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ABSTRACT

MotionArc : Preliminary design of a system architecture for collaborative

robotic missions

by

Nathan P. Owen

This thesis presents a unified system architecture for implementing multiple

distributed algorithms on a network of robotic agents for efficient completion of

varied mission plans. We consider mission plans requiring simultaneous, asyn-

chronous execution of several distibuted algorithms by variable subsets of the

robotic network. The MotionArc system implements a combination of effi-

cient task-acheiving algorithms designed for a given mission plan as behavior

sets by providing solutions to two key architectural challenges: first, to en-

sure maintenance of sufficient, appropriate, and accurate situational awareness

information onboard each node of the network, and secondly, to allocate an ap-

propriate number of agents to each required behavior set such that some global

cost objective is optimized. We approach the first problem by adapting the

concept of a mission state estimate, and the second problem is solved using sev-

eral techniques from combinatorial optimization. In practice, the MotionArc

system provides a software library as a Python module for implementing these

methods and a standard for porting theoretically designed algorithms into func-

tional software components onboard simulated and real-time robotic hardware.

As a primary demonstation tool, we will pesent a mission plan calling for the ex-
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ecution of several algorithms for the dynamic vehicle routing problem where the

global cost function is a measure of the expected service delay for each instance

of a routing task.
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1 Introduction and Background

One of the primary research goals of the UCSB Motion Lab is to develop efficient

distributed motion coordination algorithms for robotic networks. Recent efforts

have developed algorithms attempting to solve a variety of geometric optimiza-

tion problems for robotic networks such as senor placement and coverage, surveil-

lance and partrol, and dynamic vehicle routing (DVR). Other research thrusts

have focused on lower-level motion algorithms for obstacle avoidance, naviga-

tion, and communication connectivity maintenance. These algorithms have been

analyzed extensively through theory and low-fidelity simulation and have well

established time complexity and performance metrics. For the next phase of al-

gorithm development, we would like to test these algorithms in real-time using

high-fidelity simulation and demonstration hardware; ideally, we will prove the

algorithms first individually on hardware and finally as part of a complex demon-

stration mission requiring the use of several algorithms for completion. Effec-

tively transitioning from the process of implementing single algorithms through

centralized numerical simulation to executing multiple algorithms on hardware

in a complex mission plan requires a well thought out system architecture. This

thesis will introduce our proposed architecture for experimental implementation

of motion coordination algorithms, named MotionArc .

Current implementations of our algorithms have been designed towards ease

of numerical simulation. When considering implementation on simulated or real

hardware, several key adaptations must be made. Programming of algorithms

to run on unique, individual hardware nodes requires software and hardware

implementation of systm component methods such as message transmission and

parsing, hardware acuation, and information management. Additionally, when
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executing algorithms within the context of a complex robotic mission, some sort

of user interface (UI) and situational awareness model must be introduced. Ide-

ally, our system architecture will utilize a single framework for implementing

multiple classes of algorithms, providing common mission management routines

for actions required by all missions to effectively manage the flow of informa-

tion and actuation commands amongst all components. Additionally, we will

provide a library of common tools for use in algorithm development, and a stan-

dard to which developmental candidate algorithms should adhere to ensure ease

of embedding within the mission management system. Ultimately, we intend

on implementing algorithms to accomplish missions requiring multiple agents

executing multiple behaviors; as such, an ideal architecture will also focus on

optimizing combined mission performance through individual routines and ac-

tions on each agent.

This thesis will introduce the MotionArc system through a look at each of

the main steps in software development. First, we will discuss a general model

for the candidate demonstration missions for which we intend on deploying our

algorithms. This model drives the conceptual design of our architecture - we

wish that it be general enough to allow use of the architecture with a variety

of classes of component algorithms; however, the sheer number of candidate

problems will require us to focus primarily on a demonstration mission utilizing

a few select types of algorithms. Next, we will introduce the preliminary design

of the system architecture, on the big-picture mission modeling level and the

level of individual components. We will then discuss the hardware and software

implementation of system components, and finally introduce a demonstration

mission and results.
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1.1 A model for candidate missions

We consider a connected robotic network executing a particular mission plan

consisting of several global “tasks” requiring action by one or more of the robotic

agents in the network. Tasks can be classified as one of three types: single-robot

tasks that require one and only one agent for completion such that assignment of

additional agents does not improve performance; n-robot tasks that require ex-

actly n > 1 agents for completion; and arbitrary-robot tasks where performance

is improved by assignment of additional agents to the task. We also consider

that each task comprising the mission has an associated cost function that is de-

pendent upon the number of agents assigned to that particular task. In general,

we will consider the performance cost for a particular task to be the average

expected delay between instantiation of a single task-point and its completion.

We can then consider a global mision cost to be some additive combination of

the delay functions for each component task. Before continuing, let us provide

some definitions for the key components of the mission plan:

Agent: A unique entity, usually a robotic device, that is used to complete the

mission plan and is under the management of our system architecture.

Task: Some unique action or sequence of actions required to be completed by

an agent or team of agents for accomplishing the mission plan.

Behavior Set: The unique algorithm, protocol, or method executed by an

agent or team of agents to accomplish a specific task, also called a high-

level task acheiving function.

Task-point: A particular, unique instance of a task; usually associated with

some specific task parameters such as location or time of service.
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Simply put, we can think of each agent or team of agents executing a par-

ticular behavior to accomplish some task on a particular task-point.

Our demonstrative mission is in essence a series of multiple occurances of

Bertsimas and van Ryzin’s dynamic traveling repariman problem (DTRP) [4].

We consider a sequence of task-points, uniformly independently and identically

(iid) distributed throughout a known two-dimensional environment, each of

which arrives as part of a poisson process with a known arrival rate. Each

task-point requires one or more of several services to be performed by one or

multiple robotic agents; the class of service and the presence of the task-point

are initially unknown. As a demonstrative goal for the project, we wish that

our system accomplish this mission plan while approximately minimizing the

average delay between task-point instantiation and the completion of all its re-

quired services. For completion of the mission plan, we require that our system

leverage distributed algorithms to accomplish two types of tasks:

• Identify: classify the service (or group of services) required by a task-

point

• Service: perform the service (or group of services) required by a task-

point on that task-point

A mission could easily incorporate multiple classes of service tasks; in section 3

we present several behavior sets designed to accomplish service tasks that differ

by several key parameters. Additional potential service task classes could be:

• Team service, where multiple agents are required to collaborate to com-

plete a particular task-point

• Pickup and delivery, where a task-point specifies a location to which it
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must be moved

• Service of needy task-points, where the task-point requires repetitive ser-

vice

Our mission model requires two primary assumptions about the nature of

the abilities of individual agents. We assume that agents, at any given time, are

only “outfitted” with one particular behavior set, capable of accomplishing one

particular task. However, we allow agents the ability of having that behavior

re-assigned at some performance cost. This allows us to reduce the problem of

assigning behaviors to agents to a periodic, combinatorial optimization problem.

Thus, one of the key components of our system architecture will be a method

of finding the optimal initial allocation of behaviors to agents.

1.2 Previous Work

Much of the motivation for the structural design of our architecture comes from

Arkin’s overview of the general components of behavior-based robotic architec-

tures in [1]. Additional motivation and general applications are drawn from

the context of architectural design for situational awareness [2], and unmanned

vehicle operation. Insight into hardware abstraction components of architecture

design are presented by Kumar et. al. in [3]. A characterization of current

task allocation methods based on problem taxonomy is given in [13]. Recently,

there have been significant research efforts into combinatorial methods for task

allocation such as those presented in [9]. We will show that our behavior al-

location problem is related to the general integer resource allocation problem,

treated with a distributed gradient descent method in [6] and with several useful

heuristics in [20].
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Additionally, several state-of-the-art approaches have been presented to dy-

namic mission planning and task allocation that form a more complete system

architecture. The key differences in these approaches hinge on the characteriza-

tion of mission elements or tasks and task-points, the treatment of robot controls

as either adaptive behaviors unique to each task or internal methods specified

within the parameters of the task model, and the presence of a central mediating

agent or “auctioneer”. One example, the ALLIANCE architecture [16], uses a

behavioral approach to classify the ability of agents to choose tasks from those

for which there is an appropriate available behavior as well as to take over or re-

linquish tasks to and from other agents. Each agent has a certian “motivation”

or affinity for a particular task that evolves dynamically based on communica-

tion and sensor information, but assigns no distinct state to individual tasks and

does not explicitly require completion of tasks by any particular agent. It also

does not describe or induce an explicit matching of tasks to agents, it instead re-

lies on the ability of agents to map behaviors to tasks, considering each available

behavior to be an independent, high level task acheiving function. As another

example, the Contract Net approach [10] and similar protocols rely on the use

of auctions to establish an agent-task assignment. In such protocols, “winning”

agents are commited to the completion of tasks, and the assignment may be

reviewed dynamically based on some metric of task progress or completeness.

This type of approach may typically require some store of central knowledge or

a central “auctioneer” and may be susceptible to scalability issues.

Most relevent to our system goals is the concpet of task allocation through

mission state estimates presented by Hedrick et. al in [14], which presents a

“distributed task allocation technique based on opportunistic exchange of in-

formation”. As much of our architecture will be concerned with maintenance
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of situational awareness estimates amongst a network of robtic agents, the pro-

tocols for effiecent information transmission presented in [14] are quite useful.

However, the mission example provided results in a rather sub-optimal, “greedy”

approach to actual allocation of taskpoint instances to agents. Fortunately, the

very algorithms we wish to demonstrate provide unique methods for finding a

closer to optimal allocation; thus, the combination of our algorithms and the

mission state estimate methods for situational awareness maintenance result in

a powerful task-point allocation method.

Many of the algorithms developed in our lab are built upon the framework

presented by Bullo, Martinez, and Cortes in [8], which provides an excellent

model for the assumptions we will make on the nature of the distributed algo-

rithms we wish for our architecture to manage. For the particular application to

dynamic vehicle routing problems, we consider algorithms for multiple classes

of demands [17], moving demands [5], and general routing [18].

1.3 Conceptual Model

To introduce the top-level conceptual model for MotionArc , we consider

the concept of a communication and control (C2) law for a robotic network.

In general, an instance of a distributed algorithm running on a single agent

of a robotic network has several properties. We consider agents with hardware

abstraction, as described previously, where the onboard decision-making process

is decoupled from the actual plant dynamics. As a preliminary, let X(t) refer to

the value of X at time step t and X[k] refer to the value of X held by agent k.

In each iteration of its communication and control law an agent must

1. Parse and handle incoming messages from its communication neighbors
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2. Parse and handle sensory data from its hardware interface

3. Generate a control signal for its hardware interface

4. Generate an outgoing message to be broadcast to its communication neigh-

bors

The methods for mapping the incoming messages and sensory data to outgoing

messages and control signals are the details of the distributed algorithm instance

operating on that agent. We define those methods using a framework from

sensing and information theory, as described in [15] and [8]. We define Ω[k](t), the

processor state or internal state of a distributed algorithm instance (or behavior

set) on agent k. We then define the signals described above as ξ[k](t), the sensor

readings of agent k at time t, Y[k](t), the message broadcast by agent k at time

t, and u[k](t), the hardware control signal generated by agent k at time t. We

define the message received by agent k as
∑

i∈C(k) Y[i], where C(k) defines the

communication network of agent k.

The mechanics of the distributed algorithm instance are carried out by two

mappings. F , or filter, the information filter or state transition function

generates a new internal or processor state based on the current state and all

new information, thus building the agent’s information history. A, or control,

the actuation and message generation function, generates the control and com-

munication output based on the current information state. Formally, the two

mapping functions are:

Ω[k](t+ 1) = F

Ω[k](t),
∑
i∈C(k)

Y[i](t), ξ[k](t)

 (1)

Y[k](t), u[k](t) = A
(
Ω[k](t)

)
(2)
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The system evolution is shown as a block diagram in figure 1. In section 3 we

F A

ξ[k]

∑
i∈C(k) Y[i]

Ω[k]

Y[k]

ω[k]
hardware interface

communication interface

Figure 1: System model for a basic distributed algorithm instance

will present a standard for designing algorithms to fit within this framework and

that of the MotionArc system, along with examples from our demonstration

DVR-type mission.

To meet the system requirement of maintaining sufficient and accurate situ-

ational awareness information, we use the concept of a Mission State Estimate

that evolves in a system that can be characterized as a general communication

and control algorithm as described above, neglecting the hardware interface.

Implementation of this mechanism on each member of a candidate robotic net-

work, regardless of what behavior set or distributed algorithm is active on that

member, ensures that such information is propagated throughout the network.

We define M̂[k](t), the mission state estimate of agent k at time t, to contain an

efficiently designed set of task-point state estimates and agent state estimates

that contains all the information required to be shared among agents to execute

any of the available behavior set algorithms. The evolution of M̂[k] is governed
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by specific filter and acutations functions F[k] and A[k], respectively:

M̂[k](t+ 1) = FM̂

M̂[k](t),
∑
i∈C(k)

Y[i](t)

 (3)

Y[k](t) = AM̂

(
M̂[k](t)

)
(4)

FM̂ AM̂

∑
i∈C(k) Y[i]

M̂[k]

Y[k]

communication interface

Figure 2: Block diagram for the evolution of the Mission State Estimate

The system block diagram for this mission modeling mechanism is shown in

figure 2. The exact protocols that make up the filter and actuation functions for

maintaining the Mission State Estimate, along with the details on the structure

of the data held within the Mission State Estimate, are given in section 2.

The execution of instances of distributed algorithms as behavior sets within

MotionArc is represented by a coupling of the formulation for a particular

behavior set with the mission modeling formulation shown in figure 3. In other

words, an identical mission modeling algorithm is evolving asynchronously on

every member of the robotic network; for each subset of the robotic network

allocated to a particular task, the respective task-acheiving algorithm or behav-

ior set is coupled to the modelig algorithm on each agent within that subset.
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FB(k) AB(k)

FM̂ AM̂

ξ[k]

Ω[k]

ω[k]

Y[k]

∑
i∈C(k) Y[i]

M̂∗
[k]

M̂[k]

hardware interface

communication interface

Figure 3: General system model for MotionArc

The mission modeling component takes over the function of parsing and broad-

casting messages throughout the network and provides its internal mission state

estimate to the active behavior set; that behavior set then parses the current

mission state estimate along with its received sensor data to generate the next

iteration of its own internal state and its control signal. The active behavior

set also updates the mission state estimate and completes the feedback loop by

returning the estimate to the modeling mechanism. Represented as a system

of coupled filter and actuation functions, we have the general model for the
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communication and control law for an agent k performing behavior set B(k):

M̂[k](t) = FM̂

M̂∗
[k](t),

∑
i∈C(k)

Y[i](t)

 (5)

Ω[k](t+ 1), M̂∗
[k](t) = FB(k)

(
Ω[k](t), M̂[k](t), ξ[k](t)

)
(6)

u[k](t) = AB(k)

(
Ω[k](t)

)
(7)

Y[k](t) = AM̂

(
M̂[k](t)

)
(8)

1.4 Preliminary System Design

The primary conceptual model introduced above governs the interaction and

execution of the mission modeling and behavior set protocols on a single agent.

We now turn our attention to a preliminary system design for our architecture

that takes into account the notion of task allocation across an entire robotic net-

work. To do this, we require a dual notion of the concept of task allocation. On

the one hand, we consider that there will be a subset of task-points correspond-

ing to each unique task; within that subset each individual task-point must be

assigned or selected by some agent. On the other hand, we wish that the set

of behaviors required to complete the mission encompassing all task-points be

distributed efficiently amongst the agents. One approach to task allocation is

to break all possible tasks into unique subtasks (or task-points, in our case) and

simply assign each subtask to an agent - assuming all agents are able to execute

the behavior required to complete each subtask - as used in [14]. Our system

instead leans closer to the ALLIANCE approach [16] where agents are assigned

behaviors and the assignment of appropriate task-points within the set of agents

performing the associated behavior is left as a detail of the behavioral algorithm.
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However, instead of allowing agents to chose tasks based on some internal moti-

vation function as in ALLIANCE, we will use a combinatorial approach similar

to the nonlinear resource allocation problem described in [6].

We break the problem of finding an optimal allocation of agents to tasks

into three component problems. First, we require that agents have at their

disposal behavior sets – or collections of high-level task-acheiving algorithms

– that efficiently allocate one class of task-point instances amongst the team

of robotic agents assigned to a single task. Secondly, we require that there

is an efficient exchange of information throughout the robotic network such

that, in the infinite time horizion, each agent has sufficient knowledge of the

global mission state – including information about the robotic networks, the

component tasks, and individual task-point instances – to execute the currently

assigned afore-mentioned behavior set. Assuming these two requirements are

met (sufficient situational awareness and availablilty of efficient task-acheiving

algorithm sets), the global task allocation problem is reduced to a dynamic

combinatorial obimization problem of finding the assignment of agents to tasks

that minimizes some global cost function.

We propose our system architecture, named MotionArc , that addresses

each of these three mission planning components for a robotic network. To build

the architecture, we draw on existing mechanisms from task allocation, dis-

tributed algorithms on robotic networks, and combinatorial optimization. For

situational awarness and mission information exchange, we build upon the con-

cept of Mission State Estimates and the mechanisms introduced in [14]. For

efficient execution of tasks and allocation of task-point instances we will pro-

pose and algorithm model introduced in [8] and will provide specific examples

given by algorithms developed in our laboratory. For the final, global combi-
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natorial optimization problem, we will show that our problem is an instance of

the integer capacitated resource allocation problem [6] and will explore several

heuristic methods for optimization.
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Figure 4: Conceptual system architecture design

The MotionArc system includes the three primary components described

above and, onboard a robotic agent, incorporates them with fundamental com-

ponents of any robotic architecture. One of the goals of our architecture is to

require as little knowledge as possible of the mechanics of the system architec-

ture from behavior set developers. For example, the architecture is designed

such that behavior sets are simply provided a situational awareness model; the

details of the maintenance of such a model are handled separately by the archi-

tecture and are not relevant to the design of behavior sets. With that concept

in mind, we present the system components here, in order of increasing level of

14



abstraction from the hardware. Figure 4 gives a top level organizational flow

chart showing the interaction between these componenets.

Hardware : The main hardware component of our system is the network of

mobile robotic agents. Specifically, current hardware consists of three

Videre Erratic mobile robot bases equiped with Hokoyo URG laser range

scanners. Through hardware abstraction, knowledge of hardware details

is not required of behavior sets.

Low level controls and hardware interfacing : Candidate behavioral al-

gorithms require some level of abstraction between hardware acutation

commands and their behavioral output commands. In our system, we in-

corporate the Player/Stage software package [12]. We use player drivers

to implement low-level control algorithms such as the Vector Field His-

togram Plus (VFH+) local navigation method [19], Smooth Nearness Di-

agram navigation [11], global path planning, and localization. The system

architecture is developed with the assumption that, onboard each agent,

it needs only to give access to that particular player server to component

behavior sets; behavior sets must be designed to properly use that server

for hardware interfacing. We will discuss hardware interfacing in more

detail in the implementation section.

Communication : Many distributed algorithms require the ability to pass

messages between agents; additionally, our assumption that each behav-

ioral algorithm has sufficient situational awareness information requires

the ability for such information to be shared among the agents of the

network as well. Our system uses TCP/IP for communciation over a wire-

less network. Additionally, our communication system will supplement

15



mission situational awarenes with a communciation connectivity model.

Again, our architecture will abstract away the details of sending messages;

behavior sets need only to specify the message content and target. Com-

munication will be discused in more detail in the implementation section.

Library of behavior sets : Each behavior set at an agent’s disposal is stored

in a library. As the primary task-acheving functions of the system, these

behavior sets are the key components around which our architecture is

designed. A behavior set should be designed to obtain sensor readings

and send actuator commands using the protocols provided by the hard-

ware interfacing component; similarly, communication requests and com-

mands should use the protocols of the communication component. Be-

havior sets will also have access to the most current situational awareness

model through the mission modeling and planning component. For the

purposes of our architecture, we assuming behavior sets are designed fol-

lowing the framework laid out in [7] and section 3

Behavior set management (allocation) : As previously discussed, our sys-

tem will attempt to optimize the allocation of agents to required behavior

sets through combinatorial approaches. This component will carry out

the details of this allocation. As combinatorial approaches will require

the delay-cost functions associated with each particular behavior set, the

behavior set manager will maintain estimates of these functions. Onboard

each agent, these managers will handle re-allocation requests and com-

mands and execute the details of activating and deactivating individual

behavior sets.

Mission modeling and planning : The handling of situational awareness

16



maintenance is the key feature of the MotionArc system. Each agent

must maintain some belief about the global state of the mission; to do this

efficiently, we borrow from the concept of mission state estimates used in

the allocation method presented by Hedrick et. al [14].

User interface and User : One of the primary goals of our system architec-

ture is to provide a method of situational awareness feedback to the end

user – both in the case where the user is an active participant in the mission

(“in-the-loop”) and where the user is just monitoring the situation from

a more centralized position (“on-the-loop”). For our initial experiments,

we will be considering the on-the-loop situation, since our goal is simply

to monitor the execution of a mission plan on our robotic system. The

user interface accesses the information provided by the mission modeler,

and presents it in some format ideal to the particualr user.. Ideally, the

system would have both a graphical user interface (GUI) and text based

command-line interface (CLI). We also provide the user some control over

the system level of automation.

As an example, consider a potential tour through the architectural compo-

nents provided by a look into a single logic pass onboard an agent:

1. Agent receives situational awareness update information, either through

communication or user interface components

2. Agent parses update and adjusts situational awareness model to reflect

most current state of information

3. Currently active behavior set accesses sensor data through hardware inter-

face, situational awareness data through mission modeler, and new mes-
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sages through communication interface.

4. Behavior set makes calculations and sends actuation commands through

hardware interface, message to other agents through communication in-

terface, and updates situational awareness information through mission

modeler.

5. Mission modeler parses update and generates new situational awareness

model, which it sends to other agents through the communication and to

the user through the user interface.

6. Behavior manager updates delay-cost function for active behavior based

on situational awareness model from mission modeler.

In an actual mission implementation, these processes might occur simultaneously

or in a different order.

The MotionArc system architecture effectively integrates and leverages the

capabilities of each component to provide each agent with sufficient situational

awareness information and efficient tools to interact with its environment to

meet our specified mission goals. Additionally, the architecture provides the

mission management capabilities over the entire robotic network required by our

mission model. We now turn our attention to the three main system processes

from a conceptual standpoint. First, we will introduce the mission modeling

data framework and the processes used to guarantee availability of situational

awareness information. Next, we will discuss the mechanics of the behavior set

model that will put our distrubited algorithms to use on our robotic network.

Finally, we will provide a descriptoin of our selected method for optimizing

system performance through allocation of agents to behaviors.
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2 Mission modeling

As discussed previously, the mission modeling component of the MotionArc

system handles all duties related to maintaining adequeate knowledge of mission

situational awareness for effective execution of behavior sets managed by the

system. An estimate of the informational state of the mission is broken into

information subsets – primarily regarding individual task points and agents –

which are periodically shared throughout the network and updated by local

behavior sets as each agent executes its own instance of a distributed algorithm.

The basic framework of protocols ensuring accuracy and relevance of mission

information is built upon a system of mission state estimation.

2.1 Mission state estimation

Consider the concept of ‘state’ for a specific mission plan. As introduced in our

general mission model, a mission plan can be described by a set of tasks, each

comprised of a set of task-points that represent a single instance requiring the

service of a particular task. The state of a mission task-point can be thought

to consit of, first, a copy of the task-point parameters provided by the mission

plan and second, dynamic information about the task-point. This dynamic

information could include the agent to which it is assigned, if any; whether it

is currently completed, in process, or needs to be assigned; and the last time at

which the information was updated. Now consider a mission involving several

robotic agents with limited communication. Due to noise and uncertainty in

communication, there is no global knowledge of the state of mission tasks and

subtasks; rather, each agent can maintain an estimate of said states – a mission

state estimate.
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The mechanism developed in [14] describes a series of protocols by which -

in the presence of communication uncertainty - an efficient allocation of task-

points is achieved. An agent with a certain mission state estimate regarding the

mission plan steps through this series of protocols:

1. msg: Defines a message sent to all agents within communication network

2. sync: Intelligently merges agent’s own mission state estimate with those

received from other agents to generate an up-to-date estimate

3. transition: Transitions the state estimates for each subtask through a

series of transition rules provided by the mission plan. For example, a

subtask with status ’assigned’ could be transitioned to status ’done’ if

some qualifying criteria has been met.

4. select: Selects an appropriate subtask based on a cost function. Cost

modifiers induce affinity for currently assigned subtask and aversion to

subtask assigned to other agents.

5. execute: Agent generates control output based on internal state and

parameters of assigned subtask.

Each of these methods are described in detail in [14]. Assuming that the message

transmission protocol is suitable for integration with our communication network

and that all protocols up to select lead to an efficient assignment, only the

final two protocols are of consequence when considering the interaction of this

mechanism with our library of distributed algorithms.

It is helpful to think of the mission state estimate mechanism itself as a C2

law adhering to the standard described previously. Consider an agent k, and, at
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discrete time l, let the agent have mission state estimate M̂k(l) and state Xk(l)

Xk(l) :=



AgentID := k

l := time

dynamic state(l)

vehicle type

resources available(l)

M̂k(l)


The message sent by each agent k at time l is simply

Y k
out(l) = msg(Xk(l)) =

 k

M̂k(l)


Let uk(l) be the control output of agent k at time l and let Y k

in(l) be the collection

of messages received by agent k at time l from all agents within communication

range:

Y k
in(l) = {

(
j, M̂ j(t(j))

)
|j 6= k, (k, j) ∈ Ecmm}

The task allocation protocol can then be broken down into a state transition

function and a control function. The state transition function updates the mis-

sion state estimate based on the current estimate and the group of received

estimates:

M̂k(l + 1) = stf(M̂k(l), Y k
in(l))

The state transition function can be broken into components corresponding to
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the sync protocol and the transition protocol:

M̂k
∗ = sync(M̂k(l), Y k

in(l))

M̂k(l + 1) = transition(M̂k
∗ (l))

The control function involves the selection and execution of an appropriate sub-

task from the current state estimate:

uk(l) = ctrl(M̂k(l))

The control function also can be broken down into components consisting of the

select protocol and the execute protocol:

Ŝk∗ = select(M̂k(l))

uk(l) = execute(Ŝk∗ )

In [14], there is an additional layer to the mission state estimate; individual

task-points are grouped into corresponding classes of tasks - in other words, all

“detect” task-point instances would belong to the unique task “detect”. Tasks

have associated state estimates as well as unique transition rules. Agents would

transition from performing one task to another when specified by the appropri-

ate rules. This is one component of the mission state estimate framework that

our architecture will not incorporate; instead, agents will only consider the sub-

set of task-points belonging to the task corresponding to their active behavior

set. Thus, transitions between tasks are handled by the behavior managmenet

component described in section 3. Our data model will include global task in-
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formation in the form of a task specification as described below; however, this

information is used for task execution and performance cost estimation only and

is not used to transition between tasks and behavior sets on individual agents.

Our second deviation comes when agents select a particular task-point in-

stance to attempt to accomplish. As formulated here, when choosing amongst

task-points, agents would simply follow a greedy approach, basically choosing

the task point with the lowest cost. Instead, we leave this process to be handled

by the currently active behavior set.

Removing these two concepts from the mission state estimate framework,

we are left with a system through which we can effectively manage mission sit-

uational awareness information; action upon this information is the subject of

other components of the architecture. So far, we have only discussed mission

state estimates regarding individual task-points – for the purposes of our archi-

tecture, we will extend this concept to incorporate state estimates for individual

agents as well, since many of our algorithms require some knowledge about

the state (particularly the location) of other agents. As such, we will refer to

both task-point state estimates (TSE’s) and agent state estimates (ASE’s). Our

specific framework, shown in figure 5, can be discussed in terms of mission mod-

eling data strucutres and protocols. In general, the mission modeler maintains

a database containing TSE’s and ASE’s for all known task-points and agents

involved in the mission. Periodically, messages are received from other agents

containing a copy of their entire mission state estimate, which is then merged

with the existing estimate through the sync protocol. Internally, mission state

estimates are run through the transition protocol. These two protocols ensure

the mission state estimate is accurate and current. The mission modeler also

may maintain a data set containing information about the mission environment.
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comm
interface

Figure 5: Conceptual model for mission modeler

These three data sets may be accessed by other components of the architecture;

in particular, behavior sets will typically require access to the TSE’s and ASE’s

representing task-points and agents involved with the task achieved by that

behavior set.

2.2 Mission modeling data structure

A task-point state estimate data model is described in [14] and paraphrased

here. We define the task specification for task i as

Ti = {Pi, p0
i }

where P represents the global task parameters and p0 represents the default

parameters for task-point instances of the task.

We represent the j-th task-point instance of task i by

Sij = {Pij, Rij}
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where Pij is the set of parameters defining the task-point and Rij is a set of

transition rules governing state transitions on the task-point. Both task point

parameters and transition rules may be general, defined for all task-points be-

longing to a particular task; they may also be specific to that particular task-

point instance. We then introduce a task-point state estimate as

Ŝij := {σij, αij, Cij, τij, Iij, Pij, Rij}

made of of components σij ∈ {‘todo’, ‘assigned’, ‘done’}, the task-point

status; αij, the unique identifier of agent assigned to or having completed subtask

Sij; Cij, the reported cost for agent αij to accomplish Sij if σij = ‘assigned’; τij ∈

<, the timestamp when Cij was calculated by αij; and Iij ∈ <, the initialization

time of Sij.
1 For our generalized mission model, unique task-point parameters

will typically consist of its pose (if it is a task on geometric service points)

and its requirements for completion (such as service time). This information

would be defined at task-point state estimate instantiation; typically, this would

occur by an agent executing a behavior set designed to detect and identify task-

points. Additionally, our task-points would include generalized parameters such

as failure timeouts.

Building of this framework for TSE’s, we develop a data model for estimates

of agent state as well. We represent agent k as

Ak := {Pk, Rk}
1For clarity throughout this thesis, we may refer to elements of state estimate by referencing

either the direct element value: Ui,j for the status of task-point j of task i); or, by naming
the value and referencing the state-estimate: status(Ŝi,j)
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consisting again of a set of parameters and a set of transition rules. Our agent

state estimate is defined as

Âk := {σk, τk, Ik, Qk, Pk, Rk}

where σk ∈ {‘idle’, ‘active’} is the agent status; τk is the timestamp when

the agent state estimate was last updated; Ik is the initialization time; and Qk

defines the agent’s available resources. In the case of an agent state estimate, the

parameters would typically include agent pose information, the agent’s active

behavior, and any information that the underlying distributed algorithms com-

posing the agent’s active behavior set would be designed to transmit to other

agents within the robotic network. The transition rules should again include a

fault timeout.

2.3 Mission modeling protocols

It could be argued that, in the case of task-point state estimates, state transitions

need only be carried out by whatever behavior set was handling that particular

task-point, and in the case of agent state estimates, state transitions need only

be carried out by the particular agent which is represented by the state estimate.

Information would still propogate throughout the network but the number of

state transitions performed by each node would be reduced. In that case, a

mission modeler such as ours needn’t even be developed; such transitions could

be handled by behavior sets. However, one key feature of the mission state

estimate data model and transition protocols is the introduction of a degree of

fault tolerance; since the mission modeler operating on any agent can execute

state transitions on any component of its known mission state estimate, task-
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points assigned to faulty agents can be identified and appropriately handled.

For example, if agent A fails, at some point the transition rules for all task-

points’ state estimates indicating assignment to agent A will indicate to any

other agent’s mission modeler with knowledge of the task-points that the task-

point service attempt has failed. The task-points statii will be reset and they

will re-enter the pool of ‘todo’ task-points while the agent status will be reset

and the agent will be a candidate for re-assignment and re-activation.

We first consider the process of comparing state estimates received via the

communication interface from other agents to the state estimates contained

within an agent’s own believed mission model. The sync protocol for task-point

Protocol 2.1 sync protocol for task-point state estimates

Consider agent A with M̂A, receiving message Ȳ B containing M̂B from agent
B
for all Ŝ ∈ M̂B such that Ŝ /∈ M̂A do

copy Ŝ to M̂A.
for all task-points S in M̂A do

if IB > IA then
task-point has reset, SA ← SB

else if given σA and σB, the condition in the following table return true
Task-point S σA

‘todo’ ‘assigned’ ‘done’
‘todo’ τB > τA∗ τB > τA false

UB ‘assigned’ τB ≥ τA see below false
‘done’ true true τB < τA∗

∗ or if τB = τA and αB > αA

Assigned-Assigned: if {(αB = αA) and (τB > τA)} or
if {(αB 6= αA) and (τB + CB < τA + CA)} or
if {(αB > αA) and (τB + CB = τA + CA)}

then
SA ← SB

�

state estimates, shown in protocol 2.1, compares received TSE’s with existing

TSE’s; in general, for each task-point agent A either keeps SA or completely
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replaces SA with SB. Based on the statii of SA and SB, the algorithm executes

a number of boolean tests to ensure that the most accurate, up-to-date infor-

mation is propagated. The synch protocol for ASE’s, shown in protocol 2.2 is

Protocol 2.2 sync protocol for agent state estimates

for all Â ∈ M̂B such that Â /∈ M̂A do
copy Â to M̂A

for all A in M̂A do
if IB > IA then

agent has reset, overwrite AA with AB

else if τB > τA then
overwrite AA with AB

�

significantly simpler; accurate and current informaiton is guaranteed by simply

keeping the most recently updated estimate.

To introduce the state estimate transition protocols, we can consider each

type of state estimate as a sort of finite state machine, with the finite set of

state defined above by the possible statii. Each type of state estimate has

a corresponding set of possible transitions, governed by the state estimate’s

transition rules. These rules are tested and status transitions execuded through

a sequence of status transition functions.

todo
 done


assigned
 complete�

fault�

redo�

select�

Figure 6: Status transition model for task-point state estimates

For task-point state estimates, we consider the status transitions provided
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in [14] and shown in figure 6: complete, which takes the task-point status from

‘assigned’ to ‘done’; fault, which takes the task-point status from ‘assigned’

to ‘todo’; and redo, which takes the task-point status from ‘done’ to ‘todo’.

There is an additional status transition choose, taking the status from ‘todo

to ‘assigned’; however, as we are leaving the details of selecting individual

task-point instances to our behavior set components, this transition is not exe-

cuted by the mission modeler. Transitions from ‘done’ to ‘assigned’ or from

‘todo’ to ‘done’ are not defined. The transition protocol for task-point state

Protocol 2.3 transition protocol for task-point state estimates

Let Rc, Rf , Rr represent the transition rules for a given task-point state esti-

mate Ŝ for the complete, fault, and redo status transitions, respectively. Also
let AgentID be the unique identifier of the agent executing the protocol and
t represent the current system time.
for all Ŝ in mission state estimate M̂k on agent k do

if Rc and σ = ‘assigned’ and α = AgentID then //complete(Ŝ)
σ = ‘done’; α = AgentID; τ = t

else if Rfand σ = ‘assigned’ then //fault(Ŝ)
σ = ‘todo’; α = AgentID; τ = t

else if Rr andσ = ‘done’ then //redo(Ŝ)
σ = ‘todo’; α = AgentID; τ = t; I = t

�

estimates, shown in protocol 2.3, combines the tasks of checking transition rules

for each possible transition and execution of the appropriate transition into three

status transition functions. For our mission plan, we consider general fault and

redo transition rules based on a simple comparison of time elapsed since last up-

date and redo and fault timeouts, provided within the task-point state estimate

parameters:

Rf := t− τ > fault timeout, Rr := t− τ > redo timeout
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Transition rules for the complete transition are more complicated; for task-point

instances of a DVR task where C is a measure of time-to-target plus service

time, we could consider a transition rule

Rc := C < εcomplete

where εcomplete is some completeness threshold specified within the task-point

parameters.

idle
 active


activate�

deactivate�

fault�

Figure 7: Status transition protocol for agent state estimates

For agent state estimates, we introduce the status transition model shown

in Figure 2.3. Three status transitions are possible here; fault and deactivate,

which both tranistion the status from ‘active’ to ‘idle’, and activate, which

transitions the status from ‘idle’ to ‘active’. Similar to the choose transition

for TSE’s, the activate and deactivate transitions are governed by the behavior

manager component; the mission modeler is only concerned with the transtion

fault to provide fault tolerance to the mission situational awareness model. The

Protocol 2.4 Status transition protocol for agent state estimates

Let Rf be the transition rules for a given agent state estimate Λ̂ for the fault
status transition, and t be the current system time
for all Â in mission state estimate M̂ on agent k do

if Rf and σ = ‘active’ then //fault(Â)
σ = ‘idle′; τ = t
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agent state estimate transition protocol, shown in Protocol 2.4, also combines

the task of checking the appropriate transition rule and executing the transition

for the fault status transition. Similar to our transition rules for subtask state

estimates for our mission model, we introduce a basic faulting transition rule:

Rf := t− τ > fault timeout

where fault timeout is defined in the agent state estimate parameters.

Behavior sets and the behavior manager must have access to several mis-

sion modeler protocols. First, the mission modeler provides a mechanism for

creation of state estimates by behavior sets. Considering our specific demon-

stration mission plan, we see that agent state estimates initially need to be

created onboard each agent, and subsequently shared (and copied) throughout

the robotic network. Task-point state estimates belonging to the identification

task will initially need to be created via the identification behavior set. As subse-

quent tasks are completed for each task-point instance, new task-point intances

must be introduced for the logical “next task” required to be performed at that

location. The duty of requesting the creation of a new task-point instance falls

to individual behavior sets; however, our situational awareness model requires

behavior sets to provide only the task required and specific task-point parame-

ters. The mission modeler handles the details of assiging state estimates unique

identifiers and building the framework and parameters required by the previ-

ously described protocols. In general, the modeler will provide a generation

function to behavior sets:

generate : P, task→ S
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For their internal algorithms, behavior sets must have access to read the

current state estimate information for agents and task points. Thus, the mission

modeler will provide read access to all task point data; additionally, it will

allow other components the ability to overwrite the cost and paramater data for

specific task-point state estimate instances, and the parameter data for agent

state estimate instances.

2.4 User Interface

We include some background about the proposed user interface for the Mo-

tionArc architecture here, along with the mission modeling component, as

the primary goal for our user interface is to provide the user with situational

awareness feedback. This feedback consists, for the most part, of a representa-

tion of the beliefs held by some mission modeling component within the robotic

network. In practice, this modeler component could be running on a sort of

agent similar to a network packet-sniffer; the user interface function could be

instantiated as the active behavior of that agent. Typically, this agent would

be “virtual” in that it would not effect any type of state transition of control

actuation within the robotic network; it would simply parse the current mission

model into some sort of easy to understand reference frame for the user.

Our basic graphical user interface (GUI) will present some of the information

contained within task-point and agent state estimates to the user. We include

textual displays for details of agent and task-point state estimates. These de-

tails are intelligently sorted; for example, it might be useful for the user to see

task-points sorted by status, listing all ‘todo’ task points first, or it might be

more helpful to sort by the agent to which each task-point is assigned, or by
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type of task-point. Agent state estimates might be sorted by the behaviors the

respective agents are performing or by their amount of available resources.

Since our generalized mission model handles agents and task-points that

are predominantly spatially distributed, our user interface will also include a

visual representation of task-point and agent poses, drawn directly from the

respective state estimate parameters known by the visualizing agent. Based

on task-point classes or types, additional information about the state of the

task those task-points belong to could be included as well. For example, for

task-points belonging to a DVR class task and mutually assigned to a single

agent, task-point poses could be graphically linked based on the believed cost

of each estimate. As a result, we would have a visual representation of the tour

calculated by the task-acheiving agent through its assigned task-points.

The mechanics of the interactions and protocols within the user interface

can be treated within the same framework as other behavior sets we intend to

implement; these details will be included as an example in the following section

describing that framework. We will also discuss protocols that expand the user

interface from a simple feedback mechanism to one that allows user input to

influence the actions of the robotic network.
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3 Tasks and Design of Behavior Sets

We now turn our attention to the component for which the entire architecture

is proposed: behavior sets, which are MotionArc -specific implementations

of efficient task-acheiving algorithms for the tasks defined by a mission plan.

Before strictly considering MotionArc behavior sets, let us briefly discuss the

nature of the tasks that make up a MotionArc mission model. Independently

of designing behavior sets, MotionArc end users must define the mission plan

for a given robotic network mission; this plan primarily consists of describing

the potential tasks that may arise throughout mission execution. In section 2

we introduced the data model for task-point instances; task definitions simply

provide a template for the nature of these task-points. In practice, MotionArc

will use a task specification to define specific transition rules and default param-

eters for the associated task-point instances. Recall from our description of the

Mission State Estimate that those two task-point features are the only features

that will vary in definition between task-points belonging to different tasks. Ad-

ditionally, task specifications may describe features of the task independent of

any one task point such as the envirionment in which the task-points may occur

(if different from the global mission environment) and the rate at which these

task-points are expected to occur. Both of these features will be used in de-

termining the expected cost functions for a particular behavior set, a function

required by the behavior allocation protocol introduced in the following section.

3.1 Requirements and design principles

In general, behavior sets need only to adhere to the model presented in sec-

tion 1.3. Reiterating, behavior sets maintain an internal state and map sensor
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Figure 8: Behavior states contribute sensor information to the Mission State Esti-
mate and effect control acuation on the environment

data and the current misssion state estimate to control actuation output and the

next iteration of the mission state estimate. In the C2 framework presented in

[8], instances of distributed algorithms received and generated messages; in our

forumulation, the Mission State Estimate is designed to maintain all information

that would be passed through these messages, as MSEs are shared across the

network over time.

Addressing several key design considerations will help to streamline the pro-

cess of adapting algorithms as MotionArc behavior sets.

• Sensor Data: How will the algorithm “read” sensor data from the hard-

ware interface provided by the Player/Stage software package, and how

will it make control commands?

• Mission State Estimates: How will the algorithm make use of the infor-

mation provided by the task-point state estimates for the associated task,

and the agent state estimates for the other agents performing the task?

• Internal State: What is the internal state space?

The functional implementation of MotionArc , described in a subsequent

section, provides the tools such that algorithm designers can address these con-
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siderations. From an information perspective, the main decision to make is what

algorithmic information should be maintained as internal state variables, and

what should be contained within the parameters of the task-point and agent

state estimates read and written by the algorithm. In general, information that

passes between agents will be maintained as a part of the Mission State Es-

timate. For example, a behavior set designed to accomplish a DVR-type task

will use the current local Mission State Estimate to determine which task-points

to add to a service queue, and will execute the select task-point state estimate

status transition when a task-point is selected. The behavior set would also

update the estimated cost (in the DVR case, the remaining time or distance - to

- complete) maintained within respective task-point state estimates. The actual

ordered queue of task-point names that makes up a TSP tour, however, would

be maintained as local state information.

3.2 From algorithm to behavior set

We now demonstrate the adaptation of a generic algortihm as a MotionArc

behavior set by considering a generic algorithmic framework for the multiple

vehicle, infinite capacity dynamic traveling repair-person problem (DTRP). Re-

call from section 1.3 the behavior set filter and control protocols FB and

AB that result from the coupling of the behavior set with the Mission State

Estimate protocols:

Ω(t+ 1), M̂∗(t) = FB

(
Ω(t), M̂(t), ξ(t)

)
(9)

u(t) = AB (Ω(t)) (10)
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where Ω(t) is the internal processor state, M̂(t) is the Mission State Estimate,

and ξ(t) is the sensor data. For the generic DTRP algorithm, we define the

processor state as

Ω := {Sgoal, Q, xbase}

where Sgoal is the task-point state estimate corresponding to the task-point in-

stance the agent is currently working towards, Q is a (possibly empty) tour of

task-point identifiers corresponding to task-points that are currently assigned

to the agent, and xbase is the pose of a base or depot location for this agent.

Assuming adequate low-level hardware control routines, the control output u is

simply a desired pose toward which the robotic agent should navigate.

The generic DTRP algorithm can be summarized as follows: first, using some

efficient method, the agent selects some number of task-points belonging to the

respective task to service. If none are selected, the agent moves towards its base

or depot location. Otherwise, the agent labels the first selected task-point as its

goal and moves towards that task-point location. When it arrives, it performs

some service at or on the task-point until the task-point is determined to be

complete, at which time the agent selects the next task-point as its goal.

Recalling the Mission State Estimate data model presented in section 2, we

can now define the parameters of task-points belonging to a DTRP task as the

task-point pose, required service time, and minimum service distance:2

P̂DTRP ,j := {x̂DTRP ,j, sDTRP ,j, rDTRP ,j}

The behavior set protocols may also require global task parameters for execution,

2as with the other components of state estimates, we may refer to parameters of a state
estimate using either the x̂i,j notation or pose(Si,j)
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such as v, the average (or constant) agent speed. Protocols 3.1 and 3.2 show

Protocol 3.1 Generic DTRP filter protocol

1: Given M̂,Ω, ξ for agent k:
2: update the agent state estimate Λk in M̂ with the pose sensed in ξ.
3: if Sgoal is Null then

4: Q⇐ select filter
(
{i ∈ {1, . . . , |ŜDVR|} | status(ŜDTRP,i)}

)
5: if Q is not empty then
6: for i = 1to|Q| do //Q := q1, q2, . . .
7: Execute the select status transition on qi
8: if i = 1 then
9: cost(q1)⇐ ||pose(q1)− pose(Âk)||/v + service time(q1)

10: else
11: cost(qi)⇐ ||pose(qi)−pose(qi−1)||/v+service time(q1)+cost(qi−1)
12: Sgoal ⇐ q1 and remove q1 from Q and re-number accordingly
13: else
14: if status(Sgoal! = ‘assigned′ then //If a status transition has occured
15: if |Q| > 0 then
16: Sgoal ⇐ q1 and remove q1 from Q and re-number accordingly
17: else
18: Sgoal ⇐ Null

19: if ||pose(Sgoal)− pose(Âk)|| > service dist(Sgoal) then //Goal task-point
not within service range

20: δcost = ||pose(Sgoal)− pose(Âk)||/v − (cost(Sgoal)− service time(Sgoal))
21: for all S ∈ Sgoal ∪Q do
22: cost(S)⇐ cost(S) + δcost

23: else //Goal task-point within service range
24: service(Sgoal)

our generic DTRP filter and control protocols and how they make use of

the Mission State Estimation framework. Specific algorithms would specify a

task-point selection policy select filter and a service action policy service.

For the sake of demonstration, our service action policy simply requires agents

to “wait” – once they have reached goal task-point poses – for the amount of

time specified by the service time parameter of the associated task-point state

estimate.
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Protocol 3.2 Generic DTRP control protocol

1: if Sgoal! = Null then
2: u⇐ pose(Sgoal)
3: else
4: u⇐ xbase

It is important to note that none of the status transitions governed by the

mission modeling protocol are executed during a pass through the behavior set

protocols. Of particular interest is the complete status transition, the result

of which (switching status from ‘assigned’ to ‘done’ f) is required for a

task-point to be removed from the service queue. The actual complete status

transition would happen during the first pass of the mission modeling execution

protocol after the cost (in this case, time-to-service completion) fell below some

threshold.

Several efficient task-point selection policies are given in [4] that have known

performance costs for particular task situations and are shown in the following

paragraphs. As will be discussed in section 4, we require that these performance

costs be functions of the number of agents assigned a particular behavior, m,

and the global task parameters introduced by a task specification. For DTRP

tasks, we define these parameters as

PDTRP := {E, λ, s̄, σ̄, v}

where E is the area of the mission environment, λ is the measured or predicted

arrival rate of task instances, s̄ is the expected service time for task instances,

σ̄ is the variance in service time, and v is the average agent speed.

The m Stochastic Queue Median (mSQM) Policy selects task-points in a

manner such that each agent will serve task-points on a first-come, first-serve
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(FCFS) basis within an approximately equitable partition of the mission environ-

ment. The analysis in [4] for this algorithm as well as one to follow assumes that

agents serve within strictly equal partitions; in practice, we implementent the

partitioning without explicitly solving for the equitable partition of the space.

Instead, we consider the Voronoi partition of the space based on the agent posi-

tions at any given point in time. Agents with smaller partitions are less likely to

have the required number of taskpoints within their partition and as such will

tend towards moving to their “base” location. The “base” locations can be ei-

ther calculated a-priori for m agents; or, agents can use their “base” location as

the calculated centorid of their Voronoi polygon at a given point in time. This

version of the policy is shown in protocol 3.3. As agents move towards their

Voronoi centroids, the Voronoi partition will approximate an equitable partition

of the space, a consequence illustrated in various deployment algorithms in [8].

The static, equitible partition mSQM policy is optimal in the light loading case,

that is, when λs̄ → 0, and the expected system time in the asymptotic regime

is

TmSQM
E[minx0 ∈ D∗||X − x0||]

v
+ s̄

where D∗ is the set of “base” locations.

Protocol 3.3 mSQM task-point selection policy

1: S∗ ⇐ {i ∈ {1, . . . , |ŜDVR|} | status(ŜDTRP,i)}
2: sort S∗ such that τi < τi+1 for all Si ∈ S∗
3: calculate Vk = V (Âk, A

∗), the Voronoi region associated with agent k given
the set of agents A∗ performing this behavior set

4: for all S ∈ S∗ do
5: if pose(S) ∈ Vk then
6: break
7: Q⇐ S

The G/G/m version of a TSP-routing policy is shown in protocol 3.4. In this
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policy, task-point state estimates are grouped, as they arrive, into sets of size

n; sets are served by individual agents on a FCFS basis. Assuming an optimal

TSP tour for each set, an asymptotic upper bound on the system time for this

policy in the high loading (λs̄→ 1) case is

β2
TSP

λE(m+ 1)

2m2v2(1− λs̄)2
+
βTSPλ

√
2E(m+ 1)(1/λ2 + σ2

s/m
2)

2mv(1− λs̄)3/2
+

β2
TSPλE

mv2(1− λs̄)

where βTSP = 0.72. For stability, the policy requires

n > β2
TSP

λE

m2v2(1− λs̄)2

Protocol 3.4 G/G/m-TSP task-point selection policy

1: S∗ ⇐ {i ∈ {1, . . . , |ŜDVR|} | status(ŜDTRP,i)}
2: sort S∗ such that τi < τi+1 for all Si ∈ S∗
3: if |S∗| ≥ n then
4: order the first n task-point state estimates in S∗ into a minimum TSP

tour QTSP.
5: Q⇐ QTSP

6: else
7: Q⇐ {}

The Independent Partitioning - TSP policy, shown in protocol 3.5, similarily

services tasks in a TSP tour of length n, this time calculating the tour through

the first n tasks to arrive within an agents respective Voronoi partition. As with

the mSQM policy, the performance results shown here apply to the case of equal

partitions; in practice, we use the deployment methods described above.

Using the formulation for behavior sets presented in this section, algorithm

designers ensure that their algorithims will fit within the MotionArc system.

In section 5.3 we will introduce a configuration method for the MotionArc
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Protocol 3.5 Partition-TSP task-point selection policy

1: S∗ ⇐ {i ∈ {1, . . . , |ŜDVR|} | status(ŜDTRP,i)}
2: sort S∗ such that τi < τi+1 for all Si ∈ S∗
3: calculate Vk = V (Âk, A

∗), the Voronoi region associated with agent k given
the set of agents A∗ performing this behavior set

4: for all S ∈ S∗ do
5: if pose(S) ∈ Vk then
6: Q⇐ Q∪S
7: if |Q| ≥ n then
8: break
9: if |Q| ≥ n then

10: Q⇐ TSP(Q)
11: else
12: Q⇐ {}

system in which users specify both mission information and the filter and

control protocols for their designed behavior sets along with any associated

performance cost functions. Once the mission plan, task specifications, and

behavior sets have been designed and loaded into the MotionArc system, we

are now prepared to compute the optimal allocation of agents to tasks (and the

respective behavior sets) and commence mission execution.
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4 The Behavior Allocation Problem

We now turn from our architectural designs to the highest level of control within

the MotionArc system: the selection of appropriate behaviors by each agent

within the system. We first recast our problem as a modified instance of the

integer resource allocation problem:

min
x

n∑
i

fi(xi, si) (11)

subject to:
n∑
i

xi = N (12)

xi ∈ Z≥1 ∀i ∈ {1, . . . , n} (13)

We consider fi to be a cost function for behavior i that is strictly convex and

nonincreasing in xi, the number of (integer) resources allocated to behavior i.

We let si represent other variables, as functions of time, that contribute to

the cost function. We wish to optimize over x – the allocation of resources to

behaviors – at a given point in time such that all other input variables to the

fi’s are fixed. To obtain the optimum, we use a distributed gradient descent

method introduced in [20] for the continuous problem together with a heurestic

presented in [6] for determining a “good” (close to optimal) integer solution.

4.1 Solving the continuous problem

Let f ′i := ∂fi

∂xi
. Consider the following distributed iterative algorithm:

xi(t+ 1) = xi(t)−Wiif
′
i(xi(t), si(t))−

∑
j 6=i

Wijf
′
j(xj(t), sj(t)), i = {1, . . . , n}

(14)
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for t = 0, 1, . . .; or, written as a vector,

x(t+ 1) = x(t)−W∇xf(x(t), s(t))

Xiao and Boyd [20] show that this weighted gradient descent method, for a

feasibile x(0) with 1Tx(0) = N , provides feasible solutions x(t) ∈ {x | 1x = N}

for all t > 0 if the weight matrix W is doubly stochastic:

1TW = W1 = 0

Note that 1 is the vector of length n containing a one at each element. Setting

Wii = −
∑

j 6=iWij such that this is the case, the method becomes

xi(t+ 1) = xi(t)−
∑
j 6=i

Wij

(
f ′j(xj(t), sj(t))− f ′i(xi(t), si(t))

)
, i ∈ {1, . . . , n}

(15)

The change in resources for each behavior i is calculated via a weighted sum

of the total cost derivatives acheived by exchanging resources with each of its

neighbors. Convergence conditions on this iterative method are given in [20]

assuming convex cost functions with bounded second derivatives. Several meth-

ods for computing the weight matrix are given, for our purposes, we choose a

“best constant” weight selection method reproduced here. Letting the exchange

weights be equal to constant α, the weight matrix becomes

W = −αL
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where L is the Laplacian matrix for a complete graph of cardinality n:

Lij =

 −1 i 6= j

n− 1 i = j

and the maximum convergence rate for this method is obtained using optimal

constant weight α∗:

α∗ =
−2

λ1(L) + λn−1(L)

where λ1 is the largest eigenvalue and λn−1 is the second-smallest eigenvalue.

In our case, where the resource-exchange graph is complete, all eigenvalues

λj 6=n(L) = n, therefore, our optimal constant value is α∗ = − 1
n

and the iteration

becomes

xi(t+ 1) = xi(t)−
∑
j 6=i

1

n

(
f ′j(xj(t), sj(t))− f ′i(xi(t), si(t))

)
, i ∈ {1, . . . , n}

(16)

4.2 Solving the Integer Variable Problem

Bretthaur and Shetty [6] provide several algorithms for obtaining an optimal

integer soluion to the nonlinear resource allocation problem (problem 11) given

a method for computing the optimal continuous solution as provided here. One

heuristic they provide for generating feasible integer solutions to problem 11

can also be used alone to provide a good-enough sub-optimal solution for our

purposes, shown in protocol 4.1.

We assume that the other variables s determining the cost functions for each

behavior are changing at a slow rate. For our demonstrative case of dynamic-

vehicle-routing type tasks, this assumption is vaild in practice; the contribut-
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Protocol 4.1 Heuristic for the Integer Variable Problem

Given continuous solution x∗:
for all i ∈ {j | x∗j /∈ Z} do

Round down x∗j
Let x̂1, . . . , x̂n be the resulting rounded solution
Order the resulting variables such that ∂f1

∂x1
(x̂1, s1) < ∂f2

∂x2
(x̂2, s2) < . . . <

∂fn

∂xn
(x̂n, sn) < 0.

i← 1
while i ≤ n do

if (
∑

j 6=i x̂j) + x̂i + 1 ≤ N then
x̂i ← x̂i + 1

i← i+ 1

ing variables such as environment size and expected service time are observed

throughout the lifetime of the mission and are typically static or nearly static. As

a result, we design our system to re-calculate the optimal allocation of agents

to behaviors periodically throughout the mission, but at a rate much slower

than the convergence rate of the above algorithms. allow agents to re-assign

themselves if necessary. We also allow for a re-calculation when one of several

allocation-critical events occur:

• The number of available agents changes, i.e. when an agent is added to

the system or failure is detected within one or more agents.

• The mission plan changes, i.e. new tasks are introduced requiring different

behaviors and cost functions

4.3 Implementation of the allocation mechanism

Consider three behaviors (I, H, and L) making use of the selection policies

similar to those disucssed in the previous section. We let mi represent the

number of agents assigned to behavior set i, and si represent the additional

cost variables: λi, the measured task-point arrival rate; s̄i, the expected service
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Figure 9: Conceptual model for behavior manager

time; A, the mission environment area; v, the average agent speed; σi, the

service time variance, and ρi, the loading factor equal to λis̄i. Behavior set I is

an identification behavior, making use of the G/G/m-TSP task-point selection

policy. Its performance cost and cost derivative assumed to approximate the

proposed upper bound:

fI(mI , sI) =

β2
TSPλIA

2v2(1− ρI)2

(
mI + 1

m2
I

+
v
√

2(1− ρI)√
A

√
(mI + 1)(1/λ2

I + σ2
I/λ

2
I)

mI

+
1− ρI
mI

)
∂

∂m
fI(mI , sI) =

β2
TSPλIA

2v2(1− ρI)2

−mI + 2

m3
I

−
v
√

2(1− ρI)
2
√
A

m3
I + 3σ2

Iλ
2
ImI + 4σ2

Iλ
2
I + 2m2

I√
(mI+1)(m2

I+σ2
Iλ

2
I)

λ2
Im

2
I

λ2
Im

4
I

− (1− ρI)
m2
I


Behavior set H is a service behavior set for a task that is expected to exhibit

heavy loading behavior (ρ → 1), making use of the partition-TSP selection

policy, with performance cost and cost derivative given as:

fH(mH , sH) = β2
TSP

λA

m2
Hv

2(1− ρH)2

∂

∂m
fH(mH , sH) =

−2β2
TSPλA

m3
Hv

2(1− ρH)2
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Behavior set L is a service behavior set for a task that is expected to exhibit

light loading behavior (ρ → 0), making use of a selection policy simliar to

mSQM, with performance cost and cost derivative given as:

fL(mL, sL) =

√
A

mL

1

v
+ s̄L

∂

∂m
fL(m, sL) = −

√
A

2vm
3/2
L

To implement the gradient descent allocation method, we introduce an “idle”

behavior set and cost function. The initial allocation of M agents to N behaviors

is such that mi = 1 for all behavior sets other than “idle”, and midle = M −N .

We give the “idle” behavior set a very high constant cost; thus, all derivatives

of the “idle” behavior set are identically equal to 0 for all midle . As a result, as

the algorithm evolves agents will only be removed from the “idle” behavior and

assigned to others.

Since most of these cost equations have 1/mi terms, the second-derivatives

are not bounded as m→ 0 for any behavior set. We alleviate this by requiring

that all non-“idle” behaviors be assigned at least 1 agent at all times; in practice,

so long as there was any cost associated with a task, we would want at least

one agent performing that task, even if the optimal integer allocation would

have assigned 0 agents. Our final, modified allocation algorithm is shown as

protocol 4.2. We allow the algorithm for the continuous solution to run until

the marginal cost improvement of subsequent iterations is less than 0.0001, and

then apply protocol 4.1 to get an approximate integer solution.

We now present the assignment results from implementing the algorithm

for our proposed mission plan consisting of an identify task and two service

tasks corresponding to the behaviors presented above. We assume that the

distribution of service tasks is such that λH = 0.8λI and λL = 0.2λI . The
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Protocol 4.2 An iteration of the allocation mechanism with si constant for all
behaviors i

1: Let m∗i = 0 for i = idle and m∗i = 1 otherwise
2: for all behavior nodes i do
3: for all behavior nodes j = i do
4: δ ⇐ 1

N
(f ′j(mj, sj)− f ′i(mj, sj))

5: if δ >= 0 then //sending resources from j to i
6: δ ⇐ min

{
mj −m∗j , δ

}
7: else //sending resources from i to j
8: δ ⇐ min {mi −m∗i , δ}
9: mi ⇐ mi + δ

10: mj ⇐ mj − δ

evolution of the algorithm is shown in figure 10a for an initial allocation of

10 agents to the three behaviors, and in figure 10b for an initial allocation of

100 agents to the three behaviors. For this initial allocation, we used constant

parameters s̄I = s̄H = s̄L = 1 and λI = 0.99 such that behavior H is in the

heavy-loading situation and behavior L is in the light-loading situation. We

assume A = 1 and v = 0.3 for all behaviors. We also assume that σ = 0 for

all behaviors, which significantly simplifies the cost function associated with the

G/G/m− TSP task-point selection policy.

In MotionArc , once the allocation algorithm is used to obtain an initial

assignment, the optimal assignment is periodically re-calculated to account for

changes in mission parameters s as well as any faulted or additional agents. To

study the response of the system to a slowly varying general allocation param-

eter, we varied the expected service time for each task type according to

s̄ = 1 + 0.5 sin(2πt/T )

where T is the total number of observations and the assigment was re-calculated

at each t = 1, 2, 3, . . . , T . We also allowed the estimated arrival rate for each
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Figure 10: The allocation algorithm converges quite quickly for 10 agents and much
slower for 100 agents; in both cases, introducing the “idle” task cost
function and limiting the minimum number of assigned agents to be one
for any non-”idle” task allows for a solution to be reached despite un-
bounded second derivatives
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task type to vary such that the overall loading factors remained constant and

equal to the values given above. In figure 11a, we show the continuous and

integer optimal assignments of 50 agents over a range of 50 observations; the

associated individual behavior costs along with the total cost are shown in figure

11b. We see that the overall assigment responds well to such a slowly-varying

system parameters. Figure 11b validates the use of a “good enough” heuristic

for finding the integer solution, as the total sytem cost using integer assignment

is quite close to the optimal system cost obtained from the continuous solution.

The number of iterations required for convergence of the allocation algorithm at

each observation point are shown in figure 12. After the initial effort to find an

optimal assigment from a significantly sub-optimal starting point, we see that

the number of iterations required at each subsequent time step is quite small.

This makes sense, considering that at each subsequent time step, the algorithm

is starting with a very-near-optimal initial assignment. Finally, in figure 13, we

present the results when 10 agents are added mid-mission. We see that the algo-

rithm efficiently distributes these injected resources amongst the three behavior

sets. In this example, we used a varying parameter s̄ = 1 + 0.5 sin(πt/T ).

These results indicate that such a combinatorial method can be used quite

effectively within a system such as MotionArc to manage the assignment

of agents to mission tasks. In our preliminary experimental implementations,

we have only used this method in a centralized manner, where a control agent

periodically monitors the assignment state and issues assignment commands

to the network of agents as need be. In the future, however, it is easy to

imagine that such a method could easily be adapted into a distributed allocation

mechanism. Each agent could maintain an estimate of the assignment state,

monitor the mission environment, calculate the appropriate assignment, and
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Figure 11: A relatively optimal allocation is acheived for a system of 50 agents and
3 tasks in the presence of a varying system parameter
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Figure 12: Iterations required for convergence of the allocation algorithm are signif-
icantly reduced once the initial optimal allocation is calculated

switch behaviors if it is determined that the active behaivor is not the most

efficient. Certain safety protocols would have to be established to preven the

entire network of agents from oscillating between two tasks in situations where

there are many near-optimal assignments, but once this issue is addressed, such

a mechanism could be quite powerful.
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Figure 13: The algorithm handles the injection of 10 additional agents as mission
resources.
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5 MotionArc implementation and execution

To this point, we have introduced the theoretical and conceptual background on

which the MotionArc system is built. The remainder of this thesis will focus

on the practical implementation of the MotionArc system with the specific

target of managing missions involving the DVR-type tasks we would like to

demonstrate.

To write and distribute the MotionArc software, we use the Python script-

ing language. The selection of Python was based on several key features, not

the least of which was the desire to explore the use of Python to write our

stand-alone mobile robotic algorithms. Some of the influential factors were:

Scripting: Python’s nature as a scripting language lends it to use for develop-

ing algorithms. In fact, the language and grammer used in writing Python

scripts is quite similar to the generally-accepted psuedocode used academ-

ically to describe algorithms.

Resources: There are a number of packages available for Python that are use-

ful for robotic algorithm development including an advanced, MATLAB-

like numerics package; several computational geometrey packages; plotting

and graphics packages; and most importantly, a set of bindings for the

Player/Stage client interface that allows us to use Python to develop algo-

rithms that efficiently make use of the Player/Stage hardware abstraction.

Tools: Efficient tools within the Python standard library that make develpment

of MotionArc components straightforward.

The end user of the MotionArc system will have access to two forms of

the software. The first is a Python package against which end users can design
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behavior sets and mission plans. The second is an executable script which,

when properly configured, will load user designed behavior sets and execute

user defined mission plans within the MotionArc framework on each agent

within a robotic network.

5.1 Implementing system components

In section 1.4 we introduced the core components of the MotionArc system.

The hardware and hardware interface components are implemented separately

from the MotionArc system; the Player/Stage abstraction software provides

the interface to the remaining components. Inter-agent communication is han-

dled within MotionArc using implementations of the Python socket and Sock-

etServer packages. These packages open up a TCP communication channel

between agents using a specified communication address.

Other MotionArc components send messages by calling the message send

method of the message sender. This submits each message to a message queue,

from which messages are removed and sent over a TCP socket. The message

transmitter maintains a list of all communication addresses within the network

and after each successful (or failed) transmission, maintains a status record

for that address which, in effect, builds an estimate of the local communica-

tion graph. The messages themselves consist of binary strings with a unique

message identifier used for message confirmation. Python provides the pickle

data-persistance package which converts any Python object into a binary string

represenation that can be unpacked by another script running the appropriate li-

brary. For example, an entire Mission State Estimate, implemented as a Python

object, can be packaged for transmission using this method.
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Incoming messages are handled by the MotionArc message server. This

server continuously listens on a TCP socket for any incomming signals, and

invokes a message handling routine based on the data contained within the mes-

sage. Our server assigns incoming messages to either a mission modeling message

queue (for state estimate information messages) or an application message queue

(for commands, such as assignment requests or user input). The message mod-

eler and the application each have message parsing routines that take messages

from the respective queues and unpack and handle the data appropriately.

To maintain the local mission information, we design a custom MotionArc

mission state estimate that maintains the agent and task-point state estimates

as a database. Other components may access or modify the mission state data

through several data management routines. Use of these routines, as opposed

to accessing the data directly, ensures integrity of the data. For example, for

the task-point state estimate merge protocol to ensure that the most up-to-date

information is propagated throughout the network TSE timestamp attributes

must be updated whenever the data is updated. The MotionArc mission

state estimate parameter and cost settor routines take care of the details of

updating this timestamp whenever a user desires to update a parameter or cost,

respectively. This data class also implements individual state estimate status

transitions and merges the current data with a provided database of update

data.

The mission state estimate filter and control protocols are implemented

by the MotionArc mission modeler, which also handles incoming message

data appropriately flagged by the message server, and periodically packages and

submits state estimate update messages to the message sender. The filter pro-

tocol is broken into component processes for parsing and merging mission state
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estimate update data and executing mission state estimate status transitions.

The control protocol consists simply of the broadcasting of mission state esti-

mate update messges to other agents on the communciation network.

The MotionArc behavior manager component maintains the behavior set

execution protocols, behavior set internal states, sensor access methods, and con-

trol output methods for each available behavior set. It also handles assignment

commands received from other agents and securely activates and deactivates

behavior sets. User specified or standardized cost and cost derivative functions

are maintained for each available behavior set as well. If the MotionArc in-

stance is labeled as CONTROL (the central command center and user interface),

these functions are used to monitor the current assignment state, calculate the

optimal assignment, and send assignment commands as necessary.

5.2 The MotionArc Package

For end users to implement distributed algorithms as behavior sets within the

context of the MotionArc framework, we provide the MotionArc Python

package. The primary components are template classes from which MotionArc

implementations of algorithms can be derived. Designers will implement their

algorithm as a derived form of the behavior set MotionArc class, in which they

provide the behavior set filter and control algorithms. The template class

provides references to the methods of MotionArc components required for suc-

cessful interoperation between the algorithm and the MotionArc architecture.

Specifically, users have access to the local mission state estimate management

methods (data accessors, settors, and transition functions), the message sender

message queue, and a Player client for the local agent. To access and control the

58



hardware through the Player server, users would then instantiate device proxies

through the provided Player client.

The MotionArc package also provides templates for developing cost func-

tions and task-specifications required for the mission plan.

The MotionArc package will also provide several useful tools for algo-

rithm development. Currently, the package includes several basic elements for

demonstration purposes, including

• A TSP Tour Queue for building and managing TSP tours through specified

task-point instances

• A greedy method for calculating a TSP tour

• A routine for determining local and global Voronoi partitions and Delaunay

triangulations

5.3 The MotionArc Application

Once algorithms have been adapted as MotionArc behavior sets, the focus

shifts to implementing these behavior sets within the context of a mission, using

the MotionArc system. For this purpose, we provide the MotionArc appli-

cation script. This script is intended to run on each agent within the network

and, based on a specified mission plan, implement the required behavior sets.

Mission execution using the MotionArc application can be summarized in two

categories

1. Mission plan specification, lodaing of behavior sets, and application con-

figureation

2. Operation of components and mission completion
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The MotionArc application script essentially manages the inter-operation

of all the previously described MotionArc components, along with the user-

specified behavior sets. The task specification and behavior set information,

along with general mission parameters, are specified by the user in the mission-

specific Python configuration script. As the final command of the configuration

script, the MotionArc application is started. Upon loading the configuration

information, the application starts each component process and serves as a local

process manager.

Two options are provided for MotionArc component exectution, which

amount to either a mostly-series or mostly-parallel implementation of the mi-

sison modeling and behavior execution protocols. The communication compo-

nents the message sender and message server are always run as independent,

threaded processes. In the mostly-series implementation, the application will

execute each of the processes comprising the mission modeling and behavior set

components once, in order, before repeating the cycle:

1. Parse application messages (commands)

2. Parse mission modeling messages

3. Mission state estimate merge protocol

4. Behavior set filter protocol

5. Behavior set control protocol

6. Mission state estimate transition protocol

7. Mission state estimate broadcast protocol
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Figure 14: Series MotionArc application process execution

Processes 2,3, and 6 make up the mission modeling filter protocol. As each

subsequent process does not execute until the prior has completed, there is no

need to worry about the integrity of the mission state estimate data throughout

the process.

The mostly-parallel implementation starts the component modeling and be-

havior processes as separate, asynchronous threads:

1. Application message parsing thread

2. Modeling message parsing and state estimate merging thread

3. Behavior set filter thread

4. Behavior set control thread

5. Modeling transition thread

6. Modeling broadcast thread

To ensure integrity of the mission state estimate data, it is protected with

a Python thread lock element, which allows only one thread to access the data

at any given time. The date is not locked for the entire execution time of the

thread process; rather, it is locked each time a thread calls one of the mission

state estimate accessor or settor methods. For example, while the behavior set

filter thread is executing a select transition on one task-point state estimate,

the mission state estimate data is locked. If, prior to completion of the status

transtion, the modeing broadcast thread attempts to read the mission state
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estimate data to prepare a message, it will not acquire access to the data until

the prior process has completed.

One advantage to the threaded implementation is that it allows each process

to operate at a separate rate. Within the mission configuration, process rates

(such as the rate of mission state estimate data broadcast) may be specified,

and, as an example, it might be advantageous for the broadcast rate to be

significantly slower than the message parsing rate.

5.4 User Interface

One advantage to using the Mission State Estimate method is illustrated by

how the GUI is able to represent mission situational awareness. For DVR-type

behaviors, our GUI is able to visually plot the projected linear path of an agent

through its TSP-ordered service task-points. Instead of requiring each agent to

either maintain an ordered list of task-points and task-point poses in its own

agent state estimate or through explicit communication with the command and

control agent, this information may be inferred through the database of task-

point state estimates at any point within the communication network. Since

any DVR task-point that is within the calculated TSP tour of a single agent

will have status ‘assigned’ and and agentID identical to the ID of that agent, for

each agent executing a DVR behavior, the GUI can simply plot a line through

all task-points with status ‘assigned’ and the appropriate agentID, in order of

increasing estimated cost. The order of the task-points in this plot will be

identical to the TSP tour held in the respective agents internal behavior set

state at the time those task-point state estimate costs were last updated by that

agent.
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The CONTROL agent provides a graphical, map-based display of situational

awareness information. As we will use GUI screenshots to illustrate results of

our demonstration missions in the following section, we will briefly describe our

method of graphically representing information. Each individual agent and task-

point are plotted at the position contained within the CONTROL agent’s mission

state estimate. Based on the agent or task-point’s status, the state estimate

is represented in different ways. TSE’s with status ’todo’ are represented as

hollow circles, colored to indicate to which task they belong. Assigned TSE’s

are filled, and completed TSE’s fade into the background until reset, if at all.

While assigned, the current cost is displayed. ASE’s are illustrated by black

discs with an edge color indicating the currently assigned behavior. Additional

situational awareness information, such as the TSP tour describe above, may

be implemented through the use of a user-defined “behavior monitor function”

designed our GUI framework. The MotionArc application provides several

basic such functions to plot TSP tours and Voronoi partitions.
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6 Mission Results and Final Considerations

To illustrate the effectiveness of the MotionArc system and verify that the

Mission State Estimate protocols achieve a sufficient level of situational aware-

ness, we now present several demonstrations MotionArc implementations for

the dynamic traveling repairperson problem (DTRP) introduced earlier. This

will also present examples of the level of awareness afforded by our chosen graph-

ical user interface component in regards to agent and task-point state estimates

as well as the internal behavior set states that may be inferred from mission

state estimates. To create the task specifications associated with these missions,

we use the standard format of dynamic vehicle routing tasks introduced in sec-

tion 2. Task-point cost estimates are calculated as the estimate time-to-arrival

at the task-point location (using the difference between poses of task-point and

agent state estimates and the current measured agent speed) plus the required

service time for that task-point and all prior task-points in a tour. We use the

standard MSE task-point transition rules, with parameters given by

fault timeout = 15s, redo timeout =∞, εcomplete = 0.1

6.1 Demonstrating example task-point selection policies

We’ll now discuss each of the three task-point selection policies introduced in

section 3.2. Recall from our introduction of the MotionArc graphical user in-

terface that ‘todo’ task-points are represented as open circles and ‘assigned’

task-points are represented as filled circles. Figure 15 shows two points in the

execution of a DTRP task by two agents each using the mSQM task-point selec-

tion policy. In figure 15a, we see that each agent is assigned and moving towards
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Alpha

Bravo

CONTROL2, 18.85
CONTROL3

CONTROL4

CONTROL5

CONTROL6, 14.70

CONTROL7

CONTROL8

(a) Servicing demands

Alpha

Bravo

(b) Maintaining Voronoi partition

Figure 15: Two agents execute a DTRP using the mSQM selection policy.
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a single task-point in its respective Voronoi partition. Task-points with lower

identification numbers represent task-points introduced to the system earlier;

according to the mSQM policy, agents would be working towards the task-point

within their region with the lowest identification number. This is the case for

agent Bravo but not so for agent Alpha; that agent is assigned to task-point

CONTROL6 while there exists a task-point CONTROL5 within its Voronoi region.

However, this is most likely due to the proximity of CONTROL5 to the edge of the

Voronoi region; as Voronoi regions are calculated using the current agent posi-

tions at the last moment in time when the agent was not assigned, it is likely that

CONTROL5 was not within the Voronoi region at the point of the selection query.

In part (b) of the figure, we see the steady-state locations of the agent when

no task-points are assigned. As predicted when introducing the policies, The

agents have taken up positions that generate a near-equitable Voronoi partition

due to their desire to move towards the centroid of their own partitions.

Table 3 in the appendix presents a log file illustrating the evolution of the

task-point state estimates for this mission over time. Confirming our observation

from above, we see that agent Alpha executed the select transition on task-point

CONTROL6 at 13.79 seconds mission time, CONTROL7 at 42.69 seconds mision time,

and CONTROL5 at 61.14 seconds mission time, indicating that in the moment just

prior to each of the first two selections, CONTROL5 was not within the Voronoi

region for agent Alpha. This is a noticable drawback of our implementation

of the mSQM policy; in rare cases when taskpoints are situated in-between

agents, the Voronoi regions could waver back and forth and a task-point could

remain un-selected for an extended period of time. In this case, the task-point

in question goes 52.26 mission seconds from creation until selection, while the

other two task-points selected in that time period waited a total of 3.02 and
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30.91 seconds, respectively. Future iterations of this policy sould address this

drawback, perhaps by using a more rigid method of determining each agent’s

region of influence.

In figure 16a, we show a snapshot of a two-agent DTRP mission using the

partition-TSP selection policy. In this case, tours are calculated through sets of

3 task-points. On the left hand side, we see that the agent will soon complete

the tour (numbers labeled next to task-point names represent the estimated

remaining cost until task-point completion) and should calculate a TSP tour

through the next three task-points in its region. This is confirmed in figure 16b,

a snapshot from a later moment in the mission, showing the next tour selected

by the left hand agent. Note that, as the tour was calculated at a previous time

when the Voronoi partition looked more like that of figure 16a, the tour now is

not contained within the Voronoi polygon for the agent. This is expected, and

when the current tour is completed, the next tour will be selected from task-

points strictly within the region calculated at that point. Note that task-point

CONTROL10 is not selected – while in the region and seemingly close to the tour –

because the tour is only calculated through the three next-earliest created task-

points. Future implementations might modify any of the TSP policys to include

quick “side trips” to any un-selected task-point within an arbitrary distance from

the tour path, a method that is discussed throughout vehicle routing literature.

The information inferred from this visualization is confirmed in Table 2 in the

appendix.

Figure 17 shows tours executed by two agents using the G/G/m-TSP selec-

tion method. In this instance, our agents are actually running an identification

task at each task-point where the task-point is determined to belong to one of

two classes. Later, we will use additional agents running additional policys to
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Bravo

CONTROL0

CONTROL1, 8.33

ROL2, 0.98

ROL4, 8.55

CONTROL5, 40.70

CONTROL6, 22.12

CONTROL7

CONTROL8

CONTROL9

CONTROL10

(a) Executing tour

Alpha

Bravo

CONTROL0

CONTROL5, 7.90

CONTROL7, 33.39

CONTROL8, 7.66

CONTROL9, 37.17

CONTROL10

ROL11

TROL12

(b) Tour crosses partition

Figure 16: Two agents execute a DTRP using the partition-TSP selection policy.
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CONTROL3

CONTROL4, 17.17

CONTROL6, 38.41

CONTROL1
CONTROL2
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NTROL8, 15.36

CONTROL9, 39.27

CONTROL10, 69.08

CONTROL5

CONTROL11, 6.41

CONTROL7

CONTROL12

CONTROL13

Figure 17: Two agents execute a DTRP using the G/G/m-TSP selection policy.
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service these second-generation task-points. In the figure, we see two agents in

the middle of executing a TSP tour route through a sequence of task-points.

The lack of partitioning is shown clearly in this behavior, as tours cross multiple

times. From table 4 and the image, we see that agent Alpha has just completed

its first tour, this time through 4 task-points, and has just selected its next tour.

Agent Bravo has two task-points remaining in its tour. Figure 18 illustrates

the fault-tolerance capabilities arising from the mission state estimate proto-

cols. After completing task-point CONTROL11, we caused agent Alpha to fail at

a mission time of approximately 189 seconds. According to the task-point tran-

sition rules, which in this case specify a task-point state estimate fault time-out

of 15 seconds, the remaining task-points in the tour are recognized as having

failed by agent Bravo. Table 4 reflects this as it indicates taskpoints CONTROL8,

CONTROL9, and CONTROL10 all faulted at 204 mission seconds. Figure 18 shows

those task-points as having returned to status ‘todo’ and no tour is plotted

through them. Figure 18b shows that, after completing its current tour, agent

Bravo incorporates the three failed task-points in its next calculated tour.

6.2 Preliminary results for a multi-task mission

To demonstrate the multi-task capabilities of the MotionArc system, we exe-

cuted a mission plan consisting of both identification and a single class of service

task with four agents. Agent unit is a real hardware robot functioning within

the MotionArc framework. The robotic agent makes use of a low-level nav-

igation Player/Stage driver based on the Smooth-Nearness-Diagram algorithm

introduced in [11]. A summary of the task allocation for this mission is shown

in table 1, and the task-point state estimate log is shown in the appendix in
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CONTROL3

CONTROL6, 8.83

CONTROL1
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CONTROL8-

CONTROL9-

CONTROL10-

CONTROL5

CONTROL7

CONTROL12

CONTROL13

CONTROL11

(a) Fault detected in agent Alpha

Alpha

Bravo

CONTROL3

CONTROL1
CONTROL2

CONTROL0CONTROL0

CONTROL8-

CONTROL9, 32.82

CONTROL10, 60.73

CONTROL5

CONTROL7

CONTROL12, 18.62

TROL13, 6.35

CONTROL11

CONTROL6

(b) Agent Bravo selects a tour including the faulted tasks

Figure 18: An illustration of the detection of faulted task-points and the re-
assignment of those task-points to another agent using the mission state
estimate protocols during execution of a DTRP using the G/G/m-TSP
selection policy.
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AgentID Type Task Selection Policy
unit hardware service-B partition-TSP
Alpha simulation identify G/G/m-TSP
Bravo simulation identify G/G/m-TSP
Charlie simulation service-B partition-TSP

Table 1: Task allocation for demonstration mission

table 5.

The primary goals of this demonstration mission were twofold: first, we de-

sired to illustrate that real hardware agents fit within the MotionArc frame-

work as easily as simulated agents, and second, that multi-task missions exhibit

the same successful level of situational awareness as our demonstration missions

involving a single task. From the log file, it is evident that this mission made

strides towards acheiving both goals. During the early stages of this mission,

the simulated robots were all located within a very small region of space; as

a consequence of our chosen navigation method, the agents did not leave this

area for a significant period of time. During that time, agents did select tasks

apropriately, but the fact that there was little to no movement towards goal

completion resulted in several fault transitions for many task-point instances.

This behavior is exactly what we desire from the Mission State Estimate proto-

cols; were there additional agents assigned to the same tasks but located in less

obstructed areas, those agents would calculate better cost estimates and thus the

most efficient allocation of task-points to agents would result. As another alter-

native, were we using our combinatorial task allocation method, as the observed

rate of task completion decreased due to the faulted tasks, other agents might

be re-allocated to alleviate this cost increase. The point of this demonstration

was simply to show that the fault, select, and complete transitions functioned

properly through a multi-task mission.
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The behavior of the hardware unit can be best shown through several sit-

uational awareness visualization snapshots. In the early stages of the mission,

prior to any service-B class task-points being detected, the agent waits for

task-points, the result of its behavior being a near-equitible Voronoi partition

between itself and agent Charlie, shown in figure 19. Once three service-B class

unit
Bravo

Charlie

Alpha

L0, 26.95

CONTROL4, 20.55

CONTROL1

CONTROL6

CONTROL9,

CONTROL11

CONTROL12-

CONTROL13

CONTROL14

CONTROL8

Figure 19: Hardware agent maintaining Voronoi partition with no task-points during
multi-task mission

task-points have been detected within its Voronoi region, agent unit executes

a TSP tour through those task-points, as perscribed by the DTRP behavior set

utilising the partition-TSP selection policy. Agent unit can be seen moving

toward the final task-point in its first tour in figure 20.
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CONTROL8

CONTRO

CONTROL3, 4.35

Figure 20: Hardware agent executing service task as part of a mutli-task mission.
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6.3 Comparative analysis of task-allocation and mission

modeling

It is clear – even from these simple demonstration missions – that the total-

system-time behavior of missions executed on real and simulated hardware

through the MotionArc system does not necessarily agree with the perfor-

mace cost functions respective to each behavior set that were introduced as

motivation for our combinatorial approach to task and behavior set allocation.

These cost functions, developed in [4] and derivative works, are highly theo-

retical in nature, and are proven only to hold in the asymptotic regime with

regards to the number of agents, number of task-points in a tour, and system

loading factor. These considerations, along with other assumptions, indicate

that these cost functions are not perfect indicators of the expected performance

of a distributed, real-time hardware system such as ours.

From our mission logs, we see that when working with real or simulated

hardware agents exhibiting highly complex dynamics and inter-agent comuni-

cation over a wireless network, there can be a significant slow-down in system

performance. However, we feel that our results from section 4 show that using a

combinatorial approach with these cost functions can result in a reasonably good

initial estimate of the best assignment of agents to tasks. To acheive more accu-

rate combinatorial results for a complex, real-hardware system, two approaches

might be used. First, new cost functions could be developed analytically that

take into account the complexities of real mobile robot dynamics and message

transmission over a network. Second, and perhaps the more practical option,

approximately-fit cost functions could be developed through extensive system

experimentation and simulation. In either case, real-time system implementa-
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tions will typically use a relatively small number of agents (as opposed to the

high numbers required to validate the asymptotic nature of the cost functions

describe above). With smaller, more manageable system sizes, it is less impor-

tant to get the most optimal allocation and of greater consequence to quickly

and cheaply find a good enough initial approximation.

After fully illustrating the preliminary design and conceptual background of

the MotionArc system, let us draw some conclusions regarding the compar-

ision of our system with two task-allocation architectures briefly introduced in

our introduction. We feel that the MotionArc system attempts to draw from

several systems that each excel in addressing a particular area of our experimen-

tal needs and incoorporates them in a highly effective package; in other words,

that “the whole is greater than the sum of the parts.” Recall the ALLIANCE ap-

proach of [16], a well-accepted method of performing inter-agent task allocation

using the notion of a motivational behavior. The ALLIANCE method effec-

tively encourages agents to switch from task to task in a fault-tolerant manner

to ensure mission completeness. ALLIANCE does not specify how task-point

instances are selected by an agent performing a behavior, so it is reasonable to

assume that our behavior sets could be implemented as ALLIANCE behavior

sets. However, as presented, ALLIANCE allows for only one agent executing

each behavior; the simple fact that an agent is performing a behavior completely

reduces all other agents’ motivation to switch to that behavior. As one of our

primary goals is to introduce tasks that directly benefit from having more than

one agent assigned to them, the motivational behaviors of ALLIANCE would

require adjustment to be an effective task-allocation method for MotionArc .

Appropriately adapted, though, ALLIANCE motivational behaviors could pro-

vide an interesting alternative to the MotionArc combinatorial approach of
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toward behavior allocation. Future efforts could attempt to compare results

obtained using each method. The ALLIANCE approach is strictly limited to

managing the assignemnt of tasks to behaviors and does not discuss maintenance

of situational awareness information.

As much of MotionArc is modeled after the Mission State Estimate task-

allocation architecture in [14], it is only natural to provide a similar comparision

for this system. As mentioned previously, the strict Mission State Estimate pro-

tocols result in a fairly greedy approch to the allocation of task-point instances

to agents performing each task; the ability to introduce behaviors that pro-

vide a better method of task-point instance allocation is an advantage of the

MotionArc system. As with ALLIANCE, it is not clear whether the com-

binational approach of MotionArc is more or less accurate of efficient than

the Mission State Estimate method of using tranition rules to switch between

tasks; with further experimentation and simulation, a better comparision could

be drawn. So far as mission situational awarenes information maintenance is

concerned, the deviations from the Mission State Estimate protocols fit the spe-

cific needs of the types of DVR tasks we wish to implement. Mission State

Estimates were similarly designed for a specific mission implementation; in gen-

eral, both systems provide a good model by which to develop future information

maintenance architectures.

6.4 Concluding remarks

This thesis has shown how the MotionArc system, theoretically, and the Mo-

tionArc application, in practice, are able to combine several useful approaches

to task allocation and mission management on robotic network to develop an ex-
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perimentaion and demonstration framework. Recall the primary motivation for

developing the MotionArc system was the desire to implement several well-

established algorithms in the context of a multi-task mission on real hardware.

This thesis has demonstrated the successful implementation of several funda-

mental algorithms in exactly such a context. However, a robust implementation

of significantly more complex tasks will most likely require a highly evolved and

validated version of this preliminary system architecture.

In developing the preliminary architecture, many components were observed

to lend themselves to further developement, several of which have already been

indicated. In addition to continuing to adapt the architecture to handle more

complex tasks, future efforts should include attempts to

• Use the communication components to establish a network connectivity

model, and incorporate algorithms for network connectivity maintenance

into the system architecture.

• Develop more accurate methods of establishing performance cost for a real-

time implementation of theoretical DVR algorithms, either analytically or

through expermientation

• Allow for messaging directly by behavior sets. It may not always be pos-

sible to reduce all information required by a behavior set into the mission

state estimate, and it certainly may not be efficient to do so. Even with

these simple tasks, the amount of information passed around the network

caused significant slow-down at times. This could be alleviated by writ-

ing the communication components using a lower level language, such ats

C++; however, it would be quite simple to allow behavior sets to access

the message sending and queuing functions as well.
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• Implement a distributed version of the allocation method, where individual

agents are able to decide whether to switch to another behavior.

This preliminary architecture, by itself, is not a “start and forget” appli-

cation; it is highly experimental and developmental in nature and its use for

implementation of algorithms will require significant knowledge of its concep-

tual and practical details. Perhaps, then, the most significant contribution of

the MotionArc system is not a specific program or set of algorithms, but

rather a set of tools, mind-set, and way of thinking that will be beneficial in

further attempts to implement more complex algorithms within the context of

full scale multi-task mission execution. While methods and architectures such

as ALLIANCE and the original Mission State Estimate approach may perform

admirably and near optimally with regards to their specific goals, the tools and

protocols introduced in MotionArc are definitely a step in the right direction

towards establishing a global framework for mobile robotic mission execution.
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A Mission Log Results

In this appendix we include log tables indicating the evolution of mission state

estimates throughout several robotic missions. Some of these missions are as-

sociated with the images included in section 6. These log tables are presented

from the point of view of a CONTROL agent; namely, the instance of the Mo-

tionArc control application running the mission. The log table indicates – for

each named task-point instance – each task-point event, the associated times-

tamp, the agent executing the event, and the time at which the CONTROL agent

was made aware of the event throught the mission state estimate broadcast and

merging protocol.
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Table 2: Mission state estimate log for two agents completing a DTRP task using
the partition-TSP selection policy

taskpoint task event agent actual local

-------------------------

CONTROL0 identify created CONTROL 29.82 29.82

-------------------------

CONTROL1 service-B created CONTROL 33.54 33.54

CONTROL1 service-B selected Alpha 64.48 63.83

CONTROL1 service-B completed Alpha 80.08 80.38

-------------------------

CONTROL10 service-B created CONTROL 64.69 64.69

CONTROL10 service-B selected Bravo 169.31 168.21

CONTROL10 service-B completed Bravo 198.81 199.20

-------------------------

CONTROL11 service-B created CONTROL 108.74 108.74

CONTROL11 service-B selected Bravo 167.15 166.42

CONTROL11 service-B completed Bravo 221.66 222.66

-------------------------

CONTROL12 service-B created CONTROL 112.57 112.57

CONTROL12 service-B selected Bravo 169.31 168.14

CONTROL12 service-B completed Bravo 185.07 184.77

-------------------------

CONTROL13 service-B created CONTROL 125.65 125.65

CONTROL13 service-B selected Alpha 136.53 135.91

CONTROL13 service-B completed Alpha 190.88 190.79

-------------------------

CONTROL14 service-B created CONTROL 125.71 125.71

CONTROL14 service-B selected Alpha 136.53 135.93

CONTROL14 service-B completed Alpha 151.99 151.96

-------------------------

CONTROL15 service-B created CONTROL 127.16 127.16

CONTROL15 service-B selected Alpha 136.53 135.95

CONTROL15 service-B completed Alpha 167.64 168.92

-------------------------

CONTROL16 service-B created CONTROL 157.73 157.74

CONTROL16 service-B selected Alpha 196.57 196.84

-------------------------

CONTROL17 service-B created CONTROL 159.25 159.25

CONTROL17 service-B selected Alpha 196.52 196.99

CONTROL17 service-B completed Alpha 214.52 215.59

-------------------------

CONTROL18 service-B created CONTROL 162.01 162.01
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Table 2 (continued): Mission state estimate log for two agents completing a DTRP
task using the partition-Tsp selection policy

-------------------------

CONTROL19 service-B created CONTROL 192.74 192.74

CONTROL19 service-B selected Alpha 196.53 196.14

-------------------------

CONTROL2 service-B created CONTROL 34.84 34.84

CONTROL2 service-B selected Bravo 46.26 45.38

CONTROL2 service-B completed Bravo 71.84 72.19

-------------------------

CONTROL20 service-B created CONTROL 194.43 194.43

-------------------------

CONTROL3 service-B created CONTROL 36.10 36.10

CONTROL3 service-B selected Bravo 46.26 45.87

CONTROL3 service-B completed Bravo 56.49 55.66

-------------------------

CONTROL4 service-B created CONTROL 42.37 42.37

CONTROL4 service-B selected Bravo 46.30 45.93

CONTROL4 service-B completed Bravo 108.52 109.27

-------------------------

CONTROL5 service-B created CONTROL 53.00 53.00

CONTROL5 service-B selected Alpha 64.64 63.82

CONTROL5 service-B completed Alpha 126.65 127.40

-------------------------

CONTROL6 service-B created CONTROL 54.68 54.68

CONTROL6 service-B selected Alpha 64.59 63.84

CONTROL6 service-B completed Alpha 101.86 102.95

-------------------------

CONTROL7 service-B created CONTROL 59.61 59.61

CONTROL7 service-B selected Bravo 109.69 109.16

CONTROL7 service-B completed Bravo 157.88 158.42

-------------------------

CONTROL8 service-B created CONTROL 61.00 61.00

CONTROL8 service-B selected Bravo 109.69 109.06

CONTROL8 service-B completed Bravo 126.43 127.31

-------------------------

CONTROL9 service-B created CONTROL 62.78 62.78

CONTROL9 service-B selected Bravo 109.69 109.23

CONTROL9 service-B completed Bravo 166.63 166.41
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Table 3: Mission state estimate log for two agents completing a DTRP task using
the mSQM selection policy

taskpoint task event agent actual local

-------------------------

CONTROL0 service-A created CONTROL 0.00 0.00

CONTROL0 service-A selected Bravo 3.74 2.78

CONTROL0 service-A completed Bravo 19.72 21.49

-------------------------

CONTROL1 service-A created CONTROL 1.12 1.12

CONTROL1 service-A selected Alpha 3.54 2.91

CONTROL1 service-A completed Alpha 12.39 12.86

-------------------------

CONTROL2 service-A created CONTROL 3.87 3.87

CONTROL2 service-A selected Bravo 20.35 21.43

CONTROL2 service-A completed Bravo 49.14 50.39

-------------------------

CONTROL3 service-A created CONTROL 4.80 4.80

CONTROL3 service-A selected Bravo 50.84 50.45

CONTROL3 service-A completed Bravo 59.29 60.66

-------------------------

CONTROL4 service-A created CONTROL 6.48 6.48

CONTROL4 service-A selected Bravo 61.04 60.80

CONTROL4 service-A completed Bravo 120.51 121.43

-------------------------

CONTROL5 service-A created CONTROL 8.78 8.78

CONTROL5 service-A selected Alpha 61.14 60.66

CONTROL5 service-A completed Alpha 78.57 78.59

-------------------------

CONTROL6 service-A created CONTROL 9.77 9.77

CONTROL6 service-A selected Alpha 13.79 12.91

CONTROL6 service-A completed Alpha 42.56 41.91

-------------------------

CONTROL7 service-A created CONTROL 11.78 11.78

CONTROL7 service-A selected Alpha 42.69 41.96

CONTROL7 service-A completed Alpha 59.53 60.41

-------------------------

CONTROL8 service-A created CONTROL 13.70 13.70

CONTROL8 service-A selected Alpha 79.54 78.70

CONTROL8 service-A completed Alpha 93.45 93.25
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Table 4: Mission state estimate log for two agents completing a DTRP task using
the G/G/m-TSP selection policy

taskpoint task event agent actual local

-------------------------

CONTROL0 identify created CONTROL 22.84 22.84

CONTROL0 identify selected Alpha 29.92 28.93

CONTROL0 service-A created Alpha 102.56 103.05

CONTROL0 service-B created Alpha 103.92 102.93

CONTROL0 identify completed Bravo 116.69 117.37

-------------------------

CONTROL1 identify created CONTROL 24.11 24.11

CONTROL1 identify selected Alpha 29.86 28.79

CONTROL1 service-B created Bravo 56.14 55.69

CONTROL1 identify completed Bravo 56.23 55.52

-------------------------

CONTROL10 identify created CONTROL 143.29 143.29

CONTROL10 identify selected Alpha 154.63 153.80

CONTROL10 identify faulted Bravo 204.90 205.23

CONTROL10 identify selected Bravo 239.35 238.39

-------------------------

CONTROL11 identify created CONTROL 147.09 147.09

CONTROL11 identify selected Alpha 154.63 153.97

CONTROL11 service-B created Alpha 177.89 178.79

CONTROL11 identify completed Alpha 177.94 178.48

-------------------------

CONTROL12 identify created CONTROL 167.96 167.97

CONTROL12 identify selected Bravo 239.35 238.58

-------------------------

CONTROL13 identify created CONTROL 169.79 169.79

CONTROL13 identify selected Bravo 239.35 238.76

CONTROL13 service-B created Bravo 292.07 292.75

CONTROL13 identify completed Bravo 292.25 293.39

-------------------------

CONTROL2 identify created CONTROL 26.16 26.16

CONTROL2 identify selected Alpha 29.86 28.68

CONTROL2 service-A created Bravo 62.39 61.78

CONTROL2 identify completed Bravo 62.69 61.85

-------------------------
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Table 4 (continued): Mission state estimate log for two agents completing a DTRP
task using the G/G/m-TSP selection policy

CONTROL3 identify created CONTROL 28.07 28.07

CONTROL3 identify selected Alpha 29.79 28.79

CONTROL3 service-B created Bravo 35.86 34.98

CONTROL3 identify completed Bravo 35.98 35.31

-------------------------

CONTROL4 identify created CONTROL 36.78 36.78

CONTROL4 identify selected Bravo 117.86 116.96

CONTROL4 identify completed Bravo 189.73 189.03

-------------------------

CONTROL5 identify created CONTROL 38.33 38.33

CONTROL5 identify selected Bravo 117.86 117.98

CONTROL5 service-B created Bravo 143.06 143.41

CONTROL5 identify completed Bravo 143.24 146.51

-------------------------

CONTROL6 identify created CONTROL 39.57 39.57

CONTROL6 identify selected Bravo 117.86 118.20

CONTROL6 service-B created Bravo 237.72 238.86

CONTROL6 identify completed Bravo 237.82 238.63

------------

CONTROL7 identify created CONTROL 41.72 41.72

CONTROL7 identify selected Bravo 117.86 117.90

CONTROL7 service-B created Bravo 157.41 157.87

CONTROL7 identify completed Bravo 157.52 158.01

-------------------------

CONTROL8 identify created CONTROL 140.67 140.67

CONTROL8 identify selected Alpha 154.63 154.18

CONTROL8 identify faulted Bravo 204.91 205.48

-------------------------

CONTROL9 identify created CONTROL 142.36 142.36

CONTROL9 identify selected Alpha 154.63 153.74

CONTROL9 identify faulted Bravo 204.90 205.34

CONTROL9 identify selected Bravo 239.35 238.41
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Table 5: Mission state estimate log for one read hardware agent and three simulated
agents completing a mission consiting of an identification task and one class
of service task, using the GGm-TSP and partition-TSP selection policies,
respectively.

taskpoint task event agent actual local

-------------------------

CONTROL0 identify created CONTROL 37.50 37.50

CONTROL0 identify selected Alpha 47.17 46.22

CONTROL0 identify faulted Charlie 134.64 133.89

CONTROL0 identify selected Bravo 249.33 249.99

CONTROL0 identify faulted unit 303.37 303.58

CONTROL0 identify selected Bravo 308.84 307.83

CONTROL0 identify faulted CONTROL 345.28 345.28

CONTROL0 identify selected Bravo 356.67 358.66

CONTROL0 identify completed Bravo 376.98 378.99

-------------------------

CONTROL1 identify created CONTROL 39.86 39.86

CONTROL1 identify selected Alpha 47.17 46.15

CONTROL1 service-B created Alpha 95.12 96.10

CONTROL1 identify completed Alpha 95.28 95.89

CONTROL1 service-B selected Charlie 224.67 224.05

CONTROL1 service-B faulted CONTROL 256.28 256.28

-------------------------

CONTROL10 identify created CONTROL 230.00 230.00

CONTROL10 identify selected Alpha 235.78 235.30

CONTROL10 identify completed Alpha 323.64 324.12

-------------------------

CONTROL11 identify created CONTROL 231.76 231.76

-------------------------

CONTROL12 identify created CONTROL 232.38 232.38

CONTROL12 identify selected Bravo 247.27 246.71

CONTROL12 identify faulted CONTROL 295.21 295.21

CONTROL12 identify selected Bravo 302.74 302.60

CONTROL12 identify faulted CONTROL 330.45 330.45

-------------------------

CONTROL13 identify created CONTROL 268.68 268.68

CONTROL13 identify selected Alpha 380.38 381.94

CONTROL13 identify faulted CONTROL 395.58 395.58

CONTROL13 identify selected Alpha 399.86 399.86

-------------------------

CONTROL14 identify created CONTROL 269.00 269.00

CONTROL14 identify selected Alpha 388.61 389.36

86



Table 5 (continued): Mission state estimate log for one read hardware agent and
three simulated agents completing a mission consiting of an identification task and
one class of service tasks, using the GGm-TSP and partition-TSP selection policies,
respectively.

-------------------------

CONTROL15 identify created CONTROL 352.13 352.13

CONTROL15 identify selected Bravo 377.22 378.58

CONTROL15 identify completed Bravo 390.52 394.95

CONTROL15 service-A created Alpha 394.14 398.48

-------------------------

CONTROL16 identify created CONTROL 352.53 352.53

-------------------------

CONTROL17 identify created CONTROL 405.03 405.03

-------------------------

CONTROL2 identify created CONTROL 41.17 41.17

CONTROL2 identify selected Alpha 47.17 46.15

CONTROL2 service-B created Alpha 70.41 70.80

CONTROL2 identify completed Alpha 70.52 70.81

CONTROL2 service-B selected Charlie 226.76 226.09

CONTROL2 service-B completed Charlie 235.10 236.60

-------------------------

CONTROL3 identify created CONTROL 43.62 43.62

CONTROL3 identify selected Alpha 47.17 46.34

CONTROL3 identify faulted unit 64.33 64.11

CONTROL3 identify selected Alpha 65.97 65.31

CONTROL3 identify faulted unit 105.83 105.44

CONTROL3 identify selected Alpha 107.26 106.23

CONTROL3 service-B created Alpha 148.88 149.59

CONTROL3 identify completed Alpha 148.97 149.45

CONTROL3 service-B selected unit 155.85 156.01

CONTROL3 service-B completed unit 223.98 222.53

-------------------------

CONTROL4 identify created CONTROL 65.97 65.97

CONTROL4 identify selected Bravo 90.48 89.08

CONTROL4 identify faulted unit 134.17 133.55

CONTROL4 identify selected Alpha 235.83 235.31

CONTROL4 identify faulted unit 269.54 269.72

CONTROL4 identify selected Alpha 270.90 271.57

CONTROL4 identify faulted CONTROL 349.94 349.94

CONTROL4 identify selected Alpha 351.39 355.00

CONTROL4 identify faulted unit 383.00 384.12
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Table 5 (continued): Mission state estimate log for one read hardware agent and
three simulated agents completing a mission consiting of an identification task and
one class of service task, using the GGm-TSP and partition-TSP selection policies,
respectively.

-------------------------

CONTROL5 identify created CONTROL 68.08 68.08

CONTROL5 identify selected Bravo 90.48 89.12

CONTROL5 identify faulted Charlie 105.50 104.44

CONTROL5 identify selected Bravo 106.78 105.58

CONTROL5 service-B created Bravo 109.83 109.72

CONTROL5 identify completed Bravo 109.93 109.68

CONTROL5 service-B selected unit 157.97 156.50

CONTROL5 service-B faulted Bravo 193.79 192.79

CONTROL5 service-B selected Charlie 226.76 226.35

CONTROL5 service-B completed Charlie 260.76 263.13

-------------------------

CONTROL6 identify created CONTROL 70.02 70.02

CONTROL6 identify selected Bravo 90.48 89.11

CONTROL6 service-B created Bravo 98.22 97.36

CONTROL6 identify completed Bravo 98.33 97.35

-------------------------

CONTROL7 identify created CONTROL 71.13 71.13

CONTROL7 identify selected Bravo 90.48 89.02

CONTROL7 service-B created Bravo 94.42 93.21

CONTROL7 identify completed Bravo 94.49 93.26

CONTROL7 service-B selected unit 155.85 156.05

CONTROL7 service-B completed unit 161.42 160.95

-------------------------

CONTROL8 identify created CONTROL 146.50 146.50

CONTROL8 identify selected Alpha 237.89 240.53

CONTROL8 service-B created Alpha 334.38 333.67

CONTROL8 identify completed Alpha 334.45 333.67

-------------------------

CONTROL9 identify created CONTROL 147.75 147.75

CONTROL9 identify selected Alpha 235.83 235.09

CONTROL9 identify faulted Bravo 292.10 291.82

CONTROL9 identify selected Alpha 293.56 293.08

CONTROL9 identify faulted CONTROL 370.59 370.59
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