
Noise-Driven Excursions from Consensus:

A Theoretical Review and Simulation for Simple

Graphs with Common Edge Weights

Axel Haaker
Department of Mechanical Engineering

University of California at Santa Barbara
Adviser: Prof. Francesco Bullo

December 9, 2016

Abstract

In this report, a review of fundamental results from Markov theory
is provided to motivate the discussion of a linear averaging process, the
consensus iteration. The consensus iteration, ubiquitous in distributed
control algorithms, is introduced and its behavior is analyzed using graph
theory and several key theorems for ergodic Markov chains. In particu-
lar, necessary and sufficient conditions for convergence to consensus are
provided. Noise is later added to the iteration, and it is shown that
the convergence property is destroyed as the additive noise continually
drives excursions from consensus. The size of the individual deviations
from consensus tend to meander about zero, but converge in the mean-
square sense. A theorem, from [Xiao et al., 2007], relating the limit of
the mean-square deviation from consensus to the spectrum of a symmet-
ric transition matrix for the noiseless iteration is reproduced here along
with its proof, which is drawn out in detail. A generalization of this theo-
rem due to [Jadbabaie and Olshevsky, 2015], is provided in the following
section. The mean-square deviation, or disagreement, is computed for a
set of simple graphs and common edge weights, together forming a set of
reversible matrices. The MATLAB code used to run the simulations is
included in the appendices, and may be of some use to others interested
in Markov chains, graph theory, and consensus protocols.

Contents

1 Elements of probability theory and statistics 3
1.1 Basic probability theorems . 3
1.2 Statistics . 4

2 Markov chains 5
2.1 Basic definitions . 5
2.2 Absorbing Markov chains . 8
2.3 Regular Markov chains . 9
2.4 Mean first passage time . 13

3 Consensus iteration 15
3.1 Noiseless iteration . 16
3.2 Noisy iteration . 18

4 Limiting disagreement 20
4.1 Symmetric transitions . 21
4.2 Reversible transitions . 27

5 Interpretation: Opinion dynamics 30
5.1 The standard DeGroot model . 30
5.2 The noisy DeGroot model . 33

6 Sample influence networks 33
6.1 Graphs . 34

6.1.1 The complete graph . 34
6.1.2 The circle graph . 34
6.1.3 The line graph . 35
6.1.4 The star graph . 35
6.1.5 The two-star graph . 36
6.1.6 The lollipop graph . 36
6.1.7 The starry line graph . 36
6.1.8 Two-dimensional grid . 36

6.2 Edge weights . 37
6.2.1 Equal-neighbor . 37
6.2.2 Metropolis-Hastings . 38
6.2.3 Jadbabaie & Olshevsky eqs. 33, 34 38
6.2.4 Random . 39

7 Simulation 39
7.1 Execution . 40
7.2 Commentary . 41

References 46

1

A Network Generation Functions 47
A.1 Making an adjacency matrix . 47

A.1.1 The complete graph . 48
A.1.2 The circle graph . 48
A.1.3 The line graph . 49
A.1.4 The star graph . 49
A.1.5 The two-star graph . 50
A.1.6 The lollipop graph . 51
A.1.7 The starry line graph . 52
A.1.8 The two-dimensional grid graph 52

B Transition matrix operations 53
B.1 Conversion to update matrix . 53

B.1.1 Equal neighbor weights 55
B.1.2 Random weights . 55
B.1.3 Metropolis-Hastings weights 56
B.1.4 Jadbabaie & Olshevsky eqs. 33, 34 56
B.1.5 Enforcing bistochasticity 57
B.1.6 Enforcing symmetry . 58

B.2 Hitting times . 59

C Consensus protocols 60
C.1 Consensus iteration . 60
C.2 Noisy consensus iteration . 62

D Limiting Disagreement 64
D.1 Disagreement . 64
D.2 Limiting Disagreement . 65

D.2.1 Symmetric transitions . 65
D.2.2 Reversible transitions . 66

2

Introduction

A popular problem in dynamical systems and control is that of developing an al-
gorithm that allows a set of devices to synchronize themselves, i.e., reach consen-
sus, with respect to some measured quantity. In application, limits imposed on
system specifications such as power consumption, computational power, mem-
ory, etc. limit the amount of, and speed at which, any single device can receive,
process, and transmit data. In effect, this restricts a device’s awareness of the
system as a whole, the sphere of influence of the device, the time it takes for
information to diffuse throughout the system, and whether or not each device
executes the same number of measurement updates in a given time period.

In that many of these problems have roots in consensus formation [Jadbabaie
and Olshevsky, 2015], it is unsurprising that the consensus iteration plays a
central role in many of them. In most early models, the iteration was assumed
noiseless, and the analysis was greatly simplified. In reality, measurements are
always subject to a degree of error, and so it is important to understand the
behavior of the consensus iteration in the presence of additive noise.

It is assumed that the reader has a background in matrix analysis, lin-
ear systems, network analysis, and has had an introduction to probability and
statistics at some point. With these assumptions, it will be relatively simple
to understand the following introduction to Markov chains, the main result of
[Jadbabaie and Olshevsky, 2015], DeGroot processes subject to noise, and the
implementation of these items.

1 Elements of probability theory and statistics

The reader is assumed to have some familiarity with probability theory and
statistics, so no attempt will be made to introduce or prove the following basic
results and principles, taken from [Montgomery and Runger, 2007]. Rather,
this section will simply serve as a corral for concepts employed throughout the
rest of the paper. For further details, see [Montgomery and Runger, 2007], or
[Grinstead and Snell, 2006].

1.1 Basic probability theorems

For a discrete sample space, the probability of an event E, denoted as P(E),
equals the sum of the probabilities of the outcomes in E.

For two events A and B, the probability of the joint event A ∪ B is given
by P(A ∪B) = P(A) + P(B)− P(A ∩B). If the events are mutually exclusive,
then A ∪B = ∅ and P(A ∩B) = 0. This can be easily generalized to unions of
greater than two events.

The conditional probability of an event B given an event A, denoted as
P(B|A), is given by

P(B|A) =
P(A ∩B)

P(A)
,

3

for P(A) > 0. Reversing the roles of A and B in this equation, and solving
each for P(A ∩ B) gives what is often referred to as the multiplication rule for
probabilities:

P(A ∩B) = P(B|A)P(A) = P(A|B)P(B).

1.2 Statistics

Definition 1.1. A random variable is a real-valued function whose range is the
sample space of a random experiment. If additionally, the range of the function
is finite, or countably infinite, then it is said to be a discrete random variable
[Montgomery and Runger, 2007].

For a discrete random variable, X, the probability distribution of X is a
description of the probability of each possible value of X.

Definition 1.2. For a discrete random variable X with possible values x1, x2,
. . . , xn, a probability mass function is a function such that

(i) f(xi) ≥ 0 ∀i

(ii)
∑n

i=1 f(xi) = 1

(iii) f(xi) = P(X = xi) ∀i

Definition 1.3. The mean or expected value of a discrete random variable X,
denoted by µ or E (X), is

µ = E (X) =
∑
x

xf(x).

Theorem 1.1. Let c be an arbitrary constant, and let X and Y be discrete
random variables. The expected value function has the following properties:

(i) (Expected value of a constant) E c = c

(ii) (Monotonicity) If X ≤ Y almost surely, then EX ≤ EY

(iii) (Linearity) E (X + cY) = EX + cEY

Definition 1.4. The variance of X, denoted by σ2 or Var (X), is

σ2 = Var (X) = E (X − µ)2 =
∑
x

(x− µ)2f(x) =
∑
x

x2f(x)− µ2.

The standard deviation of X is σ =
√
σ2.

Theorem 1.2. Let c be an arbitrary constant, and let X and Y be discrete
random variables. The variance function has the following properties:

(i) (Nonnegativity) VarX ≥ 0

(ii) (Variance of a constant) Var (c) = 0

4

(iii) (Variance of a constant factor) Var (cX) = c2VarX

(iv) (Variance of a linear combination)

Var (aX + bY) = a2Var (X) + 2abCov(X,Y) + b2Var (Y)

(v) (Variance of sum of uncorrelated random variables)

Var (X + Y) = Var (X) + Var (Y)

2 Markov chains

In order to understand how to bound the limiting disagreement in a discrete
linear averaging algorithm subject to random noise, it is necessary to first look
at how noise alone is propagated by such an algorithm. To accomplish this, it
will be useful to review some useful concepts from probability theory, introduce
Markov chains, and finally derive bounds for a simple case.

A major focus of classical probability theory, independent trials processes are
useful for describing many common phenomena. Indeed, the discrete uniform
distribution is useful for predicting the outcome of a fair die roll, the binomial
distribution is useful for describing the outcome of successive binary outcome
trials, the geometric distribution is good for describing the number of binary
outcome trials necessary for a particular outcome to occur, etc. [Montgomery
and Runger, 2007].

In many instances, it is reasonable to assume that a system or process is
memoryless, i.e., that previous states have no effect on the outcome, but there
are cases in which this strong assumption must be dropped. Indeed, consider
R. A. Howard’s classic example of a frog sitting on one of several lily pads in a
pond. At any time, it may choose to move to an adjacent pad, or stay put, and
each possibility has an associated probability. Clearly, in order to describe the
process, one must include the current state when considering the next state.

In 1907, the Russian mathematician Andrei Andreyevich Markov began de-
veloping a tool for just such a probabilistic process. This type of process would
later be named in his honor. Today, Markov chains are used in a wide variety of
fields. Examples include modeling population processes in biology, generating
sequences of random numbers from complex probability distributions, ranking
search results for search engines, and quantifying the entropy of systems in
information theory [Wikipedia, 2016].

2.1 Basic definitions

A Markov process describes the evolution of a system or process as a function
of its previous states, in the presence of some randomness. In this way, Markov
processes are similar in form to the equations of classical mechanics. That is,
the state of a system at some point in the future is a function of the current
state of the system. How the system came to be in its current state has no

5

bearing on the future state. Take as an example the trajectory of a thrown
ball. Knowledge of the position and velocity of the ball at a single point in
time gives the position and velocity at any other point in time. On the other
hand, knowledge of just the position or velocity of the ball at some point, is not
enough to determine the position or velocity at another point in time. From
this example, it is clear that defining the state of the system as the position
and velocity is an appropriate choice, whereas defining it as solely the position
or velocity is not. It turns out that by carefully defining the state, nearly any
random process can be described as a Markov process [Tsitsiklis, 2010].

A discrete-time, finite-state Markov chain is defined as a process that starts
at some initial state si from a set of possible states S = {s1, s2, . . . , sr} and
transitions to other states with some probability denoted by pij , where sj is the
state at the next step. The fact that the next state of the system depends on
the current state means that pij is a conditional probability, i.e., the probability

of transitioning from si to sj at step n is p
(n)
ij = P(sn = sj |sn−1 = si).

As the notation suggests, it is useful to present the set of transition prob-
abilities in matrix form. This matrix is referred to as the matrix of transition
probabilities, or simply as the transition matrix. The following theorem, taken
directly from [Grinstead and Snell, 2006], illustrates an interesting property of
the transition matrix, and gives a way the compute the n-step transition prob-
ability.

Theorem 2.1. Let P be the transition matrix of a Markov chain. The ijth

entry p
(n)
ij of P n gives the probability that the Markov chain, starting in state

si, will be in state sj after n steps.

Proof. Consider the illustrative example in which there are r = 2 states, and
transition matrix P = [p11 p22

p21 p22]. This system is illustrated in the state diagram
provided in Figure 1.

1 2

p12

p21

p11
p22

Figure 1: State diagram for a general 2-state Markov chain.

Without loss of generality, consider the transition from state s1 to state s2.
The 1-step transition probability from s1 to s2 is p12. The 2-step transition
probability is the sum of the probabilities of all the ways to get from state s1
to state s2 in two steps. The probability of each route is computed using the
multiplication rule for probabilities. With this,

p
(2)
12 = p11p12 + p12p22 =

2∑
k=1

p1kpk2 = [P 2]12

The 3-step transition probability is computed in the same fashion; the only

6

difference is the increased number of routes.

p
(3)
12 = p11p11p12 + p11p12p22 + p12p22p22 + p12p21p12

= p11(p11p12 + p12p22) + p12(p21p12 + p22p22)

=

2∑
k=1

p1k

(
2∑

`=1

pk`p`2

)

=

2∑
k=1

p1kp
(2)
k2

= [P 3]12.

It is clear from these computations that if the process is continued for more
steps, the formula will continue to hold. Moreover, additional states can be
added, the only difference being an increased number of routes to consider.

With a simple way to compute the n-step transition probability, it is natural
to ask what the probability of being in each state after n-steps is, if the process
starts in a known state. More generally, what can be said about the state after n
steps if, rather than an initial state, an initial probability distribution is known.
That is, what is the probability of it being at sj after n steps, if initially it has
some probability ui of being at each state si ∈ S? The following theorem, taken
directly from [Grinstead and Snell, 2006], answers this question.

Theorem 2.2. Let P be the transition matrix of a Markov chain, and let u> =
u>(0) be the probability vector representing the starting distribution. Then the
probability that the chain is in state si after n steps is the ith entry in the vector

u>(n) = u>P n.

Proof. Let ei represent the column vector of all zeros, and ith entry equal to
one. Expand the product to obtain

u>(n) = u>P n =
[
u>P ne1 u>P ne2 · · · u>P ner

]
.

The ith entry of u>(n) is

u>P nei =

r∑
k=1

uk︸︷︷︸
P(s1 = sk)

P n
ki︸︷︷︸

n-step
transition
probability

from sk to si

.

For initial state sj , the probability that the chain will reach state si in n steps is
the product of the probability of it starting in state sk, uk, and the n-step tran-

sition probability, p
(n)
ki (= P n

ki). Summing each probability gives the probability
that the chain will reach state si in n steps from any starting state. Hence,
the ith element of u>P n is the probability that the chain is in state si after n
steps.

7

Armed with this theorem, it is natural to wonder what the long-term be-
havior of the process is. In short, the answer to this question depends on the
chain in question, and in particular on the types of states in the chain. A state
in which the probability of departure is zero is known as an absorbing state. A
state is said to be recurrent if, starting at that state, it will eventually return
to that state. A state that is not absorbing is transient, and a set of transient
states forms a transient class. A Markov chain with one or more absorbing states
is called an absorbing Markov chain, whereas one with no absorbing states is
referred to as an ergodic, or irreducible, Markov chain [Grinstead and Snell,
2006].

2.2 Absorbing Markov chains

Every state in a chain can be classified as either transient or absorbing. Since
the two states have fundamentally different behavior in terms of what effect
they have on future states of the chain, it makes sense to consider the chain
as a collection of transient states that interact with a collection of absorbing
states. The easiest way to analyze the network in this fashion is by rewriting
the transition matrix P in canonical form. The definition of the canonical form,
taken directly from [Grinstead and Snell, 2006], is provided below.

Definition 2.1. Consider a general Markov chain with transition matrix P ,
r absorbing states, and t transient states. Renumbering the states so that the
transient states come before the absorbing states, the matrix P can be written
in the following block form

P =

[
Q R
0 I

]
,

where Q ∈ Rt×t, R ∈ Rt×r, and the identity matrix I is r × r.

With the transition matrix in canonical form, it is easy to see that

P n =

[
Qn ∗
0 I

]
,

where Qn is simply the n-step transition matrix within the set of transient
states, ∗ is the n-step transition matrix from the set of transient states to the
set of absorbing states, and I is the n-step transition matrix from the set of
absorbing states to itself [Grinstead and Snell, 2006].

For any initial state in an absorbing chain, the chain will eventually reach
an absorbing state, where it will remain for all further steps. Knowing this, it
is natural to wonder how many transient states the chain will visit before being
absorbed. As one would expect, it is generally not possible to predict precisely
how many transient states will be visited, but it is possible to give the expected
value of this quantity. The following definition, taken directly from [Grinstead
and Snell, 2006] provides a means for such a prediction.

8

Theorem 2.3. For an absorbing Markov chain P , the matrix N = (I −Q)−1

is called the fundamental matrix for P . The entry nij of N gives the expected
number of times that the process is in the transient state sj if it is started in the
transient state si.

Proof. A proof is provided in [Grinstead and Snell, 2006].

In a similar vein, one might wonder how many steps must be taken before
the chain is absorbed. The following theorem, taken directly from [Grinstead
and Snell, 2006], answers this question.

Theorem 2.4. Let a chain start in state si, and let ti be the expected number of
steps before the chain is absorbed. Let t be the column vector whose ith element
is ti. Then

t = N1,

where 1 is the column vector with all unit entries.

Proof. From Theorem 2.3, nij is the expected number of times the chain is in
state sj if it started in si. A chain may only visit transient states before absorp-
tion, never after, so the number of times any transient state is visited before
absorption is equal to the number of time steps to absorption. Mathematically,

ti =

t∑
j=1

nij = e>i N1.

Hence, t = N1.

An important fact to note about this theorem is that it can actually be used
to compute the expected number of steps between any two states. This time
is commonly referred to as the mean first passage time, or hitting time, from
the initial state to the terminus. To do this, one prescribes the initial state si,
the terminal state sj , and modifies the transition matrix Q so that all outgoing
probabilities from sj are zero, except pjj , which is one. This modification makes
sj an absorbing state, and ti the expected time to absorption for the modified
chain, or mean first passage time for the original chain. An equivalent means of
carrying out this computation is provided in Section 2.4.

2.3 Regular Markov chains

In an absorbing Markov chain with a single absorbing state, the chain will reach
this state and remain there for all time. If there is more than one absorbing
state, then the initial condition of the chain will have a role in determining the
long-term state of the chain. In such a case, it is generally not possible to tell
precisely where the state will be after a large number of steps, but a probabilistic
description may be possible. That is, limn→∞ u

>(n) may exist. A similar result
holds for a certain type of ergodic chain, the regular Markov chain.

9

Definition 2.2. A Markov chain with a primitive transition matrix P is called
a regular Markov chain [Grinstead and Snell, 2006].

Before continuing with the discussion of the convergence of the n-step transi-
tion matrix a brief review of primitive matrices and their properties is provided
to ease the proof of the theorems.

First, the most common definition of a primitive matrix is given below.

Definition 2.3. A matrix P is called primitive if there exists a positive integer
k such that P k > 0 (each element of P k is positive).

This definition, while well-posed and concise, does not provide an efficient means
for testing whether a given transition matrix is primitive. The following theorem
addresses this deficiency by connecting the notion of primitivity to simple graph
theoretical properties, thereby allowing one to recognize a primitive transition
matrix by briefly inspecting the associated state diagram (see, e.g., Figure 1)
for the chain.

Theorem 2.5. A non-negative matrix P is primitive if and only if it is irre-
ducible and aperiodic.

Proof. P is aperiodic, so at least one state has a self-loop, say state s`. P
is irreducible, so its associated graph, G, is strongly connected [Bullo, 2016].
Therefore, there exists a directed path between every pair of states in G. The
number of directed paths of length k from state si to sj is the (i, j) entry of Ak,
where A is the binary adjacency matrix associated to G [Bullo, 2016].

Now suppose there exists a directed path of length L starting at any state
si, containing s`, and terminating at any state j. Then paths of length L + 1,
L+2, . . . with terminals si and sj can be constructed by repeatedly adding state
s` to the original path. This implies ∃m ∈ N s.t. Am > 0. Thus, A is primitive.
Consequently, P must also primitive.

As an example, consider the state diagram in Figure 1. The graph is strongly
connected (P is irreducible) if and only if p12 6= 0 and p21 6= 0. Additionally,
for the graph to be aperiodic, there must be at least one self-loop, i.e., p11 6= 0
or p22 6= 0. Thus, P is primitive if and only if the off-diagonal elements, and at
least one element on the main diagonal are positive.

Second, the Perron-Frobenius theorem, taken directly from [Bullo, 2016],
provides useful constraints on the spectrum and eigenspace of a general primitive
matrix.

Theorem 2.6. Let P ∈ Rn×n be primitive, with n ≥ 2. Then

(i) there exists a real simple eigenvalue λ > 0 such that λ > |µ| for all other
eigenvalues µ, and

(ii) the right and left eigenvectors v and w> of λ are unique and positive, up
to rescaling.

Proof. A proof is provided in [Bullo, 2016] (Chapter 2).

10

Third, in the context of Markov chains, the transition matrix P is always
row-stochastic. As stated in the following theorem, this property imposes yet
another constraint on the of spectrum of P .

Theorem 2.7. For a row-stochastic matrix P , 1 is an eigenvalue, spec(P) is
a subset of the unit disk, and ρ(P) = 1.

Proof. The proof of this theorem is a straight-forward application of the Gersh-
gorin circle theorem. A proof complete with an illustrative diagram is provided
in [Bullo, 2016].

Fourth, and finally, the eigenvalue and associated left-eigenvector mentioned
in the Perron-Frobenius theorem come up so frequently that it is worthwhile to
give them a special name just to simplify speech later on.

Definition 2.4. Let P be a primitive row-stochastic matrix. The dominant
eigenvalue of P is the unique maximum positive eigenvalue λ. The left-
eigenvector associated with the dominant eigenvalue is referred to as the con-
sensus eigenvector of P , when normalized such that w>1 = 1.

Now, returning to the discussion of the asymptotic behavior of regular chains,
consider the following theorem, taken directly from [Grinstead and Snell, 2006]
and known as the fundamental limit theorem for regular Markov chains.

Theorem 2.8. Let P be the transition matrix for a regular chain. Then,

lim
n→∞

P n = W ,

where W is the matrix with all rows equal to the consensus eigenvector w>.

Proof. P is the transition matrix for a regular Markov chain, so it is primi-
tive and stochastic. Theorems 2.6 and 2.7 assert that P has unit dominant
eigenvalue λ, with associated right and left eigenvectors 1 and w>, respectively,
where w> is stochastic. Notice that P can be transformed into Jordan normal
form by means of the similarity transformation

P = TJT−1 =
[
1 Ṽ

] [λ 0

0 P̃

] [
w W̃>

]
,

where P̃ is the block of J associated with the eigenvalues of P in the interior
of the unit disk, and Ṽ and W̃ T contain the right and left eigenvectors corre-
sponding to these eigenvalues, respectively. The spectral radius of P̃ is less than
one, so P̃ is convergent, i.e., limn→∞ P̃

n = 0. With this, the desired result is
obtained by computing the limit

lim
n→∞

P n = lim
n→∞

[
1 Ṽ

] [1 0

0 P̃

]n [
w W̃>

]
= 1w> = W .

11

An interesting result of this theorem, is the fact that for a regular Markov
chain the initial probability distribution has no effect on that in the long-term,
as n → ∞. This fact is stated in the following theorem, taken directly from
[Grinstead and Snell, 2006].

Theorem 2.9. Let P be the transition matrix for a regular chain and v> an
arbitrary probability vector. Then

lim
n→∞

v>P n = w>,

where w> is the unique fixed probability vector for P .

Proof. A simple computation incorporating the claim in Theorem 2.8, and the
fact that v> is a probability vector provides the desired result.

lim
n→∞

v>P n = v> lim
n→∞

P n = v>W

= v>
[
w11 w21 · · · wr1

]
=
[
w1v

>1 w2v
>1 · · · wrv

>1
]

= w>.

An immediate consequence of this theorem is that a chain with distribution
w> at the current time, will have distribution w> for all future times. For
this reason, w> is known as the fixed, stationary, or equilibrium vector, or
distribution. A similar independence result holds for the case of an ergodic
Markov chain; the only difference is that the limiting distribution may not
exist. This is the case when the chain is periodic.

The equilibrium distribution of a chain is the distribution the chain will tend
to as the number of steps grows large, and is the answer to the earlier ques-
tion about the long-term behavior of a chain. An equally interesting question
concerns the behavior of the chain when the process is reversed. In the forward-
case the one-step transition probability matrix P has elements pij denoting the
probability of transitioning from state si to state sj . In the reversed process,

the transition matrix has elements pji, and is denoted by P̂ . For a class of pro-
cesses, called reversible chains, the stationary distribution for the forward-time
process coincides with that of the reverse-time process. Formally,

Definition 2.5. An ergodic chain is reversible if, and only if, for every pair
of states si and sj, wipij = wjpji. Let Dw denote diagonal matrix with en-
tries w1, w2, . . . , wr, then the reversibility condition can be restated in terms of
symmetry as

DwP = (DwP)
>
.

From this definition, it is easy to see that an ergodic process with a symmetric
one-step transition matrix, P , is reversible.

12

2.4 Mean first passage time

Mentioned at the end of Section 2.2, the concept of absorption time can be
applied to compute the mean first passage time (MFPT) for an ergodic chain.
While this is true, and is conceptually useful, it is also impractical. A better
method for carrying out this computation is presented in this section, but before
delving into it consider the definition of the MFPT, from [Grinstead and Snell,
2006].

Definition 2.6. If an ergodic Markov chain is started in state si, the expected
number of steps to reach state sj for the first time is called the mean first passage,
or hitting, time from si to sj. It is denoted by mij. By convention, mii = 0.

Mathematically, the MFPT for an irreducible, r-state Markov chain satisfies
a system of r linear equations.

Theorem 2.10. The MFPT from si to sj satisfies the recursion

mij = pij +
∑
k 6=j

pikmkj .

Proof. The key observation is that there are two possible ways to transition
from si to sj , i 6= j: in a single step, or in more than one step. In the first case,
the MFPT is simply the transition probability, pij . In the other case, the chain
goes from si to sj by first stepping to some intermediate state sk. In this event,
notice that mij = mkj + 1. Putting it all together and simplifying gives

mij = pij +
∑
k 6=j

pik(mkj + 1)

=

r∑
k=1

pij +
∑
k 6=j

pikmkj

= 1 +
∑
k 6=j

pikmkj .

In order to compute the MFPT, it is necessary to solve the above system of
linear equations. The system can be written in matrix form as

mj = 1 +Qjmj ,

or simply
(I −Qj)mj = 1, (2.1)

where mj is the column vector of hitting times from si to sj , for all i 6= j, and
Qj is the submatrix of P obtained by deleting the jth row and column. Note
that Qj is not the same as the matrix Q in the canonical form introduced in
Definition 2.1. From this, the MFPT vector is given by

mj = (I −Qj)−11.

13

A naive approach to solving this system for mj would be by computing
the matrix inverse. In general, the problem of computing matrix inverses is ill-
posed, and this fact is only exacerbated as the dimension of the matrix increases,
so it is bad practice [Ascher and Petzold, 1998]. Another method is Gaussian
elimination, but fill-in will destroy the sparisty of Qj . Alternatively, it may
be tempting to apply an iterative method such as the Jacobi, Gauss-Seidel,
successive over-relaxation, and conjugate gradient method. However, the itera-
tions will fail to converge since the matrix I −Q is not generally symmetric, or
positive-definite.

The process of matrix reduction can be used to solve the system. Consider
the following definition, taken directly from [Sheskin, 1995].

Definition 2.7. If B is a square, stochastic matrix, partitioned as

B =

[
T U
R S

]
,

in which S is square, then the reduced matrix, or stochastic complement, of T
in B is defined as the matrix

T +U(I − S)−1R.

Now, consider the augmented matrix

G =

[
0 I
1 Qj

]
, (2.2)

where 0 is the zero vector, I is the (r − 1)-by-(r − 1) identity matrix, and Qj

is as defined in Equation 2.1. The stochastic complement of z in G is

0 + I(I −Qj)−11,

which is the same as the MFPT vector, mj !
The process of matrix reduction can be used to solve for the MFPT vector,

mj , one element at a time. This is known as a state-reduction process, and
more specifically, the Sheskin state-reduction process. The following theorem,
taken from [Sheskin, 1995], explicitly states the Sheskin procedure.

Theorem 2.11. Let N = r − 1. mj , the vector of hitting times from si to sj
can be computed by applying matrix reduction to the augmented matrix, G, N
times. The algorithm is as follows.

(1) Initialize k = N , and Q = QjN+k

(2) Let G(N + k) = G, as in Equation 2.2

(3) Partition G(N + k) as

G(N + k) =

[
TN+k UN+k

RN+k QN+k

]
,

where GN+k ∈ R(N+k)×(N+k−2), TN+k ∈ R(N+k−1)×k, RN+k ∈ R1×k,
UN+k ∈ R(N+k−1)×1, and QN+k ∈ R.

14

(4) Perform one step of matrix reduction to G(N+k) to obtain G(N+K−1).

G(N + k − 1) = TN+k +UN+k(I −QN+k)−1RN+k,

where

(I −QN+k)−1 =
1

1− g(N + k)N+k,k+1
.

(5) Decrement k by 1. If k > 0, go to step 3. Otherwise, stop.

The final reduced matrix, G(N), is mj .

Proof. The proof of the theorem can be found in [Sheskin, 1995].

First, notice that the computations of mj , j = 1, 2, . . . , r, are uncoupled, so
the computation can be parallelized. Next, as in many algorithms that reduce
the size of a matrix on each iteration, it is beneficial to allocate the full size of
that matrix on the first iteration, and then modify a submatrix of diminishing
size. Such a strategy reduces the amount of time the program spends managing
resources, and can be applied to the computation ofGN+k, TN+k,RN+k, UN+k,
and QN+k. Finally, the cost of computing the matrix of mean first passage
times using this algorithm is N4+2N3+N2 floating point operations (addition,
subtraction, multiplication, and division).

Another thing to notice is that this algorithm makes no attempt to limit
the number of subtractions made in the computation. This leads to a loss of
significant digits that is exacerbated as the dimension of the transition matrix
is increased. The Grassman, Taksar and Heyman (GTH) algorithm provides
another means of carrying out the computation. A more accurate method,
however, is the recently proposed extended GTH (EGTH) algorithm [Hunter,
2016].

Lastly, the set of vectors mj are rather unwieldy, a more convenient alterna-
tive is placing them into a matrix form with the same structure as the transition
matrix P . Additionally, it is important to be able to express the hitting times
between pairs of states for different Markov chains, without confusion. The
following definition, introduces notation from [Jadbabaie and Olshevsky, 2015]
that solves these problems.

Definition 2.8. For a Markov chain with r-states, and transition matrix P , the
r-by-r MFPT matrix whose ijth element is the MFPT from si to sj is denoted
by MP . The ijth element of the MFPT matrix is denoted by MP (si → sj).

3 Consensus iteration

The primary focus of this report is the behavior of a ubiquitous recursion, often
referred to as the consensus iteration. As its name would suggest, the itera-
tion models the process of consensus formation among communicating entities.

15

Fittingly, the iteration plays a critical role in the design of distributed coordina-
tion and synchronization algorithms, i.e., policies that allow networked entities
to coordinate their processes in the absence of a centralized controller.

In many applications, the quantity on which consensus is desired is subject
to some additive noise. Sources of noise can be attributed to measurement,
transmission, and discretization error, as well as uncertainty. In the presence
of noise, the signal is polluted, and consensus is generally not reached. Instead
of reaching an equilibrium, the estimates meander about the consensus value in
the presence of noise. As will be shown in Section 4, the size of these excursions
from consensus can be quantified when the system satisfies certain conditions.

The following subsections cover the noiseless and noisy consensus iteration,
starting with the definition of the iteration, and closing with a description of
the long-term behavior of the processes.

3.1 Noiseless iteration

Consider the definition of the noiseless consensus iteration, from [Jadbabaie and
Olshevsky, 2015].

Definition 3.1. The discrete-time linear system,

x(t+ 1) = Px(t+ 1),

where P is primitive and row-stochastic is known as the consensus iteration.

The name of the iteration derives from the fact that the matrix P , when
applied to the vector of opinions at time t, yields the updated vector x(t + 1)
whose elements are convex combinations of the elements of x(t). This process of
repeated averaging, generates a sequence of iterates whose elements tend toward
a common limit, i.e., a consensus. The following definition restates this fact.

Definition 3.2. When all n components of x(t) converge to the same limit as
t→∞, it is said that a consensus has been reached.

The following theorem gives a sufficient condition for consensus formation.

Theorem 3.1. If P is row-stochastic and primitive, then

lim
t→∞

x(t) = w>x(0)1,

where w> is the consensus eigenvector of P .

Proof. P is row-stochastic and primitive, so by Definition 2.2 it is the one-
step transition probability matrix for a regular Markov chain. By Theorem 2.8,
limt→∞P

t = W , where W is the matrix with all rows equal to the consensus
eigenvector, w>, of P . Hence,

lim
t→∞

x(t) = lim
t→∞

P tx(0) = Wx(0) = w>x(0)1.

16

To demonstrate this theorem, consider the following primitive transition
matrix, and initial opinion vector:

P =

0.09 0.38 0.31 0.23
0.90 0.10 0.00 0.00
0.48 0.00 0.52 0.00
0.72 0.00 0.00 0.28

 , and x(0) =

0.60
0.30
0.13
0.21

 .
The consensus eigenvector and limiting opinion are given by

x(∞) =
(
0.37, 0.37, 0.37, 0.37

)
, and w> =

[
0.42 0.18 0.27 0.13

]
,

and the process is illustrated in Figure 2.

0 2 4 6

t

0

0.2

0.4

0.6

0.8

1

x1(t)
x2(t)
x3(t)
x4(t)

Figure 2: Noiseless consensus iteration on a network with star topology, center
node 1, and weights sampled from the standard uniform distribution, along with
the initial opinion vector.

Finally, in the case in which the transition matrix P is symmetric and the
consensus is convergent, the system is said to achieve average consensus. In this
configuration, the consensus value is the simple average of the initial opinion
vector, so each agent is said to have had an equal weight on the final outcome of
the process. For this reason, this configuration is referred to as the democracy
configuration. The following definition explicitly restates this notion, which will
be used repeatedly in Section 4.1.

Definition 3.3. If P is symmetric, stochastic, and primitive, then

lim
t→∞

x(t) =
1

n
11>x(0) = average (x(0)) 1

where w> = 1
n1> is the consensus eigenvector of P . In this case, the system is

said to have achieved average consensus [Bullo, 2016].

17

3.2 Noisy iteration

With a good understanding of the noiseless consensus iteration, complicate the
model by including an additive noise term. The following is the definition of
the consensus iteration with additive noise.

Definition 3.4. The discrete-time stochastic process,

x(t+ 1) = Px(t) + v(t),

where P is primitive and row-stochastic, and v(t) is a vector of independent,
identically distributed (i.i.d.) random variables, with zero mean and unit vari-
ance is known as the noisy consensus iteration.

In the presence of additive noise, the consensus iteration becomes a stochas-
tic process, whereas the noiseless version was deterministic. As such, the noisy
version is less well behaved. In one sense the node values do converge to con-
sensus, but not in a very meaningful sense. To see this consider the following
two theorems from [Xiao et al., 2007].

Theorem 3.2. Ex(t), the expected value of x(t), is propagated in the same
way as x(t) is by the noiseless iteration. That is,

Ex(t+ 1) = PEx(t).

If P is row-stochastic and primitive, with consensus eigenvector w>, then the
expectation has the consensus value

lim
t→∞

Ex(t) = w>Ex(0)1.

Proof. Start by writing an expression for the expected value of x(t+1), inserting
the recursion for x(t), using the linearity of the expected value function, and
the fact that the noise has zero mean. This gives

Ex(t+ 1) = E (Px(t) + v(t)) = PEx(t) = P tEx(0).

Finally, as shown in Theorem 3.1, the expected value of the node values con-
verges to the consensus distribution

lim
t→∞

Ex(t) = lim
t→∞

P tEx(0) = WEx(0) = w>E (x(0))1.

Theorem 3.3. The node values x(t) do not converge.

Proof. This proof hinges on showing that the variance of an error measure in-
creases with time. At consensus, the variance in opinions is zero, so consensus
is not reached when the signal is corrupted by noise.

Consider the function x̄(t) = w>x(t)1 = Wx(t), where W is the matrix
with all rows equal to the consensus eigenvector,w>, of P . x̄(t) can be viewed as

18

the consensus value of the noiseless iteration with initial condition x(t). Notice
that x̄(0) = w>x(0)1, is equal to the consensus value for the noiseless process.
With this, the expected value of the difference z(t) := x̄(t)− x̄(0) is a measure
of the error in the consensus value of the noisy process, at time t. Using the
linearity of the expected value, and Theorem 3.2, in the limit

lim
t→∞

E z(t) = lim
t→∞

E (Wx(t))− E (Wx(0))

= W lim
t→∞

Ex(t)−WEx(0)

= W (WEx(0))−WEx(0)

= (W 2 −W)Ex(0).

Furthermore,

W 2 =

w
>

...
w>

 [w11 · · · wn1
]

=
[
w1w

>1 · · · wnw
>1
]

= W ,

so the error has zero mean in the limit, i.e.,

lim
t→∞

E z(t) = 0.

This makes sense considering the claim of Theorem 3.2. However, the vari-
ance of the error increases with time. Indeed,

Var x̄(t+ 1) = Var (Wx(t))

= W 2Varx(t+ 1)

= W 2 [Var (Px(t) + v(t))]

= W 2
[
Var (P 2x(t− 1) + v(t− 1)) + Varv(t)

]
= W 2

[
Var (P tx(0)) +

t∑
k=1

Varv(k)

]
.

This expression can be simplified by making the following observations: the
elements of v(t) are i.i.d., so Varv(t) = I, for all t > 0; W 2 = W ; and
WP = W . With this,

Var x̄(t+ 1) = WP 2t [Varx(0) + tI]

= W [Varx(0) + tI] ,

so the variance of the error grows linearly with time. Indeed,

Var [x̄(t+ 1)− x̄(0)] = W [Varx(0) + tI]−W 2Varx(0) = tI.

19

To demonstrate these results, return to the example at the end of the previ-
ous section. In that example, the noiseless iteration converged to the consensus
value in about 7 steps. If noise is introduced to the system, then the opinions of
the sensors will fail to converge (c.f. Theorem 3.3), but their expected value will
(c.f. Theorem 3.2). As is often the case, the noise term is much smaller than
the full-scale value of the signal. Here, suppose the noise is 1% of the full-scale
value of the signal. To achieve this for additive noise sampled from the standard
normal distribution with zero mean and unit variance, sample opinions from the
uniform distribution on [0, 100]. To retain similarity between examples, scale
the old initial opinion vector, x(0), by 100, and reuse it. With this setup, one
realization of the noisy iteration is plotted in Figure 3.

0 10 20 30 40

t

0

20

40

60

80

100

x
(t
)

x1(t)
x2(t)
x3(t)
x4(t)
xcons.

0 10 20 30 40

t

0

20

40

60

80

100

E
x
(t
)

Ex1(t)
Ex2(t)
Ex3(t)
Ex4(t)
Excons.

Figure 3: Noisy consensus iteration on a network with star topology, and center
node 1. The weight matrix and initial opinion vector are the same as those used
to generate the graphs in Figure 2, but the initial opinion is 100-times larger.
The noise is sampled from the standard normal distribution (µ = 0, σ2 = 1).

4 Limiting disagreement

As demonstrated in the previous section, the consensus iteration fails to converge
when corrupted by additive noise. The error measure x̄(t), defined as the error
in consensus values for the noiseless iteration with initial distributions x(t) and
x(0), was shown to have zero mean, and linearly increasing variance. This
result means that the noisy consensus iteration behaves much like the noiseless
iteration, but meanders about the consensus value instead of converging.

In that error is present in every real-world application, it is important to
understand the effect that additive noise has on the iteration. One way to
go about this is by defining a new measure of the size of excursions from the
consensus value one can expect when the expected value of the iterate has
converged. The first section contains a powerful theorem from [Xiao et al.,
2007] that addresses this problem for the case of a symmetric averaging matrix.
Although it is not novel, the proof of the theorem provides a great deal of

20

insight, and it shows how useful the symmetry assumption really is. In the
following section, the problem is generalized to the case in which the weight
matrix is just reversible. Another powerful theorem, this time from [Jadbabaie
and Olshevsky, 2015], provides a means of computing the limiting disagreement.

4.1 Symmetric transitions

In this section, a simple case of the more general Theorem 4.8 (given in Section
4.2) is derived for symmetric weight matrix W . The derivation closely follows
that given in [Xiao et al., 2007], but assumes non-unit variance for the i.i.d.
noise term, goes somewhat further before resorting to symmetry enforcement,
and goes into excruciating detail. The derivation is broken down into a number
of smaller theorems, with the main result at the end of the section.

Consider the noisy consensus iteration (Definition 3.4) with symmetric, row-
stochastic weight matrix P . Let vi(t), i = 1, . . . , n, t = 0, 1, . . ., be independent
random variables, identically distributed, with zero mean and variance σ2. Let
w> = 1

n1 denote the consensus eigenvector of P , and W = 1w> denote the
weighted averaging matrix. If the noiseless iteration converges to consensus,
then ‖P −W ‖ < 1.

In Section 3.2 the error measure x̄(t) was used to show that the noisy con-
sensus iteration is not convergent. This error measure is not well-suited for the
task of quantifying the limiting disagreement of the iteration. A better measure
is the vector of deviations of each agent from the consensus value, at time t,
denoted by z(t). The deviation vector is defined by

z(t) = x(t)−Wx(t) = (I −W)x(t).

The total mean-square deviation, a measure of the total distance of the compo-
nents of x(t) from consensus, is defined by

δ(t) = E ‖z(t)‖2.

The final theorem of this section gives an explicit formula for the value of this
error measure at steady state. The first step toward this result is proving the
following theorem regarding the mean value of the deviation vector, at steady-
state.

Theorem 4.1. Let P , x(t), and v(t) be as in Definition 3.4. Then

limt→∞E z(t) = 0.

21

Proof. By definition, z(t) = (I −W)x(t), so

z(t+ 1) = (I −W)x(t+ 1)

= (I −W)(Px(t) + v(t))

= Px(t)−WPx(t) + (I −W)v(t)

= Px(t)−Wx(t) + (I −W)v(t)

= (P −W)x(t) + (I −W)v(t)

= (P −W)(z(t) +Wx(t)) + (I −W)v(t)

= (P −W)z(t) + (PW −W 2)x(t) + (I −W)v(t)

= (P −W)z(t) + (I −W)v(t)

The expectation of z(t) is then given by

E z(t) = (P −W)E z(t) + (I −W)Ev(t)

= (P −W)(I −W)Ex(t)

= (P − PW −W +W 2)P t−1Ex(0)

= (P −W)P t−1Ex(0)

= (P t −W)Ex(0)

= (P −W)tEx(0).

But ‖P −W ‖ < 1, so limt→∞ E z(t) = 0.

This result is reassuring, and unsurprising, given the similar finding in the
proof of Theorem 3.3 regarding the limiting expected value of the error, x̄(t).
As in that proof, the next item to consider is the variance of the error measure.
The following theorem relates the total mean-square deviation to the variance
of the deviation vector.

Theorem 4.2. Let Σ(t) = E z(t)z>(t). This is the second moment matrix of
the deviation vector, z(t). The second central moment of a probability density
function is the variance of the distribution. The total mean-square deviation
can be expressed in terms of Σ(t) as δ(t) = Tr Σ(t).

Proof. By definition, the total mean-square deviation, δ(t), is given by

δ(t) = E ‖z(t)‖2 = E z(t)
>
z(t) = E

n∑
i=1

z2i (t).

Consider the outer-product Z = zz>. The ijth element of Z, denoted by zij , is
given by zij = zizj . With this, the trace is clearly TrZ =

∑n
i=1 zizi =

∑n
i=1 z

2
i .

The desired result is obtained by combining this observation with the fact that
both the trace and expected value functions are linear.

δ(t) = ETrz(t)z(t)
>

= TrE z(t)z(t)
>

= Tr Σ(t).

22

With this simple characterization of the total mean-square deviation, δ(t),
it is clear that the dynamics of δ(t) follow immediately from an understanding
of the dynamics of the deviation second moment matrix, Σ(t). The following
theorem gives the difference equation and initial condition characterizing these
dynamics.

Theorem 4.3. The deviation second moment matrix, Σ(t), satisfies the differ-
ence equation

Σ(t+ 1) = (P −W)Σ(t)(P −W)
>

+ (I −W)Σv((I −W))
>
,

with initial condition

Σ(0) = (I −W)x(0)x(0)
>

(I −W)
>
,

where Σv is the covariance matrix of v(t).

Proof. To save space, in the following manipulations, assume each time-varying
variable is taken at time t, unless otherwise indicated. Now, consider the outer-
product Z(t + 1) = z(t + 1)z(t+ 1)

>
. Using the expression for z(t) found in

the proof of Theorem 4.1, and expanding each factor gives

Z(t+ 1) = [(P −W)x+ (I −W)v] [(P −W)x+ (I −W)v]
>

= (P −W)Z(P −W)
>

+ (P −W)zv>(I −W)
>

+ (I −W)vz>(P −W)
>

+ (I −W)vv>(I −W)
>
.

The noise components vi(t), i = 1, . . . , n, t = 0, 1, . . ., are independent random
variables with zero mean, so taking the expectation of the above equation yields
the following first-order inhomogeneous difference equation.

Σ(t+ 1) = (P −W)Σ(t)(P −W)
>

+ (I −W)Σv(I −W)
>
.

The initial condition is obtained from the definition of the deviation second
moment matrix.

Σ(0) = E z(0)z(0)
>

= E
[
(I −W)x(0)x(0)

>
(I −W)

>
]

= (I −W)x(0)x(0)
>

(I −W)
>
.

The above theorem is interesting, but to be useful, it needs to be considered
in the light of the following theorem summarizing some basic results of Lyapunov
stability theory from [Hespanha, 2009].

Theorem 4.4. Let A,P ,Q ∈ Rn×n, with P ,Q symmetric. Let A � 0 denote
that A is positive definite. Then the following two statements are equivalent:

23

(i) For every symmetric Q � 0, there exists a unique P � 0 satisfying the
discrete-time Lyapunov equation

A>PA− P −Q = 0.

Moreover, P � 0 is symmetric, and is given by

P =

∞∑
k=0

AkQ(A>)k.

(ii) The linear system discrete-time linear system

x(t+ 1) = Ax(t)

is globally asymptotically stable, i.e., A is Schur stable.

With this theorem, it can be shown that the difference equation from The-
orem 4.3 has a unique stable equilibrium solution. In fact, this is shown in the
following theorem.

Theorem 4.5. The difference equation of Theorem 4.3 is stable. Further, if P
is symmetric, then the steady-state deviation second moment matrix is given by

Σss := lim
t→∞

Σ(t) = σ2
(

(I +W − P 2)
−1 −W

)
.

Proof. Suppose the difference equation is stable. Then there exists an equi-
librium Σss = limt→∞Σ(t). Insert this matrix into the difference equation
and rearrange terms to see that it is of the form of the discrete-time Lyapunov
equation from Theorem 4.5.

(P −W)Σss(P −W)
> −Σss + (I −W)Σv(I −W)

>
= 0.

By construction, Σ(t) is symmetric, so Σss is also symmetric. The noise
covariance matrix, given by Σ)v = σ2I, is symmetric, so the matrix (I −
W)Σ)v(I −W)

>
is symmetric as well. Moreover,

x>(I −W)Σv(I −W)
>
x =

[
σ(I −W)

>
x
]> [

σ(I −W)
>
x
]

= ‖σ(I −W)
>
x‖2 ≥ 0

for any nonzero x ∈ Rn, so it is also positive definite. Additionally, the noiseless
consensus iteration is convergent, i.e., ‖P −W ‖ < 1, so the matrix (P −W)

>

is convergent. Therefore, Σss exists, is unique, and is given by

Σss =

∞∑
k=0

(
(P −W)

>
)k

(I −W)Σv(I −W)
>

(P −W)

= σ2
∞∑
k=0

(P −W)k(I −W)2(P −W)k

24

if the symmetry of P is enforced. The following easily verified facts will be used
to simplify this expression: WP = W , PW = W , W 2 = W , (P−W)W = 0,
(P −W)2 = P 2 −W .

σ−2Σss = I −W +

∞∑
k=1

(P −W)k(I −W)(P −W)k

= I −W +

∞∑
k=1

(P −W)2k − (P −W)kW (P −W)k

= I −W +

∞∑
k=0

(P −W)2k − I

= −W +

∞∑
k=0

(
(P −W)2

)k
.

Next, recall that the Neumann series
∑∞

k=0A
k is convergent, with sum

(I −A)
−1

, if ‖A‖ < 1. With this, the steady-state deviation second moment
matrix can be written as

Σss = σ2
(
−W + (I − (P −W)2)

−1
)

= σ2
(

(I +W − P 2)
−1 −W

)
.

With this description of the deviation second moment matrix, it is relatively
simple to relate it back to the total mean-square deviation, δ(t), as is shown
below.

Theorem 4.6. The steady-state mean-square deviation is given by

δss = σ2
(

Tr (I + J − P 2)
−1 − 1

)
= σ2

(
1

2
Tr (I + J − P)

−1
+

1

2
Tr (I − J + P)

−1 − 1

)
.

Proof. By Theorem 4.2, δ(t) = Tr Σ(t), so δss = Tr Σss. In terms of the weight
and averaging matrices, this is

δss = Tr Σss = σ2Tr
(

(I +W − P 2)
−1 −W

)
= σ2

(
Tr (I +W − P 2)

−1 − Tr (W)
)

= σ2

(
Tr (I +W − P 2)

−1 − Tr

(
1

n
11>

))
= σ2

(
Tr (I +W − P 2)

−1 − 1
)
.

25

For the second equality, use the factorization for I + W − P 2 given and
verified below.

I +W − P 2 = (I −W + P)(I +W − P)

= I +W − P 2 +��
��P − P +((((

(
WP −W +(((

(((PW −W 2

The inverse of this product can be split using the following identity from matrix
analysis.

A−1 := [(I −B)(I +B)]
−1

=
1

2
(I −B)

−1
+

1

2
(I +B)

−1

To see that this is true, use the fact that the factors of A commute, i.e., A =
(I −W)(I + W) = (I + W)(I −W) = I − B2, and compute the product
A−1A.

A−1A =
1

2
(I −B)

−1
(I −B)(I +B) +

1

2
(I +B)

−1
(I +B)(I −B)

=
1

2
(I +B) +

1

2
(I −B) = I.

Together, these facts give

δss = σ2
(

Tr (I +W − P 2)
−1 − 1

)
= σ2

(
1

2
Tr (I + J − P)

−1
+

1

2
Tr (I − J + P)

−1 − 1

)
. (4.1)

Finally, consider the main result of the section, the closed-form description
of the mean-square deviation in terms of the eigenvalues of the weight matrix
P .

Theorem 4.7. The steady-state disagreement for the noisy consensus iteration
with symmetric weight matrix, P , satisfying the condition ‖P −W ‖ < 1, where
W = 1

n11>, is given by

δss = σ2
n∑

i=2

1

1− λi(P)2
.

Proof. Denote by λ1, λ2, . . . , λn the eigenvalues of P , in descending order of
magnitude, and by v1, v2, . . . , vn the associated eigenvectors. Recall that the
trace of a matrix is the sum of its eigenvalues, and the eigenvalues of a matrix
are the reciprocals of those of its inverse. Applying these facts to the claim of
Theorem 4.6 yields

σ−2δss =
1

2

n∑
i=1

λi

(
(I +W − P)

−1
)

+
1

2

n∑
i=1

λi

(
(I −W + P)

−1
)
− 1

=
1

2

n∑
i=1

1

λi(I +W − P)
+

1

2

n∑
i=1

1

λi(I −W + P)
− 1

26

Next, notice that both I +W − P and I −W + P are row-stochastic, so
they share the eigenvalue 1. Indeed,

(I ±W ∓ P)1 = 1±W1∓ P1 = 1± 1∓ 1 = 1.

Recall that since P is symmetric it has n mutually orthogonal eigenvectors, i.e.,
vi
>vj = 0 for all i 6= j. Therefore,

(I ±W ∓ P)vi = vi ±W vi ∓ P vi = vi ± 1v1
>vi ∓ λivi = (1∓ λi)vi,

so the spectra are given by

spec(I ±W ∓ P) = {1} ∪ {1∓ λi(P)}ni=2 .

With this, δss can be rewritten as

δss = σ2

[
1

2
+

1

2

n∑
i=2

1

1− λi(P)
+

1

2
+

1

2

n∑
i=2

1

1 + λi(P)
− 1

]
.

A simpler form for δss is obtained by using the identity 1/(1 + y) + 1/(1− y) =
2/(1− y2) , for y 6= 1. Indeed, this last step yields the desired result,

δss = σ2
n∑

i=2

1

1− λi(P)2
.

4.2 Reversible transitions

After seeing the derivation in the previous section, it is clear that the symmetry
assumption greatly simplifies the analysis. Here, this constraint is relaxed, and
an exact expression for the limiting disagreement in the more general case of
reversible weight matrices is presented. The content of this section is almost
entirely from [Jadbabaie and Olshevsky, 2015].

Consider again the noisy consensus iteration of Section 3.2. Let P denote
the primitive, row-stochastic weight matrix, with consensus eigenvector w>.
Let Dw := diag(w1, w2, . . . , wn) be the matrix with w> on the main diagonal.
Let Σv denote the covariance matrix of the noise vector v(t). As in Theorem
3.3, let x̄ denote the weighted average of the opinion vector x, and z := x− x̄
denote the difference between the current state and the consensus value of the
noiseless iteration.

As in Section 4.1, the total deviation is measured by the mean-square de-
viation. As is, this formulation weights the deviation at each node equally.
An alternative measure is the mean-square deviation with weights assigned ac-
cording to the ”influence” of each node.To clarify, nodes whose initial opinion
make up a greater portion of the consensus opinion, are said to have a greater
influence over the discourse.

27

0 20 40 60

t

20

30

40

50

60

70
x
(t
)

x1 x2 x3 x4 xcons.

0 20 40 60

t

-30

-20

-10

0

10

20

z
(t
)

z1 z2 z3 z4

0 20 40 60

t

20

30

40

50

60

70

E
x
(t
)

Ex1 Ex2 Ex3 Ex4 Exc

10
0

10
1

t

10
1

10
2

∆
(t
)

∆ ∆
u

∆ss ∆
u

ss

Figure 4: The noisy consensus iteration on a star graph with symmetric random
edge weights. The measurements x(t) quickly approach the consensus value
within the first 20 steps, while the size of the deviations z(t) relative to the
variance of the additive noise v(t) is large. When the deviations and noise are
of the same order of magnitude, the convergence to zeros of the deviations is
disrupted. The expected-value Ex(t) of each set of measurements starts at the
initial measurement values. As the iteration proceeds, the the set of expectations
are slowly drawn together, and the limiting disagreement of the sensors reaches a
limiting value ∆. In that the matrix P is symmetric, the limiting disagreements
∆ss and ∆uni

ss coincide.

Conceptually simple, the uniformly weighted deviation gives the extent to
which signals drift, independent of the stationary distribution. No exact expres-
sion for the uniformly-weighted mean-square deviation for the noisy consensus
iteration with reversible transition matrix is known of at this time [Jadbabaie
and Olshevsky, 2015].

The uniformly weighted deviation does not account the fact that more in-
fluential nodes have greater potential to propagate error than others do. To
accurately capture the effects of varying degrees of contribution, it makes sense
to use the weighted mean-square deviation, with weights determined by the
stationary distribution associated with the transition matrix, from Section 4.1.
The main contribution of [Jadbabaie and Olshevsky, 2015] is an exact expression
for this deviation, for the case of the reversible transition matrix.

28

These total deviation measures are denoted by ∆(t) and ∆uni(t), respec-
tively, are defined as follows.

∆(t) :=

n∑
i=1

wiE z2i (t), (4.2)

∆uni(t) :=
1

n

n∑
i=1

E z2i (t). (4.3)

With this, the limiting disagreement, is defined by

∆ss := lim sup
t→∞

∆(t),

∆uni
ss := lim sup

t→∞
∆uni(t).

What follows is the main theoretical contribution of [Jadbabaie and Ol-
shevsky, 2015], a characterization of the weighted mean-square deviation of sig-
nals for the noisy consensus iteration, in terms of the combinatorial properties
of the underlying Markov chain.

Theorem 4.8. If the noisy consensus iteration (Definition 3.4) with transition
matrix P is primitive and reversible, then the limiting disagreement for the
process is given by

∆ss = w>MP 2DwΣvDw1− Tr (MP 2DwΣvDw) .

If, in addition, the noises at different nodes are uncorrelated, then

∆ss(P ,Σv) =

n∑
i=1

n∑
j=1

σ2
iw

2
iwjMP 2(j → i).

Furthermore, if the noises all have the same variance, then

∆ss(P , σ
2I) = σ2

n∑
i=1

n∑
j=1

w2
iwjMP 2(j → i).

Proof. The proof for this theorem is provided in [Jadbabaie and Olshevsky,
2015], and is extremely similar to that for the symmetric case (Theorem 4.7).

Comparing the definitions of total disagreement (Equations 4.2, 4.3), to
the definition of mean-square deviation in Theorem 4.2, it is clear that the
steady-state mean-square deviation, in the symmetric case, is related to the
uniformly-weighted limiting-disagreement by

∆uni(t) =
1

n

n∑
i=1

E z2i (t) =
1

n
Tr Σ(t) =

1

n
δ(t) (4.4)

Similarly, the weighted disagreement can be computed using

∆(t) =

n∑
i=1

w>i E z2i (t) = Tr (DwΣ(t)) (4.5)

29

5 Interpretation: Opinion dynamics

Longtime a focus of social psychologists, opinion dynamics is concerned with
describing and modeling the way in which ideas, beliefs, and opinions of indi-
viduals change as they interact with others in a social network. Until recently,
engineers had little use for such work, but as networked systems have become
more widespread, parallels between the seemingly disparate fields have become
increasingly apparent. Today, networked systems have become so pervasive in
everyday life as to warrant the descriptor ”the internet of things”, and the push
to improve the understanding and function of such systems has prompted the
exchange of ideas between previously unbridged disciplines.

Formally introduced in 1974, the DeGroot model of opinion dynamics de-
scribes the effect of interpersonal influence on the opinions of the members of
a group [DeGroot, 1974]. The sentiments an individual has toward another de-
termine the influence one accords to the other [Jia et al., 2015]. A pair of close
friends would likely accord a high degree of influence to each other, whereas
two strangers would accord nothing to one other. The particular areas of ex-
pertise an individual displays to others also affects their degree of influence on
those others when an issue connected to these areas is presented to the group
[DeGroot, 1974], and even when an unconnected issue is presented. Likewise,
the degree to which one is closed to outside influence can be interpreted as the
weight one gives their own feelings on a matter [Jia et al., 2015]. Taken to-
gether, the set of interpersonal influences forms an influence network, in which
each pair of adjacent individuals grants a weight to the eachother’s opinions
[Jia et al., 2015]. When an issue is presented to the group, the final opinion of
each individual is determined by the influence network topology, and the set of
interpersonal influences [Jia et al., 2015].

5.1 The standard DeGroot model

Consider a group of r individuals, tasked with collaborating to estimate the
unknown value of some m-dimensional parameter θ. Initially, each individual i
has some opinion about each dimension of the unknown parameter, and stores
these opinions in a row vector ui(0)

>
. The group of individuals comprises

a social network, and each individual has a set of neighbors with which they
communicate, influence, and are influenced by.

Through this network, group members are made aware of the opinions of
their neighbors, and broadcast their opinions to their neighbors. This exchange
of information causes individuals to update their initial opinions based on those
of others, according to their perception of others. Literature from empirical
social psychology supports the notion that an individual forms new opinions
as a convex combination of their current opinion and those of their neighbors
[Jia et al., 2015]. The weights of these convex combinations are generated by
a variety of conscious, and unconscious, cognitive mechanisms . In that each
member of the group may have different areas of expertise, and varying degrees
of information about the unknown parameter, it follows that, in this process of

30

opinion formation, certain individuals may exert a greater level of influence over
their peers than will others. Mathematically, the degree of influence individual
i accords j is denoted by pij , where

∑
i pij = 1. In summary, the opinion of

individual i after the first update is

ui(1)
>

= Pui(0)
>
,

where P is the r-by-r matrix with elements pij . Thus, if U(0) is the matrix

with rows u1(0)
>

, u2(0)
>

, . . . , ur(0)
>

, then the opinions of each individual
are given by the rows of the matrix

U(1) = PU(0),

The columns of this matrix contain the opinion of each individual on a fixed di-
mension of the unknown parameter θ, and are denoted by xi, for i = 1, 2, . . . , r.

After the initial update, the group will be in the position is was before the
update. That is, each member will display their opinion, and be subjected to
the opinions of their peers. It is assumed that their perception of their peers
will not change from its initial value, i.e., the influence network encoded by the
weight matrix P is unchanged from one step to another. Hence, if iterated, the
opinion matrix for the group at step n is given by

U(n) = PU(n− 1) = . . . = P nU(0).

It is assumed that individuals have no access to outside information regard-
ing the unknown parameter θ. Hence, the update process is driven by the
discrepancy members observe between their own opinions and those of their
peers, and so it will continue until the opinions of every individual and their
peers are in agreement, or until the process is terminated. In the case of agree-
ment, the mismatch between opinions has been eliminated, and the opinion no
longer changes when the process is iterated further. In such a case, the pro-
cess is said to have reached an equilibrium state. If in addition, the opinion
of every individual matches at equilibrium, the group is said to have reached a
consensus. The following definition, from [DeGroot, 1974], gives a mathematical
description of consensus.

Definition 5.1. When all r components of U(n) converge to the same limit as
n→∞, a consensus is said to have been reached.

What this definition is saying is that at consensus, each individual shares
the same opinion concerning each dimension k of the unknown parameter θ.
Thus, at consensus, xi is a constant vector, for i = 1, . . . ,m.

To characterize the consensus distribution, it is necessary to consider the
matrix of weights, P . First, notice that P is row-stochastic and encodes the
interpersonal influence network of the group. With this, P can be interpreted
as the one-step transition probability matrix of a Markov chain with r states
and transition probabilities pij corresponding to the probability of individual i

31

subscribing to the opinion of individual j on any, and all, dimensions of the un-
known parameter θ when they update their opinion. Consequently, the Markov
chain machinery erected in Section 2 can be used to derive conditions on the
convergence of the process. The first such condition is presented in the theorem
below, which was taken from [DeGroot, 1974].

Theorem 5.1. If all the recurrent states of a Markov chain communicate with
each other and are aperiodic, then a consensus is reached.

Proof. Let P denote the one-step transition probability matrix for the Markov
chain. If all recurrent states in the chain communicate with each other, then a
directed path exists between each pair of recurrent states. Therefore, the chain
cannot contain any absorbing states, which, while recurrent, are inescapable.
Containing no absorbing states, the chain must contain only transient states,
so it is ergodic. Moreover, the existence of a directed path between each pair of
states implies the existence of a positive integer k, such that the ijth entry of
P k is positive. Thus, P is primitive, by Definition 2.3. Therefore, by Theorem
2.8, limn→∞P

n = W , where all rows of W are equal to the vector w>. Thus,

lim
n→∞

U(n) =
(

lim
n→∞

P n
)
U(0)

= WU(0)

=
[
w>x1(0)1 w>x2(0)1 · · · w>xm(0)1

]
.

This limiting matrix has constant columns, so by Definition 5.1 a consensus is
reached.

As can be seen above, the DeGroot process for parameters of dimension is
equivalent to m decoupled, or parallel, processes, each having the same influ-
ence matrix P and acting on a separate dimension of the parameter estimate.
Because of this, the standard definition of the DeGroot model deals with the
evolution of a point-estimate of an unknown parameter, i.e., the m = 1 case.
The definition, from [Jia et al., 2015], is stated below.

Definition 5.2 (Standard DeGroot model). Consider a group of r individuals,
each having an opinion on an unknown parameter θ ∈ R. Let the opinions at
time t be stored in the vector x(t). For a strongly connected, aperiodic, influence
network represented by a row-stochastic matrix P ∈ Rn×n, the opinions are
updated via the process

x(t+ 1) = Px(t), t = 0, 1, 2, . . . ,

with iterates tending toward the consensus distribution, given by

lim
t→∞

x(t) = w>x(0)1,

where w> is the consensus eigenvalue of P .

32

Written in this form, the DeGroot model of opinion dynamics is clearly
identical to the noiseless consensus iteration introduced in Section 3. This means
all the results from that section are applicable to this model, and conversely,
that the behavior of the consensus iteration can be interpreted as a process of
opinion formation on an influence network. This lastly explains some of the
language used in describing the consensus iteration in preceding sections.

5.2 The noisy DeGroot model

The DeGroot model of opinion dynamics is elegantly simple; as a consequence, it
fails to capture several critical phenomena. Most notably, groups of individuals
do not, in general, come to consensus. This persistence of disagreement, while in
some sense context dependent, can be achieved by introducing an additive noise
term to the standard DeGroot model. Unsurprisingly, the resulting model, the
noisy DeGroot model, is identical to the noisy consensus iteration. The model
is defined below.

Definition 5.3 (Standard DeGroot model). Consider a group of r individuals,
each having an opinion on an unknown parameter θ ∈ R. Let the opinions at
time t be stored in the vector x(t). For a strongly connected, aperiodic, influence
network represented by a row-stochastic matrix P ∈ Rn×n, the opinions are
updated via the process

x(t+ 1) = Px(t) + v(t), t = 0, 1, 2, . . . ,

where v(t) is a vector of i.i.d. random variables, with zero mean and unit
variance.

In that the model is identical to the noisy consensus iteration, the results
from Section 3.2 can be applied to it, and can be viewed through the lens of an
opinion formation process.

6 Sample influence networks

Much has been said in previous sections about the matrix P , but only one
example of such a matrix has been given, and that was all the way back in the
toy example of Section 3.1. In the context of Markov chains, P is referred to as
a (1-step probability) transition matrix; in the context of the various flavors of
the consensus iteration, it is referred to as a weight matrix; and so too in the
context of opinion dynamics, but with weights encoding the set of interpersonal
influences within a social network.

In each of these domains, the process converges to a stationary distribution,
stationary vector, or consensus, provided that P is primitive, and row-stochastic
(and that iterates are free from the pollution of additive noise!). Further, in
order to compute the limiting disagreement of the process, P must also be
reversible (a weakening of the symmetry property). Theorem 2.5 asserts that the
first of these requirements has a graph theoretical interpretation. The last two

33

requirements, provided with a suitable network topology, can be met through
clever choices of edge weights. Examples of such networks, and edge weights
are provided in the following sections.

6.1 Graphs

The focus of this section is a set of simple, graphs whose associated adjacency
matrices are primitive. That is, graphs that are both strongly connected and
aperiodic. The first of these properties is achieved easily by considering only
connected undirected graphs, rather than the more general case of connected
digraphs, which generally harbor absorbing states. Aperiodicity can be achieved
by adding a self-loop to a strongly connected graph.

6.1.1 The complete graph

A complete graph is one in which each pair of vertices is connected. The com-
plete graph with 12 nodes, and no self-loops, is illustrated in Figure 5, along
with the zero pattern of its associated adjacency matrix. For a fixed number of
vertices, the complete graph has the maximal number of edges, and the greatest
degree of connectivity. The complete graph is an example of a regular graph,
that is, a graph in which each pair of vertices have the same number of neighbors.

Complete graphs occur frequently in small social networks, in which each
member is aware of the others, and has their own perception, disposition, and
unconscious reactions to.

6.1.2 The circle graph

The circle graph is comprised of a set of vertices connected in a line, with the
head connected to the tail, forming a ring. The circle graph with 12 vertices
is given in Figure 6, along with the zero pattern of its adjacency matrix. The
circle graph is an example of a regular graph.

Figure 5: (a) The complete graph with
12 vertices and no self-loops, and (b)
the zero pattern of its associated ad-
jacency matrix, in which blank entries
represent zeros.

Figure 6: (a) The circle graph with
12 vertices and no self-loops, and (b)
the zero pattern of its associated ad-
jacency matrix, in which blank entries
represent zeros.

34

6.1.3 The line graph

The line graph is identical to the circle graph with any single edge deleted.
The line graph and its adjacency matrix are provided in Figure 7. For a given
number of vertices, the line graph has the minimum number of edges of any
connected network.

6.1.4 The star graph

The star graph is the graph in which each pair of nodes connects to a single cen-
tral node, and no other. The star graph and its adjacency matrix are provided
in Figure 8.

The star graph corresponds to the autocratic configuration in the Friedkin-
Johnsen model of social power evolution. The social power of an individual
is measured by the degree of influence that individual has on the consensus
opinion, i.e., the weight of their initial opinion, or their entry in the consen-
sus eigenvector, in the final consensus opinion of the group. A wealth of social
psychological data suggests that an individual’s self-appraisal is largely due the
opinions, perceptions, and dispositions that others display toward that indi-
vidual. This mechanism of social power evolution is referred to as reflected
appraisal. Taken together, the self-weights, which correspond to self-appraisals,
are updated with the social powers, which correspond to the entries in the con-
sensus eigenvector, after each DeGroot process. On a star topology, this model
suggests an accumulation of social power for the central nodes, or the emergence
of an autocrat [Jia et al., 2015].

Star graphs also occur frequently in engineering applications, in which a
single master node communicates with and coordinates the actions of a set
of unconnected slave nodes. A simple example is a simple Wi-Fi network, in
which a wireless router sends and receives data from a set of internet-connected
devices.

Figure 7: (a) The line graph with
12 vertices and no self-loops, and (b)
the zero pattern of its associated ad-
jacency matrix, in which blank entries
represent zeros.

Figure 8: (a) The star graph with
12 vertices and no self-loops, and (b)
the zero pattern of its associated ad-
jacency matrix, in which blank entries
represent zeros.

35

6.1.5 The two-star graph

The two-star graph is defined as the graph composed of a pair of star subgraphs,
of equal size, whose centers are joined by an edge [Jadbabaie and Olshevsky,
2015]. By this definition, the two-star graph always has an even number of
vertices. The two-star graph and its adjacency matrix are provided in Figure 7.

The two-star graph occurs in the context of organizations in which two agents
lead their own respective groups, and communicate with one another.

6.1.6 The lollipop graph

The lollipop graph is another graph composed of two simpler subgraphs; in this
case, a n/2-node line graph joined to a n/2-node star. By this definition, the
lollipop graph always has an even number of vertices. The lollipop graph and
its adjacency matrix are provided in Figure 10.

Figure 9: (a) The two-star graph with
12 vertices and no self-loops, and (b)
the zero pattern of its associated ad-
jacency matrix, in which blank entries
represent zeros.

Figure 10: (a) The lollipop graph with
12 vertices and no self-loops, and (b)
the zero pattern of its associated ad-
jacency matrix, in which blank entries
represent zeros.

6.1.7 The starry line graph

The starry-line graph, introduced by Jadbabaie and Olshevsky [2015], is a dumb-
bell shaped graph, constructed by joining two n/3-node stars to either end of
a n/3-node line. By this definition, the vertex count for the lollipop graph is
always a multiple of three. The graph and its adjacency matrix are provided in
Figure 11.

6.1.8 Two-dimensional grid

The two-dimensional grid graph with n nodes is essentially
√
n separate line

graphs stacked in the plane, with edges joining each vertex to its opposite num-
ber in the adjacent lines. More precisely, the vertex set is given by V = {(i, j) :
i = 1, . . . ,

√
n, j = 1, . . . , n}, where i denotes the row of a vertex, and j denotes

its linear index. On the graph, an edge connects a pair of nodes (i1, j1) and
(i2, j2) if and only if they are separated by a distance of one step on the grid.

36

That is, they are connected if they are one step apart in the same horizontal
row, or if they are a step apart in adjacent rows. This is equivalent to the con-
dition |i1 − i2| + |j1 − j2| = 1 [Jadbabaie and Olshevsky, 2015]. The complete
graph with 9 nodes, and no self-loops, is illustrated in Figure 12, along with the
zero pattern of its associated adjacency matrix.

Figure 11: (a) The starry line graph
with 12 vertices and no self-loops, and
(b) the zero pattern of its associated
adjacency matrix, in which blank en-
tries represent zeros.

Figure 12: (a) The two-dimensional
grid graph with 9 vertices and no self-
loops, and (b) the zero pattern of its
associated adjacency matrix, in which
blank entries represent zeros.

6.2 Edge weights

The focus of this section is on a collection of simple edge-weight rules that
produce row-stochastic, reversible matrices. It is most natural to speak of these
rules in terms of weighted adjacency matrices for a consensus protocol such as
the DeGroot linear averaging model.

6.2.1 Equal-neighbor

The first rule to be considered here is also the simplest. In terms of a DeGroot
process, each individual i in a social network accords influence to their neighbors,
and to themselves. For the equal-neighbor rule, i allots themselves the same
amount of influence as each of their neighbors. Explicitly stated, the weights
for the equal-neighbor rule are assigned according to

pij =

{
1/di, if (i, j) ∈ E
0, otherwise,

where di is the ith element of the degree vector, and E is the edge set of the
graph. Thus, for the DeGroot process, the ith element of x(t) is updated with
the average value of i’s and their neighbors’ opinions at time t [Bullo, 2016].

The equal-neighbor rule produces a symmetric transition matrix for regular
undirected graphs. In general, it produces a reversible transition matrix. To
see this, first notice that for a transition matrix P with equal-neighbor weights,
the consensus eigenvector is given by w> = 1

2|E| [d1 d2 ... dn], where |E| is the

37

edge count in the associated graph G [Bullo, 2016]. Indeed, let P01 denote the
binary adjacency matrix associated to G, and observe that

w>P =
1

2|E|
[d1, . . . , dn]P =

1

2|E|
[d1, . . . , dn]diag(d−11 , . . . , d−1n)P01

=
1

2|E|
1TP01 =

1

2|E|
[d1, . . . , dn] = w>.

Regarding the stochasticity ofw>, 1Tw = 1
2|E|1

T [d1, . . . , dn]T = 1
2|E|

∑n
k=1 dk =

1
2|E|2|E| = 1, as required by Definition 2.4.

Finally, P is reversible since it satisfies the symmetry condition of Theorem
2.5. Indeed,

DwP =
1

2|E|
diag(d1, . . . , dn)P

=
1

2|E|
diag(d1, . . . , dn)[diag(d1, . . . , dn)]

−1
P01

=
1

2|E|
P01 =

(
1

2|E|
P01

)>
= (DwP)

>
,

where P01 is symmetric since G is undirected.
For the complete graph, with a full set of self-loops, the equal-neighbor

weight matrix is the simple average matrix 1
n11>, so the noiseless process con-

verges to consensus after a single iteration.

6.2.2 Metropolis-Hastings

The next set of weights, more commonly used for sampling from complex proba-
bility distributions, and for numerical integration, can also be used in consensus
protocols. The weights are assigned to an adjacency matrix with a full set of
self-loops according to the rule

pij =

1/ (max{di, dj}+ 1) if (i, j) ∈ E
1−

∑
j∈Ni

1/ (max{di, dj}+ 1) i = j

0, otherwise,

where Ni is the set of nodes neighboring i [Xiao et al., 2007].
Applied to the adjacency matrix of an undirected graph the Metropolis-

Hastings weights produce a symmetric transition matrix.

6.2.3 Jadbabaie & Olshevsky eqs. 33, 34

The next set of weights is a variation on the equal-neighbor weights. No par-
ticular name is given for them in [Jadbabaie and Olshevsky, 2015], so in this
paper they will be referred to as the 3334 weights. For a given social network
and the 3334 weights, each individual grants equal portions of influence to each

38

of its neighbors, and the other half of its total influence to themselves. That is,
in forming its opinion, an agent will weight their own opinion as heavily as the
collection of opinions of its neighbors. The weight matrix is constructed in two
steps: first the equal-neighbor weights p̃ij are formed for a connected undirected
graph without self-loops, i.e.,

p̃ij =

{
1/di (i, j) ∈ E ,
0 otherwise;

(6.1)

then self-loops are added, and row-stochasticity is enforced, i.e.,

P =
1

2
I +

1

2
P̃ . (6.2)

It is not difficult to see that since the equal-neighbor weights are reversible, so
are these.

6.2.4 Random

The final set of weights are sampled from the standard uniform distribution on
[0, 1]. The general random weight matrix is formed by populating the nonzero
elements of the binary adjacency matrix with samples from the uniform dis-
tribution, and then normalizing the rows. A bistochastic matrix with random
weights can be obtained by repeatedly normalizing the rows, and columns of
the general random matrix [Cappellini et al., 2009].

A simple way to obtain a random reversible matrix is to simply create a
random symmetric matrix. However, the problem with enforcing symmetry on
a row-stochastic (resp. column-stochastic) matrix is that it breaks the stochas-
ticity property of the matrix. It turns out that this can be countered by simply
adding a step to the process for generating a random bistochastic matrix, de-
tailed in [Cappellini et al., 2009]. In the revised algorithm, the rows of the
matrix are normalized, then the columns, and finally symmetry is enforced by
averaging the matrix with its transpose.

7 Simulation

In this section, the theory accumulated above is used to conduct a simple sim-
ulation, as well as interpret the results. For each graph type, and each choice
of reversible edge weights given in Section 6, the limiting disagreement is com-
puted. This computation is repeated for graphs with 4 to 64 nodes, with slight
variations for graphs requiring special node counts (e.g., the two-dimensional
grid, and starry line graphs). For the case of random edge weights, the compu-
tation is repeated for 10,000 different random matrices for each graph and for
each node count. For the other weights, the transition matrix is fixed for each
graph type, so just one computation per node count is necessary.

39

7.1 Execution

Several important ingredients are required in order to compute the limiting
disagreement of the noisy consensus iteration for a transition matrix P . Specif-
ically, the computation requires the transition matrix itself, the associated con-
sensus eigenvector and MFPT matrix, and specification of the variance of the
additive noise. In this simulation, the additive noise is i.i.d., with unit variance
and zero mean, so the variance matrix is simply the identity matrix.

For this experiment, the update matrix was generated by modifying the
nonzero elements of a binary transition matrix, generated by a separate function.
Specifically, the set of functions adj <type>.m, where type specifies the graph
type, generates these adjacency matrices. As input, these functions require
the vertex count n, and instructions on whether or not to include a full set of
self-loops in the graph. To facilitate later automation, these network generation
functions can be called by way of the driving function make adj.m, which accepts
the same input arguments, in addition to the type of graph desired.

The update matrix, P , is generated by the functions weight <rule>.m,
where rule specifies the rule to be used in assigning edge weights. As input,
these functions take the adjacency matrix A. As with the adjacency matrix
generation functions, the update matrix generation functions can be called by
way of the driver function adj2update.m. The driver accepts the adjacency
matrix as input along with specification of the stochasticity of the output, and
the symmetry of the output. These additional arguments are used to tell teh
function whether or not to call the additional functions make bistochastic.m,
and make symmetric.m, which change random weight matrices into bistochastic
and symmetric matrices, respectively.

The next ingredient for the calculation is the consensus eigenvector of P ;
it is computed by the function consensus eigenvector.m. The function uses
the built-in eigs.m function of MATLAB to compute the eigenvector of P
associated with the eigenvalue 1, and issues a warning if the iteration fails to
converge.

The final piece of the computation is the MFPT matrix M . This can be
computed using either the Sheskin algorithm provided in Section 2.4, or the
more accurate EGTH function provided in the appendix of [Hunter, 2016].

Finally, with these elements, the function limiting disagreement <rev>.m

is able to compute the limiting disagreement for the noisy consensus itera-
tion specified. In the event that only the update matrix, and variance of
the noise are provided, or any combination of the other arguments is miss-
ing, limiting disagreement rev.m will call their respective functions to obtain
them.

In this experiment, the most costly computation was that of obtaining an
MFPT matrix. For this reason, the set of 10,000 random matrices for each
graph and node count (200,000 total) were computed separately along with
their consensus eigenvectors, and MFPT matrices, and saved in a series of .mat
files. This computation took about 9 hours to complete on a 2008 MacBook
with a Core2Duo processor and 2GB of RAM. The functions mentioned above

40

are provided in the appendix.

7.2 Commentary

The plots of limiting disagreement for each type of graph as a function of the
number of vertices are provided in Figures 13, and 16. In the former, the data is
provided on logarithmic scales to capture the wide spread of the data for certain
weight-graph combinations.

The complete graph has the lowest disagreement, for all weights, of any
graph. The disagreement is also bounded, independent of the number of agents,
as remarked upon in [Jadbabaie and Olshevsky, 2015]. On all of the other
graphs considered here, the limiting disagreement grows with the size of the
graph.

The circle and line graphs are nearly identical, the line graph has one less
edge than does the circle. The limiting disagreement between the two is quite
similar as a result, but it is somewhat higher in all cases for the line graph. Taken
together with the nice performance of the complete graph and the fact that the
two-dimensional grid has the second lowest disagreement, this seems to indicate
that a higher degree of connectedness in a graph corresponds to a reduced level
of asymptotic disagreement. Interestingly, the limiting disagreement increases
linearly with node count for all choices of weights for the circle, and line graphs.

The star graph is an interesting case, in that there is a vast disparity in
the limiting disagreement between the different choices of weights - the equal-
neighbor, and 3334 weights perform substantially better than the others. A
similar trend is evident for the two-star graph, but it is much less pronounced.

For the lollipop graph, the union of a star and a line, the nice behavior of
the equal-neighbor and 3334 weights on the star are each overpowered by their
poor performance on the line graph. The starry line graph has similar behavior.
The limiting disagreement increases linearly with node count for the lollipop
and starry line graphs with random and Metropolis-Hastings weights.

In Figures 15 and 16, the limiting disagreement as a function of node count
is plotted for each choice of weights. Interestingly, the star graph, one of the
worst-performing graphs for Metropolis-Hastings and random weights, is the
best performing graph for 3334 weights. A similar phenomenon is observed for
the two-star graph, but it is less pronounced.

Finally, as can be seen in Figure 17, the standard deviation of the dis-
agreement decreases with increasing node count for the complete graph, and
two-dimensional grid. For all other graphs the disagreement and its deviation
tend to increase.

41

10
1

1

∆
s
s

Complete

E-N Rand M-H 3334

10
1

10
1

∆
s
s

Line

E-N Rand M-H 3334

10
1

10
1

10
2

∆
s
s

Two-Star

E-N Rand M-H 3334

10
1

n

10
1

∆
s
s

Starry Line

E-N Rand M-H 3334

10
1

10
0

10
1

∆
s
s

Circle

E-N Rand M-H 3334

10
1

10
0

10
1

∆
s
s

Star

E-N Rand M-H 3334

10
1

10
1

∆
s
s

Lollipop

E-N Rand M-H 3334

10
1

n

1

∆
s
s

2D Grid

E-N Rand M-H 3334

Figure 13: Limiting disagreement as a function of node count for various graphs,
on logarithmic scales.

42

20 40 60

0.8

0.9

1

1.1

1.2

∆
s
s

Complete

E-N Rand M-H 3334

20 40 60

5

10

15

20

∆
s
s

Line

E-N Rand M-H 3334

20 40 60

0

5

10

15

20

∆
s
s

Two-Star

E-N Rand M-H 3334

20 40 60

n

10

20

30

40

50

∆
s
s

Starry Line

E-N Rand M-H 3334

20 40 60

2

4

6

8

10

∆
s
s

Circle

E-N Rand M-H 3334

20 40 60

0

5

10

15

20

∆
s
s

Star

E-N Rand M-H 3334

20 40 60

5

10

15

20

25

30

35

∆
s
s

Lollipop

E-N Rand M-H 3334

20 40 60

n

1

1.5

2

∆
s
s

2D Grid

E-N Rand M-H 3334

Figure 14: Limiting disagreement as a function of node count for various graphs,
on linear scales.

43

10
1

10
0

10
1

∆
s
s

Equal-Neighbor

Complete

Circle

Line

Star

Two-Star

Lollipop

Starry Line

2D Grid

10
1

n

10
0

10
1

∆
s
s

Metropolis-Hastings

Complete

Circle

Line

Star

Two-Star

Lollipop

Starry Line

2D Grid

10
1

10
0

10
1

10
2

∆
s
s

Random

Complete

Circle

Line

Star

Two-Star

Lollipop

Starry Line

2D Grid

10
1

n

10
0

10
1

∆
s
s

Jadbabaie & Olshevsky Eqs. 33-34

Complete

Circle

Line

Star

Two-Star

Lollipop

Starry Line

2D Grid

Figure 15: Limiting disagreement as a function of weight rule for various graphs,
on logarithmic scales.

44

20 40 60

5

10

15

20
∆

s
s

Equal-Neighbor

Complete

Circle

Line

Star

Two-Star

Lollipop

Starry Line

2D Grid

20 40 60

n

5

10

15

20

25

30

∆
s
s

Metropolis-Hastings

Complete

Circle

Line

Star

Two-Star

Lollipop

Starry Line

2D Grid

20 40 60

100

200

300

400

∆
s
s

Random

Complete

Circle

Line

Star

Two-Star

Lollipop

Starry Line

2D Grid

20 40 60

n

10

20

30

40

50

∆
s
s

Jadbabaie & Olshevsky Eqs. 33-34

Complete

Circle

Line

Star

Two-Star

Lollipop

Starry Line

2D Grid

Figure 16: Limiting disagreement as a function of node count for various graphs,
on linear scales.

10
1

n

10
-3

10
-2

10
-1

10
0

10
1

10
2

σ

Standard Deviation of ∆ss

Complete

Circle

Line

Star

Two-Star

Lollipop

Starry Line

2D Grid

Figure 17: Standard deviation of the limiting disagreement for random graphs
as a function of node count, on logarithmic scales.

45

References

U. M. Ascher and L. R. Petzold. Computer Methods for Ordinary Differential
Equations and Differential-Algebraic Equations. 1998. ISBN 0898714125.

F. Bullo. Lectures on Network Systems. Version 0.85, May 2016. URL http://

motion.me.ucsb.edu/book-lns. With contributions by J. Cortés, F. Dörfler,
and S. Mart́ınez.

V. Cappellini, H. J. Sommers, W. Bruzda, and K. Zyczkowski. Random bis-
tochastic matrices. Journal of Physics A: Mathematical and Theoretical, 42
(36):365209, 2009.

M. H. DeGroot. Reaching a consensus. Journal of the American Statistical
Association, 69(345):118–121, 1974.

C. M. Grinstead and J. L. Snell. Introduction to Probability, 2nd edition. Amer-
ican Mathematical Society, 2006. ISBN 0821894145.

J. P. Hespanha. Linear Systems Theory. Princeton University Press, 2009. ISBN
0691140219.

J. J. Hunter. Accurate calculations of stationary distributions and mean first
passage times in markov renewal processes and markov chains. Special Ma-
trices, 4(1):151–175, 2016.

A. Jadbabaie and A. Olshevsky. On performance of consensus protocols sub-
ject to noise: role of hitting times and network structure. arXiv preprint
arXiv:1508.00036, 2015.

P. Jia, A. MirTabatabaei, N. E. Friedkin, and F. Bullo. Opinion dynamics and
the evolution of social power in influence networks. SIAM Review, 57(3):
367–397, 2015.

D. C. Montgomery and G. C. Runger. Applied Statistics and Probability for
Engineers, 4th edition. John Wiley & Sons, 2007. ISBN 0471745898.

T. J. Sheskin. Computing mean first passage times for a Markov chain. Inter-
national Journal of Mathematical Education in Science and Technology, 26
(5):729–735, 1995.

J. Tsitsiklis. Markov chains i-iii. Lecture Notes for 6.041/6.431, Massachusetts
Institute of Technology, 2010.

Wikipedia. Markov chain applications — Wikipedia, the free ency-
clopedia, 2016. URL https://en.wikipedia.org/wiki/Markov_chain#

Applications. [Online; accessed 09-December-2016].

L. Xiao, S. Boyd, and S.-J. Kim. Distributed average consensus with least-
mean-square deviation. Journal of Parallel and Distributed Computing, 67
(1):33–46, 2007.

46

http://motion.me.ucsb.edu/book-lns
http://motion.me.ucsb.edu/book-lns
https://en.wikipedia.org/wiki/Markov_chain#Applications
https://en.wikipedia.org/wiki/Markov_chain#Applications

A Network Generation Functions

A.1 Making an adjacency matrix

This is the driver for the adjacency matrix generating functions in the following
sections.

1 function A = make adj (type , n , va ra rg in)
2 % This func t i on genera te s an n−by−n sparse adjacency matrix . Val id
3 % arguments f o r type are as f o l l ow s : ’ Complete ’ , ’ Circ le ’ , ’ Line ’ , ’ Star ’ ,
4 % ’Two−Star ’ , ’ Lo l l i pop ’ , ’ S tarry Line ’ , ’2D Grid ’ .
5 % Input :
6 % type − adjacency matrix type
7 % n − number o f nodes in graph r e a l i z e d by adj matrix
8 % c − center node , (s t a r graph only) . De fau l t : c=1
9 % s e l f l o o p s − ’ s e l f−loops ’ , or ’no s e l f−loops ’ (d e f a u l t)

10 % Output :
11 % A − n−by−n sparse b inary adjacency matrix
12 % Syntax :
13 % A = make adj (type , n)
14 % A = make adj (type , n , s e l f l o o p s)
15 % A = make adj (’ Star ’ , n)
16 % A = make adj (’ Star ’ , n , c)
17 % A = make adj (’ Star ’ , n , c , s e l f l o o p s)

19 switch nargin
20 case 1
21 error (’Not enough input arguments ! ’)
22 case 2
23 s e l f l o o p s = ’ no s e l f −l oops ’ ;
24 c = 1 ;
25 case 3
26 i f strcmp (type , ’ Star ’)
27 i f i snumer ic (vara rg in {1})
28 c = vararg in {1} ;
29 s e l f l o o p s = ’ no s e l f −l oops ’ ;
30 e l s e i f i s c h a r (vara rg in {1})
31 c = 1 ;
32 s e l f l o o p s = vararg in {1} ;
33 else
34 error (’ Unrecognized input argument f o r ’ ’ Star ’ ’ graph . ’)
35 end
36 end
37 s e l f l o o p s = vararg in {1} ;
38 case 4
39 i f strcmp (type , ’ Star ’)
40 c = vararg in {1} ;
41 s e l f l o o p s = vararg in {2} ;
42 end
43 end

45 switch type
46 case ’ Complete ’
47 A = adj complete (n , s e l f l o o p s) ;
48 case ’ C i r c l e ’
49 A = a d j c i r c l e (n , s e l f l o o p s) ;
50 case ’ Line ’

47

51 A = ad j l i n e (n , s e l f l o o p s) ;
52 case ’ Star ’
53 A = ad j s t a r (n , c , s e l f l o o p s) ;
54 case ’Two−Star ’
55 A = ad j twos ta r (n , s e l f l o o p s) ;
56 case ’ Lo l l i pop ’
57 A = a d j l o l l i p o p (n , s e l f l o o p s) ;
58 case ’ Starry Line ’
59 A = ad j s t a r r y l i n e (n , s e l f l o o p s) ;
60 case ’ 2D Grid ’
61 A = adj twoDgrid (n , s e l f l o o p s) ;
62 otherwi se
63 error (’ Unrecognized input argument : adjacency matrix type . ’)
64 end

66 return

A.1.1 The complete graph

1 function A = adj complete (n , vara rg in)
2 % This func t i on makes an adjacency matrix A fo r a complete graph with
3 % n nodes .
4 % Input :
5 % n − number o f nodes in graph
6 % s e l f l o o p s − ’ s e l f−loops ’ , or ’no s e l f−loops ’ (d e f a u l t)
7 % Output :
8 % A − adjacency matrix
9 % Syntax :

10 % A = adj comple te (n)
11 % A = adj comple te (n , ’ s e l f−loops ’)
12 % A = adj comple te (n , ’ s e l f−loops ’)

14 switch nargin
15 case 1
16 A = ones (n)−speye (n) ;
17 case 2
18 i f strcmp (vararg in {1} , ’ s e l f −l oops ’)
19 A = ones (n) ;
20 e l s e i f strcmp (vararg in {1} , ’ no s e l f −l oops ’)
21 A = ones (n)−speye (n) ;
22 end
23 end

25 return

A.1.2 The circle graph

1 function A = a d j c i r c l e (n , vara rg in)
2 % This func t i on makes a sparse adjacency matrix A fo r a c i r c l e graph with n
3 % nodes .
4 % Input :
5 % n − number o f nodes in graph
6 % s e l f l o o p s − ’ s e l f−loops ’ , or ’no s e l f−loops ’ (d e f a u l t)

48

7 % Output :
8 % A − adjacency matrix
9 % Syntax :

10 % A = ad j c i r c l e (n)
11 % A = ad j c i r c l e (n , ’ s e l f−loops ’)
12 % A = ad j c i r c l e (n , ’ no s e l f−loops ’)

14 switch nargin
15 case 1
16 A = spdiags (ones (n , 4) , [−(n−1) , −1, 1 , n−1] , n , n) ;
17 case 2
18 i f strcmp (vararg in {1} , ’ s e l f −l oops ’)
19 A = a d j c i r c l e (n) + speye (n) ;
20 e l s e i f strcmp (vararg in {1} , ’ no s e l f −l oops ’)
21 A = a d j c i r c l e (n) ;
22 end
23 end

25 return

A.1.3 The line graph

1 function A = ad j l i n e (n , vara rg in)
2 % This func t i on makes a sparse adjacency matrix A fo r a l i n e graph with n
3 % nodes .
4 % Input :
5 % n − number o f nodes in graph
6 % s e l f l o o p s − ’ s e l f−loops ’ , or ’no s e l f−loops ’ (d e f a u l t)
7 % Output :
8 % A − adjacency matrix
9 % Syntax :

10 % A = ad j l i n e (n)
11 % A = ad j l i n e (n , ’ s e l f−loops ’)
12 % A = ad j l i n e (n , ’ s e l f−loops ’)

14 switch nargin
15 case 1
16 A = spdiags (ones (n , 2) , [−1 ,1] , n , n) ;
17 case 2
18 i f strcmp (vararg in {1} , ’ s e l f −l oops ’)
19 A = ad j l i n e (n) + speye (n) ;
20 e l s e i f strcmp (vararg in {1} , ’ no s e l f −l oops ’)
21 A = ad j l i n e (n) ;
22 end
23 end

25 return

A.1.4 The star graph

1 function A = ad j s t a r (n , vara rg in)
2 % This func t i on makes a sparse adjacency matrix A fo r a s t a r graph with n
3 % nodes and center node c .

49

4 % Input :
5 % n − number o f nodes in graph
6 % c − center node
7 % s e l f l o o p s − ’ s e l f−loops ’ , or ’no s e l f−loops ’ (d e f a u l t)
8 % Output :
9 % A − adjacency matrix

10 % Syntax :
11 % A = ad j s t a r (n)
12 % A = ad j s t a r (n , c)
13 % A = ad j s t a r (n , c , ’ s e l f−loops ’)
14 % A = ad j s t a r (n , c , ’no s e l f−loops ’)

16 % To Do: f i nd out which plan i s f a s t e r f o r l a r g e matr ices .

18 % plan 1 : s u b t r a c t center node from se t with s e t d i f f ()
19 % A = sparse ([s e t d i f f (1 : n , c) , c∗ones (1 , n−1)] , . . .
20 % [c∗ones (1 , n−1) , s e t d i f f (1 : n , c)] , 1 ,n ,n , 2∗(n−1));

22 switch nargin
23 case 1
24 A = ad j s t a r (n , 1 , ’ no s e l f −l oops ’) ;
25 case 2
26 i f i snumer ic (vara rg in {1})
27 c = vararg in {1} ;
28 s e l f l o o p s = ’ no s e l f −l oops ’ ;
29 e l s e i f i s c h a r (vara rg in {1})
30 c = 1 ;
31 s e l f l o o p s = vararg in {1} ;
32 else
33 error (’ Unrecognized input argument f o r ’ ’ Star ’ ’ graph . ’)
34 end
35 A = ad j s t a r (n , c , s e l f l o o p s) ;
36 case 3
37 c = vararg in {1} ;
38 s e l f l o o p s = vararg in {2} ;
39 i f c == 1
40 A = sparse ([2 : n , ones (1 , n−1)] , . . .
41 [ones (1 , n−1) , 2 : n] , 1 , n , n , 2∗(n−1)) ;
42 e l s e i f c == n
43 A = sparse ([1 : n−1, c∗ ones (1 , n−1)] , . . .
44 [c∗ ones (1 , n−1) , 1 : n−1] , 1 , n , n , 2∗(n−1)) ;
45 else
46 A = sparse ([1 : c−1, c+1:n , c∗ ones (1 , n−1)] , . . .
47 [c∗ ones (1 , n−1) , 1 : c−1, c+1:n] , 1 , n , n , 2∗(n−1)) ;
48 end
49 end

51 i f strcmp (s e l f l o o p s , ’ s e l f −l oops ’)
52 A = A + speye (n) ;
53 end

55 return

A.1.5 The two-star graph

50

1 function A = adj twos ta r (n , vara rg in)
2 % This func t i on makes a sparse adjacency matrix A fo r a two−s t a r graph with
3 % n nodes , center nodes 1 and n , and s t a r s o f equa l s i z e connected at t h e i r
4 % cente r s .
5 % adjacency matrix .
6 % Input :
7 % n − number o f nodes in graph . Must be even .
8 % s e l f l o o p s − ’ s e l f−loops ’ , or ’no s e l f−loops ’ (d e f a u l t)
9 % Output :

10 % A − adjacency matrix f o r two−s t a r graph
11 % Syntax :
12 % A = ad j twos t a r (n)
13 % A = ad j twos t a r (n , ’ s e l f−loops ’)

15 i f mod(n , 2) == 1
16 error (’ Dimension o f input matrix must be even ! ! ! ’)
17 end

19 switch nargin
20 case 1
21 A = sparse ([ones (1 , n /2) , n/2+1:n−1] , [2 : n/2 , n∗ ones (1 , n / 2)] , . . .
22 1 , n , n , 2∗n−1);
23 A = A + A. ’ ;
24 case 2
25 i f strcmp (vararg in {1} , ’ s e l f −l oops ’)
26 A = ad j twos ta r (n) + speye (n) ;
27 e l s e i f strcmp (vararg in {1} , ’ no s e l f −l oops ’)
28 A = ad j twos ta r (n) ;
29 end
30 end

32 return

A.1.6 The lollipop graph

1 function A = ad j l o l l i p o p (n , vara rg in)
2 % This func t i on makes a sparse adjacency matrix A fo r a l o l l i p o p graph with
3 % n nodes , i . e . , a graph con s i s t i n g o f a n/2−node l i n e graph , and a
4 % n/2−node complete graph , connected at nodes n/2 and n/2 +1.
5 % Input :
6 % n − number o f nodes in graph . Must be even .
7 % s e l f l o o p s − ’ s e l f−loops ’ , or ’no s e l f−loops ’ (d e f a u l t)
8 % Output :
9 % A − adjacency matrix f o r l o l l i p o p graph

10 % Syntax :
11 % A = a d j l o l l i p o p (n)
12 % A = a d j l o l l i p o p (n , ’ s e l f−loops ’)
13 % A = a d j l o l l i p o p (n , ’no s e l f−loops ’)

15 i f mod(n , 2) == 1
16 error (’ Dimension o f input matrix must be even ! ! ! ’)
17 end

19 switch nargin
20 case 1
21 % plan 1 : put submatr ices on diagonal , connect nodes n/2 and (n/2 +1)

51

22 A = blkd iag (a d j l i n e (n/2) , a d j s t a r (n/2 , 1)) ;
23 A(n/2 , n/2+1) = 1 ;
24 A(n/2+1, n/2) = 1 ;
25 case 2
26 i f strcmp (vararg in {1} , ’ s e l f −l oops ’)
27 A = a d j l o l l i p o p (n) + speye (n) ;
28 e l s e i f strcmp (vararg in {1} , ’ no s e l f −l oops ’)
29 A = a d j l o l l i p o p (n) ;
30 end
31 end

33 return

A.1.7 The starry line graph

1 function A = ad j s t a r r y l i n e (n , vararg in)
2 % This func t i on makes a sparse adjacency matrix A fo r a s t a r r y l i n e graph
3 % with n nodes . The graph i s made up o f a l i n e n/3−node l i n e graph , and two
4 % n/3−node s t a r graphs , with an edge connect ing the center o f each s t a r to
5 % a e i t h e r end o f the l i n e . The r e s u l t i s a dumbbel l−shaped graph .
6 % Input :
7 % n − number o f nodes in graph . Must be d i v i s i b l e by 3
8 % s e l f l o o p s − ’ s e l f−loops ’ , or ’no s e l f−loops ’ (d e f a u l t)
9 % Output :

10 % A − adjacency matrix f o r l o l l i p o p graph
11 % Syntax :
12 % A = ad j s t a r r y l i n e (n)
13 % A = ad j s t a r r y l i n e (n , ’ s e l f−loops ’)
14 % A = ad j s t a r r y l i n e (n , ’ s e l f−loops ’)

16 i f mod(n , 3) ˜= 0
17 error (’ Dimension o f input matrix must be a mul t ip l e o f 3 ! ! ! ’)
18 end

20 switch nargin
21 case 1
22 % plan 1 : put submatr ices on diagonal , add connect ions i n d i v i d u a l l y
23 A = blkd iag (a d j s t a r (n/3 , 1) , a d j l i n e (n/3) , a d j s t a r (n/3 , n / 3)) ;
24 A(1 , n/3+1) = 1 ;
25 A(n/3+1, 1) = 1 ;
26 A(2∗n/3 , n) = 1 ;
27 A(n , 2∗n/3) = 1 ;
28 case 2
29 i f strcmp (vararg in {1} , ’ s e l f −l oops ’)
30 A = ad j s t a r r y l i n e (n) + speye (n) ;
31 e l s e i f strcmp (vararg in {1} , ’ no s e l f −l oops ’)
32 A = ad j s t a r r y l i n e (n) ;
33 end
34 end

36 return

A.1.8 The two-dimensional grid graph

52

1 function A = adj twoDgrid (n , vararg in)
2 % This func t i on makes a sparse adjacency matrix A fo r a two−dimensional
3 % gr id graph with n nodes , where n i s a p e r f e c t square .
4 % Input :
5 % n − number o f nodes in graph . Must be a p e r f e c t square
6 % s e l f l o o p s − ’ s e l f−loops ’ , or ’no s e l f−loops ’ (d e f a u l t)
7 % Output :
8 % A − adjacency matrix f o r two−dimensional g r i d graph
9 % Syntax :

10 % A = adj twoDgrid (n)
11 % A = adj twoDgrid (n , ’ s e l f−loops ’)
12 % A = adj twoDgrid (n , ’no s e l f−loops ’)

14 i f mod(sqrt (n) , 1) ˜= 0
15 error (’ Dimension o f input matrix must be a p e r f e c t square ! ! ! ’)
16 end

18 switch nargin
19 case 1
20 n o d e l i s t = [reshape (meshgrid (1 : sqrt (n) , 1 : sqrt (n)) , [n , 1]) , . . .
21 repmat ((1 : sqrt (n)) ’ , sqrt (n) , 1)] ;
22 e = 0 ;
23 n edges = 2∗ sqrt (n)∗ (sqrt (n)−1);
24 e d g e l i s t = zeros (n edges , 2) ;
25 for n1 = 1 : length (n o d e l i s t)
26 for n2 = n1 : length (n o d e l i s t)
27 i f abs (n o d e l i s t (n1 ,1)− n o d e l i s t (n2 , 1)) . . .
28 + abs (n o d e l i s t (n1 ,2)− n o d e l i s t (n2 , 2)) == 1
29 e = e+1;
30 e d g e l i s t (e , :) = [n1 , n2] ;
31 end
32 end
33 end
34 I = ind2sub ([n , n] , e d g e l i s t) ;
35 A = sparse (I (: , 1) , I (: , 2) , 1 , n , n , n edges) ;
36 A = A + A. ’ ;
37 case 2
38 i f strcmp (vararg in {1} , ’ s e l f −l oops ’)
39 A = adj twoDgrid (n) + speye (n) ;
40 e l s e i f strcmp (vararg in {1} , ’ no s e l f −l oops ’)
41 A = adj twoDgrid (n) ;
42 end
43 end
44 return

B Transition matrix operations

B.1 Conversion to update matrix

This is the driver for the update matrix generation functions in the following
sections.

1 function P = adj2update (A, ru le , vara rg in)
2 % This func t i on take s an adjacency matrix input (not n e c e s s a r i l y b inary)

53

3 % and outputs a row−s t o c h a s t i c adjacency matrix , wi th we igh t s ass i gned
4 % according to the user−input ru l e . The f o l l ow i n g we igh t ing r u l e s are
5 % accepted :
6 % ru l e | in each row , each nonzero element
7 % −−−−−−−−−−−−−−−−−+−−−
8 % ’ equa l neighbor ’ | has the same weight .
9 % ’random ’ | i s sampled from the uniform d i s t r i b u t i o n on (0 ,1)

10 % ’M−H’ | has the Metropol is−Hast ings weight
11 % ’3334 ’ | has we igh t s from eqs . 33 ,34 o f [AJ−AO:15] , see
12 % | weight 3334 .m for more informat ion .
13 % ’ in−degree ’ | has weight p ropor t i ona l to in−degree
14 % ’ out−degree | has weight p ropor t i ona l to out−degree
15 % ’ c en t r a l i t y ’ | has weight p ropor t i ona l to some not ion o f c e n t r a l i t y
16 % | (betweenness , c l o seness , e igenva lue , e t c . . .)
17 %
18 % Input :
19 % A − an n−by−n adjacency matrix
20 % ru l e − weigh t ing ru l e chosen from the t a b l e above)
21 % s t o c h a s t i c i t y − ’ row ’ (d e f a u l t) or ’ bi ’
22 % symmetry − i f asymmetric enter ’asym ’ (d e f a u l t) , e l s e ’sym ’ .
23 % Output :
24 % P − the r e s u l t i n g update matrix
25 % Syntax :
26 % P = adj2update (A, ru l e)
27 % P = adj2update (A, ru le , s t o c h a s t i c i t y)
28 % P = adj2update (A, ru le , s t o c h a s t i c i t y , symmetry)

30 switch nargin
31 case 1
32 error (’Not enough input arguments ! ’)
33 case 2
34 s t o c h a s t i c i t y = ’ row ’ ;
35 symmetry = ’asym ’ ;
36 case 3
37 s t o c h a s t i c i t y = vararg in {1} ;
38 symmetry = ’asym ’ ;
39 case 4
40 s t o c h a s t i c i t y = vararg in {1} ;
41 symmetry = vararg in {2} ;
42 end

44 i s r e g = i s r e g u l a r (A) ;
45 switch ru l e
46 case ’ equal ne ighbor ’
47 i f strcmp (symmetry , ’ sym ’) && ˜ i s r e g
48 error ([’Can ’ ’ t make non−r e gu l a r update matrix ’ . . .
49 ’ symmetric with equal ne ighbor weights . ’]) ;
50 end
51 i f strcmp (s t o c h a s t i c i t y , ’ b i ’) && ˜ i s r e g
52 error ([’Can ’ ’ t make non−r e gu l a r update matrix ’ . . .
53 ’ b i s t o c h a s t i c with equal ne ighbor weights . ’]) ;
54 end
55 P = we ight equa l ne i ghbor (A) ;
56 case ’ random ’
57 P = weight random (A) ;
58 i f strcmp (symmetry , ’ sym ’)
59 P = make symmetric (P) ; % use d e f a u l t TOL & NMAX

54

60 e l s e i f strcmp (s t o c h a s t i c i t y , ’ b i ’) && ˜strcmp (symmetry , ’ sym ’)
61 P = make b i s t ochas t i c (P) ; % use d e f a u l t TOL & NMAX
62 end
63 case ’M−H’
64 P = we i gh t me t r opo l i s ha s t i n g s (A) ;
65 case ’ 3334 ’
66 P = weight 3334 (A) ;
67 i f strcmp (s t o c h a s t i c i t y , ’ b i ’) && ˜ i s r e g
68 error ([’Can ’ ’ t make non−r e gu l a r update matrix ’ . . .
69 ’ b i s t o c h a s t i c with 33 ,34 weights . ’]) ;
70 end
71 case ’ in−degree ’
72 error (’ S e l e c t ed weight r u l e under con s t ruc t i on . ’)
73 case ’ out−degree ’
74 error (’ S e l e c t ed weight r u l e under con s t ruc t i on . ’)
75 case ’ c e n t r a l i t y ’
76 error (’ S e l e c t ed weight r u l e under con s t ruc t i on . ’)
77 end

79 return

B.1.1 Equal neighbor weights

1 function P = we ight equa l ne i ghbor (A)
2 % This func t i on take s the b inary adjacency matrix A fo r a graph G and makes
3 % a weighted adjacency matrix us ing the equal−neighbor ru l e . That i s , f o r a
4 % given node , the s e l f−weight and we igh t s accorded to i t s out−ne ighbors are
5 % equa l . As an example , Sam g i v e s as much c r e d i t to the though t s o f each o f
6 % hi s f r i e nd s as he does to h imse l f . I f A i s symmetric , or e qu i v a l en t l y , i f
7 % G i s undirected , then P i s symmetric and doub ly s t o c h a s t i c .
8 % Input :
9 % A − n−by−n binary adjacency matrix w/ or w/o s e l f−l oops

10 % Output :
11 % P − n−by−n weighted adjacency matrix with s e l f−l oops
12 % Syntax :
13 % P = we i gh t e qua l n e i gh bo r (A)

15 n = length (A) ;
16 i f ˜ h a s s e l f l o o p s (A)
17 A = A + speye (n) ; % add s e l f−l oops
18 end
19 [i , j] = ind2sub ([n , n] , find (A)) ; % f ind nonzero e lements
20 P = sparse (i , j , 1 , n , n ,nnz(A)) ; % rep lace with ones
21 P = spdiags (1 . /sum(P, 2) , 0 , n , n)∗P;

23 return

B.1.2 Random weights

1 function P = weight random (A)
2 % This func t i on take s the b inary adjacency matrix A fo r a graph G and makes
3 % i t row−s t o cha s t i c , wi th e lements sampled from the uniform d i s t r i b u t i o n on
4 % (0 ,1) . I f A i s symmetric , or e qu i v a l en t l y , i f G i s undirected , then P i s

55

5 % symmetric and doub ly s t o c h a s t i c .
6 % Input :
7 % A − n−by−n binary adjacency matrix w/ or w/o s e l f−l oops
8 % Output :
9 % P − n−by−n weighted adjacency matrix with s e l f−l oops

10 % Syntax :
11 % P = weight random (A)

13 n = length (A) ;
14 i f ˜ h a s s e l f l o o p s (A) % add s e l f−l oops
15 A = A + speye (n) ; % at every node
16 end
17 [i , j] = ind2sub ([n , n] , find (A)) ; % f ind nonzero e lements
18 P = sparse (i , j , rand (length (i) , 1) , n , n ,nnz(A)) ; % rep lace with rand #s
19 P = spdiags (1 . /sum(P, 2) , 0 , n , n)∗P; % make row−s t o c h a s t i c

21 return

B.1.3 Metropolis-Hastings weights

1 function P = we i gh t me t r opo l i s ha s t i n g s (A)
2 % This func t i on take s the b inary adjacency matrix A fo r a graph G and makes
3 % a weighted adjacency matrix us ing the Metropol is−Hast ings ru l e .
4 % Input :
5 % A − n−by−n binary adjacency matrix w/ s e l f−l oops at every node
6 % Output :
7 % P − n−by−n weighted adjacency matrix
8 % Syntax :
9 % P = we i g h t me t r opo l i s h a s t i n g s (A)

11 n = length (A) ;

13 i f nnz(diag (A)) < n
14 error (’ Input adjacency matrix must have s e l f −l oops at every ver tex . ’)
15 end

17 d = sum(A, 2) ;
18 P = A−diag (diag (A)) ;
19 for i = 1 : n
20 for j = 1 : n
21 i f j ˜= i && A(i , j)
22 P(i , j) = 1/(max([d (i) , d (j)])) ;
23 end
24 end
25 end
26 P = P + diag(1−sum(P , 2)) ;

28 return

B.1.4 Jadbabaie & Olshevsky eqs. 33, 34

1 function P = weight 3334 (A)
2 % This func t i on take s the b inary adjacency matrix A fo r a graph G and makes

56

3 % a weighted adjacency matrix us ing equa t ions 33 and 34 in the paper :
4 % A. Jadbabaie and A. Olshevsky . On performance o f consensus p ro t o co l s
5 % sub j e c t to noise : r o l e o f h i t t i n g t imes and network s t r u c t u r e . arXiv
6 % prepr in t arXiv :1508.00036 , 2015.
7 % Input :
8 % A − n−by−n binary adjacency matrix
9 % Output :

10 % P − n−by−n row−s t o cha s t i c , r e v e r s i b l e t r a n s i t i o n matrix
11 % Syntax :
12 % P = weight 3334 (A)

14 n = length (A) ;

16 i f any(diag (A)) % Remove s e l f−l oops
17 A = A−spdiags (diag (A) , 0 , n , n) ;
18 end

20 P = 0.5∗ spdiags (1 . /sum(A, 2) , 0 , n , n)∗A + 0.5∗ speye (n) ; % Do Eqs . 33 & 34

22 return

B.1.5 Enforcing bistochasticity

1 function [B, s t ep s] = make b i s t ochas t i c (P, vara rg in)
2 % This func t i on implements Sinkhorn ’ s 1964 i t e r a t i o n fo r computing a
3 % b i s t o c h a s t i c matrix .
4 % For more : see
5 % V. Cappe l l in i , H. J . Sommers , W. Bruzda , and K. Zyczkowski . Random
6 % b i s t o c h a s t i c matr ices . Journal o f Physics A: Mathematical and
7 % Theore t i ca l , 42(36):365209 , 2009.
8 % Input :
9 % P − update matrix to be made b i s t o c h a s t i c

10 % TOL − t o l e rance on row & column sums , d e f a u l t : TOL=1e−15/n
11 % NMAX − maximum number o f i t e r a t i o n s , d e f a u l t :5 e2
12 % Output :
13 % B − b i s t o c h a s t i c update matrix
14 % i s b i − Boolean , i s B b i s t o c h a s t i c ?
15 % st ep s − number o f i t e r a t i o n s
16 % Syntax :
17 % B = make b i s t o cha s t i c (P)
18 % B = make b i s t o cha s t i c (P, TOL, NMAX)
19 % [B, s t e p s] = make b i s t o cha s t i c (P)
20 % [B, s t e p s] = make b i s t o cha s t i c (P, TOL, NMAX)

22 switch nargin
23 case 1
24 TOL = 1e−15;
25 NMAX = 5e2 ;
26 case 3
27 TOL = vararg in {1} ;
28 NMAX = vararg in {2} ;
29 end

31 B = P;
32 s t ep s = 0 ;
33 e r r = realmax ;

57

34 while e r r > TOL && step s < NMAX
35 s t ep s = s t ep s +1;
36 B = diag (1 . /sum(B, 2)) ∗B; % make row−s t o c h a s t i c
37 B = B∗diag (1 . /sum(B, 1)) ; % make column−s t o c h a s t i c
38 e r r = f u l l (max([sum(B, 1) sum(B, 2) . ’])) − 1 ;
39 end

41 i f e r r > TOL | | s t ep s >= NMAX
42 warning (’ I t e r a t i o n f a i l e d to converge ! ’)
43 end

45 return

48 % rowsum = sum(B,2) , colsum = sum(B,2) , s t eps remain ing = NMAX−s t e p s

B.1.6 Enforcing symmetry

1 function [S] = make symmetric (P, vara rg in)
2 % Given a weighted update matrix P, as from adj2update () , t h i s func t i on
3 % makes the weight matrix symmetric . Note t ha t t h i s can only be done fo r
4 % update matr ices whose b inary adjacency matr ices are symmetric . This
5 % func t ion uses Sinkhorn ’ s 1964 i t e r a t i o n fo r computing a
6 % b i s t o c h a s t i c matrix , but with the added s t ep o f en forc ing symmetry at the
7 % end of each i t e r a t i o n .
8 % For more about making a b i s t o c h a s t i c matrix see :
9 % V. Cappe l l in i , H. J . Sommers , W. Bruzda , and K. Zyczkowski . Random

10 % b i s t o c h a s t i c matr ices . Journal o f Physics A: Mathematical and
11 % Theore t i ca l , 42(36):365209 , 2009.
12 % Input :
13 % P − weighted update matrix
14 % TOL − t o l e rance fo r make b i s t o cha s t i c () , e . g . 1e−5, d e f a u l t i s
15 % make b i s t o cha s t i c () ’ s d e f a u l t (1e−15).
16 % NMAX − maximum number o f i t e r a t i o n s f o r make b i s t o cha s t i c () ,
17 % de f a u l t i s make b i s t o cha s t i c () ’ s d e f a u l t (5 e2) .
18 % Output :
19 % S − symmetric weight matrix
20 % Syntax :
21 % S = make symmetric (P)
22 % S = make symmetric (P,TOL,NMAX)

24 switch nargin
25 case 1
26 TOL = 1e−15;
27 NMAX = 5e2 ;
28 case 3
29 TOL = vararg in {1} ;
30 NMAX = vararg in {2} ;
31 end

33 S = P;
34 s t ep s = 0 ;
35 e r r = realmax ;
36 while e r r > TOL && step s < NMAX
37 s t ep s = s t ep s +1;
38 S = diag (1 . /sum(S , 2)) ∗ S ; % make row−s t o c h a s t i c

58

39 S = S∗diag (1 . /sum(S , 1)) ; % make column−s t o c h a s t i c
40 S = 0 . 5∗ (S+S . ’) ; % make symmetric
41 e r r = f u l l (max([sum(S , 1) sum(S , 2) . ’])) − 1 ;
42 end

44 i f e r r > TOL | | s t ep s >= NMAX
45 warning (’ I t e r a t i o n f a i l e d to converge ! ’)
46 end

48 return

B.2 Hitting times

1 function M = h i t t i n g t ime (P)
2 % This func t i on computes the matrix o f h i t t i n g times , M, f o r an ergod ic
3 % Markov chain , g iven input p r o b a b i l i t y t r a n s i t i o n matrix P. The
4 % computation i s car r i ed out us ing the method o f matrix reduc t ion
5 % demonstrated in the f o l l ow i n g paper :
6 % T. J . Sheskin . Computing mean f i r s t passage t imes f o r a markov chain .
7 % In t e rna t i ona l Journal o f Mathematical Education in Science and
8 % Technology , 26(5) :729 7 3 5 , 1995.
9 % Input :

10 % P − r−by−r , i r r e du c i b l e , s t o c h a s t i c matrix
11 % Output :
12 % M − r−by−r matrix o f mean f i r s t passage t imes
13 % Syntax :
14 % M = h i t t i n g t ime (P)

16 r = length (P) ;
17 N = r−1;
18 M = zeros (r , r) ;

20 for j = 1 : r
21 i f j > 1 && j < r
22 Q = P([1 : j −1, j +1: r] , [1 : j −1, j +1: r]) ;
23 e l s e i f j == 1 ;
24 Q = P(2 : r , 2 : r) ;
25 e l s e i f j == r
26 Q = P(1 : r −1 ,1: r−1);
27 end
28 G = [zeros (N, 1) , eye (N,N) ; ones (N, 1) , Q] ;

30 k = N;
31 while k > 0
32 T(1 :N+k−1 ,1:k) = G(1 :N+k−1 ,1:k) ; % plan 1 ,2 ,3
33 R(1 , 1 : k) = G(N+k , 1 : k) ;
34 U(1 :N+k−1 ,1) = G(1 :N+k−1,k+1);
35 Q = G(N+k , k+1);
36 G(1 :N+k−1 ,1:N+k−2−1) = T(1 :N+k−1 ,1:k) + U(1 :N+k−1 ,1)∗R(1 , 1 : k)/(1−Q) ;
37 k = k−1;
38 end

40 i f j == 1
41 M(2 : r , j) = G(1 :N, 1) ;
42 e l s e i f j == r

59

43 M(1 :N, j) = G(1 :N, 1) ;
44 else
45 M([1 : j −1, j +1: r] , j) = G(1 :N, 1) ;
46 end
47 end
48 return

C Consensus protocols

C.1 Consensus iteration

1 function [X, varargout] = c on s e n s u s i t e r a t i o n (P, x0 , vara rg in)
2 % This func t i on implements the n o i s e l e s s consensus i t e r a t i o n with update
3 % matrix W, i n i t i a l opinion vec tor x0 , and i t e r a t i n g on x u n t i l each o f i t s
4 % elements have d i f f e r e n c e no l a r g e r than TOL times the i n i t i a l maximum
5 % di f f e r ence , or u n t i l the number o f i t e r a t i o n s reaches NMAX. I f the
6 % consensus f l a g i s true , then the i t e r a t i o n process w i l l be bypassed , and
7 % the func t ion w i l l re turn the consensus opinion o f the group , i f i t
8 % e x i s t s . In t h i s case , the output consensus−reached f l a g on the w i l l be
9 % se t to t rue .

10 % Input :
11 % W − row−s t o cha s t i c , n−by−n update matrix
12 % x0 − n−by−1 vec tor o f i n i t i a l op in ions
13 % TOL − e x i t i t e r a t i o n when d i f f e r e n c e between each pa i r o f
14 % succ e s s i v e i t e r a t e s i s l e s s than or equa l to TOL times the
15 % i n i t i a l d i f f e r e n c e . By de f au l t , TOL = 1e−3.
16 % NMAX − e x i t i t e r a t i o n a f t e r number o f i t e r a t i o n s reaches NMAX. By
17 % de fau l t , NMAX = 1e2 .
18 % BI − Bypass i t e r a t i o n ? I f so , BI = 1 , e l s ew i s e BI = 0. By
19 % de fau l t , BI = 0.
20 % Output :
21 % X − matrix conta in ing each i t e r a t e o f the opinion x
22 % CR − consensus reached? I f so , CR = 1 , e l s ew i s e CR = 0.
23 % st ep s − number o f s t e p s taken
24 % w − the l e f t −e i g envec to r o f P with e i g enva lue 1 , normalized to
25 % have un i t sum .
26 % Syntax :
27 % X = cons en su s i t e r a t i on (P, x0)
28 % X = cons en su s i t e r a t i on (P, x0 ,TOL,NMAX)
29 % X = cons en su s i t e r a t i on (P, x0 ,TOL,NMAX,BI)
30 % [X CR] = con s en su s i t e r a t i on (P, x0)
31 % [X CR] = con s en su s i t e r a t i on (P, x0 ,TOL,NMAX)
32 % [X CR] = con s en su s i t e r a t i on (P, x0 ,TOL,NMAX,BI)
33 % [X CR s t ep s] = con s en su s i t e r a t i on (P, x0)
34 % [X CR s t ep s] = con s en su s i t e r a t i on (P, x0 ,TOL,NMAX)
35 % [X CR s t ep s] = con s en su s i t e r a t i on (P, x0 ,TOL,NMAX,BI)
36 % [X CR s t ep s w] = con s en su s i t e r a t i on (P, x0)
37 % [X CR s t ep s w] = con s en su s i t e r a t i on (P, x0 ,TOL,NMAX)
38 % [X CR s t ep s w] = con s en su s i t e r a t i on (P, x0 ,TOL,NMAX,BI)

40 switch nargin
41 case 2 % Given : P, x0 Set : TOL, NMAX, BI
42 TOL = 1e−3;
43 NMAX = 1e2 ;

60

44 BI = 0 ;
45 case 4 % Given P, x0 , TOL, NMAX Set : BI
46 TOL = vararg in {1} ;
47 NMAX = vararg in {2} ;
48 BI = 0 ;
49 case 5 % Given P, x0 , TOL, NMAX, BI Set : nothing
50 TOL = vararg in {1} ;
51 NMAX = vararg in {2} ;
52 BI = vararg in {3} ;
53 otherwi se
54 error (’ Unsupported number o f input arguments . ’)
55 end

57 n = length (P) ;

59 i f nargout == 4 | | BI == 1
60 [V,D] = e i g s (P . ’) ; % Eigenva l s . & l e f t e i g envecs .
61 [DR,DC] = find (D==max(max(abs (D)))) ; % Locate dominant e i g enva l .
62 i f D(DR,DC) >= 1−1e3∗eps && D(DR,DC) <= 1+1e3∗eps
63 CR = 1 ; % Consensus reached i f
64 else % dominant e i g enva lue = +1
65 CR =0;
66 end
67 w = V(: ,DC) ; % ”dominant” e igenvec .
68 w = w/(ones (1 , n)∗w) ; % normalized to have un i t sum
69 X = w. ’∗ x0∗ ones (n , 1) ; % consensus va lue
70 s t ep s = 0 ; % i t e r a t e d 0 times . Could use 2nd
71 % l a r g e s t e i g enva l . to es t imate number
72 % of s t e p s to consensus .
73 end

75 env0 = max(x0)−min(x0) ;
76 i f BI == 0 % Don’ t bypass i t e r a t i o n
77 X = zeros (n ,NMAX+1);
78 s t ep s = 1 ;
79 X(: , s t ep s) = x0 ;
80 CR = 0 ;
81 while s t ep s <= NMAX && ˜CR
82 s t ep s = s t ep s + 1 ;
83 X(: , s t ep s) = P∗X(: , s teps −1);
84 env = max(X(: , s t ep s))−min(X(: , s t ep s)) ;
85 i f env > TOL∗env0
86 CR = 0 ;
87 else
88 CR = 1 ;
89 end
90 end
91 X = X(: , 1 : s t ep s) ;
92 s t ep s = steps −1;
93 end

95 i f nargout >= 2
96 varargout {1} = CR;
97 end
98 i f nargout >= 3
99 varargout {2} = step s ;

100 end

61

101 i f nargout >= 4
102 varargout {3} = w;
103 end

105 return

C.2 Noisy consensus iteration

1 function [X, varargout] = no i s y c o n s e n s u s i t e r a t i o n (P, x0 , avg , Var , vara rg in)
2 % This func t i on implements the noisy consensus i t e r a t i o n with update matrix
3 % P, i n i t i a l opinion vec tor x0 , and i t e r a t i n g on x . The i t e r a t i o n i s
4 % terminated when the expec ted va lue o f the i t e r a t e , Ex , reaches i t s
5 % consensus value , i . e . , when each pa i r o f e n t r i e s o f Ex have d i f f e r e n c e no
6 % la r g e r than TOL times the i n i t i a l maximum d i f f e r ence , or u n t i l the number
7 % of i t e r a t i o n s reaches NMAX. I f the consensus f l a g i s true , then the
8 % i t e r a t i o n process w i l l be bypassed , and the func t i on w i l l re turn the
9 % consensus expec ted opinion o f the group , i f i t e x i s t s . In t h i s case , the

10 % output consensus−reached f l a g on the w i l l be s e t to t rue .
11 % Input :
12 % P − row−s t o cha s t i c , n−by−n update matrix
13 % x0 − n−by−1 vec tor o f i n i t i a l op in ions
14 % avg − mean of a dd i t i v e noise vector , v
15 % var − var iance o f a d d i t i v e noise vector , v
16 % TOL − e x i t i t e r a t i o n when d i f f e r e n c e between each pa i r o f
17 % succ e s s i v e i t e r a t e s Ex i s l e s s than or equa l to TOL times
18 % the i n i t i a l d i f f e r e n c e . By de f au l t , TOL = 1e−3.
19 % NMAX − e x i t i t e r a t i o n a f t e r number o f i t e r a t i o n s reaches NMAX. By
20 % de fau l t , NMAX = 1e2 .
21 % BI − Bypass i t e r a t i o n ? I f so , BI = 1 , e l s ew i s e BI = 0. By
22 % de fau l t , BI = 0.
23 % Output :
24 % X − matrix conta in ing each i t e r a t e o f the opinion x
25 % Ex − vec to r conta in ing each i t e r a t e , Ex , o f the mean opinion x
26 % CR − consensus Ex reached? I f so , CR = 1 , e l s ew i s e CR = 0.
27 % st ep s − number o f s t e p s taken
28 % w − the l e f t −e i g envec to r o f P with e i g enva lue 1 , normalized to
29 % have un i t sum .
30 % Syntax :
31 % X = cons en su s i t e r a t i on (P, x0 ,mean , var)
32 % X = cons en su s i t e r a t i on (P, x0 ,mean , var ,TOL,NMAX)
33 % X = cons en su s i t e r a t i on (P, x0 ,mean , var ,TOL,NMAX,BI)
34 % [X Ex] = cons en su s i t e r a t i on (P, x0 ,mean , var)
35 % [X Ex] = cons en su s i t e r a t i on (P, x0 ,mean , var ,TOL,NMAX)
36 % [X Ex] = cons en su s i t e r a t i on (P, x0 ,mean , var ,TOL,NMAX,BI)
37 % [X Ex CR] = cons en su s i t e r a t i on (P, x0 ,mean , var)
38 % [X Ex CR] = cons en su s i t e r a t i on (P, x0 ,mean , var ,TOL,NMAX)
39 % [X Ex CR] = cons en su s i t e r a t i on (P, x0 ,mean , var ,TOL,NMAX,BI)
40 % [X Ex CR s t ep s] = con s en su s i t e r a t i on (P, x0 ,mean , var)
41 % [X Ex CR s t ep s] = con s en su s i t e r a t i on (P, x0 ,mean , var ,TOL,NMAX)
42 % [X Ex CR s t ep s] = con s en su s i t e r a t i on (P, x0 ,mean , var ,TOL,NMAX,BI)
43 % [X Ex CR s t ep s w] = con s en su s i t e r a t i on (P, x0 ,mean , var)
44 % [X Ex CR s t ep s w] = con s en su s i t e r a t i on (P, x0 ,mean , var ,TOL,NMAX)
45 % [X Ex CR s t ep s w] = con s en su s i t e r a t i on (P, x0 ,mean , var ,TOL,NMAX,BI)

47 switch nargin

62

48 case 4 % Given : P, x0 , v Set : TOL,NMAX,BI
49 TOL = 1e−3;
50 NMAX = 5e5 ;
51 BI = 0 ;
52 case 6 % Given P, x0 , v , TOL, NMAX Set : BI
53 TOL = vararg in {1} ;
54 NMAX = vararg in {2} ;
55 BI = 0 ;
56 case 7 % Given P, x0 , v , TOL, NMAX, BI Set : nothing
57 TOL = vararg in {1} ;
58 NMAX = vararg in {2} ;
59 BI = vararg in {3} ;
60 otherwi se
61 error (’ Unsupported number o f input arguments . ’)
62 end

64 n = length (P) ;

66 i f nargout == 5 | | BI == 1
67 [w, lambda] = e i g s (P . ’ , 1) ; % Compute consensus
68 w = w/sum(w) ; % eigenvec to r
69 i f lambda >= 1−1e3∗eps && lambda <= 1+1e3∗eps
70 CR = 1 ;
71 else
72 CR = 0 ;
73 end
74 Ex = w. ’∗mean(x0)∗ ones (n , 1) ; % consensus va lue
75 s t ep s = 0 ; % i t e r a t e d 0 times . Could use 2nd
76 % l a r g e s t e i g enva l . to es t imate number
77 % of s t e p s to consensus .
78 X = [] ;
79 end

81 env0 = max(x0)−min(x0) ;
82 i f BI == 0 % Don’ t bypass i t e r a t i o n
83 X = zeros (n ,NMAX+1);
84 Ex = zeros (n ,NMAX+1);
85 s t ep s = 1 ;
86 X(: , s t ep s) = x0 ;
87 Ex (: , s t ep s) = x0 ;
88 CR = 0 ;
89 while s t ep s <= NMAX && ˜CR
90 s t ep s = s t ep s + 1 ;
91 v = avg + sqrt (Var)∗randn(n , 1) ;
92 X(: , s t ep s) = P∗X(: , s teps−1)+v ;
93 Ex (: , s t ep s) = s t ep s /(s t ep s +1)∗Ex (: , s teps −1) + 1/(s t ep s +1)∗X(: , s t ep s) ;
94 env = max(Ex (: , s t ep s))−min(Ex (: , s t ep s)) ;

96 i f env/ s t ep s > TOL∗env0 % | | abs (mean(Ex (: , s t e p s)−x0)) > TOL %Ex(s t e p s) > TOL
97 CR = 0 ;
98 else
99 % mean(Ex (: , s t e p s)−x0)

100 CR = 1 ;
101 end
102 end
103 X = X(: , 1 : s t ep s) ;

63

105 % S l i g h t l y b e t t e r way o f computing Ex
106 Ex = cumsum(X, 2)∗ spdiags (1 . / (1 : s t ep s) . ’ , 0 , s teps , s t ep s) ;

108 % Ex = Ex (: , 1 : s t e p s) ;
109 s t ep s = steps −1;
110 end

112 i f nargout >= 2
113 varargout {1} = Ex ;
114 end
115 i f nargout >= 3
116 varargout {2} = CR;
117 end
118 i f nargout >= 4
119 varargout {3} = step s ;
120 end
121 i f nargout >= 5
122 varargout {4} = w;
123 end

125 return

D Limiting Disagreement

D.1 Disagreement

1 function [D,Du] = disagreement (x ,w)
2 % This func t i on computes the t o t a l mean−square dev i a t i on o f op in ions from
3 % the consensus va lue o f the n o i s e l e s s consensus i t e r a t i o n with i n i t i a l
4 % cond i t ion x (t) . The de v i a t i on s are weighted by the s t a t i ona ry
5 % d i s t r i b u t i o n o f the update matrix P, or uniformly , g iven the matrix x
6 % whose columns are the i t e r a t e d opinion vec t o r s x (t) from
7 % no i s y con s en su s i t e r a t i on .m, and the s t a t i ona ry d i s t r i b u t i o n o f P.
8 % Input :
9 % x − n−by−ntimes matrix with columns o f i t e r a t e d opin ions x (1) ,

10 % . . . , x (ntimes) . x i s generated by no i s y c on s en su s i t e r a t i on () .
11 % w − n−by−1 s t o c h a s t i c e i g envec to r o f P, a s soc i a t ed w/ the
12 % dominant e i g enva lue 1 .
13 % Output :
14 % D − ntimes−by−1 vec tor o f weighted mean−square d e v i a t i on s
15 % Du − ntimes−by−1 vec tor o f uni formly weighted mean−square
16 % dev i a t i on s
17 % Syntax :
18 % [D,Du] = disagreement (x ,w)

20 [n , ntimes] = s ize (x) ;
21 w = reshape (w, 1 , n) ;
22 Z = (speye (n)−repmat (w, n , 1)) ∗ x ; % se t o f d e v i a t i on vec t o r s
23 Sigma = zeros (n , n , ntimes) ; % dev ia t i on second moment matrix
24 Du = zeros (ntimes , 1) ; % uniformly weighted dev i a t i on
25 D = zeros (ntimes , 1) ; % w−weighted dev i a t i on

27 Sigma (: , : , 1) = Z (: , 1) ∗Z (: , 1) . ’ ; % i n i t i a l d e v i a t i on s
28 Du(1) = sum(diag (Sigma (: , : , 1)) , 1) / n ; %

64

29 D(1) = w∗diag (Sigma (: , : , 1)) ; %

31 zz t = zeros (n , n , ntimes) ; % 3D array with pages
32 for t = 1 : ntimes % z (t)∗ z (t) . ’ ,
33 zz t (: , : , t) = Z (: , t)∗Z (: , t) . ’ ; % i . e . , squared dev i a t i on
34 end

36 % Expected va lue o f squared−dev i a t i on at each time
37 Sigma = cumsum(zzt , 3) . ∗ repmat (reshape (1 . / (1 : ntimes) , [1 1 ntimes]) , [n n]) ;

39 for t = 2 : ntimes
40 % Sigma (: , : , t) = (t−1)/ t ∗Sigma (: , : , t−1) + 1/ t ∗Z(: , t)∗Z(: , t) . ’ ;
41 Du(t) = f u l l (sum(diag (Sigma (: , : , t)))) / n ; % t o t a l mean−square
42 D(t) = f u l l (w∗diag (Sigma (: , : , t))) ; % dev i a t i on s
43 end

45 return

D.2 Limiting Disagreement

D.2.1 Symmetric transitions

1 function [Du ss ,w] = l imi t ing d i sag reement sym (P, Var , vararg in)
2 % This func t i on computes the uni formly weighted l im i t i n g disagreement o f
3 % the noisy consensus i t e r a t i o n with symmetric , p r imi t i ve , s t o c h a s t i c
4 % weight matrix P, a d d i t i v e noise term v , with zero mean & variance Var ,
5 % and consensus e i g envec t o r w of P.
6 % For more , see :
7 % L. Xiao , S . Boyd , and S.−J . Kim. D i s t r i b u t e d average consensus with
8 % lea s t− mean−square dev i a t i on . Journal o f Pa r a l l e l and D i s t r i bu t e d
9 % Computing , 67(1) :33 4 6 , 2007.

10 % Input :
11 % P − n−by−n symmetric , p r imi t i ve , s t o c h a s t i c weight matrix
12 % Var − the s ca l a r var iance o f the noise term in the noisy consensus
13 % i t e r a t i o n .
14 % w − n−by−1 s t o c h a s t i c e i g envec to r o f P, a s soc i a t ed w/ the
15 % dominant e i g enva lue 1 .
16 % Output :
17 % Du ss − steady−s t a t e uni formly weighted mean−square dev i a t i on
18 % w − consensus e i g envec t o r
19 % Syntax :
20 % Du ss = l im i t i n g d i s a g r e emen t r e v (P,Var)
21 % Du ss = l im i t i n g d i s a g r e emen t r e v (P,Var ,w)
22 % [Du ss w] = l im i t i n g d i s a g r e emen t r e v (P,Var)

24 n = s ize (P , 1) ;

26 switch nargin
27 case 2 % need to compute w
28 [w, ˜ , f a i l e d t o c o n v e r g e] = e i g s (P . ’ , 1) ;
29 i f f a i l e d t o c o n v e r g e
30 warning ([’ Consensus e i g enva lue i t e r a t i o n f a i l e d to ’ . . .
31 ’ converge . Se t t i ng Du ss = NaN. ’]) ;
32 Du ss = NaN;
33 return

65

34 end
35 w = w. ’ /sum(w) ; % make s t o c h a s t i c
36 case 3 % w i s g iven
37 w = reshape (vara rg in {1} ,1 , n) ;
38 end

40 [˜ , lambda , f a i l e d t o c o n v e r g e] = e i g s (P, n−1, ’SM’) ; % n−1 sma l l e s t e i g s .
41 i f f a i l e d t o c o n v e r g e
42 warning ([’ Consensus e i g enva lue i t e r a t i o n f a i l e d to ’ . . .
43 ’ converge . S e t t i ng D ss = NaN. ’]) ;
44 Du ss = NaN;
45 return
46 end
47 Du ss = sum(1./(1−diag (lambda) . ˆ 2) , 1) ∗Var/n ;

49 % This method i s O(nˆ3) . An O(nˆ2) method i s po s s i b l e , as mentioned in
50 % Sect ion I I .C of the above a r t i c l e .
51 return

D.2.2 Reversible transitions

1 function [D ss ,w,M] = l im i t i n g d i s a g r e emen t r e v (P, Var , vara rg in)
2 % This func t i on computes the l im i t i n g disagreement (with we igh t s from the
3 % sta t i ona ry d i s t r i b u t i o n) o f the noisy consensus i t e r a t i o n with
4 % re v e r s i b l e , p r imi t i ve , row−s t o c h a s t i c weight matrix P, a d d i t i v e noise
5 % term v , with zero mean & variance Var , and consensus e i g envec to r w of P.
6 % Input :
7 % P − n−by−n r e v e r s i b l e , p r imi t i ve , row−s t o c h a s t i c weight matrix
8 % Var − the var iance o f the noise term in the noisy consensus
9 % i t e r a t i o n . May be a s ca l a r (in the case o f i . i . d . no ise) , a

10 % vec tor (in the case o f uncorre la t ed noise) , or a matrix (in
11 % the case o f c o r r e l a t e d noise) .
12 % w − n−by−1 s t o c h a s t i c e i g envec to r o f P, a s soc i a t ed w/ the
13 % dominant e i g enva lue 1 .
14 % M − n−by−n mean f i r s t passage time matrix
15 % Mm − ’ Sheskin ’ , or ’EGTH’ a lgor i thm for computing MFPT matrix .
16 % de f a u l t : ’ Sheskin ’ .
17 % Output :
18 % D ss − steady−s t a t e weighted mean−square dev i a t i on
19 % w − consensus e i g envec t o r
20 % Syntax :
21 % D ss = l im i t i n g d i s a g r e emen t r e v (P,Var)
22 % D ss = l im i t i n g d i s a g r e emen t r e v (P,Var ,w)
23 % D ss = l im i t i n g d i s a g r e emen t r e v (P,Var ,w,M)
24 % D ss = l im i t i n g d i s a g r e emen t r e v (P,Var ,w,M,Mm)
25 % [D ss ,w] = l im i t i n g d i s a g r e emen t r e v (P,Var)
26 % [D ss ,w] = l im i t i n g d i s a g r e emen t r e v (P,Var ,w)
27 % [D ss ,w] = l im i t i n g d i s a g r e emen t r e v (P,Var ,w,M)
28 % [D ss ,w] = l im i t i n g d i s a g r e emen t r e v (P,Var ,w,M,Mm)
29 % [D ss ,w,M] = l im i t i n g d i s a g r e emen t r e v (P,Var)
30 % [D ss ,w,M] = l im i t i n g d i s a g r e emen t r e v (P,Var ,w)
31 % [D ss ,w,M] = l im i t i n g d i s a g r e emen t r e v (P,Var ,w,M)
32 % [D ss ,w,M] = l im i t i n g d i s a g r e emen t r e v (P,Var ,w,M,Mm)

34 n = s ize (P , 1) ;

66

36 w = [] ; M = [] ; Mm = [] ;
37 for i = 1 : length (vararg in)
38 i f i s c h a r (vara rg in { i })
39 Mm = vararg in { i } ;
40 e l s e i f i s v e c t o r (vara rg in { i })
41 w = reshape (vara rg in { i } , 1 , n) ;
42 e l s e i f i smat r i x (vara rg in { i })
43 M = vararg in { i } ;
44 end
45 end

47 i f isempty (M)
48 i f isempty (Mm) | | strcmp (Mm, ’ Sheskin ’)
49 M = h i t t i n g t ime (P) ;
50 e l s e i f strcmp (Mm, ’EGTH’)
51 M = hitting time EGTH (Pˆ2) ;
52 else
53 error (’ Unrecognized MFPT method chosen . ’)
54 end
55 end

57 i f isempty (w)
58 [w, f a i l e d t o c o n v e r g e] = con s en su s e i g enve c t o r (P) ;
59 i f f a i l e d t o c o n v e r g e
60 warning ([’ Consensus e i g enva lue i t e r a t i o n f a i l e d to ’ . . .
61 ’ converge . Se t t i ng D ss = NaN. ’]) ;
62 D ss = NaN;
63 return
64 end
65 end

67 [Sr , Sc] = s ize (Var) ;
68 i f i s e q u a l ([Sr , Sc] , [1 , 1]) % noise terms are i . i . d .
69 D ss = Var∗sum(w∗bsxfun (@times ,M,w. ˆ 2) , 2) ;
70 e l s e i f i s e q u a l ([Sr , Sc] , [n , 1]) % noise terms are uncorre la t ed
71 Var = spdiags (Var , 0 , n , n) ;
72 Dw = spdiags (w. ’ , 0 , n , n) ;
73 A = M∗Dw∗Var∗Dw;
74 TrA = 0 ;
75 D ss = sum(w∗A,2)−TrA ;
76 e l s e i f i s e q u a l ([Sr , Sc] , [n , n]) % noise terms are co r r e l a t e d
77 Dw = spdiags (w. ’ , 0 , n , n) ;
78 A = M∗Dw∗Var∗Dw;
79 TrA = trace (A) ;
80 D ss = sum(w∗A,2)−TrA ;
81 end

83 return

67

	Elements of probability theory and statistics
	Basic probability theorems
	Statistics

	Markov chains
	Basic definitions
	Absorbing Markov chains
	Regular Markov chains
	Mean first passage time

	Consensus iteration
	Noiseless iteration
	Noisy iteration

	Limiting disagreement
	Symmetric transitions
	Reversible transitions

	Interpretation: Opinion dynamics
	The standard DeGroot model
	The noisy DeGroot model

	Sample influence networks
	Graphs
	The complete graph
	The circle graph
	The line graph
	The star graph
	The two-star graph
	The lollipop graph
	The starry line graph
	Two-dimensional grid

	Edge weights
	Equal-neighbor
	Metropolis-Hastings
	Jadbabaie & Olshevsky eqs. 33, 34
	Random

	Simulation
	Execution
	Commentary

	References
	Network Generation Functions
	Making an adjacency matrix
	The complete graph
	The circle graph
	The line graph
	The star graph
	The two-star graph
	The lollipop graph
	The starry line graph
	The two-dimensional grid graph

	Transition matrix operations
	Conversion to update matrix
	Equal neighbor weights
	Random weights
	Metropolis-Hastings weights
	Jadbabaie & Olshevsky eqs. 33, 34
	Enforcing bistochasticity
	Enforcing symmetry

	Hitting times

	Consensus protocols
	Consensus iteration
	Noisy consensus iteration

	Limiting Disagreement
	Disagreement
	Limiting Disagreement
	Symmetric transitions
	Reversible transitions

