)), and

(ii) x∞ = fvct(x(t)), and is an equilibrium opinion vector.

Proof. According to the definition of convergence, for any δ ∈ R>0, there exists

T such that for all t ≥ T , ‖x(t) − x∞‖∞ < δ. Now, if we let δ be equal to

mini∈{1,...,n} εi(x∞), then ‖x(t)− x∞‖∞ < mini∈{1,...,n} εi(x∞) for all t ≥ T , and it

follows from Lemma 3.3.2 that Gr(x∞) = Gr(x(t)). Under fixed topology, x(t)

converges to its final value at constant topology, thus x∞ = fvct(x(t)). Moreover,

the equality Gr(x(t)) = Gr(fvct(x(t))) tells us that fvct(x(t)), and hence x∞, is

an equilibrium opinion vector.

Corollary 3.3.10. An equilibrium opinion vector z is a Lyapunov stable equilib-

rium vector for the system if mini∈{1,...,n} εi(z) > 0. In other words, there exists a

neighborhood around z where any solution of the dynamical system whose initial
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condition belongs to that neighborhood, stays in that neighborhood for all future

iterations.

3.3.2 Monotonic Convergence and Constant Topology

The second sufficient condition for convergence is based on the rate and direc-

tion of convergence of an SBI or SBC trajectory in one time step. If a trajectory

satisfies this condition, then any two opinions will either monotonically converge

to each other or diverge from each other for all future iterations.

Definition 3.3.11 (Agent’s per-step convergence factor). In an SBC or SBI sys-

tem with trajectory x(t) ∈ Rn, we define the per-step convergence factor of an

agent i whose xi(t)− fvcti(x(t)) is nonzero to be

ki(x(t)) =
xi(t+ 1)− fvcti(x(t))

xi(t)− fvcti(x(t))
.

The per-step convergence factor of a network of agents was previously intro-

duced in [58] to measure the overall speed of convergence toward consensus.

Remark 3.3.12 (Monotonic convergence). If an SBC or SBI trajectory x(t)

monotonically converges toward fvct(x(t)) in one time step, that is, for any i ∈
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{1, . . . , n},




xi(t) ≤ xi(t+ 1) ≤ fvcti(x(t)), if xi(t) < fvcti(x(t)),

xi(t) ≥ xi(t+ 1) ≥ fvcti(x(t)), if xi(t) > fvcti(x(t)),

xi(t) = xi(t+ 1) = fvcti(x(t)), if xi(t) = fvcti(x(t)),

then 



0 ≤ ki(x(t)) ≤ 1, if ki(x(t)) exists,

xi(t) = xi(t+ 1) = fvcti(x(t)), otherwise.

Before proceeding, let us define the distance to final value of any y ∈ Rn to

be ∆(y) = y − fvct(y). For any open-minded agent i, let kmaxi(y) and kmini
(y)

denote the maximum and minimum per-step convergence factors over all i’s open-

minded successors with nonzero distance to final value. Also, for any open-

minded agents i and j, let kmaxi,j(y) = max{kmaxi(y), kmaxj(y)} and kmini,j
(y) =

min{kmini
(y), kminj

(y)}.

Lemma 3.3.13 (Bound on per-step convergence factor). If in an SBC or SBI

system with opinion vector y ∈ Rn,

(i) Gr(y) contains no moderate-minded component, and

(ii) for any open-minded agent i and any of its open-minded child j, ∆i(y)∆j(y) ≥

0,
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then ki(A(y)y) is in the convex hull of kj(y)’s.

Proof. From here on, we often drop y argument from proofs, and for any y ∈ Rn,

we denote A(y)y by y+ and fvct(y) by y∗. If there is no moderate-minded

component in Gr(y), then y+
Θ−y∗Θ = Θ(y)(yΘ−y∗Θ), where yΘ is the opinion vector

of the open-minded class whose adjacency matrix is Θ(y), see [41, Theorem 6.4].

Consider an open-minded agent i whose children belong to the set {1, . . . ,m},

and denote the entries of A(y) by aij, then

ki(y
+) =

ai1(y+
1 − y∗1) + · · ·+ aim(y+

1 − y∗m)

ai1(y1 − y∗1) + · · ·+ aim(y1 − y∗m)

=
ai1k1(y)∆1(y) + · · ·+ aimkm(y)∆m(y)

ai1∆1(y) + · · ·+ aim∆m(y)
. (3.10)

Under condition (ii), all ∆j(y)’s have the same sign, and hence all the terms in the

right hand side are positive. Therefore, ki(y
+) is in the convex hull of kj(y)’s.

Theorem 3.3.14 (Sufficient condition for constant topology and monotonic con-

vergence). Assume that in an SBC or SBI system, the opinion vector y ∈ Rn

satisfies the following:

(i) the networks of agents with opinion vectors y and fvct(y) have the same

interconnection topology, that is, Gr(y) = Gr(fvct(y));

(ii) for any two agents i and j, if yi ≥ yj, then fvcti(y) ≥ fvctj(y);

(iii) y monotonically converges toward fvct(y) in one iteration;
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(iv) for any open-minded neighbors i and j, ∆i(y)∆j(y) ≥ 0; and

(v) any open-minded agents i and j that belong to the same WCC of Gr(y) and

that have nonzero ∆i(y) and ∆j(y) have the following property:

a) if the sets of open-minded children of i and j are identical, then ki(y) =

kj(y),

b) otherwise, assuming that ∆i(y) ≥ ∆j(y),

kmaxi,j(y)− kmini,j
(y) ≤ min{1− kmaxi,j(y), kmini,j

(y)}

min
m∈Z≥0

{
∣∣∣1− αm∆j(y)

βm∆i(y)

∣∣∣ : α ∈ [kminj
(y), kmaxj(y)], β ∈ [kmini

(y), kmaxi(y)]}

Then the solution x(t) from the initial condition x(0) = y has the following prop-

erties: the proximity digraph Gr(x(t)) is equal to Gr(y) for all time t, and the

solution x(t) monotonically converges to fvct(y) as t goes to infinity.

A justification of sufficient conditions of Theorem 3.3.14 is presented in Re-

mark 3.5.5.

Proof. Here, we show that if x(0) = y satisfies all the theorem’s conditions, then

y+ also satisfies them, and similarly they hold for all subsequent times. Note

that condition (iii) guarantees entrywise monotonic convergence, and condition (i)

guarantees constant topology. Let us start by proving that Gr(y) = Gr(y
+).

On account of Proposition 3.2.2 part (ii) and under condition (i), there are no
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moderate-minded component in Gr(y), thus, for any i, j ∈ {1, . . . , n}, four cases

are possible:

1. i, j are open-minded and weakly connected in Gr(y).

a) If ∆i∆j > 0, then without loss of generality we assume that ∆i ≥ ∆j > 0,

since otherwise we can multiply the opinion vector by −1. Hence, the monotonic

convergence of the two opinions toward each other, or equivalently,

y∗i − y∗j ≤ y+
i − y+

j ≤ yi − yj, (3.11)

should be proved. Under condition (v), it is true that |ki−kj| ≤ (1− ∆j

∆i
) min{1−

kj, kj}. On the other hand,

(y+
i − y+

j )− (y∗i − y∗j ) = (ki − kj)∆i + kj(∆i −∆j)

≤ (1− kj)(∆i −∆j) + kj(∆i −∆j) = ∆i −∆j,

which implies that y+
i − y+

j ≤ yi − yj. Furthermore,

(y+
i − y+

j )− (y∗i − y∗j ) ≥ −|ki − kj|∆i + kj(∆i −∆j)

≥ −kj(∆i −∆j) + kj(∆i −∆j) = 0,

which implies that y+
i − y+

j ≥ y∗i − y∗j . Now, we can show that the neighboring

relation between i and j in the digraph Gr(y
+) is equal to that of Gr(y). We let

r denote either ri or rj. The sign of |yi − yj| − r, |y+
i − y+

j | − r, and |y∗i − y∗j | − r

govern the neighboring relations between i and j in the digraphs Gr(y), Gr(y
+),
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and Gr(y
∗), respectively. Using inequalities (3.11) and condition (ii)





0 < y∗i − y∗j ≤ y+
i − y+

j ≤ yi − yj if yi ≥ yj,

y∗j − y∗i ≥ y+
j − y+

i ≥ yj − yi > 0 if yi ≤ yj,

(3.12)

subtracting r from above inequalities gives





|y∗i − y∗j | − r ≤ |y+
i − y+

j | − r ≤ |yi − yj| − r if yi ≥ yj,

|y∗j − y∗i | − r ≥ |y+
j − y+

i | − r ≥ |yj − yi| − r if yi ≤ yj.

Hence, |y+
i − y+

j | − r is bounded between the two other values, which have the

same sign by condition (i). Therefore, i and j’s neighboring relation is preserved

in Gr(y
+).

b) If ∆i∆j ≤ 0, then for instance assume that ∆i ≥ 0 ≥ ∆j. By condition (iii), it

is easy to see that

yi − y∗i ≥ y+
i − y∗i ≥ 0 ≥ y+

j − y∗j ≥ yj − y∗j .

Using above inequalities and under condition (ii), inequalities (3.12) hold, which

again proves that i and j’s neighboring relation is preserved in Gr(y
+).

2. i and j are open-minded and belong to two separate WCC’s of Gr(y), whose

agent sets are V1 and V2. Since Gr(y) = Gr(y
∗), by Proposition 3.2.2 part (ii)c, the

minimum and maximum opinions of a separate WCC in both Gr(y) and Gr(y
∗)

belong to closed-minded components. Define the opinion range of any subgraph to
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be a real interval between the minimum and maximum opinions of its agents and

its sensing range to be the union of closed intervals in the confidence bounds of its

agents around their opinions. Therefore, the sensing range of V1 is separated from

the opinion range of V2 in both Gr(y) and Gr(y
∗). Due to monotonic convergence

toward y∗ in one step, the sensing range of V1 in Gr(y
+) lies in the union of its

sensing ranges in Gr(y) and Gr(y
∗). The boundary closed-minded component of

V1 in Gr(y) keeps the sensing range of V1 away from the opinion range of V2 in

Gr(y
+), see Figure 3.4 (a). Thus, two separate WCC’s in Gr(y) remain separate

in Gr(y
+).

3. i and j are both closed-minded in Gr(y), hence, y+
i = y∗i and y+

j = y∗j . The

equality y+
i − y+

j = y∗i − y∗j tells us that neighboring relation between i and j in

Gr(y
+) is same as in Gr(y

∗), and consequently in Gr(y).

4. i is open-minded and j is closed-minded inGr(y). Since agents in one closed-

minded component reach consensus in Gr(y
∗), i’s neighboring relation with j in

Gr(y) is the same as its relation with other agents in j’s component. Assume that

yi− yj ≤ r, where r denotes either ri or rj, see Figure 3.4 (b), then yi− yk ≤ r for

all k in j’s component. The average of the latter inequalities gives yi − y+
j ≤ r,

and from Gr(y) = Gr(y
∗) we have y∗i −y∗j ≤ r, where for closed-minded j, y∗j = y+

j .

Therefore, y+
i , which under monotonic convergence is bounded between yi and y∗i ,
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y+y y∗

{
{V1

V2

(a)

y∗y+y

i

j{2ri

(b)

Figure 3.4: For the proof of Theorem 3.3.14: (a) illusterates the sets of agents

in two separate WCC’s of Gr(y), V1 and V2. If V1’s sensing range (dark gray)

is separated from V2’s opinion range (light gray) in Gr(y) and Gr(y
∗), owing to

boundary closed minded components (red), these ranges can not overlap in Gr(y
+);

and (b) shows that open-minded i under light gray bound of confidence listens to

closed-minded j and its component in Gr(y) and Gr(y
∗). Since Gr(y) = Gr(y

∗),

closed-minded components reach consensus in Gr(y
∗). Otherwise, i could listen to

j under dark gray bound of confidence, and get disconnected in Gr(y
+).
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also satisfies y+
i − y+

j ≤ r. Similarly, one can show that the neighboring relation

is preserved in Gr(y
+) for the case when yi − yj > r.

So far, we have proved that Gr(y) = Gr(y
+), hence condition (i) holds for y+.

Due to monotonic convergence in one time step under opinion vector y, opinion

order and direction of convergence toward final value is preserved in y+, that is

conditions (ii) and (iv) are true for y+. To prove the last two conditions for y+,

we should find ki(y
+)’s. Regarding part (a), if the two open-mindeds i and j have

the same set of open-minded children, then equation (3.10) tells us that ki(y
+) =

kj(y
+). Regarding part (b), clearly, both conditions of Lemma 3.3.13 hold for

Gr(y), hence for any open-minded i, ki(y
+) lies in the convex hull of kj(y)’s,

where j’s are its open minded children. This fact tells us that: 0 ≤ ki(y
+) ≤ 1,

kmaxi(y
+) ≤ kmaxi(y), and kmini

(y+) ≥ kmini
(y). Therefore, for any open-minded

agents i and j with different sets of open-minded children,

kmaxi,j(y
+)− kmini,j

(y+) ≤ min
m,α1,β1

∣∣∣1− αm1 ∆j(y)

βm1 ∆i(y)

∣∣∣

×min{1− kmaxi,j(y+), kmini,j
(y+)},

where α1 ∈ [kminj
(y), kmaxj(y)], m ∈ Z≥0, and β1 ∈ [kmini

(y), kmaxi(y)]. Knowing

that ki(y) ∈ [kmini
(y), kmaxi(y)],

min
m,α1,β1

∣∣∣1− αm1 ∆j(y)

βm1 ∆i(y)

∣∣∣ ≤ min
m,α1,β1

∣∣∣1− αm1 kj(y)∆j(y)

βm1 ki(y)∆i(y)

∣∣∣.
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The right hand side of the above inequality is equal to

min
m,α1,β1

∣∣∣1− αm1 ∆j(y
+)

βm1 ∆i(y+)

∣∣∣ ≤ min
m,α2,β2

∣∣∣1− αm2 ∆j(y
+)

βm2 ∆i(y+)

∣∣∣,

where α2 and β2, respectively, belong to smaller intervals of [kminj
(y+), kmaxj(y

+)]

and [kmini
(y+), kmaxi(y

+)]. Hence, part (b) holds for y+, which completes the

proof.

Example 3.3.15. An SBC system with the following initial opinion vector

x0 = [0 2.2 4 4 4 0.64 3 ∗ 1T200]T

and bounds of confidence r = [0.01 0.01 0.01 0.01 0.01 1.9254 2∗1T200]T satisfies

all conditions but (v) of Theorem 3.3.14 at time steps t = 0, . . . , 5. The proximity

digraph Gr(x(0)) contains two open-minded SCC’s {x6} and {x7, . . . , x206}, who

are two open-minded WCC’s and weakly connected in Gr(x(0)). The per-step

convergence factors of their agents, which is approximately equal to the spectral

radius of the adjacency matrices of their SCC’s (0.3333 and 0.9804), do not satisfy

the boundary condition (v). Therefore, the monotonic convergence of opinion

vector, or equivalently equation (3.11), does not hold, see Figure 3.5.

Example 3.3.16. An SBC system with x0 = [0 0 0 1 3 ∗ 1T10 6]T and r =

[0.01 0.01 0.01 2 20 ∗ 1T10 0.01]T at time zero satisfies conditions (i) and (ii) of

Theorem 3.3.14, however, condition (iii) does not hold. The per-step convergence
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Figure 3.5: The evolution of opinions in Example 3.3.15 (left), and the non-

monotonic evolution of opinion difference x7(t) − x6(t) under fixed topology of

Gr(x(0)), which is due to the large difference k6(x(t))− k7(x(t)) (right).

factor of open-minded agent x4 at time zero is equal to -12.35, which results in a

large jump at the subsequent time step, consequently the interconnection topology

changes.
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Figure 3.6: The evolution of opinions in Examples 3.3.16 (left), and 3.3.20 (right).

3.3.3 Convergence in Finite Time and Consensus

In this subsection, we discuss the sufficient conditions for SBC and SBI systems

to converge to an agreement opinion vector. In an agreement opinion vector, any
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two agents are either disconnected or in consensus. Reaching global consensus,

in which all agents hold the same opinion, is a special case of convergence to an

agreement opinion vector. Note that it is possible for an SBC or SBI system to

reach an opinion vector that contains two neighbor agents with separate opinions

in finite time, see Example 3.3.20.

Proposition 3.3.17 (Properties of agreement opinion vectors). For any agree-

ment opinion vector ỹ ∈ Rn in an SBC or SBI system:

(i) mini∈{1,...,n} εi(ỹ) > 0, where ε(ỹ) is the equi-topology distance of ỹ; and

(ii) if ỹ is the limiting opinion vector of a trajectory, then the trajectory reaches

ỹ in finite time.

Proof. Regarding statement (i), by contradiction assume that mini∈{1,...,n} εi(ỹ) =

0. Then based on equation (3.6), there exist agents i and j such that |ỹi− ỹj| = ri.

The latter equation tells us that j ∈ Ni(ỹ) in an SBC digraph or i ∈ Nj(ỹ) in

an SBI digraph, while their opinions are different from each other by ri, which

contradicts the definition of agreement opinion vectors. Regarding statement (ii),

consider trajectory x(t) that converges to ỹ. Then, previous statement shows

that the limiting opinion vector of x(t) satisfies the condition of Lemma 3.3.9.

Therefore, there exists time step τ such that the proximity digraphs Gr(ỹ) and

Gr(x(t)) are equal for all t ≥ τ . On the other hand, the proximity digraph of an

59



Chapter 3. Finite Heterogeneous Population

agreement opinion vector contains only closed-minded components. Hence, the

agents in each WCC of Gr(x(τ)) reach consensus at the next iteration.

One sufficient condition that guarantees asymptotic consensus in “agreement

algorithms”, which includes SBC and SBI systems, is given in [43, Theorem 2.4]

and is as follows. Take a trajectory x(t) of an SBC or SBI system with proximity

digraph Gr(x(t)) =
(
V,E(x(t))

)
, where V and E(x(t)) are the sets of nodes

and edges of the digraph, respectively. If there exists τ such that the graph

(
V,E(x(kτ))∪E(x(kτ + 1))∪ · · · ∪E(x((k + 1)τ − 1))

)
is strongly connected for

all k ∈ Z≥0, then all entries of x(t) converge to one real number. However, this

sufficient condition requires knowledge of the system for infinite time, and is the

same for both SBC and SBI systems. Hence, we derive sufficient conditions that

are required to hold in one time step, and also make it possible to compare SBC

and SBI systems in support of Conjecture 3.1.4. Let us first define the opinion

interval of any subgraph of an SBC or SBI digraph be a closed interval in R

between that subgraph’s minimum and maximum opinions.

Proposition 3.3.18 (Sufficient conditions for convergence to an agreement opin-

ion vector). Consider the opinion vector y ∈ Rn in an SBC or SBI system with

the following properties:
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(i) the opinion intervals of any two WCC’s of the proximity digraph are sepa-

rated from each other by a distance strictly larger than the maximum confi-

dence or influence bounds of the agents in those WCC’s; and

(ii) it is true that:

• for any WCC of y’s SBC digraph, with m agents, at least m− 1 agents

have confidence bounds larger than that WCC’s opinion interval; and

• for any WCC of y’s SBI digraph, at least one agent has influence bound

larger than that WCC’s opinion interval.

Then, the trajectories of both SBC and SBI systems with the initial opinion vector

y converge to agreement opinion vectors in finite time. Moreover, in every WCC

of either of the SBC or SBI digraphs, at least one node is an out-neighbor of all

nodes in that WCC for all t ≥ 0.

Remark 3.3.19. Any trajectory of an SBC or SBI system that converges to

an agreement opinion vector will eventually satisfy the conditions of Proposi-

tion 3.3.18.

Proof of Proposition 3.3.18. Let us denote either of the SBC or SBI digraphs of

y by Gr(y). In an SBC or SBI system, the smallest and largest opinions in

a separate WCC of the proximity digraph are, respectively, non-decreasing and
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non-increasing in one iteration [6]. This fact tells us that for all t ≥ 0: first, under

the condition (i), the two sets of nodes of two separate WCC’s in Gr(x(0)) remain

separate in Gr(x(t)); second, if the condition (ii) holds for Gr(x(0)), then it also

holds for Gr(x(t)). Now, under condition (ii) for both SBC and SBI systems, any

WCC of Gr(x(t)) contains at least one agent that is an out-neighbor of all agents

in that WCC for all t ≥ 0. Denote one such agent in a WCC by s, then that

WCC’s agents with maximum and minimum opinions update their opinions by

taking an average of their out-neighbors, including s. Hence, at the next iteration,

their opinions will converge to s’s opinion, which results in an strict decrease in the

opinion interval of the WCC. Since the confidence or influence bounds are strictly

greater than zero, there exists a time step after which the opinion interval of the

WCC is larger than the minimum confidence or influence bound. Consequently,

all agents become each others out-neighbors, and the WCC becomes one closed-

minded component.

Example 3.3.20. The trajectory of an SBC system with initial opinions

[0 2 3 4.5 7]T and bounds vector [0.01 3 0.01 3 0.01]T exhibits convergence

to a fixed profile in finite time. While, the SBC digraph of the limiting opinion

vector contains open-minded agents, see Figure 3.6.
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3.4 Numerical Analysis

In this section, we provide extensive simulation results that demonstrate the

results of Section 3.3 and are consistent with our conjectures. We performed 2000

simulations: 100 simulations of both SBC and SBI systems for ten different agent

numbers. In each simulation, the initial opinion vector and bounds vector are

generated randomly and uniformly distributed on [0, 1] and [0, 0.3], respectively.

The time steps τ at which trajectories satisfied the condition of Theorem 3.3.4 are

plotted in Figures 3.7 and 3.8. All the 2000 SBC and SBI trajectories eventually

satisfied the special case of the sufficient condition of Theorem 3.3.4, stated in

Remark 3.3.7. In other words, for each trajectory x(t), there exists time τ such

that x(τ) belongs to the invariant equi-topology neighborhood of its own final

value at constant topology fvct(x(τ)). Thus, fvct(x(τ)) is an equilibrium opinion

vector, and is equal to the limiting opinion vector of x(t). The frequency of oc-

currence of this special case is intuitively explained by the following statements:

First, by Conjecture 3.1.1, for each trajectory a limiting opinion vector x∞ ex-

ists. Second, for any randomly generated opinion vector y and bounds vector r,

the probability of having mini∈{1,...,n} εi(y) = 0, where ε(y) is the equi-topology

distance of y, is equal to zero, and one can assume that the same holds for any

limiting opinion vector. Third, Lemma 3.3.9 tells us that if the limiting opinion
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Figure 3.7: In one thousand simulations of SBC systems, the time step τ at which

the trajectory of each system satisfied the sufficient condition of Theorem 3.3.4

is plotted versus the number of agents in that system. The left and right plots,

respectively, illustrate time τ for trajectories that converged in finite time and

infinite time. Each initial opinion vector and bounds vector are generated randomly

and uniformly distributed on [0, 1] and [0, 0.3], respectively. For each agent number

hundred simulations are performed. All trajectories satisfied the special case of

sufficient condition of Theorem 3.3.4, stated in Remark 3.3.7 in finite time.

64



Chapter 3. Finite Heterogeneous Population

0 20 40 60 80 100
0

5

10

15

20

25

30

35

!

Number of agents, SBI system
0 20 40 60 80 100

0

5

10

15

20

25

30

35

!

Number of agents, SBI system

Figure 3.8: In one thousand simulations of SBI systems, the time step τ at which

the trajectory of each system satisfied the sufficient condition of Theorem 3.3.4

is plotted versus the number of agents in that system. The left and right plots,

respectively, illustrate time τ for trajectories that converged in finite time and

infinite time. As shown, only four SBI trajectories converged in infinite time. Each

initial opinion vector and bounds vector are generated randomly and uniformly

distributed on [0, 1] and [0, 0.3], respectively. For each agent number hundred

simulations are performed. All trajectories satisfied the special case of sufficient

condition of Theorem 3.3.4, stated in Remark 3.3.7 in finite time.
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Figure 3.9: For each agent number 100 SBC systems and 100 SBI systems are

simulated, as explained in Figures 3.7 and 3.8. The percentage of SBC (blue)

and SBI (green) trajectories that reached their limiting opinion vector, which is an

agreement opinion vector, in finite time is plotted versus agent number.

vector satisfies mini∈{1,...,n} εi(x∞) > 0, then the trajectory eventually satisfies the

mentioned special case of condition of Theorem 3.3.4.

In above mentioned simulations, for each agent number, the percentage of SBC

and SBI trajectories that reached a fixed profile in finite time are plotted in Fig-

ure 3.9. Clearly, Figure 3.9 supports Conjecture 3.1.4. To explain this frequency of

convergence of SBI trajectories in finite time as compared with SBC trajectories,

we use the results of Subsection 3.3.3. For uniformly randomly generated opinion

vector and bounds vector, an SBI digraph is more likely to satisfy condition (ii) of

Proposition 3.3.18 than an SBC digraph. One can assume that the same holds for
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a trajectory with uniformly randomly generated initial opinion vector and bounds

vector.

In the next section, based on our “constant topology in finite time” conjecture,

we assume that the interconnection topology in an SBC or SBI system remains

constant for infinite time and address the following questions: How the three

classes of agents behave? How groups of agents affect each other? And can one

explain the observed pseudo-stable behavior of trajectories, as stated in Conjec-

ture 3.1.2?

3.5 Evolution Under Constant Topology

Motivated by Conjecture 3.1.2, we investigate the rates and directions of con-

vergence of separate classes of agents in the SBC and SBI systems under fixed

interconnection topology as time goes to infinity. This analysis proves that the

system shows a pseudo-stable behavior under fixed topology.

Remark 3.5.1. Consider a converging trajectory x(t) whose limiting opinion vec-

tor is equal to fvct(x(t)) for all t ≥ 0. Then, x(t) exhibits a pseudo-stable behavior,

see equation (3.2), if and only if for all i ∈ {1, . . . , n}




0 < ki(x(t)) < 1, if ki(x(t)) exists,

xi(t) = xi(t+ 1) = fvcti(x(t)), otherwise.
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Definition 3.5.2 (Leader SCC). For opinion vector y ∈ Rn, let Gr(y) denote

either its SBC or SBI digraph. Consider an SBC or SBI system with opinion

vector y ∈ Rn. For any open-minded SCC, Sk(y), of Gr(y), denote the set of its

open-minded successor SCC’s, including Sk(y), by M(Sk(y)). We define Sk(y)’s

leader SCC to be the SCC whose adjacency matrix has the largest spectral radius

among all SCC’s of M(Sk(y)).

Note that in SBC and SBI digraphs, the adjacency matrix of a large SCC has

a large spectral radius, hence that SCC tends to become a leader SCC for its

predecessors.

Theorem 3.5.3 (Evolution under constant topology). Consider an SBC or SBI

system, denote its trajectory by x(t) and proximity digraph by Gr(x(t)). As-

sume that there exists a time τ after which Gr(x(t)) remains unchanged, that

is, Gr(x(t)) = Gr(x(τ)). Then, the following statements hold:

(i) fvct(x(t)) = fvct(x(τ)) for all t ≥ τ .

(ii) Gr(x(τ)) contains no moderate-minded component.

(iii) Consider any open-minded SCC Sk(x(t)) of Gr(x(t)) and its leader SCC

Sm(x(t)), with adjacency matrices denoted by Θk and Θm, respectively. Then,

(a) for any i ∈ Sk(x(t)), either xi(t) − fvcti(x(t)) = 0 or its per-step con-

vergence factor converges to the spectral radius of Θm as t→∞, and
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(b) if the spectral radius of Θm is strictly larger than that of other SCC’s

in M(Sk(y)), then there exists t1 ≥ τ such that for all i ∈ Sk(x(t)),

j ∈ Sm(x(t)), and t ≥ t1,

xj(t1) < fvctj(x(t1)) =⇒ xi(t) ≤ fvcti(x(t)),

xj(t1) > fvctj(x(t1)) =⇒ xi(t) ≥ fvcti(x(t)).

(iv) There exists time t2 ≥ τ such that for all t ≥ t2, x(t) exhibits a pseudo-stable

behavior, see equation (3.2).

Remark 3.5.4 (Interpretation of statement (iii) in Theorem 3.5.3). Parts (a) and

(b) tell us, respectively, that the rates and directions of convergence of opinions in

an open-minded SCC toward the final value at constant topology are governed by

the direction and rate of convergence of its leader SCC. It is easy to see that the

per-step convergence factor has an inverse relation with the rate of convergence to

the final value at constant topology. Therefore, Theorem 3.5.3 implies that under

fixed interconnection topology, individuals converge to a final decision as slow as

the slowest group of agents whom they listen to.

Proof of Theorem 3.5.3. Statement (i) is a direct consequence ofA(x(t)) = A(x(τ))

for all t ≥ τ . Statement (ii) can be proved similar to part (ii)b of Proposi-

tion 3.2.2. It was shown that under fixed interconnection topology, all agents in

one moderate-minded SCC of an SBC or SBI digraph reach consensus as time

69



Chapter 3. Finite Heterogeneous Population

goes to infinity. Since, the bounds vector is strictly greater than zero, there ex-

ists a time step after which the adjacency matrix of one moderate-minded SCC

transforms into a complete consensus matrix, which contradicts the assumption

of having fixed topology for infinite time. Before proving statement (iii), since the

canonical permutation matrix remains unchanged, let us assume that the opinions

in x(τ) are ordered such that A(x(τ)) = A(x(τ)). Furthermore, owing to the fixed

interconnection topology, we drop the x(t) argument for simplicity. Therefore, by

equation (3.3),

A(x(t)) =




C 0

ΘC Θ


 .

Now, for all t > τ we have

x(t)− fvct(x(τ)) =



CxC(τ)

xΘ(t)


−




CxC(τ)

fvctΘ(x(τ))


 =




0

xΘ(t)− fvctΘ(x(τ))


 ,

where xC(t) and xΘ(t) are the opinion vectors of agents in closed- and open-

minded classes respectively. Using fvct(x(τ)) = A(x(τ)) fvct(x(τ)), the following

recurrence relation holds

xΘ(t+ 1)− fvctΘ(x(τ)) = Θ(xΘ(t)− fvctΘ(x(τ))) ∀ t ≥ τ. (3.13)

Consider an open-minded WCC of Gr(x(t)), denoted by W1. Let Θ1 denote W1’s

adjacency matrix, and x1(t) denote the trajectory of nodes of W1. Under fixed

interconnection topology, the trajectory of each WCC is independent of others,
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thus for all t ≥ 0, x1(t+ τ)− fvct1(x(τ)) = Θt
1(x1(τ)− fvct1(x(τ))). According to

the block lower triangular from of Θ1,

Θt
1 =




Θt
11 0

Θ
(t)
21 Θt

22

...
. . .



,

where each Θii is the adjacency matrix of an SCC, denoted by Sii, of W1. Let

xii(t) be the opinion trajectory of nodes of Sii. Clearly, S11 is one of the sink

SCC’s in W1, and Θii’s are ordered in Θ1 according to the distance of Sii’s to

the sinks. For simplicity, we prove statement (iii) for S11 and an SCC that is the

direct predecessor of S11. Without loss of generality, let S22 be one such SCC.

The proof for the rest of open-minded SCC’s is similar.

Each block Θii is nonnegative and primitive. By Perron-Frobenius Theorem:

the spectral radius of Θii, denoted by λi, is positive and a simple eigenvalue of

Θii; and there exists a positive eigenvector νi for Θii associated to λi. Any Θii

can be written in Jordan normal form by some similarity transformation

Θii = QJQ−1 =

[
νi Qe

]


λi 0

0 Je







wi

Q
(−1)
e


 ,

where wi is the first row of Q−1. Consequently,

lim
t→∞

λ−ti Θt
ii = lim

t→∞
(λ−ti λ

t
iνiwi + λ−ti QeJ

t
eQ

(−1)
e ) = νiwi, (3.14)
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the term λ−ti QeJ
t
eQ

(−1)
e converges to zero owing to the fact that the norms of all

eigenvalues in Jordan matrix Je are strictly less than λi. In any open-minded

WCC, the sink SCC is not affected by other SCC’s, hence a sink SCC is its own

leader. Therefore, for all t ≥ 0,

x11(t+ τ)− fvct11(x(τ)) = Θt
11(x11(τ)− fvct11(x(τ))).

In the interest of simplicity, let us denote the vector xii(t)− fvctii(x(τ)) by ∆ii(t),

then we have

lim
t→∞

λ−t1 ∆11(t) = ν1w1∆11(τ). (3.15)

Regarding part (iii)a for S11, for the per-step convergence factor of any i ∈ S11 we

have

lim
t→∞

ki(x(t)) = lim
t→∞

[∆11(t+ 1)]i
[∆11(t)]i

= lim
t→∞

λ1
λ−t−1

1 [∆11(t+ 1)]i
λ−t1 [∆11(t)]i

= λ1
ν1iw1∆11(τ)

ν1iw1∆11(τ)
= λ1

Regarding part (iii)b for S11, since λt1w1∆11(τ) is a scalar, λ1 is positive, and ν1 is

a positive vector, all entries of vector ν1w1∆11(τ)λt1 have the same sign. Therefore,

there exists time T ≥ τ after which all entries of ∆11(t) have the same sign for all

t ≥ T .

Here, we prove the two statements for S22. It can be computed that for all

t ≥ 0

∆22(t+ τ) =
t−1∑

i=0

Θi
22Θ21Θt−i−1

11 ∆11(τ) + Θt
22∆22(τ). (3.16)
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Now, to find limt→∞∆22(t), we consider three cases:

1) If λ1 > λ2, then S11 is S22’s leader. From Section 3.1.2 it is known that λ1

and λ2 are strictly less than one. Then, according to the transient analysis of the

reducible Markov chains from [23, Section 5.6], the limit of the first term on the

right hand side of equation (3.16) as t→∞ can be computed:

lim
t→∞

λ−t1

t−1∑

i=0

Θi
22Θ21Θt−i−1

11 =
(

lim
t→∞

t−1∑

i=0

Θi
22

)
Θ21 lim

t→∞
λ−t1 Θt

11

= (I −Θ22)−1Θ21ν1w1,

and the limit of the second term is equal to

lim
t→∞

λ−t1 Θt
22 = lim

t→∞
λ−t1 λt2λ

−t
2 Θt

22 = ν2w2 lim
t→∞

λ−t1 λt2 = 0.

Therefore,

lim
t→∞

λ−t1 ∆22(t) = (I −Θ22)−1Θ21ν1w1∆11(τ). (3.17)

Regarding part (iii)a for S22, for any i ∈ S22 we have

lim
t→∞

ki(x(t)) = lim
t→∞

[∆22(t+ 1)]i
[∆22(t)]i

= λ1
w1∆11(τ)[(I −Θ22)−1Θ21ν1]i
w1∆11(τ)[(I −Θ22)−1Θ21ν1]i

= λ1.

Regarding part (iii)b for S22, we first prove that (I−Θ22)−1Θ21ν1 is a nonnegative

matrix. As stated in Section 3.1.2, the spectral radius of Θ22 is strictly less than

one. Consequently, (I − Θ22) is invertible, limt→∞Θt
22 = 0, the series I + Θ22 +

Θ2
22 + . . . is convergent, and the following product can be computed

(I −Θ22)(I + Θ22 + Θ2
22 + . . . ) = I.
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Therefore,

(I −Θ22)−1 = I + Θ22 + Θ2
22 + . . . ,

which states that (I−Θ22)−1 is a nonnegative matrix. Now, since (I−Θ22)−1Θ21ν1

is a nonnegative vector, all entries of the vector on the right hand side of equations

(3.15) and (3.17) have the same sign as the scalar w1∆11(τ).

2) If λ1 < λ2, then S22 is its own leader. Similarly, for the limit of the first term

on the right hand side of equation (3.16) as t→∞ we have:

lim
t→∞

λ−t2

t−1∑

i=0

Θi
22Θ21Θt−i−1

11 = lim
t→∞

λ−t2 Θt
22Θ21

(
lim
t→∞

t−1∑

i=0

Θi
11

)

= ν2w2Θ21(I −Θ22)−1.

Therefore,

lim
t→∞

λ−t2 ∆22(t) = w2

(
Θ21(I −Θ11)−1∆11(τ) + ∆22(τ)

)
ν2, (3.18)

where w2

(
Θ21(I − Θ11)−1∆11(τ) + ∆22(τ)

)
is a scalar, λ2 is positive, and ν2 is a

positive vector. Regarding part (iii)a for S22, for any i ∈ S22 we have

lim
t→∞

ki(x(t)) = lim
t→∞

[∆22(t+ 1)]i
[∆22(t)]i

= λ2
w2(Θ21(I −Θ11)−1∆11(τ) + ∆22(τ))ν2i

w2(Θ21(I −Θ11)−1∆11(τ) + ∆22(τ))ν2i

= λ2.

Regarding part (iii)b for S22, all entries of the limiting vector in equation (3.18)

have the same sign.

3) if λ1 = λ2 = λ, then for the limit of the first term on the right hand side of
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equation (3.16) as t→∞ we have:

lim
t→∞

λ−t
t−1∑

i=0

Θi
22Θ21Θt−i−1

11 = lim
t→∞

λ−t2 Θt
22Θ21

(
lim
t→∞

t−1∑

i=0

Θi
11

)

+
(

lim
t→∞

t−1∑

i=0

Θi
22

)
Θ21 lim

t→∞
λ−t1 Θt

11 = ν2w2Θ21(I −Θ22)−1 + (I −Θ22)−1Θ21ν1w1.

Therefore,

lim
t→∞

λ−t∆22(t) =
(
αν2 + w1∆11(τ)(I −Θ22)−1Θ21ν1

)
,

where α = w2

(
Θ21(I −Θ11)−1∆11(τ) + ∆22(τ)

)
. Regarding part (iii)a for S22, for

any i ∈ S22 we have

lim
t→∞

ki(x(t)) = λ
(αν2i + w1∆11(τ)[(I −Θ22)−1Θ21ν1]i)

(αν2i + w1∆11(τ)[(I −Θ22)−1Θ21ν1]i)
= λ.

Regarding part (iii)b for S22, notice that the theorem does not discuss the case

with equal spectral radii.

Finally, statement (iv) is proved utilizing previous statements. For any i ∈

Gr(x(t)) two cases exists. First, if i belongs to a closed-minded SCC, then xi(t) =

xi(τ +1) for all t > τ , and hence ki(x(t)) does not exist. Second, if i belongs to an

open-minded SCC Sk(x(t)), then according to part (iii)a, either xi(t) = fvcti(t)

or ki(x(t)) converges to the spectral radius of the adjacency matrix of Sk(x(t))’s

leader SCC. This spectral radius is proved in Section 3.1.2 to be strictly larger

than zero and strictly smaller than one. In other words, there exists time t2 such
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that for all t ≥ t2, 0 < ki(x(t)) < 1. Therefore, according to Remark 3.5.1, x(t)

exhibits pseudo-stable behavior.

Remark 3.5.5 (Justification of the sufficient condition for monotonic conver-

gence). We justify the conditions of Theorem 3.3.14 employing Conjecture 3.1.2

and Theorem 3.5.3. Note that these conditions are sufficient but not necessary

for monotonic convergence. Based on our conjecture, we assume that the topology

of an SBC or SBI trajectory x(t) remains unchanged after time τ , thus condi-

tion (i) of Theorem 3.3.14 is satisfied. Regarding conditions (ii) and (iii), by

statement (iii)a of Theorem 3.5.3, there exist a time step t1 ≥ τ , after which the

per-step convergence factor of all agents belong to [0, 1]. Therefore, the opinion

vector converges toward its final value at constant topology monotonically in one

step. Moreover, since the opinion vector is discrete, this monotonic convergence

results in existence of a time step t2 ≥ τ , after which condition (ii) of the The-

orem 3.3.14 holds. Regarding condition (iv), statement (iii) of Theorem 3.5.3

shows that there exists time step t3 ≥ τ , after which for any open-minded i and

j it is true that: if they both belong to one SCC, then ∆i(x(t))∆j(x(t)) ≥ 0;

and if they belong to two separate SCC’s with adjacency matrices Θ1 and Θ2, re-

spectively, while j is a successor of i, then when ρ(Θ1) < ρ(Θ2), often it is true

that ∆i(x(t))∆j(x(t)) ≥ 0, and when ρ(Θ1) > ρ(Θ2), ∆j(x(t)) converges to zero

faster than ∆i(x(t)) and hence ∆i(x(t))∆j(x(t)) ' 0. Regarding condition (v)
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part (a), if i and j have the same set of open-minded children at time t, then

ki(x(t+ 1)) = kj(x(t+ 1)), see proof of Theorem 3.3.14. Finally, we explain why

the upper bound in condition (v) part (b) is less restrictive as time goes to infinity.

Since, for such agent i, the distance to final values of all successors with smaller

per-step convergence factors converge to zero, the interval [kmini
(x(t)), kmaxi(x(t))]

reduces to one value, that is kmaxi(x(t)) to which ki(x(t)) converges. Conse-

quently, for large t, kmaxi,j(x(t)) = max{ki(x(t)), kj(x(t))} , α = kj(x(t)), and

β = ki(x(t)). Also, if ∆i(x(t)) ≥ ∆j(x(t)), then ki(x(t)) ≥ kj(x(t)), and hence

min
m,α,β

∣∣∣1− αm∆j(x(t))

βm∆i(x(t))

∣∣∣ ' 1− ∆j(x(t))

∆i(x(t))
.

A system may monotonically converge under fixed topology while condition (v) of

Theorem 3.3.14 is not satisfied. However, Example 3.3.15 illustrates the suffi-

ciency of this condition.

In the following, we provide numerical examples that facilitate the understand-

ing of the conditions and results of Theorem 3.5.3.

Example 3.5.6. Consider an SBC system with the initial opinion vector x(0) =

[0 1.5 3.5 5 1 1 4 2.1]T and confidence bounds r = [0.01 0.01 0.01 0.01 1 1 1 3]T .

For all t ≥ 0, the SBC digraph Gr(x(t)) remains unchanged and contains three

open-minded SCC’s: {x5, x6}, {x7}, and {x8}. The adjacency matrix of open-
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minded subgraph equals

Θ =




1
4

1
4

1
4

1
4

1
3

1
8

1
8

1
8

1
8




.

The spectral radii of the adjacency matrices of the three SCC’s are 0.5, 0.333,

and 0.125, respectively. The two SCC’s {x5, x6} and {x7} are successors of {x8},

and based on their spectral radii, {x5, x6} is {x8}’s leader SCC. We can see that

the per-step convergence factor of x8 converges to 0.5. Furthermore, the sign of

its direction of convergence toward the final value, i.e, the sign of x8(t) − x∗8, is

the same as the leader’s after t = 1. These facts support Theorem 3.5.3, see

Figure 3.10.

Example 3.5.7. The initial opinion vector and confidence bounds vector of an

SBC system are generated randomly. This system satisfies the condition of Theo-

rem 3.3.4 at t = 50. Moreover, since x(50) ∈ Biet(fvct(x(50))), the SBC digraph

Gr(x(t)) is equal to Gr(fvct(x(50))) for all t ≥ 50. The digraph Gr(fvct(x(50)))

contains two open-minded SCC’s, whose limiting opinions lie: 1) in interval [0.39,

0.5], denoted by S1, and in interval [0.3, 0.34], denoted by S2. According to the

topology of Gr(fvct(x(50))), S2 is a predecessor of S1. The spectral radii of the

adjacency matrices of S1 and S2 are equal to 0.6667 and 0.8381, respectively.
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Figure 3.10: The SBC trajectory x(t) of Example 3.5.6 is plotted on the top left,

the open-minded agents per-step convergence factors on the top right, the open-

minded agents distances to their final values at constant topology xi(t) − x∗i (x(t))

on the bottom left, and the open-minded subgraph of Gr(x(t)) is illustrated on the

bottom right.
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Therefore, both S1 and S2 are their own leader SCC’s, and by Theorem 3.5.3

the per-step convergence factors of their agents converge to 0.6667 and 0.8381,

respectively. The right plot verifies that the per-step convergence factors of all

open-minded agents converge to those two values, see Figure 3.11.
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Figure 3.11: The trajectory of the SBC system in Example 3.5.7 (left) and the

per-step convergence factor of its open-minded agents (right) are illustrated.

Example 3.5.8. Another example in which topology remains fixed along the evo-

lution is a system with x0 = [0 0 3 4.3 4.3 4.3 4.3 3.4 1]T and

r = [0.01 0.01 0.01 0.01 0.01 0.01 0.01 1.2 2.5]T . The proximity di-

graph of this system contains two open-minded SCC’s, {x8} which is the successor

of the other SCC {x9}. The spectral radii of adjacency matrices of these SCC’s

are 1
6

and 1
5

respectively. By Theorem 3.5.3, the per-step convergence factor of

{x9} converges to the spectral radius of its own adjacency matrix, see Figure 3.12.
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Figure 3.12: The evolution of opinions in Example 3.5.8 (left), ki(x(t)) of open-

minded agents (center), and the open-minded proximity digraph (right).

3.6 Summary

This chapter introduced a synchronized bounded influence (SBI) model of

opinion dynamics, which is similar to the heterogeneous bounded confidence model

introduced by Hegselmann and Krause, which we called synchronized bounded

confidence (SBC) model. First, we conjectured that in both SBC and SBI systems,

for each trajectory there exists a finite time, after which the topology of the

interconnection network remains unchanged, hence, the trajectory converges to a

limiting opinion vector. Second, we conjectured that if a trajectory does not reach

a fixed profile in finite time, then it eventually shows a pseudo-stable behavior.

We partly proved these conjectures through the following analysis. We designed a

classification of agents that is employed in computing the equilibria of the system.

We introduced the equi-topology neighborhood and the invariant equi-topology

neighborhood of the equilibria of the system. Based on these neighborhoods, we
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derived sufficient condition for both SBC and SBI systems to guarantee that the

interconnection topology remains unchanged for infinite time in a trajectory, and

therefore, the trajectory converges to a steady state. In our simulation results,

it is observed that for uniformly randomly generated initial opinion vector and

bounds vector, the trajectories of both systems eventually satisfy the mentioned

sufficient condition with probability one. However, the eventual convergence of

every trajectory of the SBC and SBI systems to a steady state is still an open

problem. Third, we conjectured that, for uniformly randomly generated initial

opinion vector and bounds vector, the simulations of SBI systems converge in fewer

time steps and more often in finite time than SBC systems. We derived sufficient

conditions for convergence in finite time for SBC and SBI systems separately that

intuitively explains our third conjecture. Finally, we studied the trajectory of both

SBC and SBI systems when they update their opinions under fixed interconnection

topology for infinite time. We showed the existence of a leader group for each

group of agents that determines the follower’s rate and direction of convergence.

It is useful to conclude with some formal statements regarding our conjec-

tures. Assume that for any limiting opinion vector x∞, the probability that

mini∈{1,...,n} εi(x∞) = 0 is equal to zero. Then, according to Lemma 3.3.9, Con-

jecture 3.1.1 implies the following weak version of Conjecture 3.1.2: for almost all

trajectories x(t) of an SBC or SBI system, there exists a finite time τ after which
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the state-dependent interconnection topology, or equivalently Gr(x(t)), remains

constant. Furthermore, if Conjecture 3.1.2 holds, then by Theorem 3.5.3, Conjec-

ture 3.1.3 also holds. Finally, Conjecture 3.1.4 is related to and partly established

in Proposition 3.3.18.

The main future challenge is to prove that all trajectories of SBC and SBI

systems converge to steady states. One approach is to prove that, in each system,

any trajectory is eventually confined to the invariant equi-topology neighborhood

of an equilibrium opinion vector. The existence of such equilibrium vector is partly

proved in the work by Lorenz [33], who establishes that the product of an infinite

number of row-stochastic matrices with positive diagonals converges to a partly

fixed matrix, with complete consensus matrices on the diagonal. Consequently,

the structure of a limiting adjacency matrix can distinguish the closed- and open-

minded components of the system as time goes to infinity, and also can determine

the limiting opinions of the closed-minded components. In an equilibrium opinion

vector, knowing the closed-minded’s opinions, there are only a finite number of

possible values for the open-minded’s opinions. Therefore, the results in [33] leaves

us with a finite number of limiting opinion vectors for each SBC and SBI system,

and equivalently, a finite number of invariant equi-topology neighborhoods to

which the trajectory can be asymptotically confined. Another future challenge
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is a probability analysis on the topology of the proximity digraphs, to prove the

conjecture on higher probability of convergence of SBI trajectories in finite time.
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Infinite Population

Modeling the formation of opinions in a large population allows approximation

of the decision making rules with Non-Bayesian “rule of thumb” methods. Mod-

els of opinion dynamics can be described by either a Lagrangian or an Eulerian

method. A Lagrangian description focuses on changes in each agent’s opinion;

however, an Eulerian description focuses on the changes in agents population in

one opinion interval as time progresses. A Lagrangian model of opinion dynamics

is defined over a continuous or discrete state space if the number of agents are

infinite or finite, respectively. An Eulerian model of opinion dynamics is defined

over a continuous or discrete state space depending on whether the opinion grid

size is converging to zero or not, respectively. In previous sections we focused on

discrete Lagrangian models of opinion dynamics, mainly the bounded-confidence
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model called HK model, that involved finite number of agents. This chapter

focuses on a discrete-time continuous-space HK model of opinion dynamics de-

scribed by an Eulerian view point. In this model, a population is distributed over

an opinion set and updates its opinion via the opinion of the population inside

the confidence range. Previously, (Canuto et al, 2008) proved the convergence of

a variation of Eulerian HK model both in discrete and continuous time. In their

model, the weights that two opinion values assign to each other are equal, and

this symmetry preserves the global average during the evolution. In other words,

each agent updates its opinion to a sum of its neighbors’ opinions rather than the

average of those opinions. In this context, we consider a more general Eulerian

HK model where the symmetric weight constraint has been relaxed. Specifically,

the weight an opinion assigns to other opinions is a function of the integral of the

mass distribution in that opinion’s confidence bound. Since the measures on dif-

ferent opinions’ confidence bounds are not necessarily equal, the weights assigned

to different opinions are generally asymmetric, and thus the global average is not

preserved.

The contributions of this chapter can be summarized as follows. We derive a

simple sufficient condition for the system to reach opinion consensus. Second, we

establish some important properties of the Eulerian HK model. Under mild tech-

nical assumptions (the initial opinion is a finite and absolutely continuous mass
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distribution over the opinion set), we show that the opinion update via an Eule-

rian flow map has the following properties: i) the mass distribution on opinions

remains finite and absolutely continuous; ii) the flow map preserves opinion order,

due to the homogeneity of confidence bounds; and iii) the flow map is bi-Lipschitz.

Finally, this analysis also leads to a convergence proof of the mass distribution to

a sum of Dirac Delta functions.

4.1 Eulerian HK Model

Here, we describe the process of opinion exchange in a large population at

discrete times via a sequence of finite Borel measures. This approach is inspired

by [13], where the mass distribution of agents over the opinion set is represented

by µt : R→ R≥0 at discrete time steps t. The opinion set belongs to a continuous

state space in R (one dimensional opinions), and each opinion value is denoted

by independent variable x. Since the state space is continuous by definition, the

mass distribution µt(x), whose sum over opinion space is preserved over time, is

assumed to be a finite Borel probability measure on R. The value µt(dz) at x,

denoted by dµt(x), represents the infinitesimal population whose opinion is equal

to x at time t. At t + 1, this population updates its opinion to γt(x), defined as

the flow map of mass distribution γt : supp µt ⊆ R → R, where supp µt denotes
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the support of the measure µt, that is, the set of all points x ∈ R for which every

open neighborhood of x has positive measure. Here, the flow map is defined in

compliance with the Lagrangian HK rules,

γt(x) =

∫
[x−r,x+r]

zdµt(z)
∫

[x−r,x+r]
dµt(z)

, (4.1)

where r is the confidence bound of agents. Now, the mass distribution can be

tracked by the following recurrence relation,

µt+1 = γt#µt, (4.2)

where γt# denotes the push forward of a measure via the flow map γt [13]. More-

over, for every Borel set E ∈ R,

µt+1(E) = µt(γ
−1
t (E)), (4.3)

where γ−1
t (E) is the preimage of set E under flow map γt (not necessarily invert-

ible).

Definition 4.1.1 (Eulerian HK System). We call the dynamical system in which a

mass distribution µt defined over a continuous state space is being pushed forward

with flow map (4.1) an Eulerian HK system with Input.
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dµt(x)

dµt(y)

dµt(x) + dµt(y)

�
t
(x

)
=

�
t
(y

)

x

y

t t + 1

dµt+1(�t(x)) =

Figure 4.1: A schematic illustration of push forward of a measure µt via the flow

map γt.

4.2 System Properties

In this section, we analyze fundamental properties of Eulerian HK systems

which lead to the convergence of the system. Let us start with few definitions

and notations. We denote the absolute continuity of any measure µ with respect

to Lebesgue measure L1 with µ� L1. We denote the smallest and largest opin-

ions along supp µt by xmin(t) and xmax(t), respectively, and the length of interval

xmax(t) − xmin(t) by |supp µt|. Flow map γt(x) is called bi-Lipschitz, if for any

x, y ∈ supp µt there exists Lt ≥ 1 such that

|y − x|/Lt ≤ |γt(y)− γt(x)| ≤ Lt|y − x|. (4.4)
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For any finite mass distribution µt � L1, we define the opinion average over any

interval [a, b] ∈ R where
∫

[a,b]
dµt(z) is nonzero by

yt([a, b]) =

∫
[a,b]

zdµt(z)
∫

[a,b]
dµt(z)

. (4.5)

Moreover, consider a < b ∈ R and x, y ∈ R>0, then

max
x∈[x1,x2],y∈[y1,y2]

xa+ yb

x+ y
=
x1a+ y2b

x1 + y2

. (4.6)

Lemma 4.2.1 (Bounds on opinion average). Consider a finite mass distribution

µ� L1, whose support is a closed bounded interval of R. Assume that its density

function ρ(x) ≥ 0 satisfies ρ(x) ∈ [ρmin, ρmax] for all x ∈ supp µ with 0 < ρmin ≤

ρmax <∞. Then, for all a, b ∈ supp µ, the opinion average over [a, b], denoted by

y([a, b]), can be bounded as follows:

a <
b+ a

√
ρmax/ρmin

1 +
√
ρmax/ρmin

≤ y([a, b]) ≤ a+ b
√
ρmax/ρmin

1 +
√
ρmax/ρmin

< b. (4.7)

Proof. Since µ is assumed to be a finite absolutely continuous measure, there

exists a Lebesgue integrable density function ρ such that µ(E) =
∫
E
ρ(z)dz for all

Borel subsets E ∈ R. Here, we prove the upper bound of the average, and proof

to the lower bound is similar. We maximize y([a, b]) for the following step density

function over the variable c ∈ [a, b]:

ρ(x) =





ρmin, if x ∈ [a, c),

ρmax, if x ∈ [c, b],

(4.8)
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According to the first mean value theorem for integrals, one can show that for

any bounded density function ρ(x) ∈ [ρmin, ρmax] with x ∈ [a, b], there exists a

real value c ∈ [a, b] such that ρ’s average over [a, b] is equal to the average of step

density (4.8) over [a, b], which is equal to

y([a, b]) =

∫ b
a
zρ(z)dz

∫ b
a
ρ(z)dz

=
(c2 − a2)ρmin/2 + (b2 − c2)ρmax/2

(c− a)ρmin + (b− c)ρmax

=:
f

g
.

Owing to the differentiability of y([a, b]) with respect to c, the maximum of y([a, b])

over c can be computed by letting ∂y([a, b])/∂c equal to zero.

∂y([a, b])

∂c
=
c(ρmin − ρmax)g − (ρmin − ρmax)f

g2
= 0.

Hence, the critical point c = f/g = y([a, b]) gives maximum y([a, b]),

2(c2 − ac)ρmin + 2(bc− c2)ρmax = (c2 − a2)ρmin + (b2 − c2)ρmax,

⇒ c =
a+ b

√
ρmax/ρmin

1 +
√
ρmax/ρmin

.

Lemma 4.2.2 (Convergence of opinion average). Consider a time-varying finite

mass distribution µt � L1 such that for all t ≥ 0, supp µt is some closed bounded

interval of R and strictly contains a, b ∈ R where a < b. If the opinion average over

[a, b], denoted by yt([a, b]), satisfies limt→∞ yt([a, b]) = a, then µt([a, b]) converges

to a scaled Dirac Delta distribution centered at a.

91



Chapter 4. Infinite Population

Proof. By contradiction, assume that there exists an interval [c, d], where a < c <

d < b such that µt([c, d]) > m for some m ∈ R>0 and all t ≥ 0. Therefore, if we

denote the density function of µt by ρt, then

yt([a, b]) =

∫
[a,b]

zdµt(z)
∫

[a,b]
dµt(z)

=

∫ b
a
zρt(z)dz

∫ b
a
ρt(z)dz

=
(
∫ c
a
zρt(z)dz +

∫ b
d
zρt(z)dz) +

∫ d
c
zρt(z)dz

(
∫ c
a
ρt(z)dz +

∫ b
d
ρt(z)dz) +

∫ d
c
ρt(z)dz

.

Since µt is finite, there exits M ∈ R>0 such that µt([a, b]) ≤ M for all t ≥ 0.

According to equation (4.6) and Lemma 4.2.1,

yt([a, b]) >
aM + cm

M +m
= a+

(c− a)m

M +m
,

which contradicts the convergence of yt([a, b]) to a.

The following theorem on Eulerian HK systems is equivalent to Theorem 5.2.1

on Eulerian HK systems with input whose input is zero. Consequently, the proof

to the latter theorem can be employed to the former by setting the input equal

to a zero distribution, and for the interest of brevity, we omit this proof from this

chapter.

Theorem 4.2.3 (Properties of µt and γt). Consider an Eulerian HK system whose

initial distribution µ0 � L1 is finite and supp µ0 is a closed bounded interval, then

for all t ≥ 0 such that |supp µt| > 2r,

(i) µt � L1 is finite and supp µt is a closed bounded interval;

(ii) for any x, y ∈ supp µt, if x < y, then γt(x) < γt(y);
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(iii) γt(x) is bi-Lipschitz with respect to x;

(iv) supp µt strictly contains supp µt+1; and

(v) xmin(t+ 1) = γt(xmin(t)) and xmax(t+ 1) = γt(xmax(t)).

The following lemma establishes the idea of “rich gets richer and poor gets

poorer”. Roughly speaking, the lemma states that for any population E with

close enough opinions, if the density of the population in E’s confidence range is

higher than the density of the population just outside of E’s confidence range,

then the opinions of the E population get closer to each other in one iteration.

Lemma 4.2.4. Assume that in an Eulerian HK system, the mass distribution µt is

finite and absolutely continuous, and denote its density function by ρt : supp µt →

R≥0. Consider any x ∈ supp µt, such that ρt(x) > 0.

(i) ρt+1

(
γt(x)

)
> 0;

(ii) ∂∆t(x)/∂x = ρt(x)/ρt+1

(
γt(x)

)
− 1; and

(iii) if

max{ρt(x+ r), ρt(x− r)} <
µt([x− r, x+ r])

2r
or (4.9)

min{ρt(x+ r), ρt(x− r)} >
µt([x− r, x+ r])

2r
,

then ρt+1

(
γt(x)

)
> ρt(x) or ρt+1

(
γt(x)

)
< ρt(x), respectively.
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Proof. Regarding part (i), absolute continuity of µt and µt+1 together with equa-

tion 4.2 results in

lim
ε→0

ρt(x)ε = lim
ε→0

ρt+1

(
γt(x)

)(
γt(x+ ε)− γt(x)

)
. (4.10)

According to Theorem 4.2.3 part (ii), γt(x + ε) − γt(x) 6= 0, which proves our

claim.

Regarding part (ii), we have

∂∆t(x)

∂x
= lim

ε→0

∆t(x+ ε)−∆t(x)

ε
= lim

ε→0

γt(x+ ε)− γt(x)

ε
− 1.

Employing equation 4.10 in the right hand side results in the claimed statement.

Regarding part (iii), we show that if the inequality (4.9) holds true, then

ρt+1

(
γt(x)

)
> ρt(x), and the proof to the second is similar. First, consider a ball

of infinitesimal radius ε ∈ R>0 centered at x denoted by Bε(x),

ρt(x) = lim
ε→0

µt(Bε(x))

2ε
= lim

ε→0

µt+1

(
γt(Bε(x))

)

2ε

= lim
ε→0

ρt+1

(
γt(x)

)(
γt(x+ ε)− γt(x− ε)

)

2ε
. (4.11)

Regarding right hand side,

lim
ε→0

γt(x+ ε) = lim
ε→0

(x+ r)µ̂1 + yµ̂2

µ̂1 + µ̂2

,

lim
ε→0

γt(x− ε) = lim
ε→0

(x− r)µ̂3 + yµ̂2

µ̂3 + µ̂2

,

where µ̂1,2,3 denote µt(Bε(x+r)), µt([x−r+ε, x+r−ε]), and µt(Bε(x−r)), respec-

tively, and y denotes the opinion average over interval [x− r+ ε, x+ r− ε]. Here,
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we prove that the factor of ρt+1

(
γt(x)

)
in the right hand side of equation (4.11)

is strictly less than one. Knowing that limε→0 µt(Bε(x± r))/2ε = ρt(x± r)

lim
ε→0

γt(x+ ε)− γt(x− ε)
2ε

= lim
ε→0

γt(x+ ε)− x− γt(x− ε) + x

2ε

= lim
ε→0

2rµ̂1µ̂3/ε+ ρt(x+ r)µ̂2(x− y + r) + ρt(x− r)µ̂2(y − x+ r)

(µ̂1 + µ̂2)(µ̂3 + µ̂2)
.

Since |y − x| < r, both x− y + r and y − x+ r are positive, and according to the

inequality (4.9), max{ρt(x+ r), ρt(x− r)} < limε→0 µ̂2/2r. Therefore,

lim
ε→0

γt(x+ ε)− γt(x− ε)
2ε

< lim
ε→0

rρt(x+ r)µ̂3 + rρt(x− r)µ̂1 + 2rmax{ρt(x+ r), ρt(x− r)}µ̂2

(µ̂1 + µ̂2)(µ̂3 + µ̂2)

< lim
ε→0

µ̂2(µ̂1 + µ̂3) + µ̂2
2

(µ̂1 + µ̂2)(µ̂3 + µ̂2)
< 1.

4.3 Convergence Behavior

The main result of this chapter is presented in this section, where we prove that

in Eulerian HK models, under mild assumptions, the mass distribution converges

to a sum of Dirac Delta functions. In the following context, we call a single point

x ∈ R an atom with respect to a measure µ if x ∈ supp µ and µ(x) > 0. Moreover,

if every µ-measurable set of positive measure contains an atom, then µ is purely

atomic or atomic in short.
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Lemma 4.3.1. If in an Eulerian HK system � L1 is finite and supp µ0 is a

closed bounded interval, then for all t ≥ 0 such that |supp µt| > 2r,

(i) supp µt strictly contains supp µt+1, and

(ii) xmin(t+ 1) = γt(xmin(t)) and xmax(t+ 1) = γt(xmax(t)).

In the following context, we call a single point x ∈ R an atom with respect to

a measure µ if x ∈ supp µ and µ(x) > 0. Moreover, if every µ-measurable set of

positive measure contains an atom, then µ is called purely atomic or atomic in

short.

Theorem 4.3.2. Consider an Eulerian HK system, with confidence bound r, and

with initial condition such that µ0 � L1 is finite and supp µ0 is a closed bounded

interval. If |supp µt| > 2r for all t ≥ 0, then µt converges in the weak-star topology

to an atomic measure, whose atoms are separated by a distance greater than r.

Proof. This system satisfies the conditions of Theorem 4.2.3 and Lemma 4.3.1.

Therefore, µt � L1, supp µt is a closed bounded interval, and supp µt ⊂ supp µt−1.

Since xmin(t) is a strictly increasing function of time and supp µt is a subset of

supp µ0, there exists an opinion x1 in the interior of supp µt such that xmin(t)

converges to x1. Thus, there exists τ after which x1 − xmin(t) < r, and in the

remainder of this proof t is assumed to be larger than τ .
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Figure 4.2: A schematic illustration of convergence of an Eulerian HK system

with no input in the weak-star topology to an atomic measure, whose atoms are

separated by a distance greater than r.

First, we prove that the mass distribution over interval (x1, x1 + r) converges

to zero. Let us denote the intervals [xmin(t), x1) and [x1, xmin(t) + r] by It and Ît,

respectively, and the density function of µt by ρt. Then, we define the following

opinion average

yt(Ît) :=

∫ xmin(t)+r

x1
zρt(z)dz

∫ xmin(t)+r

x1
ρt(z)dz

.

By Lemma 4.3.1, xmin(t+ 1) = γt(xmin(t)), hence

lim
t→∞

xmin(t+ 1) = lim
t→∞

∫ x1
xmin(t)

zρt(z)dz + yt(Ît)µt(Ît)
∫ x1
xmin(t)

ρt(z)dz + µt(Ît)
.

On the other hand, since xmin(t) converges to x1 as time goes to infinity,

lim
t→∞

∫ x1

xmin(t)

zρt(z)dz = x1 lim
t→∞

µt(It).
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Hence,

lim
t→∞

xmin(t+ 1)− x1 = lim
t→∞

x1µt(It) + yt(Ît)µt(Ît)

µt(It) + µt(Ît)
− x1

= lim
t→∞

(yt(Ît)− x1)µt(Ît)

µt(It) + µt(Ît)
= 0.

Consequently, the following two cases are possible:

1) µt(Ît) converges to zero. Since ρt is Lebesgue-integrable over supp µt,

lim
xmin(t)→x1

µt(Ît) = lim
xmin(t)→x1

∫ xmin(t)+r

x1

ρt(z)dz =

∫ x1+r

x1

ρt(z)dz = µt((x1, x1 + r)).

(4.12)

It follows that if µt(Ît) converges to zero, then µt((x1, x1 + r)) converges to zero.

2) yt(Ît) converges to x1. Then, according to Lemma 4.2.2, the mass distribu-

tion over Ît converges to a Dirac Delta distribution centered at x1, and hence

µt((x1, xmin(t) + r]) converges to zero. Therefore, equation (4.12) implies that

µt((x1, x1 + r)) converges to zero.

Second, owing to a lower bound on µt(supp µt) two cases are possible: i) µt

converges to a single atom at x1, which proves our theorem. ii) There exists

opinion x̂2 ∈ [x1 + r, xmax(t)] such that ρ(x̂2) > ρmin for some ρmin ∈ R>0 and

all t ≥ 0. Denote the minimum opinion over all x̂2’s by x2. Therefore, for any

x ∈ [x1 + r, x2), ρ(x) converges to zero, and thus µt([x1 + r, x2)) converges to zero.

According to the first part of this proof, µt((x1, x1 + r)) also converges to zero,

hence owing to x2 ≥ x1 + r, µt([x2 − r, x2)) converges to zero as time goes to
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infinity. Let us denote the opinion intervals [x2 − r, x2) and [x2, x2 + r] by J1 and

J2, and their opinion averages by yt(J1) and yt(J2), respectively. Then,

γt(x2) =
yt(J1)µt(J1) + yt(J2)µt(J2)

µt(J1) + µt(J2)
.

Next, we prove that either yt(J2) converges to x2 or µt(J2) converges to zero.

By contradiction assume that there exist ∆ ∈ R>0 and µmin ∈ R>0 such that

yt(J2) − x2 > ∆ and µt(J2) > µmin. As stated above, for any ε ∈ R>0, there

exists T ≥ 0 such that µt(J1) < ε for all t ≥ T . Knowing that yt(J1)− x2 > −r,

equation (4.6) tells us that for all t ≥ T

γt(x2)− x2 =
(yt(J1)− x2)µt(J1) + (yt(J2)− x2)µt(J2)

µt(J1) + µt(J2)
>
−rε+ ∆µmin

ε+ µmin

Consider ε1, δ ∈ R>0 such that ε1 < ∆µmin/r and

δ =
−rε1 + ∆µmin

ε1 + µmin

.

On the other hand, it follows from ρ(x2) > ρmin and absolute continuity of µt that

for any δ ∈ R>0, there exists ε2 ∈ R>0 such that µt(Bδ(x2)) > ε2 for all t ≥ 0,

where Bδ(x) is an open ball centered at x with radius δ.

Now, let ε = min{ε1, ε2}, then again by equation (4.6) for all t ≥ T ,

δ =
−rε1 + ∆µmin

ε1 + µmin

≤ −rε+ ∆µmin

ε+ µmin

< γt(x2)− x2,
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and µt(Bδ(x2)) > ε. Therefore, for any x ∈ Bδ(x2), x < γt(x2), and thus according

to Theorem 4.2.3 part (ii), γ−1
t (Bδ(x2)) ∈ J1. Based on equation (4.2),

µt+1(Bδ(x2)) = µt(γ
−1
t (Bδ(x2))) < µt(J1) < ε,

which contradicts the assumption that µt(Bδ(x2)) > ε2 ≥ ε for all t ≥ 0. Therefore,

it is true that either yt(J2) converges to x2 or µt(J2) converges to zero. In former

case, Lemma 4.2.2 tells us that µt([x2, x2 +r]) converges to a Dirac Delta function

centered at x2, and thus it can be concluded from both cases that µt((x2, x2 + r])

converges to zero.

Third, we repeat the second part of this proof for the opinion interval [x2 +

r, xmax(t)] and so on.

Finally, for every bounded and continuous test function η

lim
t→∞

∫

R
η(z)µt(dz) = η(x1)µ1 + η(x2)µ2 + η(x3)µ3 + · · · =:

∫

R
η(z)µ∞(dz),

where, the measures µ∞([xmin(∞), x1+r)), µ∞([x1+r, x2+r)), µ∞([x2+r, x3+r)),

. . . are denoted by µ1, µ2, µ3, . . . , respectively. Hence, µt converges in the weak-

star topology to an atomic measure µ∞, whose atoms, {µi : i = 1, 2, 3, . . . }, are

far apart with at least distance r, see Figure 4.2.
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4.4 Summary

This chapter studied the behavior of an Eulerian bounded confidence model of

opinion dynamics. In this model, a population is distributed over an opinion set

and updates its opinion via the opinion of the population inside the confidence

range. We proved some fundamental properties of this system’s dynamics, and

we derived a simple sufficient condition for opinion consensus. Employing these

results, we proved the convergence of population’s distribution to a sum of Dirac

Delta functions.
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Opinion Manipulation

Decision-making in a society is a complex process, which is led to the final

state by endogenous and exogenous factors. One of the most influential exogenous

factors is the mainstream media that acts as a real-time input owing to its easy

access to the public. Owing to the media’s easy access to public, they can quickly

get out their message and hence act as a real-time input in the opinion evolution

of decision makers. Media influence decisions by employing some well known

techniques such as repeated exposure to experts’ messages. In the 21st century, the

direct influence of media on public has been replaced by a two-way relationship,

with the increase in popularity of new technologies such as blogging [56]. In this

sense, the message sent by media will be restated by public blogs, while each

blog’s report is biased by the owner’s opinion. In order to accommodate the
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input of our opinion dynamics model to these properties of media influence, we

envision this exogenous factor as a background Gaussian signal centered at the

opinion of an expert. The variance of this input depends on many factors such

as message repetition, expert’s importance, public’s different interpretation, and

blogs’ rebroadcasting. On the other hand, the influence of media on the public

depends on the public’s attitude towards it [30]. This concept for a voter decision-

maker who ignores the message from an opposite political predisposition is called

“partisan resistance”. However, the voter receives a biased version of such message

through his own party’s reporters or blogs. This feature is reflected in our model

by assuming that each agent associated with one opinion receives exogenous input

information within its opinion confident ranges. The effect of media on opinion

formation with pairwise pairwise gossip interactions is numerically analyzed in [9].

The contributions of this chapter can be summarized as follows. We propose

a reasonable model for exogenous inputs in the Eulerian HK opinion-dynamics

model. We derive a simple sufficient condition for the system to reach opinion

consensus. We establish some important properties of the Eulerian HK model

with a time-varying input. We represent the exogenous input by a background

Gaussian distribution centered at the advertised opinion. We introduce the at-

traction range of an input, which is the largest range of opinions that the input

can attract to its center. We conjecture a linear relation between attraction range,
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input’s variance, and confidence bound. Accordingly, we compare two different

manipulation strategies that aim to increase the population who vote positively in

finite time. Finally, we present a real world example of decision making in a com-

mittee of experts, whose interconnection network is constructed via their meetings

transcripts. In [10], the medical device advisory panel in the US Food and Drug

Administration is analyzed, and a novel method in construction of experts’ in-

terconnection network via employing the Author-Topic model to their meetings

documents is presented. However, the dynamics of the process of decision making

by the committee is not analyzed in [10]. Here, we introduce a Lagrangian mutli-

dimensional HK model whose interconnection network is strongly correlated with

the real example’s network. We highlight common features between the dynamics

of the introduced model and the presented real world example. We approximate

the Lagrangian model with an Eulerian HK model, and then we discuss manipu-

lation strategies that can alter the final state of opinion evolution process.

This chapter is organized as follows. In Section 5.1 we introduce the mathe-

matical model. In Section 5.2 we present the main results and establish properties

of the dynamical system. In Section 5.3 we discuss manipulation strategies. In

Section 5.4 we present a real world example. Finally, Section 5.5 contains conclu-

sion and future directions.
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5.1 Eulerian HK Model with Input

Here, we propose a reasonable model for exogenous inputs in Eulerian HK

model of opinion dynamics introduced in Section 4.1. The opinion set belongs to

a continuous state space in R, each opinion value is denoted by x, and the mass

distribution of agents over the opinion set is represented by µt : R → R≥0 at

discrete time steps t. At t+ 1, this population updates its opinion to γt(x), which

is called the flow map of mass distribution γt : supp µt ⊆ R → R and is defined

as follows:

γt(x) =

∫
[x−r,x+r]

zdµt(z) +
∫

[x−r,x+r]
zdut(z)

∫
[x−r,x+r]

dµt(z) +
∫

[x−r,x+r]
dut(z)

. (5.1)

In above equation, r is the confidence bound of agents, and ut represents the

distribution of exogenous background input at time t, which is also assumed to

be a Radon probability measure for simplicity of analysis. Again, since the state

space is continuous by definition, the mass distribution µt(x), whose sum over

opinion space is preserved over time, is assumed to be a finite Borel probability

measure on R. The mass distribution is tracked by

µt+1 = γt#µt, (5.2)

and for every Borel set E ∈ R,

µt+1(E) = µt(γ
−1
t (E)). (5.3)
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Definition 5.1.1 (Eulerian HK System with Input). We call the dynamical sys-

tem in which a mass distribution µt defined over a continuous state space is being

pushed forward with flow map (5.1) under the influence of input ut an Eulerian

HK system with Input.

Based on Lemma 4.2.1, some properties of mass distribution µ determine how

close µ’s opinion average over an interval can be to the interval’s boundary. On

the other hand, the following lemma demonstrates that if the opinion average of

a time varying mass distribution µt over an interval converges to the boundary

of that interval, then µt converges to a Dirac Delta distribution centered at that

boundary.

Lemma 5.1.2 (Opinion average limit). Assume that in an Eulerian HK system

with input, the mass distribution µt � L1 is finite and supp µt is close bounded

and contains [a, b] ∈ R for all t ≥ 0. The opinion average over [a, b], denoted

by yt([a, b]), satisfies limt→∞ yt([a, b]) = a or limt→∞ yt([a, b]) = b if and only if

µt([a, b]) converges to a scaled Dirac Delta distribution centered at a or b, respec-

tively.

Proof. We prove that limt→∞ yt([a, b]) = a is a sufficient condition for the con-

vergence of µt([a, b]) to a scaled Dirac Delta distribution centered at a, and the

obvious proof to its necessity and convergence to the other bound b is omit-
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ted. By contradiction, assume that there exists an interval c ∈ (a, b) such that

µt([c, b]) > m for some m ∈ R>0 and all t ≥ 0. Therefore, if we denote the density

function of µt by ρt, then

yt([a, b]) =

∫
[a,b]

zdµt(z)
∫

[a,b]
dµt(z)

=

∫ b
a
zρt(z)dz

∫ b
a
ρt(z)dz

=

∫ c
a
zρt(z)dz +

∫ b
c
zρt(z)dz

∫ c
a
ρt(z)dz +

∫ b
c
ρt(z)dz

.

Since µt is finite, there exits M ∈ R>0 such that µt([a, b]) ≤ M for all t ≥ 0.

According to equation (4.6) and Lemma 4.2.1,

yt([a, b]) >
aM + cm

M +m
= a+

(c− a)m

M +m
,

which contradicts the convergence of yt([a, b]) to a.

Here, we introduce two assumptions on the initial states and inputs that are

employed in parts of the context.

Assumption 5.1.1. For an Eulerian HK system with input, µ0 � L1 is finite

and supp µ0 is a closed bounded interval, and ut � L1 for all t ≥ 0.

Assumption 5.1.2. The set supp ut is contained in the set supp µt for all t ≥ 0.

The interpretation of Assumption 5.1.2 is that the manipulator can only ad-

vertise for opinions that have a non-zero population assigned to them. In other

words, the manipulator disregards the opinions that nobody believes in, which

is compatible with our claim that the logic behind a distributed influence is the

public’s different interpretation and rebroadcast of the message by blogs, who are

part of the population.
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5.2 Dynamic Properties of the Model

This section analyzes some fundamental properties of Eulerian HK systems

with time-varying inputs, and gives a simple sufficient condition for opinion con-

sensus.

Theorem 5.2.1 (Properties of an Eulerian HK system with input). If an Eulerian

HK system with input satisfies Assumption 5.1.1, then for any t ≥ 0 such that

|supp µτ | > 2r for all τ ≤ t,

(i) µt � L1 is finite and supp µt is a closed interval;

(ii) for any x, y ∈ supp µt, if x < y, then γt(x) < γt(y); and

(iii) x 7→ γt(x) is bi-Lipschitz.

Proof. Here, we first prove that if statement (i) holds at any time t, then state-

ments (ii) and (iii) will hold at t. Next, if the three statements hold at any t, then

statement (i) holds at t + 1. Finally, since µ0 satisfies statement (i), the three

statements hold for all t. For brevity, we denote the sum of the mass and input

distributions with νt := µt+ut. Since ut satisfies Assumption 5.1.1, if statement (i)

holds at any t, then νt � L1 is finite and supp νt is a closed bounded interval.

Hence, νt’s density function ρt(x) ≥ 0 exists and satisfies ρt(x) ∈ [ρmin(t), ρmax(t)]

for all x ∈ supp νt with 0 < ρmin(t) ≤ ρmax(t) <∞.

108



Chapter 5. Opinion Manipulation

Regarding part (ii), for any x, y ∈ supp µt and x < y, since x± r or y± r may

not belong to supp νt,

γt(x) =

∫ b
a
zρt(z)dz

∫ b
a
ρt(z)dz

, γt(y) =

∫ q
p
zρt(z)dz

∫ q
p
ρt(z)dz

, (5.4)

where [a, b] = [x−r, x+r]∩supp νt and [p, q] = [y−r, y+r]∩supp νt. Equivalently,

γt(x) =

∫ p
a
zρt(z)dz +

∫ b
p
zρt(z)dz

∫ p
a
ρt(z)dz +

∫ b
p
ρt(z)dz

=:
Ŝ1 + Ŝ2

S1 + S2

, (5.5)

γt(y) =

∫ b
p
zρt(z)dz +

∫ q
b
zρt(z)dz

∫ b
p
ρt(z)dz +

∫ q
b
ρt(z)dz

=:
Ŝ2 + Ŝ3

S2 + S3

. (5.6)

It follows from properties of νt that Lemma 4.2.1 holds, and considering the inte-

gration intervals of Ŝi’s and Si’s, for nonzero Si’s we have

Ŝ1

S1

<
Ŝ2

S2

<
Ŝ3

S3

⇒ Ŝ1S2 < Ŝ2S1, Ŝ2S3 < Ŝ3S2, and Ŝ1S3 < Ŝ3S1.

Notice that based on assumption |supp µt| > 2r, at least one of the S1 or S3

should be nonzero, moreover, since supp νt is a closed interval, the terms S1 + S2

and S1 + S3 are nonzero. Consequently, only one term out of the three terms S1,

S2 and S3 can be zero, and the following inequality always holds:

Ŝ1S2 + Ŝ1S3 + Ŝ2S2 + Ŝ2S3 < Ŝ2S1 + Ŝ2S2 + Ŝ3S1 + Ŝ3S2,

⇒ Ŝ1 + Ŝ2

S1 + S2

<
Ŝ2 + Ŝ3

S2 + S3

⇒ γt(x) < γt(y).

Regarding part (iii), the bi-Lipschitz property of the flow map γt(x) asserts

that for any x, y ∈ supp µt equation (4.4) holds for some Lt ≥ 1. Assume that
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x < y, and according to part (ii), γt(x) < γt(y). Then, two different cases are

possible:

1) y − x ≥ 2r, hence,

γt(y)− γt(x) < y − x+ 2r ≤ 2(y − x),

and it follows from Lemma 4.2.1 that

γt(y)− γt(x) >
(b− a) + (q − p)

1 +
√
ρmax(t)/ρmin(t)

,

where the flow maps are given by equations (5.4). Since y − x ≤ |supp µt|,

(b− a) + (q − p)
1 +

√
ρmax(t)/ρmin(t)

=
(b− a+ q − p)(y − x)

(1 +
√
ρmax(t)/ρmin(t))(y − x)

≥ (b− a+ q − p)(y − x)

|supp µt|(1 +
√
ρmax(t)/ρmin(t))

.

Finally,

Lt = min{2, |supp µt|(1 +
√
ρmax(t)/ρmin(t))

b− a+ q − p }.

Since b−a+ q−p ≤ |supp µt|+2r, 1+
√
ρmax(t)/ρmin(t) ≥ 2, and |supp µt| > 2r,

|supp µt|(1 +
√
ρmax(t)/ρmin(t))

b− a+ q − p ≥ 2|supp µt|
|supp µt|+ 2r

≥ 1,

which confirms that Lt ≥ 1.

2) y − x < 2r, hence following equations (5.5) and (5.6), we have

γt(y)− γt(x) =
Ŝ2 + Ŝ3

S2 + S3

− Ŝ1 + Ŝ2

S1 + S2

=
Ŝ2S1 + Ŝ3S1 + Ŝ3S2 − Ŝ1S2 − Ŝ1S3 − Ŝ2S3

(S1 + S2)(S2 + S3)
.
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Based on statement (i), the following inequalities can be derived:

S1 < (p− a)ρmax(t) ≤ (y − x)ρmax(t), Ŝ1 < p(p− a)ρmax(t) ≤ q(y − x)ρmax(t)

S3 < (q − b)ρmax(t) ≤ (y − x)ρmax(t), Ŝ3 < q(q − b)ρmax(t) ≤ q(y − x)ρmax(t),

S2 < (b− p)ρmax(t) ≤ 2rρmax(t), Ŝ2 < b(b− p)ρmax(t) ≤ 2rqρmax(t),

(S1 + S2)(S2 + S3) > r2ρmin(t)2.

Consequently,

γt(y)− γt(x) <
2r|q|ρmax(t)2(y − x) + |q|ρmax(t)2(y − x)2 + 2r|q|ρmax(t)2(y − x)

r2ρmin(t)2
.

Again since y − x < 2r and |q| ≤ max{|xmax(t)|, |xmin(t)|},

γt(y)− γt(x) <
6rmax{|xmax(t)|, |xmin(t)|}ρmax(t)2

r2ρmin(t)2
(y − x) =: L1(y − x).

It follows from |supp µt| > 2r that max{|xmax(t)|, |xmin(t)|} ≥ r, and thus L1 > 1.

As stated above, either S1 or S3 is nonzero. Without loss of generality, assume

that S1 is nonzero, and hence p− a = y − x. It follows from

Ŝ3 + Ŝ2

S3 + S2

≥ Ŝ2

S2

that

γt(y)− γt(x) ≥ Ŝ2

S2

− Ŝ1 + Ŝ2

S1 + S2

=: c(x2 − x1), (5.7)
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where

x1 =
Ŝ1

S1

, x2 =
Ŝ2

S2

, and c =
S1

S1 + S2

≥ (p− a)ρmin(t)

(b− p)ρmax(t) + (p− a)ρmax(t)
.

⇒ γt(y)− γt(x) ≥ (p− a)ρmin(t)

(b− a)ρmax(t)
(x2 − x1) >

(y − x)ρmin(t)

2rρmax(t)
(x2 − x1).

By Lemma 4.2.1,

x2 − x1 >
b− p+ p− a√

ρmax(t)/ρmin(t) + 1
≥ r√

ρmax(t)/ρmin(t) + 1
.

Therefore,

γt(y)− γt(x) >
ρmin(t)

2ρmax(t)(
√
ρmax(t)/ρmin(t) + 1)

(y − x) =:
1

L2

(y − x).

Clearly L2 ≥ 1, therefore, Lt = min{L1, L2}.

Regarding part (i), we now prove that if statements (i), (ii), and (iii) hold at

time t, then statement (i) holds at t+ 1. First, we prove that the flow map

γt(x) =

∫ x+r

x−r zρt(z)dz
∫ x+r

x−r ρt(z)dz
=:

f(x)

g(x)

is continuous. Knowing that if two functions f and g are continuous and g 6= 0,

then the quotient f/g is also continuous, we show the continuity of the function

f(x) at all points c ∈ supp µt, and the proof to the continuity of the denominator
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is similar. For all x ∈ supp µt, g(x) > 0, and

lim
x→c

f(x) = lim
x→c

∫ x+r

x−r
zdρ(z) = lim

±ε→0

∫ c±ε+r

c±ε−r
zdρ(z)

= lim
±ε→0

(
−
∫ c±ε−r

c−r
zdρ(z) +

∫ c±ε+r

c+r

zdρ(z)
)

+

∫ c+r

c−r
zdρ(z)

= lim
±ε→0

(
± ε(r − c)ρ(c− r) +±ε(c+ r)ρ(c+ r)

)
+ f(c).

Due to the finiteness and absolute continuity of νt, f(c) exists for all c ∈ supp µt

and above limit converges to zero, hence, limx→c f(x) = f(c). We have shown that

γt(x) is strictly monotone and continuous with respect to x, therefore, this map

is also invertible. Second, we prove absolute continuity of µt+1. It is shown that

γt has the following properties: 1) Since any continuous function defined on Borel

sets is a Borel measurable function, γ−1
t (E) is Borel measurable for any Borel set

E ∈ R. 2) The bi-Lipschitz map γt satisfies

L(γ−1
t (E)) ≤ CtL(E)

for some constant Ct ∈ R>0. According to Theorem 2 in [45], if the flow map γt

satisfies above two properties and µt � L1, then µt+1 � L1. Third, a continuous

function maps a compact set to another compact set, hence, γt maps the closed

bounded interval supp µt to another closed bounded interval supp µt+1. Fourth,

we establish bounds on µt+1’s density function. For any x, y ∈ supp µt+1 and
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x < y, equation (4.2) gives

∫ y

x

ρ̂t+1(z)dz =

∫ γ−1
t (y)

γ−1
t (x)

ρ̂t(z)dz.

where ρ̂τ (z) is µτ ’s density function, and in view of condition (i),

0 < ρ̂min(τ) ≤ ρ̂τ (z) ≤ ρ̂max(τ) <∞

over supp µτ . Therefore,

(γ−1
t (y)− γ−1

t (x))ρ̂min(t) ≤
∫ γ−1

t (y)

γ−1
t (x)

ρ̂t(z)dz ≤ (γ−1
t (y)− γ−1

t (x))ρ̂max(t).

Provided that γt is bi-Lipschitz,

1

Lt
(y − x)ρ̂min(t) ≤

∫ γ−1
t (y)

γ−1
t (x)

ρ̂t(z)dz ≤ Lt(y − x)ρ̂max(t),

⇒ 1

Lt
(y − x)ρ̂min(t) ≤

∫ y

x

ρ̂t+1(z)dz ≤ Lt(y − x)ρ̂max(t).

The limit of above inequality as y converges to x gives

1

Lt
(y − x)ρ̂min(t) ≤ (y − x)ρ̂t+1(x) ≤ Lt(y − x)ρ̂max(t)

⇒ 1

Lt
ρ̂min(t) ≤ ρ̂t+1(x) ≤ Ltρ̂max(t) ∀x ∈ supp µt+1.

Finally, since supp µt is bounded for all t ≥ 0, we have

µt+1(supp µt+1) = µt(γ
−1
t (supp µt+1)) = µt(supp µt).

Therefore, if µt is finite, then µt+1 is finite.
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Lemma 5.2.2 (Sufficient condition for consensus). Assume that an Eulerian HK

system with input satisfies Assumption 5.1.2, µ0, u0 � L1, and µ0 is a finite

measure with closed bounded support. If µ0 and ut are distributed symmetrically

around the center of supp µ0, and |supp µ0| ≤ 2r, then the mass distribution

reaches an opinion consensus in finite time.

Proof. Let us denote µt +ut by νt. Owing to the absolute continuity of µ0 and u0

and according to Lemma 4.2.1, xmin(1) > xmin(0) and xmax(1) < xmax(0). Since ν0

and ut are symmetrically distributed and the confidence bounds are homogeneous

for all opinions, the distribution νt remains symmetric around the center of supp νt

for all t ≥ 0. Hence, defining xmid(t) := (xmin(t) + xmax(t))/2, xmid(t) = xmid is

constant for all t. Now, we show that for any ∆ ∈ R>0, there exists δ ∈ R>0 such

that

γ0(xmid + δ)− xmid < ∆, (5.8)

where

γ0(xmid + δ) =

∫
[xmin(0)+δ,xmax(0)]

zdν0(z)dz
∫

[xmin(0)+δ,xmax(0)]
dν0(z)dz

.

Owing to absolute continuity of ν0, γ0(x) is a continuous function of x, and thus,

lim
δ→0

γ0(xmid + δ) =

∫
[xmin(0),xmax(0)]

zdν0(z)dz
∫

[xmin(0),xmax(0)]
dν0(z)dz

= γ0(xmid) = xmid.

If we let ∆ = xmax(0) − xmax(1) = xmin(1) − xmin(0), then equation (5.8) gives

µ1([xmid−∆, xmid +∆]) ≥ µ0([xmid−δ, xmid +δ]) > 0. Moreover, at time t = 1, the
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population over [xmid−∆, xmid +∆] considers the total population’s opinion in its

opinion update and thus reaches consensus at γ1(x) = γ1(xmid) = xmid in the next

iteration. Consequently, at t = 2, there exists an atomic measure centered at xmid,

whose atom weight is denoted by νmid. Since γt(xmid) = xmid, the weight of the

atomic measure centered at xmid is greater than or equal to νmid for all t ≥ 2. Now,

for all t ≥ 2, we compute a strictly positive lower bound for xmin(t+ 1)− xmin(t),

which is equal to the lower bound on xmax(t)−xmax(t+1), and proves that |supp νt|

is strictly decreasing and converges to zero. Since for any x such that x < xmin(t)

or x > xmax(t), dνt(x) = 0, |supp νt| ≤ |supp ν0| ≤ 2r for all t ≥ 0, and it follows

that the intervals [xmin(t), xmin(t)+r] and [xmax(t)−r, xmax(t)] contain the central

point xmid. For all x ∈ [xmin(t), xmid),

γt(x) ≥ xmin(t)ν̂t + xmidνmid

ν̂t + νmid

,

where ν̂t :=
∫

[xmin(t),xmin(t)+r]
dνt(x)− νmid, whose upper bound we denote by ν̂max.

Therefore,

xmin(t+ 1) ≥ xmin(t) +
(xmid − xmin(t))νmid

ν̂max + νmid

,

which tells us that the lower bound on xmin(t + 1) − xmin(t) is (xmid − xmin(t))

multiplied by a constant. Consequently, there exists time τ ≥ 2 such that xmid −

xmin(τ) < r − (xmax(τ) − xmin(τ))/2, and thus the mass distribution reaches a

consensus at τ + 1.
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Lemma 5.2.3. If an Eulerian HK system with input satisfies Assumptions 5.1.1

and 5.1.2, then for all t ≥ 0 such that |supp µt| > 2r,

(i) supp µt strictly contains supp µt+1, and

(ii) xmin(t+ 1) = γt(xmin(t)) and xmax(t+ 1) = γt(xmax(t)).

Proof. This system satisfies the conditions of Theorem 5.2.1, and part (i) of the

theorem tells us that supp µt is equal to the closed bounded interval [xmin(t), xmax(t)]

for all t ≥ 0. Hence, statement (i) asserts

xmin(t) < xmin(t+ 1) < xmax(t+ 1) < xmax(t).

Let us prove the lower bound’s inequality, and the prove to the upper bound’s is

similar. For all t, based on Assumption 5.1.2, the support of measure νt = µt+ut is

equal to supp µt. Therefore, the density function of νt is equal to zero below xmin(t)

and strictly greater than zero above xmin(t), and hence, γt(xmin(t)) > xmin(t).

According to Theorem 5.2.1 part (ii), for all y ∈ supp µt and y > xmin(t), γt(y) >

γt(xmin(t)). Therefore, γt(xmin(t)) is the smallest opinion in the set supp µt+1, i.e.,

γt(xmin(t)) = xmin(t+ 1), and thus xmin(t+ 1) > xmin(t).

Notice that (1) if supp ut is not contained in supp µt, then supp µt+1 is not

necessarily contained in supp µt; (2) Lemma 5.2.3 also holds for an Eulerian HK

system without input, that is, ut = 0 for all t ≥ 0.
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5.3 Discussion on Exogenous Input

In this section, we consider a large population that votes positively or nega-

tively in a series of opinion polls until final election. We aim to maximize the size

of population with positive opinions in the final election. Moreover, we discuss

two different manipulation strategies: direct and distracting. In the direct strat-

egy, the manipulator broadcasts a positive opinion for all times. On the contrary,

in the distracting strategy the manipulator first broadcasts a neutral or mildly

negative opinion to attract the attention of people with strong negative opinions,

and only later broadcasts the positive opinion. Loosely speaking, the distracting

strategy implements a well-known subconscious persuasion method: in dealing

with someone with different beliefs, a manipulator would start with a moderate

opinion to win the trust of that person. Examples of indirect manipulation are

observed in political election strategies and are referred to as “ideological shifts.”

In 2008, Romney positioned himself as the conservative alternative to McCain.

However, in 2012, “he lost very conservative primary voters to Santorum by 14

percentage points (36 to 50 percent), but carried both moderate and liberal voters

(39 to 33 percent)” [7]. Another technique in measuring ideological shifts, is the

proportion of funds raised by a candidate against his/her ideology [8]. Finally, we
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show numerically that for broad ranges of parameters and initial conditions, the

indirect strategy outperforms the direct strategy.

5.3.1 Bounded Attraction Range

Before analyzing the effect of ideological shift in the Eulerian HK system dy-

namics, we discuss how clustering of opinions prevents reaching a global opinion

consensus under the influence of Guassian input. This phenomenon is due to the

3-sigma rule, that is, about 99.7% of values drawn from a Gaussian distribution

are within 3σ distance away from the mean. Consequently, the effect of input on

our dynamical system out of 3-sigma region can be ignored.

Definition 5.3.1 (Attraction range). Consider an an Eulerian HK system whose

input is time invariant and is equal to u ∼ N(x̂, σ2). We call the opinion interval

[y, z] ∈ R, denoted by R(u), the attraction range of input u, if [y, z] is the maximal

interval with the following property:

lim
t→∞

γt ◦ · · · ◦ γ0(y) = lim
t→∞

γt ◦ · · · ◦ γ0(z) = x̂.

If the system satisfies conditions of Theorem 5.2.1, then part (ii) tells us that

µ0(R(u)) represents the attracted population, the total population that reaches an

opinion consensus at the center of input. Figure 5.1 illustrates a linear relation

between |R(u)|, σ, and r for |R(u)| < 0.6|supp µ0| in evolutions of Eulerian HK
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Figure 5.1: In evolutions of Eulerian HK systems with uniform initial distribution

µ0 ∼ U(−x0, x0) and input u ∼ N(0, σ2), the length of R(u) is found for different

values of following parameters: σ, x0, and confidence bound r. Top left: x0 = 1,

r = 0.1 and σ ∈ {0.01, 0.02, . . . , 0.17}, bottom left: x0 = 1, σ = 0.04 and r ∈

{0.03, 0.06, . . . , 0.45}, middle: x0 = 1 and (σ, r) ∈ {(0.01, 0.03), . . . , (0.12, 0.3)},

right: x0 = 2 and (σ, r) ∈ {(0.06, 0.1), . . . , (0.22, 0.5)}.

systems with uniform initial distribution µ0 ∼ U(−x0, x0) and input u ∼ N(0, σ2),

which leads us to our conjecture.

Conjecture 5.3.2 (Linear relation between attraction range and system param-

eters). Consider an Eulerian HK system with uniform initial mass distribution µ0

whose support is a closed interval and u ∼ N(x̂, σ2), where x̂ ∈ supp µ0. If σ is

sufficiently small, then |R(u)| = aσ + br + c, with a, b ∈ R>0 and c ∈ R.

The following conjecture defines an upper bound on R(u).
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Conjecture 5.3.3 (Upper bound on attraction range). Consider an Eulerian

HK system with initially uniform mass distribution µ0 and u ∼ N(x̂, σ2), where

x̂ ∈ supp µ0. Assume that there exists y, z ∈ supp µ1 such that y < x̂ < z, and

γ1(y) = y, γ1(z) = z. Then, the smallest interval [γ−1
0 (y), γ−1

0 (z)] (since y and z

may not be unique) is an upper bound on R(u).

According to Conjecture 5.3.3 and Theorem 5.2.1, the following equality gives

us the value of y, and owing to the symmetry of the input around its mean, one

can write R(u) = 2|x̂ − y|. Hence, R(u) can be computed as a function of r and

σ, whose computation is omitted for brevity:

γ1(y)− y = 0⇒
∫ γ−1

0 (y+r)

γ−1
0 (y−r)

γ0(z)−y
2

dz +
∫ y+r

y−r (z − y)du(z)

∫ γ−1
0 (y+r)

γ−1
0 (y−r)

1
2
dz +

∫ y+r

y−r du(z)
= 0.

Remark 5.3.4 (Intuition behind Conjecture 5.3.3). Under the conditions of Con-

jecture 5.3.3, the flow map of all opinions in supp µ0 at t = 0 is closer than the

opinion’s value to the input’s center. In other words, for all x ∈ supp µ0, either of

the following holds true: x ≤ γ0(x) ≤ x̂ or x > γ0(x) > x̂. However, owing to the

Gaussian distribution of input, the mass distribution µ1 has a fluctuation around

the center of input. This fluctuation results in a decrease in the mass distribution

in the intervals [y, y + r] and [z − r, z] at t = 1, and the input’s attraction power

at y and z is neutralized by peer pressure from above y and below z, respectively.

Consequently, in future iterations, the population with opinions y and z are at-
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tracted to the clusters, respectively, below and above the cluster attracted to the

input.

5.3.2 Comparison on Manipulation Strategies

In an Eulerian HK systems with µ0 ∼ U(−x0, x0) and Gaussian input, we aim

to maximize the population with positive opinions in finite time T , or equivalently,

maximize the objective function
∫ 1

0
dµT (z). More precisely, if we assume that the

input’s variance is a fixed parameter and the input is influential on less than half

of entire population at t = 0, hence σ < |supp µ0|/12, then we can define input’s

mean based on our strategy.

• Direct strategy: Manipulator advertises for positive opinions, and thus ut ∼

N(xI(t), σ
2) with 0 < xI(t) < |R(u)|/2 for all t ≤ T .

• Distracting strategy: First, for all t ≤ αT , where α ∈ (0, 1), the manipulator

advertises for negative opinions, thus ut ∼ N(xII(t), σ
2) with xII(t) < 0.

One can assume that xII(t) = xmin(t) + |R(u)|/2. Then, for all αT ≤ t ≤ T ,

the manipulator advertises for positive opinions, thus ut ∼ N(xI(t), σ
2) with

0 < xI(t) < |R(u)|/2.

It can be explained heuristically that the distracting strategy outperforms the

direct strategy. It follows from the assumption σ < |supp µ0|/12 and bounded-
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Figure 5.2: Two Eulerian HK systems with µ0 ∼ U(−1, 1) under the in-

fluence of direct strategy with u ∼ N(0.2, 0.12) (left) and distracting strategy

u ∼ N(−0.2, 0.12) for t ≤ 12 and u ∼ N(0.2, 0.12) for 12 < t ≤ 25 (right). In

direct case 0.6525 portion of population is attracted to the input’s center (green

line), while in distracting case this portion is 0.8675.

ness of |R(u)| that the direct strategy prevents attraction of the population with

opinions in the interval [xmin(0),−R(u)/2]. However, in distracting strategy, this

population is in the attraction range of the first input before αT , and hence there

is a fluctuation of population centered at xII and closer to the input’s mean after

αT . An example of this comparison is depicted in Figure 5.2.

5.4 A Real Example of Group Decision Making

A novel method in construction of experts’ interconnection network via an

analysis of the committee meeting transcripts is presented in [10]. In that article,
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the medical device advisory panel in the US Food and Drug Administration is

analyzed, and it is claimed that panel members who use similar language tend

to vote similarly. In [10], employing natural language processing tools, includ-

ing Author-Topic model, they 1) examined topics of interest for each committee

member, and 2) extracted the directed graph of the interconnection network be-

tween committee members. In the Author-Topic (AT) model, “words are viewed

as discrete random variables, a document contains a fixed number of words, and

each word takes one value from a predefined vocabulary. This model is a hier-

archical generative model in which each word in a document is associated with

two latent variables: an author, and a topic” [46]. Documents are generated by a

two stage stochastic process. Authors and topics are associated with probability

distributions over topics and words, respectively. In multi-author documents, the

probability distribution over topics is a mixture of the distributions associated

with the authors. In tests of AT model in [10] and [11], they held the number of

topics constant for each meeting analyzed. Topics proportions are computed for

each author, that is, the proportion of words spoken by that voting member in the

corresponding topic. It is also investigated that panel members who speak often

and focus on one topic, potentially display a depth of expertise and hence have

higher influence. Multi-focus speakers are considered as mediators. Considering

the definition of interconnection graphs in earlier versions of AT algorithm [53],
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two authors are said to be linked if they both spoke more that 20% of their time

about at least one topic. Besides simplicity, this uniform 20% cutoff has the ad-

vantage of not counting for the total number of words a speaker contributes to a

given topic. Therefore, a member who speaks rarely is not less likely to be linked.

In a more sophisticated look to the analysis of the interconnection network of com-

mittee members, (Broniatowski, 2010) defines directed links based on temporal

aspect of the data, that is, time lags in talking about a common topic. “A more

influential speaker may change the subject, whereas a less influential speaker will

remain on the subject introduced by the higher-status speaker.” During a meeting,

temporally ordered utterances defines time series for each speaker on one topic.

In the plot of such time series for two speakers, if speaker i speaks about the

topic often before j does, then we can say i leads j. More specifically, those time

series are used to generate the topic-specific-cross-correlation function for every

two speakers on one topic, the signs of peaks of this function define the direction

of the link between the two speakers. One future work mentioned in [11] is further

developing their techniques using dynamic network analysis. Accordingly, we in-

troduce a constrained two dimensional synchronized bounded influence model of

opinion dynamics with exogenous inputs. Furthermore, we emphasize common

features between construction of interconnection network in our model and above

mentioned interaction network of a committee via their meetings transcript.
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5.4.1 Multi-Topic Opinion Dynamics Model with Input

This section introduces a constrained two dimensional version of the synchro-

nized bounded influence (SBI) model of opinion dynamics introduced and studied

in Chapter 3. Consider n agents discussing two topics, and after a finite number

of meetings, they vote Yea or Nay on each topic. Let xi(t) denote agent i’s pro-

portion of his time that is devoted to speak in favor of the first topic during the

tth meeting. We assume that xi(t) is a negative number if agent i speaks against

the first topic, and thus xi(t) takes value in [−1, 1]. Similarly, we denote such

proportion for the second topic by yi(t). Since we are considering only two topics

of interest, the following constraint holds:

|xi(t)|+ |yi(t)| = 1 for all i ∈ {1, . . . , n}. (5.9)

In two dimensional bounded influence interaction, agent i’s opinion on one topic is

affected by agent j’s opinion on that topic, if the difference in their proportions of

talking about that topic is less than the influence bound of agent j on that topic,

denoted by rx,j, ry,j ∈ R>0. The opinion vectors x(t), y(t) ∈ Rn and the influence

bounds vectors rx, ry ∈ Rn
>0 are obtained by stacking all xi(t), yi(t)’s and rx,j, ry,j’s,

respectively. In other words, the influence bound of each agent depends on the

topic he is discussing. This assumption is based on the investigation and study

by (Friedkin, 2011) on small group opinion dynamics concerned with changes of
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group members’ positions on different issues. “For each issue in the sequence

of issues that arise in a group, a process of interpersonal influence on the issue

may unfold in a fixed structure of accorded influence” [21]. Moreover, influence

bounds can be approximated from the real data in the following way. Having

the conversational data from one set of meetings, (Broniatowski, 2010) computed

the proportions of talking about different topics and defined a directed graph of

interaction between members. If there is an edge from i to j, we compute the

average of their opinion differences in one topic over that set of meetings and let

that value equal to the influence bound of j on that topic.

As stated above, one of the most influential exogenous factors in committee

decision making is the mainstream media. The techniques used by media in influ-

encing opinions include using/misusing the experts or front runners and repeating

a message. In our model of opinion dynamics: 1) we assume that the front run-

ners are agents with larger influence bound; and 2) repeating the front runners’

opinions is modeled by independent Gaussian variables centered around each front

runner’s opinion with an influence bound equal to that of front runner. Assume

that after meeting t the media advertises for the front runner k in his opinion on

the first topic. Therefore, we can say that the input is a set of Gaussian variables

centered around xk(t), and the input’s influence bound will be rx,k. Hence, we

enlarge the state space along to include the input variables.
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According to the SBI model of opinion dynamics for each topic, considering n

agents with influence bounds vector r, we associate to each opinion vector z ∈ Rn

and the input vector u ∈ Rm the proximity digraph G(z, u) with nodes {1, . . . , n+

m}. Proximity digraph’s edge set is defined as follows: the set of out-neighbors of

node i is Ni(z, u) = {j ∈ {1, . . . , n} : |vi−vj| ≤ rj}, where v = [z, u]T . Clearly, all

agents have self-loops in the proximity digraph, which represent the self-confidence

of committee members, and we emphasize this confidence by considering self-

weights wi’s. The adjacency matrix corresponding to the mentioned proximity

digraph is denoted by A(z, u) and is an n × (n + m) matrix whose i, j entry is

defined by

aij(z, u) =





1
|Ni(z, u)|+ wi − 1

, if j 6= i ∈ Ni(z, u),

wi
|Ni(z, u)|+ wi − 1

, if j = i,

0, if j /∈ Ni(z, u),

where |Ni(z, u)| is the cardinality of Ni(z, u). In a two dimensional case of opinion

dynamics model, owing to having topic-dependent influence bounds, the proximity

digraphs associated to the two topic are independent from each other, while the

two opinion vectors are related by constraint (5.9). We denote the opinion vectors

on the two topics by x ∈ Rn and y ∈ Rn, their corresponding input vectors by

ux ∈ Rm and uy ∈ Rk, the proximity digraphs by Gx(x, ux) and Gy(y, uy), and the
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adjacency matrices by Ax(x, ux) and Ay(y, uy), respectively. An example of a two

dimensional opinion space and the associated proximity digraphs are illustrated

in Figure 5.3. The dynamics of this updating rule is composed of two parts, first

computation of the two intermediate vectors

x̂ = Ax(x(t), ux(t))




x(t)

ux(t)


 ,

ŷ = Ay(y(t), uy(t))




y(t)

uy(t)


 . (5.10)

Second, computing the final opinion vectors

x(t+ 1) =
x̂+ sign(x̂)(1n − |ŷ|)

2
,

y(t+ 1) =
ŷ + sign(ŷ)(1n − |x̂|)

2
, (5.11)

where sign : Rn → {−1, 0, 1}n is a map that associates entries of a vector to their

signs. The logic behind above two step updating rule is to feed the change in

one opinion vector into the other opinion vector, such that the constraint (5.9) is

satisfied at the next iteration, that is, |x(t + 1)| + |y(t + 1)| = 1. The updating

rule for one agent is schematically drawn in Figure 5.4.
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(right) are presented.
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dating rule for one agent in constrained two

dimensional SBI mdoel of opinion dynamics.
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5.4.2 Problem Setup

In a committee of experts, there are two topics under discussion, and after a

known number of meetings the committee votes for each topic. Here, we discuss

strategies through which the media affects the results of voting on the two topics.

We assume that the result of one topic is more important than the other, and hence

the media might sacrifice the less important topic. Without loss of generality,

assume that media values voting in favor of the first topic associated with opinion

vector x(t). In other words, the goal is having larger number of positive xi’s after

the final meeting, while the magnitude of these values are not decisive. We define

similar strategies to those of Section 5.3.2:

• Direct strategy: After each meeting, the media advertises for one agent whose

opinion lies in the positive x and has influence on negative x. In other words,

the input u is a set of Gaussian variables centered around xi(t), where i is

such that xi(t)− ri < 0 and xi(t) > 0.

• Distracting strategy: For the first half of the meetings, the media advertises

for an opponent member who has a large negative y with large bound of

influence. During the second half of meetings, the media advertises for an

agent with properties mentioned in direct strategy.
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The distracting strategy is based on the fact that members of each political

party tend to vote similarly on both topics, that is, each member tends to vote

either in favor or against both topics. For instance, the positive x and y can

represent the topic that members of one party are supporting. Advertising for a

member with large negative y will distract other members in his party with small

negative y but large negative x from talking negatively about the first topic. This

distraction eases the path for the second half of advertisements, where media

tends to attract members with small negative x toward voting in favor of the first

topic. An example of the comparison of the two strategies on the two dimensional

opinion evolution is illustrated in Figures 5.5 and 5.6. We aim to understand

whether under uniformly randomly distributed initial opinion and bound vectors,

the distracting strategy outperforms the direct strategy with higher probability.

One approach to answer above question is to approximate the updating rule by a

discrete-time continuous-space Markov Chain.

5.4.3 Eulerian Description by a Markovian Process

In Lagrangian models of opinion dynamics with finite population, discussed

in Chapters 2 and 3, if the number of agents converges to infinity, then these

models can be approximated by Eulerian models of opinion dynamics with infinite

population, discussed in Chapter 4. For instance, consider a homogeneous HK
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Figure 5.5: The trajectory of a constrained two dimensional SBI system, whose

initial opinion vector and bounds vectors are uniformly randomly generated, under

the influence of direct strategy is illustrated along x (left) and y (right) axes. The

green dots represent the input, which is a set of Gaussian variable centered around

one positive x. At final time the number of agents with positive x is 22.

system with n agents with opinions x(t) = [x1(t), . . . , xn(t)] and m exogenous

inputs u(t) = [u1(t), . . . , um(t)]. This system can be represented as an Eulerian

HK system with the following mass or probability distribution and input at time

t:

µt(z) =
1

n

n∑

i=1

δ(z − xi(t)),

ut(z) =
1

m

m∑

i=1

δ(z − ui(t)).

Hence, the flow map (5.1) gives us γt = x(t + 1). By updating the probability

distribution via this flow map, the Delta Dirac function centered at any xi(t) will
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Figure 5.6: The trajectory of a constrained two dimensional SBI system with the

same initial condition and bounds vector as the system of Figure 5.5 under the

influence of distracting strategy is illustrated along x (left) and y (right) axes and

in 3D (bottom). The green dots represent the input, which is a set of Gaussian

variable centered around a negative y for t ∈ [0, 10] and a positive x for t ∈ [11, 20].

At final time the number of members with positive x is 32.
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be transferred to xi(t+ 1). Therefore,

µt+1(z) =
1

n

n∑

i=1

δ(z − xi(t+ 1)),

which is consistent with the agent based HK system.

Accordingly, let µx,t and µy,t denote the probability distributions over the two

opinion sets on the two topics at discrete times t. The initial probability distri-

butions can be found by the real data on committee’s opinions, here, we assume

these distributions to be uniformly distributed over the given interval. Before

proceeding to the dynamics of this system, we discuss the relation between the

two probability distributions based on the constraint (5.9). As mentioned above,

members of each political party tend to vote similarly on both topics, that is, each

member tends to vote either in favor or against both topics. Therefore, agents

with positive opinion x tend to have a positive opinion y with some probability

q > 0.5 and vice versa. Based on constraint (5.9), if an agent devotes x proportion

of its time to the first topic, with probability q he devotes y+(x) = sign(x) − x

(similar sign to x) to the second topic and with probability 1 − q he devotes

y−(x) = x − sign(x) (opposite sign to x) to the second topic. Regarding ini-

tial distribution, assume that the probability distribution is uniformly distributed

along the x axis. Using the following strategy, one can prove that the probability

distribution is also uniform along the y axis. A uniform distribution tells us that

µ0,x(dx) centered at any x0 ∈ [−1, 1] is equal to dx/2. For agents with opinion
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x0, y0 is equal to sign(x0) − x0 with probability qdx/2. On the other hand, for

agents with opinion −x0, y0 is equal to x(0) − sign(x(0)) = sign(x0) − x0 with

probability (1 − q)dx/2. Therefore, the probability distributionµ0,x(dx) centered

at sign(x0)− x0 is equal to dx/2.

(Broniatowski, 2010) claims that panel members who speak often and focus on

one topic have higher influence. The empirical evidence confirms that influence

bounds are both agent-dependent and opinion-dependent. In other words, if the

same highly influential committee member changes his strategy and devotes less

time to that topic, it is highly likely that he loses his influence. For brevity,

in our Lagrangian description of the two dimensional SBI, we assume that the

influence bounds are only agent-dependent. While, our Eulerian description of

the model considers both agent-dependence and opinion dependence properties of

the influence bounds. In this Eulerian model, we divide the opinion space into

two regions low influential (LI) and high influential (HI) whose opinions are lower

or higher than some value ∆ ∈ R>0, respectively. For any agent in the low or

high influential region, the influence bound is assumed to be uniformly randomly

distributed over [ε1, ε2] or [ζ1, ζ2], respectively, where ε1,2, ζ1,2 ∈ R≥0. Moreover,

ε1 < ζ1 and ε2 < ζ2. Therefore, the flow maps are computed by first considering
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the intermediate vectors in updating equations (5.10):

γ̂x(t, x) =

∫ x+σ

x−σ

( ∫ ζ2
ζ1

Iz∈HIzPx(t, z, σ)dσ +
∫ ε2
ε1

Iz∈LIzPx(t, z, σ)dσ
)
dz +

∫ x+η

x−η uPx,u(t, u)du
∫ x+σ

x−σ

( ∫ ζ2
ζ1

Iz∈HIPx(t, z, σ)dσ +
∫ ε2
ε1

Iz∈LIPx(t, z, σ)dσ
)
dz +

∫ x+η

x−η Px,u(t, u)du
.

Similarly for y component we have:

γ̂y(t, y) =

∫ y+σ

y−σ

( ∫ ζ2
ζ1

Iz∈HIzPy(t, z, σ)dσ +
∫ ε2
ε1

Iz∈LIzPy(t, z, σ)dσ
)
dz +

∫ y+η

y−η uPy,u(t, u)du
∫ y+σ

y−σ

( ∫ ζ2
ζ1

Iz∈HIPy(t, z, σ)dσ +
∫ ε2
ε1

Iz∈LIPy(t, z, σ)dσ
)
dz +

∫ y+η

y−η Py,u(t, u)du
.

Finally, the updating equations (5.11) gives us the final flow maps:

γx(t, x) =
1

2
γ̂x(t, x)

+
1

2
sign(γ̂x(t, x))

(
q(1− |γ̂y(t, y+(x))|) + (1− q)(1− |γ̂y(t, y−(x))|)

)
,

γy(t, y) =
1

2
γ̂y(t, y)

+
1

2
sign(γ̂y(t, y))

(
q(1− |γ̂x(t, x+(y))|) + (1− q)(1− |γ̂x(t, x−(y))|)

)
.

An example of two dimensional constrained Eulerian HK model under the in-

fluence of input with direct and distracting strategy is illustrated in Figure 5.7,

where the latter strategy outperforms the former. We believe that it is possible

to prove that there is a strong correlation between two dimensional and one di-

mensional distracting strategies in an Eulerian point of view. Consequently, as
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we numerically established in Section 5.3, it can be shown that the distracting

strategy in two dimensional HK model has a higher probability that the direct

strategy in increasing the objective function in finite time.

5.5 Summary and Extensions

The formation of opinions in a large population is governed by endogenous

(e.g., human interactions) and exogenous (e.g., media influence) factors. Consid-

ering a large population allows approximation of the decision making rules with

Non-Bayesian ”rule of thumb” methods. This chapter analyzed the behavior of

an Eulerian bounded confidence model of opinion dynamics with time-varying in-

put. In this model, a population is distributed over an opinion set and updates

its opinion via 1) the opinion of the population inside the confidence range, and

2) the information from an exogenous input in that range. First, we proved some

fundamental properties of this system’s dynamics with time-varying input. We

derived a simple sufficient condition for opinion consensus, and proved the con-

vergence of population’s distribution under time-invariant input to a sum of Dirac

Delta functions. We computed an empirical upper bound on the largest range of

opinions that a fixed Gaussian distributed input can attract to its center. We

defined the attraction range of an input, and for a normally distributed input
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Figure 5.7: The evolution of probability or mass distribution of opinions along

x (left) and y (right) axes under the influence of an input in direct (top) and

distracting (bottom) strategies. The initial probability distributions are uniform on

both axes. For opinions in interval [−0.6, 0.6], the influence bound range is [0, 0.2],

and for the rest of opinions this value is [0.1, 0.4]. It can be seen that the distracting

strategy attracts a higher population to the positive x than the direct strategy.
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and uniformly distributed initial population, respectively, we conjectured a linear

relation between this range’s length, population’s confidence bound, and input’s

variance. Accordingly, we compared two manipulation strategies, where based

on limited attraction range of manipulator, we discussed how one outperforms

the other. Finally, we presented a real world example and discussed the effect of

introduced strategies on evolution of opinions.

There is a great potential for further investigation of the effect of exogenous

inputs on opinion evolution in a social network. (1) Under the effect of an input

with Normal distribution on a large population, there exists a bounded opinion

range in which the population gets attracted to the input’s advertising value. One

future challenge is computing the exact boundary of mentioned opinion range as

a function of the system’s parameters. Such a boundary acts as a tipping point

in the dynamics of the systems, out of which agents cluster away from the input

and inside which agents reach consensus at input’s center. (2) We believe that

it may be possible to find the opinion value y that is most influenced by the

input in a finite number of time steps T . More specifically, define y(T ) and yu(T )

to be the final opinions of population with initial opinion y under and without

influence of input for T iterations, respectively. Then, for any distribution of

input, we plan to find the opinion y whose |yu(T ) − y(T )| is maximum. (3) As

stated above, we consider a large population that votes positively or negatively in
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a series of opinion polls until final election. We aim to maximize the population

with positive opinions in the final election at T . In other words, we aim to increase

the Lyapunov function

V (T ) =

∫ 1

0

dµT (x).

However, owing to the discontinuity of this function over opinion space, optimiz-

ing this Lyapunov function is a mathematically hard problem. Consequently, two

possible breakouts could be: i) finding a smooth Lyapunov function; or ii) em-

ploying an appropriate greedy algorithm. (4) We plan to obtain a greedy optimal

manipulation strategy for any initial distribution of population on opinion space.

An optimum input can be defined as an input that would attract the largest pop-

ulation to its center or that would increase the population with positive opinion

the most.
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Conclusions

Decision-making in a society is a complex process, which is led to the final

state by endogenous and exogenous factors. The interaction of individuals via in

person meetings or online social networks is an endogenous factor. One of the

most influential exogenous factors is the mainstream media that acts as a real-

time input owing to its easy access to the public. Considering a large population

allows approximation of the decision making rules with Non-Bayesian “rule of

thumb” methods without relying on detailed social psychological findings. This

thesis mainly addresses complex problems in the analysis of opinion evolution in

(a) heterogeneous societies and (b) societies with large population under the in-

fluence of exogenous events. In the study of opinion dynamics in heterogeneous

social networks we classified the agents and proved the existence of a leader group,
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and we derived sufficient conditions for the convergence of agents opinions to a

final set of decisions. In the study of opinion evolution in a large population driven

by peer-to-peer interactions and exogenous events: we (1) proved the convergence

of populations distribution to clusters concentrated around separate opinions; (2)

computed an empirical upper bound on the largest population that a fixed in-

put can attract to its center, and proved numerically that this largest attracted

population is a linear function of the system’s parameters such as agents bound

of trust; and (3) compared different manipulation strategies and evaluated their

performance based on the limited attraction range of the manipulator agent.

6.1 Summary

In Chapter 2, we studies the properties of a homogeneous model of opinion

dynamics for a finite population, and we proved that the time complexity of the

model is of the order O(n4).

In Chapter 3, we analyzed two heterogeneous models of opinion dynamics for

a finite population. We proved the existence of a leader group for each group of

agents and determined the controllable factors in the behavior of followers. We

derived novel, sufficient conditions for the convergence of agents opinions to a

final set of decisions. We designed an appropriate classification of agents, based
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on which we explained the behavior of a different group of agents in the long run.

We studied the properties of possible final decisions of groups of agents.

In Chapter 4, we analyzed the evolution of opinions in a large population driven

by peer-to-peer interactions. We described fundamental properties of this systems

dynamics. We derived a sufficient condition for opinion consensus, and proved the

convergence of populations distribution to clusters concentrated around separate

opinions.

In Chapter 5, we analyzed the model of opinion dynamics for large popula-

tions, introduced in the previous chapter, under the influence of exogenous inputs.

We proposed a novel model describing the influence of inputs and derived a suffi-

cient condition for opinion consensus. We established some important properties

of the model with a time-varying input. We computed an empirical upper bound

on the largest population that a fixed input can attract to its center, and proved

numerically that this largest attracted population is a linear function of the sys-

tems parameters such as agents bound of trust. We compared two manipulation

strategies and evaluated their performance based on the limited attraction range

of the manipulator agent. We presented a real world example and discussed the

effect of introduced strategies on evolution of opinions.
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6.2 Future Directions

Regarding modeling the opinion dynamics in a finite population, we considered

an opinion dependent interconnection network whose nodes or agents are hetero-

geneous. This heterogeneous state-dependent interconnection topology leads to a

poorly-understood complex dynamic behavior. The convergence of this discrete

time state-dependent linear system with switching topology has been an open

problem since 2002. Hence, the main future challenge is to prove that all trajec-

tories of this system converge to steady states. One approach is to employ the

results of [33], which establishes that the product of an infinite number of row-

stochastic matrices with positive diagonals converges to a partly fixed matrix,

with complete consensus matrices on the diagonal. This result leaves us with a

finite number of limiting opinion vectors for our system, and hence a finite number

of invariant neighborhoods for each limiting vector to which the trajectory can be

asymptotically confined. Another future challenge is a probability analysis on the

topology of the proximity digraph of the system, which leads us to understanding

the reason behind common final outcomes of decision making processes.

In bounded confidence (BC) models of opinion dynamics, agents interacts if

and only if their opinions differ less than a given threshold. Such discontinuity

makes the model non-robust to small variation in system parameters and initial
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opinions; this lack of robustness is a weakness of the BC models. We plan to

transition from this extreme discontinuous model to a model based on (1) smooth

interactions and (2) interactions aware of spatial geographic proximity. With

regards to (1), we envision modeling interactions as a process whose strength

decays smoothly and possibly exponentially fast in opinion difference. Moreover,

we plan to introduce some stochasticity in the interaction model. With regards

to (2), we plan to study model in which the opinion of an agent evolves as a

result of interactions with agents, which are simultaneously similar-minded and

geographically close. This implies that multiple graphs (or a graph with multiple

attributes) come into play.

We have studied heterogeneity in the graph structure, characterizing equilib-

ria, convergence criteria and convergence rates. However, so far we have assumed

homogeneity in the averaging coefficients defining the opinion dynamics and we

have not yet exploited the fact that the confidence bounds are not uniformly dis-

tributed in a real society. We next intend to study heterogeneity in the averaging

coefficients and power-law distributions of confidence radii and coefficients. Such

heterogeneity in a graph leads to interesting convergence behaviors, which can be

studied by a probability analysis on different possible structures of the graph. Ad-

ditionally, under power-law distributions, some graph components are more likely

to exist and convergence properties will depend upon it. Finally, we aim to study
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the effect of heterogeneity in the averaging coefficients on the total convergence

rate of the system.

There is a great potential for further investigation of the effect of exogenous

inputs on opinion evolution in a social network:

First, the effect of information assimilation dynamics on an opinion-dependent

social network is largely unknown. This is due to two main reasons. On one hand,

due to the bounded confidence constraint, it may happen that each agent has ac-

cess to a subset of the events, so that inference has to be performed at the level of

the social network. On the other hand, the limit behavior of opinion-dependent

networks is dominated by the phenomena of clustering and loss of connectivity,

which are intrinsically against the possibility to reach a global agreement. It is

thus an open issue whether and when social learning through observation and com-

munication is effective. For instance, under the effect of an input with bounded

domain on a distribution of population, there exists a bounded opinion range in

which the population gets attracted to the input’s advertising value. One future

challenge is computing the exact boundary of mentioned opinion range as a func-

tion of the system’s parameters. Such a boundary acts as a tipping point in the

dynamics of the systems, out of which agents cluster away from the input and

inside which agents reach consensus at input’s center.
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Second, we plan to consider general models of opinion dynamics with strategic

manipulation. Our investigations start with the notion of an influential agent,

as a misbehaving agent which we assume has (1) some goal about changing the

others’ opinions, (2) partial or complete knowledge of the current opinion of the

other agents, and (3) the capability of setting her own opinion as a function

of time. In the presence of influential agents and under a bounded confidence

interaction model, a preliminary control-theoretic analysis shows that even one

single influential agent may drive all the network to agreement at an arbitrary

value of choice although this process may possibly take a long time. Regarding

this future challenge, we believe that it may be possible to find the population

whose opinion is the most influenced by any strategic manipulator in a finite

number of time steps. In considering a large population that votes positively or

negatively in a series of opinion polls until final election, we aim to maximize

the size of population with positive opinions in the final election. One approach

is finding a greedy optimal manipulation strategy for any initial distribution of

population on opinion space. An optimum input can be defined as an input

that would attract the largest population to its center or that would increase the

population with positive opinion the most.
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