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Abstract—This paper studies the graph-theoretic conditions
for stability of positive monotone systems. Using concepts from
the input-to-state stability and network small-gain theory, we
first establish necessary and sufficient conditions for the sta-
bility of linear positive systems described by Metzler matrices.
Specifically, we define and compute two forms of input-to-state
stability gains for Metzler systems, namely max-interconnection
gains and sum-interconnection gains. Then, based on the max-
interconnection gains, we show that the cyclic small-gain theo-
rem becomes necessary and sufficient for the stability of Metzler
systems; based on the sum-interconnection gains, we obtain
novel graph-theoretic conditions for the stability of Metzler
systems. All these conditions highlight the role of cycles in the
interconnection graph and unveil how the structural properties
of the graph affect stability. Finally, we extend our results to
the nonlinear monotone system and obtain similar sufficient
conditions for global asymptotic stability.

I. INTRODUCTION

Problem description and motivation: Much attention

in recent years has been focused on multi-agent systems,

but the majority of efforts has been devoted to averaging

dynamics and consensus behavior. Much less attention has

been drawn to dynamical flow systems, modeled as monotone

or cooperative systems [16], [25]. Notable exceptions are

a collection of recent papers motivated by applications to

traffic and biological systems [2], [7] as well as the long-

standing interest in positive systems [15], [22]. Despite these

remarkable recent works, many open questions remain.

This paper focuses on a key foundational question for

linear monotone systems, i.e., positive systems modeled

by Metzler matrices, and on its application to the study

of nonlinear monotone systems: what are graph-theoretical

conditions for the Hurwitzness of a Metzler matrix? While

a graph theoretical treatment is available for a subclass of

Meztler matrices known as “compartmental matrices” [31], a

general treatment is lacking. This is in stark contrast with

the comprehensive understanding of the graph theoretical

conditions guaranteeing convergence to consensus for row-

stochastic matrices in averaging systems. Related to this open

question is the work in [3]. The graph-theoretic conditions are

particularly useful because they allow us to analyze stability

based on the structural properties of the interconnection
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network given the existence of perturbations or uncertainties

on the parameters.

For nonlinear monotone systems, much recent progress is

documented in [8], [9], where a basic fundamental connection

is built between monotone systems and contractive systems.

A notable gap, however, remains, in explaining the relation-

ship between the treatment of monotone contractive systems

and the stability theory of network small gain developed

in [12], [18].

In summary, we aim to develop an algebraic graph theory

for monotone dynamical systems, starting with the linear case

of Metzler matrices and continuing with the nonlinear setting

and its connections with network small-gain theorems.

Literature review: Monotone dynamical systems appear

naturally in numerous applications and have many appealing

properties. The mathematical theory of nonlinear monotone

systems has been vastly studied in dynamical system lit-

erature [16], [24], [25]. In control community, the notion

of monotonicity has been extended to systems with inputs

and outputs, and properties of the interconnected monotone

systems have been studied [2]. It is well known that lin-

ear monotone systems (also referred to as linear positive

systems) are described by Metzler matrices. Conditions for

stability of Metzler matrices have been studied extensively

in the literature. Narendra and Shorten, et al. established an

iterative method based on the Schur complement to check

the Hurwitzness of Metzler matrices in [21], [30]. A graph-

theoretic characterization for diagonal stability of matrices

whose underlying digraph is a cactus graph was proposed

in [3]. Briat studied the sign stability of Metzler matrices

and block Metzler matrices in [5]. Blanchini et al. studied

switched Metzler systems and Hurwitz convex combinations

in [4]. Stability of switched Metzler systems has also been

studied in [20], where the authors provided guarantees for ro-

bustness with respect to delays. In [22], scalable methods for

analysis and control of large-scale linear monotone systems

have been studied. The admissibility, stability, and persistence

of interconnected positive heterogenous systems have been

studied in [14]. For nonlinear monotone systems, using novel

connections to the contraction theory, Coogan established

sufficient conditions for global stability of monotone systems

[8], [9]. We refer the interested readers to [15] for a detailed

study of linear positive systems and to the survey paper [28]

for theoretical results and applications of interconnected

monotone systems.

Small-gain theorems are arguably one of the fundamental

results for stability of interconnected systems. Started with

http://arxiv.org/abs/1905.05868v1
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the works by Zames [32], the early classical studies on small-

gain theorems mostly focused on stability analysis using

linear gains [23]. Introduction of the notion of input-to-

state stability (ISS) in the seminal paper [27] triggered a

paradigm shift in the study of small-gain theorems. More

recent works on small-gain theorems focused on the input-

to-state framework and they provided results in terms of

nonlinear notions of input-to-state gains [12], [17].

Contributions: In this paper, we study the graph-

theoretic stability conditions for Metzler matrices. By using

concepts from the small-gain theorems for interconnected

systems, we obtain necessary and sufficient conditions for

Hurwitzness of Metzler matrices in terms of the input-to-

state gains, and we also extend our results to the nonlinear

monotone systems.

(i) We compute and characterize two types of input-to-state

stability gains for linear Metzler systems, namely max-

interconnection gains and sum-interconnection.

(ii) Using the max-interconnection and the sum-

interconnection gains, we obtain two graph-theoretic

characterizations for Hurwitzness of Metzler matrices.

Our conditions highlight the role of cycles and cycle

gains and provide valuable insights for connections

between the network structure and network functions.

In particular, our characterizations of Hurwitzness

of Metzler matrices using the max-interconnection

gains coincide with the well-known cyclic small

gain theorem [18, Theorem 3.1]; based on the sum-

interconnection gains, in addition to necessary and

sufficient cycle gain conditions that depend the cycle

structure of the interconnection graph, we also show

that all cycle gains being less than 1 is a necessary

condition and the sum of cycle gains being less than 1
is a sufficient condition.

(iii) As an independent contribution, we obtain graph-

theoretic interpretations of Schur complements for Met-

zler matrices.

(iv) We extend our stability analysis using max-

interconnection and sum-interconnection gains to

nonlinear monotone systems. As a result, we provide

two equivalent sufficient conditions for global stability

of monotone nonlinear systems.

Paper organization: We review the known stability

results for Metzler matrices in Section II. The input-to-

state stability and two forms of ISS gains are introduced in

Section III. We characterize different ISS gains for Metzler

systems in Section IV. The graph-theoretic conditions for

Hurwitzness of Metzler matrices are presented in Section V.

We extend the conditions to nonlinear monotone systems in

Section VI. We collect new results on Kron reduction of

asymmetric graphs in VII. A few additional concepts and

proofs are included in Section VIII. We conclude the paper

in Section IX.

II. REVIEW OF METZLER MATRICES

A. Notation and preliminaries

Let R be the set of real numbers and R≥0 be the set of

nonnegative real numbers. For a vector v ∈ R
n, its Euclidean

norm is denoted by |v|. Particularly, if v ∈ R, then |v| is the

absolute value of v. For a finite set S, |S| is the cardinality.

For t ≥ 0 and a time-varying vector signal x : [0, t] 7→ R
n,

we define the norm

‖x‖[0,t] = sup
s∈[0,t]

|x(s)|.

Moreover, for x : R≥0 7→ R
n, ‖x‖∞ = sups≥0 |x(s)|. A

continuous function α : R≥0 7→ R≥0 is a class K function

if it is strictly increasing and α(0) = 0; it is a class K∞

function if it is a class K function and lim
s→∞

α(s) = ∞. A

continuous function β : R≥0 × R≥0 7→ R≥0 is a class KL
function if β(s, t) is a class K function of s for fixed t, and

a decreasing function of t with lim
t→∞

β(s, t) = 0 for fixed s.

For a matrix A ∈ R
n×n, its associated graph G(A) =

(V, E , A) is a weighted digraph defined as follows: V =
{1, . . . , n} is the set of nodes, and E = {(j, i) | i, j ∈ V, aij 6=
0} is the set of edges. For i ∈ V , the neighbor set of

node i is defined by Ni = {j ∈ V | (j, i) ∈ E}. A matrix

A ∈ R
n×n is irreducible if its associated digraph G(A) is

strongly connected.

In a weighted digraph G = (V, E ,W ), a simple cycle c in

G is a directed path that starts and ends at the same node and

has no repetitions other than the starting and ending nodes.

For two simple cycles c1 and c2 in G, c1 and c2 intersect if

they share at least one common node, i.e., c1 ∩ c2 6= ∅; c1
is a subset of c2 if all the nodes on c1 are also on c2. Self

loops are not considered as simple cycles in this paper.

For a matrix A ∈ R
n×n, the leading principal subma-

trices of A are given by AI , where I = {1, . . . , i} is the

set of indices for all i ∈ {1, . . . , n}. In particular, when

I = {1, . . . , n}, we have AI = A. A matrix M ∈ R
n×n

is Metzler if all its off-diagonal elements are nonnegative. A

matrix C ∈ R
n×n is compartmental if it is Metzler and has

nonpositive column sums.

The following lemma will be used later in the paper.

Lemma 1 (Bounding sum by maximum). Let {x1, . . . , xn}
and {α1, . . . , αn} be a set of real and positive real numbers

respectively. If
∑n

i=1
1
αi

≤ 1, then

n∑

i=1

xi ≤ max
i∈{1,...,n}

{αixi}.

Proof. Let s ∈ {1, . . . , n} satisfy αixi ≤ αsxs for all i ∈
{1, . . . , n}. Then

n∑

i=1

xi ≤
n∑

i=1

αsxs
αi

≤ αsxs = max
i∈{1,...,n}

{αixi}.
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B. Algebraic conditions for Hurwitzness of Metzler matrices

We collect a few well-known equivalent conditions for the

Hurwitzness of Metzler matrices in the following Theorem.

Theorem 2 (Properties of Hurwitz Metzler matrices [6,

Theorem 14.17] [15, Theorem 13]). Let M ∈ R
n×n be a

Metzler matrix, then the following statements are equivalent:

(i) M is Hurwitz;

(ii) M is invertible and −M−1 ≥ 0;

(iii) all leading principal minors of −M are positive;

(iv) there exists ξ ∈ R
n such that ξ > 0n and Mξ < 0n;

(v) there exists η ∈ R
n such that η > 0n and η⊤M < 0n;

(vi) there exists a diagonal matrix P ≻ 0 such that M⊤P +
PM ≺ 0.

Remark 3. (i) To the best of our knowledge, the equiva-

lence of parts (i) and (iii) in Theorem 2 has not been

fully exploited in the literature, and we build one of our

main results based on this condition.

(ii) If the Metzler matrices are symmetric, then the nec-

essary and sufficient condition in Theorem 2(iii) is

exactly the Sylvester’s criterion for negative definiteness

of general symmetric matrices.

(iii) The equivalence of parts (i) and (vi) in Theorem 2

implies that for Metzler matrices, the Hurwitzness and

diagonal stability are equivalent.

Based on the Schur complement, Narendra et al. propose

an iterative method to verify the Hurwitzness of a Metzler

matrix [21]. Partition a Metzler matrix M ∈ R
n×n as follows

M =

[
Mn−1 bn−1

c⊤n−1 dn−1

]

where dn−1 is a scalar. The Schur complement of M with

respect to dn−1 is given by M [n− 1] =Mn−1 − bn−1c
⊤
n−1

dn−1
.

For k ∈ {1, . . . , n− 1}, define M [k] iteratively as the Schur

complement of M [k+ 1] with respect to dk, where M [n] =
M , then the following statement holds.

Theorem 4 (Necessary and sufficient condition based on the

Schur complement [21]). A Metzler matrix M ∈ R
n×n is

Hurwitz if and only if for all k ∈ {1, . . . , n}, all the diagonal

elements of M [k] are negative.

By Theorem 4, we have the following necessary condition.

Corollary 5 (Negativity of diagonal elements). If a Metzler

matrix M ∈ R
n×n is Hurwitz, then all the diagonal elements

of M are negative.

III. ISS AND INTERCONNECTED SYSTEMS

We review the concepts of input-to-state stability and

introduce the gain functions in two different forms for

interconnected input-to-state stable systems [12], [18].

A. Input-to-state stability

Consider the system

ẋ = f(x, u), (1)

where x ∈ R
N is the state, u ∈ R

m is the input, and f :
R
N ×R

m 7→ R
N is a locally Lipschitz function and satisfies

f(0n, 0m) = 0n. Then, we have the following definition for

input-to-state stability.

Definition 6 (Input-to-state stability [27, Definition 2.1]).

System (1) is input-to-state stable if there exist β ∈ KL
and γ ∈ K such that for any initial state x(0) = x0 and

any measurable and locally essentially bounded input u, the

solution x(t) satisfies, for all t ≥ 0,

|x(t)| ≤ max{β(|x0|, t), γ(‖u‖∞)}. (2)

The class K function γ in (2) is the ISS gain of the system.

Remark 7 (ISS Lyapunov function). In order to check ISS

using Definition 6, we need to find an estimate for the

trajectory of the system, which is computationally hard in

general, if not impossible. However, one can show that ISS

is equivalent to the existence of an ISS Lyapunov function.

We refer the interested readers to [29, Theorem 1].

B. Interconnection, ISS gains, and cyclic small-gain theorem

In this section, we study input-to-state stability for net-

worked interconnected systems. Suppose the interaction be-

tween subsystems is described by a directed graph G =
(V, E), where V = {1, . . . , n} is the set of nodes and for

all i, j ∈ V and i 6= j, (j, i) ∈ E if xj is an input to

subsystem i. We consider a network of n interconnected

dynamical systems with the interconnection graph G:

ẋi = fi(xi, xNi
, ui), for all i ∈ {1, . . . , n}, (3)

where xi ∈ R
ni and xNi

=
[
xi1 , . . . , xiki

]⊤ ∈ R
nNi

with Ni = {i1, . . . , iki
} and nNi

=
∑ki

j=1 nij . For every

i ∈ V , the function fi : R
ni+nNi

+mi → R
ni is a locally

Lipschitz function satisfying fi(0ni
, 0nNi

, 0mi
) = 0ni

. For

the interconnected system (3), it is desirable to study ISS of

the interconnection using the ISS of each subsystem. We first

introduce componentwise ISS for network systems.

Definition 8 (Componentwise ISS). An interconnected sys-

tem (3) is componentwise ISS if every subsystem i is ISS for

the input
[
xNi

ui
]⊤ ∈ R

nNi
+mi .

In other words, an interconnected network system is com-

ponentwise ISS if each subsystem, separated from the whole

system, is ISS. In general, componentwise ISS does not guar-

antee ISS of the whole interconnected system, and conditions

on the composition of ISS gains of the subsystems is required

to ensure ISS of the whole system. In the following, we

introduce two notions of gains.

Definition 9 (Max-interconnection ISS gains). Consider the

interconnected system (3). The family of functions {Ψij} ∈
K ∪ {0} is a max-interconnection gain if, for every i ∈
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{1, . . . , n}, there exists βi ∈ KL and Ψi ∈ K such that for

any initial state x(0) = x0, and any measurable and locally

essentially bounded inputs ui, the solution xi(t) satisfies, for

all t ≥ 0,

|xi(t)| ≤ max
j∈Ni

{βi(|xi(0)|, t),Ψij(‖xj‖[0,t]),Ψi(‖ui‖∞)}.

Definition 10 (Sum-interconnection ISS gains). Consider the

interconnected system (3). The family of functions {Γij} ∈
K ∪ {0} is a sum-interconnection gain if, for every i ∈
{1, . . . , n}, there exists βi ∈ KL and Γi ∈ K such that for

any initial state x(0) = x0, and any measurable and locally

essentially bounded inputs ui, the solution xi(t) satisfies, for

all t ≥ 0,

|xi(t)| ≤ βi(|xi(0)|, t) +
∑

j∈Ni

Γij(‖xj‖[0,t]) + Γi(‖ui‖∞).

The following theorem provides conditions on a set of

max-interconnection ISS gains which guarantee ISS of the

interconnected system (3).

Theorem 11 (Cyclic small-gain theorem [18, Theorem 3.2]).

Consider an interconnected system (3) with each subsystem

i being componentwise ISS and with a family of max-

interconnected gains {Ψij}. The interconnected system (3)

is ISS with x as the state and u as the input if, for every

simple cycle c = (i1, i2, . . . , ik, i1) in the interconnection

graph G and every s > 0,

Ψi2i1 ◦Ψi3i2 ◦ · · · ◦Ψi1ik(s) < s, (4)

where ◦ is the function composition.

IV. ISS FOR METZLER SYSTEMS

In this section, we characterize the ISS gains for Metzler

systems. Consider the continuous-time linear system

ẋ =Mx+ u, (5)

where M ∈ R
n×n is a Metzler matrix and u ∈ R

n
≥0 is

the control input. The Metzler system (5) can be viewed

as a network of n interconnected scalar systems, where the

interconnection is characterized by the digraph G(M). More

specifically, one can write the Metzler system (5) in the

interconnection form (3) as,

ẋi = miixi+
∑

j∈Ni

mijxj+ui, for all i ∈ {1, . . . , n}. (6)

In the following, we derive the sum-interconnection and max-

interconnection ISS gains for the Metzler system (5).

Theorem 12 (ISS Metzler systems). The Metzler system (5)

with interconnection digraph G(M) = (V, E)
(i) is componentwise ISS if and only if

mii < 0, for all i ∈ {1, . . . , n};
(ii) has sum-interconnection gains {s 7→ Γij(s) = γijs},

if it is componentwise ISS and the set of scalars {γij}
satisfies γij = 0 for all j /∈ Ni and

mij

−mii

≤ γij , for all i ∈ {1, . . . , n}, j ∈ Ni; (7)

(iii) has max-interconnection gains {s 7→ Ψij(s) = ψijs},

if it is componentwise ISS and the set of scalars {ψij}
satisfies ψij = 0 for all j /∈ Ni and

∑

j∈Ni

(
mij

−mii

)
ψ−1
ij < 1, for all i ∈ {1, . . . , n}; (8)

(iv) is ISS if and only if M is Hurwitz.

Proof. Regarding part (i), since the dynamics of the ith
subsystem given by (6) is linear, it is ISS if and only if

mii < 0 [18, Theorem 1.3]. Therefore, the Metzler system (5)

is componentwise ISS if and only if, for every i ∈ {1, . . . , n},

we have mii < 0.

Regarding part (ii), the state trajectory xi(t) satisfies

xi(t) = emiitxi(0) +
∑

j∈Ni

mij

∫ t

0

emii(t−τ)xj(τ)dτ

+

∫ t

0

emii(t−τ)ui(τ)dτ,

which implies

|xi(t)| ≤ emiit|xi(0)|+
∑

j∈Ni

mij

∫ t

0

|emii(t−τ)xj(τ)|dτ

+

∫ t

0

|emii(t−τ)ui(τ)|dτ

≤ emiit|xi(0)|+
∑

j∈Ni

mij‖xj‖[0,t]
∫ t

0

emii(t−τ)dτ

+ ‖ui‖∞
∫ t

0

emii(t−τ)dτ

≤ emiit|xi(0)|+
∑

j∈Ni

mij

−mii

‖xj‖[0,t] +
1

−mii

‖ui‖∞.

(9)

Therefore, the Metzler system (5) has a sum-interconnection

ISS gain {s 7→ Γij(s) = γij(s)} if we have
mij

−mii
≤ γij .

Regarding part (iii), by Lemma 1 and (9), we have

|xi(t)| ≤ max{α1e
miit|xi(0)|,

α2

∑

j∈Ni

mij

−mii

‖xj‖[0,t], α3
1

−mii

‖ui‖∞},

(10)

where α1, α2, α3 > 0 and
∑3

i=1
1
αi

≤ 1. If (8) holds, then

by Lemma 1, we have
∑

j∈Ni

mij

−mii

‖xj‖[0,t] < max
j

{ψij‖xj‖[0,t]}.

Therefore, we can pick α2 properly such that

∑

j∈Ni

mij

−mii

‖xj‖[0,t] ≤
1

α2
max

j
{ψij‖xj‖[0,t]},

which combined with (10) imply that {ψij} are max-

interconnection gains.

Regarding part (iv), this is a straightforward application

of [18, Theorem 1.3].
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V. GRAPH-THEORETIC CONDITIONS FOR HURWITZNESS

OF METZLER MATRICES

In this section, we first show that we only need to consider

irreducible Metzler matrices. Then, we show that different

ISS gains result in different graph-theoretic conditions for

the stability of Metzler systems. In particular, if we use the

max-interconnection ISS gains, then the cycle condition (4)

in Theorem 11 is a necessary and sufficient condition for the

stability of Metzler systems. On the other hand, if we use

the sum-interconnection ISS gains, then we can obtain new

necessary and sufficient graph-theoretic conditions.

A. Metzler matrices with reducible graphs

The following theorem allows us to restrict our attention

to irreducible Metzler matrices.

Theorem 13 (Hurwitzness and strongly connected compo-

nents). For a Metzler matrix M ∈ R
n×n, M is Hurwitz if

and only if all the connected components in the condensation

of G(M) are Hurwitz.

Proof. If M is irreducible, then the statement holds trivially

since there is only one strongly connected component in the

condensation of G(M), which is G(M) itself.

If M is reducible, then there exists a permutation matrix

such that M can be brought into block upper triangular

form where each block on the diagonal represents a strongly

connected component. Therefore, M is Hurwitz if and only

if all its strongly connected components are Hurwitz.

If G(M) is acyclic, then we have the following corollary.

Corollary 14 (Necessary and sufficient condition for acyclic

graphs [5, Theorem 3.4]). For a Metzler matrix M ∈ R
n×n

whose associated digraph G(M) is acyclic, M is Hurwitz if

and only if all the diagonal elements of M are negative.

Hereafter, we focus on irreducible Metzler matrices with

negative diagonal elements.

B. Cycle gains and the case of a simple cycle

In this subsection, we define the sum-cycle gains and

max-cycle gains for Metzler matrices, and we emphasize the

importance of cycles through the case of a simple cycle.

Definition 15 (Cycle gains for Metzler matrices). Let M ∈
R
n×n be an irreducible Metzler matrix with negative diago-

nal elements and c = (i1, i2, . . . , ik, i1) be a simple cycle in

G(M). Then

(i) a max-cycle gain of c is

ψc = (ψi2i1) (ψi3i2) . . . (ψi1ik) , (11)

where the scalars {ψij} satisfy (8); and

(ii) the sum-cycle gain of c is

γc =

(
mi2i1

−mi2i2

)(
mi3i2

−mi3i3

)
. . .

(
mi1ik

−mi1i1

)
. (12)

Remark 16 (Uniqueness of cycle gains). The sum-cycle

gains in (12) are uniquely defined for simple cycles in G(M)

because we pick specific sum-interconnection gains in (7).

However, the max-cycle gains in (11) are not unique in

general. For every solution of (8), one can compute a set

of max-cycle gains for simple cycles.

If the irreducible Metzler matrix M ∈ R
n×n with negative

diagonal elements has the associated digraph G(M) being a

simple cycle, i,e, M has the following form,

M =




m11 m12 0 · · · 0
0 m22 m23 · · · 0
...

...
. . .

. . .
...

0 0 · · · mn−1,n−1 mn−1,n

mn1 0 · · · 0 mnn



,

then we have the following theorem.

Theorem 17 (Necessary and sufficient condition for simple

cycles). Let M ∈ R
n×n be an irreducible Metzler matrix

with negative diagonal elements whose associated digraph

G(M) is a simple cycle c = (1, n, . . . , 2, 1). Then the

following statements are equivalent:

(i) M is Hurwitz;

(ii) γc < 1;

(iii) there exists a solution to (8) such that ψc < 1.

Proof. Regarding the equivalence between (i) and (ii): by

Theorem 2(iii), M is Hurwitz if and only if all the leading

principal minors of −M are positive. If i < n and I =
{1, . . . , i}, then the leading principal submatrices (−M)I of

−M are triangular matrices with positive diagonal elements

and thus det((−M)I) > 0. When I = {1, . . . , n}, we have

det(−M) = (−1)n det(M)

= (−1)n(

n∏

i=1

mii + (−1)n+1mn1

n−1∏

i=1

mi,i+1)

=

n∏

i=1

(−mii)−mn1

n−1∏

i=1

mi,i+1.

Then det(−M) > 0 if and only if

n∏

i=1

(−mii) > mn1

n−1∏

i=1

mi,i+1,

which is equivalent to γc < 1.

Regarding the equivalence between (ii) and (iii): notice

that if we pick ψij =
mij

−mii
+ ǫ for sufficiently small ǫ > 0,

then (8) is satisfied and ψc < 1 is equivalent to γc < 1.

It is worth mentioning that the necessary and sufficient

condition in Theorem 17 is a special case of a more general

result in [3, Proposition 2] regarding diagonal stability.

Example 18 (A two by two Metzler matrix describing a

flow system [6, Exercise 9.8]). We apply Theorem 17 to a

simple two by two case where the Metzler matrix describes a

symmetric flow system ẋ =Mx. Suppose the Metzler matrix

M has the following form

M =

[
g − f f
f −d− f

]
,
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where f > 0 is the flow rate between two nodes, g > 0 is the

growth rate at node 1 and d > 0 is the decay rate at node 2.

By Theorem 17, the flow system ẋ = Mx is asymptotically

stable if and only if

g − f < 0, − d− f < 0, and
f2

(f − g)(d+ f)
< 1.

Equivalently, we have

d > g and f >
dg

d− g
.

This condition has a clear physical interpretation that in

order for the two-node flow system ẋ =Mx to be asymptot-

ically stable, i.e., the flow does not accumulate in the system,

the decay rate at one node must be larger than the growth

rate at the other node and the flow rate between the nodes

should be sufficiently large.

Theorem 17 states that a Metzler matrix whose associated

digraph is a simple cycle is Hurwitz if and only if the cycle

gain is less than 1. It turns out that, for irreducible Metzler

matrices with general digraphs, the gains of the simple cycles

play a central role in determining the Hurwitzness. Moreover,

cycle gains in different forms (sum or max) lead to different

graph-theoretic conditions.

C. Max-interconnection gains and Hurwitz Metzler matrices

In this subsection, we use the max-interconnection ISS

gains of the Metzler system (5) to provide a necessary and

sufficient condition for Hurwitzness of a Metzler matrix.

Theorem 19 (Max-interconnection characterization). Let

M ∈ R
n×n be an irreducible Metzler matrix with nega-

tive diagonal elements, G(M) = (V, E) be the associated

digraph, and Φ be the set of simple cycles of G(M). Then

the following conditions are equivalent:

(i) M is Hurwitz;

(ii) for every i ∈ V and j ∈ Ni, there exists ψij > 0 such

that

∑

j∈Ni

(
mij

−mii

)
ψ−1
ij < 1, for all i ∈ {1, . . . , n},

(13)

ψc < 1, for all c ∈ Φ. (14)

Proof. (ii) =⇒ (i): Since the diagonal entries of M
are negative, the Metzler system (5) is componentwise ISS

by Theorem 12(i). By Theorem 12(iii), there exist max-

interconnection gains {ψij} such that

∑

j∈Ni

(
mij

−mii

)
ψ−1
ij < 1, for all i ∈ {1, . . . , n}.

Thus, the sufficient condition in Theorem 11 is equivalent to

the existence of ψij > 0, for i ∈ V and j ∈ Ni such that

∑

j∈Ni

(
mij

−mii

)
ψ−1
ij < 1, for all i ∈ {1, . . . , n},

ψc < 1, for all c ∈ Φ.

Therefore, by Theorem 11, the Metzler system (5) is ISS and

asymptotically stable, which implies that M is Hurwitz.

(i) =⇒ (ii): Suppose that M is Hurwitz, then by Theo-

rem 2(iv) there exists ξ > 0n such that Mξ < 0n. Therefore,

diag(ξ−1)Mdiag(ξ) is a Metzler matrix with negative row

sums, which implies

∑

j∈Ni

(
mij

−mii

)
ξj
ξi
< 1, for all i ∈ {1, . . . , n}.

Note that, for every (i1, . . . , ik, i1) ∈ Φ, we have

ξi2
ξi1

. . .
ξi1
ξik

= 1.

Thus, we have

∑

j∈Ni

(
mij

−mii

)
ξj
ξi
< 1, for all i ∈ {1, . . . , n},

ξi2
ξi1

. . .
ξi1
ξik

= 1, for all (i1, . . . , ik, i1) ∈ Φ.

By a straightforward continuity argument, one can show that,

for every i ∈ V and j ∈ Ni, there exists ψij > 0 such that

∑

j∈Ni

(
mij

−mii

)
ψ−1
ij < 1, for all i ∈ {1, . . . , n},

ψc < 1, for all c ∈ Φ.

This completes the proof.

By Theorem 19, we can prove the following corollary.

Corollary 20 (Diagonal Stability and Hurwitzness of Metzler

matrices). Let M ∈ R
n×n be an irreducible Metzler matrix

with negative diagonal elements, G(M) = (V, E) be the

associated digraph, and Φ be the set of simple cycles of

G(M). Assume that G(M) is cactus. Then the following

conditions are equivalent:

(i) M is Hurwitz;

(ii) for every c ∈ Φ and every i ∈ c, there exists positive

constant θci > 0 such that
∏

i∈c

θci > γc, for all c ∈ Φ,

∑

c∈Φ

θci = 1, for all i ∈ c,
(15)

where γc is defined in equation (12).

Proof. We postpone the proof to Appendix B.

Remark 21. (i) The condition in Corollary 20(ii) for Met-

zler matrices is the same as conditions (11) and (12)

in [3, Theorem 1] for the diagonal stability of arbitrary

matrices with cactus graphs. Therefore, in the context of

Metzler matrices, Theorem 19 is a generalization of [3,

Theorem 1] to arbitrary topologies.

(ii) One can compute the positive constants ψij in Theo-

rem 19(ii) by solving the following feasibility problem

Find ξ

subject to ξ > 0n,

Mξ < 0n.
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Then, for i ∈ V and j ∈ Ni, we can compute ψij as

ψij = δ
ξi
ξj
,

where 0 < δ < 1 is given by

δ = max
i





∑

j∈Ni

mij

−mii

ξj
ξi



 .

In order to check conditions (13) and (14), we need to

compute the max-interconnection ISS gains using the method

in Remark 21(ii). This computation is essentially equivalent

to the well-known linear program in Theorem 2(iv).

D. Sum-interconnection gains and Hurwitz Metzler matrices

We first introduce the disjoint cycle sets.

Definition 22 (Disjoint cycle sets). Let M ∈ R
n×n be a

Metzler matrix with the associated digraph G(M) and Φ =
{c1, . . . , cr} be the set of simple cycles in G(M), the disjoint

cycle sets KM
ℓ for ℓ ∈ {1, . . . , r} are defined by

KM
ℓ = {{ci1 , . . . , ciℓ} ⊂ Φ | cik ∩ cik′ = ∅,

k 6= k′ and k, k′ ∈ {1, . . . , ℓ}}.

Intuitively, the disjoint cycle sets KM
ℓ are sets where

each element is a set of ℓ cycles that are mutually disjoint.

We collect the graph-theoretic interpretations for the disjoint

cycle sets in Section VIII-A. With the disjoint cycle sets, we

are ready to define the notion of total cycle gain of a Metzler

matrix and its leading principal submatrices.

Definition 23 (Total cycle gain). Let M ∈ R
n×n be an

irreducible Metzler matrix with negative diagonal elements.
For i = {1, . . . , n} and I = {1, . . . , i}, the leading principal
submatrix MI has the associated digraph G(MI), set of
simple cycles ΦMI

= {c1, . . . , crMI
} and disjoint cycle sets

KMI

ℓ , ℓ ∈ {1, . . . , rMI
}, then the total cycle gain of MI is

defined by

γMI

=











rMI
∑

ℓ=1

∑

{ci1 ,...,ciℓ
}∈K

MI
ℓ

(−1)ℓ−1
γci1

. . . γciℓ
, if ΦMI

6= ∅,

0, if ΦMI
= ∅.

(16)

Example 24 (Disjoint cycle sets and total cycle gain). We

illustrate the definitions of the disjoint cycle sets and the total

cycle gain in this example. Let M ∈ R
6×6 be an irreducible

Metzler matrix with negative diagonal elements as follows

M =




m11 m12 0 0 0 m16

m21 m22 m23 0 0 0
0 m32 m33 0 0 0
0 0 m43 m44 m45 0
0 0 0 m54 m55 0
m61 0 0 0 m65 m66



.

The associated weighted digraph G(M) is shown in Fig. 1.

There are five cycles in G(M), i.e., c1 = (1, 2, 1),

12

3 4 5

6

c1

c2

c3

c4

c5

Fig. 1. The associated weighted digraph G(M)

c2 = (2, 3, 2), c3 = (4, 5, 4), c4 = (6, 1, 6), c5 =
(1, 2, 3, 4, 5, 6, 1), and the disjoint cycle sets of M are:

KM
1 = {{c1}, {c2}, {c3}, {c4}, {c5}},

KM
2 = {{c1, c3}, {c2, c3}, {c2, c4}, {c3, c4}},

KM
3 = {{c2, c3, c4}},

KM
4 = KM

5 = ∅.

(17)

According to (16), the total cycle gains of the leading

principal submatrices are given by:

γM{1}
= 0, γM{1,2}

= γc1 ,

γM{1,2,3}
= γc1 + γc2 , γM{1,2,3,4}

= γc1 + γc2 ,

γM{1,2,3,4,5}
= γc1 + γc2 + γc3 − γc1γc3 − γc2γc3 ,

γM{1,2,3,4,5,6}
= γM = γc1 + γc2 + γc3 + γc4 + γc5

− γc1γc3 − γc2γc3 − γc2γc4

− γc3γc4 + γc2γc3γc4 .

(18)

With the above definitions, we now present a useful lemma.

Lemma 25 (Determinant and total cycle gain). Let M ∈
R
n×n be an irreducible Metzler matrix with negative diago-

nal elements and let γMI
be the total cycle gain of MI for

i ∈ {1, . . . , n} and I = {1, . . . , i}. Then

det(MI) = (1− γMI
)

i∏

j=1

mjj . (19)

Proof. We postpone the proof to Appendix A.

We are now ready to write the leading principal minor

condition in Theorem 2(iii) in the graph-theoretic language.

Theorem 26 (Sum-interconnection characterization). Let

M ∈ R
n×n be an irreducible Metzler matrix with nega-

tive diagonal elements, G(M) = (V, E) be the associated

digraph, and Φ be the set of simple cycles of G(M). Then

the following statements hold:

(i) (necessary condition) if M is Hurwitz then

γc < 1, for all c ∈ Φ;

(ii) (sufficient condition) if

∑

c∈Φ

γc < 1,

then M is Hurwitz;



8

(iii) (necessary and sufficient condition) M is Hurwitz if and

only if, for all i ∈ {1, . . . , n}
γMI

< 1, I = {1, . . . , i}.
Proof. Regarding part (i), we postpone the proof to Sec-

tion VIII-B, where an expansion algorithm for G(M) is given

so that all the simple cycles can be identified by the leading

principal submatrices and a simple proof is constructed.

Regarding part (ii), we prove the result by showing that

Theorem 26(iii) holds. For all i ∈ {1, . . . , n} and I =
{1, . . . , i}, the leading submatrix MI only involves a subset

of Φ. If ΦMI
is empty, then γMI

= 0 < 1. Otherwise, from

(16), we know that γMI
has the following form:

γMI
=

∑

{ci1}∈K
MI
1

γci1 −
∑

{ci1 ,ci2}∈K
MI
2

γci1γci2

+
∑

{ci1 ,ci2 ,ci3}∈K
MI
3

γci1γci2γci3

+

rMI∑

ℓ=3

∑

{ci1 ,...,ciℓ}∈K
MI
ℓ

(−1)ℓ−1γci1 . . . γciℓ .

Since for all c ∈ Φ, we have γc > 0 and
∑

c∈Φ γc < 1 by

assumption, then we have that γc < 1 for all c ∈ Φ and∑
{ci1}∈K

MI
1

γci1 < 1. Note that by the definition of KMI

ℓ ,

for any {ci1 , . . . , ciℓ} ∈ KMI

ℓ , we must have that all the

subsets of {ci1 , . . . , ciℓ} with ℓ − 1 elements are contained

in KMI

ℓ−1. Thus, we have that, for all k ≥ 1,

2k+1∑

ℓ=2k

∑

{ci1 ,...,ciℓ}∈K
MI
ℓ

(−1)ℓ−1γci1 . . . γciℓ < 0.

Hence, we have for all i ∈ {1, . . . , n} and I = {1, . . . , i},

γMI
< 1, and by Theorem 26(iii), M is Hurwitz.

Regarding part (iii), by Lemma 25, we have that for i ∈
{1, . . . , n} and I = {1, . . . , i},

det((−M)I) = (

i∏

j=1

(−mjj))(1− γMI
).

By Theorem 2(iii), M is Hurwitz if and only if for all i ∈
{1, . . . , n} and I = {1, . . . , i}, det((−M)I) > 0 , i.e.,

(

i∏

j=1

(−mjj))(1 − γMI
) > 0,

which is equivalent to γMI
< 1.

Remark 27 (Necessary and sufficient condition in special

graphs). The sufficient condition for Hurwitzness in Theo-

rem 26(ii) becomes necessary and sufficient when any two

cycles share at least one common node in the digraph

associated with the Metzler matrix.

We give two simple examples illustrating that the condition

in Theorem 26(i) is not sufficient and the condition in

Theorem 26(ii) is not necessary.

Example 28 (Insufficiency of Theorem 26(i)). Consider an

irreducible Metzler matrix M ∈ R
3×3 as follows

M =



−1 1 0
1 −2 1
0 1 −1


 .

The associated weighted digraph G(M) is shown in Fig. 2.

There are two cycles in G(M), i.e., c1 = (1, 2, 1) and c2 =
(2, 3, 2), and the cycle gains are γc1 = γc2 = 1

2 . The cycle

gains satisfy the condition in Theorem 26(i), but M is not

Hurwitz since it has a zero eigenvalue.

1 2 3

Fig. 2. The associated weighted digraph of M

Example 29 (Unnecessity of Theorem 26(ii)). Consider an

irreducible Metzler matrix M ∈ R
4×4 as follows

M =




−5 1 0 0
3 −1 1 0
0 1 −5 1
0 0 1 −1


 .

The associated weighted digraph G(M) is shown in Fig. 3.

There are three cycles in G(M), i.e., c1 = (1, 2, 1), c2 =
(2, 3, 2) and c3 = (3, 4, 3), and the cycle gains are γc1 = 3

5 ,

γc2 = 1
5 and γc3 = 1

5 . The cycle gains do not satisfy the

sufficient condition in Theorem 26(ii), but one can check that

M is Hurwitz.

1 2 3 4

Fig. 3. The associated weighted digraph of M

We give the Hurwitzness conditions for Example 24.

Example 24 (Continued). By Theorem 26(iii) and (18), the

sufficient and necessary conditions for M to be Hurwitz are

given by

γc1 < 1, γc1 + γc2 < 1,

γc1 + γc2 + γc3 − γc1γc3 − γc2γc3 < 1, γM < 1,

which are equivalent to

γc1 + γc2 < 1, (20)

γc1 + γc2 + γc3 − γc1γc3 − γc2γc3 < 1, (21)

γM < 1. (22)

It is not obvious whether the necessary conditions in Theo-

rem 26(i) hold in this example. We show that (20)-(22) imply

those necessary conditions in the following. From (20), since

the cycle gains are positive, we know that γc1 < 1 and

γc2 < 1. We can rewrite (21) as follows

γc3(1 − γc1 − γc2) < 1− γc1 − γc2 ,
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which along with (20) imply that γc3 < 1. By using (18), we

can rearrange (22) as follows

γc1(1− γc3) + γc2 + γc3 − γc2γc3 + γc5

+ γc4(1 − γc2)(1− γc3) < 1,

which is equivalent to

γc1(1− γc3) + γc5 < (1− γc4)(1 − γc2)(1 − γc3). (23)

Since all the terms on the left hand side of (23) are positive,

and on the right hand side we have γc2 < 1 and γc3 < 1,

thus we must have that γc4 < 1. At the same time, since the

term on the right hand side of (23) is less than 1, we must

have that γc5 < 1.

We conclude this section with a final result related to [11,

Corollary 16]: the sufficient condition on the spectral radius

of a so-called gain matrix becomes also necessary in the

Metzler case.

Theorem 30 (Spectral radius condition on the gain matrix).

Let M ∈ R
n×n be a Metzler matrix with negative diagonal

elements and define its associated gain matrix Γ ∈ R
n×n by

Γij =

{
0, if i = j,
mij

−mii
, if i 6= j.

Then the following statements are equivalent:

(i) M is Hurwitz;

(ii) ρ(Γ) < 1.

Proof. (ii) =⇒ (i): This follows from [11, Corollary 16].

(i) =⇒ (ii): Note that

Γ = In − diag(M)−1M.

We prove the statement by contradiction. Suppose ρ(Γ) =
λ ≥ 1. Since Γ is a nonnegative matrix, the Perron-Frobenius

Theorem implies the existence of a nonnegative vector v ∈
R
n, v 6= 0 such that

Γv = λv.

In turn, this imples (In − diag(M)−1M)v = λv, or equiva-

lently

v = (λ − 1)(−M−1)diag(M)v.

On the left hand side, we have that v ≥ 0n, and on the right

hand side, we have that (λ − 1)(−M−1)diag(M)v ≤ 0n

because −M−1 ≥ 0 by Theorem 2(ii). Then, we must have

v = 0n, which is a contradiction. Therefore, ρ(Γ) < 1.

VI. GRAPH-THEORETIC CONDITIONS FOR STABILITY OF

NONLINEAR MONOTONE SYSTEMS

In this section, we extend our stability results to monotone

nonlinear systems. Suppose the interaction between subsys-

tems is described by a directed graph G = (V, E), where

V = {1, . . . , n} is the set of nodes and for all i, j ∈ V and

i 6= j, (j, i) ∈ E if xj is an input to subsystem i. We consider

a network of n interconnected dynamical systems with the

interconnection graph G:

ẋi = fi(xi, xNi
), for all i ∈ {1, . . . , n}, (24)

where xi ∈ R and xNi
=

[
xi1 , . . . , xiki

]⊤ ∈ R
|Ni| with

Ni = {i1, . . . , ik}. For every i ∈ {1, . . . , n}, the function

fi : R
|Ni|+1 → R is continuously differentiable. We assume

that the interconnected system (24) is monotone, i.e., for

every x ∈ R
n
≥0, the Jacobian matrix J(x) is Metzler.

Moreover, we assume that f(0n) = 0n. We show that our

characterizations of stability for linear Metzler systems can

be generalized to sufficient conditions for global stability

of nonlinear monotone systems. In particular, we prove two

global results for asymptotic stability of monotone intercon-

nected networks based on the max-interconnection gains and

the sum-interconnection gains.

Theorem 31 (Max-interconnection stability). Consider the

interconnected nonlinear system (24) evolving on the positive

orthant R
n
≥0 with the interconnection graph G = (V, E).

Assume that f(0n) = 0n, and for every x ∈ R
n
≥0, the matrix

J(x) is Metzler with negative diagonal entries. Moreover,

assume there exists a family of positive numbers {ψij} for

i ∈ V and j ∈ Ni such that:

(i) for every i ∈ {1, . . . , n},

∑

j∈Ni

Jij(x)

−Jii(x)
ψ−1
ij < 1, for all x ∈ R

n
≥0, (25)

(ii) for every c = (i1, . . . , ik, i1) ∈ Φ,

ψi2i1 . . . ψi1ik < 1.

Then 0n is globally asymptotically stable for system (24).

Proof. Given c > 0, we define the set B(c) and the real

number δ(c) as follows:

B(c) = {x ∈ R
n
≥0 | x ≤ 2c1n},

δ(c) = min
x∈B(c)

min
i


−Jii(x)−

∑

j∈Ni

Jij(x)ψ
−1
ij


 .

Since B(c) is a compact set and (25) holds, we have that

δ(c) > 0. Let β : R≥0 × R≥0 7→ R be a class KL function

given by β(s, t) = se−δ(s)t, where δ(s) > 0 is nonincreasing

function with respect to s. Consider the control system

ẋ = f(x) + 0n×nu, (26)

where u ∈ R
n
≥0. We first show that, for every t ≥ 0 and

every i ∈ {1, . . . , n},

xi(t) ≤ max
j

{β(xi(0), t), ψij‖xj‖[0,t], ‖ui‖∞}. (27)

Suppose that the statement (27) is not true. Therefore, there

exist i ∈ {1, . . . , n}, t∗ ≥ 0, and ǫ > 0 such that

xi(t
∗) = max

j
{β(xi(0), t∗), ψij‖xj‖[0,t∗], ‖ui‖∞}, (28)

and for every t ∈ (t∗, t∗ + ǫ),

xi(t) > max
j

{β(xi(0), t), ψij‖xj‖[0,t], ‖ui‖∞}. (29)
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Since R
n
≥0 is convex, by the Mean Value Theorem [1,

Proposition 2.4.7], there exists 0n ≤ ξx ≤ x such that

fi(x) = Jii(ξx)xi +
∑

j∈Ni

Jij(ξx)xj . (30)

By (28) and (29), we have that, for every j such that (j, i) ∈ E
and every t ∈ [t∗, t∗ + ǫ), we have ‖xj‖[0,t] ≤ ψ−1

ij xi(t).
Therefore, by (30), we have

ẋi(t) = fi(x) ≤


Jii(ξx(t)) +

∑

j∈Ni

Jij(ξx(t))ψ
−1
ij


xi(t).

(31)

We consider two cases in the following.

(i) xi(t
∗) = β(xi(0), t

∗): In this case, for small enough ǫ
and, for every t ∈ [t∗, t∗+ǫ), we have ξx(t) ∈ B(xi(0)).
Thus, by (31), we have

ẋi(t) ≤ −δ(xi(0))xi(t),

which implies that xi(t) ≤ e−δ(xi(0))(t−t∗)xi(t
∗). Thus,

along with (28), we have, for every t ∈ [t∗, t∗ + ǫ),

xi(t) ≤ e−δ(xi(0))(t−t∗)xi(t
∗)

= e−δ(xi(0))txi(0)

≤ max
j

{β(xi(0), t), ‖xj‖[0,t], ‖ui‖∞},

which is contradictory to (29).

(ii) xi(t
∗) > β(xi(0), t

∗): In this case, we have xi(t
∗) >

xi(0)e
−δ(xi(0))t

∗

and therefore

xi(t
∗) = max

j
{ψij‖xj‖[0,t∗], ‖ui‖∞}.

By (31), we have ẋi(t) ≤ 0 for every t ∈ [t∗, t∗ + ǫ).
Since ‖xj‖[0,t] is nondecreasing with respect to t, for

every t ∈ [t∗, t∗ + ǫ),

xi(t) ≤ max
j

{ψij‖xj‖[0,t], ‖ui‖∞}

≤ max
j

{β(xi(0), t), ψij‖xj‖[0,t], ‖ui‖∞},

which is contradictory to (29).

In both cases, we have a contradiction. Therefore, for every

t ≥ 0 and every i ∈ {1, . . . , n}, xi(t) satisfies (27).

Moreover, Theorem 31(ii) ensures that {ψij}(i,j)∈E satisfies

ψc < 1, for every c ∈ Φ. Therefore, by cyclic small-

gain Theorem 11, the control system (26) is ISS, which

implies that 0n is globally asymptotically stable for nonlinear

dynamical system (24).

Theorem 32 (Sum-interconnection stability). Consider the

interconnected nonlinear system (24) evolving on the positive

orthant R
n
≥0 with the interconnection graph G = (V, E).

Assume that f(0n) = 0n, and for every x ∈ R
n
≥0, the matrix

J(x) is Metzler with negative diagonal entries. Moreover,

assume there exists a family of positive numbers {γij} for

i ∈ V and j ∈ Ni such that:

(i) for every i ∈ {1, . . . , n},

Jij(x)

−Jii(x)
≤ γij , for all x ∈ R

n
≥0,

(ii) for every i ∈ {1, . . . , n} and I = {1, . . . , i},

γMI
< 1,

where the Metzler matrix M is defined as, for i′, j′ ∈ V

mi′j′ =





γi′j′ , if (j′, i′) ∈ E ,
−1, if i′ = j′,

0, otherwise.

Then 0n is globally asymptotically stable for system (24).

Proof. By (ii) and Theorem 26(iii), M is Hurwitz. Thus,

by Theorem 19, there exists a family of positive numbers

{ψij}(i,j)∈E such that, for every i ∈ {1, 2, . . . , n},

∑

j∈Ni

mij

−mii

ψ−1
ij ≤ 1,

and ψc < 1 for every c ∈ Φ. This implies that, for every

x ∈ R
n
≥0, we have

∑

j 6=i

Jij(x)

−Jii(x)
ψ−1
ij ≤

∑

j 6=i

γijψ
−1
ij =

∑

i6=j

mij

−mii

ψ−1
ij ≤ 1.

Therefore, for the family of positive numbers {ψij}(i,j)∈E ,

∑

j 6=i

Jij(x)

−Jii(x)
ψ−1
ij ≤ 1, for all i ∈ {1, . . . , n},

and ψc < 1 for every c ∈ Φ. Therefore, by Theorem 31, 0n is

globally asymptotically stable for the dynamical system (24).

VII. KRON REDUCTION FOR METZLER MATRICES

In this section, we give graph-theoretic interpretations of

Schur complements for irreducible Metzler matrices with

negative diagonal elements, which is novel in its own and

provides insights for the proof of Theorem 26(i). The Schur

complement technique, known as Kron reduction in power

engineering, has been developed for symmetric irreducible

loopy Laplacian matrices in [13]. For an irreducible Metzler

matrix M ∈ R
n×n with negative diagonal elements, com-

puting the Schur complement of M with respect to mnn

is graph-theoretically equivalent to removing node n and its

associated edges in G(M) and modifying the connections

and weights among the remaining nodes. Specifically, for all

i, j ∈ {1, . . . , n− 1},

(i) if both edge weights min and mni are nonzero, then the

self weight of node i becomes mii − minmni

mnn
;

(ii) if both edge weights min and mnj are nonzero, then

edge weight on (j, i) becomes mij − minmnj

mnn
; in partic-

ular, if mij = 0, then a new edge (j, i) establishes from

node j to node i with edge weight −minmnj

mnn
.

The topological changes are illustrated by an example in

Fig. 4, where node five is removed by the Schur complement.

The following observations regarding the Schur complement
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can be made from Fig. 4: (i) the connectivity is maintained;

(ii) the self weight of node i changes if and only if node i
and node n form a simple cycle (i, n, i); (iii) the “path gain”

−minmnj

mnn
of the path (j, n, i) is added to the weight on the

edge (j, i), and in particular, if there exists no directed edge

from node j to node i, i.e., mij = 0, then a directed edge

appears in the reduced graph with the edge weight −minmnj

mnn
.

1

2

3

4

5

m25

m51

m12

m42

m24

m53

m35

m11

m22

m33

m44

m55

(a) Original graph

1

2

3

4

−m51m25

m55

m12

m42

m24

−m51m35

m55

−m53m25

m55

m11

m22

m33 − m53m35

m55

m44

(b) Node 5 is removed by the Schur complement

Fig. 4. Topological changes corresponding to the Schur complement

The one-node Kron reduction described above for irre-

ducible Metzler matrices with negative diagonal elements

may not be well defined when one tries to eliminate a subset

of more than one nodes. However, the Schur complement is

always well defined for the following sets of matrices.

Theorem 33 (Invariant sets under Schur complement). The

Schur complements are well-defined and leave the following

sets of matrices invariant:

(i) Hurwitz Metzler matrices;

(ii) irreducible compartmental matrices.

Proof. Regarding part (i), the result follows from Theorem 4

and the quotient identity of the Schur complement [10].

Regarding part (ii), since the compartmental matrix is

irreducible, all its leading submatrices with order less than

the dimension are invertible and therefore, the Schur com-

plements are well defined.

Theorem 34 (Spectral interlacing properties). Let M ∈
R
n×n be a symmetric Hurwitz Metzler matrix with eigen-

values λ1 ≤ · · · ≤ λn < 0. The eigenvalues µ1 ≤ · · · ≤
µn−1 < 0 of the Schur complement M [n− 1] are interlaced

with those of M in the sense that

λi ≤ µi ≤ λi+1, for all i ∈ {1, . . . , n− 1}.
Proof. By Theorem 33, the Schur complement is always

well-defined for Hurwtiz Metzler matrices. Then, the result

follows from the interlacing properties for the schur comple-

ments of semidefinite matrices [26, Theorem 5].

VIII. ADDITIONAL CONCEPTS AND PROOFS

A. Cycle graphs, complementary cycle graphs and disjoint

cycle sets

Let M ∈ R
n×n be an irreducible Metzler matrix with

negative diagonal elements and Φ = {c1, . . . , cr} be the set

of simple cycles in G(M). Then the associated cycle graph

of G(M) is the graph GΦ(M) = (VΦ, EΦ) with the node set

VΦ = {1, . . . , r} and the edge set EΦ given by

EΦ = {(i, j) | ci ∈ Φ, cj ∈ Φ, ci ∩ cj 6= ∅}.
We define the complementary cycle graph of G(M) by

Gc
Φ(M) = (VΦ, Ec

Φ). Note that while the graph G(M) is

a weighted digraph, the graphs GΦ(M) and Gc
Φ(M) are

unweighted undirected graphs. Moreover, since M is irre-

ducible, the cycle graph GΦ(M) is always connected. The

disjoint cycle set KM
ℓ is a set in which each element is a

nonempty set of ℓ ≥ 1 cycles in Φ that form a complete

graph in Gc
Φ(M).

Example 35 (Cycle graphs, complementary cycle graphs and

KM
ℓ ). We illustrate the a few definitions using the Metzler

matrix in Example 24, whose associated weighted digraph

G(M) is shown in Fig. 1.

The cycle graph GΦ(M) is given in Fig. 5(a) and the

complementary cycle graph Gc
Φ(M) is given in Fig. 5(b).

From Fig. 5(b), one can check that the disjoint cycle sets are

clearly given by (17).

1

2

3

4

5

(a) GΦ(M)

1

2

3

4

5

(b) Gc

Φ
(M)

Fig. 5. Cycle graph and complementary cycle graph

B. Graph expansion and proof of Theorem 26(i)

Based on the observations from Section VII, we reverse the

Schur complement process and propose a graph expansion

algorithm for the associated graph of a Metzler matrix. The

purpose of the expansion is to separate cycles so that no cycle

is contained in another cycle.

For a Metzler matrix M ∈ R
n×n associated with G(M) =

(V, E ,M), we construct the expansion digraph Gexp(M) =
(Vexp, Eexp,Mexp) and the expanded Metzler matrix Mexp

using Algorithm 1.

In words, for a Metzler matrix M ∈ R
n×n, Algorithm 1

inserts a node on each directed edge in G(M) and assigns

proper weights to the added nodes and edges.

Lemma 36. For a Metzler matrix M ∈ R
n×n and its

expansion Mexp, M is Hurwitz if and only if Mexp is Hurwitz.

Proof. The Metzler matrix M can be recovered fromMexp by

removing all the added nodes using the Schur complement,
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Algorithm 1: Graph expansion for Metzler matrices

Input : M ∈ R
n×n,G(M) = (V, E ,M)

Output: Gexp(M) = (Vexp, Eexp,Mexp)

1 Initialize: Vexp = V , Eexp = ∅, Mexp =M , k = 0
2 for every edge (i, j) ∈ E do

3 k = k + 1
4 Vexp = Vexp ∪ {n+ k}
5 Eexp = Eexp ∪ {(i, n+ k), (n+ k, j)}
6 Mexp =

[
Mexp 0(n+k−1)×1

01×(n+k−1) −1

]

7 Mexp(n+ k, i) =Mexp(j, n+ k) =
√
mji

8 end

and the diagonal elements of the remaining nodes do not

change during the elimination. Therefore, by Theorem 4, M
is Hurwitz if and only if Mexp is Hurwitz.

Now we are ready to give a proof to Theorem 26(i).

Proof of Theorem 26(i). By construction, any cycle in

Gexp(M) can show up as a leading principal submatrix

after a permutation on Mexp. Since M is Hurwitz, Mexp is

also Hurwitz and by Theorem 2(iii), the determinant of the

negative leading principal submatrix must be positive, i.e.,

the cycle gain must be less than 1.

IX. CONCLUSION

In this paper, we obtained and characterized the graph-

theoretic necessary and sufficient conditions for the Hur-

witzness of Metzler matrices. By establishing connections

with the well-known input-to-state stability theory and small-

gain theorems, we were able to derive stability conditions

for linear Metzler systems based on two different forms of

ISS gains. These conditions give insights on how the cycles

and cycle structures in the associated digraph of the Metzler

matrices play a role in determining system stability. We

also extended our results to the case of nonlinear monotone

systems and obtained sufficient conditions for stability.

APPENDIX A

PROOF OF LEMMA 25

In order to prove Lemma 25, we need a few results regard-

ing the graph-theoretic interpretations of determinants. For a

weighted digraph G = (V, E ,W ), a factor F = {c1, . . . , cr}
of G satisfies

(i) each ci ∈ F is either a self loop or a simple cycle;

(ii) ci ∩ cj = ∅, for all i 6= j;
(iii) ∪r

i=1ci = V .

Note that the set of factors may be empty and in this case

the determinant of matrix corresponding to the digraph is 0.

For a matrix A ∈ R
n×n, the determinant of A can be

computed based on the factors of G(A). For a simple cycle

or a self loop c in G(A), we define A(c) to be the product

of the edge weights along the cycle or the self loop. Then,

we have the following lemma.

Lemma 37 (Graph-theoretic interpretation of determinants

[19, Theorem 1]). Let A ∈ R
n×n be a matrix with di-

graph G(A) = (V, E , A). Suppose G(A) has factors Fk =
{ck1

, ck2
, . . . , ckrk

}, k = 1, . . . , q, then

det(A) = (−1)n
q∑

k=1

(−1)rkA(ck1
)A(ck2

) · · ·A(ckrk
).

(32)

In the case of irreducible Metzler matrices with negative

diagonal elements, we can rewrite (32) in terms of the cycle

gains. Let M ∈ R
n×n be an irreducible Metzler matrix

with negative diagonal elements and Φ = {c1, . . . , cr} be

the set of simple cycles of G(M), then a cycle factor

F c = {c1, . . . , ct} of G(M) satisfies

(i) F c ⊂ Φ and F c 6= ∅;

(ii) ci ∩ cj = ∅, for all ci, cj ∈ F c and i 6= j.

Suppose G(M) has cycle factors F c
k = {ck1

, ck2
, . . . , cktk

},

k = 1, . . . , q, then each cycle factor F c
k can be expanded to

a factor of G(M) by adding the self loops at the nodes that

are not on any simple cycles in F c
k and by doing this, all the

factors except the one that consists of purely self loops can

be recovered. Since the diagonal elements of M are negative,

we can factor out
∏n

i=1(−mii) in the general formula (32)

and rewrite the equation for M as follows,

det(M) =

n∏

i=1

mii +

n∏

i=1

mii

q∑

k=1

(−1)tkγck1γck2 · · · γcktk .

(33)

By definition, the disjoint cycle sets are related to the cycle

factors as KM
ℓ = {F c

k | tk = ℓ}, thus we can group the

cycle factors with the same cardinality in (33) and obtain

(19) for I = {1, . . . , n}. For i = {1, . . . , n − 1} and

I = {1, . . . , i}, the same procedure works for the leading

principal submatrices MI and (19) follows except for the

case when ΦMI
is empty. If ΦMI

is empty, i.e., G(MI) is

acyclic, then the determinant det(MI) is equal to the product

of the diagonal elements. By (16), we have γMI
= 0 in this

case and thus (19) holds.

APPENDIX B

PROOF OF COROLLARY 20

(i) =⇒ (ii): Since M is Hurwitz, by Theorem 19, for

every (j, i) ∈ E , there exists ψij > 0 such that

∑

j∈Ni

(
mij

−mii

)
ψ−1
ij < 1, ∀i ∈ {1, . . . , n}, (34)

ψc < 1, ∀c ∈ Φ. (35)

Let c ∈ Φ and assume that c = (1, . . . , k, 1). Then, for every

k′ ∈ {1, . . . , k}, we define

θ̂ck′ =





(
mk′+1,k′

−mk′+1,k′+1

)
ψ−1
k′+1,k′ , k′ ≤ k − 1,(

m1,k

−m11

)
ψ−1
1,k, k′ = k.

First note that (35) can be written as
∏

i∈c

θ̂ci > γc, ∀c ∈ Φ.



13

Since G(M) is connected and cactus, no two simple cycles

share an edge. Therefore, one can write (34) as follows:
∑

c∈Φ

θ̂ci < 1, ∀i ∈ c.

By a straightforward continuity argument, one can show that,

for every c ∈ Φ and i ∈ c, there exists θci > 0 such that

∏

i∈c

θci > γc, ∀c ∈ Φ,

∑

c∈Φ

θci = 1, ∀i ∈ c.

(ii) =⇒ (i): Now suppose that, for every c ∈ Φ and

every i ∈ c, there exists θci > 0 which satisfies (15). Let

c = (1, . . . , k, 1), and for every k′ ∈ {1, . . . , k − 1}

ψk′+1,k′ =

(
mk′+1,k′

−mk′+1,k′+1

)
(θck′ )

−1
,

and

ψ1,k =

(
m1,k

−m11

)
(θck)

−1
.

By a continuity argument, (15) can be written as (34)

and (35). Thus, by Theorem 19, the matrix M is Hurwitz.
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