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CHAPTER 1

INTRODUCTION

1.1 Background

The deployment of a large number of autonomous vehicles is becoming possible with the advances in devel-

opment of distributed and decentralized networks as well aselectromechanical sensors. The advancements

in the field of electromechanical sensors have allowed a number of sensors to become smaller and smaller

in dimensions, without affecting the quality of the reading. Having access to these miniature sensors makes

it possible to have many sensors on one vehicle, giving it theability to perform different tasks. In pursuit of

having a large number of autonomous vehicles, which can perform different tasks, many interesting prob-

lems have been encountered. Some of these problems include,but are not limited to, the following: data

fusion; sensor fusion methods, which in turn leads to the motivation of investigating implementations of

scalable decentralized estimation; and control algorithms.

The data fusion problem deals with the ability to combine information or knowledge from different

sources in order to maximize the usefulness of the information. This might be accomplished by the esti-

mation of specific states of a process or environments, through the combination of data from different or

multiple sensors. Sometimes data fusion algorithms are designed as a central process, in which information

from all the sensors is sent to one location. As the number of information sources increases, the processing

and bandwidth required by the central process may increase dramatically. This in turn will create a bottle-

neck in pursuit of creating large, centralized data fusion.This may bring the system to fail, which in turn

means the system fails as a whole [1].

A method to estimate a desired number of unknown parameters is to collect information/data via sensors

called sensor fusion methods. These sensors may be at different locations within an environment and/or in

1



context of this work, on board an autonomous vehicle. Once the data has been collected, it is crucial to be

able to process this information in some desired form. An attractive solution for processing the data is via

an implementation of a filter proposed by Mutambara. This solution is attractive because it is a scalable

decentralized estimation and control algorithm. Mutambara’s approach deals with a lot of concepts, each

of which will be explained individually in the following.Scalableimplies that not all available information

is needed in order to obtain a result. A decentralized network is usually viewed with its counter part,

centralized network. A centralized network is when all the collected information or data is processed by one

source. A decentralized network, on the other hand, is when the collected information or data is processed by

multiple process. There are advantages and disadvantages for both. One major advantage in the centralized

case is that the solution obtained is optimal because it has access to all the information at once. Hence,

one major disadvantage is that, when a significant amount of information has to be processed, the potential

of creating a bottleneck is high, making the decentralized network attractive. Since the information to be

processed is done by multiple process, a bottleneck can be avoided.

1.2 Motivation

In recent years, there has been a great motivation to study sensor networks. For example, detection and

localization of vapor-emitting sources [2], unmanned air vehicles [1], and the target tracking problem [3]

have been studied. Some of these applications have been motivated by the military, others by search and

rescue missions, and yet others for exploratory missions. Take, for example, one of the National Aeronautics

and Space Administration (NASA) missions to explore mars. Instead of sending human beings, NASA sent

unmanned vehicles like the one in Figure 1.1. According to NASA, the average distance between the Earth

and Mars is approximately 78 300 000 km, about half the distance from the Earth to the Sun. Compared

to the Moon, 380 000 km away, Mars is about 200 times the distance from Earth, which makes it difficult

to send humans, hence leaving the option of sending unmannedvehilces to explore Mars. It is important

that the unmanned vehicles sent on the mission have the ability collect and process data. These unmanned

robots are designed exactly for that, as shown in Figure 1.1,with all the senors on board the robot. Yet, the

unmanned robot is still limited. The unmanned robots, stillhave not achieved their highest potenial in terms

of sensing abilities; therefore, it is important to continue studying sensor networks.

2



Figure 1.1 The Mars Rover (Courtesy of NASA)

1.3 Objective, Approach, and Contribution

Our objective is to solve practical problems involving a large number of autonomous mobile robots. Fig-

ure 1.2 shows a target tracking problem with six mobile robots, solved by the algorithms described in this

paper. The proposed technique to best estimate the locationof a moving point in a two-dimensional space

consists of placing the autonomous vehicles in an optimal location. In order to process the information

collected by each robot, Mutambara’s decentralized extended information filter, which comes from the ex-

tended information filter (EIF), is used. The EIF is an algebraically modified form of the well known

extended Kalman filter used to process information/data.

3



−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

x position

y 
po

st
io

n
Performance of Moving Sensors

Actual Postion
Est Postion DEIF

(a) Frame 1

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

x position

y 
po

st
io

n

Performance of Moving Sensors

Actual Postion
Est Postion DEIF

(b) Frame 2

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

x position

y 
po

st
io

n

Performance of Moving Sensors

Actual Postion
Est Postion DEIF

(c) Frame 3

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

x position

y 
po

st
io

n

Performance of Moving Sensors

Actual Postion
Est Postion DEIF

(d) Frame 4

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

x position

y 
po

st
io

n

Performance of Moving Sensors

Actual Postion
Est Postion DEIF

(e) Frame 5

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

x position

y 
po

st
io

n

Performance of Moving Sensors

Actual Postion
Est Postion DEIF

(f) Frame 6

Figure 1.2 Target Localization
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CHAPTER 2

DEVELOPMENT OF MOTION
PLANNING ALGORITHM

2.1 Motivation

In finding a solution to the problem of target tracking from a multisensor network, it seems clear that the

deployment of the agents should maximize the probability ofdetection of the target to be tracked or provide

more accurate estimations of the point source to be localized. On the other hand, a solution to these prob-

lems should be built on motion control algorithms for the network and data fusion techniques which allow

decentralized implementations.

2.2 Fisher Information Matrix

We now derive the Fisher information matrix for the following situations:

(i) when the source is a (static) non-random parameter,

(ii) when the source is a dynamic random parameter under the influence of white noise.

In both cases the measurements are also perturbed by white noise.

2.2.1 The source/target as a nonrandom parameter

Let pj 2 Rn , 1 � j � N , denote the position ofN sensors moving on an areaQ � Rn and letq0 2 Q be

the unknown position of a source or target to be estimated by means of the measurementszj(q) = f(kq � pjk) + wj ; 1 � j � N ; q 2 Q : (2.1)

5



Here we assume thatwj are i.i.d. aswj s N (0; �2), 1 � j � N , and the functionf is defined according to

the particular sensors’ specifications as

f(r) = 8>>>>>><>>>>>>:
0; r � R0r� + 
1; R0 � r � R1R�1 + 
1; R1 � r;
where
1 = 
0 �R�0 for some0 < R0 < R1 and� 2 N [ f�1g.

In other words, the stacked vector of measurements at a certain instant is a random vector normally

distributed as Z � 266664 z1
...zN
377775 s N 0BBBB�266664 f(kq � p1k)

...f(kq � pNk)
377775 ; P1CCCCA ;

whereP = �2IN is the covariance matrix defined byIN , theN �N identity matrix. From now on, we will

use the shorthand notationZ � (z1; : : : ; zN )T , �Z(q) � (f(kq � p1k); : : : ; f(kq � pNk))T .

TheFisher information matrix(FIM) J is defined for nonrandom parameters as the following expected

value with respect to the conditional probability distribution p(Zjq):J , E �(rq log �(q)) � (rq log �(q))T �q=q0 ;
whereq0 is the true value of the source location or an estimate of it,rq = [ ��q1 ; ��q2 ℄T , and�(q) =p(z1; : : : ; zN jq) is thelikelihood functionassumed to be�(q) = 1p2� detP exp

��12(Z � �Z)TP�1(Z � �Z)� :
In order to computeJ , observe thatrq log �(q) = �12rq[(Z � �Z)TP�1(Z � �Z)℄ = (rq �Z)TP�1(Z � �Z) :

6



Then, J = E[((rq �Z)TP�1(Z � �Z)) � ((rq �Z)TP�1(Z � �Z))T ℄q=q0= E[(rq �Z)TP�1(Z � �Z)(Z � �Z)TP�1(rq �Z)℄q=q0= (rq �Z)Tq0P�1E[(Z � �Z)(Z � �Z)T ℄P�1(rq �Z)q0= (rq �Z)Tq0P�1(rq �Z)q0 :
In the particular caseP = �2IN , we haveJ = 1�2 (rq �Z)Tq0(rq �Z)q0 . The matrixG = (rq �Z)q0 is usually

called thesensitivity matrixassociated with the set of measurements.

Taking into account that the position of the source is composed ofn directions, we letq = (q1; q2; : : : ; qn)T .

ThenG 2 RN�n is defined as follows:Gji = �fj�qi jq=q0 ; fj , f(kzj � qk) ; 1 � j � N ; 1 � i � n;
or in matrix format G = 266664 �f1�q1 : : : �f1�qn

...
...�fN�q1 : : : �fN�qn
377775q=q0 :

The Fisher information matrixJ can be expressed asJ = 1�2GTG = 1�2 NXi=1 266664 (�1fi)2 : : : (�1fi)(�nfi)
...

. ..
...(�nfi)(�1fi) : : : (�nfi)2

377775 ; (2.2)

where we denote�jfi = �fi�qj jq=q0, 1 � i � N , 1 � j � n.

2.2.2 The source/target as a (dynamic) random parameter

Suppose a random parameterq is jointly Gaussian with the stacked vector of measurementsZ. That is,264qZ375 s N 0B�264 �qH �q375 ; P1CA ;
7



where Z = Hq + w ; Z = 266664 z1...zN
377775 ; H = 266664H1;

...HN
377775 ; w = 266664w1;

...wN
377775 ; P = 264Pqq PqZPZq PZZ375 ;

and where we asume thatP is invertible,E[w℄ = 0, E[qwT ℄ = 0 andE[wwT ℄ = R.

Then, this next result is obtained from [4], we have thatPqq = E[(q � �q)(q � �q)T ℄ ;PqZ = E[(q � �q)(H(q � �q) + w)T ℄ = PqqHT ;PZZ = E[(Z � �Z)(Z � �Z)T ℄ = E[(H(q � �q) + w)(H(q � �q) + w)T ℄ = HPqqHT +R ;
where the expected value is taken with respect to the probability distribution p(q; Z).

The minimimum mean square estimator is given byq̂MMSE � q̂ = E[qjZ℄ = �q + PqZP�1ZZH(q � �q) ;
and the (conditional) covariance of the error is given byPqqjZ = E[(q � q̂)(q � q̂)T jZ℄ = Pqq � PqZP�1ZZPZq :

On the other hand, the FIM for random parameters,JR, is defined as the expected valueJR = �E[rqrTq log p(q; Z)℄ = E[rq log p(q; Z)(rq log p(q; Z))T ℄q=q0 ;
whereq0 is the true value of the source location or an estimate of it and the expected value is taken with

respect top(q; Z). Under the above assumption, we have thatp(q; Z) = 1p2� detP exp0B��12[(q � �q)T ; (q � �q)THT ℄P�1 264 (q � �q)H(q � �q)3751CA :
8



If we denote by P�1 = T = 264Tqq TZqTqZ TZZ375 ;
then rTq log p(q; Z) = �12rq �(q � �q)TTqq(q � �q) + (Z �H �q)TTZq(q � �q)+(q � �q)TTqZH(q � �q) + (q � �q)THTTZZH(q � �q)� :
In this way, JR = Tqq = (Pqq � PqZP�1ZZPZq)�1 = (PqqjZ)�1 :

It is possible to derive a relationship between the matrixJR we have just obtained, and the FIM for

nonrandom parameters,JNR, of Section 2.2.1. We reproduce it here for the sake of completeness.

LetW denoteW = PqZP�1ZZ . Then we can writePqqjZ = Pqq�WPZZW T . After some manipulations,W = PqqHT (HPqqHT +R)�1 () W (HPqqHT +R) = PqqHT ()WR = PqqHT �WHPqqHT = (I �WH)PqqHT () W = (I �WH)PqqHTR�1 :
On the other hand,I �WH = [Pqq �WHPqq℄P�1qq = [Pqq �WPZZP�1ZZHPqq℄P�1qq= [Pqq �WPZZW T ℄P�1qq = PqqjZP�1qq ; (2.3)

which in particular implies W = PqqjZHTR�1 : (2.4)

Now, using the definition ofW we obtainPqqjZ = Pqq �WPZZW T = Pqq � 2WPZZW T +WPZZW T= Pqq � PqqHTW T �WHPqq +WHPqqHTW +WRW T= [I �WH℄Pqq[I �WH℄T +WRW T :
9



Now, using Equations (2.3) and (2.4),PqqjZ = PqqjZP�1qq PqqjZ + PqqjZHTR�1HPqqjZ :
Finally, pre- and postmultiplying this equation byP�1qqjZ , we obtain the expressionP�1qqjZ = P�1qq +HTR�1H ;
that is, JR = P�1qq + JNR :
2.2.2.1 Dynamic random target and Kalman filters

For a dynamic parameter that is modeled asqk = Fkqk�1 + vk ;
for which we take measurements Zk = Hkqk + wk ;
and such thatqk andZk are jointly Gaussian distributed, and independent for allk � 1, we can say:

(i) The FIM is the sum of the information matrices obtained for each step independently:JR(k) = kXl=1 JR;l = kXl=1 P�1qqjZ(l)+HTl R�1Hl = kXl=1 P�1qqjZ(l)+JNR;l = kXl=1 P�1qqjZ(l)+JNR(k) :
(ii) What we are going to do in the following is maximize the information of the dynamic filter

by maximizing the information ofJNR;l 8l � 1.

2.3 Optimal Sensor Placement

The FIM defines theCramer-Rao lower bound(CRLB), J�1 = CRLB, which is known to bound the

covariance of the error
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J�1 � E[(q̂(z1; : : : ; zn)� q0)(q̂(z1; : : : ; zn)� q0)T ℄ ; (2.5)

when the estimator̂q is unbiased.1

For efficient estimators, this inequality becomes an equality. Then the minimization of the covariance

of the error with respect to the sensors’ positions is equivalent to the maximization of the FIM. Here, the

maximization of a matrix is understood as the maximization of det J . In the following, we compute its

particular value forn = 2, 3 for the estimation of NONRANDOM parameters.

2.3.1 Two-dimensional configuration space

The determinant ofJ is found as follows:�2 detJ = �PNi=1(�1fi)2� �PNj=1(�2fj)2�� �Pi(�1fi)(�2fi)�2=Xi (�1fi)2(�2fi)2 +Xi 6=j (�1fi)2(�2fj)2� �Pi(�1fi)2(�2fi)2 +Pi 6=j(�1fi)(�2fi)(�1fj)(�2fj)�=Xi 6=j �(�1fi)2(�2fj)2 � (�1fi)(�2fi)(�1fj)(�2fj)�=Xi�j �(�1fi)2(�2fj)2 + (�1fj)2(�2fi)2�� 2Xi�j (�1fi)(�2fi)(�1fj)(�2fj)=Xi�j ��1fi�2fj � �2fi�1fj�2 :
The terms in the last summand can be identified asXi�j �(vi � vj) � (0; 0; 1)�2 =Xi�j kvi � vjk2 =Xi�j kvik2kvjk2 sin2 �ij;

where we setvi = (�1fi; �2fi; 0), vj = (�1fj; �2fj; 0). The angle�ij is the one between the vectorsvi
andvj . The interpretation ofkjvi � vjk is the area of the parallelogram formed byvi andvj .

1This is true for the type of MMS estimators we work with.

11



In this way, we have obtained the general expressiondet J = 12�2 Xi;j kvik2kvjk2 sin2 �ij : (2.6)

Let us develop further this expression fordet J as a function depending on the particular modelingf of

our sensors. We have:�1fi = �fi�q1 jq=q0 = 8>><>>: ��q1 kpi � qk�jq=q0 ; R0 ;� kpi � q0k � R10 ; otherwise:��q1 kpi � qk�jq=q0 = ��q1 �(p1i � q1)2 + (p2i � q2)2��2jq=q0= ��2 �(p1i � q10)2 + (p2i � q20)2��2�1 2(p1i � q10) = ��(p1i � q10) �(p1i � q10)2 + (p2i � q20)2��2�1 :
And analogously, ��q2 kpi � qk�jq=q0 = ��(p2i � q20) �(p1i � q10)2 + (p2i � q20)2��2�1 :
Therefore,(�1kpi � qk�q=q0)2 + (�2kpi � qk�q=q0)2 = �2(p2i � q20)2(��2) �(p1i � q10)2 + (p2i � q20)2�= �2kpi � q0k2+2��4 = �2kpi � q0k2(��1):

In this way, we can writedet J = 12�2 XR0 < kpi � q0k < R1;R0 < kpj � q0k < R1 �4kpi � q0k2(��1)kpj � q0k2(��1) sin2 �ij ;
where�ij is the angle between the vectorswi = �kpi � q0k2(��1)(pi � q0) ; wj = �kpj � q0k2(��1)(pj � q0) ;
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which are proportional topi � q0 andpj � q0.
2.3.1.1 Analysis ofdet J
For� = 1, R0 = 0, R1 = diamQ, we analyse the maxima of the particular expression ofdetJ :detJ = 12�2 Xi;j sin2 �ij :

Let us denote by�i the angle of the vectorpi � q0 with the horizontal. Then,�ij = �i � �j, 8i; j, and

we can write f(�1; �2; : : : ; �N ) = 4�2 detJ = 2Xi;j sin2(�i � �j) : (2.7)

2.3.1.2 Critical points

Any critical point off satisfies���k Xi;j sin2(�i � �j) = 0 () Xi sin[2(�k � �i)℄ = 0 ; k = 1; : : : ; n ;
which is equivalent toXi sin[2(�k � �i)℄ = sin 2�kXi 
os 2�i � 
os 2�kXi sin 2�i= "(
os 2�k; sin 2�k; 0)�Xi (
os 2�i; sin 2�i; 0)# � e3 = 0 ; 8k:
This implies

Pi (
os 2�i; sin 2�i; 0) = 0, or the vectors(
os 2�k; sin 2�k) are aligned. That is, a critical

point satisfies either NXi=1 
os 2�i = 0 or
NXi=1 sin 2�i = 0 :

Or the vectorsf(
os �k; sin �k)gNk=1 are perpendicular or coincident among them.
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2.3.1.3 Tight bounds forf
Let aij denoteaij = j�i � �j j = aji. For anyi; j; k we havesin2 aik = (sin((�i � �j) + (�j � �k)))2 = (sin(�i � �j) 
os(�j � �k) + 
os(�i � �j) sin(�j � �k))2= sin2 aij 
os2 ajk + 
os2 aij sin2 ajk + 12 sin[2(�i � �j)℄ sin[2(�j � �k)℄ :
Therefore, the critical points off satisfy the relationXk sin2 aik = sin2 aij  Xk 
os2 ajk!+ 
os2 aij  Xk sin2 ajk! ; 8i; j :
In particular, for anyi; j such thatsin2 aij 6= 0, we haveXk sin2 aik+Xk sin2 ajk = sin2 aij  Xk 
os2 ajk +Xk 
os2 aik!+
os2 aij  Xk sin2 ajk +Xk sin2 aik! :
That is, denotingX =Pk sin2 aik +Pk sin2 ajk, we have obtained the relationX = (2N �X) sin2 aij +X 
os2 aij ;
which impliesX = N whensin2 aij 6= 0.

From here, it is clear that if we can establish a bijectionB : f1; : : : ; Ng ! f1; : : : ; Ng, such thatsin2 aiB(i) 6= 0, 8i, then we have2Xi;j sin2 aij =Xk sin2 a1j +Xk sin2 aB(1)j++Xk sin2 a2j +Xk sin2 aB(2)j + � � �+Xk sin2 aNj +Xk sin2 aB(N)j = N2 :
Consider all possible mapsM : f1; : : : ; Ng ! f1; : : : ; Ng such thatsin2 aiM(i) 6= 0. From this finite

number of maps there exists oneB for which the subset of indicesI = fi1; : : : ; iLg, whereB is bijective is

maximal. In other words,L is the largest cardinal of a subset of indicesJ where a mapM can be bijective.

After a possible reordering of indices, we can assume thatfi1; : : : ; iLg = f1; : : : ; Lg. Let us denote

by B : f1; : : : ; Lg ! fB(1); : : : ; B(L)g the restriction ofB which is a bijection. Then, because of the
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symmetry ofsin2 aij , we can assume thatfB(1); : : : ; B(L)g = f1; : : : ; Lg.
Suppose1 62 fB(1); : : : ; B(L)g. Then,

(i) If B(1) 62 f1; : : : ; Lg, then we can define a newM such thatMjf1;:::;Lg = B andM(B(1)) =1. Since we can assure thatsin2 aB(1)1 = sin2 a1B(1), this contradicts the assumption of

the largest cardinalityL.

(ii) If B(1) 2 f1; : : : ; Lg, then we can define a new�B such that�Bjf1;:::;LgrfB(1)g = Bjf1;:::;LgrfB(1)g
and �B(B(1)) = 1.

Consider now a particular indexi 62 f1; : : : ; Lg. We have thatsin2 aij = 0 for all j 62 f1; : : : ; Lg.
Otherwise, we can extendB to a mapM such thatM(i) = j, sin2 aij 6= 0, which is a contradiction with

the maximality condition. Moreover,8l 2 f1; : : : ; Lg such thatsin2 ail 6= 0, so it must be thatsin2 aiB�1(l) = 0 ; sin2 aiB(l) = 0 :
Otherwise, we can define new maps as:

(i) Mjf1;:::;LgrfB�1(l)g = B ; M(B�1(l)) = i ; M(i) = l ;
(ii) Mjf1;:::;Lgrflg = B ; M(l) = i; M(i) = B(l) ;

both of which violate the condition of maximality ofL.

This implies that2Xk sin2 aik = 2 LXk=1 sin2 aik = (sin2 ai1 + sin2 aiB(1)) + � � �+ (sin2 aiL + sin2 aiB(L)) � L � N :
Finally, this allows us to conclude that at a critical point,f(�1; : : : ; �N ) = (Xk sin2 a1j +Xk sin2 aB(1)j) + � � � + (Xk sin2 aLj +Xk sin2 aB(L)j)+ 2Xk sin2 a(L+1)j + � � �+ 2Xk sin2 aNj � LN + (N � L)N = N2 :
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In particular, this implies thatf(�1; : : : ; �N ) � N2 for any angle configuration.

2.3.1.4 Some particular global maxima� Define�k = �N (k � 1), 1 � k � N . Then,(�1; : : : ; �N ) is a maximum forf .

First, we see that(�1; : : : ; �N ) is a critical point. Takex0 = e
2�iN , which satisfiesxN0 = 1.

In particular, sincex0 6= 1, it must bep(x0) = 0, wherep(x) = xN�1 + xN�2 + � � � + x+ 1 ; p(x)(x� 1) = xN � 1 :
Therefore,

ei 2�(N�1)N + ei 2�(N�2)N + � � �+ ei 2�N + 1 = 0 ;
and this is equivalent toNXk=1 
os(2 �N (k � 1)) = 0 ; NXk=1 sin(2 �N (k � 1)) = 0 ;
which implies that(�1; : : : ; �k) is a critical point.

Secondly, it is possible to define a bijection on our set of indices so thatB(i) = i + 1,1 � i � N � 1, B(N) = 0 with sin2 aiB(i) = sin2( �N ) 6= 0, N � 2. By the previous

reasoningf(�1; : : : ; �N ) = N2, and our configuration is a global maximum.� Following the same arguments as above, it is easy to see that�k = l�N (k � 1), 1 � k � N ,

for somel 2 Z is also a critical point and a maximum. In particular, we havethat �k =2�N (k � 1), 1 � k � N , which divides the circle in equal angles2�N , and is a maximum forN � 3.� Consider an even number of sensorsN . Then, the configuration�2k+1 = �2 and�2k = 0
defines a maximum, too. It is easy to see that it is critical because(
os 2�l; sin 2�l) are

aligned and we can define a bijectionB(2k) = 2k + 1, 1 � k � N=2, B(N) = 1, such

thatsin2 alB(l) = 1, 8l.� Finally, observe that because of the periodicity ofsinx and the symmetry ofsin2 x, given
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any maximum(�1; : : : ; �N ), the setf(�1 + k1�; : : : ; �N + kN�) j k1; : : : ; kN 2 Zg.
In view of the first item of the former list and the characterization of the critical points off , we have the

following result:

Proposition 1 Given� 2 [0; 2�), define�k = �N (k� 1), 1 � k � N . Then,(�1; : : : ; �N ) is a critical point

of f if and only if� 2 f�l j 0 � l � N � 1g.
Proof: Since �N (k � 1) are not all perpendicular or coincident, it must beNXk=1 
os(2 �N (k � 1)) = 0 ; NXk=1 sin(2 �N (k � 1)) = 0 ; ()NXk=1 
os(2 �N (k � 1)) + i NXk=1 sin(2 �N (k � 1)) = 0 ()NXk=1 e

2�N (k�1) = e
2�N (N�1) + � � � + e

2�N + 1 = p(e2�N ) = 0 :
But the only roots ofp(x) arefe2�N l j l = 0; : : : ; N � 1g.

A consequence of this proposition is that the subdivision of[0; �℄ into equal angles does not give a

critical point off restricted to that interval. Moreover, forN sensors and2� > � > �N (N � 1), we can

achieve the global maxima at a configuration where the anglesare not equal.

2.3.2 Three-dimensional configuration space

Now, that the two-dimensional configuration space has been understood, it is interesting to analyze the three-

dimensional configuration space. This two-dimensional configuration can be used in developing algorithms

for objects modeled in the two-dimensional space, for example, vehicles estimating the location of a target

in an unknown environment.

Understanding the three-dimensional configuration space is interesting because it occurs naturally in

real world applications. For example, an interesting problem to study in the three-dimensional space would

be the development of a decentralize three-dimensional configuration target estimation algorithm, using he-

licopters. Since it follows naturally from the two-dimensional configuration problem, using vehicles.
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The determinant ofJ in (2.2) forn = 3 can be computed to be�2 detJ =Xi;j;k(�1fi)2(�2fj)2(�3fk)2 +Xi;j;k(�1fi)(�2fi)(�2fj)(�3fj)(�3fk)(�1fk)+Xi;j;k(�2fj)(�1fj)(�1fi)(�3fi)(�3fk)(�2fk)�Xi;j;k(�1fi)(�3fi)(�2fj)2(�3fk)(�1fk)�Xi;j;k(�2fk)(�3fk)(�3fj)(�2fj)(�1fi)2�Xi;j;k(�2fi)(�1fi)(�1fj)(�2fj)(�3fk)2 ;
which, after regrouping terms, becomes�2 detJ =Xi;j;k(�1fi)(�2fj)(�3fk) [(�1fi)(�2fj)(�3fk) + (�1fk)(�2fi)(�3fj) + (�1fj)(�2fk)(�3fi)�(�1fk)(�2fj)(�3fi)� (�1fi)(�2fk)(�3fj)� (�1fj)(�2fi)(�3fk)℄ :
This expression reduces to�2 detJ =Xi;j;k(�1fi)(�2fj)(�3fk) [(vi � vj) � vk℄ ;
with vi , (�1fi; �2fi; �3fi) ; 1 � i � N :
Note that this formula is analogous to that for the two-dimensional configuration space. We can further

simplify the determinant as follows:Xi;j;k(�1fi)(�2fj) (�3fk)[(vi � vj) � vk℄ == Xi�j;k(�1fi)(�2fj)(�3fk) [(vi � vj) � vk℄ + Xi�j;k(�1fi)(�2fj)(�3fk) [(vi � vj) � vk℄= Xi�j;k(�3fk) [(�1fi)(�2fj)� (�1fj)(�2fi)℄ (vi � vj) � vk;
18



this givesXi�j�k(�3fk) [(�1fi)(�2fj) �(�1fj)(�2fi)℄ (vi�vj)�vk+ Xi�j;k�j(�3fk) [(�1fi)(�2fj)� (�1fj)(�2fi)℄ (vi�vj)�vk;
where the last term can be expressed asXi�j;k�j(�3fk) [(�1fi)(�2fj)� (�1fj)(�2fi)℄ (vi � vj) � vk =Xk�i�j(�3fk) [(�1fi)(�2fj)� (�1fj)(�2fi)℄ (vi � vj) � vk+Xi�k�j(�3fk) [(�1fi)(�2fj)� (�1fj)(�2fi)℄ (vi � vj) � vk =Xi�j�k(�3fi) [(�1fj)(�2fk)� (�1fk)(�2fj)℄ (vj�vk)�vi+ Xi�j�k(�3fj) [(�1fi)(�2fk)� (�1fk)(�2fi)℄ (vi�vk)�vj :
Now using that (vj � vk) � vi = �(vk � vj) � vi = �(vj � vi) � vk = (vi � vj) � vk(vi � vk) � vj = �(vk � vi) � vj = �(vi � vj) � vk ;
we get�2 det J = Xi�j�k ((�3fk) [(�1fi)(�2fj)� (�1fj)(�2fi)℄+(�3fi) [(�1fj)(�2fk)� (�1fk)(�2fj)℄ + (�3fj) [(�1fk)(�2fi)� (�1fi)(�2fk)℄) (vi � vj) � vk;
which is equivalent todetJ = 1�2 Xi�j�k j(vi � vj) � vkj2 = 1�2 Xi�j�k kvik2kvjk2kvkk2 sin2 �ij 
os2 �ij;k :
This expression is completely analogous to that of (2.6), where nowj(vi � vj) � vkj has the interpretation

of the volume generated by the vectorsvi, vj , andvj . Here�ij is the angle betweenvi andvj , and�ij;k is

the angle betweenvi � vj andvk.
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As in the two-dimensional case, it is easy to see thatdet J = 16�2 Xi;j;k j(vi � vj) � vkj2 :
The conjecture isThat for ann-dimensional configuration space,detJ = 1�2 Xi1�i2�����in det(vi1 ;vi2 ; : : : ;vin)2 ;
wherevi = (�1fi; : : : ; �nfn), 1 � i � n.

In particular, for the3-D case, and our particular sensing functions, we havedetJ = 16�2 X264R0 < kpi � q0k < R1R0 < kpj � q0k < R1R0 < kpk � q0k < R1375�6kpi � q0k2(��1)kpj � q0k2(��1)kpk � q0k2(��1) sin2 �ij 
os2 �ij;k :
For� = 1, this reduces todetJ = 16�2 X264R0 < kpi � q0k < R1R0 < kpj � q0k < R1R0 < kpk � q0k < R1375 sin2 �ij 
os2 �ij;k :
2.3.2.1 Analysis ofdet J
For the particular cases� = 1, R0 = 0, R1 = +1, we havef(v1; : : : ;vN ) = 6�2 det J =Xi;j;k j(vi � vj) � vkj2 :
In the following we analyze the critical points and global maxima off .

2.3.2.2 Critical points

The functionf has been defined on points of the sphereS2 � R3 . That is,f : S6N ! R. Therefore, the

critical points satisfy
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Lwkf = 0 ; 8wk 2 TvkS2 () Xi;j (vi;vj ;vk)(vi � vj) �wk = 0 ; 8wk ? vk ;
where we have used the notation(vi;vj ;vk) � (vi � vi) � vk.

In other words, vTk 24Xi;j (vi � vj)(vi � vj)T35wk = 0 ; 8wk ? vk :
If we denote� =Pi;j �i;j =Pi;j(vi � vj)(vi � vj)T , then(v1; : : : ;vN ) is a critical point if and only ifvTk �wk = 0 ; 8wk ? vk ; 8k ; where� = �T � 0 :
This leads to the following characterization:

Lemma 2 (v1; : : : ;vN ) is a critical point off if and only ifvk is an eigenvector of� 8k.

Proof: Clearly, ifvk is an eigenvector of�, thenvTk �wk = �vTkwk = 0 ; 8wk ? vk ; 8k :
On the other hand, considervk such that the above equation is verified. Since� = �T , there exists a basis of

orthonormal vectorsfu1;u2;u3g which are eigenvectors of� with corresponding eigenvaluesf�1; �2; �3g.
In this basis, we can expressvk = �1u1 + �2u2 + �3u3 for some�i 2 R, i = 1; 2; 3. Now definew12k = ��2u1 + �1u2 ; w23k = ��3u2 + �2u3 ; w13k = ��3u1 + �1u3
Sincevk ? w12k ;w13k ;w23k , then vTk �w12k = ��1�1�2 + �2�1�2 = 0 ;vTk �w23k = ��2�2�3 + �3�3�2 = 0 ;vTk �w13k = ��1�1�3 + �3�3�1 = 0 :
If �i = �j = 0 for i; j 2 f1; 2; 3g, thenvk is proportional to an eigenvectorul and is itself an eigenvector.
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If 9�i; �j 6= 0 and the third component�l = 0, then from the equationvk�wijk = 0 we have�1 = �2 andvk is an eigenvector with eigenvalue�1. If �i 6= 0 for all i, a similar argument leads to�1 = �2 = �3 = �
and again,vk is an eigenvector associated with�.
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CHAPTER 3

DECENTRALIZED CONTROL LAW

3.1 Introduction

It was proved in the previous section that, in order to achieve the global maxima off(�1; � � � ; �N ) defined

by Equation (2.7),N number of sensors have to be in a certain configuration summarized by Proposition 1.

Therefore, finding the global maxima of the FIM implies obtaining the best estimate possible of a stationary

target’s location. Then, the objective is to develop a decentralized control law such that�k = 2�N (k � 1) for 1 � k � N: (3.1)

which divides the circle into equal angles of2�N for N 2 N. There are two possible control laws that divides

the circle into equal anglesGo Towards MidpointandGo Towards Center of Voronoi Cell. These two laws

will be defined and proved in the following sections.

3.2 Algorithm for Control Laws

3.2.1 Law 1: Go towards midpoint

The first control law is defined by8>><>>:p0i = pi+1+pi�12 ;�0i = �i+1+�i�12 for 1 � i � N; (3.2)
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such that i+ 1 6= i� 1; �i = ℄(pi; pi�1); NXi=1 �ki = 2� 8k: (3.3)

To get a geometric representation of the angles�i, refer to Figure 3.1.

Figure 3.1 Definition of Angles

Under the restrictions described by the set of Equations (3.3), a point on a circle can be represented locally

on a line. The goal is to divide the circle into equal angles of2�N . This is acheived by using the points(pi; pi�1) on a line, which describe the angle�i. In order to obtain a better intuition on how the angle�i can

be described by the points(pi; pi�1), refer to Figure 3.2.

Figure 3.2 Control Law 1
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Therefore, in order to divide the circle into equal angles of�i wherei = f1; 2; � � � ; Ng, the distance betweenfpi, pi�1g andfpi, pi+1g must be equal. Hence,jpi � pi�1j = jpi+1 � pijjpi � pi�1j � jpi+1 � pij = 0:
Sincepi�1 < pi�1 < pi+1 holds, it follows thatpi � pi�1 � pi+1 + pi = 02pi � pi�1 � pi+1 = 0:
Therefore, solving forpi gives pi = pi�1 + pi+12 ; (3.4)

which gives the new location ofpi and will be denoted asp0i.
The question that arises now, is: How does a pointpi on a line map to an angle�i? Notice thatdi = �iR2� ! L = 2�R and �! d:

Therefore, d = �2�R2� = �R:
Also, when,R = 1, we havedi = �i. So to get equal angles, we just take�0i = �i+1 + �i�12 ; (3.5)

where�0i denotes the new angle of�i after the calculation has been done.
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3.2.2 Law 2: Go towards the center of Voronoi cell

The second control law is defined by8>>><>>>:p0i = 14 �pi�1 + 2pi + pi+1��0i = 14 ��i�1 + 2�i + �i+1� for 1 � i � N: (3.6)

Using the restriction described by Equation (3.3), a point on a circle can be represented locally on a line.

Since the goal is to divide the circle into equal angles of2�N , it will be acheived once again by using the

pointsfpi; pi�1g which describe the angle�i, as seen in Figure 3.3. This approach is slightly different from

the first control law, since Voronoi partitions are being used to divide the space into equal parts.

Figure 3.3 The Represention of Points on a Circle to Points ona Line

So only viewingfpi�1; pi+1g as neighbors, the center of the voronoi partition is described asp0i = 12 �pi�1 + pi2 + pi + pi+12 � : (3.7)
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Simplifying Equation (3.7) gives p0i =12 �pi�12 + pi2 + pi2 + pi+12 �=12 �pi�12 + 2pi2 + pi+12 �=14 �pi�1 + 2pi + pi+1� : (3.8)

Following the same logic, to find�0i, as for control law 1, it follows that�0i = 14 ��i�1 + 2�i + �i+1� :
3.3 Convergence of Algorithms

Now that the algorithm have been defined, it is desirable to understand how each algorithm behaves as time

progresses. Therefore, in the following section the first and second control laws will be analyzed.

3.3.1 Convergence of Control Law 1

It is important to model the evolution of all the anglesf�1(k); �2(k); � � � ; �N (k)g are described by�(k)
where �(k) = ��1(k); �2(k); � � � ; �N (k)�T 8 k � 0; (3.9)

such that NXi=1 �i(k) = 2� 8 k:
The evolution of the statesf�1(k); �2(k); � � � ; �N (k)g are described by�(k + 1) = Bi�(k); (3.10)
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where the transition matrixB1 is defined by

B1 = 266666666664
0 12 0 � � � 1212 0 12 � � � 0
...

. . . . . . � � � ...0 � � � 12 0 1212 � � � 0 12 0
377777777775 : (3.11)

There exist a matrix called the basic circulant matrix and this matrix possesses many attractive proper-

ties. It is important to note thatB1 can be broken up into the basic circulant matrixC,B1 = 12C + 12CN�1
whereC is known as C = 266666666664

0 1 0 � � � 00 0 1 � � � 0
...

...
.. . . ..

...0 0 � � � 0 11 0 0 � � � 0
377777777775NxN :

3.3.1.1 Eigenvalues of Control Law 1

Analyzing the eigenvalues of the control law 1, gives insight on the convergence of the system as time

progresses. By analyzing the eigenvalues of control law 1, it will be shown in this section that control law

1 has two oscillating points. Therefore, since the control law 1 has two oscillation points, it is important to

modify it, in order to obtain a converging algorithm. The eigenvalues are given byp(�) = �����I � C����, where

p(�) = �������������
� �1 � � � 00 . . . � � � ...
...

. . . .. . �1�1 � � � 0 �
������������� :
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Since�������������
� �1 � � � 00 .. . � � � ...
...

.. . . .. �1�1 � � � 0 �
�������������= � �������������

� �1 � � � 00 . . . � � � ...
...

. . . .. . �10 � � � 0 �
�������������+ (�1)(�1)N+1 �������������

�1 0 � � � 0� . . . .. .
...

...
.. . 0� � � �1

������������� == ��N�1 + (�1)N (�1)N�1 = �N � 1:
It follows that the, eigenvalues can be defined in a differentform asp(�) = �N � 1 = 0 , � 2 fe 2�ikN j 1 � k � Ng:
One of the properties that the basic circulant matrixC posses is that it is diagonalizable inC . Being a

diagonalizable matrix implies the existence of a basis of the eigenvectors, which are orthogonal.

With C possessing the property of being diagonalizable, and also sinceB1 can be defined byC, then

the eigenvectors ofB1 can be found as follows:Be =12C(I + CN�2)(e) = 12C(e+ �N�2e) ==12�(1 + �N�2)e:
Therefore the eigenvalues forB1 are clearlyf12�(1 + �N�2) j � = e 2�ikN ; 1 � k � Ng: (3.12)

It is desirable to display the eigenvalues ofB1 in a different form, in order to facilitate the analysis. It can

be seen that the eigenvalues ofB1 are also
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12�(1 + �N�2) = 12(e 2�ikN + e 2�ikN � e�4�ikN )= 12(e 2�ikN + e�2�ikN )= 
os 2�kN : (3.13)

Notice that, whenN is odd, only
os 2�kN = 1 and othersj�j � 1. Therefore, no oscillation occurs whenN
is odd. On the other hand, whenN is even we have8>><>>:
os 2�N2N = �1
os 2�NN = 1
and the othersj�j < 1. Therefore, it is interesting to analyze in detail whenN is even, which impliesN = 2k 8k.

3.3.1.2 Convergence whenN = 2k
Let f1;v; e3; :::; eng be the basis of eigenvectors ofB. Since all the eigenvalues are distinct, there exists a

basis of orthogonal eigenvectors. Therefore, we can choose1T = (1; 1; � � � ; 1) such that B11 = 1wT = (�1; 1;�1; � � � ;�1; 1) such that B1v = �v
and

1Tv = 0 1Tei = 0 = vTei = eiTej such that i 6= j:
Then it can be stated that �(0) = �1+ �v + NXi=3 
iei: (3.14)
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Therefore, 1T�(0) = 8>><>>:PNi �(0)�1T1 = �N =) � = 1N NXi �(0); (3.15)

and alsovT�(0) = 8>><>>:PN2i=1�2i(0)�PN2i=1�2i�1(0)�vTv = �N =) � = 1N N2Xi=1(�2i(0)��2i�1(0)): (3.16)

From the definition of�(k) in Equation (3.10), and by subsituting�(0) from Equation (3.14), we get�(1) = B1�(0) = B1[�1+ �v + NXi=3 
iei℄= �1+ �v + NXi=3 
i�iei�(2) = B1�(1) = B1[�1+ �v + NXi=3 
iei℄= �1+ �v + NXi=3 
i�2i ei� � �
In general, 8>><>>:�(2k) = �1+ �v +PNi=3 
i�2ki ei;�(2k) = �1� �v +PNi=3 
i�2k+1i ei: (3.17)

Observe from Equation (3.17) that there exists oscillationabout8>><>>:�1+ �v = w1�1� �v = w2; (3.18)
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where w1(2k) = w2k�1 = 2N N2Xi=1 �2i(0) = wew2k�1 = w2k = 2N N2Xi=1 �2i�1(0) = wo:
Therefore, there exists oscillation about these two configurations:

w1 = 266666666664
wowewo
...we
377777777775 w2 = 266666666664

wewowe
...wo
377777777775 :

3.3.2 Convergence of Control Law 2

Since it is undesirable to have an unstable system, or in other words a system that oscillates between two

points,B2 is defined as a modification ofB1, which brings us to our second control law. Observe that

B2 =
2666666666666664
12 14 0 � � � 0 1414 12 14 � � � � � � 0
...

. .. . . . . . .
...

...
. . . . . . . . .

...
...

. . . . . . 1414 � � � � � � � � � 14 12
3777777777777775 : (3.19)

It is interesting to notice thatB2 is not much different fromB1. Actually, as it was stated before,B2 and

is defined by usingB1. It is also beneficial to defineB2 by B1 because the eigenvalues ofB1 have already

been defined by Equation (3.12). WhereB2 is defined asB2 = 12I + 12B1 = 12(I +B1):
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3.3.2.1 Eigenvalues of Control Law 2

The eigenvalues ofB2 can be found by observing thatB2 =f12(1 + �) j � eigenvalues ofB1g=f12(1 + 
os 2�kN ) j 1 � k � Ng:
Therefore, 0 � 12 �1 + 
os 2�kN � � 1:
Notice that there is only one eigenvalue at 1.

3.3.2.2 Convergence

Let f1; e2; � � � ; eNg be the basis of eigenvectors:�(0) = �1+ NXi=2 : (3.20)

Again, � = Pi�(0)N = 2�N
becauseB2 is symmetric andB2 � 1 = 1.

Once again, from the definition of�(k) in Equation (3.10), and by substituting�(0), from Equation

(3.20), we get �(k) = Bk�12 �(0) = �1+Xi 
i�k�1i ei:
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This yields

�(k)) �1 = 2�N 2666666641......1
377777775 ;

which is convergence of the exponential type.
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CHAPTER 4

ESTIMATION FILTER

4.1 Motivation

In summary, up to this point, the theory behind optimal sensor placement for a single target location es-

timation has been developed. This was done by first derivingJ , the Fisher informtion matrix (FIM) for

nonrandom parameters, where the FIM defines the Cramer-Rao lower bound (CRLB),J�1 = CRLB. It

is interesting to analyze the CRLB since it is known to bound the covariance of the error, defined by (2.3).

Therefore, the aproach chosen to minimize the CRLB was understood as the maximization of the FIM. From

this, the optimal angle was determined, with the horizontal, for N number of sensors, defined as�N = 2�N .

Therefore, we have the ability to obtain the best information possible by placing the sensors in the optimal

position. It is now necessary to find a filter that will processthis information. In the following sections,

the Kalman filter and informtion filter will be derived in detail. Then the extended information filter (EIF),

extended Kalman filter (EKF), and decentralized extended information filter algorithms will be presented.

From these choices of filters, the decentralized extended information filter was chosen since it processes

information from local observation and neighboring nodes as opposed to having a centralized location to

process all the data.

4.2 Kalman filter

4.2.1 State-space model

In 1960 R. Kalman published his famous paper on a recursive solution to the discrete-data linear filtering

problem. This filter is known as the Kalman filter. Since then,the Kalman filter has been part of a great deal
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of research in the area of autonomous navigation [5].

In essence , the Kalman filter address the problem of estimating the statex 2 Rn of a discrete-time

controlled process. The process is governed by a linear stochastic difference equationx(k) = F (k)x(k � 1) +B(k)u(k � 1) + w(k � 1); (4.1)

wherex(k) is the state of interest at timek, F (k) is the state transition matrix,B is the control input matrix,u(k) is the control input vector, andw s N(0; Q) is the introduced process noise. The process noise is

modeled as an uncorrelated, zero-mean, white sequence withprocess noise covarianceE[w(i)wT (j)℄ = 
ijQ(i): (4.2)

The system’s states are observed,z 2 Rm, byz(k) = H(k)x(k) + v(k); (4.3)

wherez(k) is the observations made at timek, H(k) is the observation matrix, andv(k) s N(0; Q) is

the introduced measured noise. The observation noise is modeled as an uncorrelated, zero-mean, white

sequence with measurement noise covarianceE[v(i)vT (j)℄ = 
ijR(i): (4.4)

It is assumed that the process noise and observation noise are uncorrelated:E[w(i)vT (j)℄ = 0:
4.2.2 Kalman filter algorithm

With the use of the state-space model, the Kalman filter algorithm is defined without the details of the

derivation. For addition details, refer to [5]. The Kalman filter is a recursive estimation algorithm that

can be summarized in two stages: thePredictionstage and theEstimationstage. They are governed by the

following equations:

36



4.2.2.1 Kalman filter algorithm

PREDICTION x̂(kjk � 1) = F (k)x̂(k � 1jk � 1) +B(k)u(k); (4.5)P (kjk � 1) = F (k)P (k � 1jk � 1)F T +Q(k): (4.6)

ESTIMATION x̂(kjk) = [1�W (k)H(k)℄x̂(kjk � 1) +W (k)z(k); (4.7)P (kjk) = P (kjk � 1)�W (k)S(k)W T (k); (4.8)

whereW (k) andS(k) are known as the gain and innovation covariance matrices, respectively, and are given

by W (k) = P (kjk � 1)HT (k)S�1(k); (4.9)S(k) = H(k)P (kjk � 1)HT (k) +R(k): (4.10)

It is useful to point out that the Kalman filter algorithm can be interpreted as a linear weighted sum of

state prediction and observation. Notice that in Equation (4.7), the quantityf1�W (k)H(k)g modifies the

amount ofx(kjk � 1), the prediction, andW (k) modifiesz(k), the observation at timek. Therefore, it

has the built-in ability to have more trust in the state-space model or to have more confidence in the data

collected from the measurements. The amount of confidence inthe model or in the observation is specified

by the process and observation noise covariances.

To obtain a better understanding on how the algorithm for theKalman filter works, it is useful to refer

to Figure 4.1. It demonstrates the flow diagram of the Kalman filter.
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Figure 4.1 Flow Diagram of the Kalman Filter

4.3 Information Filter

The Kalman filter and extended Kalman filter work quite well when estimating, the statex of a single source.

When dealing with multiple sources, then the update equations become algebraically quite complicated.

Therefore, since the problem we are trying to solve deals with measurements from multiple sensors, it is

desirable to have a simple and equivalent form of the Kalman filter. An algebraically equivalent form of the

Kalman filter was derived by Arthur G. O. Mutambara called theinformation filter.

The information filteris essentially a Kalman filter expressed in terms of measuresof informationabout

desired states, rather than direct state estimates and their associated covariances [6]. The information filter

employs the notion of Fisher informationJ and the Cramer-Rao lower bound (CRLB), where the Fisher

information matrixJ(K) is equal to the inverse of the covariance matrixP (kjk) and this is equal to CRLB,

whereJ(k) = (CRLB)�1 = P�1(kjk) [6].

4.3.1 Information filter derivation

The following derivation of the information filter is presented here to present a complete picture of how the

information filter and the Kalman filter are algebraically similar. This derivation can be found in Mutam-

bara’s book [6]. In the information filter there are two key variables,information matrixand information

state vector. The information matrix is defined as the inverse of the covariance matrix:Y (ijj) , P�1(ijj): (4.11)
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The information state vector is a product of the inverse of the covariance matrix and the state estimate:ŷ(ijj) , P�1(ijj)x̂(ijj) (4.12)= Y (ijj)x̂(ijj): (4.13)

The following derivation shows how the information filter isderived from the Kalman filter algorithm by

postmultiplying the term[1�W (k)H(k)℄ from Equation (4.7) by the term[P (kjk � 1)P�1(kjk � 1)℄:
[1�W (k)H(k)℄[P (kjk � 1)P�1(kjk � 1)℄ == [P (kjk � 1)�W (k)H(k)P (kjk � 1)℄P�1(kjk � 1)= [P (kjk � 1)�W (k)S(k)S�1(k)H(k)P (kjk � 1)℄P�1(kjk � 1)= [P (kjk � 1)�W (k)S(k)W T (k)℄P�1(kjk � 1)= P (kjk)P�1(kjk � 1): (4.14)

Substituting the expression of the innovation covarianceS(k), given in Equation (4.10), into the expression

of the filter gain matrixW (k) from Equation (4.9) givesW (k) = P (kjk � 1)HT (k)[H(k)P (kjk � 1)HT (k) +R(k)℄�1,W (k)[H(k)P (kjk � 1)HT (k) +R(k)℄ = P (kjk � 1)HT (k), W (k)R(k) = P (kjk � 1)HT (k)�W (k)H(k)P (kjk � 1)HT (k)W (k)R(k) = [I �W (k)H(k)℄P (kjk � 1)HT (k),W (k) = [I �W (k)H(k)℄P (kjk � 1)HT (k)R�1(k): (4.15)

Substituting Equation (4.14) into Equation (4.15) givesW (k) =P (kjk)P�1(kjk � 1)P (kjk � 1)HT (k)R�1(k)W (k) =P (kjk)HT (k)R�1(k): (4.16)
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To get the update equation for the information state vector,substitute Equations (4.14) and (4.16) into

Equation (4.7) and premultiply through byP�1(kjk):P�1(kjk)x̂(kjk) =P�1(kjk � 1)x̂(k � 1jk � 1) +HT (k)R�1(k)z(k);
or ŷ(kjk) =ŷ(kjk � 1) +HT (k)R�1(k)z(k): (4.17)

Using the same train of thought, a similar expression can be found for the information matrix associated

with this estimate. Using Equations (4.8), (4.9), and (4.14), it follows thatP (kjk) = [1�W (k)H(k)℄P (kjk � 1)[1 �W (k)H(k)℄T+W (k)R(k)W T (k): (4.18)

Substituting Equations (4.14) and (4.16) givesP (kjk) = [P (kjk)P�1(kjk � 1)℄P (kjk � 1)[P (kjk)P�1(kjk � 1)℄T+ [P (kjk)HT (k)R�1(k)℄R(k)[P (kjk)HT (k)R�1(k)℄T :
(4.19)

In order to obtain the desired form, pre- and postmultiply byP�1(kjk), giving the information matrix update

equation as P�1(kjk) = P�1(kjk � 1) +HT (k)R�1(k)H(k) (4.20)

or Y (kjk) = Y (kjk � 1) +HT (k)R�1(k)H(k): (4.21)

In order to have the complete algorithm for the information filter, three pieces of information are missing:

information state contributioni(k), associated information matrixI(k), and theinformation propagation
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coefficientL(kjk � 1). They are defined respectively as follows:i(k) ,HT (k)R�1(k)z(k) (4.22)I(k) ,HT (k)R�1(k)H(k): (4.23)

The information propagation coefficient, which is independent of the observations made, is given by the

expression L(kjk � 1) = Y (kjk � 1)F (k)Y �1(k � 1jk � 1): (4.24)

All the information needed in the information filter has beenwell defined. Now the linear Kalman filter can

be represented in terms of theinformation state vectorand theinformation matrix.

4.3.1.1 Information filter algorithm

PREDICTION ŷ(kjk � 1) = L(kjk � 1)ŷ(k � 1jk � 1) (4.25)Y (kjk � 1) = [F (k)Y �1(k � 1jk � 1)F T (k) +Q(k)℄�1: (4.26)

ESTIMATION ŷ(kjk) = ŷ(kjk � 1) + i(k) (4.27)Y (kjk) = Y (kjk � 1) + I(k): (4.28)

4.4 Extended Kalman Filter and Extended Information Filter

Note that the algorithms defined above are used to estimate the statesx 2 Rn or information state-vectorsy 2 Rn of a discrete-time controlled process governed by a linear stochastic difference equation. If one

would like to estimate states governed or measured by a nonlinear stochastic difference equation, then an

extended Kalman filter (EKF) or extended information filter (EIF) is used. The EKF can be thought of as

a Kalman filter that linearizes about the current mean and covariance [5]. The derivation of Mutambara’s
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extended information filter follows from that of the linear Kalman filter, linearizing state and observation

models using Taylor’s series expansion [6]. Since the problem at hand deals with a nonlinear observation

modelz(k) defined by Equation (2.1). The interest lies in a filter that has the ability to process nonlinear

stochastic difference equations, and that in essence is theextended Kalman filter or the extended information

filter.

4.4.1 Nonlinear state space

The the model of interest is described by a nonlinear stochastic difference equation in the formx(k) = f(x(k � 1); u(k � 1); (k � 1)) + w(k); (4.29)

wherex(k� 1) is the state vector andu(k� 1) is the known control vector input, both at time(k� 1). The

process noise introduced at timek is defined asw(k). The nonlinear state transition function isf(:; :; k�1).
The observations made by the system are modeled by a nonlinear equation defined asz(k) = h(x(k); k) + v(k); (4.30)

whereh(:; k) is the nonlinear observation transition function andv(k) is the observation noise. Bothw(k)
andv(k) are modeled as linearly additive Gaussian, temporally uncorrelated with zero mean, which meansE[w(k)℄ = E[v(k)℄ = 0 8k; (4.31)

with the corresponding covariance given byE[w(i)Tw(j)℄ = ÆijQ(i); E[v(i)T v(j)℄ = ÆijR(i):
It is assumed that the process noise and observation noise are uncorrelated:E[w(i)T v(j)℄ = 0; 8i; j:
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4.4.2 EKF and EIF algorithm

Now that the nonlinear state space has been defined, it is possible to present the EKF and EIF algorithms.

Both Algorithms the EKF and EIF, are presented here without aderivation. Much has been written on the

EKF [4, 5] and the derivation of EIF can be found in Mutambara’s book [6].

4.4.2.1 Extended Kalman filter algorithm

PREDICTION x̂(kjk � 1) = f(x̂(k � 1jk � 1); u(k � 1); (k � 1)) (4.32)P (kjk � 1) = rfx(k)P (k � 1jk � 1)rfTx (k) +Q(k � 1): (4.33)

ESTIMATION x̂(kjk) = x̂(kjk � 1) +W (k)[z(k) � h(x̂(kjk � 1))℄ (4.34)P (kjk) = P (kjk � 1)�W (k)S(k)W T (k): (4.35)

The gain and innovation covariance matrices are given respectively byW (k) = P (kjk � 1)rhTx (k)S�1(k) (4.36)S(k) = rhx(k)P (kjk � 1)rhTx (k) +R(k): (4.37)

4.4.2.2 Information Kalman filter algorithm

PREDICTION ŷ(kjk � 1) = Y (kjk � 1)f(k; x̂(k � 1jk � 1); u(k � 1); (k � 1)) (4.38)Y (kjk � 1) = [rfx(k)Y �1(k � 1jk � 1)rfTx (k) +Q(k)℄�1: (4.39)
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ESTIMATION ŷ(kjk) =ŷ(kjk � 1) + i(k) (4.40)Y (kjk) =Y (kjk � 1) + I(k): (4.41)

The information state contribution and its associated information matrix are given respectively byI(k) =rhTx (k)R�1(k)rhx(k) (4.42)i(k) =rhTx (k)R�1(k)[�(k) +rhx(k)x̂(kjk � 1)℄; (4.43)

where�(k) is the innovation given as�(k) = z(k)� h(x̂(kjk � 1)): (4.44)

4.5 Decentralized Extended Information Filter

When working with measurements from different sources, it is desirable to decentralize the system. In a data

processing decentralized system, all information is processed locally, where no central processing site exists.

In a system like this, all the information is processed at each node locally, based on local observations and

information communicated by its neighbors. Therefore, there is no central process, where a global decision

is made, each decision is made locally by each node, using theinformation collected by it and other nodes.

It is important to notice the advantage of permitting only node-node communication.

To give a practical application of a decentralize system, let there beN number of vehicles, estimating

the location of a target. If one of these vehicles fails, thenthere areN � 1 vehicles left to estimate the

location of a target. In a centralized approach, the system would not adapt toN � 1 vehicles, since it was

built for N vehicles. In retrospect, for a decentralized system to haveN � 1 vehicles would not matter

because it is based on obtaining only local information, node-node communication. Therefore, it would

adapt to its new environment and continue to estimate the location of a target without interruption. In

essence, the decentralized algorithm has the ability to dynamically adapt to the new number of vehicles in

order to continue to estimate the location of a given target.Such an algorithm that has this ability has been

derived by Mutambara, and it is called the decentralize extended information filter. Since the derivation of
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this algorithm is detailed, the algorithm is presented herewithout a derivation.

4.5.1 DEIF algorithm

PREDICTION ŷi(kjk � 1) = Yi(kjk � 1)f(k; x̂i(k � 1jk � 1); ui(k � 1); (k � 1)) (4.45)Yi(kjk � 1) = [rfxi(k)Y �1i (k � 1jk � 1)rfTxi(k) +Q(k)℄�1: (4.46)

ESTIMATION ŷi(kjk) =ŷi(kjk � 1) + NXj=1 ij(k) (4.47)Yi(kjk) =Yi(kjk � 1) + NXj=1 Ij(k): (4.48)

The local information state contribution and its local associated information matrix are given respectively

by Ij(k) =rhTxj (k)R�1j (k)rhxj (k) (4.49)ij(k) =rhTxj (k)R�1j (k)[�j(k) +rhxj (k)x̂j(kjk � 1)℄; (4.50)

where�(k) is the innovation given as�j(k) = zj(k)� hj(x̂j(kjk � 1)): (4.51)

With the equation of the DEIF algorithm well defined, Figure 4.2, shows how the algorithm works.

Notice that each node has a DEIF built in, giving it the ability to provide an estimation from its local

observationszi(k) and from the information communicated to it by other nodes. It is also important to note

that each box labeled “info filter” in Figure 4.2, would actually be the sensor collecting the data locally and

communicating it to other sensors. This filter actually has full communication with all the other nodes but it

does not have a central process, therefore making a decentralized algorithm.
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Figure 4.2 Decentralized Extended Information Filter

Part of our research objective is to have the ability to adaptto an environment dynamically, using de-

centralized methods. Since the decentralized extended information filter, out of the filters presented here,

possesses this property, it was chosen as the filter to be usedin the simulation.
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CHAPTER 5

NUMERICAL SIMULATIONS

5.1 Introduction

In finding a solution to the problem of target tracking from a multisensor network, it has been proven in

Chapter 2 that thedeployment of the agentsshould maximize the probability of detection of the target to

be tracked or provide more accurate estimations of the pointsource to be localized. Chapter 2 develops

a method of obtaining the best possible estimation of nonrandom parameters. Because it is desireable to

track a moving target withN number of sensors, and because a method of obtaining the bestestimation of

nonrandom parameters has been developed and fully understood, it follows from these results that

In order to obtain the best estimate of a moving target, it is desirable to have the sensors move to an

optimal position described by Proposition 1(p. 17).

A solution to these problems should be built on motion control algorithms for the network and data fu-

sion techniques which allow decentralized implementations. Such a decentralized motion planning control

algorithm has been described and proved to converge in Chapter 3. In Chapter 4, the possible estimation

algorithms have been described, and the decentralized extended information filter was chosen to be the

estimator used in the simulations. Therefore, this chapteraims at supporting the statement made of esti-

mating the location of a moving target viaN number of sensors, using decentralized motion planning and

decentralized estimation algorithms.
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5.2 Simulation Model

5.2.1 State-space model

The state-space model will consist of modeling the trajectory of a moving target inR2 and the measure-

ment/observation made by eachith sensor, where1 � i � N . In addition, the model contains both the

process and observation/measurement noise.xi(k + 1) = xi(k) + w(k); (5.1)

wherexi(k+1) is the state of interest at time(k+1), xi(k), random walk process describing the trajectory

of a moving target, andw s N(0; Q) is the introduced process noise. The process noise is modeled as an

uncorrelated, zero-mean, white sequence with process noise covariance:E[w(i)wT (j)℄ = 
ijQ(i): (5.2)

Taking into account that the position of the sourceq is composed of two directions and since we are

dealing with the two-dimensional case, thenq = (q1; q2)T . For simulation purposes only, and without loss

of generality, the trajectory of a point was chosen to be a figure eight defined asxi(k) = 264x� 
oordinatey � 
oordinate375 = 264q1q2375 = 264 sin(k)sin(k)
os(k)375 : (5.3)

The system’s states are observed,z 2 R2, byzi(k) = hi(x(k); k) + v(k); (5.4)

whereh(:; k) is the nonlinear observation transition function defined byhi(k) = jxi(k) � pi(k)j; for 1 � i � N; (5.5)

wherehi(k) describes the distance measured by theith sensor, from the moving targetxi(k) as seen by theith sensor to thepi(k) sensor at timek. The location of the position of theith sensor,pi(k), is composed
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of two directions,pi = (p1i ; p2i ), andv(k) is the observation noise. The observation noise is modeled as an

uncorrelated, zero-mean, white sequence with measurementnoise covarianceE[v(i)vT (j)℄ = 
ijR(i): (5.6)

It is assumed that the process noise and observation noise are uncorrelated:E[w(i)vT (j)℄ = 0:
5.2.2 Implementation of algorithms

In order to obtain a better estimate of a moving target, the agents/sensors have to move into their optimal

positions, described by Proposition 1. To accomplish this goal, the algorithm given in Table 5.1 was imple-

mented in Matlab. Figure 5.1 shows how the algorithm works astime increases. Notice that in Frame 1 the

sensors(the circles) are located in a nonoptimal configuration: as time progresses (Frame 6), the sensors are

in the optimal configuration, in essence, dividing the circle into 2�N equal parts.

(a) Frame 1 (b) Frame 2 (c) Frame 3

(d) Frame 4 (e) Frame 5 (f) Frame 6

Figure 5.1 Control Law as Time Progresses
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Table 5.1 Agents Deployment: Decentralize Control Law

Name: Decentralize Control Law

Goal: Decentralize Deployment of Agents Control

Law

Requires: (i) Initial locations of sensorsfp1; � � � ; pNg
(ii) Location of targetq given by DEIF

(ii) Counterclockwise wherepi 6= pj 8i 6= j
(iii) Computation of angles�i = ℄(pi; pi�1)
(iv) Positive real�i

ALGORITHM

For i 2 f1; : : : ; Ng, ith agent, calculate the location offp1; � � � ; png
with respect to targetq. While �i 6= �i�1 8 1 � i � N

0: setp0 = pn andpn+1 = p1
0: compute angles�i and�i�1
0: set new�0i := �i+1+�i�12

5.3 Matlab Simulation Results

This section describes the results obtained from the implementations of the theory developed in the previous

chapters. The state space model and control algorithm used in the simulations are discussed in Sections 5.2

and 5.2.2, respectively. In the simulations, the environment is composed ofN number of sensors and one

moving target. The objective of theN number of sensors is to estimate the location of the moving target.

The simulations are done with stationary sensors and movingsensors. The moving sensors follow the

control algorithm described in Section 5.2.2. This controlalgorithm allows each sensor to be in its optimal

position with respect to the moving point. Hence, being in the optimal configuration ensures that each sensor

collects the best information to estimate the location of the point. The sensors, which will also be referred to

as vehicles, are restricted to move on a circle. The estimatex̂ is obtained by the use of the DEIF algorithm.

The user provides the initial guess ofx̂ to start the DEIF algorithm, which is referred to asinitial guess for
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�x̂ ŷ�T . The trajectory of the moving point is determined by Equation (5.3).

5.3.1 Location

This section contains the result obtained from placing fourstationary and moving vehicles in nonoptimal and

optimal positions. The initial position of the sensors is described in the tables asinitial position of sensors

(radians). It is important to note that the simulation could have been done with more than four sensors,

since both the control law and DEIF filter are decentralized.In other words, the filters do not require a set

number of sensors. Also, notice that when the moving vehicles are placed in nonoptimal position, it does

not make a significant difference in the estimation of the point. Since each moving vehicle is following the

control algorithm, it is always in the optimal position for obtaining the best estimate of the moving target.

The parameters of each simulation are described by a table, and the results are displayed as graphs. The

graph on the left describesjjx � x̂jj, which provides a measure of the error. The graph on the rightgives

the final location of the vehicles, the actual positionx, and the estimatêx. Only one parameter is varied;

in these simulations, the varied parameter is the variance of the measured noise. This allows us to prove

numerically that the best estimatex̂ of the locationx of a moving point is estimated best by the vehicles that

are implementing the control algorithm.

It is important to point out that in simulations 1-4, the initial positions of the vehicles are nonoptimal;

in other words, they are placed in random locations. In simulations 5-8, the vehicles are placed in optimal

locations. This only matters for the estimates made by the stationary vehicles, since the moving vehicles

always position themselves optimally with respect to the moving point. Therefore, the results obtained, will

allow us to prove numerically that even in the case of stationary vehicles the best estimate will be obtained

by placing the vehicles in an optimal configuration. It will also aid in proving that the vehicles using the

control algorithm, designed to implement the results in Proposition 1, ensure a better estimate of the moving

target.

5.3.1.1 Nonoptimal position

Analyzing simulation 1 by using Figure 5.2, notice the parameters for this simulation are found in Table 5.2.

Since the variance of the measured noise is relatively small, the difference between the estimate ofx̂ and the

actual positionx, provided by the moving sensors and the stationary vehicles, is minimal. Still the moving

51



vehicles, using the control algorithm, have an error of lessthan0:2, which is better than the stationary vehi-

cles, for which at one time the errorjjx � x̂jj is about0:25. Also it is interesting to note, that even though

the stationary vehicles are placed in nonoptimal positions, the estimatêx is relatively good; this is due to the

fact that the variance of the measured noise is relatively small.

Table 5.2 Parameters for Simulation 1 with Variance of Measured Noise = 0.000 053

Number of

Sensors

Initial Position of Sensors

(radians)

Variance of

Process Noise

Variance of

Measured Noise

Moving Sensors 4

�2:1818; 2:4500; 3:7160; 4:5167� 0.000 13 0.000 053

Stationary

Sensors
4

�2:1818; 2:4500; 3:7160; 4:5167� 0.000 13 0.000 053
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Figure 5.2 Simulation 1: Stationary vs. Moving Sensors withVariance of Measured Noise = 0.000 053

Analyzing simulation 2 by using Figure 5.3, notice the parameters for this simulation are found in

Table 5.3. In simulation 2, for the most part, the moving vehicles provide a better estimatêx of the position

of x, since the error of the moving vehicles is for the most part, smaller than that of the stationary vehicles.

The results are very similar to simulation 1.
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Table 5.3 Parameters for Simulation 2 with Variance of Measured Noise = 0.000 53

Number of

Sensors

Initial Position of Sensors

(radians)

Variance of

Process Noise

Variance of

Measured Noise

Moving Sensors 4

�2:1818; 2:4500; 3:7160; 4:5167� 0.000 13 0.000 53

Stationary

Sensors
4

�2:1818; 2:4500; 3:7160; 4:5167℄� 0.000 13 0.000 53
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Figure 5.3 Simulation 2: Stationary vs. Moving Sensors withVariance of Measured Noise = 0.000 53

Analyzing simulation 3 by using Figure 5.4, notice the parameters for this simulation are found in

Table 5.4. In simulation 3, the variance of the measured noise is increased by 1000%. Notice that the

stationary vehicle no longer provides an error below0:25, and the error gets as high as0:45, while the

moving vehicles still provide an error below0:20. Notice, in Figure 5.4, the image on the right gives the

results obtained by the stationary vehicles. The estimatex̂ fails to follow closely the trajectory of the moving

point. On the other hand, it can be seen visually that the moving vehicles still estimate the trajectory of the

point relatively well.
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Table 5.4 Parameters for Simulation 3 with Variance of Measured Noise = 0.053

Number of

Sensors

Initial Position of Sensors

(radians)

Variance of

Process Noise

Variance of

Measured Noise

Moving Sensors 4

�2:1818; 2:4500; 3:7160; 4:5167℄� 0.000 13 0.053

Stationary

Sensors
4

�2:1818; 2:4500; 3:7160; 4:5167� 0.000 13 0.053
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Figure 5.4 Simulation 3: Stationary vs. Moving Sensors withVariance of Measured Noise = 0.053

Analyzing simulation 4 by using Figure 5.5, notice the parameters for this simulation are found in Ta-

ble 5.5. In simulation 4, the variance of the measured noise is increased by 10 000% of original0:000 053.

Notice that the stationary vehicle no longer provides an error below0:45; the error gets as high as0:91.

Meanwhile, the moving vehicles still provide an error below0:21. Note, Figure 5.5 on the right, which

displays the results of the stationary vehicles. The estimate x̂ fails to follow the trajectory of the moving

point. On the other hand, it can be seen that the moving vehicles still estimate the trajectory of the point

relatively well, even with the variance of the measure noiseincreased.

Therefore, it can be seen from simulations 1-4 that, as the variance of the measured noise increases, the

estimate provided from the stationary vehicles gets worse,while the estimate provided by the moving sensors
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stays relatively close to the actual position of the moving target. This proves numerically that allowing the

vehicles to move will result in a better estimate of a moving target.

Table 5.5 Parameters for Simulation 4 with Variance of Measured Noise = 0.53

Number of

Sensors

Initial Position of Sensors

(radians)

Variance of

Process Noise

Variance of

Measured Noise

Moving Sensors 4

�2:1818; 2:4500; 3:7160; 4:5167� 0.000 13 0.53

Stationary

Sensors
4

�2:1818; 2:4500; 3:7160; 4:5167� 0.000 13 0.53
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Figure 5.5 Simulation 4: Stationary vs. Moving Sensors withVariance of Measured Noise = 0.53

5.3.1.2 Optimal position

Analyzing simulation 5 by using Figure 5.6, notice the parameters for this simulation are found in Table 5.6.

Since the variance of the measured noise is relatively small, the difference between the estimate ofx̂ and

the actual positionx, provided by the moving sensors and the stationary vehicles, is almost the same. It

is interesting to note that, since the stationary vehicles are placed in optimal positions, the estimatex̂ is as

good as the moving vehicles.
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Table 5.6 Parameters for Simulation 5 with Variance of Measured Noise = 0.000 053

Number of

Sensors

Initial Position of Sensors

(radians)

Variance of

Process Noise

Variance of

Measured Noise

Moving Sensors 4

�0; pi2 ;�; 3�2 � 0.000 13 0.000 053

Stationary

Sensors
4

�0; pi2 ;�; 3�2 � 0.000 13 0.000 053
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Figure 5.6 Simulation 5: Stationary vs. Moving Sensors withVariance of Measured Noise = 0.000 053

Analyzing simulation 6 by using Figure 5.7, notice the parameters for this simulation are found in

Table 5.7. Visually, the difference between simulations 5 and 6 is minimal, even though the variance of

the measured noise has been increased by 10% of the orginal value 0:000 053. It is intersting to note that

both the stationary vehicles and moving vehicles have an error of less than0:2. Therefore, up to this point

it really does not make a difference if the vehicles follow the control algorithm or not, since the results are

almost identical. It can be seen in the simulations that follow, that as the noise increases it becomes more

important to use the control algorithm.
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Table 5.7 Parameters for Simulation 6 with Variance of Measured Noise = 0.000 53

Number of

Sensors

Initial Position of Sensors

(radians)

Variance of

Process Noise

Variance of

Measured Noise

Moving Sensors 4

�0; pi2 ;�; 3�2 � 0.000 13 0.000 53

Stationary

Sensors
4

�0; pi2 ;�; 3�2 � 0.000 13 0.000 53
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Figure 5.7 Simulation 6: Stationary vs. Moving Sensors withVariance of Measured Noise = 0.000 53

Analyzing simulation 7 by using Figure 5.8, notice the parameters for this simulation are found in

Table 5.8. In simulation 7, the variance of the measured noise is increased by1000% of 0:000 053. Notice

that, the stationary vehicles and moving vehicles no longerobtain the same estimate ofx̂. It is also interesting

to note that, even though the variance has been increased, since the stationary vehicles are in the optimal

configuration, the error of the stationary vehicles is stillunder0:2. This could be expected, from the fact

that the stationary vehicles are located in optimal positions.
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Table 5.8 Parameters for Simulation 7 with Variance of Measured Noise = 0.053

Number of

Sensors

Initial Position of Sensors

(radians)

Variance of

Process Noise

Variance of

Measured Noise

Moving Sensors 4

�0; pi2 ;�; 3�2 � 0.000 13 0.053

Stationary

Sensors
4

�0; pi2 ;�; 3�2 � 0.000 13 0.053

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

|| 
x 

−
 x

ha
t |

|

Num of Sensors = 4 and Init Postion of Sensors = [0;pi/2;pi;3*pi/2] using DEIF Estimates

Stationary Sensors
Moving Sensors

(a) jjx� x̂jj −4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

x position

y 
po

st
io

n

Performance of Stationary Sensors

Actual Postion
Est Postion DEIF

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

x position
y 

po
st

io
n

Performance of Moving Sensors

Actual Postion
Est Postion DEIF

(b) Final Location of Sensors

Figure 5.8 Simulation 7: Stationary vs. Moving Sensors withVariance of Measured Noise = 0.053

Analyzing simulation 8 by using Figure 5.9, notice the parameters for this simulation are found in

Table 5.9. Since the variance of the measured noise has been increased by10 000% of the original value

in simulation 8, the stationary vechicles no longer obtain the best estimatêx of the target. It is interesting

to note, that even though the error ofx̂ is below0:2, the estimate is not the best. This result can be seen

visually from the Figure 5.9, by the image on the right providing the performance of the stationary sensor.

On the other hand, the moving vehicles still obtain a relatively good estimate of the location of the target,

therefore proving numerically that the moving vehicles obtain the best estimate, since they are always at an

optimal position, described by Proposition 1.
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Table 5.9 Parameters for Simulation 8 with Variance of Measured Noise = 0.53

Number of

Sensors

Initial Position of Sensors

(radians)

Variance of

Process Noise

Variance of

Measured Noise

Moving Sensors 4

�0; pi2 ;�; 3�2 � 0.000 13 0.53

Stationary

Sensors
4

�0; pi2 ;�; 3�2 � 0.000 13 0.53
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Figure 5.9 Simulation 8: Stationary vs. Moving Sensors withVariance of Measured Noise = 0.53

5.3.1.3 Nonoptimal position versus optimal position

In this section, the results obtained from simulations 1-8 will be compiled into graphs. This is done in order

to have the ability to analyze the effect on the results due tothe stationary vehicles and moving vehicles due

to increasing the variance of the measurement noise. In Figure 5.10, the simulations of 1-8 are displayed

accordingly, along with the parameters for each, found in Tables 5.10 and 5.11.

In order to have a better understanding of each figure, the following explanation is provided. The top

left-hand side of Figure 5.10, displays the errorjjx � x̂jj of the stationary vehicles located in nonoptimal

positions. The bottom-left hand side of Figure 5.10 displays the errorjjx�x̂jj of the moving vehicles located
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in nonoptimal positions. The right-hand top and bottom sides of Figure 5.10 displays the errorjjx � x̂jj of

the stationary vehicles and moving vehicles placed in optimal positions, respectively.

Table 5.10 Parameters for Simulations 1-4

Number of

Sensors

Initial Position of Sensors

(radians)

Variance of

Process Noise

Variance of

Measured Noise

Moving Sensors 4

�2:1818; 2:4500; 3:7160; 4:5167℄� 0.000 13 vary

Stationary

Sensors
4

�2:1818; 2:4500; 3:7160; 4:5167℄� 0.000 13 vary

Table 5.11 Parameters for Simulations 5-8

Number of

Sensors

Initial Position of Sensors

(radians)

Variance of

Process Noise

Variance of

Measured Noise

Moving Sensors 4

�0; pi2 ;�; 3�2 � 0.000 13 vary

Stationary

Sensors
4

�0; pi2 ;�; 3�2 � 0.000 13 vary

With the aid of these results, it is easy to see that the movingvehicles obtain the best estimate, since

the error is always less than0:2. Comparing the results of the stationary vehicles, as the variance of the

measured noise increases, the error ofjjx� x̂jj also increases. It is also interesting to note, from Figure 5.10,

that for simulations 1-4 and 5-8, it seems like the moving vehicles obtain the same result. This is due to

the fact, that the moving vehicles are following the same control alogrithm. The error can be reduced by

placing the stationary vehicles in optimal configurations,but a better estimate is obtained with the moving

vehicles, therefore, proving that in order to obtain the best estimate of a moving target, it is desirable to have

the sensors move to an optimal position. This proves numerically that the moving vehicles obtain the best

estimate, regardless of the initial position of the moving vehicles, since the vehicles are always at an optimal

configuration, described by Proposition 1.
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(b) Simulations: 5-8

Figure 5.10 Nonoptimal Position vs. Optimal Position

5.3.2 Modifying the trajectory of the moving point

It would be interesting to see if a relatively good estimate is obtained when the trajectory of the moving point

is modified. This is accomplished by modifying the trajectory of the moving point described by Equation

(5.3) as follows: xi(k) = 264x� 
oordinatey � 
oordinate375 = 264q1q2375 = 264 sin(k)sin(k)
os(k)� 1375 : (5.7)

In this section, the initial positions of the vehicles are inthe optimal configuration. The varying pa-

rameter, once again, is the variance of the measured noise. The graphs and tables in this section follow the

same format as in the previous section. The goal here is to analyze the results obtained by the stationary and

moving vehicles with the modified trajectory of the moving point described by Equation (5.7).

Analyzing simulation 9 by using Figure 5.11, notice the parameters for this simulation are found in

Table 5.12. Since the variance of the measured noise is relatively small, the difference between the estimate

of x̂ and the actual positionx, provided by the moving sensors and the stationary vehicles, is almost the
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same. It is interesting to note, that since the stationary vehicles are placed in optimal positions, the estimatex̂ is as good as the moving vehicles, even though the trajectoryis not placed at the center of all the vehicles.

Table 5.12 Parameters for Simulation 9 with Variance of Measured Noise = 0.000 053

Number of

Sensors

Initial Position of Sensors

(radians)

Variance of

Process Noise

Variance of

Measured Noise

Moving Sensors 4

�0; pi2 ;�; 3�2 � 0.000 13 0.000 053

Stationary

Sensors
4

�0; pi2 ;�; 3�2 � 0.000 13 0.000 053
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Figure 5.11 Simulation 9: Stationary vs. Moving Sensors with Variance of Measured Noise = 0.000 053

Analyzing simulation 10 by using Figure 5.12, notice the parameters for this simulation are found in

Table 5.13. Visually, the difference between simulations 9and 10 is minimal, even though the variance of

the measured noise has been increased by 10% of the actual0:000 053. Even though the variance of the

measurement noise has been increased, both the stationary and moving vehicles have an error of less than0:2. Therefore, not surprisingly, since the stationary vehicles are placed in the optimal position; at this point

the results of the estimatêx are the same for the moving vehicles and the stationary vehicles.
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Table 5.13 Parameters for Simulation 10 with Variance of Measured Noise = 0.000 53

Number of

Sensors

Initial Position of Sensors

(radians)

Variance of

Process Noise

Variance of

Measured Noise

Moving Sensors 4

�0; pi2 ;�; 3�2 � 0.000 13 0.000 53

Stationary

Sensors
4

�0; pi2 ;�; 3�2 � 0.000 13 0.000 53
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Figure 5.12 Simulation 10: Stationary vs. Moving Sensors with Variance of Measured Noise=0.000 53

Analyzing simulation 11 by using Figure 5.13, notice the parameters for this simulation are found in

Table 5.14. With the variance of the measured noise increased by 1000% of the orginal value0:000 053,

the errorjjx � x̂jj made by the stationary vehicles can be seen from the Figure 5.13. The error in̂x given

by the stationary vehicles, at one point, gets as high as0:26, while the error of the moving vehicles stays

below0:2 at all times. Note, this is the same result obtained in one of the previous simulations 1-8, when

the trajectory of the moving point was described by Equation(5.3). Even with the increase of1000% of the

variance of the measurement noise and the change in the trajectory of the moving point, the moving vehicles

still follow closely the trajectory of the moving point.
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Table 5.14 Parameters for Simulation 11 with Variance of Measured Noise = 0.053

Number of

Sensors

Initial Position of Sensors

(radians)

Variance of

Process Noise

Variance of

Measured Noise

Moving Sensors 4

�0; pi2 ;�; 3�2 � 0.000 13 0.053

Stationary

Sensors
4

�0; pi2 ;�; 3�2 � 0.000 13 0.053
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Figure 5.13 Simulation 11: Stationary vs. Moving Sensors with Variance of Measured Noise = 0.053

Analyzing simulation 12 by using Figure 5.14, notice the parameters for this simulation are found in

Table 5.15. Since the variance of the measured noise has beenincreased by10 000% of the original value

in simulation 12, the stationary vehicles no longer obtain the best estimatêx of the target. It is interesting to

note that the errorjjx � x̂jj at one point gets as high as0:37 even though the stationary vehicles are placed

in optimal configuration, such as in simulation 8, Figure 5.9. On the other hand, the moving vehicles still

obtain a relatively good estimate of the location of the target. This proves numerically that the moving vehi-

cles obtain the best estimate, regardless of the trajectoryof the moving point, since the vehicles are always

at an optimal configuration, described by Proposition 1.
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Table 5.15 Parameters for Simulation 12 with Variance of Measured Noise = 0.53

Number of

Sensors

Initial Position of Sensors

(radians)

Variance of

Process Noise

Variance of

Measured Noise

Moving Sensors 4

�0; pi2 ;�; 3�2 � 0.000 13 0.53

Stationary

Sensors
4

�0; pi2 ;�; 3�2 � 0.000 13 0.53
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Figure 5.14 Simulation 12: Stationary vs. Moving Sensors with Variance of Measured Noise = 0.53

5.3.2.1 Nonoptimal position versus optimal position

In Figures 5.15, the simulations of 9-12 are displayed accordingly along with the parameters in Table 5.16.

The top portion of Figure 5.15 displays the errorjjx � x̂jj of the stationary vehicles located in optimal

configurations. The bottom portion of Figure 5.15, displaysthe errorjjx � x̂jj of the moving vehicles

located in optimal configurations.

With the aid of these results, it is easy to see that the movingvehicles obtain the best estimate, since the

error is always less than0:2. Comparing the results of the stationary vehicles, as the variance of the measured

noise increases, the error ofjjx� x̂jj also increases, therefore proving that the estimatex̂ is independent of

the trajectory of the moving target. The best estimatex̂ is still obtained with the moving vehicles.
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Table 5.16 Parameters for Simulations 9-12

Number of

Sensors

Initial Position of Sensors

(radians)

Variance of

Process Noise

Variance of

Measured Noise

Moving Sensors 4

�0; pi2 ;�; 3�2 � 0.000 13 vary

Stationary

Sensors
4

�0; pi2 ;�; 3�2 � 0.000 13 vary
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Figure 5.15 Simulations 9-12: Stationary Sensors vs. Moving Sensors

5.3.3 Modifying the parameters of DEIF

The DEIF filter obtains its estimates based on the predicted and actual measurements made. A way to

modify which measurement is trusted more, the predicted or actual measurements, is done by modifying the

matrixR, the measurement error covariance. AsR in the DEIF approaches zero, the actual measurementz(k) is trusted more and more, while the predicted measurement istrusted less and less. Therefore, it would

be interesting to see howR affects the estimatêx of the position of the moving target. Figure 5.16 displays

the results obtained.
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Table 5.17 Parameters for Simulations 13-16

Number of

Sensors

Initial Position of Sensors

(radians)

Variance of

Process

Noise

Variance of

Measured

Noise

Initial Guess

for

�x̂ ŷ�T
Moving Sensors 4

�0; pi2 ;�; 3�2 � 0.000 13 0.000 053

�0 0�T
Stationary

Sensors
4

�0; pi2 ;�; 3�2 � 0.000 13 0.000 053

�0 0�T
Table 5.18 Parameters for Simulations 17-20

Number of

Sensors

Initial Position of Sensors

(radians)

Variance of

Process

Noise

Variance of

Measured

Noise

Initial Guess

for

�x̂ ŷ�T
Moving Sensors 4

�0; pi2 ;�; 3�2 � 0.000 13 0.53

�0 0�T
Stationary

Sensors
4

�0; pi2 ;�; 3�2 � 0.000 13 0.53

�0 0�T
In this section, the results obtained from simulations 13-20 will be compiled into graphs. This is done in

order to facilitate the analysis on howR affects the estimatêx. Graphs are provided for both stationary and

moving vehicles because it is important to be able to see the results obtained from the stationary vehicles

and moving vehicles due to changingR. These graphs can be seen in Figure 5.16, the simulations of 13-20

are displayed accordingly, along with the parameters for each found in Tables 5.17 and 5.18.

From Figure 5.16, it can be seen that the moving sensors obtain the best estimate of the location of

the moving target, since the errorjjx � x̂jj is below0:2 for the values ofR tested. When the variance of

the measurement noise is low in this case0:000 053, then trusting the actual measurements gives the best

estimate for both the moving and the stationary vehicles. Onthe other hand, when the variance of the noise

is high, for example0:53, then the best result is obtained by the moving vehicles and trusting the actual

measurements more, since the collected data is good. This proves that the actual measurements collected by

moving sensors are the best measurements, since the moving vehicles are always in a their optimal positions.
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Figure 5.16 Simulations 13-20: Stationary vs. Moving Sensors with Variance of Measured Noise
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CHAPTER 6

CONCLUSION AND FUTURE
RESEARCH

In this paper it was proven that, in order to obtain the best estimate of a moving target, it is desirable to have

the sensors move to an optimal position described by Proposition 1 (p.17). In finding this solution to the

problem of target tracking from a multisensor network, it has been proven in Chapter 2 that thedeployment of

the agentsshould maximize the probability of detection of the target to be tracked or provide more accurate

estimations of the point source to be localized. Chapter 2 develops a method of obtaining the best possible

estimation of nonrandom parameters. Since it is desireableto track a moving target withN number of

sensors, and since a method of obtaining the best estimationof nonrandom parameters has been developed

and fully understood, it follows that the best estimate of a moving target is achieved by allowingN number

of sensors to move, using decentralized motion planning anddecentralized estimation algorithms.

The solution to these problems has been built on motion control algorithms for the network and data

fusion techniques which allowed decentralized implementations. Such a decentralized motion planning

control algorithm has been described and proved to convergein Chapter 3. In Chapter 4, the possible

estimation algorithms have been described, and the decentralized extended information filter was chosen

to be the estimator used in the simulations. Chapter 5 contains a number of simulation supporting the

statement that the best estimate of a moving target is achieved by havingN number of moving sensors,

using decentralized motion planning and decentralized estimation algorithms.

The goal for future research is to implement a scalable decentralized estimation. Since the DEIF algo-

rithm uses collected information from all the sensors, it isdecentralized in the sense that it does not need a

fixed number of vehicles to function; the alogrithm adapts toits environment. It is also interesting to restrict,

in simulations, the range of the sensors, making it closer toreal-life enviornment.
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