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CHAPTER 1

INTRODUCTION

1.1 Background

The deployment of a large number of autonomous vehiclescisrbimg possible with the advances in devel-
opment of distributed and decentralized networks as weallectromechanical sensors. The advancements
in the field of electromechanical sensors have allowed a Bumibsensors to become smaller and smaller
in dimensions, without affecting the quality of the readiktaving access to these miniature sensors makes
it possible to have many sensors on one vehicle, giving iatikty to perform different tasks. In pursuit of
having a large number of autonomous vehicles, which caropartlifferent tasks, many interesting prob-
lems have been encountered. Some of these problems intlutdate not limited to, the following: data
fusion; sensor fusion methods, which in turn leads to theivabdn of investigating implementations of
scalable decentralized estimation; and control algosthm

The data fusion problem deals with the ability to combineiinfation or knowledge from different
sources in order to maximize the usefulness of the infonatirhis might be accomplished by the esti-
mation of specific states of a process or environments, gfirdlne combination of data from different or
multiple sensors. Sometimes data fusion algorithms arigmies as a central process, in which information
from all the sensors is sent to one location. As the numbarfofmation sources increases, the processing
and bandwidth required by the central process may increaseatically. This in turn will create a bottle-
neck in pursuit of creating large, centralized data fusibhis may bring the system to fail, which in turn
means the system fails as a whole [1].

A method to estimate a desired number of unknown parametérollect information/data via sensors

called sensor fusion methods. These sensors may be aediflecations within an environment and/or in



context of this work, on board an autonomous vehicle. Onealtia has been collected, it is crucial to be
able to process this information in some desired form. Araetitze solution for processing the data is via
an implementation of a filter proposed by Mutambara. Thistgm is attractive because it is a scalable
decentralized estimation and control algorithm. Mutaralsaapproach deals with a lot of concepts, each
of which will be explained individually in the followingScalableimplies that not all available information
is needed in order to obtain a result. A decentralized nétviswsually viewed with its counter part,
centralized network. A centralized network is when all tbbected information or data is processed by one
source. A decentralized network, on the other hand, is wiendllected information or data is processed by
multiple process. There are advantages and disadvant@aglesth. One major advantage in the centralized
case is that the solution obtained is optimal because it bessa to all the information at once. Hence,
one major disadvantage is that, when a significant amoumifafration has to be processed, the potential
of creating a bottleneck is high, making the decentralizetivark attractive. Since the information to be

processed is done by multiple process, a bottleneck candideal/

1.2 Motivation

In recent years, there has been a great motivation to stutgos@etworks. For example, detection and
localization of vapor-emitting sources [2], unmanned &hieles [1], and the target tracking problem [3]
have been studied. Some of these applications have beevatedtiby the military, others by search and
rescue missions, and yet others for exploratory missioake, for example, one of the National Aeronautics
and Space Administration (NASA) missions to explore marstdad of sending human beings, NASA sent
unmanned vehicles like the one in Figure 1.1. According t&SKAthe average distance between the Earth
and Mars is approximately 78 300 000 km, about half the degtdrom the Earth to the Sun. Compared
to the Moon, 380 000 km away, Mars is about 200 times the distétom Earth, which makes it difficult
to send humans, hence leaving the option of sending unmareteldes to explore Mars. It is important
that the unmanned vehicles sent on the mission have théyatuliect and process data. These unmanned
robots are designed exactly for that, as shown in Figurewlitth,all the senors on board the robot. Yet, the
unmanned robot is still limited. The unmanned robots, séite not achieved their highest potenial in terms

of sensing abilities; therefore, it is important to con@ratudying sensor networks.
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Figure 1.1 The Mars Rover (Courtesy of NASA)

1.3 Objective, Approach, and Contribution

Our objective is to solve practical problems involving aglanumber of autonomous mobile robots. Fig-
ure 1.2 shows a target tracking problem with six mobile repeblved by the algorithms described in this
paper. The proposed technique to best estimate the loaatimmoving point in a two-dimensional space
consists of placing the autonomous vehicles in an optimadtion. In order to process the information
collected by each robot, Mutambara'’s decentralized exgmaformation filter, which comes from the ex-
tended information filter (EIF), is used. The EIF is an algétally modified form of the well known

extended Kalman filter used to process information/data.
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CHAPTER 2

DEVELOPMENT OF MOTION
PLANNING ALGORITHM

2.1 Motivation

In finding a solution to the problem of target tracking from altisensor network, it seems clear that the
deployment of the agents should maximize the probabilitgetéction of the target to be tracked or provide
more accurate estimations of the point source to be lochli@m the other hand, a solution to these prob-
lems should be built on motion control algorithms for thewmk and data fusion techniques which allow

decentralized implementations.

2.2 Fisher Information Matrix

We now derive the Fisher information matrix for the followisituations:

() when the source is a (static) non-random parameter,

(i) when the source is a dynamic random parameter undenthence of white noise.

In both cases the measurements are also perturbed by whige no

2.2.1 The source/target as a nonrandom parameter

Letp; € R*,1 < 35 < N, denote the position oV sensors moving on an aréaC R" and letgy € @ be

the unknown position of a source or target to be estimated égns of the measurements

zi(q) = fllg —pjll) +w;, 1<j<N, qeQ. (2.1)

5



Here we assume that; are i.i.d. asw; ~ N'(0,0%),1 < j < N, and the functiory is defined according to

the particular sensors’ specifications as

LRf+Cl’ Ry <,

wherec, = ¢y — R) for some0 < Ry < Ry ands € NU {—1}.
In other words, the stacked vector of measurements at arcémtdant is a random vector normally

distributed as
7 flg —p1ll)

ZN fllg —pnl)

whereP = ¢%1 is the covariance matrix defined By, the N x N identity matrix. From now on, we will
use the shorthand notatich= (z1,...,zn)", Z(q) = (f(llg — p1ll),---, f(lg — px))?E.
TheFisher information matriXFIM) J is defined for nonrandom parameters as the following exdecte
value with respect to the conditional probability disttiba p(Z|q):
J £ E[(VelogA(q)) - (Vglog Ag)]

q=qo0 ’

where g is the true value of the source location or an estimate oVit, = [8%, %}T, andA(q) =

p(z1,...,2n|q) is thelikelihood functionassumed to be
Ag) = —— exp<1(z 2P (7 - Z))
V= Vardei P 2 '

In order to compute/, observe that

VilogAlg) = 3 V,[(Z ~ 2 P (7~ 2)] = (V,2) P2 - 7).



Then,

J=EB[(V,2)"'P N2~ 2))-(V42)" P2~ 2)) )
— B[V 2)" P2 - 2)(Z ~ 2)" P (VD)4
— (V28 P B2 - 2)(% - 2)"1P N (Vo Z)q,

= (qu);ropil(qu)qo-

. 1 _ _ ) o
In the particular cas® = 021y, we haveJ = —Q(VqZ);F(](VqZ)qO. The matrixG = (V,2),, is usually
g

called thesensitivity matrixassociated with the set of measurements.

Taking into account that the position of the source is coragagn directions, we leg = (¢',¢%,...,¢")".
ThenG € RV*" is defined as follows:
_ 9f; a , ,
7" lg=qo
or in matrix format
of1 of:
dqt oq™
G = :
oy . oy
99 9" 1 g=qo
The Fisher information matri¥ can be expressed as
N (O1fi)? oo (01fi)(Onfi)
1 1 . . .
i=1
Onf) @1 fi) o (Oufi)?
of; 1<i<N,1<j<n.

where we denot®; f; = 7.5 =g’

2.2.2 The source/target as a (dynamic) random parameter

Suppose a random paramegds jointly Gaussian with the stacked vector of measuremgnfEhat is,



where

z1 Hy, wy,
P P
qq qZ
P = ,

Z=Hq+w, Z=1|:|, H=|:|, w=/|:],
Pz, Pzz

ZN Hy WN

and where we asume thatis invertible, E[w] = 0, E[qw’] = 0 and E[ww!] = R.

Then, this next result is obtained from [4], we have that

Py =El(g—a)(qg— "],
Pyz = E[(q — q)(H(q — q) +“’)T} = quHTa

Pyy=E[(Z—-2)(Z - Z)")=E[(H(q - q) +w)(H(q - q) +w)"] = HP,H" + R,

where the expected value is taken with respect to the priityadiistribution p(q, 7).

The minimimum mean square estimator is given by
§M"MF =G = Blg|Z] = g+ Py Py H (g - )
and the (conditional) covariance of the error is given by
Pyjz = Ellg — @)(a — "1Z) = Py — PyzPy Py
On the other hand, the FIM for random parametdis,is defined as the expected value
Jr = —E[V,V logplq, Z)] = E[V,logp(g, Z)(V,4log p(q, £)) Tg=g,

wheregqy is the true value of the source location or an estimate ofdtthe expected value is taken with

respect te(q, Z). Under the above assumption, we have that

_ 1 71 AT _ ANTgTip—1 (q_(j)
p(q,Z)—mexp s5la—a).(¢—q) H']P a0



If we denote by

T, Ty
pl_p_|'u q 7
Tyz Tzz
then
1 N _ N N
Vi logplg, Z) = —5Va lla- @) ' Tylg—a)+ (Z — H)) " Tzq(a — 9)
+q—q) TyzH(g—q) + (q—q) " H Tz2H(q — )] -
In this way,

Ir=Thq = (Pyq — PqZPZiZlPZq)i1 = (Pth\Z)il‘

It is possible to derive a relationship between the malfixwe have just obtained, and the FIM for
nonrandom parametergy i, of Section 2.2.1. We reproduce it here for the sake of corapéss.

Let W denoteWW = quPZ} . Then we can Writé?qq‘z = Pyy— W P;,WT. After some manipulations,

W =P, H" (HPyH' + R) ' <= W(HP,H" +R)=P,H <=

WR= Py H' ~WHP,H" = (I -WH)P,y,H" <= W=(I-WH)P,H'R".
On the other hand,

I~ WH =[Py~ WHPP,,' =[Py — WPz P, HP,]P,,'

= [Pyq — WPZZWT}P!ITII - qq\Zpil (2.3)

aq >

which in particular implies

W =P, ,H R'. (2.9)

ql

Now, using the definition ol we obtain

Pz = Pyg = WPz ,WT = Py —2W Pz, W + WPy W7
=Py — P H' W' ~WHP,, + WHP,,H"W + WRWT"

=[I - WH|P,[I -WH|" + WRWT.



Now, using Equations (2.3) and (2.4),
Pz = PQQ\ZPQZIPQQ\Z + qu\ZHTRilHqu\Z ‘
Finally, pre- and postmultiplying this equation 153{;‘17 we obtain the expression

-1 _ p-1 T p-1
Py =Py +H"RH,

that is,
Jr = Pl;qI + JNRr.-
2.2.2.1 Dynamic random target and Kalman filters

For a dynamic parameter that is modeled as

qr = Frqr1 + v,

for which we take measurements
Zy = Hyq + wy,
and such tha#;, and Z;, are jointly Gaussian distributed, and independent fok all 1, we can say:

(i) The FIM is the sum of the information matrices obtaineddach step independently:
k k

k
.]R(k) = Z JR,l = ZPq;‘]Z(l)—i—HlTRf]HZ = Pq;‘]z(l)‘i‘JNR,l = Pq;‘]z(l)—l—JNR(k) .
1=1 =1 =1 =1

(i) What we are going to do in the following is maximize thédrmation of the dynamic filter

by maximizing the information of v ; VI > 1.

2.3 Optimal Sensor Placement

The FIM defines theCramer-Rao lower boundCRLB), J~! = CRLB, which is known to bound the

covariance of the error

10



Jil < E[(d(zla ,Zn) - qO)(Cj(Zlv"'vzn) - qO)TL

when the estimataj is unbiased

For efficient estimators, this inequality becomes an etyualihen the minimization of the covariance

of the error with respect to the sensors’ positions is edgmiao the maximization of the FIM. Here, the

maximization of a matrix is understood as the maximizatibnle J. In the following, we compute its

particular value fom = 2, 3 for the estimation of NONRANDOM parameters.

2.3.1 Two-dimensional configuration space

The determinant of is found as follows:

o? det J = [zﬁv](al.fn?} [z;-v](azfj)?] - [zi(alfq;)(aafi)}
= (00 f:)*(0fi)* + D (01£1)° (1))
i i#]
B [Zi(alfi)Q(azfi)z + Zi#(&fi)(82.f¢)(81.fj)(82.fj)}

(O £:)2 (D2 ;)% — (O £:) (D2 fi) (D fj)(aij)}

i£]
= Z (01£i)(afy)* + (alfj)Q(ani)Q} - 2Z(alfi)(82fi)(81fj)(82fj)
i<j - 1<j

[ 2
- Z 2] f282f7 - 82f28]f7:| .

The terms in the last summand can be identified as

2
3 [(vi < v;) - (0,0, 1@ = 5 vi xvill? = 3 Ival?llvy 12 sin®

i<j i<j i<j

where we sev; = (01 f;,02fi,0), vj = (01 f;,0.f;,0). The angley;; is the one between the vectors

andv;. The interpretation of |v; x v;|| is the area of the parallelogram formed-wyandv;.

1This is true for the type of MMS estimators we work with.

11



In this way, we have obtained the general expression

1 .
det J = o 2; Vil [l v sin® e . (2.6)
2

Let us develop further this expression tatt J as a function depending on the particular modelfrof
our sensors. We have:

of, aorllpi —allf > Ror< llpi — aoll < Ry
o fi= BT =

l9=q0 0, otherwise

[Nie

0 3 0
8—q1|lpi - Q||‘q:q0 = g [(p} —q") + (p} - QQ)Q}

p
2

‘qftk)
_?7

[(p} —q0)’ + (p} - qg)Q} 2(pi — a0) = —Boi — %) [(p} —q0)* + (p} - qg)Q}

And analogously,

0
a—qgnpz‘ - Q||€,:q0 = B} — q5) [(;021 —q$)? + (p? - q%)Q}

Therefore,

(D1llpi = allg=g,)* + @allpi = allg=y,)* = B} = )" ? [(p} —ad)?+ (p? - q(Q))Q}
= B°llpi — qoll****" = B2llpi — qol V.

In this way, we can write

1 _ 1)
det = 3 Bp = ol ™y - a0 sin? ay

Ro < llpi — aoll < Ra,
Ro < |lp; — qoll < Ry

whereq;; is the angle between the vectors

wi = Blpi — @’ Vi — ), w;=Blp; — wl**V(p; — q),

12



which are proportional tp; — ¢o andp; — qo.

2.3.1.1 Analysis oddet J

Fors =1, Ry = 0, R, = diam(, we analyse the maxima of the particular expressioteof/:

1 .
det .J = 252 Z sin? Qjj -
2%

Let us denote by; the angle of the vectqs; — go with the horizontal. Theny;; = 6; — 6;, Vi, 5, and

we can write

f(61,6,....05) =40 det J =2 sin®(6; — 0). (2.7)
i,j

2.3.1.2 Critical points

Any critical point of f satisfies
iZsin?(a—a-):o = ) sin[2(6; — 6;)] =0 k=1,...,n
89k -~ 7 7 : k ) 3 syl
which is equivalent to

Z sin[2(6y — 6;)] = sin 26, Z cos 260; — cos 26y, Z sin 26;

i i i
= | (cos 26, sin 26y, 0) x Z (cos26;,sin20;,0)| -e3 =0, Vk.
i
This implies) . (cos 26;,sin 26;,0) = 0, or the vectorgcos 20, sin 26;,) are aligned. That is, a critical

point satisfies either
N N

2008297; =0 or Zsin29¢ =0.

1=1 1=1

Or the vectorg (cos 6, sin 6 ) } ~_, are perpendicular or coincident among them.

13



2.3.1.3 Tight bounds forf

Leta;; denotea;; = |0; — ;| = a;;. For anyi, j, k we have

sin a;y = (sin((6; — 0;) + (6; — 0x)))* = (sin(6; — ;) cos(8; — ) + cos(6; — 0;) sin(6; — 6;))*

1
= sin’ a;j cos” ajj, + cos” a;; sin” ajp, + 2 sin[2(0; — 6;)]sin[2(0; — 6)] .
Therefore, the critical points gf satisfy the relation
Z sin® a;, = sin? a;j (Z cos? ajk> + cos? ajj <Z sin? ajk) , Vi, j.
k k k

In particular, for anyi, j such thatin? a;; # 0, we have

Z sin? aik—l—z sin? ajp = sin’ ajj (Z cos? ajk + Z cos? aik) +cos? ajj (Z sin’ ajp + Z sin? a¢k> .
k k k k k k
That is, denotingX = 3, sin? a;; + Y, sin® aj;, we have obtained the relation
X = (2N - X)sin? a;; + X cos® ajj

which impliesX = N whensin? a;; # 0.
From here, it is clear that if we can establish a biject®n {1,...,N} — {1,..., N}, such that

sin” a;5(;) # 0, Vi, then we have

2§:sin2 a;j = ZsinQ a1 + Zsin2a3(1)j+
i.j % %
+ ZsinQ az;j + Zsin2 ap(2); + -+ Zsin2 aN;j =+ Zsin2 ap(N); = ]V2 .
k k k k

Consider all possible map¥ : {1,...,N} — {1,..., N} such thakin? aim(y # 0. From this finite
number of maps there exists ofefor which the subset of indices= {i,,...,is,}, whereB is bijective is
maximal. In other wordsl. is the largest cardinal of a subset of indicewhere a mapgf can be bijective.

After a possible reordering of indices, we can assume{hat.. i} = {1,...,L}. Let us denote

by B :{1,...,L} — {B(1),...,B(L)} the restriction ofB which is a bijection. Then, because of the

14



symmetry ofsin? a;;, we can assume th&B(1),...,B(L)} = {1,..., L}.
Supposd ¢ {B(1),...,B(L)}. Then,

() If B(1) £ {1,..., L}, thenwe can define aneW such thatVl;; _;, = BandM(B(1)) =
1. Since we can assure thah® ap(1y; = sin® aq (1), this contradicts the assumption of

the largest cardinality..

(i) If B(1) € {1,..., L}, then we can define a nelsuch thaB ;13 151y} = Bj{1,...03{BO)}
andB(B(1)) = 1.

Consider now a particular index¢ {1,...,L}. We have thatin?a;; = 0 forall j ¢ {1,...,L}.
Otherwise, we can extend to a mapM such thatM (i) = 3, sin® a;; # 0, which is a contradiction with

the maximality condition. MoreoveY/ € {1,..., L} such thasin® a; # 0, So it must be that
sin? a;ip-1() =0, sin® a;ipq) =0.

Otherwise, we can define new maps as:

(i)
My, oyqs-ray =B, MB'1) =i, M@ =1,

(i)
Mg, oy =B, M()=i, M(i)=B(),

both of which violate the condition of maximality @f.

This implies that

L
2 Z sin’ ajp = 2 Z sin? i = (sin2 a1 + sin? aiB(l)) + -+ (sim2 air, + sin? aiB(L)) <L<N.
k k=1

Finally, this allows us to conclude that at a critical point,

f(61,...,0n) = (Z sin a1 + ZsinQ ap(y;) + -+ (Zsim2 ar; + Zsin2 ap(r);)

k k k k
+2) sin’agyq); +o-+2) sin’ay; < LN+ (N~ L)N = N2,
k k

15



In particular, this implies thaf(6;,...,60x) < N? for any angle configuration.

2.3.1.4 Some particular global maxima

e Defined, = (k—1),1 <k < N.Then,(01,...,0y)is a maximum forf.

First, we see that,, . ..,0y) is a critical point. Take:, = e%, which satisfiesCéV =1.

In particular, since;; # 1, it must bep(xy) = 0, where

— g N-1 4 N2

+x +--t+r+1, plr)(z—1) =z — 1.

p(z)

Therefore,

fiQTr(Nfl) ,,-27r(N72)

g 4@ N 4t EN41=0,

and this is equivalent to

ZCOSQ— -1)) Zs1n2— —-1)) =0,

which implies that 6, .. ., 0 ) is a critical point.
Secondly, it is possible to define a bijection on our set ofcesl so thatB(i) = i + 1,
1 <i <N -1, B(N) = 0with sin” a;p;) = sin*(§) # 0, N > 2. By the previous

reasoningf (61, ...,0x) = N2, and our configuration is a global maximum.

e Following the same arguments as above, it is easy to seékthat%(k -1),1<k<N,
for somel € Z is also a critical point and a maximum. In particular, we htheg 0, =
Zr(k —1),1 < k < N, which divides the circle in equal anglés, and is a maximum for

N > 3.

e Consider an even number of sensdfs Then, the configuratiofly,.; = 5 andfy, = 0
defines a maximum, too. It is easy to see that it is criticabbee(cos 26,,sin 26;) are
aligned and we can define a bijectiéh(2k) = 2k + 1,1 < k < N/2, B(N) = 1, such

thatsin2 (I,”;(l) = 1, vi.

e Finally, observe that because of the periodicityiofz and the symmetry ofin? z, given
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any maximum(6.,...,60x), the sef{ (61 + kim,...,0n + kn7) | k1,..., kn € Z}.

In view of the first item of the former list and the charactatian of the critical points of , we have the

following result:

Proposition 1 Givena € [0, 27), definefy, = §(k—1),1 <k < N. Then,(0y,...,0y) is acritical point

of fifand only ifa € {7l |0 <1 < N —1}.
Proof: Since$ (k — 1) are not all perpendicular or coincident, it must be
N (67 N «
kz_:lcos(QN(k —1)) =0, ;sin(Zﬁ(k —1) =0, —

N N
;cos(Qﬁ(k — 1)) +i ;sin@ﬁ(kz —1)=0 <

N
ev 1) N (N-D 4 e¥ +1=p(eN)=0.
k=1
But the only roots of(z) are{e¥' |1 =0,...,N — 1}. |

A consequence of this proposition is that the subdivisionOof] into equal angles does not give a
critical point of f restricted to that interval. Moreover, fé¥ sensors andr > « > (N — 1), we can

achieve the global maxima at a configuration where the argiesot equal.

2.3.2 Three-dimensional configuration space

Now, that the two-dimensional configuration space has bedarstood, itis interesting to analyze the three-
dimensional configuration space. This two-dimensionafigaration can be used in developing algorithms
for objects modeled in the two-dimensional space, for exayvehicles estimating the location of a target
in an unknown environment.

Understanding the three-dimensional configuration spadetéresting because it occurs naturally in
real world applications. For example, an interesting probto study in the three-dimensional space would
be the development of a decentralize three-dimensiondigeoation target estimation algorithm, using he-

licopters. Since it follows naturally from the two-dimemsal configuration problem, using vehicles.
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The determinant off in (2.2) forn = 3 can be computed to be

0% det J = (01 f1)*(02f;)* (B fk)* + D (D1 £:)(Da) (D) (D3£1) (D5 fi) (D1 fi)

2,7,k 1,7,k
+ ) (02£5)(01£) (01 £) (D3.£:) (D5 f) (Do fi)
2,7,k
= (00 ) (O3 £1) (Dof;)* (D3 fi) (01 fr) — D (Do fi) (D3 fx) (D5 £5) (Do f;) (D1 £:)?
.5,k 1,7,k
= > (Bf) (D1 £)(D1 1) (02£7)(9s1)?
.5,k

which, after regrouping terms, becomes

o det J = (01£:)(02f;)(Dafr) [(01:) (02 1) (D fr) + (O1fr)(O2fi)(Dsf;) + (O1f;)(D2fi)(Dsfi)

0,5,k

—(01fr)(02f;)(03fi) — (O1fi)(O2fe) (D f;) — (O1f;)(02fi)(O3fr)] -

This expression reduces to

o det S =Y (01 £:)(02 1) (Osfx) [(vi x v;) - V] ,

i’j7k
with

vié(a]fi782fiua3fi)a 1§ZSN

Note that this formula is analogous to that for the two-disienal configuration space. We can further

simplify the determinant as follows:

> (00f)(D2f5) (Oafr)[(vi X v5) - vi] =

0,5,k

= (01 f)(D27)(Da i) [(vi x v5) Vil + D> (00f) (023)(Dsfk) [(vi X v5) - V4]

i<j,k i>7,k
= > (3sf1) (91 f1)(D2f3) — (D1 £) (D2 fi)] (Vi X v5) - Vi,
i<jk

18



this gives

> @afi) (01 f)(D2f;) —(O0fi)(Dafi)] (vixvy)viet D (Dafr) [(911:)(Daf;) — (D1 ;) (02fi)] (Vixvy) Vi,

i<j<k 1<J,k<j

where the last term can be expressed as

D (Baf) [01f)(Daf5) — (D1 17)(2fi)] (Vi X vj) - vk =

1<j,k<j
> (D) [(D1£:)(D2f5) — (01 £))(D2fi)] (Vi X v;) - v+
k<i<j
> (D £1) (01 £:)(D2f5) = (D1 f3) (2 f)] (vi X vj) - Vi =
i<k<j
> (@3 f) (O F)Dafr) — (D1 1) (@af)] (vixvi) Vit Y (031;) [(D1:)(Dafr) — (D1 f1) (D2 fi)] (vixve)-v; .
i<j<k i<j<k
Now using that
(V]‘ X Vk) SV, = —(Vk X Vj) “V; = —(Vj X Vi) Vi = (Vi X Vj) * Vi
(Vi X Vk) "V = —(Vk X Vi) V= _(Vi X Vj) * Vi,

we get

o’ det J = Y ((9sf) [(01)(Daf)) — (0157)(Daf)]

i<j<k

+(0a.fi) [(O1£3)(O2fk) — (O1f) (02 f;)] + (9af5) [(O1.fx) (O2fi) — (O1fi) (D fi)]) (Vi x vj) - Vi,

which is equivalent to

1

. vl (v 2| ve || ? sin® e cos® Biji -

1
|(Vi X Vj) . Vk|2 = ;
i<j<k i<j<k

det J =

g

This expression is completely analogous to that of (2.6gmmow|(v; x v;) - vi| has the interpretation
of the volume generated by the vecters v;, andv;. Hereq;; is the angle betweew; andv;, andg;; . is

the angle between; x v; andvy,.
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As in the two-dimensional case, it is easy to see that

1
det J = G?ZJ(VZ x vj) - vil?.
25]7

The conjecture i hat for ann-dimensional configuration space,

1

2

det J = 3 E det(vi,, Vi, ..., Vi, )",
i1 <i9 <+ <in

Whel’evi = (alfi, ceey 8nfn)’ 1 < 7 <n.

In particular, for the3-D case, and our particular sensing functions, we have

1
det ] = o > B%lpi = qol*®Vlip; — a0l llpk — qol* ) sin® i cos® Bijir -
g
Ro < llpi —aoll < Ry
|:R0 < llp; —aoll < R1]
Ro < llpr — aoll < Ry

For 8 = 1, this reduces to

1
J— 1 2 . 2 ..
det J = 62 g sin” a;j cos” Bijik -
Ro < llpi — qoll < Ry
Ro < |lp; — qoll < Ry
Ro < llpr — aoll < Ry

2.3.2.1 Analysis oddet J

For the particular casgs= 1, Ry = 0, R; = 400, we have

fvi,...,vn) =60%det J = Z‘(Vz x vj) - vi|?.
i7j’k

In the following we analyze the critical points and globalxinaa of f.

2.3.2.2 Critical points

The functionf has been defined on points of the sphgteC R3. Thatis,f : S~ — R. Therefore, the

critical points satisfy
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Ewkf:O, Vwk eTkaQ =2 Z(Vi,Vj,Vk)(Vi XVj)'Wk :0, VWk J_Vk,
(]

where we have used the notation, v;, vi) = (vi X v;) - V.

In other words,

v{ Z(VZ X vji)(v; X vj)T wy =0, Vwy L vp.
iaj
If we denoteA = 37, . Ay ; =37, (vi X v;)(vi x v;)T, then(vy,...,vy) is a critical point if and only if
vaAwk =0, Vwy L vi, Vk, whereA=AT>0.

This leads to the following characterization:
Lemma?2 (vy,...,vy) is a critical point of f if and only ifv, is an eigenvector ok Vk.

Proof: Clearly, if vy is an eigenvector ok, then

v{Awk = )\vgwk =0, Vwi L vg, Vk.

On the other hand, considef, such that the above equation is verified. Since A7, there exists a basis of
orthonormal vector$u;, uy, us} which are eigenvectors df with corresponding eigenvalués, Ao, A3 }.

In this basis, we can express = pi1ug + psus + psug for somey; € R, ¢ = 1,2, 3. Now define

12 23 13
W = —pouy + piug, wWi" = —u3ug + paus, Wi = —p3uy + piug

Sincevy L w;? w3, wi?, then

ViAW = —Xipips + Aopipe =0,
Vi AW = ~Xopops + Azpape =0,

ViAW = ~Xjpips + Aspapr = 0.

If 4 = p; =0fori,j € {1,2,3}, thenvy is proportional to an eigenvectay; and is itself an eigenvector.
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If 3, n; # 0 and the third component; = 0, then from the equationkAwfj = 0 we havex; = Ay and
vy, is an eigenvector with eigenvalug. If u; # 0 for all 7, a similar argument leads tg = Ay = A3 = A

and againyy, is an eigenvector associated with [ |
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CHAPTER 3

DECENTRALIZED CONTROL LAW

3.1 Introduction

It was proved in the previous section that, in order to achiée global maxima of (6;,--- , 0y ) defined
by Equation (2.7)/N number of sensors have to be in a certain configuration suineddy Proposition 1.
Therefore, finding the global maxima of the FIM implies ohtag the best estimate possible of a stationary

target’s location. Then, the objective is to develop a deaéred control law such that

2
9,;%(1%1) for 1<k<N. (3.1)

which divides the circle into equal angles?ﬁffor N € N. There are two possible control laws that divides
the circle into equal angleso Towards MidpoinendGo Towards Center of Voronoi Cellhese two laws

will be defined and proved in the following sections.

3.2 Algorithm for Control Laws

3.2.1 Law 1: Go towards midpoint

The first control law is defined by

for 1<i<N, (3.2)
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such that
N
i+t1#i-1, 0;=4Lpipi1), » 0f =21 Vk (3.3)
i=1

To get a geometric representation of the anglesefer to Figure 3.1.

Figure 3.1 Definition of Angles

Under the restrictions described by the set of Equatior®,(d.point on a circle can be represented locally
on a line. The goal is to divide the circle into equal angleéj{}af This is acheived by using the points
(pi, pi—1) on aline, which describe the andlg In order to obtain a better intuition on how the anglean

be described by the pointg;, p;—1), refer to Figure 3.2.

| |
I I
2y P

- i

N
£

Figure 3.2 Control Law 1
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Therefore, in order to divide the circle into equal angle§;ofherei = {1,2,--- , N}, the distance between

{pi, pi—1} and{p;, p;+1} must be equal. Hence,

pi — pic1l = Ipiv1 — pil

\;07: *pifl‘ - |Pz'+1 *;07:| =0.

Sincep; 1 < p;_1 < pi11 holds, it follows that

Di —Pi—1 — Pit1 +pi =0

2p; — pi—1 — pi+1 = 0.

Therefore, solving fop; gives
= Di—1 +;07:+1’ (3.4)
2
which gives the new location @f and will be denoted aysZ

The guestion that arises now, is: How does a ppjrin a line map to an anglg? Notice that

d; = 0;R
2n = L=27rR and 0 — d.
Therefore,

_927rR_
==

d OR.

Also, when,R = 1, we haved; = 6;. So to get equal angles, we just take

, 0 0;
o — i+1 + 01

f= (3.5)

whered, denotes the new angle 6f after the calculation has been done.
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3.2.2 Law 2: Go towards the center of Voronoi cell

The second control law is defined by

’

_ 1
Pi =1 [pz‘1 + 2p; + pip

for 1<4<N. (3.6)

0; =13 [Hil +20; + 9i+1:|

Using the restriction described by Equation (3.3), a pomtaccircle can be represented locally on a line.
Since the goal is to divide the circle into equal angleszl—vhf it will be acheived once again by using the

points{p;, p;—1} which describe the anglg, as seen in Figure 3.3. This approach is slightly differemnf

the first control law, since Voronoi partitions are beingdugedivide the space into equal parts.

Go towards the center of Voronoi Cell.

L 4

-
1

‘,D

I

It
=

£
£+

Figure 3.3 The Represention of Points on a Circle to Poinis loime

So only viewing{p;_1, pi+1} as neighbors, the center of the voronoi partition is desdris

DN | =

;i pi—1 2+ pi | pi +2Pi+1 . 3.7)
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Simplifying Equation (3.7) gives

3
Il

Pi—1 Di Di Dit1
2 +2+2+ 2:|

Pi—1 Di Pit1
2 +22 + 2 :|

== N= N
,

pi—1 + 2p; +pi+1] : (3.8)
Following the same logic, to fin@L, as for control law 1, it follows that

9.:

)

A~ =

[91‘1 +260; + 9i+1:| :

3.3 Convergence of Algorithms

Now that the algorithm have been defined, it is desirable tetstand how each algorithm behaves as time

progresses. Therefore, in the following section the firgt gcond control laws will be analyzed.

3.3.1 Convergence of Control Law 1

It is important to model the evolution of all the anglg® (k), 62(k),--- ,0n(k)} are described b (k)

where

T
O(k) = [gl(k)792(k)7... ,HN(k)] V k>0, (3.9)

such that
N

> Oi(k)=2r VY k.

=1

The evolution of the statel®, (k), 02(k),--- ,0n(k)} are described by

Ok + 1) = B;O(k), (3.10)
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where the transition matri®; is defined by

g o %_
0 3 0

By= |+ " oo ] (3.11)
0 3 0 3
3 0 3 0]

There exist a matrix called the basic circulant matrix ang mhatrix possesses many attractive proper-

ties. It is important to note thd®, can be broken up into the basic circulant matrix

1 1
By =-C+-CcN!
=303

whereC is known as

0 1 0 0]
00 1 0

C =
0 0 0 1
10 0 o)

3.3.1.1 Eigenvalues of Control Law 1

Analyzing the eigenvalues of the control law 1, gives insigh the convergence of the system as time
progresses. By analyzing the eigenvalues of control lawillibe shown in this section that control law
1 has two oscillating points. Therefore, since the contal 1 has two oscillation points, it is important to
modify it, in order to obtain a converging algorithm. Theezigalues are given hy(\) =

A — C|, where
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A -1 0
0
1
—1 0 A
A -1 0 -1 0 0
T EE Tl I
. S
0 0 A -1

N N O DR G DD G
It follows that the, eigenvalues can be defined in a diffefermh as
2mik

p(A) =X -1=0 & re{eV |[I1<E<NL

One of the properties that the basic circulant mafriposses is that it is diagonalizable@ Being a
diagonalizable matrix implies the existence of a basis efigenvectors, which are orthogonal.
With C' possessing the property of being diagonalizable, and aise 8, can be defined by, then

the eigenvectors aB; can be found as follows:

1 1
Be =SC(1+CN ?)(e) = 50(e+ AN %e) =

1
:i)\(l =+ )\Nfz)e.
Therefore the eigenvalues fé, are clearly
1
{50+ AM=2) | X=e¥ , 1<k<N} (3.12)

It is desirable to display the eigenvaluesif in a different form, in order to facilitate the analysis. #rc

be seen that the eigenvaluesif are also
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1 .
5/\(1 + AV = _(e"N 4e N ke N

(3.13)

Notice that, whenV is odd, onlycos 2™ — 1 and othergu| < 1. Therefore, no oscillation occurs wheh

N

is odd. On the other hand, wheéwis even we have

2nN _
COS SN 1

2N __
cos S = 1

and the othersu| < 1. Therefore, it is interesting to analyze in detail wh&nis even, which implies

N =2k Vk.

3.3.1.2 Convergence wheiV = 2k

Let{1,v,es,...,e,} be the basis of eigenvectors Bf Since all the eigenvalues are distinct, there exists a

basis of orthogonal eigenvectors. Therefore, we can choose

17 = (1,1,---,1) suchthat Bj1=1
w! =(-1,1,-1,---,—1,1) suchthat Bjv=—v
and
lTV =0 lTei =0= vTe; = e;Tej such that 1 7é g

Then it can be stated that

N
O(0) =al+pv+) v (3.14)
=3
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Therefore,

Nowo N
170(0) = 2 000) — a= %Z@(O), (3.15)
al’1 = aN i
and also
521 0:(0) — 2, O 1(0) >
VT@(O) = L A — ,6 = %2(627(0) - @21',1(0)). (316)

-
Il
—_

pvlv = BN

From the definition oP (k) in Equation (3.10), and by subsitutittg(0) from Equation (3.14), we get

N
O(1) = B16(0) = Bial + v + Y _ el
i=3
N

=al+pv+ Z Vi€
i—3

N
0(2) = B16(1) = Bifal + v+ Y _ vej]
=3
N

=al +BV+Z%0‘$ei
i—3

In general,

O(2k) = al + v + 21 s viatre;,

(3.17)
O(2k) =al — v + 27]\;2 vkt ey,
Observe from Equation (3.17) that there exists oscillatibaut
al + v = w;
(3.18)

al — fv = wa,

31



where

N
2 2

Wok—1 = Wop = Z ©2i-1(0) = w.
i=1

Therefore, there exists oscillation about these two cordiipns:

w, We
We Wo
Wi = |w, W2 = [w,
We Wo

3.3.2 Convergence of Control Law 2

Since it is undesirable to have an unstable system, or irr @tbheds a system that oscillates between two

points, B, is defined as a modification @f;, which brings us to our second control law. Observe that

1 1 1

3 1 U U

1 1 1

i 2 1 0

By — (3.19)

1
4

1 11

| 4 4 2 ]

Itis interesting to notice thak, is not much different fron3;. Actually, as it was stated befor8; and
is defined by usingB;. It is also beneficial to defin®; by B; because the eigenvaluesBf have already

been defined by Equation (3.12). Whd?e is defined as

Bo—<1+1B = X1+ 8)
2*2 21*2 1)
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3.3.2.1 Eigenvalues of Control Law 2

The eigenvalues aB; can be found by observing that

1 .
By ={=(1+4 u) | p eigenvalues ofB;}

2
1 2k
:{5(1+cos%) | 1<k<N}.

Therefore,
0<

1
2 [1+cos%] <1

Notice that there is only one eigenvalue at 1.

3.3.2.2 Convergence

Let{1,eq,--- ,en} be the basis of eigenvectors:
N
O0)=ol+) . (3.20)
=2
Again,
>.;0(0) 2r
““"N N

because3; is symmetricand3; - 1 = 1.
Once again, from the definition & (%) in Equation (3.10), and by substitutir@(0), from Equation
(3.20), we get
O(k) = B} 'O(0) = a1 + Y yief e
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This yields

Ok 1=—
(k) = « N

which is convergence of the exponential type.
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CHAPTER 4

ESTIMATION FILTER

4.1 Motivation

In summary, up to this point, the theory behind optimal semdacement for a single target location es-
timation has been developed. This was done by first derivinthe Fisher informtion matrix (FIM) for
nonrandom parameters, where the FIM defines the Cramerdé®aw bound (CRLB),J~! = CRLB. It

is interesting to analyze the CRLB since it is known to boumeldovariance of the error, defined by (2.3).
Therefore, the aproach chosen to minimize the CRLB was statat as the maximization of the FIM. From
this, the optimal angle was determined, with the horizorital N number of sensors, defined &g = QW“
Therefore, we have the ability to obtain the best informrapossible by placing the sensors in the optimal
position. It is now necessary to find a filter that will procdisis information. In the following sections,
the Kalman filter and informtion filter will be derived in détarhen the extended information filter (EIF),
extended Kalman filter (EKF), and decentralized extendéatrimation filter algorithms will be presented.
From these choices of filters, the decentralized extendedniation filter was chosen since it processes
information from local observation and neighboring node®pposed to having a centralized location to

process all the data.

4.2 Kalman filter

4.2.1 State-space model

In 1960 R. Kalman published his famous paper on a recursikgi@o to the discrete-data linear filtering

problem. This filter is known as the Kalman filter. Since thée, Kalman filter has been part of a great deal
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of research in the area of autonomous navigation [5].
In essence , the Kalman filter address the problem of estimdiie stater € R" of a discrete-time

controlled process. The process is governed by a lineanastic difference equation

a(k) = F(k)z(k — 1) + Bk)u(k — 1) + w(k — 1), (4.1)

wherez (k) is the state of interest at timig F'(k) is the state transition matri¥3 is the control input matrix,
u(k) is the control input vector, and ~ N (0, Q) is the introduced process noise. The process noise is

modeled as an uncorrelated, zero-mean, white sequenc@mwithss noise covariance

Elw(@)w’ (5)] = 7;Q(). (4.2)
The system’s states are observed; R, by

2(k) = H(k)z(k) + v(k), 4.3)

wherez(k) is the observations made at tivke H (k) is the observation matrix, and k) ~ N(0,Q) is
the introduced measured noise. The observation noise igleb@s an uncorrelated, zero-mean, white

sequence with measurement noise covariance
Elo(i)o" (7)] = 7 R(D). (4.4)
It is assumed that the process noise and observation neismeorrelated:
Elw(i)v (j)] = 0.

4.2.2 Kalman filter algorithm

With the use of the state-space model, the Kalman filter algoris defined without the details of the
derivation. For addition details, refer to [5]. The Kalmailtefi is a recursive estimation algorithm that
can be summarized in two stages: Bredictionstage and th&stimationstage. They are governed by the

following equations:
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4.2.2.1 Kalman filter algorithm

PREDICTION
i(klk —1) = F(k)z(k — 1|k — 1) + B(k)u(k), (4.5)
Pklk —1) = F(k)P(k — 1|k — 1) FT + Q(k). (4.6)

ESTIMATION
i(klk) = [1 — W (k)H (k))& (klk — 1) + W (k)z(k), (4.7)
P(klk) = P(klk — 1) - W(k)S(k)W™ (k), (4.8)

whereW (k) andS(k) are known as the gain and innovation covariance matricegeotively, and are given

by

W (k) = P(klk — 1)H' (k)S™(k), (4.9)

S(k) = H(k)P(k|k — 1)HT (k) + R(E). (4.10)

It is useful to point out that the Kalman filter algorithm cam ibterpreted as a linear weighted sum of
state prediction and observation. Notice that in Equatibii)( the quantity{1 — W (k) H (k)} modifies the
amount ofz(k|k — 1), the prediction, andV (k) modifiesz(k), the observation at timg. Therefore, it
has the built-in ability to have more trust in the state-gpamdel or to have more confidence in the data
collected from the measurements. The amount of confideniteeimodel or in the observation is specified
by the process and observation noise covariances.

To obtain a better understanding on how the algorithm forkthknan filter works, it is useful to refer

to Figure 4.1. It demonstrates the flow diagram of the Kalmiger fi
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Figure 4.1 Flow Diagram of the Kalman Filter

4.3 Information Filter

The Kalman filter and extended Kalman filter work quite wellemlestimating, the stateof a single source.
When dealing with multiple sources, then the update egustimecome algebraically quite complicated.
Therefore, since the problem we are trying to solve dealk miéasurements from multiple sensors, it is
desirable to have a simple and equivalent form of the Kalmtar.flAn algebraically equivalent form of the
Kalman filter was derived by Arthur G. O. Mutambara calleditifermation filter

Theinformation filteris essentially a Kalman filter expressed in terms of measfriedormationabout
desired states, rather than direct state estimates amdhseiciated covariances [6]. The information filter
employs the notion of Fisher informatioh and the Cramer-Rao lower bound (CRLB), where the Fisher
information matrix.J(K) is equal to the inverse of the covariance matrié:| k) and this is equal to CRLB,

whereJ (k) = (CRLB) ' = P (k|k) [6].

4.3.1 Information filter derivation

The following derivation of the information filter is presed here to present a complete picture of how the
information filter and the Kalman filter are algebraicallyngar. This derivation can be found in Mutam-
bara’s book [6]. In the information filter there are two keyighles,information matrixandinformation

state vector The information matrix is defined as the inverse of the davae matrix:

Y (ilj) & P~ (il5). (4.11)
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The information state vector is a product of the inverse efdbivariance matrix and the state estimate:

(4.12)

) (i) 7 (4.13)
The following derivation shows how the information filterdsrived from the Kalman filter algorithm by

postmultiplying the ternil — W (k) H (k)] from Equation (4.7) by the terf® (k|k — 1) P~ (k|k — 1)]:

(1~ W(k)H(K)][P(klk )P (klk — 1)] =
— [P(k|k — 1) — W (k)H (k) P(k|k — 1)]P~ " (k|k — 1)
= [P(k|k —1) = W(E)S(k)S " (k)H(E)P(k|k — 1)] P (k|k — 1)
= [P(k|k — 1) = W(k)S(K)YWT (k)| P (k|k — 1)

= P(k|k)P~ ' (k|k — 1). (4.14)

Substituting the expression of the innovation covaria$ige), given in Equation (4.10), into the expression

of the filter gain matrix¥ (k) from Equation (4.9) gives

W (k) = P(k|k — 1)HT (k)[H(k)P(k|k — 1)HY (k) + R(k)]*

& W(E)[H(E)P(k|k — 1)HY (k) + R(k)] = P(k|k — 1)H" (k)

& W(k)R(k) = P(k|k — 1)HT (k) — W (k)H (k) P(k|k — 1)H" (k)
W (k)R(E) = [ — W (k)H (k)| P(k|k — 1)HT (k)

s Wk)=[I - W(k)H(E)|P(klk - 1)H" (k)R (k). (4.15)
Substituting Equation (4.14) into Equation (4.15) gives
W (k) =P(k|k)P~ " (k|k — 1)P(k|k — 1)HT (k)R (k)
(4.16)

W (k) =P(k|k)H" (k)R (k).
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To get the update equation for the information state vedwobstitute Equations (4.14) and (4.16) into
Equation (4.7) and premultiply through By ! (k|k):

PV (k|k)z(k|k) =P Y(k|k — 1)&(k — 1|k — 1) + HT (k)R ' (k)2(k),

or

g(k|k) =g(k|k — 1) + H (k)R (k) z(). (4.17)

Using the same train of thought, a similar expression cambed for the information matrix associated

with this estimate. Using Equations (4.8), (4.9), and (4.t4ollows that

P(klk) = [1 — W(k)H(K)|P(k[k — 1)[1 — W (k)H (k)]"
(4.18)
+W (E)R(EYWT (k).

Substituting Equations (4.14) and (4.16) gives

P(klk) = [P(kIK)P~" (klk — DIP(k[k — 1)[P(kIK)P~ (k[ — 1)]"
+ (PRI HT (k)R (W] RE)P (IR HT (k)R ()]

(4.19)

In order to obtain the desired form, pre- and postmultiplyby (k| k), giving the information matrix update

equation as

P '(klk) =P "(k|k — 1)+ H" (k)R '(k)H (k) (4.20)

or

Y (klk) =Y (klk — 1)+ HY (k)R (k)H (). (4.21)

In order to have the complete algorithm for the informatidtefj three pieces of information are missing:

information state contributiori(k), associated information matriX(%), and theinformation propagation
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coefficientL(k|k — 1). They are defined respectively as follows:

i(k) 2H" (k)R '(k)z(k) (4.22)

I(k) 2HT (k)R (E)H (K). (4.23)

The information propagation coefficient, which is indepemdof the observations made, is given by the
expression

Lklk —=1) =Y (klk = )F(k)Y Yk — 1]k — 1). (4.24)

All the information needed in the information filter has beesll defined. Now the linear Kalman filter can

be represented in terms of thormation state vectoand theinformation matrix

4.3.1.1 Information filter algorithm

PREDICTION
g(k|k — 1) = L(k|k — 1)g(k — 1|k = 1) (4.25)
Y(klk—1) = [F(k)Y Yk — 1|k — DFT (k) + Q(k)] " (4.26)

ESTIMATION
G(k|k) = g(k|k — 1) +i(k) (4.27)
Y (k|k) = Y (k|k — 1) + I (k). (4.28)

4.4 Extended Kalman Filter and Extended Information Filter

Note that the algorithms defined above are used to estimatstdbes: € R” or information state-vectors
y € R" of a discrete-time controlled process governed by a linemrhastic difference equation. If one
would like to estimate states governed or measured by armealistochastic difference equation, then an
extended Kalman filter (EKF) or extended information filtEtK) is used. The EKF can be thought of as

a Kalman filter that linearizes about the current mean andriavce [5]. The derivation of Mutambara'’s
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extended information filter follows from that of the lineaakhan filter, linearizing state and observation
models using Taylor's series expansion [6]. Since the probht hand deals with a nonlinear observation
modelz(k) defined by Equation (2.1). The interest lies in a filter that thee ability to process nonlinear

stochastic difference equations, and that in essence éxtaaded Kalman filter or the extended information

filter.

4.4.1 Nonlinear state space

The the model of interest is described by a nonlinear stéichdiference equation in the form

z(k) = f(z(k — 1),u(k — 1), (k — 1)) + w(k), (4.29)

wherez(k — 1) is the state vector angd(k — 1) is the known control vector input, both at tifle — 1). The
process noise introduced at tirhés defined asv (k). The nonlinear state transition functionfis, .,k —1).

The observations made by the system are modeled by a nanéigeation defined as
z(k) = h(z(k), k) +v(k), (4.30)

whereh(., k) is the nonlinear observation transition function ariél) is the observation noise. Both(k)

andwv (k) are modeled as linearly additive Gaussian, temporally wataded with zero mean, which means
Elw(k)] = E[v(k)] =0 V&, (4.31)
with the corresponding covariance given by
Elw(@) w(j)] = 6;Q0),  Elu(i) v(j)] = §; R(i).
It is assumed that the process noise and observation neismeorrelated:

Elw(i) v(j)] =0, Vi,j.
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4.4.2 EKF and EIF algorithm

Now that the nonlinear state space has been defined, it ifeoss present the EKF and EIF algorithms.
Both Algorithms the EKF and EIF, are presented here withadgrdvation. Much has been written on the

EKF [4, 5] and the derivation of EIF can be found in Mutambsu@ook [6].

4.4.2.1 Extended Kalman filter algorithm

PREDICTION
Z(klk —1) = f(@(k — 1k — 1), u(k — 1), (k — 1)) (4.32)
P(klk — 1) = Vf(k)P(k — 1|k — VI (k) + Q(k — 1). (4.33)

ESTIMATION
@(k|k) = Z(k|k — 1) + W (k)[z(k) — h(&(k|k — 1))] (4.34)
P(k|k) = P(klk — 1) = W(k)S(k)WT (k). (4.35)

The gain and innovation covariance matrices are given otisply/ by

W (k) = P(k|lk — 1)VAL(k)S™ (k) (4.36)

S(k) = Vhy(k)P(k|k — 1)VAL (k) + R(E). (4.37)

4.4.2.2 Information Kalman filter algorithm

PREDICTION

glklk — 1) = Y (klk — 1) f(k,&(k — Lk — 1),u(k — 1), (k — 1)) (4.38)

Y(k[k —1) = [Vf(R)Y 'k~ 1k~ D)V (k) +Q(k)] . (4.39)
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ESTIMATION

g(k|k) =g(klk — 1) +i(k) (4.40)

Y (k|k) =Y (k|k — 1) + I(k). (4.41)

The information state contribution and its associatedrinfdion matrix are given respectively by

I(k) =VhT (k)R ' (k)Vhy (k) (4.42)

i(k) =VhI ()R (k) [v(k) + Vhy(k)Z(k|k — 1)], (4.43)

wherew(k) is the innovation given as

v(k) = 2(k) — h(@(k|k —1)). (4.44)

4.5 Decentralized Extended Information Filter

When working with measurements from different sources,dgsirable to decentralize the system. In a data
processing decentralized system, all information is seed locally, where no central processing site exists.
In a system like this, all the information is processed aheasade locally, based on local observations and
information communicated by its neighbors. Thereforetahg no central process, where a global decision
is made, each decision is made locally by each node, usingfttrenation collected by it and other nodes.
It is important to notice the advantage of permitting onlgl@sode communication.

To give a practical application of a decentralize systemthlere beN number of vehicles, estimating
the location of a target. If one of these vehicles fails, ttieare areN — 1 vehicles left to estimate the
location of a target. In a centralized approach, the systemdwot adapt tav — 1 vehicles, since it was
built for N vehicles. In retrospect, for a decentralized system to léave 1 vehicles would not matter
because it is based on obtaining only local information,eandde communication. Therefore, it would
adapt to its new environment and continue to estimate thatitot of a target without interruption. In
essence, the decentralized algorithm has the ability tamyrally adapt to the new number of vehicles in
order to continue to estimate the location of a given tar§ech an algorithm that has this ability has been

derived by Mutambara, and it is called the decentralizereldd information filter. Since the derivation of
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this algorithm is detailed, the algorithm is presented hgtleout a derivation.

4.5.1 DEIF algorithm

PREDICTION

Gi(k[k — 1) = Yi(klk — 1) f(k, i(k — 1]k — 1), ui(k = 1), (k — 1)) (4.45)

Yi(klk — 1) = [V fo, (k)Y; ' (k — 1k — 1)V f] (k) + Q(k)] " (4.46)
ESTIMATION

Ui(k|k) =gi(k|k — 1) + i (k) (4.47)

M-

7j=1

Yi(k|k) =Yi(klk — 1) + Y I;(k). (4.48)

VB

Il
-

J

The local information state contribution and its local &sated information matrix are given respectively

by

I;(k) =Vhy, (k)R; " (k)Vhg, (k) (4.49)

T

ij(k) =Vh (k)R ' (k)[v; (k) + Vha, (k)2 (klk — 1)], (4.50)

wherew(k) is the innovation given as

With the equation of the DEIF algorithm well defined, Figur@,4shows how the algorithm works.
Notice that each node has a DEIF built in, giving it the apilib provide an estimation from its local
observationg; (k) and from the information communicated to it by other nodess &lso important to note
that each box labeled “info filter” in Figure 4.2, would adtyde the sensor collecting the data locally and
communicating it to other sensors. This filter actually hdlsdommunication with all the other nodes but it

does not have a central process, therefore making a deleasdralgorithm.
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Figure 4.2 Decentralized Extended Information Filter

Part of our research objective is to have the ability to adaptn environment dynamically, using de-

centralized methods. Since the decentralized extendednation filter, out of the filters presented here,

possesses this property, it was chosen as the filter to bamu#ies simulation.
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CHAPTER 5

NUMERICAL SIMULATIONS

5.1 Introduction

In finding a solution to the problem of target tracking from altisensor network, it has been proven in
Chapter 2 that theleployment of the agenshould maximize the probability of detection of the target t
be tracked or provide more accurate estimations of the panice to be localized. Chapter 2 develops
a method of obtaining the best possible estimation of naloamnparameters. Because it is desireable to
track a moving target witlv number of sensors, and because a method of obtaining thegiasation of

nonrandom parameters has been developed and fully unoeystéollows from these results that

In order to obtain the best estimate of a moving target, itasidhble to have the sensors move to an

optimal position described by Proposition 1(p. 17).

A solution to these problems should be built on motion cdratlgorithms for the network and data fu-
sion techniques which allow decentralized implementatidduch a decentralized motion planning control
algorithm has been described and proved to converge in &haptin Chapter 4, the possible estimation
algorithms have been described, and the decentralizedidedeinformation filter was chosen to be the
estimator used in the simulations. Therefore, this chagites at supporting the statement made of esti-
mating the location of a moving target vid number of sensors, using decentralized motion planning and

decentralized estimation algorithms.
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5.2 Simulation Model

5.2.1 State-space model

The state-space model will consist of modeling the trajgctd a moving target ifR? and the measure-
ment/observation made by eafth sensor, wheré < i < N. In addition, the model contains both the

process and observation/measurement noise.

zi(k+1) = x;(k) + w(k), (5.1)

wherez; (k + 1) is the state of interest at tin{é + 1), z;(k), random walk process describing the trajectory
of a moving target, and) ~ N(0, Q) is the introduced process noise. The process noise is nibdslan

uncorrelated, zero-mean, white sequence with procese noi@riance:

Elw(i)w” (j)] = 7i;Q(i). (5.2)

Taking into account that the position of the soutces composed of two directions and since we are
dealing with the two-dimensional case, thes- (¢', ¢?)”. For simulation purposes only, and without loss

of generality, the trajectory of a point was chosen to be adigight defined as

x — coordinate q sin(k)
zi(k) = = = _ (5.3)
y — coordinate q° sin(k)cos(k)

The system’s states are observed; R?, by
2i(k) = hi(a(k), k) +v(k), (5.4)
whereh(., k) is the nonlinear observation transition function defined by
hi(k) = |zi(k) — pi(k)|, for 1 <i <N, (5.5)

whereh; (k) describes the distance measured byithesensor, from the moving targef(k) as seen by the

ith sensor to the; (k) sensor at timé&. The location of the position of thigh sensorp;(k), is composed
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of two directions,p; = (p}, p?), andv(k) is the observation noise. The observation noise is modeled a

uncorrelated, zero-mean, white sequence with measuraresg covariance

Elu(i)o” ()] = viR(i). (5.6)
It is assumed that the process noise and observation neismeorrelated:
Elw(i)v" (5)] = 0.

5.2.2 Implementation of algorithms

In order to obtain a better estimate of a moving target, trenesgsensors have to move into their optimal
positions, described by Proposition 1. To accomplish tbied ghe algorithm given in Table 5.1 was imple-
mented in Matlab. Figure 5.1 shows how the algorithm workisnas increases. Notice that in Frame 1 the
sensors(the circles) are located in a nonoptimal configuraas time progresses (Frame 6), the sensors are

in the optimal configuration, in essence, dividing the ein'cito%r equal parts.

.
C
O

(a) Frame 1 (b) Frame 2 (c) Frame 3

C
C
C

(d) Frame 4 (e) Frame 5 () Frame 6

Figure 5.1 Control Law as Time Progresses
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Table 5.1 Agents Deployment: Decentralize Control Law

Name: Decentralize Control Law

Goal: Decentralize Deployment of Agents Control
Law

Requires: (i) Initial locations of sensor¢p;,--- ,pn}

(i) Location of targety given by DEIF

(if) Counterclockwise wherg; # p; Vi # j
(ii) Computation of angle®; = £(p;, pi—1)
(iv) Positive reab;

ALGORITHM

Fori € {1,..., N}, ith agent, calculate the location §f:,--- ,p,}

with respect to targef. While§; 26, 1 V1 <i< N

0: setpy = p, andp,, 11 = p;

0: compute angle8; andf;

0: set newd, ;= Ytlio

5.3 Matlab Simulation Results

This section describes the results obtained from the imgigations of the theory developed in the previous
chapters. The state space model and control algorithm ngbeé simulations are discussed in Sections 5.2
and 5.2.2, respectively. In the simulations, the enviramnie composed oV number of sensors and one
moving target. The objective of th€ humber of sensors is to estimate the location of the movirggpta

The simulations are done with stationary sensors and maengors. The moving sensors follow the
control algorithm described in Section 5.2.2. This conaigbrithm allows each sensor to be in its optimal
position with respect to the moving point. Hence, being exdptimal configuration ensures that each sensor
collects the best information to estimate the location efghint. The sensors, which will also be referred to
as vehicles, are restricted to move on a circle. The estia®btained by the use of the DEIF algorithm.

The user provides the initial guess:fto start the DEIF algorithm, which is referred toiagial guess for
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T
[55 y] . The trajectory of the moving point is determined by Equat(i®.3).

5.3.1 Location

This section contains the result obtained from placing fationary and moving vehicles in nonoptimal and
optimal positions. The initial position of the sensors isa#&ed in the tables asitial position of sensors
(radians) It is important to note that the simulation could have beenedwith more than four sensors,
since both the control law and DEIF filter are decentralizedother words, the filters do not require a set
number of sensors. Also, notice that when the moving vehiate placed in nonoptimal position, it does
not make a significant difference in the estimation of thenpdsince each moving vehicle is following the
control algorithm, it is always in the optimal position fdotaining the best estimate of the moving target.
The parameters of each simulation are described by a tatileéhe results are displayed as graphs. The

graph on the left describeg: — ||, which provides a measure of the error. The graph on the giylets

the final location of the vehicles, the actual positionand the estimaté. Only one parameter is varied;
in these simulations, the varied parameter is the variahtleeomeasured noise. This allows us to prove
numerically that the best estimatef the locationz of a moving point is estimated best by the vehicles that
are implementing the control algorithm.

It is important to point out that in simulations 1-4, the ialtpositions of the vehicles are nonoptimal;
in other words, they are placed in random locations. In sitahs 5-8, the vehicles are placed in optimal
locations. This only matters for the estimates made by th&osiary vehicles, since the moving vehicles
always position themselves optimally with respect to theimppoint. Therefore, the results obtained, will
allow us to prove numerically that even in the case of statipiwehicles the best estimate will be obtained
by placing the vehicles in an optimal configuration. It wik@ aid in proving that the vehicles using the
control algorithm, designed to implement the results imBsition 1, ensure a better estimate of the moving

target.

5.3.1.1 Nonoptimal position

Analyzing simulation 1 by using Figure 5.2, notice the pagtars for this simulation are found in Table 5.2.
Since the variance of the measured noise is relatively sthalldifference between the estimateraind the

actual positionz, provided by the moving sensors and the stationary vehidesinimal. Still the moving
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vehicles, using the control algorithm, have an error of thag0.2, which is better than the stationary vehi-
cles, for which at one time the errge: — z|| is about0.25. Also it is interesting to note, that even though
the stationary vehicles are placed in nonoptimal posititresestimate: is relatively good; this is due to the

fact that the variance of the measured noise is relativebllsm

Table 5.2 Parameters for Simulation 1 with Variance of MeagiNoise = 0.000 053

Number of Initial Position of Sensors Variance of Variance of
Sensors (radians) Process Noise | Measured Noise
Moving Sensors 4 2.1818; 2.4500; 3.7160; 4.5167 0.000 13 0.000 053
Stationary i 1
4 2.1818;2.4500; 3.7160; 4.5167 0.000 13 0.000 053
Sensors L —

Num of Sensors = 4 and Init Postion of Sensors =[2.1818:2.4500;3.7610;4.5167] using DEIF Estimates Performance of Stationary Sensors Performance of Moving Sensors
1 T T T T T T i T i i T i
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0.9

0.8~

—— Actual Postion 1 — Actual Postion
Est Postion DEIF — — Est Postion DEIF

0.7

o
o
T

./ ;\/‘\\
(VAN

|| x = xhat ||
o o
'S @
T T
y postion
y postion
=)

o
w
T

o

o o
= N
?

0 10 20 30 40 50 60 70
Time X position X position

@) ||z — 7| (b) Final Location of Sensors

Figure 5.2 Simulation 1: Stationary vs. Moving Sensors Wiihiance of Measured Noise = 0.000 053

Analyzing simulation 2 by using Figure 5.3, notice the pagtars for this simulation are found in
Table 5.3. In simulation 2, for the most part, the moving et#s provide a better estimateof the position
of x, since the error of the moving vehicles is for the most pantlter than that of the stationary vehicles.

The results are very similar to simulation 1.
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Table 5.3 Parameters for Simulation 2 with Variance of MeagiNoise = 0.000 53
Number of Initial Position of Sensors Variance of Variance of
Sensors (radians) Process Noise | Measured Noise
Moving Sensors 4 2.1818;2.4500; 3.7160; 4.5167 0.000 13 0.000 53
Stationary i 1
4 2.1818;2.4500; 3.7160; 4.5167] 0.000 13 0.000 53
Sensors L .

Performance of Stationary Sensors Performance of Moving Sensors
T T T T T T

Num of Sensors = 4 and Init Postion of Sensors =[2.1818;2.4500;3.7610;4.5167] using DEIF Estimates
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Figure 5.3 Simulation 2: Stationary vs. Moving Sensors Wihiance of Measured Noise = 0.000 53

Analyzing simulation 3 by using Figure 5.4, notice the pagtars for this simulation are found in
Table 5.4. In simulation 3, the variance of the measuredenisisncreased by 1000%. Notice that the
stationary vehicle no longer provides an error bel@®5, and the error gets as high asl5, while the
moving vehicles still provide an error below20. Notice, in Figure 5.4, the image on the right gives the
results obtained by the stationary vehicles. The estimédds to follow closely the trajectory of the moving
point. On the other hand, it can be seen visually that the ngovehicles still estimate the trajectory of the

point relatively well.
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Table 5.4 Parameters for Simulation 3 with Variance of MeegiNoise = 0.053

Number of Initial Position of Sensors Variance of Variance of
Sensors (radians) Process Noise | Measured Noise
Moving Sensors 4 2.1818;2.4500; 3.7160; 4.5167] 0.000 13 0.053
Stationary i
4 2.1818;2.4500; 3.7160; 4.5167 0.000 13 0.053
Sensors L

Num of Sensors = 4 and Init Postion of Sensors =[2.1818:2.4500;3.7610;4.5167] using DEIF Estimates Performance of Stationary Sensors Performance of Moving Sensors
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Figure 5.4 Simulation 3: Stationary vs. Moving Sensors Wihance of Measured Noise = 0.053

Analyzing simulation 4 by using Figure 5.5, notice the pagters for this simulation are found in Ta-
ble 5.5. In simulation 4, the variance of the measured neisereased by 10 000% of origin&l00 053.
Notice that the stationary vehicle no longer provides aordoelow0.45; the error gets as high &@s91.
Meanwhile, the moving vehicles still provide an error beldw®1. Note, Figure 5.5 on the right, which
displays the results of the stationary vehicles. The estirhdails to follow the trajectory of the moving
point. On the other hand, it can be seen that the moving \e=shitill estimate the trajectory of the point
relatively well, even with the variance of the measure noisesased.

Therefore, it can be seen from simulations 1-4 that, as thanee of the measured noise increases, the

estimate provided from the stationary vehicles gets wavkée the estimate provided by the moving sensors
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stays relatively close to the actual position of the moverget. This proves numerically that allowing the

vehicles to move will result in a better estimate of a moviagét.

Table 5.5 Parameters for Simulation 4 with Variance of MeagiNoise = 0.53

Number of Initial Position of Sensors Variance of Variance of
Sensors (radians) Process Noise | Measured Noise
Moving Sensors 4 2.1818;2.4500; 3.7160; 4.5167 0.000 13 0.53
Stationary i 1
4 2.1818;2.4500; 3.7160; 4.5167 0.000 13 0.53
Sensors L .
Num of Sensors = 4 and Init Postion of Sensors =[2.1818:2.4500;3.7610;4.5167] using DEIF Estimates Performance of Stationary Sensors B Performance of Moving Sensors
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Figure 5.5 Simulation 4: Stationary vs. Moving Sensors Whhiance of Measured Noise = 0.53

5.3.1.2 Optimal position

Analyzing simulation 5 by using Figure 5.6, notice the pagters for this simulation are found in Table 5.6.
Since the variance of the measured noise is relatively sih@ldifference between the estimateiofnd
the actual positior, provided by the moving sensors and the stationary vehideasimost the same. It
is interesting to note that, since the stationary vehictegpgaced in optimal positions, the estimatés as

good as the moving vehicles.
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Table 5.6 Parameters for Simulation 5 with Variance of MeagiNoise = 0.000 053

Number of Initial Position of Sensors Variance of Variance of
Sensors (radians) Process Noise | Measured Noise
Moving Sensors 4 0; 2 m; 31 0.000 13 0.000 053
Stationary o ]
4 0;%;7r;377r 0.000 13 0.000 053
Sensors L .
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Figure 5.6 Simulation 5: Stationary vs. Moving Sensors Wihance of Measured Noise = 0.000 053

Analyzing simulation 6 by using Figure 5.7, notice the pagtars for this simulation are found in
Table 5.7. Visually, the difference between simulationsn8 & is minimal, even though the variance of
the measured noise has been increased by 10% of the orginalOv@0 053. It is intersting to note that
both the stationary vehicles and moving vehicles have an efrless thar)).2. Therefore, up to this point
it really does not make a difference if the vehicles follow ttontrol algorithm or not, since the results are
almost identical. It can be seen in the simulations thab¥gllthat as the noise increases it becomes more

important to use the control algorithm.
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Table 5.7 Parameters

or Simulation 6 with Variance of MeegiNoise = 0.000 53

Number of Initial Position of Sensors Variance of Variance of
Sensors (radians) Process Noise | Measured Noise
Moving Sensors 4 0; 2 m; 31 0.000 13 0.000 53
Stationary o ]
4 0; B %ﬂ 0.000 13 0.000 53
Sensors L .
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Figure 5.7 Simulation 6: Stationary vs. Moving Sensors Wilhiance of Measured Noise = 0.000 53

Analyzing simulation 7 by using Figure 5.8, notice the pagtars for this simulation are found in

Table 5.8. In simulation 7, the variance of the measuredenisi;icreased by000% of 0.000 053. Notice

that, the stationary vehicles and moving vehicles no long&in the same estimate:flitis also interesting

to note that, even though the variance has been increasee, thie stationary vehicles are in the optimal

configuration, the error of the stationary vehicles is stiltler0.2. This could be expected, from the fact

that the stationary vehicles are located in optimal pasitio
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Table 5.8 Parameters for Simulation 7 with Variance of MeegiNoise = 0.053

Number of Initial Position of Sensors Variance of Variance of
Sensors (radians) Process Noise | Measured Noise
Moving Sensors 4 0; 2 m; 31 0.000 13 0.053
Stationary o ]
4 0; %; ; %” 0.000 13 0.053
Sensors L —

Num of Sensors = 4 and Init Postion of Sensors = [0;pi/2;pi;3*pi/2] using DEIF Estimates
T T T T T
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Figure 5.8 Simulation 7: Stationary vs. Moving Sensors Wahiance of Measured Noise = 0.053

Analyzing simulation 8 by using Figure 5.9, notice the pagtars for this simulation are found in
Table 5.9. Since the variance of the measured noise has hemased by0 000% of the original value
in simulation 8, the stationary vechicles no longer obtaim best estimate of the target. It is interesting
to note, that even though the error:bis below0.2, the estimate is not the best. This result can be seen
visually from the Figure 5.9, by the image on the right prawidthe performance of the stationary sensor.
On the other hand, the moving vehicles still obtain a reddyi\good estimate of the location of the target,
therefore proving numerically that the moving vehiclesaibthe best estimate, since they are always at an

optimal position, described by Proposition 1.
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Table 5.9 Parameters for Simulation 8 with Variance of MeagiNoise = 0.53

Number of Initial Position of Sensors Variance of Variance of
Sensors (radians) Process Noise | Measured Noise
Moving Sensors 4 0; &5 m; 31 0.000 13 0.53
Stationary M 1
4 0; B %ﬂ 0.000 13 0.53
Sensors L .
Num of Sensors = 4 and Init Postion of Sensors = [0;pi/2;pi;3*pi/2] using DEIF Estimates Performance of Stationary Sensors Performance of Moving Sensors
1 T T T T T 4 T T 4 T T T
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Figure 5.9 Simulation 8: Stationary vs. Moving Sensors Wahance of Measured Noise = 0.53

5.3.1.3 Nonoptimal position versus optimal position

In this section, the results obtained from simulations 1#Bhe compiled into graphs. This is done in order
to have the ability to analyze the effect on the results dukdstationary vehicles and moving vehicles due
to increasing the variance of the measurement noise. Inrd&igLl0, the simulations of 1-8 are displayed
accordingly, along with the parameters for each, found m&a5.10 and 5.11.

In order to have a better understanding of each figure, thewfimlg explanation is provided. The top
left-hand side of Figure 5.10, displays the erflar — || of the stationary vehicles located in nonoptimal

positions. The bottom-left hand side of Figure 5.10 displéne errot|z — z|| of the moving vehicles located
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in nonoptimal positions. The right-hand top and bottom sioeFigure 5.10 displays the errge: — || of

the stationary vehicles and moving vehicles placed in agitjpositions, respectively.

Table 5.10 Parameters for Simulations 1-4

Number of Initial Position of Sensors Variance of Variance of
Sensors (radians) Process Noise | Measured Noise
Moving Sensors 4 2.1818;2.4500; 3.7160; 4.5167] 0.000 13 vary
Stationary i 1
4 2.1818;2.4500; 3.7160; 4.5167] 0.000 13 vary
Sensors L .
Table 5.11 Parameters for Simulations 5-8
Number of Initial Position of Sensors Variance of Variance of
Sensors (radians) Process Noise | Measured Noise
Moving Sensors 4 0; &5 r; 31 0.000 13 vary
Stationary ,
4 0; By 32 0.000 13 vary
Sensors .

With the aid of these results, it is easy to see that the mowaigcles obtain the best estimate, since

the error is always less thdn2. Comparing the results of the stationary vehicles, as thiarvee of the

measured noise increases, the erraf0f- z|| also increases. Itis also interesting to note, from Figut8,5

that for simulations 1-4 and 5-8, it seems like the movingisleb obtain the same result. This is due to
the fact, that the moving vehicles are following the samerobmlogrithm. The error can be reduced by
placing the stationary vehicles in optimal configuratidmst, a better estimate is obtained with the moving
vehicles, therefore, proving that in order to obtain the bemate of a moving target, it is desirable to have
the sensors move to an optimal position. This proves numlbrithat the moving vehicles obtain the best
estimate, regardless of the initial position of the moviedicles, since the vehicles are always at an optimal

configuration, described by Proposition 1.
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Stationary Sensors with increasing Variance of Measured Noise

Stationary Sensors with increasing Variance of Measured Noise
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Figure 5.10 Nonoptimal Position vs. Optimal Position

5.3.2 Modifying the trajectory of the moving point

It would be interesting to see if a relatively good estimatebitained when the trajectory of the moving point
is modified. This is accomplished by modifying the trajegtof the moving point described by Equation

(5.3) as follows:

x — coordinate q' sin(k)

y — coordinate q° sin(k)cos(k) — 1

(5.7)

In this section, the initial positions of the vehicles arghe optimal configuration. The varying pa-
rameter, once again, is the variance of the measured ndigegriphs and tables in this section follow the
same format as in the previous section. The goal here is tgzzthe results obtained by the stationary and
moving vehicles with the modified trajectory of the movingmalescribed by Equation (5.7).

Analyzing simulation 9 by using Figure 5.11, notice the pagters for this simulation are found in
Table 5.12. Since the variance of the measured noise isvetyasmall, the difference between the estimate

of z and the actual positiom, provided by the moving sensors and the stationary vehidesimost the
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same. It is interesting to note, that since the stationahjcles are placed in optimal positions, the estimate

1 is as good as the moving vehicles, even though the trajeitargt placed at the center of all the vehicles.

Table 5.12 Parameters for Simulation 9 with Variance of Meas Noise = 0.000 053
Number of Initial Position of Sensors Variance of Variance of
Sensors (radians) Process Noise | Measured Noise
Moving Sensors 4 0; %i; ; 37“ 0.000 13 0.000 053
Stationary o T
4 0; %Z;w; %” 0.000 13 0.000 053
Sensors L .
Performance of Stationary Sensors Performance of Moving Sensors
Num of Sensors = 4 and Init Postion of Sensors = [0;pi/2;pi;3*pi/2] using DEIF Estimates 4 : 4
0.4 T T T T T T
—— Moving Sensors
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Figure 5.11 Simulation 9: Stationary vs. Moving Sensorsiwiriance of Measured Noise = 0.000 053

Analyzing simulation 10 by using Figure 5.12, notice theapagters for this simulation are found in
Table 5.13. Visually, the difference between simulatiorené 10 is minimal, even though the variance of
the measured noise has been increased by 10% of the &di0@l 053. Even though the variance of the
measurement noise has been increased, both the statiovhrgaving vehicles have an error of less than
0.2. Therefore, not surprisingly, since the stationary vedsare placed in the optimal position; at this point

the results of the estimateare the same for the moving vehicles and the stationary heshic
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Table 5.13 Parameters for Simulation 10 with Variance of 8eed Noise = 0.000 53
Number of Initial Position of Sensors Variance of Variance of
Sensors (radians) Process Noise | Measured Noise
Moving Sensors 4 0; 2 m; 31 0.000 13 0.000 53
Stationary o ]
4 0; B %ﬂ 0.000 13 0.000 53
Sensors L .
Performance of Stationary Sensors Performance of Moving Sensors
Num of Sensors = 4 and Init Postion of Sensors = [0;pi/2;pi;3*pi/2] using DEIF Estimates 4 : : 4 : :
04 . T T T
—— Moving Sensors
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Figure 5.12 Simulation 10: Stationary vs. Moving Sensotf wariance of Measured Noise=0.000 53

Analyzing simulation 11 by using Figure 5.13, notice thegpaeters for this simulation are found in
Table 5.14. With the variance of the measured noise incdelgé 000% of the orginal value).000 053,
the error||z — || made by the stationary vehicles can be seen from the Figur®. $he error ini given
by the stationary vehicles, at one point, gets as high.2& while the error of the moving vehicles stays
below 0.2 at all times. Note, this is the same result obtained in oné@®frevious simulations 1-8, when
the trajectory of the moving point was described by Equaft8). Even with the increase ®600% of the
variance of the measurement noise and the change in thettrgj@f the moving point, the moving vehicles

still follow closely the trajectory of the moving point.
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Table 5.14 Parameters for Simulation 11 with Variance of $ieed Noise = 0.053

Number of Initial Position of Sensors Variance of Variance of
Sensors (radians) Process Noise | Measured Noise
Moving Sensors 4 0; 2 m; 31 0.000 13 0.053
Stationary o ]
4 0; B %ﬂ 0.000 13 0.053
Sensors L —
Num of Sensors = 4 and Init Postion of Sensors = [0;pi/2;pi;3*pi/2] using DEIF Estimates 4 Perfon:nance of Stationary S‘ensors 4 Perfo‘rmance of Moving Se‘nsors
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Figure 5.13 Simulation 11: Stationary vs. Moving Sensotf Wariance of Measured Noise = 0.053

Analyzing simulation 12 by using Figure 5.14, notice thegpaeters for this simulation are found in
Table 5.15. Since the variance of the measured noise hasrmeased byi0 000% of the original value
in simulation 12, the stationary vehicles no longer obthmhest estimaté of the target. It is interesting to
note that the errofiz — || at one point gets as high 837 even though the stationary vehicles are placed
in optimal configuration, such as in simulation 8, Figure. 33 the other hand, the moving vehicles still
obtain a relatively good estimate of the location of thedard his proves numerically that the moving vehi-
cles obtain the best estimate, regardless of the trajeofdhe moving point, since the vehicles are always

at an optimal configuration, described by Proposition 1.
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Table 5.15 Parameters for Simulation 12 with Variance of $lieed Noise = 0.53

Number of Initial Position of Sensors Variance of Variance of
Sensors (radians) Process Noise | Measured Noise
Moving Sensors 4 0; 8 28 0.000 13 0.53
Stationary o ]
4 0; B %ﬂ 0.000 13 0.53
Sensors L .
Num of Sensors = 4 and Init Postion of Sensors = [0;pi/2;pi;3*pi/2] using DEIF Estimates 4 PeﬁorTance of Stationary S‘ensors 4 Perfo‘rmance of Moving Sensors
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Figure 5.14 Simulation 12: Stationary vs. Moving Sensotf Wariance of Measured Noise = 0.53

5.3.2.1 Nonoptimal position versus optimal position

In Figures 5.15, the simulations of 9-12 are displayed atingly along with the parameters in Table 5.16.
The top portion of Figure 5.15 displays the erfar — || of the stationary vehicles located in optimal
configurations. The bottom portion of Figure 5.15, displélys error||z — Z|| of the moving vehicles
located in optimal configurations.

With the aid of these results, it is easy to see that the moxéhicles obtain the best estimate, since the
error is always less thah2. Comparing the results of the stationary vehicles, as thanee of the measured
noise increases, the error [of — z|| also increases, therefore proving that the estiniaseindependent of

the trajectory of the moving target. The best estimai® still obtained with the moving vehicles.
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Table 5.16 Parameters for Simulations 9-12

|| x = xhat ||

|| x = xhat ||

Number of Initial Position of Sensors Variance of Variance of
Sensors (radians) Process Noise | Measured Noise
Moving Sensors 4 0; %i;w; 37“ 0.000 13 vary
Stationary M
4 0; B %ﬂ 0.000 13 vary
Sensors L
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Figure 5.15 Simulations 9-12: Stationary Sensors vs. Mp@ansors

5.3.3 Modifying the parameters of DEIF

The DEIF filter obtains its estimates based on the predictelamtual measurements made. A way to

modify which measurement is trusted more, the predictedtoighmeasurements, is done by modifying the

matrix R, the measurement error covariance. RA# the DEIF approaches zero, the actual measurement

z(k) is trusted more and more, while the predicted measuremémnisied less and less. Therefore, it would

be interesting to see how affects the estimate of the position of the moving target. Figure 5.16 displays

the results obtained.
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Table 5.17 Parameters for Simulations 13-16
Variance of Variance of -
Number of | Initial Position of Sensors| Initial Guess
Process Measured T
Sensors (radians) for [7‘ z}}
Noise Noise
] T
Moving Sensors 4 [0; Bim 37”} 0.000 13 0.000 053 {0 0}
Stationary T
4 [0- % T 37”} 0.000 13 0.000 053 [o 0}
Sensors
Table 5.18 Parameters for Simulations 17-20
Variance of Variance of -
Number of | Initial Position of Sensors| Initial Guess
Process Measured T
Sensors (radians) for [m y}
Noise Noise
] T
Moving Sensors 4 [0; B 37”} 0.000 13 0.53 {0 0}
Stationary , T
4 [0; Bim %ﬂ} 0.000 13 0.53 [0 0}
Sensors

In this section, the results obtained from simulations Q3v#l be compiled into graphs. This is done in
order to facilitate the analysis on havaffects the estimate. Graphs are provided for both stationary and
moving vehicles because it is important to be able to seedbdts obtained from the stationary vehicles
and moving vehicles due to changifiyy These graphs can be seen in Figure 5.16, the simulatiori20 1
are displayed accordingly, along with the parameters foh éaund in Tables 5.17 and 5.18.

From Figure 5.16, it can be seen that the moving sensorsnotitaibest estimate of the location of
the moving target, since the errps: — z|| is below0.2 for the values ofR tested. When the variance of
the measurement noise is low in this c8s#®0 053, then trusting the actual measurements gives the best
estimate for both the moving and the stationary vehiclesti@rother hand, when the variance of the noise
is high, for exampld.53, then the best result is obtained by the moving vehicles arglinng the actual
measurements more, since the collected data is good. Thisgpthat the actual measurements collected by

moving sensors are the best measurements, since the meViides are always in a their optimal positions.
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Figure 5.16 Simulations 13-20: Stationary vs. Moving Semsoth Variance of Measured Noise
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CHAPTER 6

CONCLUSION AND FUTURE
RESEARCH

In this paper it was proven that, in order to obtain the besthase of a moving target, it is desirable to have
the sensors move to an optimal position described by Priqosi (p.17). In finding this solution to the
problem of target tracking from a multisensor network, & baen proven in Chapter 2 that tteployment of
the agentshould maximize the probability of detection of the targelbé tracked or provide more accurate
estimations of the point source to be localized. Chaptengldps a method of obtaining the best possible
estimation of nonrandom parameters. Since it is desireabteack a moving target wittv number of
sensors, and since a method of obtaining the best estimaitimonrandom parameters has been developed
and fully understood, it follows that the best estimate ofavimg target is achieved by allowiny humber

of sensors to move, using decentralized motion planningdacdntralized estimation algorithms.

The solution to these problems has been built on motion abatgorithms for the network and data
fusion techniques which allowed decentralized implent@ria. Such a decentralized motion planning
control algorithm has been described and proved to convergghapter 3. In Chapter 4, the possible
estimation algorithms have been described, and the detizatt extended information filter was chosen
to be the estimator used in the simulations. Chapter 5 amtainumber of simulation supporting the
statement that the best estimate of a moving target is asthiby havingV number of moving sensors,
using decentralized motion planning and decentralizedhatibn algorithms.

The goal for future research is to implement a scalable dedezed estimation. Since the DEIF algo-
rithm uses collected information from all the sensors, dasentralized in the sense that it does not need a
fixed number of vehicles to function; the alogrithm adaptéstenvironment. Itis also interesting to restrict,

in simulations, the range of the sensors, making it closezdtlife enviornment.
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