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Abstract

Contraction Theory in Control, Learning, and Optimization

by

Alexander Davydov

Contraction is a strong notion of stability for a dynamical system. It ensures that

the distance between any two trajectories decays exponentially quickly in some metric.

As a corollary of this property, contracting systems (i) are automatically input-to-state

stable in the presence of disturbances, (ii) are robust to time-delays in the dynamics, (iii)

entrain to a unique exponentially stable limit cycle when they are forced by a periodic

input, and (iv) satisfy certain composition properties, among others. To be specific, in

this thesis, we study the application of contraction theory in control, machine learning,

and optimization.

In Chapter 2, we develop a novel theoretical framework for contraction analysis with

respect to non-Euclidean norms based on weak pairings and one-sided Lipschitz con-

stants. We show how we can use weak pairings to readily establish desirable consequences

of contracting dynamical systems. In Chapter 3, we present a non-Euclidean monotone

operator theory in analogy to the standard monotone operator theory on Hilbert spaces.

This theory showcases how one can devise fixed point algorithms for computing zeros of

non-Euclidean monotone operators including contracting dynamical systems. In Chap-

ter 4, we present an application to machine learning where we design an implicit neural

network and show how we can use contraction theory to compute fixed points and estab-

lish explicit Lipschitz estimates. In Chapter 5, we extend the work of Chapter 4 to more

general neural dynamics including Hopfield and firing rate neural networks and provide

necessary and sufficient conditions for them to be contracting with respect to a non-

xii



Euclidean norm. In Chapter 6, we show how we can use contracting dynamics to derive

novel tracking error bounds for time-varying dynamical systems and how to design feed-

forward corrections to attain zero tracking error. We apply these results to time-varying

convex optimization problems. Finally, in Chapter 7, we show how to leverage the virtual

system method from contraction theory to establish when a linear time-invariant system

with an optimization-based controller is exponentially stable.

xiii



Contents

Curriculum Vitae viii

Abstract xii

1 Introduction 1
1.1 Motivation and outline of the thesis . . . . . . . . . . . . . . . . . . . . . 1
1.2 Preliminaries and notation . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Non-Euclidean Contraction Theory for Robust Nonlinear Stability 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 A review of Lumer pairings and Dini derivatives . . . . . . . . . . . . . . 16
2.3 Weak pairings and calculus of non-Euclidean norms . . . . . . . . . . . . 21
2.4 Contraction theory via weak pairings . . . . . . . . . . . . . . . . . . . . 30
2.5 Robustness of contracting systems . . . . . . . . . . . . . . . . . . . . . . 40
2.6 Networks of contracting systems . . . . . . . . . . . . . . . . . . . . . . . 45
2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.8 Auxiliary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3 Non-Euclidean Monotone Operator Theory and Applications 59
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.3 Non-Euclidean monotone operators . . . . . . . . . . . . . . . . . . . . . 68
3.4 Finding zeros of non-Euclidean monotone operators . . . . . . . . . . . . 77
3.5 Finding zeros of a sum of non-Euclidean monotone operators . . . . . . . 84
3.6 Set-valued inclusions and an application to recurrent neural networks . . 88
3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4 Robust Implicit Networks via Non-Euclidean Contractions 100
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.2 Fixed-point equations and one-sided Lipschitz constants . . . . . . . . . 105
4.3 Contraction analysis of implicit neural networks . . . . . . . . . . . . . . 109
4.4 Training implicit neural networks . . . . . . . . . . . . . . . . . . . . . . 111

xiv



4.5 Theoretical and numerical comparisons . . . . . . . . . . . . . . . . . . . 114
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.7 Proofs and auxiliary results . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.8 Adversarial attacks on implicit neural networks . . . . . . . . . . . . . . 136

5 Non-Euclidean Contraction Analysis of Continuous-Time Neural Net-
works 150
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
5.2 Preview of main contractivity results and advantages of a non-Euclidean

analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
5.3 Review of relevant matrix analysis . . . . . . . . . . . . . . . . . . . . . . 162
5.4 Novel log norm results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
5.5 Nonsmooth contraction theory . . . . . . . . . . . . . . . . . . . . . . . . 169
5.6 Contracting neural network dynamics . . . . . . . . . . . . . . . . . . . . 170
5.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
5.8 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

6 Time-Varying Convex Optimization: A Contraction and Equilibrium
Tracking Approach 200
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
6.2 Equilibrium tracking for parameter-varying contracting dynamical systems 205
6.3 Contracting dynamics for canonical convex optimization problems . . . . 210
6.4 Numerical and hardware experiments . . . . . . . . . . . . . . . . . . . . 226
6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
6.6 Proofs and additional results . . . . . . . . . . . . . . . . . . . . . . . . . 237
6.7 Logarithmic norm of Hurwitz saddle matrices . . . . . . . . . . . . . . . 239

7 Exponential Stability of Parametric Optimization-Based Controllers via
Lur’e Contractivity 249
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
7.2 Prerequisite material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
7.3 Absolute contractivity of Lur’e systems . . . . . . . . . . . . . . . . . . . 254
7.4 Parametric projection-based controllers . . . . . . . . . . . . . . . . . . . 256
7.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
7.6 Discussion and future work . . . . . . . . . . . . . . . . . . . . . . . . . . 268

8 Conclusions and Future Work 273
8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
8.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

Bibliography 278

xv



Chapter 1

Introduction

“Begin at the beginning,” the King

said, very gravely, “and go on till

you come to the end: then stop.”

Lewis Carroll,

Alice in Wonderland

1.1 Motivation and outline of the thesis

Due to the underlying complexity of modern engineering systems, many engineers

have begun relying upon optimization and machine learning-based methods for con-

trolling them. For example, in autonomous driving and robot manipulation tasks, the

underlying dynamics are complicated by the dependence on parameters that are difficult

to estimate, e.g., tire forces in driving and complex contact geometries in robot manipu-

lation. As a result, many state-of-the-art methods for controlling these complex systems

rely upon methods such as model predictive control, reinforcement learning, imitation

learning, or neural network feedback controllers. Despite the empirical successes of these

1



Introduction Chapter 1

methods, they are often quite costly in terms of data collection, require careful finetuning,

and provide limited theoretical guarantees. Moreover, these methods are often described

as “black-box,” i.e., there is limited interpretability in their predictions. Thus, these

methods are prone to failures which ultimately violate stability and safety guarantees for

the engineering system.

As a first step to establishing stability and safety guarantees for classes of engineering

systems, we must define what properties we want our system to have. Namely, how do

we know if our system has strayed too far from a nominal operating condition? How

do we know that the model will be robust to exogenous disturbances? Traditionally,

control theorists have studied global asymptotic stability or input-to-state stability as a

desirable set of properties for engineering systems. Instead, in this thesis, I will argue that

the system should be contracting in closed-loop. Contracting dynamical systems enjoy

many desirable properties including incremental exponential stability, exponential input-

to-state stability, robustness to uncertain and unmodeled dynamics, and they entrain to

periodic inputs. As a consequence, contraction automatically implies the consequences

of global asymptotic stability and input-to-state stability.

Motivated by the above, in this thesis, we study contraction theory, a mathematical

framework for establishing the stability and robustness of nonlinear control systems. We

say that a dynamical system is contracting if the distance between any two trajectories

is decaying exponentially quickly in some metric. Although contraction is a property

of a dynamical system, it has gained traction in the nonlinear control community as a

methodology for establishing robustness bounds for closed-loop systems.

We focus our attention to systems which are contracting with respect to a metric

induced by a norm. While this assumption may appear restrictive, we will show that

there are many interesting classes of systems which satisfying this property. Namely,

stable linear systems, certain dynamical neural networks, and dynamical systems solving

2
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convex optimization problems all satisfy this property. In this thesis, we make both

novel theoretical contributions in understanding corollaries of contraction and in the

application of contraction theory to neural networks, optimization, and control.

As an outline, in Chapter 2, we establish a mathematical framework for contraction in

general, finite-dimensional normed vector spaces. We introduce the key concepts of weak

pairings as a generalization of an inner product and the one-sided Lipschitz constant for

arbitrary norms. With this language, we state 5 equivalent characterizations of contrac-

tion with respect to an arbitrary norm. Moreover, we prove incremental input-to-state

stability for contracting dynamics and a sufficient condition for the interconnection of

contracting dynamics to remain contracting.

In Chapter 3, we introduce a non-Euclidean monotone operator theory. While mono-

tone operator theory on Hilbert spaces has been well-studied, the non-Euclidean extension

has largely been missing. By leveraging weak pairings, we provide a natural generaliza-

tion of monotone operator theory to vector spaced endowed with non-Euclidean norms.

In Chapter 4, we study a class of machine learning architectures referred to as deep

equilibrium networks. These architectures are described via a fixed point equation. By

leveraging a non-Euclidean contraction theory framework, we provide a novel sufficient

condition for their well-posedness and establish an explicit estimate for their ℓ∞ Lipschitz

constant.

In Chapter 5, we extend the results of Chapter 4 to more general continuous-time

neural networks. Specifically, we provide many sharp conditions for the non-Euclidean

contrativity of neural networks. We primarily focus on firing rate and Hopfield neural

networks but some additional classes of neural networks are considered as well.

In Chapter 6, we turn our attention to time-varying convex optimization. We demon-

strate that many examples of dynamical systems solving convex optimization problems

are in fact contracting with respect to a suitable Euclidean norm. We additionally prove

3
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equilibrium tracking error bounds for contracting dynamics and use them to establish

rigorous tracking error bounds for time-varying convex optimization problems.

Finally, in Chapter 7, we study the interconnection of a linear system with a controller

which is the solution to a parametric optimization problem. We provide a sufficient

condition for exponential stability based on the contractivity of a Lur’e dynamical system

and present two numerical experiments to support the claims.

1.2 Preliminaries and notation

In this section, we review some basic notation and preliminaries that will be used

throughout the thesis.

The set of real numbers is denoted by R, the set of positive numbers is denoted by

R>0, the set of nonnegative numbers is denoted by R≥0 and the set of n-dimensional

vectors with real (resp. positive or nonnegative) entries is denoted by Rn (resp. Rn
>0 or

Rn
≥0). The set of n × m matrices with real entries is denoted by Rn×m. The extended

real number line is denoted R := R ∪ {−∞,+∞}, the set of integers is denoted by Z,

the set of nonnegative integers is denoted by Z≥0, and the set of complex number is

denoted by C. The real part of a complex number, z, is denoted Re(z). 0n ∈ Rn is

the n-dimensional vector with all entries equal to zero and 1n ∈ Rn is the n-dimensional

vector with all entries equal to one. For two vectors, v, w, we write v ≥ w if vi ≥ wi

for all i ∈ {1, . . . , n}. We let In denote the n × n identity matrix. For a vector η ∈ Rn,

we will adopt the notations diag(η) or [η] for the diagonal matrix whose diagonal entries

equal the entries of η. For a vector or matrix, we use (·)⊤ to denote its transpose. We

say a symmetric matrix A ∈ Rn×n is positive semidefinite (denoted A ⪰ 0) if x⊤Ax ≥ 0

for all x ∈ Rn. A symmetric matrix A ∈ Rn×n is positive definite (denoted A ≻ 0) if

x⊤Ax > 0 for all x ̸= 0n. The matrix A is negative semidefinite (resp. negative definite)

4
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if −A ⪰ 0 (resp. −A ≻ 0). For two symmetric matrices A,B ∈ Rn×n we write A ⪯ B

(resp. A ≺ B) if B − A is positive semidefinite (resp. positive definite). For a square

matrix A ∈ Rn×n, we let spec(A) ⊆ C denote the spectrum of A, i.e., the set of its

eigenvalues. For a square matrix A with all real eigenvalues, we let λmax(A) and λmin(A)

denote the maximum and minimum eigenvalue, respectively. The spectral abscissa of a

square matrix, A is α(A) = max{Re(λ) | λ ∈ spec(A)}. A square matrix is said to be

Metzler if all of its off-diagonal entries are nonnegative.

For a set S, let 2S denote its power set, |S| denote its cardinality, and, if S ⊆ Rn,

conv(S) denote its convex hull.

Norms and logarithmic norms. We will let ∥ · ∥ denote an arbitrary norm on Rn

and its corresponding induced norm on Rn×n, i.e., ∥A∥ = max∥x∥=1 ∥Ax∥. We say a norm

∥ · ∥ on Rn is monotonic if for all x, y ∈ Rn, |x| ≤ |y| =⇒ ∥x∥ ≤ ∥y∥. Of particular

interest will be the ℓp norms with p ∈ [1,∞], denoted by ∥ · ∥p and are given by

∥x∥p =


(∑n

i=1 |xi|p
)1/p

, p ̸= ∞,

maxi∈{1,...,n} |xi|, p = ∞.

(1.1)

We recall the standard ℓp induced norms for p ∈ {1, 2,∞}:

∥A∥2 =
√
λmax(A⊤A),

∥A∥1 = max
j∈{1,...,n}

n∑
i=1

|aij|, ∥A∥∞ = max
i∈{1,...,n}

n∑
j=1

|aij|.

where λmax(A
⊤A) is the largest eigenvalue of A⊤A.

We will also frequently consider weighted norms. Given a norm ∥ · ∥ and an invertible

matrix R ∈ Rn×n, define the R-weighted ℓp norm, ∥ · ∥p,R by ∥x∥p,R = ∥Rx∥p. For

p ∈ {1,∞}, we will often restrict ourselves to diagonal weights with positive entries, i.e.,
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∥ · ∥1,[η] or ∥ · ∥∞,[η]−1 where η ∈ Rn
>0. For p = 2, we will frequently limit ourselves to

positive definite weights and write ∥ · ∥2,P 1/2 or ∥ · ∥P to mean the vector norm defined

by ∥x∥2,P 1/2 = ∥x∥P =
√
x⊤Px.

Let us now introduce the matrix logarithmic norm, sometimes referred to as matrix

measure or log norm. For a given vector norm ∥ · ∥ on Rn and the induced matrix norm

∥ · ∥, the logarithmic norm is the map µ : Rn×n → R given by

µ(A) = lim
h→0+

∥In + hA∥ − 1

h
. (1.2)

It is well known that this limit is well posed because the right-hand side is non-increasing

in h, due to the convexity of the norm. For arbitrary n × n matrices A and B, the

following properties hold:

sub-additivity: µ(A+B) ≤ µ(A) + µ(B), (1.3a)

weak homogeneity: µ(αA) = αµ(A), ∀α ≥ 0, (1.3b)

convexity: µ(θA+ (1− θ)B) ≤ θµ(A) + (1− θ)µ(B), ∀θ ∈ [0, 1],

(1.3c)

norm/spectrum: −∥A∥ ≤ −µ(−A) ≤ Re(λ) ≤ µ(A) ≤ ∥A∥, ∀λ ∈ spec(A), (1.3d)

translation: µ(A+ cIn) = µ(A) + c, ∀c ∈ R, (1.3e)

product: max{−µ(A),−µ(−A)}∥x∥ ≤ ∥Ax∥, ∀x ∈ Rn, (1.3f)

norm of inverse: µ(A) < 0 =⇒ ∥A−1∥ ≤ −1/µ(A). (1.3g)

Note that convexity is an immediate consequence of sub-additivity and weak homogeneity.

Additionally, by property (1.3d), the matrix measure is upper bounded by the matrix

norm and may be negative. We refer to [1], and references therein, for the proof of these

and additional properties enjoyed by matrix measures.
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For ℓp norms, p ∈ {1, 2,∞}, log norms admit simpler representations. Namely,

µ2(A) =
1

2
λmax

(
A+ A⊤) (1.4)

µ1(A) = max
j∈{1,...,n}

(
ajj +

n∑
i=1,i ̸=j

|aij|
)
, µ∞(A) = max

i∈{1,...,n}

(
aii +

n∑
j=1,j ̸=i

|aij|
)
. (1.5)

For R invertible square, the log norm induced by the R-weighted ℓp norm is given by

µp,R(A) = µp(RAR
−1). For a symmetric positive-definite matrix P ∈ Rn×n, the ℓ2

weighted log norm satisfies µP (A) = min{b ∈ R | PA+ A⊤P ⪯ 2bP} [2, Lemma 2.7].

Lipschitz maps. Given two normed spaces (X , ∥ · ∥X ), (Y , ∥ · ∥Y) a map F : X → Y

is Lipschitz from (X , ∥ · ∥X ) to (Y , ∥ · ∥Y) with constant ℓ ≥ 0 if for all x1, x2 ∈ X , it

holds that

∥F (x1)− F (x2)∥Y ≤ ℓ∥x1 − x2∥X . (1.6)

If Y = X and ∥ · ∥X = ∥ · ∥Y , we instead say F is Lipschitz on (X , ∥ · ∥X ) with constant

ℓ ≥ 0. When the spaces (X , ∥ · ∥X ) and (Y , ∥ · ∥Y) are clear from context, we will instead

simply say F is Lipschitz. For a Lipschitz map F , we will adopt the notation Lip(F ) to

denote either the infimum value ℓ satisfying (1.6) or an upper bound thereof (which we

are using should be clear from context). We will say a function F is locally Lipschitz if

for each x in the domain of F , there exists an open neighborhood containing x such that

F restricted to the open neighborhood is Lipschitz.

For a mapping F : X → Y where X ⊆ Rn,Y ⊆ Rm, let Dom(F ) be its domain. If F is

differentiable, let DF (x) := ∂F (x)
∂x

denote its Jacobian evaluated at x. Further recall that

if F is locally Lipschitz, then DF (x) exists for almost every x in light of Rademacher’s

theorem. When Y ⊆ R, then DF (x)⊤ is denoted by ∇F (x) ∈ Rn and is referred to as

the gradient of F . When Y ⊆ R, the Jacobian of the map ∇F : X → Rn is the Hessian

of F and is denoted ∇2F .

7
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For a mapping F : Rn → Rn, let Zero(F ) := {x ∈ Rn | F (x) = 0n} and Fix(F ) =

{x ∈ Rn | F (x) = x} be the sets of zeros of F and fixed points of F , respectively. We

let Id : Rn → Rn be the identity mapping. For a vector y ∈ R, define the mappings

sign: R → R and ReLU: R → R by sign(y) = y/|y| if y ̸= 0 and sign(0) = 0 and

ReLU(y) = max{y, 0}. By extension, when y ∈ Rn, by a slight abuse of notation, we

define the vector-valued mappings sign: Rn → Rn and ReLU: Rn → Rn by (sign(y))i =

sign(yi) and (ReLU(y))i = ReLU(yi).

We additionally recall the useful mean-value theorem for vector-valued mappings [3,

Prop. 2.4.7]. Let f : Rn → Rn be continuously differentiable. Then for every x, y ∈ Rn,

f(x)− f(y) =
(∫ 1

0

Df(τx+ (1− τ)y)dτ
)
(x− y). (1.7)

Convex analysis and monotone operators. Let C ⊆ Rn be convex, closed, and

nonempty. The map ιC : Rn → R is the indicator function on C and is defined by ιC(z) = 0

if z ∈ C and ιC(z) = +∞ otherwise. The map PC : Rn → C is the projection on C and is

given by PC(x) = argminu∈C ∥x− u∥2.

The epigraph of a map g : Rn → R is the set {(x, ξ) ∈ Rn+1 | g(x) ≤ ξ}. The map

g is (i) convex if its epigraph is a convex set, (ii) proper if its value is never −∞ and

is finite somewhere, and (iii) closed if it is proper and its epigraph is a closed set. The

map g : Rn → R is (i) strongly convex with parameter ρ > 0 if the map x 7→ g(x)− ρ
2
∥x∥22

is convex and (ii) strongly smooth with parameter ℓ ≥ 0 if it is differentiable and ∇g is

Lipschitz on (Rn, ∥ · ∥2) with constant ℓ.

Let g : Rn → R be convex, closed, and proper (CCP). The subdifferential of g at

x ∈ Rn is the set ∂g(x) := {z ∈ Rn | g(x) − g(y) ≥ z⊤(x − y) for all y ∈ Rn}. When g

is differentiable at x, then ∂g(x) = {∇g(x)}. The proximal operator of g with parameter

8
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γ > 0, proxγg : Rn → Rn, is defined by

proxγg(x) = argmin
z∈Rn

g(z) +
1

2γ
∥x− z∥22.

The associated Moreau envelope of g with parameter γ > 0, Mγg : Rn → R, and its

gradient are given by:

Mγg(x) = g(proxγg(x)) +
1

2γ
∥x− proxγg(x)∥22,

∇Mγg(x) =
1

γ
(x− proxγg(x)). (1.8)

The gradient of the Moreau envelope always exists and is Lipschitz on (Rn, ∥ · ∥2) with

constant 1/γ.

A map F : Rn → Rn is (i) monotone if (F (x) − F (y))⊤(x − y) ≥ 0 for all x, y ∈ Rn

and (ii) strongly monotone with parameter m > 0 if the map F −mId is monotone. We

refer to [4] for a comprehensive treatment of these tools.

Dynamical systems. For a time-varying vector field f : R≥0 × Rn → Rn, we will

frequently study the initial-value problem

ẋ = f(t, x), x(t0) = x0. (1.9)

Under mild conditions on f , e.g., piecewise continuity in the first argument and local

Lipschitzness in the second, then for each x0, there exists τ(x0) > t0 such that a solution

of (1.9) exists on a time interval [t0, τ(x0)) (note that τ(x0) = +∞ is possible) and is

unique on this interval. We will denote this solution at time t ∈ [t0, τ(x0)) by ϕ(t, t0, x0).

Namely, ϕ(t0, t0, x0) = x0. At times, when it is clear, we will use x(t) to denote this

solution. Also, when f is autonomous, we will sometimes also adopt the notation ϕx0(t)

9
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for the solution. At times, we will consider vector fields which are only continuous in

their second argument. In this case, solutions may be nonunique and we will treat these

cases separately to establish uniqueness of solutions.

10



Chapter 2

Non-Euclidean Contraction Theory

for Robust Nonlinear Stability

This chapter was first published in the IEEE Transactions on Automatic Control [5].1

2.1 Introduction

Problem description and motivation: A vector field is contracting if its flow map is a

contraction or, equivalently, if any two solutions approach one another exponentially fast.

Contracting systems feature highly-ordered asymptotic behavior. First, initial conditions

are forgotten. Second, a unique equilibrium is globally exponential stable when the vector

field is time-invariant and two natural Lyapunov functions are automatically available

(i.e., the distance to the equilibrium and the norm of the vector field). Third, a unique

periodic solution is globally exponentially stable when the vector field is periodic; in

other words, contracting system entrain to periodic inputs. Fourth and last, contracting

systems enjoy natural robustness properties such as input-to-state stability and finite

1©2022 IEEE. Reprinted, with permission, from Alexander Davydov, Saber Jafarpour, and Francesco
Bullo, Non-Euclidean Contraction Theory for Robust Nonlinear Stability, December 2022.
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Log norm Demidovich One-sided Lipschitz
condition condition condition

µP (Df(x)) ≤ b PDf(x) +Df(x)⊤P ⪯ 2bP (x− y)⊤P
(
f(x)− f(y)

)
≤ b∥x− y∥22,P 1/2

µ1,R(Df(x)) ≤ b sign(Rv)⊤RDf(x)v ≤ b∥v∥1,R sign(Rx−Ry)⊤R(f(x)− f(y)) ≤ b∥x− y∥1,R

µ∞(Df(x)) ≤ b max
i∈I∞(v)

(Df(x)v)i vi ≤ b∥v∥2∞ max
i∈I∞(x−y)

((f(x)− f(y)))i(x− y)i ≤ b∥x− y∥2∞

Table 2.1: Table of contraction equivalences, that is, equivalences between measure
bounded Jacobians, Demidovich and one-sided Lipschitz conditions. f : Rn → Rn is
a continuously differentiable vector field with Jacobian Df . Each row contains three
equivalent statements, to be understood for all x, y ∈ Rn and all v ∈ Rn. We adopt
the shorthand I∞(v) = {i ∈ {1, . . . , n} | |vi| = ∥v∥∞}. The matrix P is positive
definite and the matrix R is invertible.

input-state gain in the presence of (Lipschitz continuous) unmodeled dynamics. Because

of these highly-ordered and desirable behaviors, contracting systems are of great interest

for engineering problems.

Contraction theory aims to combine, in a unified coherent framework, results from

Lyapunov stability theory, incremental stability, fixed point theorems, monotone sys-

tems theory, and the geometry of Banach, Riemannian and Finsler spaces. Classical

approaches primarily study contraction with respect to the ℓ2 norm for continuously dif-

ferentiable vector fields. However, recent works have shown that stability can be studied

more systematically and efficiently using non-Euclidean norms (e.g., ℓ1, ℓ∞ and poly-

hedral norms) for large classes of network systems, including biological transcriptional

systems [6], Hopfield neural networks [7], chemical reaction networks [8], traffic net-

works [9, 10, 11], multi-vehicle systems [12], and coupled oscillators [13, 14]. Moreover,

for large-scale systems, error analysis based on the ℓ∞ norm may more accurately capture

the effect of bounded perturbations. As compared with the ℓ2 norm, there is only limited

work on non-Euclidean contraction theory.

It is well known that contraction with respect to the ℓ2 norm is established via a test

12
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on the Jacobian of the vector field; it is also true however that an integral (derivative-free)

test on the vector field itself is equivalent. While some differential tests are available for

non-Euclidean norms, much less is known about the corresponding integral tests. We note

that computing Jacobians for large-scale networks may be computationally intensive and

so derivative-free contraction tests are desirable. In this chapter, we aim to characterize

differential and integral tests for arbitrary norms, paying special attention to the ℓ1 and

ℓ∞ norms, and provide a unifying framework for differential and integral tests.

Literature review: Contraction mappings in dynamical systems via logarithmic norms

have been studied extensively and can be traced back to Lewis [15], Demidovich [16] and

Krasovskĭı [17]. Logarithmic norms and numerical methods for differential equations

have been studied by Dahlquist [18] and Lozinskii [19] in as early as 1958; see also the

influential survey by Ström [20]. Finally, logarithmic norms were applied to control prob-

lems by Desoer and Vidyasagar in [1, 21, 22] and contraction theory was first introduced

by Lohmiller and Slotine in [23]. Since then, numerous generalizations to contraction

theory have been proposed including partial contraction [24], contraction of stochastic

differential equations [25], contraction in differential algebraic equations [26], contraction

on Riemannian and Finsler manifolds, [27, 28], contraction for PDEs [29], transverse

contraction [30], contraction after short transients [31], weak and semi-contraction [32],

and k-contraction, i.e., contraction of k-dimensional bodies [33].

While the work of Lohmiller and Slotine explored differential conditions for contrac-

tion for the ℓ2 norm, related integral conditions have been studied in the literature under

such various names as the one-sided Lipschitz condition in [34], the QUAD condition

in [35], the nonlinear measure [7], the dissipative Lipschitz condition [36], and incremen-

tal quadratic stability in [37]. A related unifying concept is the logarithmic Lipschitz

constant, advocated in [38, 39]. Moreover, the key idea appears as early as [40], whereby

minus the vector field is called uniformly increasing and in the work on discontinuous

13
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differential equations, see [41, Chapter 1, page 5] and references therein. Comparisons

between the Lipschitz conditions, the QUAD condition, and contraction are detailed

in [42], see also [34, Section 1.10, Exercise 6].

Tests for contraction with respect to non-Euclidean non-differentiable norms have not

been widely studied. Early results on compartmental systems include [43, Theorem 2]

and [44, Appendix 4]. The ℓ1 integral test is used to study neural networks in [7] and

traffic networks in [10]. Recent work [11] establishes that the ℓ1 and ℓ∞ norms are well

suited to study contraction of monotone systems. A comprehensive understanding of

connections between differential and integral conditions for these norms is desirable.

Aminzare and Sontag first drew connections between contraction theory and so-called

“semi-inner products” in [39], where they give conditions for contraction in Lp spaces.

Since then, they have explored contraction with respect to arbitrary norms in [14, 45],

and [46], where arbitrary norms are used to study synchronization of diffusively coupled

systems and contractivity of reaction diffusion PDEs. Most notably, in [45, Proposition

3] necessary and sufficient conditions for contraction are given using Deimling pairings

(see [47, Chapter 3] for more details on Deimling pairings). This chapter builds upon

these underappreciated works and underutilized connections.

Contributions: Our first contribution is the definition of weak pairings as a generaliza-

tion of the classic Lumer pairings, as introduced in [48, 49]. We study various properties

of weak pairings, including a useful curve norm derivative formula applicable to dy-

namical systems analysis. Additionally, we establish a key relationship between weak

pairings and logarithmic norms, generalizing a result by Lumer in [48]; we refer to this

relationship as Lumer’s equality. For ℓp norms, p ∈ {1,∞}, we present and characterize

novel convenient choices for weak pairings: the sign pairing for the ℓ1 norm and the max

pairing for the ℓ∞ norm. We argue that, due to their connection with logarithmic norms,

weak pairings are a broadly-applicable tool for contraction analysis.
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Our second contribution is proving five equivalent characterizations of contraction for

continuously differentiable vector fields on Rn with respect to arbitrary norms. Using the

language of weak pairings, we prove the equivalence between differential and integral tests

for contraction; this result generalizes the known ℓ2 norm results to non-differentiable

norms such as the ℓ1 and ℓ∞ norms. We show that three of the five equivalences capture

the logarithmic norm condition, the differential condition on the vector field (referred to

as the Demidovich condition), and the integral condition (referred to as the one-sided

Lipschitz condition). These results generalize [45, Proposition 3] in the sense that (i) we

draw an additional connection between the logarithmic norm of the Jacobian and the

weak pairing and (ii) use this connection and our sign and max pairings to write the

explicit differential and integral conditions in Table 2.1.

Our third contribution is the extension of contraction theory to vector fields that are

only continuous. This extension demonstrates that contraction can be understood as a

property of the vector field, independent of its Jacobian. In other words, this extension

establishes the importance of weak pairings over classical contraction approaches based

on the Jacobian of the vector field and the stability of the linearized system.

Our fourth contribution is the formalization of equilibrium contraction, a weaker form

of contraction where all trajectories exponentially converge to an equilibrium. This no-

tion has been explored for example, in [22, Chapter 2, Theorem 22] and [24, Theorem 1].

These approaches establish global exponential convergence under two conditions: the

vector field can be factorized as f(t, x) = A(t, x)x and the logarithmic norm of A(t, x) is

uniformly negative. Our treatment of equilibrium contraction demonstrates that these

two conditions are only sufficient, whereas we provide a necessary and sufficient charac-

terization based upon the one-sided Lipschitz condition.

Our fifth contribution is proving novel robustness properties of contracting and equi-

librium contracting vector fields. For strongly contracting systems we prove incremental
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input-to-state stability and provide novel input-state gain estimates. These results gen-

eralize [1, Theorem A] and [50, Theorem 1], where vector fields are required to have

a special control-affine structure. We additionally prove a novel result for contraction

under perturbations and are able to upper bound how far the unique equilibrium shifts.

Our sixth and final contribution is a general theorem about the contractivity of the

interconnection of contracting systems. Motivated by applications to large scale systems,

we provide a sufficient condition for contraction and establish optimal contraction rates

for interconnected systems. This theorem is the counterpart for contracting system of the

classic theorem about the interconnection of dissipative systems, e.g., see [51, Chapter 2].

This treatment generalizes the results in [20, Section 5], [13], and [27, Lemma 3.2],

where optimal rates of contraction are not provided, vector fields are differentiable, and

interconnections with inputs are not studied.

Chapter organization: Section 2.2 reviews Lumer pairings and Dini derivatives. Sec-

tion 2.3 defines weak pairings and provides explicit formulas for ℓp norms. Section 2.4

proves contraction equivalences. Section 2.5 gives robustness results for contracting vec-

tor fields. Section 2.6 studies the interconnection of contracting systems. Section 2.7

provides conclusions.

2.2 A review of Lumer pairings and Dini derivatives

2.2.1 Norms and Lumer pairings

Definition 1 (Lumer pairings [48, 49]). A Lumer pairing on Rn is a map [·, ·] : Rn×Rn →

R satisfying:

(i) (Additivity in first argument) [x1 + x2, y] = [x1, y] + [x2, y], for all x1, x2, y ∈ Rn,

(ii) (Homogeneity) [αx, y] = [x, αy] = α[x, y], for all x, y ∈ Rn, α ∈ R,
16
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(iii) (Positive definiteness) [x, x] > 0, for all x ̸= 0n, and

(iv) (Cauchy-Schwarz inequality)

|[x, y]| ≤ [x, x]1/2[y, y]1/2, for all x, y ∈ Rn.

Lemma 2.2.1 (Norms and Lumer pairings [48]). (i) If Rn is equipped with a Lumer

pairing, it is also a normed space with norm ∥x∥ := [x, x]1/2, for all x ∈ Rn.

(ii) Conversely, if Rn is equipped with norm ∥ · ∥, then there exists an (not necessarily

unique) Lumer pairing on Rn compatible with ∥ · ∥ in the sense that ∥x∥ = [x, x]1/2,

for all x ∈ Rn.

Lemma 2.2.2 (Lumer’s equality [48, Lemma 12]). Given a norm ∥·∥ on Rn, a compatible

Lumer pairing [·, ·], and a matrix A ∈ Rn×n,

µ(A) = sup
∥x∥=1

[Ax, x] = sup
x ̸=0n

[Ax, x]

∥x∥2 . (2.1)

Recall that a norm ∥ ·∥ on Rn is differentiable if, for all x, y ∈ Rn \{0n}, the following

limit exists:

lim
h→0

∥x+ hy∥ − ∥x∥
h

.

The ℓp norm is differentiable for p ∈ (1,∞) and not differentiable for p ∈ {1,∞}.

Lemma 2.2.3 (Gâteaux formula for the Lumer pairing [49]). Let ∥ · ∥ be a norm on Rn.

If ∥ · ∥ is differentiable, then there exists a unique compatible Lumer pairing given by the

Gâteaux formula:

[x, y] = ∥y∥ lim
h→0

∥y + hx∥ − ∥y∥
h

, x, y ∈ Rn \ {0n}. (2.2)

Lemma 2.2.4 (Lumer pairing and log norm for weighted ℓp norms [52, Example 13.1(a)]).

For p ∈ (1,∞) and R ∈ Rn×n invertible, let ∥·∥p,R, [·, ·]p,R and µp,R(·) denote the weighted
17
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ℓp norm, its Lumer pairing and its log norm, respectively. Then, for x, y ∈ Rn and

A ∈ Rn×n,

∥x∥p,R = ∥Rx∥p, [x, y]p,R =
(Ry ◦ |Ry|p−2)⊤Rx

∥y∥p−2
p,R

,

µp,R(A) = max
∥x∥p,R=1

(Rx ◦ |Rx|p−2)⊤RAx,

where ◦ is the entrywise product, | · | is the entrywise absolute value, and (·)p is the

entrywise power.

Corollary 2.2.5. For p = 2 and R = P 1/2 where P = P⊤ ≻ 0, Lemma 2.2.4 implies

∥x∥22,P 1/2 = x⊤Px, [x, y]2,P 1/2 = x⊤Py,

µ2,P 1/2(A) = max
∥x∥

2,P1/2=1
x⊤A⊤Px = λmax

(PAP−1 + A⊤

2

)
.

2.2.2 Dini derivatives

Definition 2 (Upper right Dini derivative). The upper right Dini derivative of a function

φ : R≥0 → R is

D+φ(t) := lim sup
h→0+

φ(t+ h)− φ(t)

h
. (2.3)

Lemma 2.2.6 (Danskin’s lemma [53]). Given differentiable functions f1, . . . , fm : (a, b) →

R, if f(t) = maxi fi(t), then

D+f(t) = max
{ d
dt
fi(t)

∣∣ fi(t) = f(t)
}
. (2.4)

The following two lemmas are related to known results. We report them here for

completeness sake.
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Lemma 2.2.7 (Dini derivative of absolute value function). Let x : (a, b) → R be differ-

entiable. Then

D+|x(t)| = ẋ(t) sign(x(t)) + |ẋ(t)|χ{0}(x(t)),

where χA(x) is the indicator function which is 1 when x ∈ A and zero otherwise.

Proof. Since |x(t)| = max{x(t),−x(t)}, Lemma 2.2.6 implies D+|x(t)| = ẋ(t) if x(t) >

0,−ẋ(t) if x(t) < 0, and |ẋ(t)| if x(t) = 0.

Lemma 2.2.8 (Nonsmooth Grönwall inequality). Let φ, r : [a, b] → R≥0 and m : [a, b] →

R be continuous. If D+φ(t) ≤ m(t)φ(t) + r(t) for almost every t ∈ (a, b), then, for every

t ∈ [a, b] and for M(t) =
∫ t

a
m(τ)dτ ,

φ(t) ≤ eM(t)
(
φ(a) +

∫ t

a

r(τ)e−M(τ)dτ
)
. (2.5)

Proof. Let ψ(t) = φ(t)e−M(t) ≥ 0 for all t ∈ [a, b]. Then

D+ψ(t) ≤ (D+φ(t)−m(t)φ(t))e−M(t) ≤ r(t)e−M(t).

for almost every t ∈ (a, b). Note that r(t)e−M(t) is continuous and satisfies r(t)e−M(t) ≥ 0

for all t ∈ [a, b]. Then by [54, Appendix A1, Proposition 2], for every t ∈ [a, b], we have

ψ(t) ≤ ψ(a) +

∫ t

a

r(τ)e−M(τ)dτ,

which, in turn, implies the claim.

Lemma 2.2.9 (Dini comparison lemma [55, Lemma 3.4]). Consider the initial value

problem ζ̇ = f(t, ζ), ζ(t0) = ζ0, where f : R≥0 × R → R is continuous in t and locally

Lipschitz in ζ, for all t ≥ 0 and ζ ∈ R. Let [t0, T ) be the maximal interval of existence
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for ζ(t) and let v : R≥0 → R be continuous and satisfy

D+v(t) ≤ f(t, v(t)), v(t0) ≤ ζ0.

Then v(t) ≤ ζ(t) for all t ∈ [t0, T ).

Lemma 2.2.10 (Coppel’s differential inequality [56]). Given a continuous map (t, x) 7→

A(t, x) ∈ Rn×n, any solution x(·) of ẋ = A(t, x)x satisfies

D+∥x(t)∥ ≤ µ(A(t, x(t)))∥x(t)∥. (2.6)

We conclude with a small useful result.

Lemma 2.2.11. Consider the control system ẋ = f(t, x, u(t)) with f : R≥0 ×Rn ×Rk →

Rn continuous in (t, x, u). Let ∥ · ∥X be a norm on Rn and ∥ · ∥U be a norm on Rk. If

there exists ℓ ≥ 0 such that, for each t ∈ R≥0, x ∈ Rn, u, v ∈ Rk,

∥f(t, x, u)− f(t, x, v)∥X ≤ ℓ∥u− v∥U ,

then any two continuously differentiable solutions x(·), y(·) to the control system corre-

sponding to continuous inputs ux, uy : R≥0 → Rk and with x(t) = y(t) for some t ≥ 0

satisfy

D+∥x(t)− y(t)∥X ≤ ℓ∥ux(t)− uy(t)∥U . (2.7)

Proof. The result follows from the definition of Dini derivative and by Taylor expansions

of x(t+ h) and y(t+ h).
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Symbol Meaning
∥ · ∥p,R ℓp norm weighted by R, ∥x∥p,R = ∥Rx∥p.
[·, ·]p,R Lumer pairing compatible with ∥ · ∥p,R
J·, ·Kp,R Weak pairing compatible with ∥ · ∥p,R
µp,R(·) Log norm with respect to ∥ · ∥p,R

Table 2.2: Table of symbols. We let p ∈ [1,∞] and R ∈ Rn×n be invertible. If a norm,
Lumer pairing, weak pairing, or log norm does not have a subscript, it is assumed to
be arbitrary. If the subscript R is not included, R = In.

2.3 Weak pairings and calculus of non-Euclidean norms

2.3.1 Weak pairings definition and properties

We define the notion of a weak pairing which further weaken the conditions for a

pairing to be a Lumer pairing.

Definition 3 (Weak pairing). A weak pairing on Rn is a map J·, ·K : Rn ×Rn → R such

that the following properties hold:

(i) (Subadditivity and continuity of first argument) Jx1 + x2, yK ≤ Jx1, yK+ Jx2, yK, for

all x1, x2, y ∈ Rn and J·, ·K is continuous in its first argument,

(ii) (Weak homogeneity) Jαx, yK = Jx, αyK = α Jx, yK and J−x,−yK = Jx, yK, for all

x, y ∈ Rn, α ≥ 0,

(iii) (Positive definiteness) Jx, xK > 0, for all x ̸= 0n,

(iv) (Cauchy-Schwarz inequality) | Jx, yK | ≤ Jx, xK1/2 Jy, yK1/2, for all x, y ∈ Rn.

From Definition 3, any Lumer pairing is a weak pairing, but not every weak pairing

is a Lumer pairing. When necessary, we distinguish the symbols for Lumer pairings and

weak pairings and make this clear in Table 2.2.
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Theorem 2.3.1 (Compatibility of weak pairings with norms). If J·, ·K is a weak pairing

on Rn, then ∥ · ∥ = J·, ·K1/2 is a norm. Conversely, if Rn is equipped with a norm ∥ · ∥,

then there exists a weak pairing (but possibly many) such that J·, ·K = ∥ · ∥2.

Proof. First, we show that ∥ · ∥ = J·, ·K1/2 is a norm. Clearly it is positive definite by

property (iii). For homogeneity,

∥αx∥2 = Jαx, αxK = α2 Jx, xK

=⇒ ∥αx∥ = |α| Jx, xK1/2 = |α|∥x∥,

by weak homogeneity, property (ii). Finally, regarding the triangle inequality,

∥x+ y∥2 = Jx+ y, x+ yK ≤ Jx, x+ yK + Jy, x+ yK

≤ (∥x∥+ ∥y∥)∥x+ y∥,

by subadditivity, property (i), and the Cauchy-Schwarz inequality, property (iv). This

implies that ∥x+ y∥ ≤ ∥x∥+ ∥y∥.

For the converse, the proof is identical to that in [48] since any Lumer pairing is a weak

pairing.

As a consequence, if Jx, yK is a weak pairing compatible with the norm ∥ · ∥, then

JRx,RyK is a weak pairing compatible with the R-weighted norm ∥ · ∥R for any invertible

R ∈ Rn×n.

We now define two desirable properties of weak pairings.

Definition 4 (Additional weak pairing properties). Let J·, ·K be compatible with the norm

∥ · ∥. Then J·, ·K satisfies
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(i) Deimling’s inequality if, for all x, y ∈ Rn,

Jx, yK ≤ ∥y∥ lim
h→0+

∥y + hx∥ − ∥y∥
h

, (2.8)

(ii) the curve norm derivative formula if, for every differentiable x : (a, b) → Rn and

for almost every t ∈ (a, b),

∥x(t)∥D+∥x(t)∥ = Jẋ(t), x(t)K . (2.9)

Note that any given weak pairing may or may not satisfy these properties. It is

essentially known that any Lumer pairing satisfies Deimling’s inequality; see Section 2.8.1

Lemma 2.8.2.

Theorem 2.3.2 (Lumer’s equality for weak pairings). Let ∥ · ∥ be a norm on Rn with

compatible weak pairing J·, ·K satisfying Deimling’s inequality, (2.8). Then for all A ∈

Rn×n

µ(A) = sup
∥x∥=1

JAx, xK = sup
x ̸=0n

JAx, xK
∥x∥2 . (2.10)

Proof. By Deimling’s inequality, for every x ∈ Rn \ {0n},

JAx, xK ≤ ∥x∥ lim
h→0+

∥x+ hAx∥ − ∥x∥
h

≤ ∥x∥2 lim
h→0+

∥In + hA∥ − 1

h
= ∥x∥2µ(A).

Thus, the inequality µ(A) ≥ supx ̸=0n
JAx,xK
∥x∥2 holds. For the other inequality, for v ̸= 0n,

we define Ω(v) = JAv,vK
∥v∥2 and note that for every v ̸= 0n and h > 0,

∥(In − hA)v∥ ≥ 1

∥v∥ J(In − hA)v, vK ≥ (1− hΩ(v))∥v∥ ≥ (1− h sup∥v∥=1Ω(v))∥v∥,
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where the first inequality holds by Cauchy-Schwarz, the second by subadditivity, and the

final one since −h < 0 and by weak homogeneity of the weak pairing. Moreover, note

that sup∥v∥=1Ω(v) ≤ ∥A∥ ≠ ∞ by Cauchy-Schwarz for the weak pairing. Then for small

enough h > 0, In − hA is invertible and given by

(In − hA)−1 = In + hA+ h2A2(In − hA)−1

=⇒ ∥(In + hA)v∥ ≤ ∥(In − hA)−1v∥+ h2∥A2(In − hA)−1v∥,

where the last implication holds for all v ∈ Rn because of the triangle inequality. More-

over, defining x = (In − hA)v, for sufficiently small h > 0, we have

∥(In − hA)−1x∥
∥x∥ =

∥v∥
∥(In − hA)v∥ ≤ 1

1− h sup∥v∥=1Ω(v)
(2.11)

Then

µ(A) = lim
h→0+

sup
x ̸=0n

∥(In + hA)x∥/∥x∥ − 1

h

≤ lim
h→0+

sup
x ̸=0n

∥(In − hA)−1x∥+ h2∥A2(In − hA)−1x∥ − ∥x∥
h∥x∥

≤ lim
h→0+

sup
x ̸=0n

∥(In − hA)−1x∥/∥x∥ − 1

h

≤ lim
h→0+

1

h

( 1

1− h sup∥v∥=1Ω(v)
− 1
)
= sup

∥x∥=1

JAx, xK ,

where the first line is the definition of the induced norm, the second line holds by the

triangle inequality, the third line holds due to the subadditivity of the supremum, and

the last line holds because the inequality in (2.11) holds for all x ̸= 0n.

In the following subsections, we propose weak pairings for the ℓp norms in Rn, p ∈

[1,∞], and show that they satisfy the two properties in Definition 4.
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2.3.2 Weak pairings for differentiable norms

Each ℓp norm for p ∈ (1,∞) is differentiable. Therefore, the corresponding Lumer

pairing is unique, given in Lemma 2.2.3, and satisfies Deimling’s inequality, (2.8). Thus,

we pick the weak pairing to be the unique compatible Lumer pairing from Lemma 2.2.4.

Moreover, because of differentiability of the norm, in Section 2.8.1 Lemma 2.8.3 we show

that the unique Lumer pairing satisfies the curve norm derivative formula in Defini-

tion 4(ii).

2.3.3 Non-differentiable norms: The ℓ1 norm

The ℓ1 norm given by ∥x∥1 =
∑n

i=1 |xi| fails to be differentiable at points where

xi = 0. Hence, we propose a pairing and show that it is a Lumer pairing compatible with

the ℓ1 norm.

Definition 5 (Sign pairing). For R ∈ Rn×n invertible, let ∥·∥1,R be the weighted ℓ1 norm

given by ∥x∥1,R = ∥Rx∥1. The sign pairing J·, ·K1,R : Rn × Rn → R is defined by

Jx, yK1,R := ∥y∥1,R sign(Ry)⊤Rx. (2.12)

Lemma 2.3.1. The sign pairing is a Lumer pairing compatible with the weighted ℓ1

norm.

Proof. We verify the four properties of a Lumer pairing in Definition 1. Regarding

property (i), for x1, x2, y ∈ Rn,

Jx1 + x2, yK1,R = ∥y∥1,R sign(Ry)⊤R(x1 + x2)

= ∥y∥1,R
(
sign(Ry)⊤Rx1 + sign(Ry)⊤Rx2

)
= Jx1, yK1,R + Jx2, yK1,R .
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Regarding property (ii), for α ∈ R, Jαx, yK1,R = ∥y∥1,R sign(Ry)⊤R(αx) = α Jx, yK1,R . To

check homogeneity in the second argument, we see that α = 0 is trivial, so for α ̸= 0

Jx, αyK1,R = ∥αy∥1,R sign(αRy)⊤Rx = |α| α|α|∥y∥1,R sign(Ry)⊤Rx = α Jx, yK1,R .

Regarding property (iii), Jx, xK1,R = ∥x∥1,R sign(Rx)⊤Rx = ∥x∥21,R ≥ 0. This also proves

compatibility. Regarding property (iv),

| Jx, yK1,R | = Jy, yK1/21,R | sign(Ry)⊤Rx| ≤ | sign(Rx)⊤Rx| Jy, yK1/21,R = Jx, xK1/21,R Jy, yK1/21,R .

Since the sign pairing is an Lumer pairing, it is a weak pairing that satisfies Deimling’s

inequality, (2.8). Finally, we separately establish the curve norm derivative formula, (2.9).

Theorem 2.3.3 (ℓ1 curve norm derivative formula). Let x : (a, b) → Rn be differen-

tiable. Then

(i) D+∥x(t)∥1,R = sign(Rx(t))⊤Rẋ(t), for almost every t ∈ (a, b).

(ii) ∥x(t)∥1,RD+∥x(t)∥1,R = Jẋ(t), x(t)K1,R for almost every t ∈ (a, b).

Proof. Since ∥x(t)∥1,R =
∑n

i=1 |(Rx(t))i|, it suffices to computeD+|xi(t)|. Then by Lemma

2.2.7:

D+∥x(t)∥1,R =
n∑

i=1

D+|(Rx(t))i| =
n∑

i=1

(
(Rẋ(t))i sign((Rx)i) + |(Rẋ(t))i|χ{0}((Rx(t))i)

)
= sign(Rx(t))⊤Rẋ(t) +

n∑
i=1

|(Rẋ(t))i|χ{0}((Rx(t))i).

26



Non-Euclidean Contraction Theory for Robust Nonlinear Stability Chapter 2

Multiplying both sides by ∥x(t)∥1,R gives

∥x(t)∥1,RD+∥x(t)∥1,R = Jẋ(t), x(t)K1,R

+ ∥x(t)∥1,R
∑n

i=1
|(Rẋ(t))i|χ{0}((Rx(t))i).

To prove both results, it suffices to show that
∑n

i=1 |(Rẋ(t))i|χ{0}((Rx(t))i) = 0 for almost

every t ∈ (a, b). If (Rx(t))i ̸= 0, for all i ∈ {1, . . . , n} and for all t ∈ (a, b), the result holds

since χ{0}((Rx(t))i) = 0 for all t ∈ (a, b), i ∈ {1, . . . , n}. So suppose (Rx(t))i = 0 for

some i. Then either (Rx(t))i = 0 for a single t, in which case the result holds. Otherwise

(Rx(t))i = 0 for all t ∈ I ⊆ (a, b), where I is an interval. In this case, by differentiability

of x, we have that (Rẋ(t))i = 0 for almost every t ∈ I, so |(Rẋ(t))i|χ{0}((Rx)i(t)) = 0

for almost every t ∈ I and hence almost every t ∈ (a, b).

2.3.4 Non-differentiable norms: The ℓ∞ norm

The ℓ∞ norm given by ∥x∥∞ = maxi∈{1,...,n} |xi| fails to be differentiable at points

where the infinity norm is achieved in more than one index. We propose a map and show

that it is a weak pairing that satisfies the properties in Definition 4.

Definition 6 (Max pairing). For R ∈ Rn×n invertible, let ∥ · ∥∞,R be the weighted ℓ∞

norm given by ∥x∥∞,R = ∥Rx∥∞. The max pairing J·, ·K∞,R : Rn ×Rn → R is defined by

Jx, yK∞,R := max
i∈I∞(Ry)

(Rx)i(Ry)i, (2.13)

where I∞(v) = {j ∈ {1, . . . , n} | |vj| = ∥v∥∞}.

Lemma 2.3.2. The max pairing is a weak pairing compatible with the weighted ℓ∞ norm.
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Norm Weak Pairing Logarithmic norm

∥x∥2,P 1/2 =
√
x⊤Px Jx, yK2,P 1/2 = x⊤Py

µ2,P 1/2(A) = 1
2
λmax(PAP

−1 + A⊤)

= max
∥x∥

2,P1/2=1
x⊤PAx

∥x∥1 =
∑
i

|xi| Jx, yK1 = ∥y∥1 sign(y)⊤x
µ1(A) = max

j∈{1,...,n}

(
ajj +

∑
i ̸=j

|aij|
)

= sup
∥x∥1=1

sign(x)⊤Ax

∥x∥∞ = max
i

|xi| Jx, yK∞ = max
i∈I∞(y)

xiyi

µ∞(A) = max
i∈{1,...,n}

(
aii +

∑
j ̸=i

|aij|
)

= max
∥x∥∞=1

max
i∈I∞(x)

(Ax)ixi

Table 2.3: Table of norms, weak pairings, and log norms for weighted ℓ2, ℓ1, and
ℓ∞ norms. We adopt the shorthand I∞(x) = {i ∈ {1, . . . , n} | |xi| = ∥x∥∞}. The
matrix P is positive definite. Only the unweighted ℓ1, ℓ∞ norms, weak pairings, and
log norms for p ̸= 2 are included here since µp,R(A) = µp(RAR−1) for any p ∈ [1,∞].

Proof. We verify the four properties of a weak pairing in Definition 3. Regarding prop-

erty (i):

Jx1 + x2, yK∞,R = max
i∈I∞(Ry)

(R(x1 + x2))i(Ry)i = max
i∈I∞(Ry)

(Rx1)i(Ry)i + (Rx2)i(Ry)i

≤ max
i∈I∞(Ry)

(Rx1)i(Ry)i + max
i∈I∞(Ry)

(Rx2)i(Ry)i = Jx1, yK∞,R + Jx2, yK∞,R .

Further, for fixed y ∈ Rn, the function x 7→ Jx, yK∞,R is continuous since I∞(Ry) is fixed

and the max of continuous functions is continuous. Regarding property (ii), for α ≥ 0,

Jαx, yK∞,R = max
i∈I∞(Ry)

(Rαx)i(Ry)i = α max
i∈I∞(Ry)

(Rx)i(Ry)i = α Jx, yK∞,R ,

Jx, αyK∞,R = max
i∈I∞(Rαy)

(Rx)i(Rαy)i = α max
i∈I∞(Ry)

(Rx)i(Ry)i = α Jx, yK∞,R ,

J−x,−yK∞,R = max
i∈I∞(−Ry)

(−Rx)i(−Ry)i = Jx, yK∞,R .
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Regarding property (iii)

Jx, xK∞,R = max
i∈I∞(Rx)

(Rx)i(Rx)i = max
i∈I∞(Rx)

∥x∥2∞,R = ∥x∥2∞,R ≥ 0.

This also shows that this weak pairing is compatible with the norm. Finally, regarding

property (iv):

| Jx, yK∞,R | =
∣∣∣∣ max
i∈I∞(Ry)

(Rx)i(Ry)i

∣∣∣∣ ≤ ∣∣∣∣ max
i∈I∞(Rx)

∥y∥∞,R∥x∥∞,R

∣∣∣∣ = Jx, xK1/2∞,R Jy, yK1/2∞,R .

We postpone to Section 2.8.2 the proof of the next lemma.

Lemma 2.3.3 (Deimling’s inequality for the max pairing). The max pairing in Defini-

tion 6 satisfies Deimling’s inequality, (2.8).

Theorem 2.3.4 (Derivative of ℓ∞ norm along a curve). Let x : (a, b) → Rn be differen-

tiable. Then for all t ∈ (a, b),

(i) D+∥x(t)∥∞,R = max
i∈I∞(Rx(t))

sign((Rx(t))i)(Rẋ(t))i + χ{0n}(Rx(t))∥ẋ(t)∥∞,R, and

(ii) ∥x(t)∥∞,RD
+∥x(t)∥∞,R = Jẋ(t), x(t)K∞,R .

Proof. From Danskin’s lemma, Lemma 2.2.6, f(t) = max{f1(t), . . . , fm(t)} with differ-

entiable fi satisfies D
+f(t) = max{ d

dt
fi(t) | fi(t) = f(t)}. If the functions fi are max

functions themselves (e.g., absolute values in our case), a simple argument shows

D+f(t) = max{D+fi(t) | fi(t) = f(t)}.
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By the definition of ∥ · ∥∞,R, we have

D+∥x(t)∥∞,R = max
i∈I∞(Rx(t))

D+|(Rx(t))i|.

Then by using the property for Dini derivatives of the absolute value function as in

Lemma 2.2.7,

D+∥x(t)∥∞,R = max
i∈I∞(Rx(t))

sign((Rx(t))i)(Rẋ(t))i + |(Rẋ(t))i|χ{0}(Rx(t))i

= max
i∈I∞(Rx(t))

sign((Rx(t))i)(Rẋ(t))i + χ{0n}(Rx(t))∥ẋ(t)∥∞,R.

This proves the first result. To get the second result, multiply both sides by ∥x(t)∥∞,R

to get

∥x(t)∥∞,RD
+∥x(t)∥∞,R = Jẋ(t), x(t)K∞,R + ∥x(t)∥∞,Rχ{0n}(Rx(t))∥ẋ(t)∥∞,R.

Note that this second term is identically zero since if χ{0n}(Rx(t)) = 1, then ∥x(t)∥∞,R =

0.

Weak pairings, known expressions for log norms, and novel expressions for log norms

from Lumer’s equality for ℓp norms are summarized in Table 2.3.

2.4 Contraction theory via weak pairings

2.4.1 One-sided Lipschitz functions

Definition 1 (One-sided Lipschitz function). Let f : C → Rn, where C ⊆ Rn is open

and connected. We say f is one-sided Lipschitz with respect to a weak pairing J·, ·K if
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the weak pairing satisfies Deimling’s inequality, (2.8), and there exists b ∈ R such that

Jf(x)− f(y), x− yK ≤ b∥x− y∥2 for all x, y ∈ C. (2.14)

We say b is a one-sided Lipschitz constant of f . Moreover, the minimal one-sided Lips-

chitz constant of f , osL(f), is

osL(f) := sup
x ̸=y

Jf(x)− f(y), x− yK
∥x− y∥2 ∈ R ∪ {∞}. (2.15)

We prove the following proposition in Section 2.8.3.

Proposition 2.4.1 (Properties of osL(f)). Let f, g : C → Rn be one-sided Lipschitz with

respect to a weak pairing J·, ·K. Then for c ∈ R and Id : C → C the identity map:

(i) osL(f) ≤ supx ̸=y
∥f(x)−f(y)∥

∥x−y∥ ,

(ii) osL(f + c Id) = osL(f) + c,

(iii) osL(αf) = α osL(f), for all α ≥ 0,

(iv) osL(f + g) ≤ osL(f) + osL(g).

Remark 2.4.2. When f : C → Rn is continuously differentiable and C is convex, osL(f)

does not depend on the choice of weak pairing and instead depends only on the norm since

sup
x ̸=y

Jf(x)− f(y), x− yK
∥x− y∥2 = sup

x∈C
µ(Df(x)),

which follows from the mean-value theorem for vector-valued functions in conjunction

with Lumer’s equality. △
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2.4.2 Contraction equivalences for continuously differentiable

vector fields

Theorem 2.4.1 (Contraction equivalences for continuously differentiable vector fields).

Consider the dynamics ẋ = f(t, x), with f continuously differentiable in x and continuous

in t. Let C ⊆ Rn be open, convex, and forward invariant and let ∥ · ∥ denote a norm with

compatible weak pairing J·, ·K satisfying Deimling’s inequality, (2.8). Then, for b ∈ R, the

following statements are equivalent:

(i) osL(f(t, ·)) ≤ b with respect to the weak pairing J·, ·K, for all t ≥ 0,

(ii) JDf(t, x)v, vK ≤ b∥v∥2, for all v ∈ Rn, x ∈ C, t ≥ 0,

(iii) µ(Df(t, x)) ≤ b, for all x ∈ C, t ≥ 0,

(iv) D+∥ϕ(t, t0, x0) − ϕ(t, t0, y0)∥ ≤ b∥ϕ(t, t0, x0) − ϕ(t, t0, y0)∥, for all x0, y0 ∈ C, 0 ≤

t0 ≤ t for which the solutions exist,

(v) ∥ϕ(t, t0, x0)− ϕ(t, t0, y0)∥ ≤ eb(t−s)∥ϕ(s, t0, x0)− ϕ(s, t0, y0)∥, for all x0, y0 ∈ C and

0 ≤ t0 ≤ s ≤ t for which the solutions exist.

Proof. Regarding (i) =⇒ (ii), if v = 0n, the result is trivial. By definition of osL(f(t, ·)),

Jf(t, x)− f(t, y), x− yK ≤ b∥x−y∥2, for all x, y ∈ C, t ≥ 0. Fix y ̸= x and set x = y+hv

for an arbitrary v ∈ Rn and h ∈ R>0 sufficiently small. Then

Jf(t, y + hv)− f(t, y), hvK ≤ b∥hv∥2

=⇒ h Jf(t, y + hv)− f(t, y), vK ≤ bh2∥v∥2,

by the weak homogeneity of the weak pairing, property (ii). Dividing by h2 and taking
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the limit as h goes to zero yields

lim
h→0+

s
f(t, y + hv)− f(t, y)

h
, v

{
≤ b∥v∥2 =⇒ JDf(t, y)v, vK ≤ b∥v∥2,

which follows from the continuity of the weak pairing in its first argument, property (i).

Since y, v, and t were arbitrary, this completes the implication.

Regarding (ii) =⇒ (iii), suppose JDf(t, x)v, vK ≤ b∥v∥2 for all x ∈ C, v ∈ Rn, t ≥ 0.

Let v ̸= 0n and divide by ∥v∥2. Then take the sup over all v ̸= 0n to get µ(Df(t, x)) =

supv ̸=0n JDf(t, x)v, vK /∥v∥2 ≤ b, by Lumer’s equality.

Regarding (iii) =⇒ (iv), define x(t) = ϕ(t, t0, x0), y(t) = ϕ(t, t0, y0), and v(t) =

x(t)− y(t) for x0, y0 ∈ C, t0 ≥ 0. Then by an application of the mean-value theorem for

vector-valued functions,

v̇ =

(∫ 1

0

Df(t, y + sv)ds

)
v.

By an application of Coppel’s differential inequality, Lemma 2.2.10, we have

D+∥v(t)∥ ≤ µ

(∫ 1

0

Df(t, y(t) + sv(t))ds

)
∥v(t)∥

≤
∫ 1

0

µ(Df(t, y(t) + sv(t)))ds∥v(t)∥ ≤ b∥v(t)∥,

which follows from the subadditivity of log norms, [1]. Substituting back gives the in-

equality.

Regarding (iv) =⇒ (v); this follows from an application of the nonsmooth Grönwall

inequality, Lemma 2.2.8 on the interval [s, t] ⊆ [t0, t].
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Regarding (v) =⇒ (i), let x0, y0 ∈ C, t0 ≥ 0 be arbitrary. Then for h ≥ 0,

∥ϕ(t0 + h, t0, x0)− ϕ(t0 + h, t0, y0)∥ = ∥x0 − y0 + h(f(t0, x0)− f(t0, y0))∥+O(h2)

≤ ebh∥x0 − y0∥.

Subtracting ∥x0 − y0∥ on both sides, dividing by h > 0 and taking the limit as h → 0+,

we get

lim
h→0+

∥x0 − y0 + h(f(t0, x0)− f(t0, y0))∥ − ∥x0 − y0∥
h

≤ lim
h→0+

ebh − 1

h
∥x0 − y0∥.

Evaluating the right hand side limit gives

lim
h→0+

∥x0 − y0 + h(f(t0, x0)− f(t0, y0))∥ − ∥x0 − y0∥
h

≤ b∥x0 − y0∥. (2.16)

But by the assumption of Deimling’s inequality,

Jf(t0, x0)− f(t0, y0), x0 − y0K

≤ ∥x0 − y0∥ lim
h→0+

∥x0 − y0 + h(f(t0, x0)− f(t0, y0))∥ − ∥x0 − y0∥
h

.

Then multiplying both sides of (2.16) by ∥x0 − y0∥ gives

Jf(t0, x0)− f(t0, y0), x0 − y0K ≤ b∥x0 − y0∥2.

Since t0, x0 and y0 were arbitrary, the result holds.

Remark 2.4.3. (i) A vector field f satisfying conditions (i), (ii) or (iii) with b < 0 is

said to be strongly contracting with rate |b|, see [23]. Condition (ii) is referred to
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as the Demidovich condition, see [57]. A system whose trajectories satisfy condi-

tions (iv) or (v) with b < 0 is said to be incrementally exponentially stable without

overshoot, see [58].

(ii) Theorem 2.4.1 holds for any choice of weak pairing satisfying Deimling’s inequal-

ity, (2.8), (but not necessarily the curve norm derivative formula). Moreover, if a

weak pairing does not satisfy Deimling’s inequality, condition (ii) still implies (v)

since sup∥x∥=1 JAx, xK ≥ µ(A) from Theorem 2.3.2. △

Contraction equivalences (i), (ii), and (iii) are transcribed for the ℓp norms in Table 2.1

for the choices of weak pairings given in the previous section.

2.4.3 Contraction equivalences for continuous vector fields

Theorem 2.4.2 (Contraction equivalences for continuous vector fields). Consider the

dynamics ẋ = f(t, x), with f continuous in (t, x). Let C ⊆ Rn be open, connected, and

forward invariant and let ∥ ·∥ denote a norm with compatible weak pairing J·, ·K satisfying

Deimling’s inequality, (2.8), and the curve norm derivative formula, (2.9). Then, for

b ∈ R, the following statements are equivalent:

(i) osL(f(t, ·)) ≤ b with respect to the weak pairing J·, ·K, for all t ≥ 0,

(ii) D+∥ϕ(t, t0, x0) − ϕ(t, t0, y0)∥ ≤ b∥ϕ(t, t0, x0) − ϕ(t, t0, y0)∥, for all x0, y0 ∈ C, 0 ≤

t0 ≤ t for which the solutions exist,

(iii) ∥ϕ(t, t0, x0)− ϕ(t, t0, y0)∥ ≤ eb(t−s)∥ϕ(s, t0, x0)− ϕ(s, t0, y0)∥, for all x0, y0 ∈ C and

0 ≤ t0 ≤ s ≤ t for which the solutions exist.

Moreover, if statements (i), (ii), and (iii) hold, then solutions are unique. Finally, if

statements (i), (ii), and (iii) hold with b < 0 and there exists x∗ ∈ Rn such that f(t, x∗) =

0 for all t ≥ 0, then solutions exist uniquely for all time t ≥ 0.
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Proof. Regarding (i) =⇒ (iii), let x0, y0 ∈ C, t0 ≥ 0. If ϕ(t, t0, x0) = ϕ(t, t0, y0) for

some t ≥ t0, then Lemma 2.2.11 implies that the result holds. So suppose ϕ(t, t0, x0) ̸=

ϕ(t, t0, y0). Let v(t) = ϕ(t, t0, x0) and w(t) = ϕ(t, t0, y0) and apply the curve norm

derivative formula to v(t)− w(t):

∥v(t)− w(t)∥D+∥v(t)− w(t)∥ = Jf(t, v(t))− f(t, w(t)), v(t)− w(t)K ,

for almost every t ≥ 0. By the assumption of (i), dividing by ∥v(t) − w(t)∥ ≠ 0 implies

that

D+∥ϕ(t, t0, x0)− ϕ(t, t0, y0)∥ ≤ b∥ϕ(t, t0, x0)− ϕ(t, t0, y0)∥,

for almost every t ≥ t0. Then applying the nonsmooth Grönwall inequality, Lemma 2.2.8,

gives (iii). Regarding (iii) =⇒ (i), the proof is the same as in Theorem 2.4.1. Regarding

(ii) =⇒ (iii), the result follows from the nonsmooth Grönwall inequality, Lemma 2.2.8.

Regarding (iii) =⇒ (ii), we invoke a concept from Section 2.8.1. Following the proof

of (iii) =⇒ (i) gives the inequality (f(t, x) − f(t, y), x − y)+ ≤ b∥x − y∥2. Then

applying the curve norm derivative formula for Deimling pairings, Lemma 2.8.3, with

v(t) = ϕ(t, t0, x0), w(t) = ϕ(t, t0, y0) for x0, y0 ∈ C, t0 ≥ 0, implies that

∥v(t)− w(t)∥D+∥v(t)− w(t)∥ ≤ (f(t, v(t))− f(t, w(t)), v(t)− w(t))+,

for all t ≥ t0 for which v(t), w(t) exist. Then substituting the previous inequality gives

the result. To see uniqueness, note that if ϕ(t0, t0, x0) = ϕ(t0, t0, y0), then ∥x0 − y0∥ = 0

and ∥ϕ(t, t0, x0) − ϕ(t, t0, y0)∥ = 0 for all t ≥ t0 for which the solutions exist by (iii).

Regarding existence, if b < 0, consider the flow ϕ(t, t0, x
∗) which is constant for all t ≥ t0.

Then any other solution exponentially converges to x∗ and must exist for all t ≥ 0.

Remark 2.4.4. If f(t, x) is only piecewise continuous in t, then both (i) and (ii) im-
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ply (iii), but the converse need not hold. We refer to [59] for contraction results for

piecewise smooth vector fields in terms of their Jacobians. Theorem 2.4.2 does not require

the computation of Jacobians and demonstrates that contraction is completely captured

by the one-sided Lipschitz condition. △

2.4.4 Equilibrium contraction

Theorem 2.4.3 (Equilibrium contraction theorem). Consider the dynamics ẋ = f(t, x),

with f continuous in (t, x). Assume there exists x∗ satisfying f(t, x∗) = 0n for all t ≥ 0.

Let C ⊆ Rn be open, connected, and forward invariant with x∗ ∈ C and let ∥ · ∥ denote

a norm with compatible weak pairing J·, ·K satisfying Deimling’s inequality, (2.8), and the

curve norm derivative formula, (2.9). Then, for b ∈ R, the following statements are

equivalent:

(i) Jf(t, x), x− x∗K ≤ b∥x− x∗∥2, for all x ∈ C, t ≥ 0,

(ii) D+∥ϕ(t, t0, x0)− x∗∥ ≤ b∥ϕ(t, t0, x0)− x∗∥, for all x0 ∈ C, 0 ≤ t0 ≤ t.

(iii) ∥ϕ(t, t0, x0)− x∗∥ ≤ eb(t−s)∥ϕ(s, t0, x0)− x∗∥, for all x0 ∈ C, 0 ≤ t0 ≤ s ≤ t.

Moreover, if C is convex and there exists a continuous map (t, x) 7→ A(t, x) ∈ Rn×n such

that f(t, x) = A(t, x)(x− x∗) for all t, x, then µ(A(t, x)) ≤ b for all t, x implies (i), (ii),

and (iii).

Proof. Regarding (i) =⇒ (iii), let x0 ∈ C, t0 ≥ 0. If ϕ(t, t0, x0) = x∗, then the result

holds. So assume ϕ(t, t0, x0) ̸= x∗, let v(t) = ϕ(t, t0, x0) and apply the curve norm

derivative formula to v(t)− x∗. Then

∥v(t)− x∗∥D+∥v(t)− x∗∥ = Jf(t, v(t)), v(t)− x∗K ≤ b∥v(t)− x∗∥2,
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for almost every t ≥ 0. Dividing by ∥v(t)−x∗∥ ≠ 0 implies D+∥v(t)−x∗∥ ≤ b∥v(t)−x∗∥

for almost every t ≥ 0. Then the nonsmooth Grönwall inequality, Lemma 2.2.8, gives

(iii).

Regarding (ii) =⇒ (iii), this result follows by applying the nonsmooth Grönwall

inequality in Lemma 2.2.8.

Regarding (iii) =⇒ (i), let x0 ∈ C, t0 ≥ 0. Then for every h > 0,

∥ϕ(t0 + h, t0, x0)− x∗∥ = ∥x0 − x∗ + h(f(t0, x0))∥+O(h2) ≤ ebh∥x0 − x∗∥.

Subtracting ∥x0 − x∗∥ on both sides, dividing by h > 0 and taking the limit as h → 0+,

we get

lim
h→0+

∥x0 − x∗ + h(f(t0, x0))∥ − ∥x0 − x∗∥
h

≤ lim
h→0+

ebh − 1

h
∥x0 − x∗∥.

Evaluating the right hand side limit and multiplying both sides by ∥x0 − x∗∥ gives

∥x0 − x∗∥ lim
h→0+

∥x0 − x∗ + h(f(t0, x0))∥ − ∥x0 − x∗∥
h

≤ b∥x0 − x∗∥2,

However, by the assumption of the weak pairing satisfying Deimling’s inequality, (2.8),

we get Jf(t0, x0), x0 − x∗K ≤ b∥x0 − x∗∥2. Since t0, x0 were arbitrary, the result holds.

Regarding (iii) =⇒ (ii), we invoke a concept from Section 2.8.1. Following the proof

of (iii) =⇒ (i), we have

(f(t, x), x− x∗)+ ≤ b∥x− x∗∥2, for all x ∈ C, t ≥ 0. (2.17)

Then let x0 ∈ C, t0 ≥ 0, let v(t) = ϕ(t, t0, x0), and apply the curve norm derivative
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formula for Deimling pairings, Lemma 2.8.3, to v(t)− x∗ to get

∥v(t)− x∗∥D+∥v(t)− x∗∥ ≤ (f(t, v(t)), v(t))+,

for all t ≥ 0. Using the inequality in (2.17) proves the result.

Now suppose that there exists a continuous map (t, x) 7→ A(t, x) such that f(t, x) =

A(t, x)(x− x∗) and µ(A(t, x)) ≤ b for all x ∈ C and all t ≥ 0. Let x0 ∈ C, t0 ≥ 0 and let

v(t) = ϕ(t, t0, x0)− x∗. Then

v̇ = A(t, ϕ(t, t0, x0))v.

Applying Coppel’s differential inequality, Lemma 2.2.10, implies

D+∥v(t)∥ ≤ µ(A(t, ϕ(t, t0, x0)))∥v(t)∥.

Substituting µ(A(t, ϕ(t, t0, x0))) ≤ b gives (ii).

Remark 2.4.5. (i) A vector field f satisfying condition (i), with b < 0 is said to be

equilibrium contracting with respect to x∗ and with rate |b|.

(ii) If f(t, x) is continuously differentiable in x, the mean value theorem for vector-

valued functions implies

f(t, x) = f(t, x)− f(t, x∗) =

(∫ 1

0

Df(t, x∗ + (x− x∗)s)ds

)
(x− x∗).

One can then define the average Jacobian of f(t, x) about the equilibrium x∗ to be

Dfx∗(t, x) :=

∫ 1

0

Df(t, x∗ + (x− x∗)s)ds. (2.18)
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Therefore, there always exists at least one matrix-valued map A(t, x) such that

f(t, x) = A(t, x)(x− x∗).

(iii) Condition (ii) implies that the choice of Lyapunov function V (x) = ∥x − x∗∥ for

b < 0 gives global exponential stability within C. △

Example 1 (Counterexample). To see that (i) need not imply µ(A(t, x)) ≤ b, consider

the dynamics in R2

ẋ = A(x)x =

−x22 − 1 0

0 x21 − 1


x1
x2

 , (2.19)

with equilibrium point x∗ = 02. For the unweighted ℓ2 norm, x 7→ A(x)x satisfies Theo-

rem 2.4.3(i) with b = −1 since JA(x)x, xK2 = x⊤A(x)x = −∥x∥22. However, µ2(A(x)) =

x21 − 1 ≥ −1. △

2.5 Robustness of contracting systems

We include a brief review of signal norms and system gains and refer the reader to [21,

Chapter 2] for more details.

Definition 7 (Signal norms and system gains [21, Chapter 2]). Given a norm ∥ · ∥X on

X = Rn, let Lq
X , q ∈ [1,∞], denote the vector space of continuous signals x : R≥0 → Rn

with well-defined and bounded norm

∥x(·)∥X ,q :=


(∫∞

0
∥x(t)∥qXdt

)1/q
, q ̸= ∞,

supt≥0 ∥x(t)∥X , q = ∞.

(2.20)

A dynamical system with state x ∈ X = Rn and input u ∈ U = Rk has Lq
X ,U gain bounded

40



Non-Euclidean Contraction Theory for Robust Nonlinear Stability Chapter 2

by γ > 0 if, for all u ∈ Lq
U , the state x from zero initial condition satisfies

∥x(·)∥X ,q ≤ γ∥u(·)∥U ,q.

In what follows, for a control system ẋ = f(t, x, u(t)), we write x(t) for the flow

ϕ(t, t0, x0) subject to the vector field resulting from control input ux(t).

Theorem 2.5.1 (Input-to-state stability and gain of contracting systems). For a time

and input-dependent vector field f , consider the dynamics

ẋ = f(t, x, u(t)), x(0) = x0 ∈ X = Rn, (2.21)

where u takes values in U = Rk. Assume there exists a norm ∥ · ∥X : Rn → R≥0 with

compatible weak pairing satisfying the curve norm derivative formula, (2.9), for all time

J·, ·KX , a norm ∥ · ∥U : Rk → R≥0, and positive scalars c and ℓ such that

(A1) osL(f(t, ·, u)) ≤ −c with respect to the weak pairing J·, ·KX , for all t ≥ 0, u ∈ Rk,

(A2) ∥f(t, x, u)− f(t, x, v)∥X ≤ ℓ∥u− v∥U , for all t ∈ R≥0, x ∈ Rn, u, v ∈ Rk.

Then

(i) any two solutions x(t) and y(t) to (2.21) with continuous input signals ux, uy : R≥0 →

Rk satisfy for all t ≥ 0,

D+∥x(t)− y(t)∥X ≤ −c∥x(t)− y(t)∥X + ℓ∥ux(t)− uy(t)∥U .

(ii) f is incrementally input-to-state stable, in the sense that, from any initial condi-
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tions x0, y0 ∈ Rn,

∥x(t)− y(t)∥X ≤ e−ct∥x0 − y0∥X +
ℓ(1− e−ct)

c
sup
τ∈[0,t]

∥ux(τ)− uy(τ)∥U ,

(iii) f has incremental Lq
X ,U

gain bounded by ℓ/c, for q ∈ [1,∞], in the sense that

solutions with x(0) = y(0) satisfy

∥x(·)− y(·)∥X ,q ≤
ℓ

c
∥ux(·)− uy(·)∥U ,q. (2.22)

Next, assume that f satisfies the weaker Assumptions (A1′)-(A2) instead of (A1)-(A2),

where

(A1′) there exists x∗ ∈ Rn and continuous u∗ : R≥0 → Rk such that f(t, x∗, u∗(t)) = 0n for

all t, and Jf(t, x, u)− f(t, x∗, u), x− yKX ≤ −c∥x− x∗∥2X for all t ≥ 0, x ∈ Rn, u ∈

Rk.

Then

(iv) the solution x(t) to (2.21) satisfies D+∥x(t) − x∗∥X ≤ −c∥x(t) − x∗∥X + ℓ∥u(t) −

u∗(t)∥U , for all t ≥ 0,

(v) f is input-to-state stable in the sense that ∥x(t) − x∗∥X ≤ e−ct∥x0 − x∗∥X +

ℓ(1− e−ct)

c
sup
τ∈[0,t]

∥u(τ)− u∗(τ)∥U ,

(vi) f has Lq
X ,U gain bounded by ℓ/c, for q ∈ [1,∞].

Proof. The result holds at times t ≥ 0 when x(t) = y(t) by Lemma 2.2.11. So assume
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x(t) ̸= y(t). By the curve norm derivative formula, Assumptions (A1) and (A2) imply

∥x(t)− y(t)∥XD+∥x(t)− y(t)∥X = Jf(t, x(t), ux(t))− f(t, y(t), uy(t)), x(t)− y(t)KX

≤ Jf(t, x(t), ux(t))− f(t, y(t), ux(t)), x(t)− y(t)KX

+ Jf(t, y(t), ux(t))− f(t, y(t), uy(t)), x(t)− y(t)KX

≤ −c∥x(t)− y(t)∥2X + ℓ∥x(t)− y(t)∥X∥ux(t)− uy(t)∥U ,

which follows from the subadditivity and the Cauchy-Schwarz inequality for the weak

pairing. This proves statement (i). Statement (ii) follows from the nonsmooth Grönwall

inequality, Lemma 2.2.8. Regarding statement (iii), let w(t) = ∥ux(t) − uy(t)∥U and

consider the scalar equation

ζ̇ = −cζ + ℓw, ζ(0) = ∥x(0)− y(0)∥X = 0. (2.23)

Then by the Dini comparison lemma, Lemma 2.2.9, ∥x(t) − y(t)∥X ≤ ζ(t) for all t ≥ 0.

Let G be the linear operator given by w 7→ ζ via the solution of (2.23). In other words,

ζ = Gw. Since G arises from a first-order scalar linear system, its induced Lq norm is

ℓ/c for all q ∈ [1,∞], see [60, Proposition 2.3]. Thus,

∥x(·)− y(·)∥X ,q ≤
ℓ

c
∥ux(·)− uy(·)∥U ,q, for all q ∈ [1,∞].
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Regarding statement (iv), apply the curve norm derivative formula to x(t)− x∗ to get

∥x(t)− x∗∥XD+∥x(t)− x∗∥X = Jf(t, x(t), u(t))− f(t, x∗, u∗(t)), x(t)− x∗KX

≤ Jf(t, x(t), u(t))− f(t, x∗, u(t)), x(t)− x∗KX

+ Jf(t, x∗, u(t))− f(t, x∗, u∗(t)), x(t)− x∗KX

≤ −c∥x(t)− x∗∥2X + ℓ∥u(t)− u∗(t)∥U∥x(t)− x∗∥X .

Statement (v) then follows from the nonsmooth Grönwall inequality, Lemma 2.2.8. The

proof of statement (vi) is identical to the proof of (iii).

The next result studies contractivity under perturbations.

Theorem 2.5.2 (Contraction under perturbations). Consider the dynamics ẋ = f(t, x)+

g(t, x). If osL(f(t, ·)) ≤ −c < 0 and osL(g(t, ·)) ≤ d ∈ R with respect to the same weak

pairing J·, ·K for all t ≥ 0, then

(i) (contractivity under perturbations) if d < c, then f + g is strongly contracting with

rate c− d,

(ii) (equilibrium point under perturbations) if additionally f and g are time-invariant,

then the unique equilibrium point x∗ of f and x∗∗ of f + g satisfy

∥x∗ − x∗∗∥ ≤ ∥g(x∗)∥
c− d

. (2.24)

Proof. Statement (i) is an immediate consequence of Proposition 2.4.1(iv). Finally, we

consider the two initial value problems ẋ = f(x)+ g(x) and ẏ = f(y)+ g(y)− g(x∗) with

arbitrary initial conditions. Note f(x∗) + g(x∗) − g(x∗) = 0, that is, x∗ is the unique

equilibrium of the contracting system f(y) + g(y) − g(x∗). Taking the limit as t → ∞,

Theorem 2.5.1(ii) implies statement (ii).
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2.6 Networks of contracting systems

We consider the interconnection of n dynamical systems

ẋi = fi(t, xi, x−i), for i ∈ {1, . . . , n}, (2.25)

where xi ∈ RNi , N =
∑n

i=1Ni, the subscript −i = {1, . . . , n} \ {i} so that x−i ∈ RN−Ni ,

and fi : R≥0 ×RNi ×RN−Ni → RNi is continuous. Let ∥ · ∥i and J·, ·Ki denote a norm and

a weak pairing on RNi . Assume

(C1) at fixed x−i and t, each map xi 7→ fi(t, xi, x−i) satisfies osL(fi(t, ·, x−i)) ≤ −ci < 0

with respect to J·, ·Ki which satisfies Deimling’s inequality, (2.8), and the curve

norm derivative formula, (2.9). If fi is continuously differentiable in xi, then this

condition is equivalent to

µi(Dfi(t, xi, x−i)) ≤ −c, for xi ∈ RNi , x−i ∈ RN−Ni

(C2) at fixed xi and t, each map x−i 7→ fi(t, xi, x−i) satisfies a Lipschitz condition where,

for all j ∈ {1, . . . , n} \ {i}, there exists γij ∈ R≥0, such that for all xj, yj ∈ RNj ,

∥fi(t, xi, x−i)− fi(t, xi, y−i)∥i ≤
n∑

j=1,j ̸=i

γij∥xj − yj∥j.

Lemma 2.6.1 (Efficiency of diagonally weighted norm [61, Lemma 3]). Let M ∈ Rn×n

be Metzler and let α(M) denote its spectral abscissa. Then, for each ε > 0, there exists

ξ ∈ Rn
>0 satisfying the LMI

diag(ξ)M +M⊤diag(ξ) ⪯ 2(α(M) + ε)diag(ξ). (2.26)
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Moreover, if M is irreducible, the result holds with ε = 0.

Definition 8 (Diagonally weighted aggregation norm). For ξ ∈ Rn
>0, define the ξ-

weighted norm and corresponding weak pairing on RN by

∥(x1, . . . , xn)∥2ξ =
∑n

i=1
ξi∥xi∥2i , (2.27)

J(x1, . . . , xn), (y1, . . . , yn)Kξ =
∑n

i=1
ξi Jxi, yiKi . (2.28)

It is easy to see that (2.27) defines a norm. We prove in Section 2.8.4 that (2.28) is a

weak pairing that is compatible with (2.27) and satisfies Deimling’s inequality, (2.8) and

the curve norm derivative formula, (2.9).

Theorem 2.6.1 (Contractivity of interconnected system). Consider the interconnection

of continuous systems (2.25) satisfying Assumptions (C1) and (C2) and define the gain

matrix

Γ :=


−c1 . . . γ1n
...

...

γn1 . . . −cn

 .
If Γ is Hurwitz, then

(i) for every ε ∈ ]0, |α(Γ)|[, there exists ξ ∈ Rn
>0 such that the interconnected system is

strongly contracting with respect to ∥ · ∥ξ in (2.27) with rate |α(Γ) + ε|, and

(ii) if Γ is irreducible, the result (i) holds with ε = 0.

Proof. For i ∈ {1, . . . , n}, Assumptions (C1) and (C2) imply

Jfi(t, xi, x−i)− fi(t, yi, y−i), xi − yiKi ≤ Jfi(t, xi, x−i)− fi(t, yi, x−i), xi − yiKi

+ Jfi(t, yi, x−i)− fi(t, yi, y−i), xi − yiKi

≤ −ci∥xi − yi∥2i +
∑n

j=1,j ̸=i
γij∥xj − yj∥j∥xi − yi∥i,
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where we used the subadditivity and Cauchy-Schwarz inequality for the weak pairing.

By Lemma 2.6.1, for ε ∈ ]0, |α(Γ)|[, select ξ ∈ Rn
>0 satisfying (2.26). Next, we check

the one-sided Lipschitz condition for the interconnected system on RN with respect to

norm (2.27) and weak pairing (2.28):

∑n

i=1
ξi Jfi(t, xi, x−i)− fi(t, yi, y−i), xi − yiKi

≤ −
∑n

i=1
ξici∥xi − yi∥2i +

∑n

i,j=1,j ̸=i
ξiγij∥xj − yj∥j∥xi − yi∥i

=


∥x1 − y1∥1

...

∥xn − yn∥n


⊤

diag(ξ)Γ


∥x1 − y1∥1

...

∥xn − yn∥n



=


∥x1 − y1∥1

...

∥xn − yn∥n


⊤

diag(ξ)Γ + Γ⊤diag(ξ)

2


∥x1 − y1∥1

...

∥xn − yn∥n

 ,

so that the interconnected system is strongly contracting if the gain matrix Γ is diagonally

stable. Moreover, using Lemma 2.6.1

∑n

i=1
ξi Jfi(t, xi, x−i)− fi(t, yi, y−i), xi − yiKi

≤ (α(Γ) + ε)


∥x1 − y1∥1

...

∥xn − yn∥n


⊤

diag(ξ)


∥x1 − y1∥1

...

∥xn − yn∥n


= (α(Γ) + ε)

∑n

i=1
ξi∥xi − yi∥2i = (α(Γ) + ε)∥(x1 − y1, . . . , xn − yn)∥2ξ .

Then by Theorem 2.4.2, we have strong contraction with rate |α(Γ)+ ε| and incremental

exponential stability. Finally, if Γ is irreducible, we can take ε = 0 by Lemma 2.6.1.
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An example interconnected system satisfying the Assumptions (C1) and (C2) is of

the form fi(t, xi, x−i) = gi(t, xi) +
∑n

j=1,j ̸=iHijxj, where each vector field gi(t, xi) has

one-sided Lipschitz constant −ci and where Assumption (C2) is satisfied with γij equal

to the induced gain of Hij.

Remark 2.6.2 (Input-to-state stability and gain of interconnected contracting systems).

Consider interconnected subsystems of the form ẋi = f(t, xi, x−i, ui) with an input ui ∈

Rki. Assume each fi satisfies Assumptions (C1) and (C2) at fixed input and, for fixed

xi, x−i, t and all ui, vi ∈ Rki,

∥f(t, xi, x−i, ui)− f(t, xi, x−i, vi)∥i ≤ ℓi∥ui − vi∥Ui
,

for some norm ∥ · ∥Ui
on Rki. Then, with c = |α(Γ) + ε|, Theorem 2.5.1 shows that the

interconnected system is incrementally input-to-state stable with

∥x(t)− y(t)∥ξ ≤ e−ct∥x0 − y0∥ξ

+
1− e−ct

c

∑n

i=1
ℓiξi sup

τ∈[0,t]
∥ux,i(τ)− uy,i(τ)∥Ui

,

and has finite incremental Lq
X ,U gain, for any q ∈ [1,∞]. △

2.7 Conclusions

In this chapter, we present weak pairings as a novel tool to study contraction the-

ory with respect to arbitrary norms. Through the language of weak pairings, we prove

contraction equivalences for continuously differentiable vector fields, continuous vector

fields, and for equilibrium contraction. For ℓp norms with p ∈ [1,∞], we present explicit

formulas for the log norms, the Demidovich condition, and the one-sided Lipschitz con-
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dition, leading to novel contraction equivalences for p ∈ {1,∞}. We then prove novel

robustness results for contracting and equilibrium contracting systems including incre-

mental input-to-state stability properties as well as finite incremental Lq
X ,U gain. Finally,

we provide a main interconnection theorem for contracting subsystems, that provides a

counterpart to similar theorems for dissipative subsystems.

Possible directions for future research include (i) leveraging our non-Euclidean con-

ditions for control design akin to control contraction metrics [62], (ii) studying the gen-

eralization to nonsmooth Finsler Lyapunov functions and differentially positive systems

[28, 63], (iii) exploring the additional structure in monotone systems [11], and finally

(iv) studying generalizations of contraction including partial contraction [24], transverse

contraction [30], and contraction after transients [31].

2.8 Auxiliary results

2.8.1 Deimling pairings

Definition 9 (Deimling pairing [52, Chapter 3]). Given a norm ∥·∥ on Rn, the Deimling

pairing is the map (·, ·)+ : Rn × Rn → R defined by

(x, y)+ := ∥y∥ lim
h→0+

∥y + hx∥ − ∥y∥
h

. (2.29)

This limit is known to exist for every x, y ∈ Rn.

If a norm is differentiable, then its associated Lumer pairing coincides with the Deim-

ling pairing. The Deimling pairing is also referred to as superior semi-inner product and

right semi-inner product, [47, Chapter 3], [45, Remark 1].

Lemma 2.8.1 (Deimling pairing properties [47, Chapter 3, Proposition 5 and Corollary
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5]). Let ∥ · ∥ be a norm on Rn. Then the following properties hold:

(i) (x1 + x2, y)+ ≤ (x1, y)+ + (x2, y)+ for all x1, x2, y ∈ Rn and (·, ·)+ is continuous in

its first argument,

(ii) (αx, y)+ = (x, αy)+ = α(x, y)+ and (−x,−y)+ = (x, y)+ for all x, y ∈ Rn, α ≥ 0,

(iii) (x, x)+ = ∥x∥2 for all x ∈ Rn,

(iv) |(x, y)+| ≤ ∥x∥∥y∥ for all x, y ∈ Rn.

While a Deimling pairing need not be a Lumer pairing and a Lumer pairing need not

be a Deimling pairing, both Deimling pairings and Lumer pairings are weak pairings.

Lemma 2.8.2 (Relationship between Deimling pairing and Lumer pairings for a norm

[47, Chapter 3, Theorem 20]). Let ∥ · ∥ be a norm on Rn and let [·, ·] be a compatible

Lumer pairing. Then

[x, y] ≤ (x, y)+, for all x, y ∈ Rn. (2.30)

Moreover, if Sp is the set of all Lumer pairings compatible with the norm, then (x, y)+ =

sup[·,·]∈Sp
[x, y] for all x, y ∈ Rn.

Lemma 2.8.3 (Deimling curve norm derivative formula [52, Proposition 13.1]). Let

x : ]a, b[ → Rn be differentiable. Then

∥x(t)∥D+∥x(t)∥ = (ẋ(t), x(t))+, for all t ∈ ]a, b[. (2.31)

Hence, any Deimling pairing satisfies Deimling’s inequality, (2.8), (by definition) and

the curve norm derivative formula, (2.9), (with equality holding for all time).

Remark 2.8.4 (Logarithmic Lipschitz constant). In [38, Definition 5.2], the least upper
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bound logarithmic Lipschitz constant of a map f : C → Rn is defined by

M+(f) := sup
x ̸=y

(f(x)− f(y), x− y)+
∥x− y∥2 . (2.32)

In other words, M+(f) is a special case of osL(f), where osL may be with respect to any

weak pairing satisfying Deimling’s inequality, (2.8). Thus, we show that, in contraction

theory, we are not restricted to using Deimling pairings for analysis. △

Finally, for comparison’s sake, we report from [52, Example 13.1(b)], the Deimling

pairing for the ℓ1 norm:

(x, y)+,1 = ∥y∥1
(
sign(y)⊤x+

∑n

i=1
|xi|χ{0}(yi)

)
. (2.33)

2.8.2 Proof of Lemma 2.3.3

Before we prove Lemma 2.3.3, we first define a class of Lumer pairings called single-

index pairings.

Lemma 2.8.5 (Single-index pairings). For R ∈ Rn×n invertible, let ∥ · ∥∞,R be the

weighted ℓ∞ norm. Let 2[n] be the power set of {1, . . . , n}. A choice function on {1, . . . , n},

f : 2[n] \ {∅} → {1, . . . , n} satisfies for all S ∈ 2[n] \ {∅}, f(S) ∈ S. Let Fchoice be the

set of all choice functions on {1, . . . , n}. Then each f ∈ Fchoice defines a Lumer pairing

uniquely:

[x, y]∞,R := (Rx)f(I∞(Ry))(Ry)f(I∞(Ry)). (2.34)

Moreover, each Lumer pairing is compatible with the weighted ℓ∞ norm.

Proof. First, we prove that any choice function defines a Lumer pairing. Let f ∈ Fchoice.
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Regarding property (i), let x1, x2, y ∈ Rn.

[x1 + x2, y]∞,R = R(x1 + x2)f(I∞(Ry))(Ry)f(I∞(Ry)) = [x1, y]∞,R + [x2, y]∞,R.

For property (ii), let α ∈ R. Then

[αx, y]∞,R = (Rαx)f(I∞(Ry))(Ry)f(I∞(Ry)) = α[x, y]∞,R.

[x, αy]∞,R = (Rx)f(I∞(Rαy))(Rαy)f(I∞(Rαy)) = α[x, y]∞,R.

Regarding property (iii):

[x, x]∞,R = (Rx)f(I∞(Rx))(Rx)f(I∞(Rx)) = ∥x∥2∞,R ≥ 0.

This also proves compatibility. Finally, for property (iv):

|[x, y]∞,R| = |(Rx)f(I∞(Ry))(Ry)f(I∞(Ry))| = ∥Ry∥∞|(Rx)f(I∞(Ry))|

≤ ∥Ry∥∞∥Rx∥∞ = [x, x]
1/2
∞,R[y, y]

1/2
∞,R.

Corollary 2.8.6 (Relationship between max pairing and single-index pairings). Let

Sindex be the set of all single-index pairings on Rn compatible with norm ∥ · ∥∞,R. Then

we have

Jx, yK∞,R ≥ [x, y]∞,R, for all [·, ·]∞,R ∈ Sindex, x, y ∈ Rn.

Moreover, for all x, y ∈ Rn, there exists [·, ·]∞,R ∈ Sindex such that Jx, yK∞,R = [x, y]∞,R.

Proof. Jx, yK∞,R ≥ [x, y]∞,R follows by definition. Moreover, if x, y are fixed, let i∗ =

argmaxi∈I∞(Ry)(Ry)i(Rx)i. Then any choice function satisfying f(I∞(Ry)) = i∗ defines

52



Non-Euclidean Contraction Theory for Robust Nonlinear Stability Chapter 2

a single-index pairing with Jx, yK∞,R = [x, y]∞,R.

Proof of Lemma 2.3.3. Let x, y ∈ Rn \ {0n}. Then by Corollary 2.8.6, there exists

[·, ·]∞,R ∈ Sindex such that Jx, yK∞,R = [x, y]∞,R. However, since [·, ·]∞,R is a Lumer

pairing, it satisfies Deimling’s inequality, (2.8). Thus,

Jx, yK∞,R = [x, y]∞,R ≤ ∥y∥∞,R lim
h→0+

∥y + hx∥∞,R − ∥y∥∞,R

h
.

Since x, y were arbitrary, this proves the result.

2.8.3 Proof of Proposition 2.4.1

To prove Proposition 2.4.1, we will first prove one additional property of weak pair-

ings.

Lemma 2.8.7. Let ∥ · ∥ be a norm on Rn with compatible weak pairing J·, ·K satisfying

Deimling’s inequality, (2.8). Then for all x ∈ Rn, c ∈ R:

Jcx, xK = c∥x∥2. (2.35)

Proof. If c ≥ 0, the result is trivial, so without loss of generality, assume c = −1. Lumer’s

equality, Theorem 2.3.2, with A = −In implies for all x ∈ Rn

sup
x ̸=0n

J−x, xK
∥x∥2 = µ(−In) = −1 =⇒ J−x, xK ≤ −∥x∥2.

Regarding the other inequality, observe that

Jx, xK = Jx− x+ x, xK ≤ J−x, xK + 2 Jx, xK

=⇒ J−x, xK ≥ − Jx, xK = −∥x∥2.
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By weak homogeneity, this proves the result.

Proof of Proposition 2.4.1. Properties (i), (iii), and (iv) are consequences of Cauchy-

Schwarz, weak homogeneity, and subadditivity of the weak pairing, respectively. Re-

garding property (ii), we will show the more general result that for any x, y ∈ C, c ∈ R,

Jx+ cy, yK = Jx, yK + c∥y∥2. The inequality

Jx+ cy, yK ≤ Jx, yK + c∥y∥2,

follows from subadditivity and Lemma 2.8.7. Additionally,

Jx, yK = Jx+ cy − cy, yK ≤ Jx+ cy, yK + J−cy, yK = Jx+ cy, yK − c∥y∥2,

where the final equality holds by Lemma 2.8.7. Rearranging the inequality implies the

result.

2.8.4 Sum decomposition of weak pairings

Lemma 2.8.8 (Weak pairing decomposition). For N =
∑n

i=1Ni, let x = (x1, . . . , xn), y =

(y1, . . . , yn) ∈ RN and xi, yi ∈ RNi. Let ∥ · ∥i and J·, ·Ki denote a norm and compatible

weak pairing on RNi and let ξ ∈ Rn
>0. Then the mapping J·, ·Kξ : RN ×RN → RN defined

by

Jx, yKξ :=
∑n

i=1
ξi Jxi, yiKi ,

is a weak pairing compatible with the norm ∥x∥2ξ =
∑n

i=1 ξi∥xi∥2i .

Proof. We verify the properties in Definition 3. Regarding property (i), let x1, x2, y ∈ RN .

Then Jx1 + x2, yKξ =
∑n

i=1 ξi Jx1i + x2i , yiKi ≤
∑n

i=1 ξi Jx1i , yiKi + ξi Jx2i , yiKi = Jx1, yKξ +

Jx2, yKξ. Continuity in the first argument follows from continuity of the first argument of
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each of the J·, ·Ki. Regarding property (ii), the result is straightforward because of weak

homogeneity of each of the J·, ·Ki. Regarding property (iii),

Jx, xKξ =
n∑

i=1

ξi Jxi, xiKi =
n∑

i=1

ξi∥xi∥2i > 0, for all x ̸= 0N .

Regarding property (iv), since n is finite, by induction it suffices to check n = 2. For

convenience, define ai = ξi Jxi, xiKi , bi = ξi Jyi, yiKi. Then

Jx, yK2ξ =
(∑2

i=1
ξi Jxi, yiKi

)2
≤
(∑2

i=1
a
1/2
i b

1/2
i

)2
= (
√
a1b1 +

√
a2b2)

2 = a1b1 + a2b2 + 2
√
a1b1a2b2

≤ a1b1 + a2b2 + a1b2 + a2b1 = (a1 + a2)(b1 + b2)

=
(∑2

i=1
ai

)(∑2

i=1
bi

)
= Jx, xKξ Jy, yKξ ,

where we have used Cauchy-Schwarz for the J·, ·Ki and the inequality 2
√
αβ ≤ α + β for

α, β ≥ 0. Taking the square root of each side proves the result.

Next we establish Deimling’s inequality, (2.8), and the curve norm derivative for-

mula, (2.9).

Lemma 2.8.9 (Deimling’s inequality and curve norm derivative formula for weak pairing

sum decomposition). Let J·, ·Kξ and ∥ · ∥ξ be defined as in Lemma 2.8.8. If

(i) each J·, ·Ki satisfies Deimling’s inequality, then J·, ·Kξ satisfies Deimling’s inequality,

(ii) each J·, ·Ki satisfies the curve norm derivative formula, then J·, ·Kξ satisfies the curve

norm derivative formula.

To prove Lemma 2.8.9(ii), we first prove a useful equivalent characterization of the

curve norm derivative formula.
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Proposition 2.8.10 (Equivalent curve norm derivative formula characterization). Let

x : (a, b) → Rn be differentiable and J·, ·K be a weak pairing compatible with the norm ∥ · ∥

on Rn. Then the following statements are equivalent

(i) ∥x(t)∥D+∥x(t)∥ = Jẋ(t), x(t)K for almost every t ∈ (a, b),

(ii) D+∥x(t)∥2 = 2 Jẋ(t), x(t)K for almost every t ∈ (a, b).

Proof. We first prove (i) =⇒ (ii). Initially, suppose that t ∈ (a, b) is an instant in time

at which x(t) = 0n. Then we compute

D+∥x(t)∥2 = lim sup
h→0+

∥x(t+ h)∥2 − ∥x(t)∥2
h

= lim
h→0+

∥x(t) + hẋ(t)∥2
h

= lim
h→0+

∥hẋ(t)∥2
h

= lim
h→0+

h2∥ẋ(t)∥2
h

= 0,

so the result holds for all t ∈ (a, b) for which x(t) = 0n. So alternatively suppose

x(t) ̸= 0n. Then

D+∥x(t)∥2 = lim sup
h→0+

∥x(t+ h)∥2 − ∥x(t)∥2
h

= lim
h→0+

(∥x(t+ h)∥ − ∥x(t)∥
h

(∥x(t+ h)∥+ ∥x(t)∥)
)

=
(
D+∥x(t)∥

)
lim
h→0+

∥x(t+ h)∥+ ∥x(t)∥ a.e.
=

Jẋ(t), x(t)K
∥x(t)∥ · 2∥x(t)∥ = 2 Jẋ(t), x(t)K ,

where
a.e.
= denotes that the equality holds for almost every t ∈ (a, b) by the assumption

of (i). This proves (i) =⇒ (ii). Regarding the other implication, note that the result

holds trivially for all t ∈ (a, b) for which x(t) = 0n. Thus, we suppose that x(t) ̸= 0n

(note that this supposition implies that ∥x(t+ h)∥+ ∥x(t)∥ > 0 for all h > 0). Then we
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compute

D+∥x(t)∥ = lim sup
h→0+

∥x(t+ h)∥ − ∥x(t)∥
h

= lim
h→0+

∥x(t+ h)∥2 − ∥x(t)∥2
h

1

∥x(t+ h)∥+ ∥x(t)∥

=
(
D+∥x(t)∥2

)
lim
h→0+

1

∥x(t+ h)∥+ ∥x(t)∥
a.e.
= 2 Jẋ(t), x(t)K

1

2∥x(t)∥ .

Multiplying both sides by ∥x(t)∥ proves the implication.

We are now ready to prove Lemma 2.8.9.

Proof of Lemma 2.8.9. First we prove item (i). We prove the result for n = 2 and then

by induction the result easily extends to arbitrary n. For x = (x1, x2) and y = (y1, y2),

we compute

Jx, yKξ = ξ1 Jx1, y1K1 + ξ2 Jx2, y2K2

≤ lim
h→0+

(
ξ1∥y1∥1

∥y1 + hx1∥1 − ∥y1∥1
h

+ ξ2∥y2∥2
∥y2 + hx2∥2 − ∥y2∥2

h

)
= lim

h→0+

ξ1∥y1∥1∥y1 + hx1∥1 + ξ2∥y2∥2∥y2 + hx2∥2 − ∥y∥2ξ
h

,

where the first inequality holds by applying Deimling’s inequality to each of J·, ·Ki for i ∈

{1, 2}. Next we demonstrate that ξ1∥y1∥1∥y1+hx1∥1+ξ2∥y2∥2∥y2+hx2∥2 ≤ ∥y∥ξ∥y+hx∥ξ.

Since both sides of the inequality are nonnegative, we square the left-hand side and
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compute

(
ξ1∥y1∥1∥y1 + hx1∥1 + ξ2∥y2∥2∥y2 + hx2∥2

)2
=

ξ21∥y1∥21∥y1 + hx1∥21 + ξ22∥y2∥22∥y2 + hx2∥22 + 2ξ1ξ2∥y1∥1∥y2∥2∥y1 + hx1∥1∥y2 + hx2∥2

≤ ξ21∥y1∥21∥y1 + hx1∥21 + ξ22∥y2∥22∥y2 + hx2∥22

+ ξ1ξ2∥y1∥21∥y2 + hx2∥22 + ξ1ξ2∥y2∥22∥y1 + hx1∥21

=
(
ξ1∥y1∥21 + ξ2∥y2∥22

)(
ξ1∥y1 + hx1∥21 + ξ2∥y2 + hx2∥22

)
= ∥y∥2ξ∥y + hx∥2ξ ,

where the inequality holds due to 2αβ ≤ α2 + β2 for all α, β ∈ R with α = ∥y1∥1∥y2 +

hx2∥2, β = ∥y2∥2∥y2 + hx2∥2. This proves the desired inequality. As a consequence, we

see

Jx, yKξ ≤ lim
h→0+

ξ1∥y1∥1∥y1 + hx1∥1 + ξ2∥y2∥2∥y2 + hx2∥2 − ∥y∥2ξ
h

≤ lim
h→0+

∥y∥ξ∥y + hx∥ξ − ∥y∥2ξ
h

= ∥y∥ξ lim
h→0+

∥y + hx∥ξ − ∥y∥ξ
h

,

which proves Deimling’s inequality.

Regarding item (ii), let x : (a, b) → RN be differentiable. We apply Proposition 2.8.10 to

prove that D+∥x(t)∥2ξ = 2 Jẋ(t), x(t)K for almost every t ∈ (a, b). We compute

D+∥x(t)∥2ξ = D+
( n∑

i=1

ξi∥xi(t)∥2i
)
=

n∑
i=1

ξiD
+∥xi(t)∥2i

a.e.
= 2

n∑
i=1

ξi Jẋi(t), xi(t)Ki

= 2 Jẋ(t), x(t)Kξ ,

where the third equality holds by the assumption that each J·, ·Ki satisfies the curve norm

derivative formula. Thus, the result is proved.
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Chapter 3

Non-Euclidean Monotone Operator

Theory and Applications

This chapter was first published in the Journal of Machine Learning Research [64].1

3.1 Introduction

Problem description and motivation: Monotone operator theory is a fertile field of

nonlinear functional analysis that extends the notion of monotone functions on R to

mappings on Hilbert spaces. Monotone operator methods are widely used to solve prob-

lems in machine learning [65, 66], data science [67], optimization and control [68, 69],

game theory [70], and systems analysis [71]. A crucial part of this theory is the design

of algorithms for computing zeros of monotone operators. This problem is central in

convex optimization since (i) the subdifferential of any convex function is monotone and

(ii) minimizing a convex function is equivalent to finding a zero of its subdifferential.

1©2024 Alexander Davydov, Saber Jafarpour, Anton V. Proskurnikov, and Francesco Bullo. Li-
cense: CC-BY 4.0. Reprinted from Alexander Davydov, Saber Jafarpour, Anton V. Proskurnikov, and
Francesco Bullo, Non-Euclidean Monotone Operator Theory and Applications, 2024.
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To this end, there has been extensive research in the last decade in applying monotone

operator methods to convex optimization; see, e.g., [72, 73, 74].

Existing monotone operator techniques are primarily based on inner-product spaces,

while many problems are better-suited for analysis in more general normed spaces. For

instance robustness analysis of artificial neural networks in machine learning often re-

quires the use of the ℓ∞ norm for high-dimensional input data such as images [75]. In

distributed optimization, it is known that many natural conditions for the convergence of

totally asynchronous algorithms are based upon contractions in an ℓ∞ norm [76, Chap-

ter 6, Section 3].

Motivated by problems in non-Euclidean spaces, we aim to extend monotone operator

techniques for computing zeros of monotone operators to operators which are naturally

“monotone” with respect to (w.r.t.) a non-Euclidean norm in a finite-dimensional space.

Literature review: The literature on monotone operators dates back to Minty and

Browder [77, 78] and the connection to convex analysis was drawn upon by Minty and

Rockafellar [79, 80]. Since these foundational works, the theory of monotone operators

over Hilbert spaces and its connection with convex optimization continues to expand,

especially in the last decade [4, 72, 74, 81]. Despite these connections between convex

optimization and monotone operators, many problems in machine learning involve mono-

tone operators beyond gradients of convex functions. Examples of such problems include

generative adversarial networks, adversarially robust training of models, and training of

models under fairness constraints. Instead of minimizing a convex function, to address

these problems, one must solve for variational inequalities, monotone inclusions, and

game-theoretic equilibria. In each of these more general cases, monotone operator theory

has played an essential role in their analyses.

In machine learning, monotone operators have been used in the training of generative

adversarial networks [82], in the design of novel neural network architectures [66], in
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the analysis of equilibrium behavior (infinite-depth limit) of neural networks [65], in the

estimation of Lipschitz constants of neural networks [83, 84], and in normalizing flows [85].

Monotone operators have also been studied in the machine learning community in the

context of variational inequality algorithms, stochastic monotone inclusions, and saddle-

point problems; see e.g. [86, 87, 88, 89, 90, 91, 92, 93] for recent works in this direction.

See also the recent survey [67] for applications in data science.

The theory of dissipative and accretive operators on Banach spaces largely parallels

the theory of monotone operators on Hilbert spaces [52]. Despite these parallels, this

theory has found far fewer direct applications to machine learning and data science;

instead it is mainly applied for iterative solving integral equations and PDEs in Lp spaces

for p ̸= 2 (see the book [94] for iterative methods). Moreover, many works in Banach

spaces focus on spaces that have a uniformly smooth or uniformly convex structure,

which finite-dimensional ℓ1 and ℓ∞ spaces do not possess. In a similar vein, methods

based on Bregman divergences utilize smoothness and strict convexity of the distance-

generating convex functions [95]. Connections between logarithmic norms and dissipative

and accretive operators may be found in [96, 38].

A concept similar to a monotone operator in a Hilbert space is that of a contract-

ing vector field in dynamical systems theory [23]. If the metric with respect to which

the vector field is contracting is the standard Euclidean distance, the vector field, F, is

strongly infinitesimally contracting if and only if the negative vector field −F is strongly

monotone when thought of as on operator on Rn. However, vector fields need not be

contracting with respect to a Euclidean distance. Indeed, a vector field may be contract-

ing w.r.t. a non-Euclidean norm but not a Euclidean one [45]. Due to the connection

between monotone operators and contracting vector fields, it is of interest to explore the

properties of operators that may be thought of as monotone w.r.t. a non-Euclidean norm.

In this spirit, preliminary connections between contracting vector fields and monotone
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operators were made in [97].

Contributions: Our contributions are as follows. First, to address the gap in applying

monotone operator strategies to problems that arise in finite-dimensional non-Euclidean

spaces, we propose a non-Euclidean monotone operator framework that is based on the

theory of weak pairings [5] and logarithmic norms. We use weak pairings as a substitute

for inner products and we demonstrate that many classic results from monotone operator

theory are applicable to its non-Euclidean counterpart. In particular, we show that the

resolvent and reflected resolvent operators of a non-Euclidean monotone mapping exhibit

properties similar to those arising in Hilbert spaces. To ensure that the resolvent and

reflected resolvents have full domain, we prove an extension of the classic Minty-Browder

theorem [77, 78] in Theorem 3.3.1.

Second, leveraging the non-Euclidean monotone operator framework, we show that

traditional iterative algorithms such as the forward step method and proximal point

method can be used to compute zeros of non-Euclidean monotone mappings. We pro-

vide convergence rate estimates for these iterative algorithms and the Cayley method in

Theorems 3.4.1, 3.4.2, and 3.4.3 and demonstrate that for diagonally-weighted ℓ1 and

ℓ∞ norms, they exhibit improved convergence rates compared to their Euclidean coun-

terparts. Notably, we prove that for a Lipschitz mapping which is monotone w.r.t. a

diagonally-weighted ℓ1 or ℓ∞ norm, the forward step method is guaranteed to converge

for a sufficiently small step size, whereas convergence cannot be guaranteed if the map-

ping is monotone with respect to a Euclidean norm.

Third, we study operator splitting methods for mappings which are monotone w.r.t.

diagonally-weighted ℓ1 or ℓ∞ norms. In Theorems 3.5.1 and 3.5.2 we prove that the

forward-backward, Peaceman-Rachford, and Douglas-Rachford splitting algorithms are

all guaranteed to converge, with some key differences compared to the classical theory.

For instance, in the classical setting where two operators, F and G, are monotone w.r.t.
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a Euclidean norm, the forward-backward splitting algorithm will only converge if F is

cocoercive. In contrast, when considering ℓ1 or ℓ∞ norms, Lipschitzness of F is sufficient

for convergence.

Fourth, we present new insights into non-Euclidean properties of proximal operators

and their impact on the study of special set-valued operator inclusions. Specifically,

in Proposition 3.6.4, we demonstrate that when F is the subdifferential of a separable,

proper, lower semicontinuous, convex function, its resolvent and reflected resolvent are

nonexpansive with respect to an ℓ∞ norm. To showcase the practical relevance of this

result, we apply our non-Euclidean monotone operator theory to the equilibrium compu-

tation of a recurrent neural network (RNN). We extend the recent work of [98] and show

that our theory provides novel iterations and convergence criteria for RNN equilibrium

computation.

Finally, we study the robustness of the RNN via its ℓ∞ norm Lipschitz constant.

In Theorem 3.6.1, we generalize the results from [84] to non-Euclidean norms and pro-

vide sharper estimates for the ℓ∞ Lipschitz constant than were provided in the previous

work [98].

A preliminary version of this work appeared in [99]. Compared to this preliminary ver-

sion, this version (i) provides novel theoretical results on the analysis of nonsmooth oper-

ators which are monotone with respect to general norms, (ii) proves a novel generalization

of the classical Minty-Browder theorem for these non-Euclidean monotone mappings, (iii)

study special classes of set-valued inclusions by providing novel non-Euclidean properties

of proximal operators, (iv) includes a more comprehensive application to RNNs, allowing

for more general activation functions and studies the robustness of the neural network

by providing a tighter Lipschitz estimate, and (v) includes proofs of all technical results.

Finally, we provide further comparisons to monotone operator theory on Hilbert spaces.

Other prior work, [5, 100], focuses on continuous-time contracting dynamical systems
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with respect to non-Euclidean norms and their robustness properties. In contrast, this

work instead uses weak pairings, developed in [5], to establish monotonicity properties

of maps with respect to non-Euclidean norms and how we can find zeros of these maps

using iterative methods. The prior works [5, 100] do not consider these discrete-time

iterations.

3.2 Preliminaries

3.2.1 Weak Pairings

We briefly review the notion of a weak pairing (WP) on Rn from [5] which generalizes

inner products to non-Euclidean spaces.

Definition 2 (Weak pairing). A weak pairing is a map J·, ·K : Rn × Rn → R satisfying:

(i) (sub-additivity and continuity of first argument) Jx1 + x2, yK ≤ Jx1, yK+ Jx2, yK, for

all x1, x2, y ∈ Rn and J·, ·K is continuous in its first argument,

(ii) (weak homogeneity) Jαx, yK = Jx, αyK = α Jx, yK and J−x,−yK = Jx, yK, for all

x, y ∈ Rn, α ≥ 0,

(iii) (positive definiteness) Jx, xK > 0, for all x ̸= 0n,

(iv) (Cauchy-Schwarz inequality) | Jx, yK | ≤ Jx, xK1/2 Jy, yK1/2, for all x, y ∈ Rn.

For every norm ∥ · ∥ on Rn, there exists a (possibly not unique) compatible WP J·, ·K

such that ∥x∥2 = Jx, xK, for every x ∈ Rn. If the norm is induced by an inner product,

the WP coincides with the inner product.

Definition 3 (Deimling’s inequality and curve norm derivative formula). Let ∥ · ∥ be a

norm on Rn with compatible WP J·, ·K.
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(i) The WP J·, ·K satisfies Deimling’s inequality if

Jx, yK ≤ ∥y∥ lim
h→0+

h−1(∥y + hx∥ − ∥y∥), for all x, y ∈ Rn. (3.1)

(ii) The WP J·, ·K satisfies the curve norm derivative formula if for all differentiable

x : ]a, b[ → Rn, ∥x(t)∥D+∥x(t)∥ = Jẋ(t), x(t)K holds for almost every t ∈ ]a, b[,

where D+ denotes the upper right Dini derivative. 2

For every norm, there exists at least one WP that satisfies the properties in Defini-

tion 3. 3 Thus, going forward, we assume that WPs satisfy these additional properties.

We will focus on WPs corresponding to diagonally-weighted ℓ1 and ℓ∞ norms. Specifi-

cally, from [5, Table III], we introduce the WPs J·, ·K1,[η] , J·, ·K∞,[η]−1 : Rn×Rn → R defined

by

Jx, yK1,[η] = ∥y∥1,[η] sign(y)⊤[η]x and Jx, yK∞,[η]−1 = max
i∈I∞([η]−1y)

η−2
i yixi. (3.2)

where I∞(x) = {i ∈ {1, . . . , n} | |xi| = ∥x∥∞}. One can show that both of these WPs

satisfy Deimling’s inequality and the curve-norm derivative formula. Formulas for more

general ℓp norms are available in [5].

3.2.2 Contractions, Nonexpansive Maps, and Iterations

Definition 4 (Lipschitz continuity). Let ∥ · ∥ be a norm and F : Rn → Rn be a mapping.

F is Lipschitz continuous with constant ℓ ∈ R≥0 if

∥F(x1)− F(x2)∥ ≤ ℓ∥x1 − x2∥ for all x1, x2 ∈ Rn. (3.3)

2The definition and properties of Dini derivatives are presented in [101].
3Indeed, given a norm, the map J·, ·K : Rn×Rn → R given by Jx, yK = ∥y∥ limh→0+ h−1(∥y+hx∥−∥y∥)

defines a WP that satisfies all of these properties. For more discussions about properties of this pairing,
we refer to [52, Section 13] and [5, Appendix A].
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Moreover we define Lip(F) to be the minimal (or infimum) constant which satisfies (3.3).

If two mappings F,G : Rn → Rn are Lipschitz continuous w.r.t. the same norm, then

the composition F ◦ G has Lipschitz constant Lip(F ◦ G) ≤ Lip(F) Lip(G).

Definition 5 (One-sided Lipschitz mappings, [5]). Given a norm ∥ · ∥ with compatible

WP J·, ·K, a map F : Rn → Rn is one-sided Lipschitz with constant c ∈ R if

JF(x1)− F(x2), x1 − x2K ≤ c∥x1 − x2∥2 for all x1, x2 ∈ Rn. (3.4)

Moreover we define osL(F) to be the minimal (or infimum) constant which satisfies (3.4).

As was proved in [5, Theorem 27], if F,G : Rn → Rn are one-sided Lipschitz w.r.t. the

same WP, then osL(αF) = α osL(F), osL(F+ G) ≤ osL(F) + osL(G), and osL(F+ cId) =

osL(F) + c for all α ≥ 0, c ∈ R. Note that (i) the one-sided Lipschitz constant is upper

bounded by the Lipschitz constant, (ii) a Lipschitz continuous map is always one-sided

Lipschitz, and (iii) the one-sided Lipschitz constant may be negative. Moreover, if F is

locally Lipschitz continuous, we have an alternative characterization of osL(F).

Lemma 3.2.1 (osL(F) for locally Lipschitz continuous F, [100, Theorem 16]). Suppose

the map F : Rn → Rn is locally Lipschitz continuous. Then F is one-sided Lipschitz with

constant c ∈ R if and only if 4

µ(DF(x)) ≤ c for almost every x ∈ Rn. (3.5)

Definition 6 (Contractions and nonexpansive maps). Let T : Rn → Rn be Lipschitz

continuous w.r.t. ∥ · ∥. We say T is a contraction if Lip(T) < 1, and T is nonexpansive

if Lip(T) ≤ 1.

4Note that for locally Lipschitz continuous F, DF(x) exists for almost every x by Rademacher’s
theorem.
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Definition 7 (Picard iteration). Let T : Rn → Rn be a contraction w.r.t. a norm ∥ · ∥

with Lip(T) < 1. The Picard iteration applied to T with initial condition x0 defines the

sequence {xk}∞k=0 by

xk+1 = T(xk). (3.6)

By the Banach fixed-point theorem T has a unique fixed point, x∗, and the Picard

iteration applied to T satisfy ∥xk − x∗∥ ≤ Lip(T)k∥x0 − x∗∥, for any initial condition x0.

If T is nonexpansive with Fix(T) ̸= ∅, Picard iteration may fail to find a fixed point

of T. Such situations can be addressed by the following iteration and convergence result,

initially proved in [102] and with rate given in [103].

Definition 8 (Krasnosel’skii–Mann iteration). Let T : Rn → Rn be nonexpansive w.r.t.

a norm ∥ · ∥. The Krasnosel’skii–Mann iteration 5 applied to T with initial condition x0

and θ ∈ ]0, 1[ defines the sequence {xk}∞k=0 by

xk+1 = (1− θ)xk + θT(xk). (3.7)

Lemma 3.2.2 (Asymptotic regularity and convergence of Krasnosel’skii–Mann itera-

tion, [103, 102]). Let T : Rn → Rn be nonexpansive w.r.t. a norm ∥ · ∥ and consider the

Krasnosel’skii–Mann iteration as in (3.7). Suppose Fix(T) ̸= ∅. Then for any initial

condition x0,

∥xk − T(xk)∥ ≤ 2 infx∗∈Fix(T) ∥x0 − x∗∥√
kπθ(1− θ)

= O(1/
√
k). (3.8)

Moreover, the sequence of iterates, {xk}∞k=0, converges to a fixed point of T.

5The Krasnosel’skii–Mann iteration may be defined with step sizes θk ∈ ]0, 1[ which vary for each
iteration. In this document, we will only work with constant step sizes.
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3.3 Non-Euclidean monotone operators

3.3.1 Definitions and properties

Definition 9 (Non-Euclidean monotone mapping). A mapping F : Rn → Rn is strongly

monotone with monotonicity parameter c > 0 w.r.t. a norm ∥ · ∥ on Rn if there exists a

compatible WP J·, ·K and if for all x, y ∈ Rn,

− J−(F(x)− F(y)), x− yK ≥ c∥x− y∥2. (3.9)

If the inequality holds with c = 0, we say F is monotone w.r.t. ∥ · ∥.

In the language of Banach spaces, such a function F is called strongly accretive [94,

Definition 8.10]. Note that Definition 9 is equivalent to − osL(−F) ≥ c.

In the case of a Euclidean norm, the WP corresponds to the inner product and

Definition 9 corresponds to the usual definition of a monotone operator as in [77] and [4,

Definition 20.1].

By properties of osL, if F,G : Rn → Rn are both monotone w.r.t. the same norm (and

WP), then − osL(−F − G) ≥ − osL(−F) − osL(−G) and thus a sum of mappings which

are monotone w.r.t. the same norm are monotone. Additionally, if F is monotone with

monotonicity parameter c ≥ 0, then for any α ≥ 0, − osL(−Id − αF) = 1 − α osL(−F)

and thus Id+ αF is strongly monotone with monotonicity parameter 1 + αc.

Remark 3.3.1 (Connection with contracting vector fields). A mapping F : Rn → Rn is

strongly infinitesimally contracting with rate c > 0 w.r.t. a norm ∥ · ∥ on Rn provided

osL(F) ≤ −c [5]. If c = 0, we say F is weakly infinitesimally contracting w.r.t. ∥ · ∥.

Clearly F is strongly monotone if and only if −F is strongly infinitesimally contracting.

Vector fields which are strongly infinitesimally contracting w.r.t. a norm generate flows
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which are contracting with respect to the same norm. In the case of weakly infinitesimally

contracting vector fields, their flows are nonexpansive.

Lemma 3.3.2 (Monotonicity for locally Lipschitz continuous mappings). Let F : Rn →

Rn be locally Lipschitz continuous. F is (strongly) monotone with monotonicity parameter

c ≥ 0 w.r.t. a norm ∥ · ∥ if and only if −µ(−DF(x)) ≥ c for almost every x ∈ Rn.

Proof. Lemma 3.3.2 is a straightforward application of Lemma 3.2.1.

We can see the application of Lemma 3.3.2 more explicitly in the context of con-

tinuously differentiable monotone operators in Euclidean norms. To be specific, for an

operator F : Rn → Rn, let ∥ · ∥2 be the Euclidean norm with corresponding inner product

⟨⟨·, ·⟩⟩. Then, following [77], F is monotone with respect to ∥ · ∥2 if

⟨⟨F(x)− F(y), x− y⟩⟩ ≥ 0, for all x, y ∈ Rn.

If F is continuously differentiable, this condition is known to be equivalent to (see

e.g., [72]) DF(x) + DF(x)⊤ ⪰ 0, or equivalently −µ2(−DF(x)) ≥ 0 or 1
2
λmin(DF(x) +

DF(x)⊤) ≥ 0, where µ2(A) =
1
2
λmax(A+ A⊤) is the log norm corresponding to the norm

∥ · ∥2. This result coincides with what was demonstrated in Lemma 3.3.2.

Example 2. An affine function F(x) = Ax+ b is monotone if and only if −µ(−A) ≥ 0

and strongly monotone with parameter c if and only if −µ(−A) ≥ c. This condition

implies that the spectrum of A lies in the portion of the complex plane given by {z ∈

C | Re(z) ≥ c}.
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3.3.2 Resolvent, reflected resolvents, forward step operators,

and Lipschitz estimates

Monotone operator theory transforms the problem of finding a zero of a monotone op-

erator into finding a fixed point of a suitably defined operator. Monotone operator theory

on Hilbert spaces studies the resolvent and reflected resolvent, operators dependent on

the original operator, with fixed points corresponding to zeros of the original monotone

operator. In this subsection we study these same two operators and also the forward step

operator in the context of operators which are monotone w.r.t. a non-Euclidean norm.

In particular, we characterize the Lipschitz constants of these operators, first providing

Lipschitz upper bounds for arbitrary norms and then specializing to diagonally-weighted

ℓ1 and ℓ∞ norms.

Definition 10 (Resolvent and reflected resolvent). Let F : Rn → Rn be a monotone map-

ping w.r.t. some norm. The resolvent of F with parameter α > 0 denoted by JαF : Dom(JαF) →

Rn and defined by

JαF = (Id+ αF)−1. (3.10)

The reflected resolvent of F with parameter α > 0 is denoted by RαF : Dom(RαF) → Rn

and defined by

RαF = 2JαF − Id. (3.11)

Definition 11 (Forward step operator). Let F : Rn → Rn be a mapping and α ∈ R. The

forward step of F with parameter α > 0 is denoted by SαF : Rn → Rn and defined by

SαF = Id− αF. (3.12)

Note that for any α > 0, we have F(x) = 0n if and only if x = JαF(x) = RαF(x) =
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SαF(x), i.e., Zero(F) = Fix(JαF) = Fix(RαF) = Fix(SαF). Note that under the assumption

that F is monotone, both JαF and RαF are single-valued mappings.

We have deliberately not been specific with the domains of the resolvent and reflected

resolvent operators. As we will show in the following theorem, under mild assumptions

(continuity and monotonicity), both of their domains are all of Rn.

Theorem 3.3.1 (A non-Euclidean Minty-Browder theorem). Suppose F : Rn → Rn is

continuous and monotone. Then for every α > 0, Dom(JαF) = Dom(RαF) = Rn.

Proof. Note that Dom(JαF) = Rn provided that for every u ∈ Rn, there exists x ∈ Rn

such that (Id+ αF)(x) = u. To establish this fact, consider the differential equation

ẋ = −x− αF(x) + u =: G(x). (3.13)

Note that any equilibrium, x∗, of (3.13) satisfies (Id + αF)(x∗) = u. Thus it suffices to

show that the differential equation (3.13) has an equilibrium. First we note that for all

x, y ∈ Rn,

JG(x)−G(y), x− yK ≤ J−(x− y), x− yK + α J−(F(x)− F(y)), x− yK ≤ −∥x− y∥2.
(3.14)

Thus, we conclude that osL(G) ≤ −1. In line with Remark 3.3.1, we conclude that

G is strongly infinitesimally contracting which ensures uniqueness of solutions to (3.13)

(see [5, Theorem 31]). Let ϕ(t, x0) denote the flow of the dynamics (3.13) at time t ≥ 0

from initial condition x(0) = x0. Then by [5, Theorem 31], we conclude that

∥ϕ(t, x0)− ϕ(t, y0)∥ ≤ e−t∥x0 − y0∥

for all x0, y0 ∈ Rn and for all t ≥ 0. In other words, for a fixed t > 0, the map x 7→ ϕ(t, x)
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is a contraction. By the Banach fixed point theorem, for τ > 0, there exists unique x∗

such that x∗ = ϕ(τ, x∗). Then either x∗ is an equilibrium point of (3.13) or it is part

of a periodic orbit with period τ . If x∗ were part of a periodic orbit, then every other

point on the periodic orbit would be a fixed point of ϕ(τ, ·), contradicting the uniqueness

of the fixed point from the Banach fixed point theorem. Thus, we conclude that x∗ is

an equilibrium point of (3.13) and thus verifies (Id + αF)(x∗) = u. This proves that

Dom(JαF) = Rn. The proof for RαF is a consequence of Dom(JαF) = Rn.

We have the following corollary about inverses of strongly monotone mappings.

Corollary 3.3.3 (Lipschitz constants of inverses of strongly monotone operators). Sup-

pose F : Rn → Rn is continuous and strongly monotone with monotonicity parameter

c > 0. Then F−1 : Rn → Rn is a Lipschitz continuous mapping with Lipschitz constant

estimate Lip(F−1) ≤ 1/c.

Proof. To see this fact, note that

∥F(x)− F(y)∥∥x− y∥ ≥ − J−(F(x)− F(y)), x− yK ≥ c∥x− y∥2, (3.15)

where the left hand inequality is the Cauchy-Schwarz inequality for WPs. So if F(x) =

F(y), then necessarily x = y, which implies that F−1 is a single-valued mapping. The fact

that Dom(F−1) = Rn follows the same argument as in Theorem 3.3.1 instead studying the

differential equation ẋ = −F(x). Choosing u, v ∈ Rn and substituting x = F−1(u), y =

F−1(v) into (3.15), we conclude

∥u− v∥ ≥ c∥x− y∥ = c∥F−1(u)− F−1(v)∥, (3.16)

which shows that Lip(F−1) ≤ 1/c.
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For each of JαF,RαF and, SαF we have now established that each of their domains is

all of Rn and that fixed points of these operators correspond to zeros of F. In order to

compute zeros of F, we aim to provide estimates of the Lipschitz constants of JαF,RαF, and

SαF as a function of α and the norm and show when these maps are either contractions

or nonexpansive. The following lemmas characterize these Lipschitz estimates.

Lemma 3.3.4 (Lipschitz estimates of the forward step operator). Let F : Rn → Rn be

Lipschitz continuous w.r.t. the norm ∥ · ∥ with constant Lip(F) = ℓ.

(i) Suppose F is monotone w.r.t. ∥ · ∥ with monotonicity parameter c ≥ 0, then

Lip(SαF) ≤ e−αc + eαℓ − 1− αℓ, for all α > 0. (3.17)

(ii) Alternatively suppose ∥·∥ is a diagonally weighted ℓ1 or ℓ∞ norm and F is monotone

w.r.t. ∥ · ∥ with monotonicity parameter c ≥ 0, then

Lip(SαF) ≤ 1− αc ≤ 1, for all α ∈
(
0,

1

diagL(F)

]
, (3.18)

where diagL(F) := sup
x∈Rn\ΩF

max
i∈{1,...,n}

(DF(x))ii ≤ ℓ, where ΩF is the measure zero set

of points where F is not differentiable.

Proof. Regarding item (i), we recall the inequality [18, pp. 14], [38, Prop. 2.1]

∥eαA∥ ≤ eαµ(A), for all α ≥ 0, A ∈ Rn×n. (3.19)

We additionally note that since F is Lipschitz continuous, SαF is as well and SαF has

Lip(SαF) ≤ L if and only if ∥DSαF(x)∥ ≤ L for almost every x ∈ Rn. Also we have that

DSαF(x) = In − αDF(x) everywhere it exists and that DF(x) satisfies −µ(−DF(x)) ≥ c
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and ∥DF(x)∥ ≤ ℓ. In what follows, when we write DF(x), we mean for all x for which

the Jacobian exists.

To derive an upper bound on ∥In − αDF(x)∥, we define

S(x) :=
∞∑
i=2

(−α)iDF(x)i
i!

= e−αDF(x) − In + αDF(x)

and it is straightforward to see that ∥S(x)∥ ≤∑∞
i=2

αi∥DF(x)∥i
i!

≤ eαℓ − 1− αℓ. Moreover,

∥In − αDF(x)∥ ≤ ∥e−αDF(x)∥+ ∥S(x)∥ ≤ eαµ(−DF(x)) + eαℓ − 1− αℓ

≤ e−αc + eαℓ − 1− αℓ.

(3.20)

Since this bound holds for all x for which DSαF(x) exists, the result is proved.

Regarding item (ii), for every x ∈ Rn for which DF(x) exists,

∥In − αDF(x)∥∞,[η]−1 = max
i∈{1,...,n}

|1− α(DF(x))ii|+
n∑

j=1,j ̸=i

|−α(DF(x))ij|
ηj
ηi

(3.21)

= max
i∈{1,...,n}

1− α(DF(x))ii +
n∑

j=1,j ̸=i

|−α(DF(x))ij|
ηj
ηi

(3.22)

= 1 + αµ(−DF(x)) ≤ 1− αc, (3.23)

where (3.22) holds because 0 < α ≤ 1
diagL(F)

so that 1−α(DF(x))ii ≥ 0 for all x ∈ Rn, i ∈

{1, . . . , n} and (3.23) is due to the formula for µ∞,[η]−1 . The proof for µ1,[η] is analogous,

replacing row sums by column sums, and is omitted.

Remark 3.3.5. If c > 0, then for small enough α > 0, one can make the upper bound

on Lip(SαF) in (3.17) less than unity. In particular, one can show that minimizing the

upper bound (3.17) yields the optimal step size αopt =
1
ℓ
ln(s(γ)) and contraction factor

s(γ) + s(γ)−γ − 1 − ln(s(γ)), where γ = c/ℓ ≤ 1 and s(γ) is the unique solution to the
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transcendental equation s− 1− γs−γ = 0.

Remark 3.3.6. Note that for general norms, if F is monotone, but not strongly mono-

tone, then SαF need not be nonexpansive for any α > 0. Indeed, consider F(x) = ( 0 1
−1 0 )x,

which is monotone w.r.t. the ℓ2 norm, but SαF is not nonexpansive for any α > 0. On the

other hand, Lemma 3.3.4((ii)) implies that if F is monotone w.r.t. a diagonally weighted

ℓ1 or ℓ∞ norm, then SαF is nonexpansive for sufficiently small α.

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

α

U
p
p
er

b
ou

n
d
on

L
ip
(S

α
F
)

General norm (3.17)
ℓ2 norm [72]
ℓ1/ℓ∞ norm (3.18)
General norm [98]

Figure 3.1: Plots of upper bounds of Lip(SαF) with respect to different norms. We fix
parameters c = 1, ℓ = 2 and vary the choice of norm. The solid red curve corresponds
to the Lipschitz estimate (3.17) for arbitrary norms, the densely dashed green curve
corresponds to the estimate Lip(SαF) ≤

√
1− 2αc+ α2ℓ2 from [72, pp. 16] for the ℓ2

norm, the loosely dashed blue curve corresponds to the estimate (3.18) for diagonal-
ly-weighted ℓ1/ℓ∞ norms which is valid on the interval ]0, 1

diagL(F) ]. Finally, the dotted

black curve corresponds to the estimate Lip(SαF) ≤
(
1 + αc− α2ℓ2

1−αℓ

)−1
previously es-

tablished in [98, Theorem 1]. We see that the estimate (3.17) is a tighter estimate
than the estimate from [98] and that Lipschitz upper bounds are least conservative in
the case of diagonally-weighted ℓ1/ℓ∞ norms.

We plot the upper bounds on the estimates of Lip(SαF) as a function of α and choice
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of norm for fixed parameters c and ℓ in Figure 3.1.

Lemma 3.3.7 (Lipschitz constant of the resolvent operator). Suppose F : Rn → Rn is

continuous and monotone with monotonicity parameter c ≥ 0. Then,

Lip(JαF) ≤
1

1 + αc
, for all α > 0. (3.24)

Proof. We observe that Id + αF is strongly monotone with parameter 1 + αc. Then by

Corollary 3.3.3, the result holds.

Lemma 3.3.8 (Lipschitz constant of the reflected resolvent). Suppose F : Rn → Rn is

Lipschitz continuous with constant ℓ w.r.t. a norm ∥ · ∥.

(i) Suppose F is monotone w.r.t. ∥ · ∥ with monotonicity parameter c ≥ 0. Then

Lip(RαF) ≤
e−αc + eαℓ − 1− αℓ

1 + αc
, for all α > 0. (3.25)

(ii) Alternatively suppose ∥ · ∥ is a diagonally weighted ℓ1 or ℓ∞ norm. Moreover,

suppose F is monotone w.r.t. ∥ · ∥ with monotonicity parameter c ≥ 0. Then,

Lip(RαF) ≤
1− αc

1 + αc
≤ 1, for all α ∈

(
0,

1

diagL(F)

]
. (3.26)

Proof. Recall from [72, pp. 21] that since F is monotone and continuous, we have that

RαF = SαF ◦ JαF. Both results then follow from Lip(RαF) ≤ Lip(SαF) Lip(JαF) and the

bounds on Lip(SαF) from Lemma 3.3.4 and on Lip(JαF) from Lemma 3.3.7.

Lemma 3.3.8 stands in striking contrast with results on monotone operators in Hilbert

spaces which says that for any maximally monotone operator,6 F, the reflected resolvent

6Recall that in monotone operator theory on Hilbert spaces, a set-valued mapping F : Rn → 2R
n

is
maximally monotone if it is monotone and there does not exist another monotone operator, G, whose
graph properly contains the graph of F. See [4, Sec. 20.2] for more details.
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of F with parameter α > 0 is nonexpansive for every α > 0. Indeed, in the non-Euclidean

case, this property cannot be recovered as is demonstrated in the following example.

Example 3. Consider the linear mapping F(x) = Ax = ( 2 −2
1 1 )x. F is monotone w.r.t.

the ℓ∞ norm since −µ∞(−A) = −µ∞
( −2 2
−1 −1

)
= 0. For α = 2, we compute

JαF(x) =

 3/23 4/23

−2/23 5/23

x, RαF(x) =

−17/23 8/23

−4/23 −13/23

x.

Thus, Lip(JαF) = 7/23 and Lip(RαF) = 25/23. In other words, for α = 2, JαF is a

contraction and RαF is not nonexpansive.

Despite this key divergence from the classical theory, we will still be able to prove

convergence of iterative algorithms involving the reflected resolvent under suitable as-

sumptions on the parameter α > 0.

3.4 Finding zeros of non-Euclidean monotone oper-

ators

For a mapping F : Rn → Rn which is continuous and monotone, consider the problem

of finding an x ∈ Rn that satisfies

F(x) = 0n. (3.27)

Without further assumptions on F, this problem may have no solutions or nonunique

solutions. First we provide a preliminary sufficient condition for existence and uniqueness

of a solution.

Lemma 3.4.1 (Uniqueness of zeros of strongly monotone maps). Suppose F : Rn → Rn

is continuous and strongly monotone. Then Zero(F) is a singleton.
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Proof. We have that Zero(F) = Fix(JαF) for α > 0. By Lemma 3.3.7, we have that

Lip(JαF) ≤ 1/(1 + αc) < 1, where c > 0 is the monotonicity parameter of F. Then

by the Banach fixed point theorem, JαF has a unique fixed point and thus Zero(F) is a

singleton.

Alternatively, if F is continuous and monotone, then we study fixed points of the

nonexpansive map JαF, which may or may not exist and may or may not be unique. In

what follows, we will study the case where it is known a priori that zeros of F exist but

need not be unique.

We show that the most known algorithms for finding zeros of monotone operators on

Hilbert spaces (see, e.g., [72]) can be generalized to non-Euclidean monotone operators

using our framework and, furthermore, explicitly estimate the convergence rate of these

methods.

3.4.1 The forward step method

Algorithm 1 (Forward step method). The forward step method corresponds to the fixed

point iteration

xk+1 = SαF(x
k) = xk − αF(xk). (3.28)

Theorem 3.4.1 (Convergence guarantees for the forward step method). Let F : Rn → Rn

is Lipschitz continuous with constant ℓ w.r.t. a norm ∥ · ∥ and let x0 ∈ Rn be arbitrary.

(i) Suppose F is strongly monotone w.r.t. ∥·∥ with monotonicity parameter c > 0. Then

the iteration (3.28) converges to the unique zero, x∗, of F for every α ∈ (0, α∗).

Moreover, for every k ∈ Z≥0,

∥xk+1 − x∗∥ ≤ (e−αc + eαℓ − 1− αℓ)∥xk − x∗∥,
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where α∗ is the unique positive value of α that satisfies e−α∗c + eα
∗ℓ = 2 + α∗ℓ.

(ii) Alternatively suppose ∥ · ∥ is a diagonally-weighted ℓ1 or ℓ∞ norm and F is strongly

monotone w.r.t. ∥ · ∥ with monotonicity parameter c > 0. Then the iteration (3.28)

converges to the unique zero, x∗, of F for every α ∈ (0, 1
diagL(F)

]. Moreover, for every

k ∈ Z≥0,

∥xk+1 − x∗∥ ≤ (1− αc)∥xk − x∗∥,

with the convergence rate optimized at α = 1/ diagL(F).

(iii) Alternatively suppose ∥·∥ is a diagonally weighted ℓ1 or ℓ∞ norm and F is monotone

w.r.t. ∥ · ∥. Then Zero(F) ̸= ∅ implies the iteration (3.28) converges to an element

of Zero(F) for every α ∈ ]0, 1
diagL(F)

[.

Proof. Regarding statement (i), from Lemma 3.3.4(i), we have that Lip(SαF) ≤ e−αc +

eαℓ − 1 − αℓ. It is straightforward to compute that at α = α∗, Lip(SαF) ≤ 1 and for

α ∈ (0, α∗) we have that Lip(SαF) < 1. Thus, SαF is a contraction and fixed points of SαF

correspond to zeros of F. Then by the Banach fixed point theorem, the result follows.

Regarding statement (ii), Lemma 3.3.4(ii) implies that Lip(SαF) = 1− αc < 1 for all

α ∈ (0, 1/ diagL(F)). The result is then a consequence of the Banach fixed point theorem.

Regarding statement (iii), since F is monotone w.r.t. a diagonally weighted ℓ1 or ℓ∞

norm, SαF is nonexpansive for α ∈ (0, 1/ diagL(F)] by Lemma 3.3.4(ii). Moreover, for

every α ∈ (0, 1/ diagL(F)[, there exists θ ∈ (0, 1) such that SαF = (1 − θ)Id + θSα̃F,

for some α̃ ∈ (0, 1/ diagL(F)]. Therefore the iteration (3.28) is the Krasnosel’skii–Mann

iteration of the nonexpansive operator Sα̃F and Lemma 3.2.2 implies the result.

Note that Theorem 3.4.1(iii) is a direct consequence of the fact that the forward

step operator is nonexpansive for suitable α > 0 when the mapping is monotone w.r.t.

a diagonally-weighted ℓ1 or ℓ∞ norm, a fact which need not hold when the mapping
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is monotone w.r.t. a different norm, e.g., a Hilbert one. See the relevant discussion in

Remark 3.3.6 for an example of a mapping, F, which is monotone with respect to the ℓ2

norm but SαF is not nonexpansive for any α > 0.

3.4.2 The proximal point method

Algorithm 2 (Proximal point method). The proximal point method corresponds to the

fixed point iteration

xk+1 = JαF(x
k) = (Id+ αF)−1(xk). (3.29)

Theorem 3.4.2 (Convergence guarantees for the proximal point method). Suppose

F : Rn → Rn is continuous and let x0 ∈ Rn be arbitrary.

(i) Suppose F is strongly monotone w.r.t. a norm ∥ · ∥ with monotonicity parameter

c > 0. Then the iteration (3.29) converges to the unique zero, x∗, of F for every

α ∈ (0,∞). Moreover, for every k ∈ Z≥0, the iteration satisfies

∥xk+1 − x∗∥ ≤ 1

1 + αc
∥xk − x∗∥.

(ii) Alternatively suppose F is monotone and globally Lipschitz continuous w.r.t. a di-

agonally weighted ℓ1 or ℓ∞ norm ∥ · ∥ and diagL(F) ̸= 0. Then if Zero(F) ̸= ∅, the

iteration (3.29) converges to an element of Zero(F) for every α ∈ (0,∞).

Proof. Regarding statement (i), Lemma 3.3.7 provides the Lipschitz estimate Lip(JαF) ≤
1

1+αc
< 1 for all α > 0. Thus JαF is a contraction and since fixed points of JαF correspond

to zeros of F, the Banach fixed point theorem implies the result.

Regarding statement (ii), we will demonstrate that the iteration (3.29) is a Kras-

nosel’skii–Mann iteration of a suitably-defined nonexpansive mapping. To this end, let
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θ ∈ (0, 1) be arbitrary and consider the auxiliary mapping R
θ

αF : Rn → Rn given by

R
θ

αF := JαF

θ
− 1−θ

θ
Id. Then it is straightforward to compute

R
θ

αF =
(Id+ αF)−1

θ
− 1− θ

θ
(Id+ αF) ◦ (Id+ αF)−1

=
( Id
θ
− 1− θ

θ
(Id+ αF)

)
◦ (Id+ αF)−1 =

(
Id− (1− θ)α

θ
F
)
◦ JαF = S 1−θ

θ
αF ◦ JαF.

Moreover, JαF is nonexpansive by Lemma 3.3.7, and by Lemma 3.3.4(ii), Lip(S 1−θ
θ

αF) ≤ 1,

for all α ∈ (0, 1−θ
θ diagL(F)

]. We conclude that Lip(R
θ

αF) ≤ Lip(S 1−θ
θ

αF) Lip(JαF) ≤ 1 for α ∈

(0, 1−θ
θ diagL(F)

] which implies that R
θ

F is nonexpansive for all α in this range.

Let α > 0 be arbitrary. Then for any7 θ ≤ 1
1+αdiagL(F)

∈ (0, 1), we have that JαF =

(1−θ)Id+θRθ

αF, and R
θ

F is nonexpansive since α ∈ (0, 1−θ
θ diagL(F)

]. Thus, the iteration (3.29)

is the Krasnosel’skii–Mann iteration for R
θ

αF and the result follows from Lemma 3.2.2.

Remark 3.4.2. Theorem 3.4.2(ii) is an analog of the classical result in monotone op-

erator theory on Hilbert spaces which states that the resolvent of a maximally monotone

operator is firmly nonexpansive [77] and [4, Prop. 23.8]. This firm nonexpansiveness is

a consequence of the fact that the reflected resolvent of a maximally monotone operator

with respect to a Euclidean norm is always nonexpansive and JαF = 1
2
Id+ 1

2
RαF. Note that

this property need not hold when F is monotone with respect to a non-Euclidean norm

but we are able to show that in the case of diagonally-weighted ℓ1/ℓ∞ norms, a similar

result holds.

7Note that 1
1+α diagL(F) ∈ (0, 1) holds under the assumption diagL(F) ̸= 0 since diagL(F) ≥ 0 for any

monotone F.
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3.4.3 The Cayley method

Algorithm 3 (Cayley method). The Cayley method corresponds to the iteration

xk+1 = RαF(x
k) = 2(Id+ αF)−1(xk)− xk. (3.30)

Theorem 3.4.3 (Convergence guarantees for the Cayley method). Suppose F : Rn → Rn

is Lipschitz continuous with constant ℓ w.r.t. a norm ∥ · ∥ and let x0 ∈ Rn be arbitrary.

(i) Suppose F is strongly monotone w.r.t. ∥ · ∥ with monotonicity parameter c > 0.

Then the iteration (3.30) converges to the unique zero, x∗, of F for sufficiently

small α > 0. Moreover, for every k ∈ Z≥0, the iteration satisfies

∥xk+1 − x∗∥ ≤ e−αc + eαℓ − 1− αℓ

1 + αc
∥xk − x∗∥.

(ii) Alternatively suppose ∥ · ∥ is a diagonally weighted ℓ1 or ℓ∞ norm and F is strongly

monotone w.r.t. ∥ · ∥ with monotonicity parameter c > 0. Then the iteration (3.30)

converges to the unique zero, x∗, of F for every α ∈ (0, 1
diagL(F)

]. Moreover, for every

k ∈ Z≥0, the iteration satisfies

∥xk+1 − x∗∥ ≤ 1− αc

1 + αc
∥xk − x∗∥,

with the convergence rate being optimized at α = 1/ diagL(F).

(iii) Alternatively suppose ∥·∥ is a diagonally weighted ℓ1 or ℓ∞ norm and F is monotone

w.r.t. ∥ · ∥. Then if Zero(F) ̸= ∅, the Krasnosel’skii–Mann iteration with θ = 1/2

xk+1 =
1

2
xk +

1

2
RαF(x

k)
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Algorithm, Iterated map
F strongly monotone and globally Lipschitz continuous

ℓ2 General norm Diagonally weighted ℓ1 or ℓ∞
α range Optimal Lip α range Optimal Lip α range Optimal Lip

Forward step, SαF

]
0,

2c

ℓ2

[
1− 1

2κ2
+O

( 1

κ3

)
]0, α∗[ 1− 1

2κ2
+O

( 1

κ3

) ]
0,

1

diagL(F)

]
1− 1

κ∞

Proximal point, JαF ]0,∞[ A.S. ]0,∞[ A.S. ]0,∞[ A.S.

Cayley, RαF ]0,∞[ 1− 1

2κ
+O

( 1

κ2

)
]0, α∗[ 1− 2

κ2
+O

( 1

κ3

) ]
0,

1

diagL(F)

]
1− 2

κ∞
+O

( 1

κ2∞

)
Table 3.1: Table of step size ranges and Lipschitz constants for three algo-
rithms for finding zeros of monotone operators with respect to arbitrary norms.
For F strongly monotone and Lipschitz continuous, let c be its monotonicity
parameter (with respect to the appropriate norm), ℓ its appropriate Lipschitz
constant, and diagL(F) := supx∈Rn\ΩF

maxi∈{1,...,n}(DF(x))ii ≤ ℓ. Additionally,
κ := ℓ/c ≥ 1, κ∞ := diagL(F)/c ∈ [1, κ], and α∗ is the unique positive solution
to e−α∗c + eα

∗ℓ = 2+α∗ℓ. A.S. means the Lipschitz constant can be made arbitrarily
small. We do not assume that the strongly monotone F is the gradient of a strongly
convex function.

correspond to the proximal point iteration (3.29), which is guaranteed to converge

to an element of Zero(F) for every α ∈ (0,∞).

Proof. Regarding statement (i), from Lemma 3.3.8(i), we have that Lip(RαF) ≤ (e−αc +

eαℓ − 1− αℓ)/(1 + αc) which is less than unity for small enough α > 0. Thus, for small

enough α, RαF is a contraction and fixed points of RαF correspond to zeros of F. Thus,

by the Banach fixed point theorem, the result follows.

Regarding statement (ii), Lemma 3.3.8(ii) implies that Lip(RαF) ≤ (1−αc)/(1+αc) <

1 for α ∈ (0, 1/ diagL(F)]. The result is then a consequence of the Banach fixed point

theorem.

Statement (iii) holds since 1
2
Id + 1

2
(2JαF − Id) = JαF, and convergence follows by

Theorem 3.4.2(ii) since Zero(F) ̸= ∅.

Table 3.1 summarizes and compares the range of step sizes and Lipschitz estimates as

provided by the classical monotone operator theory for the ℓ2 norm [72, pp. 16 and 20]

and by Theorems 3.4.1, 3.4.2, and 3.4.3 for general and diagonally-weighted ℓ1/ℓ∞ norms.
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3.5 Finding zeros of a sum of non-Euclidean mono-

tone operators

In many instances, one may wish to execute the proximal point method, Algorithm 2,

to compute a zero of a continuous monotone mapping N : Rn → Rn. However, the

implementation of the iteration (3.29) may be hindered by the difficulty in evaluating

JαN. To remedy this issue, it is often assumed that N can be expressed as the sum of

two monotone mappings F and G where JαG may be easy to compute and F satisfies

some regularity condition. Alternatively, in some situations, decomposing N = F + G

and finding x ∈ Rn such that (F+ G)(x) = 0n provides additional flexibility in choice of

algorithm and may improve convergence rates.

Motivated by the above, we consider the problem of finding an x ∈ Rn such that

(F+ G)(x) = 0n, (3.31)

where F,G : Rn → Rn are continuous and monotone w.r.t. a diagonally weighted ℓ1 or

ℓ∞ norm.8 In particular, we focus on the forward-backward, Peaceman-Rachford, and

Douglas-Rachford splitting algorithms. For some extensions of the theory to set-valued

mappings, we refer to Section 3.6.1.

3.5.1 Forward-backward splitting

Algorithm 4 (Forward-backward splitting). Assume α > 0. Then in [72, Section 7.1]

it is shown that

(F+ G)(x) = 0n ⇐⇒ x = (JαG ◦ SαF)(x).

8The results that follow can also be generalized to arbitrary norms using the Lipschitz estimates
derived for JαF,RαF, and SαF in Section 3.3.2.
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The forward-backward splitting method corresponds to the fixed point iteration

xk+1 = JαG(x
k − αF(xk)). (3.32)

If both F and G are monotone, define the averaged forward-backward splitting iteration

xk+1 =
1

2
xk +

1

2
JαG(x

k − αF(xk)). (3.33)

Theorem 3.5.1 (Convergence guarantees for forward-backward splitting). Let F : Rn →

Rn be Lipschitz continuous w.r.t. a diagonally weighted ℓ1 or ℓ∞ norm ∥ · ∥, G : Rn → Rn

be continuous and monotone w.r.t. the same norm, and let x0 ∈ Rn be arbitrary.

(i) Suppose F is strongly monotone w.r.t. ∥ · ∥ with monotonicity parameter c > 0,

then the iteration (3.32) converges to the unique zero, x∗, of F + G for every α ∈

(0, 1
diagL(F)

]. Moreover, for every k ∈ Z≥0, the iteration satisfies

∥xk+1 − x∗∥ ≤ (1− αc)∥xk − x∗∥,

with the convergence rate being optimized at α = 1/ diagL(F).

(ii) If F is monotone w.r.t. ∥·∥ and Zero(F+G) ̸= ∅, then the iteration (3.33) converges

to an element of Zero(F+ G) for every α ∈ (0, 1
diagL(F)

].

Proof. Regarding statement (i), Lemmas 3.3.4(ii) and 3.3.7 together imply that Lip(JαG ◦

SαF) ≤ Lip(JαG) Lip(SαF) ≤ 1 − αc < 1 for all α ∈ ]0, 1/ diagL(F)]. Then since Fix(JαF ◦

SαF) = Zero(F+ G), the result is then a consequence of the Banach fixed point theorem.

Statement (ii) follows from Lip(JαG ◦ SαF) ≤ 1 and that the iteration (3.33) is the

Krasnosel’skii–Mann iteration of the nonexpansive mapping JαG ◦ SαF with θ = 1/2.
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Remark 3.5.1 (Comparison with convergence criteria). The following comparisons are

in order.

• Compared to the Hilbert case, in the non-Euclidean setting, if both F and G are

monotone, then iteration (3.33) must be applied to compute a zero of F+G. In the

Hilbert case, iteration (3.32) may be used instead since the composition of averaged

operators is averaged. For non-Hilbert norms, the composition of two averaged

operators need not be averaged.

• In monotone operator theory on Hilbert spaces, Lipschitz continuity of F is not

sufficient for the convergence of the iteration (3.32). Instead, a standard sufficient

condition for convergence is cocoercivity of F, see [104] and [4, Theorem 26.14]. In

the case of diagonally-weighted ℓ1/ℓ∞ norms, Lipschitz continuity is sufficient for

convergence. This fact is due to the nonexpansiveness of SαF for ℓ1/ℓ∞ monotone

F and small enough α > 0 as discussed in Remark 3.3.6.

3.5.2 Peaceman-Rachford and Douglas-Rachford splitting

Algorithm 5 (Peaceman-Rachford and Douglas-Rachford splitting). Let α > 0. Then

in [72, Section 7.3], it is shown that

(F+ G)(x) = 0n ⇐⇒ (RαF ◦ RαG)(z) = z and x = JαG(z). (3.34)

The Peaceman-Rachford splitting method corresponds to the fixed point iteration

xk+1 = JαG(z
k),

zk+1 = zk + 2JαF(2x
k+1 − zk)− 2xk+1.

(3.35)
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If both F and G are monotone, the term RαF ◦ RαG in (3.34) is averaged to yield

(F+ G)(x) = 0n ⇐⇒
(1
2
Id+

1

2
RαF ◦ RαG

)
(z) = z and x = JαG(z). (3.36)

The fixed point iteration corresponding to (3.36) is called the Douglas-Rachford splitting

method and is given by

xk+1 = JαG(z
k),

zk+1 = zk + JαF(2x
k+1 − zk)− xk+1.

(3.37)

Theorem 3.5.2 (Convergence guarantees for Peaceman-Rachford and Douglas-Rach-

ford splitting). Let both F : Rn → Rn and G : Rn → Rn be Lipschitz continuous w.r.t. a

diagonally weighted ℓ1 or ℓ∞ norm ∥ · ∥, let G be monotone w.r.t. the same norm, and let

x0 ∈ Rn.

(i) Suppose F is strongly monotone w.r.t. ∥ · ∥ with monotonicity parameter c > 0.

Then the sequence of {xk}∞k=0 generated by the iteration (3.35) converges to the

unique zero, x∗, of F + G for every α ∈
(
0,min

{
1

diagL(F)
, 1
diagL(G)

}]
. Moreover, for

every k ∈ Z≥0, the iteration satisfies

∥xk+1 − x∗∥ ≤ 1− αc

1 + αc
∥xk − x∗∥,

with the convergence rate being optimized at α = min
{

1
diagL(F)

, 1
diagL(G)

}
.

(ii) Alternatively suppose F is monotone w.r.t. ∥ · ∥ and Zero(F + G) ̸= ∅. Then the

sequence of {xk}∞k=0 generated by the iteration (3.37) converges to an element of

Zero(F+ G) for every α ∈
(
0,min

{
1

diagL(F)
, 1
diagL(G)

}]
.
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Proof. Regarding statement (i), by Lemma 3.3.8(ii), we have that

Lip(RαF ◦ RαG) ≤ Lip(RαF) Lip(RαG) ≤
1− αc

1 + αc
< 1

for α ∈ (0,min{1/ diagL(F), 1/ diagL(G)}]. Then since Lip(JαG) is nonexpansive, the

Banach fixed point theorem implies the result.

Statement (ii) holds because Lemma 3.3.8(ii) implies Lip(RαF ◦ RαG) ≤ 1. Then the

iteration (3.37) converges because of Lemma 3.2.2.

Compared to classical criteria for the convergence of the Douglas-Rachford iteration,

Theorem 3.5.2 requires Lipschitz continuity of F and G in order to utilize the Lipschitz

estimates for the reflected resolvents RαF and RαG. Moreover, the parameter α > 0 must

be chosen small enough in the non-Euclidean setting whereas convergence is guaranteed

for any choice of α in the Hilbert case. This is because the reflected resolvent is only

nonexpansive for a certain range of α when the norm is not a Hilbert one, see Example 3.

3.6 Set-valued inclusions and an application to re-

current neural networks

3.6.1 Set-valued inclusions and non-Euclidean properties of prox-

imal operators

In many instances one may wish to solve an inclusion problem of the form

Find x ∈ Rn such that 0n ∈ (F+ G)(x), (3.38)
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where F : Rn → Rn is a single-valued continuous monotone mapping but G : Rn → 2R
n
is

a set-valued mapping. In monotone operator theory on Hilbert spaces, leveraging the fact

that JαG is single-valued and nonexpansive for every α > 0 when G is maximally mono-

tone, algorithms such as the forward-backward splitting and Douglas-Rachford splitting

may be used to solve (6.4) under suitable assumptions on F.

In this section we aim to prove similar results in the non-Euclidean case. We will

specialize to the case that G is the subdifferential of a separable, proper lower semicon-

tinuous (l.s.c.), convex function. To start we must recall the proximal operator of a l.s.c.

convex function.

Definition 12 (Proximal operator, [105] and [4, Def. 12.23]). Let g : Rn → R be a proper

l.s.c. convex function. The proximal operator of g evaluated at x ∈ Rn is the map

proxg : Rn → Rn defined by

proxg(x) = argmin
z∈Rn

1

2
∥x− z∥22 + g(z). (3.39)

Since g : Rn → R is proper, l.s.c., and convex, we can see that for α > 0 and fixed

x ∈ Rn, the map z 7→ 1
2
∥x − z∥22 + αg(z) is strongly convex and thus has a unique

minimizer, so for each x ∈ Rn, proxαg(x) is single-valued. Moreover, we have the following

connection between proximal operators and resolvents of subdifferentials.

Proposition 3.6.1 ([106] and [4, Example 23.3]). Suppose g : Rn → R is proper, l.s.c.,

and convex. Then for every α > 0, Jα∂g(x) = proxαg(x).

In the case of scalar functions, one can exactly capture the set of functions which are

proximal operators of some proper l.s.c. convex functions.

Proposition 3.6.2 ([4, Proposition 24.31]). Let ϕ : R → R. Then ϕ is the proximal

operator of a proper l.s.c. convex function g : R → R, i.e., ϕ = proxg if and only if ϕ
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satisfies

0 ≤ ϕ(x)− ϕ(y)

x− y
≤ 1, for all x, y ∈ R, x ̸= y. (3.40)

A list of examples of scalar functions satisfying (3.40) and their corresponding proper

l.s.c. convex function is provided in [107, Table 1].

To prove non-Euclidean properties of proximal operators, we will leverage a well-

known property, which we highlight in the following proposition.

Proposition 3.6.3 (Proximal operator of separable convex functions, [108, Section 2.1]).

For i ∈ {1, . . . , n}, let gi : R → R, be proper, l.s.c., and convex. Define g : Rn → R by

g(x) =
∑n

i=1 gi(xi). Then g is proper, l.s.c., and convex and for all α > 0,

proxαg(x) = (proxαg1(x1), . . . , proxαgn(xn)) ∈ Rn.

If g satisfies g(x) =
∑n

i=1 gi(xi) with each gi proper, l.s.c., and convex, we call g separable.

In the following novel proposition, we showcase that when g is separable, proxαg and

2proxαg − Id are nonexpansive w.r.t. non-Euclidean norms.

Proposition 3.6.4 (Nonexpansiveness of proximal operators of separable convex maps).

For i ∈ {1, . . . , n}, let each gi : R → R be proper, l.s.c., and convex. Define g : Rn → R

by g(x) =
∑n

i=1 gi(xi). For every α > 0 and for any η ∈ Rn
>0, both Jα∂g = proxαg and

Rα∂g = 2proxαg − Id are nonexpansive w.r.t. ∥ · ∥∞,[η]−1.9

Proof. By Proposition 3.6.3 we have proxαg(x) = (proxαg1(x1), . . . , proxαgn(xn)). More-

over, each proxαgi is nonexpansive and monotone by Proposition 3.6.2 and thus satisfies

0 ≤ (proxαgi(xi)− proxαgi(yi))(xi − yi) ≤ (xi − yi)
2, for all xi, yi ∈ R. (3.41)

9More generally, proxαg and 2proxαg − Id are nonexpansive with respect to any monotonic norm.
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We then conclude

∥proxαg(x)− proxαg(y)∥∞,[η]−1 = max
i∈{1,...,n}

1

ηi
|proxαgi(xi)− proxαgi(yi)|

≤ max
i∈{1,...,n}

1

ηi
|xi − yi| = ∥x− y∥∞,[η]−1 .

Regarding Rα∂g, we note that (3.41) implies for all xi, yi ∈ R

−(xi − yi)
2 ≤ ((2proxαgi(xi)− xi)− (2proxαgi(yi)− yi))(xi − yi) ≤ (xi − yi)

2,

=⇒ |(2proxαgi(xi)− xi)− (2proxαgi(yi)− yi)| ≤ |xi − yi|.

Following the same reasoning as for proxαg, we conclude that 2proxαg−Id is nonexpansive

w.r.t. ∥ · ∥∞,[η]−1 .

We recall from monotone operator theory on Hilbert spaces that if F : Rn → Rn

is continuous and G : Rn → 2R
n
satisfies Dom(JαG) = Rn and JαG(x) is single-valued

for all x ∈ Rn, α > 0, then the following equivalences hold: (i) 0n ∈ (F + G)(x), (ii)

x = (JαG◦SαF)(x), and (iii) z = (RαF◦RαG)(z) and x = JαG(z) [72, pp. 25 and 28]. In other

words, even if G is a set-valued mapping, forward-backward and Peaceman-Rachford

splitting methods may be applied to compute zeros of the inclusion problem (6.4).

When F : Rn → Rn in (6.4) is Lipschitz continuous and strongly monotone w.r.t.

∥ · ∥∞,[η]−1 with monotonicity parameter c > 0 and G = ∂g for a separable proper,

l.s.c., convex mapping g : Rn → R, by Proposition 3.6.4, the composition proxαg ◦ SαF

is a contraction w.r.t. ∥ · ∥∞,[η]−1 for small enough α > 0. Therefore, the forward-

backward splitting method, Algorithm 4, may be applied to find a zero of the splitting

problem (6.4). Analogously, for small enough α > 0, RαF ◦ RαG is a contraction w.r.t.

∥ · ∥∞,[η]−1 and Peaceman-Rachford splitting, Algorithm 5, may be applied to find a zero

of the problem (6.4). In the following section, we present an application of the above
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theory to recurrent neural networks.

3.6.2 Iterations for recurrent neural network equilibrium com-

putation

Consider the continuous-time recurrent neural network

ẋ = −x+ Φ(Ax+Bu+ b) =: F (x, u), (3.42)

where x ∈ Rn, u ∈ Rm, A ∈ Rn×n, B ∈ Rn×m, b ∈ Rn, and Φ: Rn → Rn is a separable

activation function, i.e., it acts entry-wise in the sense that Φ(x) = (ϕ(x1), . . . , ϕ(xn))
⊤.

In this section we consider activation functions ϕ : R → R satisfying slope bounds of the

form

d1 = inf
x,y∈R,x ̸=y

ϕ(x)− ϕ(y)

x− y
≥ 0, d2 = sup

x,y∈R,x ̸=y

ϕ(x)− ϕ(y)

x− y
≤ 1. (3.43)

Most standard activation functions used in machine learning satisfy these bounds.

In [100, Theorem 23], it was shown that a sufficient condition for the strong infinitesimal

contractivity of the map x 7→ F (x, u) is the existence of weights η ∈ Rn
>0 such that

µ∞,[η]−1(A) < 1; if this condition holds, the recurrent neural network (3.42) is strongly

infinitesimally contracting w.r.t. ∥ · ∥∞,[η]−1 with rate 1−max{d1γ, d2γ}, where we define

γ = µ∞,[η]−1(A) < 1.

Suppose that, for fixed u, we are interested in efficiently computing the unique equi-

librium point x∗u of F (x, u). Note that equilibrium points x∗u satisfy x
∗
u = Φ(Ax∗u+Bu+b)

which corresponds to an implicit neural network (INN), which have recently gained sig-

nificant attention in the machine learning community [109, 66, 110]. In this regard,

computing equilibrium points of (3.42) corresponds to computing the forward pass of an
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INN.

Since the map x 7→ F (x, u) is strongly infinitesimally contracting w.r.t. ∥·∥∞,[η]−1 , the

map x 7→ −F (x, u) is strongly monotone with monotonicity parameter 1−max{d1γ, d2γ}

(see Remark 3.3.1). As a consequence, applying the forward step method, Algorithm 1,

to compute x∗u yields the iteration

xk+1 = (1− α)xk + αΦ(Axk +Bu+ b), (3.44)

which is the iteration proposed in [98]. This iteration is guaranteed to converge for every

α ∈ (0, 1
1−mini∈{1,...,n} min{d1·(A)ii,d2·(A)ii} ] with contraction factor 1 − α(1 −max{d1γ, d2γ})

by Theorem 3.4.1(ii).

However, rather than viewing finding an equilibrium of (3.42) as finding a zero of a

non-Euclidean monotone operator, it is also possible to view it as a monotone inclusion

problem of the form (6.4).

Proposition 3.6.5 ([66, Theorem 1]). Suppose ϕ satisfies the bounds (3.43). Then

finding an equilibrium point x∗u of (3.42) is equivalent to the (set-valued) operator splitting

problem 0n ∈ (F+ G)(x∗u), with

F(z) = (In − A)z − (Bu+ b), G(z) = ∂g(z), (3.45)

where we denote g(z) =
∑n

i=1 f(zi) and f : R → R is proper, l.s.c., convex, and satisfies

ϕ = proxf .

Proof. By Proposition 3.6.2, since ϕ satisfies the bounds (3.43), there exists a proper,

l.s.c., convex f with ϕ = proxf . The remainder of the proof is equivalent to that in [66,

Thm 1].

While Proposition 3.6.5 was leveraged in [66] for monotonicity w.r.t. the ℓ2 norm, we
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will use it for F which is monotone w.r.t. a diagonally-weighted ℓ∞ norm. 10

Checking that F is strongly monotone w.r.t. ∥ · ∥∞,[η]−1 is straightforward under the

assumption that γ < 1. As a consequence of Propositions, 3.6.4 and 3.6.5, we can consider

different operator splitting algorithms to compute the equilibrium of (3.42). First, the

forward-backward splitting method, Algorithm 4, as applied to this problem is

xk+1 = proxαg((1− α)xk + α(Axk +Bu+ b)). (3.46)

Since F is Lipschitz continuous, this iteration is guaranteed to converge to the unique

fixed point of (3.42) by Theorem 3.5.1(i). Moreover, the contraction factor for this

iteration is 1− α(1− γ) for α ∈ (0, 1
1−mini(A)ii

], with contraction factor being minimized

at α∗ = 1
1−mini(A)ii

. Note that compared to the iteration (3.44), iteration (3.46) has a

larger allowable range of step sizes and improved contraction factor at the expense of

computing a proximal operator at each iteration.

Alternatively, the fixed point may be computed by means of the Peaceman-Rachford

splitting method, Algorithm 5, which can be written

xk+1 = (In + α(In − A))−1(zk + α(Bu+ b)),

zk+1 = zk + 2proxαg(2x
k+1 − zk)− 2xk+1.

(3.47)

Since F is Lipschitz continuous and RαG is nonexpansive for every α > 0, this iteration

converges to the unique fixed point of (3.42) for α in a suitable range by Theorem 3.5.2(i).

Moreover, the contraction factor is 1−α(1−γ)
1+α(1−γ)

for α ∈ (0, 1
1−mini(A)ii

], which comes from the

Lipschitz constant of F. In other words, the contraction factor is improved for Peaceman-

Rachford compared to forward-backward splitting and the range of allowable step sizes is

10Unless A = A⊤, the monotone inclusion problem (3.45) does not arise from a convex minimization
problem.
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identical. For RNNs where (In+α(In−A)) may be easily inverted, this splitting method

may be preferred.

3.6.3 Numerical implementations

γ = 0.9 γ = −1
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Figure 3.2: Residual versus number of iterations for forward-step method (3.44), for-
ward-backward splitting (3.46), and Peaceman-Rachford splitting (3.47) for comput-
ing the equilibrium of the recurrent neural network (3.42). The top two plots cor-
respond to ϕ = LeakyReLU with a = 0.1 and the bottom two plots correspond to
ϕ = ReLU. The left two plots correspond to γ = 0.9 and the right two plots corre-
spond to γ = −1. Curves for the forward-step method and forward-backward splitting
are directly on top of one another in the left two plots. Note the difference in the
number of iterations with respect to the parameter γ.

To assess the efficacy of the iterations in (3.44), (3.46), and (3.47), we generated

A,B, b, u in (3.42) and applied the iterations to compute the equilibrium. We gen-

erate A ∈ R200×200, B ∈ R200×50, u ∈ R50, b ∈ R200 with entries normally distributed as

Aij, Bij, bi, ui ∼ N (0, 1). To ensure thatA ∈ R200×200 satisfies the constraint µ∞,[η]−1(A) ≤

95



Non-Euclidean Monotone Operator Theory and Applications Chapter 3

γ for some η ∈ R200
>0 , we pick [η] = I200 and orthogonally project A onto the convex

polytope {A ∈ R200×200 | µ∞(A) ≤ γ} using CVXPY [111]. In experiments, we con-

sider γ ∈ {−1, 0.9} and consider activation functions ϕ(x) = ReLU(x) = max{x, 0}

and ϕ(x) = LeakyReLU(x) = max{x, ax} with a = 0.1.11 The proper, l.s.c., convex f

corresponding to these activation functions are available in [107, Table 1].

For all iterations, we initialize x0 at the origin and for the Peaceman-Rachford iter-

ation, we initialize z0 at the origin. For each iteration we pick the largest theoretically

allowable step size, which in all cases was 1
1−mini(A)ii

(since mini∈{1,...,n}(A)ii was negative

in all cases). For the case of γ = 0.9, we found that the largest theoretically allowable

step size was α ≈ 0.182 and for γ = −1 the largest step size was α ≈ 0.175. The plots

of the residual ∥xk −Φ(Axk +Bu+ b)∥∞ = ∥F (xk, u)∥∞ versus the number of iterations

for all different cases is shown in Figure 3.2. 12

We see that, when γ = 0.9, both forward-step and forward-backward splitting meth-

ods for computing the equilibrium of (3.42) converge at the same rate. This result agrees

with the theory since γ > 0, so that max{d1γ, d2γ} = γ for both ReLU and LeakyReLU

and the estimated contraction factor for both the forward step method and forward-

backward splitting is 1−α(1−γ) ≈ 0.982. For the Peaceman-Rachford splitting method

and γ = 0.9, the estimated contraction factor is 1−α(1−γ)
1+α(1−γ)

≈ 0.964, which justifies the

improved rate of convergence. When γ = −1, the forward-backward splitting method

converges faster than the forward step method. This result agrees with the theory since

the estimated contraction factor for the forward step method is 1−α(1−ϕ(γ)) ≈ 0.807 in

the case of LeakyReLU and ≈ 0.825 in the case of ReLU while the estimated contraction

factor for forward-backward splitting is 1 − α(1 − γ) ≈ 0.649 independent of activation

11Note that the slope bounds from (3.40) are d1 = 0, d2 = 1 for ReLU and d1 = a, d2 = 1 for
LeakyReLU with a ∈ [0, 1[.

12All iterations and graphics were run and generated in Python. Code to reproduce experiments is
available at https://github.com/davydovalexander/RNN-Equilibrium-NonEucMonotone.
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function. On the other hand, for the Peaceman-Rachford splitting method and γ = −1,

the estimated contraction factor is 1−α(1−γ)
1+α(1−γ)

≈ 0.481, which justifies the improved rate of

convergence.

3.6.4 Tightened Lipschitz constants for continuous-time RNNs

We are interested in studying the robustness of the RNN (3.42) to input perturba-

tions. In other words, given a nominal input, u, and its corresponding equilibrium output,

x∗u, we aim to upper-bound the deviation of the output due to a change in the input.

The Lipschitz constant of a neural network is one common metric used to evaluate its

robustness, as discussed in works such as [112, 83, 113]. In the context of implicit neu-

ral networks, Lipschitz constants have been studied in [114, 84, 98], with [84] unrolling

forward-backward splitting iterations to provide ℓ2 Lipschitz estimates. In what follows,

we generalize the procedure in [84] using techniques from non-Euclidean monotone op-

erator theory to provide novel and tighter ℓ∞ Lipschitz estimates.

Theorem 3.6.1 (Lipschitz estimate of equilibrium points of (3.42)). Suppose that A

satisfies µ∞,[η]−1(A) = γ < 1 for some η ∈ Rn
>0 and that ϕ = proxf for some proper, l.s.c.,

convex f : R → R. Define fN : Rm → Rn by fN(u) = x∗u where x∗u solves the fixed point

problem x∗u = Φ(Ax∗u +Bu+ b).13 Then for ηmax = maxi∈{1,...,n} ηi, ηmin = mini∈{1,...,n} ηi,

and Lip∞(fN) denoting the minimal ℓ∞ Lipschitz constant of fN,

Lip∞(fN) ≤
ηmax

ηmin

∥B∥∞
1− γ

. (3.48)

Proof. We consider the forward-backward splitting iteration given input u as xk+1
u =

proxαg((1− α)xku + α(Axku +Bu+ b)) with initial condition x0u = 0n which is guaranteed

13Note that if x∗
u solves the fixed point problem x∗

u = Φ(Ax∗
u+Bu+ b), then it is an equilibrium point

of the RNN (3.42).
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to converge for α ∈ (0, 1
1−mini(A)ii

] since proxαg is nonexpansive and SαF is a contraction

w.r.t. ∥ · ∥∞,[η]−1 for every α in this range where F is defined as in (3.45). We find

∥xku − xkv∥∞,[η]−1 = ∥proxαg((1− α)xk−1
u + α(Axk−1

u +Bu+ b))

− proxαg((1− α)xk−1
v + α(Axk−1

v +Bv + b))∥∞,[η]−1

≤ ∥Sα(Id−A)(x
k−1
u − xk−1

v )∥∞,[η]−1 + α∥B(u− v)∥∞,[η]−1 (3.49)

≤ Lip(Sα(Id−A))
k∥x0u − x0v∥∞,[η]−1 + α∥B(u− v)∥∞,[η]−1

k−1∑
i=0

Lip(Sα(Id−A))
i

= α∥B(u− v)∥∞,[η]−1

k−1∑
i=0

Lip(Sα(Id−A))
i, (3.50)

where (3.49) holds because of nonexpansiveness of proxαg and the triangle inequality

and (3.50) is a consequence of x0u = x0v = 0n.

Since the forward-backward splitting iteration converges for every α in the desired

range, we can take the limit as k → ∞ and find that xku → x∗u and xkv → x∗v as k → ∞.

Then

∥x∗u − x∗v∥∞,[η]−1 ≤ α∥B(u− v)∥∞,[η]−1

∞∑
i=0

Lip(Sα(Id−A))
i (3.51)

=
α∥B(u− v)∥∞,[η]−1

1− Lip(Sα(Id−A))
≤ α∥B(u− v)∥∞,[η]−1

1− (1− α(1− γ))
=

∥B(u− v)∥∞,[η]−1

1− γ
,

(3.52)

which implies the result because η−1
max∥z∥∞ ≤ ∥z∥∞,[η]−1 ≤ η−1

min∥z∥∞ for every z ∈ Rn.

Remark 3.6.6. In [98, Corollary 5], the following Lipschitz estimate is given:

Lip∞(fN) ≤
ηmax

ηmin

∥B∥∞
1−max{γ, 0} . (3.53)

The Lipschitz estimate in Theorem 3.6.1 is always a tighter bound than the estimate (3.53)
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and allows the choice of negative γ to further lower the Lipschitz constant of the RNN.

Indeed, one way to make the neural network more robust to uncertainties in its input

would be to ensure that γ is a large negative number.

3.7 Conclusion

In this chapter, we introduce a non-Euclidean version of classical results in monotone

operator theory with a focus on mappings that are monotone with respect to diagonally-

weighted ℓ1 or ℓ∞ norms. Our results show that the resolvent and reflected resolvent

maintain many useful properties from the Hilbert case, and we prove that commonly

used algorithms for finding zeros of monotone operators and their sums remain effective

in the non-Euclidean setting. We applied our theory to the problem of equilibrium

computation and Lipschitz constant estimation of recurrent neural networks, yielding

novel iterations and tighter upper bounds on Lipschitz constants via forward-backward

splitting.

Topics of future research include (i) extending results to more general Banach spaces

with a focus on L1 and L∞ spaces, (ii) studying the convergence of additional operator

splitting methods such as forward-backward-forward [115] and Davis-Yin [116] splittings,

(iii) extending the theory to variable step size methods, and (iv) considering additional

machine learning applications such as ℓ∞ robustness of deep neural networks as a non-

Euclidean analog of [83] or reinforcement learning and dynamic programming, where

ℓ∞ contractive and nonexpansive operators are prevalent; see the recent work [117] for

preliminary ideas in this direction.
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Chapter 4

Robust Implicit Networks via

Non-Euclidean Contractions

This chapter was first published in the Proceedings of the Conference on Advances in

Neural Information Processing Systems [98].1

4.1 Introduction

Implicit neural networks are infinite-depth learning models with layers defined im-

plicitly through a fixed-point equation. Examples of implicit neural networks include

deep equilibrium models [109] and implicit deep learning models [110]. Implicit networks

can be considered as generalizations of feedforward neural networks with input-injected

weight tying, i.e., training parameters are transferable between layers. Indeed, in im-

plicit networks, function evaluation is executed by solving a fixed-point equation and

backpropagation is implemented by computing gradients using implicit differentiation.

1©2021 Saber Jafarpour, Alexander Davydov, Anton V. Proskurnikov, and Francesco Bullo. Li-
cense: CC-BY 4.0. Reprinted from Saber Jafarpour, Alexander Davydov, Anton V. Proskurnikov, and
Francesco Bullo, Robust Implicit Networks via Non-Euclidean Contractions, 2021.

100



Robust Implicit Networks via Non-Euclidean Contractions Chapter 4

Due to these unique features, implicit models enjoy more flexibility and improved memory

efficiency compared to traditional neural networks. At the same time, implicit networks

can suffer from instability in their training due to the nonlinear nature of their fixed-point

equations and can show brittle input-output behaviors due to their model flexibility.

It is known that implicit neural networks require careful tuning and initialization to

avoid ill-posed training procedures. Indeed, without additional assumptions, their fixed-

point equation may not have a unique solution and the numerical algorithms for finding

their solutions might not converge. Several recent works in the literature have focused on

studying well-posedness and convergence of the fixed-point equations of implicit networks

using frameworks such as monotone operator theory [66], contraction theory [110], and

a mixture of both [114]. Despite several insightful results, important questions about

conditions for well-posedness of implicit networks and efficient algorithms that converge

to their solutions are still open.

One of the key features of implicit neural networks is their flexibility, which might

come at the cost of low input-output robustness. As first noted in [118], the input-

output behavior of deep neural networks can be vulnerable to perturbations; close enough

input data can lead to completely different outputs. This lack of robustness can lead to

unreliable performance of neural networks in safety-critical applications. Among several

notions of robustness, the Lipschitz constant of a neural network is a coarse but rigorous

measure which can be used to estimate input-output sensitivity of the network [118]. For

this reason, there has been a growing interest in estimating the input-output Lipschitz

constant of deep neural networks with respect to the ℓ2-norm [112, 83]. However, it

turns out that in some applications, the input-output Lipschitz constants with respect

to non-Euclidean norms are more informative measures for studying robustness. One

such application appears in the robustness analysis of neural networks with large-scale

inputs under widely-distributed adversarial perturbations (examples of these adversarial
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perturbations can be found in [118]). For these examples, the input-output ℓ2-Lipschitz

constant does not provide complete information about robustness of the network; a neural

network with small input-output ℓ2-Lipschitz constant can be very sensitive to widespread

entrywise-small perturbations of the input signal. On the other hand, the input-output

ℓ∞-Lipschitz constant provides a different metric which appears to be well-suited for the

analysis of widespread distributed perturbations. Another application is the estimation

of input signal confidence intervals from output deviations, where the input-output ℓ∞-

Lipschitz constant of the network provides more scalable bounds than its ℓ2 counterpart.

Related works

Implicit learning models. Numerous works in learning theory have shown the power

of deep learning models with implicit layers. In these learning models, the notion of

layers are replaced by a composition rule, which can be either a fixed-point iteration

or a solution to a differential equation. Well-known frameworks for deep learning using

implicit infinite-depth layers include deep equilibrium networks [109], implicit deep learn-

ing [110], and Neural ODEs [119]. In [120], a class of implicit recurrent neural networks is

considered and it is demonstrated that, with this architecture, the models do not suffer

from vanishing nor exploding gradients. Implicit layers have also been used to study

convex optimization problems [121] and to design control strategies [122]. Convergence

to global minima of certain classes of implicit networks is studied in [123].

Well-posedness and numerical algorithms for fixed-point equations. There has

been a recent interest in studying well-posedness and numerical stability of implicit-depth

learning models. [110] proposes a sufficient spectral condition for well-posedness and for

convergence of the Picard iterations associated with the fixed-point equation of implicit

networks. In [66, 114], using monotone operator theory, a suitable parametrization of the
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weight matrix is proposed which guarantees the stable convergence of suitable fixed-point

iterations. A recent influential survey on monotone operators is [72]. A recent survey on

fixed point strategies in data science is given by [67].

Robustness of learning models It is known that neural networks can be vulnerable

to adversarial input perturbations [118]. A large body of literature is devoted to im-

prove robustness of neural networks using various defense strategies against adversarial

examples [75, 124]. While these strategies are effective in many scenarios, they do not

provide formal guarantees for robustness [125]. However, there has been a recent interest

in designing classifiers that are provably robust with respect to adversarial perturba-

tions [126, 127]. The input-output Lipschitz constant of a neural network is a rigorous

metric for its worst-case sensitivity with respect to input perturbations. Several recent

works have focused on estimating the Lipschitz constant and enforcing its boundedness.

For example, [112, 128] propose a convex optimization framework using quadratic con-

straints and semidefinite programming to obtain upper bounds on Lipschitz constants of

deep neural networks. In [113], a training algorithm is designed to ensure boundedness

of the Lipschitz constant of the neural network via a semidefinite program. Other meth-

ods for estimating the Lipschitz constant of deep neural networks include [129, 130, 83].

For implicit neural networks, a sensitivity-based robustness analysis is proposed in [110].

Lipschitz constants of deep equilibrium networks have also been studied in [84, 114] using

monotone operator theory.

Contributions

In this chapter, using non-Euclidean contraction theory with respect to the ℓ∞-

norm, we propose our novel framework, Non-Euclidean Monotone Operator Network

(NEMON), to design implicit neural networks and study their well-posedness, stability,
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and robustness. First, we develop elements of a novel non-Euclidean monotone operator

theory akin to the frameworks in [4, 72]. Using the concept of the logarithmic norm

(henceforth log norm), we introduce the essential notion of one-sided Lipschitz constant

of a map. Based upon this notion, we prove a general fixed-point theorem with weaker

requirements than classical results on Picard and Krasnosel’skii–Mann iterations. For

maps with one-sided Lipschitz constant less than unity, we show that an average it-

eration converges for sufficiently small step sizes and optimize its rate of convergence.

For the special case of the weighted ℓ∞-norm, we show that this average iteration can

be accelerated by choosing a larger step size. Additionally, we study perturbed fixed-

point equations and establish a bound on the distance between perturbed and nominal

equilibrium points as a function of one-sided Lipschitz condition. Second, for implicit

neural networks, we use our new fixed-point theorem to (i) establish ℓ∞-norm condi-

tions for their well-posedness, (ii) design accelerated numerical algorithms for computing

their solutions, and (iii) provide upper bounds on their input-output ℓ∞-Lipschitz con-

stants. Third, we propose a parametrization for matrices with appropriate bound on

their one-sided Lipschitz constants and use this parametrization with the average iter-

ation to design a training optimization problem. Finally, we perform several numerical

experiments illustrating improved performance of NEMON in image classification on the

MNIST and the CIFAR-10 datasets compared to the state-of-the-art models in [110, 66].

Additionally, by adding the input-output Lipschitz constant as regularizer in the training

problem, we observe improved robustness to some classes of adversarial perturbations.

We include all relevant proofs in Section 4.7.3.
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4.2 Fixed-point equations and one-sided Lipschitz

constants

In this section, we show that the notion of one-sided Lipschitz constant can be used

to study solvability of fixed-point equation:

x = F(x), (4.1)

where F : Rn → Rn is a differentiable map. Let ∥ · ∥ be a norm on Rn, then in view of

the Banach fixed-point theorem, a simple sufficient condition for existence of a unique

solution for the fixed-point equation (4.1) is Lip(F) < 1. We note that the sufficient

condition Lip(F) < 1 depends on the specific form of the fixed-point equation (4.1) and

can be relaxed by a suitable rewriting of this fixed-point equation. Given an averaging

parameter α ∈ (0, 1] we define the average map Fα : Rn → Rn by Fα := (1 − α)Id + αF,

where Id is the identity map. Using this notion, an equivalent reformulation of the fixed-

point equation (4.1) is:

x = (1− α)x+ αF(x) = Fα(x). (4.2)

For α = 1, we have Fα(x) = F(x) and equation (4.2) coincides with equation (4.1).

For every α ∈ (0, 1), the map Fα is different from F but equations (4.1) and (4.2) are

equivalent. Hence, if Lip(Fα) < 1, then by the Banach fixed-point theorem, the fixed

point equation (4.2) (and therefore the fixed point equation (4.1)) has a unique solution

x∗ and the sequence {yk}∞k=1 defined by

yk+1 = (1− α)yk + αF(yk), for all k ∈ Z≥0 (4.3)
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converges geometrically to x∗ with rate Lip(Fα). As a result of the parametrization (4.2),

the condition Lip(F) < 1 for existence and uniqueness of the fixed-point can be relaxed

to sufficient conditions

Lip(Fα) < 1, (4.4)

parametrized by α ∈ (0, 1]. Additionally, if condition (4.4) is satisfied, then algo-

rithm (4.3) computes the fixed point x∗. It can be shown that the condition (4.4) becomes

less conservative as α decreases. The next theorem shows that in the limit as α → 0+,

condition (4.4) approaches the condition osL(F) < 1.

Theorem 4.2.1 (Fixed points via one-sided Lipschitz conditions). Let F : Rn → Rn be

differentiable and Lipschitz with constant ℓ > 0 with respect to a norm ∥ · ∥. Define the

average map Fα = (1− α)Id + αF and, for c > 0, the function γℓ,c : (0,
c

(c+ℓ+1)(ℓ+1)
) → R

by:

γℓ,c(α) :=
(
1 + αc− α2(ℓ+ 1)2

1− α(ℓ+ 1)

)−1

.

Then the following statements are equivalent:

(i) osL(F) < 1− c,

(ii) Lip(Fα) = γℓ,c(α), for 0 < α < c
(c+ℓ+1)(ℓ+1)

.

Moreover, if the equivalent conditions (i) or (ii) hold, then, for condition number κ =

1+Lip(F)
1−osL(F)

,

(iii) F has a unique fixed point x∗;

(iv) for 0 < α < 1
κ(κ+1)

, Fα is a contraction mapping with contraction factor γℓ,c(α) < 1;
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(v) the minimum contraction factor γ∗ℓ,c = 1 − 1
4κ2 +

1
8κ3 +O

(
1
κ4

)
and the minimizing

averaging parameter α∗ of Fα is

α∗ =
κ

1− osL(F)

(
1− 1√

1 + 1/κ

)
=

1

1− osL(F)

( 1

2κ2
− 3

8κ3
+O

(
1

κ4

))
.

The average iteration (4.2) is often referred to as the Krasnosel’skii–Mann iteration

or the damped iteration [4]. Compared to [4, Theorem 5.15], Theorem 4.2.1(iv) studies

convergence of the Krasnosel’skii–Mann iteration for arbitrary norms, proposes a weaker

convergence condition of the form osL(F) < 1 (hence, F need not be non-expansive).

However, it ensures convergence for only sufficiently small α > 0 and assumes that F is

differentiable (as will be shown, however, the latter assumption can be relaxed).

4.2.1 Accelerated convergence for weighted ℓ∞ norms

For diagonally weighted ℓ∞ norms, one can strengthen Theorem 4.2.1(iv) to prove

the convergence of the average iteration (4.2) on a larger domain of the parameter α.

Theorem 4.2.2 (Accelerated fixed point algorithm for ℓ∞ norms). Let F : Rn → Rn be

differentiable and Lipschitz with respect to the weighted non-Euclidean norm ∥ · ∥∞,[η]−1.

Define the average map Fα = (1 − α)Id + αF and pick diagL(F) ∈ [− Lip(F), osL(F)] to

satisfy

diagL(F) ≤ min
i∈{1,...,n}

inf
x∈Rn

DFii(x). (4.5)

If osL(F) < 1, then F has a unique fixed-point x∗ and

(i) for 0 < α ≤ 1

1− diagL(F)
, Fα is a contraction mapping with the contraction factor

1− α(1− osL(F)) < 1;

(ii) the minimum contraction factor and minimizing averaging parameter of Fα are,
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respectively,

Lip(Fα∗) = 1− 1− osL(F)

1− diagL(F)
= 1− 1

κ∞
, for κ∞ =

1− diagL(F)

1− osL(F)
≤ 1 + Lip(F)

1− osL(F)
,

α∗ =
1

1− diagL(F)
.

Note that diagL(F) is well-defined because of the Lipschitz continuity assumption.

It is instructive to compare the minimum contraction factor in the general Theo-

rem 4.2.1 with the minimum contraction factor for ℓ∞ norms in Theorem 4.2.2 and how

they depend upon the corresponding condition numbers κ and κ∞. We note that (i) the

relevant condition number diminishes κ ≥ κ∞, and (ii) the minimum contraction factor

Lip(Fα∗) = 1− 1
4κ2 +O(1/κ4) improves to Lip(Fα∗) = 1− 1

κ∞
. This acceleration justifies

the title of this section.

4.2.2 Perturbed fixed-point problems

In this subsection, we focus on solvability of the perturbed fixed-point equation:

x = F(x, u), (4.6)

where F : Rn × Rr → Rn is differentiable in x. We define Fu(x) = F(x, u) and Fx(u) =

F(x, u). Given a norm ∥ · ∥X in Rn and ∥ · ∥U in Rr, F is Lipschitz in its first argument

with constant Lipx(F) ∈ R≥0 if

∥F(x1, u)− F(x2, u)∥X ≤ Lipx(F)∥x1 − x2∥X for all x1, x2 ∈ Rn and u ∈ Rr,
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and it is Lipschitz in its second argument with constant Lipu(F) ∈ R≥0 if

∥F(x, u1)− F(x, u2)∥X ≤ Lipu(F)∥u1 − u2∥U for all x ∈ Rn and u1, u2 ∈ Rr,

and it is one-sided Lipschitz in its first argument with constant osLx(F) ∈ R if

µ(DxF(x, u)) ≤ osLx(F) for all x1, x2 ∈ Rn and u ∈ Rr.

The following result, which is in the spirit of Lim’s Lemma [131], provides an upper

bound on the distance between fixed-points of the perturbed equation (4.6).

Theorem 4.2.3 (Perturbed fixed-points). Given a norm ∥ · ∥X in Rn and a norm ∥ · ∥U
in Rr, consider a map F : Rn×Rr → Rn differentiable in the first argument and Lipschitz

in both arguments. If F is one-sided Lipschitz with constant osLx(F) < 1, then

(i) for every u ∈ Rm, the map Fu has a unique fixed point x∗u;

(ii) for every u, v ∈ Rm, ∥x∗u − x∗v∥X ≤ Lipu(F)

1− osLx(F)
∥u− v∥U .

Finally, Theorems 4.2.1, 4.2.2, and 4.2.3 are not directly applicable to activation

function that are not differentiable. In Section 4.7.6, we show that for specific form of

the fixed-point equation (4.1), where F = Φ ◦ H and Φ: Rn → Rn is a weakly increasing,

non-expansive, diagonal activation function and H : Rn × Rr → Rn is a differentiable

function, all of the conclusions of Theorems 4.2.1, 4.2.2, and 4.2.3 hold by requiring

equation (4.5) to be true almost everywhere.

4.3 Contraction analysis of implicit neural networks

In this section, we use contraction theory to lay the foundation for our Non-Euclidean

Monotone Operator Network (NEMON) model of implicit neural networks. Given A ∈
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Rn×n, B ∈ Rn×r, C ∈ Rq×n, and D ∈ Rq×r, we consider the implicit neural network

x = Φ(Ax+Bu) := N(x, u), y = Cx+Du, (4.7)

where x ∈ Rn, u ∈ Rr, y ∈ Rq, and Φ: Rn → Rn is defined by Φ(x) = (ϕ1(x1), . . . , ϕn(xn)).

For every i ∈ {1, . . . , n}, we assume the activation function ϕi : R → R is weakly increas-

ing, i.e., ϕi(xi) ≥ ϕi(zi) for xi ≥ zi, and non-expansive, i.e., |ϕi(xi) − ϕi(zi)| ≤ |xi − zi|

for all xi and zi; if ϕi is differentiable, these conditions are equivalent to 0 ≤ ϕ′
i(xi) ≤ 1

for all xi ∈ R.

We are able to provide the following estimates on all relevant Lipschitz constants.

Theorem 4.3.1 (Lipschitz and one-sided Lipschitz constants for the implicit neural

network). Consider the implicit neural network in equation (4.7) with weakly increasing

and non-expansive activation functions Φ. With respect to ∥·∥∞,[η]−1, η ∈ Rn
>0, on Rn and

∥ · ∥U on the input space Rr, the map N : Rn×Rr → Rn is one-sided Lipschitz continuous

in the first variable and Lipschitz continuous in both variables with constants:

osLx(N) = ReLU(µ∞,[η]−1(A)) , Lipx(N) = ∥A∥∞,[η]−1 , (4.8)

Lipu(N) = ∥B∥(∞,[η]−1),U , diagL(N) = mini∈{1,...,n}(Aii)− , (4.9)

where (z)− = 0 if z ≥ 0 and (z)− = z if z < 0.

We now use these estimates to establish multiple properties of the implicit neural

network.

Corollary 4.3.1 (Well posedness, input-state Lipschitz constant, and computation).

Consider the model (4.7), with parameters (A,B,C,D) and with weakly increasing and

non-expansive activation functions Φ. Define the average map Nα := (1−α)Id+αN and
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consider the norms ∥ · ∥∞,[η]−1, η ∈ Rn
>0, on Rn, ∥ · ∥U on the input space Rr and ∥ · ∥Y

on the output space Rq. Then

(i) if µ∞,[η]−1(A) < 1, then (4.7) is well posed, i.e., there exists a unique fixed point,

(ii) the map Nα is a contraction mapping for 0 < α ≤ α∗ :=
(
1−mini∈{1,...,n}(Aii)−

)−1

with minimum contraction factor Lip(Nα∗) = 1− 1−ReLU(µ∞,[η]−1 (A))

1−mini∈{1,...,n}(Aii)−
.

(iii) the Lipschitz constants from input u to fixed point x∗u and to the output y = Cx∗u +

Du are

Lipu→x∗ :=
Lipu(N)

1− osLx(N)
=

∥B∥(∞,[η]−1),U

1− ReLU(µ∞,[η]−1(A))
, (4.10)

Lipu→y :=
∥B∥(∞,[η]−1),U∥C∥Y,(∞,[η]−1)

1− ReLU(µ∞,[η]−1(A))
+ ∥D∥Y,U . (4.11)

4.4 Training implicit neural networks

Problem setup Given an input data matrix U = [u1, . . . , um] ∈ Rr×m and a cor-

responding output data matrix Y = [y1, . . . , ym] ∈ Rq×m, we aim to learn matrices

A,B,C,D so that the neural network (4.7) approximates the input-output relationship.

We rewrite the model for matrix inputs as Ŷ = CX + DU , where X = Φ(AX + BU).

From Corollary 4.3.1(i), if each ϕi is weakly increasing and non-expansive, the fixed point

problem is well-posed when µ∞,[η]−1(A) < 1 for some η ∈ Rn
>0. We consider a training

problem of the form

min
A,B,C,D,X

L(Y,CX +DU) + P(A,B,C,D)

X = Φ(AX +BU), µ∞,[η]−1(A) ≤ γ,

(4.12)
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where L is a loss function, P is a penalty function, and γ < 1 is a hyperparameter ensuring

the fixed point problem is well-posed. For η = 1n, we can remove the constraint µ∞(A) ≤

γ in the training optimization problem (4.12) using the following parametrization of

weight matrix A:

A = T − diag(|T |1n) + γIn. (4.13)

In Section 4.7.2, we show that parametrization (4.13) characterizes the set of matrices

in Rn×n satisfying µ∞(A) ≤ γ. Using the parametrization (4.13) in the training problem

not only improves the computational efficiency of the optimization but also allows for

the design of implicit neural networks with additional structure such as convolutions.

Suppose u ∈ Rrs2 is a r-channel input of size s× s and x ∈ Rns2 is an n-channel hidden

layer. To define our implicit CNN, we select the weight matrix A ∈ Rns2×ns2 as the matrix

form of a 2D convolutional operator. If we consider a circular convolution operator, then

A is a circulant matrix. Using the parametrization (4.13), A is circulant if and only

if T is circulant. Therefore, the training problem for implicit CNNs can be cast as an

unconstrained optimization problem using the above parametrization with a circulant T .

Improving robustness via Lipschitz regularization We now focus on learning

robust implicit neural networks with bounded Lipschitz constants via a regularization

strategy. Setting both ∥·∥U and ∥·∥Y as ∥·∥∞ in the input-output Lipschitz bound (4.11),

we get

Lipu→y =
∥B∥(∞,[η]−1),(∞)∥C∥(∞),(∞,[η]−1)

1− ReLU(µ∞,[η]−1(A))
+ ∥D∥∞,∞

≤ 1

2

∥B∥2(∞,[η]−1),(∞) + ∥C∥2(∞),(∞,[η]−1)

1− ReLU(µ∞,[η]−1(A))
+ ∥D∥∞,∞,
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where the inequality provides a convex upper bound for the input-output Lipschitz con-

stant. Therefore, using the hyperparameter λ > 0, the regularized optimization problem

is written as

min
A,B,C,D,X

L(Y,CX +DU) + λ
(1
2

∥B∥2(∞,[η]−1),(∞) + ∥C∥2(∞),(∞,[η]−1)

1− ReLU(µ∞,[η]−1(A))
+ ∥D∥∞,∞

)
X = Φ(AX +BU), µ∞,[η]−1(A) ≤ γ. (4.14)

Certified adversarial robustness via Lipschitz bounds Given a nominal input

u ∈ Rr, we consider any perturbed input v within an ℓ∞-ball of radius ε around u. In

this case, we have

∥yu − yv∥∞ ≤ Lipu→y ∥u− v∥∞ ≤ Lipu→y ε. (4.15)

Then we define margin(u) = (yu)i −maxj ̸=i(yu)j, where (yu)i is the logit corresponding

to the (correct) label i for the input u. Then provided Lε ≤ 1
2
margin(u), NEMON is

certifiably robust to any perturbed input v within an ℓ∞-ball of radius ε centered at u.

Backpropagation of gradients via average iteration From [110] we now show how

the average iteration can be used to perform backpropagation via the implicit function

theorem. For simplicity, we assume that each activation function ϕi is differentiable and

consider mini-batches of size 1, i.e., we have X = x ∈ Rn, U = u ∈ Rr and Ŷ = ŷ ∈ Rq.

Let x∗ be the unique solution of the fixed-point equation (4.7). Then the chain rule

implies

∂L
∂A

= (∇x∗L)x⊤, ∂L
∂B

= (∇x∗L)u⊤,
∂L
∂C

= (∇ŷL)x⊤,
∂L
∂D

= (∇ŷL)u⊤.
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Since L depends explicitly on ŷ, computing ∇ŷL is straightforward. Computing ∇x∗L is

more complicated since X∗ is defined only implicitly. However, it be shown that

∇x∗L = (C(I −DΦA)−1DΦ)⊤∇ŷL.

Since µ∞,[η]−1(A) < 1, by Lemma 4.7.2 we get that µ∞,[η]−1(DΦA) < 1. This implies that

the matrix G := (In − DΦA)−1DΦ ∈ Rn×n exists and is the solution to the following

fixed-point equation [110, Section 6.2]

G = DΦ(AG+ In). (4.16)

Moreover, µ∞,[η]−1(DΦA) < 1 and Theorem 4.2.2 together imply that the fixed-point

equation (4.16) has a unique solution G∗ and, for every 0 < α ≤ α∗ :=
(
1−mini(Aii)−

)−1
,

the average iterations

Gk+1 = (1− α)Gk + αDΦ(AGk + In), for all k ∈ Z≥0

are contracting with the minimum contraction factor 1− α∗(1− ReLU(µ∞,[η]−1(A))
)
at

step size α∗.

4.5 Theoretical and numerical comparisons

In this section, we provide a comprehensive comparison of our framework with the

state-of-the-art implicit neural networks2.

2All models were trained using Google Colab with a Tesla P100-PCIE-16GB GPU.
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4.5.1 Implicit network models

We start by reviewing the existing models for implicit networks in the literature.

Implicit deep learning model. [110] proposes a class of implicit neural networks

with input-output behavior described by (4.7). It is shown that a sufficient condition for

existence and uniqueness of a solution and convergence of the Picard iterations for the

fixed point equation x = Φ(Ax + Bu) is λpf(|A|) < 1, where |A| denotes the entrywise

absolute value of the matrix A and λpf denotes the Perron-Frobenius eigenvalue. For

training, the optimization problem (4.12) is used where the constraint µ∞,[η]−1(A) ≤ γ

is replaced by ∥A∥∞ ≤ γ [110, Equation 6.3].3 It is easy to see that our well-posedness

condition in Corollary 4.3.1(i) is less conservative than λpf(|A|) < 1 and its convex

relaxation ∥A∥∞ < 1.

Monotone operator deep equilibrium network (MON). [66] proposes to use

monotone operator theory to guarantee well-posedness of the fixed-point equation as

well as its convergence to the solutions. The input-output behavior of the network is

described by (4.7). For training, the optimization problem (4.12) is used where the

constraint µ∞,[η]−1(A) ≤ γ is replaced by In − 1
2
(A+A⊤) ⪰ (1− γ)In. In order to ensure

that this constraint is always satisfied in the training procedure, the weight matrix A is

parametrized as A = γIn −W⊤W − Z + Z⊤, for arbitrary W,Z ∈ Rn×n [66, Appendix

D].4 In the context of contraction theory,

In − 1
2
(A+ A⊤) ⪰ (1− γ)In ⇐⇒ µ2(A) ≤ γ,

3The implicit deep learning implementation is available at https://github.com/beeperman/idl.
4The MON implementation is available at https://github.com/locuslab/monotone op net.
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which is shown in Section 4.7. Thus, the parametrization A = γIn−W⊤W −Z+Z⊤ can

be considered as the ℓ2-norm version of the parametrization described by equation (4.13).

In other words, the monotone operator network formulation is a Euclidean transcription

of the framework we propose in this chapter.

4.5.2 MNIST experiments
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Figure 4.1: Performance comparison between the NEMON model with µ∞(A) ≤ 0.95,
the implicit deep learning model with ∥A∥∞ ≤ 0.95, and MON with
In − 1

2(A + A⊤) ⪰ 0.05In on the MNIST dataset. The curves are generated by
mean accuracy and mean loss over 5 different runs while light envelopes around the
curves correspond to the standard deviation over the runs. Average best accuracy for
the NEMON model is 0.9772, while it is 0.9721 for implicit deep learning model and
0.9762 for the MON model.

In the digit classification dataset MNIST, input data are 28 × 28 pixel images of

handwritten digits between 0-9. There are 60000 training images and 10000 test images.

For training, images are reshaped into 784 dimensional column vectors and entries are

scaled into the range [0, 1]. As a loss function, we use the cross-entropy. All models

are of order n = 100, used the ReLU activation function, and are trained with a batch

size of 300 over 10 epochs with a learning rate of 1.5 × 10−2. Curves for accuracy and

loss versus epochs for the three models are shown in Figure 4.1. Regarding training

times, using the average iteration, NEMON took, on average, 12 forward iterations, 13
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backward iterations, and 9.8 seconds to train per epoch. Using the Peaceman-Rachford

iteration, MON took, on average, 17 forward iterations, 16 backward iterations, and 9.5

seconds to train per epoch. Using the Picard iteration, the implicit deep learning model

took, on average, 10 forward iterations, 5 backward iterations, and 5.8 seconds to train

per epoch. We observe that the NEMON model performs better than the implicit deep

learning model and has a comparable performance to MON.
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Figure 4.2: On the left is a plot of test error versus Lipschitz constant for the implicit
deep learning model with ∥A∥∞ ≤ 0.95 and for NEMON with µ∞(A) ≤ 0.95 and
parametrized by the regularization hyperparameter λ. We define the test error as
1 minus the accuracy. On the right is a plot of accuracy versus ℓ∞ perturbation of
a deterministic adversarial image inversion attack where we additionally include the
MON model with In − 1

2(A+A⊤) ⪰ 0.05In.

We also study the robustness of the NEMON model compared to the implicit deep

learning model and the MON model on the MNIST dataset. We train various models

regularized by the input-output Lipschitz constant as in (4.14). Additionally, to verify

robustness of the different models, we consider several adversarial attacks and plot the

accuracy versus perturbation of such an attack. In Figure 4.2, we consider a continuous

image inversion attack [132], where each pixel is perturbed in the direction of pixel value

inversion with amplitude given by the ℓ∞ perturbation. For more details on this and other

types of adversarial perturbations, we refer to Section 4.8. We observe that for λ = 10−5,
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the regularized NEMON model achieves a two order of magnitude decrease in its input-

output Lipschitz constant compared to the un-regularized NEMON models. In addition,

we see that the implicit deep learning model and the MON model are more sensitive

to the continuous image inversion attack than NEMON. Moreover, as the regularization

parameter λ increases, the NEMON model becomes increasingly robust to this attack.

4.5.3 CIFAR-10 experiments

In the image classification dataset CIFAR-10, input data are 32 × 32 color images

in 10 classes. There are 50000 training images and 10000 test images. We compare

our proposed NEMON model with a convolutional structure to a single convolutional

layer MON model. Each model used 81 channels. We train both models with a batch

size of 256 and a learning rate of 10−3 for 40 epochs. For training, using the average

iteration, NEMON took, on average, 10 forward iterations, 10 backward iterations, and

75.0 seconds per epoch to train. Using the Peaceman-Rachford iteration, MON took,

on average, 5 forward iterations, 5 backward iterations, and 101.8 seconds per epoch to

train.

We focus primarily on the robustness of NEMON and MON with respect to ℓ∞-norm

bounded perturbations on CIFAR-10. To this end, we additionally trained two NEMON

models with regularization parameters λ ∈ {10−4, 10−5}. In Figure 4.3, on the left is a

plot of the certified robustness of each of the models via their ℓ∞-Lipschitz constants. For

MON, we got the ℓ∞-Lipschitz bound using the method in [84] for the ℓ2-Lipschitz bound

and using the upper bound ∥u∥2 ≤
√
rs2∥u∥∞. On the right is a plot of the accuracy

of different models with respect to the projected gradient descent attack. We observe

that the un-regularized and regularized NEMON models are more robust to ℓ∞-norm

bounded perturbations than is MON.

118



Robust Implicit Networks via Non-Euclidean Contractions Chapter 4

0.000 0.002 0.004 0.006 0.008 0.010
`∞ amplitude of perturbation

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ce
rti

fie
d 

ro
bu

st
 te

st
 a

cc
ur

ac
y

Certified robustness vs perturbation on CIFAR-10 images
λ= 10−4, Lip=116.1
λ= 10−5, Lip=249.2
λ= 0, Lip=6044.9
MON, Lip=5398.2

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
`∞ amplitude of perturbation

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Accuracy vs perturbation on CIFAR-10 images
λ= 10−4

λ= 10−5

λ= 0

MON

Figure 4.3: On the left is a plot of certified robustness via the Lipschitz constants
of MON with the constraint In − 1

2(A + A⊤) ⪰ In and NEMON with the constraint
µ∞(A) ≤ 0. On the right is a plot of accuracy versus ℓ∞ perturbation of the projected
gradient descent attack.

4.6 Conclusion

Using non-Euclidean contraction theory, we propose a framework to study stabil-

ity of fixed-point equations. We apply this framework to analyze well-posedness and

convergence of implicit neural networks and to design an efficient training algorithm to

incorporate robustness guarantees. For future research, we envision that our framework

is applicable to study stability and robustness of implicit learning models with additional

structure such as graph neural networks.

4.7 Proofs and auxiliary results

4.7.1 Graphical comparison between Lipschitz and one-sided

Lipschitz estimates

In the following example, we compare the regions Lip(A) < 1 and osL(A) < 1 for a

matrix A ∈ R2×2 with respect to the ℓ∞-norm.
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Example 4. Let A =

a b

b a

, it is easy to see that condition Lip(A) < 1 for ℓ∞-norm

can be written as ∥A∥∞ = |a| + |b| < 1. One can also define the average operator Aα

using parameter α ∈ (0, 1] as follows:

Aα = (1− α)I2 + αA.

Figure 4.4 compares the regions Lip(A) < 1, Lip(Aα) < 1, and osL(A) < 1 based on the

parameters a and b. It can be shown that as α → 0+, the condition Lip(Aα) < 1 converges

to osL(A) < 1.
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Figure 4.4: The left figure shows the region Lip(A) ≤ 1, the middle figure shows the
region Lip(Aα) ≤ 1 for α = 1

2 , and the right figure shows osL(A) ≤ 1. Both Lip and
osL are with respect to the ℓ∞-norm

4.7.2 Novel results about non-Euclidean log norms

In this section we provide some results regarding the log norm and matrix norm for

weighted ℓ1 and ℓ∞-norms.

Lemma 4.7.1 (Non-Euclidean contraction estimates). Let A = [aij] ∈ Rn×n and η ∈

Rn
>0,
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(i) For every α ∈ R such that |α| ≤ (maxi |aii|)−1,

∥In + αA∥1,[η] = 1 + αµ1,[η](A),

∥In + αA∥∞,[η]−1 = 1 + αµ∞,[η]−1(A).

(ii) the minimizer and minimum value of minα≥0 ∥In + αA∥∞,[η]−1 can be computed via

the linear program:

min
α,t

t

1 + α(aii + ri) ≤ t, i ∈ {1, . . . , n},

−1 + α(−aii + ri) ≤ t, i ∈ {1, . . . , n},

α ≥ 0.

where ri =
∑

j ̸=i
ηj
ηi
|aij|.

Proof. Regarding part (i), we compute

∥In + αA∥∞,[η]−1 = max
i∈{1,...,n}

{
|1 + αaii|+ α

n∑
j=1,j ̸=i

ηj
ηi
|aij|

}
. (4.17)

Since |α| ≤ (maxi |aii|)−1, we know |α||aii| ≤ 1 for all i ∈ {1, . . . , n}. Therefore 1+αaii ≥

0 and |1 + αaii| = 1 + αaii, for every i ∈ {1, . . . , n}. In summary, replacing in (4.17),

∥In + αA∥∞,[η]−1 = max
i∈{1,...,n}

{
1 + αaii + α

n∑
j=1,j ̸=i

ηj
ηi
|aij|

}
= 1 + αµ∞,[η]−1(A).

The proof of the formula relating the weighted ℓ1-norm and the weighted ℓ1 log norm will

follow mutatis mutandis to the above proof for ℓ∞-norm and we omit it in the interest

of brevity.
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Regarding part (ii), using formula (4.17), we get

∥In + αA∥∞,[η]−1 = max
i∈{1,...,n}

{
|1 + αaii|+ αri

}
= max

i∈{1,...,n}

{
1 + αaii + αri,−1− αaii + αri

}
.

The result then follows.

The following results are related to [133, Theorem 3.8] and [134, Lemma 3] and,

indirectly, to [7]. In comparison with [133, 134], we prove sharper bounds for a more

general setting.

Lemma 4.7.2 (Log norm inequalities under multiplicative scalings). For each A ∈ Rn×n,

C ∈ Rn×n diagonal positive, and η ∈ Rn
>0,

(i) max
d∈[0,1]n

µ∞,[η](−C + [d]A) = max
{
µ∞,[η](−C), µ∞,[η](−C + A)

}
, and

(ii) max
d∈[0,1]n

µ1,[η](−C + A[d]) = max
{
µ1,[η](−C), µ1,[η](−C + A)

}
.

Proof. Define the short-hand ri = aii +
∑n

j=1,j ̸=i |aij|ηi/ηj and note

µ∞,[η](−C) = max
i∈{1,...,n}

{−ci}, µ∞,[η](−C + A) = max
i∈{1,...,n}

{−c+ ri}, and

µ∞,[η](−C + [d]A) = max
i∈{1,...,n}

{−ci + diri}.

Since 0 ≤ di ≤ 1, we note

ri ≤ 0 =⇒ diri ≤ 0 =⇒ −ci + diri ≤ −ci,

ri > 0 =⇒ diri ≥ 0 =⇒ −ci + diri ≤ −ci + ri.
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Therefore

max
d∈[0,1]n

max
i : ri≤0

{−ci + diri} = max
i : ri≤0

max
di∈[0,1]

{−ci + diri} = max
i : ri≤0

{−ci} ≤ µ∞,[η](−C),

max
d∈[0,1]n

max
i : ri>0

{−ci + diri} = max
i : ri>0

max
di∈[0,1]

{−ci + diri} = max
i : ri≤0

{−ci + ri} ≤ µ∞,[η](−C + A).

In summary

max
d∈[0,1]n

µ∞,[η](−C + [d]A) = max
d∈[0,1]n

max
i∈{1,...,n}

{−ci + diri}

= max
d∈[0,1]n

max
{

max
i : ri≤0

{−ci + diri}, max
i : ri>0

{−ci + diri}
}

≤ max
{
µ∞,[η](−C), µ∞,[η](−C + A)

}
.

On the other hand, we note that

max
d∈[0,1]n

µ∞,[η]([d]A− C) ≥ max
{
µ∞,[η]([0n]A− C), µ∞,[η]([1n]A− C)

}
= max

{
µ∞,[η](−C), µ∞,[η](−C + A)

}
,

thereby proving the equality in statement (i). Next, recall µ1,[η](B) = µ∞,[η](B
⊤) for all

B and compute

max
d∈[0,1]n

µ1,[η](−C + A[d]) = max
d∈[0,1]n

µ∞,[η](−C + [d]A⊤)

= max
{
µ∞,[η](−C), µ∞,[η](−C + A⊤)

}
= max

{
µ1,[η](−C), µ∞,[η](−C + A)

}
.

This concludes the proof of statement (ii).

In the same style as [66, Proposition 1] and [114, Theorems 1 and 2], the next lemma
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provides a parametrization of all matrices satisfying a µ∞ constraint.

Lemma 4.7.3 (Parametrization of matrices with bounded ℓ∞ measure). For any γ ∈ R,

(i) given any A ∈ Rn×n with µ∞(A) ≤ γ, there exists a T ∈ Rn×n such that A =

T − diag(|T |1n) + γIn,

(ii) given any T ∈ Rn×n, the matrix A = T − diag(|T |1n) + γIn ∈ Rn×n satisfies

µ∞(A) ≤ γ,

where we let |T | denote the entry-wise absolute value of T .

Proof. Regarding statement (i), define

tij = aij for all i ̸= j ∈ {1, . . . , n},

tii =
1

2

(
aii +

n∑
j=1,j ̸=i

|aij| − γ
)
, for i ∈ {1, . . . , n}.

Because µ∞(A) ≤ γ, we know aii +
∑n

j=1,j ̸=i |aij| ≤ γ for each i. This implies that

tii ≤ 0 and therefore tii − |tii| = aii +
∑n

j=1,j ̸=i |aij| − γ. It is an easy transcription

now to show that this equality and the off-diagonal equality tij = aij together imply

A = T − diag(|T |1n) + γIn.

Regarding statement (ii), note that aij = tij for all j ̸= i, and aii = tii−
∑n

j=1 |tij|+γ.

Then, for all i,

aii +
n∑

j=1,j ̸=i

|aij| =
(
tii −

n∑
j=1

|tij|+ γ
)
+

n∑
j=1,j ̸=i

|tij|

= tii − |tii|+ γ =


γ, if tii ≥ 0,

−2|tii|+ γ, if tii < 0.

Therefore, aii +
∑n

j=1,j ̸=i |aij| ≤ γ for all i and, in turn, µ∞(A) ≤ γ.
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We conclude with a simple graph-theoretical interpretation of the main well-posedness

condition µ∞(A) < 1. Loosely speaking, we call −aii the self-attenuation of neuron i and∑n
j=1,j ̸=i |aij| the strength of its outgoing synapses. Then

µ∞(A) < 1 ⇐⇒ aii +
n∑

j=1,j ̸=i

|aij| < 1 for all i

⇐⇒ for each neuron, strength of outgoing synapses < 1+ self-attenuation.

(4.18)

4.7.3 Proofs and additional results on non-differentiable acti-

vation functions

4.7.4 Proofs of Theorems 4.2.1 and 4.2.2

Proof of Theorem 4.2.1. Regarding (ii) =⇒ (i), note that, for every x ∈ Rn and every

0 < α ≤ α∗,

µ(DFα(x)) ≤ ∥DFα(x))∥ ≤ γℓ,c(α).

As a result, αµ(DF(x)) = µ(DFα(x))− 1 + α ≤ −1 + α + γℓ,c(α). Thus,

µ(DF(x)) ≤ 1− 1− γℓ,c(α)

α
, for all x ∈ Rn.

By choosing α = α̂ = 2c
(2c+ℓ+1)(ℓ+1)

< c
(c+ℓ+1)(ℓ+1)

, we get

µ(DF(x)) ≤ 1− 1− γℓ,c(α̂)

α̂
= 1− 1− (1− α̂c)

α̂
= 1− c, for all x ∈ Rn.

Thus, supx∈Rn µ(DF(x)) ≤ 1− c. This implies that osL(F) ≤ 1− c.
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Regarding (i) =⇒ (ii), using the mean value theorem for vector valued functions, we

compute

∥Fα(x)− Fα(y)∥ =
∥∥∥∫ 1

0

DFα(tx+ (1− t)y)dt(x− y)
∥∥∥ ≤ ∥DFα(x, y)∥∥x− y∥,

where DFα(x, y) =
∫ 1

0
DFα(tx+ (1− t)y)dt, for every x, y ∈ Rn.

Next, to obtain an upper bound on ∥DFα(x, y)∥, we first derive a lower bound on

∥DF−1

α (x, y)∥. We start by noting that, the product property (1.3f) implies ∥Av∥ ≥

−µ(−A)∥v∥, for every v ∈ Rn and every A ∈ Rn×n. Therefore, for every v ∈ Rn,

∥DF−1

α (x, y)v∥ ≥ −µ(−DF−1

α (x, y))∥v∥. (4.19)

Since DFα(x, y) = In + α(−In + DF(x, y)) and α < c
(c+ℓ+1)(ℓ+1)

≤ 1
ℓ+1

, we can use the

Neumann series to get

DF
−1

α (x, y) =
∞∑
i=0

(−1)iαi(−In +DF(x, y))i. (4.20)

We first compute an upper bound for µ(DF(x)). Since osL(F) ≤ 1−c, by the subadditive

property (1.3a) of the log norms, we get

µ(−In +DF(x, y)) = µ

(∫ 1

0

(−In +DF(tx+ (1− t)y))dt

)
≤
∫ 1

0

µ
(
− In +DF(tx+ (1− t)y)

)
dt ≤ −c. (4.21)
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Now, we use equation (4.20) to obtain

∥DF−1

α (x, y)v∥ ≥ −µ
( ∞∑

i=0

(−1)i+1αi(−In +DF(x, y))i
)
∥v∥

≥ −
(
µ(−In) + αµ(−In +DF(x, y))

+
∞∑
i=2

αiµ
(
(−1)i+1(−In +DF(x, y))i

))
∥v∥

≥ (1 + αc−
∞∑
i=2

(α(ℓ+ 1))i)∥v∥ =
(
1 + αc− α2(ℓ+ 1)2

1− α(ℓ+ 1)

)
∥v∥, (4.22)

where the first inequality holds by (4.19), the second inequality holds by subadditive

property of the log norm (1.3a), and the third inequality holds because, using (4.21)

and (1.3d), we obtain the upper bound:

µ
(
(−1)i+1(−In +DF(x, y))i

)
≤ ∥(−In +DF(x, y))i∥ ≤ (1 + ℓ)i, for all i ∈ Z≥0.

Note that α ∈ (0, c
(c+ℓ+1)(ℓ+1)

). Equation (4.22) implies that, for each w ∈ Rn and

v = DFα(x, y)w,

∥DFα(x, y)w∥
∥w∥ =

∥v∥
∥DF−1

α (x, y)v∥
≤ γℓ,c(α).

As a result, ∥DFα(x, y)∥ ≤ γℓ,c(α) and

∥Fα(x)− Fα(y)∥ ≤ γℓ,c(α)∥x− y∥, for all x, y ∈ Rn.

Regarding parts (iii) and (iv), a straightforward calculation shows that, if 0 < α <

c
(c+ℓ+1)(ℓ+1)

, then 1/
(
1 + αc − α2(ℓ+1)2

1−α(ℓ+1)

)
< 1. The result then follows from the Banach

fixed-point theorem. Regarding part (v), we define the function ξ : ]0, c
(c+ℓ+1)(ℓ+1)

[ → R>0
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by ξ(α) = 1 + αc− α2(ℓ+1)2

1−α(ℓ+1)
. Then it is clear that ξ(α) = 1/γℓ,c(α). Note that

dξ

dα
= (c+ ℓ+ 1)− ℓ+ 1

(1− α(ℓ+ 1))2
,

d2ξ

dα2
= − 2(ℓ+ 1)2

(1− α(ℓ+ 1))3
.

Since d2ξ
dα2 ≤ 0, we conclude that ξ is a concave function on (0, c

(c+ℓ+1)(ℓ+1)
) and its max-

imum is achieved at α∗ for which dξ
dα
(α∗) = 0. By a straightforward calculation, we

get

α∗ =
κ

c

(
1− 1√

1 + 1/κ

)

and it is easy to see that the optimal value is as claimed in the theorem statement.

Proof of Theorem 4.2.2. We restrict ourselves to the norm ∥·∥∞,[η]−1 ; the proof for ∥·∥1,[η]
is similar and omitted in the interest of brevity.

Regarding part (i), first we note that diagL(F) ≤ osL(F) < 1, since for every i ∈

{1 . . . , n} and every x ∈ Rn

DFii(x) ≤ DFii(x) +
∑
j ̸=i

|DFij(x)| ηiηj = µ∞,[η]−1(DF(x)) ≤ osL(F) < 1. (4.23)

This implies that 1
1−diagL(F)

> 0 and (1−osL(F))/(1−diagL(F)) ≤ 1. Moreover, for every

x ∈ Rn,

∥(1− α)In + αDF(x)∥∞,[η]−1 = ∥In + α(−In +DF(x))∥∞,[η]−1 .

Next, we study the diagonal entries of −In +DF(x). By the definition of diagL(F) and
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by equation (4.23),

− 1 + diagL(F) ≤ −1 +DFii(x) < 0 (for every i ∈ {1, . . . , n} and x)

=⇒ |1− diagL(F)| ≥ | − 1 +DFii(x)|

=⇒ 1− diagL(F) ≥ maxi | − 1 +DFii(x)|

=⇒ 1

1− diagL(F)
≤ 1

maxi | − 1 +DFii(x)|
.

Therefore, α ≤ 1
maxi |−1+DFii(x)| and we can use Lemma 4.7.1(i) to deduce that

∥(1− α)In + αDF(x)∥∞,[η]−1 = 1 + αµ∞,[η]−1(−In +DF(x))

= 1 + α(−1 + µ∞,[η]−1(DF(x))) for all x ∈ Rn

≤ 1 + α(−1 + osL(F)) = 1− α(1− osL(F)) < 1.

where the second equality follows from the translation property (1.3e) of log norms, and

the inequality holds because µ∞,[η]−1(DF(x)) ≤ osL(F) for all x, and the last inequality

holds because osL(F) < 1. This means that Lip(Fα) < 1, for every 0 < α ≤ 1
1−diagL(F)

and

the result follows from the Banach fixed-point theorem.

Regarding part (ii), we note the contraction factor is a strictly decreasing function

of α. At α = 0 the factor is 1 and at the maximum of value of α that is, at α∗ = (1 −

diagL(F))−1 the contraction factor is still positive since (1− osL(F))/(1− diagL(F)) ≤ 1.

Hence the minimum contraction factor is achieved at α∗.
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4.7.5 Proof of Theorem 4.2.3 and comparison with the litera-

ture

Before we prove Theorem 4.2.3, it is useful to compare it with similar results in the

literature. The result in [131, Lemma 1] is more general than Theorem 4.2.3 by allowing F

to be a multi-valued map defined on a metric space. However, Theorem 4.2.3(ii) uses the

one-side Lipschitz constant and provides a tighter upper bound on the distance between

fixed-points of F compared to its counterpart in [131, Lemma 1].

Proof of Theorem 4.2.3. Let J·, ·K be a WP for the norm ∥ · ∥X on Rn.

Regarding part (i), for every u ∈ Rm, we note that by definition of osLx(F), for every

u ∈ Rr,

JF(x, u)− F(y, u), x− yK ≤ osLx(F)∥x− y∥2X ,

This implies that osL(Fu) ≤ osLx(F) < 1, for every u ∈ Rr. Thus, by Theorem 4.2.1(iii),

Fu has a unique fixed-point x∗u.

Regarding part (ii), let J·, ·K be a WP for the norm ∥ · ∥X on Rn and compute

∥x∗u − x∗v∥2X = Jx∗u − x∗v, x
∗
u − x∗vK (by compatibility)

= JFu(x
∗
u)− Fv(x

∗
v), x

∗
u − x∗vK

≤ JFu(x
∗
u)− Fu(x

∗
v), x

∗
u − x∗vK + JFu(x

∗
v)− Fv(x

∗
v), x

∗
u − x∗vK (by sub-additivity)

≤ osLx(F)∥x∗u − x∗v∥2X + ∥Fu(x
∗
v)− Fv(x

∗
v)∥X∥x∗u − x∗v∥X (by Cauchy-Schwarz)

≤ osLx(F)∥x∗u − x∗v∥2X + Lipu(F)∥u− v∥U∥x∗u − x∗v∥X .

This implies that (1− osLx(F))∥x∗u − x∗v∥X ≤ Lipu(F)∥u− v∥U and the result of part (ii)

follows.
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4.7.6 Non-differentiable fixed-point problems

In many machine learning applications, the activation functions are continuous but

non-differentiable and thus our results in Sections 4.2 do not directly apply to these

problems. In this subsection, we focus on a specific form of the fixed-point equation (4.1),

where F = Φ ◦ H and Φ: Rn → Rn is a diagonal activation function with absolutely

continuous components and H : Rn × Rr → Rn is a differentiable function. It can be

shown that, for this class of systems, conclusions of Theorems 4.2.1, 4.2.2, and 4.2.3

still hold with respect to weighted ℓ∞-norms. Here, we present a result which extends

Theorems 4.2.2 and 4.2.3 for H(x, u) = G(x)+Bu given some B ∈ Rn×r and with respect

to the norm ∥ · ∥∞.[η]−1 .

Theorem 4.7.1 (Fixed points for non-differentiable activation functions). Consider the

norm ∥ · ∥∞,[η]−1 on Rn for some η ∈ Rn
>0 and the norm ∥ · ∥U on Rr. Additionally,

consider the following perturbed fixed point problem:

x = Φ(G(x) +Bu) := ΦG(x, u),

where Φ: Rn → Rn is a diagonal function given by (ϕ1(x1), . . . , ϕn(xn)) with non-expansive

and weakly increasing ϕi, G : Rn → Rn is a continuously differentiable function, and

B ∈ Rn×r. Define the average map ΦG
α(x, u) := (1−α)x+ΦG(x, u) and pick diagL(G)− ∈

[− Lip(G), osL(G)] such that

diagL(G)− ≤ min
i

inf
x∈Rn

DGii(x)−.

Assume that osL(G) < 1. Then,

(i) for every u ∈ Rn, the map ΦG(·, u) has a unique fixed-point x∗u;
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(ii) for every 0 < α ≤ 1
1−diagL(G)−

and every u ∈ Rr, ΦG
α(·, u) is a contraction map with

contraction factor 1− α(1− ReLU(osL(G)));

(iii) for every u, v ∈ Rr, we have ∥x∗u − x∗v∥∞,[η]−1 ≤ Lipu ΦG

1−ReLU(osLG)
∥u− v∥U .

Proof of Theorem 4.7.1. Regarding part (i), the assumptions on each scalar activation

function imply that (i) Φ: Rn → Rn is non-expansive with respect to ∥ · ∥∞,[η]−1 and

(ii) for every p, q ∈ R, there exists θi ∈ [0, 1] such that ϕi(p) − ϕi(q) = θi(p − q) or in

the matrix form Φ(p) − Φ(q) = Θ(p − q) where Θ is a diagonal matrix with diagonal

elements θi ∈ [0, 1] and p,q ∈ Rn. As a result, we have

∥ΦG
α(x1, u)− ΦG

α(x2, u)∥∞,[η]−1 = ∥(1− α)(x1 − x2) + αΘ(G(x1)− G(x2))∥∞,[η]−1

≤ sup
y∈Rn

∥In + α(−In +ΘDG(y))∥∞,[η]−1∥x1 − x2∥∞,[η]−1 .

where the inequality holds by the mean value theorem. Then, for every α ∈ ]0, 1
1−diagL(ΘDG)

],

∥In + α(−In +ΘDG(y))∥∞,[η]−1 = 1 + αµ∞,[η]−1

(
− In +ΘDG(y)

)
≤ 1 + α

(
− 1 + µ∞,[η]−1(ΘDG(y))

)
≤ 1 + α

(
− 1 + µ∞,[η]−1(DG(y))+

)
≤ 1− α(1− osL(G)+) < 1,

where the first equality holds by Lemma 4.7.1(i), the second inequality holds by subaddi-

tive property of matrix measures (1.3a), and the third inequality holds by Lemma 4.7.2.

Moreover, since θi ∈ [0, 1], we have θiDGii ≥ (DGii)−, for every i ∈ {1, . . . , n}. This

means that

diagL(ΘDG) = min
i

inf
y∈Rn

(ΘDG(y))ii ≥ min
i

inf
y∈Rn

(DGii(y))− = diagL(G)−.
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This implies that, for every α ∈ (0, 1
1−diagL(G)−

],

∥ΦG
α(x1, u)− ΦG

α(x2, u)∥∞,[η]−1 ≤ (1− α(1− ReLU(osL(G))))∥x1 − x2∥∞,[η]−1 .

Since 1 − α(1 − ReLU(osL(G))) < 1, the map ΦG
α(·, u) is a contraction for every α ∈

(0, 1
1−diagL(G)−

]. This concludes the proof of parts (i) and (ii),

Regarding part (iii), from formula (2.15) for the one-sided Lipschitz constant and

formula (3.2) for the relevant WP, we obtain that, for all x1, x2 ∈ Rn,

JΦ(G(x1) +Bu)− Φ(G(x2) +Bu), x1 − x2K∞,[η]−1

= max
i∈I∞([η]−1(x1−x2))

η−2
i (x1 − x2)i(ϕi((G(x1) +Bu)i)− ϕi((G(x2) +Bu)i))

= max
i∈I∞([η]−1(x1−x2))

θiη
−2
i (x1 − x2)i((G(x1) +Bu)i − (G(x2) +Bu)i)

= max
i∈I∞([η]−1(x1−x2))

θiη
−2
i (x1 − x2)i(G(x1)− G(x2))i,

Next, we recall Lumer’s equality and write it as

osL(G) = sup
x1 ̸=x2

max
i∈I∞([η]−1(x1−x2))

η−2
i (x1 − x2)i(G(x1)− G(x2))i.

Next, we consider two cases. Suppose that osL(G) ≤ 0. Since θi ∈ [0, 1] for all i, we

obtain

JΦ(G(x1) +Bu)− Φ(G(x2) +Bu), x1 − x2K∞,[η]−1 ≤ 0,

since the maximum value is achieved at θi = 0 for all i. Alternatively, suppose that
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osL(G) > 0. Then

JΦ(G(x1) +Bu)− Φ(G(x2) +Bu), x1 − x2K∞,[η]−1

= max
i∈I∞([η]−1(x1−x2))

θiη
−2
i (x1 − x2)i(G(x1)− G(x2))i

≤ max
i∈I∞([η]−1(x1−x2))

η−2
i (x1 − x2)i(G(x1)− G(x2))i ≤ osL(G)∥x1 − x2∥2∞,[η]−1 ,

since the maximum value is achieved at θi = 1 for all i. This means that osL(ΦG) =

ReLU(osL(G)). Now we compute

∥x∗u − x∗v∥2∞,[η]−1 = Jx∗u − x∗v, x
∗
u − x∗vK∞,[η]−1

=
q
ΦG

u(x
∗
u)− ΦG

v (x
∗
v), x

∗
u − x∗v

y
∞,[η]−1

≤
q
ΦG

u(x
∗
u)− ΦG

u(x
∗
v), x

∗
u − x∗v

y
∞,[η]−1 +

q
ΦG

u(x
∗
v)− ΦG

v (x
∗
v), x

∗
u − x∗v

y
∞,[η]−1

≤ osL(G)+∥x∗u − x∗v∥2∞,[η]−1 + ∥ΦG
u(x

∗
v)− ΦG

v (x
∗
v)∥∞,[η]−1∥x∗u − x∗v∥∞,[η]−1

≤ osL(G)+∥x∗u − x∗v∥2∞,[η]−1 + Lipu(Φ
G)∥u− v∥U∥x∗u − x∗v∥∞,[η]−1 .

This implies that (1−ReLU(osL(G)))∥x∗u−x∗v∥∞,[η]−1 ≤ Lipu(Φ
G)∥u− v∥U and the result

follows.

4.7.7 Proofs of results in Section 4.3

Proof of Theorem 4.3.1. The assumptions on each scalar activation function imply that

(i) Φ: Rn → Rn is non-expansive with respect to ∥ · ∥∞,[η]−1 , and (ii) for every p, q ∈ R,

there exists θi ∈ [0, 1] such that ϕi(p) − ϕi(q) = θi(p − q). Regarding the equality

osLx(N) = ReLU(µ∞,[η]−1(A)), from formula (2.15) for the one-sided Lipschitz constant
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and formula (3.2) for the relevant WP, we obtain that, for all x1, x2 ∈ Rn,

JΦ(Ax1 +Bu)− Φ(Ax2 +Bu), x1 − x2K∞,[η]−1

= max
i∈I∞([η]−1(x1−x2))

η−2
i (x1 − x2)i(ϕi((Ax1 +Bu)i)− ϕi((Ax2 +Bu)i))

= max
i∈I∞([η]−1(x1−x2))

θiη
−2
i (x1 − x2)i((Ax1 +Bu)i − (Ax2 +Bu)i)

= max
i∈I∞([η]−1(x1−x2))

θiη
−2
i (x1 − x2)i(Ax1 − Ax2)i,

Next, we recall Lumer’s equality and write it as

µ∞,[η]−1(A) = sup
x1 ̸=x2

max
i∈I∞([η]−1(x1−x2))

η−2
i (x1 − x2)i((Ax1)i − (Ax2)i).

Next, we consider two cases. Suppose that µ∞,[η]−1(A) ≤ 0. Since θi ∈ [0, 1] for all i, we

obtain

JΦ(Ax1 +Bu)− Φ(Ax2 +Bu), x1 − x2K∞,[η]−1 ≤ 0,

since the maximum value is achieved at θi = 0 for all i. Alternatively, suppose that

µ∞,[η]−1(A) > 0. Then

JΦ(Ax1 +Bu)− Φ(Ax2 +Bu), x1 − x2K∞,[η]−1

= max
i∈I∞([η]−1(x1−x2))

θiη
−2
i (x1 − x2)i(Ax1 − Ax2)i

≤ max
i∈I∞([η]−1(x1−x2))

η−2
i (x1 − x2)i(Ax1 − Ax2)i ≤ µ∞,[η]−1(A)∥x1 − x2∥2∞,[η]−1 ,
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since the maximum value is achieved at θi = 1 for all i. This concludes the proof of

formula osLx(N) = µ∞,[η]−1(A)+. Next, since Φ is non-expansive, we compute

∥N(x1, u)− N(x2, u)∥∞,[η]−1 = ∥Φ(Ax1 +Bu)− Φ(Ax2 +Bu)∥∞,[η]−1

≤ ∥(Ax1 +Bu)− (Ax2 +Bu)∥∞,[η]−1

≤ ∥A(x1 − x2)∥∞,[η]−1 ≤ ∥A∥∞,[η]−1∥x1 − x2∥∞,[η]−1 ,

proving the formula for Lipx(N) = ∥A∥∞,[η]−1 . The proof of the formula Lipu(N) =

∥B∥(∞,[η]−1),U is essentially identical. Finally, if each ϕi is differentiable then we compute

diagL(N) = min
i∈{1,...,n}

inf
x∈Rnu∈Rr

DNii(x, u) = min
i∈{1,...,n}

inf
x∈Rnu∈Rr

ϕ′
i((Ax+Bu)i)Aii

≤ min
i∈{1,...,n}


0, if Aii > 0

Aii, if Aii ≤ 0

= min
i∈{1,...,n}

(Aii)−, (4.24)

because of the properties of the activation functions. Now suppose that there ex-

ists i ∈ {1, . . . , n} such that ϕi is not differentiable. Using Theorem 4.7.1(ii) with

G = A, diagL(N) is chosen to be equal to be diagL(A)− which in turn is equal to

mini∈{1,...,n}(Aii)−.

Proof of Corollary 4.3.1. The results are immediate consequences of Theorem 4.2.2 (or

more generally Theorem 4.7.1 for non-differentiable activation functions) and of the Lip-

schitz estimates in Theorem 4.3.1.

4.8 Adversarial attacks on implicit neural networks

In this section, we study the effect of different adversarial attacks on the existing

implicit network models as well as to the NEMON model.
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4.8.1 Attack models

First, we review several attack models that are used in the literature to study the

input-output resilience of neural networks. Each attack consists of a model for generating

suitable perturbations of the test input data. Perturbations with respect to these attacks

were generated using the Foolbox software package5.

Label: 6 Label: 0 Label: 5 Label: 4 Label: 9 Label: 9 Label: 2 Label: 1

Figure 4.5: Images of MNIST handwritten digits perturbed by the continuous image
inversion attack. For i ∈ {1, . . . , 5}, row i corresponds to an ℓ∞ perturbation am-
plitude ε = 0.1 × (i − 1). In other words, the top row has unperturbed images, the
second row has images that is perturbed by an ℓ∞ amplitude ε = 0.1, etc.

Continuous image inversion. The continuous image inversion attack is defined by:

Uadversarial = U + ε sign
(

1
2
1r1

⊤
m − U

)
. (4.25)

5The Foolbox implementation is licensed under the MIT License and is available at
https://github.com/bethgelab/foolbox.
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It is clear that this attack is independent of the neural network model. Plots of perturbed

MNIST images under the continuous image inversion attack are shown in Figure 4.6. In

Figure 4.2, the right plot compares the accuracy of the NEMON model, the implicit deep

learning model [110], and the MON model [66] for ε ∈ [0.0.5].

Label: 6 Label: 0 Label: 5 Label: 4 Label: 9 Label: 9 Label: 2 Label: 1

Figure 4.6: Images of MNIST handwritten digits as perturbed by uniform additive
ℓ∞ noise. For i ∈ {1, . . . , 5}, row i corresponds to an ℓ∞ perturbation amplitude
ε = 0.2 × (i − 1). In other words, the top row has unperturbed images, the second
row has images that is perturbed by an ℓ∞ amplitude ε = 0.2, etc.

Uniform additive ℓ∞-noise. For this attack, the test images are perturbed by an

additive noise with ℓ∞ magnitude sampled uniformly from the interval [0, 1]. Plots of

perturbed MNIST images under uniform additive ℓ∞-noise are shown in Figure 4.6.

Figure 4.7 shows scatter plots of the accuracy of the NEMON model, the implicit deep

learning model, and the MON model over 1000 sample attacks.
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Fast gradient sign method. Given input data U ∈ Rr×m and output labels Y ∈

Rq×m, the fast gradient sign method (FGSM) generates adversarial inputs via the formula

Uadversarial = U + ε sign
(∂L
∂U

(Y,CX +DU)
)
, (4.26)

where L is the loss function used to train the network and ε provides the ℓ∞ amplitude

of the perturbation. Plots of perturbed MNIST images under the FGSM are shown in

Figure 4.8. Plots of accuracy versus ℓ∞ perturbation under the FGSM are shown in

Figure 4.9.

Projected gradient descent method. The projected gradient descent method (PGDM)

can be thought of as perturbing the input with several steps of the FGSM. The PGDM

attack can be defined for any norm, but for consistency, we reproduce it only for the

ℓ∞-norm. For the input data U ∈ Rr×m and outputs Y ∈ Rq×m, PGDM defines the finite

sequence of perturbations {δk}Mk=1 by

δk+1 = PB(ε)

(
δk + α sign

(∂L
∂U

(Y,CX +D(U + δk)
))

, (4.27)

where M is some prescribed maximum number of steps, α is a stepsize, and PB(ε) is the

ℓ2 orthogonal projection operator onto the entrywise ℓ∞ closed ball with radius ε. This

projection operator corresponds to clipping each entry of the matrix so that it is in the

range [−ε, ε]. Then, the perturbed input is simply

Uadversarial = U + δM .

Plots of perturbed MNIST images under the PGDM are shown in Figure 4.10. Plots of

accuracy versus ℓ∞ perturbation under the PGDM are shown in Figure 4.11.
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4.8.2 Other methods to decrease the ℓ∞ Lipschitz constant

Recall that the input-output Lipschitz constant of the model (4.7) with both ∥ · ∥U
and ∥ · ∥Y equal to the ℓ∞-norm is given by

Lipu→y =
∥B∥(∞,[η]−1),(∞)∥C∥(∞),(∞,[η]−1)

1− ReLU(µ∞,[η]−1(A))
+ ∥D∥∞,∞.

When input data, U , is perturbed, the perturbation is directly fed into the output Y via

the output equation Y = CX + DU . For this reason, a simple change to attempt to

minimize the effect of input perturbations on the output is to replace the DU term in

the output equation by a static bias, i.e.,

Y = CX + b1⊤m,

where b ∈ Rq. This simple modification to the model changes the input-output Lipschitz

constant to

Lipu→y =
∥B∥(∞,[η]−1),(∞)∥C∥(∞),(∞,[η]−1)

1− ReLU(µ∞,[η]−1(A))
.

Finally, another degree of freedom is the parameter γ < 1 in the constraint µ∞,[η]−1(A) ≤

γ. In all previously shown experiments on MNIST, we selected γ = 0.95. From the ex-

pression for the input-output Lipschitz constant of the network (4.11), µ∞,[η]−1(A) =

0.95 leads to a small denominator, resulting in a relatively large input-output Lips-

chitz constant. A simple modification to moderate the Lipschitz constant is to impose

µ∞,[η]−1(A) ≤ ϵ for some small ϵ ≥ 0. This attempts to maximize the denominator in the

expression for the Lipschitz constant.

For these modifications to the models, plots of accuracy versus ℓ∞-perturbation gen-

erated by the FGSM are shown in Figure 4.12. In this figure, we set ϵ = 0.05 for the

NEMON models. For comparison, the well-posedness condition for MON is set to be
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µ2(A) ≤ ϵ. We do not modify the condition ∥A∥∞ ≤ 0.95 as imposing the constraint

∥A∥∞ ≤ ϵ is overly restrictive and would result in a significant drop in accuracy.

4.8.3 Robustness of implicit neural networks on the MNIST

dataset

In this section, we compare the performance of the NEMONmodel with µ∞(A) ≤ 0.95

to the implicit deep learning model with ∥A∥∞ ≤ 0.95 and to the monotone operator

equilibrium network (MON) with In − 1
2
(A + A⊤) ⪰ 0.05In with respect to the attacks

described in the previous subsection on the MNIST dataset.

For the continuous image inversion attack, Figure 4.2 shows the curves for accuracy

versus ℓ∞-amplitude of the perturbation. We observe that, compared to the NEMON

model, the implicit deep learning model and the monotone operator equilibrium network

(MON) have larger drops in accuracy for small perturbations. For the NEMON model,

as λ increases, the accuracy at zero perturbation decreases. However, as λ increases, the

overall robustness of NEMON improves as its accuracy does not decrease substantially

even for large amplitudes of perturbation.

For uniform additive ℓ∞-noise, scatter plots with accuracy versus ℓ∞ amplitude of the

perturbation are shown in Figure 4.7. We see that the NEMON model with λ = 0, the

implicit deep learning model, and the MON model all perform comparably. The NEMON

models with λ = 10−1 and λ = 10−2.5 both see improved robustness as their accuracy

does not drop as noticeably with ℓ∞ amplitude of the perturbation. Surprisingly, the

NEMON model with λ = 10−5 seems to be less robust than the NEMON model with

λ = 0.

For the FGSM, Figure 4.9 shows the curves for accuracy versus ℓ∞ amplitude of

the perturbation. We see that the NEMON models with λ = 10−5 and λ = 10−4 are
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the least robust, followed by the NEMON model with λ = 0 and the MON. Only for

λ ∈ {10−2.5, 10−2, 10−1} do we see an improvement in robustness for the NEMON model

at the price of a decrease in nominal accuracy. Note that for the FGSM, each model

experiences different perturbations.

For the PGDM, Figure 4.11 shows the curves for accuracy versus ℓ∞ amplitude of the

perturbation. We see that the results are comparable with the perturbation generated

by the FGSM, with the exception that the implicit deep learning model now performs

comparably with the monotone operator equilibrium model. Note that for the PGDM,

each model experiences different perturbations.

Finally, we compare the performance of the models with the modification that the

output equation is Y = CX + b1⊤m. Figure 4.12 shows the curves for accuracy versus ℓ∞

amplitude of the FGSM perturbation for the NEMON model with µ∞(A) ≤ 0.05, the

implicit deep learning model with ∥A∥∞ ≤ 0.95, and the monotone operator equilibrium

model with In − 1
2
(A + A⊤) ⪰ 0.05In. For these modifications in the models, we see

improvement in overall accuracy compared to original models of implicit networks (4.7)

shown in Figure 4.9. Additionally, we observe comparable performance in the NEMON

model with λ = 0 and the implicit deep learning model, with the MON performing

slightly better than both. For the NEMON model with λ = 10−4, the accuracy at zero

perturbation is comparable to the NEMON model with λ = 0 and the overall robustness

of the NEMON model to the FGSM attack is significantly improved. However, as λ

increases, we see that the nominal accuracy and overall robustness of the NEMON models

deteriorate.

4.8.4 Robustness of implicit neural networks on the CIFAR-10

dataset
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In this section, we compare the performance of the NEMON model with µ∞(A) ≤ 0

to MON with In − 1
2
(A + A⊤) ⪰ In with respect to the FGSM attack described in the

previous subsection on the CIFAR-10 dataset.

For the FGSM attack on the CIFAR-10 dataset, Figure 4.13 shows the accuracy versus

the ℓ∞ amplitude of the perturbation for the regularized and un-regularized NEMON

model and the MON model. We observe that un-regularized NEMON model is more

accurate than MON for all amplitudes of perturbation. For example, at ℓ∞-perturbation

equal to 0.1, the accuracy of un-regularized NEMON is 39% whereas the accuracy of

MON at this attack amplitude is 35%. Moreover, the regularized NEMON with the

regularization parameter λ = 10−4 has a clean performance accuracy of 66% which is

lower than the clean accuracy of both MON and the un-regularized NEMON. However,

the regularized NEMON demonstrates a consistent improvement in accuracy for sizeable

ℓ∞-perturbations. For example, at an ℓ∞-perturbation equal to 0.15, the accuracy of the

regularized NEMON model is 29% whereas the accuracy of MON at this attack amplitude

is 24%.
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Figure 4.7: Scatter plots of accuracy versus ℓ∞ perturbation as generated by
uniform additive ℓ∞ noise over 1000 trials. Plots are shown for the NEMON
model µ∞(A) ≤ 0.95 with λ ∈ {10−1, 10−2.5, 10−5, 0}, the implicit deep learning
model ∥A∥∞ ≤ 0.95, and the monotone operator equilibrium network (MON) with
In − 1

2(A+A⊤) ⪰ 0.05In.
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Label: 6 Label: 0 Label: 5 Label: 4 Label: 9 Label: 9 Label: 2 Label: 1

Figure 4.8: Images of MNIST handwritten digits as perturbed by the FGSM. For
i ∈ {1, . . . , 5}, row i corresponds to an ℓ∞ perturbation amplitude ε = 0.1 × (i − 1).
In other words, the top row has unperturbed images, the second row has images that
is perturbed by an ℓ∞ amplitude ε = 0.1, etc.
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Figure 4.9: Plot of accuracy versus ℓ∞ perturbation as generated by the FGSM
for the NEMON model with µ∞(A) ≤ 0.95, the implicit deep learning model with
∥A∥∞ ≤ 0.95, and MON with In − 1

2(A+A⊤) ⪰ 0.05In.

146



Robust Implicit Networks via Non-Euclidean Contractions Chapter 4

Label: 6 Label: 0 Label: 5 Label: 4 Label: 9 Label: 9 Label: 2 Label: 1

Figure 4.10: Images of MNIST handwritten digits as perturbed by the PGDM. For
i ∈ {1, . . . , 5}, row i corresponds to an ℓ∞ perturbation amplitude ε = 0.1 × (i − 1).
In other words, the top row has unperturbed images, the second row has images that
is perturbed by an ℓ∞ amplitude ε = 0.1, etc.
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Figure 4.11: Plot of accuracy versus ℓ∞ perturbation as generated by the PGDM
for the NEMON model with µ∞(A) ≤ 0.95, the implicit deep learning model with
∥A∥∞ ≤ 0.95, and MON with In − 1

2(A+A⊤) ⪰ 0.05In.
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Figure 4.12: Plot of accuracy versus ℓ∞ perturbation as generated by the FGSM
for the NEMON model with µ∞(A) ≤ 0.05, the implicit deep learning model with
∥A∥∞ ≤ 0.95, and MON with In − 1

2(A + A⊤) ⪰ 0.05In. The output equation is
Y = CX + b1⊤m.

148



Robust Implicit Networks via Non-Euclidean Contractions Chapter 4

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
`∞ amplitude of perturbation

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Accuracy vs perturbation on CIFAR-10 images
λ= 10−4

λ= 10−5

λ= 0

MON

Figure 4.13: Plot of accuracy versus ℓ∞ perturbation as generated by the FGSM for
the NEMON model with µ∞(A) ≤ 0 and MON with In − 1

2(A+A⊤) ⪰ In.
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Chapter 5

Non-Euclidean Contraction Analysis

of Continuous-Time Neural

Networks

An early version of this chapter was first published in the Proceedings of the American

Control Conference, 2022 [135]. The chapter, as it appears, was first published in IEEE

Transactions on Automatic Control [100].1

5.1 Introduction

Motivation from dynamical neuroscience and machine learning. Tremendous

progress made in neuroscience research has produced new understanding of biological

neural processes. Similarly, machine learning has become a key technology in modern so-

ciety, with remarkable progress in numerous computational tasks. Much ongoing research

1©2025 IEEE. Reprinted, with permission, from Alexander Davydov, Anton V. Proskurnikov, and
Francesco Bullo, Non-Euclidean Contraction Analysis of Continuous-Time Neural Networks, January
2025.
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focuses on artificial learning systems inspired by neuroscience that (i) generalize better,

(ii) learn from fewer examples, and (iii) are increasingly energy-efficient. We argue that

further progress in these disciplines hinges upon modeling, analysis, and computational

challenges, some of which we highlight in what follows.

In dynamical neuroscience, several continuous-time neural network (NN) models

are widely studied, including membrane potential models such as the Hopfield neural

network [136] and firing-rate models [137]. Clearly, such models are simplifications of

complex neural dynamics. For example, if f(x) is an NN model of a neural circuit, the

true dynamics may be better described by

ẋ(t) = f(x(t)) + g(x(t), x(t− τ(t))), (5.1)

where g captures model uncertainty and time-delays. In other words, to account for

uncertainty in the system, the nominal dynamics f(x) must exhibit robust stability with

respect to unmodeled dynamics and delays. Additionally, central pattern generators

(CPGs) are biological neural circuits that generate periodic signals and are the source of

rhythmic motor behaviors such as walking and swimming. To properly model CPGs in

NNs, a computational neuroscientist would need to ensure that, if an NN is interconnected

with a CPG, then all trajectories of the NN converge to a unique stable limit cycle.

Machine learning scientists have widely adopted discrete-time NNs for pattern

recognition and analysis of sequential data and much recent interest [109, 120, 114, 98]

has focused on the closely-related class of implicit NNs. In particular, training implicit

networks corresponds to solving fixed-point problems of the form

x = Φ(Ax+Bu+ b), (5.2)
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where x is the neural state variable, Φ is an activation function, A and B are synaptic

weights, u is the input stimulus, and b is a bias term. Note that (i) the fixed point in

equation (5.2) is the equilibrium point of the continuous-time NN ẋ = −x+Φ(Ax+Bu+

b), (ii) the training problem requires the efficient computation of gradients of a given loss

function with respect to model parameters; in turn, this computation can be cast again

as a fixed-point problem. In other words, in the design of implicit NNs, it is essential to

pick model weights in such a way that fixed-point equations have unique solutions for all

possible inputs and activation functions, and fixed-points and corresponding gradients

can be computed efficiently.

Finally, an additional challenge facing machine learning scientists is robustness to

adversarial perturbations. Indeed, it is well-known [118] that artificial deep NNs are

sensitive to adversarial perturbations: small input changes may lead to large output

changes and loss in pattern recognition accuracy. One proposed remedy is to characterize

the Lipschitz constants of these networks and use them as regularizers in the training

process. This remedy leads to certifiable robustness bounds with respect to adversarial

perturbations [130, 128]. In short, the input/output Lipschitz constants of NNs need to

be tightly estimated, e.g., in the context of the fixed-point equation (5.2).

A contraction theory for neural networks. Motivated by the challenges arising

in neuroscience and machine learning, this chapter aims to perform a robust stability

analysis of continuous-time NNs and develop optimization methods for discrete-time NN

models. Serendipitously, both these objectives can be simultaneously achieved through

a contraction analysis for the NN dynamics.

For concreteness’ sake, we briefly review how the aforementioned challenges are ad-

dressed by a contraction analysis. Infinitesimally contracting dynamics enjoy highly

ordered transient and asymptotic behaviors: (i) initial conditions are forgotten and a

certain distance between trajectories is monotonically vanishing [23], (ii) time-invariant
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systems admit a unique globally exponentially stable equilibrium with two natural Lya-

punov functions (distance from the equilibrium and norm of the vector field) [23], (iii)

periodic systems admit a unique globally exponentially stable periodic solution or, for sys-

tems with periodic inputs, each solution entrains to the periodic input [6], (iv) contracting

vector fields enjoy highly robust behavior, e.g., see [138, 5], including (a) input-to-state

stability, (b) finite input-state gain, (c) contraction margin with respect to unmodeled dy-

namics, and (d) input-to-state stability under delayed dynamics. Hence, the contraction

rate is a natural measure/indicator of robust stability.

Regarding computational efficiency, our recent work [97, 98] shows how to design

efficient fixed-point computation schemes for contracting systems (with respect to arbi-

trary and non-Euclidean ℓ1/ℓ∞ norms) in the style of monotone operator theory [74].

Specifically, for contracting dynamics with respect to a diagonally-weighted ℓ1/ℓ∞ norm,

optimal step-sizes and convergence factors are given in [98, Theorem 2]. These results

are directly applicable to the computation of fixed-points in implicit neural networks, as

in equation (5.2). These step-sizes, however, depend on the contraction rate. Therefore,

optimizing the contraction rate of the dynamics directly improves the convergence factor

of the corresponding discrete algorithm.

Literature review. The dynamical properties of continuous-time NN models have

been studied for several decades. Shortly after Hopfield’s original work [136], control-

theoretic ideas were proposed in [139]. Later, [140, 141, 142] obtained various version of

the following result: Lyapunov diagonal stability of the synaptic matrix is sufficient, and

in some cases necessary, for the existence, uniqueness, and global asymptotic stability of

the equilibrium. More recently, [143] studies linear-threshold rate neural dynamics, where

activation functions are piecewise-affine; it is shown that the dynamics have a unique

equilibrium if and only if the synaptic matrix is a P-matrix, a weaker condition than

Lyapunov diagonal stability. Since checking this condition is NP-hard, more conservative
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conditions are provided as well. Beyond Lyapunov diagonal stability and P-matrices,

[133] is the earliest reference on the application of logarithmic norms and contraction-

theoretic principles to Hopfield neural networks and provides results on ℓp logarithmic

norms of the Jacobian for networks with smooth activation functions. Alternatively,

[144] proposes a quasi-dominance condition on the synaptic matrix (in lieu of Lyapunov

diagonal stability). Finally, similar to non-Euclidean contraction, [7] proposes the notion

of the nonlinear measure of a map to study global asymptotic stability; this notion is

closely related to the ℓ1 one-sided Lipschitz constant of the Hopfield neural network vector

field. A comprehensive survey on stability criteria for continuous-time NNs is available

in [145].

The importance of non-Euclidean log norms in contraction theory is highlighted,

for example, in [6, 14]. In the spirit of these works, the non-Euclidean contractivity of

monotone Hopfield neural networks is studied in [146]; see also [147] for the non-Euclidean

contractivity of Hopfield neural networks undergoing Hebbian learning.

Finally, Euclidean contractivity of continuous-time NNs has been studied, e.g., see

the early reference [133], the related discussion in [114], and the recent work [148].

Contributions. This chapter contributes fundamental control-theoretic understand-

ing to the study of artificial neural networks in machine learning and neuronal circuits in

neuroscience, thereby building a hopefully useful bridge among these three disciplines.

Specifically, the chapter develops a comprehensive contraction theory for classes of

continuous-time NN models. In order to develop this theory, we make several technical

contributions on non-Euclidean logarithmic norms and nonsmooth contraction theory.

To be specific, first, we obtain novel logarithmic norm results including (i) the quasicon-

vexity of the ℓ1 and ℓ∞ logarithmic norms with respect to diagonal weights and provide

novel optimization techniques to compute optimal weights which yield larger contraction

rates, (ii) logarithmic norm properties of principal submatrices of a matrix with respect
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to monotonic norms, and (iii) explicit formulas for the ℓ1 and ℓ∞ logarithmic norms un-

der multiplicatively-weighted uncertainty, resulting in a maximization of the logarithmic

norm over a matrix polytope. The matrix polytopes described in (iii) are of special in-

terest since the Jacobian matrix of the Hopfield or firing-rate neural network vector field

always lies inside this polytope. The formulas in (iii) generalize previous results [133,

Theorem 3.8], [134, Lemma 3] and [98, Lemma 8].

Motivated by our non-Euclidean logarithmic norm results, we define M -Hurwitz ma-

trices, i.e., matrices whose Metzler majorant is Hurwitz. We compare M -Hurwitz ma-

trices with other classes of matrices including quasidominant, totally Hurwitz, and Lya-

punov diagonally stable matrices.

Second, we provide a nonsmooth extension to contraction theory. We show that, for

locally Lipschitz vector fields, the one-sided Lipschitz constant is equal to the essential

supremum of the logarithmic norm of the Jacobian. This equality allows us to use our

novel logarithmic norm results and apply them to NNs that have nonsmooth activation

functions.

Finally, we apply our theoretical developments as we establish conditions for the

non-Euclidean contractivity of multiple classes of recurrent neural circuits and nonlinear

dynamical models, including Hopfield, firing rate, Persidskii, Lur’e, and others. We

consider locally Lipschitz activation functions that satisfy an inequality of the form d1 ≤
ϕ(x)− ϕ(y)

x− y
≤ d2, for all x ̸= y ∈ R, where d1 may be negative and d2 may be infinite.

Indeed, the importance of nonmonotonic activation functions is discussed in [149]. This

class of activation functions is more general than all of the continuous activation functions

mentioned in [145, Section II.B]. Thus, our non-Euclidean contraction framework allows

for a more systematic framework for the analysis of these classes of NNs with fewer

restrictions on the activation functions. For each model, we propose a linear program to

characterize the optimal contraction rate and corresponding weighted non-Euclidean ℓ1
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or ℓ∞ norm. In some special cases, we show that the linear program reduces to checking

an M -Hurwitz condition. Our results simplify the computation of a common Lyapunov

function over a polytope with 2n vertices to a simple condition involving just 2 of its

vertices or, in some cases, all the way to a closed form expression.

For each model, we demonstrate that the dynamics enjoy strong, absolute and to-

tal contractivity properties. In the spirit of absolute and connective stability, absolute

contractivity means that the dynamics are contracting independently of the choice of

activation function and connective stability means that the dynamics remain contract-

ing whenever edges between neurons are removed. Total contractivity means that if the

synaptic matrix is replaced by any principal submatrix, the resulting dynamics remain

contracting. The process of replacing the nominal NN with a subsystem NN is referred

to as “pruning” both in neuroscience and in machine learning.

A preliminary version of this work appeared in [135]. Compared to [135], this version

(i) includes proofs of all technical results, (ii) provides closed-form worst-case log norms

over a larger class of matrix polytopes in Lemma 5.4.3, (iii) studies a more general class of

locally Lipschitz activation functions in Section 5.6, allowing for both nonmonotonic acti-

vation functions as well as activations that have unbounded derivative, (iv) has a complete

characterization of contractivity of Hopfield and firing-rate neural networks with respect

to both ℓ1 and ℓ∞ norms, (v) provides a novel sufficient (and nearly necessary) condi-

tion for the non-Euclidean contractivity of a Lur’e model with multiple nonlinearities

in Theorem 5.6.11, and (vi) includes additional comparisons to Euclidean contractivity

conditions in Remark 5.6.1 and to Lyapunov diagonal stability in Section 5.2.

Notation unique to this chapter. For two matrices A,B, we let Aij be the entry

in the i-th row and j-th column of A, A ◦ B be entrywise multiplication and |A| be

the entrywise absolute value. Vector (and matrix) inequalities of the form x ≤ y are

entrywise. The Metzler majorant of a square matrix A is ⌈A⌉Mzr ∈ Rn×n is defined by
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(⌈A⌉Mzr)ij =


Aii, if i = j

|Aij|, if i ̸= j

.

5.2 Preview of main contractivity results and advan-

tages of a non-Euclidean analysis

To motivate the mathematical tools and analysis in Sections 5.4-5.6, we will show-

case the main contractivity results for Hopfield and firing-rate neural networks under

simplifying assumptions to provide a baseline for comparison to other standard stability

conditions for these classes of neural networks.

The continuous-time Hopfield and firing-rate neural networks are the following two

dynamical systems:

ẋ = −Cx+ AΦ(x) + u =: fH(x), (5.3)

ẋ = −Cx+ Φ(Ax+ u) =: fFR(x), (5.4)

where x ∈ Rn is the state of the neural network (either a vector of membrane poten-

tials or firing rates), C ∈ Rn×n is a positive semidefinite diagonal matrix of dissipation

rates, A ∈ Rn×n is the synaptic matrix , u ∈ Rn is a constant external stimulus, and

Φ: Rn → Rn is an activation function which satisfies Φ(x) = (ϕ1(x1), . . . , ϕn(xn)). In the

machine learning literature, such continuous-time NNs have been given the name neural

ODEs [119].

For exposition’s sake, we make the following standing assumptions throughout the

remainder of this section:

Assumption 1. (i) C = In,

157



Non-Euclidean Contraction Analysis of Continuous-Time Neural Networks Chapter 5

(ii) the matrix ⌈A⌉Mzr is irreducible, and

(iii) each ϕi is continuously differentiable and satisfies

0 ≤ ϕ′
i(x) ≤ 1 for all x ∈ R.

Under these assumptions, we can state our main results compactly:

Proposition 5.2.1. Consider the Hopfield and firing-rate neural networks (5.3) and (5.4)

satisfying Assumption 1, suppose α(⌈A⌉Mzr) < 1, and define c = 1−max{α(⌈A⌉Mzr, 0)}.

Then

(i) the Hopfield neural network is contracting with rate c > 0, i.e., any two trajectories

x1(·), x2(·) of (5.3) satisfy

∥x1(t)− x2(t)∥1,[η] ≤ e−ct∥x1(0)− x2(0)∥1,[η],

for all t ≥ 0, where η ∈ Rn
>0 is the dominant left eigenvector of the Metzler matrix

⌈A⌉Mzr.

(ii) the firing-rate neural network is contracting with rate c > 0, i.e., any two trajecto-

ries x1(·), x2(·) of (5.4) satisfy

∥x1(t)− x2(t)∥∞,[ξ]−1 ≤ e−ct∥x1(0)− x2(0)∥∞,[ξ]−1 ,

for all t ≥ 0 where ξ ∈ Rn
>0 is the dominant right eigenvector of the Metzler matrix

⌈A⌉Mzr.

In particular, under Assumption 1 and α(⌈A⌉Mzr) < 1 (or equivalently α(⌈−In +

A⌉Mzr) < 0), for each u ∈ Rn, both the Hopfield and firing-rate neural networks have

unique globally exponentially stable equilibria and thus the condition α(⌈−In+A⌉Mzr) <
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0 provides a novel sufficient condition for the existence of a unique globally exponential

stable equilibrium along with many additional robustness properties offered by contract-

ing systems such as robustness to uncertainties and entrainment to periodic inputs.

Although in this chapter we primarily study the continuous-time NNs (5.3) and (5.4),

we remark that many results apply to classes of discrete-time NNs as well. Specifically,

given a continuous-time NN, ẋ = fNN(x), which is contracting, the forward Euler dis-

cretization of the continuous-time NN with stepsize h > 0 yields a residual neural network

xk+1 = xk + hfNN(xk), (5.5)

which is contracting in the sense of the Banach fixed point theorem for sufficiently small

h (see, e.g., [97, Theorem 8]). For recent results on contraction for a different class of

discrete-time NNs, we refer to [150].

The condition α(⌈−In + A⌉Mzr) < 0 is different from the well-known result that

Lyapunov diagonal stability (LDS) of−In+A, i.e., existence of a vector η ∈ Rn
>0 satisfying

[η](−In + A) + (−In + A)⊤[η] ≺ 0, (5.6)

implies the existence of a unique globally asymptotically stable equilibrium point for the

Hopfield neural network [142]. Moreover, the condition α(⌈−In +A⌉Mzr) < 0 is stronger

than LDS of −In+A, which we prove in Lemma 5.3.2, yet it implies the stronger property

of contractivity.

Beyond LDS, an alternative way to establish the stability of the neural networks (5.3)

and (5.4) is via absolute stability analysis of Lur’e systems and methods via quadratic

Lyapunov functions. These methods are typically based upon linear matrix inequalities

(LMIs), see, e.g., [37, 151] and the discussion in [145, Section I.V.]. Compared to these
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classical approaches, establishing contractivity with respect to diagonally-weighted ℓ1 or

ℓ∞ norms provides both computational and practical advantages, which we highlight in

the following paragraphs.

Computational benefits. In the non-Euclidean contraction analysis of many classes

of neural networks, contractivity is checked either via linear programming or, in some

simpler instances, the stability of appropriate Metzler matrices. As argued in [152],

from a computational point of view, both of these tests are more scalable than LMIs are.

Indeed, there exist efficient algorithms for computing Perron eigenvalues and eigenvectors

for irreducible Metzler matrices [153].

Practical benefits. Compared to stability with respect to a quadratic Lyapunov

function, there are also practical advantages to establishing contractivity with respect to

diagonally-weighted ℓ1 and ℓ∞ norms. These benefits include (i) the ℓ1 norm (respectively,

the ℓ∞ norm) is well suited for systems with conserved quantities (respectively, systems

with translation invariance), e.g., see the theory of weakly contracting and monotone

systems in [154, Chapter 4], (ii) in machine learning, analysis of the adversarial robust-

ness of a NN often needs to be performed in a non-Euclidean norm, because NNs are

known to be vulnerable to small disturbances as measured in the ℓ∞ norm [75], and (iii)

contractivity with respect to non-Euclidean norms ensures robustness with respect to

edge removals and structural perturbations, e.g., see the notion of connective stability

in [155].

To elaborate on point (iii) in the previous paragraph, in continuous-time NNs such as

the Hopfield and firing rate neural networks (5.3)-(5.4), the synaptic matrix A defines a

graph structure whereby there is an outgoing synapse from neuron j to neuron i provided

that Aij ̸= 0. As we will show in Corollary 5.4.6, if the neural network is contracting with

respect to a diagonally-weighted ℓ1 or ℓ∞ norm, it is connectively contracting. Specifically,
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the removal of any edge2 or neuron from the graph3 yields a new neural network that

remains contracting with a rate greater than or equal to the rate of contraction of the

original neural network. Note that this property is not enjoyed by stability conditions

requiring a matrix to be LDS. Indeed, for the Hopfield neural network (5.3), consider

A =


0 −1 1

1 0 15

−1 −15 0

 , Ã =


0 −1 1

1 0 15

−1 0 0

 .

Note that A satisfies (5.6) with η = 1n so −In + A is LDS and thus the Hopfield neural

network is stable. However, zeroing out A32 yields Ã which verifies α(−In + Ã) > 0, so

the resulting NN is not absolutely stable.

In the following sections, we introduce additional mathematical tools to prove Propo-

sition 5.2.1 under assumptions weaker than those listed in Assumption 1. Specifically, we

(i) relax item (i) to C which is diagonal and positive semidefinite, (ii) relax item (ii) to

also study ⌈A⌉Mzr which may be reducible, and (iii) relax item (iii) to study nonsmooth

activation functions which may be nonmonotonic and may have unbounded slope. See

Theorems 5.6.1, 5.6.3, and 5.6.5 for these results. Beyond the proof of a more general ver-

sion of Proposition 5.2.1, we also establish ℓ∞ contractivity of the Hopfield neural network

in Theorem 5.6.2, the ℓ1 contractivity of the firing-rate neural network in Theorem 5.6.4,

and study the contractivity of other classes of neural networks in Section 5.6.4. In the

interest of readability, we postpone proofs of most technical results to Appendix 5.8 and

include proofs regarding contractivity of classes of NNs in the main body of the text.

2Removing an edge corresponds to zeroing a non-diagonal entry of A.
3Removing the i-th neuron corresponds to removing the i-th row and column of A.
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5.3 Review of relevant matrix analysis

5.3.1 Useful log norms characterizations for diagonally-weighted

norms

For diagonally weighted ℓ1, ℓ∞, and ℓ2 norms with η ∈ Rn
>0,

µ1,[η](A) = max
i∈{1,...,n}

Aii +
∑n

j=1,j ̸=i

ηj
ηi
|Aji|

= min{b ∈ R | ⌈A⌉⊤Mzrη ≤ bη},

µ∞,[η]−1(A) = max
i∈{1,...,n}

Aii +
∑n

j=1,j ̸=i

ηj
ηi
|Aij|

= min{b ∈ R | ⌈A⌉Mzrη ≤ bη},

µ2,[η]1/2(A) = min{b ∈ R | [η]A+ A⊤[η] ⪯ 2b[η]}.

The following result is due to [156] and [61, Lemma 3].

Lemma 5.3.1 (Optimal diagonally-weighted log norms for Metzler matrices). Given a

Metzler matrix M ∈ Rn×n, p ∈ [1,∞], and δ > 0, define ηM,p,δ ∈ Rn
>0 by

ηM,p,δ =

(
w

1/p
1

v
1/q
1

, . . . ,
w

1/p
n

v
1/q
n

)
, (5.7)

where q ∈ [1,∞] is defined by 1/p + 1/q = 1 (with the convention 1/∞ = 0) and where

v and w ∈ Rn
>0 are the right and left dominant eigenvectors of the irreducible Metzler

matrix M + δ1n1
⊤
n (whose existence is guaranteed by the Perron-Frobenius Theorem).

Then for each ε > 0 there exists δ > 0 such that

(i) α(M) ≤ µp,[ηM,p,δ](M) ≤ α(M) + ε,

(ii) if M is irreducible, then α(M) = µp,[ηM,p,0](M).
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Lemma 5.3.1 also ensures that for Metzler matrices M ∈ Rn×n, infη∈Rn
>0
µp,[η](M) =

α(M) for every p ∈ [1,∞].

5.3.2 Classes of matrices

We say a matrix A ∈ Rn×n is

(i) Hurwitz stable, denoted by A ∈ H, if α(A) < 0,

(ii) totally Hurwitz, denoted by A ∈ T H, if all principal submatrices of A are Hurwitz

stable,

(iii) Lyapunov diagonally stable (LDS), denoted by A ∈ LDS, if there exists a η ∈ Rn
>0

such that µ2,[η]1/2(A) < 0, and

(iv) M-Hurwitz stable, denoted by A ∈ MH, if α(⌈A⌉Mzr) < 0.

A matrix A ∈ Rn×n is quasidominant [157] if there exists a vector η ∈ Rn
>0 such that

ηiAii >
∑n

j=1,j ̸=i
ηj|Aij|, for all i ∈ {1, . . . , n}.

This is equivalent to ⌈−A⌉Mzrη < 0n, which, in turn, is equivalent (see, for example, [158,

Theorem 15.17]) to the inequality α(⌈−A⌉Mzr) < 0, i.e., −A ∈ MH.

The following results are essentially known in the literature, but not collected in a

unified manner.

Lemma 5.3.2 (Inclusions for classes of matrices). (A ∈ MH) implies (A ∈ LDS),

(A ∈ LDS) implies (A ∈ T H), and (A ∈ T H) implies (A ∈ H).
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We show that the counter-implications in Lemma 5.3.2 do not hold.

Example 5. (i) (A ∈ LDS ≠⇒ A ∈ MH) The matrix A =

−1 −1

2 −1

 satisfies

µ2(A) = −0.5, so A ∈ LDS. However, α(⌈A⌉Mzr) =
√
2− 1 > 0, so A /∈ MH.

(ii) (A ∈ T H ≠⇒ A ∈ LDS) is proved in [159, Remark 4].

(iii) (A ∈ H ≠⇒ A ∈ T H) The matrix A =

 1 1

−4 −3

 satisfies α(A) = −1, so

A ∈ H. However, A /∈ T H since it has a positive diagonal entry.

In the context of Proposition 5.2.1, the condition α(⌈−In +A⌉Mzr) < 0, is equivalent

to asking −In + A ∈ MH, which, in light of Lemma 5.3.2, implies −In + A ∈ LDS,

which was the previously known sufficient condition for asymptotic stability of a unique

fixed point of the Hopfield NN.

5.4 Novel log norm results

5.4.1 Optimizing non-Euclidean log norms

First, we provide novel results on optimizing diagonal weights for ℓ1 and ℓ∞ log norms

and provide computational methods to compute these weights.

Theorem 5.4.1 (Quasiconvexity of µ with respect to diagonal weights). For fixed A ∈

Rn×n, consider the maps from Rn
>0 to R defined by

η 7→ µ1,[η](A), η 7→ µ∞,[η]−1(A). (5.8)

Then
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(i) The maps in (5.8) are continuous, quasiconvex, and their sublevel sets are polytopes.

(ii) Minimizing the maps in (5.8) may be executed via the minimization problems

inf
b∈R,η∈Rn

>0

b

s.t. ⌈A⌉⊤Mzrη ≤ bη,

(5.9)

for µ1,[η](A) and

inf
b∈R,η∈Rn

>0

b

s.t. ⌈A⌉Mzrη ≤ bη,

(5.10)

for µ∞,[η]−1(A).

Remark 5.4.1. If ⌈A⌉Mzr is irreducible, by Lemma 5.3.1 the optimization problems

in (5.9) and (5.10) attain their minima so that the inf may be replaced by min. Then

the problems may be solved by a bisection on b ∈ [−∥A∥, ∥A∥], where each step of the

algorithm is a linear program (LP) in η.

Moreover, the minima in (5.9) and (5.10) exist for many types of reducible matrices,

e.g. when ⌈A⌉Mzr is a block-diagonal matrix whose diagonal blocks are irreducible.

In the event that the minimum does not exist, let b⋆ be the infimum value of either

(5.9) or (5.10). Then for any ϵ > 0, one can still apply the bisection algorithm to find a

choice of η such that µ[η](A) ≤ b⋆ + ϵ, where µ[η](·) denotes either µ1,[η](·) or µ∞,[η]−1(·).

Remark 5.4.2. Notice that the sets of feasible vectors η in (5.9) and (5.10) are polyhedral

cones, that is, if η is feasible, then θη is also feasible for all θ > 0. Hence, the constraint

η ∈ Rn
>0 can be replaced by an equivalent constraint η ∈ [ε,∞)n, where ε > 0 is an

arbitrary constant. This can be useful, because LP solvers usually handle problems with

non-strict inequalities.
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Next, we provide closed-form expressions for ℓ1 and ℓ∞ log norms over a certain

polytopes of matrices. Polytopes of interest are defined by a nominal matrix multiplied

by a diagonally-weighted uncertainty and shifted by an additive diagonal matrix. Such

matrix polytopes arise in tests verifying the contractivity of Hopfield and firing-rate NNs

and will play a critical role in our analysis.

This insert corresponds to Lemma 5.4.3. For A ∈ Rn×n, c ∈ Rn, d1 ≤ d2 ∈ R, d =

max{|d1|, |d2|}, and η ∈ Rn
>0,

max
d∈[d1,d2]n

µ∞,[η]([c] + [d]A) = max
{
µ∞,[η]([c] + d1A), µ∞,[η]([c] + d2A)

}
, (5.11)

max
d∈[d1,d2]n

µ1,[η]([c] + A[d]) = max
{
µ1,[η]([c] + d1A), µ1,[η]([c] + d2A)

}
, (5.12)

max
d∈[d1,d2]n

µ∞,[η]([c] + A[d]) = max
{
µ∞,[η]([c] + dA− (d− d1)(In ◦ A)), (5.13)

µ∞,[η]([c] + dA− (d− d2)(In ◦ A))
}
,

max
d∈[d1,d2]n

µ1,[η]([c] + [d]A) = max
{
µ1,[η]([c] + dA− (d− d1)(In ◦ A)), (5.14)

µ1,[η]([c] + dA− (d− d2)(In ◦ A))
}
.

Lemma 5.4.3 (Max value of ℓ1/ℓ∞ log norms under multiplicative scalings). Any A ∈

Rn×n, c ∈ Rn, d1 ≤ d2 ∈ R, and η ∈ Rn
>0 satisfy formulas (5.11)-(5.14) where d =

max{|d1|, |d2|}.

Recall that the log norm is a convex function and that the maximum value of a convex

function over a polytope is achieved at one of the vertices of the polytope. In the special

case in Lemma 5.4.3, formulas (5.11)-(5.14) ensure that one needs to check only 2 vertices
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of the polytope, rather than 2n.

Finally, we show how the optimal diagonal weights that minimize the maximum value

of the log norm of a matrix polytope as in Lemma 5.4.3 can be easily computed.

Corollary 5.4.4. Let A, c, d1, and d2 be as in Lemma 5.4.3. Then for µ[η](·) denoting

either µ1,[η](·) or µ∞,[η]−1(·) the minimax problems

inf
η∈Rn

>0

max
d∈[d1,d2]n

µ[η]([c] + [d]A),

inf
η∈Rn

>0

max
d∈[d1,d2]n

µ[η]([c] + A[d]),

may each be solved by a bisection algorithm, each step of which is an LP.

Proof. The proof is an immediate consequence of the formulas (5.11)-(5.14) as well as the

fact that a max of quasiconvex functions is quasiconvex. Therefore, a bisection algorithm

similar to the one in Theorem 5.4.1(ii) may be used to compute the optimal η.

5.4.2 Monotonicity of diagonally-weighted log norms

Theorem 5.4.2 (Monotonicity of α and µ). For any A ∈ Rn×n

(i) α(A) ≤ α(⌈A⌉Mzr),

(ii) for all p ∈ [1,∞] and η ∈ Rn
>0, we have µp,[η](A) ≤ µp,[η](⌈A⌉Mzr), with equality

holding for p ∈ {1,∞}.

(iii) For p ∈ {1,∞},

inf
η∈Rn

>0

µp,[η](A) = α(⌈A⌉Mzr) ≥ α(A).

Theorem 5.4.2(iii) demonstrates that using diagonally-weighted ℓ1 and ℓ∞ log norms,

the best bound one can achieve on α(A) is α(⌈A⌉Mzr), which may be conservative. In
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the following example, we show that the ℓ2 norm does not have the same conservatism.

Despite the conservatism, Theorem 5.4.1 demonstrates that optimizing diagonal weights

is computationally efficient, being an LP at every step of the bisection, while optimizing

weights for the ℓ2 norm is a semidefinite program at every step, which is more computa-

tionally challenging than an LP of similar dimension.

Example 6. The matrix A∗ =

 1 1

−1 1

 has eigenvalues {1+i, 1−i} whereas ⌈A∗⌉Mzr has

eigenvalues {2, 0}. Therefore, α(A∗) = 1 < 2 = α(⌈A∗⌉Mzr). Additionally, (A∗+A
⊤
∗ )/2 =

I2 =⇒ µ2(A∗) = 1 and µ2(⌈A∗⌉Mzr) = 2.

5.4.3 Log norms of principal submatrices

Given a matrix A ∈ Rn and a non-empty index set I ⊂ {1, . . . , n}, let AI ∈ R|I|×|I|

denote the principal submatrix obtained by removing the rows and columns of A which

are not in I. Next, given a non-empty I ⊂ {1, . . . , n}, define the zero-padding map

padI : R|I| → Rn as follows: padI(y) is obtained by inserting zeros among the entries of

y corresponding to the indices in {1, . . . , n}\I. For example, with n = 3 and I = {1, 3},

we define pad{1,3}(y1, y2) = (y1, 0, y2). Then it is easy to see that given a norm ∥ ·∥ on Rn

and non-empty I ⊂ {1, . . . , n}, the map ∥ · ∥I : R|I| → R≥0 defined by ∥y∥I = ∥ padI(y)∥

is a norm on R|I|.

Lemma 5.4.5 (Norm and log norm of principal submatrices). Assume ∥·∥ is monotonic,

let µ and µI denote the log norms associated to ∥ · ∥ and ∥ · ∥I respectively. Any matrix

A ∈ Rn×n satisfies

(i) ∥AI∥I ≤ ∥A∥,

(ii) µI(AI) ≤ µ(A),
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(iii) if µ(A) < 0, then A ∈ T H.

Corollary 5.4.6. Suppose A ∈ MH ⊂ Rn×n. Then

(i) AI ∈ MH ⊂ R|I|×|I| for every non-empty I ⊂ {1, . . . , n} and

(ii) A−Aijeij ∈ MH for all i, j ∈ {1, . . . , n}, i ̸= j, where eij is a matrix with all zeros

and unity in its ij-th entry.

In the context of Proposition 5.2.1, since our sufficient condition for the contractivity

of the Hopfield and firing-rate NNs is −In + A ∈ MH, Corollary 5.4.6 implies that

this sufficient condition implies total and structural contractivity, i.e., the removal of

any neuron or edge from the neural network yields a new neural network that remains

contracting.

5.5 Nonsmooth contraction theory

In this section we consider locally Lipschitz f and show that in this case, the definition

of osL does not depend on the weak pairing and instead depends only on the norm through

the log norm.

Theorem 5.5.1 (osL simplification for locally Lipschitz f). For f : U → Rn locally

Lipschitz on an open convex set, U ⊆ Rn. Then for every c ∈ R the following statements

are equivalent:

(i) osL(f) ≤ c,

(ii) µ(Df(x)) ≤ c for almost every x ∈ U .

Specifically, osL(f) = ess supx∈U µ(Df(x)), where ess sup denotes the essential supremum.
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Recall that Df(x) exists for almost every x ∈ U by Rademacher’s theorem and thus

the essential supremum ignores the Lebesgue measure zero set where Df doesn’t exist.

Theorem 5.5.1 demonstrates that locally Lipschitz f enjoy a similar simplification in

the osL definition as do continuously differentiable functions.

In neural network models, nonsmooth activation functions such as ReLU, LeakyReLU,

and nonsmooth saturation functions are prevalent; Theorem 5.5.1 allows us to use stan-

dard log norm results to analyze these models. In other words, for a given continuous-time

neural network dynamics ẋ = fNN(x), with locally Lipschitz fNN, to establish contractiv-

ity, it suffices to verify that µ(DfNN(x)) ≤ −c for almost every x.

5.6 Contracting neural network dynamics

In this section, we prove Proposition 5.2.1 in greater generality. Specifically, we

establish tight estimates for the one-sided Lipschitz constant for both the Hopfield and

firing-rate NNs with respect to both diagonally-weighted ℓ1 and ℓ∞ norms. In instances

where the one-sided Lipschitz constant is negative, we conclude that the neural network

is strongly infinitesimally contracting. Beyond the Hopfield and firing-rate NNs, we also

study the non-Euclidean contractivity of other classes of NNs.

5.6.1 One-sided Lipschitz characterization of Hopfield NNs

Recall the Hopfield NN dynamics, first introduced in [136]:

ẋ = −Cx+ AΦ(x) + u =: fH(x), (5.15)

where C ∈ Rn×n is a positive semi-definite diagonal matrix, A ∈ Rn×n is arbitrary, u ∈ Rn

is a constant input, and Φ: Rn → Rn is an activation function. We make the following
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assumption on our activation functions:

Assumption 2 (Activation functions). Activation functions are locally Lipschitz and

diagonal, i.e., Φ(x) = (ϕ1(x1), . . . , ϕn(xn)) where each ϕi : R → R satisfies

d1 := inf
x,y∈R,x ̸=y

ϕi(x)− ϕi(y)

x− y
> −∞,

d2 := sup
x,y∈R,x ̸=y

ϕi(x)− ϕi(y)

x− y
.

(5.16)

When ϕi satisfies (5.16) with finite d2, we write ϕi ∈ slope[d1, d2]. If d2 = ∞, we write

ϕi ∈ slope[d1,∞].

Assumption 2 with finite d2 implies that activation functions are (globally) Lipschitz

and that ϕ′
i(x) ∈ [d1, d2] for almost every x ∈ R. Many common activation functions

satisfy these assumptions including ReLU, tanh and sigmoids. If, instead, d2 = ∞, we can

consider locally Lipschitz activation functions with unbounded slope including rectified

polynomials ϕ(x) = max{x, 0}r for r ∈ Z≥0 which have been studied in [160]. Note that

compared to Assumption 1, our activation functions do not need to be differentiable and

are permitted more arbitrary bounds on their slopes.

The following theorem is the counterpart to Proposition 5.2.1(i) under more general

assumptions.

Theorem 5.6.1 (ℓ1 one-sided Lipschitzness of Hopfield neural network). Consider the

Hopfield neural network (5.15) with each ϕi ∈ slope[d1, d2]. Then

(i) for arbitrary η ∈ Rn
>0, osL1,[η](fH) = max

{
µ1,[η](−C + d1A), µ1,[η](−C + d2A)

}
.
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(ii) the vector η minimizing osL1,[η](fH) is the solution to

inf
b∈R,η∈Rn

>0

b

s.t. (−C + ⌈d1A⌉⊤Mzr)η ≤ bη,

(−C + ⌈d2A⌉⊤Mzr)η ≤ bη,

and if the infimum value is attained at parameter values b⋆, η⋆, then osL1,[η⋆](fH) =

b⋆.

Further, suppose ⌈A⌉Mzr is irreducible. Then

(iii) if C = cIn and d1 ≥ 0, then, with wA ∈ Rn
>0 being the left dominant eigenvector of

⌈A⌉Mzr,

inf
η∈Rn

>0

osL1,[η](fH) = osL1,[wA](fH) = −c+max{d1α(⌈A⌉Mzr), d2α(⌈A⌉Mzr)}. (5.17)

(iv) if d1 = 0 and C ≻ 0, then, with w∗ ∈ Rn
>0 being the left dominant eigenvector of

−C + d2⌈A⌉Mzr,

inf
η∈Rn

>0

osL1,[η](fH) = osL1,[w∗](fH) = max
{
α(−C), α(−C + d2⌈A⌉Mzr)

}
. (5.18)

In particular, Theorem 5.6.1 provides exact values for the minimal one-sided Lipschitz

constant of the Hopfield neural network with respect to diagonally-weighted ℓ1 norms.

As a consequence of this theorem, suppose the inf in statement (ii) is attained and

let b⋆, η⋆ be the optimal parameters for the LP. If b⋆ < 0, then the Hopfield neural

network (5.15) is strongly infinitesimally contracting with rate |b⋆| with respect to ∥·∥1,[η⋆].

Note, in particular, that if d1 = 0, d2 = 1, C = In, and α(⌈A⌉Mzr) < 1, statement (iii) is

equivalent to the statement in Proposition 5.2.1(i).
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Proof of Theorem 5.6.1. Regarding statement (i), for any η ∈ Rn
>0,

osL1,[η](fH) = sup
x∈Rn\ΩfH

µ1,[η](DfH(x)) = sup
x∈Rn\ΩfH

µ1,[η](−C + ADΦ(x))

= max
d∈[d1,d2]n

µ1,[η](−C + A[d])

= max
{
µ1,[η](−C + d1A), µ1,[η](−C + d2A)

}
,

where the second-to-last equality holds by Assumption 2 and the last equality holds by

Lemma 5.4.3.

Statement (ii) holds by Corollary 5.4.4. Regarding statement (iii), if C = cIn and

d1 ≥ 0, then

osL1,[η](fH) = −c+max
{
µ1,[η](d1A), µ1,[η](d2A)

}
= −c+max

{
d1µ1,[η](A), d2µ1,[η](A)

}
.

Additionally, recall that η = wA is the optimal weight from Lemma 5.3.1 for the irre-

ducible Metzler matrix ⌈A⌉Mzr with respect to p = 1. Therefore,

inf
η∈Rn

>0

osL1,[η](fH) = osL1,[wA](fH) = −c+max{d1µ1,[wA](A), d2µ1,[wA](A)}

= −c+max{d1α(⌈A⌉Mzr), d2α(⌈A⌉Mzr)}

Regarding statement (iv), if d1 = 0 and C ≻ 0, we compute

osL1,[η](fH) = max
{
µ1,[η](−C), µ1,[η](−C + d2A)

}
= max

{
α(−C), µ1,[η](−C + d2A)

}
,

which holds because µ1,[η](−C) = maxi∈{1,...,n}−cii = α(−C) for every η ∈ Rn
>0. Addi-

tionally, we have that η = w∗ is the optimal weight for the irreducible Metzler matrix
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−C + d2⌈A⌉Mzr by Lemma 5.3.1. Thus,

inf
η∈Rn

>0

osL1,[η](fH) = osL1,[w∗](fH) = max{α(−C), α(−C + d2⌈A⌉Mzr)},

which proves the result.

Remark 5.6.1 (Comparison to [148, Theorem 1], [154, Exercise 2.22]). For A ∈ Rn×n,

define its nonnegative Metzler majorant ⌈A⌉+Mzr by

(⌈A⌉+Mzr)ij =


max{Aii, 0}, if i = j,

|Aij|, if i ̸= j

.

In [148, Theorem 1], for d1 = 0 and C = In it is shown that if α(−In+d2⌈A⌉+Mzr) < 0, then

the Hopfield neural network (5.15) is contracting with respect to a diagonally-weighted ℓ2

norm which is given in Lemma 5.3.1. Compared to the condition α(−In + ⌈A⌉+Mzr) < 0,

the condition in Theorem 5.6.1(iv) replaces ⌈A⌉+Mzr with ⌈A⌉Mzr and thus guarantees that

a larger class of synaptic matrices still guarantee contractivity of the Hopfield neural

network.

Additionally, beyond Proposition 5.2.1(i), we characterize the ℓ∞ one-sided Lipschitz

constant of the Hopfield NN in the following theorem.

Theorem 5.6.2 (ℓ∞ one-sided Lipschitzness of Hopfield neural network). Consider the

Hopfield neural network (5.15) with each ϕi ∈ slope[d1, d2]. Let d = max{|d1|, d2|}. Then

(i) for arbitrary η ∈ Rn
>0, osL∞,[η]−1(fH) = max{µ∞,[η]−1(−C + dA− (d− d1)(In ◦A)),

µ∞,[η]−1(−C + dA− (d− d2)(In ◦ A))}.

174



Non-Euclidean Contraction Analysis of Continuous-Time Neural Networks Chapter 5

(ii) the vector η minimizing osL∞,[η]−1(fH) is the solution to

inf
b∈R,η∈Rn

>0

b

s.t. (−C + ⌈dA− (d− d1)(In ◦ A)⌉Mzr)η ≤ bη,

(−C + ⌈dA− (d− d2)(In ◦ A)⌉Mzr)η ≤ bη,

and if the infimum value is attained at parameter values b⋆, η⋆, then

osL∞,[η⋆]−1(fH) = b⋆.

Proof. Regarding statement (i), in analogy to the proof of Theorem 5.6.1(i), we have

osL∞,[η]−1(fH) = max
d∈[d1,d2]n

µ∞,[η]−1(−C + A[d])

= max{µ∞,[η]−1(−C + dA− (d− d1)(In ◦ A)), µ∞,[η]−1(−C + dA− (d− d2)(In ◦ A))},

where the final equality is by Lemma 5.4.3. Statement (ii) is then a consequence of

Corollary 5.4.4.

5.6.2 One-sided Lipschitz characterization of firing-rate NNs

Recall the firing-rate NN dynamics:

ẋ = −Cx+ Φ(Ax+ u) =: fFR(x). (5.19)

The interpretation for this name is that if Φ(x) is nonnegative for all x ∈ Rn (as is ReLU),

then the positive orthant is forward-invariant and x is interpreted as a vector of firing-

rates, while in the Hopfield neural network, x can be negative and is thus interpreted as

a vector of membrane potentials.

The following two theorems are generalizations of Proposition 5.2.1(ii) under more
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general assumptions. Specifically, Theorem 5.6.3 characterizes one-sided Lipschitzness of

the firing-rate NN with respect to diagonally, weighted ℓ∞ norms, while Theorem 5.6.4

does the same with respect to diagonally-weighted ℓ1 norms.

Theorem 5.6.3 (ℓ∞ one-sided Lipschitzness of firing-rate neural network). Consider the

firing-rate neural network (5.19) with each ϕi ∈ slope[d1, d2] and invertible A. Then

(i) for arbitrary η ∈ Rn
>0, osL∞,[η]−1(fFR) = max{µ∞,[η]−1(−C + d1A), µ∞,[η]−1(−C +

d2A)}.

(ii) The choice of η minimizing osL∞,[η]−1(fFR) is the solution to

inf
b∈R,η∈Rn

>0

b

s.t. (−C + ⌈d1A⌉Mzr)η ≤ bη,

(−C + ⌈d2A⌉Mzr)η ≤ bη,

and if the infimum value is attained at parameter values b⋆, η⋆, then

osL∞,[η⋆]−1(fFR) = b⋆.

Further, suppose that ⌈A⌉Mzr is irreducible. Then

(iii) if C = cIn and d1 ≥ 0, then, with vA ∈ Rn
>0 being the right dominant eigenvector

of ⌈A⌉Mzr,

inf
η∈Rn

>0

osL∞,[η](fFR) = osL∞,[vA]−1(fFR) = −c+max{d1α(⌈A⌉Mzr), d2α(⌈A⌉Mzr)}. (5.20)

(iv) if d1 = 0 and C ≻ 0, then, with v∗ ∈ Rn
>0 being the right dominant eigenvector of

−C + d2⌈A⌉Mzr,

inf
η∈Rn

>0

osL∞,[η](fFR) = osL∞,[v∗]−1(fFR) = max
{
α(−C), α(−C + d2⌈A⌉Mzr)

}
. (5.21)
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Proof. Regarding statement (i), for any η ∈ Rn
>0 we compute

osL∞,[η]−1(fFR) = sup
x∈Rn\ΩfFR

µ∞,[η]−1(DfFR(x)) = sup
x∈Rn\ΩfFR

µ∞,[η]−1(−C +DΦ(Ax+ u)A)

= max
d∈[d1,d2]n

µ∞,[η]−1(−C + [d]A)

= max
{
µ∞,[η]−1(−C + d1A), µ∞,[η]−1(−C + d2A)

}
,

where the second-to-last equality holds by Assumption 2 and because A is invertible.

The last equality holds by Lemma 5.4.3.

Statement (ii) is a consequence of Corollary 5.4.4. Regarding statement (iii), if C =

cIn and d1 ≥ 0, then

osL∞,[η]−1(fFR) = −c+max
{
µ∞,[η]−1(d1A), µ∞,[η]−1(d2A)

}
= −c+max

{
d1µ∞,[η]−1(A), d2µ∞,[η]−1(A)

}
.

Additionally, recall that η = vA is the optimal weight from Lemma 5.3.1 for the irreducible

Metzler matrix ⌈A⌉Mzr with respect to p = ∞. Therefore,

inf
η∈Rn

>0

osL∞,[η]−1(fFR) = osL∞,[vA]−1(fFR) = −c+max{d1µ∞,[vA]−1(A), d2µ∞,[vA]−1(A)}

= −c+max{d1α(⌈A⌉Mzr), d2α(⌈A⌉Mzr)}.

Regarding statement (iv), if d1 = 0 and C ≻ 0, we compute

osL∞,[η]−1(fFR) = max
{
µ∞,[η]−1(−C), µ∞,[η]−1(−C + d2A)

}
= max

{
α(−C), µ∞,[η]−1(−C + d2A)

}
,

which holds because µ∞,[η]−1(−C) = maxi∈{1,...,n}−cii = α(−C) for every η ∈ Rn
>0.
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Additionally, we have that η = v∗ is the optimal weight for the irreducible Metzler

matrix −C + d2⌈A⌉Mzr by Lemma 5.3.1. Thus,

inf
η∈Rn

>0

osL∞,[η]−1(fFR) = osL∞,[v∗]−1(fFR) = max{α(−C), α(−C + d2⌈A⌉Mzr)},

which proves the result.

Theorem 5.6.4 (ℓ1 one-sided Lipschitzness of firing-rate neural network). Consider the

firing-rate neural network (5.19) with each ϕi ∈ slope[d1, d2], and invertible A. Let

d = max{|d1|, |d2|}. Then

(i) for arbitrary η ∈ Rn
>0, osL1,[η](fFR) = max{µ1,[η](−C + dA− (d− d1)(In ◦ A)),

µ1,[η](−C + dA− (d− d2)(In ◦ A))}.

(ii) the vector η minimizing osL1,[η](fFR) is the solution to

inf
b∈R,η∈Rn

>0

b

s.t. (−C + ⌈dA− (d− d1)(In ◦ A)⌉Mzr)
⊤η ≤ bη,

(−C + ⌈dA− (d− d2)(In ◦ A)⌉Mzr)
⊤η ≤ bη,

and if the infimum value is attained at parameter values b⋆, η⋆, then

osL1,[η⋆](fFR) = b⋆.

Proof. Regarding statement (i), in analogy to the proof of Theorem 5.6.3(i), we have

osL1,[η](fFR) = max
d∈[d1,d2]n

µ1,[η](−C + [d]A) = max{µ1,[η](−C + dA− (d− d1)(In ◦ A)),

µ1,[η](−C + dA− (d− d2)(In ◦ A))},

where the final equality is by Lemma 5.4.3. Statement (ii) is then a consequence of
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Corollary 5.4.4.

Remark 5.6.2. For invertible A ∈ Rn×n, Theorems 5.6.3(i) and 5.6.4(i) provide an

exact value for the minimal one-sided Lipschitz constant of the firing rate model with

respect to a given norm. If A is not invertible, then the closure of the image of the map

x 7→ DΦ(Ax+ u) may not contain all the vertices of the set [d1, d2]
n. For non-invertible

A and arbitrary η ∈ Rn
>0, the values presented in these theorems are instead upper bounds

on the minimal one-sided Lipschitz constant.

In Figure 5.1, we plot the phase portrait of a 2-dimensional firing-rate neural net-

work, (5.19), along with level sets of the corresponding Lyapunov function. We highlight

the utility of optimizing the weight of the ℓ∞ norm. Namely, although the firing-rate

neural network example is not contracting with respect to the ℓ∞ norm, it is contracting

with respect to a weighted ℓ∞ norm, where the optimal diagonal weight is [η⋆]−1, where

η⋆ is the right dominant eigenvector of ⌈A⌉Mzr.

5.6.3 Contractivity of Hopfield and firing-rate neural networks

with unbounded slope

In the spirit of the classic work [142] which studies Hopfield neural networks which

have monotone activation functions with unbounded slope, we present the following result

on the contractivity of Hopfield and firing-rate neural networks when ϕi ∈ slope[d1,∞].

Theorem 5.6.5 (Contractivity under unbounded slope). Consider the Hopfield neural

network (5.15) and firing-rate neural network (5.19) with ϕi ∈ slope[d1,∞] and irre-

ducible ⌈A⌉Mzr with dominant left and right eigenvectors wA, vA, respectively and suppose

that

(A1) A ∈ MH,
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Figure 5.1: The phase portrait for a 2-dimensional firing-rate neural network (5.19)
with C = I2, Φ = tanh, A =

[−0.1 −1.3
−0.4 0.1

]
, u = (0,−1). The blue curves denote tra-

jectories from varying initial conditions and the purple cross denotes the equilibrium
point, x⋆. Following Theorem 5.6.2(iv), the right dominant eigenvector of ⌈A⌉Mzr,
η ≈ (1.57, 1), yields a contraction rate of 1 − α(⌈A⌉Mzr) ≈ 0.272 with respect to
∥ · ∥∞,[η]−1 . Note that the neural network is not contracting with respect to ∥ · ∥∞.
Level sets of the Lyapunov function V (x) = ∥x− x⋆∥∞,[η]−1 are shown in red. We re-
mark that this neural network is connectively contracting as described in Section 5.2.

(A2) A ∈ Rn×n, C ⪰ 0, and d1 ∈ R satisfy

−α(−C) + max{d1, 0}α(⌈A⌉Mzr)>−(|d1| − d1) min
i∈{1,...,n}

Aii.

Then

(i) The Hopfield neural network (5.15) is strongly infinitesimally contracting with re-

spect to ∥ · ∥1,[wA] with rate

−α(−C) + max{d1, 0}α(⌈A⌉Mzr) + (|d1| − d1) min
i∈{1,...,n}

Aii > 0

and

(ii) The firing-rate neural network (5.19) is strongly infinitesimally contracting with
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respect to ∥ · ∥∞,[vA]−1 with rate

−α(−C) + max{d1, 0}α(⌈A⌉Mzr) + (|d1| − d1) min
i∈{1,...,n}

Aii > 0.

Proof. Regarding statement (i), we adopt the shorthand ri := Aii+
∑

j ̸=i |Aji|(wA)j/(wA)i.

Then we observe that A ∈ MH implies that for every i ∈ {1, . . . , n}, ri ≤ α(⌈A⌉Mzr)

with α(⌈A⌉Mzr) < 0. Then, for every x ∈ Rn \ ΩfH ,

µ1,[wA](DfH(x)) = µ1,[wA](−C + ADΦ(x))

= max
i∈{1,...,n}

−ci + Aiiϕ
′
i(xi) +

∑
j ̸=i

|Ajiϕ
′
i(xi)|

(wA)j
(wA)i

= max
i∈{1,...,n}

−ci + Aiiϕ
′
i(xi) + |ϕ′

i(xi)|
∑
j ̸=i

|Aji|
(wA)j
(wA)i

= max
i∈{1,...,n}

−ci + |ϕ′
i(xi)|ri − (|ϕ′

i(xi)| − ϕ′
i(xi))Aii

⋆
≤ max

i∈{1,...,n}
−ci +max{d1, 0}ri − (|d1| − d1)Aii

≤ α(−C) + max{d1, 0}α(⌈A⌉Mzr)− (|d1| − d1) min
i∈{1,...,n}

Aii

where inequality
⋆
≤ holds because ri < 0 and Aii < 0 for all i. Since this inequality holds

for all x ∈ Rn \ ΩfH , we conclude that osL1,[wA](fH) ≤ α(−C) + max{d1, 0}α(⌈A⌉Mzr) −

(|d1| − d1)mini∈{1,...,n}Aii, which implies the result. The proof of statement (ii) is essen-

tially identical and thus omitted.

Remark 5.6.3. Note that in Theorem 5.6.5,

(i) if d1 ≥ 0, then condition (A1) immediately implies condition (A2). Hence, A ∈

MH is a sufficient condition for the strong infinitesimal contractivity of (5.15)

and (5.19) with unbounded-slope monotonic activation functions.
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(ii) alternatively if α(⌈A⌉Mzr) = 0 and C ≻ 0, then the condition −α(−C) > −(|d1| −

d1)mini∈{1,...,n}Aii is a sufficient condition for the strong infinitesimal contractivity

of (5.15) and (5.19). Note that in this case, we only need ⌈A⌉Mzr to be marginally

stable.

5.6.4 Contractivity of other continuous-time neural networks

We apply Theorem 5.6.1 and the log norm results in Section 5.4 to the following

related neural circuit models, all of which are studied in the classic book [161]. In the

following theorems, we assume all Metzler matrices are irreducible.

Theorem 5.6.6 (Contractivity of special Hopfield models). (i) If A ∈ MH, and d1 >

0, the Persidskii-type4 model

ẋ = AΦ(x)

with each ϕi ∈ slope[d1, d2] is strongly infinitesimally contracting with respect to

norm ∥ · ∥1,[wA] with rate d1|α(⌈A⌉Mzr)|.

(ii) If −C + d2A ∈ MH, the Hopfield neural network (5.15) with d1 = 0 and positive

diagonal C is strongly infinitesimally contracting with respect to ∥ · ∥1,[w∗] with rate

−max
{
α(−C), α(−C + d2⌈A⌉Mzr)

}
> 0.

Proof. Regarding statement (i), let fP(x) := AΦ(x). By Theorem 5.6.1(iii) with c = 0,

osL1,[wA](fP) = max{d1α(⌈A⌉Mzr), d2α(⌈A⌉Mzr)}. However, since A ∈ MH, α(⌈A⌉Mzr) <

0, so osL1,[wA](fP) = d1α(⌈A⌉Mzr). Thus, the Persidskii-type model is strongly infinitesi-

mally contracting with respect to norm ∥ · ∥1,[wA] with rate d1|α(⌈A⌉Mzr)|.

Regarding statement (ii), by Theorem 5.6.1(iv),

osL1,[w∗](fH) = max
{
α(−C), α(−C + d2⌈A⌉Mzr)

}
.

4See [161, Definition 3.2.1]
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In particular, since −C + d2A ∈ MH, α(−C + d2⌈A⌉Mzr) < 0 and since C is positive

diagonal, we have osL1,[w∗](fH) < 0 so that the Hopfield neural network is strongly

infinitesimally contracting with respect to ∥ · ∥1,[w∗] with rate −max
{
α(−C), α(−C +

d2⌈A⌉Mzr)
}
> 0.

Theorem 5.6.7. From [161, Theorem 3.2.4], consider

ẋ = Ax− CΦ(x),

with diagonal C ⪰ 0 and each ϕi ∈ slope[d1, d2]. If A − d1C ∈ MH with corresponding

dominant left eigenvector w∗∗, then this model is strongly infinitesimally contracting with

respect to ∥ · ∥1,[w∗∗] with rate −α(⌈A⌉Mzr − d1C) > 0.

Proof. We compute the one-sided Lipschitz constant of f(x) := Ax−CΦ(x) with respect

to norm ∥ · ∥1,[w∗∗].

osL1,[w∗∗](f) = sup
x∈Rn\Ωf

µ1,[w∗∗](Df(x))

= sup
x∈Rn\Ωf

µ1,[w∗∗](A− CDΦ(x))

⋆
= max

d∈[d1,d2]n
µ1,[w∗∗](A− C[d])

♠
= µ1,[w∗∗](A− d1C)

♣
= µ1,[w∗∗](⌈A− d1C⌉Mzr)

♦
= α(⌈A⌉Mzr − d1C).

where the equality
⋆
= is due to Assumption 2, equality

♠
= is because C ⪰ 0, equality

♣
=

is by Theorem 5.4.2(ii), and
♦
= is by Lemma 5.3.1. Moreover, since A − d1C ∈ MH,

α(⌈A⌉Mzr−d1C) < 0 so f is strongly infinitesimally contracting with respect to ∥ · ∥1,[w∗∗]

with rate −α(⌈A⌉Mzr − d1C) > 0.
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Theorem 5.6.8. From [161, Theorem 3.2.10], consider

ẋi =
∑n

j=1
Aijϕij(xj)

for each i ∈ {1, . . . , n} and with each ϕij ∈ slope[d1, d2]. If d1 > 0 and

B := d2A− (d2 − d1)(In ◦ A) ∈ MH,

with corresponding dominant left and right eigenvectors wB, vB, respectively, then this

model is strongly infinitesimally contracting with rate −α(⌈B⌉Mzr) > 0 with respect to

both ∥ · ∥1,[wB ] and ∥ · ∥∞,[vB ]−1.

Proof. First note that the assumption B ∈ MH implies that Aii < 0 for every i ∈

{1, . . . , n} since the diagonal elements of B are d1Aii and a necessary condition for B ∈

MH is Bii < 0 since MH ⊂ T H. Let f denote the vector field given by fi(x) =∑n
j=1Aijϕij(xj). We compute (Df(x))ij = ∂

∂xj

∑n
j=1Aijϕij(xj) = Aijϕ

′
ij(xj) for almost

every x ∈ Rn. In other words, Df(x) = A ◦ DΦ(x), for almost every x ∈ Rn, where

(DΦ(x))ij = ϕ′
ij(xj). We now proceed to elementwise upper bound ⌈Df(x)⌉Mzr. Observe

that for every i ̸= j ∈ {1, . . . , n},

(⌈Df(x)⌉Mzr)ij = |Aijϕ
′
ij(xj)| ≤ d2|Aij| = (⌈B⌉Mzr)ij,

(⌈Df(x)⌉Mzr)ii = Aiiϕ
′
ii(xi) ≤ d1Aii = (⌈B⌉Mzr)ii,

where the second inequality holds because Aii < 0 for every i ∈ {1, . . . , n}. Now observe

that for any matrix A ∈ Rn×n, if ⌈A⌉Mzr ≤ A′ elementwise, then both µ1,[η](A) ≤ µ1,[η](A
′)
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and µ∞,[η]−1(A) ≤ µ∞,[η]−1(A′) hold for any η ∈ Rn
>0. Then we can observe that

osL1,[wB ](f) = sup
x∈Rn\Ωf

µ1,[wB ](Df(x))

= sup
x∈Rn\Ωf

µ1,[wB ](⌈Df(x)⌉Mzr) ≤ sup
x∈Rn\Ωf

µ1,[wB ](⌈B⌉Mzr)

= µ1,[wB ](⌈B⌉Mzr) = α(⌈B⌉Mzr),

where the final equality holds by Lemma 5.3.1. An analogous computation shows that

osL∞,[vB ]−1(f) ≤ α(⌈B⌉Mzr). As a consequence, since B ∈ MH, this model is strongly

infinitesimally contracting with respect to both ∥ · ∥1,[wB ] and ∥ · ∥∞,[vB ]−1 with rate

−α(⌈B⌉Mzr) > 0.

The next two theorems serve as non-Euclidean versions of early results on contractiv-

ity of Lur’e systems (in application to the entrainment problem) established first in [162].

Theorem 5.6.9 (Contractivity of Lur’e system). From [161, Theorem 3.2.7], consider

the Lur’e system

ẋ = Ax+ vϕ(y),

y = w⊤x,

where A ∈ Rn×n, v, w ∈ Rn and ϕ ∈ slope[d1, d2]. Consider the following two infimization

problems:

inf
b∈R,η∈Rn

>0

b

s.t. ⌈A+ d1vw
⊤⌉⊤Mzr η ≤ bη,

⌈A+ d2vw
⊤⌉⊤Mzr η ≤ bη,

(5.22)
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and

inf
c∈R,ξ∈Rn

>0

c

s.t. ⌈A+ d1vw
⊤⌉Mzr ξ ≤ cξ,

⌈A+ d2vw
⊤⌉Mzr ξ ≤ cξ.

(5.23)

Let b⋆, c⋆ be infimum values for (5.22), (5.23), respectively. Then

(i) if b⋆ < 0, then for every ε ∈ ]0, |b⋆|[, there exists η ∈ Rn
>0 such that the closed-loop

dynamics are strongly infinitesimally contracting with rate |b⋆| − ε > 0 with respect

to ∥ · ∥1,[η].

(ii) if c⋆ < 0, then for every ε ∈ ]0, |c⋆|[, there exists ξ ∈ Rn
>0 such that the closed-loop

dynamics are strongly infinitesimally contracting with rate |c⋆| − ε > 0 with respect

to ∥ · ∥∞,[ξ]−1.

Proof. Let fL(x) := Ax + vϕ(w⊤x). Regarding statement (i), computing the one-sided

Lipschitz constant of fL with respect to ∥ · ∥1,[η] for arbitrary η ∈ Rn
>0 yields

osL1,[η](fL) = sup
x∈Rn\ΩfL

µ1,[η](DfL(x))

= sup
x∈Rn\ΩfL

µ1,[η](A+ vϕ′(w⊤x)w⊤)

⋆
= max

d∈[d1,d2]
µ1,[η](A+ d vw⊤)

♠
= max{µ1,[η](A+ d1vw

⊤), µ1,[η](A+ d2vw
⊤)},

where
⋆
= holds by Assumption 2 on ϕ and

♠
= holds because the maximum of a convex

function (µ in this case) over a compact interval occurs at one of the endpoints of the
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interval. As a consequence, osL1,[η](fL) < 0 if and only if

inf
η∈Rn

>0

max{µ1,[η](A+ d1vw
⊤), µ1,[η](A+ d2vw

⊤)} < 0.

Therefore, if b⋆ < 0 for problem (5.22), then, by a continuity argument, for every ε ∈

]0, |b⋆|[, there exists η ∈ Rn
>0 such that µ1,[η](A+d1vw

⊤) ≤ b⋆+ε and µ1,[η](A+d2vw
⊤) ≤

b⋆ + ε. Therefore, if b⋆ < 0, then we conclude that the Lur’e system is strongly infinites-

imally contracting with respect to ∥ · ∥1,[η] with rate |b⋆| − ε. The proof of statement (ii)

is essentially identical, replacing ∥ · ∥1,[η] with ∥ · ∥∞,[ξ]−1 .

Theorem 5.6.10 (Multivariable Lur’e system). Consider the multivariable Lur’e system

ẋ = Ax+BΦ(y),

y = Cx,

(5.24)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n, ϕi ∈ slope[d1, d2] with d1 ≥ 0 for all i ∈

{1, . . . ,m}. Define (·)+ and (·)− by (x)+ = max{x, 0} and (x)− = min{x, 0}. Define

F ∈ Rn×n componentwise by

Fii = Aii + d2

m∑
j=1

(BijCji)+ + d1

m∑
j=1

(BijCji)−,

Fij = |Aij|+max

{
d2

m∑
k=1

(BikCkj)+ + d1

m∑
k=1

(BikCkj)−,

−d1
m∑
k=1

(BikCkj)+ − d2

m∑
k=1

(BikCkj)−

}
,

for i ̸= j. Then, if F ∈ MH with corresponding dominant left and right eigenvec-

tors wF , vF , the closed-loop dynamics are strongly infinitesimally contracting with rate

−α(⌈F ⌉Mzr) > 0 with respect to both ∥ · ∥1,[wF ] and ∥ · ∥∞,[vF ]−1.
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Proof. Let fML(x) = Ax+BΦ(Cx) and note DfML(x) = A+B[d]C for some d ∈ [d1, d2]
n.

Also note (B[d]C)ij =
∑m

k=1BikdkCkj. The proof follows from noting that the matrix F

is an entry-wise upper bound on ⌈DfML(x)⌉Mzr, for all x, in analogy with the proof of

Theorem 5.6.8.

Finally, we present a sharper condition for the non-Euclidean contractivity of the mul-

tivariable Lur’e system with d1 that can be negative. For η ∈ Rn
>0, d = max{|d1|, |d2|},M :=

|A| + d|B||C|, and g = ∥A∥∞,[η]−1 + d∥BC∥∞,[η]−1 , consider the following mixed-integer

linear program (MILP):

max
y∈R,Z∈Rn×n,d∈[d1,d2]m,W∈{0,1}n×n

y,

subject to

Z ≤ A+B[d]C + 2M ◦ (W − (In ◦W )), (5.25)

Z ≤ −A−B[d]C + 2M ◦ (1n1⊤n − (W − (In ◦W ))),

y ≤ (A+B[d]C)ii +
∑
j ̸=i

Zij
ηj
ηi

+ 2gWii, ∀i ∈ {1, . . . , n},

Trace(W ) = n− 1.

Theorem 5.6.11 (One-sided Lipschitzness of multi-variable Lur’e system). Consider

the multi-variable Lur’e system (5.24), let fML(x) = Ax + BΦ(Cx) be the closed-loop

dynamics with each ϕi ∈ slope[d1, d2] and let y⋆ be the optimal value for the MILP (5.25).

Then the following statements hold

(i) osL∞,[η]−1(fML) ≤ y⋆.

(ii) If C is full row rank, then osL∞,[η]−1(fML) = y⋆.
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Proof. Note that

osL∞,[η]−1(fML) ≤ maxd∈[d1,d2]m µ∞,[η]−1(A+B[d]C),

with equality holding if C is full row rank. Therefore, all that remains is to show that

maxd∈[d1,d2]m µ∞,[η]−1(A + B[d]C) = y⋆. The proof of this result is a consequence of the

formula for µ∞,[η]−1 , using a so-called “big-M” formulation (see, e.g., [163, Section III.C.])

with Zij ≤ |(A+B[d]C)ij| for i ̸= j and y ≤ maxi∈{1,...,n}(A+B[d]C)ii +
∑

j ̸=i Zij.

The challenge of additionally optimizing η ∈ Rn
>0 so that osL∞,[η]−1(fML) is minimized

remains an open problem.

5.7 Discussion

In this chapter, we present novel non-Euclidean log norm results and a non-smooth

contraction theory simplification and we apply these results to study the contractivity of

continuous-time NN models, primarily focusing on the Hopfield and firing-rate models.

We provide efficient algorithms for computing optimal non-Euclidean contraction rates

and corresponding norms. Our approach is robust with respect to activation function and

additional unmodeled dynamics and, more generally, establishes the strong contractivity

property which, in turn, implies strong robustness properties.

As a first direction of future research, we plan to investigate the multistability of

continuous-time neural networks via generalizations of contraction theory. Contraction

theory ensures the uniqueness of a globally exponentially stable equilibrium, but several

classes of neural networks exhibit multiple equilibria [164]. As a second direction, we plan

to investigate the role of non-Euclidean contractivity in neural networks for controller

design and system identification in the spirit of the works [165, 166, 167]. As a third
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line of research, we aim to implement non-Euclidean contracting neural networks in

machine learning problems akin to methods from [148]. More broadly, we believe that

our non-Euclidean contraction framework for continuous-time NNs serves as a first step

to analyzing robustness and convergence properties of other classes of neural circuits and

other machine learning architectures.

5.8 Proofs

5.8.1 Proof of Theorem 5.4.1

Proof. Regarding statement (i), we provide the proof for p = 1 since p = ∞ is essentially

identical. Continuity is a straightforward consequence of the formula for µ1,[η]. Regarding

quasiconvexity, we will show that sublevel sets of the map η 7→ µ1,[η](A) are convex. For

fixed b ∈ R, the set {η ∈ Rn
>0 | µ1,[η](A) ≤ b} is characterized by η satisfying

ηiAii +
∑n

j=1,j ̸=i
ηj|Aji| ≤ ηib, for all i ∈ {1, . . . , n}.

Since each of these inequalities is linear in η, for fixed b, the above set is a poly-

tope, proving quasiconvexity. Statement (ii) follows from the definitions of µ1,[η](A)

and µ∞,[η]−1(A).

5.8.2 Proof of Lemma 5.4.3

To prove Lemma 5.4.3, we first need a technical result.

Lemma 5.8.1. For any γ ∈ R, A ∈ Rn×n, the following holds:

⌈γA⌉Mzr = ⌈|γ|A− (|γ| − γ)(In ◦ A)⌉Mzr.

190



Non-Euclidean Contraction Analysis of Continuous-Time Neural Networks Chapter 5

Proof. The proof follows by checking that the corresponding entries of each matrix are

equal.

Proof of Lemma 5.4.3. First we show (5.11). We use the short-hand

ri := Aii +
∑
j ̸=i

|Aij|ηi/ηj

and D := {d1, d2}. Then

max
d∈[d1,d2]n

µ∞,[η]([c] + [d]A)

= max
d∈[d1,d2]n

max
i∈{1,...,n}

ci + diAii +
∑
j ̸=i

|diAij|
ηi
ηj

= max
i∈{1,...,n}

max
d∈[d1,d2]n

ci + diAii +
∑
j ̸=i

|diAij|
ηi
ηj

⋆
= max

i∈{1,...,n}
max{ci + γAii + |γ|

∑
j ̸=i

|Aij|
ηi
ηj

| γ ∈ D},

where the equality
⋆
= holds because the function di 7→ ci + diAii +

∑
j ̸=i |diAij|ηi/ηj is

convex. Since the maximum value of a convex function over an interval di ∈ [d1, d2]

occurs at one of the endpoints, the equality
⋆
= is justified.

Additionally note that for any γ ∈ R,

γAii + |γ|
∑
j ̸=i

|Aij|
ηi
ηj

= |γ|ri − (|γ| − γ)Aii.
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Therefore,

max
d∈[d1,d2]n

µ∞,[η]([c] + [d]A)

= max
i∈{1,...,n}

max{ci + |γ|ri − (|γ| − γ)Aii | γ ∈ D}

= max{µ∞,[η]([c] + |γ|A− (|γ| − γ)(In ◦ A)) | γ ∈ D},
♠
= max{µ∞,[η]([c] + ⌈|γ|A− (|γ| − γ)(In ◦ A)⌉Mzr) | γ ∈ D},
♣
= max{µ∞,[η]([c] + ⌈γA⌉Mzr) | γ ∈ D}
♠
= max{µ∞,[η]([c] + d1A), µ∞,[η]([c] + d2A)},

where equalities
♠
= hold by Theorem 5.4.2(ii) and the equality

♣
= holds by Lemma 5.8.1.

Thus, formula (5.11) is proved.

Regarding formula (5.13), we compute

max
d∈[d1,d2]n

µ∞,[η]([c] + A[d])

= max
d∈[d1,d2]n

max
i∈{1,...,n}

ci + diAii +
∑
j ̸=i

|djAij|
ηi
ηj

≤ max
i∈{1,...,n}

max
d∈[d1,d2]n

ci + diAii + d
∑
j ̸=i

|Aij|
ηi
ηj

⋆
= max

i∈{1,...,n}
max{ci + γAii + d

∑
j ̸=i

|Aij|
ηi
ηj

| γ ∈ D},

where the equality
⋆
= holds because the function di 7→ diAii+d

∑
j ̸=i |Aij|ηi/ηj is convex.

Since the maximum value of a convex function over an interval di ∈ [d1, d2] occurs at one

of the endpoints, the equality
⋆
= holds.
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Additionally, note that for any γ ∈ R,

γAii + d
∑
j ̸=i

|Aij|
ηi
ηj

= dri − (d− γ)Aii.

Therefore,

max
d∈[d1,d2]n

µ∞,[η]([c] + A[d])

≤ max
i∈{1,...,n}

max{ci + dri − (d− γ)Aii | γ ∈ D}

= max{µ∞,[η]([c] + dA− (d− γ)(In ◦ A)) | γ ∈ D}.

To see that this inequality is tight, suppose γ ∈ D satisfies |γ| = d. Then let:

k ∈ argmax
i∈{1,...,n}

ci + d1Aii +
∑
j ̸=i

|γAij|
ηi
ηj
,

m ∈ argmax
i∈{1,...,n}

ci + d2Aii +
∑
j ̸=i

|γAij|
ηi
ηj
.

Let ek and em be unit vectors with 1 in their k-th and m-th entry, respectively, and define

dk = γ1n − (γ − d1)ek, dm = γ1n − (γ − d2)em.

Then by construction,

µ∞,[η]([c] + A[dk]) = ck + d1Akk +
∑
j ̸=k

|γAkj|
ηk
ηj

= ck + (d1 − d)Akk + dAkk + d
∑
j ̸=k

|Akj|
ηk
ηj

= ck + drk − (d− d1)Akk

= µ∞,[η]([c] + dA− (d− d1)(In ◦ A)).

(5.26)
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Analogously, we have that µ∞,[η]([c] + A[dm]) = µ∞,[η]([c] + dA− (d− d2)(In ◦ A)).

Additionally, we see

max
d∈[d1,d2]n

µ∞,[η]([c] + A[d])

≥ max{µ∞,[η]([c] + A[dk]), µ∞,[η]([c] + A[dm])}
(5.26)
= max{µ∞,[η]([c] + dA− (d− d1)(In ◦ A)),

µ∞,[η]([c] + dA− (d− d2)(In ◦ A))}.

The proofs for (5.12) and (5.14) are straightforward applications of the fact that

µ1,[η](B) = µ∞,[η]−1(B⊤) and by applying (5.11) and (5.13), respectively.

Corollary 5.8.2 (Some simplifications). Using the same notation as in Lemma 5.4.3,

suppose

(i) d = d2 (note that this implies d2 ≥ 0). Then

max
d∈[d1,d2]n

µ∞,[η]([c] + A[d]) = max{µ∞,[η]([c] + d2A),

µ∞,[η]([c] + d2A− (d2 − d1)(In ◦ A))}.

(ii) d = −d1 (note that this implies d1 ≤ 0). Then

max
d∈[d1,d2]n

µ∞,[η]([c] + A[d]) = max{µ∞,[η]([c] + d1A),

µ∞,[η]([c] + d1A− (d1 − d2)(In ◦ A))}.
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5.8.3 Proof of Theorem 5.4.2

Proof. From [168, Theorem 8.1.18], for all A ∈ Rn×n, we have

ρ(A) ≤ ρ(|A|), (5.27)

where ρ denotes the spectral radius of a matrix. Regarding statement (i), pick γ >

maxi |Aii| and define Ā = A+γIn so that |Ā| = ⌈A⌉Mzr+γIn. We note that α(Ā) ≤ ρ(Ā)

(which is true for any matrix) and, from inequality (5.27), we know

α(A) + γ = α(Ā) ≤ ρ(Ā) ≤ ρ(|Ā|) = α(|Ā|)

= α(⌈A⌉Mzr + γIn) = α(⌈A⌉Mzr) + γ.

(5.28)

Here ρ(|Ā|) = α(|Ā|) follows from the Perron-Frobenius Theorem for non-negative ma-

trices. This proves statement (i).

Regarding statement (ii), note that the norm ∥ · ∥p,[η] is monotonic, it is easy to

see that, for all matrices B, we have ∥B∥p,[η] ≤ ∥|B|∥p,[η]. For small h > 0, we note

|In + hA| = In + h⌈A⌉Mzr so that

∥In + hA∥p,[η] ≤ ∥|In + hA|∥p,[η] = ∥In + h⌈A⌉Mzr∥p,[η].

Therefore, for small enough h > 0,

∥In + hA∥p,[η] − 1

h
≤ ∥In + h⌈A⌉Mzr∥p,[η] − 1

h
.

Thus, statement (ii) follows from the definition of the log norm in the limit as h → 0+.

For p ∈ {1,∞}, statement (ii) holds by the formulas for µ1,[η] and µ∞,[η].
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Finally, regarding statement (iii), for p ∈ {1,∞}, by statement (ii) we have

inf
η∈Rn

>0

µp,[η](A) = inf
η∈Rn

>0

µp,[η](⌈A⌉Mzr).

Moreover, since ⌈A⌉Mzr is Metzler, by Lemma 5.3.1, infη∈Rn
>0
µp,[η](⌈A⌉Mzr) = α(⌈A⌉Mzr).

5.8.4 Proofs of Lemma 5.4.5 and Corollary 5.4.6

Proof of Lemma 5.4.5. Regarding statement (i), let DI denote the diagonal matrix with

entries (DI)ii = 1 if i ∈ I and (DI)ii = 0 if i ̸∈ I.

With this notation, we are ready to compute

∥AI∥I = max
y∈R|I|,∥y∥I=1

∥AI y∥I (5.29)

= max
y∈R|I|,∥y∥I=1

∥ padI(AIy)∥ (5.30)

= max
y∈R|I|,∥ padI(y)∥=1

∥(DIADI) padI(y)∥ (5.31)

≤ max
x∈Rn,∥x∥=1

∥(DIADI)x∥ (5.32)

= ∥DIADI∥ ≤ ∥DI∥∥A∥∥DI∥ = ∥A∥. (5.33)

The last equality holds because the monotonicity of ∥·∥ implies ∥DI∥ = 1. This concludes

the proof of (i).

Statement (ii) follows from the definition of log norm and applying statement (i) to

the matrix I|I| + hAI as a principal submatrix of In + hA:

µI(AI) := lim
h→0+

∥I|I| + hAI∥I − 1

h
≤ lim

h→0+

∥In + hA∥ − 1

h
= µ(A).
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Finally, statement (iii) is an immediate consequence of (ii).

Proof of Corollary 5.4.6. Regarding item (i), since A ∈ MH, α(⌈A⌉Mzr) < 0. By

Lemma 5.3.1 and Theorem 5.4.2(ii), for sufficiently small ϵ > 0, there exists η ∈ Rn
>0

such that µA(1, [η]) = µ⌈A⌉Mzr
(1, [η]) ≤ α(⌈A⌉Mzr) + ϵ < 0. Then by Lemma 5.4.5(ii),

for non-empty I ⊂ {1, . . . , n}, µI,1,[η](AI) ≤ µA(1, [η]) < 0. Moreover, by Theo-

rem 5.4.2(ii), α(⌈AI⌉Mzr) ≤ µI,1,[η](⌈AI⌉Mzr) = µI,1,[η](AI) < 0. We conclude that

AI ∈ MH. Regarding item (ii), note that A − Aijeij is the matrix A with its ij-

th entry zeroed out. Then since A ∈ MH, for sufficiently small ϵ > 0, there exists

η ∈ Rn
>0 such that µ1,[η](A) < 0. The result is then a consequence of the fact that

α(⌈A− Aijeij⌉Mzr) ≤ µ1,[η](A− Aijeij) ≤ µ1,[η](A) < 0.

5.8.5 Proof of Theorem 5.5.1

To prove Theorem 5.5.1, we first recall Clarke’s generalized Jacobian from nonsmooth

analysis.

Definition 13 ([169, Definition 2.6.1]). Let f : U → Rm be locally Lipschitz on an open

set U ⊆ Rn and let Ωf ⊂ U be the set of points where f is not differentiable. Then

Clarke’s generalized Jacobian at x is

∂f(x) = conv{ lim
i→∞

Df(xi) | xi → x and xi /∈ Ωf}. (5.34)

The mean-value theorem has the following generalization for locally Lipschitz func-

tions. For any two points x, y ∈ Rn, denote [x, y] := {tx+ (1− t)y | t ∈ [0, 1]}.

Lemma 5.8.3. For f : U → Rm locally Lipschitz on an open convex set U ⊆ Rn, let
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[x, y] ⊂ U . Then there exists matrix A ∈ Rm×n such that

f(x)− f(y) = A(x− y) and A ∈ conv
⋃

u∈[x,y]

∂f(u). (5.35)

Proof. Since [x, y] is a compact subset of Rn, it can be easily seen that there exists a

convex open set U0 such that [x, y] ⊂ U0 ⊂ Ū0 ⊂ U (where Ū0 is the closure of U0). The

statement now follows from [169, Proposition 2.6.5].

Proof of Theorem 5.5.1. Regarding (ii) =⇒ (i), Let x, y ∈ U . Since U is convex, [x, y] ⊂

U . Then by Lemma 5.8.3, there exists A satisfying the conditions (5.35). Condition (ii)

in implies that µ(·) does not exceed c on each set ∂f(u) by continuity and convexity of

µ, entailing that µ(A) ≤ c. Therefore,

Jf(x)− f(y), x− yK = JA(x− y), x− yK ≤ µ(A)∥x− y∥2 ≤ c∥x− y∥2,

where we have used Lumer’s equality, Lemma 2.2.2. Regarding (i) =⇒ (ii), let x ∈ U

such that Df(x) exists and let v ∈ Rn and h > 0. Then by assumption,

Jf(x+ hv)− f(x), hvK ≤ c∥hv∥2 =⇒ h Jf(x+ hv)− f(x), vK ≤ ch2∥v∥2,

which holds by the weak homogeneity of the weak pairing. Dividing by h2 > 0 and taking

the limit as h→ 0+ implies

lim
h→0+

s
f(x+ hv)− f(x)

h
, v

{
≤ c∥v∥2

=⇒ JDf(x)v, vK ≤ c∥v∥2

=⇒ µ(Df(x)) ≤ c,
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where the final implication holds by taking the supremum over all v ∈ Rn with ∥v∥ = 1

together with Lumer’s equality, Lemma 2.2.2. Therefore, statement (ii) holds.
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Chapter 6

Time-Varying Convex Optimization:

A Contraction and Equilibrium

Tracking Approach

This chapter is accepted and scheduled to appear in the November 2025 edition of the

IEEE Transactions on Automatic Control [170].1

6.1 Introduction

Problem description and motivation: Mathematical optimization is a fundamental

tool in science and engineering research and has pervaded countless application areas.

The classical perspective on mathematical optimization is numerical and is motivated

through implementation of iterative algorithms on digital devices. An alternative per-

spective is to view optimization algorithms as dynamical systems and to understand the

1©2025 IEEE. Reprinted, with permission, from Alexander Davydov, Veronica Centorrino, Anand
Gokhale, Giovanni Russo, and Francesco Bullo, Time-Varying Convex Optimization: A Contraction and
Equilibrium Tracking Approach, November 2025.
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performance of these algorithms via their dynamical systems properties, e.g., stability

and robustness.

Studying optimization algorithms as continuous-time dynamical systems has been

an active area of research since the seminal work of Arrow, Hurwicz, and Uzawa [171].

Notable examples include Hopfield and Tank in dynamical neuroscience [172], Kennedy

and Chua in analog circuit design [173], and Brockett in systems and control [174].

Recently, the interest in continuous-time dynamics for optimization and computation has

been renewed due to the advent of (i) online and dynamic feedback optimization [175],

(ii) reservoir computing [176], and (iii) neuromorphic computing [177].

Motivated by these recent developments, we are interested in time-varying convex

optimization problems and continuous-time dynamical systems that track their optimal

solutions. In many applications of interest, the optimization algorithm must be run in

real-time on problems that are time-varying. Such examples include tracking a moving

target, estimating the path of a stochastic process, and online learning. In such ap-

plication areas, we would like our dynamical system to converge to the unique optimal

solution when the problem is time-invariant and converge to an explicitly-computable

neighborhood of the optimal solution trajectory when the problem is time-varying.

Beyond tracking optimal trajectories, a key desirable feature of optimization algo-

rithms is robustness in the face of uncertainty. In many real-world scenarios, we are not

provided the exact value of our cost function but instead noisy estimates and possibly

even a time-delayed version of it. Thus, for practical usage of the optimization algorithm,

it is essential to ensure that the algorithm has these robustness features built-in.

Remarkably, all of these desirable properties, namely tracking for time-varying sys-

tems, convergence for time-invariant systems, and robustness to noise and time-delays

can be established by ensuring that the dynamical system is strongly infinitesimally con-

tracting [23]. To be specific, (i) the effect of the initial condition is exponentially forgotten
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and the distance between any two trajectories decays exponentially quickly [23], (ii) if a

contracting system is time-invariant, it has a unique globally exponentially stable equi-

librium point [23], (iii) contracting systems are incrementally input-to-state stable and

thus robust to disturbances [178] and delays [179].

Literature review: A recent survey on studying optimization algorithms from a feed-

back control perspective is available in [180]. Asymptotic and exponential stability of

dynamical systems solving convex optimization problems is a classical problem and has

been studied in papers including [181, 182, 183, 184, 185] among many others. Com-

pared to papers studying asymptotic and exponential stability, there are far fewer works

studying the contractivity of dynamical systems solving optimization problems. A few

exceptions include [186, 187] which analyze primal-dual dynamics and [188, 27] which

study gradient flows on Riemannian manifolds.

In the context of time-varying convex optimization, algorithms to track the optimal

solution are designed based on Newton’s method in (i) discrete-time in [189, 190] and

in (ii) continuous-time in [191]. See both [192] and [193] and the references therein for

reviews of these results and theoretical extensions. These results have been leveraged

to study the feedback interconnection of a LTI system and a dynamical system solving

an optimization problem in [194]. From a contraction theory perspective, both [186]

and [187] provide tracking error bounds for continuous-time time-varying primal-dual

dynamics.

Contributions: This chapter makes four main contributions. First, we prove a general

theorem regarding parameter-dependent strongly infinitesimally contracting dynamics.

Specifically, in Theorem 6.2.1, we prove that both the tracking error, defined as the error

between any solution trajectory and the equilibrium trajectory (defined instantaneously

in time), and the norm of the vector field are uniformly upper bounded. Moreover, we

prove that the tracking error is asymptotically proportional to the rate of change of the
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parameter with proportionality constant upper bounded by ℓθ/c
2 where ℓθ is the Lipschitz

constant in which the parameter appears and c is the contraction rate of the dynamics.

A related result was proved in [186, Lemma 2], but the tracking error bound depends

on the knowledge of the rate of change of the equilibrium trajectory, which is unknown,

in general. In contrast, Theorem 6.2.1 provides an additional bound on the norm of the

vector field and a tracking error bound which depends purely on the rate of change of

the parameter, which may be more directly applicable.

Second, in Theorem 6.2.2, we propose an alternative dynamical system which aug-

ments the contracting dynamics in Theorem 6.2.1 with a feedforward term. This aug-

mentation ensures that the tracking error is exponentially decaying to zero and does not

require any Lipschitz condition on how the parameter appears in the dynamics. A re-

lated, continuous-time, treatment is proposed in [191], (see also the early reference [195])

where the authors study a continuous-time Newton method and show how to add a feed-

forward term to ensure zero tracking error in the Euclidean norm. In discrete-time, the

authors of [189, 190] use predictor-corrector methods based on Newton’s method with or

without projections. Compared to these references, Theorem 6.2.2 is applicable to any

contracting dynamics with respect to any norm and need not be limited to the solution

of a time-varying optimization problem.

Third, we consider natural transcriptions into contracting dynamics for three canon-

ical strongly convex optimization problems (namely, (i) monotone inclusions, (ii) linear

equality-constrained problems, and (iii) composite minimization), and we make specific

contributions for each transcription.

(i) For monotone inclusion problems, we consider the forward-backward splitting dy-

namics which were first studied in [196]. These dynamics are a generalization of the

projected dynamics studied in [197] and the proximal gradient dynamics studied
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in [198]. In Theorem 6.3.1, we show that the forward-backward splitting dynam-

ics are contracting, a stronger property than exponential stability as was shown

in [197, Theorem 4] and [198, Theorem 2] and show improved rates of exponential

convergence in some special cases.

(ii) For linear-equality constrained problems, we study the primal-dual dynamics and

prove their strong infinitesimal contractivity in Theorem 6.3.2. Compared to [186],

we provide an explicit estimate on the rate of contraction and we show improved

rates compared to both [183, 187].

(iii) For composite minimization, we adopt the proximal augmented Lagrangian ap-

proach from [185], first introduced in [199], and show that the primal-dual dynam-

ics on the proximal augmented Lagrangian are contracting in Theorem 6.3.3. This

result improves on the exponential convergence result from [185, Theorem 3] by

allowing for a larger range of parameters. A related result is [183, Theorem 2],

which focuses specifically on inequality-constrained minimization problems. Theo-

rem 6.3.3 is a generalization of [183, Theorem 2] to more general composite min-

imization problems and provides a nonlinear program to estimate the contraction

rate. Moreover, to approximate the optimal value of the nonlinear program, we

provide a strategy based on a bisection algorithm.

Finally, we apply our general result on tracking error bounds for contracting dynamics

from Theorems 6.2.1 and 6.2.2 to each of the aforementioned optimization problems

to provide tracking error estimates in time-varying convex optimization problems. To

validate our theory, we present numerical and hardware experiments. In Sections 6.4.1

and 6.4.2 we showcase tracking error bounds for time-varying equality and inequality-

constrained minimization problems, respectively. In Section 6.4.3, inspired by [200], we

present a modern application to online control barrier functions, [201], where we show
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how we can leverage our tracking error results for contracting dynamics to ensure safety in

a multi-robot collision avoidance scenario without needing to solve a quadratic program

at every instance in time.

6.2 Equilibrium tracking for parameter-varying con-

tracting dynamical systems

We begin by considering a dynamical system which is a function of a time-varying

parameter, θ. Namely, for a vector field F : Rn × Rd → Rn, consider the system

ẋ(t) = F
(
x(t), θ(t)

)
, x(0) = x0 ∈ Rn, (6.1)

where for all t ≥ 0, x(t) and θ(t) take value in X ⊆ Rn and Θ ⊆ Rd, respectively.

We make the following assumptions. There exists a norm ∥ · ∥X on X and

(A1) there exists c > 0 such that for all θ, the map x 7→ F (x, θ) is strongly infinitesimally

contracting with respect to ∥ · ∥X with rate c, i.e., osLx (F ) ≤ −c,

(A2) there exists a norm ∥ · ∥Θ on Θ, and ℓθ ≥ 0 such that for all x, the map θ 7→ F (x, θ)

is Lipschitz from (Θ, ∥ · ∥Θ) to (X , ∥ · ∥X ) with constant ℓθ.

Assumption (A1) implies that, for each θ ∈ Θ, there exists a unique x⋆θ ∈ X satis-

fying F (x⋆θ, θ) = 0n. Then, we can define the map x⋆ : Θ → X given by x⋆(θ) = x⋆θ.

Lemma 6.6.1 in Appendix 6.6 shows that x⋆(·) is Lipschitz from (Θ, ∥ · ∥Θ) to (X , ∥ · ∥X )

with constant ℓθ/c. With this set up in mind, in the following we define the time-varying

equilibrium curve which is key in our equilibrium tracking results.

Definition 10 (Time-varying equilibrium curve). Consider a continuously differentiable

curve θ : R≥0 → Θ and the system (6.1) satisfying Assumptions (A1) and (A2). The
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time-varying equilibrium curve is the map t 7→ x⋆(θ(t)).

Since x⋆(·) is Lipschitz, the curve x⋆(θ(·)) is locally Lipschitz (see Lemma 6.6.2 in

Appendix 6.6 for details). Additionally, this curve satisfies F (x⋆(θ(t)), θ(t)) = 0n for all

t ≥ 0. In the following theorem, we provide tracking error bounds between any trajectory

of (6.1) and the time-varying equilibrium curve.

Theorem 6.2.1 (Equilibrium tracking for contracting dynamics). Let θ : R≥0 → Θ be

continuously differentiable and consider the dynamics (6.1) satisfying Assumptions (A1)

and (A2). Let x⋆(θ(·)) be the time-varying equilibrium curve of (6.1). Then, for any

initial conditions x(0) ∈ Rn, θ(0) ∈ Rd and for all t ≥ 0:

(i) the tracking error ∥x(t)− x⋆(θ(t))∥X satisfies

∥x(t)−x⋆(θ(t))∥X ≤ e−ct∥x(0)−x⋆(θ(0))∥X +
ℓθ
c

∫ t

0

e−c(t−τ)∥θ̇(τ)∥Θdτ ;

(ii) the residual ∥F (x(t), θ(t))∥X satisfies

∥F (x(t), θ(t))∥X≤ e−ct∥F (x(0), θ(0))∥X + ℓθ

∫ t

0

e−c(t−τ)∥θ̇(τ)∥Θdτ ;

(iii) the following asymptotic bounds hold:

lim sup
t→∞

∥x(t)−x⋆(θ(t))∥X ≤ ℓθ
c2

lim sup
t→∞

∥θ̇(t)∥Θ,

lim sup
t→∞

∥F (x(t), θ(t))∥X≤
ℓθ
c
lim sup
t→∞

∥θ̇(t)∥Θ.

Proof. To prove item (i), consider the auxiliary dynamics

ẋ(t) = F (x(t), θ(t)) + v(t) := T (x(t), θ(t), v(t)), (6.2)
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where T : Rn × Rd × Rn → Rn and v : R≥0 → X . Note that by Assumption (A1), for

fixed θ and v, the map x 7→ T (x, θ, v) is strongly infinitesimally contracting with rate

c > 0. Moreover, at fixed x, θ, the map v 7→ T (x, θ, v) is Lipschitz on (X , ∥ · ∥X ) with

constant ℓv = 1. Consider the inputs v1(t) = 0n and v2(t) = ẋ⋆(θ(t)) and note that

ẋ⋆(θ(t)) = F (x⋆(θ(t)), θ(t)) + ẋ⋆(θ(t)) so that the curve x⋆(θ(·)) is a solution to the

dynamical system (6.2) with input v2(t) and initial condition x⋆(θ(0)). Additionally, for

any initial condition x(0) ∈ X , the solution x(t) to the dynamics (6.1) is a solution to

the system (6.2) with input v1(t). By an application of the incremental ISS theorem for

contracting dynamical systems, Theorem 2.5.1, to the trajectories x(·), x⋆(θ(·)) arising

from inputs v1(·), v2(·), we have the bound for a.e. t

D+∥x(t)−x⋆(θ(t))∥X ≤ −c∥x(t)−x⋆(θ(t))∥X+∥ẋ⋆(θ(t))∥X

≤ −c∥x(t)−x⋆(θ(t))∥X+
ℓθ
c
∥θ̇(t)∥Θ,

where the last inequality follows from Lemma 6.6.2. Item (i) is then a consequence of the

Grönwall inequality for Dini derivatives, e.g. [5, Lemma 11]. To prove item (ii), consider

a trajectory x(t) of (6.1) and let V (t) = ∥F (x(t), θ(t))∥X . Then, omitting dependencies

of x and θ on time, we compute

D+V (t)
(⋆)
= lim

h→0+

∥F (x, θ) + h d
dt
F (x, θ)∥X − ∥F (x, θ)∥X

h
(△)

≤ lim
h→0+

∥F (x, θ) + hDxF (x, θ)F (x, θ)∥X − ∥F (x, θ)∥X
h

+∥DθF (x, θ)θ̇∥X
(A2)

≤ ∥F (x, θ)∥X lim
h→0+

∥In + hDxF (x, θ)∥X − 1

h
+ ℓθ∥θ̇∥Θ

≤ µX (DxF (x, θ)V (t) + ℓθ∥θ̇∥Θ
(A1)

≤ −cV (t) + ℓθ∥θ̇∥Θ,

where (⋆) holds by a Taylor expansion of F in t, inequality (△) is a consequence

207



Time-Varying Convex Optimization: A Contraction and Equilibrium Tracking Approach Chapter 6

of d
dt
F (x, θ) = DxF (x, θ)ẋ + DθF (x, θ)θ̇ and the triangle inequality, inequalities (A2)

and (A1) are a consequence of Assumptions (A2) and (A1), respectively. Item (ii) then

follows by the Grönwall inequality. Item (iii) is a consequence of items (i) and (ii).

Theorem 6.2.1 is a general result that establishes that one does not need to know

ẋ⋆(θ(t)) in order to get an estimate on the tracking error. Indeed, by using Lemma 6.6.1,

we know that the map x⋆ has Lipschitz bound ℓθ/c and this is one of the key steps in

establishing the asymptotic bound (iii). This bound gives designers insight on how they

may speed up their dynamics to provide lower values of tracking error.

Additionally, if we have knowledge of θ̇, we can augment the contracting dynam-

ics (6.1) with a feedforward term that ensures an exponential decay to zero tracking error.

To do so, consider a parameter-dependent vector field F : Rn × Rd → Rn continuously

differentiable in both arguments and satisfying Assumption (A1). Let θ : R≥0 → Θ ⊆ Rd

be continuously differentiable. We introduce the time-varying contracting dynamics with

feedforward prediction:

ẋ(t) = F
(
x(t), θ(t)

)
−
(
DxF (x(t), θ(t))

)−1
DθF (x(t), θ(t))θ̇(t). (6.3)

Assumption (A1) implies the inequality µ(DxF (x, θ)) ≤ −c, for all x, θ. From (1.3d),

we know that the eigenvalues of DxF (x, θ) are in the open left half plane, which implies

invertibility of DxF (x, θ) and ensures that the dynamics (6.3) are well-posed.

In the following result, we show that considering the dynamics (6.3) we obtain expo-

nential decay to zero tracking error.

Theorem 6.2.2 (Exact tracking with feedforward prediction). Let F : Rn×Rd → Rn be a

parameter-dependent vector field, and let θ : R≥0 → Θ ⊆ Rd be continuously differentiable.

Assume F is continuously differentiable in both arguments and satisfies Assumption (A1).
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Consider the dynamics (6.3). Then for all t ≥ 0,

(i) the residual ∥F (x(t), θ(t))∥X satisfies

∥F (x(t), θ(t))∥X ≤ e−ct∥F (x(0), θ(0))∥X ;

(ii) the tracking error ∥x(t)− x⋆(θ(t))∥X satisfies

∥x(t)− x⋆(θ(t))∥X ≤ 1

c
e−ct∥F (x(0), θ(0))∥X ;

Additionally, if F is Lipschitz in its first argument with constant ℓx uniformly in

θ, then

∥x(t)− x⋆(θ(t))∥X ≤ ℓx
c
e−ct∥x(0)− x⋆(θ(0))∥X .

Proof. To prove item (i), consider a trajectory x(t) of (6.3), and let V (t) = ∥F (x(t), θ(t))∥X .

Then, omitting dependencies of x and θ on time, we compute

D+V (t)
(⋆)
= lim

h→0+

∥F (x, θ) + h d
dt
F (x, θ)∥X − ∥F (x, θ)∥X

h
(6.3)
= lim

h→0+

∥F (x, θ) + hDxF (x, θ)F (x, θ)∥X − ∥F (x, θ)∥X
h

≤ ∥F (x, θ)∥X lim
h→0+

∥In + hDxF (x, θ)∥X − 1

h
≤ µX (DxF (x, θ))V (t) ≤ −cV (t),

where (⋆) is by a Taylor expansion of F in t and the next equality holds since (6.3)

implies that d
dt
F (x, θ) = DxF (x, θ)ẋ + DθF (x, θ)θ̇ = DxF (x, θ)F (x, θ). The Grönwall

inequality for Dini derivatives implies item (i). Item (ii) is a consequence of the fact that

∥F (x, θ)−F (x⋆(θ), θ)∥X ≥ c∥x−x⋆(θ)∥X since F (x⋆(θ), θ) = 0n and for fixed θ, the map

x 7→ F (x, θ) is invertible and the inverse map is Lipschitz on (X , ∥ · ∥X ) with constant

1/c [2, Lemma 3.5].
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Note that compared to Theorem 6.2.1, Theorem 6.2.2 does not require Assump-

tion (A2) but does additionally require differentiability of F . By assuming knowledge

of θ̇, we can leverage this information to exponentially achieve zero tracking error for

arbitrary contracting dynamics, F . Comparatively, in Theorem 6.2.1, we do not assume

knowledge of θ̇ and cannot expect to achieve zero tracking error as a result.

6.3 Contracting dynamics for canonical convex opti-

mization problems

In this section, we provide a transcription from three canonical optimization prob-

lems to continuous-time dynamical systems which are strongly infinitesimally contracting.

This transcription allows us to apply Theorems 6.2.1 and 6.2.2 to time-varying instances

of these problems. Specifically, we analyze (i) monotone inclusions, (ii) linear equality

constrained problems, and (iii) composite minimization problems.

6.3.1 Monotone inclusions

We consider the following general problem which has found many applications in

convex optimization, see [74].

Problem 1. Let F : Rn → Rn be monotone and g : Rn → R be convex. We are

interested in solving the monotone inclusion problem

Find x⋆ ∈ Rn s.t. 0n ∈ (F+ ∂g)(x⋆). (6.4)

We make the following assumptions on F and g:
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Assumption 3. F : Rn → Rn is strongly monotone with parameter m and Lipschitz on

(Rn, ∥ · ∥2) with constant ℓ. The map g : Rn → R is CCP. △

Under Assumption 3, the monotone inclusion problem (6.4) has a unique solution due

to strong monotonicity of F.

Monotone inclusion problems of the form (6.4) are prevalent in convex optimization

and data science and we present two canonical problems which can be stated in terms of

the monotone inclusion (6.4).

Example 7 (Convex minimization). First, consider the convex optimization problem

min
x∈Rn

f(x) + g(x), (6.5)

where f : Rn → R is strongly convex and continuously differentiable and g : Rn → R is

CCP. In this case, the unique point x∗ ∈ Rn that minimizes (6.5) also solves the inclusion

problem (6.4) with F = ∇f .

Example 8 (Variational inequalities). Second, consider the variational inequality defined

by the continuous monotone mapping F : Rn → Rn and nonempty, convex, and closed set

C which is the problem

Find x⋆ ∈ C s.t. F(x⋆)⊤(x− x⋆) ≥ 0, ∀x ∈ C. (6.6)

We denote problem (6.6) by VI(F, C). It is known that x∗ ∈ C solves VI(F, C) if and only

if for all γ > 0, x∗ is a fixed point of the map PC ◦(Id−γF), i.e., x∗ = PC(x
∗−γF(x∗)). In

turn, this fixed-point condition is equivalent to asking x∗ to solve the monotone inclusion

problem (6.4) with g = ιC, see, e.g., [72, pp. 37]. Variational inequalities of the form (6.6)

have found applications in computing Nash and Wardrop equilibria in games [202].
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To solve the monotone inclusion problem (6.4), we consider the following dynamics

from [196], called the continuous-time forward-backward splitting dynamics with param-

eter γ > 0:

ẋ = −x+ proxγg(x− γF(x)) =: Fγ
FB(x). (6.7)

The name forward-backward splitting dynamics comes from the classical forward-backward

splitting algorithm from monotone operator theory, see, e.g., [4, Section 26.5].

Remark 6.3.1. When g = ιC for some convex and closed set C, then for any γ > 0,

proxγg = PC, we are solving VI(F, C) (6.6) and the dynamics (6.7) are the projected

dynamics

ẋ = −x+ PC(x− γF(x)),

which were studied in [197]. Alternatively, when F = ∇f for some continuously differ-

entiable convex function f , we are solving the convex optimization problem (6.5) and the

dynamics (6.7) correspond to the proximal gradient dynamics

ẋ = −x+ proxγg(x− γ∇f(x)), (6.8)

which were studied in [198]. △

First, we establish that equilibrium points of the dynamics (6.7) correspond to solu-

tions of the inclusion problem (6.4).

Proposition 6.3.2 (Equilibria of (6.7)). Suppose Assumption 3 holds. Then for any γ >

0, 0n ∈ (F+ ∂g)(x∗) if and only if x∗∈ Rn is an equilibrium point of the dynamics (6.7).

Proof. Note that equilibria of (6.7), x∗ ∈ Rn, satisfy the fixed point equation

x∗ = proxγg(x
∗ − γF(x∗)). (6.9)
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Moreover, it is known that fixed points of the form (6.9) also solve the monotone inclusion

0n ∈ (F+∂g)(x∗), see, e.g., [4, Proposition 26.1(iv)(a)], noting that proxγg is the resolvent

of ∂g with parameter γ.

Remark 6.3.3. Proposition 6.3.2 continues to hold under the assumption of monotone

F [4, Propositon 26.1(iv)(a)]. △

Next, we establish that the dynamics (6.7) are contracting under assumptions on the

parameter γ.

Theorem 6.3.1 (Contractivity of (6.7)). Suppose Assumption 3 holds. Then

(i) for every γ ∈ (0, 2m/ℓ2), the dynamics (6.7) are strongly infinitesimally contracting

with respect to ∥·∥2 with rate 1−
√

1− 2γm+ γ2ℓ2. Moreover, the contraction rate

is optimized at γ∗ = m/ℓ2.

Additionally,

(ii) if F = ∇f for some strongly convex f : Rn → R, for every γ ∈ (0, 2/ℓ), the

dynamics (6.7) are strongly infinitesimally contracting with respect to ∥ · ∥2 with

rate 1 − max{|1 − γm|, |1 − γℓ|}. Moreover, the contraction rate is optimized at

γ∗ = 2/(m+ ℓ);

(iii) if F(x) = Ax+b for all x ∈ Rn, with A = A⊤ ≻ 0, then for every γ ∈ (1/λmin(A),+∞),

the dynamics (6.7) are strongly infinitesimally contracting with respect to the norm

∥ · ∥(γA−In) with rate 1.

Proof. Regarding item (i) note that since g : Rn → R is CCP, for every γ > 0, proxγg is

a nonexpansive map with respect to the ∥ · ∥2 norm [4, Proposition 12.28]. Moreover, for

every γ > 0 the map Id−γF has Lipschitz constant upper bounded by
√
1− 2γm+ γ2ℓ2
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with respect to the ∥ · ∥2 norm [72, pp. 16]. Since the Lipschitz constant of the

composition of the two maps is upper bounded by the product of the Lipschitz con-

stants, in light of Lemma 6.6.3 in Appendix 6.6, we conclude that for γ ∈ (0, 2m/ℓ2),

osL(Fγ
FB) ≤ −1 + Lip(proxγg ◦ (Id− γF)) ≤ −1 +

√
1− 2γm+ γ2ℓ2 < 0. Moreover, mini-

mizing osL(Fγ
FB) corresponds to minimizing 1−2γm+γ2ℓ2 as a function of γ ∈ (0, 2m/ℓ2)

. This minimization occurs at γ∗ = m/ℓ2 and yields a one-sided Lipschitz estimate of

osL(Fγ∗

FB) ≤ −1 +
√

1−m2/ℓ2 < 0.

Item (ii) follows the same argument as in item (i) where instead one shows that for

all γ > 0, Lip(Id− γ∇f) ≤ max{|1− γm|, |1− γℓ|} as in, e.g., [72, pp. 15]. Then for all

γ ∈ (0, 2/ℓ), osL(Fγ
FB) ≤ −1+max{|1−γm|, |1−γℓ|} < 0. Moreover, the optimal choice

of γ is γ∗ = 2/(m+ ℓ) and the corresponding bound on osL(Fγ∗

FB) is −1+ (κ− 1)/(κ+1),

where κ := ℓ/m ≥ 1 [72, pp. 15].

Regarding item (iii), we compute the Jacobian of Fγ
FB for all x ∈ Rn for which it

exists, i.e., DFγ
FB(x) = −In + Dproxγg(In − γ(Ax + b))(In − γA). Note that for all

x ∈ Rn for which the Jacobian exists, there exists G = G⊤ ∈ Rn×n with 0 ⪯ G ⪯ In

satisfying Dproxγg(In− γ(Ax+ b)) = G, see Lemma 6.6.4 in Appendix 6.6. Additionally,

we recall that, for any matrix A, the log-norm translation property holds. That is,

µ(A+ cIn) = µ(A) + c, for all c ∈ R. Then for any norm,

sup
x
µ(DFγ

FB(x)) ≤ −1 + max
0⪯G⪯In

µ(G(In − γA)), (6.10)

where the sup is over all x for which DFγ
FB(x) exists. Moreover, for γ > 1/λmin(A),

γA − In is positive definite and G(In − γA) = (−G)(γA − In) is the product of two

symmetric matrices. An application of Sylvester’s law of inertia implies that G(In− γA)

has all real eigenvalues and that it has the same number of positive, zero, and negative

eigenvalues as −G does, i.e., all eigenvalues are nonpositive. Then from [203, Lemma 2],
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with the choice of norm ∥ · ∥(γA−In), we find

µ(γA−In)(G(In − γA)) = µ(γA−In)((−G)(γA− In))

= max{Re(λ) | λ is an eigenvalue of G(In − γA)} ≤ 0,

where in the last equality we used the definition of ℓ2 log-norm. Since this equality holds

for all symmetric G satisfying 0 ⪯ G ⪯ In, by applying inequality (6.10) we have

sup
x∈Rn

µ(γA−In)(DF
γ
FB(x)) ≤ −1.

This inequality proves the result.

Remark 6.3.4. The rates of contraction in Theorem 6.3.1(i) and (ii) are essentially

consequences of the standard contraction rates of the forward-backward splitting algorithm

in monotone operator theory, see [72, pp. 25] and [4, Proposition 26.16]. In contrast,

Theorem 6.3.1(iii) provides an improved and sharp rate of contraction in the case of

affine F for an increased range of γ. Note that this rate cannot be improved. To see this

fact, consider g = ι{b} so that the dynamics are ẋ = −x + b, which are contracting with

rate equal to 1. It is an open question whether the contraction rates in Theorem 6.3.1(i)

and (ii) can be improved to 1 with different choice of γ and norm. △

Parameter-varying case Consider the parameter-varying inclusion problem

For θ ∈ Θ, find x⋆(θ) ∈ Rn s.t. 0n ∈ (Fθ + ∂gθ)(x
⋆(θ)), (6.11)

where for each θ ∈ Θ, the map Fθ : Rn → Rn is Lipschitz and strongly monotone and the

map gθ : Rn → R is CCP. Then, for suitable γ > 0, the corresponding parameter-varying
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forward-backward splitting dynamics are given by

ẋ = −x+ proxγgθ(x− γFθ(x)) =: Fγ
FB(x, θ). (6.12)

For each θ ∈ Θ, these dynamics are strongly contracting in view of Theorem 6.3.1 and

thus the problem (6.11) has a unique solution x⋆(θ). Moreover, when θ : R≥0 → Θ is a

continuously differentiable curve, under a Lipschitz condition on the map θ 7→ Fγ
FB(x, θ),

Theorem 6.2.1 ensures that trajectories of (6.12) track x⋆(θ(t)) with a tracking error

proportional to ∥θ̇(t)∥Θ after a transient. Such a Lipschitz condition holds if, e.g., the

maps θ 7→ proxγgθ(x) and θ 7→ F(x, θ) are Lipschitz uniformly in x2. If, additionally,

Fγ
FB is differentiable in both arguments, one can design a feedforward term to attain zero

tracking error leveraging Theorem 6.2.2. In Section 6.4.3, we consider an application

that takes this approach.

6.3.2 Linear equality constrained optimization

We study another canonical problem in convex optimization.

Problem 2. Let f : Rn → R be convex, A ∈ Rm×n, and b ∈ Rm. Consider the

equality-constrained problem

min
x∈Rn

f(x),

s.t. Ax = b.

(6.13)

We make the following assumptions on f and A:

Assumption 4. f : Rn → R is continuously differentiable, strongly convex and strongly

smooth with parameters ρ and ℓ, respectively. The matrix A ∈ Rm×n is full row-rank and

2To determine whether the map θ 7→ proxγgθ (x) is Lipschitz, one can employ sensitivity analysis of
parametric programs. We refer the interested reader to [204] for sufficient conditions.
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satisfies aminIm ⪯ AA⊤ ⪯ amaxIm for amin, amax ∈ R>0. △

Note that Problem 2 is a special case of Problem 1 with F = ∇f and g = ιC where

C = {z ∈ Rn | Az = b}. In this case we have that proxαg = PC and PC(z) = z−A†(Az−

b) = (In −A†A)z +A†b, where A† denotes the pseudoinverse of A. In the context of the

forward-backward splitting dynamics (6.7), the dynamics read

ẋ = −x+ (In − A†A)(x− γ∇f(x)) + A†b. (6.14)

In light of Theorem 6.3.1(ii), for γ ∈ (0, 2/ℓ), the dynamics (6.14) are strongly infinitesi-

mally contracting with respect to ∥ · ∥2 with rate 1−max{|1− γρ|, |1− γℓ|}.

The downside to using the dynamics (6.14) is the cost of computing A†. To rem-

edy this issue, a common approach is to leverage duality and jointly solve primal and

dual problems. In what follows, we take this approach and study contractivity of the

corresponding primal-dual dynamics.

The Lagrangian associated to the problem (6.13) is the map L : Rn ×Rm → R given

by L(x, λ) = f(x) + λ⊤(Ax− b). Computing the gradient descent of L in x and gradient

ascent of L in λ, the continuous-time primal-dual dynamics (also called Arrow-Hurwicz-

Uzawa flow [171]) are

ẋ = −∇xL(x, λ) = −∇f(x)− A⊤λ,

λ̇ = ∇λL(x, λ) = Ax− b.

(6.15)

Theorem 6.3.2 (Contractivity of primal-dual dynamics). Suppose Assumption 4 holds.

Then the continuous-time primal-dual dynamics (6.15) are strongly infinitesimally con-
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tracting with respect to ∥ · ∥P with rate c > 0 where

P =

 In αA⊤

αA Im

 ≻ 0, α =
1

2
min

{1
ℓ
,
ρ

amax

}
, and (6.16)

c =
1

2
αamin =

1

4
min

{amin

ℓ
,
amin

amax

ρ
}
. (6.17)

Proof. Since f is continuously differentiable, convex, and strongly smooth, it is almost

everywhere twice differentiable so the Jacobian of the dynamics (6.15) exists almost

everywhere and is given by JPD(z) :=

−∇2f(x) −A⊤

A 0

 , where z = (x, λ) ∈ Rn+m.

To prove strong infinitesimal contraction it suffices to show that for all z for which

JPD(z) exists, the bound µP (JPD(z)) ≤ −c holds for P, c given in (6.16) and (6.17),

respectively. The assumption of strong convexity and strong smoothness of f further

imply that ρIn ⪯ ∇2f(x) ⪯ ℓIn for all x for which the Hessian exists. Moreover, it holds:

sup
z
µP (JPD(z)) ≤ max

ρIn⪯B⪯ℓIn
µP


−B −A⊤

A 0


 ,

where the sup is over all points for which JPD(z) exists. The result is then a consequence

of Lemma 6.7.1 in Appendix 6.7.

Remark 6.3.5. Our method of proof in Lemma 6.7.1 follows the same method as was

presented in [183, Lemma 2], but uses a sharper upper bounding to yield a sharper contrac-

tion rate of
1

4
min

{amin

ℓ
,
amin

amax

ρ
}
compared to the estimate

1

8
min

{amin

ℓ
,
amin

amax

ρ
}
in [183,

Lemma 2]. The sharper upper bounding is a consequence of an appropriate matrix fac-

torization and a less conservative bounding of the square of a difference of matrices.

△
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Parameter-varying case Consider the parameter-dependent equality-constrained min-

imization problem:

min
x∈Rn

fθ(x),

s.t. Ax = bθ,

(6.18)

where for each θ ∈ Θ, bθ ∈ Rm and the map fθ is continuously differentiable, strongly

convex, and strongly smooth with parameters ρ and ℓ, respectively. We also assume that

A is full row rank.

The parameter-varying primal-dual dynamics are

ẋ = −∇fθ(x)− A⊤λ,

λ̇ = Ax− bθ,

(6.19)

and by Theorem 6.3.2, for fixed θ, (6.19) is guaranteed to converge to the unique primal-

dual pair solving (6.18). Moreover, when θ : R≥0 → Θ is a differentiable curve, under

the assumptions that θ 7→ ∇fθ(x) and θ 7→ bθ are Lipschitz, the dynamics (6.19) are

guaranteed to track x⋆(θ(t)), λ⋆(θ(t)) with a tracking error proportional to ∥θ̇(t)∥ after

a transient. Further, if ∇θf is differentiable both in x and θ and bθ is differentiable in

θ, then we can design a feedforward term involving θ̇ leveraging Theorem 6.2.2 to attain

zero tracking error.

It is important to note that we have not let A depend on the parameter θ since

the norm with respect to which the dynamics (6.15) are contracting depends on A. If

A depends on θ, then the norm with respect to which the dynamics are contracting is

also parameter-dependent and the results from Theorems 6.2.1 and 6.2.2 do not directly

apply.
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6.3.3 Composite minimization

Finally, we study a composite minimization problem.

Problem 3. Let f : Rn → R and g : Rm → R be convex, and A ∈ Rm×n. We consider

the problem

min
x∈Rn

f(x) + g(Ax). (6.20)

We make the following assumptions on f, g, and A:

Assumption 5. f : Rn → R is continuously differentiable, strongly convex with param-

eter ρ, and strongly smooth with parameter ℓ. The map g : Rm → R is CCP. Finally,

A ∈ Rm×n satisfies aminIm ⪯ AA⊤ ⪯ amaxIm for amin, amax ∈ R>0. △

While the optimization problem (6.20) may appear to be a special case of (6.5), it

may be computationally challenging to compute the proximal operator of g◦A even if the

proximal operator of g may have a closed-form expression. Thus, we treat this problem

separately.

The optimization problem (6.20) is equivalent to

min
x∈Rn,y∈Rm

f(x) + g(y),

s.t. Ax− y = 0m.

(6.21)

We leverage the proximal augmented Lagrangian approach proposed in [185]. For

γ > 0, define the augmented Lagrangian associated to (6.21) Lγ : Rn ×Rm ×Rm → R by

Lγ(x, y, λ) = f(x) + g(y) + λ⊤(Ax− y) +
1

2γ
∥Ax− y∥22, (6.22)

and, by a slight abuse of notation, the proximal augmented Lagrangian Lγ : Rn×Rm → R
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by

Lγ(x, λ) = f(x) +Mγg(Ax+ γλ)− γ

2
∥λ∥22. (6.23)

The proximal augmented Lagrangian equals the augmented Lagrangian where the mini-

mization over y has already been performed and the optimal value for y has been substi-

tuted; see details in [185, Theorem 1]. Moreover, minimizing (6.20) corresponds to finding

saddle points of (6.23). To this end, the proximal augmented Lagrangian primal-dual

dynamics are

ẋ = −∇xLγ(x, λ) = −∇f(x)−A⊤∇Mγg(Ax+ γλ),

λ̇ = ∇λLγ(x, λ) = γ(−λ+∇Mγg(Ax+ γλ)).

(6.24)

Before providing contraction estimates, we showcase the specific form of the dy-

namics (6.24) in the case of inequality-constrained minimization problems of the form

min{f(x) | Ax ≤ b}. In this case, g = ιC, where C = {z ∈ Rm | z ≤ b}. Then

proxγg(z) = PC(z) = min{z, b} and the corresponding gradient of the Moreau envelope

is ∇Mγg(z) =
1
γ
ReLU(z − b), where the min and ReLU are applied entrywise. Finally,

the dynamics (6.24) take the form

ẋ = −∇f(x)− 1

γ
A⊤ReLU(Ax+ γλ− b),

λ̇ = −γλ+ReLU(Ax+ γλ− b), (6.25)

which we refer to as the proximal inequality-constrained primal-dual dynamics.

Next, we turn to contraction analysis of the dynamics (6.24). To provide estimates

on the contraction rate and the norm with respect to which the dynamics (6.24) are

strongly infinitesimally contracting, we need to introduce a useful nonlinear program.
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For ε ∈ (0, 1/
√
amax), consider the nonlinear program

max
c≥0,α≥0,κ≥0

c (6.26a)

s.t. α ≤ min
{ 1√

amax

− ε,
γ

amax

}
, (6.26b)

κ ≥ 2

3
, (6.26c)

c ≤
(3
4
− 1

2κ

)
αamin, (6.26d)

h(c, α,κ) ≥ 0, (6.26e)

with h : R≥0 × R≥0 × R≥0 → R given by

h(c, α,κ) = 2ρ− ReLU
(
2α− 2

γ

)
amax − 2c− ακ

amax

amin

(
γ2
amax

amin

+ (ℓ+
amax

γ
+ 2c)2

+ 2γ
amax

amin

(ℓ+
amax

γ
+ 2c)

)
.

We prove in Lemma 6.7.4 in Appendix 6.7 that there exist finite values c > 0, α > 0,κ >

0 that solve the problem (6.26).

Theorem 6.3.3 (Contractivity of the dynamics (6.24)). Suppose Assumption 5 holds and

let γ > 0 be arbitrary. Then the primal-dual dynamics (6.24) are strongly infinitesimally

contracting with respect to ∥ · ∥P with rate c⋆ > 0 where

P =

 In α⋆A⊤

α⋆A Im

 , (6.27)

and α⋆ > 0, c⋆ > 0 are the arguments solving problem (6.26).

Proof. Let z = (x, λ) ∈ Rn+m and let F : Rn+m → Rn+m corresponds to the vector

field (6.24) for ż = F(z). Let y := Ax + γλ and define G(y) := γ∇2Mγg(y) where it
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exists. The Jacobian of F is then

DF(z) =

−∇2f(x)− 1
γ
A⊤G(y)A −A⊤G(y)

G(y)A −γ(Im −G(y))

 ,
which exists for a.e. z. We then aim to show that µP (DF(z)) ≤ −c for all z for which

DF(z) exists. First we note that in light of Lemma 6.6.4 in Appendix 6.6,

sup
z
µP (DF(z))≤ max

0⪯G⪯Im
ρIn⪯B⪯ℓIn

µP


−B− 1

γ
A⊤GA −A⊤G

GA γ(G−Im)


 ,

where the sup is over all z for which DF(z) exists. The result is then a consequence of

Lemma 6.7.3 in Appendix 6.7.

Remark 6.3.6. To the best of our knowledge, the solution to the nonlinear program (6.26)

provides the most general test for the contractivity of the dynamics (6.24). The original

work [185, Theorem 3], proves exponential convergence provided that γ > ℓ− ρ. Instead

we prove contraction, a stronger property, for all γ > 0. We compare contraction and

convergence rate estimates in Figure 6.7 in Appendix 6.7. △

Note that any triple (c, α,κ) ∈ R3
≥0 satisfying the constraints (6.26b)-(6.26e) provides

a suboptimal contraction estimate, i.e., the dynamics (6.24) are strongly infinitesimally

contracting with rate c (weakly contracting if c = 0) with respect to norm ∥ · ∥P , where

P =

 In αA⊤

αA Im

. In what follows, we present computational considerations for estimat-

ing the optimal parameters c⋆, α⋆ in the nonlinear program (6.26). Let κ > 2/3 be fixed

(e.g., at a value of 1). Then we have the following bounds on c which we will bisect on:

0 ≤ c ≤ cκmax := min
{
ρ,
(3
4
− 1

2κ

)
aminαmax

}
,
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where αmax = min
{

1√
amax

− ε, γ
amax

}
. For any value of c ∈ [0, cκmax], we check whether the

following linear program (LP) is feasible:

Find α (6.28a)

s.t. 0 ≤ α ≤ αmax, (6.28b)

c ≤
(3
4
− 1

2κ

)
αamin, (6.28c)

h(c, α,κ) ≥ 0. (6.28d)

Although h(c, α,κ) is not linear in α, the problem can be transformed into an equiv-

alent LP since ReLU is piecewise linear. The LP is feasible for c = 0 (with α = 0). If

the LP is feasible for c = cκmax, then c
κ
max is the optimal contraction rate for this choice

of κ. More typically, the LP will not be feasible for cκmax at which point we bisect on c,

checking for feasible α for (6.28) at the prescribed value of c until we find a δ-optimal

value of c with corresponding α that is feasible.

Optimizing further over κ can be done numerically either using nonlinear program-

ming solvers or by using a grid search over κ and then the bisecting on c.
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Figure 6.1: Plots of trajectories of the dynamics (6.32) solving the equality-constrained
minimization problem (6.31). The left figure shows the trajectories of the primal
variables x(t) as solid curves and the trajectories of the instantaneously optimal primal
variables x⋆(θ(t)) as dashed curves. The right figure shows the trajectory of the dual
variable λ(t) as a solid curve and the instantaneously optimal dual variable λ⋆(θ(t))
as a dashed curve.

224



Time-Varying Convex Optimization: A Contraction and Equilibrium Tracking Approach Chapter 6

0 10 20 30 40
t

0.2

0.4

0.6

‖z
(t

)
−
z?

(θ
(t

))
‖ P

tss

Error

Upper bound

Figure 6.2: Plot of the error ∥z(t) − z⋆(θ(t))∥P along with the upper bound ωℓ/c2

where z(t) = (x(t), λ(t)) and z⋆(θ(t)) = (x⋆(θ(t)), λ⋆(θ(t))). We also denote 3 time–
constants by tss, where one time-constant is 1/c = 2 units of time.

Parameter-varying case Consider the parameter-dependent composite minimization

problem

min
x∈Rn

fθ(x) + gθ(Ax), (6.29)

where for each θ ∈ Θ, the function fθ is continuously differentiable, strongly convex, and

strongly smooth, the map gθ is CCP, and that A is full row rank. Then the proximal

augmented Lagrangian primal-dual dynamics are

ẋ = −∇fθ(x)− A⊤∇Mγgθ(Ax+ γλ),

λ̇ = γ(−λ+∇Mγgθ(Ax+ γλ)).

(6.30)

For each θ ∈ Θ, the minimization problem (6.29) has a unique minimizer x⋆(θ) and

Lagrange multiplier λ⋆(θ) and the dynamics (6.30) converge to them. Let FPAL : Rn+m ×

Θ → Rn+m denote the vector field for the dynamics (6.30). When θ : R≥0 → Θ is

a differentiable, time-varying parameter, under the assumption that θ 7→ FPAL(z, θ) is

Lipschitz uniformly in z, the dynamics (6.30) are guaranteed to track x⋆(θ(t)), λ⋆(θ(t))

with a tracking error proportional to ∥θ̇(t)∥ after a transient. The assumption that

FPAL is Lipschitz in θ is satisfied if, e.g., θ 7→ ∇fθ(x) and θ 7→ proxγgθ(x) are Lipschitz
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Figure 6.3: Plots of trajectories of the dynamics (6.34) solving the inequality-con-
strained minimization problem (6.33). The left figure shows the trajectories of the 2
primal variables x(t) as solid curves and the trajectories of the instantaneously opti-
mal primal variables x⋆(θ(t)) as dashed curves. The right figure shows the trajectory
of the dual variable λ(t) as a solid curve and the instantaneously optimal dual variable
λ⋆(θ(t)) as a dashed curve.

uniformly in x. Finally, if FPAL is differentiable in both of its arguments, then we can

leverage Theorem 6.2.2 to design a feedforward term involving θ̇ to attain zero tracking

error.

As in the case of linear equality constrained minimization, we have not let the matrix

A depend on the parameter θ. For the same reason as before, the norm with respect to

which the dynamics (6.24) are contracting depends on A.

6.4 Numerical and hardware experiments

In this section, we present experiments to showcase the performance of the proposed

dynamics.3 We present an application of Theorem 6.2.1 to a problem with equality

constraints, which corresponds to Problem 2 and a case with inequality constraints,

which corresponds to Problem 3. Additionally, we consider an application to control

barrier function-based design, [201], for collision avoidance in a multi-robot scenario by

leveraging the contraction analysis of the proximal gradient dynamics from Problem 1.

3Code for our experiments is available at https://github.com/davydovalexander/

time-varying-convex.
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Figure 6.4: Plot of the error ∥z(t) − z⋆(θ(t))∥P along with the upper bound ωℓ/c2

where z(t) = (x(t), λ(t)) and z⋆(θ(t)) = (x⋆(θ(t)), λ⋆(θ(t))). We also denote 3 time–
constants by tss, where one time-constant is 1/c ≈ 1.78 units of time.

6.4.1 Numerical experiment: Equality constraints

Consider the following time-varying quadratic optimization problem with equality

constraints

min
x∈R3

1

2
∥x− r(t)∥22,

s.t. x1 + 2x2 + x3 = sin(ωt),

(6.31)

where ω = 0.2 and r(t) = (sin(ωt), cos(ωt), 1). We can see that (6.31) is an instance

of (6.18) with n = 3 primal variables and m = 1 equality constraints by letting θ(t) =

(cos(ωt), sin(ωt)) ∈ Θ := {z ∈ R2 | ∥z∥2 ≤ 1} ⊂ R2. Letting ∥ · ∥Θ = ∥ · ∥2, the Lipschitz

assumptions are verified for fθ(t)(x) =
1
2
∥x−r(t)∥22 and bθ(t) = sin(ωt). The corresponding

primal-dual dynamics for problem (6.31) read

ẋ1 = −x1 + sin(ωt)− λ,

ẋ2 = −x2 + cos(ωt)− 2λ,

ẋ3 = −x3 + 1− λ,

λ̇ = x1 + 2x2 + x3 − sin(ωt),

(6.32)
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i.e., the dynamics are that of a linear system.

We simulate the dynamics (6.32) over the time interval t ∈ [0, 45] with a forward Euler

discretization with stepsize ∆t = 0.01 and set the initial conditions x(0) = 03, λ(0) = 0.

We plot the trajectories of the dynamics along with the instantaneously optimal values

x⋆(θ(t)), λ⋆(θ(t)) in Figure 6.1.

We empirically observe how the trajectories of the dynamics track the instantaneously

optimal values x⋆(θ(t)), λ⋆(θ(t)) after a small transient. We then verify that the bound

from Theorem 6.2.1 provides valid upper bounds for the tracking error. Finding the

norm with respect to which the stable linear system (6.32) is contracting with largest rate

corresponds to a bisection algorithm and is detailed in [2, Section 2.5.2]. After executing

the bisection algorithm, we find that the primal-dual dynamics for (6.31) are strongly

infinitesimally contracting with respect to ∥ · ∥P with rate c = 0.5 for suitably chosen

P = P⊤ ≻ 0. Then the corresponding Lipschitz constant for the vector field is computed

from (Θ, ∥ · ∥2) to (R4, ∥ · ∥P ), and is approximately ℓ ≈ 0.902. From Theorem 6.2.1, we

know that the asymptotic tracking error as measured in the ∥·∥P norm is upper bounded

by ℓ
c2
ω ≈ 0.722 since ∥θ̇(t)∥2 = ω for all t ≥ 0. In Figure 6.2 we plot ∥z(t)− z⋆(θ(t))∥P ,

where z is the stacked vector of x and λ, as well as the upper bound ℓ
c2
ω to demonstrate

the validity of our bound.

Remark 6.4.1. Note that in this example we have leveraged the fact that the dynam-

ics (6.32) are linear to get improved rates of contraction. If we had instead simply used

the bound on the contraction rate from Theorem 6.3.2, we would instead have c = 1
4
,

which would yield looser bounds on the asymptotic error (measured in a different norm,

however). △
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6.4.2 Numerical experiment: Inequality constraints

Consider the following time-varying quadratic optimization problem with inequality

constraints

min
x∈R2

1

2
∥x+ r(t)∥22,

s.t. −x1 + x2 ≤ cos(ωt),

(6.33)

where ω = 0.2 and r(t) = (sin(ωt), cos(ωt)). We see that (6.33) is an instance of (6.29)

with g : R×Θ → R given by g(z, θ) = ιCθ(z) where Cθ = {z ∈ R | z ≤ θ1}, the time-varying

parameter is θ(t) = (cos(ωt), sin(ωt)) ∈ Θ := {z ∈ R2 | ∥z∥2 ≤ 1}, and A = [−1, 1]. Fol-

lowing the expressions (6.25), the correspoding proximal inequality-constrained primal-

dual dynamics read

ẋ1 = −x1 − sin(ωt) +
1

γ
ReLU(−x1 + x2 + γλ− cos(ωt)),

ẋ2 = −x2 − cos(ωt)− 1

γ
ReLU(−x1 + x2 + γλ− cos(ωt)),

λ̇ = −γλ+ReLU(−x1 + x2 + γλ− cos(ωt)). (6.34)

We simulate the dynamics (6.34) with γ = 10 over the time interval t ∈ [0, 45]

with a forward Euler discretization with stepsize ∆t = 0.01 and x(0) = 02, λ(0) = 0.

We plot the trajectories of the dynamics along with the instantaneously optimal values

x⋆(θ(t)), λ⋆(θ(t)) in Figure 6.3.

We empirically observe how the trajectories of the dynamics track the instantaneously

optimal values x⋆(θ(t)), λ⋆(θ(t)) after a small transient. We then verify that the bound

from Theorem 6.2.1 provides a valid upper bound for the tracking error. Note that the

vector field for the dynamics (6.34) is almost everywhere differentiable and its Jacobian
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has the structure

DFPAL(z) =


−1− 1

γ
J 1

γ
J J

1
γ
J −1− 1

γ
J −J

−J J −γ + γJ

 , (6.35)

where J denotes the derivative of the ReLU evaluated at −x1 + x2 + γλ − cos(ωt) and

always takes value in {0, 1} when it is defined. In other words, the Jacobian always

takes one of two values. Finding the norm which maximizes the contraction rate of the

dynamics (6.34) corresponds to the minimization problem

min
c∈R,P∈R3×3

c,

s.t. PDi +D⊤
i P ⪯ 2cP, i ∈ {1, 2},

P = P⊤ ≻ 0,

(6.36)

where D1 corresponds to the Jacobian (6.35) with J = 1 and D2 corresponds to the

Jacobian (6.35) with J = 0. The problem (6.36) can be solved using a bisection algorithm

on c as discussed in [2, Section 2.5.2]. After running the bisection algorithm, we find

that the dynamics (6.34) are strongly infinitesimally contracting with respect to ∥ · ∥P
with rate c = 0.5625 for suitably chosen P = P⊤ ≻ 0. Then the corresponding Lipschitz

constant for the vector field is computed from (Θ, ∥·∥2) to (R3, ∥·∥P ) and is approximately

ℓ ≈ 1.235. From Theorem 6.2.1, we know that the asymptotic tracking error as measured

in the ∥ · ∥P norm is upper bounded by ℓ
c2
ω ≈ 0.781 since ∥θ̇(t)∥2 = ω for all t ≥ 0. In

Figure 6.4 we plot ∥z(t)− z⋆(θ(t))∥P as well as the upper bound ℓ
c2
ω to demonstrate the

validity of our bound.

Remark 6.4.2. As in the previous example, we leverage the specific structure of the

dynamics (6.34) to yield sharper bounds on the contraction rate c instead of using the
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nonlinear program (6.26). △

6.4.3 Hardware experiment: Collision avoidance with online

control barrier functions

Figure 6.5: Overhead trajectories from the Robotarium experiments shown as photo-
composites. The robots’ positions are shown at: the start of the maneuver (denoted by
circles), the midpoint, and the end of the maneuver (denoted by stars). (Left) Robots
executing the dynamics (6.41) and (Right) robots executing the dynamics with feedfor-
ward prediction (6.42). Videos are available at https://bit.ly/TimeVaryingConvex.

We evaluate our equilibrium tracking framework in the context of control-barrier

function (CBF)-based control synthesis [201]. To showcase our framework, we first recall

the definition of a CBF.

Suppose we are given a nonlinear control-affine system

ẋ = F (x) +G(x)u, (6.37)

where F : Rn → Rn and G : Rn → Rn×m are locally Lipschitz, and u ∈ Rm. We let

h : Rn → R be sufficiently smooth and C := {x ∈ Rn | h(x) ≥ 0} denote the safe set for

the system (6.37).

Definition 11 (Control Barrier Function [201, Definition 3]). The function h is a control

barrier function (CBF) for C if there exists a locally Lipschitz and strictly increasing
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Figure 6.6: The evolution of mini,j hij(x(t)) and ∥u(t)∥∞ for the experiments in Fig-
ure 6.5. We plot u = 0.12 [m/s] as a dashed line.

function α : R → R with α(0) = 0 such that for all x ∈ C, there exists u ∈ Rm with

∇h(x)⊤F (x) +∇h(x)⊤G(x)u+ α(h(x)) ≥ 0. (6.38)

It is then known that a continuous feedback controller u : Rn → Rm which satis-

fies (6.38) for all x ∈ D ⊃ C, for an open set D, renders C forward-invariant under the

dynamics (6.37) [205].

If C = ∩k
i=1Ci and Ci := {x ∈ Rn | hi(x) ≥ 0}, a common approach to synthesize

controllers which yield C forward-invariant is to solve a parametric quadratic program

argmin
u∈Rm

1

2
∥u− unom(x)∥22,

s.t. ai(x)
⊤u ≤ bi(x), i ∈ {1, . . . , k}

∥u∥∞ ≤ u,

(6.39)

where ai(x) = −G(x)⊤∇hi(x) and bi(x) = ∇hi(x)⊤F (x)+α(hi(x)) for all i ∈ {1, . . . , k},

unom : Rn → Rm is a nominal feedback controller, and ∥u∥∞ ≤ u, where u > 0, captures
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actuator constraints.

The complexity of the above approach arises in the computational burden of solv-

ing (6.39) at each x(t). To ameliorate this burden, we propose leveraging the equilibrium

tracking approach, as was done in [200]. First, we relax the k inequality constraints with

log-barrier penalties:

argmin
u∈Rm

1

2
∥u− unom(x)∥22 − η(t)

k∑
i=1

log(bi(x)− ai(x)
⊤u),

s.t. ∥u∥∞ ≤ u, (6.40)

where η : R → R≥0 is a smooth function with limt→∞ η(t) = 0 which relaxes the log

barriers over time. Note that we do not add additional log barrier terms for the actuator

constraint since doing so would add 2m additional terms to the objective and would

result in overly conservative controls initially.

Let f : Rm×Rn×R → R denote the objective function of (6.40), that is, f(u, x, η) =

1
2
∥u−unom(x)∥22 − η

∑k
i=1 log(bi(x)− ai(x)

⊤u). Note that both x and η are time-varying

parameters in this optimization problem. For U = {u ∈ Rm | ∥u∥∞ ≤ u}, we leverage

the proximal gradient dynamics (6.8) to track the solution u⋆(x(t), η(t)) of (6.40):

u̇(t) = −u(t) + PU
(
u(t)− γ∇uf

(
u(t), x(t), η(t)

))
. (6.41)

To ensure contraction of the dynamics (6.41), we need to make two technical assumptions.

First, we assume that there exist δ, γc > 0 such that for all γ ≤ γc, the set {(u, x) ∈ Rn×

Rm | ai(x)⊤u ≤ bi(x)− δ, for all i} is forward-invariant for the coupled dynamics (6.37)

and (6.41).4 Secondly, we assume that each ai is bounded on this set. Under these

4This first assumption is reminiscient of a strengthened version of the CBF condition (6.38) as studied,
for example, in [205].
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technical assumptions, on this forward-invariant set, f(·, x, η) is strongly convex and

strongly smooth. Then, in light of Theorems 6.2.1 and 6.3.1, we can find suitable γ ∈

]0, γc] such that the dynamics (6.41) are contracting with respect to ∥ · ∥2 and will track

the optimal u⋆(x(t), η(t)) solving (6.40) with some error depending on ẋ(t) and η̇(t).

This is the approach that is taken in [200], albeit with the primal dual flow on the

proximal augmented Lagrangian instead of the proximal gradient flow. In contrast, we

will leverage Theorem 6.2.2 to minimize tracking error. To apply Theorem 6.2.2, we

first replace PU with a smooth approximation, Σ: Rm → Rm satisfying Σ(z) ∈ U and

0 ⪯ DΣ(z) ⪯ In for all z. Then we consider the dynamics with feedforward prediction,

omitting the dependencies on time

u̇ = −u+ Σ(y)+
(
Im −DΣ(y)(Im − γ∇2

uf(u, θ))
)−1

γDΣ(y)
∂∇uf

∂θ
(u, θ)θ̇, (6.42)

where we have used the shorthands y = u − γ∇uf(u, θ) and θ = (x, η). We can show

that all trajectories of (6.42) converge exponentially quickly to a small tube centered

at the time-varying equilibrium trajectory of (6.41). To see this rigorously, suppose

∥Σ(z)−PU(z)∥2 ≤ ε for all z. Intuitively, for any ε > 0, such a Σ exists by “smoothing”

PU at the points of nonsmoothness. Then, letting θ = (x, η), at fixed θ, we can consider

the following two systems:

u̇1 = −u1 + PU(u1 − γ∇uf(u1, θ)) (6.43)

u̇2 = −u2 + PU(u2 − γ∇uf(u2, θ)) + d(u2, θ), (6.44)

where d(u2, θ) = Σ(y)− PU(y) and y = u2 − γ∇uf(u2, θ). In other words, the smoothed

dynamics (6.44) are a perturbed version of the nominal, nonsmooth, dynamics (6.43). We

234



Time-Varying Convex Optimization: A Contraction and Equilibrium Tracking Approach Chapter 6

know that both of these dynamics are contracting in view of Theorem 2 and, therefore,

admit unique equilibria at each θ. Let u⋆1(θ), u
⋆
2(θ) denote these parametrized equilibria.

From [5, Theorem 38(ii)], if c− ε > 0, we know that the following bound holds:

∥u⋆1(θ)− u⋆2(θ)∥2 ≤
∥d(u⋆2, θ)∥2
c− ε

≤ ε

c− ε
. (6.45)

In other words, as ε→ 0, then ∥u⋆1(θ)− u⋆2(θ)∥2 → 0.

Extending to the case of time-varying θ, we have that, for all t, ∥u⋆1(θ(t))−u⋆2(θ(t))∥2 ≤
ε

c−ε
. Namely, the time-varying equilibrium trajectory of (6.44) lies in a small tube around

the time-varying equilibrium trajectory of (6.43). Then since (6.44) has smooth dynam-

ics, we may add a feedforward term to (6.44) so that all trajectories converge to u⋆2(θ(t))

exponentially fast. And since u⋆2(θ(t)) lies inside an arbitrarily small tube around u⋆1(θ(t)),

we can achieve arbitrarily close tracking depending on how we tune ε. Recall that ẋ

follows the dynamics (6.37) and that since η is a design choice, η̇ is known as well, which

makes these dynamics well-posed.

We now provide a concrete example. Consider a team of n single-integrator robots,

ẋi = ui, in R2 attempting to avoid collisions with one another while driving from an initial

position to a final one. Let x = (x1, . . . , xn) ∈ R2n and u = (u1, . . . , un) ∈ R2n denote the

concatenation of their states and controls, respectively. There are n(n−1)/2 CBFs, given

by hij(x) = ∥xi−xj∥22−d2, for all i, j ∈ {1, . . . , n}, i ̸= j and d > 0 is some safety distance

between agents. The constraints induced by these CBFs are −∇hij(x)⊤u ≤ α(hij(x)).

We implement our proposed controllers in the Robotarium [206], a remotely accessible

multi-robot testbed at the Georgia Institute of Technology. We consider n = 4 robots and

evolve the dynamics (6.41) and (6.42) as the controllers for the robots. We choose η(t) =

e−0.3t, γ = 0.5, α(r) = 3r, d = 0.182 [m], and as nominal control, we take unomi(xi) =

xdes,i−xi, where xdes,i ∈ R2 denotes the desired final position for robot i. To comply with
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actuation limits in the Robotarium, we take u = 0.12 [m/s]. For the dynamics (6.42),

we take Σ(z) = u tanh(z/u) as a smooth approximation for PU . The results of the

experiment are shown in Figure 6.5 and the evolution of mini,j hij(x) and ∥u∥∞ are

shown in Figure 6.6.

We can see that both control strategies result in safe execution where each hij is

nonnegative for all t and yield controls that obey the actuation constraint ∥u(t)∥∞ ≤ u

for all t. Note that without the feedforward term, the robots overshoot their target

destination before eventually converging to the final location while this does not happen

when there is a feedforward correction, see Figure 6.6. This overshoot is due to the lack

of knowledge that the log barrier penalty coefficient η(t) is decaying to zero. In contrast,

the feedforward term allows the robots to account for its exponential decay to zero and

thus they avoid overshooting their goal.

6.5 Discussion

In this article, we take a contraction theory approach to the problem of tracking

optimal trajectories in time-varying convex optimization problems. We prove in Theo-

rem 6.2.1 that the tracking error between any solution trajectory of a strongly infinitesi-

mally contracting system and its equilibrium trajectory is upper bounded with an explicit

estimate on the bound. We additionally prove in Theorem 6.2.2 that any strongly in-

finitesimally contracting system can be augmented with a feedforward term to ensure

that the tracking error converges to zero exponentially quickly. To apply these theorems,

we establish the strong infinitesimal contractivity of three dynamical systems solving op-

timization problems and apply Theorem 6.2.1 to provide explicit tracking error bounds.

We validate these bounds in two numerical examples and present a novel application to

CBF-based control.
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We believe that this work motivates future research in establishing the strong in-

finitesimal contractivity of dynamical systems solving optimization problems or perform-

ing more general computation due to the desirable consequences of contractivity. As

future research, we plan to investigate (i) discretization of parameter-varying contract-

ing dynamics and establish similar tracking error bounds for discrete-time contracting

systems [207], (ii) contractivity properties of continuous-time stochastic optimization al-

gorithms based on stochastic differential equations [208], and (iii) time-varying nonconvex

optimization problems with isolated local minima [209], possibly using the theory of k-

contraction [33]. Finally, we believe that a comprehensive comparison to methods based

upon incremental quadratic constraints [210] and dissipative systems theory [211] could

provide novel design insights.

6.6 Proofs and additional results

We begin with a result on parametrized contractions.

Lemma 6.6.1 (Parametrized contractions). Consider the system (6.1) satisfying As-

sumptions (A1) and (A2). Let x⋆ : Θ → X denote the map given by x⋆(θ) = x⋆θ. Then

x⋆(·) is Lipschitz from (Θ, ∥ · ∥Θ) to (X , ∥ · ∥X ) with constant ℓθ/c.

Proof. Consider the dynamics ẋ = F (x, θ) satisfying Assumptions (A1) and (A2), where

θ is constant. Given two constant inputs θ1 and θ2, the two equilibrium solutions are

x⋆(θ1) and x
⋆(θ2). The assumptions of [2, Theorem 3.16] are satisfied with c = − osLx(F )

and ℓθ = Lipθ(F ), and the differential inequality [2, Equation 3.39] implies

0 ≤ −c∥x⋆(θ1)− x⋆(θ2)∥X + ℓθ∥θ1 − θ2∥Θ.

This concludes the proof.
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Next, we study the Lipschitzness of parametrized time-varying equilibrium trajecto-

ries and obtain a bound on their time derivatives.

Lemma 6.6.2 (Lipschitzness of parametrized curves). Consider X ⊆ Rn and Θ ⊆

Rd with associated norms ∥ · ∥X : Rn → R≥0 and ∥ · ∥Θ : Rd → R≥0, respectively. Let

G : Θ → X be Lipschitz from (Θ, ∥ · ∥Θ) to (X , ∥ · ∥X ) with constant Lip(G) ≥ 0. Then

for every a, b ∈ R with a < b and every continuously differentiable θ : (a, b) → Θ,

(i) the curve x : (a, b) → X given by x(t) = G(θ(t)) is locally Lipschitz;

(ii) ∥ẋ(t)∥X ≤ Lip(G)∥θ̇(t)∥Θ, for a.e. t ∈ (a, b).

Proof. Item (i) is a consequence of the fact that continuously differentiable mappings are

locally Lipschitz and that a composition of Lipschitz mappings is Lipschitz.

To prove item (ii) we first note that item (i) implies that ẋ(t) exists almost everywhere

by Rademacher’s theorem. Next, for all t ∈ (a, b) for which ẋ(t) exists, we have

∥ẋ(t)∥X :=
∥∥∥ lim

h→0+

x(t+ h)−x(t)
h

∥∥∥
X
= lim

h→0+

1

h
∥x(t+ h)−x(t)∥X

≤ lim
h→0+

Lip(G)

h
∥θ(t+ h)−θ(t)∥Θ= Lip(G)

∥∥∥ lim
h→0+

θ(t+ h)−θ(t)
h

∥∥∥
Θ
= Lip(G)∥θ̇(t)∥Θ,

where we have used the continuity of the norms ∥ · ∥X and ∥ · ∥Θ and the Lipschitzness

of the map G.

Lemma 6.6.3. Let T : Rn → Rn be Lipschitz with respect to a norm ∥ · ∥ with constant

Lip(T). Then the vector field F : Rn → Rn defined by the dynamics

ẋ = −x+ T(x) =: F (x) (6.46)

satisfies osL(F ) ≤ −1+Lip(T). Moreover, if Lip(T) < 1, then T has a unique fixed point,

x∗, which is the unique equilibrium point of the contracting dynamics (6.46).
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Proof. We have osL(F ) := osL(−Id + T) = −1 + osL(T) ≤ −1 + Lip(T), where we used

the translation property of osL and the upper bound osL(T) ≤ Lip(T) [2, Section 3.2.3].

If Lip(T) < 1, the Banach contraction theorem implies the existence of a unique fixed

point and equilibrium points of (6.46) are exactly fixed points of T. Moreover, the

dynamics (6.46) are contracting since osL(F ) < 0.

Lemma 6.6.4 (Symmetry and bounds on Jacobians). Let the map g : Rn → R be CCP.

Then for every γ > 0, Dproxγg(x) and ∇2Mγg(x) exist for a.e. x ∈ Rn, are symmetric,

and satisfy

0 ⪯ Dproxγg(x) ⪯ In, 0 ⪯ ∇2Mγg(x) ⪯
1

γ
In. (6.47)

Proof. First note that Dproxγg(x) and ∇2Mγg(x) exist for a.e. x ∈ Rn by Rademacher’s

theorem since proxγg and∇Mγg are both Lipschitz. Furthermore, ∇2Mγg(x) is symmetric

for a.e. x by symmetry of second derivatives. Analogously,Dproxγg(x) = In − γ∇2Mγg(x)

by (1.8) so we conclude symmetry of Dproxγg(x) as well. The bounds (6.47) are a conse-

quence of the fact that proxγg and Id− proxγg are both firmly nonexpansive [4, Proposi-

tion 12.28].

6.7 Logarithmic norm of Hurwitz saddle matrices

In this section, we provide bounds on log norms for the saddle matrices arising from

the Jacobians of the dynamics (6.15) and (6.24).

Lemma 6.7.1 (Logarithmic norm of Hurwitz saddle matrices). Given B = B⊤ ∈ Rn×n

and A ∈ Rm×n, with m ≤ n, we consider the saddle matrix

B =

−B −A⊤

A 0

 ∈ R(m+n)×(m+n). (6.48)
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Then, for each matrix pair (B,A) satisfying ρIn ⪯ B ⪯ ℓIn and aminIm ⪯ AA⊤ ⪯ amaxIm,

for ρ, ℓ, amin, amax ∈ R>0, the following contractivity LMI holds:

B⊤P + PB ⪯ −2cP ⇐⇒ µB(P ) ≤ −c, (6.49)

where

P =

 In αA⊤

αA Im

 ≻ 0, α =
1

2
min

{1
ℓ
,
ρ

amax

}
, and (6.50)

c =
1

2
αamin =

1

4
min

{amin

ℓ
,
amin

amax

ρ
}
. (6.51)

Proof. We start by verifying that P ≻ 0. Using the Schur complement of the (2, 2) entry,

we need to verify that

In − α2A⊤A ≻ 0 ⇐⇒ 1− α2amax > 0 ⇐⇒ α2 < 1/amax.

The inequality α2 < 1/amax follows from the tighter inequality (2α)2 ≤ 1
amax

which is

proved as follows:

min
{1
ℓ
,
ρ

amax

}2

≤ min
{1
ℓ
,
ρ

amax

}
·max

{1
ℓ
,
ρ

amax

}
=

1

ℓ
· ρ

amax

≤ 1

amax

.

Next, we aim to show that Q := −B⊤P − PB − 2cP ⪰ 0. After some bookkeeping, we

compute

Q =

 2B−2αA⊤A−2cIn αBA⊤−2cαA⊤

A+αAB−A−2cαA 2αAA⊤−2cIm

 .
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The (2,2) block satisfies the lower bound

2αAA⊤−2cIm = 2
(
1
2
αAA⊤−cIm

)
+ αAA⊤

⪰ 2
(
1
2
αamin−c

)
Im + αAA⊤=αAA⊤ ≻ 0.

Given this lower bound, we can factorize the resulting matrix as follows:

Q = −B⊤P − PB − 2cP ⪰

In 0

0 A


2B−2(αA⊤A+ cIn) αB−2cαIn

αB−2cαIn αIn


︸ ︷︷ ︸

n×n

In 0

0 A⊤

 .

Since αIn ≻ 0, it now suffices to show that the Schur complement of the (2,2) block of

n× n matrix is positive semidefinite. We proceed as follows:

2B − 2(αA⊤A+ cIn)− α
(
B − 2cIn

)2 ⪰ 0

⇐⇒ 2B − αB2 + 4αcB ⪰ 2(αA⊤A+ cIn) + 4αc2In

⇐= 2B − αB2 ⪰ 2(αA⊤A+ cIn) and 4αcB ⪰ 4αc2In.

To prove 2B − αB2 ⪰ 2(αA⊤A+ cIn), we upper bound the right hand side as follows:

2(αA⊤A+ cIn)
(6.50)

⪯ α(2amax + amin)In

α≤1
2
ρ/amax

⪯ 1

2

ρ

amax

(2amax + amin)In ⪯ 3

2
ρIn.

Next, since α ≤ 1
2ℓ
, we know −αℓ ≥ −1

2
. We then upper bound the left hand side as

follows:

2B − αB2 ⪰ 2B − αℓB ⪰ (2− 1
2
)B ⪰ 3

2
ρIn.
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Finally, the inequality 4αcB ⪰ 4αc2In follows from noting c ≤ 1
4
amin

amax
ρ < ρ.

The following lemma is presented in [183, Lemma 6]. We include it here for com-

pleteness.

Lemma 6.7.2. Let X = X⊤ ∈ Rm×m satisfy 0 ⪯ X ⪯ xmaxIm for some xmax > 0, γ > 0,

and α ≤ γ

xmax

. Then for all d ∈ [0, 1]m, the following inequality holds

α(diag(d)X +Xdiag(d)) + 2γ(Im − diag(d)) ⪰ 3

2
αX. (6.52)

Proof. See [183, Lemma 6].

The following lemma is a generalization of [183, Lemma 4], where we let the matrix

G be dense. The proof method is improved by introducing an auxiliary variable κ which

we optimize for in (6.26) whereas in the proof of [183, Lemma 4], κ = 1 is chosen.

Lemma 6.7.3 (Generalized saddle matrices). Given A ∈ Rm×n, B = B⊤ ∈ Rn×n, and

G = GT ∈ Rm×m, with m ≤ n, and γ > 0, we consider the saddle matrix

B =

−B − 1
γ
ATGA −ATG

GA −γ(Im −G)

 ∈ R(m+n)×(m+n). (6.53)

Then, for each matrix triplet (B,A,G) satisfying ρIn ⪯ B ⪯ ℓIn, aminIm ⪯ AA⊤ ⪯

amaxIm, and 0 ⪯ G ⪯ Im, for ρ, ℓ, amin, amax ∈ R>0, the following contractivity LMI

holds:

B⊤P + PB ⪯ −2c⋆P ⇐⇒ µB(P ) ≤ −c⋆, (6.54)

where

P =

 In α⋆A⊤

α⋆A Im

 ≻ 0, (6.55)
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and c⋆ and α⋆ are the optimal parameters for the problem (6.26).

Proof. Define the matrix Q ∈ R(m+n)×(m+n) by

Q = −BTP − PB − 2c⋆P =

Q11 Q12

Q⊤
12 Q22

 , (6.56)

where Q11 ∈ Rn×n, Q12 ∈ Rn×m, and Q22 ∈ Rm×m. We aim to show that Q ⪰ 0 for c⋆

and α⋆ optimal parameters for the problem (6.26). We have

Q11 = 2B +
(2
γ
− 2α⋆

)
ATGA− 2c⋆In,

Q12 = α⋆γAT(Im−G)+α⋆BAT+
α⋆

γ
ATGAAT−2c⋆α⋆AT,

Q22 = α⋆(AATG+GAAT) + 2γ(Im −G)− 2c⋆Im.

To show that Q ⪰ 0 we use the Schur Complement, which requires to prove that Q22 ≻ 0

and Q11 −Q12Q
−1
22 Q

T
12 ⪰ 0. We do this in three steps.

First, we find a lower bound for Q22. Since G is symmetric and satisfies 0 ⪯ G ⪯ Im,

there exists an orthogonal matrix U ∈ Rm×m and d ∈ [0, 1]m such that G = Udiag(d)U⊤.

Substituting this into Q22 and multiplying on the left and on the right by U and UT,

respectively, we get

UTQ22U = α⋆(UTAATUdiag(d) + diag(d)UTAATU) + 2γ(Im − diag(d))− 2c⋆Im,

(6.57)

where we have used the fact that U ∈ Rm×m orthogonal, i.e., UUT = UTU = Im. More-

over, the orthogonality of U implies that U−1 = UT. Thus the eigenvalues of UTAATU

and AAT are equal, and therefore, aminIm ⪯ UTAATU ⪯ amaxIm. Next, applying
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Lemma 6.7.2 to (6.57), with X := U⊤AA⊤U , and, multiplying this on the left and

on the right by U and UT, respectively, we get the following lower bound

Q22 ⪰
3

2
α⋆AAT − 2c⋆Im, (6.58)

where the inequality holds because α⋆ ≤ γ
amax

– constraint (6.26b). Finally, we note that

Q22 ≻ 0 for α⋆ and c⋆ optimal parameters for the problem (6.26)

Next, we need to prove that Q11 −Q12Q
−1
22 Q

T
12 ⪰ 0 for c⋆ and α⋆ optimal parameters

for the problem (6.26). To this purpose, first note that for every κ > 2
3
amax

amin

1
α⋆ ,

Q22 ⪰
1

κ
AAT. (6.59)

Next, we upper bound Q12Q
−1
22 Q

T
12. To simplify notation, define R1 = B + 1

γ
ATGA −

2c⋆In ∈ Rn×n, R2 = γAT(Im −G) ∈ Rn×m, and note that Q12 = α⋆(R1A
T +R2) ∈ Rn×m.

We compute

Q12Q
−1
22 Q

T
12

(6.59)

⪯ κQ12(AA
T)−1Q12

⪯ (α⋆)2κ(R1A
T(AAT)−1ART

1+R1A
T(AAT)−1RT

2

+R2(AA
T)−1ART

1 +R2(AA
T)−1RT

2 )

⪯ (α⋆)2κ(R1R
T
1 + 2∥R1A

T(AAT)−1RT
2 ∥In

+ ∥R2(AA
T)−1RT

2 ∥In), (6.60)

where the final inequality holds because AT(AAT)−1A ⪯ In. Note that

R1R
T
1 ⪯ ℓ2In+

(
2ℓ+

amax

γ
+2c⋆

)(amax

γ
+2c⋆

)
In=:h1(c

⋆)In,
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where we have introduced the function h1 : R≥0 → R≥0 defined by h1(c
⋆) = ℓ2+2ℓ(amax

γ
+

2c⋆) + (amax

γ
+ 2c⋆)2. Moreover,

∥R2(AA
T)−1RT

2 ∥ ≤ γ2
amax

amin

, and

2∥R1A
T(AAT)−1RT

2 ∥ ≤ 2γ
amax

amin

(
ℓ+

amax

γ
+2c⋆

)
=: h2(c

⋆),

where, we have introduced the function h2 : R≥0 → R≥0 defined by h2(c
⋆) := 2γ amax

amin
(ℓ+

amax

γ
+ 2c⋆). Substituting the previous bounds on the LMI (6.60) we get

Q12Q
−1
22 Q

T
12 ⪯ (α⋆)2κ

(
h1(c

⋆) + h2(c
⋆) + γ2

amax

amin

)
In.

Next, we compute

Q11 = 2B +
(2
γ
− 2α⋆

)
ATGA− 2c⋆In

⪰
(
2ρ− ReLU

(
2α⋆ − 2

γ

)
amax − 2c⋆

)
In.

Finally, we have

Q11−Q12Q
−1
22 Q

T
12 ⪰ In

(
2ρ− ReLU

(
2α⋆ − 2

γ

)
amax − 2c⋆

− (α⋆)2κ
(
h1(c

⋆) + h2(c
⋆) + γ2

amax

amin

))
⪰ 0,

where the last inequality follows from constraint (6.26e). This concludes the proof.

Lemma 6.7.4. Consider the nonlinear program (6.26). Then optimal parameters c⋆, α⋆,κ⋆

exist, are finite, and are strictly positive.

245



Time-Varying Convex Optimization: A Contraction and Equilibrium Tracking Approach Chapter 6

Proof. We have the obvious bounds on c, α,κ:

0 ≤ c ≤ cmax := min
{
ρ,

3

4
aminαmax

}
,

0 ≤ α ≤ αmax := min
{ 1√

amax

− ε,
γ

amax

}
,

2

3
≤ κ.

We can see that at fixed c,κ, the function h is continuous and decreasing in α and

that for fixed α,κ, the function h is continuous and decreasing in c. Let κ > 2/3 be

arbitrary. Pick c̃ ∈ ]0, ρ[ and note that h(c̃, 0,κ) = 2ρ − 2c̃ > 0. By continuity of h

in α, there exists sufficiently small α > 0 such that h(c̃, α,κ) ≥ 0. Then pick 0 < c <

min{c̃, (3
4
− 1

2κ )αamin}. By definition, c ≤ (3
4
− 1

2κ )αamin and h(c, α,κ) ≥ h(c̃, α,κ) ≥ 0

since h is decreasing in c for fixed α,κ. In other words, for every κ > 2/3, there exist

parameter values (c, α,κ) that are all positive and feasible (at κ = 2/3, the optimal

value of c is 0). Since c and α are bounded above, we know that optimal values must be

finite. We now show that the optimal value of κ is also bounded above.

For κ ≥ 2/3, define the set

Sκ :=
{
(c, α) ∈ R≥0 × R≥0 | α ≤ αmax, c ≤

(3
4
− 1

2κ

)
αamin, h(c, α,κ) ≥ 0

}
.

Because h is continuous, we can see that for every κ ≥ 2/3, Sκ is a closed set. Moreover,

we can also see that

Sκ ⊆ [0, cmax]× [0, αmax],

so Sκ is a closed subset of a compact set, so it is also compact. Then for every κ ≥ 2/3

and (c, α) ∈ Sκ, the mapping (c, α) 7→ c is continuous on the compact set Sκ and thus

attains its maximal value at parameter values cκ, ακ, both of which are positive for every
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κ > 2/3 by the above reasoning. Consider specifically c1, α1 > 0 which are the parameter

values which maximize the map over the compact set S1. It is now straightforward to

argue that there exists M > 0 sufficiently large such that for all d ≥ M , cd < c1 and

thus implies that the optimal value for κ lies in the bounded interval [2/3,M ]. To see

this intuitively, if M is sufficiently large, h(cM , αM ,M) ≥ 0 can be made to imply that

αd ≤ 4
3

c1
amin

for every d ≥M (by picking M large enough and since h is decreasing in κ)

and thus cd ≤ (3
4
− 1

2d
)αdamin <

3
4
αdamin ≤ c1.

Then define the set

S :=
{
(c, α,κ) ∈ R≥0 × R≥0 × R≥0 | α ≤ αmax,

c ≤
(3
4
− 1

2κ

)
αamin, h(c, α,κ) ≥ 0, 2/3 ≤ κ ≤M

}
.

We can easily see that S is closed and is also compact since

S ⊆ [0, cmax]× [0, αmax]× [2/3,M ].

Moreover, for every (c, α,κ) ∈ S the mapping (c, α,κ) 7→ c is continuous on the compact

set S and attains its maximal value at parameter values c⋆, α⋆,κ⋆ all of which are positive

and finite. This concludes the proof.

Finally, we empirically compare our estimate of the contraction rate for the dynam-

ics (6.24) as a function of γ to existing convergence rates in the literature. We compare

against [212, Prop. 3] and [183, Theorem 2]. We elect to compare against [212] rather

than [185] since the estimate in [212] depends only on amin, amax while the estimate

from [185, Theorem 3] depends on A. We note that both [212] and [183] establish expo-

nential convergence rather than contractivity, but the proof methods could be extended

to establish contraction. In Figure 6.7, we plot these convergence estimates.
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Figure 6.7: Estimates of contraction or exponential convergence rate of the dynam-
ics (6.24) with (ρ, ℓ, amin, amax) = (1.03, 27.81, 0.1, 1) as a function of γ. We compare
the contraction estimates from (6.26) to the exponential convergence rates from [212,
Prop. 3] and [183, Theorem 2].

We note that the estimate from [212, Prop. 3] is only valid for γ ≥ ℓ− ρ and this is

denoted by the circle in the plot. For γ < ℓ − ρ, our contraction estimate is orders of

magnitude better than the estimate in [183]. For γ ≥ ℓ−ρ, the estimate in [212] is better.

In other words, our estimate appears to be the sharpest-known contraction rate which

is valid for all γ > 0. Our estimates may be well-suited for poorly conditioned problems

where ρ≪ ℓ which would require very large γ for the analysis in [212] to apply.
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Chapter 7

Exponential Stability of Parametric

Optimization-Based Controllers via

Lur’e Contractivity

This chapter was first published in the IEEE Control Systems Letters [213].1

7.1 Introduction

Controllers solving optimization problems are ubiquitous in systems and control. One

large class of optimization-based controllers are based upon (i) solving an optimal con-

trol problem offline, such as LQR, LQG, or Hamilton-Jacobi PDE and (ii) closing the

loop with the resulting controller. Recent interest has focused on a different class of

optimization-based controllers, that solve optimization problems at every time-step of

the dynamic evolution of the plant. Namely, such controllers are solutions to paramet-

ric optimization problems, i.e., programs that are functions of the state of the system.

1©2024 IEEE. Reprinted, with permission, from Alexander Davydov and Francesco Bullo, Exponen-
tial Stability of Parametric Optimization-Based Controllers via Lur’e Contractivity, 2024.
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Examples of these controllers include model-predictive control [214], online feedback op-

timization [175], and control barrier (or Lyapunov) function-based control [201]. While

stability and robustness properties of the first class of optimization-based controllers are

well understood, fewer studies have focused on stability and robustness properties of

parametric optimization-based controllers.

Literature Review: Parametric optimization is a rich subdiscipline of optimization

which studies solutions of optimization problems as a function of a parameter; see the

textbook [215]. Parametric optimization is ubiquitous in systems and control, especially

in model predictive control [214] and CBF-based control [201]. Closed-form solutions for

certain classes of parametric programs were studied in [214, Chapter 5]. However, closed-

form solutions are not always attainable. Regularity of solutions to parametric programs,

namely establishing smoothness properties of their solutions, is a classical problem and

has even pervaded systems and control [216, 217]. Compared to regularity results, there

are fewer results on the stability of control systems with parametric optimization-based

controllers.

One class of systems for which there have been results on stability and safety of

systems driven by parametric optimization-based controllers are those coming from CBFs

and control Lyapunov functions (CLFs) [201]. In these works, CLF and CBF constraints

are jointly enforced in a state-dependent quadratic program (QP). To guarantee feasibility

of the QP when the CLF and CBF inequalities cannot be jointly satisfied, the stability

is commonly relaxed by introducing a slack variable. This relaxation results in a lack of

stability guarantee even for arbitrarily large penalties on the slack variable [218]. Recent

work, [219], studied a variant of the CLF-CBF QP controller and demonstrates how to

estimate the basin of attraction of the origin.

Contributions: We consider LTI systems equipped with parametric projection-based

controllers. As our main contribution, assuming linearity of the nominal controller and
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various well-posedness conditions, we obtain LMI-based sufficient conditions for exponen-

tial stability and the existence of a global Lyapunov function. Our proposed sufficient

conditions generalize those presented in [220] which focus only on special classes of para-

metric QPs, whereas our controllers can incorporate more general convex constraints.

Our results can also be seen as using similar ideas to those in [210] regarding sector

bounds for projection operators.

Our analysis is based upon the virtual system methods in contraction theory and

contractivity of Lur’e systems. For context, contraction theory is a computationally-

friendly notion of robust nonlinear stability [154] and the virtual system method, first

proposed in [24], is an analysis approach to establish exponential convergence for systems

satisfying certain weak contractivity properties. As a tutorial contribution, we provide

a novel review of the virtual system method in Section 7.2.1. Specifically, we show

that LTI systems with parametric projection-based controllers are in Lur’e form with

state-dependent nonlinearity and that an appropriate virtual system can be designed in

standard Lur’e form.

As our second main contribution, we establish in Theorem 7.3.1 a novel necessary and

sufficient condition for absolute contractivity of Lur’e systems with cocoercive nonlineari-

ties. In contrast, in [221] and [222, Proposition 4], monotone and Lipschitz nonlinearities

are considered yet only sufficient conditions are provided. By focusing on cocoercive

nonlinearities, we propose a relaxed LMI condition that is necessary and sufficient. See

the related discussion in [37, Theorem 4.2] for other sufficient conditions.

As our third main contribution, we study the special LTI case of single integrators.

We establish that all trajectories of the closed-loop system converge to the set of equi-

libria and that all trajectories converging to the origin do so exponentially fast with

a known rate. While there are related results in the CBF/CLF literature [223, 224],

this convergence result for the general class of parametric projection-based controllers is
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novel, to the best of our knowledge.

Finally, we study two applications, namely state-dependent saturated control systems

and CBF-based control. For state-dependent saturated control systems, the maximal

control effort depends on the state of the system and we demonstrate that our sufficient

condition can be readily applied to yield a condition for global exponential stability. In

CBF-based control, we consider a single integrator avoiding an obstacle and demonstrate

that the results hold and provide evidence that the estimated exponential rate of conver-

gence is tight. Specifically, we numerically observe that, in the case of single integrator

dynamics, one does not need to enforce any CLF decrease condition to guarantee stability

to the origin.

7.2 Prerequisite material

7.2.1 Virtual system method for convergence analysis

The virtual system analysis approach is a method to study the asymptotic behavior

of a dynamical system that may not enjoy contracting properties. The virtual system

approach was first proposed in [24], but we follow the systematic procedure advocated

for in [154, Section 5.7]. For completeness sake, we describe this procedure below.

The virtual system analysis approach is as follows. We are given a dynamical system

ẋ = f(x), x(0) = x0 ∈ Rn (7.1)

and we let ϕx0

(
t
)
denote a solution from initial condition x(0) = x0. The analysis

proceeds in three steps:

252



Exponential Stability of Parametric Optimization-Based Controllers via Lur’e Contractivity
Chapter 7

(i) design a time-varying dynamical system, called the virtual system, of the form

ẏ = fvirtual(y, ϕx0

(
t
)
), y ∈ Rd (7.2)

satisfying a strong infinitesimal contractivity property with respect to an appropri-

ate norm, e.g., the existence of a positive definite matrix P ∈ Rd×d and a scalar

c > 0 such that for all y1, y2 ∈ Rd, z ∈ Rn:

(fvirtual(y1, z)− fvirtual(y2, z))
⊤P (y1 − y2) ≤ −c∥y1 − y2∥2P ;

(The vector field is called virtual since it is different from the nominal vector field,

f , and does not correspond to any physically meaningful variation of f .)

(ii) select two specific solutions of the virtual system and state their incremental sta-

bility property:

∥y1(t)− y2(t)∥P ≤ e−ct∥y1(0)− y2(0)∥P ; (7.3)

(iii) infer properties of the trajectory, ϕx0

(
t
)
, of the nominal system.

For example, if d = n and f(x) = fvirtual(x, x), then one can see that ϕx0

(
t
)
is a

solution for both systems and is often selected as one of the two specific solutions in

step (ii). Additionally, if fvirtual(0n, z) = 0n for all z ∈ Rn, then 0n is an equilibrium

point for the virtual system and can be selected as one of the specific solutions. We refer

to [24] for example applications leveraging the virtual system method.
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7.3 Absolute contractivity of Lur’e systems

Consider the Lur’e system

ẋ = Ax+Bφ(t,Kx), (7.4)

where φ : R≥0 × Rm → Rm is continuous in its first argument and cocoercive second ar-

gument. Specifically, φ cocoercive in its second argument means there exists a constant

ρ > 0 such that for all y1, y2 ∈ Rm, t ≥ 0,

(φ(t, y1)− φ(t, y2))
⊤(y1 − y2) ≥ ρ∥φ(t, y1)− φ(t, y2)∥22. (7.5)

Notably, cocoercivity, (7.5), implies that φ is monotone and Lipschitz continuous with

constant ρ−1 in its second argument. Many standard nonlinearities satisfy cocoercivity

including projections onto convex sets and nonlinearities of the form

φ(t, y) = (φ1(t, y1), . . . , φm(t, ym))

where each φi is slope-restricted between 0 and ρ−1 in its second argument.

Akin to the classical problem of absolute stability, absolute contractivity is the prop-

erty that the system (7.4) is strongly infinitesimally contracting for any nonlinearity φ

obeying the constraint (7.5).

Theorem 7.3.1 (Necessary and sufficient condition for absolute contractivity). Consider

the Lur’e system (7.4) and let P ∈ Rn×n be positive definite and let K be full row-rank.

The system (7.4) is strongly infinitesimally contracting with respect to ∥ · ∥P with rate

254



Exponential Stability of Parametric Optimization-Based Controllers via Lur’e Contractivity
Chapter 7

η > 0 for any φ satisfying (7.5) if and only if there exists λ ≥ 0 such that

A⊤P + PA+ 2ηP PB + λK⊤

B⊤P + λK −2λρIm

 ⪯ 0. (7.6)

Proof. Employing the shorthand ∆x = x1 − x2,∆y = y1 − y2 = K∆x,∆ut = φ(t, y1) −

φ(t, y2), the contractivity condition for the system (7.4) is equivalently rewritten as

∆x⊤(PA+ A⊤P + 2ηP )∆x+ 2∆x⊤PB∆ut ≤ 0. (7.7)

Moreover, by the full row-rankedness of K, the cocoercivity condition (7.5) is equivalent

to

∆u⊤t (ρ∆ut −K∆x) ≤ 0. (7.8)

Asking when the inequality (7.8) implies (7.7) is equivalent to the inequality (7.6) in light

of the necessity and sufficiency of the S-procedure [225].

Note that the condition in [221, Theorem 2] corresponds to the inequality (7.6) with

λ = 1. Moreover the matrix in (7.6) has A⊤P + PA + 2ηP in its (1, 1) block compared

to A⊤P + PA + ηIn in [221]. This modification ensures that the integral contraction

inequality holds rather than a related inequality with −η
2
∥x1 − x2∥22 on the right-hand

side. Thus, by restricting our focus to cocoercive nonlinearities, we are able to find the

sharpest condition for absolute contractivity.
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7.4 Parametric projection-based controllers

We are interested in studying a continuous-time LTI system being driven by an para-

metric optimization-based controller. We say that the optimization problem is paramet-

ric since it is a function of the state. Specifically, we look at parametric projection-

based controllers. More concretely, for A ∈ Rn×n, B ∈ Rn×m, u⋆ : Rn → Rm, k : Rn →

Rm, g : Rn × Rm → Rp, the LTI system and controller are:

ẋ = Ax+Bu⋆(x),

u⋆(x) := argmin
u∈Rm

1

2
∥u− k(x)∥22

s.t. g(x, u) ≤ 0p.

(7.9)

In the context of the parametric optimization problem in (7.9), k denotes a nominal

feedback controller and g captures constraints on the controller as a function of the

state. Such controllers commonly arise in CLF and CBF theory, where the parametric

optimization problem in (7.9) is used to enforce that u⋆ either causes the closed-loop

system to decrease a specified Lyapunov function or keep a certain set forward-invariant,

respectively [201].

The question we aim to answer in this chapter is the following: What are condi-

tions on the LTI system and the parametric optimization problem to ensure

exponential stability of (7.9)? Our main method for establishing sufficient conditions

for exponential stability will be via the virtual system method in Section 7.2.1.

7.4.1 Well-posedness and regularity of solutions

In order to study the dynamical system (7.9), we need to ensure that it is well-posed.

Several works in the literature have studied sufficient conditions for regularity of u⋆,
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e.g., continuity, Lipschitzness, or differentiability [204, 216, 217]. In this work, we utilize

the following proposition from [217] which provides a sufficient condition for u⋆ to be

continuous.

Proposition 7.4.1 ([217, Proposition 4]). Consider the map u⋆ : Rn → Rm defined via

the solution to the parametric optimization problem

u⋆(x) := argmin
u∈Rm

f(x, u)

s.t. g(x, u) ≤ 0p.

(7.10)

where f : Rn ×Rm → R and g : Rn ×Rm → Rp are each twice continuously differentiable

on Rn × Rm. Further assume that for some x0 ∈ Rn, f(x0, ·) is strongly convex2 and

g(x0, ·) is convex and that there exists û ∈ Rm such that g(x0, û) ≪ 0p
3. Then there exists

a neighborhood of x0 such that u⋆ is continuous at every point in the neighborhood.

By existence theorems, we know that for the system ẋ = Ax + Bu⋆(x), for each ini-

tial condition x0 satisfying the assumptions of Proposition 7.4.1, there exists a positive

constant τmax(x0) and a continuously differentiable curve ϕx0 : [0, τmax(x0)) → Rn satis-

fying
dϕx0

dt
(t) = Aϕx0(t) + Bu⋆(ϕx0(t)) for all t ∈ [0, τmax(x0)). We say that the solution

ϕx0 is forward-complete if τmax(x0) = +∞. While Proposition 7.4.1 ensures existence of

solutions, we refer to [217] for discussions on conditions for uniqueness of solutions.

2A map f : Rn → R is strongly convex if there exists ν > 0 such that ∇2f(x) ⪰ νIn for all x.
3For two vectors, v, w ∈ Rn, v ≪ w if vi < wi for all i ∈ {1, . . . , n}.
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7.4.2 Stability analysis for LTI systems

Consider the dynamical system and its corresponding controller defined via a para-

metric optimization problem (7.9) and define the following sets

Γ(x) := {u ∈ Rm | g(x, u) ≤ 0p} and (7.11)

K := {x ∈ Rn | ∃û s.t. g(x, û) ≪ 0p}, (7.12)

where Γ(x) represents the feasible control actions at the state x and K denotes the points

in state space where the feasible set, Γ(x), has an interior.

We make the following assumptions on our problem:

(A1) (Regularity of g) The map g : Rn ×Rm → Rp is twice continuously differentiable

on Rn × Rm and g(x, ·) is convex for all x ∈ Rn,

(A2) (Existence of equilibrium and feasibility of zero control) 0n ∈ K and 0m ∈

Γ(x) for all x ∈ K,

(A3) (Linearity of nominal controller) the map k : Rn → Rm is linear, i.e., k(x) =

Kx for some K ∈ Rm×n,

(A4) (Dynamical feasibility) for every x0 ∈ K, ϕx0(t) ∈ K for all t ∈ [0, τmax(x0)).

We make comments about some of these assumptions. Assumption (A2) ensures that

0n is an equilibrium point and that u = 0m is a feasible control action. Assumption (A4)

ensures that the controller u⋆ does not drive the system outside the set of points where

the feasible set of (7.9) has an interior. Outside of this set, the controller may fail

to be continuous and solutions of (7.9) may fail to exist. One simple way to verify

Assumption (A4) is to ensure that K = Rn. Note further that u⋆(x) can compactly
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be written u⋆(x) = PΓ(x)(Kx), where given a nonempty, closed, convex set Ω ⊆ Rm,

PΩ(z) := argminv∈Ω ∥z − v∥2.

We are now ready to state our first main theorem establishing the exponential stability

of the system (7.9).

Theorem 7.4.1 (Exponential stability for LTI systems with parametric projection-based

controllers). Consider the dynamics (7.9) satisfying Assumptions (A1)-(A4). Further

suppose that there exist P = P⊤ ≻ 0, η > 0, and λ ≥ 0 satisfying the inequality

A⊤P + PA+ 2ηP PB + λK⊤

B⊤P + λK −2λIm

 ⪯ 0. (7.13)

Then from any x0 ∈ K,

(i) solutions to (7.9), ϕx0, are forward-complete,

(ii) the origin is globally exponentially stable with bound

∥ϕx0(t)∥P ≤ e−ηt∥x0∥P , (7.14)

(iii) the mapping V : K → R≥0 given by V (x) = x⊤Px is a global Lyapunov function for

the dynamics (7.9).

Proof. We apply the virtual system method. Let x0 ∈ K be arbitrary and consider the

virtual system

ẏ = Ay +B PΓ(ϕx0 (t))
(Ky). (7.15)

Note that for all t ∈ [0, τmax(x0)), PΓ(ϕx0 (t))
obeys the inequality (7.5) with ρ = 1 due to

cocoercivity of projections, see, e.g., [72, Eq. (2)]. Therefore the virtual system is a Lur’e

system of the form (7.4). Theorem 7.3.1 implies that this virtual system is contracting
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with respect to ∥ · ∥P with rate η > 0. In other words, any two trajectories y1(·), y2(·) for

the virtual system satisfy for all t ∈ [0, τmax(x0)),

∥y1(t)− y2(t)∥P ≤ e−ηt∥y1(0)− y2(0)∥P . (7.16)

First note that ϕx0 is a valid trajectory for the virtual system so we set y1(t) = ϕx0(t).

Additionally note that y2(t) = 0n is a valid trajectory for the virtual system since 0m ∈

Γ(x) for all x ∈ K. Substituting these two trajectories implies (7.14) for t ∈ [0, τmax(x0)).

We now establish that τmax(x0) = +∞. To this end, note that the bound (7.14) implies

that the trajectory ϕx0 remains in the compact set {x ∈ Rn | ∥x∥P ≤ ∥x0∥P} for t ∈

[0, τmax(x0)) for which it is defined. Since this set is compact, the trajectory cannot

escape in a finite amount of time, meaning that the trajectory is forward complete. This

reasoning proves statements (i) and (ii). Statement (iii) is a consequence of (ii). To

prove statement (iii) note that V (x) = ∥x∥2P , let x0 ∈ K and for h > 0 note that the

inequality (7.14) implies

∥ϕx0(h)∥2P ≤ e−2ηh∥x0∥2P .

Now subtract ∥x0∥2P from both sides, divide by h > 0 and take the limit as h → 0+ to

conclude

lim
h→0+

∥ϕx0(h)∥2P − ∥x0∥2P
h

≤ ∥x0∥2P lim
h→0+

e−2ηh − 1

h
.

We see that the left-hand side of the above inequality is the definition of the Lie deriva-

tive of V along trajectories of (7.9) with x0 ∈ K. Moreover, the right-hand side evaluates

to −2η∥x0∥2P . In other words, V̇ (x0) ≤ −2ηV (x0) for all x0 ∈ K, which implies state-

ment (iii).

The key insight in Theorem 7.4.1 is that LTI systems with parametric projection

controllers are a type of state-dependent Lur’e system ẋ = Ax+B PΓ(x)(Kx) and that the
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virtual system method transforms them into standard time-varying ones with cocoercive

nonlinearities, where Theorem 7.3.1 applies. Specifically, this analysis method allows us

to treat general convex constraints in a unifying manner. We remark that one could also

use classical results such as the circle criterion to establish stability of (7.9) but we elect

to use the virtual system method to highlight its utility.

In the case that Assumptions (A1)-(A4) hold, K = 0, and the inequality (7.13)

holds, the dynamics simply become ẋ = Ax since 0n ∈ Γ(x) for all x ∈ K. In other

words, K = 0 always ensures global exponential stability under the stated assumptions

since (7.13) implies that A is Hurwitz. Theorem 7.4.1 provides a novel sufficient condition

for the system (7.9) to be exponential stable with K ̸= 0 which has been designed to

make A+BK stable, e.g., using LQR.

7.4.3 Stability analysis for single-integrators

A special class of LTI systems for which we can ensure different results is the single

integrator ẋ = u⋆(x), namely the system (7.9) with A = 0, B = In. For this system, (7.13)

will never hold with η > 0 since A is not Hurwitz.

Theorem 7.4.2 (Exponential stability for single integrators with parametric projec-

tion-based controllers). Consider the dynamics (7.9) with A = 0 and B = In and suppose

Assumptions (A1)-(A4) hold. Further suppose K = K⊤ ⪯ −ηIn, η > 0. Then from any

x0 ∈ K,

(i) solutions to (7.9), ϕx0, are forward-complete and

(ii) solutions asymptotically converge to the set Xeq := {x ∈ Rn | PΓ(x)(Kx) = 0n}.

Moreover, under the additional assumption that 0n ∈ int(Γ(0n)), the following statement

holds:
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(iii) if ϕx0(t) → 0n as t→ ∞, then there exists M(x0) > 0 such that

∥ϕx0(t)∥2 ≤M(x0)e
−ηt∥x0∥2. (7.17)

Proof. Consider as a Lyapunov function candidate V (x) = −1
2
x⊤Kx. The Lie derivative

of V along trajectories of the dynamical system (7.9) is

V̇ (x) = −x⊤K PΓ(x)(Kx) = −(Kx− 0n)
⊤(PΓ(x)(Kx)− PΓ(x)(0))

≤ −∥PΓ(x)(Kx)− PΓ(x)(0n)∥22 ≤ 0,

where we have used that 0n ∈ Γ(x) for all x and cocoercivity of PΓ(x), see, e.g., [72,

Eq. (2)]. Since V̇ (x) ≤ 0, we preclude finite escape time and thus conclude statement (i).

To establish asymptotic convergence to Xeq, we invoke LaSalle’s invariance principle and

see that trajectories converge to the largest forward-invariant set in {x ∈ Rn | V̇ (x) = 0}.

However, since V̇ (x) ≤ −∥PΓ(x)(Kx)∥22, V̇ (x) = 0 if and only if PΓ(x)(Kx) = 0n, i.e.,

x ∈ Xeq. This argument establishes statement (ii). To establish statement (iii), note that

0n ∈ int(Γ(0n)) implies, by continuity of g, that there exist an open neighborhood, Ox

containing the origin such that g(x,Kx) ≪ 0p for all x ∈ Ox. In other words, inside this

neighborhood, u⋆(x) = Kx. Thus, the dynamics (7.9) are locally exponentially stable

inside this neighborhood. Since the trajectory is asymptotically converging to the origin

and locally exponentially stable inside Ox, we conclude (7.17).

To prove Theorem 7.4.2, one could alternatively use the virtual system method to

establish that ∥ϕx0(t)∥−K ≤ ∥x0∥−K and then invoke LaSalle’s invariance principle. We

opt to give a more direct Lyapunov proof for simplicity.
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Figure 7.2: The left figure shows plots of trajectories of (7.21). We can see that most
trajectories, indicated by shades of blue, converge to the origin, while one converges
to a point on the boundary of the safe set, shown in orange. The center figure plots
the convergence rate of trajectories that converge to the origin. It also plots e−ηt and
1000e−ηt and demonstrates that the exponential convergence rate in (7.22) cannot be
improved in this instance and that 1000 > M(x0)∥x0∥2 for these initial conditions.
The right figure plots the evolution of the CBF, h, along trajectories.

7.5 Applications

7.5.1 State-dependent saturation control

For v ∈ Rn
>0, define the saturation function satv : Rn → Rn by

satv(x) := max{−v,min{v, x}},
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where the max and min are applied entrywise. An alternative characterization of the

saturation function is via the minimization problem

satv(x) = argmin
u∈Rn

{∥u− x∥22 | −v ≤ u ≤ v}.

We consider the state-dependent saturated control system

ẋ = Ax+B satv(x)(Kx), (7.18)

where v : Rn → Rn
>0 is a twice continuously differentiable map dictating actuation con-

straints as a function of the state.

When v is constant, one can use results from saturated control systems to assess the

stability of (7.18). As v is state-dependent, one cannot apply these techniques here.

It is straightforward to see that the system (7.18) is of the form (7.9) with g(x, u) =

(u − v(x),−u − v(x)). Moreover, it is routine to establish that Assumptions (A1)-(A4)

hold. Therefore, Theorem 7.4.1 may be applied to provide a sufficient condition for the

global exponential stability of the system (7.18).

Example 9. We consider the system (7.18), where n = 3,m = 2, A = −I3 + N ,

B = [ 1 0 0
0 1 0 ]

⊤, and N ∈ R3×3 is a random matrix with entries drawn from the standard

normal distribution. We assume that K ∈ R2×3 is selected so that u = Kx minimizes

the objective
∫∞
0
(x(t)⊤x(t) + u(t)⊤u(t))dt for ẋ = Ax + Bu. We let v(x) = e−∥x∥22/21m,

where 1m is the all-ones vector. We find η > 0, λ ≥ 0, P ∈ R3×3 satisfying (7.13) such

that η is maximized and plot values of ∥ϕx0(t)∥P for 10 different samples of x0 from the

multivariate normal distribution N (03, 4I3) in Figure 7.1.

We see that all trajectories converge exponentially to the origin and that the estimated

exponential convergence rate from Theorem 7.4.1 is η = 0.0525. Empirically, we see that
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when trajectories are far from 03, this rate is tight since v(x) ≈ 0m for x far from 03 and

that the rate is very loose when trajectories are close to 03 since v(x) ≈ 1m for x ≈ 03.

Although we have focused on state-dependent saturation control in this section, we

would like to note that many structured parametric optimization problems with con-

vex constraints may be handled. Specifically, our methods are not simply restricted to

saturations and can be applied to richer classes of examples in a methodological manner.

7.5.2 Stability with control barrier functions

Consider the nonlinear control-affine system

ẋ = F (x) +G(x)u, (7.19)

where F : Rn → Rn, G : Rn → Rn×m are locally Lipschitz.

Let C ⊆ Rn and h : Rn → R be a sufficiently smooth function such that C = {x ∈

Rn | h(x) ≥ 0}. The set C is referred to as the “safe set”.

Definition 14 (Control Barrier Function [201, Definition 3]). The function h is a control

barrier function (CBF) for C if there exists a locally Lipschitz and strictly increasing

function α : R → R with α(0) = 0 such that for all x ∈ C, there exists u ∈ Rm with

∇h(x)⊤F (x) +∇h(x)⊤G(x)u+ α(h(x)) ≥ 0. (7.20)

A continuous controller u : Rn → Rm which strictly satisfies (7.20) for all x ∈ C

renders C forward-invariant under the dynamics (7.19) [205, Theorem 4].

A common way to synthesize controllers that render C forward invariant is via a

parametric QP [201]. To this end, we consider a single-integrator being driven by the
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CBF constraint (7.20) and actuator constraints:

ẋ = u⋆(x),

u⋆(x) := argmin
u∈Rm

1

2
∥u−Kx∥22

s.t. −∇h(x)⊤u ≤ α(h(x)),

−ū1n ≤ u ≤ ū1n,

(7.21)

where ū > 0. While safety of these systems was previously studied in, e.g., [201], we aim

to also study their stability properties. To study convergence of (7.21), we can check for

conditions under which the hypotheses of Theorem 7.4.2 hold.

Corollary 7.5.1 (Exponential stability for single integrators with CBF-based controllers).

Consider the dynamics (7.21) and suppose (i) h is a CBF for C, (ii) K = K⊤ ⪯ −ηIn,

(iii) 0n ∈ int(C), and (iv) h and α are thrice and twice continuously differentiable, re-

spectively. Then from any x0 ∈ int(C),

(i) solutions to (7.21), ϕx0, are forward-complete,

(ii) solutions remain in C for all t ≥ 0,

(iii) solutions converge to the set of equilibria and

(iv) if ϕx0(t) → 0n as t→ ∞, then there exists M(x0) > 0 such that

∥ϕx0(t)∥2 ≤M(x0)e
−ηt∥x0∥2. (7.22)

Proof. We simply need to verify the assumptions of Theorem 7.4.2, namely Assump-

tions (A1)-(A4), and that 0n ∈ int(Γ(0n)). We can see Assumption (A1) holds by

smoothness of h and α. We can see that Assumption (A2) holds since 0n ∈ int(C) and
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that 0n ∈ Γ(x) for x ∈ K by the assumption that h is a CBF for C and that α(h(x)) > 0

for x ∈ int(C). Assumption (A3) is clear and Assumption (A4) is guaranteed since the

feasible set of (7.21) has an interior for all x ∈ int(C) since α(h(x)) > 0 for x ∈ int(C).

Finally, we can see that 0n ∈ int(Γ(0n)) since 0n ∈ int(C). Since these assumptions hold,

the consequences of Theorem 7.4.2 apply.

In general, we cannot conclude uniqueness of equilibria. As we will see in the following

example, the dynamics may have multiple equilibria, even in the case of simple CBFs.

These results agree with the theory presented in [223, 224].

Example 10. Consider a single integrator in R2 avoiding a disk-shaped obstacle centered

at (0, 4) with radius 2. The corresponding CBF is h(x1, x2) = x21 + (x2 − 4)2 − 4 with

α(r) = r. We take K =
[ −2 −0.5
−0.5 −1

]
and ū = 1. We plot numerical simulations of (7.21)

with these parameters along with the corresponding convergence rate and value of CBF

along trajectories in Figure 7.2.

We observe that trajectories converge to the set of equilibria and the majority of them

converge to the origin with exponential convergence rate predicted in (7.22). While the

equilibrium point on the boundary of the safe set is unavoidable in this example, we can

numerically observe that there are no equilibria inside int(C) other than the origin. This

result is in contrast with the CLF-CBF controllers studied in [223, 224], where there

may exist additional equilibria in int(C). This numerical example provides evidence that,

for exponential stability of the origin, one does not need to rely upon any CLF decrease

condition, except on a measure zero set.
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7.6 Discussion and future work

In this chapter we study LTI systems with controllers solving a special class of para-

metric programs, namely parametric projections. Using the virtual system method and a

novel contractivity result for Lur’e systems, we provide sufficient conditions for the expo-

nential stability of these systems. Separately, for single integrators, we prove convergence

to the set of equilibria and an exponential convergence rate for trajectories converging to

the origin. As applications, we consider state-dependent saturated control systems and

CBF-based control.

We believe that there are many avenues for future research. First, it would be useful

to explore relaxing Assumptions (A1)-(A4) to allow for a larger class of LTI systems,

possibly using the tools in [226]. Second, it would be useful to characterize the set of

trajectories converging to the origin in Theorem 7.4.2. Finally, it is important to study

systems whose controllers only approximately solve the parametric program.

7.6.1 Results in set-valued analysis

Standard notions from set-valued analysis are available in [227, Section 2.1.3] (i.e.,

domain, continuity, limits).

Proposition 7.6.1 ([227, Lemma 2.8.2]). Let K : Rp ⇒ Rn be a closed-valued and

convex-valued point-to-set map. Let x̄ ∈ Dom(K) be given. The (single-valued) map

Φ(x, y) := PK(x)(y) is continuous at (x̄, y) for all y ∈ Rn if and only if

lim
x→x̄

K(x) = K(x̄). (7.23)

Proposition 7.6.2 ([227, Exercise 2.9.34]). Let g : Rn×Rm → R be continuous. Let ȳ ∈

Rm, such that g(·, ȳ) is a convex function and there exists x̄ ∈ Rn such that g(x̄, ȳ) < 0.
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Then the set-valued map K : Rm ⇒ Rn defined by

K(y) := {x ∈ Rn | g(x, y) ≤ 0}, (7.24)

is continuous at ȳ.

Proposition 7.6.3 ([227, Proposition 2.1.17(c)]). Suppose K : Rn ⇒ Rm is a closed-

valued point-to-set map. If K is continuous at x, then

lim
y→x

K(y) = K(x). (7.25)

Corollary 7.6.4. Let g : Rn × Rm → Rp be continuous. Let x̄ ∈ Rn, such that g(x̄, ·) is

a convex function and there exists ȳ ∈ Rm such that g(x̄, ȳ) ≪ 0p. Define the set-valued

map K : Rm ⇒ Rn given by

K(y) := {x ∈ Rn | g(x, y) ≤ 0p}. (7.26)

Then the map Φ(x, y) := PK(x)(y) is continuous at (x̄, y) for all y ∈ Rm.

Proof. We simply need to extend Proposition 7.6.2 to the case that g is vector-valued.

For i ∈ {1, . . . , p}, define the set-valued maps Ki(y) := {x ∈ Rn | gi(x, y) ≤ 0} and note

that K(y) =
⋂p

i=1Ki(y). We simply need to show upper and lower semicontinuity of K

to conclude continuity. Regarding lower-semicontinuity, let x̄ ∈ Dom(K) be such that

there exists ȳ with g(x̄, ȳ) ≪ 0p and let U ⊆ Rn be open and satisfy K(x̄) ∩ U ≠ ∅. By

continuity of each of the Ki at x̄ (due to Proposition 7.6.2), there exists an open set Ni

containing x̄ such that for each xi ∈ Ni, Ki(x
i) ∩ U ̸= ∅ for all i ∈ {1, . . . , p}. Since a

finite intersection of open sets is open, let N :=
⋂p

i=1Ni. Then it is routine to check that

for each x ∈ N , K(x) ∩ U ̸= ∅. This establishes lower semicontinuity.
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To establish upper semicontinuity, let x̄ satisfy the stated assumptions and let V

be an open set with K(x̄) ⊆ V . By continuity of each of the Ki at x̄, there exists an

open neighborhood Ni of x̄ such that for each xi ∈ Ni, Ki(x) ⊆ V . Once again taking

N =
⋂p

i=1N ensures that for all x ∈ N , we have that K(x) ⊆ V . This establishes upper

semicontinuity and thus continuity of K at x̄.

The result is then a consequence of the three propositions above.

7.6.2 A continuity result from fixed point theory

To establish continuity and Lipschitzness of solutions to parametric optimization

problems, it is oftentimes useful to first express them as fixed point problems. From

there, we can leverage results from a parametrized version of the Banach fixed point

theorem. We reproduce this result in the following proposition.

Proposition 7.6.5 ([228, Section I.6.A. Item (A.4) and Section I.3. Theorem 3.2]). Let

(X , d) be a complete metric space, (A, ϱ) be a metric space, and f : X × A → X satisfy

the following properties:

(i) There exists ℓ < 1 such that for each a ∈ A, the map f(·, a) is contractive with

constant ℓ, i.e., for all x1, x2 ∈ X ,

d(f(x1, a), f(x2, a)) ≤ ℓd(x1, x2). (7.27)

(ii) For each x ∈ X , the map a 7→ f(x, a) is continuous.

Then for each a ∈ A, there exists a unique x⋆(a) satisfying the fixed point equation

x⋆(a) = f(x⋆(a), a) and the mapping a 7→ x⋆(a) is continuous.

Moreover, if there exists L > 0 such that for each x ∈ Rn, the map a 7→ f(x, a)

is Lipschitz with constant L, then the mapping a 7→ x⋆(a) is Lipschitz with estimate
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L/(1− ℓ).

7.6.3 Well-posedness of virtual system

Before establishing well-posedness of the virtual system, we require a continuity result

for parametric projections.

Lemma 7.6.6. Let g : Rn × Rm → Rp be continuous. Let x̄ ∈ Rn, such that g(x̄, ·) is a

convex function and there exists ū ∈ Rm such that g(x̄, ū) ≪ 0p. Define the set-valued

map Γ(x) := {u ∈ Rn | g(x, u) ≤ 0p}. Then the map Φ(x, u) := PΓ(x)(u) is continuous at

(x̄, u) for all u ∈ Rm.

Proof. The proof is a consequence of Exercise 2.9.34, Proposition 2.1.17(c), and Lemma 2.8.2

in [227].

Given x0 ∈ K, we’re interested in the properties of the map ū : Rm × [0, τmax(x0)) →

Rm given by

ū(z, t) := argmin
u∈Rm

f(z, u)

s.t. g(ϕx0(t), u) ≤ 0p.

(7.28)

This is exactly the map that appears in the virtual system analysis, i.e., for f(z, u) =

1
2
∥u− z∥22, the virtual system in the proof of Theorem 7.4.1 is ẏ = Ay +Bū(Ky, t).

Lemma 7.6.7. Suppose that for all z ∈ Rn, f(z, ·) is strongly convex and g(z, ·) is

convex. Consider the ODE ẋ = Ax+Bu⋆(x), where u⋆(x) is the solution to (7.10). For

x0 ∈ K, let ϕx0 denote a solution of the ODE from initial condition x0 on the interval

[0, τmax(x0)). Assume that for all t ∈ [0, τmax(x0)) that ϕx0(t) ∈ K and that ∇uf is

Lipschitz in both of its arguments. Then the map ū in (7.28) is Lipschitz in its first

argument and continuous in its second.
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Proof. We first make an important observation. The value of ū at the point (z, t) solves

the fixed point equation

ū(z, t) = PΓ(ϕx0 (t))
(ū(z, t)− γ∇uf(z, ū(z, t))), (7.29)

where γ > 0 is a constant to be tuned to make the map contractive. Let f̄ : Rm ×

Rn × [0, τmax(x0)) → Rm denote this fixed-point map, i.e., f̄(u, z, t) := PΓ(ϕx0 (t))
(u −

γ∇uf(z, u)). Under the assumption that ∇uf is Lipschitz, from standard results on

projected gradient algorithms, e.g., [72, pp. 31], we know that for fixed z, t, the map

u 7→ f̄(u, z, t) is a contraction for 0 < γ < 2/L, where L is the Lipschitz constant of

∇uf(z, ·). Henceforth, we let γ be in this range. To establish Lipschitzness in z, we

note that at fixed u, t, the mapping z 7→ f̄(u, z, t) is Lipschitz under the assumption

that the mapping ∇uf(·, u) is Lipschitz. Thus, at fixed t, we can apply Proposition 7.6.5

to conclude that the mapping z 7→ ū(z, t) is Lipschitz and thus continuous in its first

argument.

To establish continuity in t, we first study the point-to-set mapping t ⇒ Γ(ϕx0(t)).

By assumption that for all t, we have that ϕx0(t) ∈ K, we conclude by Corollary 7.6.6

that the mapping Φ: Rm × [0, τmax(x0)) → Rm given by Φ(u, t) := PΓ(ϕx0 (t))
(u) is con-

tinuous on its domain. Since f̄(u, z, t) = Φ(u − γ∇uf(z, u), t), we have that f̄(u, z, ·) is

continuous as well. And since for all z, t, we know that u 7→ f̄(u, z, t) is a contraction, by

Proposition 7.6.5, we know that for all z ∈ Rm, the map t 7→ ū(z, t) is continuous.
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Chapter 8

Conclusions and Future Work

There is no beginning, no middle,

no end, no suspense, no moral, no

causes, no effects. What we love in

our books are the depths of many

marvelous moments seen all at one

time.

Kurt Vonnegut Jr.,

Slaughterhouse-Five

8.1 Summary

In this thesis, we have studied contraction theory and presented some application in

neural networks, optimization, and control. Specifically, we focused on the special case

when dynamical systems are contracting with respect to a metric induced by a norm

and presented a comprehensive theory including necessary and sufficient conditions for

contraction.
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To be specific, in Chapter 2 we introduced weak pairings as a novel tool for contraction

analysis and have demonstrated how we can use them to easily establish incremental input

to state stability of contracting dynamics and a small-gain type sufficient condition for

the interconnection of contracting dynamics to remain contracting.

In Chapter 3, we introduced a non-Euclidean monotone operator theory akin to the

standard theory on Hilbert spaces. By adopting the language of weak pairings, we retain

many of the desirable consequences of monotone operators and are able to design novel

fixed point algorithms for computing zeros of them.

In Chapter 4, we leverage the non-Euclidean contraction theory framework to design a

novel implicit neural network architecture and establish its well-posedness and robustness

to ℓ∞ norm-bounded adversarial attacks.

In Chapter 5 we study the contraction of a large class of continuous-time neural net-

works with respect to diagonally-weighted ℓ1 and ℓ∞ norms. In many cases, contraction

is guaranteed by checking that a certain Metzler matrix is Hurwitz or by solving a linear

program. We highlight key advantages of a non-Euclidean contraction analysis compared

to a Euclidean one.

In Chapter 6, we study time-varying convex optimization problems from a contraction

theory. First, we establish that many canonical dynamical systems for solving convex

optimization problems are in fact contracting with respect to a suitably-defined Euclidean

norm. Second, we establish that time-varying contracting dynamics enjoy an equilibrium

tracking property whereby the tracking error between any trajectory and the time-varying

equilibrium curve is upper bounded. Third, we design a feedforward prediction term

for time-varying contracting dynamics that ensures exponential exact tracking of the

time-varying equilibrium curve. We apply these results in both numerical and hardware

experiments.

Finally, in Chapter 7, we study the stability of an interconnection of a linear control
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system with a controller which is the solution of a parametric optimization problem. By

leveraging the virtual system method of analysis, we present a novel sufficient condition

for closed-loop stability based upon the satisfaction of a particular LMI.

8.2 Future work

This thesis opens several avenues for future work. I will highlight possible extensions

along with some related literature. Other open problems are presented in our opinion

paper [229].

8.2.1 Neural networks

In the direction of neural networks, there has been increased interest in using con-

traction theory for establishing their stability or robustness. In our own work, we have

published [203] which establishes sharp conditions for the Euclidean contraction of Hop-

field and firing rate neural networks when their synaptic matrices are symmetric. These

results were then used in [230] to study locally competitive networks as firing rate neu-

ral networks. Tangentially related, we also studied a generalization of Hopfield neural

networks to those that can retrieve more than one memory in [231] although there was

no contraction analysis in this work. Possible extensions of these results include (i)

sharp conditions for the contractivity of neural networks under synaptic matrices which

are Lyapunov diagonally stable, (ii) contraction analysis of more general classes of neural

networks inspired by machine learning including LSTMs and simple models of transform-

ers, and (iii) extensions to higher-fidelity biologically inspired neural networks including

spiking models and contraction to limit cycles.

On the side of machine learning, in this thesis, we presented robustness of implicit

neural networks using Lipschitz bounds. In follow-up work, we additionally studied ro-
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bustness using interval reachability [232, 233, 234]. Methods based upon interval reacha-

bility appear to yield sharper robustness bounds at the expense of more costly training.

Beyond these two metrics for robustness, we can consider alternative approaches includ-

ing the convex outer adversarial polytope from [127] or alternative training approaches

such as that taken in [235]. Finally, let us comment that ℓ∞ norm-bounded adversaries

are not the only interesting type of adversarial robustness. In many cases, it is unclear

what the correct notion of robustness should be. This is increasingly the case in the age

of large language models (LLMs) when “robustness” means that the LLM should not

reply to any message that can yield a “dangerous” output.

8.2.2 Optimization and control

In the direction of optimization, we have extended results from [170]. In [236], we

revisited the linear equality-constrained minimization problem without the assumption

of full row-rankedness and showed semicontraction of the dynamics, i.e., contraction in

an invariant subspace and showed the sharpest-known convergence rate for these dynam-

ics. In [237], we studied the proximal gradient dynamics and showed monotonicity of

the objective function without convexity and smoothness and demonstrated exponential

convergence under a modified PL condition. In [238], we studied dynamical systems

for convex but not strongly convex optimization. Under the assumption of local strong

contractivity but global nonexpansiveness of the dynamics, we establish a type of semi-

global exponential stability referred to as linear-exponential convergence and provide an

explicit estimate for the convergence rate. I believe that a sharp local analysis for dynam-

ical systems corresponding to minimization of certain nonconvex optimization problems

remains missing. I also believe that an analysis of stochastic optimization problems and

convergence in the space of measures akin to the early results of [239] could be of interest.
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Finally, in the direction of contraction for control, let me mention the work [240]

on learning contracting dynamics from data. The trajectories of these contracting dy-

namics can be used as dynamical systems-based motion planners in robotics. In this

direction, the pioneering work [62] established control contraction metrics and necessary

and sufficient conditions for the existence of a controller for which the closed-loop dy-

namics are contracting. The conditions typically reduce to PDEs and are intractable

for moderately-sized control systems. Therefore, follow-up work has studied methods for

learning controllers that promote closed-loop contraction, see, e.g., [241]. While these

controllers can work well in practice, theoretical guarantees are largely lacking. I be-

lieve that novel methods for certifying closed-loop contraction will be critical in learning

controllers from data.
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[225] I. Pólik and T. Terlaky, A survey of the S-lemma, SIAM Review 49 (2007), no. 3
371–418.

[226] A. V. Proskurnikov, A. Davydov, and F. Bullo, The Yakubovich S-Lemma
revisited: Stability and contractivity in non-Euclidean norms, SIAM Journal on
Control and Optimization 61 (2023), no. 4 1955–1978.

[227] F. Facchinei and J.-S. Pang, Finite-Dimensional Variational Inequalities and
Complementarity Problems. Springer, 2003.

[228] A. Granas and J. Dugundji, Fixed Point Theory. Springer, 2003.

[229] A. Davydov and F. Bullo, Perspectives on contractivity in control, optimization
and learning, IEEE Control Systems Letters 8 (2024) 2087–2098.

[230] V. Centorrino, A. Gokhale, A. Davydov, G. Russo, and F. Bullo, Positive
competitive networks for sparse reconstruction, Neural Computation 36 (2024),
no. 6 1163–1197.

[231] A. Davydov, S. Jaffe, A. K. Singh, and F. Bullo, Retrieving k-nearest memories
with modern Hopfield networks, in 2023 NEURIPS Workshop on Associative
Memory and Hopfield Networks, Dec., 2023.

[232] S. Jafarpour, M. Abate, A. Davydov, F. Bullo, and S. Coogan, Robustness
certificates for implicit neural networks: A mixed monotone contractive approach,
in Learning for Dynamics and Control Conference, June, 2022.

[233] A. Davydov, S. Jafarpour, M. Abate, F. Bullo, and S. Coogan, Comparative
analysis of interval reachability for robust implicit and feedforward neural
networks, in IEEE Conf. on Decision and Control, (Cancún, México), 2022.
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