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Abstract—The number of grid-tied inverters interfacing re-
newable resources, energy-storage devices, and flexible loads in
distribution networks is steadily increasing. State-space models
for inverters are nonlinear and high dimensional which renders
the task of modeling large numbers at the edge of the grid
to be a difficult undertaking. To address this issue, we develop
a distribution-network-cognizant aggregation approach that de-
scribes the collective dynamics of grid-tied three-phase inverters.
Inverters are clustered based on effective impedances to an
infinite bus (modeling the transmission-distribution boundary)
and for each cluster, an aggregate dynamical model is developed
to preserve the structure and order of each individual inverter
state-space model. The K-means algorithm is leveraged for
clustering and a suitable linearization of the power-flow equa-
tions reduces computational burden involved in determining
terminal voltages for the clusters. Numerical simulation results
for the IEEE 37-bus feeder system demonstrate the accuracy
and computational benefits of the proposed aggregation method.

Index Terms—Model reduction, phase-locked loop, three-
phase inverter, voltage-source inverter.

I. INTRODUCTION

This paper outlines a model-aggregation procedure for
grid-tied three-phase inverters with the goal of capturing the
time evolution of real- and reactive-power injections at the
distribution-network feeder head while acknowledging power
flows between the inverters. We examine the AC-timescale
dynamics of a three-phase voltage source inverter (VSI) with
an output LCL filter, where the control architecture is com-
posed of an inner current-control loop, an outer power-control
loop, and a phase locked loop (PLL) for grid synchronization.
The aggregation method is presented with a broad level
of generality (with respect to inverter topology, controllers,
and filters), but it is worth mentioning that the examined
topology is prototypical and is recognizably popular in the
literature [1]–[6]. In addition to the grid-tied inverters, our
model for the distribution network includes impedance loads
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interconnected to the inverters through lines modeled with
Π-equivalent circuits. Individually modeling the dynamics of
all inverters, interconnecting lines, and loads to glean insights
into the collective behavior of the distribution network—
with particular emphasis on the active- and reactive-power
injected into the feederhead—is computationally intractable.
As a solution, we outline a reduced-order model for the
distribution network, where inverters are clustered based on
electrical distances from the feederhead and an aggregated
model is derived for each cluster. The proposed models hold
the potential to be useful in several application settings. Few
that immediately spring to mind include: capturing the impact
of fast variations in irradiance on the output power of PV
systems, modeling the impact of wind gusts on the output
power of wind energy conversion systems, and uncovering
the impact of changing setpoints of large collections of
inverters by aggregators (for frequency regulation or other
grid services) on their collective outputs.

We explain the fundamental idea and the contributions
of this work over our previous efforts with the aid of the
illustrative network composed of 4 inverters in Fig. 1a and
corresponding reduced-order aggregate models of varying
complexity in Figs. 1b–1d. The individual inverter model
has 15 states and the transmission-distribution interface is
modeled as an infinite bus (marked g). We are interested in
describing the dynamic evolution of the real- and reactive-
power injections (pg and qg , respectively) into the grid bus.
The simplest aggregate model is obtained by ignoring the

Fig. 1: (a) Network of 4 inverters. Dynamics of all inverters are
captured by a 60(= 15× 4) order state-space model. (b) Reduced-
order model of the system ignoring the network. Dynamics of
all inverters are described by an aggregate 15 order model that
has the same structure as any individual inverter. (c) Reduced-
order model with all inverters aggregated into 1 group. As in (b),
the aggregate model has 15 states. (d) Reduced-order model with
inverters clustered into 2 groups. This model has 30(= 15 × 2)
states, but presents improved accuracy.
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electrical network (i.e., assuming all inverters are connected
to the grid bus) and is illustrated in Fig. 1b. We showed
in [7] that the aggregate model in this case has the same
structure and model order as any inverter in the parallel
system, albeit with suitably scaled model parameters. We
extended the results in [7] to the case where the inverter
power ratings are different and the inverters have different
real- and reactive-power setpoints in [8]. A more accurate
reduced-order model is shown in Fig. 1c and was examined
in our earlier work [9] (and more recently in [10]). Here,
we leveraged aggregation methods previously used for syn-
chronous generators [11]–[13] to transfer all inverters to a
single virtual bus, and then obtained the aggregate model
as in Fig. 1b (following our work in [7], [8]). The virtual-
transformer turns ratios are designed such that the voltages of
the inverter-facing terminals are approximately the average of
the voltages in the original network. To obtain an estimate of
these voltages, we leverage linear approximations of the AC
power flow equations [14]–[16]. In this work, we improve
upon the network-agnostic aggregation in [7], [8] (Fig. 1b)
and the single-virtual-bus aggregation in [9] (Fig. 1c) by
introducing multiple virtual buses and clustering inverters to
these buses according to their electrical distance from the
grid bus (Fig. 1d). Subsequently, inverter models for each
cluster are aggregated using the methods in [7], [8].

The intuition for having more than one virtual bus and to
perform an electrical-distance-based clustering stems from
the fact that the terminal voltage is an input to the inverter
dynamical model, and the role of the PLL is to obtain
the phase of the grid voltage. The model in Fig. 1b can
only be expected to be accurate when interconnecting line
parameters are such that they can be ignored, essentially
implying that all inverters sense the same grid voltage. The
model in Fig. 1c improves upon this with the average of the
terminal voltages serving as a proxy to the actual inverter
terminal voltages. Finally, the model in Fig. 1d is based on
the underlying assumption that inverters that are electrically
the same distance from the grid bus should be—in theory—
dynamically coherent. This assumption is also leveraged in
prior work on synchronous-generator coherency [11]–[13],
[17] and network partitioning [18], [19], where, it is recog-
nized that electrically close generators tend to swing together
during disturbances. While the classic notion of coherency
as it relates to machine angles does not perfectly translate to
inverters [20], [21], we find that the electrical-distance-based
clustering approach effectively identifies groups of inverters
that have similar dynamic behavior during transients. Given
its ease of implementation and scalability, we apply the K-
means algorithm [22]–[24] to cluster inverters. With regard
to determining the optimal number of clusters, we point to
several numerical methods that have been proposed in the
literature [25]–[30] to this end. For the present application,
we find that the so-called silhouette analysis method [28]–
[30] provides a good insight into the optimal number of
clusters to be introduced.

From the perspective of model reduction, literature per-
tinent to our work is predominantly in the area of ob-
taining reduced-order models for individual inverters [31]–
[33]. Our work differs by providing reduced-order mod-
els for collections of inverters. Also related are recent ef-
forts that have sought to extend coherency-based cluster-
ing and collective aggregation to droop-controlled islanded
inverters [34] and parallel-connected virtual-synchronous-
generator-controlled multilevel converters [35]. However, the
application setting in these works is that of grid-forming
inverters controlled to emulate synchronous machines, and
therefore, classical results from clustering synchronous ma-
chine models can be applied straightforwardly. The aggre-
gation method outlined in this work can be applied to grid-
forming inverters if an aggregated model for the elemental
parallel connection is known. Such models have indeed been
identified in the literature. For instance, [36] and [37] outline
aggregate models for parallel-connected droop-controlled and
virtual-oscillator-controlled inverters, respectively. For com-
plex networks with heterogeneous inverter types, aggregation
based on inverter control method and type (grid-forming,
grid-following) as developed in [10] in addition to electrical
distances would conceivably be necessary.

Before proceeding to technical details, we summarize all
the key contributions of the paper. The main contribution of
this work is the development of an approach to cluster invert-
ers installed in a distribution network based on their electrical
distances to the feederhead and a strategy to determine the
optimal number of required clusters in a given distribution
network. The proposed method is presented in the context
of a very widely used inverter control architecture, and it
applies to inverters with different power ratings and setpoints.
As a concrete outcome, we deliver a compact state-space
model representation for the distribution network that strikes
the right balance between computational cost and modeling
details.

The remainder of this paper is organized as follows.
In Section II, we introduce the three-phase grid-connected
inverter model and briefly review the aggregation results
for parallel-connected inverters. In Section III, we describe
the distribution feeder model. In Section IV, we outline
the network-cognizant aggregation approach. We validate the
proposed approach with exhaustive numerical simulations
for an illustrative feeder network in Section V. Finally,
concluding remarks and directions for future work are given
in Section VI.

II. INVERTER MODEL AND PARALLEL AGGREGATION

This section briefly overviews the model of a single
inverter, and the aggregate model for a parallel collection.

A. Inverter Model

We place the following discussion in context of the inverter
model sketched in Fig. 2a. Key elements here are reference
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Fig. 2: (a) Feed-back control loops and output filter of the grid-tied three-phase inverter, and adopted shorthand depicting: i) power rating,
with the aid of the power-scaling parameter, κ (see (2)), ii) real-power setpoint, p?, and iii) reactive-power setpoint, q?. (b) Parallel
connection of N inverters, and the adopted shorthand representation of the reduced-order model. The reduced-order model has the same
form as (a) with equivalent power-scaling parameter κ̂ =

∑N
`=1 κ`, real-power setpoint,

∑N
`=1 p

?
` , and reactive-power setpoint,

∑N
`=1 q

?
` .

frame transformations used to facilitate control, internal con-
troller and filter dynamics, and power-scaling parameters that
capture the different power ratings for the inverters.

1) Reference-frame transformations: Three-phase signals
xabc = [xa, xb, xc]T are transformed to equivalent DC
signals (xd, xq) using Park’s transformation implemented
with the PLL angle, δ.1 The abc-dq block in Fig. 2a
captures the transformation. In a system of inverters, the
controller for each inverter operates on signals in its own dq
reference frame. For analytical convenience, inverter outputs
and network variables should be represented in the same
reference frame. To do so, it is common practice to rely on
a global DQ frame with phase denoted by δg and frequency
ωg . Given variables in the local dq frame, xd and xq, the
corresponding variables in the global reference frame are
denoted by xD and xQ, and they are obtained through:[

xD

xQ

]
=

[
cos(δg − δ) sin(δg − δ)
− sin(δg − δ) cos(δg − δ)

] [
xd

xq

]
. (1)

For subsequent developments, we define xDQ := xD + jxQ

and xdq := xd + jxq.
2) State-space model for the inverter dynamics: A block

diagram of the inverter control architecture is illustrated in
Fig. 2a. To capture inverters with different power ratings, we
define the power-scaling parameter, κ, as follows [7]:

κ = prated/pbase, (2)

with prated and pbase denoting the rated power of the inverter
and the system-wide base value, respectively. We assume

1Notation: The matrix transpose is denoted by (·)T. The Moore-Penrose
pseudo inverse of a matrix B is denoted by B†. A diagonal matrix formed
with the entries of vector x is denoted by diag(x); bdiag(A1, . . . , AN )
denotes a block diagonal matrix of A1, . . . , AN . The entrywise natural
logarithm and the smallest entry of vector x are denoted by log(x) and
min(x), respectively; 1N and 0N denote N -dimension vectors of all one
and all zero entries, respectively; IN and 0M×N denote the N×N identity
matrix and an M × N matrix of all zeros, respectively. Furthermore, j =√
−1; the magnitude, angle, real and imaginary components of a complex

variable x are denoted by |x|, ∠x, Re{x}, and Im{x}, respectively, and
the matrix conjugate transpose is denoted by (·)H. The cardinality of set A
is denoted by |A|. The maximum of two scalars, a and b, is denoted by
max(a, b).

a voltage source inverter (VSI) and an output LCL filter
with inverter-side inductance, Li, grid-side inductance, Lg ,
and filter capacitance, Cf . The control architecture consists
of an inner-loop current controller, an outer-loop power
controller, and a phase-locked loop (PLL). The power con-
troller (PC) consists of two low pass filters and two PI
controllers. The reference inputs to the controller are the
real- and reactive-power setpoints (denoted by p? and q?,
respectively), its outputs are the references for the cur-
rent controller. The current controller (CC) consists of two
PI controllers and feedforward terms, with outputs to be
the reference for the terminal voltage vi. The PLL con-
sists of a low pass filter and a PI controller. It synchro-
nizes with the grid by modulating the angle δ such that
vd
g → 0. Inverters with power rating κpbase have parameters
Li, Ri, Cf , Rf , Lg, Rg, k

p
CC, k

i
CC scaled as κ−1Li, κ

−1Ri,
κCf , κ

−1Rf , κ
−1Lg, κ

−1rg, κ
−1kpCC, κ

−1kiCC. This assump-
tion is backed by several engineering rules of thumb. For
instance, it ensures the voltage drop across the LCL filter
and the closed-loop system response is identical across power
levels. See [7] for more details.

The inverter dynamics discussed above can be compactly
described by the following 15th-order model [7]:

ẋ = Ax+Bus + g(x, uv), y = iDQ
o , (3)

with states and inputs:

x = [idi , i
q
i , i

d
o , i

q
o, v

d
f , v

q
f ,

γd, γq, pavg, qavg, φ
p, φq, vPLL, φPPL, δ]

T, (4)

us = [p?, q?]T, uv = vabc
g := [va

g , v
b
g , v

c
g]T. (5)

In (4), idi , iqi , ido , iqo, vd
f , and vq

f are native to the LCL filter
(see Fig. 2a); γd and γq are states that capture the dynamics
of the PI loop in the current controller; pavg, qavg, φp, and
φq are states that capture the dynamics of averaging and the
PI loop in the power controller; and vPLL, φPPL, and δ are
states that capture the dynamics of the low-pass filter and
PI loop in the PLL. Input us captures the real- and reactive-
power setpoints, and input uv is the voltage sensed at the
inverter terminals. The output of the state-space model, y =
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iDQ
o ∈ C is the Lg-branch current represented in the global

DQ reference frame (see Fig. 2a). Due to space constraints,
we refrain from spelling out entries of A, B, and g(·, ·).
Interested readers are referred to [7] for a detailed description
of the inverter filter and controller dynamics.

B. Reduced-order Model of Parallel-connected Inverters

Consider a collection of N inverters, all with the dynamical
model (3) connected in parallel to the grid bus. We capture
the following types of heterogeneity in inverters:

1) The inverters have different power ratings. The power
scaling parameter of the ` inverter is denoted by κ`.

2) The inverters have different reference-power setpoints.
The real- and reactive-power setpoints for inverter ` are
denoted by p?` and q?` , respectively.

We have shown in [8] that the dynamics of this system of
inverters can be described by a model with the same structure
and order as any individual inverter (see Fig. 2a). (We note
that the results in [8] are for single-phase inverters; the
extension to the three-phase setting is straightforward.) The
aggregated inverter dynamics can be compactly expressed
with the following 15th-order state-space model:

˙̂x = Âx̂+ B̂ûs + ĝ(x̂, ûv), ŷ = îDQ
o , (6)

with states and inputs:

x̂ = [̂idi , î
q
i , î

d
o , î

q
o, v̂

d
f , v̂

q
f ,

γ̂d, γ̂q, p̂avg, q̂avg, φ̂
p, φ̂q, v̂PLL, φ̂PPL, δ̂]

T, (7)

ûs =

N∑
`=1

[p?` , q
?
` ]T, ûv = vabc

g = [va
g , v

b
g , v

c
g]T. (8)

Input ûs captures the net real- and reactive-power setpoints
of the inverters in the system, and input ûv is the voltage
sensed at the inverter terminals, which in this case, is the grid
voltage. The output of the state-space model, ŷ = îDQ

o ∈ C is
the output current of the collection of inverters in the global
DQ reference frame. Matrices Â ∈ R15×15, B̂ ∈ R15×2, and
function ĝ : R15 × R3 → R15 have the same dimension and
structure as A, B, and g for the individual inverter model.
Their entries are obtained by replacing the individual inverter
model parameters Li, Ri, Cf , Rf , Lg, Rg, k

p
CC, k

i
CC with

κ̂−1Li, κ̂
−1Ri, κ̂Cf , κ̂

−1Rf , κ̂
−1Lg, κ̂

−1rg, κ̂
−1kpCC, κ̂

−1kiCC,
where κ̂ :=

∑N
`=1 κ` denotes the equivalent power-scaling

parameter. The states of the aggregated inverter (7) relate
to the individual inverter (4) as follows ∀t ≥ t0 [8]:

[̂idi , î
q
i , î

d
o , î

q
o, γ̂

d, γ̂q, p̂avg, q̂avg, φ̂
p, φ̂q]T =

N∑
`=1

[idi,`, i
q
i,`, i

d
o,`, i

q
o,`, γ

d
` , γ

q
` , pavg,`, qavg,`, φ

p
` , φ

q
` ]T,

[v̂d
f , v̂

q
f ]T =

1

N

N∑
`=1

[vd
f,`, v

q
f,`]

T,

[v̂PLL, φ̂PPL, δ̂]
T = [vPLL,`, φPPL,`, δ`]

T,∀`.

III. NETWORK DESCRIPTION AND DYNAMICS

In this section, we describe the distribution-network topol-
ogy and outline its dynamical model.

A. Distribution-network Topology and Constitution

We study the networked dynamics of inverters connected
in a balanced three-phase electrical distribution network with
the Π-model adopted for branches in the network [38].
Figure 3a illustrates the system: each inverter is pictorially
represented with the shorthand established in Fig. 2a. The
slack bus (representing the secondary of the step-down trans-
former that connects the distribution network to the bulk
system) is denoted by g. The nodes of the electrical network
and the grid are collected in the set N ∪ {g}, inverter buses
are denoted by I ⊆ N , and Z = N \ I collects the set of
buses with zero current injections. Branches are collected in
the set E ⊆ N ∪ {g} ×N ∪ {g}. The edge-incidence matrix
of the network, E ∈ R(|N |+1)×|E|, has entries

[E]k` :=

 1, if k is the source of `-th line,
−1, if k is the sink of `-th line,
0, otherwise.

(9)

Furthermore, we will find it useful to define F :=
[I|I|, 0

T
(|N |+1)×|I|]

T.
Let RE ∈ R|E|, LE ∈ R|E|, and CE ∈ R|N | denote

the vectors that collect the line resistance, line inductance,
and shunt capacitance, respectively. The network admittance
matrix, Y ∈ C(|N |+1)×(|N |+1), maps the nodal voltages to
the current injections, and it is given by:

Y := Ediag(RE+jωgLE)
−1ET+jωgdiag([CT

E , 0]T). (10)

Nodal voltages and current injections in the DQ ref-
erence frame are vDQ := [(vDQ

N )T, vDQ
g ]T and iDQ :=

[(iDQ
N ,−iDQ

g )T]T (the negative sign that precedes iDQ
g is

in acknowledgment of its assumed direction as shown in
Fig. 3a). It follows that iDQ

N = [(iDQ
I )T, 0T

|Z|]
T and vDQ

N =

[(vDQ
I )T, (vDQ

Z )T]T. Finally, iDQ
E ∈ C|E| collects the directed

currents of the lines, and iDQ
oI ∈ C|I| is the vector that

collects output currents of the inverters on the Lg branches.
While iDQ

oI = iDQ
I in the original network, we will note that

iDQ
oI 6= iDQ

I in the virtual circuit with virtual transformers
(see Fig. 3b). We introduce no additional notation to distin-
guish between time- and phasor-domain representations of
variables. Differences are expected to be contextually clear.

B. DQ-frame Network Dynamics in the Time Domain

In their original form, and without any model reduction,
the dynamics of the distribution feeder include those arising
from the interconnecting distribution lines and inverters. With
a slight abuse of notation compared to (3), the dynamics of
all inverters in the system are given by

ẋ = bdiag(A1, . . . , A|I|)x+ [(B1us,1)T, . . . , (B|I|us,|I|)
T]T

+ g′(x, uv), y = iDQ
oI , (11)
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where x := [xT
1 , . . . , x

T
|I|]

T ∈ R15|I| collects the states
corresponding to all inverters in the system (each x` ∈ R15

has entries shown in (4)), g′ : R15|I| × R3×|I| → R15|I| is:

g′(x, uv) = [g1(x1, vv,1)T, . . . , g|I|(x|I|, vv,|I|)
T]T,

with A`, B`, and g` above defined in the state-space model
of an individual inverter as in (3). Finally, us,` = [p?` , q

?
` ]T

captures the real- and reactive-power setpoints of the `-th
inverter, and uv = vabc

I captures inverter voltages in the abc
reference frame. The line-current and bus-voltage dynamics
in the network in the DQ-frame are given by

diag(LE)i̇
DQ
E = −diag(RE + jωgLE)i

DQ
E + ETvDQ, (12)

diag(CE)v̇
DQ
N = −jωgdiag(CE)v

DQ
N + FN i

DQ
oI − EN i

DQ
E ,

where, recall that E is the network edge-incidence matrix (9),
and matrices FN ∈ R|N |×|I| and EN ∈ R|N |×|E| are ob-
tained from F and E by discarding the row that corresponds
to the grid bus. The current injected into the grid, ig , in
Fig. 3a, is given by iDQ

g = −Egi
DQ
E , where Eg denotes

the row in E corresponding to the grid bus. The real- and
reactive-power injections into the grid bus are given by

pg =
3

2
(vD

g i
D
g + vQ

g i
Q
g ), qg =

3

2
(vQ

g i
D
g − vD

g i
Q
g ). (13)

With all dynamics explicitly modeled in (11), (12), the order
of the dynamical model one has to simulate to obtain the
time-domain evolution of pg and qg is 2(|E|+ |N |) + 15|I|.

IV. NETWORK-COGNIZANT AGGREGATE MODEL

In this section, we present the details of the clustering ap-
proach and the aggregate dynamical model. The aggregation
strategy applies to any connected network topology (meshed,
radial) with arbitrary line impedance values.

(a) (b)

Fig. 3: Illustrating adopted notation and aggregate model: (a) Net-
work of |I| inverters with different power ratings and reference-
power setpoints (five of which are explicitly illustrated) with
Π-equivalent circuits adopted to model interconnecting lines.
(b) Reduced-order model of the system with the inverters ag-
gregated into clusters (two of which are explicitly illustrated)
determined based on electrical distances from bus g that denotes
the transmission-distribution interface.

A. Virtual Network with Aggregated Inverters

To describe the circuit equations that underlie the reduced-
order model, consider the network sketched in Fig. 3b, where
inverters have been clustered (and subsequently aggregated)
based on the electrical distances between their terminals and
the grid bus in the originating network sketched in Fig. 3a.
In subsequent developments, this network with clustered and
aggregated inverters is referred to as the virtual network.
Let îDQ

oI ∈ C|C| denote the vector that collects the output
current of the aggregated inverters, iDQ

aux ∈ C|I| captures
the currents from the virtual buses into the primary side
of the transformers, and îDQ

I ∈ C|I| captures the currents
from the secondary-side of the transformers into the electrical
network. Similarly, v̂DQ

I ∈ C|I| captures the voltages on
the secondary-side of the transformers, and vDQ

aux ∈ C|C|
denotes the voltages on the primary side. See Fig. 3b for an
illustration of these variables. Denote Ic as the index set of
inverter buses that belong to the c-th cluster. For subsequent
developments, we will find matrix Φ ∈ R|I|×|C| with entries:

[Φ]kc :=

{
1, if k ∈ Ic,
0, otherwise,

useful in identifying the clusters that inverters belong to.
1) Clustering of inverters: We use the effective impedance

as a measure of the electrical distance. The effective
impedance between the grid bus, g, and the `-th inverter bus,
denoted by zeff

g` ∈ C, is defined as the potential difference
between these two buses when a unit current is injected in
bus g and extracted from bus `. It can be computed as [39]:

zeff
g` = (eg − e`)Tv = (eg − e`)TY †(eg − e`), (14)

where Y † is the pseudoinverse of the network admittance
matrix, eg ∈ R|N |+1 and e` ∈ R|N |+1 denote the canonical
vectors of all zeros except with entry one at the position of
index g (i.e., the grid bus) and index ` (capturing the inverter
at bus ` ∈ I), respectively. Let zeff ∈ R|I| denote the vector
that collects all the magnitudes of effective impedances
between the grid bus and inverter buses. With this measure
of electrical distance, we utilize the K-means algorithm to
group the inverters into |C| clusters [23], [24]. We apply
the algorithm to a pre-processed version of zeff , denoted by
zeff

scaled ∈ R|I|≥0, and defined by:

zeff
scaled := log

(
zeff/min(zeff)

)
. (15)

We scale zeff by the inverse of its smallest entry so that
its logarithm is nonnegative. Clustering based on entries of
zeff

scaled is noted empirically to yield better results, i.e., with
a higher probability, inverters farther away from the grid bus
are clustered together.

2) Determining the Optimal Number of Clusters: One
method to measure the quality of clustering is silhouette
analysis [28]–[30]. For a point a ∈ C`, let d(a) denote the
average of the distance between point a and other points
inside cluster C`, d̃k(a, Ck) denote the average of the distance
between point a and all other points in cluster Ck, where
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k 6= `, and the minimum of all d̃k(a, Ck) values is denoted
by d̃(a). The silhouette value of point a, denoted by s(a), is
given by: [30]

s(a) =
d̃(a)− d(a)

max(d(a), d̃(a))
. (16)

Note that the range of s(a) is between −1 and 1. Observ-
ing (16), s(a) has a negative value if d̃(a) < d(a), and a
value close to 1 if d̃(a)� d(a). With K-means, the sum of
within-cluster distances decreases as the number of clusters
increases, therefore, the average silhouette value of all the
points tends to approach unity. Without loss of generality, we
choose the number of clusters with average silhouette value
around 0.8 as the optimal number of clusters for simulations
that follow. The silhouette analysis method outlined above
is one of many [25]–[30] that have been proposed in the
literature for determining the optimal number of clusters.
Empirically, we observe that this yields good results for the
considered application.

3) Engineering the virtual network: The formulation of
the virtual network (Fig. 3b) hinges on the choice of the
virtual-transformer turns ratios. One option is to pick the
nominal virtual-bus voltages, vDQ

aux ∈ C|C| to be the weighted
average of the inverter-terminal voltages:

vDQ
aux = diag((diag(K)Φ)T1|I|)

−1(diag(K)Φ)TvDQ
I , (17)

where K := [κ1, . . . , κ|I|]
T. Above, vDQ

I collects the inverter
terminal voltages in the original network (Fig. 3a). This
is a key point and deserves emphasis. The choice in (17)
establishes the link between the original and virtual networks.
Simulating the dynamics of all constituent elements in the
original network to obtain vDQ

I would be computationally
burdensome; instead, we utilize the linear approximation:

vDQ
I ≈ v?I + VpP

? + VqQ
?, (18)

where P ? := [p?1, . . . , p
?
|I|]

T, Q? := [q?1 , . . . , q
?
|I|]

T, and v?I is
the linearization point. We pick v?I = −Y −1

II Y
T
gIv

DQ
g , where

YII and YgI are submatrices of the Kron-reduced admittance
matrix (formally defined in (26)). The voltage v?I is the no-
load voltage, which is the voltage profile in the network with
zero power injections at inverter buses [14]. With this choice,

Vp =
vbase

3sbase
(Γ + jΛ), Vq =

vbase

3sbase
(Λ− jΓ), (19)

where matrices Γ, Λ depend on the linearization point and
network topology/constitution, and they are given by:

Γ = Rdiag

(
cos∠v?I
|v?I |/vbase

)
−Xdiag

(
sin∠v?I
|v?I |/vbase

)
,

Λ = Xdiag

(
cos∠v?I
|v?I |/vbase

)
+Rdiag

(
sin∠v?I
|v?I |/vbase

)
,

(20)

with R := ybase Re{Y −1
II }, X := ybase Im{Y −1

II }, and
vbase := |vDQ

g |, sbase and ybase denoting the voltage, power
and admittance base values. With the nominal virtual-bus
voltages specified in (17), and the linear approximation of

vDQ
I in (18), the virtual-transformers’ turns ratios, n ∈ C|I|

are:
n = diag

(
Φ vDQ

aux

)−1
vDQ
I , (21)

which follows from the fact that vDQ
I are the voltages on

the secondary side, and vDQ
aux are the nominal voltages on the

primary side of the transformers.

B. Dynamics of Virtual Network

The dynamics that characterize the virtual network are
those of the aggregated-inverter models in the |C| clusters.
These, coupled with pertinent algebraic equations that arise
from the circuit laws that underlie the virtual network yield
the real- and reactive-power grid injections. The dynamics of
the aggregated inverters in the virtual network are:

ẋr = Arxr +Brur
s + gr(xr, uv), yr = îDQ

oI , (22)

where xr := [x̂T
1 , . . . , x̂

T
|C|]

T ∈ R15|C| collects the states
corresponding to all the aggregated inverters in the reduced-
order model (each x̂` ∈ R15 has entries as shown in (7)). The
power input ur

s = [uT
s,1, . . . , u

T
s,|C|]

T ∈ R2|C|, where (with
slight abuse of notation) us,` =

∑
k∈I` [p

?
k, q

?
k]T, contains the

power setpoints of the aggregated inverters; and the voltage
input uv = vabc

aux (since the inverter terminal voltages are the
virtual-bus voltages). The model output yr = îDQ

oI ∈ C|C|
is the collection of the output currents of the aggregated
inverters. Furthermore, Ar ∈ R15|C|×15|C|, Br ∈ R15|C|×2|C|,
gr ∈ R15|C| × R3×|C| → R15|C| are:

Ar = bdiag(Â1, . . . , Â|C|), B
r = bdiag(B̂1, . . . , B̂|C|),

gr(xr, uv) =
[
ĝ1(x̂1, uv,1)T, . . . , ĝ|C|(x̂|C|, uv,|C|)

T
]T
,

where Âc, B̂c, and ĝc define the state-space model of the
aggregated inverter for |Ic| parallel-connected inverters in
the c-th cluster as in (6). To complete the model, we need to
specify the terminal voltages of the inverters (which in this
case are the voltages of the virtual buses vabc

aux (equivalently
vDQ

aux)), as well as the current injected into the grid for the
new model. Kirchhoff’s current law at the virtual buses is
captured by îDQ

oI = ΦTiDQ
aux. Furthermore, the primary- and

secondary-side quantities are related by:

v̂DQ
I = diag(n)Φ vDQ

aux, îDQ
I = diag(nH)−1iDQ

aux, (23)

with the second equation arising from the conservation of
power for an ideal transformer.

With the time-domain model of the network in place, we
simplify the network dynamics by modeling them to be in
steady-state. Writing (12) in phasor form, we get:

îDQ
E = diag(RE + jωgLE)

−1ETv̂DQ. (24)

Let îDQ ∈ C|N |+1 denote the vectors that collect the nodal
current injections in DQ-frame, defined as follows:

îDQ = EîDQ
E + jωgdiag([0, CT

E ]T)v̂DQ. (25)
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TABLE I: The zeff value for the inverter buses.

Bus # 5 6 10 13 14 16 20 21 24 26 32 33 35 36 37

zeff 0.031 0.031 0.047 0.055 0.055 0.055 0.080 0.080 0.080 0.088 0.16 0.16 0.14 0.14 0.080

TABLE II: Computation time in (s) to simulate the complete time-domain and aggregate models with different number of clusters.

Time- Aggregation (C-cluster)
domain C = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Case #1 1035.4 1.71 2.56 3.53 3.78 3.93 4.23 4.45 4.82 4.85 4.87 4.88 4.89 4.91 4.93 4.94
Case #2 1031.5 1.76 2.45 3.54 3.82 3.95 4.27 4.46 4.81 4.83 4.86 4.87 4.90 4.93 4.95 4.96

Substituting for îDQ
E from (24) in (25), we can write îDQ =

Y v̂DQ, where Y is the network admittance matrix given
in (10). Partition îDQ = [(̂iDQ

I )T, 0T
|Z|,−î

DQ
g ]T and v̂DQ =

[(v̂DQ
I )T, v̂T

|Z|, v
DQ
g ]T. Kron reduction of Y eliminates the

zero-injection buses and yields:[
îDQ
I
−îDQ

g

]
=

[
YII YIg
Y T
Ig Ygg

] [
v̂DQ
I
vDQ
g

]
. (26)

Substituting v̂DQ
I and îDQ

I from (23) to (26), we have

diag(nH)−1iDQ
aux = YII diag(n)ΦvDQ

aux + YIgv
DQ
g , (27)

−îDQ
g = Y T

Ig diag(n)ΦvDQ
aux + Yggv

DQ
g . (28)

Then, we multiply both sides of (27) by ΦTdiag(nH) and
use îDQ

oI = ΦTiDQ
aux to obtain:

vDQ
aux = (ΠHYIIΠ)−1(̂iDQ

o −ΠHYIgv
DQ
g ), (29)

where Π := diag(n)Φ. The dynamics of the system with the
network represented in phasors and virtual buses introduced
to aggregate inverters are given by (22) with uv = vabc

aux

obtained by applying Park’s transformation to (29). From (28)
and (29), we can write the grid current injection as a function
of the output currents of the aggregate inverter model:

îDQ
g = −Y T

IgΠ
(
ΠHYIIΠ

)−1
(̂iDQ

o −ΠHYIgv
DQ
g )

− YggvDQ
g , (30)

following which, the real- and reactive-power injections into
the grid bus g can be straightforwardly computed. The order
of the reduced-order model dynamics with |C| clusters is
15|C|. Recall that the order of the original-network dynamics
was 2(|E|+ |N |)+15|I|. Since in practice we expect to have
less clusters than the number of inverters, i.e., |C| << |I|, the
reduced-order model is indeed computationally less burden-
some. We demonstrate this, and the accuracy of the reduced-
order model through simulations next.

V. SIMULATION RESULTS

In this section, we validate the model-reduction method
with numerical simulation results for a system of 15 inverters
connected in a modified IEEE 37-bus network. The network
is sketched in Fig. 4. The impedance of the lines connecting
the buses in Z is 0.0081 + j0.00027 Ω, except the lines:

(17,18), (22,23), and (27,28); these have impedances that are
5 times that of the other lines. The impedance of the lines
connecting the buses in Z to I is 0.0066 + j0.00010 Ω. The
shunt capacitors are identical, with capacitance of 1µF. The
values of zeff for the inverter buses are listed in Table I.
All loads in the system are modeled as resistive loads with
identical admittance of 0.05 Ω−1. The voltage and frequency
of the grid are 288V and 2π × 60 rad/s, respectively. The
power scaling parameters κ are selected to be uniformly
distributed between 1 and 4. Parameters of the unscaled
inverter (i.e., κ = 1) are obtained from [9]. The simulation
is performed on a computer with an Intel Core i7-7700HQ
processor @ 2.80GHz CPU and 8GB RAM.

We validate the accuracy of the reduced-order model
through the following simulations: Case #1 Step change
in p? values from being uniformly distributed between 2-
4kW to 4-5kW at t = 1s, and back to the original values at
t = 1.02s. Case #2 Step change in q? values from 0VAR
to being uniformly distributed between 0-1kVAR at t = 1s,
and back to 0VAR at t = 1.02s. For both cases, we stop the

Fig. 4: IEEE 37-bus feeder system with 15 inverters and 7 loads.
Notice that setpoints and ratings of the inverters are all different.
Shaded colors represent clusters obtained by applying the electrical-
distance clustering algorithm to the network with C = 4.
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Fig. 5: The average silhouette value for different number of clusters.

TABLE III: Average error of the real and reactive power injection
to the grid bus in (%) for one AC cycle after each step change in
power setpoints.

pg qg

1st step 2nd step 1st step 2nd step

Case #1
1-cluster 1.58 4.71 0.47 8.4
4-cluster 0.49 0.47 0.041 0.58

Case #2
1-cluster 0.25 0.24 0.62 9.32
4-cluster 0.035 0.031 0.064 0.18

simulation at t = 2s. The running time of the simulations for
the complete time-domain model and reduced-order models
with 1 to 15 clusters are listed in Table II. Note that the
15-cluster model is the case when all inverter dynamics
are retained, and the lines are modeled with phasors. As
expected, it takes significantly longer to simulate the full
time-domain model, and the reduced-order model with a
single cluster has the least simulation time. Figure 5 shows
the average silhouette value for different number of clusters.
We choose 4 as the optimal number of clusters given its
average silhouette value is above the reasonable threshold
of 0.8. Figures 6 and 7 show the injected real and reactive
power to the grid bus for case #1 and #2 of the following
models: 1) the time-domain model and the 4-cluster and 15-
cluster reduced-order models in Fig. 6, and 2) the parallel
model (i.e., the case when the network is ignored so that all
inverters are connected in parallel to the grid bus), the 1-
cluster (i.e., without clustering) and 4-cluster reduced-order
models in Fig. 7. The average errors for the 1-cluster and
4-cluster reduced-order models with respect to the 15-cluster
reduced-order model for one AC cycle after each step change
in the power setpoints are listed in Table III. The figures
show that the reduced-order model with 4 clusters accurately
captures the grid injections (indicating that accurate results
can be obtained with modeling few clusters) and it has better
transient performance than the 1-cluster reduced-order model
while the model where the inverters are simply assumed
to be in parallel (by neglecting the distribution network)
is associated with errors in steady state and through the
transients because the power losses and damping induced by
the network are neglected.

Furthermore, we perform simulations with different sets of

line impedances for the IEEE 37-bus system. In particular, we
consider line impedances with r/x ratios of 0.1, 1, and 5. In
these simulations, all inverters have the same power scaling
parameters κ as 1, and the same power setpoints with p∗

values having step changes from 3kW to 4kW at t = 1s and
back to the original values at t = 1.02s, and q∗ = 0VAR.
The real power injection to the grid bus for the 1-cluster,
4-cluster, and 15-cluster reduced-order models are shown in
Fig. 8. The figures show that the 4-cluster model performs
well regardless of the r/x ratio of the line impedances, while
the performance of the 1-cluster model degrades as the r/x
ratio increases (i.e., the network becomes more resistive).

VI. CONCLUDING REMARKS AND FUTURE WORK

We presented a model-reduction method for networks of
inverters with different power ratings and reference-power
setpoints, connected to an arbitrary network topology. This
method involves: i) clustering the inverters based on their
electrical distance from the grid, ii) transferring the inverters
in each group to their respective virtual buses with the aid of
ideal transformers and linear approximation of the power-
flow equations, and iii) aggregating the inverters in each
of the buses to an equivalent inverter using our previous
work on the aggregate model for parallel-connected grid-
tied three-phase inverters. Numerical simulations established
the accuracy and computational benefits of the approach.
Future work involves leveraging these models to examine
dynamic interactions in mixed-machine-inverter systems. Ac-
commodating different load models, in particular, constant-
power loads, in the aggregation approach is another important
direction for future work.
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