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ABSTRACT

The subject of this dissertation is motion coordination for mobile robotic networks with visibility

sensors. Such networks consist of robotic agents equipped with sensors that can measure distances

to the environment boundary and to other agents within line of sight. We look at two fundamental

coordination problems: (i) deploying over an unknown nonconvex environment to achieve complete

visibility, and (ii) gathering all agents initially scattered over the environment at a single location.

As a special case of problem (i), we first address the problem of optimally locating a single

robotic agent in a nonconvex environment. The agent is modeled as a point mass with continuous

first-order dynamics. We propose a nonsmooth gradient algorithm for the problem of maximizing

the area of the region visible to the observer in a non-self-intersecting nonconvex polygon. First,

we show that the visible area is almost everywhere a locally Lipschitz function of the observer

location. Second, we provide a novel version of the LaSalle Invariance Principle for discontinuous

vector fields and for Lyapunov functions with a finite number of discontinuities. Finally, we estab-

lish the asymptotic convergence properties of the nonsmooth gradient algorithm and we illustrate

numerically its performance.

Second, we address problem (i) by proposing a novel algorithm to the deploy a group of robotic

agents in an unknown nonconvex environment to achieve complete visibility. The agents are point

masses with discrete-time first-order dynamics. The agents operate asynchronously and two agents

can communicate when mutually visible. We also address this deployment problem under the

additional constraint that the visibility graph of the final agent locations is connected. We provide

distributed algorithms that are guaranteed to solve the two deployment problems if a sufficient

number of agents is available. Remarkably, this number is identical to the upper bound established

in the famous Art Gallery Problem, i.e., the number of agents sufficient to achieve complete visibility

in a known environment through centralized computation. We additionally provide time complexity
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bounds for the proposed algorithms.

Third, we address problem (ii) by proposing a novel motion coordination algorithm for a group

of robotic agents to achieve rendezvous, that is, to move to a common location inside a nonconvex

environment. The robots move synchronously in discrete-time, they have a range-limited visibility

sensor, and no communication ability is required. The algorithm is designed using the notions

of robust visibility, connectivity-preserving constraint sets, and proximity graphs. We rigorously

establish the correctness of the algorithm and we illustrate through simulations the algorithm’s

performance in asynchronous setups with sensor measurement and control errors.

iv



To my family

v



ACKNOWLEDGMENTS

I would like to thank my advisor, Prof. Francesco Bullo, for introducing me to the fascinating world

of control theory, robotics and in particular to the beautiful distributed illumination problems. His

tremendous support, guidance and encouragement, especially during those lowest moments, have

been the driving force behind all this work. Next, I would also like to express my heartfelt gratitude

towards Prof. Jorge Cortés for his feedback, help and for the countless hours that we have spent

together over challenging proofs.

I would like to thank Prof. Seth Hutchinson for all his support. I would also like to thank all

the other members of my doctoral committee, Prof. P R. Kumar, Prof. Mark Spong and Prof.

Steven LaValle, for agreeing to serve on it and for their valuable feedback. A special thanks to Prof.

Perkins, Prof. Spong, Prof. Franke and Prof. Hutchinson for helping me during the transition

from General Engineering to the Electrical and Computer Engineering Department.

I would like to thank my roommates over the years, Sanket Dusad, Girish Varatkar, Jeff Dun-

bar, Ketan Savla, Shaunak Bopardikar and Deepesh Tated and to my friends Puneet Sharma, Nitin

Agarwal, Gaurav Jain, Monica Awasthi, Soham Mazumdar, Nitin Gupta, Ashish Agarwal, Rajeev

Jaiman, Amit Bhatia, Manoj Parmar, Amit Pathak, Anubhav Arora and Sorabh Gandhi for all the

wonderful times outside of work. I would like to thank my friends at the Coordinated Science Lab-

oratory, Saurabh Tavildar, Siddharth Mallik, Vikas Kawadia, Vivek Raghunathan, Nikhil Chopra

and L. N. Rajan for making an already wonderful place a super environment to work in.

I would also like to thank Becky Lonberberger and Francie Bridges at the Coordinated Science

Laboratory, Donna Eiskamp at the General Engineering Department and Laurie Fisher and Sherry

Beck at the Electrical and Computer Engineering Department for being ever helpful.

In the end I would like to dedicate this thesis to my family for all the things for which I have

no words to describe.

vi



TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

CHAPTER 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

CHAPTER 2 Optimal deployment of a single robotic agent . . . . . . . . . . . . 7
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 The area visible from an observer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 An invariance principle in nonsmooth stability analysis . . . . . . . . . . . . . . . . . 20
2.4 Maximizing the area visible from a mobile observer . . . . . . . . . . . . . . . . . . . 23

2.4.1 A modified gradient vector field . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.2 Properties of solutions and convergence analysis . . . . . . . . . . . . . . . . 27

2.5 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

CHAPTER 3 Deployment of multiple robotic agents . . . . . . . . . . . . . . . . 38
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.1 Visibility and graph theoretic concepts . . . . . . . . . . . . . . . . . . . . . . 40
3.2.2 Robotic network model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.3 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 An incremental partition algorithm and the resulting triangulation . . . . . . . . . . 43
3.4 Connected deployment of agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4.1 Navigation graph for connected deployment . . . . . . . . . . . . . . . . . . . 48
3.4.2 A connected kernel point-set . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4.3 Incremental algorithm for connected deployment . . . . . . . . . . . . . . . . 53
3.4.4 Distributed information processing . . . . . . . . . . . . . . . . . . . . . . . . 57
3.4.5 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5 General deployment of agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.5.1 Navigation graph for deployment . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.5.2 A sparse kernel point-set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.5.3 Incremental algorithm for deployment . . . . . . . . . . . . . . . . . . . . . . 75
3.5.4 Distributed information processing . . . . . . . . . . . . . . . . . . . . . . . . 81
3.5.5 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

vii



CHAPTER 4 Multirobot rendezvous in nonconvex environments . . . . . . . . . 86
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.2 Geometric notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.3 Synchronous robots with visibility sensors and the rendezvous and connectivity main-

tenance problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.4 The connectivity maintenance problem . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.4.1 Preserving mutual visibility: The Constraint Set Generator Algorithm . 97
4.4.2 The locally-cliqueless visibility graph . . . . . . . . . . . . . . . . . . . . . . . 101

4.5 The rendezvous problem: Algorithm design and analysis results . . . . . . . . . . . . 105
4.5.1 The Perimeter Minimizing Algorithm . . . . . . . . . . . . . . . . . . . . . 106
4.5.2 Main convergence result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.6 Practical implementation issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.6.1 Nominal experimental set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.6.2 Robustness against asynchronism, sensing and control noise, and finite-size

disk robot models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.6.3 Computation complexity with finite resolution sensing . . . . . . . . . . . . . 116

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.8 Proofs of results in Section 4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.9 Additional analysis results and proof of Theorem 4.5.4 . . . . . . . . . . . . . . . . . 122
4.10 Proofs of results in Section 4.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

CHAPTER 5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

APPENDIX A Nonsmooth analysis and discontinuous vector fields . . . . . . . 145

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

viii



LIST OF FIGURES

2.1 The figure on the left shows a nonconvex polygonal environment shaped like a typical
floor-plan. The figure on the right shows the variation of the visible area in the
environment as a function of the position of a point observer. . . . . . . . . . . . . . 9

2.2 Reflex vertices v1 and v2, a generalized inflection segment I(v1, w), an anchor va

of p and the visibility polygon (shaded region) from p. Note that the polygonal
environment has a hole. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 The visibility polygon of the point represented by p. Note that there exists a ray
emanating from p which intersects the environment at three points and hence the
corresponding visibility polygon is self-intersecting. . . . . . . . . . . . . . . . . . . . 14

2.4 Normalized gradient of the visible area function over the nonconvex polygon depicted
in Figure 2.1. The dashed lines represent some of the generalized inflection segments. 15

2.5 Definition of the lines lα, hα, and the points q′α, q′′α, v′α, v′′α. . . . . . . . . . . . . . . . 16
2.6 Upper bounds on the change in area. Here m = 3. . . . . . . . . . . . . . . . . . . . 17
2.7 Partition of Q. The generalized gradient of the area function at p is the convex hull

of the gradient of four functions A1, . . . , A4 at p. . . . . . . . . . . . . . . . . . . . . 19
2.8 Example polygon for which A ◦S and −A ◦S restricted to Q\Ver(Q) are not regular.

Note here that dA1 and dA2 are not perfectly aligned with η′. Also, dA3 and dA4

are not perfectly aligned with η′′. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.9 The ǫ-expansion Qǫ of the non-self-intersecting polygon Q, an open set P ǫ

i and the
corresponding outward normal n(prjQ(p)). . . . . . . . . . . . . . . . . . . . . . . . . 25

2.10 Three Filippov solutions exist starting from the point p0. . . . . . . . . . . . . . . . 26
2.11 Extending the function A ◦S to Aǫ

Q. Note the direction of n(prjQ(pi)) at all points pi. 27
2.12 The point p0 lies on the generalized inflection segment l. H1 and H2 are half planes

on either side of l. n and t are normal and parallel to l respectively. The other
arrows indicate the directions of dAǫ

Q(p) on either side of l. . . . . . . . . . . . . . . 28
2.13 Illustration of various notions used in Theorem 2.4.5. The dashed lines represent

generalized inflection segments generated by the reflex vertex v and vertices adjacent
to it. These divide the region around v that is inside Q into three subregions C , D
and E. u ∈ Ve(S(p)) lies on the line l. The generalized inflection segments including
the vertex v are assumed to belong to region C. Note that D∩C = ∅. . . . . . . . . 31

2.14 Example of visible area function over a typical nonconvex polygon. . . . . . . . . . . 34
2.15 Simulation results of the gradient algorithm for the nonconvex polygon depicted in

Figure 2.14. The observer arrives, in finite time, at a local maximum. Note here
that the observer visits a reflex vertex at some point in its trajectory but comes out
of it due to computational inaccuracies because it is not a local maximum. . . . . . . 35

2.16 Example of vector field over the nonconvex polygon in Figure 2.14. . . . . . . . . . . 35

ix



2.17 Simulation results of the gradient algorithm for the nonconvex polygon in Figure 2.1.
The observer arrives, in finite time, at a local maximum. . . . . . . . . . . . . . . . . 36

2.18 Simulation results of the gradient algorithm for an observer in a nonconvex environ-
ment with a hole. The observer arrives, in finite time, at a reflex vertex. . . . . . . . 37

3.1 Left: Illustration of some preliminary notions. A simply connected environment
Q (outer polygon), a reflex vertex vr, a diagonal (dashed line segment) and two points
p, q ∈ Q mutually visible to each other (the line segment [p, q] belongs to Q) and
the visibility set V(p, Q) (shaded region). Right: A simply connected environment,
Q, in the shape of a typical floor plan and its triangulation by means of diagonals. . 41

3.2 Sequence of actions for agent i beginning at time T i
l . Instantaneous BROADCAST(i,Mi)

events are represented by vertical pulses. The MOVE interval might be empty if the
agent does not move.The subsequent instant T i

l+1 is the time when the agent stops
performing the MOVE action and it is not predetermined. . . . . . . . . . . . . . . . . 42

3.3 Illustration of the Initialization routine. The shaded region represents Rdiag.
The dashed edges of Rdiag are diagonals of Q. . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Illustration of a polygon Q and s ∈ Ve(Q) such that |P| = n − 2. Here n = 6 and
|P| = 4. The point-set represented by the black discs is P. The diagonals represent
the boundary of the sets R. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5 Illustration of the Incremental Partition Algorithm. The left plot shows the
execution of the Initialization algorithm. The center plot shows how to pick the
vertex v and the execution of Star-shaped Set Computation algorithm. The right
plot shows the partition R and the corresponding kernel points (black discs). . . . . 47

3.6 Illustration of the navigation graph, Gnav-con(s, Q). The vertex s is the root; the
black discs represent the nodes and the directed arcs represent the edges. . . . . . . 48

3.7 An illustration of a polygon Q and s ∈ Ve(Q) the corresponding point-set P ∗
con. The

dashed segments show some of the edges of the visibility graph, Gvis,Q(P ∗
con). . . . . . 49

3.8 An illustration of a polygon Q and s ∈ Ve(Q) where |P ∗
con| = (n− 1)/2. Here n = 7.

The outer polygon is Q. The black discs represent P. The unshaded region is R1,
the lightly shaded region is R2 and the darkly shaded region is R3. Directed arcs
represent the edges of Gnav-con(s, Q). The set P ∗

con is equal to {p1, p2, p3}. . . . . . . 51
3.9 Illustration of the case when pj is the parent of pi and pi is the parent of ph and

pi 6∈ P ∗
con. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.10 Execution of the Connected Depth-first Deployment algorithm over a prototyp-
ical floor plan. As forecasted by our analysis, the final agent configuration is con-
nected in the visibility graph, and any point in the environment is visible to at least
one agent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.11 Illustration of the navigation graph, Gnav(s, Q). The set of points represented by the
black and white discs are the nodes of the graph; the red arcs represent the edges.
The black discs represent the set of points in P. . . . . . . . . . . . . . . . . . . . . . 62

3.12 A simply connected environment, Q, in the shape of a typical floor plan and its
triangulation by means of diagonals. A triangle r and the corresponding directed
tree G△(TQ, r). The edges of G△(TQ, r) are directed away from the root. The shaded
region on the right shows the set Ncvr(v, ad(v)), where v is depicted by the red ball
and ad(v) = {d1, d2} where d1, d2 are the diagonals shown by the solid lines. . . . . 63

x



3.13 Illustration of possible cases of an occurrence of a removable fork. In case (a), all
successors of N in the left branch belong to ∪p∈P Ncvr(p, ad(p)) and only the child
of N in the right branch does not belong to ∪p∈P Ncvr(p, ad(p)). In case (b), in both
branches of N , only the children of N do not belong to ∪p∈P Ncvr(p, ad(p)). . . . . . 64

3.14 Illustration of an example of a removable chain formed by the triangles Ni, Nj and
Nk: (a) The three triangles share a common vertex (black disc.); (b) Nj is not a
fork; (c) none of the triangles belong to ∪p∈P Ncvr(p, ad(p)); (d) Nk is not a fork and
it does not belong to ∪p∈P Ncvr(p, ad(p)); and (e) all triangles that are successors of
Ni belong to ∪p∈P Ncvr(p, ad(p)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.15 Illustration of placement rules for a removable fork. Case (a) illustrates the scenario
when the point of N common to both its children does not belong to P ∗. Let p be
as shown in the figure and e := {d}. Case (b) depicts the situation when there exists
a point p′ ∈ P ∗. Let p = p′ set e := {d}. In case (c), let point p be as shown and let
e := {d1, d2}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.16 An illustration of a polygon Q and s ∈ Ve(Q) the corresponding point-set P ∗. . . . . 66
3.17 Illustration of the case when Nj is a fork. . . . . . . . . . . . . . . . . . . . . . . . . 69
3.18 Illustration of the possible cases when Nj and Nk are both not forks. . . . . . . . . 70
3.19 Illustration of all possible cases when Nj is not a fork, Nk is a fork and has exactly

one triangle in the second branch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.20 Illustration of the ideas used in the proof related to the case shown in Figure 3.19 (b). 72
3.21 Illustration of all possible cases when Nj is not a fork, Nk is a fork and has exactly

two triangles in the second branch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.22 Illustration of the elements comprising the list Tdiag. If the agent is located at pi,

with parent s, then the lightly shaded region represents Ri. The gaps of Ri are
depicted by the dashed lines. The list Tdiag1 will comprise of three elements, each
corresponding to one gap. Assuming that at a certain time there is one triangle that
is uncovered beyond the first gap (shown by the darkly shaded triangle), and no
triangles uncovered beyond the next two gaps, then Tdiag1 = (1, 0, 0). . . . . . . . . 76

3.23 Update of Tdiag1 in the Depth-first Deployment algorithm. . . . . . . . . . . . . . 78
3.24 Local computation of the points P ∗

i in the Depth-first Deployment algorithm. . . 79
3.25 Execution of the Depth-first Deployment algorithm over a prototypical floor plan.

As forecasted by our analysis, any point in the environment is visible to at least one
agent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.1 Execution of the Perimeter Minimizing Algorithm described in Section 4.5.1 on
a group of robots distributed in a polygon, Q, shaped like a typical floor plan.
The graph shown in the left-most figure is the r-range visibility graph Gr-vis,Qǫ (see
Section 4.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2 An allowable environment Q: the closed arc a1 and the isolated points r1, r2 are
strict concavities. v′ is a point on a1 where the slope of ∂Q is defined. HQ(v′) is
the half-plane with the tangent to ∂Q at v′ as the boundary and the interior in the
direction of the arrow. v′′ is a point on a1 where the slope of ∂Q is not well-defined.
In this case, we define the tangent to be the one shown in the plot. HQ(v′′) is the
half-plane with the tangent to ∂Q at v′′ as the boundary and the interior in the
direction of the arrow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

xi



4.3 Robust visibility notions. Q is the outer polygonal environment; the ǫ-contraction
Qǫ is the region with the curved boundary and containing the point p; the visibility
set V(p) is the region shaded in light gray; the ǫ-robust visibility set V(p, ǫ) is the
region shaded in darker gray. Note that the isolated concavities of Q give rise to
strictly concave arcs in Qǫ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.4 The figure on the left shows the visibility graph (whose edges are the solid lines as
well as the dashed lines) and the ǫ-robust visibility graph (whose edges are the solid
lines alone) of a set of points in a nonconvex polygon. The figure on the right shows
the r-range ǫ-robust visibility graph. The disk in the figure shows the sensing range
for one of the agents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.5 Relative convex hull rco(X, Qǫ) of a set of points X (solid disks) inside a the ǫ-
contraction of an allowable set Q. The set of vertices Ve(rco(X, Qǫ)) is the set
{v1, . . . , v7}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.6 In the figure on the left, starting from pi and pj , the robots are restricted to move inside the

disk centered at
pi+pj

2
with radius r

2
. In the figure on the right, the robots are constrained

to move inside the shaded region which is a convex subset of Qǫ intersected with the disk

centered at
pi+pj

2
with radius r

2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.7 From left to right and top to bottom, a sample incomplete run of the Constraint

Set Generator Algorithm (cf. Table 4.1). The top left figure shows Ctemp :=

V(pi, ǫ)∩B(
pi+pj

2 , r
2). In all the other figures, the lightly and darkly shaded regions

together represent Ctemp. The darkly shaded region represents Ctemp ∩HQ(v), where
v is as described in step 3:. The final outcome of the algorithm, CQ(pi, pj), is shown
in Figure 4.6 (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.8 The green convex set in the center represents Cpi,Q(Ni,Gr-vis,Qǫ
). The black disks rep-

resent the position of the robots. The straight line segments between pairs of robots
represent edges of Gr-vis,Qǫ

. Here, pi is the black disk contained in the constraint set. 102
4.9 Visibility graph (left) and locally-cliqueless visibility graph (right). . . . . . . . . . . 103
4.10 From left to right, visibility graph, locally-cliqueless graph and Euclidean Minimum

Spanning Tree of the visibility graph. . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.11 The dashed circle is centered at pi and is of radius r. The thick curves represent the

boundary of Qǫ; the one on the left represents the outer boundary whereas the one
on the right represents a hole in the environment. . . . . . . . . . . . . . . . . . . . 105

4.12 Computer simulation results with asynchronism. The top figure represents the av-
erage number of steps taken per robot for convergence(crosses). Also shown is the
number of steps taken by each robot in synchronous implementation (red circle).
The center figure shows the fraction of the edges of the initial sensing graph that are
preserved till the end. The bottom figure shows the number of connected components
of the sensing graph initially (small black discs) and at the end of asynchronous (blue
crosses) and synchronous (red circle) implementations. The blue crosses in the figure
denote the mean of the observed quantities and the vertical bars denote standard
deviation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.13 Computer simulation results with distance error and no directional error in sensing
and control.The meaning of the quantities is as in Figure 4.12. . . . . . . . . . . . . 112

4.14 Computer simulation results with direction error and no distance error in sensing
and control. The meaning of the quantities is as in Figure 4.12. . . . . . . . . . . . . 114

xii



4.15 Computer simulation results with no asynchronism and no sensing and control errors.
The black and red discs denote the robots and their motion discs respectively. The
initial position of the robots correspond to initial condition 2 in Figures 4.12, 4.13
and 4.14 and are shown by the small black discs scattered over the environment
with the green discs denoting their motion discs. The robots converge to positions
corresponding to a single cohesive group part of the same component of Gsens. . . . . 115

4.16 The shaded region represents L. The solid curve passing through v2 represents a
portion of the boundary of Qǫ. The dashed line is the boundary of HQǫ(v2) which
is along the tangent to ∂Qǫ at v2. The interior of HQǫ(v2) is in the direction of the
arrow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.17 Illustration of various notions used in proving that HQǫ(v)∩B(p0, diam(Q)) is con-
tinuous at any point v over the domain aik . The circle represents the boundary of
the set B(p0, diam(Q)). The arc represents aik . The lines tangent to aik at v and vl

are the boundaries of the half-planes HQǫ(v) and HQǫ(vl) respectively. The interior
of the half-planes is in the direction of the arrows. In the figure on the right, δ
represents dist(ql, HQǫ(v)∩B(p0, diam(Q))). . . . . . . . . . . . . . . . . . . . . . . . 120

4.18 Illustration of the cases when pi 6∈ Ve(co(Ni,G)). The point set represented by the
black disks is Ni,G . The shaded region is co(Ni,G). The straight line segments
between any two points represent the fact that the two points are visible in Qǫ. The
curved lines between pairs of points in the figure on the right represent shortest
paths in Qǫ between the points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.19 Illustration of Lemma 4.9.1. The outer polygonal environment is Q and the inner
curved environment is Qǫ. The set of points represented by black and white disks are
P1 and P2 respectively. Note that rco(P1, Qǫ), represented by the dark shaded region,
is a subset of rco(P1 ∪P2, Qǫ), represented by the union of the dark and light shaded
regions (c.f. Lemma 4.9.1 (i)). In fact rco(P1, Qǫ) is a strict subset of rco(P1 ∪P2, Qǫ)
and hence rco(P1, Qǫ) has a strictly smaller perimeter than rco(P1 ∪P2, Qǫ) (c.f.
Lemma 4.9.1 (ii)). Now, pi ∈ Ve(rco(P1 ∪P2)). The set {pi}∪{pi1 , . . . , pi4} is equal
to the set Ni,Gsens where Gsens is such that r = +∞ . Note that pi ∈ Ve(co(Ni,Gsens))
where co(Ni,Gsens) is the region bounded by the dashed lines (c.f. Lemma 4.9.1 (iii)). 123

4.20 The set of points represented by black disks is Ni. The shaded region represents
co(Ni). q, represented by the white disk, is any point in co(Ni). Since q is ǫ-robustly
visible from every point in Ni, the dashed line segments are a subset of Qǫ. Also
every point in Ni \ {pi} is visible from pi by the definition of Ni. Hence the solid
line segments are also a subset of Qǫ. . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.21 In the figure on the left, ‖pi − pj‖ < R. The circle represents B(
pi+pj

2 , r
2). In the

figure on the curved line represents a strict concavity. vi,j,k represents the point on
the concavity nearest to [pi, pj ]. It can be seen that dist(vi,j,k, [pi, pj ]) > 0. The
half-plane tangent to the strict concavity at vi,j,k and with interior in the direction
of the arrow is HQǫ(vi,j,k). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.22 pi is a vertex of the convex hull of the set {pi, pj , pk}. Here ‖pi−pj‖ = ‖pi−pk‖ = r.
Note that the angle between the vectors pj − pi and pk − pi is strictly less than π.

The circles represent B(
pi+pj

2 , r
2) and B(

pi+pj

2 , k
2 ) and the shaded region represents

their intersection. If ‖pi − pj‖ < r or ‖pi − pk‖ < r, the region of intersection will
still strictly contain {pi}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

xiii



4.23 The thick lines represent the boundary of rco(Ni,G1 ,V(pi, ǫ)). The shaded region is a
subset of rco(Ni,G1 ,V(pi, ǫ)) and forms an entire neighborhood around pi. HQǫ(vi,j,l)
and HQǫ(vi,k,m) are the half-planes with boundary being the lines passing through
[pi, pj ] and [pi, pk] respectively and interior in the direction of the arrows. In the
figure on the right, ‖pj − pi‖ = r and the angles between the vectors pj − pi and
pk − pi is greater than π

2 . The circle represents B(pi+pk
2 , r

2). . . . . . . . . . . . . . . 128
4.24 Illustration of cases (A) and (B) in the proof of Lemma 4.9.3. These cases illustrate

the necessary conditions in order for the constraint set Xi to be a point. . . . . . . . 129
4.25 Illustration of the construction of various segments and the partitions induced by

them in the proof of Lemma 4.9.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
4.26 If [pi, pj ] 6⊂ Qǫ, there exist neighborhoods of pi and pj such that [p′i, p

′
j ] 6⊂ Qǫ, for all

p′i and p′j belonging to the neighborhoods. . . . . . . . . . . . . . . . . . . . . . . . . 131
4.27 Illustration of notions used in the proof of Lemma 4.9.4. The shaded region repre-

sents Xi(P ). The outermost boundary represents the boundary of ∪x∈Xi(P ) B(x, δ).
The small circle represents B(q, δ). . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.28 Illustration of cases (i) and (ii) in the proof of Lemma 4.9.4. The curved arcs
represent strict concavities. The solid line segment represents Xi(P ). The dashed
lines represent the boundary of rco(P, Qǫ). Note that there must exist robots pr,
ps ∈ Ni,G1 for the dashed lines to be the boundary of rco(P, Qǫ). Note that pi ∈
Ve(RCH(P, Qǫ)) and also pi is an end point of the segment Xi(P ). In the top figure
vi,j,k, denoted by the white disc, is the point on the strict concavity aik nearest to
the segment [pi, pj ]. Here pj ∈ Ni,G2 . The half-plane HQǫ(vi,j,k) has interior in the
direction of the arrow. In the bottom figure, vi,l,m and vi,j,k are points on ail and aik

nearest to the segments [pi, pl] and [pi, pj ] respectively. The direction of the arrows
points towards the interior of the half-planes HQǫ(vi,l,m) and HQǫ(vi,j,k). Here pj ,
pl ∈ Ni,G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

xiv



CHAPTER 1

Introduction

Recent years have seen an increasing amount of research in the field of robotic sensor networks [1, 2].

This is due in no small part to the remarkable advances which have been made in recent years in

the development of small, agile, relatively inexpensive sensor nodes with mobile and networking

capabilities, ultimately intended for a wide variety of purposes such as search and rescue, explo-

ration, environmental monitoring, location-aware computing, and the maintaining of structures.

The potential advantages of employing arrays of robotic sensors are numerous. For instance, cer-

tain tasks are difficult, if not impossible, when performed by a single agent. Further, a group of

agents inherently provides robustness to failures of single agents or communication links.

The existence of such motion-enabled sensing devices and the anticipated development of still

more advanced versions raise compelling questions: Can large numbers of such small autonomous

devices be successfully deployed as a search team, an exploration group, or something similar, to

cooperatively carry out a prescribed task and to respond as a group to high-level management

commands?

These future scenarios motivate the study of algorithms for autonomy, adaptation and coor-

dination of robotic sensor networks. So is born the emerging discipline of multi-agent systems.

Although technology provides the physical components of such networks and although these sys-

tems would have a clear impact on numerous applications, these potential benefits are not yet being

realized. As of today, the fundamental limitation is a lack of understanding of how to assemble and

coordinate the individual devices into a coherent whole. In other words, there are no systematic

methodologies to control large-scale, reliable, distributed systems such as a robotic sensor network

performing complex tasks.

In this work, we address some of the above issues for mobile robotic agents equipped with

omnidirectional visibility sensors. By visibility sensors, we refer to any device capable of measuring
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distances to obstacles and to other agents within line of sight. Two agents can communicate with

each other if they are mutually visible to one another, possibly with some time delay. We envision

that such networks of mobile agents will be able to perform certain elementary tasks which will play

the role of primitive building blocks. Examples of such elementary tasks include deployment and

rendezvous. In the context of robotic agents described above, we address the following deployment

and rendezvous problems in this dissertation.

Optimal deployment of a single agent We consider a robotic agent in an unknown nonconvex

planar environment. The research objective is to design a continuous time, memoryless,

feedback algorithm to drive the agent to a position of local optimum of the area visible to it.

Deployment of multiple agents We consider a group of robotic agents in an unknown noncon-

vex planar environment. The research objective is the design of a distributed algorithm for

the following task: entering the environment at a single specified location, the agents move

to final positions such that each point of the environment is visible to at least one agent.

Multirobot rendezvous We consider a group of robotic agents scattered in a nonconvex planar

environment, possibly at the end of the completion of an earlier task. The objective is to

design a provably correct discrete-time memoryless distributed algorithm to drive all the

agents to a single location.

We begin by identifying the broad topics to various aspects of the problems described above

belong and reviewing the relevant literature. More specific reviews of existing work related to

deployment and rendezvous are included in the respective chapters.

Cooperative control

Recent years have witnessed a large research effort focused on motion planning and coordination

problems for multi-vehicle systems. Topics include formation control [3, 4, 5, 6, 7], cooperative

motion planning [8, 9, 10], cyclic pursuit [11, 12], swarm aggregation [13], and conflict avoidance [14,

15]. It is only recently, however, that truly1 distributed control laws for dynamic networks are being

1Here, by truly distributed, we mean a situation where the communication topology is representative of an ad-hoc
wireless or sensor network, and therefore the topology is state-dependent.
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proposed. Examples include [16, 17, 18, 19, 20, 21, 22, 23, 24, 25]. Related problems include the

design of communication and consensus protocols [26, 27, 28, 29, 30]. The critical role of graph

theoretical tools in cooperative control is highlighted in [31, 32]. Short surveys on these problems

are given in [25, 33].

Illumination problems and geometric optimization

Illumination and art gallery problems are classic topics, e.g., see [34, 35, 36, 37, 38, 39]. Coverage

algorithms (for systems with binary, limited-range sensors) are surveyed in [40]. Next-best-view

problems are discussed in [41]. Geometric optimization is a vast and exciting avenue of current

research, see for example [42, 43, 44]. Here, by geometric optimization, we mean an optimization

problem induced by a collection of geometric objects. For example, in facility location problems ser-

vice sites are spatially allocated to fulfill a specified request [45, 46]. These approaches mainly rely

on centralized computation for a known static environment and are not applicable in a distributed,

asynchronous, adaptive setting.

Distributed algorithms

The study of distributed algorithms is concerned with providing mathematical models, devising

precise specifications for their behavior, and formally proving their correctness and complexity. Via

an automata-theoretic approach, the reference [47] treats distributed consensus, resource allocation,

communication, and data consistency problems. Numerical distributed asynchronous algorithms as

networking algorithms, rate and flow control, and gradient descent flows are discussed in [48, 49, 50].

All these references do not typically address algorithms over ad-hoc dynamically changing networks.

A model of distributed robotic network has been recently proposed in [23, 24].

Behavioral and reactive control

Heuristic approaches to the design of interaction rules and emerging behaviors have been throughly

investigated within the literature on behavior-based robotics; see [51, 52, 53, 54, 55, 56, 57, 58, 59].

Along this line of research, few formal results are currently available on how to design reactive

control laws, ensure their correctness, and guarantee their optimality or performance with respect
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to an aggregate objective.

System theory and optimization methods

An approach to formalizing behavioral control has been pursued using tools from both control

theory and formal methods in computer science. Hybrid models of motion control systems are

introduced in [60], motion description languages in [61], and hybrid automata are described in [62,

63]. An alternative set of useful tools comes from the “dynamical system approach to algorithms”

discussed in [64, 65]. Distributed hybrid and dynamical systems are to be designed as gradient

flows of appropriate aggregate cost functions. These ideas can be combined with nonsmooth and

convex optimization concepts; see [66, 67].

We now outline the organization of the remainder of the thesis describing in brief the contents

of the chapters and our main results therein.

1.1 Outline

As described earlier, in this work we have address the fundamental coordination problems of de-

ployment and rendezvous for networks of robotic agents equipped with visibility sensors. In all of

the problems, the agents are assumed to be point masses with first order dynamics and are assumed

to operate in an unknown nonconvex environment.

In Chapter 2, we address the problem of optimal deployment of a single agent. In other words,

we look at the problem of maximizing the area of the region visible to the agent. Thus, this problem

is related to Next Best View approaches to 2D map-building problems in robotics and to visibility

and Art Gallery Problems in computational geometry. A heuristic for the Next Best View problem

is proposed and simulated in [68] and in the early work [69]. In the context of computational

geometry, existing literature deals with visibility optimization when the environment is known. A

numerical approach is proposed in [70]. Our work aims to provide a provably correct algorithm to

the single agent deployment problem. The distinct contributions in this direction are as follows.

First, we rigorously characterize the smoothness properties of the area visible from a point in

the environment. Second, we provide a generalized version of the LaSalle Invariance Principle for

discontinuous vector fields available in the literature. Third and last, we use the previous novel
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results to design a nonsmooth gradient algorithm that monotonically increases the area visible to

a point observer. A preliminary version of the above work appeared in [71] and the complete sets

of results have appeared in [72].

In Chapter 3, we address the problem of deploying a group of robotic agents over an environment

to achieve complete visibility. The agents operate asynchronously and two agents can communicate

when mutually visible. This problem is also related to map-building and exploration problems

pertaining to unknown 2D environments and planar graphs. Though the above problems have

received a lot of attention [73, 74], there have been few works on deployment [75]. Again, this

problem can be thought of as a distributed sensor-based version of the classic Art Gallery Problem

of computational geometry. Indeed, that is where we draw our biggest motivation from. The famous

Art Gallery Theorem states that given a polygon with n vertices, ⌊n/3⌋ agents are always sufficient

and occasionally necessary to achieve complete visibility of the environment [76]. However, it is

assumed that the environment is known a priori. One of our main contributions is the design of

a distributed algorithm that ensures that if all robots are initially collocated, then ⌊n/3⌋ agents

are sufficient and occasionally necessary to complete the task. In other words, we obtain the same

bounds on the number of agents required. We also consider the deployment problem under the

additional constraint that the visibility graph of the final agent locations is connected. It has been

shown [77, 78] that (n − 2)/2 agents are sufficient and occasionally necessary to solve the second

problem. Here also, it is assumed that the environment is known. We propose a second distributed

algorithms that are guaranteed to solve the above problems if (n − 1)/2 of agents are available.

We, thus, obtain a bound that differs from the bound in the centralized case by at most one. We

additionally provide time complexity bounds for the proposed algorithms. Preliminary versions of

this work have appeared in [79, 80].

In Chapter 4, we present a motion coordination algorithm for a group of robotic agents to

achieve rendezvous, that is, to move to a common location inside the environment. In this case,

we also assume that the agents have access to sensory information alone and their ability to sense

distances to other objects is present only up to a certain distance. The rendezvous problem has

been studied for agents with limited range sensing in obstacle free unbounded environments [81].

The current formulation of the problem is, however, completely novel. A synchronous algorithm is
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designed that is guaranteed to work if the range-limited visibility graph of the agents is connected

at any time during the execution of the algorithm. Simulations illustrate the theoretical results on

the correctness of the proposed algorithm, and its performance in asynchronous setups and with

sensor measurement and control errors. A preliminary version of the above work appeared in [82]

and the complete sets of results have appeared in [83].

Finally, in Chapter 5 we conclude by summarizing the contributions of this work and discussing

some interesting directions of future research.
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CHAPTER 2

Optimal deployment of a single

robotic agent

2.1 Introduction

Consider a single-point mobile robot in a planar nonconvex environment modeled as a non-self-

intersecting polygon: how should the robot move in order to monotonically increase the area of its

visible region (i.e., the region within its line of sight)? This problem is the subject of this chapter.

The following are the modeling assumptions in our method of approach. The dynamical model for

the robot’s motion is a first-order system of the form ṗ = u, where p refers to the position of the

robot in the environment and u is the driving input. The robot is equipped with an omnidirectional

line-of-sight range sensor; the range of the sensor is larger than the diameter of the environment.

The robot does not know the entire environment nor its position in it, and its instantaneous motion

depends only on what is within line of sight (this assumption restricts our attention to memoryless

feedback laws).

In broad terms, this work is related to numerous references on optimal sensor location and

motion planning coming from the computational geometry, geometric optimization, and robotics

literature. The problem we consider is akin to the Next Best View problems in robotics for 2D

map building. In these map-building problems the objective is to compute the next position of

a robot in an environment with obstacles that maximizes the gain in visible area. A heuristic is

proposed and simulated in [68] and in the early work [69]. Other relevant references can be found

in computational geometry. For example, the classic Art Gallery Problem is to find the smallest

number of such guards necessary for each point of the environment to be visible to at least one

guard; see [42, 84]. Also studied in computational geometry is the problem of locating a guard in

a non-self-intersecting polygon so as to maximize the visible area. This problem is still open to the

best of our knowledge and is the subject of ongoing research; see [85, 86, 87]. Key differences exists
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between the computational geometric approach to this problem and our sensor-based feedback

approach. In the computational geometric version, the data about the entire polygon is available

a priori, the difficulties are of combinatorial nature, and the solutions can be thought of as open

loop. In the problem of interest in this chapter, we consider the feedback control problem for

a mobile robot based upon only local knowledge of the environment and without recollection of

past trajectories. The work that is perhaps closest in spirit to our work is the numerical approach

proposed in [70].

A second set of relevant references are those on nonsmooth stability analysis. Indeed, our

approach to maximizing visible area is to design a nonsmooth gradient flow. To define our proposed

algorithm we rely on the notions of generalized gradient [66] and of Filippov solutions for differential

inclusions [88]. To study our proposed algorithm we extend recent results on the stability and

convergence properties of nonsmooth dynamical systems, as presented in [89, 90]. Finally, the

present work has some interesting connections with the study of the behavior of certain territorial

animals. A particularly relevant reference is the study of the effect of visibility on space use by

red-capped cardinals [91]. These are birds that defend territories along shorelines of rivers and

lakes and tend to spend the majority of their time near peninsulas (areas that offer greater amount

of visibility of their respective territories) rather than bays.

The contributions in this chapter are threefold. First, we prove some basic properties of the

area visible from a point observer in a nonconvex polygon Q, see Figure 2.1. Namely, we show

that the area of the visibility polygon, as a function of the observer position, is a locally Lipschitz

function almost everywhere, and that the finite point set of discontinuities consists of the reflex

vertices of the polygon Q. Additionally, we compute the generalized gradient of the function and

show that the function is not, in general, regular.

Second, we provide a generalized version of certain stability theorems for discontinuous vector

fields available in the literature [89, 90]. Specifically, we provide a generalized nonsmooth LaSalle

Invariance Principle for discontinuous vector fields, Filippov solutions, and Lyapunov functions

that are locally Lipschitz almost everywhere (except for a finite set of discontinuities).

Third and last, we use these novel results to design a nonsmooth gradient algorithm that

monotonically increases the area visible to a point observer. To the best of our knowledge, this is
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Figure 2.1: The figure on the left shows a nonconvex polygonal environment shaped like a typical
floor-plan. The figure on the right shows the variation of the visible area in the environment as a
function of the position of a point observer.

the first provably correct algorithm for this version of the Next Best View problem. We illustrate

the performance of our algorithm via simulations for some interesting polygons.

Before proceeding with the technical content, we provide here a detailed comparison between

our proposed local feedback method and a two-phase approach, where the guard first explores the

entire environment and later finds the approximate location of the maximum. The approximate

global maximum could be computed using, for example, the method in [87]. Let us refer to the latter

approach as the explore and optimize method. Clearly in this latter method, the optimal location

of the observer is a global maximum whereas in the former it is a local maximum. However, our

approach does not require any memory for the observer. In the explore and optimize method, the

observer needs to remember the environment as it is being explored. As the size of the environment

increases, so does the amount of memory and run time required by the observer. Another problem

that arises in the exploration of unknown environments in the absence of accurate global positioning

is that of simultaneous location and mapping (SLAM). To explain briefly, to build a map of the

environment accurately, one needs an accurate estimate of the position of the observer. This is not

available due to odometry errors and lack of global positioning ability. Therefore, to accurately

localize the observer inside the environment, an accurate map of the environment is needed but

which is again unavailable due to measurement sensor errors. Various approaches to solving the
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SLAM problem have been studied but most of the accurate approaches again are intensive in terms

of computation and memory. In contrast, the fact that our approach is local and requires no memory

renders it more robust to errors in computation and sensor measurements. Another advantage of

being memoryless is that it works for environments that may change quasi-statically where as any

other method relying on memory is ineffective in this case. Finally, note that out local optimization

approach might be used in conjunction with a global search method to find the globally optimum

position. For example, after finding the position of a local optimum, the observer could perform a

random walk in the environment. While executing the random walk, the observer must compare

the magnitude of the visible area with the value at the previously discovered optimum. If the value

is greater, find the local optimum using the approach in this chapter. This procedure is repeated

and one can expect to find the global optimum after sufficient time has elapsed.

The rest of the chapter is organized as follows. Section 2.2 contains the analysis of the smooth-

ness properties and of the generalized gradient of the function of interest. Section 2.3 contains the

novel results on nonsmooth stability analysis. Section 2.4 presents the nonsmooth gradient algo-

rithm and the properties of the resulting closed-loop system. Finally, the simulations in Section 2.5

illustrate the convergence properties of the algorithm.

2.2 The area visible from an observer

In this section we study the area of the region visible to a point observer equipped with an om-

nidirectional camera. We show that the visible area, as a function of the location of the observer,

is locally Lipschitz, except at a finite point set. We prove that, for general nonconvex polygons,

the function is not regular. We also provide expressions for the generalized gradient of the visible

area function wherever it is locally Lipschitz. We have included the notions of locally Lipschitz

functions and related concepts whenever they first appear in this chapter.

Let us start by introducing the set of lines on the plane R2. For (a, b, c) ∈ R3\
{
(0, 0, c) ∈ R3 | c ∈ R

}
,

define the equivalence class [(a, b, c)] by

[(a, b, c)] =
{
(a′, b′, c′) ∈ R3 | (a, b, c) = λ(a′, b′, c′), λ ∈ R

}
.
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The set of lines on R2 is defined as

L =
{
[(a, b, c)] ⊂ R3 | (a, b, c) ∈ R3, a2 + b2 6= 0

}
.

It is possible to show that L is a 2-dimensional manifold, sometimes referred to as the affine

Grassmannian of lines in R2; see [92].

Next, two useful functions are defined. Let fpl : R2 ×R2 \ {(p, p) ∈ R2 ×R2 | p ∈ R2} → L map

two distinct points in R2 to the line passing through them. Given distinct (x1, y1), (x2, y2) ∈ R2,

we have that

fpl ((x1, y1), (x2, y2)) = [(y2 − y1, x1 − x2, y1x2 − x1y2)].

If l1 ‖ l2 denotes that two lines l1, l2 ∈ L are parallel, then let flp : L2 \ {(l1, l2) ∈ L2 | l1 ‖ l2} → R2

map two non-parallel lines to their unique intersection point. Given two lines [(a1, b1, c1)] and

[(a2, b2, c2)], we have that

flp ([(a1, b1, c1)], [(a2, b2, c2)]) =

(
b2c1 − b1c2

a2b1 − a1b2
,
a1c2 − a2c1

a2b1 − a1b2

)
.

Note that the maps fpl and flp are class Cω, i.e., they are analytic over their domains.

Now, let us turn our attention to the polygonal environment. Let Q be a non-self-intersecting

polygon, possibly nonconvex. A polygon is said to be non-self-intersecting if the only points in the

plane belonging to two polygon edges are the polygon vertices. Such a polygon has a well-defined

interior and exterior. Note that a non-self-intersecting polygon can contain holes. Let Q̊ and ∂Q

denote the interior and the boundary of Q, respectively. Let Ve(Q) = (v1, . . . , vn) be the list of

vertices of Q ordered counterclockwise. The interior angle of a vertex v of Q is the angle formed

inside Q by the two edges of the boundary of Q incident at v. The point v ∈ Ve(Q) is a reflex

vertex if its interior angle is strictly greater than π. Let Ver(Q) be the list of reflex vertices of Q.

If S is a finite set, then let |S| denote its cardinality.

A point q ∈ Q is visible from p ∈ Q if the segment between q and p is contained in Q. The

visibility polygon S(p) ⊂ Q from a point p ∈ Q is the set of points in Q visible from p. It is

convenient to think of p 7→ S(p) as a map from Q to the set of polygons contained in Q. It must

be noted that the visibility polygon is not necessarily a non-self-intersecting polygon.
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Definition 2.2.1. Let v be a reflex vertex of Q, and let w ∈ Ve(Q) be visible from v. The (v, w)-

generalized inflection segment I(v, w) is the set

I(v, w) = {q ∈ S(v) | q = λv + (1 − λ)w, λ ≥ 1} .

A reflex vertex v of Q is an anchor of p ∈ Q if it is visible from p and if {q ∈ S(v) | q =

λv + (1 − λ)p, λ > 1} is not empty.

In other words, a reflex vertex is an anchor of p if it occludes a portion of the environment from

p. Note that in the robotics path-planning literatre, when v and w are both reflex vertices and

I(v, w) is tangent to the boundary of Q at both v and w, the inflection segment is also known as

a bitangent; see [93]. Figure 2.2 illustrates the various notions defined above. Given a point q and

a line l, let dist(q, l) denote the distance between them.

I(v1, w)

p
v1

w

va

v2

Figure 2.2: Reflex vertices v1 and v2, a generalized inflection segment I(v1, w), an anchor va of p
and the visibility polygon (shaded region) from p. Note that the polygonal environment has a hole.

Note that any generalized inflection segment I(v, w) splits the polygonal environment into two

smaller polygons. The vertex w is visible from any point on I(v, w) and from the interior of only

one of the two smaller polygons. Intuitively, it then follows that if p belongs to the interior of

a polygon and does not lie on a generalized inflection segment, then in a neighborhood of p the

number of vertices of the visibility polygon does not change and their positions vary smoothly as

a function of p. This is described formally in the following theorem.

Theorem 2.2.2. Let {Iα}α∈A be the set of generalized inflection segments of Q, and let P be

12



a connected component of Q \ ⋃α∈A Iα. For all p ∈ P , the visibility polygon S(p) is non-self-

intersecting and has a constant number of vertices, say Ve(S(p)) = {u1(p), . . . , uk(p)}. For all

i ∈ {1, . . . , k}, the map P ∋ p 7→ ui(p) is Cω and

dui(p) =





0, ui(p) ∈ Ve(Q),

dist(va, l)

(dist(p, l) − dist(va, l))2
√

a2 + b2



−b

a







y − ya

xa − x




T

, ui(p) = flp(fpl(va, p), l),

where va = (xa, ya) is an anchor of p and where l = [(a, b, c)] is a line defined by an edge of Q.

Proof. The first part of the proof is by contradiction. Let |Ve(S(p′))| > |Ve(S(p))| for some point

p′ ∈ P . This means that at least one additional vertex is visible from p′ that was occluded by

an anchor of p. Two cases may arise. First, when the additional vertex belongs to Ve(Q), then

by our definition, p and p′ must lie on opposite sides of a generalized inflection segment. This

is a contradiction. Secondly, if the additional vertex does not belong to Ve(Q), it must be the

projection of a reflex vertex (acting as an anchor). Here again two cases may arise: (1) the reflex

vertex is visible from p, and (2) it is not. The first case is possible only if the reflex vertex is

visible but does not act as an anchor. So, positive lengths of both sides adjoining the reflex vertex

must also be visible from p and at least one of the sides is completely not visible from p′ since

there is a projection. This means that p and p′ lie on opposite sides of a generalized inflection

segment generated by the reflex vertex and one of its adjacent vertices. This is a contradiction.

The second case is possible if the reflex vertex in question is occluded by another reflex vertex. But

this means that p and p′ lie on opposite sides of the generalized inflection segment from the reflex

vertex to the anchor occluding the reflex vertex; again this is a contradiction. If, on the other hand,

|Ve(S(p′))| < |Ve(S(p))|, then the above arguments hold by interchanging p and p′. Hence, p and

p′ lie on opposite sides of a generalized inflection segment which is a contradiction. This completes

the proof that |Ve(S(p′))| is constant for all p′ ∈ P .

Let p ∈ P . Since the visibility polygon S(p) is star-shaped and since any ray emanating from

p can intersect Q at most at two distinct points, then S(p) is non-self-intersecting. (Indeed, if the

ray emanating from p intersects the environment at three or more points inside S(p), then p must

13



belong to a generalized inflection segment. See Figure 2.3)

p

Figure 2.3: The visibility polygon of the point represented by p. Note that there exists a ray
emanating from p which intersects the environment at three points and hence the corresponding
visibility polygon is self-intersecting.

Regarding the second statement, it is clear that if ui(p) is a vertex of Q then it is independent

of p. Instead, if ui(p) /∈ Ve(Q), then

ui(p) = flp(fpl((x, y), (xa, ya)), ℓ)

where p = (x, y), va = (xa, ya) is an anchor of p, and ℓ is the line, determined by an edge of Q, that

identifies ui. Now, p ∈ P implies p 6= va. It follows that fpl(p, va) is Cω for all p ∈ P . Also, from

the definition of ui(p), it is clear that fpl(p, va) ∦ ℓ. Therefore, for all p ∈ P , flp(fpl(p, va), ℓ) is Cω;

this implies that p 7→ ui(p) is also Cω. The formula for the derivative can be verified directly.

Next, the area of a visibility polygon as a function of the observer location is studied, see

Figure 2.1. Recall that the area of a non-self-intersecting polygon Q with counterclockwise-ordered

vertices Ve(Q) = ((x1, y1), . . . , (xn, yn)) is given by

A(Q) =
1

2

n∑

i=1

xi(yi−1 − yi+1),

where (x0, y0) = (xn, yn) and (xn+1, yn+1) = (x1, y1). As in the previous theorem, let {Iα}α∈A be

the set of generalized inflection segments of Q and let P be a connected component of Q\⋃α∈A Iα.

Next, if p ∈ P , the visibility polygon from p has a constant number of vertices, say k = |Ve(S(p))|,

is non-self-intersecting, and satisfies A ◦S(p) =
∑k

i=1 xi(yi−1 − yi+1) where Ve(S(p)) = (u1, . . . , uk)

are ordered counterclockwise, ui(p) = (xi, yi), u0 = uk, and uk+1 = u1. Therefore, P ∋ p 7→ A ◦S(p)

14



is also Cω and

d(A ◦S)(p) =
k∑

i=1

∂A(u1, . . . , uk)

∂ui
dui(p). (2.1)

Remark 2.2.3. For any ui(p) /∈ Ve(Q), we have

∂(A ◦S)

∂ui
dui(p) =

dist(va, l)

2

dist(ui+1, l) − dist(ui−1, l)

(dist(p, l) − dist(va, l))2




y − ya

xa − x




T

. (2.2)

Note here that ∂(A ◦S)
∂ui

dui(p) is perpendicular to p − va.

To illustrate (2.1) and (2.2), it is convenient to introduce the versor operator defined by

vers(X) = X/‖X‖ if X ∈ R2 \ {0} and by vers(0) = 0. We depict the normalized gradient

vers(d(A ◦S)) of the visible area function in Figure 2.4.

Figure 2.4: Normalized gradient of the visible area function over the nonconvex polygon depicted
in Figure 2.1. The dashed lines represent some of the generalized inflection segments.

We will now characterize the smoothness properties of the map A ◦S over a polygon Q excluding

the set of reflex vertices. Before that, we present the following notion.

Definition 2.2.4. A function f : RN → R is said to be locally Lipschitz near x ∈ RN if there

exist positive constants Lx and ǫ such that |f(y)− f(y′)| ≤ Lx‖y − y′‖ for all y, y′ ∈ B(x, ǫ), where

B(x, ǫ) is a N dimensional open ball of radius ǫ and centered at x.
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Note that continuously differentiable functions at x are locally Lipschitz near x.

Theorem 2.2.5. The map A ◦S restricted to Q \ Ver(Q) is locally Lipschitz.

Proof. By Theorem 2.2.2, it suffices to consider points lying on generalized inflection segments.

Let p belong to multiple, say m, generalized inflection segments {Iα}α∈{1,...,m}. Let ǫ be small

enough such that no generalized inflection segments intersect B(p, ǫ) other than {Iα}α∈{1,...,m}. For

α ∈ {1, . . . , m}, let vkα be the anchor determining the generalized inflection segment Iα. Without

loss of generality, it can be assumed that no anchor is visible from p other than vk1 , . . . , vkm . For

α ∈ {1, . . . , m}, lines lα ⊥ fpl(p, vkα) can be constructed with the property that lα ∩ Q = ∅ and

the vector vkα − p points toward lα. Let, hα be the line parallel to lα, tangent to B(ǫ, p), and

intersecting the segment from p to vkα . Let p′ and p′′ belong to B(p, ǫ)∩(Q \ Ver(Q)). Next,

let q′α = flp(fpl(p
′, vkα), lα) and q′′α = flp(fpl(p

′′, vkα), lα); see Figure 2.5. Let v′α and v′′α be the

vkα

p

‖vkα
− p‖ − ǫ

d(vkα
, lα)

v′αv′′α

q′α q′′α lα

hα

p′′

p′

Figure 2.5: Definition of the lines lα, hα, and the points q′α, q′′α, v′α, v′′α.

intersections between hα and the lines fpl(p
′, vkα) and fpl(p

′′, vkα), respectively.

Now, |A(vkα , q′α, q′′α)| = 1
2‖q′α − q′′α‖dist(vkα , lα). But from Figure 2.5, it is easy to see that

‖q′α − q′′α‖ =
dist(vkα ,lα)
‖vkα−p‖−ǫ ‖v′α − v′′α‖ and that ‖v′α − v′′α‖ < ‖p′ − p′′‖. For Kα(p) = 1

2
dist(vkα ,lα)2

‖vkα−p‖−ǫ , the
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following is true:

|A(S(p′)) − A(S(p′′))| ≤
m∑

α=1

|A(vkα , q′α, q′′α)|

≤
m∑

α=1

Kα(p)‖p′ − p′′‖.

This fact is illustrated by Figure 2.6. This completes the proof that Q \ Ver(Q) ∋ p 7→ A ◦S(p) is

v1

v3

p

p′′

p′

q′′3

q′3

l3
l2

q′2

q′′2

l1q′′1q′1

v2

B(p, ǫ)

Figure 2.6: Upper bounds on the change in area. Here m = 3.

locally Lipschitz.

It is clear that the map A ◦S is not differentiable everywhere. However other notions of deriva-

tives might still be defined for it. The usual right directional derivative and the generalized di-

rectional derivative of any function f at x in the direction of v ∈ RN are defined, respectively,

as

f ′(x; v) = lim
t→0+

f(x + tv) − f(x)

t
, fo(x; v) = lim sup

y→x
t→0+

f(y + tv) − f(y)

t
.
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For a locally Lipschitz function, the limit in the definition of f ′(x; v) does not always exist, whereas

the limit in fo(x; v) is always well-defined. Also, from Rademacher’s Theorem [66], we know

that locally Lipschitz functions are continuously differentiable almost everywhere (in the sense of

Lebesgue measure). If Ωf denotes the set of points in RN at which f fails to be differentiable, and

S denotes any other set of measure zero, the generalized gradient of f is defined by

∂f(x) = co

{
lim

i→+∞
df(xi) | xi → x , xi 6∈ S ∪ Ωf

}
.

Note that this definition coincides with df(x) if f is continuously differentiable at x. The generalized

gradient and the generalized directional derivative (cf. Proposition 2.1.2 in [66]) are related by

fo(x; v) = max {ζ · v | ζ ∈ ∂f(x)}, for each v ∈ RN .

To obtain the expression for the generalized gradient of A ◦S, the polygon Q is partitioned as

follows.

Lemma 2.2.6. Let {Iα}α∈A be the set of generalized inflection segments of Q. There exists a

unique partition {P β}β∈B of Q where Pβ is a connected component of Q \⋃α∈A Iα and P β denotes

its closure.

Figure 2.7 illustrates this partition for the given nonconvex polygon. Note that this partition

is similar to the View Space Partition in the computer vision and robotics literature; see [94]. For

β ∈ B, define Aβ : P β → R+ by

Aβ(p) = A ◦S(p), for p ∈ Pβ ,

and by continuity on the boundary of Pβ . It turns out that the maps Aβ , β ∈ B, are continuously

differentiable1 on P β . Equation (2.1) gives the value of the gradient for p ∈ Pβ . However, in

general, for p ∈ P β1

⋂
. . .
⋂

P βm \Ver(Q), based on Theorem 2.2.5 and Lemma 2.2.6, we can write

∂(A ◦S)(p) = co
{

dAβ1(p), . . . ,dAβm(p)
}

. (2.3)

1A function is continuously differentiable on a closed set if (1) it is continuously differentiable on the interior, and
(2) the limit of the derivative at a point in the boundary does not depend on the direction from which the point is
approached.
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p

P1

P2

P4

P3

Figure 2.7: Partition of Q. The generalized gradient of the area function at p is the convex hull of
the gradient of four functions A1, . . . , A4 at p.

This completes our study of the generalized gradient of the locally Lipschitz function A ◦S.

Apart from differentiability, another smoothness property of A ◦S that we will characterize is the

one of regularity. As will be clear later, this will be crucial in constructing a set-valued estimate

of the rate at which A ◦S changes as the observer moves. We define regularity first and then show

how A ◦S is not regular in many interesting situations.

Definition 2.2.7. A function f : RN → R is said to be regular at x ∈ RN if for all v ∈ RN ,

f ′(x; v) exists and fo(x; v) = f ′(x; v).

Again, a continuously differentiable function at x is regular at x. Also, a locally Lipschitz

function at x which is convex is also regular (cf. Proposition 2.3.6 in [66]).

Lemma 2.2.8. There exists a nonconvex polygon Q such that the maps A ◦S and −A ◦S restricted

to Q \ Ver(Q) are not regular.

Proof. We present an example to justify the above statement. In Figure 2.8, ∂(A ◦S)(p′) =

co{dA1, dA2} where ‖dA1‖ ≫ ‖dA2‖. Take a vector η′ perpendicular to the generalized inflec-

tion segment to which p′ belongs (see Figure 2.8). It is clear that (A ◦S)′(p; η′) = dA2 · η′.

However, (A ◦S)0(p′; η′) = max{ζ · η′|ζ ∈ ∂(A ◦S)(p′)} = dA1 · η′ > dA2 · η′. Again, in Fig-

ure 2.8, ∂(−A ◦S)(p′′) = co{−dA3,−dA4}, where ‖ − dA4‖ ≫ ‖ − dA3‖. Take a vector η′′ per-

pendicular to the generalized inflection segment to which p′′ belongs (see Figure 2.8). It is clear
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dA2

η′′

p′

dA1

η′

dA4

dA3

p′′

Figure 2.8: Example polygon for which A ◦S and −A ◦S restricted to Q \ Ver(Q) are not regular.
Note here that dA1 and dA2 are not perfectly aligned with η′. Also, dA3 and dA4 are not perfectly
aligned with η′′.

that −(A ◦S)′(p′′; η′′) = −dA4 · η′′. However, (A ◦S)0(p′′; η′′) = max{ζ · η′′|ζ ∈ ∂(A ◦S)(p′′)} =

−dA3 · η′′ > −dA4 · η′′.

2.3 An invariance principle in nonsmooth stability analysis

This section presents results on stability analysis for discontinuous vector fields via nonsmooth

Lyapunov functions. The results extend the work in [90] and will be useful in the next control

design section, see also [95]. We refer the reader to [88] and to Appendix A for some useful

nonsmooth analysis concepts that we have not included in the main body of this chapter.

In what follows we shall study differential equations of the form

ẋ(t) = X(x(t)), (2.4)

where X : RN → RN is a measurable and essentially locally bounded, possibly discontinuous vector

field. We understand the solution of this equation in the Filippov sense following [88]. For each

x ∈ RN , consider the set

K[X](x) =
⋂

δ>0

⋂

µ(S)=0

co{X(B(x, δ) \ S)} ,

where µ denotes the usual Lebesgue measure in RN . Alternatively, one can show [96] that there
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exists a set SX of measure zero such that

K[X](x) = co

{
lim

i→+∞
X(xi) | xi → x , xi 6∈ S ∪ SX

}
,

where S is any set of measure zero. A Filippov solution (see A) of (2.4) on an interval [t0, t1] ⊂ R

is defined as a solution of the differential inclusion

ẋ ∈ K[X](x) . (2.5)

Since the set-valued map K[X] : RN → 2R
N

is upper semicontinuous with nonempty, compact,

convex values and locally bounded (cf. [88]), the existence of Filippov solutions of (2.4) is guaranteed

by Lemma A.0.3. A set M is weakly invariant (respectively strongly invariant) for (2.4) if for each

x0 ∈ M , M contains a maximal solution (respectively all maximal solutions) of (2.4).

We now introduce another useful tool. Given a locally Lipschitz function f : RN → R, the

set-valued Lie derivative of f with respect to X at x is defined as

L̃Xf(x) = {a ∈ R | ∃v ∈ K[X](x) such that ζ · v = a , ∀ζ ∈ ∂f(x)} .

For each x ∈ RN , L̃Xf(x) is a closed and bounded interval in R, possibly empty. If f is continuously

differentiable at x, then L̃Xf(x) = {df · v | v ∈ K[X](x)}. If, in addition, X is continuous at x,

then L̃Xf(x) corresponds to the singleton {LXf(x)}, the usual Lie derivative of f in the direction

of X at x.

We are now ready to state the first result in this section.

Lemma 2.3.1. Let X : RN → RN be measurable and essentially locally bounded and let f : RN → R

be locally Lipschitz. Let γ : [t0, t1] → RN be a Filippov solution of X such that f(γ(t)) is regular

for almost all t ∈ [t0, t1]. Then

(i) d
dt(f(γ(t))) exists for almost all t ∈ [t0, t1], and

(ii) d
dt(f(γ(t))) ∈ L̃Xf(γ(t)) for almost all t ∈ [t0, t1].

Proof. The result is an immediate consequence of Lemma 1 in [90].
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The following result is a generalization of the classic LaSalle Invariance Principle for smooth

vector fields and smooth Lyapunov functions to the setting of discontinuous vector fields and

nonsmooth Lyapunov functions.

Theorem 2.3.2 (LaSalle Invariance Principle). Let X : RN → RN be measurable and essentially

locally bounded and let S ⊂ RN be compact and strongly invariant for X. Let C ⊂ S consist of a

finite number of points and let f : S → R be locally Lipschitz on S \ C and bounded from below on

S. Assume the following properties hold:

(A1) if x ∈ S \ C, then either max L̃Xf(x) ≤ 0 or L̃Xf(x) = ∅,

(A2) if x ∈ C and if γ is a Filippov solution of X with γ(0) = x, then limt→0− f(γ(t)) ≥

limt→0+ f(γ(t)), and

(A3) if γ : R+ → S is a Filippov solution of X, then f ◦γ is regular almost everywhere.

Define ZX,f =
{

x ∈ S \ C | 0 ∈ L̃Xf(x)
}

and let M be the largest weakly invariant set contained

in (ZX,f ∪C). Then the following statements hold:

(i) if γ : R+ → S is a Filippov solution of X, then f ◦γ is monotonically nonincreasing;

(ii) each Filippov solution of X with initial condition in S approaches M as t → +∞;

(iii) if M consists of a finite number of points, then each Filippov solution of X with initial

condition in S converges to a point of M as t → +∞.

Proof. Fact (i) is a consequence of Assumptions (A1), (A2) and (A3), and of Lemma 2.3.1.

In what follows we shall require the following notion. Given a curve γ : R+ → RN , the positive

limit set of γ, denoted by Ω(γ), is the set of y ∈ RN for which there exists a sequence {tk}k∈N ⊂ R

such that tk < tk+1, for k ∈ N, limk→+∞ tk = +∞, and limk→+∞ γ(tk) = y. For x ∈ S, let γ1 be

a Filippov solution of X with γ1(0) = x and let Ω(γ1) be the limit set of γ1. Under this setting,

Ω(γ1) is nonempty, bounded, connected and weakly invariant, see [88]. Furthermore, Ω(γ1) ⊂ S

because S is strongly invariant and closed.

To prove fact (ii), it suffices to show that Ω(γ1) ⊂ ZX,f ∪C. Trivially, Ω(γ1)∩C ⊂ C.

Let y ∈ Ω(γ1) \ C so that f is locally Lipschitz at y. There exists a sequence {tk}k∈N such
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that limk→+∞ γ1(tk) = y. Because f ◦ γ1 is monotonically nonincreasing and f is bounded

from below, limt→+∞ f(γ1(t)) exists and is equal to, say, a ∈ R. Now, by continuity of f ,

a = limk→+∞ f ◦γ1(tk) = f(y). This proves that f(y) = a for all y ∈ Ω(γ1) \ C. At this point we

distinguish two cases. First, assume that y is an isolated point in Ω(γ1). Then clearly, there exists

a Filippov solution of X, say γ2, such that γ2(t) = y for all t ≥ 0. Hence d
dtf(γ2(t)) = 0, and, by

Lemma 2.3.1, 0 ∈ L̃Xf(γ2(t)) or in other words y ∈ ZX,f . Second, assume that y is not isolated in

Ω(γ1), and let γ2 be a Filippov solution of X with γ2(0) = y. Since f is continuous at y and Ω(γ1)

contains a finite number of points of discontinuity of f , there exists δ > 0 such that f(y′) = a for

all y′ ∈ B(y, δ) ∩ Ω(γ1). Therefore, there exists t′ > 0 such that f(γ2(t)) = a for all t ∈ [0, t′].

Hence, we have d
dtf(γ2(t)) = 0 for all t ∈ [0, t′]. It follows from Lemma 2.3.1 that for all t ∈ [0, t′],

we have 0 ∈ L̃Xf(γ2(t)) or in other words γ2(t) ∈ ZX,f . By continuity of γ2 at t = 0, we have that

γ2(0) = y ∈ ZX,f . Since Ω(γ1) is weakly invariant, we have Ω(γ1) ⊂ M and hence γ2 approaches

M .

We now prove fact (iii). If M consists of a finite number of points, and since Ω(γ1) ⊂ M is

connected, Ω(γ1) is a point. Hence, by the argument in the preceding paragraph, each Filippov

solution of X approaches a point of M . In other words, it converges to a point of M .

Corollary 2.3.3. The LaSalle Invariance Principle is valid under the following relaxed assumption:

(A3) if γ : R+ → S is a Filippov solution of X, then almost everywhere either f ◦γ or −f ◦γ is

regular.

Proof. The proof is a consequence of the fact that d
dt(f(γ(t))) exists and belongs to L̃Xf(γ(t)) if

and only if d
dt(−f(γ(t))) exists and belongs to L̃X(−f)(γ(t)). Thus result (ii) of Lemma 2.3.1 still

holds and the proof of the LaSalle Invariance Principle remains unchanged.

2.4 Maximizing the area visible from a mobile observer

In this section we build on the analysis results obtained thus far to design an algorithm that

maximizes the area visible to a mobile observer. We aim to reach local maxima of the visible area

A ◦S by designing some appropriate form of a gradient flow for the discontinuous function A ◦S.
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We now present an introductory and incomplete version of the algorithm: the objective is to steer

the mobile observer along a path for which the visible area is guaranteed to be nondecreasing.

Name: Increase visible area for Q

Goal: Maximize the area visible to a mobile observer

Assumption: Generalized inflection segments of Q do not intersect. Initial

position does not belong to a generalized inflection segment.

Let p(t) denote the observer position at time t inside the nonconvex polygon Q. The observer

performs the following tasks at each time instant:

compute visibility polygon S(p(t)) ⊂ Q,

if p(t) does not belong to any generalized inflection segment or to the boundary of Q then

move along the versor of the gradient d(A ◦S)

else if p(t) belongs to a generalized inflection segment but not to the boundary of Q then

depending on the generalized gradient ∂(A ◦S), either slide along the segment or leave the

segment in an appropriate direction

else if p(t) belongs to the boundary of Q but not to a reflex vertex, then

depending on the projection of ∂(A ◦S) along the boundary, either slide along the boundary

or move in an appropriate direction toward the interior of Q

else

either follow a direction of ascent of A ◦S or stop

end if

The remainder of this section is dedicated to formalizing this loose description.

2.4.1 A modified gradient vector field

Before describing the algorithm to maximize the area visible to the mobile observer, we introduce

the following useful notions. Given a non-self-intersecting polygon Q with Ve(Q) = (v1, . . . , vn)

and ǫ > 0, define the following quantities:

(i) let the ǫ-expansion of Q be Qǫ = {p | ||p − q|| ≤ ǫ for some q ∈ Q},

24



(ii) for i ∈ {1, . . . , n}, let P ǫ
i be the open set delimited by the edge vivi+1, the bisectors of the

external angles at vi and vi+1 and the boundary of Qǫ,

(iii) for ǫ small enough and for any point p in Qǫ, let prjQ(p) be uniquely equal to arg min{||p′ −

p|| | p′ ∈ ∂Q}, and

(iv) for p ∈ ∪i∈{1,...,n} P ǫ
i , let the outward normal n(prjQ(p)) be the unit vector directed from

prjQ(p) to p.

We illustrate these notions in Figure 2.9. Note that prjQ(p) can never be a reflex vertex. We

vi+1

vi

n(prjQ(p))

P ǫ
iprjQ(p)

p

Figure 2.9: The ǫ-expansion Qǫ of the non-self-intersecting polygon Q, an open set P ǫ
i and the

corresponding outward normal n(prjQ(p)).

can now define a vector field on Qǫ as follows:

XQ(p) =





vers(d(A ◦S)(p)), if p ∈ Q̊ \ {Iα}α∈A,

−n(prjQ(p)), if p ∈ P ǫ
i ,

0, otherwise.

(Recall that the versor operator is defined by vers(Y ) = Y/‖Y ‖ if Y ∈ R2 \{0} and by vers(0) = 0.)

Note that XQ is well-defined because at p ∈ Q̊\{Iα}α∈A the function A ◦S is analytic. Clearly, XQ

is not continuous on Qǫ. However, the set of points where it is discontinuous is of measure zero.

Almost everywhere in the interior of Q, the vector field XQ is equal to the normalized gradient of
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A ◦S as depicted in Figure 2.4.

Remark 2.4.1. An important observation in this setting is that at all points p where A ◦S is

locally Lipschitz, we have K[d(A ◦S)](p) = ∂(A ◦S)(p). In such a case it is also true that for all

η ∈ ∂(A ◦S)(p), there exists at least one δ > 0 such that δη ∈ K[XQ](p) and vice versa.

We now present the differential equation describing the motion of the observer:

ṗ(t) = XQ(p(t)). (2.6)

A Filippov solution of (2.6) on an interval [t0, t1] ⊂ R is defined as a solution of the differential

inclusion

ṗ(t) ∈ K[XQ](p(t)), (2.7)

where K[XQ] is the usual Filippov differential inclusion associated with XQ, see Appendix A.

Since XQ is measurable and bounded, the existence of a Filippov solution is guaranteed. We study

uniqueness and completeness of Filippov solutions in the following lemma.

Lemma 2.4.2. The following statements hold true:

(i) there exists a non-self-intersecting polygon Q for which the corresponding vector field XQ

admits multiple Filippov solutions starting from the same initial condition;

(ii) any non-self-intersecting polygon Q is a strongly invariant set for the corresponding vector

field XQ and, therefore, any Filippov solution is defined over R+.

Proof. We present an example to justify the statement (i). In Figure 2.10, at the point p0 on

the generalized inflection segment, both directions η1 and η2 belong to ∂(A ◦S)(p0). Three distinct

Filippov solutions of equation (2.6) exist. Two of the solutions start from p0 along the two directions

η1 and η2 while the third solution is p(t) = p0 for all t ≥ 0. Statement (ii) is a consequence of the

η1
p0
η2

Figure 2.10: Three Filippov solutions exist starting from the point p0.

definition of XQ on P ǫ
i for i ∈ {1, . . . , n}.
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We now claim that any solution of the differential inclusion (2.7) has the property that the visible

area increases monotonically. To prove these desirable properties, we first present the following

results in nonsmooth analysis.

2.4.2 Properties of solutions and convergence analysis

To prove the convergence properties of the solution of (2.7) using the results presented in Section 2.3,

we must first define a suitable Lyapunov function. Intuitively since our objective is to maximize

the visible area, our Lyapunov function should be closely related to it. For ǫ > 0, we now define

the extended area function Aǫ
Q at all points p ∈ Q

⋃{∪i P
ǫ
i }. The extended function coincides with

the original function on the interior and on the boundary of Q and is defined appropriately outside:

Aǫ
Q(p) =





A ◦S(p), if p ∈ Q,

A ◦S(prjQ(p)) − ||p − prjQ(p)||, if p ∈ ∪i P
ǫ
i .

For all p ∈ ∂Q \ Ve Q, Aǫ
Q satisfies (see Figure 2.11):

Aǫ
Q
′(p; n(prjQ(p))) = −1.

vi−1

n(prjQ(p2))

p1

p2

p3

n(prjQ(p3))

prjQ(p1)

prjQ(p3)

n(prjQ(p1))

ǫ
vi+1

vi = prjQ(p2)

Figure 2.11: Extending the function A ◦S to Aǫ
Q. Note the direction of n(prjQ(pi)) at all points pi.
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Remark 2.4.3. The extended area function Aǫ
Q is locally Lipschitz on (Q \Ver(Q))

⋃{∪i P
ǫ
i } and

analytic almost everywhere on Q
⋃{∪i P

ǫ
i }.

The following theorem characterizes the regularity of the map p 7→ −Aǫ
Q(p) along a Filippov

solution of XQ. This is important to prove that the area of the visibility polygon is nondecreasing

along any Filippov solution of XQ

Theorem 2.4.4. Let G(Q) be the subset of Q where both maps p 7→ −Aǫ
Q(p) and p 7→ Aǫ

Q(p) are

not regular. Then any Filippov solution γ : R+ → Q of XQ has the property that γ(t) /∈ G(Q) for

almost all t ∈ R+ unless γ reaches a critical point of K[XQ].

Proof. Note that G(Q) is a subset of ∪α∈A Iα. This is a consequence of Theorem 2.2.2 and the fact

that functions are regular at points of differentiability. Given a generalized inflection segment Iα,

let lα be the line extending Iα and let tα be one of the two unit tangent vectors to Iα. A Filippov

solution γ of XQ slides along Iα starting from p0 ∈ Iα only if ∂Aǫ
Q(p0) contains either tα or −tα.

It then suffices to show that if ∂Aǫ
Q(p0) contains tα or −tα, then either Aǫ

Q or −Aǫ
Q is regular at

p0. Let us also assume that p0 does not belong to any other generalized inflection segment. If this

were not the case, then either p0 is a critical point or the Filippov solution does not belong to the

point of intersection for almost all t ∈ R+.

Let lα divide R2 into two open half planes H1 and H2. There exists δ > 0 such that Aǫ
Q is

analytic on Hi ∩B(p0, δ), i ∈ {1, 2}, see Figure 2.12. On lα, we have (Aǫ
Q)1 = (Aǫ

Q)2 where (Aǫ
Q)i is

p0

p′

dAǫ
Q2

H2 H1
lα

Aǫ
Q2

Aǫ
Q1

tα

n

B(p0, δ)dAǫ
Q1

Figure 2.12: The point p0 lies on the generalized inflection segment l. H1 and H2 are half planes
on either side of l. n and t are normal and parallel to l respectively. The other arrows indicate the
directions of dAǫ

Q(p) on either side of l.

the function Aǫ
Q restricted to Hi. Let p′ ∈ B(p0, δ) and, without loss of generality, let p′ ∈ H2. Let
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n be the normal to Iα at p0 pointing away from p′. Note that in terms of the notation introduced

in Section 2.4.1, n = −n(prjlα(p′)) where prjlα(p′) = arg min{||p′−p|| | p ∈ lα}. Now, (Aǫ
Q)1 can be

extended to H2 ∩B(p0, δ) by analyticity. Likewise, (Aǫ
Q)2 can be extended to H1 ∩B(p0, δ). Since

the functions (Aǫ
Q)i, i ∈ {1, 2}, are analytic, they can be written as the expansions of their Taylor

series:

(Aǫ
Q)i(p

′) = (Aǫ
Q)i(p0) + d((Aǫ

Q)i)(p0) · (p′ − p0) + O(‖p′ − p0‖2).

It follows from the above set of equations that:

(Aǫ
Q)2(p

′) − (Aǫ
Q)1(p

′) =
(
d((Aǫ

Q)2) − d((Aǫ
Q)1)

)
· (p′ − p0) + O(‖p′ − p0‖2).

Note that n is the same for all p′ ∈ H2. Now, p′ − p0 = −c1n + c2tα such that c1 ≥ 0. Also,

d(Aǫ
Q)1(p0) · tα = d(Aǫ

Q)2(p0) · tα since (Aǫ
Q)1(p) = (Aǫ

Q)2(p) for p ∈ Iα. Therefore,

(Aǫ
Q)2(p

′) − (Aǫ
Q)1(p

′) = c1

(
d(Aǫ

Q)1(p0) · n − d(Aǫ
Q)2(p0) · n

)
+ O(‖p′ − p0‖2).

Now, either tα or −tα belongs to ∂Aǫ
Q(p0) = co{d(Aǫ

Q)1, d(Aǫ
Q)2} if and only if the product of

d(Aǫ
Q)1(p0) ·n and d(Aǫ

Q)2(p0) ·n is less than or equal to zero (see Figure 2.12). If d(Aǫ
Q)1(p0) ·n = 0

and d(Aǫ
Q)2(p0) · n = 0, then clearly Aǫ

Q is C1 at p0 and hence regular. Otherwise, let us assume,

without loss of generality, that d(Aǫ
Q)1(p0) · n − d(Aǫ

Q)2(p0) · n < 0. Therefore, there exists η2 > 0

such that (Aǫ
Q)2(p

′) − (Aǫ
Q)1(p

′) ≤ 0 for p′ ∈ H2 ∩B(p0, η2). Similarly, there exists η1 > 0 such

that for p′ ∈ H1 ∩B(p0, η1), we have (Aǫ
Q)1(p

′)− (Aǫ
Q)2(p

′) ≤ 0. Thus, there exists a neighborhood

around p0 where Aǫ
Q(p) = min{(Aǫ

Q)1(p), (Aǫ
Q)2(p)} or −Aǫ

Q(p) = max{−(Aǫ
Q)1(p),−(Aǫ

Q)2(p)}.

Since (Aǫ
Q)i, i ∈ {1, 2}, are smooth functions, it follows from Proposition 2.3.12 in [66] that −Aǫ

Q

is regular at p0. On the other hand, if we assume that d(Aǫ
Q)1(p0) · n − d(Aǫ

Q)2(p0) · n > 0, then

we get that Aǫ
Q is regular at p0.

In the following theorem, the functions Aǫ
Q and −Aǫ

Q are used as candidate Lyapunov functions

to show the convergence properties of Filippov solutions of XQ.

Theorem 2.4.5. Any Filippov solution γ : R+ → Q of XQ has the following properties:

(i) t 7→ A ◦S(γ(t)) is continuous and monotonically nondecreasing,
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(ii) γ approaches the set of critical points of K[XQ].

Proof. Let us start by showing that, if γ is a Filippov solution of XQ, then A ◦S ◦γ is continuous.

The reader is referred to Figure 2.13 for an introduction of notations used. Let Xr
Q and Xθ

Q be

the components of XQ parallel and perpendicular to p − v respectively. Similarly, let d(A ◦S(p))r

and d(A ◦S(p))θ be the components of d(A ◦S(p)) parallel and perpendicular to p − v respec-

tively. Note that if ‖d(A ◦S(p))‖ 6= 0, then ‖Xr
Q‖ = ‖d(A ◦S(p))r‖

(‖d(A ◦S(p))r‖2+‖d(A ◦S(p))θ‖2)1/2 and ‖Xθ
Q‖ =

‖d(A ◦S(p))θ‖
(‖d(A ◦S(p))r‖2+‖d(A ◦S(p))θ‖2)1/2 . Let ǫ > 0 be such that ‖d(A ◦S(p))‖ 6= 0 for all p ∈ B(v, ǫ)∩D.

For now, let us also assume that {∪α∈A Iα}∩B(v, ǫ)∩D = ∅. We now claim that in B(v, ǫ)∩D,

d(A ◦S(p))θ = Ω(1/‖p − v‖) and d(A ◦S(p))r = O(1). In other words there exist constants kθ > 0

and kr > 0 such that ‖d(A ◦S(p))θ‖ ≥ kθ
‖p−v‖ and ‖d(A ◦S(p))r‖ ≤ kr. Notice that d(A ◦S(p)) =

d(A ◦S(p))r +d(A ◦S(p))θ =
∑

i
∂(A ◦S)

∂ui
dui(p). Let u1 = u. From (2.2), it is clear that ∂(A ◦S)

∂u du(p)

is perpendicular to p− v and hence contributes only to d(A ◦S(p))θ. Also ‖∑i≥2
∂(A ◦S)

∂ui
dui(p)‖ is

bounded for all p ∈ B(v, ǫ)∩D. Therefore, d(A ◦S(p))θ = ∂(A ◦S)
∂u du(p)+Ω(1) = Ω(‖∂(A ◦S)

∂u du(p)‖)

and d(A ◦S(p))r = O(1). Again from (2.2), we have

‖∂(A ◦S)

∂u
du(p)‖ =

dist(v, l)

2

‖p − v‖|dist(u2, l) − dist(un, l)|
(dist(p, l) − dist(v, l))2

.

Now, |dist(p, l) − dist(v, l)| ≤ ‖p − v‖. Therefore,

‖∂(A ◦S)

∂u
du(p)‖ = Ω

( |dist(u2, l) − dist(un, l)|
‖p − v‖

)
.

Since p does not lie on a generalized inflection segment, either un = v or u2 = v. Without loss

of generality, let un = v. Since u belongs to l, clearly u2 must belong to l. Hence |dist(u2, l) −

dist(un, l)| = dist(v, l) and is a constant for all p ∈ B(v, ǫ)∩D. Thus

‖∂(A ◦S)

∂u
du(p)‖ = Ω

(
1

‖p − v‖

)
.
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Hence, d(A ◦S(p))θ = Ω( 1
‖p−v‖). Therefore ‖d(A ◦S(p))θ‖

‖d(A ◦S(p))r‖ ≥ kθ
kr‖p−v‖ . It follows that

‖Xr
Q‖ =

1

(1 + ‖d(A ◦S(p))θ‖2

‖d(A ◦S(p))r‖2 )1/2
≤ 1

(1 +
k2

θ
k2

r‖p−v‖2 )1/2
=

kr‖p − v‖
(k2

θ + k2
r‖p − v‖2)1/2

≤ kr‖p − v‖
kθ

.

Note that a convex combination of finitely many Xr
Q will also admit a similar inequality and so the

assumption that {∪α∈A Iα}∩B(v, ǫ)∩D = ∅ is not limiting. Now let γ(t) be a solution of XQ such

that γ(0) = v. Let T be any time such that ‖γ(T )−v‖ = R and for all t ∈ [0, T ], γ(t) ∈ B(v, ǫ)∩D

and Xr
Q(γ(t)) is directed away from v. Then clearly, R =

∫ T
0 Xr

Qdt ≤ Rkr
kθ

T . In other words the

time T taken for a trajectory to travel any distance R is greater than kθ
kr

. This is a contradiction.

Therefore, our assumption that for all t ∈ [0, T ], γ(t) ∈ B(v, ǫ)∩D is false. So, the trajectory

must belong to C for some finite time interval contained in [0, T ]. We can choose R as small as

possible and this implies that there exists a finite time interval [0, TC ] for which γ(t) ∈ C. It follows

trivially that t 7→ A ◦S(γ(t)) is right continuous at t where γ(t) = v. We can prove similarly that

t 7→ A ◦S(γ(t)) is left continuous at t where γ(t) = v by considering the vector field −XQ in place

of XQ. This completes the proof that t 7→ A ◦S(γ(t)) is continuous.

v

l = [a, b, c]

u

D

p

Xθ
Q

Xr
Q

C

Figure 2.13: Illustration of various notions used in Theorem 2.4.5. The dashed lines represent
generalized inflection segments generated by the reflex vertex v and vertices adjacent to it. These
divide the region around v that is inside Q into three subregions C , D and E. u ∈ Ve(S(p)) lies
on the line l. The generalized inflection segments including the vertex v are assumed to belong to
region C. Note that D∩C = ∅.

Next we show that Assumptions (A1), (A2) and (A3) in Theorem 2.3.2 hold. Let p ∈ Q\Ver(Q)

and take a ∈ L̃XQ
(−Aǫ

Q)(p). By definition, there exists k ∈ K[XQ](p) such that a = k · ζ for all
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ζ ∈ −∂Aǫ
Q(p). In particular, it is true for ζ = −δk, for some δ > 0, see Remark 2.4.1. Therefore,

a = −δ‖k‖2 ≤ 0. This proves that either max L̃XQ
(−Aǫ

Q)(p) ≤ 0 or L̃XQ
(−Aǫ

Q)(p) = ∅, i.e.,

Assumption (A1) is satisfied. Assumption (A2) is a consequence of the continuity of A ◦S ◦γ.

Finally, Assumption (A3) is a consequence of Theorem 2.4.4. Applying now Theorem 2.3.2 and its

corollary, we conclude that fact (i) holds. Moreover, we also deduce that any Filippov solution of

XQ converges to the largest weakly invariant set M contained in ZXQ,−Aǫ
Q
∪ Ver(Q).

To prove fact (ii), let us show that M = {p ∈ Q | 0 ∈ K[XQ](p)}∩(ZXQ,−Aǫ
Q
∪ Ver(Q)). Based

on Theorem 2.4.4, Theorem 2.3.2 and Corollary 2.3.3, it suffices to show that M is contained

in {p ∈ Q | 0 ∈ K[XQ](p)}. Let us note that the set {p ∈ Q | 0 ∈ K[XQ](p)} is weakly invariant

and can be established to be closed following the same reasoning as in Proposition 2.1.1 in [95].

Let x ∈ ZXQ,−Aǫ
Q
. Then, 0 ∈ L̃XQ

(−Aǫ
Q)(x), i.e., there exists k ∈ K[XQ](x) such that ζ · k =

0 for all ζ ∈ −∂Aǫ
Q(x). But, k ∈ K[XQ](x) implies that there exists δ > 0 such that δk ∈

−∂Aǫ
Q(x), see Remark 2.4.1. Thus, for ζ = δk, we get δ‖k‖2 = 0, that is, 0 ∈ K[XQ](x). This

shows that ZXQ,−Aǫ
Q

⊂ {p ∈ Q | 0 ∈ K[XQ](x)}. Next, let x ∈ Ver(Q)∩M . If the set {x} is

weakly invariant, then by definition 0 ∈ K[XQ](x). If on the other hand x is not isolated in

M , then there exists a sequence of points {xm}m∈N converging to x such that xm ∈ ZXQ,−Aǫ
Q

or, alternatively, 0 ∈ K[XQ](xm). Because {p ∈ Q | 0 ∈ K[XQ](p)} is closed, it follows that 0 ∈

K[XQ](x). Thus we proved that any weakly invariant set contained in ZXQ,−Aǫ
Q
∪Ver(Q) is a subset

of {p ∈ Q | 0 ∈ K[XQ](p)}. Again, as in Proposition 2.1.1 in [95], it can be shown that ZXQ,−Aǫ
Q

is

a closed set and hence the claim that M ⊂ {p ∈ Q | 0 ∈ K[XQ](p)} follows.

Theorem 2.4.5 implies that the single observer converges to a critical point of A ◦S or to a reflex

vertex of Q. However, as shown in Figure 2.15, the presence of noise or computational inaccuracies

actually works to drive the observer away from a reflex vertex that is not a local maximum. This

will also be true for other critical points that are not local maxima.

2.5 Simulation results

To conduct experiments, a simulation environment has been developed in MatlabR©. There are two

levels of the code. The lower level consists of a library containing routines to answer queries such
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as whether two points in a two-dimensional polygonal environment are visible to each other. The

higher level utilizes these routines and consists of two major portions. In the first, the vertices

of the visibility polygon are obtained by means of an O(n2) algorithm, where n is the number of

vertices of the polygonal environment. These are then sorted in counterclockwise order to compute

the visibility polygon. The second consists of the controller which decides the direction and the step

size of the observer motion at each time instant. The main task of the controller is the calculation

of the generalized gradient of the visible area function which is a natural outcome of (2.1) and (2.3).

Such a framework gives the flexibility to easily implement other visibility-based algorithms for single

or multiple observers in a polygonal environment. This can be done by extracting the appropriate

information using the low level functions and implementing the desired controller.

Figures 2.15 and 2.17 illustrate the performance of the gradient algorithm in equation (2.7).

Computational inaccuracies in the implementation of the algorithm to calculate the visibility poly-

gon have been noticed in some configurations; see the plot of the evolution of visible area with

time in Figure 2.15. See Figure 2.16 for the phase portrait of the vector field XQ for the polygon

in Figure 2.14. Simulation results for an observer in a similar polygonal environment containing a

hole is shown in Figure 2.18. Our experiments suggest that the observer reaches a local maximum

of the visible area in finite time, however this can be shown not to be true in general.

2.6 Conclusions

In this chapter, we have introduced a gradient-based algorithm to optimally locate a mobile observer

in a nonconvex environment. We have presented nonsmooth analysis and control design results.

The simulation results illustrate that, in the presence of noise, the observer reaches a local maximum

of the visible area. In a “highly nonconvex” environment, a single observer may not be able to

see a large fraction of the environment. In such a case, a team of observers can be deployed to

achieve the same task. We therefore plan to investigate this same visibility objective for teams of

observers. This is the subject of the following chapter. Other directions of future research include

practical robotic implementation issues as well as other combined mobility and visibility problems.
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Figure 2.14: Example of visible area function over a typical nonconvex polygon.

34



0 50 100 150
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Evolution of visible area

Elapsed time

Gradient flow

Initial position of the observer Final position of the observer

P
er

ce
n
ta

ge
of

v
is

ib
le

ar
ea

Figure 2.15: Simulation results of the gradient algorithm for the nonconvex polygon depicted in
Figure 2.14. The observer arrives, in finite time, at a local maximum. Note here that the observer
visits a reflex vertex at some point in its trajectory but comes out of it due to computational
inaccuracies because it is not a local maximum.

Figure 2.16: Example of vector field over the nonconvex polygon in Figure 2.14.
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Figure 2.17: Simulation results of the gradient algorithm for the nonconvex polygon in Figure 2.1.
The observer arrives, in finite time, at a local maximum.
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Figure 2.18: Simulation results of the gradient algorithm for an observer in a nonconvex environ-
ment with a hole. The observer arrives, in finite time, at a reflex vertex.
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CHAPTER 3

Deployment of multiple robotic agents

3.1 Introduction

Recently, much research has focused on the use of unmanned robots for the purpose of surveillance

and search. This chapter provides algorithms to deploy robotic agents with limited capabilities

to monitor an unknown environment. The environment is assumed to be simply connected, i.e.,

without holes, and polygonal. The agents are modeled as point masses with first-order dynamics.

The agents are all identical except with distinct unique identifiers (UID). No assumption is made

about the UIDs except that they are distinct. The agents are assumed to operate asynchronously

and to have limited communication and sensing capabilities: they can communicate only with

agents within line-of-sight and they can sense the distance to the environment boundary or to

any other agent within line of sight. The first objective is to deploy the agents starting from a

single location so that all points of the environment are visible to at least one agent. We present a

distributed algorithm to solve the above problem requiring no more than ⌊n/3⌋ agents, where n is

the number of vertices in the environment. A second objective is to deploy the agents so that the

visibility graph of the final configuration of the agents is connected. We also present a distributed

algorithm to solve this problem requiring no more than (n − 1)/2 agents. The time complexity of

the proposed algorithms is also investigated.

Deployment of robotic sensors have been studied in centralized and decentralized contexts,

centralized referring to the fact that the environment is known a priori and decentralized otherwise.

In the former setting, this problem becomes the classical Art Gallery Problem in the computational

geometry literature, which aims to find both the minimum number of “guards” required and the

locations of these guards to achieve complete visibility of a given polygonal environment. This

problem was first analyzed by Chvátal, see [76], in the famous Art Gallery Theorem stating that
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⌊n/3⌋ guards are sufficient and sometimes necessary to guard any simply connected polygon with

n vertices. In [77], Hernández-Peñalver gives an induction argument to prove that (n − 2)/2

connected set of guards are always sufficient and occasionally necessary in a simply connected

orthogonal environment. A constructive proof based on a coloring argument was later given by

Pinciu [78].

Relevant works in the decentralized setting include [75], where an incremental heuristic for de-

ployment is proposed, and [20] where distributed algorithms for coverage control based on Voronoi

partitions are designed. Coordinated deployment of multiple heterogeneous robots has also been

studied in [97]. Deployment locations are user-specified after an initial map of the unknown envi-

ronment has been built.

Another related body of work is that of robotic exploration of unknown environments, since a

natural two-stage strategy to solve the deployment problem is to first explore the environment and

then solve the centralized problem. The most relevant literature to the current problem include

topological exploration of graph-like environments by single and multiple robots [73, 74, 98, 99].

In these problems, it is either assumed that agents can synchronize their motions to fuse their

data, or read and write to the nodes of the graph. These assumptions are stronger compared to

the assumptions in the present treatment. Synchronizing motions and fusing data are additional

complications, especially in the presence of limited communication bandwidth. Also, writing to

nodes in a graph is not possible in the case of exploration of unknown environments. Finally, the

problem of deployment is very different from the problem of exploration. Assuming that exploration

is possible without accumulating errors, in the absence of a central processor, the robots would

have to allocate tasks amongst themselves. Our strategy, on the other hand, is a simple one-step

strategy for deployment, without the need for synchronization, achieving the worst-case optimal

bounds in terms of number of robots required, and under limited communication constraints.

Notation Given any finite set X, let |X| denote the cardinality of X. Given two points x, y ∈ R2,

let [x, y] denote the closed line segment joining the two points. Let f : X ⇉ Y denote a function

mapping elements of X to subsets of Y .
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3.2 Preliminaries

3.2.1 Visibility and graph theoretic concepts

We look at polygonal environments, denoted by Q, that are simply connected, i.e., they are con-

nected and do not contain any holes. Unless otherwise stated, all environments in this chapter will

be assumed to be simply connected and polygonal. Let Ve(Q) and Ver(Q) be the list of vertices and

reflex1 vertices of Q, respectively. A diagonal of Q is a line segment [v1, v2] where v1, v2 ∈ Ve(Q)

and [v1, v2]\{v1, v2} belongs to the interior of Q. We now describe some useful notions of visibility.

A point q ∈ Q is visible from p ∈ Q if [p, q] ⊂ Q. The visibility set V(p, Q) ⊆ Q from a point

p ∈ Q is the set of points in Q visible from p. Figure 3.1 (left) shows a graphical illustration of

the geometric notions introduced so far. A subset of Q is star-shaped if it contains a point p ∈ Q

with the property that V(p, Q) = Q, i.e., the whole polygon is visible from p. The set of all such

points in Q is referred to as the kernel of Q, and denoted by ker(Q). It follows that, if a polygon

Q is not star-shaped, then ker(Q) = ∅. Let ker∗(Q) denote the set of all subsets P of Q such that

∪p∈P V(p, Q) = Q, i.e., any point of the polygon is visible from at least a point in P . Notice that

if Q is a polygon, then there exist elements in ker∗(Q) with finite cardinality. According to the

Art Gallery Theorem [76], if Q is simply connected with n vertices, then there exists P ∈ ker∗(Q)

with |P | ≤ ⌊n/3⌋. With a slight abuse of terminology, henceforth, we shall use the term kernel

of a polygon Q to refer to ker∗(Q). Given Q, it is always possible to triangulate it, i.e., partition

into triangles with disjoint interiors, by means of diagonals; see [84] and Figure 3.1 (right). Let TQ

represent a triangulation of Q.

Let us now introduce some graph theoretic concepts. A connected graph with no simple cycles

is a tree. In a rooted tree, a node is designated as the root, and a natural direction is induced on

the edges of the tree, which in this chapter is taken to be away from the root. A node, Nj , is a

child of another node, Ni, if there exists an edge directed from Ni to Nj . In turn, Ni is the parent

of Nj . Two nodes that share the same parent are siblings. A predecessor of Ni is any node from

which a directed path exists to Ni. A successor of Ni is any node to which a directed path exists

from Ni. Let pre(Ni) and suc(Ni) denote the set of predecessors and successors of Ni respectively.

The depth of a node is the number of edges in the path to the node from the root. Consequently

1A vertex is a reflex vertex if its interior angle is strictly greater than π radians.
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p

q

vr

Figure 3.1: Left: Illustration of some preliminary notions. A simply connected environment
Q (outer polygon), a reflex vertex vr, a diagonal (dashed line segment) and two points p, q ∈ Q
mutually visible to each other (the line segment [p, q] belongs to Q) and the visibility set V(p, Q)
(shaded region). Right: A simply connected environment, Q, in the shape of a typical floor plan
and its triangulation by means of diagonals.

the depth of a tree is the maximum depth of all nodes. The visibility graph Gvis,Q({p1, . . . , pn}) of

a set of points {p1, . . . , pn} in Q is a graph with the node set equal to {p1, . . . , pn} and with (pi, pj)

being an edge if and only if [pi, pj ] ⊆ Q and vice versa.

3.2.2 Robotic network model

We consider a group of robotic agents modeled as point masses, moving in a simple nonconvex

polygonal environment, Q. Each agent has a unique identifier (UID), say i. Let ai refer to the

position of agent i. Each agent is equipped with an omnidirectional line-of-sight range sensor.

Thus, the agent can sense its star-shaped visibility set V(ai, Q). It can communicate with any

other agent within line-of-sight. Each agent also stores in its memory an information vector Ii

which it can broadcast to all agents in its communication region. Such a broadcast is denoted by

BROADCAST(i, Ii) and also includes the agent’s UID. It can also receive broadcasts from other agents.

We also assume that there is a time delay between a broadcast and the corresponding reception;

the time delay is arbitrary but upper bounded by δ > 0. An agent has access to some memory Mi

which uses to store information not necessarily available via local sensing and communication. We

shall describe in detail the structures of the information vector and the memory in Sections 3.4.3

and 3.5.3.

Every agent i repeatedly performs the following sequence of actions beginning at a time instant,

say T i
l :
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(i) send repeated BROADCAST(i, Ii) every δ seconds, until it starts moving;

(ii) LISTEN for at least 2δ seconds before processing the information;

(iii) PROCESS the necessary information. Also continue to LISTEN during this interval. Assume

that the total LISTEN interval is less than λ seconds;

(iv) MOVE to a desired point.

T i
l

T i
l+1

LISTEN

PROCESS MOVE

BROADCAST(i, Ii) BROADCAST(i, Ii)

δ δ δ δ δ

≥ 2δ

Figure 3.2: Sequence of actions for agent i beginning at time T i
l . Instantaneous BROADCAST(i,Mi)

events are represented by vertical pulses. The MOVE interval might be empty if the agent does not
move.The subsequent instant T i

l+1 is the time when the agent stops performing the MOVE action
and it is not predetermined.

Agent i, in the MOVE state, is capable of moving at any time t according to the following

discrete-time control system:

ai(t + ∆t) = ai(t) + ui,

where ‖ui‖ ≤ 1. The control action depends on time, on the memory Mi(t), and on the information

obtained from communication and sensing. The subsequent wake-up instant T i
l+1 is the time when

the agent stops performing the MOVE action and it is not predetermined. This model of robotic

agents is similar in spirit to the partially asynchronous network model described in [48].

Remark 3.2.1 (Higher-order dynamics). For the deployment algorithm presented later, we need

only the assumption that an agent can traverse between two points in a simply connected polygon

if they are mutually visible to one another. Thus, the algorithm will also work for agents with

more complex dynamics provided the above assumption is true. However, the analysis of the time
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complexity of the algorithm does depend on the time taken to move between two points and is thus

specific to the first-order dynamics model considered above. �

3.2.3 Problem statement

We consider the following two problems for the robotic network model introduced in the previous

section. We assume that robots enter an environment from the same location.

Our first objective is to design a provably correct distributed algorithm to deploy a group of

agents on locations such that each point of the environment is visible to at least one agent. We

aim to achieve this objective with a sufficiently small number of agents, i.e., ⌊n/3⌋ agents in an

environment with n vertices. This is the visibility-based nonconvex deployment problem.

Our second objective is to design a provably correct distributed algorithm to deploy a group of

agents on locations such that each point of the environment is visible to at least one agent under

the additional constraint that the final configuration of agents is connected. We aim to achieve

this objective with a sufficiently small number of agents, i.e., ⌊n/2⌋ agents in an environment with

n vertices. This is the visibility-based nonconvex deployment problem with connectivity.

In what follows, we present analogous solutions to the two problems. We first treat the second

problem and we then present a parallel, more sophisticated treatment of the first problem. This

chapter organization simplifies the presentation of the two algorithms.

3.3 An incremental partition algorithm and the resulting

triangulation

In this section, we describe a procedure to incrementally partition a simply connected environment

Q into star-shaped sets. Given Q and one of its vertices s, the procedure, referred to as the

Incremental Partition Algorithm, results in the computation of a finite ordered set of star-

shaped polygonal sets R. The procedure also returns a finite ordered set of points P with |P| = |R|

and with Ri visible from pi, where Ri and pi are the ith elements of R and P, respectively. Thus,

P ∈ ker∗(Q).

The Incremental Partition Algorithm consists of two components. The first component is
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an Initialization routine and the second one is a Star-shaped Set Computation algorithm.

The Initialization routine is as follows:

Algorithm: Initialization

Input: Simply-connected polygon Q and s ∈ Ve(Q)

(1) Compute the set of vertices of Q visible from s.

(2) Arrange the vertices in clockwise order, with s being the first. Let Rdiag be the polygon

represented by the ordered set.

Return: Rdiag; s

At the end of the Initialization routine, we obtain a polygon Rdiag as illustrated in Figure 3.3.

The Star-shaped Set Computation algorithm is as follows:

s

v

u

Figure 3.3: Illustration of the Initialization routine. The shaded region represents Rdiag. The
dashed edges of Rdiag are diagonals of Q.

Algorithm: Star-shaped Set Computation

Input: Simply-connected polygon Q, s ∈ Ve(Q), and diagonal (u, v) not containing s

(1) Compute the set of vertices visible from v on the opposite side of (u, v) as s.

(2) Arrange the vertices consecutively, with v being the first and u being the last. Let Rdiag

be the polygon represented by the ordered set.

Return Rdiag; v

Lemma 3.3.1 (Properties of Rdiag). Given a simply connected polygon Q, s ∈ Ve(Q) and a

diagonal (u, v) of Q, the polygon Rdiag has the following properties:

(i) |Ve(Rdiag)| ≥ 3;
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(ii) Rdiag is star-shaped and is visible from v;

Proof. Since (u, v) is a diagonal of Q, it partitions Q into two smaller polygons, one containing s

and the other not. Each of the polygons can be triangulated by means of diagonals of Q. Let T

be the triangle containing (u, v) as an edge in the polygon not containing s. Let w be the third

vertex of this triangle. Clearly, w and u are visible from v and, therefore, both these vertices will be

vertices of Rdiag. Thus, |Ve(Rdiag)| ≥ 3. Statement (ii) is trivial and follows from the construction

of Rdiag.

Beginning with the Initialization routine, the Star-shaped Set Computation algorithm is

executed for every diagonal generated until there are no diagonals. However, for every diagonal

the choice of which vertex serves as v is important. This is done as follows.

Odd-numbered placement scheme: During the execution of the Initialization or

the Star-shaped Set Computation algorithms, for any edge of Rdiag that is a diagonal

of Q, the vertex that is odd numbered in the ordering of the vertices is chosen as the

vertex v; see Figure 3.5.

The Initialization routine together with the Star-shaped Set Computation algorithm and the

Odd-numbered placement scheme for choosing the vertex v constitute the Incremental Partition

Algorithm. Figure 3.5 illustrates an execution of the Incremental Partition Algorithm algo-

rithm for a given polygon Q and s ∈ Ve(Q). Let R denote the list of Rdiag thus generated and let

P be the corresponding list of kernel points such that Ri is visible from pi, where recall Ri and pi

are the ith elements of R and P, respectively.

Remark 3.3.2 (Modification of P). Notice that each invocation of Star-shaped Set Computation

algorithm operates on a unique diagonal. The resultant star-shaped set can possibly contain two

adjacent edges for both of which the Star-shaped Set Computation algorithm might have to be

invoked. In the case that these two edges (which are diagonals of Q) share the same odd-numbered

vertex, P will contain two elements, say pi and pj both being the same vertex but with distinct Ri

and Rj. In this case, we modify P as follows. The elements pi and pj are replaced by a single ele-

ment pk and Ri and Rj are replaced by Rk = Ri ∪Rj. In what follows, without loss of generality,

we will assume that for any k, we can write Rk as the union of R′
k and R′′

k. This is because even if

45



pi is not a point of the type described above, we can still write Ri to be union of R′
i and R′′

i where

R′
i = R′′

i . Notice that the elements of P might still contain multiple copies of the same point. �

Lemma 3.3.3 (Properties of P). Given a simply connected polygon Q and s ∈ Ve(Q), let R and P

be the outputs of the Incremental Partition Algorithm with the modification in Remark 3.3.2.

Then the following properties hold:

(i) P ∈ ker∗(Q);

(ii) |P| ≤ n − 2, where n = |Ve(Q)|; and

(iii) there exist Q and s ∈ Ve(Q) such that |P| = n − 2.

Proof. Statement (i) follows directly from the construction. Now, from Lemma 3.3.1 , we know that

|Ve(Ri)| ≥ 3 for any i. Thus, by drawing diagonals to the vertices of Ri from the corresponding

pi, we can triangulate Ri and any Ri will contain at least 1 triangle. Since the total number of

triangles obtained by triangulation of polygon by diagonals is n− 2, we have that |R| ≤ n− 2. But

|P| = |R| and statement (ii) follows. For the proof of statement (iii), please refer to Figure 3.4.

p4

s, p1

p2

p3

Figure 3.4: Illustration of a polygon Q and s ∈ Ve(Q) such that |P| = n − 2. Here n = 6 and
|P| = 4. The point-set represented by the black discs is P. The diagonals represent the boundary
of the sets R.

Remark 3.3.4 (Triangulation using R and P). First let us notice that given Rj ∈ R and pj ∈ P,

we can triangulate Rj by drawing diagonals to each of the vertices of Rj from pj. This is possible

since Rj is star-shaped and is visible from pj. Following this procedure for each of the elements of

R, we end up with a triangulation of the environment. Let us denote this triangulation by TQ(R,P).

�
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s

u

v

1

5

7

9 34

2

6

8

v′

Figure 3.5: Illustration of the Incremental Partition Algorithm. The left plot shows the exe-
cution of the Initialization algorithm. The center plot shows how to pick the vertex v and the
execution of Star-shaped Set Computation algorithm. The right plot shows the partition R and
the corresponding kernel points (black discs).

3.4 Connected deployment of agents

In this section, we present a distributed deployment algorithm that guarantees that the visibility

graph of the final configuration of the agents has one connected component. We begin by identifying

a set P ∗
con which is the desired point-set for deployment. This point-set should have the property

that P ∗
con ∈ ker∗(Q) and Gvis-Q(P ∗

con) has a single connected component. It can be easily checked

that the set P computed according to the Incremental Partition Algorithm in Section 3.3

possesses these properties. However, we are interested in finding a set possessing the same properties

with smaller cardinality. In [77], it is proved that there exists a point set satisfying the above

properties with cardinality at most (n − 2)/2. In [78], a constructive algorithm based on coloring

is given to compute the set. However, the algorithm in [78] requires centralized computation

and is not amenable to a distributed implementation. In this section, we present a novel yet

simple Connected Kernel Computation Algorithm to compute P ∗
con whose cardinality is at most

(n − 1)/2, i.e., it differs from the bound available in the literature by at most 1. Moreover,

our algorithm is well-suited for a distributed implementation. Indeed, we present the Connected

Depth-first Deployment algorithm based on the Connected Kernel Computation Algorithm

to solved the connected deployment problem.
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3.4.1 Navigation graph for connected deployment

We begin by defining a graph that is used in the Connected Kernel Computation Algorithm and

for navigation in the Connected Depth-first Deployment.

Definition 3.4.1 (Navigation graph). Given a simply connected polygonal environment, Q, s ∈

Ve(Q), let R and P be the outputs of the Incremental Partition Algorithm. The navigation

graph, Gnav-con(s, Q) is the graph with P as the node set and an edge between pi and pj if and only

if Ri and Rj share a common edge and vice versa.

The following lemma summarizes the properties of Gnav-con(s, Q).

Lemma 3.4.2 (Properties of the navigation graph). The graph, Gnav-con(s, Q), satisfies the follow-

ing properties:

(i) Gnav-con(s, Q) is a tree;

(ii) adjacent nodes of the graph are mutually visible to each other.

Proof. Statement (i) is a consequence of the fact that Q is simply connected and that Ri ∩Rj is a

diagonal of Q for any i and j. Statement (ii) follows from the construction of R.

Note that s ∈ P by construction. Let us designate s as the root of Gnav-con(s, Q). Thus,

Gnav-con(s, Q) is now a rooted tree. Figure 3.6 shows an example of the navigation graph. We are

now in a position to present the Connected Kernel Computation Algorithm.

s

Figure 3.6: Illustration of the navigation graph, Gnav-con(s, Q). The vertex s is the root; the black
discs represent the nodes and the directed arcs represent the edges.
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3.4.2 A connected kernel point-set

Let R and P be the outputs of the Incremental Partition Algorithm. The Connected Kernel

Computation Algorithm to find a set P ∗
con ⊂ P such that P ∗

con ∈ ker∗(Q) and Gvis,Q(P ∗
con) has a

single connected component is as follows:

Algorithm: Connected Kernel Computation Algorithm

Input: The navigation graph Gnav-con(s,Q) with simply connected polygon Q and s ∈ Ve(Q)

Initialization: P ∗
con := ∅, Pmark := ∅

While Pmark 6= P do

(1) Take any node, say pi, of Gnav-con(s,Q) which has no children or whose children all belong

to Pmark.

(2) Let Ri := R′
i ∪R′′

i where R′
i and R′′

i are as described in Remark 3.3.2.

(3) If (|Ve(R′
i)| = 3 AND number of children of pi in R′

i belonging to P ∗
con is equal to one)

AND ( |Ve(R′′
i )| = 3 AND number of children of pi in R′′

i belonging to P ∗
con is equal to

one) then

(4) Update Pmark := Pmark ∪{pi}.

(5) else

(6) Update Pmark := Pmark ∪{pi} and P ∗
con := P ∗

con ∪{pi}.

Return: P ∗
con

Please refer to Figure 3.9 for an example of a point-set P ∗
con obtained via the Connected Kernel

Computation Algorithm.

s

Figure 3.7: An illustration of a polygon Q and s ∈ Ve(Q) the corresponding point-set P ∗
con. The

dashed segments show some of the edges of the visibility graph, Gvis,Q(P ∗
con).
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The following lemma states that the Connected Kernel Computation Algorithm terminates

after a finite number of steps.

Lemma 3.4.3 (Execution time of the Connected Kernel Computation Algorithm). Given Q,

s ∈ Ve(Q) and the navigation graph Gnav-con(s, Q), the Connected Kernel Computation Algorithm

terminates in exactly |P| iterations.

Proof. The proof follows from the observation that as long as Pmark 6= P, there always exists a

node which has no children or whose all children belong to Pmark. Thus pi in step (1) exists as long

as Pmark 6= P. It then follows that, as long as Pmark 6= P, the cardinality of Pmark increases by one

at every iteration. The result follows.

The properties of the set P ∗
con as computed by the Connected Kernel Computation Algorithm

are as follows.

Proposition 3.4.4 (Properties of P ∗
con). Given Q, s ∈ Ve(Q) and the navigation graph Gnav-con(s, Q),

let P ∗
con be the output of the Connected Kernel Computation Algorithm. Then the following hold

true:

(i) P ∗
con ∈ ker∗(Q);

(ii) |P ∗
con| ≤

n − 1

2
;

(iii) there exist Q and s ∈ Ve(Q) such that |P ∗
con| =

n − 1

2
; and

(iv) Gvis,Q(P ∗
con) has a single connected component.

Proof. From the Connected Kernel Computation Algorithm, note that an element pi ∈ P is not

included in P ∗
con if the conditions in step (3) are satisfied. But this means that R′

i and R′′
i are

triangles and there exists exactly one child of pi belonging to P ∗
con in each of R′

i and R′′
i . But since

R′
i and R′′

i are both triangles, they must be completely visible from the two children. Thus Ri is

completely visible by elements in P ∗
con. Statement (i) follows.

We now prove statement (ii). Let pj ∈ P ∗
con. We show that (a) if pj 6= s, then we can always

assign uniquely at least two triangles from TQ(R,P) to pj ; and (b) if pj = s, then we can assign

at least one triangle TQ(R,P) to pj . Since the total number of triangles is n − 2, we get that
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2(|P ∗
con| − 1) + 1 ≤ n − 2; thus |P ∗

con| ≤ n−1
2 . We prove claim (a). Since pj 6= s, pj has a parent in

Gnav-con(s, Q), say pi. Let us first assign the triangle in Ri with Ri ∩Rj as an edge to pj . Next, we

will assign a triangle in Rj to pj . Let Rj = R′
j ∪R′′

j . Let us assume without loss of generality that

R′
j and R′′

j are distinct. Since pj ∈ P ∗
con, we have that either (|Ve(R′

j)| > 3 or number of children of

pj in R′
j belonging to P ∗

con is not equal to one) or (|Ve(R′′
j )| > 3 or number of children of pj in R′′

j

belonging to P ∗
con is not equal to one). Again without loss of generality assume that |Ve(R′

j)| > 3

or number of children of pi in R′
i belonging to P ∗

con is not equal to one. If |Ve(R′
j)| > 3, then let

|Ve(R′
j)| = 2m+1 where m ≥ 2 is an integer. The number of odd numbered vertices in R′

j is m+1.

Therefore, the number of children of pj is at most m according to the Odd-numbered placement

scheme (since the vertex numbered 1 is pj itself). Each of these m children are assigned m triangles

in R′
j . The total number of triangles in R′

j is equal to 2m + 1 − 2 = 2m − 1. Thus, the number of

triangles that are not assigned to any child is 2m − 1 − m = m − 1. Since m ≥ 2, we have that at

least one triangle in Rj is not assigned to any child. Thus, we can assign at least one triangle in

Rj to pj . The case when |Ve(R′
j)| = 2m and m ≥ 2 can be argued similarly. Note that since R′

j

is a polygon, m 6= 1. Now, if |Ve(R′
j)| = 3 and number of children of pj in R′

j belonging to P ∗
con

is not equal to one, then the number of children of pj in R′
j belonging to P ∗

con must be zero. This

is because R′
j is a triangle and therefore can have at most one child. Since pj has no child in R′

j ,

then the triangle in R′
j can be assigned to pj . Thus, we have proved claim (a). To prove claim (b),

notice that pj does not have a parent. Therefore, we can only assign at least one triangle to it

belonging to Rj as shown in case (a). This completes our proof of statement (ii).

For the proof of statement (iii), please refer to Figure 3.8.

s, p1

p2

p3

Figure 3.8: An illustration of a polygon Q and s ∈ Ve(Q) where |P ∗
con| = (n−1)/2. Here n = 7. The

outer polygon is Q. The black discs represent P. The unshaded region is R1, the lightly shaded
region is R2 and the darkly shaded region is R3. Directed arcs represent the edges of Gnav-con(s, Q).
The set P ∗

con is equal to {p1, p2, p3}.
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Finally, we prove statement (iv). First, we show that if (pi, pj) is an edge of Gnav-con(s, Q),

then either pi or pj belongs to P ∗
con. Without loss of generality, let pj be the parent of pi in

Gnav-con(s, Q). If pi is a leaf of Gnav-con(s, Q), then pi ∈ P ∗
con. This is because pi is a node that

satisfies the requirement in step (1) of the Connected Kernel Computation Algorithm. Also,

since it cannot have any children, the condition in step (3) is also not satisfied. Thus, pi is included

in P ∗
con in step (6). If now pi is not a leaf, then let ph be a child of pi. If pi /∈ P ∗

con, then pj has

at least one child location which does not belong to P ∗
con. Then the condition in step (3) of the

Connected Kernel Computation Algorithm algorithm cannot hold true for pj . This is because

if |V(R′
j)| = 3, then pj can have at most one child in R′

j . Similarly, if |V(R′′
j )| = 3, then pj can

have at most one child in R′′
j . But at least one of the locations is pi which does not belong to

P ∗
con. Thus, pj ∈ P ∗

con. This proves that for any edge (pi, pj) of Gnav-con(s, Q), at least one of pi

or pj must belong to P ∗
con. Thus, if pj is the parent of pi which in turn is the parent of ph and

pi /∈ P ∗
con, then pj and ph belong to P ∗

con. We now claim that pj and ph are also mutually visible.

This follows easily from Figure 3.9. Since R′
i is a triangle with exactly one child, the location of

the child, ph must be as shown in Figure 3.9. This is because the edge shared between Ri and Rh

must be the diagonal [v, ph]. The segment [v, pi] cannot be a diagonal because then at least one

vertex of Q on the opposite side of [v, pi] as pj must be visible by pi; but from the Star-shaped

Set Computation algorithm, this vertex must be a part of R′
i, which is a contradiction. Out of

the two vertices of the diagonal [v, ph], the vertex ph is chosen as the location of the child of pi by

the Odd-numbered placement scheme. Notice that [pi, ph] is the shared edge between Rj and Ri.

Now it is easy to see that pj and ph are mutually visible.

Thus, any node ph ∈ P ∗
con is connected to any node pk ∈ P ∗

con in Gvis,Q(P ∗
con) if pk is a predecessor

of ph in Gnav-con(s, Q). If, on the other hand, pk is not a predecessor of ph and vice versa, then

ph and pk must share a common predecessor in Gnav-con(s, Q), say pl. If pl ∈ P ∗
con, then we are

done, because pk and ph are both connected to pl in Gvis,Q(P ∗
con). If pl /∈ P ∗

con, and pl is not the

root of Gnav-con(s, Q), then let pm be the parent of pl. Then pm ∈ P ∗
con because the edge (pl, pm)

of Gnav-con(s, Q) must contain one point belonging to P ∗
con. Thus, ph and pk are both connected to

pm in Gvis,Q(P ∗
con) since pm is a common predecessor. On the other hand, if pl is the root, then it

cannot have a parent. If pl /∈ P ∗
con, then this implies that pl has exactly one child in Gnav-con(s, Q).
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Figure 3.9: Illustration of the case when pj is the parent of pi and pi is the parent of ph and
pi 6∈ P ∗

con.

This is because R′
l = R′′

l when pl is the root and according to the condition in step (3) of the

algorithm |Ve(R′
l)| = 3, which implies that pl can have exactly one child. But this child must

belong to P ∗
con and this child is a common predecessor of ph and pk and hence connected to them

in Gvis,Q(P ∗
con). This completes the proof of statement (iv).

3.4.3 Incremental algorithm for connected deployment

From the construction in the previous section, it is clear that if we can deploy the agents over

the kernel point-set, P ∗
con, then we will have solved the connected deployment problem requiring

n−1
2 agents in the worst case. Our strategy is to incrementally construct the navigation graph

Gnav-con(s, Q) and emulate the Connected Kernel Computation Algorithm via a distributed im-

plementation.

We now describe a high-level motion coordination algorithm to implement the Connected

Kernel Computation Algorithm in a multi-agent network. An agent is capable of identifying

the children of the node of Gnav-con(s, Q) that it occupies by virtue of its sensing capabilities. We

also assume that the agent can then order the children based on an ordering scheme described in

the following section. We also assume that each agent is capable of moving along straight lines

connecting neighboring vertices of the navigation graph Gnav-con(s, Q). We describe these abili-

ties via two motion primitives Move-to-Child Algorithm and Move-to-Parent Algorithm. We

postpone to the following section the description of the content of the memory of each agent and

of the communication being exchanged between agents in order to allow each agent to execute
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Move-to-Child Algorithm and Move-to-Parent Algorithm. For now, it suffices to say that each

agent maintains in memory a variable status, with possible values {UNASSIGNED, ASSIGNED}, ini-

tialized to UNASSIGNED. The agent sets its status to ASSIGNED when it identifies a vertex of the

environment as a node of Gnav-con(s, Q) that belongs to P ∗
con. This vertex is the position where the

agent will tentatively position itself. Agents will communicate and process information only when

placed at the nodes of the navigation graph. The agent also stores the location of the parent of the

node that it occupies and also the last node it has visited, plast.

The Connected Depth-first Deployment algorithm is as follows:

Algorithm: Connected Depth-first Deployment

Input: Simply connected polygon Q, s ∈ Ve(Q), k agents located at s

For every PROCESS interval for agent j located at node pi of Gnav-con(s,Q) do

(1) If ASSIGNED message received from another agent at the same node with same parent and

with UID lower than j, then

(2) status := ASSIGNED; Stay at current node; Return

(3) If ASSIGNED message received from another agent at the same node with same parent and

with UID greater than j, then

(4) status := UNASSIGNED; Move-to-Parent Algorithm; Return

/* Therefore, no ASSIGNED message received from another agent at the same node with

same parent */

(5) If status = ASSIGNED then Stay at current node; Return

(6) Compute Ri and the locations of all the children of pi and order them.

(7) If (|Ve(R′
i)| = 3) AND (|Ve(R′′

i )| = 3) AND (there exists exactly one child of pi in each

of R′
i and R′′

i ) AND (both the children are occupied by at least one agent with ASSIGNED

status and with parent pi) then

(8) status := UNASSIGNED; Move-to-Parent Algorithm; Return

(9) else if (all children of pi are occupied by agents with ASSIGNED status with parent pi)

OR (plast is either the last child or the last child such that no agent with ASSIGNED status

and with parent pi occupies it) OR (no children exist) then

(10) status := ASSIGNED; Stay at current node; Return

(11) else
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(12) status := UNASSIGNED;

(13) Move-to-Child Algorithm towards next unassigned child in ordering; Return

We are now ready to state the main result of this section.

Theorem 3.4.5 (Convergence and Run Time Analysis). Given a simply connected polygon Q with

n vertices, assume that k agents are initially collocated at s ∈ Ve(Q). Then the following statements

hold:

(i) there exists a finite time t∗, such that for all times greater than t∗ there is at least one agent

on min{|P ∗
con|, k} points of P ∗

con;

(ii) if k ≥ n−1
2 , then the connected deployment problem is solved in finite time by the algorithm;

(iii) assuming unit speed for any agent and bounded diameter of Q, the time taken for task com-

pletion is t∗ ∈ O(n).

Proof. We begin by proving statement (i). We prove that in finite time there exists at least one

agent with ASSIGNED status on min{|P ∗
con|, k} points of P ∗

con. From the Connected Depth-first

Deployment, it follows that once a node of the navigation graph is occupied by an agent with

ASSIGNED status, it continues to be occupied by at least one agent with ASSIGNED status for all

future times. To prove our claim, we first show that the status of an agent on a node, say pi, can

be ASSIGNED only if the node belongs to P ∗
con. Let us assume that at some time t, all the agents

with ASSIGNED status are located on nodes belonging to P ∗
con. We show that the next agent that

acquires the ASSIGNED must be located on a node belonging to P ∗
con. An agent can acquire an

ASSIGNED status either from another agent with ASSIGNED status or at step (10) of the algorithm.

If it is the former, then we are done because by assumption all agents with ASSIGNED status occupy

nodes belonging to P ∗
con. For the latter case, we have to show that if the execution of the algorithm

reaches step (10), then the agent must be on a point in P ∗
con. For step (10) to be executed, the

conditions in step (7) must not hold and at least one of the conditions in step (9) must be true.

If all children contain agents with ASSIGNED status and with parent pi, then all children belong

to P ∗
con. In the Connected Kernel Computation Algorithm, at any stage of the execution of

the algorithm, the point-set P ∗
con is a subset of P ∗

mark. Thus, in step (1) of the Connected Kernel
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Computation Algorithm, we can also work with a node whose all children belong to P ∗
con. Thus, pi

is one such node. Since the condition in step (7) is not true, it implies that the condition in step (3)

of the Connected Kernel Computation Algorithm is also not true. This proves that pi ∈ P ∗
con.

Now, if plast is the last child or the last child with no agent occupying it whose status is ASSIGNED

and whose parent is pi, then it implies that the agent at node pi has visited all the children which do

not have any agent with ASSIGNED status on them. Now, this implies that for all such children the

condition in step (7) must have been true for the agent to execute Move-to-Parent Algorithm and

move to pi. Hence that child cannot belong to P ∗
con. But from the proof of Proposition 3.4.4 (iii),

every edge of the navigation graph contains at least one element of P ∗
con. Since at least one child of

pi does not belong to P ∗
con, we have that pi ∈ P ∗

con. Finally, if pi does not have any children, then

pi is a leaf of the navigation graph and clearly belongs to P ∗
con. In the end to prove our claim, we

must show that the first agent acquiring the ASSIGNED status must be at a node belonging to P ∗
con.

But, this can be easily checked by noticing the for this agent the condition in step (10) is true only

if there are no children of the node. Again, a node having no children belongs to P ∗
con. We have

thus proven that an agent can acquire the ASSIGNED status only on a node belonging to P ∗
con.

Now, steps 1-5 of Connected Depth-first Deployment imply that an agent with ASSIGNED

status stays at a node unless there is an agent with a higher UID collocated at the same node. It

also follows that once such a node is occupied by an agent, it continues to be occupied by at least

one agent for all future times. Therefore, the number of nodes containing agents with ASSIGNED

status is non-decreasing. Since the number of nodes are finite, there exists a finite time after which

the number of nodes containing agents with ASSIGNED status is constant. If this constant is equal

to |P ∗
con|, then we are done. On the other hand if this constant is equal to k, then again we are

done. But, if this constant is less than both k and |P ∗
con|, then this implies that there exists an

agent that has UNASSIGNED status for all future times. Also notice that at any node occupied by

an agent with ASSIGNED status, the UID of the agent that occupies it is nondecreasing. Since the

number of agents are finite, there exists a finite time after which the maximum UID of an agent

with ASSIGNED status at a node is constant. Therefore, after a finite time there will exist an agent

that has UNASSIGNED status for all future times and any node that it will visit either does not have

an agent with ASSIGNED status on it, or the UID of the agent with ASSIGNED status will be greater
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than its own. If this agent executes only Move-to-Parent Algorithm for future times, then it will

reach the root in finite time. Notice that the nodes of the navigation graph occupied by agents

with ASSIGNED status are filled in a bottom up fashion, i.e., if an agent with ASSIGNED status

occupies a node, then all nodes belonging to the subtree of that node and to P ∗
con must already be

occupied by agents with ASSIGNED status. Thus, if an agent reaches the root and executes only

Move-to-Parent Algorithm, then all nodes of the navigation graph belonging to P ∗
con must be

occupied by agents with ASSIGNED status; this is a contradiction. On the other hand, if the agent

executes a Move-to-Child Algorithm from a parent to a child, then both the parent and the child

must not be occupied by agents with ASSIGNED status. But again one of these nodes must belong

to P ∗
con. Therefore, either the agent does not return to the parent, in which case it implies that

it has acquired the ASSIGNED status which is a contradiction, or it executed the Move-to-Parent

Algorithm from the child to the parent and since no agent is located on the child with status

ASSIGNED, we have that the agent will acquire the ASSIGNED status at the parent node which is

again a contradiction.

Statement (ii) is a consequence of statement (i) and Proposition 3.4.4 (ii).

The worst case time is obtained when all agents move together along the same depth-first path

in the navigation graph till all the agents are deployed. Since the diameter of Q is bounded, the

time taken to move between adjacent nodes of the navigation graph is bounded. Also, the time

taken to process the information and the communication delay are bounded according to our model

in Section 3.2. The navigation graph has at most n − 2 nodes; thus visiting all the nodes along a

depth-first search takes O(n) time. This proves statement (iii).

3.4.4 Distributed information processing

In this section, we describe the various ingredients of the Connected Depth-first Deployment

algorithm described in the previous section.

Communication

The information vector I of each agent to be broadcast consists of the logic variable {status},

assuming values in the sets {ASSIGNED, UNASSIGNED} and the relative location of the parent node.
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This is broadcast along with the UID of the agent as described in Section 3.2.

Motion primitives

From Lemma 3.4.2 (ii), we know that adjacent nodes of the navigation graph are mutually visible.

Therefore, moving between adjacent nodes consists of moving along a straight line from one point

to another, possible due to the first order dynamics of the agents described in Section 3.2. This

constitutes the Move-to-Parent Algorithm and Move-to-Child Algorithm where the difference

in name is only an aid to understand whether the agent is moving from a node to its parent or to

one of its children.

Ordering the children

Let m be any positive integer. Then the children of any node, say pi, of Gnav-con(s, Q), can be

ordered in the following way:

Ordering scheme: Let ci be the number of children of pi. The children are first

ordered in clockwise manner as seen from pi. Then the children are re-ordered by

performing a cyclic shift with the (m mod ci) + 1th child as the first.

Memory management

At any node, say pi of the navigation graph, to execute the Move-to-Parent Algorithm, the

agent must know the location of the parent. Since the partition and hence the navigation graph

is constructed in a top-down manner, the location of the parent cannot be computed from pi.

Hence, the relative location of the parent must be stored in the memory. Next, to compute the

set Ri and hence the children of pi, an agent needs to remember the diagonals that will separate

the set Ri from the Rj where pj is the parent of pi. To order the children, the agent needs to

have access to the parameter, m, used for the ordering as described in the previous section. As

described in the next paragraph, this parameter depends on the UID and also on the topology of

the navigation graph. The agent needs to remember the last node it has visited to enable it to visit

the nodes of the navigation graph in an ordered way. Finally, the agents needs to have access to
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the variable status, since it is at times not obtained as a result of local computation but via local

communication.

The above geographic and other required information is gathered and managed by the agents

via the following state transition laws and communication protocols. At this time, we make full use

of the computation, communication, and sensing abilities of the agents as described in Section 3.2.

(i) The memory content M of each agent is a 6−tuple (pparent, plast, g1, g2, status, ID
∗), where

pparent is an ordered list of points in R2, plast is a point in R2, g1 and g2 are ordered list of ele-

ments belonging to R2×R2, and ID∗ is an ordered list of positive integers denoting the param-

eter which dictates the ordering of the children of the corresponding nodes in pparent. For any

agent i, at time t = 0, Mi(0) = {(ai(0)), ai(0), (ai(0), ai(0)), (ai(0), ai(0)), UNASSIGNED, i}.

During run time, M is updated to acquire and maintain the following meaning: pparent is the list

of relative locations of the predecessor nodes with respect agent’s current node, plast is the relative

location of the last node visited by the agent, and g1 and g2 are the diagonals that are shared

between the agents current cell(s) and the parent cell. This is accomplished as follows:

(ii) After an agent moves from a node pi to a child node pj located on diagonals described by

vertices v′1, v
′′
1 and v′2, v

′′
2 via Move-to-Child Algorithm, its memory M is updated as follows:

pi − pj is added to the beginning of the list pparent, plast := pi − pj , (v′1 − pj , v
′′
1 − pj) and

(v′2 − pj , v
′′
2 − pj) are added to the beginning of the lists g1 and g2 respectively, and ⌈ID∗

1/ci⌉

is added to the beginning of the list ID∗. Here ID∗
1 refers to the first element of ID∗.

(iii) After an agent moves from a node pj to the parent node pi via Move-to-Parent Algorithm,

its memory M is updated as follows: the first elements of pparent, g1, g2 and ID∗ are deleted

and plast := pi = pj .

(iv) status is managed according to the Connected Depth-first Deployment algorithm de-

scribed in Section 3.4.3.

The following lemma quantifies the memory and communication complexities involved in the

distributed information processing scheme described above.
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Lemma 3.4.6 (Memory and communication complexity). Let k be the total number of agents and

the UIDs of the agents belong to {1, . . . , k} and let the diameter of Q be bounded. For any agent i,

at any time t, the following properties hold:

(i) The number of bits required to store Mi is O(d log k), where d is the depth of Gnav-con(s, Q);

and

(ii) the number of bits in any broadcast message is O(log k).

Proof. The memory is a 6-tuple; the objects pparent, g1, g2 and ID∗ are lists of length at most d and

the objects plast and status are of length one. Since the diameter of Q is bounded, the number of

bits required to store the relative locations of the elements of pparent with finite resolution is O(1).

The value of an element of ID∗ is bounded by the UID of the agent which is bounded by k. It,

therefore, takes at most log k bits to store an element of ID∗. Statement (i) follows directly. A

broadcast message consists of the UID, status and pparent1. The former is bounded by k and the

latter two are of constant size. Statement (ii) follows.

3.4.5 Simulation results

In this section we present simulation results for the Connected Depth-first Deployment algo-

rithm described in Section 3.4.3. The algorithms have been implemented in MATLAB. The environ-

ment, Q, the root s and the navigation graph Gnav-con(s, Q) are as shown in Figure 3.6. Note that

Q is chosen to represent a typical floor plan. Figure 3.10 shows, from left to right, the evolution

of the simulation. At the end of the simulation, the agents are located at the points P ∗
con, which

in this case coincides with nodes of the navigation graph. The yellow sets denote the star-shaped

sets owned by the agents that are already ASSIGNED.

3.5 General deployment of agents

In this section, we present a distributed algorithm for deployment of agents without constraining

the visibility graph of the final configuration of the agents to have one connected component. As

in the previous section, we begin by identifying a set P ∗ ∈ ker∗(Q) which is the desired set of

points for deployment. The classic Art Gallery Theorem [76] states that there exists a point set
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Figure 3.10: Execution of the Connected Depth-first Deployment algorithm over a prototypical
floor plan. As forecasted by our analysis, the final agent configuration is connected in the visibility
graph, and any point in the environment is visible to at least one agent.

satisfying the above properties with cardinality at most ⌊n/3⌋. In [100], a constructive algorithm

based on coloring is given to compute the set. However, the algorithm in [100] requires centralized

computation and is not amenable to a distributed implementation. In this section, we present a

Kernel Computation Algorithm to compute P ∗ whose cardinality is at most ⌊n/3⌋, but which

more amenable for a distributed implementation. We then present the Depth-first Deployment

algorithm based on the Kernel Computation Algorithm to solve the deployment problem.

3.5.1 Navigation graph for deployment

In this section we first define the navigation graph for deployment. Unlike the navigation graph for

connected deployment, the navigation graph in this section is not used in the Kernel Computation

Algorithm algorithm but it will be an important ingredient of the distributed implementation of

the Kernel Computation Algorithm via the Depth-first Deployment algorithm. We maintain

the same organization of the section for the sake of consistency.

Definition 3.5.1 (Navigation graph). Given a simply connected polygonal environment, Q, s ∈
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Ve(Q), let R and P be the outputs of the Incremental Partition Algorithm. The navigation

graph, Gnav(s, Q) is the graph with {v ∈ Ve(Q)∩Ri ∩Rj | Ri, Rj ∈ R, i 6= j}∪{s} as the node

set and an edge between two nodes v′ and v′′ if and only if v′ = pi for some i and v′′ ∈ Ri ∩Rj for

some Rj with v′ /∈ Rj.

s

Figure 3.11: Illustration of the navigation graph, Gnav(s, Q). The set of points represented by the
black and white discs are the nodes of the graph; the red arcs represent the edges. The black discs
represent the set of points in P.

Figure 3.11 is an illustration of an example navigation graph. The following lemma summarizes

the properties of Gnav(s, Q).

Lemma 3.5.2 (Properties of the navigation graph). The graph, Gnav(s, Q), satisfies the following

properties:

(i) Gnav(s, Q) is not necessarily a tree, i.e., it can contain cycles;

(ii) adjacent nodes of the graph are mutually visible to each other.

Proof. Please refer to Figure 3.11 for an example of a scenario when Gnav(s, Q) contains a cycle.

Statement (ii) follows from the construction of R.

3.5.2 A sparse kernel point-set

We begin by introducing some additional useful notions. Given a triangulation TQ of an environ-

ment Q, it is possible to define a graph where a node represents a triangle and an edge represents

the fact that the corresponding triangles share a common diagonal; see [84] and Figure 3.12. For

simply connected polygons, this graph is a tree. Let us now designate a node r that has at most
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two neighbors as the root of the tree; this choice is arbitrary. We thus obtain a directed tree that

is binary2 and we denote it by G△(TQ, r). The node set and edge set are denoted by N (TQ) and

E(TQ) respectively. A fork of G△(TQ, r) is any node having two children. A chain of G△(TQ, r)

is a connected subgraph of G△(TQ, r) with the property that every node has at most one child in

the subgraph. Before presenting the Kernel Computation Algorithm, we introduce three useful

s′

d1

d2r

s

Figure 3.12: A simply connected environment, Q, in the shape of a typical floor plan and its
triangulation by means of diagonals. A triangle r and the corresponding directed tree G△(TQ, r).
The edges of G△(TQ, r) are directed away from the root. The shaded region on the right shows the
set Ncvr(v, ad(v)), where v is depicted by the red ball and ad(v) = {d1, d2} where d1, d2 are the
diagonals shown by the solid lines.

notions. First, we associate to each vertex in Q a set of diagonals of Q. Formally, given a vertex

v, let ad(v) be the set of diagonals of Q associated with v. To begin with, we set ad(v) := ∅ for all

v ∈ Ve(Q). As the Kernel Computation Algorithm populates the associated sets of diagonals, we

will require that each diagonal to be added to a set ad(v) must (1) contain v and (2) be the edge of

a triangle in TQ. Second, we provide an algorithmic way of computing certain triangles visible by a

vertex and containing the diagonals associated with that vertex. We call these triangles “covered.”

Definition 3.5.3 (Covered triangles). Given a vertex v with a non-empty associated diagonal set

ad(v), the set of triangles covered by v using ad(v), denoted by Ncvr(v, ad(v)), is the set of triangles

N ∈ N (TQ) with the two following properties: (1) N contains v, and (2) either N or one of its

successors contains a diagonal in ad(v).

2A directed tree where every node has at most two outgoing edges.
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Third, given a set of vertices with non-empty associated diagonal set, we characterize some sets

of triangles that are not covered by the vertices.

Definition 3.5.4 (Removable sets of triangles). Given Q and a triangulation TQ of it, let G△(TQ, r)

be the corresponding directed tree with r as the root. Let P be a set of vertices with non-empty

associated diagonal sets ad(p), for p ∈ P .

(i) A removable fork of P is a fork N with the property that, in each of its two branches, the

successors of N that do not belong to ∪p∈P Ncvr(p, ad(p)) together with the fork form one of

the two structures in Figure 3.13.

N

(a)

N

(b)

Figure 3.13: Illustration of possible cases of an occurrence of a removable fork. In case (a), all
successors of N in the left branch belong to ∪p∈P Ncvr(p, ad(p)) and only the child of N in the
right branch does not belong to ∪p∈P Ncvr(p, ad(p)). In case (b), in both branches of N , only the
children of N do not belong to ∪p∈P Ncvr(p, ad(p)).

(ii) A removable chain of P is a chain of length greater than or equal to 3 satisfying the following

properties: (a) all triangles in the chain share a common vertex; (b) a fork may be present

only at the beginning or at the end of the chain; (c) none of the triangles of the chain belong

to the set ∪p∈P Ncvr(p, ad(p)), except possibly for the triangle at the beginning of the chain;

(d) if the triangle at the beginning of the chain is not a fork, then it must not belong to the set

∪p∈P Ncvr(p, ad(p)); and (e) all triangles that are successors of the last triangle of the chain

belong to the set ∪p∈P Ncvr(p, ad(p)).

(iii) A removable stub of P is a chain of length less than or equal to 2 satisfying the following

properties: (a) the first triangle is the root r; (b) none of the triangles of the chain belong

to the set ∪p∈P Ncvr(p, ad(p)); (c) all triangles that are successors of the last triangle of the

chain belong to the set ∪p∈P Ncvr(p, ad(p)); and (d) if the root is a fork, then the length of

the chain must be 1.
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Nk

Ni

Nj

Nl

Figure 3.14: Illustration of an example of a removable chain formed by the triangles Ni, Nj and
Nk: (a) The three triangles share a common vertex (black disc.); (b) Nj is not a fork; (c) none
of the triangles belong to ∪p∈P Ncvr(p, ad(p)); (d) Nk is not a fork and it does not belong to
∪p∈P Ncvr(p, ad(p)); and (e) all triangles that are successors of Ni belong to ∪p∈P Ncvr(p, ad(p)).

After these three preliminary definitions, we are now ready to design a procedure to compute

a set of points P ∗ and associated diagonal sets by covering all triangles in TQ.

Algorithm: Kernel Computation Algorithm

Input: Directed tree G△(TQ, r) dual to the triangulation TQ of polygon Q with root r

Initialization: P ∗ := ∅ and ad(p) := ∅ for all p ∈ Ve(Q)

While a removable fork, a removable chain or a removable stub for P ∗ exists do

R1: For a removable fork, define p and e as described in Figure 3.15.

Update P ∗ := P ∗ ∪{p} and ad(p) := ad(p)∪ e.

R2: For a removable chain, let p be the vertex common to all triangles in the chain.

Set e to be the set containing the diagonal separating the last triangle in the chain from

its predecessor.

Update P ∗ := P ∗ ∪{p} and ad(p) := ad(p)∪ e.

R3: For a removable stub, place p on a vertex common to r and its child.

Set e to be the set containing the diagonal which the root shares with its child.

Update P ∗ := P ∗ ∪{p} and ad(p) := ad(p)∪ e.

Return: P ∗

Please refer to Figure 3.16 for an example of a point-set P ∗ obtained via the Kernel Computation

Algorithm.

Remarks 3.5.5. (i) The rules can be applied to different portions of the G△(TQ, r) simultane-

ously. This property will be useful in designing an asynchronous distributed implementation

of the above algorithm later.
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p

d

(a)

d

p′

(b)

p

d2d1

(c)

Figure 3.15: Illustration of placement rules for a removable fork. Case (a) illustrates the scenario
when the point of N common to both its children does not belong to P ∗. Let p be as shown in the
figure and e := {d}. Case (b) depicts the situation when there exists a point p′ ∈ P ∗. Let p = p′

set e := {d}. In case (c), let point p be as shown and let e := {d1, d2}.

s

Figure 3.16: An illustration of a polygon Q and s ∈ Ve(Q) the corresponding point-set P ∗.
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(ii) Rule R3 can be invoked at most once since there is only one root. Also, when invoked, it is

the last rule to be done so.

�

The following important theorem characterizes the set P ∗ obtained as a result of the above

procedure.

Theorem 3.5.6 (Properties of the Kernel Computation Algorithm). Given a simply connected

polygon Q with n vertices, a triangulation TQ of Q, and a triangle r ∈ TQ with at most two adjacent

triangles, compute the point set P ∗ according to the Kernel Computation Algorithm invoked with

input G△(TQ, r). Then the following properties hold:

(i) The Kernel Computation Algorithm invokes at most (n−2) applications of the rules R1, R2

and R3 and its output P ∗ is unique up to the invocation of rule R3 regardless of the sequence

in which the earlier rules are applied;

(ii) P ∗ ∈ ker∗(Q);

(iii) |P ∗| ≤ n/3.

Proof. We begin by proving statement (i). Let P denote P ∗ at any intermediate stage of the

execution of the algorithm. To apply any of the rules R1, R2 or R3, there must exist a removable

fork, chain or stub respectively. In each of the three cases, there must exist at least a triangle,

say Nj , that does not belong to ∪p∈P Ncvr(p, ad(p)). After the application of any rule, the triangle

Nj belongs to ∪p∈P Ncvr(p, ad(p)), where P is updated as in the Kernel Computation Algorithm.

Thus, | ∪p∈P ∗ Ncvr(p, ad(p))| increases strictly after the application of any rule. Therefore, the

number of times the rules R1, R2 and R3 can be applied is bounded by the total number of triangles,

which is n − 2.

To prove statement (ii), we show that ∪p∈P ∗ Ncvr(p, ad(p)) = N (TQ). We argue by contra-

diction. Let Nj ∈ N (TQ) be the triangle at the greatest depth which does not belong to the set

∪p∈P ∗ Ncvr(p, ad(p)). If Nj does not have a parent, then it is the root. Thus, it is a removable stub

and hence R3 can be applied which is a contradiction. Now let Nj have a parent, say Ni. Now if

Ni is a fork, then all grand-children of Ni belong to ∪p∈P ∗ Ncvr(p, ad(p)) because by assumption
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Nj is the triangle at the greatest depth that does not belong to the set. Then, Ni with Nj must

form one of the structures shown in Figure 3.13. Thus, rule R1 can be applied and again we have

a contradiction. If on the other hand, Ni is not a fork, then we claim that it does not belong to

∪p∈P ∗ Ncvr(p, ad(p)). If it did, then it was part of either a removable fork, removable chain or a

removable stub. But, in all the three cases, it is a requirement that all triangles that are successors

of the lower most triangles of the three structures belong to the set ∪p∈P Ncvr(p, ad(p)), where

P is an intermediate value of P ∗. But since Nj does not belong to ∪p∈P Ncvr(p, ad(p)), this is a

contradiction. Thus, Ni also does not belong to ∪p∈P ∗ Ncvr(p, ad(p)). If now Ni does not have a

parent, then Ni is the root and again (Ni,Nj) forms a removable stub and R3 can be applied which

is a contradiction. If Ni has a parent, say Nh, then (Nh,Ni,Nj) is a chain of length 3, and any 3

triangles in a chain share a common vertex. Thus, (Nh,Ni,Nj) is a removable chain and hence R2

can be applied, which is a contradiction.

To prove statement (iii), let us introduce some useful notation. Given Q, a triangulation TQ and

a root r, let P ∗(Q, TQ, r) denote the kernel configuration obtained upon execution of the Kernel

Computation Algorithm. If Q′ is any simply connected polygonal subset of Q with every edge

either an edge of Q or an edge of one of the triangles in the triangulation, TQ, then let TQ|Q′ denote

the triangulation TQ restricted to Q′.

The proof is by induction. We first show that the result holds true for any polygon with 5 or

less vertices. If n = 3, then Q is a triangle. We apply R3 and |P ∗(Q, TQ, r)| = 1 = n/3 and we are

done. If n = 4, then G△(TQ, r) is a chain of length 2 and also a removable stub of length 2. Thus,

|P ∗(Q, TQ, r)| = 1 ≤ n/3. If n = 5, then |TQ| = n − 2 = 3. If the root triangle r has exactly one

child, then the 3 triangles form a removable chain and P ∗(Q, TQ, r) consists of a single point placed

at the common vertex of the triangles according to rule R2. Thus |P ∗(Q, TQ, r)| = 1 ≤ n/3. If r is a

fork with two children, then the three triangles form a removable fork as shown in Figure 3.13 (c).

In this case, P ∗(Q, TQ, r) consists of a single point placed according to rule R1 in Figure 3.15 (c).

Again, |P ∗(Q, TQ, r)| = 1 ≤ n/3. This proves the result for all polygons with 5 or less vertices.

Now, let us assume that the statement is true for all polygons with less than or equal to m

vertices, where m ≥ 5. Let Q be a polygon with m + 1 vertices and let TQ be a triangulation of

it. We now show that statement (iii) is also true for this polygon. Note that from statement (i)
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of this lemma, we know that P ∗(Q, TQ, r) is unique and thus we can begin to apply the rules of

the Kernel Computation Algorithm from any suitable portion of G△(TQ, r). If there are no forks

present, let Ni be a leaf at the largest depth. If a fork is present, let us choose one with the largest

depth. Now, let Ni be a successor of this fork which is at the largest depth. Let Nj be the parent

of Ni.

If Nj is a fork, then let Nk be the other child of Nj . Now, Nk cannot have any successor since

otherwise Ni will not be the leaf at the greatest depth. Thus, Ni, Nj and Nk form a removable

fork as in Figure 3.17. According to rule R1 of the Kernel Computation Algorithm, let p be

defined as in Figure 3.15 (c). Thus, Ncvr(p, ad(p)) = {Ni,Nj ,Nk}. Let Q′ be the polygon obtained

after deleting the 3 triangles having m − 2 vertices. Let Nl be the parent of Nj . It must exist

because Q consists of at least 4 triangles. But, then P ∗(Q, TQ, r) = P ∗(Q′, TQ|Q′ , r)∪{p}. This

implies that |P ∗(Q, TQ, r)| = |P ∗(Q′, TQ|Q′ , r)| + 1. From the induction hypothesis, we know that

|P ∗(Q′, TQ|Q′ , r)| ≤ (m − 2)/3. It follows that |P ∗(Q, TQ, r)| ≤ (m − 2)/3 + 1 = (m + 1)/3.

Nl

p

NiNk

Nj

Figure 3.17: Illustration of the case when Nj is a fork.

If Nj is not a fork, then since there are at least 4 triangles, Nj has a parent, say Nk. Then,

Ni, Nj and Nk form a removable chain and there exists p1 ∈ P ∗(Q, TQ, r) at the vertex common

to the three triangles. If Nk is not a fork, then let Nl be its parent. Again Nl exists because there

are at least 4 triangles in Q. Then the cases illustrated in Figure 3.18 (a) and Figure 3.18 (b) (left)

are possible. For the case in Figure 3.18 (a), let Q′ be the polygon obtained after deleting Ni.

Then P ∗(Q, TQ, r) = P ∗(Q′, TQ|Q′ , r). This is because Nj , Nk, Nl form a removable chain of Q′

again; so there exists p1 ∈ P ∗ at the vertex common to the three triangles; the placement of points

in the rest of the polygon is therefore unaffected. But |Ve(Q′)| = |Ve(Q)| − 1 = m; thus by the

induction hypothesis |P ∗(Q′, TQ|Q′ , r)| ≤ m/3. Therefore, |P ∗(Q, TQ, r)| ≤ m/3 ≤ (m + 1)/3 and
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we are done. Also, Figure 3.18 (b) (left) is equivalent to Figure 3.18 (b) (right) upon rearranging

as shown. But, this is in turn equivalent to the case illustrated in Figure 3.17.

p1

Ni

Nk

NjNl

(a)

Nk

Ni

Nj

Nl Nl

NjNi

p1 p1

Nk

(b)

Figure 3.18: Illustration of the possible cases when Nj and Nk are both not forks.

If Nk is a fork, then the other branch of Nk can have either one or two children. This is because

by assumption, Nk is the fork at the greatest depth and Ni is its child at the greatest depth.

Let us first look at the case when the other branch of Nk has one triangle. Then the cases

depicted in Figure 3.19 are possible. Notice that (Nk,Nj ,Ni) is a removable chain; hence there

exists p1 ∈ P ∗ at the vertex common to the three triangles. Now, Nk together with its child in

the other branch is a removable fork; therefore there exists p2 ∈ P ∗ at a vertex governed by the

placement rule R1 in the Kernel Computation Algorithm. In case (a), p1 and p2 coincide. In

case (a), delete Ni to obtain Q′. Then the result follows by arguing along the lines for the case

in Figure 3.18 (a). For the case in Figure 3.19 (b), if Nk does not have a parent, then we have

m + 1 = 6 and |P ∗(Q, TQ, r)| = 2 = 6/3 and we are done. Let us now assume that Nk has a

grand-parent as well as a sibling. The other remaining cases can easily be verified by the reader.

Let Nl be the parent of Nk as shown in Figure 3.20. Then, two possible cases might arise: (i) the

p1, p2

Ni

Nk

Nj

(a)

p2

Nj

Nk Ni

p1

(b)

Figure 3.19: Illustration of all possible cases when Nj is not a fork, Nk is a fork and has exactly
one triangle in the second branch.
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triangle Nl together with the sibling of Nk forms a removable fork; and (ii) the triangle Nl is part

of a removable chain.

Let us first look at case (i). Then, as per rule R1 of the Kernel Computation Algorithm, a

point will be placed to coincide with p2. Thus, the third vertex of the Nl will not contain any

point belonging to P ∗(Q, TQ, r). Therefore, we can decompose Q as shown in Figure 3.20 (top).

The decomposed figure consists of four components as shown. The top left component is the

polygon Q containing Nl and all its successors, say Q′. The bottom left component consists of two

triangles as shown. The top right component consists of Nl and Nk and all successors of Nl, say

Q′′. The bottom right component consists of the two triangles as shown. If we apply the Kernel

Computation Algorithm to Q′, then we claim that P ∗(Q′, TQ|Q′ ,Nl) = P ∗(Q, TQ, r)∩Q′. This

can be easily seen by noticing that the rules applied to the removable forks and chains in the part

of Q that consists of successors of the sibling of Nk is not affected by the decomposition. What is

affected is the fact that Nl together with the sibling of Nk forms a removable stub in Q′ whereas

in Q it is removable fork. However, even in the case of the removable, as per rule R3 of the Kernel

Computation Algorithm, we can place a point on one of the vertices of the diagonal that the root

shares with its child; in this case we choose the point to coincide with p2. Similarly, if we apply the

Kernel Computation Algorithm to Q′′, then we claim that P ∗(Q′′, TQ|Q′′ , r) = P ∗(Q′, TQ, r)∩Q′′.

To see this notice that the vertex of Nl different from p1 and p2 does not contain a point belonging

to P ∗(Q, TQ, r). Thus, the rules applied to the removable forks and chains in the part of Q that

consists of predecessors of the sibling of Nl is affected only by p1. But in Q′′, the triangles Nk,

Nl and its predecessor form a removable chain. Thus, we place a point to coincide with p1. The

placement of points in the rest of Q′′ is then identical to that in Q. Therefore we have that

|P ∗(Q, TQ, r)| = |P ∗(Q′, TQ|Q′ ,Nl)| + |P ∗(Q′′, TQ|Q′′ , r)|. But, by our induction hypothesis, we

have that |P ∗(Q′, TQ|Q′ ,Nl)| ≤ |Ve(Q′)|/3 and |P ∗(Q′′, TQ|Q′′ , r)| ≤ |Ve(Q′′)|/3. But, |Ve(Q′) +

|Ve(Q′′)|| = |Ve(Q)| since the three vertices of Nl are repeated in Q′ and Q′′ but also three vertices

belonging to the bottom left and bottom right polygons are removed. This proves the result for

case (i).

Let us now look at case (ii). Since Nl and the sibling of Nk do not form a removable fork, the

point p2 does not influence the placement of the rest of the points in Q. Two further cases are
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possible. In the first case, point p2 is placed according to rules R1 or R2 applied to removable forks

or chains that in the part of Q consisting of Nl and its successors. In this case, we can decompose Q

as shown in the Figure 3.20 (bottom) into three polygons. The left polygon is a triangle, the center

polygon consists of Nj and all its predecessors together with the successors of Nl, the right polygon

again consists of one triangle as shown. Let the center polygon be Q′. If we apply the Kernel

Computation Algorithm to Q′, we obtain that P ∗(Q, TQ, r) = P ∗(Q′, TQ|Q′ , r). This is because

point p2 is present by assumption. Point p1 will be present since Nj , Nk and Nl form a removable

chain of Q′. But by the induction hypothesis, |P ∗(Q′, TQ|Q′ , r)| ≤ |Ve(Q′)|/3 ≤ |Ve(Q)|/3 and

thus |P ∗(Q, TQ, r)| ≤ |Ve(Q)|/3. In the second case, there are no removable forks or chains in the

part of Q consisting of Nland its successors such that a point is placed at p2. In this case, we may

decompose Q into three polygons. The left polygon is a triangle, the center polygon consists of

Nk and its predecessors together with the successors of Nl and the right polygon consists of two

triangles as shown. Let Q′ be the center polygon. Since point p2 does not belong to P ∗(Q′, TQ|Q′ , r)

by assumption, we have that point p1 must belong to P ∗(Q′, TQ|Q′ , r) because of the fact that Nl

and Nk will form a removable fork. Therefore, |P ∗(Q′, TQ|Q′ , r)| = |P ∗(Q, TQ, r)| − 1 since p2 is

not a part of P ∗(Q′, TQ|Q′ , r). But, by the induction hypothesis |P ∗(Q′, TQ|Q′ , r)| ≤ |Ve(Q′)|/3 ≤

(|Ve(Q)| − 3)/3 = |Ve(Q)|/3 − 1. Thus, |P ∗(Q, TQ, r)| ≤ |Ve(Q)|/3. This completes the proof for

the case when the other branch of Nk has one triangle.

OR
p2

Nj

Nk Ni

Nl Nl

p2 p1 p2 p1

Nk

Nl

Nl

p2
p1

Nk

Nj

Ni

Nl

Nk

p1

Nj

p2

Nk

Nl

p1

Figure 3.20: Illustration of the ideas used in the proof related to the case shown in Figure 3.19 (b).

Secondly, let us look at the case when the other branch of Nk has two triangles. Then the

cases illustrated in Figure 3.21 are possible. Notice that (Nk,Nj ,Ni) is a removable chain; hence
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there exists p1 ∈ P ∗ at the vertex common to the three triangles. Similarly, the other branch of

Nk also is a removable chain; again there exists p2 ∈ P ∗ at the common vertex. In case (a), p1

and p2 coincide. Again in case (a), delete Ni to obtain Q′ as in Figure 3.19 (a). If it is case (b),

p1, p2

Ni

Nj

Nk

(a)

p2

Ni

Nj

Nk

p1

(b)

Nk

p1 p2

Ni

Nj

(c)

Figure 3.21: Illustration of all possible cases when Nj is not a fork, Nk is a fork and has exactly
two triangles in the second branch.

delete Ni, Nj and the other grand child of Nk to obtain Q′. Also, delete p1. Notice that p2 will be

present in P ∗(Q′, TQ|Q′ , r) since the sibling of Nj , Nk and its parent form a removable chain and p2

is located at the common vertex. Since |P ∗(Q, TQ, r)| = |P ∗(Q′, TQ|Q′ , r)| − 1 and by our induction

hypothesis, we have that |P ∗(Q′, TQ|Q′ , r)| ≤ |Ve(Q′)|/3 = |Ve(Q)|/3 − 1, we obtain the desired

result. If it is case (c) delete Ni to obtain Q′ as in Figure 3.19 (b). This completes the proof of

statement (iii).

Remark 3.5.7. By construction, we know that s ∈ P. Let pi = s and now let us look at the set

Ri. Let s′ be a vertex of Q that is adjacent to s in the clockwise direction. Clearly, s′ belongs to Ri.

Now, let r be the triangle in TQ(R,P) containing the edge [s, s′]. Thus, we can define the directed

tree G△(TQ(R,P), r), where the triangle r serves as the root; see Section 3.5.2.

We now further characterize the point set P ∗ when G△(TQ(R,P), r) is the input to the Kernel

Computation Algorithm, where R and P are the outputs of the Incremental Partition Algorithm.

But first, notice that from rule R3 of the Kernel Computation Algorithm, we know that if a re-

movable stub exists then a point p is added to P ∗, where p belongs to a vertex common to r and

its child. However, the exact vertex is not specified. Before characterizing P ∗, let is resolve this

ambiguity for the case when G△(TQ(R,P)) is the input to the Kernel Computation Algorithm.

The following lemma states that the root triangle r in G△(TQ(R,P), r) always has s as one of

the vertices that it shares with its children.
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Lemma 3.5.8. Let Q be a simply connected polygon and let s ∈ Ve(Q) be given. Let R be a parti-

tion constructed according the Incremental Partition Algorithm and let P be the corresponding

set of kernel points. Let G△(TQ(R,P), r) be the input to the Kernel Computation Algorithm al-

gorithm. Then s belongs to the common edge between r and one of its children.

Proof. s is a vertex of r; see Remark 3.5.7. Let s′ and s′′ be the other two vertices. Let [s, s′] be

an edge of Q; again see Remark 3.5.7. We now claim that [s, s′′] is always a diagonal of Q. We

know that s ∈ P. Without loss of generality assume p1 = s. Then r ⊆ R1. By construction every

triangle in R1 that is a part of the triangulation TQ(R,P) must contain a diagonal with p1 = s as

one of the vertices of the diagonal. But [s, s′] is not a diagonal. Then [s, s′′] must be diagonal of

Q. The lemma follows directly.

Based on the above lemma we can now modify Rule R3 of the Kernel Computation Algorithm

as follows.

Algorithm: Modification of R3 of Kernel Computation Algorithm

Input: G△(TQ(R,P), r)

R3: For a removable stub, place p on s

Set e to be the set containing the diagonal in r with s as one of the vertices.

Update P ∗ := P ∗ ∪{p} and ad(p) := ad(p)∪ e.

In what follows, the set P ∗(TQ(R,P), r) will denote the output of the Kernel Computation

Algorithm with the modified rule R3, given G△(TQ(R,P), r) as the input. Finally, we are in a

position to present the result that further characterizes the location of the points P ∗(TQ(R,P), r).

The following lemma states that any element of P ∗(TQ(R,P), r) is a vertex of Q that belongs to

the set of nodes of the navigation graph, Gnav(s, Q). Thus, the deployment problem now reduces

to deploying agents on a subset of the nodes of the navigation graph.

Lemma 3.5.9. The set P ∗(TQ(R,P), r) is a subset of the vertex set of the navigation graph

Gnav(s, Q).

Proof. We reason by contradiction. Let u ∈ P ∗(TQ(R,P), r) and let u /∈ {v ∈ Ve(Q)∩Ri ∩Rj | Ri, Rj ∈

R, i 6= j}∪{s}. Then u 6= s. Also, u belongs to exactly one element of R, say Ri. Since u belongs
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only to Ri, u can belong to at most two triangles in TQ(R,P). Those triangles cannot be forks.

Thus, u must be placed according to rule R2 in the Kernel Computation Algorithm. But then

u must be common to at least three triangles which are part of a removable chain. This is a

contradiction.

3.5.3 Incremental algorithm for deployment

From the construction in the previous section, it is clear that if we can deploy the agents over the

kernel point, P ∗, then we will have solved the deployment problem requiring n
3 agents in the worst

case. Our strategy is to incrementally construct the navigation graph Gnav(s, Q) and emulate the

Kernel Computation Algorithm via a distributed implementation.

We now describe a high-level motion coordination algorithm to implement the Kernel Computation

Algorithm in a multi-agent network. The agents move along straight lines between nodes of the

navigation graph, Gnav(s, Q), and communicate and process information only when placed at the

nodes. Notice that since Gnav(s, Q) is not a tree, there is no natural meaning of children and parent

of a node of the graph. For an agent located at a node v of Gnav(s, Q), the parent node is the last

node visited that belonged to the set P. The children of a node v that belongs to P, say pi, is the

set {v′ ∈ Ve(Q)∩Ri ∩Rj | v′ /∈ Rj}. There are no children of a node v that does not belong to P.

Also recall that P can contain multiple copies of the same element, say pi = pj but with distinct

Ri and Rj . As before, an agent is capable of identifying the children of the node of Gnav(s, Q)

that it occupies by virtue of its sensing capabilities and can then order them based the ordering

scheme described in the previous section. Each agent is capable of moving along straight lines

connecting neighboring vertices of the navigation graph Gnav(s, Q) the via two motion primitives

Move-to-Child Algorithm and Move-to-Parent Algorithm.

The description of the content of the memory of each agent and of the communication being

exchanged between agents in order to allow each agent to execute Move-to-Child Algorithm and

Move-to-Parent Algorithm is postponed to the following section. For now, it suffices to say that

each agent maintains in memory a variable status, with possible values {UNASSIGNED, ASSIGNED},

initialized to UNASSIGNED. The agent sets its status to ASSIGNED when it identifies a vertex of

the environment as a node of Gnav(s, Q) that belongs to P ∗. This vertex is the position where the
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agent will tentatively position itself. Since this vertex belongs to P ∗, there exists a non-empty

set of associated diagonals of the node. It also stores the contents of this set, denoted by adi(v).

Here i denotes the UID of the agent and v is the current vertex occupied by the agent. At any

node v ∈ P, say v = pi, an agent can identify the edges of the set Ri that are shared with the

neighboring sets. At least one (possibly two) of these edges is the edge that contains pi. Let us

term the remaining edges as gaps of Ri. The agent also maintains a list Tdiag, whose elements are

lists of positive integers themselves. The first element Tdiag1 is a list of the number of triangles that

are still uncovered beyond each of the gaps of Ri, where 0 and 1 denote no uncovered triangles

and one uncovered triangle, respectively and 2 denotes the fact that the agent has no information

about the number of triangles that are uncovered; see Figure 3.22. If Ri has no gaps or if v /∈ P,

s

pi

Figure 3.22: Illustration of the elements comprising the list Tdiag. If the agent is located at pi, with
parent s, then the lightly shaded region represents Ri. The gaps of Ri are depicted by the dashed
lines. The list Tdiag1 will comprise of three elements, each corresponding to one gap. Assuming that
at a certain time there is one triangle that is uncovered beyond the first gap (shown by the darkly
shaded triangle), and no triangles uncovered beyond the next two gaps, then Tdiag1 = (1, 0, 0).

then Tdiag1 = ∅. The list Tdiag2 corresponds to the parent of v and so on.

Algorithm: Depth-first Deployment

Input: Simply connected polygon Q, s ∈ Ve(Q), k agents located at s

For every PROCESS interval for agent j located at node v of Gnav(s,Q) do

(1) If ASSIGNED message received from another agent l at the same node, then

(2) adj(v) := adj(v)∪ adl(v);

(3) If status = UNASSIGNED, then

(4) Let pi := v; compute Ri;let Ri := R′
i ∪R′′

i , where R′
i and R′′

i are as in Remark 3.3.2.
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(5) If (adj(v) contains diagonals in both R′
i and R′′

i ), then

(6) status := ASSIGNED; Stay at current node; Return

(7) If (status = ASSIGNED) AND (l < j), then

(8) Stay at current node; Return

(9) If (status = ASSIGNED) AND (l > j), then

(10) status := UNASSIGNED; Move-to-Parent Algorithm; Return

(11) If status = ASSIGNED, then Stay at current node; Return

/* Therefore, status is UNASSIGNED */

(12) Let pi := v; compute Ri; let Ri := R′
i ∪R′′

i , where R′
i and R′′

i are as in Remark 3.3.2.

(13) Compute the children of pi in Gnav(s,Q) and order them using the ordering scheme.

(14) Acquire adl(p) from all agents l with ASSIGNED status located at the children p of pi and update Tdiag1
.

(15) If plast /∈ Ri then /* the agent has arrived at pi the first time */

(16) Set the elements of Tdiag1
that were not updated equal to 2

(17) If (all elements of Tdiag1
are less or equal to 1) OR (Tdiag1

= ∅) then

(18) Compute the set P ∗
i := {p ∈ P ∗(TQ(R,P), r) | ad(p) contains a diagonal d in Ri

where d is not an edge of Ri to which pi belongs}.

(19) For each p ∈ P ∗
i , do compute adtmp(p) := {d ∈ (ad(p)∩Ri), d is not an edge of Ri to which pi belongs}.

(20) For all children p ∈ P ∗
i occupied by agent l with ASSIGNED status, do

(21) If adl(p) ( adtmp(p) then send adtmp(p) to agent l.

(22) Find first child p ∈ P ∗
i s.t. no agent with ASSIGNED status is located on it.

(23) If p does not exist, then

(24) If pi ∈ P ∗
i , then

(25) If no agent with ASSIGNED status present on pi, then

(26) status := ASSIGNED; adj(p) := adj(p)∪ adtmp(p); Stay at current node; Return

(27) N := children(pi)∪{pi}; adj(p) := adj(p)∪ adtmp(p).

(28) If pi /∈ P ∗
i , then
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(29) N := children(pi).

(30) Let pl be the parent of pi.

(31) Let d′ and d′′ be the indices of the gaps in Rl corresponding to R′
i ∩Rl and R′′

i ∩Rl, respectively.

(32) If ∪w∈N Ncvr(w, adtmp(w)) contain all triangles in R′
i, then Tdiag2

(d′) := 0, else Tdiag2
(d′) := 1.

(33) If ∪w∈N Ncvr(w, adtmp(w)) contain all triangles in R′′
i , then Tdiag2

(d′′) := 0, else Tdiag2
(d′′) := 1.

(34) status := UNASSIGNED; Move-to-Parent Algorithm; Return

/* Therefore, p exists */

(35) status := ASSIGNED; adj(p) := adtmp(p); Move-to-Child Algorithm towards p; Return

/* Therefore, at least one element of Tdiag1
is greater than 1*/

(36) Compute next child that belongs to P such that Tdiag1
(d) > 1 for at least one diagonal d that the

child belongs to; Move-to-Child Algorithm; Return

Remark 3.5.10 (Update of Tdiag1). Let pi be the node of the navigation graph occupied by an

agent j. The update Tdiag1 takes place as follows:

(i) Let pj be a child of pi that is occupied by another agent l with ASSIGNED status. If adl(pj)

contains a diagonal belonging to Rj, then it follows that all triangles on the opposite side of

the gap between Ri and Rj as pi are covered; thus the corresponding element of Tdiag1 is set

equal to zero.

(ii) Let v be any child of pi that is occupied by another agent l with ASSIGNED status. Then if

adl(p) contains the diagonal Ri ∩Rj, then all triangles on the opposite side of the gap between

Ri and Rj as pi are covered; thus the corresponding element of Tdiag1 is set equal to zero.

Ri

pi

pj

Ri

Rj

pi

v

Rj

Figure 3.23: Update of Tdiag1 in the Depth-first Deployment algorithm.
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Remark 3.5.11 (Computation of P ∗
i ). The computation in steps (20) and (21) of the Depth-first

Deployment described earlier are always possible. To see this, please refer to Figure 3.24. Since the

number of triangles that are uncovered beyond each gap is at most one (by virtue of the fact that all

elements of Tdiag1 are less than or equal to one), the triangulation graph that is dual to the triangles

in Ri together with the uncovered triangles beyond each gap and the triangle in Rj that shares an

edge with Ri, where pj is the parent of the agent at pi, is known completely from pi. Here, the root

is the triangle in Rj. Also, let us assume that the locations of P ∗(T (R,P), r) coinciding with the

children of pi are known together with their corresponding associated diagonals. We shall see later

that this is indeed the case when all elements of Tdiag1 are less than or equal to one. It is also clear

that with this information a removable fork and a removable chain of the local triangulation graph

is a removable fork and a removable chain, respectively, in the global triangulation graph. Thus,

rules R1 and R2 of Kernel Computation Algorithm can be applied locally on triangulation graph.

If rule R3 is applied, then the associated diagonal is the diagonal that the root shares with its child.

In this case, that diagonal is the edge of Ri containing pi. Thus, not applying R3 is consistent with

the definition of P ∗
i in step (20).

pi

s

Figure 3.24: Local computation of the points P ∗
i in the Depth-first Deployment algorithm.

We are now ready to state the main result of this section.

Theorem 3.5.12 (Convergence and Run Time Analysis). Given a simply connected polygon Q

with n vertices, assume that k agents are initially collocated at s ∈ Ve(Q). Then the following

statements hold:
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(i) there exists a finite time t∗, such that for all times greater than t∗ there is at least one agent

on min{|P ∗(TQ(R,P), r)|, k} points of P ∗(TQ(R,P), r);

(ii) if k ≥ n
3 , then the deployment problem is solved in finite time by the algorithm.

(iii) assuming unit speed for any agent and bounded diameter of Q, the time taken for task com-

pletion is t∗ ∈ O(n).

Proof. We first prove statement (i) along the same lines as the proof for Theorem 3.4.5 (i). We

begin by showing that the first agent to acquire the ASSIGNED status must be located on a node

belonging to P ∗(TQ(R,P), r).

For the first agent that acquires the ASSIGNED status, steps (1)-(11) of the Depth-first

Deployment algorithm are not executed. In step (12) it is assumed that the agent belongs to

a node pi ∈ P. This is true because, throughout the execution of the algorithm, as long as the

status of the agent is UNASSIGNED, the agent executes only the Move-to-Parent Algorithm motion

primitive or the Move-to-Child Algorithm motion primitive to move towards a child in P. Thus,

steps (12) and (13) are executed using sensory information and the memory contents. Step (14)

is again not executed since there are no other agents with ASSIGNED status. Initially the agent is

located at the root with plast initialized to the root location. Therefore, plast ∈ Ri (initially pi is

the root), hence steps (15) and (16) are not executed. But all elements of Tdiag1 are initialized to

be equal to two and hence steps (17)-(35) are not executed. In step (36), the agent moves towards

the next child that belongs to P. The above sequence of steps is repeated till the agent reaches a

node of the navigation graph having no children. In this case, Tdiag1 = ∅. Therefore, the condition

in step (17) of the algorithm are true. From Remark 3.5.11, we know that the computation in

steps (18) and (19) are indeed always possible. Since the agent at pi has no children, p does not

exist in step (22) of the algorithm. If now, pi ∈ P ∗
i , then we are done. If not, then the agent

moves to its parent, say pl, having set the Tdiag2 corresponding to the gaps Rl ∩Ri equal to either

zero or one. Before moving to the parent, the list Tdiag1 is deleted and the list Tdiag2 becomes the

current Tdiag1. Thus, if an agent returns to a node from its child belonging to P, then the values

of the elements in Tdiag1 corresponding to the relevant gaps are set to either zero or one. Now,

in step (36) the agent moves to the next child in P such that an element of Tdiag1 corresponding
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to that child is greater than one. Therefore, after a finite number of steps again the agent is at a

node of the navigation graph such that the condition in step (17) is true. Notice, that at least one

element of Tdiag1 is greater than one. Also, if the agent is located on pi, then Ri contains at least

one triangle as well. Thus, there must exist either a removable fork or a removable chain in the

local triangulation graph described in Remark 3.5.11. Hence, after a finite time, the set P ∗
i is not

empty and thus the agent acquires the ASSIGNED status at either step (26) or (35).

Any subsequent agent that acquires the ASSIGNED status will acquire it either at step (26)

or step (33) of the algorithm. Since the previous agents with ASSIGNED status belong to nodes

in P ∗(TQ(R,P), r) with the correct associated diagonals, it follows that for any other agent, the

computation in steps (18) and (19) of the algorithm are correct as well. Thus, any agent with

ASSIGNED status that is not moving must be on a node that belongs to P ∗(TQ(R,P), r).

Finally, the remainder of the proof can be completed along the lines of the proof for Theo-

rem 3.4.5 (i).

Statement (ii) is a consequence of statement (i) and Theorem 3.5.6 (iii).

To prove statement (iii), notice that once an agent at a node pi has visited all the gaps of Ri

once and returned to pi, all elements of Tdiag1 are either equal to zero or one. It then, in the worst

case, might have to visit each of its children once more before going back to the parent of pi. The

number of children can be at most twice the number of gaps of pi. Thus, each gap of Ri is visited

at most thrice by an agent. Since, the cardinality of R is at most n− 2, the cardinality of the gaps

is at most n − 3. Thus, each agent in the worst case takes O(n) time to visit all the nodes of the

navigation graph. The worst case time for the entire group is obtained when all the agents move

along the same path in the navigation graph and get deployed one at a time.

3.5.4 Distributed information processing

In this section, we describe the various ingredients of the Depth-first Deployment algorithm

described in the previous section.
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Communication

The information vector I of each agent to be broadcast consists of the logic variable {status, adi(v)},

where as in the previous section, status assumes values in the sets {ASSIGNED, UNASSIGNED} and

adi(v) are the associated diagonals of a vertex v. This is broadcast along with the UID i of the

agent as described in Section 3.2.

Motion primitives

From Lemma 3.5.2 (ii), we know that adjacent nodes of the navigation graph are mutually visible.

Therefore, the Move-to-Parent Algorithm and Move-to-Child Algorithm are identical to those

in the previous section.

Ordering the children

The children are ordered in the same way as in the algorithm for connected deployment.

Memory management

In addition to the quantities required in the previous section, an agent stores of list Tdiag.

The above geographic and other required information is gathered and managed by the agents

via the following state transition laws and communication protocols. At this time, we make full use

of the computation, communication, and sensing abilities of the agents described in Section 3.2.

(i) The memory content M of each agent is a 7−tuple (pparent, plast, g1, g2, Tdiag, status, ID
∗),

where Tdiag is a list whose elements are lists themselves. Then Tdiag1 refers to the first list

of Tdiag. Let an agent be at a node v. If v does not belong to P, then Tdiag1 is an empty

set. If v ∈ P, say pj , then Tdiag1 is a list of positive integers assuming values in the set

{0, 1, 2}. The size of the list is equal to the number of gaps in Rj . The list Tdiag2 refers to

the list of integers associated with the parent of v and so on. For any agent i, at time t = 0,

Mi(0) = {(ai(0)), ai(0), ai(0), ai(0), (2, 2, · · · ), UNASSIGNED, i}.

During run time, with the exception of Tdiag, the other components of M are updated as described

in the previous section. The list Tdiag is maintained as follows:
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(ii) After an agent moves from a node pi to a child node v via Move-to-Child Algorithm, Tdiag is

updated as follows: if v ∈ P, say equal to pj , then a list (2, 2, 2, · · · ) is added to the beginning

to Tdiag where the length of the list is equal to the number of gaps in Rj .

(iii) After an agent moves from a node v to the parent node pi via Move-to-Parent Algorithm,

Tdiag is updated as follows: the first element of Tdiag is deleted; other updates are done as in

the Depth-first Deployment algorithm.

(iv) status and adi are managed according to the Depth-first Deployment algorithm.

The following lemma quantifies the memory and communication complexities involved in the

distributed information processing scheme described above.

Lemma 3.5.13 (Memory and communication complexity). Let k be the total number of agents

and the UIDs of the agents belong to {1, . . . , k} and let the diameter of Q be bounded. For any

agent i, at any time t, the following properties hold:

(i) The number of bits required to store Mi is O(d log k +dw), where d is the depth of Gnav(s, Q)

and w is the maximum number of gaps in any set Rj ∈ R; and

(ii) the number of bits in any broadcast message is O(log k).

Proof. The memory is a 7-tuple; the objects pparent, g1, g2, Tdiag and ID∗ are lists of length at

most d and the objects plast and status are of length one. Since the diameter of Q is bounded,

the number of bits required to store the relative locations of the elements of pparent with finite

resolution is O(1). This is also true for the elements of g1 and g2. The elements of Tdiag are lists

of integers themselves and the maximum number of elements in each of the lists is w. Thus the

memory required to store Tdiag is O(dw). The value of an element of ID∗ is bounded by the UID of

the agent which is bounded by k. It, therefore, takes at most log k bits to store an element of ID∗.

Statement (i) follows directly. A broadcast message consists of the UID, status and the associated

diagonals of a given vertex. The former is bounded by k and the latter two are of constant size.

Statement (ii) follows.
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3.5.5 Simulation results

In this section we present simulation results for the Depth-first Deployment algorithm described

in Section 3.4.3. The algorithms have been implemented in MATLAB. The environment, Q, the root s

and the navigation graph Gnav(s, Q) are as shown in Figure 3.11. Note that Q is chosen to represent

a typical floor plan. Figure 3.25 shows, from left to right, the evolution of the simulation. At the

end of the simulation, the agents are located at the points P ∗
con, which in this case coincides with

nodes of the navigation graph. The yellow sets denote the star-shaped sets owned by the agents

that are already ASSIGNED. The star-shaped regions that are not owned by any of the agents are

still visible by other agents.

Figure 3.25: Execution of the Depth-first Deployment algorithm over a prototypical floor plan.
As forecasted by our analysis, any point in the environment is visible to at least one agent.

3.6 Conclusions

We consider a group of robotic agents initially collocated at the same point of an unknown non-

convex environment. We consider the problem of designing a distributed algorithm to deploy the

agents over the environment so that all points in environment are visible to at least one agent.
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Using a top-down incremental partition algorithm together with bottom-up deployment scheme,

we design the Depth-first Deployment algorithm which solves the above problem. The num-

ber of agents required to guarantee that the task is achieved is ⌊n/3⌋, where n is the number of

vertices of the environment. Remarkably, this number is the identical to that even if the environ-

ment were known a priori; see the famous Art Gallery Theorem [76]. A second problem that we

consider is the deployment problem but under the additional constraint that the visibility graph

of the final configuration of the agents is connected. Using an approach similar to that in the

Depth-first Deployment algorithm, we propose the Connected Depth-first Deployment algo-

rithm that solves the new problem. The number of agents required to guarantee that the task is

achieved is (n−1)/2. Again, remarkably, this number differs by at most one from the number that

is obtained even if the environment is known a priori; see [77].
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CHAPTER 4

Multirobot rendezvous in nonconvex

environments

4.1 Introduction

In this chapter we design algorithms to steer a group of robots equiipped with visibility sensors

to a common location, or rendezvous, in a nonconvex environment. The rendezvous problem is

a fundamental motion coordination problem for collections of robots. In its essence, it is the

most basic formation control problem and can be used as a building block for more sophisticated

behaviors. It is related to the classic consensus problem in distributed algorithms. This problem

is, here, tackled in a fully distributed manner, i.e., our robots do not have any global knowledge

about the position of all other robots, do not have any global knowledge about the environment,

and do not share a common reference frame. The information that is available to an individual

robot is only what is provided by a local “visibility sensor.” In other words, a robot can measure

the relative position of a second robot if and only if the robots are visible to each other in the

nonconvex environment and lie within a given distance of each other.

The literature on multirobot systems is very extensive. Examples include the survey in [101]

and the special issue [102] of the IEEE Transaction on Robotics and Automation. Our multi-robot

model is inspired by the literature on networks of mobile interacting robots: an early contribution

is the model proposed in [103] consisting of a group of identical “distributed anonymous mobile

robots” characterized as follows. Each robot completes repeatedly a cycle of operations: it senses

the relative position of all other robots, elaborates this information, and moves. In this early work,

the robots share a common clock. A related model is presented in [104], where the robots evolve

asynchronously, have limited visibility, and share a common reference frame. For these types of

multirobot systems, the “multi-agent rendezvous” problem and the first “circumcenter algorithm”

have been introduced in [81]. This circumcenter algorithm has been extended to various asyn-
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chronous strategies in [104, 105], where rendezvous is referred to as the “gathering” problem. The

circumcenter algorithm has been extended beyond planar problems to arbitrary dimensions in [21],

where its robustness properties are also characterized. None of these previous works considers the

problem in nonconvex environments with line-of-sight visibility sensors.

We conclude the literature review by mentioning that formation control and rendezvous prob-

lems have been widely investigated with different assumptions on the inter-agent sensing. For

example, a control law for groups with time-dependent sensing topology is proposed in [106]; this

and similar works, however, depend upon a critical assumption of connectivity of the inter-agent

sensing graph. This assumption is imposed without a model for when two robots can detect and

measure each other’s relative position. In this chapter, we consider position-dependent graphs and,

extending to visibility sensors a key idea in [81], we show how to constrain the robots’ motion to

maintain connectivity of the inter-agent sensing graph.

Next, we describe the essential details of our model. We consider a group of robotic agents mov-

ing in a nonconvex environment without holes. We assume each robot is modeled as a point mass.

We assume that each robot is equipped with an omnidirectional limited-range visibility sensor ; the

nomenclature is adopted from [93, Section 11.5]. Such a sensor is a device (or combination of de-

vices) that determines within its line of sight and its sensing range the following quantities: (i) the

relative position of other robots, and (ii) the relative position of the boundary of environment. By

omnidirectional we mean that the field-of-vision for the sensor is 2π radians. Examples of visibility

sensors are scanning laser range finders with accurate distance measurements at high angular den-

sity,1 time-of-flight range cameras,2 and optical depth sensors based on structured light systems,

e.g., see [107]. The range data obtained from the sensors can be processed to obtain a geometric

representation of the area visible from a robot, e.g., see [108]. We do not directly address in this

work issues related to feature extraction from range data. We assume that the algorithm regulating

the robots’ motion is memoryless, i.e., we consider static feedback laws. Given this model, the goal

is to design a discrete-time algorithm which ensures that the robots converge to a common location

within the environment. See Figure 4.1 for a graphical description of a simulation.

This chapter’s main contribution is a novel provably correct algorithm that achieves rendezvous

1E.g., the Hokuyo URG-04LX, see http://www.hokuyo-aut.jp, and the Sick S2000, see http://www.sick.com.
2E.g., the SwissRanger SR-3000, see http://www.swissranger.ch.
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Initial position of the agents Final position of the agentsEvolution of the network

Figure 4.1: Execution of the Perimeter Minimizing Algorithm described in Section 4.5.1 on a
group of robots distributed in a polygon, Q, shaped like a typical floor plan. The graph shown in
the left-most figure is the r-range visibility graph Gr-vis,Qǫ (see Section 4.2).

in a nonconvex planar environment among robots with omnidirectional range-limited visibility

sensors. Rendezvous is achieved among all robots if the inter-agent sensing graph is connected at

the initial time or becomes connected at any time during the evolution.

The technical approach contains a number of novel contributions and proceeds as follows.

First, we review a few useful geometric notions [84], such as robust visibility [109] and proximity

graphs [110], and introduce various novel visibility graphs. Second, to maintain connectivity dur-

ing the system evolution, we design novel constraint sets that (i) ensure that the visibility between

two robots is preserved, and (ii) are upper semicontinuous or closed maps of the robots’ positions.

Third, based on a discussion on visibility graphs, we define a new proximity graph, called the

locally-cliqueless visibility graph, which contains fewer edges than the visibility graph, and has the

same connected components. This construction is useful in the connectivity maintenance problem.

Fourth, we provide a careful analysis of the algorithm we propose. As novel Lyapunov function,

we consider the perimeter of the relative convex hull of the robot positions. The main theorem is

proved via our recent version of the LaSalle Invariance Principle for set-valued maps [21]. Fifth

and final, extensive simulations validate our theoretical results and establish the convergence of

our algorithm under more realistic assumptions than the ones adopted in the theoretical analysis:

our algorithm performance is still adequate assuming asynchronous agent operation, noise errors

in sensing and control, or finite-size disk robots.

The remainder of the chapter is organized as follows. Section 4.2 contains some useful geometric
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notions. In Section 4.3 we model robots with visibility sensors and we introduce the rendezvous

and connectivity maintenance problems. In Section 4.4 we introduce constraint sets and locally-

cliqueless visibility graphs. In Section 4.5 we propose the Perimeter Minimizing Algorithm for

the rendezvous problem. Numerical simulations are presented in Section 4.6. Additional analysis

results and all proofs are presented in Appendices 4.8-4.10.

4.2 Geometric notions

In this section we introduce some useful geometric notions. We begin by reviewing some standard

notation. Let Z≥0, R, R≥0, and R>0 denote the sets of nonnegative integer, real, nonnegative real,

and positive real numbers, respectively. For p ∈ R2 and r ∈ R>0, let B(p, r) denote the closed ball

centered at p of radius r. Given a bounded set X ⊂ R2, let co(X) denote the convex hull of X, and

let CC(X) denote the circumcenter of X, i.e., the center of the smallest-radius circle enclosing X.

For p, q ∈ R2, let ]p, q[= {λp + (1 − λ)q | 0 < λ < 1} and [p, q] = {λp + (1 − λ)q | 0 ≤ λ ≤ 1} de-

note the open and closed segment with extreme points p and q, respectively. Let |X| denote the

cardinality of a finite set X in R2. Given a set of points X ⊂ R2, and another point p ∈ R2, let

dist(p, X) denote the Euclidean distance of p to the set X. The diameter diam(X) of a compact

set X is the maximum distance between any two points in X.

Now, let us turn our attention to the type of environments we are interested in. Given any

compact and connected subset Q of R2, let ∂Q denote its boundary. A point q of ∂Q is strictly

concave if for all ǫ > 0 there exists q1 and q2 in B(q, ǫ)∩ ∂Q such that the open interval ]q1, q2[

is outside Q. A strict concavity of ∂Q is either an isolated strictly concave point or a connected

set of strictly concave points. According to this definition, a strict concavity is either an isolated

point (e.g., points r1 and r2 in Figure 4.2) or an arc (e.g., arc a1 in Figure 4.2). Also, any strictly

concave point belongs to exactly one strict concavity.

Definition 4.2.1 (Allowable environments). A set Q ⊂ R2 is allowable if

(i) Q is compact and simply connected;

(ii) ∂Q is continuously differentiable except on a finite number of points;

(iii) ∂Q has a finite number of strict concavities.
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Recall that, roughly speaking, a set is simply connected if it is connected and it contains no hole.

A particular case of the environment described above is a polygonal environment, the concavities

being the reflex vertices3 of the environment.

At almost all strictly concave points v, one can define the tangent to ∂Q. (Here, the wording

“almost all” points means all except for a finite number.) At all such points v, the internal tangent

half-plane HQ(v) is the half-plane whose boundary is tangent to ∂Q at v and whose interior does

not contain any points of the concavity; see Figure 4.2.

v′′

a1

r1 r2

v′

Figure 4.2: An allowable environment Q: the closed arc a1 and the isolated points r1, r2 are strict
concavities. v′ is a point on a1 where the slope of ∂Q is defined. HQ(v′) is the half-plane with the
tangent to ∂Q at v′ as the boundary and the interior in the direction of the arrow. v′′ is a point
on a1 where the slope of ∂Q is not well-defined. In this case, we define the tangent to be the one
shown in the plot. HQ(v′′) is the half-plane with the tangent to ∂Q at v′′ as the boundary and the
interior in the direction of the arrow.

A point q ∈ Q is visible from p ∈ Q if [p, q] ⊂ Q. The visibility set V(p) ⊂ Q from p ∈ Q is the

set of points in Q visible from p. This notion can be extended as follows (see [109]):

Definition 4.2.2 (Robust visibility). Take ǫ > 0 and Q ⊂ R2.

(i) The point q ∈ Q is ǫ-robustly visible from the point p ∈ Q if ∪q′∈[p,q]B(q′, ǫ) ⊂ Q.

3A vertex of a polygon is reflex if its interior angle is strictly greater than π.
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(ii) The ǫ-robust visibility set V(p, ǫ) ⊂ Q from p ∈ Q is the set of points in Q that are ǫ-robustly

visible from p.

(iii) The ǫ-contraction Qǫ of the set Q is the set {p ∈ Q | ||p − q|| ≥ ǫ for all q ∈ ∂Q}.

These notions are illustrated in Figure 4.3. Loosely speaking, two points p, q are mutually 0-

robustly visible if and only if they are mutually visible. We present the following properties without

proof in the interest of brevity.

p

Figure 4.3: Robust visibility notions. Q is the outer polygonal environment; the ǫ-contraction Qǫ

is the region with the curved boundary and containing the point p; the visibility set V(p) is the
region shaded in light gray; the ǫ-robust visibility set V(p, ǫ) is the region shaded in darker gray.
Note that the isolated concavities of Q give rise to strictly concave arcs in Qǫ.

Lemma 4.2.3. Given an allowable environment Q and ǫ > 0, the following statements hold:

(i) q ∈ Q is ǫ-robustly visible from p ∈ Q if and only if [p, q] ⊂ Qǫ;

(ii) if ǫ is sufficiently small, then Qǫ is allowable;

(iii) all strict concavities of ∂Qǫ have non-zero length and are continuously differentiable.

Remarks 4.2.4. (i) In light of Lemma 4.2.3(ii), in what follows we assume that ǫ is small

enough for Qǫ to be connected and therefore allowable.

(ii) Robust visibility is a useful concept in many practically meaningful ways. For example, ac-

cording to this notion, points are visible only if they are at least at a distance ǫ from the
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boundary. This is useful when an object is arbitrarily close to the boundary and is indis-

tinguishable from the boundary itself. Additionally, the parameter ǫ might be thought of as a

measure of the physical size of the robot. Thus confining the robots to the ǫ-robust visibility set

guarantees free movement of the robot in the environment. Indeed, the notion of ǫ-contraction

is related to the classical work on motion planning in [111], see also [93]. �

We now define some graphs which will be useful in describing the interactions between robots.

Definition 4.2.5 (Proximity graphs). A proximity graph is a graph whose nodes are a set of points

P = {p1, . . . , pn} and whose edges are a function of P. Given P ⊂ Q, ǫ > 0 and r > 0, define:

(i) The visibility graph Gvis,Q at P is the graph with node set P and with edge set Evis,Q(P)

defined by: (pi, pj) ∈ Evis,Q(P) if and only if [pi, pj ] ⊂ Q.

(ii) The ǫ-robust visibility graph Gvis,Qǫ is the visibility graph at P for Qǫ.

(iii) The r-disk graph Gr-disk at P is the graph with node set P and with edge set Er-disk(P) defined

by: (pi, pj) ∈ Er-disk(P) if and only if ‖pi − pj‖ ≤ r.

(iv) The r-range visibility graph Gr-vis, Q at P is the graph with node set P and with edge set

Er-disk(P)∩Evis,Q(P).

(v) A Euclidean Minimum Spanning Tree GEMST,G at P of a proximity graph G is a minimum-

length spanning tree of G(P) whose edge (pi, pj) has length ‖pi−pj‖. If G(P) is not connected,

then GEMST,G(P ) is the union of Euclidean Minimum Spanning Trees of its connected com-

ponents.

In other words, two points p, q are neighbors in the r-range visibility graph, for instance, if and

only if they are mutually visible and separated by a distance less than or equal to r. Example

graphs are shown in Figure 4.4. General properties of proximity graphs are defined in [21, 110].

For simplicity, when G is the complete graph, we denote the Euclidean Minimum Spanning Tree of

G by GEMST.

We say that two proximity graphs G1 and G2 have the same connected components if, for all

sets of points P, the graphs G1(P) and G2(P) have the same number of connected components

consisting of the same vertices.
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Definition 4.2.6 (Neighbors set). Given a set of points P = {p1, . . . , pn} and a proximity graph

G, we let Ni(G,P) = Ni,G(P) denote the set of neighbors including itself of pi. In other words, if

{pi1 , . . . , pim} are the neighbors of pi in G at P, then Ni(G,P) = Ni,G(P) = {pi1 , . . . , pim}∪{pi}.

Figure 4.4: The figure on the left shows the visibility graph (whose edges are the solid lines as well
as the dashed lines) and the ǫ-robust visibility graph (whose edges are the solid lines alone) of a
set of points in a nonconvex polygon. The figure on the right shows the r-range ǫ-robust visibility
graph. The disk in the figure shows the sensing range for one of the agents.

Definition 4.2.7 (Relative convex hull). Take an allowable environment Q.

(i) X ⊆ Q is relatively convex if the shortest path inside Q connecting any two points of X is

contained in X.

(ii) The relative convex hull rco(X, Q) of X ⊂ Q is the smallest4 relatively convex subset of Q

that contains X.

(iii) If X is a finite set of points, then a vertex of rco(X, Q) is a point p ∈ X with the property

that rco(X \{p}, Q) is a strict subset of rco(X, Q). The set of vertices of rco(X, Q) is denoted

by Ve(rco(X, Q)).

The relative convex hull of an example set of points and its vertices are shown in Figure 4.5. In

what follows we will need the notion of perimeter of certain sets, and in particular, of the relative

convex hull of a collection of points.

4That is, rco(X, Q) is the intersection of all relatively convex subsets of Q that contain X.
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v2v1

v3

v4

v5
v6

v7

Figure 4.5: Relative convex hull rco(X, Qǫ) of a set of points X (solid disks) inside a the ǫ-
contraction of an allowable set Q. The set of vertices Ve(rco(X, Qǫ)) is the set {v1, . . . , v7}.

Definition 4.2.8 (Perimeter). Take an allowable environment Q and a closed subset X ⊂ Q.

(i) If X has measurable boundary ∂X and is equal to the closure of its interior, then perimeter(X)

is the length of ∂X.

(ii) If rco(X, Q) is not equal to the closure of its interior, then perimeter(rco(X, Q)) is the length

of the shortest measurable curve inside Q enclosing X.

Remarks 4.2.9. (i) If rco(X, Q) is equal to the closure of its interior, then its boundary is the

shortest measurable curve inside Q enclosing X (i.e., the two definitions of perimeter are

equivalent). On the other hand, if rco(X, Q) is a segment, then Definition 4.2.8(ii) says that

the perimeter of rco(X, Q) is twice its length.

(ii) The key property of Definition 4.2.8 is that, if X is a finite set of points in Q, then the

perimeter of rco(X, Q) depends continuously on the points in X. �

%myclearpage

94



4.3 Synchronous robots with visibility sensors and the

rendezvous and connectivity maintenance problems

In this section we model a group of n robots with visibility sensors in a given allowable environment

Q. We assume that ǫ is a known positive constant sufficiently small so that Qǫ is allowable. For

i ∈ {1, . . . , n}, we model the ith robot as a point pi ∈ Q and we refer to Section 4.6 for an extension

to a disk model. We make the following modeling assumptions:

Synchronized controlled motion model : Robot i moves at time t ∈ Z≥0 for a unit period of time,

according to the discrete-time control system

pi[t + 1] = pi[t] + ui[t]. (4.1)

We assume that there is a maximum step size smax > 0 for any robot, that is, ‖ui‖ ≤ smax.

Note that the n identical robots are synchronized in the sense that the calculation of u[t] in

equation (4.1) takes place at the same times t for all robots.

Sensing model : Robot i senses (i) the presence and the position of any other robot that is visible

and within distance r from pi, and (ii) the subset of ∂Q that is visible and within distance

(r + ǫ) from pi. This in turn implies that the robot can sense the subset of ∂Qǫ that is visible

and within distance r from pi. It is convenient to define the sensing region from position pi

to be S(pi) = V(pi, ǫ)∩B(pi, r). The range r is the same for all robots.

Note that, by definition, two robots with visibility sensors detect each other’s presence and

relative position if and only if they are neighbors in the robust visibility graph Gvis,Qǫ .

Remark 4.3.1 (No common reference frame). The model presented above assumes the ability

of robots to sense absolute positions of other robots; this assumption is only made to keep the

presentation as simple as possible. In this and subsequent remarks, we treat the more realistic

setting in which the n robots have n distinct reference frames Σ1, . . . ,Σn. We let Σ0 denote a

fixed reference frame. Notation-wise, a point q, a vector w, and a set of points S expressed with

respect to frame Σi are denoted by qi, wi and Si, respectively. For example, this means that Qi

is the environment Q as expressed in frame Σi. We assume that the origin of Σi is pi and that
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the orientation of Σi with respect to Σ0 is R0
i ∈ SO(2). Therefore, changes of reference frames are

described by the equations: q0 = R0
i q

i + p0
i , w0 = R0

i w
i, and S0 = R0

i S
i + p0

i . If we let VQj (p
j
i , ǫ)

denote the visibility set expressed in Σj, for j ∈ {0, 1, . . . , n}, then one can define

S(pj
i , Q

j) = VQj (p
j
i , ǫ)∩B(pj

i , r),

and verify that S(p0
i , Q

0) = R0
iS(pi

i, Q
i) + p0

i . Note that pi
i = 0.

Finally, we can describe our motion and sensing model under the no common reference frame

assumption. Robot i moves according to

p0
i [t + 1] = p0

i [t] + R0
i [t]ui[t], (4.2)

and it senses the robot positions pi
j and the subset of (∂Q)i that are within the sensing region

S(pi
i, Q

i). �

We now state the two control design problems addressed in this chapter for groups of robots

with visibility sensors.

Problem 4.3.2 (Rendezvous). The rendezvous problem is to steer each agent to a common location

inside the environment Qǫ. This objective is to be achieved (1) with the limited information flow

described in the model above, and (2) under the reasonable assumption that the initial position of

the robots P[0] = {p1[0], . . . , pn[0]} gives rise to a connected robust visibility graph Gvis,Qǫ at P[0].�

As one might imagine, the approach to solving the rendezvous problem involves two main ideas:

first, the underlying proximity graph should not lose connectivity during the evolution of the group;

second, while preserving the connectivity of the graph, the agents must move closer to each other.

This discussion motivates a second complementary objective.

Problem 4.3.3 (Connectivity maintenance). The connectivity maintenance problem is to design

(state dependent) control constraints sets with the following property: if each agent’s control takes

values in the control constraint set, then the agents move in such a way that the number of connected

components of Gvis,Qǫ (evaluated at the agents’ states) does not increase with time. �
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4.4 The connectivity maintenance problem

In this section, we maintain the connectivity of the group of agents with visibility sensors by

designing control constraint sets that guarantee that every edge of Gr-vis, Qǫ (i.e., every pair of

mutually range-limited visible robots) is preserved. We have three objectives in doing so. First,

the sets need to depend continuously on the position of the robots. Second, the sets need to be

computed in a distributed way based only on the available sensory information. Third, the control

constraint sets should be as “large” as possible so as to minimally constrain the motion of the

robots. Because it appears difficult to formalize the notion of “largest continuous constraint set

that can be computed in a distributed fashion,” we instead propose a geometric strategy to compute

appropriate constraint sets and we show in the next section that our proposed geometric strategy

is sufficiently efficient for the rendezvous problem.

4.4.1 Preserving mutual visibility: The Constraint Set Generator Algorithm

Consider a pair of robots in an environment Q that are ǫ-robustly visible to each other and separated

by a distance not larger than r. To preserve this range-limited mutual visibility property, we restrict

the motion of the robots to an appropriate subset of the environment. This idea is inspired by [81]

and we begin by stating the result therein. Let the sensing region of robot i located at pi be

S(pi) = B(pi, r), for some r > 0. If at any time instant t, ‖pi[t] − pj [t]‖ ≤ r then to ensure that at

the next time instant t+1, ‖pi[t+1]− pj [t+1]‖ ≤ r, it suffices to impose the following constraints

on the motion of robots i and j:

pi[t + 1], pj [t + 1] ∈ B
(pi[t] + pj [t]

2
,
r

2

)
,

or, equivalently,

ui[t], uj [t] ∈ B
(pj [t] − pi[t]

2
,
r

2

)
.

In summary, B(
pj−pi

2 , r
2) is the control constraint set for robot i and j. This constraint is illustrated

in Figure 4.6 (left).
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pj

pi

pj

pi

Figure 4.6: In the figure on the left, starting from pi and pj , the robots are restricted to move inside the

disk centered at
pi+pj

2
with radius r

2
. In the figure on the right, the robots are constrained to move inside

the shaded region which is a convex subset of Qǫ intersected with the disk centered at
pi+pj

2
with radius r

2
.

Let us now consider the case when a robot i is located at pi in a nonconvex environment Q with

sensing region S(pi) = V(pi, ǫ)∩B(pi, r). If at any time instant t, we have that ‖pi[t] − pj [t]‖ ≤ r

and [pi[t], pj [t]] ∈ Qǫ, then to ensure that ‖pi[t + 1]− pj [t + 1]‖ ≤ r and [pi[t + 1], pj [t + 1]] ∈ Qǫ, it

suffices to require that:

pi[t + 1], pj [t + 1] ∈ C,

where C is any convex subset of Qǫ ∩B
(pi[t]+pj [t]

2 , r
2

)
; see Figure 4.6 (right). Equivalently,

ui[t] ∈ C − pi[t], uj [t] ∈ C − pj [t],

where C−pi[t] and C−pi[t] are the sets {p − pi[t] | p ∈ C} and {p − pj [t] | p ∈ C}, respectively. Note

that both robots i and j must independently compute the same set C. Given the positions pi, pj in

an environment Q, Table 4.1 describes the Constraint Set Generator Algorithm, a geometric

strategy for each robot to compute a constraint set C = CQ(pi, pj) that changes continuously with

pi and pj . Figure 4.7 illustrates a step-by-step execution of the algorithm.

In step 3: of the algorithm, note that there can be multiple distinct points belonging to distinct

concavities satisfying the required property. In that case, v can be chosen to be any one of them.
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pj

pi

vpj

pi

pj

pi

v

pi

v

pj

Figure 4.7: From left to right and top to bottom, a sample incomplete run of the Constraint Set

Generator Algorithm (cf. Table 4.1). The top left figure shows Ctemp := V(pi, ǫ)∩B(
pi+pj

2 , r
2). In

all the other figures, the lightly and darkly shaded regions together represent Ctemp. The darkly
shaded region represents Ctemp ∩HQ(v), where v is as described in step 3:. The final outcome of
the algorithm, CQ(pi, pj), is shown in Figure 4.6 (right).
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Table 4.1: Constraint Set Generator Algorithm

Goal: Generate convex sets to act as constraints to preserve mutual visibility
Given: (pi, pj) ∈ Q2

ǫ such that [pi, pj ] ⊆ Qǫ and pj ∈ B(pi, r)

Robot i ∈ {1, . . . , n} executes the following computations:

1: Ctemp := V(pi, ǫ)∩B(
pi+pj

2 , r
2)

2: while ∂Ctemp contains a concavity do
3: v := a strictly concave point of ∂Ctemp closest to the segment [pi, pj ]
4: Ctemp := Ctemp ∩HQǫ(v)
5: end while
6: return: CQ(pi, pj) := Ctemp

The following lemma justifies this observation.

Lemma 4.4.1. Throughout the execution of the Constraint Set Generator Algorithm in Ta-

ble 4.1, let v1, v2 be two strictly concave points on ∂Ctemp that are closest to [pi, pj ]. Then

v1 ∈ Ctemp ∩HQǫ(v2) and vice versa.

Next, we characterize the main properties of the Constraint Set Generator Algorithm and

the corresponding convex sets. Notice that the constraint set is defined at any point in the following

set:

J =
{
(pi, pj) ∈ Q2

ǫ | [pi, pj ] ∈ Qǫ, ‖pi − pj‖ ≤ r
}

.

Proposition 4.4.2. (Properties of the Constraint Set Generator Algorithm) Given an al-

lowable environment Q with κ strict concavities, ǫ > 0 and (pi, pj) ∈ J , the following statements

hold:

(i) The Constraint Set Generator Algorithm terminates in at most κ steps;

(ii) CQ(pi, pj) is nonempty, compact and convex;

(iii) CQ(pi, pj) = CQ(pj , pi); and

(iv) The set-valued map CQ is closed5 at every point of J .

5Let Ω map points in X to all possible subsets of Y . Then the set-valued map, Ω, is open at a point x ∈ X if for
any sequence {xk} in X, xk → x and y ∈ Ω(x) implies the existence of a number m and a sequence {yk} in Y such
that yk ∈ Ω(xk) for k ≥ m and yk → y. The map Ω is closed at a point x ∈ X if for any sequence {xk} in X, xk → x,
yk → y and yk ∈ Ω(xk) imply that y ∈ Ω(x). Ω is continuous at any point x ∈ X if it is both open and closed at x
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Remark 4.4.3 (No common reference frame: continued). Consider a group of robots with visi-

bility sensors and no common reference frame. With the notation and assumptions described in

Remark 4.3.1, on can verify that the constraint sets transform under changes of coordinate frames

according to:

CQ0(p0
i , p

0
j ) = R0

i CQi(pi
i, p

i
j) + p0

i . (4.3)

We omit the proof in the interest of brevity. �

For each pair of mutually visible robots, the execution of the Constraint Set Generator

Algorithm outputs a control constraint set such that, if the robots’ motions are constrained to it,

then the robots remain mutually visible. Clearly, given a connected graph at time t, if every robot

remains connected with all its neighbors at time t + 1 (i.e., each pair of mutually visible robots

remain mutually visible), then the connectivity of the graph is preserved. This can be accomplished

as follows. For robot i ∈ {1, . . . , n} at pi ∈ Qǫ, define the control constraint set

Cpi,Q(Ni,Gr-vis, Qǫ
) =

⋂

pj∈Ni,Gr-vis, Qǫ

CQ(pi, pj). (4.4)

Now, if ui ∈ Cpi,Q(Ni,Gr-vis, Qǫ
) − pi, for all i ∈ {1, . . . , n}, then all neighboring relationships in

Gr-vis, Qǫ are preserved at the next time instant. Using inputs that satisfy these constraints, the

number of edges in Gr-vis, Qǫ is guaranteed to be nondecreasing.

4.4.2 The locally-cliqueless visibility graph

In this section, we propose the construction of constraint sets that are, in general, larger than

Cpi,Q(Ni,Gr-vis, Qǫ
). To do this, we define the notion of locally-cliqueless graph. The locally-cliqueless

graph of a proximity graph G is a subgraph of G, and therefore has generally fewer edges, but it

has the same number of connected component as G. This fundamental property will be very useful

in the design of less conservative constraint sets.

Before proceeding with the definition of locally-cliqueless graph, let us recall that (i) a clique

of a graph is a complete subgraph of it, and (ii) a maximal clique of an edge is a clique of the

graph that contains the edge and is not a strict subgraph of any other clique of the graph that also

101



Figure 4.8: The green convex set in the center represents Cpi,Q(Ni,Gr-vis,Qǫ
). The black disks

represent the position of the robots. The straight line segments between pairs of robots represent
edges of Gr-vis,Qǫ

. Here, pi is the black disk contained in the constraint set.

contains the edge.

Definition 4.4.4. (Locally-cliqueless graph of a proximity graph) Given a point set P and

an allowable environment Q, the locally-cliqueless graph Glc,G at P of a proximity graph G is the

proximity graph with node set P and with edge set Elc,G(P) defined by: (pi, pj) ∈ EGlc,G
(P) if and

only if (pi, pj) ∈ EG(P) and (pi, pj) belongs to a set EGEMST
(P ′) for any maximal clique P ′ of the

edge (pi, pj) in G.

In combinatorial optimization, it is a well-known that finding the maximal clique of a graph is

an NP complete problem. However, efficient polynomial time heuristics are detailed in [112].

For simplicity, we will refer to the locally-cliqueless graph of the proximity graphs Gvis,Q, Gvis,Qǫ

or Gr-vis,Qǫ as locally-cliqueless visibility graphs. Figure 4.9 shows an example of a locally-cliqueless

visibility graph.

Theorem 4.4.5. (Properties of a locally-cliqueless graph of a proximity graph) Let G be

a proximity graph. Then, the following statements hold:

(i) GEMST,G ⊆ Glc,G ⊆ G;

(ii) Glc,G and G have the same connected components.
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Figure 4.9: Visibility graph (left) and locally-cliqueless visibility graph (right).

In general, the inclusions in Theorem 4.4.5(i) are strict. Figure 4.10 shows an example where

GEMST,Gvis,Q
( Glc,Gvis,Q

( Gvis,Q.

Figure 4.10: From left to right, visibility graph, locally-cliqueless graph and Euclidean Minimum
Spanning Tree of the visibility graph.

The next result follows directly from Theorem 4.4.5.

Corollary 4.4.6. (Properties of locally-cliqueless visibility graphs) Let Q and Qǫ, ǫ > 0,

be allowable environments. Let G be either one of the graphs Gvis,Q, Gvis,Qǫ or Gr-vis,Qǫ. Then, the

following statements hold:

(i) GEMST,G ⊆ Glc,G ⊆ G;
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(ii) Glc,G and G have the same connected components.

Let us now proceed to define new constraint sets that are in general larger than the ones defined

in (4.4). For simplicity, let G = Gr-vis,Qǫ , and consider its locally-cliqueless graph Glc, G . For robot

i ∈ {1, . . . , n} at position pi, define the constraint set

Cpi,Q(Ni,Glc, G
) =

⋂

pj∈Ni,Glc, G

CQ(pi, pj). (4.5)

Since Glc,G is a subgraph of G (cf. Corollary 4.4.6(i)), we have Ni,Glc, G
⊆ Ni,G = Ni,Gr-vis, Qǫ

, and

therefore

Cpi,Q(Ni,Gr-vis, Qǫ
) ⊆ Cpi,Q(Ni,Glc, G

).

In general, since Glc,G is a strict subgraph of G, the set Cpi,Q(Ni,Glc, G
) is strictly larger that

Cpi,Q(Ni,Gr-vis, Qǫ
).

Now, if ui ∈ Cpi,Q(Ni,Glc, G
) − pi for all i ∈ {1, . . . , n}, then all neighboring relationships in

the graph Glc, G are preserved at the next time instant. As a consequence, it follows from Corol-

lary 4.4.6(ii) that the connected components of Gr-vis, Qǫ are also preserved at the next time instant.

Thus, we have found constraint sets (4.5) for the input that are larger than the constraint sets (4.4),

and are yet sufficient to preserve the connectivity of the overall group.

Remark 4.4.7. (Distributed computation of locally-cliqueless visibility graphs) According

to the model specified in Section 4.3, each robot can detect all other robots in its sensing region

S(pi) = V(pi, ǫ)∩B(pi, r), i.e., its neighbors in the graph Gr-vis, Qǫ. Given the construction of the

constraint sets in this section, it is important to guarantee that the set of neighbors of robot i in the

locally-cliqueless graph Glc,G can be computed locally by robot i. From the definition of the locally-

cliqueless graph, this is indeed possible if a robot i can detect whether another robot j in its sensing

region S(pi) belongs to a clique of the graph Gr-vis, Qǫ. This is equivalent to being able to check if

two robots pk, pl ∈ S(pi) satisfy the condition that pk ∈ S(pl) and vice versa. Note that pk ∈ S(pl)

is equivalent to ‖pk − pl‖ ≤ r and [pk, pl] ⊆ Qǫ. Given that pk − pl = (pk − pi) − (pl − pi), the

vector pk − pl (and hence ‖pk − pl‖) can be computed based on local sensing alone. Now, checking
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pi

pk
pl

pi

pk pl

Figure 4.11: The dashed circle is centered at pi and is of radius r. The thick curves represent the
boundary of Qǫ; the one on the left represents the outer boundary whereas the one on the right
represents a hole in the environment.

if [pk, pl] ⊆ Qǫ is possible only if Qǫ does not contain any hole; see Figure 4.11. In such a case, it

suffices to check if the entire line segment [pk, pl] is visible from pi or not.

Along these same lines it is possible to state that the locally-cliqueless visibility graph can be

computed also under the “no common reference frame” model described in Remarks 4.3.1 and 4.4.3.

�

4.5 The rendezvous problem: Algorithm design and analysis

results

In this section, we solve the rendezvous problem through a novel Perimeter Minimizing Algorithm.

The algorithm is inspired by the one introduced in [81] but is unique in many different ways. The

rendezvous algorithm uses different graphs to maintain connectivity and to move closer to other

robots. Instead of moving towards the circumcenter of the neighboring robots, the robots move

towards the center of a suitably defined motion constraint set.

The section is organized as follows. We present the algorithm in Subsection 4.5.1 followed by

its main convergence properties in Subsection 4.5.2.
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4.5.1 The Perimeter Minimizing Algorithm

We begin with an informal description of the Perimeter Minimizing Algorithm over graphs Gsens

and Gconstr. The sensing graph Gsens is Gr-vis,Qǫ while the constraint graph Gconstr is either Gsens or

Glc,Gsens :

Every robot i performs the following tasks: (i) it acquires the positions of other robots

that are its neighbors according to Gsens; (ii) it computes a point that is “closer” to

the robots it senses, and (iii) it moves toward this point while maintaining connectivity

with its neighbors according to Gconstr.

The algorithm is formally described in Table 4.2; Figure 4.1 in the Introduction illustrates an

example execution.

Table 4.2: Perimeter Minimizing Algorithm

Assumes: (i) smax > 0 is the maximal step size
(ii) Q, Qǫ are allowable
(iii) Gsens is Gr-vis, Qǫ ; Gconstr is either Gsens or Glc,Gsens

Each robot i ∈ {1, . . . , n} executes the following steps at each time instant:

1: acquire {pi1 , . . . , pim} := positions of robots within pi sensing region

2: compute Ni,Gsens and Ni,Gconstr

3: compute Xi := Cpi,Q(Ni,Gconstr)∩ rco(Ni,Gsens ,V(pi, ǫ))

4: compute p∗i := CC(Xi)

5: return: ui :=
min(smax, ‖p∗i − pi‖)

‖p∗i − pi‖
(p∗i − pi)

Remarks 4.5.1. (i) According to the algorithm proposed in [81] the robots move towards the cir-

cumcenter of their neighbors position. In the Perimeter Minimizing Algorithm the robots

move towards the circumcenter of their constraint set.

(ii) We prove later in Lemma 4.9.2 in Appendix 4.9 that Xi is convex. Therefore CC(Xi) ∈ Xi,

and hence p∗i ∈ Xi. Also, pi ∈ Xi. Therefore, ui ∈ Xi−pi ⊆ Cpi,Q(Ni,Gconstr)−pi and, in turn,

pi at the next time instant belongs to Cpi,Q(Ni,Gconstr). From our discussion in Section 4.4,

this implies that the graph Gconstr remains connected (or, more generally, that the number of
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connected components of Gconstr does not decrease). Therefore, by Corollary 4.4.6, the number

of connected components of Gsens also does not decrease.

(iii) If the initial positions of the robots are in Qǫ, then the robots will remain forever in Qǫ because

p∗i ∈ Xi ⊆ Qǫ.

(iv) All information required to execute the steps in the algorithm is available to a robot through

the sensing model described in Section 4.3. The constraint on the input size, ‖ui‖ ≤ smax, is

enforced in step 5:. �

Finally, we conclude this section by completing our treatment of robots without a common

reference frame.

Remark 4.5.2 (No common reference frame: continued). Consider a group of robots with visibility

sensors and no common reference frame as discussed in Remarks 4.3.1 and 4.4.3. Because the

relative convex hull and the circumcenter of a set transform under changes of coordinate frames in

the same way as the constraint set does in equation (4.3), one can verify that

ui(p
0
1, . . . , p

0
n) = R0

i ui(p
i
1, . . . , p

i
n),

where ui(p
0
1, . . . , p

0
n) is computed with environment Q0 and ui(p

i
1, . . . , p

i
n) is computed with environ-

ment Qi. This equality implies that the robot motion with control ui(p
0
1, . . . , p

0
n) in equation (4.1)

is identical to the robot motion with control ui(p
i
1, . . . , p

i
n) in equation (4.2). �

4.5.2 Main convergence result

To state the main results on the correctness of the Perimeter Minimizing Algorithm, we require

some preliminary notation. First, note that given the positions of the robots {p1, . . . , pn} at any

time instant t, the algorithm computes the positions at time instant t + 1. We can therefore think

of the Perimeter Minimizing Algorithm as the map TGsens,Gconstr : Qn
ǫ → Qn

ǫ . Second, in what

follows we will work with tuple of points P = (p1, . . . , pn) ∈ Qn. We let G(P ) denote the proximity

graph G(P) and rco(P, Q) denote the relative convex hull of the set P inside Q, where P is the

point set given by {pi | i ∈ {1, . . . , n}}. Third, we introduce a Lyapunov function that encodes the
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rendezvous objective. Given an allowable environment Q, we recall the notions of relative convex

hull and of perimeter from Section 4.2, and we define Vperim,Q : Qn → R≥0 by

Vperim,Q(P ) = perimeter(rco(P, Q)).

Lemma 4.5.3 (Properties of Lyapunov function). The function Vperim,Q has the following proper-

ties:

(i) Vperim,Q is continuous and invariant under permutations of its arguments;

(ii) Vperim,Q(P ) = 0 for P = (p1, . . . , pn) if and only if pi = pj for all i, j ∈ {1, . . . , n}.

The technical result on continuity plays an important role in the convergence analysis of the

algorithm. Fact (ii) implies that achieving the rendezvous objective is equivalent to making Vperim,Qǫ

equal to zero. We are now ready to state the main result of this chapter.

Theorem 4.5.4. (Rendezvous is achieved via the Perimeter Minimizing Algorithm) Let

Q and Qǫ be allowable environments. Let p1, . . . , pn be a group of robots with visibility sensors in

Qǫ. Any trajectory {P [t]}t∈Z≥0
⊂ Qǫ generated by P [t + 1] = TGsens,Gconstr(P [t]) has the following

properties:

(i) if the locations of two robots belong to the same connected component of Gsens at P [t0] for

some t0, then they remain in the same connected component of Gsens at P [t] for all t ≥ t0;

(ii) Vperim,Qǫ(P [t + 1]) ≤ Vperim,Qǫ(P [t]); and

(iii) the trajectory {P [t]}t∈Z≥0
converges to a point P ∗ ∈ Qǫ such that either p∗i = p∗j or p∗i /∈ S(p∗j )

for all i, j ∈ {1, . . . , n}.

As a direct consequence of the theorem, note that if the graph Gsens is connected at any time

during the evolution of the system, then all the robots converge to the same location in Qǫ.

4.6 Practical implementation issues

In Section 4.5, we designed a provably correct rendezvous algorithm for an ideal model of point

robots with perfect sensing and actuation capabilities. Also, we assumed that it was possible for
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the robots to operate synchronously. However, such an ideal model is not realistic in practical situ-

ations. In this section, we investigate, via extensive computer simulations, the effects of deviations

from this ideal scenario.

4.6.1 Nominal experimental set-up

The computer simulation was written in C++ using the Computational Geometry Algorithmic

Library (CGAL) (http://www.cgal.org). However, it was found that Boolean operations on

polygons using the utilities present in CGAL were not adequate in terms of speed for the purpose

of running extensive simulations. Hence, Boolean operations on polygons were performed using the

General Polygon Clipping Library (GPC) (http://www.cs.man.ac.uk/~toby/alan/software/

gpc.html).

For the purpose of simulations, the environment considered is a typical floor plan; see Figure 4.1.

Experiments were performed with 20 robots starting from 10 randomly generated initial conditions

from a uniform distribution. For each initial condition, experiments were repeated 20 times. The

environment size is roughly 80× 70, the step size of a robot is taken as smax = 0.5 and the sensing

radius r = 30. For simplicity, Gconstr is taken to be the same as Gsens. To utilize the ǫ-robust

visibility notion in providing robustness to asynchronism and sensing and control errors, at each

time instant, ǫ is set to be 0.97 times the ǫ at the previous time instant. Initially, ǫ is set equal to 3.

In case a robot approaches a reflex vertex of the environment closely, it reduces its speed. This is

done to reduce the risk of collision due to errors in sensing the exact location of the reflex vertex. We

now describe the various assumptions we make on the model to simulate the actual implementation

on physical robots followed by the respective simulation results. The algorithm performance is then

evaluated based on the following three performance measures: (i) the average number of steps taken

by the robots to achieve the rendezvous objective; (ii) the fraction of the edges of Gsens that are

preserved at the end of the simulation; and (iii) the number of connected components of Gsens at

the end of the simulation compared with the number of connected components at the initial time.
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4.6.2 Robustness against asynchronism, sensing and control noise, and

finite-size disk robot models

(A1) Asynchronism: The robots operate asynchronously, i.e., do not share a common processor

clock. All the robots start operating at the same time. Each robot’s clock speed is a random

number uniformly distributed on the interval [0.9, 1]. At integral multiples of its clock speed, a

robot wakes up, senses the positions of other robots within its sensing region and takes a step

according to the Perimeter Minimizing Algorithm. Note that at the time when any given

robot wakes up, there may be other robots that are moving. No sensing and control errors

were introduced in the model. It is observed that under this asynchronous implementation,

the performance of the algorithm is very similar to the synchronous implementation; see Fig-

ure 4.12. In the subsequent implementations, we assume the robots to operate synchronously.

(A2) Distance error in sensing and control: The visibility sensors measure the relative distance

of another object according to the following multiplicative noise model. If dact is the actual

distance to the object, then the measured distance is given by (1 + edist)dact, where edist

is a random variable uniformly distributed in the interval [−0.1, 0.1]. The objects to which

distances are measured are other robots in the sensing range and the boundary of the envi-

ronment. For simplicity, instead of measuring a sequence of points along the boundary, as

a real range sensor does, we assume that only the vertices of the environment are measured

and the sensed region is reconstructed from that information. The sensor error, therefore,

occurs in the measurement of other robots and environment vertices. The actuators moving

the robots are also subject to a multiplicative noise distance model with the same error pa-

rameter. The results are shown in Figure 4.13. It is observed that only in 1 out of the

10 initial conditions does the number of connected components of Gsens increase as compared

to the number of connected components of Gsens initially. In all cases, the fraction of edges

preserved is almost equal to 1. Also, in 7 out of 10 cases, the performance is almost identical

to the synchronized implementation with no noise. In the subsequent simulations, we assume

the robots to operate synchronously with no distance error in sensing and control.
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Figure 4.12: Computer simulation results with asynchronism. The top figure represents the average
number of steps taken per robot for convergence(crosses). Also shown is the number of steps taken
by each robot in synchronous implementation (red circle). The center figure shows the fraction of
the edges of the initial sensing graph that are preserved till the end. The bottom figure shows the
number of connected components of the sensing graph initially (small black discs) and at the end of
asynchronous (blue crosses) and synchronous (red circle) implementations. The blue crosses in the
figure denote the mean of the observed quantities and the vertical bars denote standard deviation.
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Figure 4.13: Computer simulation results with distance error and no directional error in sensing
and control.The meaning of the quantities is as in Figure 4.12.
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(A3) Direction error in sensing and control: The visibility sensors measure the relative angular

location of another object according to the following additive noise model. If θact is the

actual angular location of any object in the local reference frame of a robot, the measured

angular location is given by θact + eθ, where eθ is a random variable uniformly distributed

in the interval [−5, 5]. As before, the actuators moving the robots are also subject to an

additive noise directional model with the same error parameter. The results are shown in

Figure 4.14. It is observed that the algorithm no longer performs similar to the synchronized

implementation with no noise. Thus, it is more sensitive to directional errors than distance

errors in sensing and control. However, almost all of the edges of Gsens are preserved for all

the initial conditions. Also, in 9 out of the 10 initial conditions the number of connected

components of Gsens decreases during the course of evolution of the group. In the following

simulations, no asynchronism or sensing and control errors are assumed.

(A4) Disk robot model: The robots are assumed to be disks of radius 0.2, but do not obstruct the

views of others. During any step, a robot moves a distance of at most smax = 0.5. The next

position of the center of the robot, therefore, lies in a motion disc of radius 0.7 centered at

the center of the robot; see the red and green discs in Figure 4.15. A colliding neighbor of a

robot i is any neighbor j according to Gsens such that the motion discs of i and j intersect

and that the motion disc of j intersects the physical disc of i on the path between i and its

next point. If a robot has no colliding neighbors, then its motion is according to Perimeter

Minimizing Algorithm. If on the other hand a robot has exactly one colliding neighbor,

then it tries to swerve around it while reducing its speed. Finally, if the robot has more than

two colliding neighbors then it stays at the current location. To ensure free movement of the

robots inside the environment, ǫ is not allowed to fall below 0.2, i.e., the radius of a robot

disc. Simulations were performed without any asynchronism or sensing and control errors

for the 10 initial conditions of the robots as in the previous experiments.The terminating

condition for the simulations is that robots belonging to each connected component of Gsens

form a ”cohesive” group6; see Figure 4.15. For all initial conditions, the number of cohesive

groups in the final configurations is equal to the number of connected components of Gsens

6For each connected component of Gsens, the graph having nodes as the robot locations and with an edge between
two nodes whenever the corresponding motion discs of the robots intersect is connected
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Figure 4.14: Computer simulation results with direction error and no distance error in sensing and
control. The meaning of the quantities is as in Figure 4.12.
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when the simulations are performed assuming point robots. Thus, the algorithm yields the

same performance if a disk robot model is assumed instead of a point robot model.

Figure 4.15: Computer simulation results with no asynchronism and no sensing and control errors.
The black and red discs denote the robots and their motion discs respectively. The initial position
of the robots correspond to initial condition 2 in Figures 4.12, 4.13 and 4.14 and are shown by
the small black discs scattered over the environment with the green discs denoting their motion
discs. The robots converge to positions corresponding to a single cohesive group part of the same
component of Gsens.

Thus, we see that the Perimeter Minimizing Algorithm is robust to various deviations from the

ideal scenario. Also, the magnitudes of edist and eθ are in line with the state-of-the-art. Finally, in

the next section we analyze the computation complexity of the algorithm.
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4.6.3 Computation complexity with finite resolution sensing

In addition to the issues that might arise in a practical implementation of the Perimeter Minimizing

Algorithm, another important consideration is the time taken for a robot to complete each step

of the algorithm. This is dependent on the computational complexity of the algorithm, that we

characterize in the following.

A real visibility sensor, e.g., a range scanner, will sense the position of other robots and the

boundary of the environment with some finite resolution; in particular, the boundary of the sensing

region will be described by a set of points. It is reasonable to assume that the cardinality of this

set of points is bounded, say by M , for all robots, irrespective of the shape of the environment and

the location of the robot in it. For example, if a laser range sensor is used to measure the distance

to the boundary and a measurement is taken at intervals of one degree, then M is equal to 360.

Proposition 4.6.1 (Computational complexity). Let Q be any allowable environment. Let M be

the resolution of the visibility sensor located at any robot in Q. Then the following statements are

true:

(i) The computation complexity of the Constraint Set Generator Algorithm is O(κM);

(ii) The computation complexity of the Perimeter Minimizing Algorithm is τ(M)+O(M3 log M);

(iii) If Gconstr = Gsens, then the computation complexity of the Perimeter Minimizing Algorithm

is O(M2 log M),

where τ(M) is time taken for the computation of Ni,Gconstr given the set Ni,Gsens assuming |Ni,Gsens | ≤

M , and κ is the number of strict concavities of Q.

As discussed in Section 4.4.2, if Gconstr = Glc,Gsens , then the computation of Gconstr from Gsens

can be performed using efficient polynomial time heuristics. The time τ(M) above depends on

the specific heuristic used. Thus, we see that the running time of each step of the Perimeter

Minimizing Algorithm is polynomial in the number of data points obtained by the visibility

sensor.

This analysis helps us assess whether it is feasible to implement this algorithm on an actual

robot without demanding an unreasonable computational power.
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4.7 Conclusions

In this chapter, we present a provably correct discrete-time synchronous Perimeter Minimizing

Algorithm algorithm for rendezvous of robots equipped with visibility sensors in a nonconvex

environment. The algorithm builds on a novel solution to the connectivity maintenance problem

also proposed in this chapter. The performance of the algorithm under asynchronous operation of

the robots, presence of noise in sensing and control, and nontrivial robot dimension is investigated

and found to be quite satisfactory. The computational complexity of the algorithm under the

assumption of finite sensing resolution is also investigated.

4.8 Proofs of results in Section 4.4

Proof of Lemma 4.4.1: Let d = dist(v1, [pi, pj ]) = dist(v2, [pi, pj ]) and let L = {p ∈ R2 | dist(p, [pi, pj ]) ≤

d}. Then v1, v2 ∈ ∂L; see Figure 4.16. We now prove our result by contradiction. Let v1 /∈ HQǫ(v2).

Then v1 ∈ ∂L \ HQǫ(v2) as shown in Figure 4.16. Since v1 is visible from pi, the boundary ∂Qǫ

pi pj

v2

v1
v∗

v

Figure 4.16: The shaded region represents L. The solid curve passing through v2 represents a
portion of the boundary of Qǫ. The dashed line is the boundary of HQǫ(v2) which is along the
tangent to ∂Qǫ at v2. The interior of HQǫ(v2) is in the direction of the arrow.

must intersect ∂L at a point v in between v2 and v1, as illustrated in Figure 4.16. But this means

that there exists a point v∗ belonging to the concavity containing v2 that is strictly closer to the

segment [pi, pj ] than v2; this is a contradiction.

Proof of Proposition 4.4.2: We first prove statement (i). Note that initially Ctemp = V(pi, ǫ)∩B(
pi+pj

2 , r
2).

Therefore ∂Ctemp has at most κ concavities. This is because the concavities of ∂Ctemp are induced

by the concavities of ∂Qǫ, and the number of concavities of ∂Qǫ is the same as the number of

concavities of ∂Q. Now, by construction, the number of concavities in ∂(Ctemp ∩HQǫ(v)) is strictly
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less than the number of concavities of ∂Ctemp. It follows then that the Constraint Set Generator

Algorithm terminates in at most κ steps. This completes the proof of statement (i).

Now note that [pi, pj ] ⊆ CQ(pi, pj). Hence CQ(pi, pj) is always non-empty. Notice that CQ(pi, pj)

can be written in the following way

CQ(pi, pj) = V(pi, ǫ)∩B(
pi + pj

2
,
r

2
)∩HQǫ(vi,j,1) . . .∩HQǫ(vi,j,nij ), (4.6)

where dist(vi,j,1, [pi, pj ]) ≤ . . . ≤ dist(vi,j,nij , [pi, pj ]). The vi,j,k’s are computed according to

step 3: in the Constraint Set Generator Algorithm. Therefore, CQ(pi, pj) is the result of the

intersection of a finite number of closed sets, and therefore is closed as well. Also CQ(pi, pj) ⊆ Qǫ and

is thus bounded. Therefore, it is compact. Finally, the Constraint Set Generator Algorithm

terminates when Ctemp has no concavities, or in other words, when Ctemp is convex. This proves

statement (ii).

To prove statement (iii), let us write CQ(pj , pi) as

CQ(pj , pi) = V(pi, ǫ)∩B(
pi + pj

2
,
r

2
)∩HQǫ(vj,i,1) . . .∩HQǫ(vj,i,nji),

in the same way as (4.6). We first claim that nij = nji and {vi,j,1, . . . , vi,j,nij} = {vj,i,1, . . . , vj,i,nji}.

Before proving this claim, let us assume it is true and see where it leads. Because of this assumption,

the expressions for CQ(pi, pj) and CQ(pj , pi) would differ only due to the terms V(pi, ǫ) and V(pj , ǫ).

Now, let q ∈ CQ(pi, pj). Because CQ(pi, pj) is a convex subset of Qǫ containing pj and q, the line

segment [pj , q] ⊆ CQ(pi, pj) ⊆ Qǫ. Hence, q ∈ V(pj , ǫ). This in turn implies that q ∈ CQ(pj , pi).

Therefore, we have CQ(pi, pj) ⊆ CQ(pj , pi). The opposite inclusion can be shown to be true in a

similar fashion. Thus, we have CQ(pi, pj) = CQ(pj , pi).

We now prove that nij = nji and {vi,j,1, . . . , vi,j,nij} = {vj,i,1, . . . , vj,i,nji}. Note that vi,j,1 is the

strictly concave point nearest to [pi, pj ] belonging to V(pi, ǫ)∩B(
pi+pj

2 , r
2). In general, there can be

more than one nearest strictly concave point, say vi,j,1, . . . , vi,j,sij . Let d = dist(vi,j,1, [pi, pj ]) and

L = {p′ ∈ Ctemp|dist(p′, [pi, pj ]) ≤ d}, where Ctemp = V(pi, ǫ)∩B(
pi+pj

2 , r
2). Note that L is convex

since there cannot be any strictly concave points of ∂Ctemp in the interior of L. Since pj , vi,j,1 ∈ L

then [vi,j,1, pj ] ⊆ L ⊆ Qǫ. Therefore vi,j,1 ∈ V(pj , ǫ) and hence vi,j,1 ∈ V(pj , ǫ)∩B(
pi+pj

2 , r
2). There-
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fore, vi,j,1, . . . , vi,j,sij ∈ V(pj , ǫ)∩B(
pi+pj

2 , r
2). Similarly, if vj,i,1, . . . , vj,i,sji are the strictly concave

points nearest to [pi, pj ] belonging to V(pj , ǫ)∩B(
pi+pj

2 , r
2), then vj,i,1, . . . , vj,i,sji ∈ V(pi, ǫ)∩B(

pi+pj

2 , r
2).

Therefore dist(vi,j,1, [pi, pj ]) = dist(vj,i,1, [pi, pj ]) and sij = sji. This implies that vj,i,k ∈ {vi,j,1, . . . , vi,j,sij}

for all k ∈ {1, . . . , sji}. Proceeding recursively, we get that nij = nji and {vi,j,1, . . . , vi,j,nij} =

{vj,i,1, . . . , vj,i,nji}. This completes the proof of statement (iii).

We now prove statement (iv). First, let us write

CQ(pi, pj) = V(pi, ǫ)∩B(
pi + pj

2
,
r

2
)
⋂

∩nji

k=1 HQǫ(vj,i,k).

Since Q is bounded, there exists p0 ∈ Q such that CQ(pi, pj) ⊆ Q ⊆ B(p0, diam(Q)). Therefore,

we can write

CQ(pi, pj) = V(pi, ǫ)∩B(
pi + pj

2
,
r

2
)
⋂

∩nji

k=1 (HQǫ(vj,i,k)∩B(p0, diam(Q))) .

The map pi → V(pi, ǫ) is upper semicontinuous at any point pi ∈ Qǫ because there exists a neigh-

borhood around any point pi where the visibility set can only shrink. Also, the map pi → V(pi, ǫ)

has a compact range. Thus the notions of upper semicontinuity and closedness are equivalent and,

hence, pi → V(pi, ǫ) is closed at any point pi ∈ Qǫ. The second term is the closed ball of radius r
2

centered at the point
pi+pj

2 and clearly depends continuously on pi.

Let a1, . . . , aκ be the strict concavities of Qǫ. Now vi,j,k belongs to exactly one strict con-

cavity, say aik . Given aik , vi,j,k is a function of (pi, pj). We can write vi,j,k := vi,j,k(pi, pj) =

arg min{dist(v, [pi, pj ]) | v ∈ aik}. Since aik is a continuous curve, it is clear that vi,j,k is a con-

tinuous function of (pi, pj). We now show that HQǫ(vi,j,k(pi, pj))∩B(p0, diam(Q)) is in turn a

set-valued map continuous with respect to (pi, pj). Since vi,j,k is a continuous function of (pi, pj),

from Propositions 1 and 8 in [113], it suffices to show that HQǫ(v)∩B(p0, diam(Q)) is continuous

at any point v over the domain aik . This is equivalent to showing that HQǫ(v)∩B(p0, diam(Q)) is

closed as well as open at any point v ∈ aik . Without loss of generality, let us assume that ∂HQǫ(v)

is parallel to the x axis as shown in Figure 4.17. Let us first show that HQǫ(v)∩B(p0, diam(Q))

is open at any point v ∈ aik . Let {vl} be a sequence in aik such that vl → v, and let q be any

point on ∂HQǫ(v). Let ql be the point on ∂HQǫ(vl) that is either vertically above or below q. Now
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‖q − ql‖ ≤ |s(vl)|diam(Q), where s(vl) is the slope of the line defining the boundary of HQǫ(vl).

Since aik is continuously differentiable, as vl → v, we have that s(vl) → s(v) = 0. Thus, ql → q.

Hence, HQǫ ∩B(p0, diam(Q)) is open at any point v ∈ aik . We now show that HQǫ ∩B(p0, diam(Q))

is closed at any point v ∈ aik . As before, let {vl} be a sequence in aik such that vl → v. Let ql ∈

HQǫ(vl)∩B(p0, diam(Q)) and let ql → q. But dist(ql, HQǫ(v)∩B(p0, diam(Q))) ≤ |s(vl)|diam(Q)

and s(vl) → s(v) = 0 as vl → v. Therefore, dist(ql, HQǫ(v)∩B(p0, diam(Q))) → 0. Since

ql → q and the distance of a point to the convex set HQǫ(v)∩B(p0, diam(Q)) is a continuous

function, we deduce dist(ql, HQǫ(v)∩B(p0, diam(Q))) → dist(q, HQǫ(v)∩B(p0, diam(Q))) = 0.

Hence q ∈ HQǫ(v)∩B(p0, diam(Q))). Therefore HQǫ(v)∩B(p0, diam(Q))) is a closed map and, in

ql

v
vl

q

ql

vvlδ

Figure 4.17: Illustration of various notions used in proving that HQǫ(v)∩B(p0, diam(Q)) is con-
tinuous at any point v over the domain aik . The circle represents the boundary of the set
B(p0, diam(Q)). The arc represents aik . The lines tangent to aik at v and vl are the bound-
aries of the half-planes HQǫ(v) and HQǫ(vl) respectively. The interior of the half-planes is in the
direction of the arrows. In the figure on the right, δ represents dist(ql, HQǫ(v)∩B(p0, diam(Q))).

turn, is continuous over the domain aik . This implies that HQǫ(vi,j,k(pi, pj))∩B(p0, diam(Q))) is

continuous at pi for fixed aik .

Now, let (pk
i , p

k
j ) → pi and let qk → q where qk ∈ CQ(pk

i , p
k
j ). We need to show that

q ∈ CQ(pi, pj). Since qk ∈ CQ(pk
i , p

k
j ), we have that qk ∈ V(pk

i , ǫ). Since the map pi → V(pi, ǫ)

is closed, we have that q ∈ V(pi, ǫ). Also, qk ∈ B(
pk

i +pk
j

2 , r
2). Since the map (pi, pj) → B(

pi+pj

2 , r
2)

is continuous, it follows that q ∈ B(
pi+pj

2 , r
2). Therefore, what remains to be shown is that

q ∈ HQǫ(vi,j,l(pi, pj)) for all l ∈ {1, . . . , nij}. In what follows, for any points (pi, pj), (pk
i , p

k
j )

and (p′i, p
′
j), let vi,j,l(pi, pj), vi,j,l(p

k
i , p

k
j ) and vi,j,l(p

′
i, p

′
j) belong to the concavities ail , ak

il
and a′il

respectively and with l belonging to {1, · · · , nij}, {1, · · · , nk
ij} and {1, · · · , n′

ij} respectively. Since
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qk ∈ HQǫ(vi,j,l(p
k
i , p

k
j )), if there exists k0 such that for all k ≥ k0, we have that ak

il
∈ {ai1 , · · · , ainij

},

then we are done. Equivalently, it suffices to show that if a is any strict concavity such that

a /∈ {ai1 , · · · , ainij
} then there exists a neighborhood B around pi such that for all p′i ∈ B,

a /∈ {a′i1 , · · · , a′in′
ij

}. But if a /∈ {ai1 , · · · , ainij
}, then a is in the exterior of at least one of V(pi, ǫ),

B(
pi+pj

2 , r
2) and HQǫ(vi,j,l(pi, pj)). The existence of B now follows from the fact that the maps

pi → V(pi, ǫ), pi → B(
pi+pj

2 , r
2) and pi → HQǫ(vi,j,l(pi))∩B(p0, diamQ) are all closed.

Proof of Lemma 4.4.5: The second inclusion in fact (i) is a direct consequence of the definition of

Glc,G . We prove now that GEMST,G ⊆ Glc,G by contradiction. Let P be any point set and assume,

without loss of generality, that G(P) is connected (otherwise, the same reasoning carries over for

each connected component of G(P)). For simplicity, further assume that the distances ‖pk − pl‖,

k, l ∈ {1, . . . , n}, k 6= l are all distinct. This ensures that there is a unique Euclidean Minimum

Spanning Tree of G(P). If this is not the case, the same reasoning exposed here carries through

for each Euclidean Minimum Spanning Tree associated with G(P). Let (pi, pj) ∈ EGEMST,G
(P) and

(pi, pj) 6∈ EGlc,G
(P). Since necessarily (pi, pj) ∈ EG(P), the latter implies that there exists a maximal

clique P ′ of the edge (pi, pj) in G such that (pi, pj) 6∈ EGEMST
(P ′). If we remove the edge (pi, pj)

from GEMST,G(P), the tree becomes disconnected into two connected components T1 and T2, with

pi ∈ T1 and pj ∈ T2. Now, there must exist an edge e ∈ EGEMST
(P ′) with one vertex in T1 and

the other vertex in T2 and with length strictly less than ‖pi − pj‖. To see this, let {e1, . . . , ed} be

the edges of GEMST(P ′) obtained in incremental order by running Prim’s algorithm (e.g., see [47])

starting from the vertex pi. Because pi is in T1 and pj is in T2, there must exist at least an edge

in {e1, . . . , ed} with one vertex in T1 and the other vertex in T2. Let s ∈ {1, . . . , d} be such that

es is the first edge having one vertex in T1 and another vertex in T2. Since (pi, pj) 6∈ EGEMST
(P ′),

according to Prim’s algorithm, the length of es must be strictly less than ‖pi − pj‖ (otherwise,

the edge (pi, pj) will be part of the Euclidean Minimum Spanning Tree of P ′). If we add the edge

es to the set of edges of T1 ∪ T2, the resulting graph G is acyclic, connected and contains all the

vertices P, i.e., G is a spanning tree. Moreover, since the length of es is strictly less than ‖pi − pj‖

and T1 and T2 are induced subgraphs of GEMST,G(P), we conclude that G has shorter length than

GEMST,G(P), which is a contradiction. Fact (ii) is a consequence of fact (i).
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4.9 Additional analysis results and proof of Theorem 4.5.4

In this section we provide some key technical results that help establish Theorem 4.5.4. We first

present the technical results on which the proof depends.

Lemma 4.9.1 (Properties of the relative convex hull). For any allowable Q, Qǫ, the following

statements hold:

(i) if P1,P2 ⊆ Q, then rco(P1, Q) ⊆ rco(P1 ∪P2, Q);

(ii) if rco(P ′, Q) is a strict subset of rco(P ′′, Q), then Vperim,Q(P ′) < Vperim,Q(P ′′);

(iii) if P ⊂ Qǫ and G(P) ⊆ Gsens(P), then for pi ∈ P, we have that {pi}∩Ve(rco(P, Qǫ)) ⊆

Ve(co(Ni,G)).

Proof. Statements (i) and (ii) are obvious from the definitions of the relative convex hull and

its perimeter. To prove statement (iii), assume pi /∈ Ve(co(Ni,G)). Then, pi belongs either to

∂ co(Ni,G) \ Ve(co(Ni,G)) or to the interior of co(Ni,G). In the former case, pi ∈ [pk, pl] where

pk, pl ∈ Ve(co(Ni,G)); see Figure 4.18(left). Note that since G ⊆ Gsens and pk, pl are neighbors of

pi in G, we have [pi, pk] ⊆ Qǫ and [pi, pl] ⊆ Qǫ. Since pi ∈ [pk, pl], this implies that [pk, pl] ⊆ Qǫ.

Therefore [pk, pl] ⊆ rco(P, Qǫ) because the shortest path in Qǫ between pk, pl is contained in

rco(P, Qǫ). Thus, pi cannot be a vertex of rco(P, Qǫ). Let us now look at the case when pi belongs

pi

pk

pl

pi

pk

pm
pl

Figure 4.18: Illustration of the cases when pi 6∈ Ve(co(Ni,G)). The point set represented by the
black disks is Ni,G . The shaded region is co(Ni,G). The straight line segments between any two
points represent the fact that the two points are visible in Qǫ. The curved lines between pairs of
points in the figure on the right represent shortest paths in Qǫ between the points.

to the interior of co(Ni,G); see Figure 4.18(right). Then, since the strict concavities of Qǫ are all

continuously differentiable curves, the shortest path between any two points pk, pl ∈ Ve(co(Ni,G))
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will be a sequence of straight lines and curves as shown in Figure 4.18(right). By the definition

of the relative convex hull, the shortest paths between two points are contained in the relative

convex hull. Thus the region bounded by the shortest paths between adjacent vertices of co(Ni,G)

is contained in the relative convex hull. Clearly, since pi is the interior of this region, it cannot be

a vertex of rco(P, Qǫ). This concludes the proof of statement (iii).

See Figure 4.19 for a graphical explanation of Lemma 4.9.1.

pi
pi1

pi3

pi4

pi2

Figure 4.19: Illustration of Lemma 4.9.1. The outer polygonal environment is Q and the in-
ner curved environment is Qǫ. The set of points represented by black and white disks are
P1 and P2 respectively. Note that rco(P1, Qǫ), represented by the dark shaded region, is
a subset of rco(P1 ∪P2, Qǫ), represented by the union of the dark and light shaded regions
(c.f. Lemma 4.9.1 (i)). In fact rco(P1, Qǫ) is a strict subset of rco(P1 ∪P2, Qǫ) and hence
rco(P1, Qǫ) has a strictly smaller perimeter than rco(P1 ∪P2, Qǫ) (c.f. Lemma 4.9.1 (ii)). Now,
pi ∈ Ve(rco(P1 ∪P2)). The set {pi}∪{pi1 , . . . , pi4} is equal to the set Ni,Gsens where Gsens is such
that r = +∞ . Note that pi ∈ Ve(co(Ni,Gsens)) where co(Ni,Gsens) is the region bounded by the
dashed lines (c.f. Lemma 4.9.1 (iii)).

Lemma 4.9.2 (Properties of the constraint set). For any allowable Q, Qǫ, if P ∈ Qn
ǫ and G2(P ) ⊆

G1(P ) ⊆ Gsens(P ), then for all pi, the following statements hold:

(i) The set Cpi,Q(Ni,G2
)∩ rco(Ni,G1

,V(pi, ǫ)) is convex; and

(ii) Cpi,Q(Ni,G1
)∩ rco(Ni,G1

,V(pi, ǫ)) = Cpi,Q(Ni,G1
)∩ co(Ni,G1

).

123



Proof. Let p, q ∈ Cpi,Q(Ni,G2)∩ rco(Ni,G1 ,V(pi, ǫ)). Since Cpi,Q(Ni,G2) is an intersection of convex

sets, it is convex as well. This implies that [p, q] ⊆ Cpi,Q(Ni,G2). Since Cpi,Q(Ni,G2) ⊆ Qǫ, we

deduce that [p, q] ⊆ Qǫ. Now, p, q ∈ rco(Ni,G1 ,V(pi, ǫ)). Therefore, by the definition of the relative

convex hull, the shortest path between p and q in Qǫ is also contained in rco(Ni,G1 ,V(pi, ǫ)). But

the shortest path is the segment [p, q] since [p, q] ⊆ Qǫ. Thus, [p, q] ⊆ rco(Ni,G1 ,V(pi, ǫ)). This

completes the proof of statement (i).

To prove statement (ii), note that rco(Ni,G1 ,V(pi, ǫ)) ⊆ co(Ni,G1). Hence Cpi,Q(Ni,G1)∩ rco(Ni,G1 ,V(pi, ǫ)) ⊆

Cpi,Q(Ni,G1)∩ co(Ni,G1). To prove the other inclusion, let q ∈ Cpi,Q(Ni,G1)∩ co(Ni,G1). Since

q ∈ co(Ni,G1), then q belongs to the closed triangle formed by pi and two other points belong-

ing to Ve(co(Ni,G1)), say pk, pl; see Figure 4.20. Also q ∈ Cpi,Q(Ni,G1). From the construction of

Cpi,Q(Ni,G1), it follows that q ∈ V(pj , ǫ) for all pj ∈ Ni,G1 . In particular, this means that [q, pl] ⊂ Qǫ

and [q, pk] ⊂ Qǫ.

Since pi, pl ∈ Ni,G1 and [pi, pl] ⊆ V(pi, ǫ), we deduce that [pi, pl] ⊆ rco(Ni,G1 ,V(pi, ǫ)) because

the relative convex hull contains the shortest path in V(pi, ǫ) between any two points contained in it.

Let the line containing the segment [q, pk] intersect the segment [pi, pl] at q′. Note that q ∈ [q′, pk]

because by choice of pk, pl, we have that q belongs to the closed triangle with vertices pi, pk, pl. Now,

since q′ ∈ [pi, pl] and [pi, pl] ⊆ rco(Ni,G1 ,V(pi, ǫ)), then q′ ∈ rco(Ni,G1 ,V(pi, ǫ)). We now claim that

the segment [q′, pk] ⊆ V(pi, ǫ). To see this, note that [q′, pk] is a subset of the polygon given by the

ordered set of vertices (pi, pk, q, pl). Since all the edges of the polygon, [pi, pk], [pk, q], [q, pl], [pl, pk],

are a subset of Qǫ, we have that the interior of Qǫ and the interior of the polygon (pi, pk, q, pl) do not

intersect. Thus [q′, pk] ⊆ V(pi, ǫ). Now, since q′, pk ∈ rco(Ni,G1 ,V(pi, ǫ)), the shortest path between

q′, pk in V(pi, ǫ) is also contained in rco(Ni,G1 ,V(pi, ǫ)). Thus q ∈ [q′, pk] ⊆ rco(Ni,G1 ,V(pi, ǫ)). This

completes the proof of statement (ii).

Statement (i) in the above lemma states that the constraint set is convex. Statement (ii) gives

an alternate way of computing the set Xi in step 3: of the Perimeter Minimizing Algorithm

when Gconstr and Gsens are identical.

In what follows, we analyze the Perimeter Minimizing Algorithm by means of the closed
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q′

pkq

pi

pl

Figure 4.20: The set of points represented by black disks is Ni. The shaded region represents
co(Ni). q, represented by the white disk, is any point in co(Ni). Since q is ǫ-robustly visible from
every point in Ni, the dashed line segments are a subset of Qǫ. Also every point in Ni \ {pi} is
visible from pi by the definition of Ni. Hence the solid line segments are also a subset of Qǫ.

perimeter minimizing algorithm over any proximity graphs G2 ⊆ G1 ⊆ Gsens, defined as follows:

T c
G1,G2

(P )i ∈ pi + ui, where

Xi(P ) = Cpi,Q(Ni,G2)∩ rco(Ni,G1 ,V(pi, ǫ)),

Ki(P ) =
{

lim
km→+∞

CC(Xi(Pkm)) | Pk → P,

{CC(Xi(Pkm)} is a convergent subseq. of {CC(Xi(Pk)}
}

,

ui ∈
{

min(smax, ‖p∗i − pi‖)
‖p∗i − pi‖

(p∗i − pi)
∣∣∣ p∗i ∈ Ki(P )

}
,

(4.7)

and where T c
G1,G2

(P )i is the ith component of T c
G1,G2

(P ).

Note that TGsens,Gconstr(P ) ⊆ T c
G1,G2

(P ) if G1 = Gsens and G2 = Gconstr. Therefore, the evo-

lution under the Perimeter Minimizing Algorithm given by the trajectory {P [t]}t∈Z≥0
with

P [t + 1] ∈ TGsens,Gconstr(P [t]) is just one of the possible evolutions under T c
G1,G2

given by the trajec-

tory {P c[t]}t∈Z≥0
with P c[t + 1] ∈ T c

G1,G2
(P c[t]). We now begin stating the intermediate results for

T c
G1,G2

. The first of these results essentially states that for at least one robot located at a vertex of

the relative convex hull, the set Xi is large enough for it to move under the application of T c
G1,G2

.

This, in turn, implies that the relative convex hull shrinks.
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Lemma 4.9.3 (Nontrivial constraints). Let Q, Qǫ be allowable environments. Assume that P ∈ Qn
ǫ

and the proximity graphs G1 and G2 satisfy

A) not all points in P are equal; and

B) G2(P ) ⊆ G1(P ) ⊆ Gsens(P ) and G2(P ) is connected.

Then there exists pi ∈ Ve(rco(P, Qǫ)) such that diam(Xi) > 0, where Xi = Cpi,Ni,G2
∩ rco(Ni,G1 ,V(pi, ǫ)).

Proof. Note that pi ⊆ Xi and Xi is convex. Thus, diam(Xi) = 0 if and only if Xi = {pi}. The

remainder of the proof is organized as follows. We first establish some necessary conditions for

Xi = {pi}. We then show that under the assumptions in the lemma, those necessary conditions

cannot hold for every pi ∈ Ve(rco(P, Qǫ)). Note that Xi = Cpi,Q(Ni,G2)∩ rco(Ni,G1 ,V(pi, Qǫ)) and

Cpi,Q(Ni,G2) =
⋂

pj∈Ni,G2

CQ(pi, pj). For any pj ∈ Ni,G2 , CQ(pi, pj) = V(pi, ǫ)∩B(
pi + pj

2
,
r

2
)

nij⋂

k=1

HQǫ(vi,j,k)

where vi,j,k’s are computed at step 3: of the Constraint Set Generator Algorithm. Thus, we

can write

Xi = V(pi, ǫ)∩




⋂

pj∈Ni,G2

(
B(

pi + pj

2
,
r

2
)∩
( nij⋂

k=1

HQǫ(vi,j,k)

))
∩ rco(Ni,G1 ,V(pi, Qǫ)),

which can be rewritten as

Xi = V(pi, ǫ)∩ rco(Ni,G1 ,V(pi, Qǫ))∩




⋂

pj∈Ni,G2

B(
pi + pj

2
,
r

2
)


∩




⋂

pj∈Ni,G2

nij⋂

k=1

HQǫ(vi,j,k)


 .

(4.8)

Since rco(Ni,G1 ,V(pi, ǫ)) ⊆ V(pi, ǫ), we have that V(pi, ǫ)∩ rco(Ni,G1 ,V(pi, Qǫ)) = rco(Ni,G1 ,V(pi, ǫ)).

From assumptions (A) and (B), any robot i will have a neighbor in G1(P ) and G2(P ) that is

not placed at pi. Hence, Ni,G1 and Ni,G2 are point sets strictly larger than {pi}. Therefore,

rco(Ni,G1 ,V(pi, ǫ)) is strictly larger than {pi}. Therefore, there exists a neighborhood around pi in

rco(Ni,G1 ,V(pi, ǫ)), as shown by the shaded region in Figure 4.23. Let this neighborhood be B.

Therefore, if pi belongs to the interior of
(⋂

pj∈Ni,G2
B(

pi+pj

2 , r
2)
)
∩
(⋂

pj∈Ni,G2

⋂nij

k=1 HQǫ(vi,j,k)
)
,

then Xi will be strictly larger than {pi}. Hence, if Xi = {pi} then pi belongs to the boundary of

one or more of the sets B(
pi+pj

2 , r
2) and HQǫ(vi,j,k), where pj ∈ Ni,G2 and k ∈ {1, . . . , nij}.
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If ‖pi − pj‖ < r, then pi belongs to the interior of B(
pi+pj

2 , r
2); see Figure 4.21 (left). Also, if

vi,j,k /∈ [pi, pj ] then pi belongs to the interior of HQǫ(vi,j,k); see Figure 4.21 (right). Therefore, if

pi belongs to the boundary of HQǫ(vi,j,k), then vi,j,k ∈ [pi, pj ] and if pi belongs to the boundary of

B(
pi+pj

2 , r
2), then ‖pi − pj‖ = r.

vi,j,k

pi pj pjpi

Figure 4.21: In the figure on the left, ‖pi − pj‖ < R. The circle represents B(
pi+pj

2 , r
2). In the

figure on the curved line represents a strict concavity. vi,j,k represents the point on the concavity
nearest to [pi, pj ]. It can be seen that dist(vi,j,k, [pi, pj ]) > 0. The half-plane tangent to the strict
concavity at vi,j,k and with interior in the direction of the arrow is HQǫ(vi,j,k).

Since pi ∈ Ve(rco(P, Qǫ)), from Lemma 4.9.1 (iii) we have that pi ∈ Ve(co(Ni,G2)). This implies

that
⋂

pj∈Ni,G2

B(
pi + pj

2
,
r

2
) is a convex set strictly containing {pi}; see Figure 4.22.

pi

pj pk

Figure 4.22: pi is a vertex of the convex hull of the set {pi, pj , pk}. Here ‖pi − pj‖ = ‖pi − pk‖ = r.
Note that the angle between the vectors pj−pi and pk−pi is strictly less than π. The circles represent

B(
pi+pj

2 , r
2) and B(

pi+pj

2 , k
2 ) and the shaded region represents their intersection. If ‖pi − pj‖ < r or

‖pi − pk‖ < r, the region of intersection will still strictly contain {pi}.

Therefore
⋂

pj∈Ni,G2

B(
pi + pj

2
,
r

2
)∩B strictly contains {pi}. Therefore, pi must belong to the

boundary of some HQǫ(vi,j,k). It is easy to see that HQǫ(vi,j,k)∩B is strictly larger than {pi}.

Therefore, pi must belong to the boundary of another set HQǫ(vi,k,l) or B(
pi+pj

2 , r
2) as explained in

Figure 4.23.
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wv

u

v

Figure 4.23: The thick lines represent the boundary of rco(Ni,G1 ,V(pi, ǫ)). The shaded region
is a subset of rco(Ni,G1 ,V(pi, ǫ)) and forms an entire neighborhood around pi. HQǫ(vi,j,l) and
HQǫ(vi,k,m) are the half-planes with boundary being the lines passing through [pi, pj ] and [pi, pk]
respectively and interior in the direction of the arrows. In the figure on the right, ‖pj − pi‖ = r
and the angles between the vectors pj − pi and pk − pi is greater than π

2 . The circle represents
B(pi+pk

2 , r
2).

Therefore, for pi ∈ Ve(rco(P, Qǫ)), we obtain the following necessary condition for diam(Xi) = 0.

There exist at least two neighbors of pi located at pj , pk such that one or more than one of following

cases hold:

(A) ‖pj − pi‖ = r, vi,k,l ∈ [pi, pk] for some l ∈ {1, . . . , nik}, the inner product 〈pj − pi, pk − pi〉 ≤ 0

and pj /∈ HQǫ(vi,k,l);

(B) vi,j,m ∈ [pi, pj ], vi,k,l ∈ [pi, pk] and pk /∈ HQǫ(vi,j,m), pj /∈ HQǫ(vi,k,l) for some m ∈ {1, . . . , nij}

and some l ∈ {1, . . . , nik}.

Cases (A) and (B) correspond to Figure 4.24 left and right respectively.

We now show that the necessary condition cannot hold for every pi ∈ Ve(rco(P, Qǫ)). Let

pi1 ∈ Ve(rco(P, Qǫ)). Then pi1 has at least two neighbors in G2(P ) located at pj , pk such that

conditions (A) and/or (B) are satisfied. Now pi1 ∈ ∂ rco(P, Qǫ) because pi1 ∈ Ve(rco(P, Qǫ)). Also,

vi,k,l ∈ ∂Qǫ ∩ rco(P, Qǫ). Hence vi,k,l ∈ ∂ rco(P, Qǫ). Now, since Qǫ does not contain any hole,

rco(P, Qǫ) is simply connected. Thus the segment [pi1 , vi,k,l] partitions rco(P, Qǫ) into two simply

connected sets closed sets, Q′
i1

and Q′′
i1

such that Q′
i1
∩Q′′

i1
= [pi1 , vi,k,l]. Let pk ∈ Q′

i1
.
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vi,k,m

pj pk

r ≥ π
2

pi

vi,k,l

pi1

pj pk

vi,j,l

Figure 4.24: Illustration of cases (A) and (B) in the proof of Lemma 4.9.3. These cases illustrate
the necessary conditions in order for the constraint set Xi to be a point.

Let us construct a segment [vi,k,l, d] by extending the segment [pi1 , vi,k,l] till it intersects the

boundary of rco(P, Qǫ) at d. We refer to Figure 4.25 for an illustration of this argument. Then

the segment [vi,k,l, d] partitions rco(P, Qǫ) into two components such that again there exists p′i1 ∈

Ve(P, Qǫ) in the component not containing pi1 . We point that p′i1 = vi,k,l, p′i1 = pk and vi,k,l = d

are possible. Now, p′i1 can only contain one neighbor in Q′′
i1

and that can only be pi1 since all other

points in Q′′
i1

are not ǫ-robust visible from p′i1 .

pi1

vi,k,l

≥ π
2

pk
p′′i1

pj

d
p′i1

r

a

b
π
2

Figure 4.25: Illustration of the construction of various segments and the partitions induced by
them in the proof of Lemma 4.9.3.

Let pj be such that ‖pj−pi1‖ = r and the inner product 〈pj−pi1 , pk−pi1〉 ≤ 0. Let us construct

a line segment [a, b] perpendicular to the segment [pi1 , pj ], passing through pj and intersecting

the boundary of rco(P, Qǫ) at points a and b. The segment [a, b] partitions rco(P, Qǫ) into two

components such that there exists p′′i1 ∈ Ve(P, Qǫ) in the component not containing pi1 . Here we
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point that p′′i1 = pj is possible. Now, p′′i1 can only contain one neighbor in Q′
i1

and that can only

be pi1 since all other points in Q′
i1

are at a distance strictly greater than r.

If, on the other hand, pj is such that there exists vi,j,m ∈ [pi, pj ] and pk /∈ HQǫ(vi,j,m), pj /∈

HQǫ(vi,k,l), then we proceed in a way similar to the case of pk. Let us construct a line segment

[vi,j,m, e] by extending the line segment [pi, vi,j,m] till it intersects the boundary of rco(P, Qǫ) at e.

Then the segment [vi,j,m, e] partitions rco(P, Qǫ) into two components such that again there exists

p′′i1 ∈ Ve(P, Qǫ) in the component not containing pi1 . We point that p′′i1 = vi,j,m, p′′i1 = pj and

vi,j,m = e are possible. Now, as before p′′i1 can only contain one neighbor in Q′
i1

and that can only

be pi1 since all other points in Q′
i1

are not ǫ-robust visible from p′′i1 .

Thus, Xi1 = {pi1} implies that there exists a partition of rco(P, Qǫ) into Q′
i1

and Q′′
i1

containing

p′i1 ∈ Ve(rco(P, Qǫ)) and p′′i1 ∈ Ve(rco(P, Qǫ)) respectively such that p′i1 has only one neighbor in Q′′
i1

and vice versa. Now, let pi2 = p′′i1 . Therefore, pi2 6= pi1 . Again Xi2 = {pi2} implies that rco(P, Qǫ)

can be partitioned into Q′
i2

and Q′′
i2

. Let pi1 ∈ Q′
i2

. Therefore, there exists p′′i2 ∈ Ve(rco(P, Qǫ))

such that pi1 cannot be a neighbor of p′′i2 . Let pi3 = p′′i2 . Therefore, Xi2 = {pi2} implies the

existence of pi3 ∈ Ve(rco(P, Qǫ)) such that pi3 /∈ {pi1 , pi2}. Let the cardinality of Ve(rco(P, Qǫ)) be

nv. Proceeding recursively, Xinv
= {pinv

} implies the existence of pinv+1 /∈ {pi1 , . . . , pinv
}. This is

a contradiction.

Now, let G1(P ) and G2(P ) be graphs with fixed topologies and let G2 be a subgraph of G1.

Let YG1,G2 = {P ∈ Qn
ǫ | G2(P ) ⊆ G1(P ) ⊆ Gsens(P )}.

We now present some results on smoothness of T c
G1,G2

on YG1,G2 and contraction of Vperim,Qǫ

under the action of T c
G1,G2

. The technical approach in what follows is similar to the one in [21].

Lemma 4.9.4. (Properties of the Perimeter Minimizing Algorithm) The set YG1,G2 and the

map T c
G1,G2

have the following properties:

(i) YG1,G2 is compact, and T c
G1,G2

is closed on YG1,G2;

(ii) for all i ∈ {1, . . . , n}, T c
G1,G2

(P )i ⊆ (rco(P, Qǫ) \ Ve(rco(P, Qǫ)))∪{pi};

(iii) if G2 is connected, then there exists pi ∈ Ve(rco(P, Qǫ)) such that T c
G1,G2

(P )i ⊆ rco(P, Qǫ) \

Ve(rco(P, Qǫ)); and
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(iv) rco(T c
G1,G2

(P ), Qǫ)) ⊆ rco(P, Qǫ) at any P ∈ YG1,G2,

where T c
G1,G2

(P )i is the ith component of T c
G1,G2

(P ).

Proof. We begin by proving statement (i). Showing that YG1,G2 is compact is equivalent to showing

that YG1,G2 is closed and bounded. Since YG1,G2 ⊆ Qǫ, then YG1,G2 is bounded. Now, let {Pk} be

any sequence in YG1,G2 such that Pk → P . Let us show that P ∈ YG1,G2 . By definition, G2(P ) ⊆

G1(P ). It remains to be shown that G1(P ) ⊆ Gsens(P ). To see this, let (pi, pj) be an edge that does

not belong to Gsens(P ). We now show that it cannot belong to G1(P ). Then, either [pi, pj ] 6⊂ Qǫ or

‖pi−pj‖ > R. If [pi, pj ] 6⊂ Qǫ, we can construct neighborhoods around pi and pj such that for all p′i

and p′j belonging to the neighborhoods, we have [p′i, p
′
j ] 6⊂ Qǫ; see Figure 4.26. If, on the other hand,

pi pj

Figure 4.26: If [pi, pj ] 6⊂ Qǫ, there exist neighborhoods of pi and pj such that [p′i, p
′
j ] 6⊂ Qǫ, for all

p′i and p′j belonging to the neighborhoods.

‖pi − pj‖ = R + δ, then let p′i, p
′
j be any points such that ‖p′i − pi‖ < δ

2 and ‖p′j − pj‖ < δ
2 . Then

‖p′i−p′j‖ = ‖p′i−pi+pi−pj+pj−p′j‖ ≥ ‖pi−pj‖−‖p′i−pi‖−‖p′j−pj‖ > R+δ− δ
2− δ

2 = R. Thus there

exist neighborhoods around pi and pj such that for all p′i and p′j belonging to the neighborhoods,

we have ‖p′i − p′j‖ > R. Therefore, we can construct a neighborhood around P in Qǫ such that for

all P ′ in the neighborhood, (p′i, p
′
j) is not an edge of Gsens(P

′) if (pi, pj) is not an edge of Gsens(P ).

Since Pk → P , there exists k0 such that for all k ≥ k0, Pk belongs to this neighborhood. Therefore,

for all k ≥ k0, (pk
i , p

k
j ) is not an edge of Gsens(Pk). Since G1(Pk) ⊆ Gsens(Pk), for all k ≥ k0, (pk

i , p
k
j )

is not an edge of G1(Pk). Then, since G1(P ) has the same topology as G1(Pk), we have that (pi, pj)

is not an edge of G1(P ). This completes the proof that YG1,G2 is compact.

Showing that T c
G1,G2

is closed over YG1,G2 is equivalent to proving that the map P → Ki(P )

is closed over YG1,G2 for each i ∈ {1, . . . , n}. Now, let Pl → P and let ql → q where ql ∈ Ki(Pl).
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We need to show that q ∈ Ki(P ).Since ql ∈ Ki(Pl), we have that ql = limm→∞ CC(Xi(P
′
km

)) for

some sequence P ′
k → Pl. Hence, given δ > 0, there exists m0(l) such that for all m ≥ m0(l),

we have ‖ql − CC(Xi(P
′
km

))‖ ≤ δ. Also, since P ′
k → Pl, there exists kl such that for all k ≥ kl,

we have ‖P ′
k − Pl‖ ≤ δ. Without loss of generality, let us assume that km0(l) > kl. Now, let

P ′′
l = P ′

km0(l)
and q′′l = CC(Xi(P

′′
l )). Therefore, ‖P ′′

l − Pl‖ ≤ δ and ‖q′′l − ql‖ ≤ δ. Since Pl → P

and ql → q, there exists l0 such that for all l ≥ l0, we have that ‖Pl −P‖ ≤ δ and ‖ql − q‖ ≤ δ. But

‖Pl−P‖ = ‖Pl−P ′′
l +P ′′

l −P‖ ≥ ‖P ′′
l −P‖−‖Pl−P”l‖. Therefore, ‖P ′′

l −P‖ ≤ δ+‖Pl−P”l‖ ≤ 2δ.

Hence P ′′
l → P . Similarly, it follows that for l ≥ l0. we have ‖q′′l − q‖ ≤ 2δ. Thus, q′′l → q. It then

follows from the definition of Ki(P ) that q ∈ Ki(P ).

We now prove statement (ii). It suffices to prove that Ki(P ) ⊆ (rco(P, Qǫ) \ Ve(rco(P, Qǫ)))∪{pi}.

Let q ∈ Ki(P ). Therefore, q = limkm→∞ CC(Xi(Pkm)) where {Pkm} is some subsequence of

Pk → P . We begin by showing that the map P → Xi(P ) is closed at P . Note that Xi(P ) =

Cpi,Q(Ni,G2)∩ rco(Ni,G1 ,V(pi, ǫ)) and that Cpi,Q(Ni,G2) = ∩pj∈Ni,G2
CQ(pi, pj). If pj ∈ Ni,G2 , then

(pi, pj) is an edge of G2(P ) ⊆ Gsens(P ). This implies that (pi, pj) ∈ J . But from Lemma 4.4.2 (iv),

the map (pi, pj) → CQ(pi, pj) is closed over J . Therefore, the map P → CQ(pi, pj) is closed

over YG1,G2 for each pj ∈ Ni,G2 . Since G2 has fixed topology, we have that the set of indices

{j | pj ∈ Ni,G2} is constant over YG1,G2 . Thus, the map P → Cpi,Q(Ni,G2) is closed over YG1,G2

since by Proposition 4 in [113], the intersection of closed maps is closed.

We now show that rco(Ni,G1 ,V(pi, ǫ)) = rco(Ni,G1 , Qǫ). Since V(pi, ǫ) ⊆ Qǫ, the inclusion

rco(Ni,G1 ,V(pi, ǫ)) ⊆ rco(Ni,G1 , Qǫ) follows directly. Let q1, q2 ∈ rco(Ni,G1 ,V(pi, ǫ)). Therefore,

q1, q2 ∈ V(pi, ǫ). By definition the shortest path in V(pi, ǫ) between q1 and q2 is contained in

rco(Ni,G1 ,V(pi, ǫ)). Since Qǫ does not contain any holes, the shortest path between q1 and q2

in V(pi, ǫ) is also the shortest path between q1 and q2 in Qǫ. Therefore, by definition of a rel-

ative convex set, rco(Ni,G1 ,V(pi, ǫ)) is convex relative to Qǫ. Since Ni,G1 ⊆ rco(Ni,G1 ,V(pi, ǫ))

and rco(Ni,G1 , Qǫ) is the intersection of all relative convex set containing Ni,G1 , we have that

rco(Ni,G1 , Qǫ) ⊆ rco(Ni,G1 ,V(pi, ǫ)). This proves that rco(Ni,G1 ,V(pi, ǫ)) = rco(Ni,G1 , Qǫ).

Now, since the shortest distances between two points in Qǫ change continuously as the position

of the points, the relative convex hull of the points also changes continuously as a function of the

points. Again the set {j | pj ∈ Ni,G1} is constant over YG1,G2 . Thus, the map P → rco(Ni,G1 , Qǫ)
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is continuous over YG1,G2 and hence, also closed. Finally, since Xi(P ) is the intersection of closed

maps, we have that P → Xi(P ) is closed.

Then from the definition of a closed map q ∈ Xi(P ). But Xi(P ) ⊆ rco(Ni,G1 ,V(pi, ǫ)) =

rco(Ni,G1 , Qǫ) and since Ni,G1 ⊆ {pi | {1, . . . , n}}, we have that rco(Ni,G1 , Qǫ) ⊆ rco(P, Qǫ). Thus,

Xi(P ) ⊆ rco(P, Qǫ) and hence q ∈ rco(P, Qǫ). Now, let q ∈ Ve(rco(P, Qǫ)). We show that then

diam(Xi(P )) = 0. Our strategy is as follows. We first show that if q ∈ Ve(rco(P, Qǫ)), then

diam(Xi(Pkm)) → 0. But that in turn implies that q = pi and hence pi ∈ Ve(rco(P, Qǫ)). But

pi ∈ Ve(rco(P, Qǫ)) and diam(Xi(P )) > 0 together imply that diam(Xi(Pkm)) does not tend to

zero. This is a contradiction. Therefore, diam(Xi(P )) = 0.

We now start by showing that diam(Xi(Pkm)) → 0. The range of the map P → Xi(P )

is compact, the notions of upper semicontinuity and closedness are identical. Therefore, P →

Xi(P ) is upper semicontinuous at any point P ∈ YG1,G2 . It follows from the definition of upper

semicontinuity that given any δ > 0, there exists m0 such that for all m ≥ m0, we have Xi(Pkm) ⊆

∪x∈Xi(P ) B(x, δ).

Since Xi(P ) ⊆ rco(P, Qǫ), q is a strictly convex point on the boundary of Xi(P ). By a strictly

convex point, we mean that there exists a tangent to ∂Xi(P ) at q which intersects ∂Xi(P ) at

exactly one point. Let q1 be the point on the boundary of ∪x∈Xi(P ) B(x, δ) such that ‖q1 − q‖ = δ;

see Figure 4.27. It follows that q1 is a strictly convex point on the boundary of ∪x∈Xi(P ) B(x, δ).

Let l1 be the tangent at q1. Now, let l2 be the tangent to B(q, δ) parallel to l1. It is easy to see that

as δ → 0, the region of ∪x∈Xi(P ) B(x, δ) between the lines l1 and l2 tends to the point set {q}. Now,

since CC(Xi(Pkm)) → q, there exists m1 such that for all m ≥ m1, CC(Xi(Pkm)) ∈ B(q, δ). For

m ≥ max{m0, m1}, let y be a point on the opposite side of l2 as CC(Xi(Pkm)) and equidistant to l2

as CC(Xi(Pkm)); see Figure 4.27. All points on the right of l2 are nearer to y than to CC(Xi(Pkm)).

Also, the distance of y to any point in ∪x∈Xi(P ) B(x, δ) on or to the left of l2 tends to 0 as δ → 0.

Let x1 = arg maxx{‖x − CC(Xi(Pkm))‖ | x ∈ Xi(Pkm)} and let x2 = arg maxx{‖x − y‖ | x ∈

Xi(Pkm)}. By definition of the circumcenter and the fact that it is unique, ‖x1 −CC(Xi(Pkm))‖ <

‖x2 − y‖. Also, by construction ‖x1 − CC(Xi(Pkm))‖ ≥ ‖x2 − CC(Xi(Pkm))‖. It follows then

that ‖x2 − y‖ > ‖x2 − CC(Xi(Pkm))‖. Therefore, x2 belongs to the left of l2. But as pointed

earlier, ‖x2 − y‖ → 0 as δ → 0. But the circumradius of Xi(Pkm) is equal to ‖x1 − CC(Xi(Pkm))‖
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CC(Xi(Pkm))

q1 q

y

l2
l1

Figure 4.27: Illustration of notions used in the proof of Lemma 4.9.4. The shaded region represents
Xi(P ). The outermost boundary represents the boundary of ∪x∈Xi(P ) B(x, δ). The small circle
represents B(q, δ).

and ‖x1 − CC(Xi(Pkm))‖ < ‖x2 − y‖. Since δ can be chosen arbitrarily small, it follows that

‖x1−CC(Xi(Pkm))‖ → 0 as m → ∞. This proves that if q ∈ Ve(rco(P, Qǫ)), then diam(Xi(Pkm)) →

0.

Now let pkm
i be the ith component of Pkm . Since pkm

i , CC(Xi(Pkm)) ∈ Xi(Pkm) and diam(Xi(Pkm)) →

0, it follows that ‖pkm
i − CC(Xi(Pkm))‖ → 0. But Pkm → P , and therefore, pkm

i → pi. This im-

plies that CC(Xi(Pkm)) → pi. Thus pi = q and pi ∈ Ve(rco(P, Qǫ)). We now claim that if

diam(Xi(P )) > 0 and pi ∈ Ve(rco(P, Qǫ)), then there exists a neighborhood of P in YG1,G2 such

that for all points P ′ in the neighborhood, we have that diam(Xi(P
′)) ≥ d for some d > 0. But

this is a contradiction since we have shown that diam(Xi(Pkm)) → 0 for some sequence Pkm → P .

To prove the above claim, note that since V(pi, ǫ) ⊆ rco(Ni,G1 ,V(pi, Qǫ)) and rco(Ni,G1 ,V(pi, Qǫ)) =

rco(Ni,G1 ,V(pi, Qǫ)), we can write

Xi = rco(Ni,G1 , Qǫ)∩




⋂

pj∈Ni,G2

B(
pi + pj

2
,
r

2
)


∩




⋂

pj∈Ni,G2

nij⋂

k=1

HQǫ(vi,j,k)


 . (4.9)

Now, let us first consider the case when Xi(P ) has non-empty interior. Then one can choose a

segment [p′, p′′] in the interior of Xi(P ) whose length is arbitrarily close to the length of diam(Xi(P )).
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Therefore, [p′, p′′] belongs in the interior of rco(Ni,G1 , Qǫ), B(
pi+pj

2 , r
2) and HQǫ(vi,j,k) for all i, j

and k. As shown earlier in the proof of statement (ii), the map pi → rco(Ni,G1(P ), Qǫ) is continuous

for every i. Therefore, there exists a neighborhood B1 of YG1.G2 around P such that for all P ′ ∈ B1,

the segment [p′, p′′] ⊆ rco(Ni,G1(P
′), Qǫ).

From the proof of Proposition 4.4.2 (iv), we know that the map (pi, pj) → B(
pi+pj

2 , r
2) is

continuous over J . It follows then that for fixed i and j, there exists a neighborhood of J around

(pi, pj) such that for all (p′i, p
′
j) in the neighborhood, [p′, p′′] ⊆ B(

p′i+p′j
2 , r

2). Since G2 is fixed the

set {j | j ∈ Ni,G2} is fixed. Thus, there exists a neighborhood, B2 of YG1,G2 of P such that for all

P ′ ∈ B2, we have [p′, p′′] ⊆
(⋂

pj∈Ni,G2
B(

pi+pj

2 , r
2)
)
. Also, from the proof of Proposition 4.4.2 (iv),

for fixed j and a fixed strict concavity a, the map (pi, pj) → HQǫ(v(pi, pj)) is continuous over J ,

where v(pi, pj) is the point on the strict concavity a nearest to the segment [pi, pj ]. Again, from

the proof of Proposition 4.4.2 (iv), there exists a neighborhood of J around (pi, pj) such that for

all points (p′i, p
′
j) in the neighborhood, we have a′il ∈ {ai1 , · · · , ainij

} for any l ∈ {1, . . . , n′
ij} where

the notation is as in the proof of Proposition 4.4.2 (iv). Let a′il = ais . Since [p′, p′′] belongs to the

interior of HQǫ(vi,j,s(pi, pj)), which in turn varies continuously as (pi, pj) for fixed ais , there exists a

neighborhood around (pi, pj) such that for all (p′i, p
′
j), we have [p′, p′′] ⊂ HQǫ(vi,j,l)(p

′
i, p

′
j). It then

follows that there exists a neighborhood B3 of YG1,G2 around P such that for all P ′ = (p′1, · · · , p′n) ∈

B3, [p′, p′′] ⊂
(⋂

pj∈Ni,G2
(P ′)

⋂n′
ij

k=1 HQǫ(vi,j,k(p
′
i, p

′
j))

)
. Thus, for any P ′ ∈ B1 ∩B2 ∩B3, we have

that [p′, p′′] ⊆ Xi(P
′) or that diam(Xi(P

′)) ≥ d where d is equal to the length of the segment

[p′, p′′].

Second, let Xi(P ) have empty interior. Therefore, Xi(P ) is a line segment and since pi ∈

Ve(rco(P, Qǫ)) we have that pi is one of the end points of Xi(P ). Also, since Xi(P ) is a line segment,

it follows from equation (4.9) that Xi(P ) must belong to the intersection of the boundaries of at

least two of the sets rco(Ni,G1 , Qǫ) and the half-planes HQǫ(vi,j,k). The set Xi(P ) cannot belong to

the boundary of a ball B(
pi+pj

2 , r
2) since its boundary is curved. Therefore, Xi(P ) belongs to the

intersection of the boundaries of either (i) rco(Ni,G1 , Qǫ) and a half-plane HQǫ(vi,j,k) or (ii) two half-

planes HQǫ(vi,j,k) and HQǫ(vi,l,m). Let us assume without loss of generality that Xi(P ) belongs to

the interior of the remaining sets. Then, as shown earlier, there exists a neighborhood, B4, of YG1,G2

around P such that for all P ′ in the neighborhood, Xi(P ) belongs to the interior of the remaining
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sets. Now cases (i) and (ii) correspond to Figure 4.28 top and bottom respectively. It follows

HQǫ
(vi,j,k)

pi prpj

ps

aik

vi,j,k

HQǫ
(vi,j,k)

HQǫ
(vi,l,m)

pi

ps

ail

vi,l,m

pj

pr

aik

pl

vi,j,k

Figure 4.28: Illustration of cases (i) and (ii) in the proof of Lemma 4.9.4. The curved arcs represent
strict concavities. The solid line segment represents Xi(P ). The dashed lines represent the bound-
ary of rco(P, Qǫ). Note that there must exist robots pr, ps ∈ Ni,G1 for the dashed lines to be the
boundary of rco(P, Qǫ). Note that pi ∈ Ve(RCH(P, Qǫ)) and also pi is an end point of the segment
Xi(P ). In the top figure vi,j,k, denoted by the white disc, is the point on the strict concavity aik

nearest to the segment [pi, pj ]. Here pj ∈ Ni,G2 . The half-plane HQǫ(vi,j,k) has interior in the
direction of the arrow. In the bottom figure, vi,l,m and vi,j,k are points on ail and aik nearest to the
segments [pi, pl] and [pi, pj ] respectively. The direction of the arrows points towards the interior of
the half-planes HQǫ(vi,l,m) and HQǫ(vi,j,k). Here pj , pl ∈ Ni,G2 .

immediately from the figure that we can choose a neighborhood, B5, of P in YG1,G2 such that for

P ′ in the neighborhood, we have that the rco(Ni,G1 , Qǫ)∩HQǫ(vi,j,k) and HQǫ(vi,j,k)∩HQǫ(vi,l,m)

contain a segment of length arbitrarily close to the length of Xi(P ). Therefore, for all P ′ ∈ B4 ∩B5,

we have that Xi(P
′) contains a segment of length d where d > 0.

This completes the proof of the fact that if q ∈ Ve(rco(P, Qǫ)), then diam(Xi(P )) = 0. But

then this implies that q = pi. Thus, this completes the proof of statement (ii).

To prove statement (iii), note that in proving statement (ii) we have shown that if diam(Xi(P )) >

0, then q = limkm→∞ CC(Xi(Pkm)) /∈ Ve(rco(P, Qǫ)). From Lemma 4.9.3, there exists at least one

pi ∈ Ve(rco(P, Qǫ)) such that diam(Xi(P )) > 0. Statement (iii) now follows directly.

We now prove statement (iv). It follows from Statement (ii), that T c
G1,G2

(P ) ⊆ rco(P, Qǫ). This

implies that rco(T c
G1,G2

(P ), Qǫ) ⊆ rco(P, Qǫ).

From Lemma 4.9.4(i), we know that, in particular, if the graphs Gsens,Gconstr have fixed topology,

then the closed perimeter minimizing algorithm is a closed map. However, during the evolution

of the system we expect the graphs Gsens,Gconstr to switch. To study the convergence properties

of TGsens,Gconstr over such a dynamic topology, we define a set-valued algorithm which essentially

embeds all possible evolutions that can happen due to switching. Given any allowable Q, Qǫ, define
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the perimeter minimizing algorithm over all allowable graphs to be the set-valued function T that

maps points in Qn
ǫ to all possible subsets of Qǫ by:

T (P ) = {P ′ ∈ T c
G1,G2

(P ) | G2 ⊆ G1 ⊆ Gsens(P ), G1, G2 have fixed topologies

and same connected components as Gsens}.

Also, let Y = {P ∈ Qn
ǫ | Gsens(P ) is connected} denote the set of all configurations where Gsens is

connected.

Proposition 4.9.5. (Perimeter minimizing algorithm over all allowable graphs) The set

Y and set-valued map T have the following properties:

(i) Y is compact, T (Y) ⊆ Y, and T is closed on Y;

(ii) rco(T (P ), Qǫ) ⊆ rco(P, Qǫ), for P ∈ Qn
ǫ ; and

(iii) if P ′ ∈ T (P ) and P ∈ Qn
ǫ , then Vperim,Qǫ(P

′) ≤ Vperim,Qǫ(P ).

Proof. Since Y ⊆ Qn
ǫ , we have that Y is bounded. Now, let {Pk} be a sequence in Y such that

Pk → P . Then, from the proof of Lemma 4.9.4 (i), we know that there exists k0 such that for all

k ≥ k0, (pk
i , p

k
j ) is an edge of Gsens(Pk) implies that (pi, pj) is an edge of Gsens(P ). But Gsens(Pk) is

connected. Therefore, Gsens(P ) is also connected. Hence, P ∈ Y and, therefore, Y is closed. This

proves that Y is compact.

Now let P ′ ∈ T (P ) where P ∈ Y. Then P ′ ∈ T c
G1,G2

(P ) for some G1 and G2 with fixed

topologies having the same connected components as Gsens(P ). Since P ∈ Y, Gsens(P ) is connected

and hence, so are G1, G2. The fact that P ′ ∈ Y or that Gsens(P
′) has one connected component can

be verified exactly along the lines of the proof of Theorem 4.5.4 (i). This proves that T (Y) ⊆ Y.

Now, let {P k} be any sequence with P k ∈ T (Pk) such that P k → P . Since P k → P , and

the number of distinct graphs possible over n nodes is finite, there exists a subsequence P km → P

such that P km ∈ T c
G1,G2

(Pkm) where G1(Pkm) and G2(Pkm) have fixed topologies for all m. Now,

since Pkm → P , P km → P and T c
G1,G2

is closed over YG1,G2 from Lemma 4.9.4 (i), we have that

P ∈ T c
G1,G2

(P ). Now, to finish the proof, we have to show that G2(P ) ⊆ G1(P ) ⊆ Gsens(P ). The

first inclusion follows from the fact the by definition of T (P ) where G2(P ) ⊆ G1(P ). Now, notice
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that we have shown in proof of Lemma 4.9.4 (i) that there exists k0 such that for all k ≥ k0,

(pk
i , p

k
j ) being an edge of Gsens(Pk) implies that (pi, pj) is an edge of Gsens(P ). Also, by definition,

G1(Pkm) ⊆ Gsens(Pkm). Therefore, for all km ≥ k0, we have that (pkm
i , pkm

j ) being an edge of

G1(Pkm) implies that (pi, pj) is an edge of Gsens(P ). Therefore, G1(P ) ⊆ Gsens(P ). This completes

the proof of statement (i).

Statement (ii) follows directly from Lemma 4.9.4 (ii). Finally, statement (iii) is a consequence

of statement (ii) and Lemma 4.9.1 (ii).

We are now ready to present the proof of the main result in this chapter. The proof uses the

analysis results presented in this section and the discrete time LaSalle Invariance Principle for

set-valued maps [21].

Proof of Theorem 4.5.4:

We begin by proving statement (i). Let pi[t0], pj [t0] be two robots belonging to the same connected

component of Gsens(P [t0]). Then from Corollary 4.4.6(ii), they must belong to the same connected

component of Gconstr(P [t0]). Therefore, there exists a path between pi[t0] and pj [t0] in Gconstr(P [t0]).

Let (pk[t0], pl[t0]) be any edge of Gconstr(P [t0]) that belongs to this path. Note that uk[t0] and

ul[t0] in the Perimeter Minimizing Algorithm algorithm are constrained to belong to the sets

Cpk,Q(Nj,Gconstr)− pk[t0] and Cpl,Q(Nj,Gconstr)− pl[t0], respectively. Therefore, pk[t0 + 1], pl[t0 + 1] ∈

CQ(pk[t0], pl[t0]) ⊆ Qǫ ∩B(pk[t0]+pl[t0]
2 , r

2). Hence, the edge (pj [t0 + 1], pk[t0 + 1]) is an edge of

Gsens(P [t0 +1]). Thus, there exists a path between pi[t0 +1] and pj [t0 +1] in Gsens(P [t0 +1]), which

proves statement (i).

For statements (ii) and (iii), it suffices to prove the results for the system evolving under the

action of T , since the evolution under TGsens,Gconstr is just one of the possible evolutions under T .

Statement (ii), therefore, follows from Proposition 4.9.5(iii).

We now prove statement (iii). From statement (i), it follows that the number of connected

components of Gsens(P [t]) is nondecreasing. Since the number of possible connected components of

Gsens is finite, this implies that, after a finite time t, the number of connected components of Gsens

does not change and robots belonging to different connected components never detect each other’s

presence. To prove statement (iii), it now suffices to show that any two robots belonging to the

same connected component of Gsens converge to the same point. Since the evolution of any group of
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connected robots from time t on is independent from the existence of other connected components,

we can then assume, without loss of generality, that Gsens(P [t]) has just one connected component.

According to Lemma 4.5.3 and Proposition 4.9.5(iii), Vperim,Qǫ is continuous and non-increasing

along T on Qn
ǫ . From Proposition 4.9.5(i), T is a closed map on the compact set Y ⊂ Qn

ǫ . Then,

by the LaSalle Invariance Principle for closed set-valued maps [21], P [t] → M, where M is the

largest weakly positively invariant7 set contained in

{P ∈ Y | ∃P ′ ∈ T (P ) s.t. Vperim,Qǫ(P
′) = Vperim,Qǫ(P )}.

Let us define the set diag(Qn
ǫ ) = {(p, . . . , p) ∈ Qn

ǫ | p ∈ Qǫ} ⊂ Y, and show that M = diag(Qn
ǫ ).

Clearly, diag(Qn
ǫ ) ⊆ M. To prove the other inclusion, we reason by contradiction. Let P ∈

M \ diag(Qn
ǫ ). Then, Lemma 4.9.4 (iii) implies that for any connected G2(P ), G1(P ) satisfying

G2(P ) ⊆ G1(P ) ⊆ Gsens(P ), there exists pi ∈ Ve(rco(P, Qǫ)) such that T c
G1,G2

(P )i ⊆ rco(P, Qǫ) \

Ve(rco(P, Qǫ)). Therefore, if P ′ ∈ T (P ), then P ′ contains a number of robots N(P ′) belonging to

Ve(rco(P, Qǫ)) that is strictly smaller than N(P ). In turn, this implies that after at most N(P )

steps, at least one vertex of rco(P, Qǫ) will contain any robot. By the definition of a vertex of

rco(P, Qǫ), it follows that the relative convex hull of the configuration after at most N(P ) steps is a

strict subset of rco(P, Qǫ). From Lemma 4.9.1(ii) in Appendix 4.9, Vperim,Qǫ has strictly decreased.

This is a contradiction with the fact that M is weakly positively invariant.

To finish the proof, we need to show that every trajectory converges to an individual point, i.e.,

P [t] → P ∗ ∈ M for all initial conditions P [0] ∈ Y. Note that {P [t]} is a sequence in a compact

set. Hence, it has a convergent subsequence {P [tk]}, say to P ∗. Since P [t] → M, it follows that

P ∗ ∈ M. Using again Lemma 4.5.3, we know that Vperim,Qǫ is continuous and Vperim,Qǫ (P ∗) = 0.

Hence, Vperim,Qǫ(P [tk]) → Vperim,Qǫ (P ∗) = 0. This implies that, given any δ > 0, there exists

k0 such that for all k ≥ k0, |Vperim,Qǫ(P [tk]) − Vperim,Qǫ (P ∗) | = Vperim,Qǫ(P [tk]) < δ. From

Proposition 4.9.5(iii), we know that Vperim,Qǫ(P [t]) ≤ Vperim,Qǫ(P [tk0 ]) for all t > tk0 . In turn

this implies that Vperim,Qǫ(P [t]) ≤ Vperim,Qǫ(P [tk0 ]) < δ for all t > tk0 . However, ‖P [t] − P ∗‖ ≤

n max {‖pi[t] − p∗i ‖ | i ∈ {1, . . . , n}} ≤ nVperim,Qǫ(P [t]), where the second inequality holds because

7A set M is weakly positively invariant with respect to a map T on W if, for any w0 ∈ W , there exists w ∈ T (w0)
such that w ∈ W .
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p∗i ∈ rco(P [t], Qǫ), for i ∈ {1, . . . , n}, and because the length of the shortest measurable curve

enclosing a set of points is greater than the distance between any two of the points. Thus, for all

t ≥ tk0 , we have ‖P [t] − P ∗‖ ≤ nδ. Hence P [t] → P ∗ ∈ M.

4.10 Proofs of results in Section 4.6

Proof of Proposition 4.6.1: We begin by proving statement (i). Note that step 1: of the Constraint

Set Generator Algorithm is in fact the sensing operation that takes O(M) time and the result

is a star-shaped polygon with at most M vertices. It is easy to see that the intersection of a

star-shaped polygon with a half-plane takes time linear in the number of vertices of the polygon.

Therefore, step 4: of the algorithm takes at most M time. If Q has at most κ concavities, then

the computational complexity of Constraint Set Generator Algorithm is O(M) + κM , which

is O(κM).

We now prove statement (ii). Step 1: of the Perimeter Minimizing Algorithm is the result

of the sensing operation taking O(M) time. Since the sensor takes at most M readings, we can

assume that the cardinality of Ni,Gsens is at most M . In step 2:, Ni,Gsens is the set of all robot

positions obtained in step 1:. Let the computation of Ni,Gconstr given the set Ni,Gsens take τ(M)

time. Here τ(M) depends on the specific heuristic used to compute the maximal cliques of a graph.

In step 3:, Cpi,Q(Ni,Gconstr) =
⋂

pj∈Ni,Glc, G

is the intersection of at most M convex constraint sets. It is

clear from the proof of statement (i) that each of the convex sets CQ(pi, pj) has at most M vertices

and can be computed in O(κM) time. The intersection of M convex polygons of M vertices takes

O(M2 log M) time [114]. Thus, the computation of Cpi,Q(Ni,Gconstr) takes MO(κM)+O(M2 log M)

time and Cpi,Q(Ni,Gconstr) has at most M2 vertices. The computation of rco(Ni,Gsens ,V(pi, ǫ)) takes

O(M log M) time (cf. [115]), since the cardinality of both Ni,Gsens and Ve(V(pi, ǫ)) is at most M .

Now, finally step 3: involves the intersection of two star-shaped polygons Cpi,Q(Ni,Gconstr) and

rco(Ni,Gsens ,V(pi, ǫ)) having at most M2 and M vertices respectively. Therefore the total number

of vertices of the two polygons is at most M2 + M . The computational complexity of computing

the intersection of the two star-shaped polygons is O((M2 + M) log(M2 + M) + M3) or O(M3),

where M3 is due to the fact that the maximum number of possible intersection points is M3 [116].
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Thus the computational complexity of step 3: is MO(κM) + O(M2 log M) + O(M) + O((M2 +

M) log(M2 +M)+M3). Since κ ∈ O(M), we have that the computational complexity of step 3: is

O(M3). In step 4:, the computation of the circumcenter of Xi, which is a convex polygon of at most

M3 vertices, takes O(M3 log M3) or O(M3 log M) time [114]. Step 5: can be performed in constant

time. Thus, the complexity of the entire algorithm is O(M) + τ(M) + O(M3) + O(M3 log M) or

τ(M) + O(M3 log M).

To prove statement (iii), note that if G = Gconstr = Gsens, then τ(M) ∈ O(1). Also, from

Lemma 4.9.2 (ii), we have that Xi = Cpi,Q(Ni,G)∩ co(Ni,G). The convex hull of M points can be

computed in O(M log M) time (cf. [114]) and hence co(Ni,G) can be computed in O(M log M) time.

The set Xi is an intersection of convex sets and can be computed in O(M2 + M) or O(M2) time,

and contains at most O(M2) vertices. Step 4: now takes O(M2 log M2) or O(M2 log M) time.

Thus, the complexity of the entire algorithm is O(M2 log M).
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CHAPTER 5

Conclusion

In this dissertation, we have considered some fundamental problems related to motion coordination

of mobile robotic agents with visibility sensors.

The first problem considered is that of deploying a group of such agents over an unknown

nonconvex environment to achieve complete visibility. To begin with we consider the problem

of optimally locating a single agent in an unknown environment. We look at the area of the

environment that is visible to the agent from a point and design an algorithm that drives the agent

on a trajectory along which the the area is nondecreasing. The algorithm is gradient-based, i.e.,

the agent moves along the gradient of the area of the region visible to it. However, the area of the

visible region is not differentiable everywhere; this leads to discontinuities in the right hand side

of the differential equation governing the motion of the agent. We resort to nonsmooth analysis

to characterize the points to which the agent is driven to. We propose a novel form of the LaSalle

Invariance Principle and conclude that the agent is driven to a critical point of the area of the

visibility region. We simulated the algorithm in MATLAB. The results illustrate that, in the presence

of noise, the observer reaches a local maximum of the visible area. In a “highly nonconvex”

environment, a single observer may not be able to see a large fraction of the environment. In such

a case, a team of robotic agents can be deployed to achieve the same task, which is the problem

we consider next.

We now revisit the first problem with the objective of designing a distributed deployment

algorithm for a group of robotic agents. We assume that all members of the group are initially

collocated at a given entry point to the environment. Using a top-down incremental partition

algorithm together with bottom-up deployment scheme, we design the Depth-first Deployment

algorithm which solves the above problem. The number of agents required to guarantee that the

task is achieved is ⌊n/3⌋, where n is the number of vertices of the environment. Remarkably,
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this number is the identical to that even if the environment were known a priori; see the famous

Art Gallery Theorem [76]. A second problem that we consider is the deployment problem but

under the additional constraint that the visibility graph of the final configuration of the agents

is connected. Using an approach similar to that in the Depth-first Deployment algorithm, we

propose the Connected Depth-first Deployment algorithm that solves the new problem. The

number of agents required to guarantee that the task is achieved is (n − 1)/2. Again, remarkably,

this number differs by at most one from the number that is obtained even if the environment is

known a priori; see [77].

There are various interesting directions in which the above work can be extended : (a) consider-

ing the special case of orthogonal environments which are often used to represent indoor and urban

scenarios; see [117] for some preliminary results; (b) handling the case when the initial position of

the agents is not collocated; (c) designing distributed algorithms that give better bounds for time

taken for the completion of the task; (d) handling changing environments, for example, the sudden

opening of a door in an indoor environment; and (e) designing algorithms for 3D environments.

Also, the deployment problem is just one of the large and very rich class of ”illumination” problems

in computational geometry for which distributed sensor-based approaches might be devised. One

possible example is the searchlight scheduling problem. A preliminary distributed solution to the

problem is provided in [118].

The second problem that we consider is that of designing a distributed algorithm for gathering a

group of robotic agents scattered over the environment at a single location. We present a provably

correct discrete-time synchronous distributed algorithm, termed as the Perimeter Minimizing

Algorithm algorithm, which builds on a novel solution to the connectivity maintenance problem

also proposed in this work. The name Perimeter Minimizing Algorithm derives from the novel

Lyapunov function that is chosen to prove the correctness of the algorithm. In other words, the

rendezvous objective is achieved if the perimeter of the relative convex hull of the agents’ position

inside a nonconvex environment is decreased to zero. The performance of the algorithm under

asynchronous operation of the robots, presence of noise in sensing and control, and nontrivial

robot dimension is investigated and found to be quite satisfactory. The computational complexity

of the algorithm under the assumption of finite sensing resolution is also investigated.
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To conclude, we have presented distributed algorithms for two fundamental problems pertaining

to groups of mobile robotic agents equipped with visibility sensors. It is hoped that this work

contributes some measure of progress to the research on motion coordination of mobile sensor

networks.
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APPENDIX A

Nonsmooth analysis and

discontinuous vector fields

In this appendix we review some basic facts and standard notations from nonsmooth analysis [66].

Given a locally Lipschitz function f : RN → R, a point x ∈ RN which verifies that 0 ∈ ∂f(x) is

called a critical point of f . The extrema of Lipschitz functions are characterized by the following

result.

Proposition A.0.1. Let f be a locally Lipschitz function at x ∈ RN . If f attains a local minimum

or maximum at x, then 0 ∈ ∂f(x), i.e., x is a critical point.

Let Ln : 2R
N → 2R

N
be the set-valued map that associates to each closed subset S of RN the

set of its least-norm elements Ln(S). For a locally Lipschitz function f , we consider the generalized

gradient vector field Ln(∂f) : RN → RN given by x 7→ Ln(∂f)(x) = Ln(∂f(x)).

Theorem A.0.2. Let f be a locally Lipschitz function at x. Assume that 0 6∈ ∂f(x). Then, there

exists T > 0 such that f(x − t Ln(∂f)(x)) ≤ f(x) − t
2‖Ln(∂f)(x)‖2, 0 < t < T . The vector

−Ln(∂f)(x) is called a direction of descent.

For differential equations with discontinuous right-hand sides we understand the solutions in

terms of differential inclusions following [88]. Let F : RN → 2R
N

be a set-valued map. Consider

the differential inclusion

ẋ ∈ F (x) . (A.1)

A solution to this equation on an interval [t0, t1] ⊂ R is defined as an absolutely continuous function

x : [t0, t1] → RN such that ẋ(t) ∈ F (x(t)) for almost all t ∈ [t0, t1]. Given x0 ∈ RN , the existence

of at least a solution with initial condition x0 is guaranteed by the following lemma.
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Lemma A.0.3. Let the map F be upper semicontinuous with nonempty, compact and convex

values. Then, given x0 ∈ RN , there exists at least a solution of (A.1) with initial condition x0.
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[77] G. Hernández-Peñalver. Controlling guards. In Canadian Conference on Computational
Geometry, pages 387–392, Saskatoon, Canada, 1994.

[78] V. Pinciu. A coloring algorithm for finding connected guards in art galleries. In Discrete Math-
ematical and Theoretical Computer Science, volume 2731/2003 of Lecture Notes in Computer
Science, pages 257–264. Springer Verlag, 2003.

[79] A. Ganguli, J. Cortés, and F. Bullo. Distributed deployment of asynchronous guards in art
galleries. In American Control Conference, pages 1416–1421, Minneapolis, MN, June 2006.

151



[80] A. Ganguli, J. Cortés, and F. Bullo. Distributed coverage of nonconvex environments. In
V. Saligrama, editor, Proceedings of the NSF Workshop on Future Directions in Systems
Research for Networked Sensing, May 25-26, Boston, MA, Lecture Notes in Control and
Information Sciences. Springer Verlag, 2006. To appear.

[81] H. Ando, Y. Oasa, I. Suzuki, and M. Yamashita. Distributed memoryless point convergence
algorithm for mobile robots with limited visibility. IEEE Transactions on Robotics and
Automation, 15(5):818–828, 1999.

[82] A. Ganguli, J. Cortés, and F. Bullo. On rendezvous for visually-guided agents in a nonconvex
polygon. In IEEE Conf. on Decision and Control and European Control Conference, pages
5686–5691, Seville, Spain, December 2005.

[83] A. Ganguli, J. Cortés, and F. Bullo. Multirobot rendezvous with visibility sensors in non-
convex environments. IEEE Transactions on Robotics, November 2006. Submitted.

[84] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry:
Algorithms and Applications. Springer Verlag, New York, 2 edition, 2000.

[85] D. S. Hochbaum and A. Pathria. Analysis of the greedy approach in problems of maximum
k-coverage. Naval Research Logistics. An International Journal, 45(6):615–627, 1998.

[86] P. Valtr. Guarding galleries where no point sees a small area. Israel Journal of Mathematics,
104:1–16, 1998.

[87] O. Cheong, A. Efrat, and S. Har-Peled. On finding a guard that sees most and a shop
that sells most. In ACM-SIAM Symposium on Discrete Algorithms, pages 1091–1100, New
Orleans, LA, January 2004.

[88] A. F. Filippov. Differential Equations with Discontinuous Righthand Sides, volume 18 of
Mathematics and Its Applications. Kluwer Academic Publishers, Dordrecht, The Netherlands,
1988.

[89] D. Shevitz and B. Paden. Lyapunov stability theory of nonsmooth systems. IEEE Transac-
tions on Automatic Control, 39(9):1910–1914, 1994.

[90] A. Bacciotti and F. Ceragioli. Stability and stabilization of discontinuous systems and nons-
mooth Lyapunov functions. ESAIM. Control, Optimisation & Calculus of Variations, 4:361–
376, 1999.

[91] P. K. Eason and J. A. Stamps. The effect of visibility on space use by territorial red-capped
cardinals. Behaviour, 138(1):19–30, 2001.

[92] J. E. Goodman. and R. Pollack. Foundations of a theory of convexity on affine Grassmann
manifolds. Mathematika. A Journal of Pure and Applied Mathematics, 42(2):305–328, 1995.

[93] S. M. LaValle. Planning Algorithms. Cambridge University Press, Cambridge, UK, 2006.

[94] H. Plantinga and C. R. Dyer. Visibility, occlusion, and the aspect graph. International
Journal of Computer Vision, 5(2):137–160, November 1990.

[95] J. Cortés and F. Bullo. Coordination and geometric optimization via distributed dynamical
systems. SIAM Journal on Control and Optimization, 44(5):1543–1574, 2005.

152



[96] B. Paden and S. S. Sastry. A calculus for computing Filippov’s differential inclusion with
application to the variable structure control of robot manipulators. IEEE Transactions on
Circuits and Systems, 34(1):73–82, 1987.

[97] R. Simmons, D. Apfelbaum, D. Fox, R. Goldman, K. Haigh, D. Musliner, M. Pelican, and
S. Thrun. Coordinated deployment of multiple heterogenous robots. In IEEE/RSJ Int. Conf.
on Intelligent Robots & Systems, pages 2254–2260, Takamatsu, Japan, 2000.
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