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Abstract

AVERAGING ALGORITHMS AND COVERAGE CONTROL

by

Chunkai Gao

This thesis summarizes our work on averaging algorithms, dynamic con-

sensus and coverage control.

In the first part of this thesis, we show the relationship between two al-

gorithms and optimization problems that are the subject of recent attention

in the networking and control literature. First, we obtain some results on av-

eraging algorithms over acyclic digraphs with fixed and controlled-switching

topology. Second, we discuss continuous and discrete coverage control laws.

Further, we show how discrete coverage control laws can be cast as averag-

ing algorithms defined over an appropriate graph that we term the discrete

Voronoi graph.

In the second part of this thesis, we study dynamic consensus algorithms

and their applications for multi-agent coordination. First, we propose a dy-

namic max-consensus estimator based on the concept of dynamic average con-

sensus and static max-consensus. Second, we discuss how to design distributed

control laws to optimize coverage performance globally under the distributed

estimation-and-control framework. Various numerical simulations verify the

effectiveness of our results.
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Chapter 1

Introduction

Consensus and coverage control are two distinct problems within the re-

cent literature on multi-agent coordination and cooperative robotics. Both

problems have attracted much attention among researchers studying distributed

and decentralized systems. Roughly speaking, the objective of the consensus

problem is to analyze and design scalable distributed control laws to drive

the groups of agents to agree upon certain quantities of interest. On the other

hand, the objective of the coverage control problem is to deploy the agents

to get optimal sensing performance of an environment of interest. The main

result of the paper shows the relationship between averaging over switching

acyclic digraphs and discrete coverage. Various simulations illustrate this re-

sult, and show the consistent parallelism between the continuous and the dis-

crete settings.

The thesis is organized as follows. Firstly, for the reader’s convenience,

we review some basic mathematical notions and tools that will be commonly
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used in this thesis in Chapter 2, including Voronoi diagrams, graph theory,

Filippov solutions and non-smooth analysis. In Chapter 3, we investigate

the properties of averaging algorithms over acyclic digraphs with fixed and

controlled-switching topologies. In Chapter 4, we first review the multi-center

optimization problem and the corresponding coverage control algorithm. We

then study the multi-center optimization problem in discrete space and derive

a discrete coverage control law. Finally, we show that the discrete coverage

control law is an averaging algorithm over a certain set of acyclic digraphs.

Chapter 3 and Chapter 4 form the first part of the thesis. In Chapter 5, we first

review the concept and properties of proportional dynamic average consen-

sus estimator; then we propose a dynamic maximum consensus estimator and

verify its effectiveness by simulations. In Chapter 6, we first introduce a deter-

ministic global optimization scheme named Terminal Repeller Unconstrained

Subenergy Tunneling (TRUST); then we discuss the distributed estimation and

control approach to solve global optimal coverage problem and report the nu-

merical simulation results. Chapter 5 and Chapter 6 form the second part of

this thesis.
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Chapter 2

Mathematical Preliminaries

For the reader’s convenience, this chapter presents some basic mathemati-

cal notions and tools that will be commonly used in this thesis. Since the space

is limited, the discussions may not be in full detail. The reader who wishes to

understand the materials covered in this chapter with full formal derivations

should consult the relevant books, such as Okabe, Boots, Sugihara and Chiu’s

book [2] on Voronoi diagrams; Diestel’s book [3] on graph theory; Filippov’s

book [4] on discontinuous dynamical systems; Clarke’s book [5] on nonsmooth

analysis; and Bacciotti and Rosier’s book [6] on Lyapunov functions and sta-

bility theory.

Notation

Let N denote the set of natural numbers. Let R, R�0 and R>0 denote, respec-

tively, the set of real, non-negative real and positive real numbers. For any set

S � R2, we let
�S, and @S denote, respectively, the interior, and boundary of
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S. The quadratic form associated with a symmetric matrix B 2 Rn�n is the

function defined by x 7! xTBx. The map f : X ! Y and the set-valued map

f : X ⇒ Y associate to a point inX a point in Y and a subset of Y , respectively.

The sum of m subsets Si; i 2 f1; : : : ;mg in a vector space, denoted by
Pm

i=1 Si,

consists of all vectors of the form
Pm

i=1 si, where si 2 Si; for i 2 f1; : : : ;mg.

2.1 Voronoi Diagrams

The concept of Voronoi diagrams is widely used in coverage control and

other locational optimization problems. It has been rediscovered indepen-

dently in different fields for many times [2]. In Section 2.1.1, we introduce

the basic definition of (ordinary) Voronoi diagram, and in Section 2.1.2, we

introduce the concept of generalized Voronoi diagram.

2.1.1 Ordinary Voronoi Diagram

Suppose we have a finite number, n 2 [2;1), of points, (p1; : : : ; pn), in Rm,

where m 2 N. These n points have location vectors x1; : : : ; xn, respectively.

Let p be an arbitrary point in Rm with location vector x. Define the index set

In = f1; 2; : : : ; ng, then we have the following definition of Voromoi diagram.

Definition 2.1.1 (Voronoi diagram in Rm [2]). Let (P = fp1; : : : ; png, where 2 �

n <1 and pi 2 Rm, xi 6= xj , for i 6= j, i; j 2 In. We call the region given by

V (pi) = fx j kx� xik � kx� xjk; for j 6= i; j 2 Ing (2.1)

the m-dimensional Voronoi polyhedron associated with pi, and the set V(P ) =
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fV (p1); : : : ; V (pn)g the m-dimensional Voronoi diagram generated by P .

An example Voronoi diagram in R2 is shown in Figure 2.1, where we con-

sider a polygon in R2 with 8 generator points, P = fp1; : : : ; p8g. The assigned

region V (pi), for i 2 f1; : : : ; 8g, is the shaded area where point pi sits in.

P
1

P
2

P
3

P
4

P
5

P
6

P
7

P
8

Figure 2.1: A planar Voronoi diagram.

2.1.2 Weighted Voronoi Diagram

We notice from definition 2.1.1 that the core idea for defining Voronoi dia-

gram is that every point in a space is assigned to at least one of the generators

with shortest Euclidean distance from this point. By extending the assign-

ment rule, Voronoi diagram can be generalized in a variety of ways. Formal
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mathematical approach of generalized Voronoi diagram is available in [2]. To

save space, we will cover only one kind of very specific generalized Voronoi

diagrams, namely weighted Voronoi diagram, which is used widely in many

fields.

In the definition of Voronoi diagram, we implicitly assume that all the gen-

erator points have the same weight. While in some practical scenarios, this

assumption may not be appropriate. Rather, it is more appropriate to assume

that generators have different weights according to the variable property or

ability of the generators. For example, in sensor networks we may have sen-

sors with different sensing ability.

As same as in Section 2.1.1, we consider a set of n distinct points, P =

fp1; : : : ; png, in Rm. Each pi has weight wi, which is assigned according to

the different properties of the generator points. In applications, wi could be a

number, a vector, or some other parameter. With this weight, we denote the

weighted distance from any point p 2 Rm to pi as dw(p; pi), which needs to be

specified properly in applications. For any i; j 2 f1; : : : ; ng and j 6= i, the

dominance region of pi over pj with the weighted distance is defined as

Dom(pi; pj) = fp 2 Rm j dw(p; pi) � dw(p; pj)g: (2.2)

Let

V (pi) =
\

j2In;j 6=i

Dom(pi; pj):

If the dominance region is well defined in (2.2), then V(P;W ) = fV (pi); : : : ; V (pn)g,

where W = (wi; : : : ; wn), defines a weighted Voronoi diagram generated by P

with weight W , and the set V (pi) is the weighted Voronoi region associated with

pi. Since the weighted distance dw can be defined differently, many differ-
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ent kinds of weighted Voronoi diagrams are possible, such as multiplicatively

weighted Voronoi diagram with distance function dmw defined as

dmw(p; pi) =
1

wi

kx� xik; wi > 0;

and additively weighted Voronoi diagram with distance function daw defined

as

daw(p; pi) = kx� xik � wi; wi 2 R:

The properties of these two kinds of weighted Voronoi diagrams are discussed

extensively in [2].

2.2 Graph theory

In mathematics and computer science, graphs are mathematical structures

used to model pairwise relations between objects from a certain collection, and

graph theory is the study of graphs. A graph may be undirected, meaning that

there is no distinction between the two vertices associated with each edge, or

its edges may be directed from one vertex to another. The edges of a graph

may be have different weights. A weighted graph associates a label, called

weight, with every edge in the graph. Weights are usually real numbers. They

may be restricted to rational numbers or integers. Certain algorithms require

further restrictions on weights. Sometimes a non-edge is labeled by a special

weight representing zero (Eg. when considering capacity of direct communi-

cation between two nodes) or infinity (Eg. when considering length of direct

path between two nodes). In this thesis, we assign a non-edge weight 0 in the

following chapters.
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Mathematically speaking, a graph or undirected graph is an ordered pair G =

(U ; E) of sets satisfying E 2 2U�U (recall that 2U is the collection of subsets of

U). The elements of U are the vertices (or notes) of the graph G, the elements of

E are its edges. The number of vertices of a graph G is its order. Two vertices of

G are adjacent, or neighbors, if there is an edge between these two vertices.

A weighted directed graph, in short digraph, G = (U ; E ;A) of order n consists

of a vertex set U with n elements, an edge set E 2 2U�U , and a weighted adjacency

matrix A with nonnegative entries aij , i; j 2 f1; : : : ; ng. For simplicity, we take

U = f1; : : : ; ng. For i; j 2 f1; : : : ; ng, the entry aij is positive if and only if the

pair (i; j) is an edge of G, i.e., aij > 0 , (i; j) 2 E . We also assume aii = 0 for

all i 2 f1; : : : ; ng and aij = 0 if (i; j) 62 E , for all i; j 2 f1; : : : ; ng and i 6= j.

When convenient, we will refer to the adjacency matrix of G by A(G).

Weighted digraphs are used extensively in the following chapters. Let us

now review some basic connectivity notions for digraphs. A directed path in

a digraph is an ordered sequence of vertices such that any two consecutive

vertices in the sequence are an edge of the digraph. A cycle is a non-trivial

directed path that starts and ends at the same vertex. A digraph is acyclic if it

contains no directed cycles. A node of a digraph is globally reachable if it can

be reached from any other node by traversing a directed path. A digraph is

strongly connected if every node is globally reachable.

Remark 2.2.1. The previous definition of adjacency matrix follows the convention

adopted in [7], where aij > 0 , (i; j) 2 E . On the other hand, in [8], aij >

0 , (j; i) 2 E . This difference arises from a different meaning of the direction of an

edge. In [7], a directed edge (i; j) 2 E means node i can ’see’ node j, i.e., node i can

8



obtain, in some way, information from node j. We refer to this as the communication

interpretation. In [8], a directed edge (i; j) 2 E means that the information of node i

can flow to node j. We refer to this as the sensing interpretation. The difference leads

to different statements of various results. For example, having a globally reachable

node in the communication interpretation is equivalent to having a spanning tree in

the sensing interpretation. �

The out-degree and the in-degree of node i are defined by, respectively,

dout(i) =
nX
j=1

aij; din(i) =
nX
j=1

aji:

The out-degree matrix Dout(G) and the in-degree matrix Din(G) are the diag-

onal matrices defined by (Dout(G))ii = dout(i) and (Din(G))ii = din(i), respec-

tively. The digraph G is balanced if Dout(G) = Din(G). The graph Laplacian of the

digraph G is

L(G) = Dout(G)�A(G);

or, in components,

lij(G) =

8>>>><>>>>:
nX

k=1;k 6=i

aik; j = i;

�aij; j 6= i:

Next, we define reverse and mirror digraphs. Let ~E be the set of reverse

edges of G obtained by reversing the order of all the pairs in E . The reverse

digraph of G, denoted ~G, is (U ; ~E ; ~A), where ~A = AT . The mirror digraph of G,

denoted Ĝ, is (U ; Ê ; Â), where Ê = E [ ~E and Â = (A + AT )=2. Note that

L( ~G) = Dout( ~G)�A( ~G) = Din(G)�A(G)T .

9



2.3 Filippov solutions for discontinuous dynamical

systems

In this section, we consider dynamical systems of the following general

form

_x(t) = X(t; x(t)); (2.3)

with state vector x 2 Rm, m 2 N, and vector fieldX : R�Rm ! Rm. By discon-

tinuous dynamical system we mean that the vector field X can be a discontin-

uous function of the state x, i.e., for any fixed t 2 R, X(t; x), as a function of x,

is not necessarily continuous. Discontinuous dynamical systems exist in may

control applications, such as optimal control and sliding mode control. Since

the vector field is discontinuous, continuously differentiable curves that satisfy

the associated dynamical system do not exist in general, which motivates the

need of identifying a suitable notion of solution. To solve this problem, several

different notions have been developed in the literature, such as Caratheodory

and Filippov solutions. By allowing classical solutions not to follow the direc-

tion of the vector field at a few time instants, Caratheodory solutions give the

most natural generalization of the classical notion of solution. However, this

relaxation is still too rigid to cope with the discontinuity [9], and Caratheodory

solutions do not exist in many practical applications. On the other hand, Fil-

ippov solutions make use of the concept of differential inclusion, which gives

more flexibility in the notion of solutions. For this reason, We adopt the no-

tion of Filippov solutions to analysis discontinuous dynamical system in the

following chapters of the thesis. Before we introduce the formal definition of

Filippov solutions, we bring to the reader’s attention that a tutorial of notions

10



of solutions is presented in [9].

For vector field X : R � Rm ! Rm, we define Filippov set-valued map

K[X] : R� Rm ! 2Rm as

K[X](t; x) =
\
�>0

\
�(S)=0

cofX(t; B(x; �) n S)g;

where operator co denotes convex closure, � denotes the Lebesgue measure,

and B(x; �) denotes a ball centered at x with radius �. Substitute the differen-

tial equation (2.3) by the following differential inclusion

_x(t) 2 K[X](t; x(t)): (2.4)

A Filippov solution of (2.3), defined on [t0; t1] � R, is a solution of the differential

inclusion (2.4), that is, an absolutely continuous function  : [t0; t1]! Rm such

that _(t) 2 K[X](t; (t)) for almost every t 2 [t0; t1]. The next result, adopted

from [9], establishes conditions under which Filippov solutions exist.

Proposition 2.3.1 (Existence of Filippov solutions). For X : R � Rm ! Rm

measurable and locally essentially bounded, there exists at least one Filippov solution

of (2.3) starting from any initial condition.

Besides existence of Filippov solutions, another basic problem is the unique-

ness. In general, discontinuous dynamical systems do not have unique Filip-

pov solutions. The next result, adopted from [4], provides one result about

uniqueness of Filippov solutions.

Proposition 2.3.2 (Uniqueness of Filippov solutions). Let X : R � Rm ! Rm

measurable and locally essentially bounded. Assume that for all (t; x) 2 R � Rm,

there exists LX(t) and " 2 (0;1), such that for every y, y0 2 B(x; "), one has

(X(t; y)�X(t; y0))T (y � y0) � LX(t)ky � y0k22: (2.5)

11



Assume that function LX : R ! R is integrable, then, for any (t0; x0) 2 R � Rm,

there exists a unique Filippov solution of (2.3) with initial condition x(t0) = x0.

2.4 Basic ideas and calculus of generalized gradient

The generalized gradient is a replacement for the derivative. Given a lo-

cally Lipschitz function f : RM ! R, let 
f be the set of points in RM at which

f fails to be differentiable, and let S be any other set of measure zero, then the

generalized gradient @f : RM ! 2RM of f is defined as

@f(x) = cof lim
i!1

rf(xi) j xi ! x; xi 62 S [
fg;

which says that @f(x) is the convex combination of all points of the form

limrf(xi), where fxig is any sequence which converges to x while avoiding

S [
f . It is easy to see that when f is continuously differentiable at x, @f(x)

reduces to the singleton set frf(x)g.

In general, the computation of @f(x) from the definition is difficult. Re-

searchers have developed basic calculus of generalized gradient of functions

to simplify this calculation. In the rest part of this section we review some

properties in this basic calculus of generalized gradient presented in [5].

Proposition 2.4.1 (Scalar multiples). If f : RM ! R is locally Lipschitz at x 2 RM ,

then, for any scalar s, sf is locally Lipschitz at x and

@(sf)(x) = s@f(x):

Proposition 2.4.2 (Finite sums). If fi : RM ! R, i 2 f1; : : : ;mg, are locally

Lipschitz at x 2 RM , then, for any scalars fs1; : : : ; smg,
Pm

i=1 sifi is locally Lipschitz

12



and

@
� mX
i=1

sifi
�
(x) �

mX
i=1

si@fi(x);

where equality holds if each fi is regular at x and each si is nonnegative.

Proposition 2.4.3 (Chain Rule). Let F be a map from X to another Banach space Y ,

and let g be a real-valued function on Y . Suppose that F is strictly differentiable at x

and that g is Lipschitz near F (x). Then, f = g � F is Lipschitz near x, and one has

@f(x) � @g(F (x)) �DsF (x);

and equality holds if g (or �g ) is regular at F (x), in which case f (or �f ) is also

regular at x.

Proposition 2.4.4. Let fk : RM ! R, k 2 f1; : : : ;mg be locally Lipschitz functions

at x 2 RM and let f(x0) = maxffk(x0) j k 2 f1; : : : ;mgg. Then,

(i) f is locally Lipschitz at x,

(ii) if I(x0) denotes the set of indexes k for which fk(x0) = f(x0), we have

@f(x) � cof@fi(x) j i 2 I(x)g ;

and if fi, i 2 I(x), is regular at x, then equality holds and f is regular at x.

2.5 Stability analysis via nonsmooth Lyapunov func-

tions

Throughout the thesis, as mentioned in section 2.3, we define the solutions

of differential equations with discontinuous right-hand sides in terms of differ-
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ential inclusions. In section 2.3, we introduced the notion of Filippov solution

of dynamical system (2.3), and results on its existence and uniqueness. Instead

of talking about general non-autonomous dynamical system (2.3), we focus on

more special autonomous dynamical system in this section. Let F : RN ! 2RN

be a set-valued map. Consider the differential inclusion

_x 2 F (x) : (2.6)

A solution to this equation on an interval [t0; t1] � R is defined as an absolutely

continuous function x : [t0; t1] ! RN such that _x(t) 2 F (x(t)) for almost all

t 2 [t0; t1]. Given x0 2 RN , the existence of at least a solution with initial

condition x0 is guaranteed by the following lemma.

Lemma 2.5.1. Let the mapping F be upper semicontinuous with nonempty, compact

and convex values. Then, given x0 2 RN , there exists a local solution of (2.6) with

initial condition x0.

Now, consider the differential equation

_x(t) = X(x(t)) ; (2.7)

where X : RN ! RN is measurable and essentially locally bounded. Here,

we understand the solution of this equation in the Filippov sense. For each

x 2 RN , consider the set

K[X](x) =
\
�>0

\
�(S)=0

cofX(BN(x; �) n S)g :

Alternatively, one can show [10] that there exists a set SX of measure zero such

that

K[X](x) = cof lim
i!+1

X(xi) j xi ! x ; xi 62 S [ SXg ;

14



where S is any set of measure zero. A Filippov solution of (2.7) on an interval

[t0; t1] � R is defined as a solution of the differential inclusion _x 2 K[X](x).

Since the multivalued mapping K[X] : RN ! 2RN is upper semicontinuous

with nonempty, compact, convex values and locally bounded (cf. [4]), the ex-

istence of Filippov solutions of (2.7) is guaranteed by Lemma 2.5.1.

Given a locally Lipschitz function f : RN ! R, the set-valued Lie derivative

of f with respect to X at x is defined as

eLXf(x) = fa 2 R j 9v 2 K[X](x) such that � � v = a ; 8� 2 @f(x)g :

For each x 2 RN , eLXf(x) is a closed and bounded interval in R, possibly

empty. If f is continuously differentiable at x, then eLXf(x) = fdf � v j v 2
K[X](x)g. If, in addition, X is continuous at x, then eLXf(x) corresponds to

the singleton fLXf(x)g, the usual Lie derivative of f in the direction of X at x.

The following result is a generalization of LaSalle Invariance Principle for

differential equations of the form (2.7) with nonsmooth Lyapunov functions.

The formulation is taken from [11], and slightly generalizes the one presented

in [12].

Theorem 2.5.2 (LaSalle principle). Let f : RN ! R be a locally Lipschitz and

regular function. Let x0 2 RN and let f�1(� f(x0); x0) be the connected component

of fx 2 RN j f(x) � f(x0)g containing x0. Assume the set f�1(� f(x0); x0) is

bounded and assume either max eLXf(x) � 0 or eLXf(x) = ; for all x 2 f�1(�

f(x0); x0). Then f�1(� f(x0); x0) is strongly invariant for (2.7). Let

ZX;f = fx 2 RN j 0 2 eLXf(x)g :

Then, any solution x : [t0;+1) ! RN of (2.7) starting from x0 converges to the
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largest weakly invariant set M contained in ZX;f \ f�1(� f(x0); x0). Furthermore,

if the set M is a finite collection of points, then the limit of all solutions starting at x0

exists and equals one of them.

The proof of the last fact in the theorem statement is the same as in the

smooth case, since it only relies on the continuity of the trajectory.
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Chapter 3

Averaging Over Acyclic Digraphs

In the literature, many researchers have used averaging algorithms to solve

consensus problems. The spirit of averaging algorithms is to let the state of

each agent evolve according to the (weighted) average of the state of its neigh-

bors. Averaging algorithms has been studied both in continuous time [7, 13,

14, 15] and in discrete time [16, 15, 17, 18, 19, 20, 21, 22]. In [7], averaging algo-

rithms are investigated via graph Laplacians [23] under a variety of assump-

tions, including fixed and switching communication topologies, time delays,

and directed and undirected information flow. In [13], a series of consensus

protocols are presented, based on the regular averaging algorithms, to drive

the agents to agree upon the value of the power mean. A theoretical explana-

tion for the consensus behavior of the Vicsek model [24] is provided in [17],

see also the early work in [16], while [15] extends the results of [17] to the case

of directed topology for both continuous and discrete update schemes. The

work [18] adopts a set-valued Lyapunov approach to analyze the convergence

properties of averaging algorithms, which is generalized in [19] to the case
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of time delays. Asynchronous averaging algorithms are studied in [20]. The

work [21] analyzes the averaging algorithms in the framework of partial differ-

ence equations over graphs [25]. The works [8, 26] survey the results available

for consensus problems using averaging algorithms.

The contributions of this chapter is the investigation of the properties of av-

eraging algorithms over acyclic digraphs with fixed and controlled-switching

topologies. Our first contribution is a novel matrix representation of the dis-

agreement function associated with a directed graph. Secondly, we prove that

averaging over an fixed acyclic graph drives the agents to an equilibrium de-

termined by the so-called “sinks” of the graph. Finally, we show that averag-

ing over controlled-switching acyclic digraphs also makes the agents converge

to the set of equilibria under suitable state-dependent switching signals.

3.1 Disagreement functions

Given a digraph G of order n, the disagreement function �G : Rn ! R is

defined by

�G(x) =
1

2

nX
i;j=1

aij(xj � xi)
2: (3.1)

To the best of the authors’ knowledge, the following is a novel result.

Proposition 3.1.1 (Matrix representation of disagreement). Given a digraph G of

order n, the disagreement function �G : Rn ! R is the quadratic form associated with

the symmetric positive-semidefinite matrix

P (G) = 1

2
(Dout(G) +Din(G)�A(G)�A(G)T ):
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Moreover, P (G) is the graph Laplacian of the mirror graph Ĝ, that is, P (G) = L(Ĝ) =
1
2

�
L(G) + L( ~G)

�
.

Proof. For x 2 Rn, we compute

xTP (G)x =
1

2
xT (Dout +Din �A�AT )x

=
1

2

� nX
i;j=1

aijx
2
i +

nX
i;j=1

aijx
2
j � 2

nX
i;j=1

aijxixj
�

=
1

2

� nX
i;j=1

aij(x
2
i + x2j � 2xixj)

�

=
1

2

nX
i;j=1

aij(xj � xi)
2 = �G(x):

Clearly P is symmetric. Since �G(x) � 0 for all x 2 Rn, we deduce P (G) is

positive semidefinite. Since

(D(Ĝ))ii =
nX
j=1

âij =
nX
j=1

1

2
(aij + aji);

we have D(Ĝ) = 1
2
(Dout(G) +Din(G)). Hence,

L(Ĝ) = D(Ĝ)�A(Ĝ)

=
1

2
(Dout(G) +Din(G))� 1

2
(A(G) +A(G)T ) = P (G):

The last inequality follows from the definitions of reverse and mirror graphs.

Remark 3.1.2. Note that in general, P (G) 6= L(G). However, if the digraph G is

balanced, then Dout(G) = Din(G), and therefore,

�G(x) =
1

2
xT (Dout(G) +Din(G))x� 1

2
xT (A(G) +A(G)T )x

= xTDout(G)x� xTAx = xTL(G)x:

This is the result usually presented in the literature on undirected graphs. �
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3.2 Averaging plus connectivity achieves consensus

To each node i 2 U of a digraph G, we associate a state xi 2 R, that obeys a

first-order dynamics of the form

_xi = ui; i 2 f1; : : : ; ng:

We say that the nodes of a network have reached a consensus if xi = xj for all

i; j 2 f1; : : : ; ng. Our objective is to design control laws u that guarantee that

consensus is achieved starting from any initial condition, while ui depends

only on the state of the node i and of its neighbors in G, for i 2 f1; : : : ; ng. In

other words, the closed-loop system asymptotically achieves consensus if, for

any x0 2 Rn, one has that x(t) ! f�(1; : : : ; 1) j � 2 Rg when t ! +1. If the

value � is the average of the initial state of the n nodes, then we say the nodes

have reached average-consensus.

We refer to the following linear control law, often used in the literature on

consensus (e.g., see [17, 20, 8]), as the averaging protocol:

ui =
nX
j=1

aij(xj � xi): (3.2)

With this control law, the closed-loop system is

_x(t) = �L(G)x(t): (3.3)

Next, we consider a family of digraphs fG1; : : : ;Gmg with the same vertex

set f1; : : : ; ng. A switching signal is a map � : R+ � Rn ! f1; : : : ;mg. Given

these objects, we can define the following switched dynamical system

_x(t) = �L(Gk)x(t);

k = �(t; x(t)):

(3.4)
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Note that the notion of solution for this system might not be well-defined for

arbitrary switching signals. The properties of the linear system (3.3) and the

system (3.4) under time-dependent switching signals have been investigated

in [7, 15, 18, 27]. Here, we review some of these properties in the following

two statements.

Theorem 3.2.1 (Averaging over a digraph). Let G be a digraph. The following

statements hold:

(i) System (3.3) asymptotically achieves consensus if and only if G has a globally

reachable node;

(ii) If G is strongly connected, then system (3.3) asymptotically achieves average-

consensus if and only if G is balanced.

Statement (i) is proved in [27, Section 2]. Statement (ii) is proved in [7,

Section VII].

Theorem 3.2.2 (Averaging over switching digraphs). Let fG1; : : : ;Gmg be a fam-

ily of digraphs with the same vertex set f1; : : : ; ng, and let � : R+ ! f1; : : : ;mg be

a piecewise constant function. The following statements hold:

(i) System (3.4) asymptotically achieves consensus if there exist infinitely many

consecutive uniformly bounded time intervals such that the union of the switch-

ing graphs across each interval has a globally reachable node;

(ii) If each Gi, i 2 f1; : : : ;mg, is strongly connected and balanced, then for any

arbitrary piecewise constant function �, the system (3.4) globally asymptotically

solves the average-consensus problem.
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Statement (i) is proved in [15, Section III B]. Statement (ii) is proved in [7,

Section IX].

3.3 Averaging protocol over a fixed acyclic digraph

Here we characterize the convergence properties of the averaging protocol

in equation (3.3) under different connectivity properties than the ones stated

in Theorem 3.2.1, namely assuming that the given digraph is acyclic.

We start by reviewing some basic properties of acyclic digraphs. Given

an acyclic digraph G, every vertex of in-degree 0 is named source, and every

vertex of out-degree 0 is named sink. Every acyclic digraph has at least one

source and at least one sink. (Recall that sources and sinks can be identified by

following any directed path on the digraph.) Given an acyclic digraph G, we

associate a nonnegative number to each vertex, called depth, in the following

way. First, we define the depth of the sinks of G to be 0. Next, we consider

the acyclic digraph that results from erasing the 0-depth vertices from G and

the in-edges towards them; the depth of the sinks of this new acyclic digraph

are defined to be 1. The higher depth vertices are defined recursively. This

process is well-posed as any acyclic digraph has at least one sink. The depth

of the digraph is the maximum depth of its vertices. For n; d 2 N, let Sn;d be

the set of acyclic digraphs with vertex set f1; : : : ; ng and depth d.

Next, it is convenient to relabel the n vertices of the acyclic digraph G with

depth d in the following way: (1) label the sinks from 1 to n0, where n0 is the

number of sinks; (2) label the vertices of depth k from
Pk�1

j=0 nj +1 to
Pk�1

j=0 nj +
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nk, where nk is the number of vertices of depth k, for k 2 f1; : : : ; dg. Note

that vertices with the same depth may be labeled in arbitrary order. With this

labeling, the adjacency matrixA(G) is lower-diagonal with vanishing diagonal

entries, and the Laplacian L(G) takes the form

L(G) =

266666666664

0 0 : : : 0

�a21 P1
j=1 a2j : : : 0

: : : : : : : : : : : :

�an1 �an2 : : :
Pn�1

j=1 anj

377777777775
;

or, alternatively,

L(G) =

26640n0�n0 0n0�(n�n0)

L21 L22

3775 ; (3.5)

where 0k�h is the k � h matrix with vanishing entries, L21 2 R(n�n0)�n0 and

L22 2 Rn�n0�n�n0 . Clearly, all eigenvalues of L are non-negative and the zero

eigenvalues are simple, as their corresponding Jordan blocks are 1�1 matrices.

Proposition 3.3.1 (Averaging over an acyclic digraph). Let G be an acyclic di-

graph of order n with n0 sinks, assume its vertices are labeled according to their depth,

and consider the dynamical system _x(t) = �L(G)x(t) defined in (3.3). The following

statements hold:

(i) The equilibrium set of (3.3) is the vector subspace

kerL(G) = f(xs; xe) 2 Rn0 � Rn�n0 j xe = �L�122 L21xsg:

(ii) Each trajectory x : R+ ! Rn of (3.3) exponentially converges to the equilib-
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rium x� defined recursively by

x�i =

8>>>>><>>>>>:
xi(0); i 2 f1; : : : ; n0g;Pi�1

j=1 aijx
�
jPi�1

j=1 aij
; i 2 fn0 + 1; : : : ; ng:

(iii) If G has unit depth, then the disagreement function �G is monotonically decreas-

ing along any trajectory of (3.3).

Proof. Statement (i) is obvious. Statement (ii) follows from the fact that�L22 is

Hurwitz and from the equilibrium equality

0 =
i�1X
j=1

aij(x
�
j � x�i ) =

i�1X
j=1

aijx
�
j �

� i�1X
j=1

aij

�
x�i :

Regarding statement (iii), when the depth of G is 1, the adjacency matrix and

the out-degree matrix are equal to, respectively,26640n0�n0 0n0�(n�n0)

�L21 0(n�n0)�(n�n0)

3775 ;
2664 0n0�n0 0n0�(n�n0)

0(n�n0)�n0 L22

3775 ;
where L21 and L22 are defined in (3.5). Therefore, we compute

L( ~G) =

2664 ~L11 LT
21

0(n�n0)�n0 0(n�n0)�(n�n0)

3775 ;
where ~L11 2 Rn0�n0 . According to Proposition 3.1.1, we have

P (G) = 1

2

�
L(G) + L( ~G)

�

The evolution of �G along a trajectory of x : R+ ! Rn of (3.3) is given by

d

dt

�
�G(x(t))

�
= �x(t)T (L(G)TP (G) + P (G)L(G))x(t)

= �x(t)TL(G)TL(G)x(t)� x(t)TL(G)TL( ~G)x(t)

= �x(t)TL(G)TL(G)x(t) � 0;
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where in the last equality we have used the fact thatL(G)TL( ~G) = L( ~G)TL(G) =

0n�n. Note that �G is strictly decreasing unless x(t) 2 kerL(G), i.e., the trajec-

tory reaches an equilibrium.

Remarks 3.3.2. (i) If the digraph has a single sink, then the convergence statement

in part (ii) of Proposition 3.3.1 is equivalent to part (i) of Theorem 3.2.1.

(ii) The block decomposition of L( ~G) holds only for digraphs with depth 1. Indeed,

statement (iii) is not true for digraphs with depth larger than 1. The digraph in

Figure 3.1 is a counterexample. �

1 2

6

3

4 5

Figure 3.1: For this digraph of depth 2, the Lie derivative of the disagreement

function (3.1) along the averaging flow (3.3) is indefinite.
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3.4 Averaging protocol over switching acyclic digraphs

Given a family of digraphs � = fG1; : : : ;Gmg with vertex set f1; : : : ; ng, the

minimal disagreement function �� : Rn ! R is defined by

��(x) = min
k2f1;:::;mg

�Gk(x): (3.6)

Let I(x) = argminf�Gk(x) j k 2 f1; : : : ;mgg, we consider state-dependent

switching signals � : Rn ! f1; : : : ;mg with the property that �(x) 2 I(x),

that is, at each x 2 Rn, �(x) corresponds to the index of a graph with minimal

disagreement. Clearly, for any such �, one has ��(x) = �G�(x)(x). Before giving

our result, we first point out a helpful fact.

Lemma 3.4.1. Let � = fG1; : : : ;Gmg � Sn;1. If [k2f1;:::;mg Gk 2 Sn;1, then for any

i; j 2 f1; : : : ;mg, we have

L(Gi)TL( ~Gj) = 0n�n:

Proof. Let G = [k2f1;:::;mg Gk. Since G 2 Sn;1, so we have, by proper ordering of

the nodes,

L(G) =

26640n0�n0 0n0�(n�n0)

L21 L22

3775 ; L( ~G) =
2664 ~L11 LT

21

0(n�n0)�n0 0(n�n0)�(n�n0)

3775 :
For any i 2 f1; : : : ;mg, Gi is a subgraph of G, so that L(Gi) and L( ~Gi) share the

same block decompositions as stated in the last equation. Hence, the statement

follows immediately.

Proposition 3.4.2 (Averaging over acyclic digraphs). Let � = fG1; : : : ;Gmg �

Sn;1, and assume that [k2f1;:::;mg Gk 2 Sn;1 and that � : Rn ! f1; : : : ;mg satisfies
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�(x) 2 I(x). Consider the discontinuous dynamical system

_x(t) = Y (x(t)) = �L(Gk)x(t); for k = �(x(t)); (3.7)

whose solutions are understood in the Filippov sense. The following statements hold:

(i) The point x� 2 Rn is an equilibrium for (3.7) if and only if for each i 2 I(x�),

there exists scalars �i � 0 and
P

i2I(x�) �i = 1, such that

x� 2 ker
� X
i2I(x�)

�iL(Gi)
�
: (3.8)

In particular, if I(x�) contains only one element k� 2 f1; : : : ;mg, then (3.8)

can be simplified to

x� 2 kerL(Gk�): (3.9)

(ii) Each trajectory x : R+ ! Rn of (3.7) converges to the set of equilibria.

(iii) The minimum disagreement function �� is monotonically non-increasing along

any trajectory x : R+ ! Rn of (3.7).

Proof. We investigate first smoothness of ��. Because ��� is the maximum of

the smooth functions ��Gk , by Proposition 2.4.4, we know that �� is locally

Lipschitz and has generalized gradient

@��(x) = cof2P (Gi)x j i 2 I(x)g:

Let a 2 eLY��(x), then by definition, there exists ! = �Pi2I(x) �iL(Gi)x, where,

for each i 2 I(x), �i � 0 and
P

i2I(x) �i = 1, such that a = !T � for all � 2
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@��(x). In particular, for � =
P

i2I(x) 2�iP (Gi)x 2 @��(x), we have

a =
�
� X

i2I(x)

�iL(Gi)x
�T� X

i2I(x)

2�iP (Gi)x
�

= �xT
� X
i2I(x)

�iL(Gi)
�T� X

i2I(x)

�i(L(Gi) + L( ~Gi))
�
x

= �xT
� X
i2I(x)

�iL(Gi)
�T� X

i2I(x)

�iL(Gi)
�
x� xT

� X
i2I(x)

�iL(Gi)T
�� X

i2I(x)

�iL( ~Gi)
�
x

= �xT
� X
i2I(x)

�iL(Gi)
�T� X

i2I(x)

�iL(Gi)
�
x � 0;

where in the last equality we have used Lemma 3.4.1. Moreover,

a = 0 () x 2 ker
� X
i2I(x)

�iL(Gi)
�
:

In particular, if x is not at any switching surface, then I(x) is a set with only one

element k 2 f1; : : : ;mg and @��(x) = 2P (Gk)x. Therefore, eLY��(x) = 0 if and

only if x 2 kerL(Gk). Therefore, we conclude that for x 2 Rn and a 2 eLY��(x),

we have a � 0, i.e., max eLY��(x) � 0 and statement (i) is true. Resorting to

the LaSalle Invariance Principle (Theorem 2.5.2), we deduce that any trajectory

x : R+ ! Rn of (3.7) converges to the set of equilibria as stated in statement (i)

and statement (iii) is clear.

Remarks 3.4.3. � Statement (ii) in this theorem is weaker than statement (ii) in

previous one in three ways: first, we are not able to characterize the limit point

as a function of the initial state. Second, we require the depth 1 assumption,

which is sufficient to ensure convergence, but possibly not necessary. Third, we

establish only convergence to a set, rather than an individual point. It remains

an open question to obtain necessary and sufficient conditions for convergence

to a point.
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� Although the statement (ii) is obtained only for digraphs of unit depth, this class

of graphs is of interest in the forthcoming sections. �
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Chapter 4

Discrete Coverage Control

In this chapter, we first review the multi-center optimization problem and

the corresponding coverage control algorithm proposed in [1]. We then study

the multi-center optimization problem in discrete space and derive a discrete

coverage control law. This leads to a geometric object called the discrete Voronoi

graph. Finally, we show that the discrete coverage control law is an averaging

algorithm over a certain set of acyclic digraphs. Discrete locational optimiza-

tion problems are discussed in [2, 28, 29].

We will consider motion coordination problems for a group of robots de-

scribed by first order integrators. In other words, we assume that n robotic

agents are placed at locations p1; : : : ; pn 2 R2 and that they move according to

_pi = ui; i 2 f1; : : : ; ng: (4.1)

We denote by P the vector of positions (p1; : : : ; pn) 2 (R2)n. Additionally, we

define

Scoinc = f(p1; : : : ; pn) 2 (R2)n j pi = pj for some i 6= jg;
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and, for P 62 Scoinc, we let fVi(P )gi2f1;:::;ng denote the Voronoi partition gener-

ated by P , we illustrate this notion in Figure 4.1 and refer to [2] for a compre-

hensive treatment on Voronoi partitions.

Figure 4.1: The Voronoi partition of a rectangle in the plane. We depict the

generators p1; : : : ; pn elevated from the plane for intuition’s sake.

4.1 Continuous and discrete multi-center functions

In this section we present a class of locational optimization problems in

both continuous and discrete settings. It would be possible to provide a unified

treatment using generalized functions and distributions, but we avoid it here

for concreteness’ sake.

Let Q be a convex polygon in R2 including its interior and let � : R2 !
R+ be a bounded and measurable function whose support is Q. Analogously,

let fq1; : : : ; qNg � R2 be a pointset and f�1; : : : ; �Ng be nonnegative weights

associated to them. Given a non-increasing function f : R+ ! R, we consider

the continuous and discrete multi-center functions H : (R2)n ! R and Hdscrt :
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(R2)n ! R defined by

H(P ) =
Z
Q

max
i2f1;:::;ng

f(kq � pik)�(q)dq;

Hdscrt(P ) =
NX
j=1

max
i2f1;:::;ng

�jf(kqj � pik):

Now we define

Sequid = f(p1; : : : ; pn) 2 (R2)n j kq � pik = kq � pkk = d(q)

for some q 2 fq1; : : : ; qNg and for some i 6= kg;

where d(q) = minj2f1;:::;ng kq � pjk. In other words, if P 62 Sequid, then no

point qj is equidistant to two or more nearest robots. Note that Sequid is a set

of measure zero because it is the union of the solutions of a finite number of

algebraic equations. Using Voronoi partitions, for P 62 Scoinc, we may write

H(P ) =
nX
i=1

Z
Vi(P )

f(kq � pik)�(q)dq;

Hdscrt(P ) =
nX
i=1

X
qj2Vi(P )

�j
card(qj; P )

f(kqj � pik)

=
nX
i=1

0@ X
qj2

�
V i(P )

�jf(kqj � pik) +
X

qj2@Vi(P )

�j
card(qj; P )

f(kqj � pik)
1A;

where card : R2�(R2)n ! f1; : : : ; ng denotes the number of indices k for which

kqj�pkk = mini2f1;:::;ng kqj�pik. It is easy to see that card is distributed over the

Voronoi graph and if qj is a point in the interior of Vi(P ), then card(qj; P ) = 1.

For P 62 Scoinc [Sequid, we have

Hdscrt(P ) =
nX
i=1

X
qj2

�
V i(P )

�jf(kqj � pik):

Remark 4.1.1. The function f plays the role of a performance function. If fp1; : : : ; png

are the locations of n sensors, and if events take place inside the environment Q with
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likelihood �, then f(kq � pik) is the quality of service provided by sensor i. It will

therefore be of interest to find local maxima for H and Hdscrt. These types of optimal

sensor placement spatial resource allocation problems are the subject of a discipline

called locational optimization [2, 28, 1]. �

The following result is discussed in[30] for the continuous multi-center

function.

Proposition 4.1.2 (Partial derivatives of H). If f is locally Lipschitz, then H is

locally Lipschitz on Qn. Further, if f is differentiable, then H is differentiable on

Qn n Scoinc, and, for each i 2 f1; : : : ; ng,

@H
@pi

(P ) =
Z
Vi(P )

@

@pi
f(kq � pik)�(q)dq:

We obtain the corresponding properties ofHdscrt via nonsmooth analysis as

the following proposition.

Proposition 4.1.3 (Generalized gradient of Hdscrt). If f is locally Lipschitz, then

Hdscrt is locally Lipschitz on Qn. Further, if f is differentiable, then Hdscrt is regular

on Qn and its generalized gradient satisfies

@Hdscrt(P ) =
NX
j=1

�j co
�
@

@P
f(kqj � pkk)

��� k 2 I(qj; P )
�
;

where I(qj; P ) is the set of indices k for which f(kqj � pkk) = maxi2f1;:::;ng f(kqj �

pik), and in particular, if P 62 Scoinc [Sequid, then Hdscrt is differentiable at P , and for

each i 2 f1; : : : ; ng

@

@pi
Hdscrt(P ) =

X
qj2

�
V i(P )

�j
@

@pi
f(kqj � pik):
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Proof. We re-write here Hdscrt as

Hdscrt(P ) =
NX
j=1

max
i2f1;:::;ng

�jf(kqj � pik) =
NX
j=1

�jFj(P );

where, for each j 2 f1; : : : ; Ng,

Fj(P ) = max
i2f1;:::;ng

f(kqj � pik):

We first investigate the smoothness of Fj(P ). By Proposition 2.4.4, it is easy

to see that if f is locally Lipschitz, then Fj(P ) is locally Lipschitz on Qn, so is

Hdscrt(P ).

Additionally, if f is differentiable, then Fj(P ) is regular on Qn, with gener-

alized derivative

@Fj(P ) = co
�
@

@P
f(kqj � pik)

��� i 2 I(qj; P )
�
;

where I(qj; P ) is the set of indexes k for which f(kqj � pkk) = Fj(P ). Since

Hdscrt(P ) is a finite sum of Fj(P ) with nonnegative weights �j , so Hdscrt(P )

is also regular (cf. Proposition 2.4.2) on Qn, with the regularity of Fj(P ), we

obtain further the generalized gradient of Hdscrt(P ) as

@Hdscrt(P ) =
NX
j=1

�j co
�
@

@P
f(kqj � pkk)

��� k 2 I(qj; P )
�
:

The expression for the partial derivative away from Scoinc [Sequid is easy to

see.

Let @iHdscrt(P ) denote the ith block component of @Hdscrt(P ), the following

result is a consequence of Proposition 4.1.3.
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Corollary 4.1.4. If f is differentiable, then for each i 2 f1; : : : ; ng,

@iHdscrt(P ) � X
qj2

�
V i(P )

�j
@

@pi
f(kqj � pik) +

X
qj2@Vi(P )

�j co
�"

0

0

#
;
@

@pi
f(kqj � pik)

�
:

For particular choices of f , the multi-center functions and their partial

derivatives may simplify. For example, if f(x) = �x2, the partial derivative

of the multi-center function H reads (for P 62 Scoinc)

@H
@pi

(P ) = 2MVi(P )(CVi(P ) � pi);

where mass and the centroid of W � Q are

MW =
Z
W
�(q) dq; CW =

1

MW

Z
W
q �(q) dq:

Additionally, the critical points P � ofH have the property that p�i = CVi(P �), for

i 2 f1; : : : ; ng; these are called centroidal Voronoi configurations. Analogously, if

f(x) = �x2, the discrete multi-center function Hdscrt reads

Hdscrt(P ) = �
NX
j=1

max
i2f1;:::;ng

�jkqj � pik2;

and its generalized gradient is

@Hdscrt(P ) =
NX
j=1

�j co
�
2(qj � pk)

@pk
@P

��� k 2 I(qj; P )
�
: (4.2)

For each j 2 f1; : : : ; Ng, assume the scalars �ij , i 2 I(qj; P ), satisfy

�ij � 0;
X

i2I(qj ;P )

�ij = 1: (4.3)

Next, define (Mdscrt)Vi(P ) and (Cdscrt)Vi(P ), respectively, as

(Mdscrt)Vi(P ) =
X

qj2
�
V i(P )

�j +
X

qj2@Vi(P )

�ij�j =
X

qj2Vi(P )

�ij�j;

(Cdscrt)Vi(P ) =

8>>>>><>>>>>:
pi; if (Mdscrt)Vi(P ) = 0;

1

(Mdscrt)Vi(P )

� X
qj2Vi(P )

�ij�jqj

�
; otherwise:
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Lemma 4.1.5. Given f(x) = �x2, P � is a critical point of @Hdscrt, i.e., 0 2 @Hdscrt(P
�),

if and only if for any j 2 f1; : : : ; Ng, there exist �ij as in (4.3), such that p�i =

(Cdscrt)Vi(P �), for each i 2 f1; : : : ; ng.

Proof. Given scalar satisfying (4.3), define

w =
NX
j=1

�j
X

k2I(qj ;P )

2�kj(qj � p�k)
@pk
@P

;

then it is clear that w 2 @Hdscrt(P
�). Let wi denotes the ith component of w,

since

wi = 2
X

qj2Vi(P �)

�ij�j(qj � p�i ) = 2
X

qj2Vi(P �)

�ij�j(qj � (Cdscrt)Vi(P �)) = 0;

so w = 0 and 0 2 @Hdscrt(P
�).

On the other hand, if P � is a critical point, then there exists scalars �ij sat-

isfying (4.3), such that

w =
NX
j=1

�j
X

k2I(qj ;P )

2�kj(qj � p�k)
@pk
@P

= 0;

which implies, for each i 2 f1; : : : ; ng

wi = 2
X

qj2Vi(P �)

�ij�j(qj � p�i ) = 0;

Solve this linear equation, we obtain

p�i = (Cdscrt)Vi(P �); i 2 f1; : : : ; ng:
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4.2 Continuous and discrete coverage control

Based on the expressions obtained in the previous subsection, it is pos-

sible to design motion coordination algorithms for the robots p1; : : : ; pn. We

call continuous and discrete coverage control the problem maximizing the multi-

center functions H and Hdscrt, respectively. The continuous problem is studied

in [1]. We simply impose that the locations p1; : : : ; pn follow a gradient ascent

law defined over the set Qn n Scoinc. Formally, we set

ui = kprop
@H
@pi

(P ); (4.4)

where kprop is a positive gain. Note that this law is distributed in the sense that

each robot only needs information about its Voronoi cell in order to compute

its control.

For discrete coverage control, we adopt the following discontinuous con-

trol law, for each robot i 2 f1; : : : ; ng

ui = kprop Xi(P ); (4.5)

where Xi : Q
n ! R2 is defined as

Xi(P ) =
X

qj2Vi(P )

�j
card(qj; P )

@

@pi
f(kqj � pik):

Note that Xi is continuous at P 2 Qn n Scoinc [Sequid, and satisfies

Xi(P ) =
@Hdscrt

@pi
(P ):

Like control law (4.4), the discontinuous control law (4.5) is also distributed.

Define the vector field X = [X1; X2; : : : ; Xn]
T , we have

_P = kprop X(P ): (4.6)
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Since X(P ) is discontinuous at P 2 Scoinc [Sequid, we understand the solution

of this equation in the Filippov sense following [4], and the existence of Filip-

pov solution is guaranteed. We then investigate the properties of the solution

and analysis the convergence of (4.4) and (4.5).

Proposition 4.2.1 (Continuous coverage control; [1, 30]). For the closed-loop sys-

tems induced by equation (4.4) starting at P0 2 Qn n Scoinc, the agents location con-

verges asymptotically to the set of critical points of H.

Proposition 4.2.2 (Discrete coverage control). For the closed-loop systems induced

by equation (4.5) starting at P0 2 Qn n Scoinc, the agents location converges asymp-

totically to the set of critical points of Hdscrt.

Proof. Note that

K[kprop X](P ) = kprop@Hdscrt(P ):

Given this property, the following proof is essentially the same as the proof

of Proposition 2.9 in [31]. We refer the interested reader to [31] for technical

details.

4.3 Discretizing continuous settings

In this section we discuss the relationship between the discretization of

continuous locational optimization problems and discrete locational optimiza-

tion problems.

As before, let Q be a convex polygon in R2 including its interior, and let � :

R2 ! R+ be a bounded and measurable function whose support is Q. We shall
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consider a sequence of pointsets fqk1 ; : : : ; qkNkgk2N � R2 and of nonnegative

weights f�k1; : : : ; �kNkgk2N. Accordingly, we can define a sequence of discrete

multi-center functions Hk
dscrt, for k 2 N. The sequence fqk1 ; : : : ; qkNkgk2N � R2 is

dense1 in Q if, for all q 2 Q,

lim
k!+1

minfkq � zk j z 2 fqk1 ; : : : ; qkNkgg = 0:

Given a pointset q1; : : : ; qN , let V (q1; : : : ; qN) denote the Voronoi partition it

generates and define the associated weights

�j =
Z
Vj(q1;:::;qN )

�(q)dq: (4.7)

Proposition 4.3.1 (Consistent discretization). Assume that f is continuous almost

everywhere, that the sequence fqk1 ; : : : ; qkNkgk2N � R2 is dense in Q, and that the se-

quence of weights are defined according to (4.7). Then fHk
dscrtgk2N converges point-

wise to H, that is, for all P 2 Qn ,

lim
k!+1

Hk
dscrt(P ) = H(P ):

Additionally, if f is continuously differentiable, then for P 2 Qn n Scoinc and each

i 2 f1; : : : ; ng, any sequence xk 2 @iHk
dscrt(P ), k 2 N, satisfies

lim
k!+1

xk =
@H
@pi

(P ):

Proof. For k 2 N, given the pointset fqk1 ; : : : ; qkNkg, we define the projection

projk : Q! fqk1 ; : : : ; qkNkg by

projk(q) = argminfkq � zk j z 2 fqk1 ; : : : ; qkNkgg:
1This is equivalent to asking that the sequence has vanishing dispersion; the dispersion of a

pointset fq1; : : : ; qNg in the compact set Q is max
q2Q

min
z2fq1;:::;qNg

kq � zk:
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Because of the vanishing dispersion property, we know that, for all q 2 Q,

lim
k!+1

projk(q) = q: (4.8)

Therefore, we compute

Hk
dscrt(P ) =

NkX
j=1

max
i2f1;:::;ng

f(kqkj � pik)
Z
Vj(q

k
1 ;:::;q

k
Nk

)
�(q)dq

=
NkX
j=1

Z
Vj(q

k
1 ;:::;q

k
Nk

)
max

i2f1;:::;ng
f(kqkj � pik)�(q)dq

=
Z
Q

max
i2f1;:::;ng

f(kprojk(q)� pik)�(q)dq:

Because f is continuous almost everywhere, we have

lim
k!+1

Hk
dscrt(P )

= lim
k!+1

Z
Q

max
i2f1;:::;ng

f(kprojNk(q)� pik)�(q)dq

=
Z
Q

max
i2f1;:::;ng

f(k lim
k!+1

projNk(q)� pik)�(q)dq

=
Z
Q

max
i2f1;:::;ng

f(kq � pik)�(q)dq = H(P ):

Define

@�iHk
dscrt(P ) =

X
qk
j
2
�
V i(P )

�j
@

@pi
f(kqkj � pik) +

X
qk
j
2@Vi(P )

�j co
�"

0

0

#
;
@

@pi
f(kqkj � pik)

�
:

By Corollary 4.1.4, if f is differentiable, then @iHk
dscrt(P ) � @�iHk

dscrt(P ). Sup-

pose x�k 2 @�iHk
dscrt(P ), then there exists scalars �ij 2 [0; 1], such that

x�k =
X

qk
j
2
�
V i(P )

�j
@

@pi
f(kqkj � pik) +

X
qk
j
2@Vi(P )

�ij�j
@

@pi
f(kqkj � pik): (4.9)
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Substitute (4.7) into (4.9), we obtain

x�k =
X

qk
j
2
�
V i(P )

Z
Vj(q

k
1 ;:::;q

k
N )
�(q)

@

@pi
f(kqkj � pik)dq

+
X

qk
j
2@Vi(P )

Z
Vj(q

k
1 ;:::;q

k
N )
�ij�(q)

@

@pi
f(kqkj � pik)dq:

Since f is continuously differentiable, so for P 2 Qn n Scoinc, we have

lim
k!+1

x�k =
Z
�
V i(P )

�(q)
@

@pi
f(kq � pik)dq +

"
0

0

#
=
@H
@pi

(P ):

Hence,

lim
k!+1

xk =
@H
@pi

(P ):

4.4 The relationship between discrete coverage and

averaging over switching acyclic digraphs

As above, let Q be a convex polygon, let fp1; : : : ; png � Q be the position

of n robots, let fq1; : : : ; qNg � Q be N fixed points in Q with corresponding

nonnegative weights f�1; : : : ; �Ng, and let I(qj; P ) be the set of indices k for

which kqj�pkk = mini2f1;:::;ng kqj�pik. We begin by defining a useful digraph

and a useful set of digraphs.

A discrete Voronoi graph Gdscrt-Vor is a digraph with (n+N) vertices fp1; : : : ; pn; q1; : : : ; qNg,

with N directed edges

f(pi; qj)j for each j 2 f1; : : : ; Ng; pick one and only one i 2 I(qj; P )g;
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and with corresponding edge weights �j , for all j 2 f1; : : : ; Ng. We illus-

trate this graph in Figure 4.2. With our definition, it is possible for one vertex

Figure 4.2: The discrete Voronoi graph over 3 robots and 6 � 9 grid points.

This illustration is to be compared with the Voronoi partition illustrated in

Figure 4.1. The edges have top/down direction.

set to generate multiple discrete Voronoi graphs. We will denote the nodes

of Gdscrt-Vor by Z = (z1; : : : ; zn+N) 2 (R2)n+N , the weights by a�� , for �; � 2
f1; : : : ; n+Ng, with the understanding that:

z� =

8>>><>>>:
p�; if � 2 f1; : : : ; ng;

q��n; otherwise;

and that the only non-vanishing weights are a�� = �j when � = n + j, for

j 2 f1; : : : ; Ng, and when � 2 f1; : : : ; ng corresponds to the robot p� closest

to qj and (p�; qj) is a directed edge of the graph Gdscrt-Vor. Note that Gdscrt-Vor

depends uponZ. Since fq1; : : : ; qNg � Q are fixed, when we need to emphasize

this dependence, we will simply denote it as Gdscrt-Vor(P ).

Let us now define a set of digraphs of which the discrete Voronoi graphs

are examples. Let F (N;n) be the set of functions from f1; : : : ; Ng to f1; : : : ; ng.

Roughly speaking, a function inF (N;n) assigns to each point qj , j 2 f1; : : : ; Ng,

a robot pi, i 2 f1; : : : ; ng. Given h 2 F (N;n), let Gh be the digraph with (n+N)
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vertices fp1; : : : ; pn; q1; : : : ; qNg, with N directed edges

f(ph(j); qj)gj2f1;:::;Ng;

and corresponding edge weights �j , j 2 f1; : : : ; Ng. With these notations, it

holds that Gdscrt-Vor(P ) = Gh�(�;P ) with any function h� : f1; : : : ; Ng � Qn !
f1; : : : ; ng which satisfies

h�(j; P ) 2 argminfkqj � pik j i 2 f1; : : : ; ngg:

Let us state a useful observation about these digraphs.

Lemma 4.4.1. The set of digraphs Gh, h 2 F (N;n), is a set of acyclic digraphs with

unit depth, i.e., it is a subset of Sn+N;1 (see definition in Subsection 3.3). Moreover,

[h2F (N;n) Gh is an acyclic digraph with unit depth, i.e., [h2F (N;n) Gh 2 Sn+N;1.

For h 2 F (N;n), let us study appropriate disagreement functions for the

digraph Gh. We define the function �Gh : (R2)n+N ! R by

�Gh(Z)jZ=(p1;:::;pn;q1;:::;qN ) =
1

2

n+NX
�;�=1

a��kz� � z�k2

=
1

2

NX
j=1

�jkqj � ph(j)k2;

because the weights a�� , �; � 2 f1; : : : ; n + Ng of the digraph Gh all vanish

except for ah(j);j = �j , j 2 f1; : : : ; Ng.

We are now ready to state the main result of this section. The proof of the

following theorem is based on simple book-keeping and is therefore omitted.

Theorem 4.4.2 (Discrete coverage control and averaging). The following state-

ments hold:
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(i) The discrete multi-center function Hdscrt with f(x) = �x2, and the minimum

disagreement function over the set of digraphs Gh, h 2 F (N;n), satisfy

�1

2
Hdscrt(P ) =

1

2

NX
j=1

min
i2f1;:::;ng

�jkqj � pik2

=
1

2

NX
j=1

�jkqj � ph�(j)k2

= �Gdscrt-Vor(p1; : : : ; pn; q1; : : : ; qN)

= min
h2F (N;n)

�Gh(p1; : : : ; pn; q1; : : : ; qN):

(ii) For P 62 Scoinc [Sequid, the discrete coverage control law for f(x) = �x2

and the averaging protocol over the discrete Voronoi digraph satisfy, for i 2

f1; : : : ; ng,

1

2

@Hdscrt

@pi
(P ) =

X
qj2Vi(P )

�j(qj � pi) =
n+NX
�=1

a��(z� � z�);

where z� and a�� , �; � 2 f1; : : : ; n + Ng, are nodes and weights of Gdscrt-Vor.

Accordingly, the discontinuous coverage control system (4.6), for f(x) = �x2,

and the averaging system (3.7) over the set of digraphs Gh, h 2 F (N;n) satisfy,

for i 2 f1; : : : ; ng,
1

2
K[Xi](P ) = K[Yi](Z);

where Z = (p1; : : : ; pn; q1; : : : ; qN), Xi and Yi are the ith 2-dimensional block

component of X and Y , respectively.

(iii) Any P � 2 Qn is an equilibrium of the discrete coverage control system with

f(x) = �x2 if and only if Z� = (p�1; : : : ; p
�
n; q1; : : : ; qN) is an equilibrium of
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system (3.7) over the set of digraphs Gh, h 2 F (N;n), that is:

8j 2 f1; : : : ; Ng; 9�ij as in (4.3), such that p�i = (Cdscrt)Vi(P �); 8i 2 f1; : : : ; ng;

() 9�k � 0 and
X
k

�k = 1; such that Z� 2 ker
�X

k

�kL(Gkdscrt-Vor(Z
�))
�
;

where fGkdscrt-Vor(Z
�)gk are all possible discrete Voronoi graphs generated by Z�.

(iv) Given any initial position of robots P0 2 Qn, the evolution of the discrete cover-

age control system (4.6) and the evolution of the averaging system (3.7) under

the switching signal � : Qn ! fGh j h 2 F (N;n)g defined by �(P ) =

Gdscrt-Vor(Z) are identical in the Filippov sense and, therefore, the two systems

will converge to the same set of equilibrium placement of robots, as described in

(iii).

4.5 Numerical simulations

To illustrate the performance of the discrete coverage law as stated in Propo-

sition 4.2.2 and to illustrate the accuracy of the discretization process, as ana-

lyzed in Proposition 4.3.1, we include some simulation results. The algorithms

are implemented in Matlab as a single centralized program. As expected, the

simulations for the discrete coverage law are computationally intensive with

the increase in the resolution of the grid. We illustrate the performance of the

closed-loop systems in Figures 4.3, 4.4, 4.5 and 4.6.
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Figure 4.3: Continuous coverage law for 32 agents on a convex polygonal envi-

ronment, with density function � = exp(5:(�x2 � y2)) centered about the gray

point in the figure. The control gain in (4.4) is kprop = 1 for all the vehicles. The

left (respectively, right) figure illustrates the initial (respectively, final) loca-

tions and Voronoi partition. The central figure illustrates the gradient descent

flow. Figure taken from [1].

Figure 4.4: Simulation of discrete coverage law with 159 grid points.

Figure 4.5: Simulation of discrete coverage law with 622 grid points.
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Figure 4.6: Simulation of discrete coverage law with 2465 grid points.

4.6 Generalization of ordinary coverage control

In previous sections of this chapter, we have discussed coverage control

for a group of identical agents. All the agents are supposed to have the same

sensing and communication capability. But in many practical applications, this

is not always the case. We may have a group of agents with different sensing

or communication capability. For instance, there is a group of UAVs in service,

several of them are equipped with much more advanced sensors than others.

One possible solution of this kind of problems is to assign a weight !i to

each agent i according to to its sensing or communication capability. This

weight !i may be constant or changing corresponding some specific condi-

tions. We define the weighted multi-center function in continuous space Hw :

(R2)n ! R by

Hw(P ) =
Z
Q

max
i2f1;:::;ng

1

!i
f(kq � pik)�(q)dq;

which will generate a weighted Voronoi partition, as defined in Section 2.1.2,

of the polygon Q. Then, we can investigate derivatives of Hw and design dis-

tributed control laws to optimize Hw, as we did in Section 4.1 and Section 4.2.

Similar generalization can be done to coverage control in discrete space. We
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will develop these ideas in the future.
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Chapter 5

Dynamic Consensus

Most consensus problems studied so far have been focusing on static in-

puts. However, in many practical applications, the nature of distributed con-

trol requires coordination among agents in a dynamic environment. Therefore,

consensus on static inputs is not sufficient, and investigation on consensus on

dynamic inputs is in need for many engineering situations. In section 5.1,

we review the proportional dynamic average consensus estimator presented

in [32]; and in section 5.2, we propose a dynamic maximum consensus estima-

tor and verify its effectiveness by simulations.

5.1 Dynamic Average Consensus

For a group of n agents, suppose each agent i 2 f1; : : : ; ng maintains one

time varying function ri(t), which is the measurement of some dynamic quan-

tity of interest. The dynamic average consensus is the problem of tracking the
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dynamic average of ri(t), for i 2 f1; : : : ; ng. That is, we wish each agent to

track the quantity

�r(t) =
1

n

nX
i=1

ri(t):

Dynamic average consensus problems have recently been studied in [33, 32].

The authors of [32] proposed, based on the idea presented in [33], a propor-

tional dynamic consensus estimator of following form, for each agent i 2
f1; : : : ; ng,

_wi(t) = �wi(t) +
X
j 6=i

aij(t)[zj(t)� zi(t)]; (5.1)

zi(t) = wi(t) + ri(t); (5.2)

where ri(t) 2 R is the input, zi(t) 2 R is the decision output, wi(t) is the inter-

nal estimator state,  is a global parameter, and aij(t) are piecewise-continuous

gains. Since each agent can only communicate with its neighbors, we have

aij(t) = 0 when agent i can not sense agent j’s decision output zj at time t. Let

w(t) = [w1(t); : : : ; wn(t)]
T , z(t) = [z1(t); : : : ; zn(t)]

T , r(t) = [r1(t); : : : ; rn(t)]
T ,

and L(t) be the Laplacian of the communication graph G(t). Write collectively

these n distributed estimators, we get the compact vector form as

_w(t) = �w(t)� L(t)z(t); (5.3)

z(t) = w(t) + r(t): (5.4)

Let ez(t) be the tracking error, we have ez(t) = z(t)��r(t)�1, where 1 denotes the

column vector of n ones. Now, we are ready to state the convergence property

of the dynamic average consensus filter (5.3) and (5.4).

Proposition 5.1.1 (Proportional dynamic consensus, Theorem 4 of [32]). Let L(t)

be a piecewise continuous Laplacian of balanced graphs and � 2 Rn�n be the projec-
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tion matrix � = I � 1�1T

n
. Suppose there exist " 2 R, such that �(L+ LT )� � 2"�

for all t � t0. Additionally, suppose we have non-negative parameter , �, and abso-

lutely continuous input function r(t) satisfying  > �" and kr(t) + _r(t)k � � for

almost all t � t0, then the dynamic consensus filter (5.3) and (5.4) can track �r(t) with

tracking error ez(t) satisfying

kez(t)k � 1p
n
j1Tw(t0)je�(t�t0) + j�z(t0)je(+")(t�t0) + �

 + �
(5.5)

for all t � t0.

5.2 Dynamic Max and Min Consensus

Again, suppose each agent i 2 f1; : : : ; ngmaintains a time varying function

ri(t). The dynamic max consensus is the problem of tracking the dynamic

maximum of the ri, i.e., maxi ri(t), while dynamic min consensus tracks the

minimum of the ri, i.e., mini ri(t).

We begin with static case. The following static max and min consensus

filters in continuous time are proposed in [34]

_yi(t) = sgn+(
nX
j=1

aij(yj � yi)); (5.6)

_yi(t) = sgn�(
nX
j=1

aij(yj � yi)); (5.7)

where sgn+, sgn� : R ! R are defined as

sgn+(x) =

8>>><>>>:
0; if x � 0

1; if x > 0

; sgn�(x) =

8>>><>>>:
0; if x � 0

�1; if x < 0

: (5.8)
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Note that the right-hand side of (5.6) is discontinuous, we understand its so-

lution in the Filippov sense. We review the convergence property of these two

filters as the following proposition.

Proposition 5.2.1 (Static Max and Min Consensus, Propostion 17 of [34] ). Let

G be a strongly connected weighted digraph. Then, the coordination algorithm (5.6)

(respectively,the coordination algorithm (5.7)) is out-distributed over G and asymp-

totically achieves max consensus (respectively, min consensus) in finite time.

The max-consensus algorithm (5.6) is valid only for static input. In prac-

tice and research, from time to time, a group of agents needs to reach max-

consensus distributedly of some interested quantities which are changing dy-

namically. Inspired by the proportional dynamic average consensus estima-

tor (5.3) and (5.4) and the static max-consensus protocol (5.6), we propose

the following dynamic max-consensus estimator (DMCE), for each agent i 2
f1; : : : ; ng

_vi(t) = k1 sgn+(
nX
j=1

aij(t)[yj(t)� yi(t)])

+ k2vi(t) sgn�(
nX
j=1

aij(t)[yj(t)� yi(t)]); (5.9)

yi(t) = vi(t) + ri(t): (5.10)

where k1 2 R>0 and k2 2 R�0 are proportional coefficients controlling the

evolution speed of the flow, ri(t) is the input signal of agent i, output yi(t)

is the estimation of maxiri(t) by agent i. It is easy to see that when ri(t) is

static with respect to t 2 R for all i 2 f1; : : : ; ng, by letting k1 = 1 and k2 = 0,

the proposed dynamic max-consensus estimator (5.9) and (5.10) degenerates

to the static max-consensus estimator (5.6).
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The mathematical analysis of the stability and convergence properties of

the dynamic max-consensus estimator (5.9) and (5.10) is, so far, still our fu-

ture work. We will verify the effectiveness of the proposed dynamic max-

consensus estimator via simulations in the remaining part of this section.

5.2.1 Simulations

In the following simulations, we have a group of n = 8 agents. Each agent

is assigned a unique ID i 2 f1; : : : ; 8g. For each simulation, the algorithms are

implemented in Matlab as a single centralized program. In the following sim-

ulations, we will use two undirected communication graphs G1 and G2 shown

in Figure 5.1. The Laplacian L(G1) and L(G2) of G1 and G2 are, respectively,
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Figure 5.1: Two undirected communication graphs G1 (left) and G2 (right) both

with 8 vertices, and all the edges have the same weight 1.
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L(G1) =

2666666666666666666666666664

3 �1 0 0 �1 0 0 �1
�1 4 0 �1 0 �1 0 �1
0 0 1 �1 0 0 0 0

0 �1 �1 4 �1 0 �1 0

�1 0 0 �1 3 0 �1 0

0 �1 0 0 0 1 0 0

0 0 0 �1 �1 0 2 0

�1 �1 0 0 0 0 0 2

3777777777777777777777777775

;

L(G2) =

2666666666666666666666666664

2 �1 0 0 0 0 0 �1
�1 2 �1 0 0 0 0 0

0 �1 2 �1 0 0 0 0

0 0 �1 2 �1 0 0 0

0 0 0 �1 2 �1 0 0

0 0 0 0 �1 2 �1 0

0 0 0 0 0 �1 2 �1
�1 0 0 0 0 0 �1 2

3777777777777777777777777775

:

Static inputs with fixed communication graph G1

Suppose each agent i maintains a constant measurement ri(t) = i, for all

i 2 f1; : : : ; 8g; t 2 R. These 8 agents have a fixed undirected communication

graph G1 shown in Figure 5.1. Since all the inputs of the group of agents are

constant, we set the DMCE parameter k2 = 0. Then, we have only tunable

parameter k1 left. However, when k2 = 0, k1 only controls the evolution speed.

Not other properties of the estimator will be changed other than the evolution

speed, when k1 changes. In our simulation, we simply let k1 = 1. Figure 5.2
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shows the tracking performance. From the figures, we see the group of agents

do reach max consensus.
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Figure 5.2: Max tracking with static inputs and fixed communication graph G1:

on the left, estimation outputs (red solid line) and agents inputs (black dash-

dotted line); on the right, estimation error.

Static inputs with switching communication graphs G1 and G2

In this part, we still suppose each of the 8 agents maintains a constant mea-

surement ri(t) = i. But the communication graphs are switching between G1
and G2 at every second with initial communication graph G1. Set the DMCE pa-

rameters as k1 = 1; k2 = 0. The estimation performance is shown in Figure 5.3.

Dynamic inputs with fixed communication graph G1

For the simulations in this section, the inputs of agents are not static any

more. For any t 2 R, suppose each odd-numbered agent i has dynamic input
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Figure 5.3: Max tracking with static inputs and switching communication

graphs G1 and G2: on the left, estimation outputs (red solid line) and agents

inputs (black dash-dotted line); on the right, estimation error.

ri(t) = sin( i+1
2
� t), for i 2 f1; 3; 5; 7g; while each even-numbered agent i has

dynamic input ri(t) = cos( i
2
� t), for i 2 f2; 4; 6; 8g. We first simulate the DMCE

with parameters k1 = 1 and k2 = 0, which is actually a static max consensus

estimator. From the simulation results, shown in Figure 5.4, we see that the

static max consensus estimator can not track the dynamic maximum of the

network G1 successfully.

Let k1 = 1 and k2 = 1, the resulting estimator is not static max consen-

sus estimator anymore. Figure 5.5 shows the tracking performance which is

better than that in Figure 5.4. But the tracking errors are still too big, because

the evolution speed of the dynamic max consensus estimator is relatively low

compared with that of the dynamic inputs.

Set the parameters as k1 = 50 and k2 = 10, then we get a relatively high

speed dynamic max consensus estimator compared to the dynamic inputs as-

signed in the beginning of the section. Figure 5.6 shows the improved tracking
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Figure 5.4: Track the dynamic maximum of network G1 using static max con-

sensus estimator: on the left, estimation outputs (red solid line) and agents

inputs (black dash-dotted line); on the right, estimation error.
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Figure 5.5: Track the dynamic maximum of network G1 using low speed dy-

namic max consensus estimator (DMCE): on the left, estimation outputs (red

solid line) and agents inputs (black dash-dotted line); on the right, estimation

error.
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performance, which is much better than that in Figure 5.5. Figure 5.7 shows the

tracking performance of the dynamic max consensus estimator with another

set of dynamic inputs.
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Figure 5.6: Track the dynamic maximum of network G1 using high speed dy-

namic max consensus estimator (DMCE): on the left, estimation outputs (red

solid line) and agents inputs (black dash-dotted line); on the right, estimation

error.

Dynamic inputs with switching communication graphs G1 and G2

Suppose the group of agents have the same inputs as in last section, but

with switching communication graphs. The communication graphs are switch-

ing between G1 and G2 at every second with initial communication graph G1.
The simulation results shown in Figure 5.8 are not significantly different than

those shown in Figure 5.6.

The simulation results shown in Figure 5.2, 5.3, 5.6, 5.7 and 5.8 verify in

part the effectiveness of the proposed dynamic max-consensus estimator (5.9)

58



0 1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

1

1.5

time

In
pu

t a
nd

 E
st

im
at

io
n

0 1 2 3 4 5 6 7 8 9 10
−2

−1.5

−1

−0.5

0

0.5

time

E
st

im
at

io
n 

E
rr

or

Figure 5.7: Track the dynamic maximum of network G1, with another set of

inputs, using dynamic max consensus estimator (DMCE): on the left, estima-

tion outputs (red solid line) and agents inputs (black dash-dotted line); on the

right, estimation error.
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Figure 5.8: Track the dynamic maximum of a network of 8 agents with switch-

ing communication graphs G1 and G2 using dynamic max consensus estima-

tor (DMCE): on the left, estimation outputs (red solid line) and agents inputs

(black dash-dotted line); on the right, estimation error.
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and (5.10). We will use this estimator to track the dynamic maximum of the

measurements of a distributed sensor network in next chapter.

Finally, we mention that a dynamic minimum consensus problem can al-

ways be easily transformed into a dynamic maximum consensus problem and

be solved using maximum consensus estimator, since

min
i
fi = �max

i
(�fi);

for any functions fi.
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Chapter 6

Global Optimization of Coverage

Control

We have introduced the concept of distributed coverage control in both

continuous space and discrete space in Chapter 4, where we also presented a

class of gradient descent algorithms for optimal coverage. These coverage al-

gorithms were proved to be adaptive, distributed and verifiably correct. One

limitation of these algorithms is that they can only achieve local optima, other

than global optima. To improve the performance of the mobile sensing net-

work even more, we need to design control algorithm which can optimize the

coverage performance globally.

In Section 6.1, we introduce a deterministic global optimization scheme

named Terminal Repeller Unconstrained Subenergy Tunneling (TRUST); In

Section 6.2, we discuss in detail our distributed estimation and control ap-

proach to solve global optimal coverage problem; Numerical simulation re-
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sults are reported in Section 6.3.

6.1 Preliminaries on global optimization

Many engineering applications can be formulated as nonlinear function

optimization problems in which the function to be optimized possesses many

local minima in the parameter region of interest. The problem of designing

algorithms that can distinguish between the global minimum and the numer-

ous local minima is known as the global optimization. The primary difficulty

in solving global optimization problems stems from the fact that the global

extremum of a real function is, despite its name, a local property [35]. The

existing approaches can be largely classified as deterministic and probabilis-

tic. A deterministic global optimization scheme named Terminal Repeller Un-

constrained Subenergy Tunneling (TRUST) was proposed in [35]. The TRUST

formulates optimizations as the solution of a deterministic dynamical system

incorporating terminal repellers and a novel subenergy tunneling function to

ensure escape from local minima in a fast, reliable and computationally effi-

cient manner.

We start with global minimization problem, and keep in mind that maxi-

mization problem could be easily transformed to a minimization problem. Let

f(x) : Rn ! R be a lower semi-continuous objective function with a finite

number of discontinuities. The goal of global minimization is to find xGM,

such that f(xGM) = minff(x) j x 2 Dg, where D is the domain of interest over

which we are seeking the global minimum. The first concept of TRUST is the
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sub-energy tunneling transformation defined as

Esub(x; x
�) = log

1

1 + e�(f̂(x)+a)
; (6.1)

where f̂(x) = f(x) � f(x�), parameter a is a constant that affects only the

asymptotic behavior not the monotonicity of the transformation and x� is a

fixed value whose selection is discussed in detail in [35] and [36]. Esub(x; x
�) is

a nonlinear monotonic transformation of f(x) which preserves all properties

relevant for optimization. Specifically speaking, Esub(x; x
�) has the same dis-

continunity and extremal points as f(x) and the same relative ordering of the

local and global minima. In addition, this transformation is designed to satisfy

that (i) Esub(x; x
�) approaches to zero quickly for f̂(x) � 0; and (ii) Esub(x; x

�)

tends rapidly toward f̂(x) when f̂(x) < 0.

The second concept of TRUST is terminal repellers which utilizes the finite

escape time property of some specific unstable dynamical systems, such as

_x = x
1
3 with x 2 R. Assembling both concepts, sub-energy tunneling and

terminal repeller, together, we define the TRUST virtual objective function as

E(x; x�) = Esub(x; x
�) + Erep(x; x

�)

= log
1

1 + e�(f̂(x)+a)
� 3

4
�(x� x�)

4
3 �[f̂(x)]; (6.2)

where �[x] 2 Rn with its ith element (�[x])i = sgn+(xi).1 The parameter � >

0 quantifies the strength of the repeller. Application of gradient descent to

E(x; x�) results in the dynamical system, for i 2 f1; : : : ; ng,

_xi = �@f(x)
@xi

1

1 + e(f̂(x)+a)
+ �(xi � x�i )

1
3 �[f̂(x)]: (6.3)

1Recall the definition of sgn+(�) in equation (5.8).
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The virtual objective function E(x; x�) transforms the current local mini-

mum of f(x) into a global maximum, but preserves all lower local minima.

Thus, the gradient descent dynamics (6.3), initialized at a small perturbation

from the local minimum of f(x), will escape this critical point to a lower val-

ley of f(x) with a lower local minimum, resulting in a system that has a global

descent property. This is the main idea of the TRUST method. An enhanced

dynamical system

_xi = �@f(x)
@xi

1

1 + e(f̂(x)+a)
+ �!i(xi � x�i )

1
3 �[f̂(x)]; (6.4)

was presented in [36], where !i is defined as

!i =
����@f(x)@xi

����=max
i

����@f(x)@xi

����; i 2 f1; : : : ; ng:

The term !i is introduced to ensure better convergence to a global minimum.

6.2 A distributed Estimation-and-Control approach

to optimize coverage control globally

We follow the distributed simultaneous estimation and control framework

proposed in [37] to optimize coverage control globally. Our approach is based

on TRUST method.

For easy reading, we use the same setup, assumption and notation as in

Section 4.1, where our objective is to maximize multi-center functions H(P )

and Hdscrt(P ). Since the standard TRUST method introduced in previous sec-

tion is stated in the form of solving global minimization problem, for clearness
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and consistence with the TRUST approach, we define a new unified notation

H as

H =

8>>><>>>:
�H(P ); for coverage in continuous space

�Hdscrt(P ); for coverage in discrete space
;

which transforms the original maximization problems to minimization prob-

lems and keeps the continunity and derivability unchanged.

Adopting the enhanced TRUST algorithm (6.4), we obtain the following

coverage control law

ui = �@H
@pi

1

1 + eĤ+a
+ �zi�[Ĥ]; (6.5)

where i 2 f1; : : : ; ng and

zi =

2664zi1
zi2

3775 =

2664!i1(pi1 � p�i1)
1
3

!i2(pi2 � p�i2)
1
3 ;

3775 ;
!ij =

���� @H
@pij

(P )
����=max

l;m

���� @H
@plm

(P )
����; j 2 f1; 2g;

Ĥ = H(P )�H(P �):

Unlike the orginal coverage control laws (4.4) and (4.5), control law 6.5 is not

distributed any more, since Ĥ(P ) and zi are not locally available to agent i. But

still we can say that this control law only needs very limited global informa-

tion of the system, only the overall system performance Ĥ and the maximum

element of the gradient flows
��� @H
@plm

��� are required. We use the estimation-and-

control approach to solve this problem. More specifically, each agent i runs

locally a dynamic average consensus estimator to estimate Ĥ, and a dynamic

max-consensus estimator to estimate max
��� @H
@plm

���.

65



Dynamic Average Consensus

We use dynamic average consensus filter (5.3) and (5.4) to estimate the cov-

erage performance of the sensor networks H. Each agent of the network im-

plements the following estimator

_wi(t) = kAC
X
j 6=i

aij(t)[zj(t)� zi(t)];

zi(t) = wi(t) + hi(t):

where hi(t) 2 R, the coverage performance of agent i, is the input of estimator,

zi(t) 2 R is the decision variable, wi(t) 2 R is the internal state of the estimator,

aij(t) is the weight of the edge (i; j) of the communication graph, kAC is a posi-

tive gain adjusting the convergence speed of the average consensus estimator.

Then, agent i’s estimation of H will be n � zi.

Dynamic Max Consensus

We use dynamic max consensus estimator (5.9) and (5.10) to estimate the

maximum element of the gradient flows
��� @H
@plm

���. Each agent of the network

implements the following estimator

_vi(t) = k1 sgn+(
nX
j=1

aij(t)[yj(t)� yi(t)])

+ k2vi(t) sgn�(
nX
j=1

aij(t)[yj(t)� yi(t)]); (6.6)

yi(t) = vi(t) + ri(t): (6.7)
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where k1 2 R>0 and k2 2 R�0 are proportional coefficients controlling the

evolution speed of the flow; ri(t) is the input signal of agent i, which satisfies

ri = maxf
��� @H
@pi1

���; ��� @H
@pi2

���g;
and output yi(t) is the estimation of maxj rj(t) by agent i. Since

max
l;m

��� @H
@plm

��� = max
j

rj(t);

so yi is agent i’s estimation of the maximum element of
��� @H
@plm

���.

6.3 Numerical simulations

We use the distributed estimation-and-control approach to optimize cov-

erage globally in discrete space. In this simulation, we use a group of n = 8

agents to cover/surveil a polygon in R2 with 159 discrete target points. The

simulation results shown in Figures 6.1, 6.2, 6.3 and 6.4 verify the effectiveness

of the proposed approach..
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Figure 6.1: Agents start at the bottom left corner of the polygon and end at first

local minimum with cost H = 69:3: trajectories of agents (left), evolution of the

cost H (right).
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Figure 6.2: From up to down, agents start from previous local minima and end

at new local minima with improving locally optimal cost H, 67:38, 66:91, 56:67,

respectively: trajectories of agents (left), evolution of the cost H (right).
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Figure 6.3: From up to down, agents start from previous local minima and end

at new local minima with improving locally optimal cost H, 56:28, 53:49, 47:07,

respectively: trajectories of agents (left), evolution of the cost H (right).
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Figure 6.4: From up to down, agents start from previous local minima and end

at new local minima with improving locally optimal cost H, 46:71, 46:48, 46:46,

respectively: trajectories of agents (left), evolution of the cost H (right). The last

local minimum is the global minimum found by our distributed estimation-

and-control approach.
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Chapter 7

Conclusions

In Chapter 3, we have studied averaging protocols over fixed and controlled-

switching acyclic digraphs, and characterized their asymptotic convergence

properties. In Chapter 4, we have discussed continuous and discrete multi-

center locational optimization functions, and distributed control laws that op-

timize them. The main result of Chapter 3 and Chapter 4 shows how these two

sets of problems are intimately related: discrete coverage control laws are in-

deed averaging protocols over acyclic digraphs. As a consequence of our anal-

ysis, it may be argued that the coverage control problem and the consensus

problem are both special cases of a general class of distributed optimization

problems.

In Chapter 5, we have reviewed the results on dynamic average consen-

sus problems available on the literature and proposed a dynamic max/min

consensus estimator and verified its effectiveness by simulations. The results

of Chapter 5 on dynamic consensus serve as a basis for Chapter 6, where we
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proposed a distributed estimation and control approach to optimize coverage

control globally. We have simulated the approach numerically for a discrete

coverage problem and obtained improved results. It is our future work to an-

alyze the stability and convergence properties of the estimators and control

laws proposed in Chapter 5 and Chapter 6.
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