
Diploma Thesis IST-77

Distributed multi-camera
synchronization for smart-intruder

detection

Markus Spindler

Supervisor: Fabio Pasqualetti
Francesco Bullo

University of Stuttgart
Institute for Systems Theory and Automatic Control

Prof. Dr.–Ing. F. Allgöwer

10. September 2011

Contents

1 Introduction 9
1.1 Problem description 9
1.2 Related work . 10
1.3 Contribution . 11
1.4 Organization . 12

2 Problem formulation 13

3 Main results 17

4 An illustrative example 23
4.1 Numerical verification of the performance bound . . . 23
4.2 Distributed feedback algorithm 25

5 Proof of Theorem 4.0.1 29
5.1 Properties of an optimal trajectory 29
5.2 Performance bounds 34

6 Partial homogenous field of view 53
6.1 Parameterized model 54
6.2 Cost function . 55

7 Conclusion 59
7.1 Summary . 59
7.2 Outlook . 60

3

4 Contents

8 Appendix 61
8.1 Method of Lagrange multipliers 61

List of Figures

1.1 Setup example. Five cameras (c1 . . . c5) are installed
along an open path Γ, which is partitioned into 5 non
overlapping clusters. Each camera observes its dedi-
cated cluster, which is described with the extremes li
and ri and the length di. The dots on the clusters
represent the point f.o.v. of the cameras. 10

2.1 Camera model. In the left figure the installation of the
camera is illustrated and in the right figure the more
detailed description of the f.o.v. and its reduction is
shown. 14

2.2 Synchronization versus no synchronization. Illustrated
is the movement of 3 cameras. The smart intruder e1

between the synchronized cameras 1 and 2 get detected
latest at the time when the f.o.v. of camera 1 and cam-
era 2 are at the same position (black dot). Whereas, a
smart intruder e2 between the not synchronized cam-
eras 2 and 3 gets never detected. 16

3.1 Equal-waiting trajectories. Illustration of an equal-
waiting trajectory, formally described in Trajectory 1,
for an n = 4 cameras example. The black dots il-
lustrate the points where two f.o.v. meet or a f.o.v.
reaches a wall. 19

5

6 List of Figures

4.1 Simulation of bound (3 +
√
n)/4. The red dots illus-

trate the calculated performance bound (3 +
√
n)/4 of

Theorem 4.0.2, and each of the blue dots illustrates a
calculated ratio ADT(X(t))/ADT∗ for a specific setup,
which is specified in the subfigures 24

4.2 Simulation of bound 1/2 + dmax/2dmin. The green
dots illustrate the calculated performance bound 1/2+
dmax/2dmin of Theorem 4.0.2, and each of the blue
dots illustrates a calculated ratio ADT(X(t))/ADT∗

for a setup described by n = 50, d1 = 1 and di with
i = 2, . . . , 50 is uniformly distributed within interval
[dmin
dmax

, 1]. 25

4.3 Simulation of Algorithm 2. Shown is the initializa-
tion procedure from random starting positions between
time t = [0, 150], a temporary camera failure of camera
4 between t = [340, 440], and how the algorithm works
under the influence of noise (t > 700). 27

5.1 Performance calculation. Illustration of the perfor-
mance separation into a right and left part, ADTri
and ADTli respectively, of the trajectory. The black
line illustrates the trajectory xi(t), the black dots at
time t1, t2, t3 catch-points, and the red dot at t0, p0 an
intruder. The smart intruder at t0, p0, like all other
intruders on the left side of xi(t) at this time, gets de-
tected at t3, whereas intruders appearing at time t0
left of xi(t) get detected at t2 32

5.2 Possible trajectory shapes. The figures illustrate the
trajectories between two catch-points tj and tj+1. In
figures a), b) and c) θli(t) − θri (t) > 0, therefore xi(t)
is as small as possible. In figures d), e), and f) θli(t)−
θri (t) < 0, here the trajectories are such that xi(t) is
as big as possible. All trajectories are unique, because
they are obtained with camera speed either zero or
maximum. 33

List of Figures 7

5.3 Sequence of catch-points. Case 1 and case 2 illustrate
the two possible cases of tj , tj+1, tj+2 ∈ CPl. The yel-
low cases in row a) show trajectories with three con-
secutive catch-points on one boundary. The blue cases
in row b) show, how these trajectories can be improved. 35

5.4 Parameterized lower bound model. Fig a) shows the
parameterized model for a single cluster. Fig b) ex-
plains why the catch-points on opposite boundaries
must be in distance di. 39

5.5 Parameterized model for a section f . The model shows
the catch-points (black dots), whose position is de-
scribed by parameters, and the trajectory between the
catch-points. 40

5.6 Performance calculation of the equal-waiting trajec-
tory for a cluster di. The bold black line illustrates
the trajectory and the black dots the catch-points. . . 49

6.1 Partial homogenous field of view model. The model of
4 cameras with a partial homogenous field of view, that
means dmax/dmin < 2, is illustrated. The color boxes
illustrate a period for each cluster, and the black dots
the catch-points of the cameras. 55

Chapter 1

Introduction

Coordinated teams of autonomous agents have recently been used
for many tasks requiring repetitive execution, including the monitor-
ing of oil spills [1], the detection of forest fires [2], the track of border
changes [3], and the patrol (surveillance) of an environment [4]. Espe-
cially the use of autonomous systems for surveillance is getting more
and more interesting, since the systems got much better and cheaper
in recent years. The surveillance of an area of interest requires the
agents to continuously and repeatedly sweep the environment, and
the challenging problem consists in scheduling the agents trajectories
so as to optimize a certain performance criteria.

1.1 Problem description

In this work we consider a network of identical Pan-Tilt-Zoom (PTZ)
cameras for videosurveillance, and we focus on the development of
distributed and autonomous surveillance strategies for the detection
of moving intruders. We make the following combined assumptions
on the environment to be monitored, the cameras, and the intruders.
We assume the environment to be one dimensional, in the sense that
it can be completely observed by a chain of cameras by using the pan-
ning motion only. The problem of perimeter surveillance is a special
case of this framework. We assume the cameras to be subject to phys-
ical constraints, e.g., limited field of view (f.o.v.) and panning speed,

9

10 1 Introduction

c1 c2

c3

c4 c5

d5

Γ

d3

d1
d 2

d
4

l1 r1

Figure 1.1: Setup example. Five cameras (c1 . . . c5) are installed
along an open path Γ, which is partitioned into 5 non
overlapping clusters. Each camera observes its dedicated
cluster, which is described with the extremes li and ri
and the length di. The dots on the clusters represent the
point f.o.v. of the cameras.

and to be equipped with a low-level routine to detect intruders that
fall within the f.o.v. of a camera. Regarding intruders, we assume
them to be smart, in the sense that they have access to the cameras
configuration at every time instant, and schedule their trajectory to
avoid detection, if possible. We study the problem of scheduling the
cameras trajectory as to minimize the worst-case detection time and
the average detection time of a smart intruder.

1.2 Related work

The problem of patrolling an environment by means of a team of
autonomous robots has received attention from scientists interested
in mobile robotics. Typically, (i) the environment is represented by
a graph on which the agents motion is constrained, and (ii) the pa-
trolling performance is given by the worst-case detection time of a

1.3 Contribution 11

static event. In [5, 6] an empirical evaluation of certain patrolling
heuristics is performed. In [4] and [2], an efficient and distributed
solution to the (worst-case) perimeter patrolling problem for robots
with zero communication range is proposed. In [7] the computational
complexity of the patrolling problem is studied as a function of the
environment topology, and optimal strategies as well as constant-
factor approximations are proposed. With respect to these works, we
consider smart intruders, as opposed to static ones, and we focus on
the worst-case and average detection time, as opposed to only the
worst-case detection time.
In the context of camera networks, the perimeter patrolling prob-

lem has recently been studied in [8, 9]. In these works, distributed al-
gorithms are proposed for the cameras to partition a one-dimensional
environment, and to synchronize along a trajectory with minimum
worst-case detection time of static events. We improve the results
along this direction by showing that the strategies proposed in [8, 9]
generally fail at detecting smart intruders, and by focusing on the
average detection time of smart intruders while preserve the optimal
worst-case detection time.

1.3 Contribution

The contribution of this work consists of four parts. First, we math-
ematically formalize the concept of cameras trajectory and smart
intruder. Then, we prove a lower bound for the worst-case and av-
erage detection time of smart intruders. Second, we propose a cam-
eras trajectory, called equal-waiting trajectory, with minimum worst-
case detection time and constant-factor optimal average detection
time. Third, we develop a distributed synchronization algorithm to
steer the cameras towards an equal-waiting trajectory, for which only
neighboring cameras need to communicate when they reach the end
of their observed cluster. This algorithm converges in finite time,
which we characterize, and it requires only minimal information to
be implemented. Moreover, we perform a simulation study to show
that our synchronization algorithm is robust against cameras failure
and motion uncertainties. Fourth and finally, we investigate a spe-
cial case, which has restrictions on the observed cluster lengths. For

12 1 Introduction

this case we derive a parameterized model and cost function, which
minimization leads to the optimal cameras trajectory with respect to
the average detection time criteria.

1.4 Organization
The remainder of this work is organized as follows. In Section 2
we introduce our notation and we formulate the considered problem.
In Section 3 we present and characterize our two main results, the
equal-waiting trajectory and the synchronization algorithm. Section
4 contains an illustrative example for the stated constant factor ap-
proximation and the proposed distributed feedback algorithm. In the
next section, Section 5, a proof of our theoretical results follow. In
section 6 we present for a special case a parameterized model and
cost function. Finally, our conclusion and an outlook of the work is
found in Section 7.

Chapter 2

Problem formulation

Consider a set of n ∈ N identical cameras installed along a one di-
mensional open path Γ (cf. Fig 1.1) in distance ai, i = 1, . . . , n, from
the path. Assume that (i) the field of view (f.o.v.) of each camera
is a point on Γ, and that (ii) the motion of each f.o.v. is uniquely
determined by the pan movement of the corresponding camera. To
obtain a sufficient image quality, which allows to process the images,
the movement of the f.o.v. along the path must never exceed a maxi-
mum speed ẋmax. This is obtained by controlling the movement with
the control law α̇i ≤ ẋmax/(ai(tanαi)

2 + ai), where αi and α̇i are
the pan angel and pan movement of camera i respectively (cf. Fig
2.1(a)).
Let Γ0 and Γf be the two extremes of Γ. For simplicity, we label the

cameras in increasing order from c1 to cn according to their distance
from Γ0 on Γ. Let li ≤ xi(t) ≤ ri, where li and ri are points of
Γ, and ẋi(t) ∈ [−1, 1] denote the position of f.o.v. of camera i and
its velocity at time t ∈ R≥0, respectively. We refer to si = [li, ri]
as to the i-th cluster, and we let di be the distance on Γ between
li and ri. We additionally assume that li = ri−1, with i = 2, . . . , n,
so that the clusters are a partition of Γ. A (cameras) trajectory
is an array X(t) = {x1(t), . . . , xn(t)} of n continuous and periodic
functions describing the motion of the cameras f.o.v. on Γ. Notice
that, for each cameras trajectory, there exists T ∈ R≥0 such that
X(t+ T) = X(t), i.e., xi(t+ T) = xi(t) for i ∈ {1, . . . , n}.
The assumption, that the f.o.v. of the cameras is a point is not

13

14 2 Problem formulation

valid for actual cameras. If looking at a one dimensional path, an real
camera has always a f.o.v. that has a dimension along the path and
therefore can be described by a line with a midpoint. Considering
the f.o.v. as a line with a midpoint and just observing the motion of
the midpoint for a modified cluster length (cf. Fig 2.1(b)) the same
result as a point f.o.v. is obtained. Therefore, we can consider the
point f.o.v without loosing generality.

di

ai αi

(a) The camera is installed in
distance ai from the path and
observes the cluster at an an-
gle αi.

di

d̄i

(b) Reduction of a line f.o.v.
to a point f.o.v. by only ob-
serving the midpoint (white
dot on the line) and changing
the cluster length from di to
d̄i.

Figure 2.1: Camera model. In the left figure the installation of the
camera is illustrated and in the right figure the more de-
tailed description of the f.o.v. and its reduction is shown.

In this work, we focus on the problem of detecting moving objects,
referred here to as intruders, by means of a set of cameras. We
consider the case of intruders with speed greater or equal than the
cameras speed. We represent the intruder as a point on Γ, and we let
t0 ∈ R≥0 be the time at which the intruder appears on Γ. Moreover,
we let the continuous map p : R≥t0 7→ Γ describe the position of the
intruder at a certain time t ≥ t0. We say that an intruder is detected
at time td ∈ R≥t0 if p(td) ∈ X(td). We focus on smart intruders,
which have full knowledge of the cameras trajectory and choose their
trajectory p(t) to avoid detection as long as possible. More formally,
given a time t0 ∈ R≥0, a point p0 ∈ Γ and a cameras trajectory X,
the trajectory of a smart intruder p∗t0,p0(t) is such that

p∗t0,p0(t) = arg max{t∗d(p)− t0 | p ∈ Φ(t0, p0)},

15

where Φ(t0, p0) is the set of continuous maps p : R≥t0 7→ Γ with
p(0) = p0, and

t∗d(p) = min{t | t ≥ t0, p(t) ∈ X(t)}.
Notice that the trajectory p∗t0,p0(t) is, in general, not unique. In the
following sections, we design cameras trajectories that minimize the
average detection time ADT of a smart intruder. In particular, we
define the performance of a cameras trajectory as

ADT(X(t)) =
1

TL

∫ T

0

∫
Γ

(t∗d(p
∗
τ,γ)− τ)dγ dτ, (2.1)

where T = 2 max{d1, . . . , dn}, and L =
n∑
i=1

di. We consider the fol-

lowing problem.

Problem 1 (Trajectory design). For a set of n cameras on an open
path, design a cameras trajectory X∗(t) such that

X∗(t) = arg min
X(t)

ADT(X(t)).

With the above definition of X∗(t), we let

ADT∗ = ADT(X∗(t)).

Finally, we say that a cameras trajectory is synchronized, if, for each
pair of neighboring cameras ci and ci+1, there exists t ∈ [0, T] such
that xi(t) = xi+1(t), where T denotes the periodicity of X(t).

Remark 1 (Worst-case detection time). For a cameras trajectory
X(t), the worst-case detection time of a smart intruder is given by
WDT(X(t)) = maxp0,t0 t

∗
d(p)− t0. It can be shown that the minimum

value of WDT(X(t)) equals 2dmax, where dmax is the largest among
the clusters lengths [7, 8]. Observe that any 2dmax-periodic synchro-
nized cameras trajectory attains minimum worst-case detection time
of smart intruders (cf. Fig. 2.2). In the next section we propose a
particular 2dmax-periodic synchronized cameras trajectory as solution
to Problem 1. Hence, our proposed trajectory is also optimal with
respect to the worst-case detection time of smart intruders. Finally
note that, for the trajectories described in [8], the worst-case detection
time of a smart intruder is unbounded (cf. Fig. 2.2).

16 2 Problem formulation

γ

t

d
1

d
2

d
3

x1(t)

x2(t)

x3(t)
e2

e1

Figure 2.2: Synchronization versus no synchronization. Illustrated
is the movement of 3 cameras. The smart intruder e1

between the synchronized cameras 1 and 2 get detected
latest at the time when the f.o.v. of camera 1 and camera
2 are at the same position (black dot). Whereas, a smart
intruder e2 between the not synchronized cameras 2 and
3 gets never detected.

Besides of identifying the trajectory that optimizes the average
detection time, we also want to develop an distributed feedback al-
gorithm, which steers the cameras towards this optimal trajectory.
In order to make this distributed algorithm scalable, the algorithm
should include only communications between neighboring cameras.
This leads us to the second problem, where we write X(t ≥ t̄) to de-
note the restriction of the trajectory X(t) to the interval t ∈ [t̄,∞).

Problem 2 (Distributed Algorithm design). Let for a set of cameras
installed along an open path X(t) be the cameras trajectory and X∗(t)
be the trajectory that yields the optimal average detection time. De-
sign a distributed algorithm, with the communication constraint that
only neighboring cameras need to communicate, that steers the cam-
eras in a finite time t̄ to the optimal cameras trajectory, i.e.

X(t ≥ t̄) = X∗(t).

In the next section we present a constant-factor approximation for
Problem 1 and an algorithm, which steers the cameras towards this
solution.

Chapter 3

Main results

In this section we describe an approximate solution to Problem 1,
and we design a distributed algorithm for the cameras to converge
to such a trajectory. We remark that, for some cases, an exact solu-
tion to Problem 1 could be computed through standard optimization
techniques, cf. Section 6. Such computation, however, is not scalable
with the number of cameras, and it is not amenable to distributed im-
plementation. Our approximate solution, instead, is extremely simple
and efficient to compute, and its performance is shown to be within a
certain bound of the optimum. Moreover, our approximate solution
is valid for every number of cameras and environment configuration.
The cameras trajectory we propose can informally be described as

follows.

Each camera continuously sweep its cluster at maximum
speed, and it stops for a certain time when its f.o.v. reaches
a boundary. The waiting interval at each boundary is
chosen such that each boundary point is observed simul-
taneously by two neighboring cameras. In other words,
the waiting interval at the boundary point ri is chosen
such that xi(t) = ri as soon as xi+1(t) = li+1, and, anal-
ogously, the waiting interval at the boundary point li is
chosen such that xi(t) = li as soon as xi−1(t) = ri−1.

Since we let each camera wait the same interval at its two boundaries,
we call this cameras trajectory equal-waiting trajectory. An example

17

18 3 Main results

of equal-waiting trajectory is in Fig. 3.1, and a formal description is
in Trajectory 1.
It should be noticed that, as discussed in Remark 1, the equal-

waiting cameras trajectory is optimal with respect to the worst-case
detection time criterium. Indeed, by construction, the equal-waiting
camera trajectory is synchronized and 2dmax-periodic. Next we show
that the equal-waiting cameras trajectory is constant factor optimal
with respect to the average detection time criterium. A proof of this
result is postponed to Section 5.

Theorem 3.0.1 (Performance of equal-waiting trajectories). For a
set of n cameras with clusters lengths d1, . . . , dn, let X(t) be equal-
waiting trajectory defined in Trajectory 1.

1. The optimal average detection time for a smart intruder satis-
fies the lower bound:

ADT∗ ≥
∑n
i=1 d

2
i

L
, (3.1)

where L =
n∑
i=1

di.

2. The equal-waiting trajectory X(t) has performance

ADT(X(t)) =
1

2
dmax +

1

2

∑n
i=1 d

2
i

L
, (3.2)

where dmax = max{d1, . . . , dn}.

3. The equal-waiting trajectory X(t) has performance within a con-
stant factor of the optimum, that is,

ADT(X(t))

ADT∗
≤ min

{
1

2
+
dmax

2dmin
,

3 +
√
n

4

}
, (3.3)

where dmin = min{d1, . . . , dn}.

19

t

γ d
1

d
2

=

d
m

a
x

d
3

d
4

T = 2dmax

l1 = 0

l2 = r1

l3 = r2

l4 = r3

r4 = Γe

Figure 3.1: Equal-waiting trajectories. Illustration of an equal-
waiting trajectory, formally described in Trajectory 1, for
an n = 4 cameras example. The black dots illustrate the
points where two f.o.v. meet or a f.o.v. reaches a wall.

Trajectory 1: Equal-waiting trajectory (camera i)
Input :dmax, ri, li, di;
Set : ti,w = dmax − di, c1 = ti,w + kdmax, c2 = (1 + k)dmax;

if i is odd then
xi(t) := ri for kdmax ≤ t ≤ c1, k = 0, 2 . . . ;
xi(t) := −t+ c2 for c1 ≤ t ≤ c2, k = 0, 2 . . . ;
xi(t) := li for kdmax ≤ t ≤ c1, k = 1, 3, . . . ;
xi(t) := t− c1 for c1 ≤ t ≤ c2, k = 1, 3, . . . ;

else if i is even then
xi(t) := li for kdmax ≤ t ≤ c1, k = 0, 2 . . . ;
xi(t) := t− c1 for c1 ≤ t ≤ c2, k = 0, 2 . . . ;
xi(t) : ri for kdmax ≤ t ≤ c2, k = 1, 3, . . . ;
xi(t) := −t+ c2 for c1 ≤ t ≤ c2, k = 1, 3, . . . ;

The following facts follow from Theorem 3.0.1. First, if all clusters
have the same length, i.e. dmax = dmin, then Trajectory 1 is an opti-
mal solution to Problem 1. Second, the lower bound is independent
of the clusters arrangement.

20 3 Main results

We now design a distributed feedback algorithm that steers the
cameras towards an equal-waiting trajectory. The algorithm is infor-
mally described as follows.

First each camera moves to its left boundary. Then it
waits until the f.o.v. of its left neighboring camera occu-
pies the same position. As an exception, camera 1, which
has no left neighbor, does not wait after it arrives at its
left boundary. As soon as the f.o.v. of two neighboring
cameras occupy the same position, both cameras wait for
an interval of time as specified in Trajectory 1 and then
move towards the opposite boundary. Clearly, the result-
ing cameras trajectory is synchronized and equal-waiting.
Finally, in order for the cameras to maintain synchroniza-
tion in the face of failures and motion uncertainties, we
stop each camera at its boundary until the neighboring
camera arrives.

A related example is in Section 4. Our distributed algorithm is for-
mally described in Algorithm 2. Two comments are in order. First,
we set x0(t) := l1 (resp. xn+1(t) := rn) for all times t since l1 (resp.
rn) is the left (resp. right) extreme of the path Γ. Second, for the im-
plementation of the proposed distributed algorithm, each camera is
required to know only the endpoints of its cluster, the length of clus-
ter, and the longest clusters length, and to be able of communicating
with a neighboring camera. The following theorem characterizes the
convergence properties of Algorithm 2, where we write X(t ≥ t̄) to
denote the restriction of the trajectory X(t) to the interval t ∈ [t̄,∞).

Theorem 3.0.2 (Convergence of Algorithm 2). For a set of n cam-
eras with clusters lengths d1, . . . , dn, let X(t) be the cameras trajectory
generated by Algorithm 2. Let t̄ = d1 + (n− 1)dmax. Then, X(t ≥ t̄)
is an equal waiting trajectory.

Proof. Notice that the f.o.v. of camera 1 coincides with the f.o.v.
of camera 2 within time d1 + dmax. Then, the f.o.v. of camera ci
coincides with the f.o.v. of camera ci+i within time d1+idmax. Hence,
within time d1 + (n − 1)dmax the cameras trajectory coincides with
the equal-waiting trajectory in Trajectory 1. The claimed statement
follows.

21

It should be observed that in line 1 of Algorithm 2 the cameras
could equivalently move to their right boundary instead of moving
to the left one. In this case the convergence time is bounded by
dn + (n − 1)dmax. The cameras would then converge to a equal-
waiting trajectory which is shifted in time, but its performance is
still given by (3.3).

Algorithm 2: Distributed camera synchronization along a
equal-waiting trajectory (camera i)

Input : dmax, li, ri, di;
Set : ti,w := dmax − di, x0(t) := l1 and xn+1(t) := rn ∀t;
Move towards li with |ẋi(t)| = 1;
while True do

if xi(t) = xi−1(t) or xi(t) = xi+1(t) then
wait until time t+ ti,w;
move towards the opposite boundary with |ẋi(t)| = 1;

else wait;

Chapter 4

An illustrative example

Three simulation studies are presented in this section. In subsection
4.1 we present two studies, which numerically verify the bound of
Equation (3.3) in Theorem 3.0.2. In subsection 4.2 our third simu-
lation is presented. This simulation shows the convergence and ro-
bustness of Algorithm 2, which steers the cameras towards the equal-
waiting trajectory.

4.1 Numerical verification of the
performance bound

In our fist simulation, we want to verify the correctness of the bound
(3 +

√
n)/4. For this simulation study, we let the number of cam-

eras n vary from 2 to 50. For each value of n, we generate 50 sets
of clusters lengths {d1, . . . , dn}, where d1 = maxi di = 1, and di,
with i = 2, . . . , n, is uniformly distributed within the interval (0, 1].
For each configuration, we compute the corresponding equal waiting
trajectory X(t) and evaluate the cost ADT(X(t)). Additionally, for
each configuration we compute the lower bound in Equation (3.1)
and then calculate the ratio ADT(X(t))/ADT∗. Fig. 4.1(a) shows
the result of this study. It should be observed that, for large values
of n and uniformly distributed cluster lengths, the expected average
detection time is much smaller than the bound described in Theorem

23

24 4 An illustrative example

3.0.2. However, it is possible to create specific configurations of clus-
ter lengths, such that the performance of the equal-waiting trajectory
gets arbitrarily close to the lower bound performance. This means
the bound in Theorem 3.0.2 is very tight. These configurations are
that one cluster has a a long cluster length and all the other clusters
have a much shorter cluster length. This implies, for these configu-
rations the equal-waiting trajectory has almost optimal performance.
A simulation for one of these special cases is shown in Fig. 4.1(b).

0 5 10 15 20 25 30 35 40 45 50
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Number of cameras

Fa
ct

or

ADT(X(t))

ADT∗

3 +
√

n

4

n
0 10 20 30 40 50

1.0

1.4

2.6

2.6

2.6

(a) The cluster lengths are d1 = 1 and
di for i = 2, . . . , n are uniformly dis-
tributed within 0 < di ≤ 1.

0 5 10 15 20 25 30 35 40 45 50
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

ADT(X(t))

ADT∗

n

3 +
√

n

4

0 10 20 30 40 50
1.0

1.4

1.8

2.2

2.6

(b) Configuration where the equal-
waiting trajectory is very close to the
optimal performance. The cluster
lengths are d1 = 1 and di = 0.125, i =
2, . . . , n.

Figure 4.1: Simulation of bound (3 +
√
n)/4. The red dots illustrate

the calculated performance bound (3 +
√
n)/4 of Theo-

rem 3.0.2, and each of the blue dots illustrates a calcu-
lated ratio ADT(X(t))/ADT∗ for a specific setup, which
is specified in the subfigures

In our second simulation we want to show the correctness of the
second bound, that is 1/2 + dmax/2dmin. For this simulation study,
we let the number of cameras be fixed (50 cameras), and we vary
the parameter dmin. Specifically, we let d1 = maxi di = 1 and
di, with i = 2, . . . , 50 be uniformly distributed within the inter-
val [dmin/dmax, 1]. For these configurations we compute the corre-
sponding equal waiting trajectory X(t), evaluate the performance
ADT(X(t)), and then compute the lower bound in Equation (3.1).

4.2 Distributed feedback algorithm 25

Fig. 4.2 shows the result of this study. Notice that, for large values
of dmax/dmin and uniformly distributed cluster lengths, the bound in
Theorem 3.0.2 is again conservative.

0 5 10 15 20 25
0

2

4

6

8

10

12

14

ADT(X(t))

ADT∗

dmax

dmin

1

2
+

dmax

2dmin

0 5 10 15 20 25
0

2

4

6

8

10

12

14

Figure 4.2: Simulation of bound 1/2 + dmax/2dmin. The green
dots illustrate the calculated performance bound 1/2 +
dmax/2dmin of Theorem 3.0.2, and each of the blue dots il-
lustrates a calculated ratio ADT(X(t))/ADT∗ for a setup
described by n = 50, d1 = 1 and di with i = 2, . . . , 50 is
uniformly distributed within interval [dmin

dmax
, 1].

4.2 Distributed feedback algorithm

In our third simulation we want to show the properties of the dis-
tributed feedback algorithm, described in Algorithm 2. For this sim-
ulation study, we consider a set of 4 cameras, and a fixed set of clusters
with lengths {d1, . . . , d4}. In this simulation we show three proper-
ties of the algorithm. First, the algorithm steers the cameras from
random starting positions to the equal-waiting trajectory. Second, it
is robust against camera failure, and third, the algorithm is robust
against noise in the camera speed. This simulation is illustrated in
Fig. 4.3 and an explanation follows.
The cameras start at time t = 0 at random starting positions. At

26 4 An illustrative example

the beginning, all cameras move to the left boundary of their cluster
and wait there for the arrival of the neighbor. Camera 1, which has
no left neighbor, starts immediately after arriving at its left boundary
with performing the equal-waiting trajectory. At about time t = 50
camera 1 meets camera 2 and therefore camera 2 starts performing
the equal-waiting trajectory. With this procedure, all the neighboring
cameras meet. After time t = 150, all neighboring cameras have met
and the initialization phase is completed. The end of the initialization
phase results in a uniform execution of the equal-waiting trajectory.
Between time t = 340 and time t = 440 camera 4 fails. Because of

that, camera 3 cannot meet camera 4 at their shared boundary, and
therefore camera 3 stops its movement and waits for camera 4 at its
right boundary. All cameras cannot meet their neighbors any more,
and because of that, all cameras wait at their right boundary. At
time t = 440 camera 4 starts to work again and the camera performs
again the initialization procedure, which results in the movement to
the left boundary. As soon as camera 4 arrives at its left boundary,
it meets camera 3. After that, all cameras meet again their neighbor
and the equal-waiting trajectory is performed again. The algorithm
could easily be changed such that if one camera fails, it sends a signal
to its neighbors and the neighbors continue working like the shared
boundary to the failed camera would be a wall. This would mean,
that the remaining cameras continue working.
The third property of the algorithm, the robustness against noise

in the movement is shown for time t > 700. After this time, noise
is added to the movement of the cameras. The noise is normally
distributed with mean 0.2 and standard derivation 1.0, while the
maximum camera speed is 1.0. Because of this noise, the cameras
trajectories are not straight any more and they arrive at the shared
boundary at different times. However, since the cameras wait at
their shared boundary for their neighbor, the synchronization of the
cameras, which is essential to detect all intruders, is still guaranteed.
Hence, the algorithm is robust against noise in the movement.
Following on the numerical validations in this chapter, we present

an analytical proof of Theorem 3.0.2 in the next chapter. This proof
consists of characterizing the performance of the lower bound and the
equal-waiting trajectory, and of showing the constant factor approx-
imation.

4.2 Distributed feedback algorithm 27

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

Time

P
at

h

Simulation of n=4 w/ initialization phase and temporary camera failure

t

Γ

initialization noisefailure

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

Figure 4.3: Simulation of Algorithm 2. Shown is the initialization
procedure from random starting positions between time
t = [0, 150], a temporary camera failure of camera 4 be-
tween t = [340, 440], and how the algorithm works under
the influence of noise (t > 700).

Chapter 5

Proof of Theorem 3.0.1

This section contains a proof of Theorem 3.0.1, and it is organized
as follows. In subsection 5.1 we characterize some useful properties
of a minimum average detection time cameras trajectory. In subsec-
tion 5.2 we prove a lower bound for the minimum average detection
time, we characterize the performance of the equal-waiting cameras
trajectory, and we conclude the proof. The following definition will
be used in the proof. For a cameras trajectory X(t), the sets of left
catch-points are defined as

CPli =

{
{t | xi(t) = xi−1(t)}, if 2 ≤ i ≤ n
{t | xi(t) = Γ0}, if i = 1,

and the sets of right catch-points as

CPri =

{
{t | xi(t) = xi+1(t)}, if 1 ≤ i ≤ n− 1

{t | xi(t) = Γf}, if i = n.

5.1 Properties of an optimal trajectory

In this section we characterize an optimal cameras trajectory. We
start by rewriting the performance function (2.1) with the above de-
fined catch-point in a more convenient form.

29

30 5 Proof of Theorem 3.0.1

Lemma 5.1.1 (Modification of the performance function). Let X(t) =
{x1(t), . . . , xn(t)} be a T -periodic cameras trajectory. Let CPli and
CPri denote, respectively, the sets of left and right catch points of
X(t). We have

ADT(X(t)) =
1

T
n∑
i=1

di

n∑
i=1

ADTli(xi(t)) + ADTri (xi(t)), (5.1)

where,

ADTli(xi(t)) =

∫ T

0

(xi(t)− li)(θli(t)− t)dt,

ADTri (xi(t)) =

∫ T

0

(ri − xi(t))(θri (t)− t)dt,

and

θli(t) = min
q∈CPl

i

q ≥ t, θri (t) = min
q∈CPr

i

q ≥ t.

Proof. Notice that our defined performance function ADT(X(t)) from
chapter 2 is

ADT(X(t)) =
1

T
n∑
i=1

di

∫ T

0

∫
Γ

(t∗d(p
∗
t,γ)− t)dγdt.

By spitting up the integral over the path Γ into integrals over the
clusters si and summing them up over all i, this can be written as

ADT(X(t)) =
1

T
n∑
i=1

di

n∑
i=1

∫ T

0

∫
si

(t∗d(p
∗
t,γ)− t)dγdt.

Consider an intruder that appears at time t0 at position p0 ∈ si. Let
p0 ≤ xi(t), i.e., the intruder appears to the left of the cameras f.o.v.
(cf. Fig. 5.1). Since the intruder is smart, this means the intruder
hides as long as possible, it is detected by camera ci at time θli(t). It

5.1 Properties of an optimal trajectory 31

follows that the detection time t∗d(p
∗
t0,p0) equals the time of the next

left catch-point, which is given by θli(t0), this means

t∗d(p
∗
t0,p0) = θli(t0).

In particular, every intruder appearing at time t0 to the left of the
cameras f.o.v. will be detected at time θli(t0). Analogously, every
intruder appearing at time t0 to the right of the cameras f.o.v. will
be detected at time θri (t0). Hence we have∫ T

0

∫
si

(t∗d(p
∗
t,γ)− t)dγdt =

∫ T

0

∫ xi(t)

li

(θli(t)− t)dγ

+

∫ T

0

∫ ri

xi(t)

(θri (t)− t)dγ = ADTli(xi(t)) + ADTri (xi(t)).

The claimed statement follows.

Notice that a cameras trajectory is synchronized if and only if all
cameras have at least one left and right catch-point, that means the
sets CPli and CPri must be nonempty. It is now clear from Lemma
5.1.1 that a cameras trajectory X(t) must be synchronized to ob-
taine a finite performance ADT(X(t)). This is stated in the following
Lemma.

Lemma 5.1.2 (Necessity of a synchronized trajectory). Let X(t) =
{x1(t), . . . , xn(t)} be a periodic trajectory. Then

ADT(X(t)) <∞

if and only if CPli 6= ∅ and CPri 6= ∅ for all i = 1, . . . , n.

Proof. Notice that if CPli = ∅ (resp. CPri = ∅), then there exists
a trajectory for a smart intruder to evade detection (cf. Fig. 2.2).
Consequently, for some time t ∈ [0, T], we have θli(t) = ∞ (resp.
θri (t) = ∞). The performance calculation with (5.1) from Lemma
5.1.1 leads to ADT(X(t)) =∞.

Following Lemma 5.1.1 it is possible to determine the shape of an
optimal trajectory between any two consecutive catch points. Given
the sets of right and left catch-points CPli and CPri of a camera. Let

32 5 Proof of Theorem 3.0.1

T = 2dmax

θr
i (t) − t

θl
i(t) − t

ri − xi(t)

xi(t) − li

t1

t2

t3

ADTr
i

ADTl
i

di

ADTr
i

(t0, p0)
Γ

t

xi(t)

Figure 5.1: Performance calculation. Illustration of the performance
separation into a right and left part, ADTri and ADTli
respectively, of the trajectory. The black line illustrates
the trajectory xi(t), the black dots at time t1, t2, t3 catch-
points, and the red dot at t0, p0 an intruder. The smart
intruder at t0, p0, like all other intruders on the left side of
xi(t) at this time, gets detected at t3, whereas intruders
appearing at time t0 left of xi(t) get detected at t2

CPi = (t0, . . . , tk) be the tuple of all catch-points of a camera i, where
ti ∈ CPli ∪ CPri , ti < ti+1, and tk ≤ t0 + T . Notice that CPi is an
ordered sequence of catch-points.

Lemma 5.1.3 (Trajectory shape). Let CP = {CP1, . . . ,CPn} be a
given sequence of catch-points. A cameras trajectory X(t) with CP as
catch-points satisfies ADT(X(t)) = ADT∗ if and only if the trajectory
of each camera i between any two consecutive points tj , tj+1 ∈ CPi is
as in Fig. 5.2.

Proof. Let the set of catch-points be fixed. Observe from Lemma
5.1.1 that the performance ADT(X(t)) is computed by summing the
performance of each cluster, and the performance of two different
clusters are independent from each other. Then, in order to minimize
the sum over all clusters, the performance of each cluster needs to be
minimized. Notice that, because of Lemma 5.1.1, each term ADTi

5.1 Properties of an optimal trajectory 33

a) b) c)

d) e) f)

tj

tjtjtj

tjtj tj+1 tj+1

tj+1 tj+1 tj+1

tj+1

θr
i (t) θr

i (t)

θr
i (t)θr

i (t)

θr
i (t)

θr
i (t)

θl
i(t)

θl
i(t)

θl
i(t) θl

i(t)

θl
i(t)θl

i(t)

Figure 5.2: Possible trajectory shapes. The figures illustrate the tra-
jectories between two catch-points tj and tj+1. In figures
a), b) and c) θli(t)−θri (t) > 0, therefore xi(t) is as small as
possible. In figures d), e), and f) θli(t)−θri (t) < 0, here the
trajectories are such that xi(t) is as big as possible. All
trajectories are unique, because they are obtained with
camera speed either zero or maximum.

can be written as

ADTi = ADTli + ADTri

=

k−1∑
j=0

tj+1∫
tj

(xi(t)− li)(θli(t)− t) + (ri − xi(t))(θri (t)− t)dt.
(5.2)

Since the summands of Equation (5.2) are independent of each other,
every term can be minimized on its own. Therefore this leads to the
optimization problem

min
xi(t)

tj+1∫
tj

(xi(t)− li)(θli(t)− t) + (ri − xi(t))(θri (t)− t)dt. (5.3)

Since Equation (5.3) shall be minimized subject to xi(t), it can be

34 5 Proof of Theorem 3.0.1

rewritten to

min
xi(t)

(θli(t)− θri (t))
tj+1∫
tj

xi(t)dt+ c, (5.4)

where c is independent of xi(t), and θli(t), θri (t) are constant within
the interval t ∈ [tj , tj+1]. Two cases can occur:

1. θli(t) − θri (t) > 0. This means, starting from time t the first
occurring catch-point is an upper catch-point. The integral has
positive sign and xi must be minimized in order to minimize
(5.4). These cases are illustrated in Fig. 5.2 a), b), and c);

2. θli(t) − θri (t) < 0. This means, starting from time t the first
occurring catch-point is a left catch-point. The integral has
negative sign and xi(t) must maximize the integral in (5.4).
These cases are illustrated in Fig. 5.2 d), e) and f).

The statement follows.

As a consequence of Lemma 5.1.2, if the catch-points are given,
then an optimal cameras trajectory can be obtained from the trajec-
tories in Fig. 5.2, where the speed of each camera is either zero or
maximum. Hence, the problem of designing optimal cameras trajec-
tory reduces to the problem of finding a set of catch-points yielding
optimal performance. This insight is used in the next subsection to
obtain the performance bounds.

5.2 Performance bounds
In this subsection we state three things. First we derive a lower
bound for the average detection time. Second we characterize the
average detection time of the equal-waiting trajectory and third and
last, we characterize the performance of the equal-waiting trajectory
by evaluating the performance ratio of the equal-waiting trajectory
and the lower bound.
The lower bound performance is obtained as the sum of the lower

bound performances for the detection time of each single cluster.

5.2 Performance bounds 35

case 1 case 2

a)

b)

improved

(1b)

(1a) (2a)

(2b)

h1 h2

di

2di
c

2di − εdi di di

tj tj+2 tj tj+2tj+3 tj+3tj−1

t2 t3 t4 t5 t6t1

Figure 5.3: Sequence of catch-points. Case 1 and case 2 illustrate
the two possible cases of tj , tj+1, tj+2 ∈ CPl. The yellow
cases in row a) show trajectories with three consecutive
catch-points on one boundary. The blue cases in row b)
show, how these trajectories can be improved.

To calculate the lower bound for a single cluster we assume that the
neighboring cameras of this cluster behave exactly like it is needed for
this cluster. That means, if a camera ci reaches the left boundary, the
left neighbor is at this shared boundary, and if the camera ci reaches
the right boundary, the right neighbor is at the shared boundary.
More formally, that means the neighboring cameras ci−1 and ci+1

are such that xi−1(t) = li and xi+1(t) = ri at all times. Since this
cannot be guaranteed in general, the so calculated lower performance
bound is in general not achieved.
To calculate the lower performance bound we first state another

property of the trajectory, which is necessary for an optimal average
detection time. This property is, that for the lower bound scenario
three consecutive catch-points on the right or left boundary never
lead to an optimal average detection time. The performance of a
trajectory with three consecutive catch-points on one boundary can
always be improved by a trajectory that has at most two consecutive
catch-points on one boundary. This property is stated in the following
Lemma.

Lemma 5.2.1 (Sequence of catch-points). For a cameras trajectory

36 5 Proof of Theorem 3.0.1

X(t), assume that CPli = {t | xi(t) = li} and CPri = {t | xi(t) = ri}
for each camera i. Let CPi be the ordered sequence of catch-points
within time [0, T]. Then, ADT(X(t)) = ADT∗ only if there exists no
consecutive catch-points tj , tj+1, tj+2 ∈ CPi such that tj , tj+1, tj+2 ∈
CPli or tj , tj+1, tj+2 ∈ CPri , for each camera i.

Proof. We proceed by contradiction. Suppose that there exist three
consecutive catch-points tj , tj+1, tj+2 ∈ CPi such that tj , tj+1, tj+2 ∈
CPli for some camera i. Assume that tj+2 − tj ≤ 2di, and consider
the cost ADTi as defined in Lemma 5.1.3. Referring to Fig. 5.3 (1a),
it can be verified that the trajectory in Fig. 5.3 (1b) has a smaller
average detection time. This is done by calculating ADTi(1a) and
ADTi(1b), which denotes the performance of the cases (1a) and (1b)
respectively. Then it is shown that ADTi(1a)−ADTi(1b) > 0, which
means that case (1a) has always a greater average detection time than
case (1b).
The performance of a cluster can be calculated with the modified

performance Equation (5.1) as

ADTi =

∫ T

0

(xi(t)− li)(θli(t)− t) + (ri − xi(t))(θri (t)− t)dt.

Since the trajectory xi(t) is not smooth, it is helpful, to split up
the integration into different intervals, such that in each interval the
trajectory can be expressed as a smooth function. This modification
simplifies the evaluation of the integrals. The time integral is split
up into j̄ intervals [tj , tj+1], where j = 1, . . . , j̄. In each interval
[tj , tj+1] the function xi,j(t) describes the function xi(t). With this
modification, the performance calculation can be expressed as

ADTi =

j̄∑
j=1

∫ ti,j+1

ti,j

xi,j(t)(θ
l
i,j − θri,j) + di(θ

r
i,j − t)dt, (5.5)

where θli,j and θri,j are the θ-functions for the interval [tj , tj+1]. With-
out loss of generality we set li = 0 and ri = di. By using Equation
(5.5) we obtain for the calculation of ADTi(1a)

ADTi(1a) =

5∑
j=1

∫ ti,j+1

ti,j

xi,j(t)(θ
l
i,j − θri,j) + di(θ

r
i,j − t)dt (5.6)

5.2 Performance bounds 37

where

xi,1(t) = t, xi,2(t) = −t+ h1, xi,3(t) = t− h1,

xi,4(t) = −t+ h1 + h2, xi,5(t) = t− h1 − h2,

and

θli,1 = θli,2 = h1,

θli,3 = θli,4 = h1 + h2,

and

θri,j = di + h1 + h2 for j = 1, . . . , 4.

Evaluating Equation (5.6) with this parameters leads to

ADTi(1a) = h1h2(di −
1

4
h1)+

1

2
di(

1

2
h2

1 + h1di +
1

2
h2

2 + h2di + θi,5ldi).

(5.7)

Evaluating Equation (5.5) for case (1b) leads to the performance

ADTi(1b) =
1

2
di(h1h2 +

1

2
h2

1 + dih1 +
1

2
h2

2 + h2di + h3di). (5.8)

Calculating the difference of the Equations (5.7) and (5.8) yields

ADTi(1a)−ADTi(1b) =
1

2
h1h2(di −

1

2
h1).

This case is described by tj+2 − tj ≤ 2di, which is equivalent to
h1 + h2 ≤ 2di. Hence, h1 ≤ 2di and therefore di − 1

2h1 ≥ 0, which
leads to ADTi(1a)− ADTi(1b) ≥ 0. This means, case (1a), the case
with 3 consecutive catch-points has, regardless of h1 and h2, always
a greater average detection time than case (1b).
Consider now the case tj+2 − tj > 2di, which is illustrated in Fig.

5.3 (2a-2b). For these two case we also calculate the average detection
time with performance Equation (5.5). With the variables used in
Fig. 5.3 (2a-2b), this leads to

ADTi(2a) = −1

4
ε2(c− ε)+

di(
1

2
h3di + cdi +

1

4
c2 − εdi + ε2 +

1

2
cε+

1

2
d2
i)

(5.9)

38 5 Proof of Theorem 3.0.1

and

ADTi(2b) =
1

2
di(h3di +

1

2
c2 + d2

i). (5.10)

Calculating the difference of Equations (5.9) and (5.10) leads to

ADTi(2a)−ADTi(2b) = c(d2
i −

1

4
ε2) + ε2(di −

1

4
ε) + diε(

1

2
c− di).

Since 2di < c < 4di, 0 < ε < 4di − c, and hence ε < 2di the three
terms in brackets, (d2

i − 1
4ε

2), (di− 1
4ε), and (1

2c−di) are all positive,
and therefore ADTi(2a)−ADTi(2b) > 0. This means, case (2b), the
case with just two consecutive catch-points has regardless of c and ε
a lower average detection time.
Since for both cases, tj+2 − tj ≤ 2di and tj+2 − tj > 2di, the case

with just two consecutive catch-points has the lower average detection
time, we can state that an optimal cluster performance can never be
obtained with three consecutive catch-points.

From Lemma 5.2.1 and 5.1.3 we know the necessary sequence of
catch-points and the trajectory between these catch-points for an op-
timal cluster performance. With this insight of the trajectory shape,
it is now possible to create an parameterized model of the lower bound
performance. This model is illustrated in Fig. 5.4 and an explanation
follows.
The trajectory of the lower bound model could start at every po-

sition of the cluster, because the trajectory is a periodic trajectory,
which must visit every point of the cluster. In our model it starts
at t0 at the left boundary. The next catch-point after t0 could be
either at the right or left boundary, here t1 is set to the left bound-
ary in distance h1. The trajectory between this two, and any other
two, catch-points, is known from Lemma 5.1.3. According to Lemma
5.2.1 we cannot have three consecutive catch-points on one bound-
ary, hence the third catch-point must be on the opposite boundary,
which leads to t2 at the right boundary. With setting h1 = 0 this
setup also includes the case that the second catch-point is at the right
boundary, therefore it represents the most general case. Catch-point
number three, t2, must be after time di from t1. It cannot be later,
because in that case it is known from Lemma 5.1.3 that the trajec-
tory first stays at the left boundary. Staying at the left boundary can

5.2 Performance bounds 39

section 1 section 2 section k

h3

h4

h1

h2

h2k−1

t0 t1

t2 t3

t4

di

di

h2k

a) b)

improved

li

ri

t4k

Figure 5.4: Parameterized lower bound model. Fig a) shows the pa-
rameterized model for a single cluster. Fig b) explains
why the catch-points on opposite boundaries must be in
distance di.

always be improved, as shown in Fig. 5.4 b), which leads to three
consecutive catch-points on one side and according to Lemma 5.2.1
this is not optimal. Therefore for an optimal solution t2 must be
exactly after time di. From t2 onwards, the same reasoning holds as
from t0 onwards, which leads to t3 on the right boundary and t4 at
the left boundary. We call the movement between t0 and t4 section
1, and this movement then can be performed k times. This leads to
a movement with k ≤ bRic sections, where Ri = dmax/di is the ratio
of the longest cluster length to the i-th cluster length. The parame-
ter k is bounded, because in each section the camera needs to sweep
back and forth between the boundaries of the cluster, and for a fixed
period length T = 2dmax at most bRic back and forth movements
can be performed. The average detection time of this parameterized
model can be calculated, which leads to the lower bound performance
stated in the following Lemma.

Lemma 5.2.2 (Lower bound). For a set of n cameras with clusters
lengths d1, . . . , dn, the optimal average detection time for a smart
intruder satisfies the lower bound:

ADT∗ ≥
∑n
i=1 d

2
i

L
,

where L =
n∑
i=1

di.

40 5 Proof of Theorem 3.0.1

h2f−1 h2f didi

di

section f

pf,1 pf,2 pf,3
pf,4 pf,5

pf,6 pf,7

Figure 5.5: Parameterized model for a section f . The model shows
the catch-points (black dots), whose position is described
by parameters, and the trajectory between the catch-
points.

Proof. Consider a cameras trajectory X(t), and let the parameters
p = (k, h1 . . . h2k) describe the trajectory xi(t) as in Fig. 5.4. Let
ADTi be the average detection time of cluster i for the trajectoryX(t)
(see the proof of Lemma 5.1.3). The proof consists then of 3 steps.
First, the performance of the lower bound model ADTi(k, h1 . . . h2k)
is calculated. Second, ADTi(k, h1 . . . h2k) is minimized subject to
k, h1 . . . h2k, which leads to an discontinuous function. And in the last
step this discontinuous function is lower bounded by an continuous
function.

1. Calculation of ADTi(k, h1 . . . h2k)

To calculate the cost subject the variables k, h1 . . . h2k the mod-
ified performance Equation (5.1) is evaluated. This leads to the
calculation of

ADTi(xi(t)) =

∫ t4k

t0

(xi(t)− li)(θli(t)− t)

+(ri − xi(t))(θri (t)− t)dt.

This function is evaluated by splitting it up into the sum of the
average detection times of the sections ADTi,f , f = 1, . . . , k,

5.2 Performance bounds 41

that is

ADTi(xi(t)) =

k∑
f=1

ADTi,f , (5.11)

where

ADTi,f =

∫ t4f

t4(f−1)

(xi,f (t)− li)(θli,f (t)− t)+

(ri − xi,f (t))(θri,f (t)− t)dt,

and xi,f , θli,f (t), and θri,f (t) describes the variables within sec-
tion f . The integral of each section can be further slitted up
into six intervals, such that in each interval the function xi(t)
can be expressed as a smooth function. These parts are illus-
trated in Fig. 5.5, and this leads to

ADTi,f =

6∑
j=1

∫ pf,j+1

pf,j

(xi,f,j(t)− li)(θli,f,j(t)− t)+

(ri − xi,f,j(t))(θri,f,j(t)− t)dt,
(5.12)

where xi,f,j(t) describes the trajectory, θli,f,j(t) the next left
catch-point, and θri,f,j(t) the next right catch-point within the
time interval [pf,j , pf,j+1]. All variables of Equation (5.12) can
be expressed subject to di, f, k, h1, . . . , h2k, which enables the
calculation of ADTi,f (k, h1 . . . h2k), and then by using Equation
(5.11) the calculation of ADTi(k, h1 . . . h2k). The specification
of these variables is done in the following.

First the seven points pf,1, . . . , pf,7, which characterize the in-
tervals of the smooth trajectories, are described. These points

42 5 Proof of Theorem 3.0.1

are

pf,1 =

2f−2∑
j=1

hj + 2di(f − 1), pf,2 = pf,1 +
1

2
h2f−1,

pf,3 = pf,2 +
1

2
h2f−1, pf,4 = pf,3 + di,

pf,5 = pf,4 +
1

2
h2f , pf,6 = pf,5 +

1

2
h2f ,

pf,7 = pf,6 + di.

Notice, the point pf,1 is the starting point of section f . That
means its time is given by the summation of the duration of all
previous sections g, g = 1, . . . , f − 1. The duration of each pre-
vious section g can be expressed as 2di+h2g−1+h2g. Next, with
the points pf,1, . . . , pf,7, the trajectories xi,f,j(t), j = 1, . . . , 6
can be formulated as

xi,f,1 = t−
2k−2∑
j=1

hj − 2di(f − 2),

xi,f,2 = −t+

2k−2∑
j=1

hj + h2f−1 + 2di(f − 1),

xi,f,3 = t−
2k−2∑
j=1

hj − h2f−1 − 2di(f − 1),

xi,f,4 = −t+

2k−2∑
j=1

hj + h2f−1 + 2dif,

xi,f,5 = t−
2k−2∑
j=1

hj − h2f−1 − h2f − 2di(f − 1),

xi,f,6 = −t+

2k−2∑
j=1

hj + h2f−1 + h2f + 2dif.

Finally, the left and right catch-points of the intervals, θli,f,j

5.2 Performance bounds 43

and θri,f,j , need to be defined, these are

θli,f,j = pf,3 for j = 1, 2,

θli,f,j = pf,7 for j = 3, . . . , 6,

and

θri,f,j = pf,4 for j = 1, 2, 3

θri,f,j = pf,6 for j = 4, 5

θri,f,6 = pf,7 + di + h2f+1.

Evaluating Equation (5.12) with these variables leads to

ADTi,f =
1

4
di(h

2
2f−1 + h2

2f)

+d2
i (

3

2
h2f + h2f−1 +

1

2
h2f+1) + 2d3

i .

The summation of ADTi,f over all f then yields

ADTi =

k∑
f=1

ADTi,f =
1

4
di

k∑
f=1

(h2
2f−1 + h2

2f)

+d2
i

k∑
f=1

(
3

2
h2f + h2f−1 +

1

2
h2f+1) + 2kd3

i .

This equation can be simplified by combining the summands of
the sums, that leads to

ADT =
1

4
di

2k∑
j=1

h2
j + d2

i

2k∑
j=1

(
3

2
hj) +

1

2
h2k+1 −

1

2
h1 + 2kd3

i .

The parameter h2k+1 is not defined, but it stands for the first
parameter which follows the end of the period T . After the end
of the period the same period starts over, hence h2k+1 = h1.
Inserting this yields

ADT =
1

4
di

2k∑
j=1

h2
j +

3

2
d2
i

2k∑
j=1

hj + 2kd3
i . (5.13)

44 5 Proof of Theorem 3.0.1

With the use of the ratio Ri,

Ri =
dmax

di
, (5.14)

Equation (5.13) transforms to

ADT =
1

4

dmax

Ri

2k∑
j=1

h2
j +

3

2
(
dmax

Ri
)2

2k∑
j=1

hj + 2k(
dmax

Ri
)3.

The period length of the trajectory is a priori fixed, that means

T = 2dmax = 2kdi +

2k∑
j=1

hj .

With Ri from Equation (5.14),
∑2k
j=1 hj can be written as

2k∑
j=1

hj = 2dmax − 2kdi = 2dmax(1− k

Ri
).

Inserting that, leads to the final function of the lower bound
model

ADTi(k, h1 . . . h2k) =
dmax

4Ri

2k∑
j=1

h2
j + d3

max(
3Ri − k
R3
i

). (5.15)

To obtain the minimum of this function, the optimal parameters
k, h1, . . . , h2k, which minimize the function, must be calculated.
This calculation is shown in the step two.

2. Minimizing ADTi(k, h1 . . . h2k)

Suppose that the integer k is fixed. Then, a minimizer of ADTi
can be computed by solving the optimization problem

min
h1,...,h2k

dmax

4Ri

2k∑
j=1

h2
j

subject to
2k∑
j=1

hj = 2dmax(1− k

Ri
),

(5.16)

5.2 Performance bounds 45

where the constraint arises from the fixed period length T =
2dmax = 2kdi +

∑2k
i=1 hj . This optimization problem is solved

by using the method of Lagrange multipliers. The method of
Lagrange multipliers is an optimization tool to calculate the
minima of a function, subject to equality constraints. A de-
tailed explanation of the method can be found in chapter 8.
To use this method, first the Lagrange function needs to be
defined. For the optimization problem 5.16, that is

L(x, λ) =
dmax

4Ri

2k∑
j=1

h2
j + λ(

2k∑
j=1

hj − 2dmax(1− k

Ri
)).

The partial derivatives of this Lagrange function are

∂L

∂hj
=
dmax

2Ri
hj + λ = 0, (5.17)

∂L

∂λ
=

2k∑
j=1

hj − 2dmax(1− k

Ri
) = 0. (5.18)

Solving Equation (5.17) for hj yields

hj = −λ 2Ri
dmax

. (5.19)

Inserting the result of Equation (5.19) into (5.18) leads to

0 =

2k∑
j=1

−λ 2Ri
dmax

− 2dmax(1− k

Ri
)

= −2kλ
2Ri
dmax

− 2dmax(1− k

Ri
),

and finally,

λ =
d2
max

2kRi
(
k

Ri
− 1).

With this expression of λ and Equation (5.19), hj can be cal-
culated as

hj =
Ri − k
Rik

dmax j = 1, . . . , 2k. (5.20)

46 5 Proof of Theorem 3.0.1

Inserting the result for hj from (5.20) into the parameterized
performance function (5.15) leads to

ADTi(k) =
dmax

4Ri

2k∑
j=1

(
Ri − k
Rik

dmax)2 + d3
max(

3Ri − k
R3
i

). (5.21)

Observe now that k ∈ N and 1 ≤ k ≤ bRic, and that the terms
Ri−k
Rik

and 3Ri−k
R3

i
are monotonically decreasing with k. Then,

the optimal parameter k equals bRic. Inserting k = bRic into
Equation (5.21) and simple manipulation yields

minADTi = d3
max(

1

2RibRic
+

2

R2
i

− bRic
2R3

i

).

Notice, this function is discontinuous because of the term bRic.
In order to proof a performance bound for the equal-waiting
trajectory, we lower bound this discontinuous function with a
continuous function in step three.

3. Calculating a continuous lower bound

In this last step, we want to show, that 2
R2

i
d3
max is a lower bound

for the average detection time of a cluster, i.e.

minADTi = d3
max

(
1

2RibRic
+

2

R2
i

− bRic
2R3

i

)
≥ 2

R2
i

d3
max.

Simple manipulation yields

1

2RibRic
≥ bRic

2R3
i

,

and finally

R2
i ≥ bRic2,

which is true, because Ri ≥ bRic.

Since the lower bound performance of the domain, that means all
clusters, is greater or equal to the sum of the clusters lower bound

5.2 Performance bounds 47

performance, it follows

ADT∗ ≥ 1

TL

n∑
i=1

minADTi

where T = 2dmax and L =
∑n
i=1 di. Moreover, we showed

minADTi ≥
2

R2
i

d3
max,

which can be modified with Ri = dmax/di to

minADTi ≥ 2dmaxd
2
i .

Combining these results leads to,

ADT∗ ≥ 1

TL

n∑
i=1

minADTi

≥ 1

TL

n∑
i=1

2dmaxd
2
i =

∑n
i=1 d

2
i

L
.

Hence, the statement is true.

In the next lemma we characterize the performance of the equal-
waiting trajectory.

Lemma 5.2.3 (Equal-waiting trajectory performance). For a set
of n cameras with clusters lengths d1, . . . , dn, let X(t) be the equal-
waiting trajectory defined in Trajectory 1. Then

ADT(X(t)) =
1

2
dmax +

1

2

∑n
i=1 d

2
i

L
, (5.22)

where dmax = max{d1, . . . , dn} and L =
n∑
i=1

di.

Proof. For the proof we show that the performance of one cluster
with the equal-waiting trajectory can be calculated as

ADTi(xi(t)) = (dmax + di)didmax.

48 5 Proof of Theorem 3.0.1

The summation of the single cluster performances and normalizing
the performance, that is

ADT(X(t)) =
1

TL

n∑
i=1

ADTi(xi(t)),

where T = 2dmax, leads with some simple modification to the state-
ment. In the following the calculation of the cluster performance is
stated. From Lemma 5.1.1 follows

ADTi(xi(t)) =

∫ T

0

(xi(t)− li)(θli(t)− t) + (ri − xi(t))(θri (t)− t)dt.

Without loss of generality we set li = 0 and ri = di. Moreover we
split the time integral up into 4 intervals, such that in each interval
xi(t) can be expressed as a smooth function, that leads to

ADTi(xi(t)) =

4∑
j=1

∫ pi,j+1

pi,j

xi,j(t)(θ
l
i,j(t)− θri,j(t)) + di(θ

r
i,j(t)− t)dt.

(5.23)

The values for the variables pi,j for j = 1, . . . , 5 and xi,j , θli,j(t), and
θri,j(t) for j = 1, . . . , 4 follow from Fig. 5.6 and they are

pi,1(t) = 0, pi,2(t) = dmax − di, pi,3(t) = dmax,

pi,4(t) = 2dmax − di, pi,5(t) = 2dmax,

and

xi,1(t) = 0, xi,2(t) = t− (dmax − di),
xi,3(t) = di, xi,4(t) = −t+ 2dmax,

and

θli,j(t) = 2dmax, for j = 1, . . . , 4,

and

θli,j(t) = dmax, for j = 1, 2,

θli,j(t) = 3dmax, for j = 3, 4.

5.2 Performance bounds 49

T = 2dmax

di di

di

dmax − di dmax − di

xi,1

xi,2

xi,3

xi,4

pi,1 pi,2
pi,3 pi,4 pi,5

Figure 5.6: Performance calculation of the equal-waiting trajectory
for a cluster di. The bold black line illustrates the trajec-
tory and the black dots the catch-points.

Inserting these values into Equation (5.23) leads to

ADTi(xi(t)) = (dmax + di)didmax.

The statement follows.

We are now ready to prove the result about the constant factor
approximation of the equal-waiting trajectory. This result, combined
with Lemma 5.2.2 and Lemma 5.2.3, concludes the proof of Theorem
3.0.1.

Lemma 5.2.4 (Equal-waiting trajectory approximation). For a set
of n cameras with clusters lengths d1, . . . , dn, let X(t) be the equal-
waiting trajectory defined in Trajectory 1. Then,

ADT(X(t))

ADT∗
≤ min

{
1

2
+
dmax

2dmin
,

3 +
√
n

4

}
,

where dmin = min{d1, . . . , dn} and dmax = max{d1, . . . , dn}.

Proof. We show the two bounds in two separate calculations. First
we show the bound 1/2+dmax/2dmin by manipulating and estimating
the term ADT(X(t))

ADT∗ . The other bound, (3 +
√
n)/4, is then shown by

using the method of Lagrange multipliers, cf. Chapter 8. For both
calculations we need the ratio ADT(X(t))

ADT∗ . Using Lemma 5.2.2, Lemma

50 5 Proof of Theorem 3.0.1

5.2.3, and the Ratio Ri = dmax/di we obtain

ADT(X(t))

ADT∗
=

∑n
i=1R

−1
i +R−2

i

2
∑n
i=1R

−2
i

. (5.24)

1. Bound 1/2 + dmax/2dmin

This bound is obtained by estimating the performance ratio.
Modification of the term 1/2+dmax/2dmin withRmax = dmax/dmin
yields

1

2
+
dmax

2dmin
=

dmax
Rmax

+ dmax

2 dmax
Rmax

=
1 +Rmax

2

=
R−2

max +R−1
max

2R−2
max

. (5.25)

By using the performance ratio (5.24) and the stated bound
(5.25) we show∑n

i=1R
−1
i +R−2

i

2
∑n
i=1R

−2
i

≤ R−2
max +R−1

max

2R−2
max

,

which means that the performance ratio is upper bounded by
the term (5.25). Notice that∑n

i=1R
−1
i +R−2

i

2
∑n
i=1R

−2
i

− R−2
max +R−1

max

2R−2
max

=
R−2

max
∑n
i=1

(
R−1
i +R−2

i

)
− (R−2

max +R−1
max)

∑n
i=1R

−2
i

2R−2
max

∑n
i=1R

−2
i

=
R−2

max
∑n
i=1R

−1
i −R−1

max
∑n
i=1R

−2
i

2R−2
max

∑n
i=1R

−2
i

=
R−1

max
∑n
i=1

(
(R−1

max −R−1
i)R−1

i

)
2R−2

max
∑n
i=1R

−2
i

≤ 0,

since Rmax ≥ Ri for all i. Then, the first part of the statement
follows.

2. Bound (3 +
√
n)/4

5.2 Performance bounds 51

This bound follows from using the method of Lagrange mul-
tipliers (cf. Chapter 8) for the performance ratio (5.24). We
show that for F = (3 +

√
n)/4

ADT(X(t))

ADT∗
=

∑n
i=1R

−1
i +R−2

i

2
∑n
i=1R

−2
i

≤ F

is satisfied. Without loss of generality we can say that camera
1 has the largest cluster, which yields R1 = 1 and therefore∑n

i=1R
−1
i +R−2

i

2
∑n
i=1R

−2
i

=
2 +

∑n
i=2R

−1
i +R−2

i

2 + 2
∑n
i=2R

−2
i

≤ F. (5.26)

This can be formulated as the optimization problem

minizie F

subject to 2 +

n∑
i=2

(R−1
i +R−2

i)− F (2 + 2

n∑
i=2

R−2
i) ≤ 0

F ≥ 1.

Two comments about the constraints of the optimization prob-
lem follow. The first constraint,

2 +

n∑
i=2

(R−1
i +R−2

i)− F (2 + 2

n∑
i=2

R−2
i) ≤ 0,

follows from Equation (5.26), and means that the performance
ratio ADT(X(t))/ADT∗ must be smaller than a certain factor
F for all n and Ri. The second constraint means, that the
factor F must be greater than 1, because otherwise the equal-
waiting trajectory would have a lower performance than the
lower bound.

This optimization problem can be solved with the method of
Lagrange multipliers. The Lagrange function for this problem
is

L = F + λ(2 +

n∑
i=2

(R−1
i +R−2

i)− F (2 + 2

n∑
i=2

R−2
i)),

52 5 Proof of Theorem 3.0.1

with the partial derivatives

∂L

∂Ri
= λ(−R−2

i − 2R−3
i + 4FR−3

i) = 0, (5.27)

∂L

∂λ
= 2− 2F +

n∑
i=2

R−1
i + (1− 2F)

n∑
i=2

R−2
i = 0 (5.28)

Solving Equation (5.27) for Ri leads to

Ri = 4F − 2.

Inserting this result into (5.28) and simple manipulation yields,

0 = 2− 2F +

n∑
i=2

(4F − 2)−1 + (1− 2F)

n∑
i=2

(4F − 2)−2

= 2− 2F + (n− 1)(4F − 2)−1 + (1− 2F)(n− 1)(4F − 2)−2

= (2− 2F)(4F − 2)2 + (n− 1)(4F − 2) + (1− 2F)(n− 1)

= −32F 3 + 64F 2 + F (2n− 42) + 9− n. (5.29)

By solving Equation (5.29) subject to F, we obtain the three
solutions

F1 =
1

2
,

F2 =
3 +
√
n

4
,

F3 =
3−√n

4
.

Since n ≥ 1, F1 ≤ 1 and F3 ≤ 1. This leads to the unique
solution

F =
3 +
√
n

4
.

This result concludes the statement.

With the proof Lemma 5.2.2, 5.2.3 and 5.2.4 the lower bound per-
formance, the equal-waiting trajectory performance and the constant
factor approximation of the eqaul-waiting trajectory are proofed.
This concludes the proof of Theorem 3.0.1.

Chapter 6

Partial homogenous field of
view

In this chapter we study a special case. For this special case the
lengths of the clusters are restricted by dmax/dmin < 2, but the num-
ber of cameras can be arbitrary. This restriction means, that every
camera can just move once back and forth between the boundaries
within one period. Since the cluster lengths are not arbitrary, we
call this special case partial homogenous field of view. For the par-
tial homogenous field of view case we state a parameterized model
and cost function, which can be solved with numerical optimization
tools for arbitrarily n. The model and the cost function can be devel-
oped, because of the cluster length restriction all possible movements
of the cameras are known, and therefore the trajectory can be ex-
pressed with a known number of parameters. On the other hand, for
arbitrary cluster lengths we do not know how often the cameras will
sweep back and forth between the cluster extremes within a period,
and therefore we cannot create such a model. In the following subsec-
tion we first explain the model for the cost function and in the second
subsection we state and derive the parameterized cost function.

53

54 6 Partial homogenous field of view

6.1 Parameterized model
The model for the partial homogenous field of view for 4 cameras is
illustrated in Fig. 6.1. Since the period length is given by T = 2dmax
the movement of the camera with dmax, in our model camera 1, is
given by moving back and forth with maximum speed between the
boundaries. The movement of camera 2 during one period can be
described with 4 catch-points, because it is known from Lemma 5.2.1
that 3 consecutive catch-points on one boundary are never optimal
. Starting from a catch-point at the left boundary at time t1,2 this
is then two right catch-points at time t2,3 and t2,5 and then a left
catch-point at time t2,7. The trajectory between the catch-points is
known from Lemma 5.1.3. The movement of the camera 3 and all
following cameras can then be described by 5 catch-points, as it is
illustrated in the model. The trajectory of each camera can then be
parameterized, with parameters that describe the distance between
the catch-points. The movement of camera 1 is fixed and therefore
no parameter is needed. For each of the other cameras 3 parameters
are needed for a complete description of the trajectory. Observe that
the distance between time t3,7 and t3,9 is the same as the distance
between t2,3 and t2,5 and therefore camera 4 needs only 3 parameters
for a complete description of the trajectory.
Notice that the model in Fig 6.1 assumes that the camera with

the largest cluster is at an end of the open path. If the camera with
di = dmax would not be at one of the extremes of the path, the model
can still be used to calculate the performance, because the movement
of the camera with di = dmax is a priori fix and the movements of the
cameras left and right of this camera are independent of each other.
Therefore, the calculation can be done independently for the right
and left side.
In the following subsection we derive the parameterized cost func-

tion for this model.

6.2 Cost function 55

t2,1

t2,2 t2,3 t2,4 t2,5 t2,6

t2,7

t3,1 t3,2
t3,3

t3,5 t3,6

t3,7 t3,8 t3,9

d1

d2

d3

l2,1 l2,2 l2,3

l3,3l3,2l3,1

T = 2dmax

d4

t3,4

l2,2

Figure 6.1: Partial homogenous field of view model. The model of
4 cameras with a partial homogenous field of view, that
means dmax/dmin < 2, is illustrated. The color boxes
illustrate a period for each cluster, and the black dots the
catch-points of the cameras.

6.2 Cost function

The following Lemma states the performance function for the partial
homogenous field of view case.

Lemma 6.2.1 (Partial homogenous field of view performance). Let
p = {l2,1, l2,2, l2,3, l3,1, . . . , ln,1, ln,2, ln,3} be the parameterized descrip-
tion of the team trajectory X(t) as in Fig. 6.1 for n cameras with
cluster lengths d1, . . . , dn, where d1 = maxi di and d1/di < 2 for all

56 6 Partial homogenous field of view

i. Then the average detection can be calculated as

ADT(p) =
1

LT

(
2d3

1 +

n∑
i=2

[
2d3
i + 3d2

i (d1 − di)−
1

4
(li,1l

2
i−1,2 + li,3l

2
i,2)

+ di

(
1

2
(l2i,1 + l2i,3) +

1

4
(l2i,2 + l2i−1,2) + li,1li−1,2 + li,2li,3

)])
,

(6.1)

where L =
∑n
i=1 di, T = 2 max{d1, . . . , dn}, and l1,2 = 0.

Proof. From Lemma 5.1.1 Equation (5.1) it is known that the per-
formance of all clusters equals the sum of the single clusters, i.e

ADT(p) =
1

LT
(

n∑
i=1

ADTi(p))

=
1

LT
(ADT1(p) + ADT2(p) +

n∑
i=3

ADTi(p)). (6.2)

We show now that

ADT1(p) = 2d3
1, (6.3)

ADT2(p) = 2d3
2 + 3d2

2 (d1 − d2)− 1

4
l2,3l

2
2,2 (6.4)

+ d2

(
1

2
(l22,1 + l22,3) +

1

4
l22,2 + l2,2l2,3

)
,

ADTi(p) = 2d3
i + 3d2

i (d1 − di)−
1

4
(li,1l

2
i−1,2 + li,3l

2
i,2) (6.5)

+ di

(
1

2
(l2i,1 + l2i,3) +

1

4
(l2i,2 + l2i−1,2) + li,1li−1,2 + li,2li,3

)
,

for i = 3, . . . , n, which leads with Equation (6.2) to the statement.
The cluster performances of Equation (6.3), (6.4), and (6.5) can be
calculated with the performance Equation (5.5) from the proof of
Lemma 5.2.1, which is

ADTi(p) =

j̄∑
j=1

∫ ti,j+1

ti,j

xi,j(t)(θ
l
i,j − θri,j) + di(θ

r
i,j − t)dt.

6.2 Cost function 57

The clusters i = 3, . . . , n have the most general trajectory. The tra-
jectory of the other two clusters, cluster 1 and 2 can be expressed as a
special case of this parameterized trajectory. For cluster 1 that is set-
ting l1,1 = l1,2 = l1,3 = l0,2 = 0, and for cluster 2 it is setting l1,2 = 0.
Therefore, we calculate the performance of a cluster i = 3, . . . , n and
then derive the performances of cluster 1 and 2.
To evaluae Equation (6.2) for a cluster i = 3, . . . , n, the cluster is

split up into j̄ = 8 intervals, and it is evaluate with the following
variables:

ti,1 = 0, ti,2 = ti,1 + li,1, ti,3 = ti,2 + di,

ti,4 = ti,3 +
1

2
li,2, ti,5 = ti,4 +

1

2
li,2, ti,6 = ti,5 + li,3,

ti,7 = ti,6 + di, ti,8 = ti,7 +
1

2
li−1,2, ti,9 = ti,8 +

1

2
li−1,2,

and

xi,1 = 0, xi,2 = t− li,1,
xi,3 = −t+ li,1 + 2di, xi,4 = t− li,1 − li,2,
xi,5 = di,

xi,6 = −t+ li,1 + li,2 + li,3 + 2di,

xi,7 = t− li,1 − li,2 − li,3 − 2di,

xi,8 = −t+ li,1 + li,2 + li,3 + li,4 + 2di,

and

θl2,j = ti,7, for j = 1, . . . , 6,

θl2,j = ti,9, for j = 7, 8,

and

θl2,j = ti,3, for j = 1, 2,

θl2,j = ti,5, for j = 3, 4,

θl2,j = ti,9 + ti,3, for j = 5, . . . , 8.

58 6 Partial homogenous field of view

Evaluating Equation (5.5) with these parameters yields

ADTi(p) = 2d3
i + 3d2

i (d1 − di)−
1

4
(li,1l

2
i−1,2 + li,3l

2
i,2)

+ di

(
1

2
(l2i,1 + l2i,3) +

1

4
(l2i,2 + l2i−1,2) + li,1li−1,2 + li,2li,3

)
,

which is equivalent to Equation (6.5). To obtain the performance
of cluster i = 2 we set l1,2 = 0. This parameter is zero, because
the period of the trajectory ends at time ti,7 and the movement to
time ti,8 and ti,9, which is described by the parameter li−1,2, does
not exist. Inserting i = 2 and l1,2 = 0 in Equation (6.5) leads to

ADT2(p) = 2d3
2 + 3d2

2 (d1 − d2)− 1

4
l2,1l

2
1,2

+ d2

(
1

2
(l22,1 + l22,3) +

1

4
l22,2 + l2,2l2,3

)
,

which is equivalent to (6.4). The trajectory of cluster i = 1 can be
described with the parameters l1,1 = l1,2 = l1,3 = l0,2 = 0 (cf. Fig.
6.1). Inserting these values into Equation (6.5) yields

ADT1(p) = 2d3
1,

which is equivalent to Equation (6.3). Hence, the statement is true.

By minimizing Equation (6.1) from Lemma 6.2.1 subject to the
parameters p = {l2,1, l2,2, l2,3, l3,1, . . . , ln,1, ln,2, ln,3} it is possible to
obtain the trajectory with the optimal average detection time. Be-
cause of the terms −1/4li,1l

2
i−1,2 and dil2i−1,2 the performance of two

neighboring clusters are coupled. This means, the clusters cannot
be optimized on their own. Since we could not find a closed form
solution for the case n ≥ 4, we cannot provide a general analytical
solution for this optimization problem. However, this optimization
problem should be solvable with numerical methods, but since we
did not investigate this, further research is needed in that direction.
Moreover, since the equal-waiting trajectory for this special case is
within factor 3/2 of the optimum, the precise solution is not very
interesting.

Chapter 7

Conclusion

7.1 Summary

In this work we address the problem of surveilling an one dimensional
open path by means of a team of autonomous cameras against smart
and moving intruders. The smart intruders have full knowledge about
the cameras movement and they plan their movement such that they
are undetected as long as possible. As performance function for this
problem we define and adopt two criteria, the worst-case detection
time and the average detection time criterium. The worst-case de-
tection time measures how long an intruder can hide in the worst
case, and the average detection time criterium measures how long
the average intruder remains undetected.
For the general case, that is an arbitrary number of cameras and

arbitrary cluster lengths, we propose the equal-waiting trajectory as
a solution. This trajectory has an optimal worst-case detection time
and is within a constant factor of the optimum regarding the average
detection time criterium. For the computation of the equal-waiting
trajectory only local information and the longest cluster length is
necessary. Additionally, we design a distributed feedback algorithm,
which steers the cameras towards the equal-waiting trajectory. This
algorithm is very easy to implement and only neighboring cameras
need to communicate if they reach the extreme of their observed clus-
ter. In a simulation we show, that the trajectory solution of the pro-

59

60 7 Conclusion

posed algorithm converges to the equal-waiting trajectory and that
the algorithm is robust against cameras failures and motion uncer-
tainties.
For a special case with length restrictions for the observed clusters,

we present a parameterized trajectory and cost function that exactly
describes the performance of the average detection time. The mini-
mization of this cost function with respect to the parameters, leads
to the optimal trajectory. However, we cannot propose a closed form
for this optimization problem, but it can be solved numerically.

7.2 Outlook
A variety of unaddressed problems about this topic remains. First,
we assumed that all cameras have the same speed. It would be inter-
esting to investigate the case that the cameras have different speed.
Second, it would be interesting to work on the optimal cluster par-
titioning of the cameras. In this work we assumed that the clusters
of the cameras are non overlapping, therefore every camera has to
observe the whole cluster. If the clusters are overlapping, there must
be an optimal partitioning of these clusters, with respect to the av-
erage detection time criteria. Third, the synchronization problem of
cameras would be very interesting for planar cases. In the first step
it could be extended to tree graphs, which could be interpreted as
corridors of a building, and in a further step to general graphs.

Chapter 8

Appendix

8.1 Method of Lagrange multipliers
The method of Lagrange multipliers is a mathematical optimization
tool, which yields a necessary condition for a maxima or minima of
a differentiable function subject to equality constraints [10]. Such an
optimization problem can be written as

minizie f(x)

subject to g(x) = c,

where x ∈ Rn, f(x) and g(x) are differentiable functions Rn → R
and c is a constant.
The idea of the Lagrange method is that at an extrema, the counter

lines of f(x) and g(x) must be tangential. Since the gradient of a
function is perpendicular to the contour lines, the functions f(x) and
g(x) are parallel if and only if the gradients of f(x) and g(x) are
parallel. This yields the necessary condition for an extrema

∇f(x) = −λ∇g(x),

where ∇f(x) = grad(f(x)), and λ is a scalar, which is needed because
the gradients may be parallel but still have different lengths. To
combine these two conditions, g(x) = c and the gradients of f(x)
and g(x) are parallel, into one equation, we introduce the Lagrange

61

62 8 Appendix

function

L(x, λ) = f(x)− λ(g(x)− c)

and solve for

∇x,λL(x, λ) = 0.

Notice, the partial derivate of L with respect to λ, that is∇λL(x, λ) =
0, implies g(x) = c, and therefore it is ensured that the constraint is
always satisfied.

Bibliography

[1] J. Clark and R. Fierro, “Mobile robotic sensors for perimeter
detection and tracking,” ISA Transactions, vol. 46, no. 1, pp.
3–13, 2007.

[2] D. B. Kingston, R. W. Beard, and R. S. Holt, “Decentralized
perimeter surveillance using a team of UAVs,” IEEE Transac-
tions on Robotics, vol. 24, no. 6, pp. 1394–1404, 2008.

[3] S. Susca, S. Martínez, and F. Bullo, “Monitoring environmental
boundaries with a robotic sensor network,” IEEE Transactions
on Control Systems Technology, vol. 16, no. 2, pp. 288–296, 2008.

[4] Y. Elmaliach, A. Shiloni, and G. A. Kaminka, “A realistic model
of frequency-based multi-robot polyline patrolling,” in Inter-
national Conference on Autonomous Agents, Estoril, Portugal,
May 2008, pp. 63–70.

[5] A. Machado, G. Ramalho, J. D. Zucker, and A. Drogoul, “Multi-
agent patrolling: An empirical analysis of alternative architec-
tures,” in Multi-Agent-Based Simulation II, ser. Lecture Notes
in Computer Science. Springer, 2003, pp. 155–170.

[6] Y. Chevaleyre, “Theoretical analysis of the multi-agent patrolling
problem,” in IEEE/WIC/ACM Int. Conf. on Intelligent Agent
Technology, Beijing, China, Sept. 2004, pp. 302–308.

[7] F. Pasqualetti, A. Franchi, and F. Bullo, “On cooperative pa-
trolling: Optimal trajectories, complexity analysis and approxi-
mation algorithms,” IEEE Transactions on Robotics, Jan. 2011,
submitted.

63

64 Bibliography

[8] M. Baseggio, A. Cenedese, P. Merlo, M. Pozzi, and L. Schenato,
“Distributed perimeter patrolling and tracking for camera net-
works,” in IEEE Conf. on Decision and Control, Atlanta, GA,
USA, 2010, pp. 2093–2098.

[9] R. Carli, A. Cenedese, and L. Schenato, “Distributed partitioning
strategies for perimeter patrolling,” in American Control Con-
ference, San Francisco, CA, USA, 2011, pp. 4026–4031.

[10] S. Boyd and L. Vandenberghe, Convex Optimization. Cam-
bridge University Press, 2004.

