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Abstract

On Orientation Localization for Relative Sensing Networks

Giulia Piovan

This thesis develops a novel localization theory for networks of nodes that

measure each other’s relative position, i.e., we assume that nodes do not have the

ability to perform measurements expressed in a common reference frame. The

thesis begins with some basic definitions of frame localizability and orientation

localizability. Based on some key kinematic relationships, we characterize orien-

tation localizability for planar networks with angle-of-arrival sensing. We then

address the orientation localization problem in the presence of noisy measure-

ments. Our first algorithm computes a least-squares estimate of the unknown

node orientations in a ring network given angle-of-arrival sensing. For arbitrary

connected graphs, our second algorithm exploits kinematic relationships among

the orientations of nodes in loops in order to reduce the effect of noise. We es-

tablish the convergence of the algorithm, and through some simulations we show

that the algorithm reduces the mean-square error due to the noisy measurements.

We then consider networks in 3-D space and we explore necessary and sufficient

conditions for orientation localizability in the noiseless case.
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Chapter 1

Introduction

1.1 Introduction

Sensor networks are used in a large number of applications which cover a wide

range of fields, such as, surveillance, controls, communications, monitoring areas,

intrusion detection, vehicle tracking and mapping. One of the key problems in

sensor networks is localization, i.e., determining the location of each sensor in the

network.

We address the aforementioned problem in a distributed manner, by assuming

that any node in the network has its own reference frame, and does not have any

knowledge about its physical position in the environment or the position of the

other nodes. Each node, through a sensor, can detect the relative position of any

node inside a given sensor footprint. The measurements are affected by noise, so

we extend our analysis to the noisy case. We call frame localization the problem
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Chapter 1. Introduction

of computing the relative location and orientation of each node of the network

with respect to each other. We aim to solve the problem through a distributed

algorithm, which computes the estimate of the angle associated to every edge of

the graph by distributing the error of every cycle on its edges.

Network localization has been the center of extensive research work, and the

various approaches are due to different assumptions on the deployment of the

nodes and the way sensors work. In some cases, there is the use of some special

nodes, whose positions are known, called beacons or anchors. Particular interest

arises from the works of Roumeliotis and coworkers, [12] and [9], in which the

problem of determining the relative position for a pair of robots moving in 2D

or 3D is studied using only distance measurements between the robots. A dis-

tributed method for 3-D sensor network orientation and translation localization

was proposed in [10]. Also notable is the beautiful treatment in [1], where a theory

of localization emerges.

This thesis contains several contributions. First, we present a novel formu-

lation of the frame localizability and frame computational localization problem

for networks with relative sensing. Second, we define a characterization of frame

localizability for planar networks, focusing on consistency for the orientation local-

ization problem. Third, we compute a least-squares estimate of the unknown node

orientations in a ring network. Fourth, we consider arbitrary connected graphs and

2



Chapter 1. Introduction

provide a distributed algorithm for planar orientation localization which exploits

kinematic relationships among the orientation of nodes in loops in order to reduce

the effect of noise. Fifth, we provide some simulations in order to validate our

algorithm results. Finally, we consider networks in the three-dimensional space

and we explore necessary or sufficient conditions for orientation localizability in

the noiseless case.

The document is organized as follows. In Chapter II, we review some kinematic

conventions and elements of graph theory that are used throughout the paper.

Chapter III is dedicated to the description of the network model and the problem

with some preliminary relationships on relative positions. Chapter IV studies the

orientation localizability of the network considering measurement noise, and some

simulation results are shown. Chapter V explores the orientation localizability

problem for noiseless networks in the three-dimensional space. Finally, Chapter

VI gives a short review of what has been done, with conclusions and aims for

future work.

3



Chapter 2

Preliminaries

2.1 Elements of kinematics

We let R and C denote real and complex numbers, respectively. We let ‖v‖

denote the Euclidean norm of the vector v ∈ Rd. We define the versor operator

vers : Rd → Rd by vers(0) = 0 and vers(v) = v/‖v‖ for v 6= 0. Given a scalar θ,

we let proj(θ) take value in [−π, π[, where the map proj : R → [−π, π[ is defined

by

proj(θ) = (θ + π)mod2π − π. (2.1)

We let ∠z denote the phase of z ∈ C. We will be interested in measurements

expressed in different reference frames. Accordingly, it is useful to review some

basic kinematic conventions. We let Σ1 = {p1,x1,y1, z1} be a fixed reference

frame in R3. A point q and a vector v expressed with respect to frame Σ1 are

denoted by q1 and v1, respectively. Next, let Σ2 = {p2,x2,y2, z2} be a reference

4



Chapter 2. Preliminaries

q
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Figure 2.1: Two reference frames in R3

frame fixed with a moving body. The origin of Σ2 is the point p2, denoted by p1
2

when expressed with respect to Σ1. The orientation of Σ2 is characterized by the 3-

dimensional rotation matrix R1
2, whose columns are the frame vectors {x2,y2, z2}

of Σ2 expressed with respect to Σ1. We recall here the definition of the set of

rotation matrices in d-dimensions, for d ∈ {2, 3}: SO(d) = {R ∈ Rd×d| RRT =

Id, det(R) = +1}. With these notations, reference frame transformations are

described by

q1 = R1
2q

2 + p1
2, and v1 = R1

2v
2. (2.2)

Recall also R1
2 = (R2

1)
T . Analogously, we let Si denote the point set S as expressed

in the reference frame Σi. Finally, if three reference frames Σi, i ∈ {1, 2, 3}, are

5



Chapter 2. Preliminaries

considered, then simple bookkeeping arguments lead to

R1
2R

2
3R

3
1 = I3, and R1

2 = R1
3R

3
2. (2.3)

Next, it is convenient to present a planar case version of these notions. In

the planar case, p1 and p2 take values in R2, the reference frames consist of only

two orthonormal vectors, and the rotation matrices take values in SO(2). It is

convenient to identify R2 with the set of complex numbers C and to denote the

unit imaginary number by
√
−1 ∈ C. If we describe the planar rotation matrix

R1
2 ∈ SO(2) by its unit-length complex number representation exp(θ1

2

√
−1), with

angle θ1
2 ∈ [−π, π[, then the second part of eq. (2.2) reads v1 = exp(θ1

2

√
−1)v2.

Finally, we review the exponential representation of rotations. For the unit

vector ω = (ω1, ω2, ω3) ∈ R3, we use Rodrigues’ rotation formula [6] to define the

rotation matrix about axis ω of an angle γ as

exp
(
γω̂

)
= I3 + sin γω̂ + (1 − cos γ)ω̂2, (2.4)

where, as usual, ω̂ ∈ R3×3 is defined by

ω̂ =




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0



. (2.5)

We also recall that for any R ∈ SO(d),

R exp(v̂) = exp(R̂v)R. (2.6)

6



Chapter 2. Preliminaries

2.2 Elements of graph theory

We review a few useful notions from graph theory [2, 4]. We let G = (V,E)

represent an undirected graph G, with vertex set V , {vi}ni=1 and edge set E with

cardinality m. Gd = (V,Ed) defines a directed graph associated to G, where Ed is

an orientation of E. We denote a directed edge from vertex vi to vj by eij = (i, j).

If the graph is undirected, (i, j) is equivalent to (j, i).

Definition 1 (Path and cycle) Let G be either a directed or undirected non-

empty graph. A path is a non-empty graph P = (VP , EP ) ⊆ G of the form

VP , {vi}ki=1 and Ep , {(ji, ji+1)}k−1
i=1 , where {j1, · · · , jk} is a permutation of

v1, · · · , vk. Furthermore, every sequence of edges that form a closed path in G and

do not visit the same node twice, except the start/end node, is called a cycle and

it is denoted by ℓ.

The direction of a cycle is the order in which the nodes are visited. We let L(G)

denote the set of all cycles ℓ of G, and |ℓ| the number of edges in ℓ. It should be

noted that, in a digraph Gd, the cycle directions are independent of the direction

of the individual edges composing the cycles.

Definition 2 (Cycle vector) For ℓ ∈ L(Gd), the cycle vector is the vector 1ℓ ∈

{−1, 0,+1}m ⊂ Rm whose ith entry is +1 if the ith edge belongs to ℓ and its

7



Chapter 2. Preliminaries

orientation is consistent with the orientation of ℓ, −1 if the ith edge belongs to ℓ

and its orientation is opposite to the orientation of ℓ, and is 0 otherwise.

ℓ1
ℓ2

e1

e2

e3

e4

e5

e6

e7

1ℓ1 = [0, −1, −1, 1, −1, 0, 0]

1ℓ2 = [1, 1, 0, 0, 0, 1, −1]

Figure 2.2: Example of cycle vector

Definition 3 (Set of cycle and fundamental cycle vectors) The set of cycle

vectors is L = {1ℓ| ℓ ∈ L(Gd)}. A set of fundamental cycle vectors Lf ⊆ L is a

subset of L that constitute a base for L. The elements of Lf are called fundamental

cycle vectors.

Given a set of fundamental cycle vectors Lf , we let Lf(Gd) denote the associated

fundamental cycles Lf(G) = {ℓ ∈ L(Gd)| 1ℓ ∈ Lf}.

Definition 4 (Cycle and fundamental cycle matrix) The cycle matrix C of

a directed graph Gd is the k ×m matrix C = [1ℓ1 , . . . , 1ℓk ]
T where k is the cardi-

nality of L, and m is the number of edges of Gd. The r×m matrix Cf ⊆ C, with

r = dim(Lf), such that each row represents a fundamental cycle vector in Lf , is

called the fundamental cycle matrix:

Cf = [1ℓ1 , . . . , 1ℓr ]
T , for all 1ℓi ∈ Lf . (2.7)

8



Chapter 2. Preliminaries

Note that Cf is not unique since it depends on the choice of the fundamental cycles

vectors, and it is a full rank matrix.

Theorem 5 (Number of independent cycles [2]) If Gd has n vertices and

m edges, than the dimension of the fundamental cycle space Lf is m−n+ 1, i.e.,

there are m− n+ 1 independent cycles.

9



Chapter 3

Network model and localization
problems

In what follows we describe our notion of network equipped with relative sen-

sors. We consider a group of n nodes in Rd, for d ∈ {2, 3}, and we assume that

a reference frame Σi with origin pi, for i ∈ {1, . . . , n}, is attached to each node.

Also, we assume pi 6= pj for all i 6= j, and we label the 1st node the reference node.

3.1 Relative sensing model

Each node i activates a sensor that detects the presence and returns a mea-

surement about the relative position of any node inside a given sensor footprint.

We let Si ⊂ Rd be the sensor footprint of node i and Sii be its expression in

the Σi frame; we shall assume that all node sensors are equal, so that we write

Sii = Si. We assume that there exists a map sns : Rd → Rk, for some k, called

10



Chapter 3. Network model and localization problems

the sensing function, such that node i acquires the symbol sns(pij) for each node

j ∈ {1, . . . , n} \ {i} that satisfies pij ∈ Si. There are different kind of sensors:

Range sensing: Node i measures ‖pij‖, i.e., sns(pij) = ‖pij‖ ∈ R≥0, for all nodes

j within a fixed sensing range r from i, that is, the footprint Si is a disk of

radius r and the function sns returns the norm of its argument.

Angle-of-arrival sensing: Node i measures vers(pij), i.e., sns(pij) = vers(pij) ∈

Rd, for all nodes j within a fixed sensing range r from i, that is, the footprint

Si is a disk of radius r and the function sns returns the spherical coordinates

of its argument.

Complete sensing (range and angle-of-arrival): Node i measures pij, i.e.,

sns(pij) = pij in Rd, for all nodes j within a fixed sensing range r from i,

that is, the footprint Si is a disk of radius r and the function sns returns its

argument.

Given the nodes p1, . . . , pn, the directed sensing graph, Gd = (VS, Ed) is the

directed graph where vertex vi corresponds to node i and the directed edge (i, j) ∈

Ed if pij ∈ Si, that is, if node j is inside the sensor footprint of node i. In what

follows, we assume that the sensor footprint Si is a unit-radius disk with pi as

the center, so that the sensing graph is the so-called unit-disk geometric graph

illustrated in Figure 3.1. With this assumption, if node i senses node j, then

11



Chapter 3. Network model and localization problems

node j senses node i as well. Therefore, if (i, j) ∈ Ed, then (j, i) ∈ Ed as well. To

simplify notation we use an undirected graphGS = (VS, ES) with vertex set VS and

undirected edge set ES satisfying (i, j) ∈ ES ⇐⇒ (i, j) ∈ Ed ⇐⇒ (j, i) ∈ Ed.

We call GS the undirected sensing graph or simply the sensing graph. We further

assume that a pair of nodes i and j communicate with each other if and only if

they can sense each other, i.e., (i, j) ∈ ES. In summary, the physical components

Figure 3.1: The disk graph in R2

of a relative sensing network consist of n nodes with identifiers in {1, . . . , n}, with

configurations in Rd × SO(d), and with relative sensors described by the sensor

footprint Si and sensing function sns.

Note that the sensor we will use throughout the thesis is the angle-of-arrival.

12



Chapter 3. Network model and localization problems

3.2 The frame localization problem

Loosely speaking, we call frame localization the problem of computing the

location and orientation of each node of a relative sensing network. Additionally,

we call orientation localization the problem of computing the orientation of each

node of a relative sensing network. We begin with questions about the uniqueness

of these localization problems.

Problem 6 (Frame and orientation localizability) Given a relative sensing

network with reference node 1, provide graph theoretical conditions under which:

(frame localizability:) the reference frame transformations {R1
i , p

1
i }, for all i ∈

{2, . . . , n}, are uniquely determined by the relative measurements;

(orientation localizability:) the orientations R1
i , for all i ∈ {2, . . . , n}, are

uniquely determined by the relative measurements. �

Problem 7 (Centralized and distributed localization) Given a frame (re-

spectively, orientation) localizable network, give a centralized or distributed algo-

rithm to compute the reference frames transformation {R1
i , p

1
i } (respectively, the

orientations R1
i ), for all i ∈ {2, . . . , n}. Give algorithms for both noise-less and

noisy sensor measurements. �

13



Chapter 3. Network model and localization problems

Finally, for the above questions, we are interested in complexity in arbitrary

networks and expected computational complexity in random geometric networks.

Remark 8 (Data referencing motivation) It is worth remarking that the frame

localization problem needs to be solved in relative sensing networks if measurements

taken by arbitrary sensors in their respective reference frames need to be expressed

(and possibly fused) in a common unique reference frame. Measurements might

include positions of targets, environment boundaries, etc. �

3.3 Preliminary relationships

In three dimensions, for any sensing and communication undirected edge (i, j),

the basic relationship between the relative positions pji and pij and the change of

frame rotation matrix Ri
j can be computed from (2.2) to be pij = −Ri

jp
j
i . It is

possible to write a normalized version of this equation that applies to angle-of-

arrival measurements:

vers(pij) = −Ri
j vers(pji ), (3.1)

And its planar version, where relative positions are complex numbers and rotations

matrices are unit-length complex numbers, is:

θij = proj(∠pij − ∠pji + π). (3.2)

14



Chapter 3. Network model and localization problems

Remark 9 (Measurements and variables) Recall that the two nodes i and

j measure each other’s relative positions pij and pji , respectively. The unknown

variable in eq. (3.1) is the rotation matrix Ri
j with d degrees of freedom. �

Lemma 10 (Feasible orientations) Given unit-length measurements uij = vers(pij)

and uji = vers(pji ), let H i
j ∈ SO(3) be defined by H i

j = exp
(
αij êij

)
, where eij ∈ R3,

αij ∈ [0, π] are defined1 by

eij =





vers(uij × uji ), if uij × uji 6= 0,

any unit-length vector ⊥ uij , otherwise,

αij = atan2(‖uij × uji‖,−uij · uji ).

Then, every solution to eq. (3.1) may be written as Ri
j = exp

(
β ûij

)
H i

j, for an

appropriate angle β ∈ [−π, π[.

Proof: First, let us show that H i
j is solution of (3.1):

H i
ju
j
i = exp

(
αij êij

)
uji ,

= uji cosαij + (ei
j
× uji ) sinαij + (1 − cosαij)(e

i
j
· uji )uji .

Because ei
j

and uji are mutually orthogonal unit vectors, we have that

H i
ju

j
i = uji cosαij + n sinαij , (3.3)

1For any point (x, y) in the plane except for the origin, let atan2(y, x) be the angle between

the horizontal positive axis and the point (x, y) measured counterclockwise.

15



Chapter 3. Network model and localization problems

where n is a unit vector perpendicular to the plane containing ei
j

and uji whose

direction is given by their cross product. Let us consider the orthonormal base

{uji ,n, ei
j
}. Then, eq. (3.3) represents the rotation of axis uji around axis eij of

an angle αij, where αij is, by definition, the angle between uji and −uij . Therefore

H i
ju

j
i = −uij , that is, H i

j is solution of (3.1). Now, for an arbitrary angle γ ∈

[−π, π[, we compute

exp
(
γ ûij

)
uij =

= uij cos γ + (uij × uij) sin γ + (1 − cos γ)(uij · uij)uij

= uij cos γ + uij − uij cos γ = uij.

(3.4)

Then uij = − exp
(
β ûij

)
H i

ju
j
i , for β = −γ ∈ [−π, π[, i.e., exp

(
β ûij

)
H i

j is solution

of (3.1) for all β ∈ ]−π, π].

Now, we want to show that any solution of (3.1) takes such a form. Suppose

the matrix R̃ ∈ SO(3) is solution of (3.1). We obtain R̃uji = exp
(
β ûij

)
H i

ju
j
i ,

which can be easily written as exp(−αij êij) exp(−β ûij)R̃u
j
i = uji . It is known

that any rotation of a fixed vector that yields the same vector is equivalent to a

rotation of the vector about itself by any angle. Then

exp(−αij êij) exp(−β ûij)R̃ = exp(−µ ûji ),

for any µ ∈ [−π, π[. From (3.1) and (2.6) we obtain

exp(−µ ûji ) = exp(−µ ̂̃
R

−1
uij) = R̃

−1
exp(−µ ûji )R̃,

16



Chapter 3. Network model and localization problems

and R̃ exp(−αij êij) = exp((−µ + β) ûij). Therefore, any solution of (3.1) can be

written as R̃ = exp
(
ϕ ûij

)
H i

j , for any ϕ ∈ [−π, π[.

17



Chapter 4

Two-dimensional frame
localization

4.1 Orientation localizability with angle-of- ar-

rival sensors

Our first localizability result follows.

Theorem 11 (Orientation localizability for two- dimensional networks

with angle-of-arrival sensing) Consider a planar relative sensing network (d =

2) and with noiseless angle-of-arrival sensing. The following statements are equiv-

alent:

(i) the sensing graph is connected, and

(ii) the network is orientation localizable.

18



Chapter 4. Two-dimensional frame localization

Proof: For every undirected edge (i, j) of the sensing graph, the angles ∠pij

and ∠pji are measured. Therefore, eq. (3.2) implies that the relative angle θij is

uniquely determined from the measurements. Now, let us prove (i) =⇒ (ii). If

the network is connected, then there exists a path from the reference node 1 from

each i 6= 1. From equation (2.3), the angle θ1
i is uniquely determined as the sum

of the relative angles along the path connecting i to the reference node. Let us

now prove (ii) =⇒ (i). Assume that there exists no path from node i to the

reference node 1. Therefore, i and 1 belong to distinct connected components with

the network. No measurement is available about the relative orientation of each

node in the component containing i with respect to any node in the component

containing 1. Therefore, it is not possible that only a single orientation θ1
i is

compatible with the measurements.

Proposition 12 A network with only range measurements is not orientation lo-

calizable.

Proof: The range measurement is independent of the reference frame, i.e.,

given a fixed geometry of a network, each node may have an infinite number of

orientations.

Proposition 13 (Sufficient conditions for localizability) A network with n

nodes capable of angle-of-arrival measurement is both frame localizable and orien-

19



Chapter 4. Two-dimensional frame localization

tation localizable if the sensing graph is rigid and at least one of the edge lengths

is known.

In order to prove Proposition 13, we introduce the following notions and lemma

from [8]. Consider a reference frame with configuration p : V → R2, i.e., the

position of every point of the network.

Definition 14 (Constraint) The length constraints, L, are pairs of points whose

lengths are fixed, and the direction constraints, D, are pairs of points whose di-

rections are fixed.

It is then possible to speak of the direction graph F = (V,D) and the length graph

G = (V, L) and consider the double graph FG = (V ;D,L). We can measure the

distance between every two points of the network through the rigidity function,

defined as ζ : R2 → R, and ζ(p)i,j = ‖pi − pj‖2 for j ∈]i, |V |]. Note that ζ is

continuously differentiable with respect to p.

Definition 15 (Rigidity matrix) The rigidity matrix for p is the matrix D(p)

defined by ζ ′(p) = 2D(p), where ζ ′(p) = dζ

dp
.

We call D(FG, p) the constraint matrix of the graph, which consists in the rows

of D(p) that correspond to the edges in L and D.

20



Chapter 4. Two-dimensional frame localization

Definition 16 (Independent constraints) A set of constraints is independent

if the corresponding rows of the constraint matrix are independent.

Lemma 17 (Number of independent constraints) A graph with n nodes and

2n−3 independent bearing constraints plus any single length constraint, has 2n−2

independent constraints and a 2-dimensional space of translations in the plane.

Proof: [Proof of Proposition 13] Since the sensing graph is rigid, it is con-

nected and it has at least 2n−3 independent edges. Hence, according to Theorem

11, it is orientation localizable, and according to Lemma 17, the corresponding

framework has a 2-dimensional space of translation in the plane. But, fixing the

origin as any node i ∈ {1, . . . , n}, {Ri
j, p

i
j} for any j ∈ {1, . . . , n} are uniquely

determined. Hence the network is frame localizable.

4.2 Orientation localization with noisy angle-of-

arrival sensors

Now we follow Theorem 11, and we consider a network with nodes in the plane

and with angle-of-arrival sensing. We assume that, for each undirected edge (i, j)

of the sensing graph, nodes i and j measure, respectively, the angles ∠pij +nij and

∠pji + nji , where we suppose the noises nji and nij to be independent, Gaussian
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random variables with zero mean and variance σ. Therefore, for each undirected

edge (i, j), we can measure only

yij = proj((∠pij + nij) − (∠pji + nji ) + π), (4.1)

and not the true relative orientation θij as in eq. (3.2).

Remark 18 (Redundant measurements in cycles) If the sensing graph is

a tree, then there is no redundant measurement and we cannot reduce the effect

of measurement noise on our angle estimates. However, for every cycle in the

network, we can enforce a cycle constraint (see eq. (2.3)). We formalize this

statement as follows. �

Let GS = (VS, ES) be the undirected sensing graph with n nodes and m edges.

We assign a direction to each edge in ES in the following way: the direction is from

j to i if i > j. Noting that this direction assignment is different from/independent

of the sensing/communication relations, let us denote the directed graph obtained,

by Gd = (VS, Ed). Consider the oriented edge e = (j, i) ∈ Ed, with i > j. Let ψe

denote the estimate of the true relative angle associated to e, θe = θji . Let ψ ∈ Rm

denote the vector of angle estimates for all the edges of the graph. Analogously,

we let y denote the measurement vector with components ye = yji , for i > j. For

ℓ ∈ L(Gd), the cycle error ǫℓ at ψ is

ǫℓ = proj(1ℓ · ψ), (4.2)
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where the map proj : R → [−π, π[ is defined in (2.1) and the map proj : Rn →

[−π, π[n is defined by

proj([x1, . . . , xn]
T ) = [proj(x1), . . . , proj(xn)]

T . (4.3)

Note that proj(1ℓ ·ψ) = proj
(∑

f∈ℓ±ψf
)
, where ± indicates whether or not the

direction of the edge f is concordant with the direction of the cycle ℓ which f

belongs to.

It is evident that for a set of angle estimates to be consistent, the cycle error

must be zero. Accordingly, in what follows, we aim to solve the least-squares

estimation problem:

min
ψ

‖ψ − y‖2

subj. to proj(1ℓ · ψ) = 0, for all ℓ ∈ L(Gd).

(4.4)

Note that the optimal ψ lives in a set of countable affine subspaces; once the

optimal affine subspace is determined, the optimal estimate is computed via a

linear projection.

Remark 19 (Analogy with the Kirchhoff Voltage Law) The constraint in

eq. (4.4) can be regarded as a generalization of the Kirchhoff Voltage Law (KVL)

for electrical networks, which states that the sum of voltage drops around a closed

loop is zero. We can look at the vector of angle estimates ψ as the vector of

potential drops on every edge of the graph. The sum of the potential drops on any
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cycle ℓ (projected on [−π, π[ since we are using angles instead of voltages), is then

given by proj(1ℓ ·ψ). Imposing the constraint that this quantity is equal to zero is

equivalent to imposing the KVL on the network. �

4.3 Optimal estimation in a ring

Now, suppose the sensing graph GS is a ring with nodes {1, . . . , n} and with

undirected edges (i, (i + 1) mod n), for i ∈ {1, . . . , n}. In what follows, we write

(i+ 1) to denote (i+ 1) mod n. Compute a set of angle estimates ψii+1 by

ψii+1 = yii+1 −
1

n

(
proj

( n−1∑

i=1

yii+1 − y1
n

))
, (4.5)

and ψ1
n = −ψn1 . In vectorial form eq. (4.5) reads

ψ = y − 1ℓ
1

n
proj(1ℓ · y), (4.6)

where y = [y1
2, y

2
3, · · · , y1

n]
T and ψ = [ψ1

2, ψ
2
3, · · · , ψ1

n]
T . This affine map is a

projection onto one of the affine subspaces that describe the constraint in the op-

timization problem (4.4). It is interesting to note that eq. (4.6) is a particular case

of the Kaczmarz’s projection method [5] for solving a system of linear equations

through iterative projections.

Theorem 20 (Solution to the least squares) The angle estimates computed

in eq. (4.5) are the solution to the least squares estimation problem (4.4).
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Proof: We start by noting that we can rewrite the constraint set of (4.4) as

(1ℓ · ψ) = 2kπ, k ∈ Z. It is clear that there must exist k′ ∈ Z and |δ| ≤ π such

that
∑n−1

i=1 y
i
i+1 − y1

n = 2k′π + δ. Then, we know that the orthogonal projection

of y onto (1ℓ · ψ) = 2k′π minimizes (4.4). Now we want to show that the vector

ψ calculated by (4.5) is the orthogonal projection of y onto the appropriate affine

subspace. The normal vectors of the hyperplanes in the constraint subspaces

defined by (4.4) are equal and are exactly 1ℓ. The orthogonal projection of y can

be calculated by computing the point of intersection of the line L = {y+t1ℓ| t ∈ R}

with the hyperplane (1ℓ ·ψ) = 2k′π, i.e., finding the point ψ = [ψ1
2 , ψ

2
3, · · · ,−ψ1

n]
T

satisfying
n−1∑

i=1

ψii+1 − ψ1
n = 2k′π, ψii+1 − yii+1 = −ψ1

n + y1
n,

for i = 1, . . . , n− 1. Therefore, from the second equation,

nψii+1 = nyii+1 +
( n−1∑

j=1

ψjj+1 − ψ1
n

)
−

( n−1∑

j=1

yjj+1 − y1
n

)
.

Then, for all i ∈ {1, . . . , n− 1},

ψii+1 = yii+1 −
1

n
δ = yii+1 −

1

n

(
proj

( n−1∑

j=1

yjj+1 − y1
n

))
,

ψ1
n = y1

n −
(
− 1

n

(
proj

( n−1∑

j=1

yjj+1 − y1
n

)))
,

which is indeed (4.5).
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4.4 An iterative estimation algorithm for arbi-

trary graphs

We now consider an arbitrary network Gd with set of cycles L(Gd) and we

propose a natural generalization of the optimal estimation algorithm (4.6). Let

L̂ ⊆ L(Gd) be a subset of the cycle set, and let ψe denote the estimate of the angle

associated to the edge e. For 0 < κ≪ 1, consider the following “cycle-distributed”

discrete-time system:

ψe(0) = ye,

ψe(t+ 1) = ψe(t) − κ
∑

ℓ∈L̂: e∈ℓ

(1ℓ · ee) proj(1ℓ · ψ(t)),
(4.7)

where ei is them-dimensional vector whose i-th entry is 1, and all the other entries

are equal to zero. We will often focus our attention to the case where the set of

cycles L̂ is a set of fundamental cycles Lf . Such a protocol is “cycle-distributed”

in the sense that it requires communications with neighboring cycles only.

Theorem 21 (Exponential convergence) Consider a planar relative sensing

network N with noisy angle-of-arrival sensing and sensing graph GS = (VS, ES)

with n vertices and m edges, and its associated directed graph Gd = (VS, Ed). Let

Lf be a fundamental cycle set for the digraph with associated fundamental cycle

matrix Cf . The solution of the discrete-time system (4.7) with L̂ = Lf converges
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exponentially fast with exponential convergence factor ρ = (1 − κ)2, to the set

of angles with zero cycle error for κ < 2/(1 + λmax(F )), where F = CfC
T
f , and

λmax(F ) is the maximum eigenvalue of F .

Proof: Let dim(Lf ) = r. Given the fundamental cycles ℓ1, . . . , ℓr, define the

cycle error vector ǫ at ψ by ǫ = [ǫℓ1 , . . . , ǫℓr ]
T , where ǫℓi is defined by (4.2), for all

i ∈ {1, . . . , r}. With this notation we have

ψ(t+ 1) = ψ(t) − κ
∑

ℓ∈L(Gd)

1ℓǫℓ(t).

Then for every loop α ∈ L(Gd),

ǫ̂α(t+ 1) = ǫ̂α(t) − κ
∑

ℓ∈L(Gd)

(1α · 1ℓ)ǫℓ(t),

where ǫ̂α(t) = (1α · ψ(t)). By choosing a base of independent loops ℓi, i ∈

{1, . . . , r}, and an associated fundamental cycle matrix Cf as defined in (2.7),

we can write this for all the loops as vector ǫ̂, whose evolution is given by

ǫ̂(t+ 1) = ǫ̂(t) − κCfC
T
f ǫ(t),

and

ǫ(t+ 1) = proj((Ir − κF )ǫ(t)), (4.8)

where F = CfC
T
f . Note that F is symmetric positive definite. Consider now the

associated linear system

x(t+ 1) = (Ir − κF )x(t),
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and the Lyapunov function candidate V (x) = xTPx, with P = Ir. Next, for

κ ∈ ]0, 2[, we define Q = (2κ − κ2)Ir > 0. Noting that A = Ir − κF , we find

the values of κ such that the discrete-time Lyapunov inequality ATPA − P ≤

−Q holds. Because F is symmetric positive definite, it can be diagonalized as

F = UΛUT , with an orthogonal matrix U and a positive definite diagonal matrix

Λ = diag{λ1, . . . , λr}. Accordingly, the above discrete-time Lyapunov inequality

reads

U(Ir − κΛ)T (Ir − κΛ)UT − Ir ≤ −U(2κ − κ2)UT ,

which is satisfied if and only if (1 − κλi)
2 − 1 + 2κ − κ2 < 0, for i ∈ {1, . . . , r}.

In turn, this is satisfied for κ < 2/(1 + λmax(F )) < 2. Additionally, one can show

that P −Q = ρIr where ρ = (1 − κ)2.

We are now ready to study the nonlinear system (4.8). It is straightforward

to verify that the inequality V (proj(x)) ≤ V (x) holds for all x ∈ Rr. Therefore,

V (ǫ(t+ 1)) = V (proj(Aǫ(t))) ≤ V (Aǫ(t)) = ǫ(t)TATAǫ(t).

From the discrete-time Lyapunov inequality and from P − Q = ρIr, we compute

ǫ(t)TATAǫ(t) ≤ ρV (ǫ(t)), so that

V (ǫ(t)) ≤ ρtV (ǫ(0)).

Given κ in ]0, 2/(1 + λmax(F ))[, we know that ρ < 1 and, therefore, the cycle error

converges to zero exponentially fast.
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At this time, it is not known whether the proposed algorithm computes the optimal

least-square estimate of the unknown angles. Numerical experiments in Section 4.6

illustrate however its compelling performance in this regard.

4.5 Some remarks on complexity

in order to speed up the exponential convergence factor ρ of algorithm (4.7),

it is desirable to maximize κ. To compute the largest possible κ that guarantees

convergence, it is natural to ask how to choose Cf , i.e., how to choose the fun-

damental cycle set in order to minimize the maximum eigenvalue of the matrix

F = CfC
T
f . At this time, we only provide the following conservative analysis. One

can see that trace(F ) =
∑

i∈{1,...,r} |ℓi|, and, since λmax(F ) < trace(F ), exponential

convergence of algorithm (4.7) is guaranteed if

κ <
2

1 +
∑

i∈{1,...,r} |ℓi|
.

From Theorem 5, we know the fundamental cycle space has rank m− n + 1 in a

digraph with n nodes and m edges. In the worst-case, it is possible for a digraph

to have order n2 edges and it is certainly true that each cycle has at most order

n edges. Therefore, in the worst-case, we can only choose

κ ∈ O
( 1

n3

)
.
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Suppose now instead that (i) the graph is planar, so that it has at most 3n − 6

edges, and that (ii) we consider only cycles with bounded length (e.g., in a planar

graph that is a triangulation, one can choose a fundamental cycle set with all

cycles of length 3). Then we can choose

κ ∈ O
(1

n

)
.

More generally, how to choose a fundamental cycle set to minimize the sum

of cycle lengths is an optimization problem known as the minimum cycle basis

problem. In the beautiful work of Elkin and coworkers [3], the authors construct

a fundamental cycle basis for an unweighted undirected graph of length O(n2).

4.6 Simulations

We provide some simulations to illustrate the performance of the proposed

distributed algorithm considering L̂ as a set of independent cycles. We consider

arbitrary network configurations with fixed node positions and varying sensing

footprints. Convergence of (4.7) is shown in Figure 4.1, which refers to a complete

graph with 10 nodes, using (4.7) and noise variance σ2 = 0.01. It is easy to see

that the angle estimate for each node converges to a fixed solution. Figure 4.2

shows the cycle error (4.2) for every loop for the same graph. As expected, the

cycle error for each loop converges to zero.
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Figure 4.1: Angle estimate.
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Figure 4.2: Loop error.

Different number of edges in the network lead to different number of indepen-

dent loops. The empty dots in in Figure 4.3 represent the mean square error of

the measurements ‖y− θ‖2, whereas the full dots represent the mean square error

of the estimate ‖ψ − θ‖2 . As expected, ‖y − θ‖2 stays about constant with the

number of independent cycles, whereas ‖ψ − θ‖2 and decreases as the number of

independent cycles increases.
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Figure 4.3: Evolution of mean square error (MSE).
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Figure 4.4: Complete network performing self-localization.

Figure 4.4 shows a complete network performing self-localization considering a

set of independent cycles. The solid lines are the true frames. The dotted lines are

the measured frames (with respect to the pre-specified frame in the bottom left

corner). The dashed line are the estimated frame computed by algorithm (4.7).

From the figure, it is possible to see that, even thought not every single angle
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estimate is better than the measurement, the overall estimate MSE is smaller

than the measurement MSE.
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Three-dimensional frame
localization

Here, we consider a network composed by three nodes in 3-dimensional space

with a complete sensing graph, i.e., a triangle. The setup is illustrated in Fig-

ure 5.1.

p1

p2

p3

Figure 5.1: Three nodes in R3 with complete sensing

Before introducing the main result we consider the following proposition, pre-

sented in [11]):
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Proposition 22 (Inverse non-orthogonal Euler angles) Given unit-length vec-

tors r1, r2 and r3, with r1, r2 and r3 non-coplanar, and a rotation matrix R ∈

SO(3), consider the system of equations for the unknowns {β1, β2, β3} ∈ [−π, π[3:

exp
(
β1 r̂1

)
exp

(
β2 r̂2

)
exp

(
β3 r̂3

)
= R. (5.1)

Define a, b, c ∈ R by

a = −rT1 r̂2
2
r3, b = rT1 r̂2r3,

c = rT1Rr3 − rT1 r3 − rT1 r̂
2
2r3.

(5.2)

If c2 > a2+b2, then the system of equations (5.1) has no solutions. Vice versa,

if c2 ≤ a2 + b2, then the system of equations (5.1) has two (possibly identical)

solutions with β2 determined by

(β2)1,2 = atan2(b, a) ± atan2(
√
a2 + b2 − c2, c), (5.3)

and β1 and β3 determined as follows. After choosing a particular i ∈ {1, 2} and

corresponding (β2)i, β1 is the unique common solution to

β1 = atan2(b11, a11) ± atan2(
√
a2

11 + b211 − c211, c11),

β1 = atan2(b12, a12) ± atan2(
√
a2

12+b
2
12−c212,i, c12,i),

and, analogously, β3 is the unique common solution to

β3 = atan2(b31, a31) ± atan2(
√
a2

31 + b231 − c231, c31),

β3 = atan2(b32, a32) ± atan2(
√
a2

32+b
2
32−c232,i, c32,i),
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where, for (j, k) = (1, 3) or (j, k) = (3, 1),

a11 = rT2 r̂
2
1Rr3,

b11 = rT2 r̂1Rr3,

c11 = rT2 r1r
T
1Rr3 − rT2 r3,

a12 = rT3 r̂
2
1Rr3,

b12 = rT3 r̂1Rr3,

c12,i = rT3 r1r
T
1Rr3 − rT3 exp

(
(β2)i r̂2

)
r3,

a31 = rT1Rr̂
2
3r2,

b31 = rT1Rr̂3r2,

c31 = −rT1 r2 + rT1Rr3r
T
3 r2,

a32 = rT1Rr̂
2
3r1,

b32 = rT1Rr̂3r1,

c32,i = −rT1 exp
(
(β2)i r̂2

)
r1 + r1Rr3r

T
3 r1.

We can now consider a network with setup as illustrated in Figure 5.1.

Lemma 23 Consider a network composed by three nodes in 3-dimensional space

with angle of arrival sensing. Pick any one of the three nodes as reference. If the

sensing graph is the complete graph and the nodes are in generic positions with

generic orientations, then there are precisely two feasible configurations for the

three nodes and, therefore, the network is not orientation localizable.
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Proof: The frame localizability problem is described as follows. First, the

unknown variables are the three matrices Ri
i+1, for i ∈ {1, 2, 3}, where we write

(i+1) to denote (i+1) mod 3. These matrices have each three degrees of freedom,

for a total of 9 degrees of freedom. Second, assuming unit-length angle of arrival

measurements uji , for i 6= j ∈ {1, . . . , 3}, the constraint equations arising from the

measurements and from the closed kinematics chain relationships (2.3) are:

u1
2 = −R1

2u
2
1, u2

3 = −R2
3u

2
3,

u3
1 = −R3

1u
1
3, I3 = R1

2R
2
3R

3
1.

(5.4)

Given these measurements and according to Lemma 10, we compute the three

rotation matrices H i
i+1 and we know that there exist three angles βii+1 ∈ [−π, π[

such that

Ri
i+1 = exp

(
βii+1 û

i
i+1

)
H i

i+1.

Thus, equations (5.4) admit a unique solution {R1
2,R

2
3,R

3
1} precisely when there

exist unique angles βii+1 ∈ [−π, π[ such that

I3 = exp
(
β1

2 û
1
2

)
H1

2 exp
(
β2

3 û
2
3

)
H2

3 exp
(
β3

1 û
3
1

)
H3

1.

Applying eq. (2.6) repeatedly, we compute

(H3
1)
T (H2

3)
T (H1

2)
T

= exp
(
β1

2 û
1
2

)
exp

(
β2

3 Ĥ1
2u

2
3

)
exp

(
β3

1 Ĥ1
2H

2
3u

3
1

)
.
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We now rely on the assumption of generic positions and orientations to infer that

u1
2 ∦ H1

2u
2
3 and that u2

3 ∦ H2
3u

3
1. Also the left hand side term (H3

1)
T (H2

3)
T (H1

2)
T

is generic. From the formulation of the problem, we know that at least a real

solution for (5.4) exists. In particular, Proposition 22 tells us that such equations

admit two solutions. Therefore, the network is not orientation localizable.

Now, let us consider a network composed by four nodes, whose connected

sensing graph consists of two 3-nodes loops, with an edge in common. For example,

consider the setup in Figure 5.2 (b).

p1

p2

p3

p4

Figure 5.2: Four nodes in R3

Lemma 24 Consider a network composed by four nodes in the 3-dimensional

space with angle of arrival sensing. If the sensing graph is connected and there

are at least two independent loops, then the network is orientation localizable.
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Proof: As in the three-nodes case, the set of equations (5.4) is extended by

u1
2 = −R1

2u
2
1, u2

4 = −R2
4u

4
2,

u4
1 = −R4

1u
1
4, I3 = R1

2R
2
4R

4
1.

(5.5)

As equations (5.4), also equations (5.5) admit two solutions, i.e. two different sets

of values for βji . It is straightforward to show that only one of the two solutions

for β1
2 of (5.5) matches with one of the solutions for β1

2 in (5.4). Therefore, all

angles βji are uniquely determined, and the network is orientation localizable.

Lemma 25 Necessary condition for a network in the 3-dimensional space with

angle of arrival sensing to be orientation localizable is to have at least 4 nodes.

Proof: If the network has less than 3 nodes, there are no loops, so it is

not orientation localizable. Assume now the network has 3 nodes. If the sensing

graph is not complete, the network has no loops and therefore is not orientation

localizable. If the sensing graph is complete, according to Lemma 23, the network

is not orientation localizable.

Lemma 26 Any network in the 3-dimensional space with complete sensing graph

is orientation localizable if it has at least 4 nodes.

Proof: In a complete network every loop belongs to a three-edges loop.

Therefore, from what has been shown before, the network is orientation localiz-

able.
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Definition 27 (3-dimensional triangulation) Consider a connected network

composed by nodes in 3-dimensional space. We call such network a 3-dimensional

triangulation if there exists a basis for the cycle space such that each cycle in the

basis has 3 nodes and it shares at least one edge with another cycle of the basis.

Lemma 28 Consider a network with n ≥ 4 nodes in 3-dimensional space, and

assume its angle of arrival sensing is a 3-dimensional triangulation. Then, the

network is orientation localizable.

Proof: From the definition of 3-dimensional triangulation, we know that the

network can be divided into a basis for the cycle space such that each cycle in the

basis has 3 nodes and it shares at least one edge with another cycle of the basis.

Then, for each couple of loops we can use the result from Lemma 24. Therefore,

the network is orientation localizable.

40



Chapter 6

Conclusions

This thesis introduces the frame localization problem in a connected network.

For the planar orientation localization problem with angle-of-arrival (bearing)

sensors, we developed an algorithm that reduces the effect of noise. Our algorithm

computes the correct least-square estimate for ring networks in one step. Our

algorithm is proved to converge exponentially fast and is validated through some

simulations. For the three-dimensional case, we explore necessary and sufficient

conditions for a network to be orientation localizable when no noise is present.

We are currently extending the work in several directions. First, we want to

improve the efficiency of the orientation localization algorithm and either show its

least-square optimality or modify it to achieve least-square optimality. Second, we

plan to address the problem of position localization, defined earlier in this paper.

Third and finally, we aim to formulate conditions for frame localization in three

dimensions in the noisy case.
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