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Abstract

Synchronization in Pulse-Coupled Oscillator

With Delays and Mixed Excitatory/Inhibitory Coupling

by

Deepti Kannapan

Pulse coupled oscillator (PCO) networks consist of oscillators that send pulses to

their in-neighbors on the network, as defined by the sensing digraph. The neighbors

update their phase when they receive the pulse, depending on their current phase

and the pulse strength. This mechanism causes the oscillators to synchronize for

some values of their initial phases, and to converge to a fixed phase difference for

others. The synchronizing behavior due to pulse coupling has been observed in

nature: fireflies tend to flash in unison, neurons and cardiac cells synchronize their

firing with their neighboring cells by this mechanism.

There has been recent interest in developing algorithms based on PCO networks

to synchronize the clocks for distributed sensing and robotic applications. PCO net-

works whose sensing digraphs are strongly connected have been modeled extensively,

in the presence and absence of delays in the transmissions of pulses, using analytical

and numerical approaches.

We model a PCO network whose sensing digraph is not necessarily strongly con-

nected but satisfies the weaker condition of having a globally reachable node. We

propose a simple model of PCO networks with identical frequencies, based on the

approach used in the study of distributed consensus. We model the discrete dynam-

ics of the network as a linear time-varying (LTV) system. We use the row-stochastic

property of the weighted adjacency matrices that characterize the LTV system, to

derive sufficient conditions for synchrony. Arbitrary delays in the pulse-transmission
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are modeled as disturbances. Synchrony may not be reached exactly in the presence

of delays, and error that remains in the phases in the steady state is proportional to

the maximum delay.

Further, we observe the convergence to be exponential if sampled over a suffi-

ciently large number of receptions, and estimate the rate of convergence based on

the properties of the digraph. We also estimate the basin of attraction of the syn-

chronized solution. We illustrate these results with numerical examples.
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1 Introduction

1.1 Problem Description

Coupled oscillator networks consist of oscillators (1D systems that would each

be periodic in isolation). The dynamics of an oscillator is coupled to the dynamics

of other oscillators that it can sense, that is, its out-neighors in the sensing digraph

(‘network’). The coupling could be discrete or continuous, and are referred to as

pulse coupling and diffusive coupling respectively [16]. In networks of pulse-coupled

oscillators (PCO), an oscillator sends a pulse (or ‘fires’) to its in-neighbors on the

sensing digraph every time it completes an oscillation. An oscillator experiences a

discrete jump in its phase on reception of the pulse. The phase jump could be forward

or backward and depends on its current phase. It is defined by the phase response

curve (see [20]). The network is a hybrid system, since its state, comprising the

phases of all the oscillators, varies continuously with time except when any oscillator

receives a pulse.

PCO network models have been studied extensively since they have been useful

both for modeling naturally occurring phenomena and for technological applications.

The oscillators are often assumed to be identical or nearly identical. Two behaviors

that are exhibited by the networks have been studied extensively: reaching synchrony

(where all the oscillators have the same phase) or an asynchronous state [26] (where

the oscillators have distinct phases whose separation remains constant with time),

from arbitrary initial phases. Both of these types of final conditions are periodic. We

refer to the process in which the separation between phases converges to a constant

value near zero as synchronization.

We broadly classify PCO network models in the literature according to the type

of coupling (excitatory, inhibitory or mixed) and according to the presence or

absence of delay in the transmission of pulses. Excitatory coupling refers to coupling
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where an oscillator experiences an increase in phase whenever it receives a pulse.

Inhibitory coupling refers to coupling where an oscillator experiences a decrease in

phase whenever it receives a pulse. Mixed excitatory/inhibitory coupling (referred

to in [20] as advance-delay coupling) refers to coupling where pulses either cause the

phase to jump forward (‘advance’) or backward (‘delay’) depending on the current

value of the phase. Delay in the transmission of pulses refers to the duration between

the transmission of a pulse (when an oscillator fires) and the reception of the pulse

by an in-neighbor of the sending oscillator. (‘Delay’ will be used to refer only to

transmission delay from now on.) By these two criteria, there are six types of PCO

networks. Additionally, for each type of network, the behavior differs based on

the type of sensing digraph. The most common types that are studied are all-to-

all (complete graph with no self loops), and graphs that satisfy the weaker

condition of being strongly connected or strongly rooted.

1.2 Motivation

Occurrences in Nature One of the first phenomena that sparked interest in PCO

networks was the synchronization of South Asian fireflies in their lighting patterns

[1], with the flashes of each firefly acting as the signal to the the others. Another

natural phenomenon, the self-synchronization of the pacemaker cells of the heart,

was studied by Peskin in [21]. Both of these phenomena have been modeled as

PCO networks with excitatory coupling and no delay. Lastly, the electrical signals

of neurons have been modeled extensively as PCO networks with inhibitory coupling

and delay [24, 12, 3, 11].

Technological Applications PCO network-based algorithms have been used for

clock synchronization for wireless transceivers [18], in cellular mobile radio [27],

robotics [4, 22, 30], wireless sensor networks [10, 9, 6, 23, 28], scheduling [8] and
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management [5].

Modified Versions of PCO Networks Modified algorithms for improved syn-

chronization properties have been proposed for improved synchronization properties

for technological applications. A refractory period is a period during which an oscilla-

tor becomes unable to receive signals, right after it fires. It is sometimes incorporated

into inhibitory systems to eliminate ‘echo’ effects [15, 13, 19]. Self adjustment is an

instantaneous self-coupling during firing that is sometimes introduced to enable the

system to get closer to synchrony [13].

1.3 PCO Network Models in Literature

The behavior of PCO networks has been investigated for the three types of cou-

plings mentioned above, both with and without delays, as summarized in Table

1.1. In most cases, the sensing digraph is assumed to be strongly connected though

sometimes the type of sensing digraph is further restricted to simplify the proof.

Excitatory Couplings PCO networks with excitatory coupling and no delay

reach synchrony from any initial condition (excluding a set of Lebesgue measure 0).

This was proved analytically for the case of all-to-all coupling by Mirollo and Strogatz

in [17]. Numerical simulations in the same paper indicate that any strongly connected

sensing digraph would also reach synchrony (albeit slower), though this has not been

proved.

Interestingly, the behavior of the system completely changes on the introduction

of even the smallest delay. The system reaches the asynchronous state from all initial

conditions and not synchrony, as shown in [7] and [25]. In [29] it is proved that syn-

chrony in this case is in fact impossible. This makes excitatory couplings unsuitable

for a practical synchronization applications, since small delays are inevitable.
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Inhibitory Couplings For PCO networks with inhibitory coupling and no

delay, both synchrony and asynchronous states are possible, depending on the initial

conditions. In [14], it is proved that in the all-to-all case, synchrony is reached

irrespective of the initial conditons. However, in general, asynchronous states can

occur as described in [12].

PCO networks with inhibitory coupling and delay also exhibit a coexistence

of the asynchronous state and synchrony, depending on the initial conditions as

described in [26]. In [25] it is proved that the synchronous state is locally stable if

the delay is greater than some threshold. There is no proof however for arbitrarily

small delays.

Mixed Excitatory/Inhibitory Couplings For PCO networks with mixed exci-

tatory/inhibitory couplings, the behavior is not known in general. For a specific

choice of phase response curve, it is shown in [20] that, in the absence of delays, the

system reaches synchrony for all initial conditions if the coupling strength is above

some threshold. If the coupling strength is below the threshold, it synchronizes only

from initial conditions of phases contained within an angle of π.

For the systems with delays, it is proved in [19] that similar behavior to the above

occurs for the special case of undirected cycle graphs. For directed cycle graphs, a

refractory period has to be added to one of the oscillators to ensure that exact

synchrony is reached.

1.4 Contribution

The contributions of this thesis are as follows. We study the timing behavior

of the firings and receptions in the PCO network, and derive bounds on the dura-

tions between successive firings of an oscillator, and successive receptions along an

edge. We propose a simple model of a PCO network with delays and mixed excita-
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Table 1.1: A summary of the literature on the six kinds of PCO networks.

Excitatory coupling Inhibitory coupling Mixed excitatory/in-
hibitory coupling

With
no
de-
lays

[17]: Sufficient condi-
tions for all-to-all PCOs
to asymptotically syn-
chronize from almost all
initial conditions.

[12], [14]: Coexis-
tence of synchrony and
asynchronous states.
Sufficient conditions
for all-to-all PCOs to
asymptotically synchro-
nize from all initial
conditions.

[20]: Sufficient con-
ditions for strongly
connected PCOs to
asymptotically synchro-
nize from all initial
conditions if the cou-
pling strength is above a
threshold, and for initial
conditions within an
angle of π

2
otherwise.

With
de-
lays

[29], [7], [25]: Asyn-
chronous states are
reached from all ini-
tial conditionss and
synchrony is impossible.

[26], [25]: Coexistence
of synchrony and asyn-
chronous states. Syn-
chrony is proven stable
if the delay is sufficiently
large.

[19]: Similar behavior to
the above for the spe-
cial cases of undirected
cycle graphs, and of di-
rected cycle graphs with
refractory periods to en-
sure exact synchrony.
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tory/inhibitory coupling as a linear time-varying (LTV) system, based on the timing

behavior.

We then derive sufficient conditions on the sensing digraph for the PCO network

to synchronize exactly if the delays are all zero, or to synchronize approximately, if

non-zero delays are present. Using techniques commonly used to analyze distributed

consensus problems, we show that synchronization is possible on graphs that are not

necessarily strongly connected but satisfy the weaker condition of having a globally

reachable node.

We also show that the convergence is exponential, in the sense that the separation

between the phases converges exponentially to a constant value (if delays are present),

or to zero (if no delays are present), when sampled over a large enough duration.

We estimate the rate at which convergence occurs from the out-degrees and other

properties of the sensing digraph. In situations where exact synchronization does

not occur, we estimate the error between the oscillator phases that remains in the

final asynchronous state, and we estimate the basin of attraction of the final state.

1.5 Organization of this Thesis

The rest of this thesis is organized as follows. In Section 2, we describe the

system equations of the PCO network and define the functions and parameters that

are used in the subsequent sections. In Section 3, we derive basic results on how

many pulses an oscillator can receive in a duration of known length. In Section

4, we assume that no delays are present, and rewrite the system equations of the

PCO network as an LTV system and derive sufficient conditions for the network

to synchronize exactly. We also estimate the rate at which the error between the

oscillators exponentially converges to zero. In Section 5, we rewrite the system

equations of the PCO network as an LTV system with disturbances proportional to

the delays, and derive sufficient conditions for the error between the oscillators to
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converge exponentially. We also estimate the final value of this error and estimate

the rate at which the error converges. In Section 6, we present numerical simulations

of the PCO network that illustrate the behaviors described in Sections 4 and 5 for

specific examples. Lastly, in Section 7, we describe how the contributions of this

thesis may be relevant to future work.
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2 Pulse-Coupled Oscillator Network Model

We consider a PCO network system with delays and with mixed excitatory/in-

hibitory coupling similar to that described in [20], that is, where the phase of the

oscillator jumps toward 0 (or 1, whichever is nearer), by a distance proportional to

the arc from its phase to 0 (or 1), whenever it receives a pulse. We study the case

with delays, and hence this thesis addresses the problem in the second row, second

column of 1.1.

2.1 System Equations

The PCO network consists consists of N oscillators. The phase of each oscillator

i ∈ {1, . . . , N} evolves on a circle of unit circumference. The phase, denoted by

φi(t) ∈ [0, 1[, is the length of the counter-clockwise arc from the positive horizontal

axis to the state of the oscillator, as shown in Figure 2.1. In what follows we regard

the circle of unit circumference equivalent to the interval [0, 1[. Each oscillator obeys

a hybrid dynamics with continuous-time evolution on the circle, discrete jumps due to

pulses, and a discrete reset to 0 on firing, when the phase reaches 1. The continuous-

time dynamics is described by

φ̇i (t) = 1. (2.1)

The discrete-time dynamics is described as follows:

(i) when the phase φi reaches 1, it is reset to 0 and the oscillator i sends a pulse

to each of its in-neighbors in a sensing digraph G;

(ii) assuming a pulse is sent from oscillator i at time t, it is received by its in-

neighbor j at time t+ τij , where τij is a non-negative delay ;

(iii) assuming the oscillator i receives a pulse at time t, it jumps to a new phase
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φi(t
+) as follows:

φi(t
+) =















φi(t)− hφi(t), if φi(t) ∈ [0, 1
2
[,

φi(t) + h (1− φi(t)) , if φi(t) ∈ [1
2
, 1],

(2.2)

where h ∈ (0, 1) is a pulse strength.

2
54

3

1

Figure 2.1: Phase of an oscillator, φ4 (t)

1 2

5 4

31

Figure 2.2: An example of a sensing
digraph, G.
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2.2 Geometry of the Phase Vector

The phase of each oscillator evolves on a circle of unit circumference. The vector

of the phases of the N oscillators exists in the N -torus which we will denote as TN

and consists of N copies of the circle of unit circumference.

Distances The clockwise arc-length distc(φi, φj) is the length of the clockwise arc

from φi and φj. The counterclockwise arc-length distcc(φi, φj) is the length of the

counter-clockwise arc from φi and φj. The geodesic distance between φi and φj is

the minimum between clockwise and counterclockwise arc-lengths and is denoted by

dist (φiφj). In the parametrization described above: distcc(φi, φj) = (φjφi)mod 1,

distc(φi, φj) = (φiφj)mod 1 dist (φiφj) = min {distc(φi, φj), distcc(φi, φj)}.

Arc Subsets of the N-Torus Given a length γ ∈ [0, 1], the arc subset Γ(γ) ⊆ T
N

is the set of N -tuples (φ1, . . . , φN) such that there exists an arc of length strictly

less than γ containing all φ1, . . . , φN . We note that if φ ∈ Γ(γ), then the geodesic

distance between any two phases must be strictly less than γ, that is, dist (φi, φj) < γ

for any i, j ∈ {1, . . . , N}. The converse is not in general true.

2.3 Synchrony

Synchrony occurs when all N oscillators in the network have the same phase.

The network is at synchony at time t if φ(t) ∈ Γ(ǫ) for arbitrarily small ǫ ∈ R≥0.

We can quantify the error from synchrony at time t as the length of the smallest arc

that contains φ(t).

2.4 Definitions

The following definitions are used in Theorems 1 to 3:

10



D.1 Define the arc length function Varc-length : TN → [0, 1[ by

Varc-length(x) = min
s∈[0,1[,
x∈Γ(s)

s,

so that Varc-length(x) is the length of the shortest arc containing x.

D.2 Define the sensing digraph as an unweighted digraph G with vertices V =

{1, . . . , N}. Its edge set is defined as follows: every node has a self-loop. For

i 6= j, (i, j) is an edge if i can receive a pulse from j. An example of a sensing

digraph is shown in Figure 2.2.

D.3 Let dmax be the maximum out-degree of any node in G (excluding self-loops).

Let |E| be the cardinality of the edge set of G (excluding self-loops).

D.4 Assuming the sensing digraph G has a globally reachable node, let b be the

smallest number such that the globally reachable node can be reached from

any node by a path that has most b edges. Note that, if G has a self-loop on

every node, then the globally reachable node can be reached from any node by

a path that has exactly b edges.

D.5 Let t1, t2, . . . be the ordered sequence of times at a pulse is received by any one

of the oscillators.

D.6 Define, for p ∈ N, the reception digraph as a weighted digraph Gp with vertices

Ṽ = {1, . . . , N} and edge set as follows. Every node corresponding to an

oscillator that does not receive a pulse at time tp has a self-loop weighted 1. If

at time tp a pulse is received by oscillator i from oscillator j, then node i has

a self-loop weighted 1 − h, there is an edge from i to j weighted h. We note

that each reception digraph can be constructed by taking a sub-graph of the

sensing digraph and adding weights on all the edges. Examples of reception

digraphs are shown in Figure 2.3.

11



D.7 Let Ap be the adjacency matrix of Gp. We note that Ap is row-stochastic, that

is, it has all non-negative elements and the sum of elements of each row is 1.

1 2

5 4

31 h

1

1-h

1

1

1

1 2

5 4

31

h

1

1

1

1

1-h

Figure 2.3: Two examples of reception digraphs consistent with the sensing di-
graph in Figure 2.2, where oscillator 2 receives a pulse from oscillator 1 (on the
left) and where oscillator 3 receives a pulse from oscillator 4 (on the right).
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3 Estimating Durations Between Pulses

Theorem 1 below describes the timing of the firings and receptions of pulses in the

PCO network, based on the properties of the sensing digraph (namely, degree and

number of edges) and the pulse strength. The properties described in this section

enable us to write the PCO network system equations as an LTV system sampled at

the times when a reception occurs, in subsequent sections.

The time at which an oscillator fires is affected by the number of pulses received,

and by the phase of the oscillator when the pulses are received. Statement (i) states

that if the pulse strength is sufficiently small, then despite the effect of the pulses

received, the time between successive firings of a given oscillator is upper- and lower-

bounded, and provides an estimate for the upper and lower bounds.

Statement (ii) follows from Statement (i), and states that for a sufficiently large

number of receptions, at least one pulse must be received along every (non-self-loop)

edge of the sensing digraph.

Statement (iii) provides upper bound on the number of pulses received by an

oscillator in a sequence of successive receptions of specified length, based on the fact

that not all the pulses sent in that duration can repeat on the same edge since some

of the pulses must be sent along the other edges as well.

Theorem 1 (Upper and lower bounds on receptions by an oscillator in a sequence of

successive receptions). Consider a PCO network with N oscillators, with arbitrary

delays for each edge in the sensing digraph G, and with pulse strength h. Assume the

pulse strength h satisfies

hdmax < 1. (3.1)

Then the following statements hold:

(i) for any oscillator i ∈ {1, . . . , N} and for all n ∈ N, the duration Ti,n between

13



the nth and (n + 1)th firings of i satisfies

Tmin ≤ Ti,n ≤ Tmax,

where Tmin = 1
2
and Tmax =

1
2
+ 1

(1−hdmax)
,

(ii) there exists a duration δ ≤ δmax = 1 +
⌈

1 + 2
1−hdmax

⌉

(|E| − 1) such that the

sensing digraph and the reception digraphs satisfy for all time index p ∈ N:

Gp ∪ Gp+1 ∪ . . . ∪ Gp+δ−1 = G,

(iii) the maximum number of pulses received by each oscillator over an interval of

duration v ∈ N is

M(v) =
⌊v

δ

⌋

(δ − |E|+ dmax) + min {(vmod δ), (δ − |E|+ dmax)} . (3.2)

The proof of Statement (i) proceeds as follows. The duration between firings of an

oscillator depends on the number of pulses the oscillator receives between its firings.

Some pulses move the phase forward, decreasing the duration, and some move the

phase backward, increasing the duration to the next firing of the oscillator. The

maximum and minimum durations between successive firings of the same oscillator

depend on the maximum effect of the pulses. The proofs of Statements (ii) and (iii)

follow from Statement (i).

Proof. If an oscillator i receives no pulses from its out-neighbors between its nth

and (n + 1)th firing, then from the continuous dynamics equation (2.1), Ti,n = 1. If

oscillator i does receive pulses, then each pulse either increases or decreases the time

to the next firing according to the discrete dynamics equation (2.2).

14



We estimate Tmin as follows. Equations (2.1) and (2.2) imply that a pulse received

by oscillator i when φi(t) <
1
2
can only increase the time to firing of oscillator i. Hence

Ti,n ≥ 1
2
for all n ∈ N, since if no pulses were received φi(t) <

1
2
then Ti,n would be

given by 1
2
plus the positive duration that is taken for the phase to increase from 1

2

to 1. Therefore Tmin = 1
2
.

Next, we estimate Tmax as follows. In a duration ∆t, a particular out-neighbor

of i can fire at most ⌈ ∆t
Tmin

⌉ = ⌈2∆t⌉ times. As a result, in a duration ∆t, oscillator i

can receive at most di (⌈2∆t⌉) pulses (since all the τijs are constant). From equation

(2.2), each pulse results in a phase change of at most h
2
. Conceivably, each pulse

that oscillator i receives could result in a phase change of h
2
, since the oscillator

could receive a pulse when its phase is just less than 1
2
, then move backward by

h
2
, then move forward again to 1

2
under the continuous dynamics, and then receive

another pulse (and so on). Therefore, the total phase change ∆φi of oscillator i in

the duration ∆t satisfies the following inequality:

∆φi ≥ ∆t−
h

2
(di⌈2∆t⌉) ≥ ∆t−

h

2
(di2∆t+ 1) = (1− hdi)∆t−

h

2
di

=⇒ ∆φi ≥ (1− hdmax)∆t−
h

2
dmax. (3.3)

We see from equations (3.1) and (3.3) that if ∆t ≥ 1
(1−hdmax)

, then ∆φi ≥
1
2
. So

the time taken by the oscillator to reach a phase of 1
2
from 0 is less than or equal

to 1
(1−hdmax)

, and the time taken by the oscillator to reach a phase of 1 from 1
2
is

less than or equal to 1
2
since any pulses it receives during this duration will increase

the time taken, not decrease it. Therefore, the time taken for the phase to reach 1

from 0 is less than or equal to Tmax := 1
2
+ 1

(1−hdmax)
. This concludes the proof of

statement (i).

To prove statement (ii), we note that if a pulse is received along the edge (i, j)

for the nth time at a time t, then the next time a pulse is received along the edge
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(i, j) is t + Tj,n since the delay τij is constant. Therefore, the duration between

successive receptions of pulses along the the edge (i, j) is Tj,n for some n ∈ N. The

total number of receptions during the interval ]t, t+ Tj,n] is less than or equal to

1+
⌈

Tj,n

Tmin

⌉

(|E|−1), considering the receptions on all the other (|E|−1) edges as well.

Since Tj,n ≤ Tmax, this implies that there exists a number δ which is less than δmax

:= 1 +
⌈

Tmax

Tmin

⌉

(|E| − 1) = 1 +
⌈

1 + 2
1−hdmax

⌉

(|E| − 1), such that every sequence of δ

successive receptions must contain at least one reception along every edge of G, and

hence the union of the digraphs Gp ∪ Gp+1 ∪ . . . ∪ Gp+δ−1 is G, for all p ∈ N. This

concludes the proof of statement (ii).

Finally, to prove statement (iii) we estimate the number of pulses received by a

particular oscillator i during v successive receptions. We note that in a sequence of

δ successive firings, at least one reception must occur along each of the |E|−di edges

that are not from node i. This implies that the maximum number of pulses that an

oscillator may receive in a sequence of δ successive receptions is δ − |E|+ dmax. The

maximum number of pulses received by an oscillator in a sequence of v successive

receptions, M(v) can be estimated by breaking the sequence into parts of length δ.

Therefore, we know M(v) =
⌊

v
δ

⌋

(δ − |E| + dmax) + min {vmod δ, (δ − |E|+ dmax)}.

This concludes the proof of the theorem.
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4 Synchronization with No Delays

In this section we show that, if all the delays in the pulse-transmission are zero,

and the pulse strength is sufficiently small, and the sensing digraph has a globally

reachable node, then the PCO network synchronizes exactly for all initial conditions

contained within an arc of length 1
2
. Furthermore, the error from synchrony (quan-

tified by the arc length function Varc-length) decreases exponentially with the time

index.

Theorem 2 (Exponential synchronization). Consider a PCO network with N os-

cillators, with delays τij = 0 for each edge (i, j) in the sensing digraph G, and with

pulse strength h. Assume that

(A1): the sensing digraph G has a globally reachable node, and

(A2): the pulse strength h satisfies equation (3.1): hdmax < 1.

Then, the PCO network synchronizes exponentially for all initial conditions φ(0)

contained within an arc of length 1
2
. More precisely, if δ ≤ δmax is the smallest

number in N such that:

Gp ∪ Gp+1 ∪ . . . ∪ Gp+δ−1 = G,

for any p ∈ N, then the following equation is satisfied:

Varc-length (φ (tm∆)) ≤ a Varc-length (φ (tm∆−∆)) , for all m ∈ N, if φ(0) ∈ Γ

(

1

2

)

,

(4.1)

where ∆ = b δ and a = (1−min {h, 1− h}b (1− h)b(δ−|E|+dmax−1)) ∈ ]0, 1[.

The proof of Theorem 2 proceeds as follows. The vector of phases φ (t) is trans-

formed to a coordinate system that rotates at the same rate as the continuous dy-

namics of the oscillators, so that the transformed phase vector φ̃ (t) remains constant
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between receptions and only the discrete dynamics remain. Then, the discrete dy-

namics is rewritten as a first-order LTV system, using the adjacency matrices of

the reception digraphs. A theorem on distributed time-varying consensus from [2]

is shown to be applicable to the discrete dynamics, and conditions for exponential

convergence are derived. Additionally, the rate of convergence is quantified using

Theorem 1.

Proof. Coordinate Transformation

Define a rotating coordinate system with its origin c (t) ∈ [0, 1[ such that:

• The origin has the continuous dynamics as the oscillators, or, ċ (t) = 1.

• When the phase c (t) reaches 1, it is reset to 0.

• The origin lies within an arc of length 1
2
that also contains φ (0) at t = 0, such

that

0N ≤ φ (0)− c (0)1N <
1

2
1N . (4.2)

Such an origin can be found if φ (0) ∈ Γ
(

1
2

)

.

The transformed phase vector φ̃ (t) is given by:

φ̃ (t) = distcc (c (t) , φ (t)) , (4.3)

as shown in Figure 4.1. Clearly, the derivative of φ̃ (t) under the continuous

dynamics in equation (2.1) is zero so the transformed phase vector remains constant

at all times except during receptions. The origin of the fixed coordinate system is

expressed in the rotating coordinate system as φ̃0 (t) and moves clockwise such that:

˙̃
φ0 (t) = −1. (4.4)
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When a pulse is received, the receiving oscillators move toward the origin of the

fixed coordinate system, according to equation (2.2). Considering equation (4.2),

the discrete dynamics of the transformed phase vector is given by rewriting equation

(2.2) as follows:

φ̃i (tp+1) =











φ̃i (tp)− h
(

φ̃i (tp)− φ̃0 (tp)
)

, φ̃i (tp)− φ̃0 (tp) ∈
[

0, 1
2

[

φ̃i (tp) + h− h
(

φ̃i (tp)− φ̃0 (tp)
)

, φ̃i (tp)− φ̃0 (tp) ∈
[

1
2
, 1
]

,

for all i such that oscillator i receives a pulse at time tp, and

φ̃i (tp+1) = φ̃i (tp) (4.5)

for all i such that oscillator i does not receive a pulse at time tp.

We note that since φ̃ (t) remains constant between t+p and tp+1, φ̃i

(

t+p
)

is replaced

with φ̃i (tp+1) in equation (4.5).

2
54

3

c(t)

1

Figure 4.1: The coordinate transformation from φ (t) to φ̃ (t) in the rotating
coordinate frame. The origin of rotating coordinate frame is at a counterclockwise
distance of c (t) from the origin of the fixed coordinate frame.
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Rewriting the Discrete Dynamics as an LTV System

Suppose the pulse received at time tp was sent by oscillator j. Since τij = 0,

the oscillator j must have fired at the same instant tp, and hence its phase coincides

with the origin of the fixed coordinate system, or φ̃0 (tp) = φ̃j (tp), which can be

substituted in equation (4.5) to obtain the following:

φ̃i (tp+1) =











(1− h)φ̃i (tp) + hφ̃j (tp) , φ̃i (tp)− φ̃j (tp) ∈
[

0, 1
2

[

(1− h)φ̃i (tp) + h+ hφ̃j (tp) , φ̃i (tp)− φ̃j (tp) ∈
[

1
2
, 1
]

.

for all i such that oscillator i receives a pulse at time tp, and

φ̃i (tp+1) = φ̃i (tp) (4.6)

for all i such that oscillator i does not receive a pulse at time tp.

We observe from equation (4.6) that if the following condition:

0N ≤ φ (tp) ≤
1

2
1N (4.7)

is satisfied at time tp, then if i receives a pulse at tp,

φ̃i (tp+1) = (1− h)φ̃i (tp) + hφ̃j (tp) .

Since φ̃i (tp+1) is a convex combination of the elements of φ̃i (tp), the condition (4.7)

is satisfied at tp+1 as well. And since the condition (4.7) is satisfied at t = 0, the

condition (4.7) is satisfied for all t > 0. As a result, the piece-wise form of (4.6) can

be discarded and the discrete dynamics can be rewritten using the definition of Ap,

as given below:

φ̃ (tp+1) = Ap φ̃ (tp) . (4.8)
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Global Reachability Over Time in the Reception Digraphs

Equation (4.8) is a time-varying distributed averaging algorithm that satisfies the

following conditions:

• The adjacency matrices of the reception digraphs are row-stochastic.

• The reception digraphs Gp have self-loops on every node.

• Every element of the adjacency matrix of the reception digraph belongs to the

set {0, h, 1− h, 1}.

• There exists a number δ ≤ δmax such that the union of any δ successive reception

digraphs has a globally reachable node.

We use a method based on [2], adapted to the PCO network system, to show

that above four conditions are sufficient for the vector φ̃ (tp) to synchronize, with

the length of the smallest arc containing the phase vector decreasing exponentially

to zero. First we show that the globally reachable node of G, which we will denote

as r, is reachable from any node over the sequence of ∆ := b δ successive reception

digraphs, in the following sense: for every k ∈ {1, . . . , N}, there exists a sequence of

nodes {k, i1, i2, . . . , i∆−1, r} such that (k, i1) is an edge of Gp, (iw, iw+1) is an edge in

Gp+w, w = 1, . . . ,∆− 1 and {i∆−1, r} is an edge in Gp+∆.

Suppose (i, j) is an edge in G. From Theorem 1 (ii), the edge (i, j) must appear

in at least one digraph in the sequence Gp,Gp+1, . . . ,Gp+δ−1. Suppose the edge exists

in Gp+w, where 0 ≤ w ≤ δ. Then, node j is reachable from i over the duration

{p, p+ δ − 1}, since the following ordered sequence of δ + 1 nodes exists:

{

i, . . . , i,
w times

j, . . . , j
δ−w+1 times

}

,

such that:
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• the edge (i, i) exists in the digraphs Gp,Gp+1, . . . ,Gp+w−1 (since there are self-

loops on every node of the digraphs),

• the edge (i, j) exists in the digraph Gp+w by our assumption, and

• and the edges (j, j) exist in the digraphs Gp+w+1,Gp+w+1, . . . ,Gp+δ−1 (since there

are self-loops on every node of the digraphs).

So if (i, j) is an edge in G, then node i is reachable from j in the sequence of

reception digraphs, over every duration of length δ or greater. We observe from

Theorem 1(iii) that at most δ− |E|+ dmax edges in the above sequence are weighted

less than 1 (these edges are associated with pulses received by i or j), and that at

most one edge in the above sequence is weighted h (the edge from i to j if they are

distinct).

Since there is a path of b edges from every node k to r in G from the definition

D.4, we can construct a sequence of bδ+1 nodes starting with k and ending with r,

over every sequence of bδ successive reception digraphs, by concatenating a sequence

like the one described above for each edge of the path (and discarding the repeated

node at the point of concatenation). Hence the node r is reachable from every node

k over a every sequence of b δ = ∆ successive reception digraphs. We note that at

most b(δ−|E|+dmax) edges in the above sequence are weighted less than 1, and that

at most b edges in the sequence of edges to reach r are weighted h.

We use the property of global reachability of r in the reception digraphs to analyze

the linear time-varying system of the PCO network.

Exponential Convergence of the Arc Length

Let A denote the product Am∆+∆−1Am∆+∆−2 . . . Am∆. Consider the equation

obtained by applying equation (4.5) recursively ∆ times, to calculate φ̃ (tm∆+∆) from
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φ̃ (tm∆):

φ̃ (tm∆+∆) = Am∆+∆−1Am∆+∆−2 . . . Am∆ φ̃ (tm∆)

= A φ̃ (tm∆) . (4.9)

Let aij(p) denote the (i, j) element of Ap. For a node k, consider a sequence

of nodes {k, i1, . . . , i∆−1, r} such that (k, i1) is an edge in Gm∆,(iw, iw+1) is an edge

in Gm∆+w for w = {1, . . . , m∆ + ∆ − 2}, and (i∆−1, r) is an edge in Gm∆+∆−1.

This means that ak,i1(m∆) ≥ min {h, 1− h}, aiw,iw+1
(m∆+ w) ≥ min {h, 1− h} for

w = {1, . . . , m∆+∆− 2}, and ai∆−1,r(m∆+∆− 1) ≥ min {h, 1− h}. Furthermore,

at most b of these elements are equal to h.

We note that since A is a product of row-stochastic matrices, A is row-stochastic

[2]. The method in [2] uses the observation that the product:

ak,i1(m∆) ai1,i2(m∆+ 1) . . . ai∆−2i∆−1
(m∆+∆− 2) ai∆−1r(m∆+∆− 1)

is one term in the expression for Akr, and that all the other terms are non-negative.

Hence:

Akr ≥ η := min {h, 1− h}b (1− h)b(δ−|E|+dmax−1) for all k ∈ {1, . . . , N}. (4.10)

We further observe, by expanding the matrix-multiplication in equation (4.9),
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that:

φ̃k (tm∆+∆) = Akrφ̃r (tm∆) +

N
∑

i 6=r,i=1

Akiφ̃i (tm∆)

≤ Akrφ̃r (tm∆) + (1−Akr)max
(

φ̃ (tm∆)
)

(since A is row-stochastic)

≤ ηφ̃r (tm∆) + (1− η)max
(

φ̃ (tm∆)
)

for all k

(from (4.10)).

=⇒ max
(

φ̃ (tm∆+∆)
)

≤ ηφ̃r (tm∆) + (1− η)max
(

φ̃ (tm∆)
)

(4.11)

By a similar argument, we can also show that:

min
(

φ̃ (tm∆+∆)
)

≥ ηφ̃r (tm∆) + (1− η)min
(

φ̃ (tm∆)
)

(4.12)

Lastly, we note that since φ (t) ∈ Γ
(

1
2

)

, the arc length Varc-length (φ (t)) is simply

given by:

Varc-length (φ (t)) = max
(

φ̃ (t)
)

−min
(

φ̃ (t)
)

=⇒ Varc-length (φ (tm∆+∆)) = max
(

φ̃ (tm∆+∆)
)

−min
(

φ̃ (tm∆+∆)
)

≤ (1− η)
(

max
(

φ̃ (tm∆)
)

−min
(

φ̃ (tm∆)
))

(from (4.11) and (4.12))

≤ a Varc-length (φ (tm∆)) ,

where a = 1− η.
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5 Synchronization with Delays

Theorem 3 below below states that if all the delays are sufficiently small, and the

pulse strength is sufficiently small, and the sensing digraph has a globally reachable

node, then the PCO network synchronizes approximately, for all initial conditions

contained within an arc of a specified length.

In other words, the error from synchrony, quantified by the arc length function,

converges exponentially with the time index p (sampled at multiples of a number ∆̃)

to a final value that is proportional to the maximum delay τmax. Between samples,

the arc length function may deviate from the exponential curve by an additive factor.

Theorem 3 (Exponential synchronization with delays). Consider a PCO network

with N oscillators, with delays τij for each edge (i, j) in the sensing digraph G, and

with pulse strength h. Suppose δ ≤ δmax is the smallest number in N such that:

Gp ∪ Gp+1 ∪ . . . ∪ Gp+δ−1 = G,

for any p ∈ N. Assume that:

(A1) the sensing digraph G has a globally reachable node,

(A2) the pulse strength h satisfies equation (3.1): hdmax < 1, and

(A3) the maximum delay τmax and the pulse strength h satisfy the following inequal-

ity:

( 1− (1− h)M(∆̃)

min {h, 1− h}b (1− h)b(3(δ−|E|+dmax)−1)
+

1

(1− h)M(∆̃)

)

τmax <
1

2
, (5.1)

where ∆̃ = b (δ + |E|).

Then, there exists a function V : N → [0, 1[ such that V (0) = Varc-length (φ (0))
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and Varc-length (φ (tm∆̃)) ≤ V (m∆̃) for all m ∈ N, and:

V
(

m∆̃ + ∆̃
)

− Vfinal ≤ ã
(

V
(

m∆̃
)

− Vfinal

)

, for all m ∈ N,

if φ(0) ∈ Γ

(

1

2
− l0 − τmax

)

,

where:

• ∆̃ = b (δ + |E|),

• ã =
(

1−min {h, 1− h}b (1− h)b(3(δ−|E|+dmax)−1)
)

∈ ]0, 1[,

• Vfinal =
1

1−ã

(

1− (1− h)M(∆̃)
)

τmax,

• l0 =
(

1

(1−h)M(∆̃) − 1
)

τmax.

The proof of Theorem 3 is by induction. For a given start time, assuming the

phases are contained in a sufficiently small arc, the proof proceeds along the lines of

the proof of Theorem 2. The vector of phases of the oscillators, φ (t) is transformed

to a coordinate system that rotates at the same rate as the continuous dynamics of

the oscillators, so that the transformed phase vector φ̃ (t) remains constant between

receptions (i.e., only the discrete dynamics remain).

Then, the discrete dynamics is rewritten as a non-homogeneous higher-order LTV

system. A modified reception digraph is constructed by adding additional nodes

that store previous values of the phases of the oscillators. The discrete dynamics is

then converted to a first-order system using the adjacency matrices of the modified

reception digraphs. The method used to prove the theorem on distributed time-

varying consensus from [2] is used to derive conditions for exponential convergence.

Additionally, we estimate the rate of convergence by using Theorem 1.

Finally, we prove that if the arc length was sufficiently small at the start time

for the linear time-varying system equations to be valid, then the arc length is also

sufficiently small after ∆̃ samples after the start time, and hence (by induction)
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the condition on the initial phase is sufficient for the linear time-varying system

equations to be valid for all t ∈ R≥0.

Proof. Coordinate Transformation

Assume that at some start time p = y, the following condition is satisfied:

φ (ty) ∈ Γ

(

1

2
− l0 − τmax

)

. (5.2)

Define a rotating coordinate system with its origin c (t) ∈ [0, 1[ such that:

• The origin has the same continuous dynamics as the oscillators, or, ċ (t) = 1.

• When the phase c (t) reaches 1, it is reset to 0.

• The origin lies within an arc of length 1
2
− l0 that also contains φ (ty) at t = ty,

such that

l01N ≤ φ (ty)− c (ty)1N <

(

1

2
− τmax

)

1N . (5.3)

Such an origin can be found if since condition (5.2) is satisfied at ty.

As in the proof of Theorem 2, the transformed φ̃ (t) is given by equation (4.3).

The derivative of φ̃ (t) under the continuous dynamics in equation (2.1) is zero so the

transformed phase vector remains constant at all times except during receptions. The

origin of the fixed coordinate system is expressed in the rotating coordinate system

as φ̃0 (t) and moves clockwise according to equation (4.4). The discrete dynamics of

the transformed phases are given by equation (4.5).

Rewriting the Discrete Dynamics as an LTV System with Disturbances

Suppose oscillator i receives a pulse from oscillator j at time tp. As in the proof

of Theorem 2, we solve for φ̃0 (tp) in terms of the phase of oscillator j and substitute
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in equation (4.5). Oscillator j fired at time tp − τij, so φ̃j = φ̃0 at time tp − τij . We

solve for φ̃0 (tp) as follows:

φ̃j (tp − τij) = φ̃0 (tp − τij)

= φ̃0 (tp) + τij (from equation (4.4))

=⇒ φ̃0 (tp) = φ̃j (tp − τij) . (5.4)

Suppose q receptions of pulses (by any oscillator) occurred in the duration ]tp − τij , tp[.

Then, φj (tp − τij) = φj (tp−q), and φ̃0(tp) is given by the following equation:

φ̃0 (tp) = φ̃j (tp−q)− τij . (5.5)

The discrete dynamics is rewritten by substituting equation (5.5) in equation

(4.5) to obtain the following:

φ̃i (tp+1) =











(1− h)φ̃i (tp) + φ̃j (tp−q)− hτij , φ̃i (tp−q)− φ̃j (tp) + τij ∈
[

0, 1
2

[

(1− h)φ̃i (tp) + h+ φ̃j (tp−q)− hτij , φ̃i (tp−q)− φ̃j (tp) + τij ∈
[

1
2
, 1
]

.

for all i such that oscillator i receives a pulse at time tp, and

φ̃i (tp+1) = φ̃i (tp) (5.6)

for all i such that oscillator i does not receive a pulse at time tp.

Equation (5.6) may be of order greater than one. From Theorem 1 (i), the maxi-

mum number of times a given oscillator could have fired in the duration ]tp − τij , tp[

is given by

⌈
τmax

Tmin
⌉ = 1

since τmax <
1
2
. Therefore q must be less than or equal to the number of edges in the
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sensing digraph, |E|. We can express equation (5.6) as a first order system with the

modified state vector x (t) ∈ R
N |E|+N where x (tp) =

[

φ̃ (tp)
T
. . . φ̃

(

tp−|E|

)T
]T

. The

discrete dynamics is then described by the following equations (note that we use x
p
i

to denote xi (tp), for brevity):

x
p+1
i =











(1− h)xp
i + hx

p

j+q|E| − hτij , x
p
i − x

p

j+q|E| + τij ∈
[

0, 1
2

[

(1− h)xp
i + h+ hxj+q|E| − hτij , x

p
i − x

p

j+q|E| + τij ∈
[

1
2
, 1
]

.

for all i ≤ N such that oscillator i receives a pulse at time tp, and

x
p+1
i = x

p
i

for all i ≤ N such that oscillator i does not receive a pulse at time tp

x
p+1
i = x

p

i−|E| (5.7)

for all i ∈ {N + 1, . . . , N |E|+N}.

We can discard the piece-wise structure of system equations (5.7) as we did in the

proof of Theorem 2, if we ensure that the phase vector remains within a sufficiently

small arc, as follows. We know that if the following condition:

0N ≤ xp ≤

(

1

2
− τmax

)

1N (5.8)

is satisfied at time tp, then the system equation is

x
p+1
i ≥ (1− h)xp

i − hτmax. (5.9)

if i receives a pulse at time tp, and xi remains unchanged if i does not receive a

pulse at tp. However, depending on τmax, the arc length may have increased at tp,
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and condition (5.8) may be violated at tp+1. Therefore, in order to apply the above

equation recursively v times, we must further restrict the arc of phases at ty, such that

even after a duration v, the increase in the the arc length does not cause condition

(5.8) to be violated at ty+v.

We know from Theorem 1 (iii) that in a duration of length v, an oscillator can

receive at most M (v) pulses. This implies that if the following condition is satisfied

at time ty:
(

1

(1− h)M(v)
− 1

)

τmax1N ≤ xp ≤

(

1

2
− τmax

)

1N , (5.10)

then equation (5.9) can be applied recursively M (v) times to yield the following

inequality:

xy+v ≥ (1− h)M(v)xy −
(

1− (1− h)M(v)
)

τmax1N

≥ 0, (5.11)

which means that the condition (5.8) is satisfied at ty+1, . . . , ty+v as well. Then the

piece-wise form of (5.7) can be discarded and the discrete dynamics can be rewritten

for p ∈ {y, . . . , y + v} as an affine function in x. In order to do this, we now introduce

the modified reception digraph (MRD), whose the adjacency matrix is Ãp.

At time tp, we define the modified reception digraph G̃p. The N |E|+N vertices

of G̃p are defined as follows: for every node k in Gp, define |E| + 1 nodes in G̃p:

k, k1−, k2−, . . . , k|E|−. The node k will be sometimes referred to as k0−. The edge set

is given as follows:

• There is an edge weighted 1 from every node kw− to k(w+1)−, w = 0, 1, . . . , |E|−

1.

• If node i has a self-loop in Gp, then node i has a self-loop with the same weight

in G̃p.
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• If there is an edge (i, j) for some i 6= j in Gp, then there is an edge (i, jq−) in G̃p,

where q is the number or receptions that occurred in the duration ]tp − τij , tp[.

An example of an MRD is shown in Figure 5.1. We note that if there is a path

from some node j to a node k in Gp, then there must be a path from node j to

a node k in G̃p. Therefore, since we know there is a globally reachable node in

Gp ∪Gp+1 ∪ . . .∪Gp+δ−1 from Theorem 1(ii), there must be a globally reachable node

in G̃p ∪ G̃p+1 ∪ . . . ∪ G̃p+δ−1 as well.

The added nodes store the old states, such that node kw− has the state φ̃k (tp−w),

where w ∈ {0, 1, . . . , |E|}. Let the adjacency matrix of G̃p be Ãp. Then equation

(5.7) can be rewritten as follows if condition (5.10) is satisfied:

xp+1 = Ãp x
p + B̃p h τp for p ∈ {1, . . . , m}, (5.12)

where B̃p ∈ R
N |E|+N has −1 in the ith position and zeros elsewhere, and τp is the

sum of τij over all j such that oscillator i receives a pulse from oscillator j at tp.

Global Reachability Over Time in the Modified Reception Digraphs

Equation (5.12) is a time-varying distributed averaging algorithm that satisfies

the following conditions:

• The adjacency matrices of the MRD are row-stochastic.

• Every element of the adjacency matrix of the MRD belongs to the set {0, h, 1− h, 1}.

• There exists a number δ ≤ δmax such that the union of any δ successive MRDs

has a globally reachable node.

We use a method similar to that in the proof of Theorem 2 to show that above

three conditions are sufficient for the arc length Varc-length

(

φ̃
)

to converge exponen-

tially. First we show that the globally reachable node r of G, is reachable from
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any node of the MRD over the sequence of ∆̃ := b (δ + |E|) successive MRDs, in

the following sense: for every k ∈ {1, . . . , N}, there exists a sequence of nodes

{k, i1, i2, . . . , i∆−1, r} such that (k, i1) is an edge of G̃p, (iw, iw+1) is an edge in G̃p+w,

w = 1, . . . ,∆− 1 and {i∆−1, r} is an edge in G̃p+∆.

Suppose (i, j) is an edge in G. From Theorem 1 (ii), the edge (i, j) must appear

in at least one digraph in the sequence Gp,Gp+1, . . . ,Gp+δ−1. Suppose the edge exists

in Gp+w, where 0 ≤ w ≤ δ. From the definition of MRD, (i, jq−) must be an edge

in G̃p+w for some q ≤ |E|. Then, node j is reachable from i over the duration

{p, p+ |E|+ δ − 1}, since the following sequence of δ + |E|+ 1 nodes exists:

{

i, . . . , i,
w times

jq−, j(q−1)−, . . . , j1−, j, . . . , j
δ−w+1+|E|−q times

}

,

such that:

• the edges (i, i) exists in the digraphs G̃p, G̃p+1, . . . , G̃p+w−1 (since there are self-

loops on every node of the MRD that is also a node in the reception digraphs),

• the edge (i, jq−) exists in G̃p+w by our assumption,

• the edges (jq−, j(q−1)−), (j(q−1)−, j(q−2)−), . . ., (j(1−, j) exist in G̃p+w+1, . . . , G̃p+w+q+1

respectively (since these edges exist in every MRD), and

• the edges (j, j) exist in the digraphs G̃p+w+q+2, . . . , G̃p+δ+|E|, (since there are self-

loops on every node of the MRD that is also a node in the reception digraphs).

Therefore if (i, j) is an edge in G, then node i is reachable from j over every

duration of length δ + |E| or greater, in the sequence of MRD. We observe from

Theorem 1(iii) that at most
(

1 + |E|
δ

)

(δ − |E|+ dmax) edges in the above sequence

are weighted less than 1 (these edges are associated with pulses received by i or j),

and that at most one edge in the above sequence is weighted h (the edge from i to

j if they are distinct).
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Since there is a path of b edges from every node k to r in G from the definitionD.4,

we can construct a sequence of b (δ + |E|)+ 1 nodes starting with k and ending with

r, over every sequence of b (δ + |E|) successive MRDs, by concatenating a sequence

like the one described above for each edge of the path (and discarding the repeated

node at the point of concatenation). Hence the node r is reachable from every node

k over a every sequence of b (δ + |E|) = ∆ successive MRDs. We note that at most

b
(

1 + |E|
δ

)

(δ−|E|+ dmax) edges in the above sequence are weighted less than 1, and

that at most b edges in the sequence of edges to reach r are weighted h.

We use the property of global reachability of r in the MRD to analyze the linear

time-varying system of the PCO network.

Exponential Convergence of the Arc Length in the Presence of Delays

Assume y = m∆̃ and v = ∆̃. Then, equation (5.10) implies that the system

dynamics is given by applying equation (5.12) ∆̃ times recursively, since l01N ≤

xy ≤
(

1
2
− τmax

)

1N from our choice of coordinate system, where:

l0 =

(

1

(1− h)M(∆̃)
− 1

)

τmax.

Let Ã denote the product Ãm∆+∆−1Ãm∆+∆−2 . . . Ãm∆. Applying equation (5.12)

recursively ∆̃ times to calculate xm∆̃+∆̃ from x∆̃ yields:

xm∆̃+∆̃ =Ãm∆̃+∆̃−1Ãm∆̃+∆̃−2 . . . Ãm∆̃+1 x
m∆̃+1 + Xm∆̃+∆̃

=Ãxm∆̃+1 + Xm∆̃+∆̃, (5.13)

where Xm∆̃+∆̃ is the solution to the linear system (5.12) for xm∆̃+∆̃ with xm∆̃ = 0

as the initial condition.

We note that since Ã is a product of row-stochastic matrices, Ã is row-stochastic
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[2]. Using reasoning identical to that in the proof of Theorem 2, we conclude that:

Ãkr ≥ η̃ := min {h, 1− h}b (1− h)b(3(δ−|E|+dmax)−1) for all k ∈ {1, . . . , N}.

and therefore:

max
(

Ãxm∆̃
)

≤ η̃ xm∆̃ + (1− η̃)max
(

xm∆̃
)

(5.14)

and:

min
(

Ãxm∆̃
)

≥ η̃ xm∆̃ + (1− η̃)min
(

xm∆̃
)

. (5.15)

From the definition of B̃p, we see that all the disturbance terms in equation (5.12)

are negative. Therefore:

max
(

Xm∆̃+∆̃
)

≤ 0. (5.16)

From equation (5.11), substituting y = m∆̃ and v = ∆̃, we obtain the following

inequality:

min
(

Xm∆̃+∆̃
)

≥ −
(

1− (1− h)M(∆̃)
)

τmax. (5.17)

Define V : N → [0, 1[ as V (p) = max(xp) − min(xp). Equations (5.13) to (5.17)

imply the following:

V
(

m∆̃ + ∆̃
)

≤ ã V
(

m∆̃
)

+
(

1− (1− h)M(∆̃)
)

τmax,

=⇒
(

V
(

m∆̃ + ∆̃
)

− Vfinal

)

≤ ã
(

V
(

m∆̃
)

− Vfinal

)

, (5.18)

where ã = 1− η̃ and Vfinal =
1
η̃

(

1− (1− h)M(∆̃)
)

τmax.

Evaluating Vfinal, we see that (A3) implies that Vfinal is less than 1
2
− l0 − τmax.

Since equation (5.18) implies that V
(

m∆̃ + ∆̃
)

is a convex combination of Vfinal and
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V
(

m∆̃
)

which are both less than 1
2
− l0 − τmax, we see that:

V
(

m∆̃ + ∆̃
)

<
1

2
− l0 − τmax. (5.19)

Lastly, since φ (t) ∈ Γ
(

1
2

)

, like in the proof of Theorem 2, the arc length

Varc-length (φ (t)) is simply given by max
(

φ̃ (t)
)

− min
(

φ̃ (t)
)

. Therefore the arc

length satisfies the following inequality: Varc-length

(

˜φ(tp)
)

≤ V (xp), for all p ∈ N,

since xp contains all the elements of φ̃ (tp). Equation (5.19) implies that φ
(

tm∆̃+∆̃

)

∈

Γ
(

1
2
− l0 − τmax

)

.

Induction

All the previous steps of this proof are based on the assumption that the condition

(5.2) is satisfied for y = m∆̃, and we have proved that if so, condition (5.2) is satisfied

for y = m∆̃ + ∆̃. Since condition (5.2) is satisfied at t = 0, (which corresponds to

m = 1) condition (5.2) must be satisfied for all t ≥ 0 by induction. Hence all the

previous steps of this proof are valid for y = m∆̃ for any m ∈ N.
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Figure 5.1: An example of a modified reception digraph G̃p, consistent with the
reception digraph on the left in Figure 2.3, where oscillator 2 receives a pulse
from oscillator 1 at tp, and where two receptions have occurred in the duration
]tp − τ21, tp[.
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6 Examples and Numerical Simulations

PCO Network Examples Four example PCO networks that are not strongly

connected but have a globally reachable node are simulated for randomly generated

delays. The first three examples have a ‘star’ sensing digraph. The fourth example

has an extra node added. The first and fourth examples have no delays and the

second and third have delays. We expect the first and fourth examples to synchronize

exactly, from the results of Section 4. In the second and third examples, we expect

the system to approach synchrony, and the arc length function to converge to a

non-zero value, from the results of Section 5.

Simulation Model The simulation model was written in MATLAB and is in-

cluded in Appendix A. The program first simulates the discrete dynamics. At each

time step, the duration until the next discrete event (reset of any oscillator or recep-

tion of any pulse) is calculated. The state is then updated at the next time step by

accounting for the continuous dynamics over this duration. The state vector consists

of the phases of all the oscillators as well as states associated with pulses that have

been sent but not yet received. The phases are then evaluated between the discrete

events using the continuous dynamics. The arc length function is calculated from

the phases, and plotted in Table 6.1.

Observations We make the following observations on the numerical results:

• The arc length function converges exponentially with the index m not the time

t, so the shape of the time response may not appear exponential.

• For time indices that are not multiples of ∆̃ the arc length function could

remain constant or even increase by a finite amount, as seen in Figure 6.1.

• The final value of the arc length appears to increase with τmax.
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• The arc length function is well within the predicted bounds, in fact, the bounds

are quite weak for the examples. For networks with a larger number of nodes

or a greater value of b (not pictured), the bounds are weaker still.

• Some simulations where the assumption (A3) was violated also converged to

the predicted value, indicating that this assumption may be unnecessarily con-

servative.
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Table 6.1: Example simulation results. All the simulations use h = .06.
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Figure 6.1: A magnification of the graph in Table 6.1 for example 2.
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7 Conclusion

Remarks We developed a simple model to analyze PCO networks with mixed

excitatory/inhibitory coupling in the presence of delays. We proved three theorems.

Theorem 1 established bounds on the the times between firings of a given oscillator,

and the time taken for a pulse to be received along every edge of the sensing digraph.

Theorem 2 showed that if the sensing digraph has a globally reachable node, the pulse

strength is sufficiently small, and no delays are present, then there exists a number

∆ such that the arc length function converges exponentially over every ∆ firings,

for initial phases that are sufficiently close together. Theorem 3 showed that if the

sensing digraph has a globally reachable node, the pulse strength is sufficiently small,

and the delays are sufficiently small, then there exists a number ∆̃ such that the arc

length function converges exponentially over every ∆̃ firings for initial phases that

are sufficiently close together.

We also determined bounds on parameters including ∆, ∆̃, the convergence rate,

final value of arc length and the basin of attraction of the synchronized (or approx-

imately synchronized solution) for a general sensing digraph. However, the method

used in the proofs of the theorems may be repeated with specific knowledge of the

sensing digraph for better bounds on the parameters.

In the analysis, we made the simplifying assumptions of equal pulse strengths on

all edges, constant pulse strengths and constant delays. We estimated the rate of

convergence and the basin of attraction of the solution. Numerical simulations bore

out the analytical results qualitatively and quantitatively; however the quantitative

bounds were weak. Also, convergence occurred even when the assumption (A3) was

violated, which suggests that the assumption may be unnecessarily conservative.

Future Work Future work may attempt to find tighter bounds on the rate of

convergence, the final value of the arc length function, and the basin of attraction.
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Also, the model with constant pulse strength may be used as an approximation

for PCO network systems where the coupling is nonlinear, that is, the phase jump

depends nonlinearly on the phases. Also, the model may be extended to time-

dependent delays. The applicability of the model to sensing digraphs that are not

necessarily strongly connected but that instead satisfy the weaker condition of having

a globally reachable node may enable improvements in technological applications,

such as enabling clock synchronization in sensing and robotic networks to have weaker

requirements on communication.
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Appendix A: Simulation Program

The MATLAB program used to simulate the examples described in Section 6 is

given below. It consists of the scripts setup.m and run sim.m, and the functions

PCO model.m, reception.m, M.m and Varclength.m (setup.m is to be run first).

Script setup.m:

1 %de f i n e sys params :

2 g l oba l nnodes speeds inc idence mat r i x t o l h de l t a nedges

Tmax Tmin dmax

3 nnodes = 5 ; %number o f nodes

4 t o l = 2∗ eps ;

5 h = 6e−2;

6

7 nruns = 5000 ; %length o f s imu la t i on i s t i l l nruns d i s c r e t e

events

8 speed fa c = 5e3 ; %magnitude o f r e c i p r o c a l o f randomly

generated de l ays .

9 %se t to 5e14 to s imulate no−delay case .

10 s p e edd i f f = 5e−1; %va r i a t i on in the r e c i p r o c a l s o f the

de l ays

11 yesde lay = 1 ; %1 i f de l ays are pr e sen t . I f yesde lay == 0 ,

s e t speed fa c to 5e14

12

13

14 % generate the t ranspose o f the binary adjacency matrix o f

the

15 % sens ing digraph ( exc lud ing s e l f −l o ops ) :
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16

17 % % undirected r ing graph

18 % Atransp= zero s ( nnodes ) ;

19 % Atransp (1 , 2 ) = 1 ; Atransp (1 , end )=1;

20 % Atransp ( end , nnodes−1) = 1 ; Atransp ( end , 1 ) =1;

21 % fo r i i = 2 : nnodes−1;

22 % Atransp ( i i , i i −1: i i +1) = [ 1 0 1 ] ;

23 % end

24 % b = f l o o r ( nnodes /2) ;

25

26 % % Or ,

27 % % di r e c t ed r ing graph

28 % Atransp = zero s ( nnodes ) ;

29 % Atransp (1 , 2 ) = 1 ; %Atransp (1 , end )=1;

30 % Atransp ( end , 1 ) =1;

31 % fo r i i = 2 : nnodes−1;

32 % Atransp ( i i , i i −1: i i +1) = [ 0 0 1 ] ;

33 % end

34 % b = nnodes−1;

35

36 % % Or ,

37 % % undirected l i n e graph

38 % Atransp= zero s ( nnodes ) ;

39 % Atransp (1 , 2 ) = 1 ;

40 % Atransp ( end , nnodes−1) = 1 ;

41 % fo r i i = 2 : nnodes−1;

42 % Atransp ( i i , i i −1: i i +1) = [ 1 0 1 ] ;
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43 % end

44 % b = f l o o r ( nnodes /2) ;

45

46

47 % Or ,

48 % di r e c t ed l i n e graph

49 % Atransp= diag ( ones ( nnodes −1 ,1) ,1 ) ;

50 % b = nnodes − 1 ;

51

52 % % Or ,

53 % % a t r e e example

54 % nnodes = 5 ;

55 % Atransp = zero s ( nnodes ) ;

56 % Atransp (1 , 2 ) = 1 ; Atransp (1 , 3 ) = 1 ;

57 % Atransp (2 , 4 ) = 1 ; Atransp (4 , 5 ) = 1 ;

58 % b = 3 ;

59

60 % Or ,

61 % a s t a r example

62 nnodes = 5 ;

63 Atransp = zero s ( nnodes ) ;

64 Atransp ( 1 , 2 : end ) = ones ( nnodes −1 ,1) ;

65 b=1;

66

67 run sim
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Script run sim.m:

1 %ca l c u l a t e # edges and PCO network params :

2 nedges = sum(sum( Atransp ) ) ; %number o f edges

3 speeds = [ ones ( nnodes , 1 ) ; speed f a c∗(1+ sp e edd i f f ∗ rand ( nedges

, 1 ) ) ] ;

4 taumax = max(1 . / speeds ( nnodes+1:end ) ) ;

5

6 %bui ld inc idence mat r i x :

7 i n c idence mat r i x = zero s ( nnodes , nedges ) ;

8 counter =1;

9 f o r i i = 1 : nnodes

10 f o r j j = 1 : nnodes

11 i f Atransp ( i i , j j )==1

12 i n c idence mat r i x ( i i , counter )=1;

13 i n c idence mat r i x ( j j , counter )=−1;

14 counter=counter +1;

15 end

16 end

17 end

18

19 %ca l c u l a t e qu an t i t i e s o f i n t e r e s t

20 dmax = max(sum(Atransp , 1 ) ) ;

21 Tmax = 1/2 + 1/(1−h∗dmax)

22 Tmin = 1/2 ;

23 deltamax = 1+(nedges−1)∗ c e i l (Tmax/Tmin) ;

24 de l t a = deltamax ;

25 Delta = b∗( d e l t a + yesde lay ∗nedges ) ;
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26 MDelta = M( Delta ) ;

27 eta = min ( [ h 1−h ] ) ˆb∗(1−h) ˆ(b∗(3∗( d e l t a + dmax −nedges )−1) ) ;

28 a = 1−eta ;

29 assumpt ion3 lhs = taumax/ eta ∗(1−(1−h) ˆMDelta ) + taumax

∗(1−(1−h) ˆMDelta ) ;

30 i f a ssumpt ion3 lhs >= 0.5

31 d i sp l a y ( ’ Error : Assumption 3 v i o l a t ed . ’ )

32 pause ( )

33 return

34 end

35 Vf = taumax/(1−a ) ∗(1 − (1−h) ˆMDelta ) ;

36 l 0 = (1/(1−h) ˆMDelta − 1) ∗taumax ;

37 maxu = (1 − (1−h) ˆMDelta ) ∗taumax ;

38 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

39

40 %se t up s imu la t i on

41 xlen = nnodes + nedges ;

42 x i = [(0 .5− taumax−l 0 ) ∗ rand ( nnodes , 1 ) ; 1 e12∗ ones ( nedges , 1 ) ] ;

43 x i ( 1 ) =.0001;x (2 ) = 1/2− l0−taumax−eps ;

44 xs = zero s ( xlen , nruns ) ;

45 d e l t a t s = zero s (1 , nruns ) ;

46 qs = zero s (1 , nruns ) ;

47

48 %run s imu la t i on :

49 x = xi ;
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50 f o r i i = 1 : nruns

51 [ d e l t a t s ( i i ) xs ( : , i i ) qs ( i i ) ] = PCO model ( x ) ;

52 x = xs ( : , i i ) ;

53 i f max( x ( 1 : nnodes ) )>1

54 return ;

55 end

56

57 i f d e l t a t s ( i i ) < t o l

58 break

59 end

60 end

61 i f i i<nruns

62 xs ( : , i i +1:end ) = [ ] ;

63 qs ( : , i i +1:end ) = [ ] ;

64 d e l t a t s ( : , i i +1:end ) = [ ] ;

65 nruns = i i ;

66 end

67

68 %proce s s output :

69 t s = cumsum( d e l t a t s ) ; %times o f d i s c o n t i n u i t y

70 t t = 0 : 0 . 0 0 5 : t s ( end ) ; %’ continuous ’ time , f o r i n t e r p o l a t i o n

71 t t l e n = length ( t t ) ;

72 phi t = zero s ( nnodes , t t l e n ) ; %phases in ’ continuous ’ time

73 counter = 1 ;

74 phi s = xs ( 1 : nnodes , : ) ;

75

76 phiprev = x i ( 1 : nnodes ) ;
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77 tprev = 0 ;

78 f o r i i = 1 : nruns−1

79 whi l e t t ( counter )<t s ( i i )

80 i f counter>=t t l e n

81 break

82 end

83 phi t ( : , counter ) = phiprev + ( t t ( counter )−tprev ) ∗

speeds ( 1 : nnodes ) ;

84 counter = counter +1;

85 i f counter>=t t l e n

86 break

87 end

88 end

89 tprev = t s ( i i ) ;

90 phiprev = xs ( 1 : nnodes , i i ) ;

91 end

92 t t = [ t t t s ] ; ph i t = [ ph i t xs ( 1 : nnodes , : ) ] ;

93 [ tt , i i s ] = so r t ( t t ) ; ph i t = phi t ( : , i i s ) ;

94

95 Varclengths = zero s (1 , l ength ( t s ) ) ;

96 f o r i i = 1 : l ength ( t s )

97 Varclengths ( i i ) = Varclength ( ph i s ( : , i i ) ) ;

98 end

99

100 Varclengtht = zero s (1 , l ength ( t t ) ) ;

101 f o r i i = 1 : l ength ( t t )

102 Varclengtht ( i i ) = Varclength ( ph i t ( : , i i ) ) ;
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103 end

104

105

106 i i p = f i nd ( qs ( : ) == 1) ;

107 Varclengthp = Varclengths ( i i p ) ;

108 tp = t s ( i i p ) ;

109 VarclengthmDelta = Varclengthp ( 1 : nnodes : end ) ;

110 tmDelta = tp ( 1 : nnodes : end ) ;

111

112 VmDelta = zero s (1 , l ength ( tmDelta ) ) ;

113 f o r i i = 1 : l ength ( tmDelta )

114 VmDelta ( i i ) = Vf + ( Varclengtht (1 )−Vf ) ∗aˆ( i i −1) ;

115 end

116

117 f i g u r e

118 p lo t ( tt , Varc lengtht , ’ g− ’ , tt , Vf+0∗tt , ’ k− ’ )

119 hold on

120 p lo t ( tmDelta , VarclengthmDelta , ’k− ’ , ’ l i n ew id th ’ ,2 )

121 p lo t ( tmDelta , VmDelta , ’ k−− ’ )

122 x l ab e l ( ’ t ’ )

123 y l ab e l ( ’V {max−min} ’ )

124 l egend ( ’ arc l ength ’ , ’ arc l ength at sample t imes ’ , ’V { f i n a l } ’

, ’ exponent i a l f unc t i on ’ )

Function PCO model.m:

1 f unc t i on [ de l t a t , ynew , q ] = PCO model ( yo ld )

2 g l oba l nnodes speeds inc idence mat r i x t o l

50



3 %column o f inc idence mat r i x cor responds to an edge

4 %Eps i s a vec to r o f l ength = # edges

5 % phio ld = xold ( 1 : nnodes ) ;

6 % etao ld = xold ( nnodes+1:end )

7

8 %f ind out when and what happens

9 d e l t a t s = (1−yold ) . / speeds ;

10 temp2 = f i nd ( d e l t a t s ( : ) >0) ;

11 d e l t a t = min ( d e l t a t s ( temp2) ) ;

12 i i s = f i nd ( ( d e l t a t s ( temp2 ( : ) )−d e l t a t )<t o l ) ;

13 i i s = temp2( i i s ) ;

14 i f isempty ( d e l t a t )

15 d e l t a t = 0 ;

16 i i s = f i nd ( d e l t a t s ( : ) ==0) ;

17 end

18 % i i = i i s ( temp2) ;

19

20

21 %f i r s t apply the d r i f t

22 ynew = yold + speeds ∗ d e l t a t ;

23

24 f o r j j = 1 : l ength ( i i s )

25 i i = i i s ( j j ) ;

26 i f i i<=nnodes

27 q = 1 ; %f i r e

28 e l s e

29 q = 0 ; %r e c e i v e
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30 i i = i i − nnodes ;

31 end

32

33 %then apply d i s cont inuous part ( f i r i n g or r e c e i v i n g )

34 i f q==1 %f i r e

35 temp = inc idence mat r i x ( i i , : ) ’ ; %row corresponding

to f i r i n g node

36 temp = heav i s i d e ( temp ) .∗ temp ; %1 ’ s where p o s i t i v e

37 %se t e lements o f eta cor responding to the

38 %ones in temp to 0 , l eave o the r s unchanged

39 ynew = ynew − [ z e r o s ( nnodes , 1 ) ; temp ] . ∗ ynew ;

40 ynew( i i ) = 0 ; %f i r e d hence r e s e t s

41 e l s e %r e c e i v e

42 temp = inc idence mat r i x ( : , i i ) ; %co l . co r responding

to r e c e i v ed edge

43 temp = −heav i s i d e (−temp ) .∗ temp ; %1 ’ s where nega t i ve

44 %update e lements o f phi cor responding to −1 with

jump funct i on

45 ynew ( 1 : nnodes ) = r e c ep t i on (ynew ( 1 : nnodes ) , temp ) ;

46 ynew( nnodes+ i i )=1; %j u s t rece ived , ensure exac t l y 1

47 end

48 end

Function reception.m:

1 f unc t i on ynew = rec ep t i on (y , pu l s evec )

2 g l oba l h

3 ynew = y + h∗( h eav i s i d e (y−1/2) − y) .∗ pu l s evec ;
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4 end

Function M.m:

1 f unc t i on y = M( xin )

2 g l oba l d e l t a nedges dmax

3 y = f l o o r ( xin / de l t a ) ∗( de l ta−nedges+dmax) + min ( [mod( xin ,

d e l t a ) ( de l ta−nedges+dmax) ] ) ;

4 end

Function Varclength.m:

1 f unc t i on Vout = Varclength ( phi )

2 %Since we w i l l chose phi to remain within an arc o f l ength

ha l f , the arc

3 %length funct i on i s the maximum pair−wise geodes i c d i s t ance .

4 n = length ( phi ) ;

5 pa i rw i s e d i s t a n c e s = zero s (n , n ) ;

6 f o r i i = 1 : n

7 f o r j j = 1 : n−1

8 pa i rw i s e d i s t a n c e s ( i i , j j ) = min ( abs ( phi ( i i )−phi ( j j

) ) ,1−abs ( phi ( i i )−phi ( j j ) ) ) ;

9 end

10 end

11

12 Vout = max(max( p a i rw i s e d i s t a n c e s ) ) ;
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