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Abstract

The recent changes in the structure of power generation towards a dis-
tributed generation have motivated the increasing interest in the control
of so-called microgrids. Microgrids typically consist of an AC electrical
network connecting a set of loads and droop-controlled inverters. While the
decentralized and proportional primary droop-control ensures the stabiliza-
tion and the synchronization of the inverters frequencies, the purpose of
secondary control strategies is to regulate the frequencies to a rated value.
In this work, we build on recent necessary and sufficient stability conditions
for an inductive microgrid and propose several analysis and design results
for two distributed secondary control schemes: a Distributed Averaging PI
(DAPI) controller and a Centralized Averaging PI (CAPI) controller. We will
show that both controllers achieve frequency regulation in the presence of
power losses in network, even when the secondary control action is restricted
to a subset of inverters. We will also prove that the controllers minimize
a quadratic cost function of the secondary-power generation for a proper
selection of the droop coefficients.
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Kurzfassung

Die jüngsten Wandel in der Struktur der Stromerzeugung von einer zen-
tralen Erzeugung hin zu einer dezentralen Erzeugung regen das wachsen-
de Interesse an der Regelung der sogenannten Microgrids an. Microgrids
sind in der Regel synchrone elektrische Wechselstromnetze, die Wechsel-
richter und Lasten miteinander verbinden. Während sich die dezentrale
proportionale Primärregelung um die Synchronisierung der Wechselrich-
terfrequenzen kümmert, hat die Sekundärregelung die Aufgabe, bleibende
Frequenzabweichungen auszuregeln. Ausgehend von neuen notwendingen
und hinreichenden parametrischen Stabilitätsbedingungen für ein indukti-
ves droopgeregeltes Microgrid untersucht diese Arbeit die Stabilität zweier
verteilter Sekundärregler, eines verteilten mittelwertbildenden PI (DAPI)
Reglers und eines zentralen mittelwertbildenden PI (CAPI) Reglers. Es wird
gezeigt, dass beide Regler Frequenzabweichungen in verlustbehafteten Netz-
werken erfolgreich ausregeln, auch wenn sich nur eine Untermenge der
Wechselrichter an der Sekundärregelung beteiligt. Es wird auch gezeigt,
dass diese Regeler dabei eine proportionale Aufteilung der abzudeckenden
Last unter den sich an der Sekundärregelung beteiligten Wechselrichtern
garantieren. Darüber hinaus stellt sich heraus, dass der DAPI Regler bei
geeigneter Auswahl der Droopkoeffizienten eine quadratische Funktion der
Sekundärregelenergiekosten minimiert.
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1 Introduction

1.1 Microgrids and Control

The electrical power grid has been undergoing some major structural changes
in the last decade. These changes are mainly related to the emergence
and penetration of competitive renewable energy technologies, especially
photovoltaics and wind turbines. Both latter technologies feature some major
differences from classical large fossil-fuel or nuclear power plants. They are
characterized by strong fluctuations due to weather conditions, are often
small units widely distributed in the lower voltage levels (Low voltage LV
and Medium Voltage MV), and do not possess the inherent synchronization
mechanism of coupled synchronous generators.

This continuous shift from centralized continuous power generation to
distributed fluctuating power generation has been responsible for the emer-
gence of several challenges, particularly regarding the stability of power
systems. Thus, both the operation of the power grid and the analysis of its
dynamics require new analysis tools and new control design concepts.

One of these concepts that has received increasing interest recently are
the so-called microgrids. A microgrid is a local low-voltage electrical network
connecting a set of heterogeneous loads, generation and storage units. It
is able to be either coupled to a wide area synchronous grid or work in
isolated and independent manner. Katiraei, Iravani and Lehn [18] identified
the microgrid as a solution for stability problems subsequent to islanding
events. This has been established by Peças Lopes, Moreira and Madureira
in [24].

The electrical power output from renewables is very often not directly
compatible with Alternate Current (AC) synchronous microgrids. Hence,
it needs to be interfaced by power electronic devices, the power inverters,
that transform heterogeneous electric power into AC power with a proper
voltage frequency and ready to be injected into the synchronous AC electrical
network.

Now, we consider microgrids as synchronous AC networks into which
the entire AC power is injected through inverters; it becomes clear that all
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1 Introduction

important control operations are to be ensured through the control of the
inverters network.

The main control objectives in a microgrid are

• ensuring balance between load demand and power injection,

• synchronizing the inverters frequencies to a rated value and stabilizing
the voltages,

• sharing the load among the inverters in a fair manner (e.g. proportion-
ally to their ratings).

Thereby, the following requirements are important for a practicable and
robust operation of the microgrid.

• The communication complexity needs to be minimized in a way that
allows a "plug-and-play"-like operation, that is, it should be possible
to connect new inverters to the network without modifying the control
structure or parameters.

• The control operation must be fast enough to cope with time-varying
loads and fluctuating generation.

1.2 Literature review

The early work by Chandorkar, Divan and Adapa [8] transferred the concept
of conventional frequency- and voltage-droop control from classical synchronous
generators to parallel inverters in inductive networks. Lasseter introduced
the microgrid idea in [21] and identified droop control as a way to ensure
the main control objectives as well as a flexible plug-and-play operation and
the minimization of communication needs. Similar results can be found
in [5, 15, 22, 24, 25, 32].

Droop control being a proportional control law, it cannot avoid deviations
from nominal values. As a way to regulate the micrgrid frequency to a
nominal value, several papers [8, 16, 20] proposed to use the hierarchic
control structure used in large-scale power networks and consisting basically
in some secondary integral action subsequent to the primary proportional
droop control. In [27] state feedback is combined with a decentralized
LMI strategy to ensure stabilization and frequency regulation, while [2]
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1.2 Literature review

studies the performance of centralized and decentralized frequency-control
algorithms based on integral action.

The recent work by Simpson-Porco, Dörfler, and Bullo [30] gives a novel
analytic sufficient and necessary parametric condition for the existence of a
unique and locally exponentially stable steady state in a lossless frequency-
droop-controlled acyclic network with constant bus voltages. This condi-
tion was obtained following the observation of equivalence between droop-
controlled lossless systems and a generalized Kuramoto model (see [10, 12]
and the references therein for a survey of the Kuramoto synchronization
theory for coupled oscillators). Simpson-Porco et al. [30] also give a selection
of inverter parameters (droop coefficients and set points) that guarantee
proportional load sharing among the inverters. Furthermore, they extend the
primary droop-control by a secondary-control scheme, called the distributed
averaging PI (DAPI) controller. This secondary control permits to dynami-
cally regulate the network frequency to its nominal value while preserving
the proportional power sharing and without time-scales separation. These
results are foundational to this thesis and will be reviewed in Section 3.1.

Another relavant references for this thesis are [29] by Shafiee, Vasquez and
Guerrero, as well as [1] by Andreasson et al.. Schafiee et al. present in [29] a
secondary-control scheme based on all-to-all inverter frequency averaging.
This work will be reviewed and revisited in Section 3.2. Andreasson et al.
compare in [1] between a centralized and a decentralized control scheme that
minimize the generation cost of control power in general electrical power
systems.

Zhong points out in [35] some restrictions to the use of the conventional
droop-control method in microgrids, mainly related to the important losses
due to line resistances in low voltage networks. This problem is receiving
increasing interest. Engler and Soultanis [13] propose the use of opposite
droops as a substitute to conventional droop; in resistive LV grids, active
power is related to voltage magnitudes and reactive power to voltage angles,
while in inductive networks, active power is related to voltage angles and
reactive power to voltage magnitudes. Liang et al. propose in [23] a modified
droop-controller that enhances stability in lossy networks. Wang, Xia and
Lemon [33] present sufficient conditions for voltage stability in a droop-
controlled lossy microgrid. Schiffer et al. [28] establish the equivalence of
the second-order dynamics of a synchronous generator and the dynamics a
frequency-droop controlled inverter in a lossy network.
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1 Introduction

1.3 Contributions and Structure

In this work, we present and study two recent distributed secondary-control
algorithms in microgrids and also introduce some related extensions within
a nonlinear analysis framework. The contributions are fourfold. First, we
present a nonlinear analysis of drooped-controlled inverters in a lossless
microgrid equipped with a centralized Averaging PI (CAPI) secondary con-
troller inspired by [29]. Second, we study the use of the DAPI controller
from [30] to minimize a quadratic generation cost function. Third, we extend
the nonlinear analysis of the DAPI- and CAPI-controlled systems to the lossy
case. Finally, we investigate the possibility of reducing the communication
complexity needed by the DAPI- and the CAPI-controller by restricting
secondary-control actions to a subset of inverters.

The remainder of this work is organized as follows. In Chapter 2, we
introduce the reader to some notations and definitions that are relevant for
the study of secondary control in microgrids. We also present primary droop
control and review the stability analysis from [30]. Chapter 3 deals with the
secondary controllers DAPI and CAPI. Section 3.1 is a review of the DAPI
control. Section 3.2 presents the CAPI controller and the analysis of the
nonlinear dynamics of a CAPI-controlled microgrid. Section 3.3 proposes the
DAPI controller as optimal controller. In Chapter 4, we extend the analysis
of DAPI and CAPI control to lossy microgrids (Section 4.1) and to partial
secondary control (Section 4.2).

Some of the results presented in this thesis have been submitted in the
following article:

• H. Bouattour, J. W. Simpson-Porco, F. Dörfler and F. Bullo. Further
Results on Distributed Secondary Control in Microgrids. In IEEE Conf.
on Decision and Control, Florence, Italy, December 2013. Submitted.
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2 Definitions and Problem Setup

2.1 Power Inverters and Droop Control

Most renewable energy sources that are connected to microgrids are not
suitable for direct connection to a synchronous AC power system since they
generate either incompatible Direct Current (DC) power (e.g. photovoltaics)
or AC power with variable frequency (e.g. wind turbines). Therefore, power
generated by renewables needs to be converted into AC power with the
proper nominal frequency (e.g. 60 Hz for the North American power grid)
before being injected into a synchronous AC microgrid. This task is per-
formed by highly nonlinear power electronics devices called DC/AC (or
AC/AC) converters, also known as power inverters or just inverters.

There are different types of inverters, depending among other things on
the nature of the source supply (current or voltage source), on the nature
of the output (current or voltage source) and on the electronic components
(e.g. Thyristors, IGBT, MOSFET) [36]. For the purposes of this work, and
as widely adopted in the microgrid literature, we will consider the class
of voltage controlled Voltage Source Inverters (VSI) with purely sinusoidal
voltage output. The switching transients, higher harmonics, and internal
losses of the inverters are not relevant for the analysis of microgrid dynamics,
so that we consider inverters to be ideal output voltage sources [24].

The amplitude of the VSI output as well as its frequency can be manipu-
lated via pulse-width-modulation (PWM) techniques (a description of the
relevant and widely-used sinusoidal PWM and further references to other
PWM techniques can be found in [36]). Accordingly, it is possible through
external control actions to set the amplitude and the angle velocity of the
sinusoidal output voltage to be fed into the microgrid.

Further explanations of the internal physical composition and operation
mode of inverters will not be addressed in this work and can be found
in [14], [34] and [36].

High voltage networks are characterized by inductive power lines. This
results in decoupling active power flow, controlled by the difference of bus
angles, from reactive power flow, controlled by the difference of bus voltages.
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2 Definitions and Problem Setup

Droop control is a technique based on this decoupling and widely used in the
control of high-voltage large-scale power networks. Frequency-droop controls
the active power output of a synchronous generator proportionally to the
locally available measurement of the network AC frequency. The physical
intuition behind this idea is clear for a synchronous generator since there
is an inverse-proportional relationship between the electrical active power
output and the frequency of the rotating mass [19].

Chandorkar et al. introduces in [8] conventional frequency-droop control
for an inverter with inductive output impedance. Droop control emulates
the behavior of a synchronous generator and specifies an instantaneous
change in the frequency ωi of the voltage signal at an inverter i according to
the frequency-droop law

ωi = ω∗ −mi(Pe,i − P∗i ) , (2.1)

where ω∗ is the rated frequency, Pe,i is the active electrical power injection
of inverter i and P∗i is the nominal active power injection of inverter i when
operated at the rated frequency. The parameter mi > 0 is referred to as the
droop coefficient.

2.2 Notation and Geometric Definitions

The following section introduces the reader to the notation used throughout
this thesis as well as to some important geometric definitions.

Notation

• Given a finite set V , let |V| denote its cardinality.

• Given an n-tuple (x1, . . . ,xn), let x ∈ Rn be the associated vector.

• Given an index set I and a real valued 1-dimensional array {x1, . . . ,x|I|},
let diag({xi}i∈I ) ∈ R|I|×|I| be the associated diagonal matrix.

• We denote the n × n identity matrix by In. Let 1n and 0n be the
n-dimensional vectors of all ones and all zeros. We will drop the
subscripts from In, 1n and 0n when the dimensions are clear from
context.
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2.3 Algebraic Graph Theory

• Let V = {1, . . . , n} be a finite partitioned set V = VL ∪ VI . For simplic-
ity of notation, let |VL| = nL and |VI | = nI . A vector x ∈ Rn inherits
the partitioning as x = (xL,xI), where xL ∈ RnL and xI ∈ RnI .

• For x ∈ Rn, let sin(x) , (sin(x1), . . . , sin(xn))T ∈ Rn.

Geometry on the n-torus:
• The set S1 denotes the unit circle, an angle is a point θi ∈ S1, and an arc

is a connected subset of S1.

• With a slight abuse of notation, let |θ1 − θ2| denote the geodesic distance
between two angles θ1,θ2 ∈ S1.

• The n-torus Tn = S1 × · · · × S1 is the Cartesian product of n unit
circles.

• For γ ∈ [0,π/2[ and a given graph G(V ,E ,·), let

∆G(γ) = {θ ∈ T|V| : max
{i,j}∈E

|θi − θj| ≤ γ}

be the closed set of angle arrays θ = (θ1, . . . ,θn) with neighboring
angles θi and θj, {i,j} ∈ E no further than γ apart.

2.3 Algebraic Graph Theory

We denote by G(V ,E ,A) an undirected and weighted graph, where V =
{1, . . . , n} is the set of nodes, E ⊆ V × V is the set of edges, and A ∈ Rn×n

is the adjacency matrix.
If a number ` ∈ {1, . . . , |E |} and an arbitrary direction are assigned to

each edge {i,j} ∈ E , the node-edge incidence matrix B ∈ Rn×|E| is defined
component-wise as Bk` = 1 if node k is the sink node of edge ` and as
Bk` = −1 if node k is the source node of edge `, with all other elements
being zero. For x ∈ Rn, BT x ∈ R|E | is the vector with components xi − xj,
with {i,j} ∈ E .

The Laplacian matrix L ∈ Rn×n is defined by Lij =


−aij for i 6= j

n
∑

j=1 ,j 6=i
aij for i = j ,

aij being the weight of the edge between nodes i and j. L is positive semidef-
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2 Definitions and Problem Setup

inite and satisfies the identity L = BABT with A , diag({aij}{i,j}∈E ) being
the diagonal matrix of edge weights.

If the graph is connected, then ker(BT) = ker(L) = span(1n), and
ker(B) = ∅ for acyclic graphs. In the case of an acyclic graph, for ev-
ery x ∈ Rn with ∑i∈V xi = 0, there exists a unique ξ ∈ R|E | satisfying
Kirchoff’s Current Law (KCL) x = Bξ [6, 9]. The vector x is interpreted as
nodal injections, with ξ being the associated flows along edges.

We denote by B† , (BT B)−1BT the left pseudoinverse of B.

2.4 Active Power Flow in AC networks

Consider a synchronous AC electrical power network with a set V =
{1, . . . , n} of nodes and a set E ∈ V × V of power lines. The active power
flow Pe, i→ j ∈ R from node i to node j is given by [19] as

Pe, i→ j = EiEj

∣∣∣Yij

∣∣∣ sin(θi − θj − φij), (2.2)

the reactive power flow Qe, i→ j ∈ R from node i to node j as

Qe, i→ j = EiEj

∣∣∣Yij

∣∣∣ cos(θi − θj − φij), (2.3)

where E ∈ Rn
≥0 is the vector of voltage magnitudes at the nodes, Y ∈ Cn×n is

the admittance matrix and θ ∈ Tn represents the voltage angles at the nodes.
For all {i,j} ∈ E , the admittance phase is defined as φij , −arctan(Gij/Bij)
with Gij = <(Yij) being the line conductance, and Bij = =(Yij) the line
susceptance. Note that the power flow Pe, i→ j is lossless if Gij = 0.

The active electrical power Pe,i ∈ R injected into the network at node
i ∈ {1, . . . , n} is then given as

Pe,i(θ) =
n

∑
j=1

EiEj

∣∣∣Yij

∣∣∣ sin(θi − θj − φij) , (2.4)

where we assume the voltage magnitudes Ei, i ∈ {1, . . . , n}, to be constant
parameters. This assumption can also be relaxed to unknown and strictly
positive parameters, see [30, Corollary 5].

Remark 1. Power flow is rotationally invariant.
Observe that the active power flow Pi→ j and hence the active power injection
Pe,i(θ) are rotationally invariant, that is, by rotating the angles θi and θj by the
same angle in the same direction, Pi→ j and Pe,i(θ) do not change. �

8



2.5 Droop-Controlled Microgrid

Remark 2. Lossless power flow is symmetric.
Under assumption of lossless power flow, i.e., there are no conductances in the
network Gij = 0 and hence φij = 0 for all {i,j} ∈ E , the electrical power flow is
symmetric, that is Pe, i→ j = Pe, j→ i . Note that the sum of the symmetric power
flow over all nodes is zero: 1T Pe = 0. �

2.5 Droop-Controlled Microgrid

For our purposes, a microgrid is a standalone synchronous AC system in
which the entire AC power is injected into the network through inverters.
A standalone microgrid is operated isolated from the rest of the electrical
power grid, which can be a design choice or can happen as a consequence to
some disturbances. The inverters are operated as ideal voltage sources.

By neglecting eventual control of the line susceptances, we reduce the
control of a microgrid to the control of a network of inverters. Accordingly,
power balance, stability, and load sharing in the microgrid have to be ensured
through the control of the inverters.

Our microgrid setup consists of nI Voltage Source Inverters (VSI) with rat-
ings Pi ∈ R≥0 and nL frequency-independent loads connected through a syn-
chronous AC electrical network. We model it as an undirected and weighted
graph G(V ,E ,A), where the partitioned set of nodes V = {VL,VI} =
{1, . . . , n} corresponds to the nL loads and nI inverters in the electrical
network, E ∈ V × V represents the set of power lines and the entries of the

weighted adjacency matrix A ∈ Rn×n are aij = EiEj

∣∣∣Yij

∣∣∣ > 0 if {i,j} ∈ E
and aij = 0 otherwise.

For the seek of simplicity, we adopt the physically reasonable and widely
adopted assumption of decoupled active power flow and reactive power,
see [19]. Active power flow is controlled by the difference of bus voltage
angles via a frequency-droop controller while the bus voltages are assumed
to be constant and hence the reactive power flow is almost constant.

Each inverter is equipped with a primary frequency-droop controller (2.1)
and possibly a secondary controller that changes the set point P∗ of the power
output. We choose to describe the system in relative coordinates and set the
time derivative of the voltage angle at inverter i as θ̇i = ω∗ −ωi. The rated
frequency is now 0 Hz instead of 60 Hz (in the North American Power Grid).
We also introduce the inverse droop coefficients as Di = 1/mi and will refer to
them simply and without any loss of generality as droop coefficients.

9



2 Definitions and Problem Setup

All loads are assumed to be frequency-independent, that is the voltage
angles at the load nodes are constant. The closed-loop dynamics of the
droop-controlled microgrid are then given by the differential-algebraic system

0 = P∗i − Pe,i(θ) , i ∈ VL . (2.5a)

Di θ̇i = P∗i − Pe,i(θ) + ui(t), i ∈ VI , (2.5b)

where ui : R≥0 → R is the secondary control input at node i. From this point
on, we will refer to the closed-loop system (2.5b) without secondary control
input ui = 0 for all i ∈ VI as the primary-controlled system. In presence of a
nonzero control input, we refer to (2.5b) as the secondary-controlled system.

The synchronization of the inverters output frequencies is one of the main
control objectives in a microgrid. We define it as follows.

Definition 1. Synchronization:
A trajectory θ : R≥0 → Tn is synchronized if the following statements hold

(a) There exists a constant ωsync ∈ R such that θ̇ = ωsync1 for all t ≥ 0.

(b) There exists a γ ∈ [0,π/2[ such that θ(t) ∈ ∆(γ) for all t ≥ 0.

First, consider the primary-controlled system. If there exists a synchro-
nized trajectory θ∗ : R≥0 → R for which holds that θ̇∗i (t) = ωsync ∀t ≥ 0,
then by summing up over the equations (2.5a)-(2.5b), we obtain the synchro-
nization frequency as:

ωsync =

−PL + ∑
i∈VI

P∗i + ∑
i∈V

Pe,i(θ
∗)

∑
i∈VI

Di
=

∑
i∈V

P∗i + ∑
i∈V

Pe,i(θ
∗)

∑
i∈VI

Di
, (2.6)

where PL = ∑i∈VL
P∗i ∈ R≥0 is the total load. Note that the synchronization

frequency is not zero in the general case. In the lossless case, the power
flows sum up to zero and we call the synchronization frequency scaled power

imbalance ωavg ,
∑i∈V P∗i
∑i∈VI

Di
. [30]

We associate to the primary-controlled system (2.5a)-(2.5b) an auxiliary
system that we define as

0 = P̃i − Pe,i(θ) , i ∈ VL , (2.7a)

Di θ̇i = P̃i − Pe,i(θ), i ∈ VI , (2.7b)

10



2.5 Droop-Controlled Microgrid

where P̃i = P∗i for all i ∈ VL and P̃i = P∗i − Diωavg for all i ∈ VI . Since
1T P̃ = 0, system (2.7) features the property that ω̃avg = 0. Hence, a synchro-
nized solution of (2.5) is an equilibrium of (2.7).

The recent work by Simpson-Porco et al. [30] is foundational for this thesis.
It presents a nonlinear analysis of the angle stability and power sharing
properties in an inductive microgrid. Particularly in the case of a lossless
acyclic network with constant bus voltages, it gives necessary and sufficient
conditions for the existence and uniqueness of a frequency-synchronized
solution to the differential algebraic system (2.5).

Before stating the main result from [30], observe that synchronized so-
lutions to the closed-loop system (2.5) live on synchronization manifolds,
which are defined as follows.

Definition 2. Synchronization Manifold:
Since the power flow is rotationally invariant, if θ ∈ ∆G(γ) ⊂ Tn for some
γ ∈ [0,π/2[ is a synchronized solution of the closed-loop system (2.5), then every
θ + s1n with s ∈ [0, 2π] lives also in ∆G(γ) and is a synchronized solution of
(2.5). The set Rθ , {θ + s1n | s ∈ [0,2π]} is called the synchronization
manifold.

These concepts allow us to state the following result [30, Theorem 2]:

Theorem 2.5.1. Existence and Stability of Synchronized Solution.
Consider the primary-controlled system (2.5) defined on an acyclic lossless network
with node-edge incidence matrix B. Define the scaled power imbalance ωavg ,
∑i∈V P∗i
∑i∈VI

Di
and let ξ ∈ R|E | be the unique vector of edge power flows satisfying

KCL, given by ξ = B†(P∗ − ωavgD1), with D = diag(0nL ,{Di}i∈VI ). The
following two statements are equivalent:

(i) Synchronization: There exists an arc length γ ∈ [0,π/2[ such that the
closed-loop system (2.5) possesses a locally exponentially stable and unique†

synchronized solution t 7→ θ∗(t) ∈ ∆G(γ) for all t ≥ 0; and

(ii) Flow Feasibility: The power flow is feasible, i.e.,

Γ , ‖A−1ξ‖∞ < 1. (2.8)

†Modulo the rotational symmetry inherent in the model.
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2 Definitions and Problem Setup

If the equivalent statements (i) and (ii) hold true, then the quantities Γ ∈ [0,1[
and γ ∈ [0,π/2[ are related uniquely via Γ = sin(γ), the synchronized solu-
tion satisfies θ∗(t) = θ0 +

(
ωsynct1n

)
(mod 2π) for some θ0 ∈ ∆G(γ), where

ωsync = ωavg, and the synchronized angular differences satisfy sin(BTθ∗) = Aξ.

Note that the power injection of each inverter is constrained by its rating,
that is, Pe,i ∈ [0,Pi] for each inverter i ∈ VI . Yet we do not know how to
select the droop coefficients Di and the set points P∗i of the inverters in order
to satisfy these actuation constraints. Consider the following proportional
selection of the inverters parameters Di and P∗i :

Definition 3. Proportional inverter parameters
The parameters of the inverters, the droop coefficients and the set points, are se-
lected proportionally if for all i, j ∈ VI

(a)
P∗i
Di

=
P∗j
Dj

and (b)
P∗i
Pi

=
P∗j
Pj

.

Simpson-Porco et al. show in the following theorem [30, Theorem 7] that
a proportional selection of the inverter parameters after Definition 3 leads to
an equivalence between the satisfaction of the actuation constraints and the
serviceability of the load, and guarantees proportional power sharing.

Theorem 2.5.2. Power Flow Constraints and Power Sharing.
Consider a synchronized solution of the primary-controlled lossless network of load
and inverters (2.5) and let the inverter parameters be selected proportionally. The
following two statements are equivalent:

(i) Injection Constraints: 0 ≤ Pe,i ≤ Pi, ∀i ∈ VI ; and

(ii) Load Constraints: −∑j∈VI
Pj ≤ PL ≤ 0.

Moreover, the inverters share the total load PL proportionally according to their
power ratings, that is, Pe,i/Pi = Pe,j/Pj, for each i ∈ VI .

2.6 General Simulation Setup

Throughout this work, we will support and illustrate our analytic results
with a few simulations. For this aim, we consider two inverters operating in
parallel, supplying a time-varying load and connected through lossy power
lines. The frequency of each inverter is controlled via droop control (2.5b).
The simulation time is 15 seconds. The active power demand is constant

12



2.6 General Simulation Setup

over the first five seconds, doubles then remains constant over the second
five seconds and finally returns to its initial value in the last five seconds.

The verification of the stability condition stated in Theorem 2.5.1 is de-

pendent on the terms aij = EiEj

∣∣∣Yij

∣∣∣, {i,j} ∈ E . While the analysis assumes
constant voltage magnitudes and constant susceptances, in realistic power
systems both are dynamically regulated by further controllers. On the other
hand, the droop controller (2.5) features some robustness to variable voltage
and susceptances magnitudes, as shown in [30, Corollary: 5]. In order to
confirm the robustness of the controllers that will be analyzed in this work,
we introduce voltage control and use lossy lines in our simulation scenarios.

The voltage magnitude at each inverter is controlled via the quadratic
voltage-droop method [31]

τi Ėi = −CiEi(Ei − E∗i )−Qe,i , i ∈ VI , i ∈ {1,2},

where E∗i > 0 is the nominal voltage magnitude, Ci > 0 and τi > 0 are the
proportional and integral quadratic voltage-droop coefficients, and Qe,i ∈ R

is the reactive power injection [19].
The general simulation parameters are specified in Table 2.1. We will use

these parameters for most the simulations throughout this work. Whereas
our choice of the parameter values will lead to satisfying transients, its
optimization is not subject of this work. Note also that the choice of a load
that is small relatively to the inverter set points is motivated by the presence
of losses in the network, which need to be compensated by a higher power
injection from the nodes. This will be the object of detailed analysis in
Subsection 4.2.2.

The first simulation scenario (see Figure 2.1) illustrates the stability and
power sharing properties of the primary-controlled system (2.5). On the one
hand, observe that the frequencies are synchronized in steady state, that
the power sharing property holds also in steady state. On the other hand,
note that the synchronization frequency is different from the rated frequency
60 Hz. This motivates the implementation of some integral secondary control
action, which would eliminate the frequency deviation in steady state.

13



2 Definitions and Problem Setup

Table 2.1: General parameter values.
Parameter Symbol Value
Nom. Frequency ω∗/2π 60 Hz
Nom. Voltages E∗i [120, 122] V
Output/Line Induc. Li [0.7, 0.5] mH
Output/Line Resist. Ri [0.14, 0.1] Ω
Inv. Ratings (P) P∗i = Pi [6, 9] kW
Load (P) P∗0 (t) P∗0 ∈ {−2.5,− 5}kW
Load (Q) Q∗0(t) Q∗0 ∈ {−.5,− 1}kvar
ω–Droop Coeff. Di [4, 6] ×103 W · s
Quadratic E–Droop Coeff. Ci [1, 1] ×103 S
Quadratic E–Droop Int. Coeff. τi [5, 5] Var

V · s
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Figure 2.1: Primary-controlled microgrid consisting of two parallel inverters
supplying a load, which changes at t ∈ {5s,10s}.
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3 Secondary Control Strategies in a
Microgrid

As we have seen in Theorem 2.5.1 and in Figure 2.1, in synchronized steady
state, the primary-controlled system (2.5) features generally a frequency
deviation ωavg 6= 0. Thus, it is necessary to extend the primary droop
controller by some secondary integral control action able to eliminate these
deviations. At the same time, this integral control action should not lead
to some arbitrary power flows in steady state, but rather conserve the pro-
portional power sharing property of droop control or alternatively optimize
some cost function.

First, observe that the synchronization frequency for the auxiliary system
(2.7) is ωavg = 0. The dynamics of this auxiliary system correspond to the
dynamics of the original system (2.5) in a rotating frame with the frequency
ωavg. Intuitively, one approach would be to make the secondary control
input u transform the system into this rotating frame by setting ui = Diωavg
for each i ∈ VI .

Unfortunately, ωavg is not immediately available locally at each inverter,
which makes the design of a secondary-control strategy a particularly chal-
lenging problem.

On the one hand, a computation of ωavg as defined by (2.6) requires
the knowledge of all droop coefficients, of all power set points and of
the possibly time-varying loads. This computation does not feature any
robustness against the presence of losses in the network. Therefore, it is
practically not relevant.

On the other hand, a totally decentralized implementation, as described
by Chandorkar et al. [8], uses θ̇i as an approximation of ωavg at each node
i ∈ VI . Hence, it requires a separation of time scales between fast primary
control and slow secondary control. In the fast time scale, the primary
control ensures the synchronization of all voltage angles. In the slow time
scale, the secondary control uses the synchronization frequency ωavg (which
is by then available at each node) to change the set point of the inverter
and eliminate the frequency deviation. This slow secondary control is not
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3 Secondary Control Strategies in a Microgrid

able to dynamically regulate the frequency to the rated value in presence of
time-varying load.

In order to avoid such a control strategy requiring a time scale separa-
tion, a dynamic secondary control strategy is preferred which assures the
convergence of the input ui to Diωavg while the primary control ensures
frequency-synchronization at the same time.

In this section, we will present two secondary-control algorithms and
discuss their stability and power sharing properties.

3.1 Distributed Averaging PI Control

The work by Simpson-Porco et al. [30] presents a distributed secondary
control algorithm for frequency control. The controller is given by:

ui = −pi , ki ṗi = Di θ̇i − ∑
j∈VI

Lc,ij

(
pi
Di
−

pj

Dj

)
. (3.1)

Here, Lc ∈ RnI×nI is the symmetric Laplacian matrix of a connected com-
munication graph Gc between the inverters {1, . . . , nI} (see Figure 3.1). For
each i ∈ VI , pi ∈ R is an auxiliary power variable and ki > 0 is the control
gain.

Figure 3.1: Schematic of secondary control. The red dotted line represents a
communication link [30].
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3.1 Distributed Averaging PI Control

The resulting closed-loop system is then given by

0 = P∗i − Pe,i(θ) , i ∈ VL , (3.2a)

Di θ̇i = P∗i − pi − Pe,i(θ) , i ∈ VI , (3.2b)

ki ṗi = Di θ̇i − ∑
j∈VI

Lc,ij

(
pi
Di
−

pj

Dj

)
, i ∈ VI . (3.2c)

The controller (3.1) consists of a decentralized proportional-integral part
Di θ̇i and of the consensus term ∑j∈VI

Lc,ij(pi/Di − pj/Dj). The controller
transforms the system (2.5) into the auxiliary system (2.7). Besides of dy-
namically regulating the system frequency in presence of time-varying loads,
this controller, named Distributed Averaging PI (DAPI) controller, has the par-
ticular feature of preserving the power sharing property of primary control
obtained by selecting the inverter parameters as shown in Definition 3.

In the following, we analyze the stability and the power sharing properties
of this control strategy. To begin, we make sure that synchronized solutions
of the DAPI-controlled system are necessarily equilibria of (3.2).

Lemma 3.1.1. Synchronization Frequency is Zero.
If the frequencies of the inverters in the DAPI-controlled system (3.2) are synchro-
nized, then the synchronization frequency is zero.

Proof. Assume there exists a solution (θ,p) ∈ ∆G(γ)×RnI for the system (3.2)
such that the trajectory θ : R≥0 → ∆G(γ) is synchronized with θ̇ = ωsync1 ∈
RnI and the secondary control input p : R≥0 → RnI is a time-varying
function.

Equation (3.2b) becomes Diωsync = P∗i − pi − Pe,i(θ) for all i ∈ VI . The
terms Diωsync and P∗i are constant for each i ∈ VI . Note that also the power

flow Pe,i(θ) = ∑n
j=1 EiEj

∣∣∣Yij

∣∣∣ sin(θi −θj − φij) is constant for each i ∈ VI for

synchronized θ since θ̇i − θ̇j = ωsync −ωsync = 0 for all i,j ∈ VI . Therefore,
also pi is constant for each i ∈ VI in synchronized state.

The row sum of the symmetric Laplacian Lc is zero. Therefore, by sum-
ming up the equations (3.2c) in steady state, we get 0 = ∑i∈VI

kiṗi =
∑i∈VI

Diωsync. Since Di > 0 for all i ∈ VI , ωsync must be zero.

The following result gives a necessary and sufficient parametric condi-
tion for the local existence, uniqueness (modulo rotational symmetry) and
exponential stability of an equilibrium of the DAPI-controlled system (3.2)
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3 Secondary Control Strategies in a Microgrid

for a lossless acyclic network [30, Theorem: 8]. It also states that the DAPI
controller preserves the proportional power sharing.

Theorem 3.1.2. Stability of DAPI-Controlled Network.
Consider a lossless acyclic network of droop-controlled inverters and loads in which
the inverters can communicate through the weighted graph Gc, as described by the
closed-loop system (3.2) with parameters ki > 0, P∗i ∈ [0,Pi], and Di > 0 for
i ∈ VI , and connected communication Laplacian Lc ∈ RnI×nI . The following two
statements are equivalent:

(i) Stability of Droop Controller: The droop control stability condition (2.8)
holds; and

(ii) Stability of DAPI Controller: There exists an arc length γ ∈ [0,π/2[
such that the system (3.2) possesses a locally exponentially stable and unique†

equilibrium
(
θ∗, p∗

)
∈ ∆G(γ)×RnI .

If the equivalent statements (i) and (ii) hold true, then θ∗ lives on the same syn-
chronization manifold as the solution from Theorem 2.5.1 (ii), and p∗i = Diωavg
for i ∈ VI . Moreover, if the droop coefficients are selected proportionally, then
the DAPI controller (3.1) preserves the proportional power sharing property of the
primary droop controller.

In the following simulation scenario, we use the general parameters from
Table 2.1 and the DAPI parameters given by Table 3.1, and we illustrate the
properties of the DAPI controller (3.1). The results are shown in Figure 3.2.
Observe that the frequencies of both inverters return to the rated frequency
quickly after the change of load and that the power sharing property is
recovered in steady state.

Table 3.1: Specific parameter values for the DAPI controller.
Parameter Symbol Value
Sec. Droop Coeff. ki 10−6 s
Comm. Graph Gcomm Two nodes, one edge

Comm. Laplacian Lc (104 Ws) ·
[

1 −1
−1 1

]

†Modulo the rotational symmetry inherent in the model.
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Figure 3.2: DAPI-controlled microgrid consisting of two parallel inverters
supplying a load, which changes at t ∈ {5s,10s}.

3.2 Centralized Averaging PI Control

Another secondary distributed PI controller has been presented by Shaffie et
al. in [29]. The proposed secondary-control input ui(t) to the dynamics (2.5)
is given by an integral feedback‡ of the weighted average frequency§ among
the inverters:

ui(t) = −pi , ki ṗi =
∑j∈VI

Dj θ̇j

∑j∈VI
Dj

, (3.3)

‡ The controller proposed in [29] also contains a proportional feedback of the average frequency.
We found that such a proportional feedback destroys the desired proportional power sharing,
unless the gains are carefully tuned. For these reasons and since the resulting closed loop is
hardly amenable to an analytic investigation, we omit the proportional feedback channel here.

§The controller in [29] contains a true arithmetic average with all Di = 1 in (3.3). Since the
synchronization frequency (2.6) is obtained by a weighted average, we found the choice (3.3)
more appealing and intuitive. Simulation studies suggest that any convex combination of the
inverter frequencies yields identical results.
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3 Secondary Control Strategies in a Microgrid

Here, pi ∈ R is again an auxiliary power variable and ki > 0 is a gain, for
each i ∈ VI .

A simulation using the general parameters from Table 2.1 and the con-
troller parameters given by Table 3.2 shows that, while the frequencies are
regulated, the proportional power sharing is destroyed (see Figure 3.3).

Table 3.2: Specific parameter values for controller (3.3)-(3.4).
Parameter Symbol Value
Sec. Droop Coeff. ki 10−6 s
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Figure 3.3: A microgrid consisting of two parallel inverters supplying a load,
which changes at t ∈ {5s,10s}, controlled by the controller (3.5).

It turns out, that a careful choice of the secondary-controller parameters
can lead to the preserving of power sharing. In the following, we suggest
the choice

ki = k/Di , i ∈ VI . (3.4)
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3.2 Centralized Averaging PI Control

where k > 0 is constant. That is, the integral channels have the time-constants
inverse to the proportional droop control channels (2.5b). In this case, the
closed loop is given by

0 = P∗i − Pe,i(θ) , i ∈ VL , (3.5a)

Di θ̇i = P∗i − Pe,i(θ)− pi , i ∈ VI , (3.5b)

k
ṗi
Di

=
∑j∈VI

Dj θ̇j

∑j∈VI
Dj

, i ∈ VI . (3.5c)

By changing coordinates qi = pi/Di − ωavg for i ∈ VI and observing that

kq̇i =
∑j∈VI

Dj θ̇j

∑j∈VI
Dj

is identical for all i ∈ VI , we can rewrite the closed-loop

equations (3.5) as

0 = P̃i − Pe,i(θ) , i ∈ VL , (3.6a)

Di θ̇i = P̃i − Pe,i(θ)− Diq , i ∈ VI , (3.6b)

kq̇ =
∑j∈VI

Dj θ̇j

∑j∈VI
Dj

. (3.6c)

Notice that equation (3.6c) in the transformed system can be implemented
as a centralized integrator. For these reasons, we refer to the controller (2.5b),
(3.3) with the choice of gains (3.4) as the centralized-averaging proportional-
integral (CAPI) controller. This perspective is not only insightful and shows
the communication complexity of the CAPI controller (3.3)-(3.4), but equa-
tions (3.6) are also convenient for a stability analysis.

In a first step, we show that the only possible synchronization frequency
for any synchronized solutions of the CAPI-controlled system (3.5) is zero.
Consequently, synchronized solutions are necessarily obtained by looking
for equilibria of (3.5).

Lemma 3.2.1. Synchronization Frequency is Zero.
If the frequencies of the inverters in the CAPI-controlled system (3.5) are synchro-
nized, then the synchronization frequency is zero.

Proof. Assume there exists a solution (θ,p) ∈ ∆G(γ)×RnI for the system (3.5)
such that the trajectory θ : R≥0 → ∆G(γ) is synchronized with θ̇ = ωsync1 ∈
RnI and the secondary control input p : R≥0 → RnI is a time-varying
function.
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3 Secondary Control Strategies in a Microgrid

Equation (3.5b) becomes Diωsync = P∗i − pi − Pe,i(θ) for all i ∈ VI . The
terms Diωsync and P∗i are constant for each i ∈ VI . Note that also the power

flow Pe,i(θ) = ∑n
j=1 EiEj

∣∣∣Yij

∣∣∣ sin(θi −θj − φij) is constant for each i ∈ VI for

synchronized θ since θ̇i − θ̇j = ωsync −ωsync = 0 for all i,j ∈ VI . Therefore,
also pi is constant for each i ∈ VI in synchronized state.

In steady state we obtain 0 = ki
ṗi
Di

=
∑j∈VI

Dj

∑j∈VI
Dj

ωsync for i ∈ VI . Thus,

ωsync must be zero.

In a second step, we present a necessary and sufficient parametric con-
dition for the local existence, uniqueness (modulo rotational symmetry)
and exponential stability of an equilibrium of the CAPI-controlled system
(3.5) for a lossless acyclic network. We also show that the CAPI controller
preserves the proportional power sharing.

Theorem 3.2.2. Stability of CAPI-Controlled Network.
Consider a lossless acyclic network of droop-controlled inverters and loads in which
all inverters can communicate and average their frequencies, as described by the
closed-loop system (3.5) with parameters k > 0, P∗i ∈ [0,Pi], and Di > 0 for
i ∈ VI . The following two statements are equivalent:

(i) Stability of Droop Controller: The droop control stability condition (2.8)
holds; and

(ii) Stability of CAPI Controller: There exists an arc length γ ∈ [0,π/2[
such that the system (3.5) possesses a locally exponentially stable and unique†

equilibrium
(
θ∗, p∗

)
∈ ∆G(γ)×RnI .

If the equivalent statements (i) and (ii) hold true, then θ∗ lives on the same syn-
chronization manifold as the solution from Theorem 2.5.1 (ii), and p∗i = Diωavg
for i ∈ VI . Moreover, if the droop coefficients are selected proportionally, then the
CAPI controller (3.3)-(3.4) preserves the proportional power sharing property of
the primary controller (2.5b).

Proof. We start by writing the closed loop (3.6) in vector form analogous
to [30]. Let DI = diag({Di}i∈VI ), and let Dtot = ∑i∈VI

Di = 1T DI1. Let
P̃ = (P̃T

L ,P̃T
I )

T , and accordingly let Pe(θ) = (Pe,L(θ)
T , Pe,I(θ)

T)T , where
Pe,I(θ) and Pe,L(θ) are vectors of the lossless power injections (2.4) at the

†Modulo the rotational symmetry inherent in the model.
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inverters VI and the loads VL. Let the angles be partitioned accordingly as
θ = (θL,θI). With this notation, the closed-loop dynamics (3.6) read in vector
form asI 0 0

0 DI 0
0 0 k · Dtot


︸ ︷︷ ︸

,Q1

 0
θ̇I
q̇

 =

I 0 0
0 I DI1
0 1T Dtot

P̃L − Pe,L(θ)

P̃I − Pe,I(θ)
−q



=

I 0 0
0 DI 0
0 0 1


︸ ︷︷ ︸

,Q2

I 0 0
0 D−1

I 1
0 1T Dtot


︸ ︷︷ ︸

,Q3

P̃L − Pe,L(θ)

P̃I − Pe,I(θ)
−q


︸ ︷︷ ︸

,x

. (3.7)

The matrices Q1 and Q2 are nonsingular. The matrix Q3 is singular with
ker(Q3) = [0 (DI1)T − 1]T corresponding to decreasing the secondary
variable q and increasing all inverter flows accordingly. On the other hand,
we have that [1T 1T 0]x = 0 due to balanced injections 1T P̃ = 0 and
symmetry of the flow 1T Pe(θ) = 0. We conclude that x 6∈ ker(Q3). Thus,
possible equilibria of (3.7) are given by x = 0, that is, the set of desired
equilibria θ∗ from (2.7) and q∗ = 0. Equivalently, from Theorem 2.5.1, the
equation x = 0 is solvable for a unique (modulo rotational symmetry) value
θ∗ ∈ ∆G(γ) if and only if the parametric condition (2.8) holds.

To establish stability of the equilibrium (θ∗,0), we follow the proof strategy
of [30, Theorem 8]. Recall that the negative load flow Jacobian −∂/∂θ (P̃−
Pe(θ)) is given by

L(θ∗) = Bdiag({EiEj

∣∣∣Yij

∣∣∣ cos(θ∗i − θ∗j )}{i,j}∈E )BT .

For θ∗ ∈ ∆G(γ), γ ∈ [0,π/2[, we have cos(θ∗i − θ∗j ) ≥ cos(γ) > 0. Conse-
quently, L(θ∗) is a positive semidefinite Laplacian matrix, see [12, Lemma 2].
Thus, the linearization of the DAE (3.7) about the regular fixed point (θ∗,0)
results in

d
dt

0|nL |
∆θI
k∆q

 = −
 I 0 0

0 I 0
0 0 (k · Dtot)−1

Q2Q3

LLL LLI 0
LIL LI I 0
0 0 1

∆θL
∆θI
∆q

 ,

where we have partitioned the matrix L(θ∗) according to load nodes VL
and inverter nodes VI . We solve the set of nL algebraic equations as
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∆θL = −L
−1
LLLLI∆θI and substitute into the dynamics to obtain d(∆θI)/dt =

−D−1
I Lred(θ

∗)∆θI − ∆q where Lred(θ
∗) is the Schur complement of L(θ∗)

with respect to the loads VL, that is Lred(θ
∗) = LI I − LILL−1

LL LLI . The Jaco-
bian of the system is thus given by

J(θ∗) =
[

I 0
0 (k · Dtot)−1

]
︸ ︷︷ ︸

,Q̃1

[
D−1

I 1
1T Dtot

]
︸ ︷︷ ︸

,Q̃2

[−Lred(θ
∗) 0

0 −1

]
︸ ︷︷ ︸

,X

.

It is known that Lred(θ
∗) is again a positive semidefinite Laplacian matrix [11,

Lemma II.1]. The matrix Q̃1 is diagonal and positive definite, and Q̃2 is
positive semidefinite with ker(Q̃2) = [(DI1)T − 1]T .

We will proceed via a continuity-type argument. Consider momentarily
the perturbed Jacobian Jε(θ∗), where Q̃2 is replaced by the positive definite

matrix Q̃2,ε =
[

D−1
I 1

1T Dtot+ε

]
, where ε > 0. The eigenvalues of Jε(θ∗) are

obtained from Q̃1Q̃2,εXv = λv for some (λ,v) ∈ C×CnI+1. Equivalently, let
y = Q̃−1

1 v, then we obtain

− Q̃2,ε · blkdiag(Lred , 1/(k · Dtot)) y = λy

By applying the Courant-Fischer Theorem [26] to this generalized eigenvalue
problem, we conclude, for ε > 0 and modulo rotational symmetry, all
eigenvalues λ are real and negative.

Now, consider again the unperturbed case ε = 0. Recall that ker(Q̃2) =
[(DI1)T − 1]T , and the image of the matrix blkdiag(Lred , 1/(k · Dtot)) ex-
cludes span([1T 0]T). It follows that Q̃2,ε · blkdiag(Lred , 1/(k · Dtot)) y is
zero if only if y ∈ span([1T0]T) corresponding to the rotational symmetry.
We conclude that the number of negative real eigenvalues of Jε(θ∗) does not
change as ε↘ 0. Hence, the equilibrium (θ∗, 0) of the DAE (3.7) is (again,
modulo rotational symmetry) locally exponentially stable.

To show that the CAPI controller conserves the proportional power shar-
ing property of primary control, recall that the CAPI controller preserves
the synchronization manifold and hence the power flow of the primary-
controlled system. Recall also that proportional power sharing is defined by
Pe,i/P∗i = Pe,j/P∗j for all i,j ∈ VI . Therefore, the CAPI controller preserves
it.
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3.2 Centralized Averaging PI Control

In a simulation with the general parameters from Table 2.1 and the specific
parameters given by Table 3.3, we illustrate the properties of the CAPI
controller (3.3)-(3.4). The results are shown in Figure 3.4. Observe that,
as shown for the DAPI in controller in Figure 3.2, the frequencies of both
inverters return to the rated frequency quickly after the change of load and
that power sharing is recovered in steady state.

Table 3.3: Specific parameter values for CAPI controller.
Parameter Symbol Value
Sec. Droop Coeff. k 10−6 s
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Figure 3.4: CAPI-controlled microgrid consisting of two parallel inverters
supplying a load, which changes at t ∈ {5s,10s}.
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3 Secondary Control Strategies in a Microgrid

3.3 Optimal Distributed Averaging PI Control

The selection of the set points and droop coefficients for inverters, follow-
ing Definition 3, leads to proportional sharing of the load in the primary
droop-controlled system (2.5). The DAPI controller (3.2) and the CAPI
controller (3.5) are designed in a manner that preserves this proportional
sharing. However, a different non-proportional sharing of load between
the power generation units might be desired, for example depending on
the different generation costs of the different units. In that case a question
arises: which control structure and which choice of parameters can lead
to some non-proportional desired power injection profile? The work by
Andreasson et al. [1] addresses this problem and presents a distributed
secondary control algorithm, which aims to regulate the frequency while
minimizing a quadratic generation cost in steady state∗ , that is,

lim
t→∞

u(t) = u∗, (3.8a)

{θ∗, u∗} = argmin
θ,u

∑
i∈V

1
2

Ciu2
i s.t. ui = −P∗i + Pe,i(θ) ∀ i ∈ V , (3.8b)

where all cost coefficients Ci are strictly positive. Andreasson et al. [1]
propose a control algorithm that asymptotically satisfies the optimality
conditions (3.8). They also give sufficient parametric conditions for the
stability of the linearized power system swing dynamics, based on linear
matrix inequalities.

Inspired by [1], we derive necessary and sufficient stability and optimality
conditions for the nonlinear system dynamics. As in [1], we consider the
problem of minimizing the accumulated generation cost:

minimize
θ∈Tn , p∈RnI

∑
i∈VI

1
2

Ci p2
i

subject to pi = −P∗i + Pe,i(θ) ∀ i ∈ VI ,

0 = −P∗i + Pe,i(θ) ∀ i ∈ VL ,

(3.9)

with strictly positive cost coefficients Ci for all i ∈ VI .
The optimization problem (3.9) is reminiscent of the optimal generator

dispatch problem [19] considered in power transmission networks. Indeed,

∗In the problem setup considered in [1], all nodes are adjustable power sources. In (3.8), we omit
the distinction of loads VL and inverters VI .
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3.3 Optimal Distributed Averaging PI Control

in the absence of a secondary control variable, pi = 0 for all i ∈ VI , the
optimization problem (3.9), with the set points P∗i ∈ [0,Pi], i ∈ VI , as
optimization variables, equals the optimal dispatch problem. If the load
demand P∗i is known exactly for all i ∈ VL, then the optimal dispatch
problem can be solved a priori and offline to find the optimal inverters set
points P∗i , i ∈ VI , see [4], for example. Clearly, this offline solution cannot
be adopted if the load is unknown or underlying large time-variations. In
the following we show that a careful choice of the droop coefficients in the
DAPI controller (3.1) results in a distributed online optimization procedure that
is adaptive to variable loads.

Notice that, if the droop control stability condition (2.8) holds, then the
DAPI controller achieves a stable steady state (θ∗,p∗) of the closed-loop
system (3.2) which satisfies the constraints of the optimization problem (3.9),
provided that p∗i = Diωavg, see Theorem 3.1.2. The main result in this
chapter shows that this steady state is also a minimizer to the optimization
problem (3.9) for the following particular choice of droop coefficients:

Di = α/Ci ∀i ∈ VI , (3.10)

Here α ∈ R>0 is the positive and constant cost-to-droop coefficient. We arrive
at the following result:

Theorem 3.3.1. Optimal DAPI control.
Consider a lossless acyclic network of droop-controlled inverters and loads in

which the inverters can communicate through the weighted graph Gc, as described
by the closed-loop system (3.2) with parameters ki > 0, P∗i ∈ [0,Pi], and Di > 0
for i ∈ VI , and connected communication Laplacian Lc ∈ RnI×nI . Consider also
the optimization problem (3.9) with coefficients Ci for i ∈ VI . Assume that the
droop coefficients Di and optimization coefficients Ci are selected as in (3.10) for
some α ∈ R>0. The following two statements are equivalent:

(i) Stability of Droop Controller: The droop control stability condition (2.8)
holds; and

(ii) Stability and optimality of DAPI control: There exists an arc length
γ ∈ [0,π/2[ such that the system (3.2) possesses a locally exponentially
stable and unique† equilibrium

(
θ∗, p∗

)
∈ ∆G(γ)×RnI , which minimizes

the optimization problem (3.9).

†Modulo the rotational symmetry inherent in the model.
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3 Secondary Control Strategies in a Microgrid

Proof. First notice that the droop coefficients selected as in (3.10) are strictly
positive. By Theorem (3.1.2), the closed-loop system (3.2) admits a stable and
unique (up to rotational symmetry) solution

(
θ∗, p∗

)
if and only if condition

(2.8) holds. By Theorem (3.1.2), this solution is (up to rotational symmetry)
given by (θ∗,p∗) ∈ ∆G(γ)×RnI for some γ ∈ [0,π/2[, where the steady
state secondary control input is given by

p∗i = Diωavg , i ∈ VI , (3.11)

and
(
θ∗, p∗

)
satisfy the steady state power flow equation

P∗i − Pe,i(θ
∗)− p∗i = 0 , i ∈ VI . (3.12)

On the other hand, the Lagrangian L : Tn ×RnI ×Rn → R of the optimiza-
tion problem (3.9) is given by

L(θ,p,λ) = ∑
j∈VI

1
2

Cj p2
j + ∑

j∈VI

λj(pj − P∗j + Pe,j(θ)) + ∑
j∈VL

λj(−P∗j + Pe,j(θ)) .

Necessary conditions for optimality are given by the KKT conditions [7,17]:

∂L
∂θi

= 0 : 0 = ∑
j∈V

(
λj ·

∂

∂θi
(Pe,j(θ))

)
∀i ∈ V , (3.13a)

∂L
∂pi

= 0 : Ci pi = λi ∀i ∈ VI , (3.13b)

∂L
∂λi

= 0 : pi = P∗i − Pe,i(θ) ∀i ∈ VI . (3.13c)

By writing the equations (3.13a) in vector form, we obtain

0 = λTL(θ) , (3.14)

where L(θ) is the load flow Jacobian, that is, the Laplacian matrix with the
symmetric weights −∂Pe,i/∂θj. In the lossless case, this matrix is symmetric
with −∂Pe,i/∂θj = aij cos(θi − θj), and (3.14) is equivalent to

λT ∈ span(1T) .

Consequently, we obtain λi = λj = λ̃ ∈ R for all i,j ∈ V and for some λ̃ ∈ R.
Now we can rewrite the KKT conditions from (3.13b)-(3.13c) as

pi = λ̃/Ci ∀i ∈ VI , (3.15a)

pi = P∗i − Pe,i(θ) ∀i ∈ VI , (3.15b)
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3.3 Optimal Distributed Averaging PI Control

where λ̃ ∈ R is arbitrary. Recall the selection (3.10) of the droop coefficients,
and notice that equations (3.15a)-(3.15b) and the steady state equations (3.11)-
(3.12) coincide with λ̃ = α · ωavg, p = p∗, and θ = θ∗ (where the equality
holds modulo rotational symmetry).∗

Finally, note that the cost function ∑i∈VI
1
2 Ci p2

i is strictly convex on RnI ,
the equality constraint is linear in p, and θ = θ∗ is one of several solutions to
the power flow constraint (3.13c), which are all equivalent in the sense that
they do not alter the minimal value of the cost function. Thus, the necessary
KKT conditions (3.13a)-(3.13c) are also sufficient for optimality. Accordingly,
the steady state

(
θ∗, p∗

)
minimizes the optimization problem (3.9).

Remark 3. Optimal CAPI control
Since the DAPI and the CAPI controller lead to the same unique and stable (up to
rotational symmetry) steady state (θ∗,p∗) ∈ ∆G(γ)×RnI , the statement and the
proof Theorem 3.3.1 apply analogously to the CAPI controller (3.3). �

Remark 4. Injection Constraints
The selection of droop coefficients following (3.10) makes a proportional selection
of the inverter parameters as defined in Definition 3 not possible for random cost
coefficients. Thus, unless the cost coefficient at each inverter is selected inversely
proportional to its rating , that is Ci = 1/Pi for all i ∈ VI , we loose the equivalence
between the injection constraints and the load constraints as defined in Theorem
2.5.2. Therefore, the feasibility of the power injection in steady state depends on the
particular choice of the cost coefficients. A simple calculation leads to the necessary
condition

0 ≤ P∗i −
1
Ci

∑i∈V P∗i
∑i∈VI

1/Ci
≤ Pi ∀ i ∈ VI .

�

The following simulation scenario uses the general parameters listed in
Table 2.1 (except of the droop coefficients) and the optimal DAPI parameters
listed in Table 3.4. The simulation in Figure 3.5 illustrates the properties of
the optimal DAPI controller (3.1),(3.10). Observe that the frequencies of both
inverters are brought back to the rated frequency quickly after the change of
load. Whereas power sharing is not conserved, C1 · p1 and C2 · p2 converge
to the same value, which corresponds to the optimality condition (3.15a).

∗Notice that θ∗ ∈ ∆G(γ) is only one of several choices of θ ∈ Tn , which all satisfy the constraint
(3.15b) and achieve the same cost. As shown in [3, 30], for the given acyclic network only the
choice θ = θ∗ (modulo rotational symmetry) yields a locally exponentially stable solution.
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3 Secondary Control Strategies in a Microgrid

Table 3.4: Specific parameter values of optimal DAPI controller.
Parameter Symbol Value
Sec. Droop Coeff. ki 10−6 s
Cost Coeff. [C1,C2] [1,2] (p.u)
Cost-to-droop Coeff. α 4000 s
Comm. Graph Gcomm Two nodes, one edge

Comm. Laplacian Lc (104 Ws) ·
[
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Figure 3.5: Optimal DAPI-controlled microgrid consisting of two parallel
inverters supplying a load, which changes at t ∈ {5s,10s}.
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4 Extensions to Secondary Control

4.1 Extension of DAPI/CAPI Control to Lossy Networks

The assumption of lossless active power transfer simplifies the analysis
of power networks, which gives sharp parametric conditions for angle
stability (2.8). However, this assumption is not satisfied for low and medium
voltage networks, since the subtransmission and the distribution lines are
characterized by nonzero R/X ratios (resistance over reactance). On the
other hand, our simulations in Section 2.6 and Chapter 3 have shown that the
presented primary and secondary controller algorithms succeed in achieving
synchronization to the rated frequency in presence of losses in the network.
The same simulations with conductances up to three times higher than the
conductances from Table 2.1 also demonstrate the successful operation of
the primary and secondary controllers.

In this section we remove the assumption of a lossless AC network and
analyze the operation of the DAPI controller and the operation of the CAPI
controller when the network contains transfer conductances.

Recall that the dynamics of the primary-controlled system are given – here
in vector notation – by

Dθ̇ = P∗ − Pe(θ) , (4.1)

where D = diag(0nL ,{Di}i∈VI ).

4.1.1 Existence and Uniqueness of Synchronized Solutions

The question of existence of a synchronized and stable equilibrium and
the uniqueness of the synchronization-manifold for the system (4.1) is
considerably more challenging in the lossy case than in the lossless case.
Indeed, observe that the power flow from node i to node j, given by

EiEj

∣∣∣Yij

∣∣∣ sin(θi − θj − φij), is not the same as the power flow from j to i
for non-zero φij. Thus, the power flow is not symmetric and the power
injections do not sum up to zero over all nodes in the network. Therefore,
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4 Extensions to Secondary Control

the techniques used in the proofs of [30, Theorem: 8] and of Theorem 3.2.2
do not generalize.

Due to the lack of simple and sharp parametric conditions for the existence,
uniqueness, and stability of synchronized solutions in lossy networks, we
assume the existence of a unique solution (modulo rotational symmetry) to
the primary-controlled system (4.1) and use this assumption to study the
secondary-controlled systems (3.2) and (3.5).

Assumption 1. Existence and Uniqueness for Primary-Controlled Lossy
Network.
There exists an arc length γ ∈ [0,π/2[ such that the closed-loop system (4.1)
possesses a unique (modulo rotational symmetry) and frequency-synchronized so-
lution t 7→ θ∗(t) =

(
θ∗

0
+ ω∗synct1n

)
(mod 2π) ∈ ∆G(γ), with ω∗sync ∈ R for

all t ≥ 0. �

Let Assumption 1 hold. By summing over the equations (4.1) in steady
state, we obtain the corresponding unique synchronization frequency

ω∗sync =
∑i∈V P∗i −∑i∈V Pe,i(θ

∗)
∑i∈VI

Di
.

Therefore, Assumption 1 implies that θ∗ is the unique (modulo rotational
symmetry) solution in ∆G(γ) of the algebraic equation

P∗ − Pe(θ)− D
∑i∈V P∗i −∑i∈V Pe,i(θ)

∑i∈VI
Di

1 = 0 . (4.2)

Before we look for synchronized solutions to the secondary-controlled
systems, recall from Lemma 3.1.1 that any synchronized state of the DAPI-
controlled system is an equilibrium of (3.2). Analogously, recall from Lemma
3.2.1 that any synchronized state of the CAPI-controlled system is an equi-
librium of (3.5)

The following Theorem states the main result of this section; the DAPI
and the CAPI controller preserve the unique synchronization-manifold of
the primary-controlled system from Assumption 1.

Theorem 4.1.1. Existence and Uniqueness of Synchronization Manifolds
for DAPI-/CAPI- Controlled systems in Lossy Networks.
If Assumption 1 holds, then the unique† synchronized solution for the DAPI-
controlled system (3.2) and the CAPI-controlled system (3.5) are given by (θ,p) =
(θ∗,DIω∗sync1).

†Modulo the rotational symmetry inherent in the model.
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4.1 Extension of DAPI/CAPI Control to Lossy Networks

Proof. We have proven in Lemma 3.1.1 and in Lemma 3.2.1 that the only
possible synchronization frequency is zero. Therefore, we look only for
equilibria of the systems (3.2) and (3.5).

First consider the DAPI-controlled system (3.2); equilibria have to satisfy
the equations

0 = P∗ − Pe(θ)−
[

0|VL |
p

]
, (4.3a)

0 = −LcD−1
I p. (4.3b)

In order to satisfy (4.3b), D−1
I p must be in the kernel of the Laplacian Lc

and hence must have the form c1 with c ∈ R. Therefore, every p must have
the form cDI1. Suppose that (θ,p) = (θ,ωsyncDI1) ∈ ∆G(γ)×RnI satisfies
equations (4.3). We have

0 = P∗ − Pe(θ)−ωsyncD1. (4.4)

By summing over these equations we get

ωsync =
∑i∈V P∗ −∑i∈V Pe(θ)

∑i∈V Di
. (4.5)

By inserting (4.5) in equation (4.4), we obtain

0 = P∗ − Pe(θ)− D ∑i∈V P∗ −∑i∈V Pe(θ)

∑i∈V Di
1 ,

which is identical to (4.2). Assumption 1 implies that θ∗ is the unique
(modulo rotational symmetry) solution in ∆G(γ) of (4.2). Therefore, θ lives on
Rθ∗ , the synchronization manifold of θ∗, Pe(θ) = Pe(θ∗) and ωsync = ω∗sync.
It can be verified that (θ∗, ω∗syncDI1) is an equilibrium of (4.3).

Now, consider the CAPI-controlled system in transformed coordinates
(3.6). The equilibria of (3.6) satisfy

0 = P∗ − Dω∗sync1− Pe(θ)− Dq1. (4.6)

Suppose that (θ,q) = (θ̃,ω̃sync) ∈ ∆G(γ)×R satisfies equations (4.6). Thus,
this pair satisfies the equations

0 = P∗ − Pe(θ̃)− (ω̃sync + ω∗sync)D1. (4.7)
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4 Extensions to Secondary Control

Note that (4.7) is the same as (4.4). By analogous reasoning, we obtain that
θ̃ = θ and ω̃sync + ω∗sync = ω∗sync. A transformation back to the original
coordinates leads to the pair (θ∗,DIω∗sync1) as the unique (modulo rotational
symmetry) equilibrium of (4.6).

Remark 5. The results in Theorem 4.1.1 hold without any insight in the closed-
form expression of the synchronous solution, knowledge of the synchronization fre-
quency of the primary-controlled system, or knowledge of the magnitudes of the
losses. They require only the validity of Assumption 1. �

4.1.2 Stability of Unique Synchronized Solutions

After we established the existence of unique frequency-synchronization
manifolds for the DAPI- and CAPI-controlled systems, we now study the
stability properties of solutions on these manifolds. While it is difficult
to find a general analytic proof for the stability of synchronized solutions
independently of the conductance magnitudes, we can extend the stability
from the lossless case using a continuity-type argument for the eigenvalues
of the Jacobian.

Theorem 4.1.2. Stability of Equilibria for DAPI/CAPI Controllers in Lossy
Networks.
Let Assumption 1 hold and let (θ∗,DIω∗sync1) ∈ ∆G(γ)×RnI be the unique syn-
chronized solution of the DAPI-controlled system (3.2) and of the CAPI-controlled
system (3.5) with γ ∈ [0,π/2[. There exists ε > 0 such that if ‖G‖ < ε, the equi-
librium given by (θ∗,DIω∗sync1) is locally exponentially stable for both systems
(3.2) and (3.5).

Proof. The lossy DAPI system (3.2) is a smooth perturbation of the nominal
lossless DAPI system (3.2). Recall that the eigenvalues of the Jacobian, re-
sulting from the linearization of DAE (3.2) around (θ∗,DIω∗sync1) and the
elimination of the algebraic equations, are continuous function of the conduc-
tances Gij. Notice that conductances do not affect the rotational symmetry,
and the Jacobian maintains its zero eigenvalue and associated eigenvector.
Since the remaining eigenvalues of the nominal system are in the open left
half plane, then – due to continuity and for sufficiently small conductances
– the nonzero eigenvalues of the lossy system are also in the open left half
plane. The proof goes analogously for the lossy CAPI system (3.5).
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4.1 Extension of DAPI/CAPI Control to Lossy Networks

4.1.3 Injection Constraints and Power Sharing in Lossy Networks

Simpson-Porco et al. establish in [30, Theorem 7] an equivalence between
the steady-state injection constraints given for all i ∈ VI by

0 ≤ Pe,i ≤ Pi

and the load constraints given by

0 ≤ −PL ≤ ∑
j∈VI

Pj .

Since the power injections do not sum up to zero over all nodes – due to
the non-symmetric losses in the network – a calculation of an equivalent
expression to the injection constraints, similar to the one in [30, Theorem 7],
leads to the expression

− ∑
i∈V

Pe,i(θ
∗) ≤ −PL ≤ − ∑

i∈V
Pe,i(θ

∗) + ∑
j∈VI

Pj , (4.8)

where θ∗ ∈ ∆G(γ) with γ ∈ [0,π/2[ represents the voltage angles in synchro-
nized steady state. Note that this expression depends on the voltage angles
in steady state. Thus, it does not represent a general parametric condition
for the satisfaction of the injection constraints.

While it is not possible in the lossy case to formulate an equivalence
between the injection constraints and load constraints, it turns out that the
proportional power sharing properties of the closed loop are maintained in
the presence of losses for both the primary- and the secondary-controlled
systems.

Theorem 4.1.3. Power Sharing in Lossy Networks.
Let Assumption 1 hold and consider a network of droop-controlled inverters and
loads as described by (4.1). The following statements hold:

(i) If the droop coefficients and the set points of the inverters are selected pro-
portionally, that is, the ratios Di/P∗i and P∗i /Pi are constant for all i ∈ V ,
then the inverters share the load PL proportionally according to their power
ratings, that is, Pe,i/Pi = Pe,j/Pj, for each i ∈ V ; and

(ii) The secondary controllers DAPI and CAPI, proposed in (3.1) and (3.3)-(3.4),
respectively, preserve power sharing.
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Proof. The proof of (i) is identical to the proof of proportional power sharing
in the lossless case, presented in [30, Theorem 7]. To show statement (ii),
recall that also in the lossy case, both the DAPI and the CAPI controller
preserve the synchronization-manifold and hence the power flow of the
primary-controlled systems. Therefore, they also preserve the proportional
power sharing.

4.2 Partial DAPI/CAPI Control

The DAPI controller (3.1) requires a connected communication network
among the inverters and the CAPI controller (3.1) requires a centralized
communication structure among the inverters. Due to physical barriers, to
limited or failing communication infrastructure, it may be desirable to have
only a subset of inverters within the network assist in regulating the network
frequency (see Figure 4.1).

Figure 4.1: Schematic of partial secondary control. The red dotted line
represents a communication link.

To investigate this scenario, we partition the set of inverters as VIP ∪ VIS =
VI , where the action of the VIP inverters is restricted to primary droop
control, and the VIS inverters perform the secondary DAPI/CAPI control.
Under this partitioning of nodes, the inverter control equations become

Di θ̇i = P∗i − Pe,i(θ) , i ∈ VIP , (4.9a)

Di θ̇i = P∗i − Pe,i(θ) + ui(t) , i ∈ VIS , (4.9b)
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The scaled power imbalance is now defined by

ωpavg ,∑i∈V P∗i
/ (

∑i∈VIS
Di

)
(4.10)

4.2.1 Stability of Partial Secondary-Controlled Network

In the following we will show that partial secondary control strategies are
able to successfully stabilize the network.

Theorem 4.2.1. Stability of Partial Secondary-Controlled Network.
Consider an acyclic network of droop-controlled inverters and loads, as described
by the closed-loop system (2.5a), (4.9), with parameters P∗i ∈ [0,Pi] and Di > 0
for i ∈ VI . Here, the secondary-control input ui is defined by either (3.1) (DAPI)
or (3.3)-(3.4) (CAPI) for all i ∈ VIS with k > 0 and ki > 0. The following two
statements are equivalent:

(i) Stability of Droop Controller: The droop control stability condition (2.8)
holds; and

(ii) Stability of the Secondary Controllers: There exists an arc length γ ∈
[0,π/2[ such that the closed-loop system (2.5a), (4.9), (3.1) (respectively,
(2.5a), (4.9), (3.3)-(3.4)) possesses the same locally exponentially stable and
unique† equilibrium

(
θ∗, p∗

)
∈ ∆G(γ)×R|VIS |.

If the equivalent statements (i) and (ii) hold true, then θ∗ lives on the same syn-
chronization manifold as the solution from Theorem 2.5.1 (ii) and p∗i = Diωpavg
for i ∈ VIS .

Proof. The proof for partial DAPI control (resp. partial CAPI control) is
analogous to the proof of [30, Theorem 8] (resp. Theorem 3.2.2), while
carefully accounting for the partition VI = VIP ∪ VIS in the Jacobian matrices.

4.2.2 Injection Constraints and Power Sharing

We now investigate the injection constraints and the power sharing properties
of the partial DAPI/CAPI control schemes. The steady-state power injection

†Modulo the rotational symmetry inherent in the model.
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at the equilibrium (θ∗, p∗) is

Pe,i(θ
∗) = P∗i , i ∈ VIP ∪ VL ,

Pe,i(θ
∗) = P∗i − Diωsync, i ∈ VIS .

From the first of these equations, we see that inverters in VIP are effectively
negative loads. Let ṼL = VIP ∪ VL be the set of loads in steady state and
ṼI = VIS be the set of inverters. By applying [30, Theorem 7] to the modified
sets ṼI and ṼL gives the following result.

Theorem 4.2.2. Injection Constraints and Power Sharing.
Consider the same setup as in Theorem 4.2.1, and define the total load by PL ,
∑i∈VL

P∗i . If the droop coefficients and the set points of the inverters that perform
secondary control are selected proportionally, meaning that the ratios Di/P∗i and
P∗i /Pi are constant for all i ∈ VIS , then the following two statements are equivalent:

(i) Injection Constraints: 0 ≤ Pe,i(θ
∗) ≤ Pi ∀i ∈ VI .

(ii) Load and Set Point Constraints:

∑
j∈VIP

P∗j ≤ −PL ≤ ∑
j∈VIP

P∗j + ∑
j∈VIS

Pj ,

0 ≤ P∗i ≤ Pi ∀i ∈ VIP .

Moreover, the inverters performing secondary control share the load residual PL −
∑i∈VIP

P∗i proportionally according to their power ratings, i.e., Pe,i/Pi = Pe,j/Pj
for all i ∈ VIS .

The next simulation, whose results are shown in Figure 4.2, illustrates
the existence of a frequency-synchronized steady state for the partial DAPI-
controlled system (4.9). Instead of the general setup presented in Section
2.6, we consider a network consisting of four parallel inverters connected to
a time-varying load. Two of those inverters are connected via a connected
communication graph Gc (see Figure 4.1). Table 4.1 contains the simulation
parameters. Note that we neglect losses in order to facilitate choosing
inverter parameters that would satisfy the injection constraints.

Figure 4.2 shows that the frequencies of the inverters performing sec-
ondary control (blue and green) converge rapidly to the synchronization
frequency; then follow the frequencies of all other inverters. Figure 4.2
also illustrates the proportional power sharing among the inverters of each
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subset. Moreover, observe that the power is shared proportionally among
all inverters for the nominal load; this is due to our choice of parameters:
we chose proportional droop coefficients for all inverters in both the sets VIP

and VIS , following Definition 3, and we chose the set points of the inverters
in VIP , such that they equal the nominal load.

Table 4.1: Parameter values for partial DAPI.
Parameter Symbol Value
Nom. Frequency ω∗/2π 60 Hz
Nom. Voltages E∗i [120, 122, 121, 124] V
Output/Line Induc. Li [0.7, 0.5, 0.6, 0.9] mH
Output/Line Resist. Ri [0, 0, 0, 0] Ω
Inv. Ratings (P) P∗i = Pi [2, 3, 1, 1.5] kW
Load (P) P∗0 (t) P∗0 ∈ {−2.5,− 5}kW
Load (Q) Q∗0(t) Q∗0 ∈ {−.5,− 1}kvar
ω–Droop Coeff. Di [4, 6, 2, 3] ×103 W · s
Quadratic E–Droop Coeff. Ci [1, 1, 1, 1] 103 s
Quadratic E–Droop Int. Coeff. τi [5, 5, 5, 5] s
Sec. Droop Coeff. ki [1,1]10−6 s
Comm. Graph Gcomm Two nodes, one edge

Comm. Laplacian Lc (104 Ws) ·
[

1 −1
−1 1

]
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Figure 4.2: Partial DAPI-controlled microgrid consisting of five parallel
inverters supplying a load, which changes at t ∈ {5s,10s}.
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5.1 Summary

The purpose of secondary control in microgrids is to regulate the inverters
frequencies to the rated frequency. The main requirements are ensuring
the desired power sharing profile (e.g. proportional load sharing or cost
minimizing load sharing), satisfactory response to changes in the load,
robustness to losses and voltage fluctuations in the network, and a minimal
communication complexity.

In this work, we have reviewed the properties of the Distributed Averaging
PI (DAPI) controller and presented a nonlinear analysis of the Centralized
Averaging PI (CAPI) controller. We have proven that both controllers suc-
ceed in regulating the inverters frequencies and ensuring proportional power
sharing among the inverters, and illustrated this by the means of simula-
tions. We have also shown that both controllers feature some robustness to
losses in the network. Furthermore, our simulations suggested robustness to
unmodeled voltage dynamics. Moreover, we could prove that reducing the
communication structure to a connected subset of the inverters does not af-
fect the ability of the controllers to achieve synchronization and proportional
power sharing among the inverters performing secondary control. Finally,
both the DAPI and the CAPI controller minimize a given quadratic cost of
secondary-power generation when the droop coefficients of the inverters are
selected inverse proportionally to their assigned cost coefficients.

5.2 Possible Future Work

The formulation of sharp parametric conditions for the existence and stability
of a synchronized steady state in a lossy primary-controlled microgrid is
a challenging and open problem. It can be proven that the secondary
controllers DAPI and the CAPI are correctly implemented, that is, they
regulate the system frequency of a stable primary-controlled system to
its nominal value in the presence of arbitrary losses. However, a stability
analysis without any assumptions on the conductances magnitudes is also
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5 Conclusions

a challenging and open problem. Moreover, it remains unclear whether
conventional droop control is suitable in general for the stabilization of a
dominantly resistive microgrid.

A further interesting task may be to incorporate voltage-droop control and
to find parametric condition for the existence and stability of a synchronized
steady state of the whole coupled frequency- and voltage-droop-controlled
system.
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