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1 Introduction

Recent years have witnessed the emergence of a discipline of study focused on
modeling, analyzing, and designing dynamic phenomena over networks. We refer
to such systems as network systems; they are also equivalently referred to as multi-
agent or distributed systems. This emerging discipline, rooted in graph theory, con-
trol theory, and matrix analysis, is increasingly relevant because of its broad set of
application domains. Network systems appear naturally in (i) social networks and
mathematical sociology, (ii) electric, mechanical and physical networks, and (iii)
animal behavior, population dynamics, and ecosystems. Network systems are de-
signed in the context of networked control systems, robotic networks, power grids,
parallel and scientific computation, and transmission and traffic networks, to name
a few.

Within this broad context, the disciplines of social networks and mathematical
sociology have themselves received growing attention. Building on a classic history
of work starting in the 50s, the study of influence systems and opinion dynamics
has become a modern topic of interest to social scientists, engineers, computer sci-
entists and physicists. The scientific trend towards quantitate analysis in the social
sciences is motivated by the availability of insightful datasets and sharper statistical
and mathematical analysis tools.

A recent outstanding survey on social networks is given in [Proskurnikov and
Tempo, 2017]. Recent excellent treatments of network systems and their applica-
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tions are given in the recent books [Ren and Beard, 2008, Bullo et al., 2009, Mesbahi
and Egerstedt, 2010, Bai et al., 2011, Cristiani et al., 2014, Francis and Maggiore,
2016, Arcak et al., 2016, Bullo, 2018] and recent related surveys include [Martı́nez
et al., 2007, Ren et al., 2007, Garin and Schenato, 2010, Cao et al., 2013, Oh et al.,
2015]. The books and articles [Newman, 2003, Boccaletti et al., 2006, Castellano
et al., 2009, Easley and Kleinberg, 2010, Jackson, 2010, Newman, 2010] are instead
excellent references on network science.

Against this background, this chapter is a review document intended for scien-
tists interested in network systems and cooperative control as well as social net-
works and mathematical sociology. This chapter has a dual focus. First, we review
classic results in the theory of linear network systems and place them in an algebraic
framework based on Perron-Frobenius and algebraic graph theory. For example we
characterize the set of non-negative matrices in terms of irreducibility and primitiv-
ity. Second, we focus on mathematical sociology and describe models of opinion
dynamics in social influence systems, including the classic French-Harary-DeGroot
and the Friedkin-Johnsen models. Motivated by recent empirical evidence on opin-
ion dynamics along single issues and sequences of issues, we then describe some
mathematical models for the evolution of social power and influence systems via
the reflected appraisal mechanism.

Paper organization and related literature

Sections 2 and 3 review Perron Frobenius and algebraic graph theory. Classic refer-
ences on this material include [Gantmacher, 1959, Seneta, 1981, Horn and Johnson,
1985]. This content may be regarded as a highly-abbreviated version of the first part
of the recent textbook [Bullo, 2018].

Section 4 describes models of opinion dynamics. This classic field initiated with
the seminal papers by French [1956], Harary [1959], Abelson [1964], and DeGroot
[1974]. The classic discrete-time linear averaging model is well known as the DeG-
root model, but a more accurate historic name would be the French-Harary-DeGroot
model since modeling concepts were contained in [French, 1956] and analysis re-
sults in [Harary, 1959]. It is worth remarking how the 15 years before DeGroot
the mathematical analysis in [Harary, 1959] was rather sophisticated already and
included the concept of average consensus. The second model we review is the
Friedkin-Johnsen model, which is an elaboration of the French-Harary-DeGroot.
Documented in [Friedkin and Johnsen, 1999, 2011], this model is still based upon
linear averaging but it includes also an attachment to initial opinions. Recent results
on variations of this model are given in [Ravazzi et al., 2015, Frasca et al., 2015,
Parsegov et al., 2015, Friedkin et al., 2016b, Parsegov et al., 2017].

Section 5 reviews the empirical findings on influence system evolution in small
deliberative groups that are documented and analyzed in Friedkin et al. [2016a]
and Friedkin and Bullo [2017]. The human subject experiments focused on both the
opinion formation process on a single issue as well as on the influence network evo-
lution that takes place along a sequence of opinion dynamic issues. Via multilevel
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linear regression analysis, we provide statistical evidence that the observed human
subjects behavior is consistent with (1) the Friedkin-Johnsen model for single-issue
opinion formation and (2) a reflected appraisal mechanism for the network evo-
lution along issues. We remark that the papers Friedkin et al. [2016a] and Friedkin
and Bullo [2017] report a rich collection of opinion dynamics phenomena and issue-
sequence effects on influence network structure, only some of which are reviewed
here.

Section 6 reviews the mathematical model of social power and influence network
evolution proposed by Jia et al. [2015]. The key idea is to combine the French-
Harary-DeGroot model of opinion dynamics with the Friedkin formalization of the
reflected appraisal mechanism. Recent results on this model and its variations in-
clude the following. [Jia et al., 2017b] completes the analysis in [Jia et al., 2015]
by treating the case of reducible interaction matrices. For single-time scale mod-
els, [Chen et al., 2017] proposes a continuous-time distributed model and [Jia et al.,
2017a] proposes a dynamical flow model of interpersonal appraisals. Only prelim-
inary results in [MirTabatabaei et al., 2014] are known at this time for the case of
stubborn individuals. [Ye et al., 2018] obtains results on exponential convergence
and the setting of time-varying interaction networks. [Chen et al., 2018] treats the
case of switching and stochastic interaction matrices.

2 Perron–Frobenius theory

Here we review the widely-established Perron–Frobenius theory for non-negative
matrices. We start by classifying non-negative matrices in terms of their zero/nonzero
pattern and of the asymptotic behavior of their powers.

Definition 1 (Irreducible and primitive matrices). A square n× n non-negative
matrix A, for n≥ 2, is

(i) irreducible if ∑
n−1
k=0 Ak is positive,

(ii) primitive if there exists k ∈ IN such that Ak is positive.

A matrix that is not irreducible is said to be reducible.

In equivalent words, the matrix A is irreducible if, for any pair of indices (i, j)
there exists an exponent k = k(i, j) ≤ (n− 1) such that (Ak)i j > 0. It is not hard to
show that, if a non-negative matrix is primitive, then it is also irreducible.

We now state the main results in Perron-Frobenius theory and characterize the
properties of the spectral radius of a non-negative matrix.

Theorem 1 (Perron-Frobenius Theorem). Consider a square n× n non-negative
matrix A, for n≥ 2. If A is irreducible, then

(i) there exists a simple positive eigenvalue λ satisfying λ ≥ |µ| ≥ 0 for all other
eigenvalues µ ,
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non-negative
(A ≥ 0)

primitive
(there exists k

such that Ak > 0)

positive
(A > 0)

irreducible
(
∑n−1

k=0 Ak > 0)

Fig. 1: The set of non-negative square matrices and its increasingly smaller subsets
of irreducible, primitive and positive matrices.

(ii) the right and left eigenvectors vright and vleft of λ are unique and positive, up to
rescaling.

If additionally A is primitive, then

(iii) the eigenvalue λ satisfies λ > |µ| for all other eigenvalues µ .

The real non-negative eigenvalue λ is the spectral radius ρ(A) of A and it is
usually referred to as the dominant or Perron eigenvalue of A. The right and left
eigenvectors vright and vleft (unique up to rescaling and selected non-negative) of the
dominant eigenvalue λ are called the right and left dominant eigenvectors, respec-
tively.

Finally, the Perron–Frobenius Theorem for primitive matrices has immediate
consequences for the asymptotic behavior of the discrete time dynamical system
x(k+1) = Ax(k), that is, for the powers Ak as k→ ∞.

Proposition 1 (Powers of primitive matrices). Consider a square n× n non-
negative matrix A, for n ≥ 2. Let λ be the dominant eigenvalue and let vright and
vleft be the right and left dominant eigenvectors of A normalized so that they are
both positive and satisfy v>rightvleft = 1. Then

lim
k→∞

Ak

λ k = vrightv>left.

3 Algebraic graph theory

In this section we review some basic and prototypical results that involve correspon-
dences between graphs and adjacency matrices. We let G denote a weighted digraph
and A its weighted adjacency matrix or, equivalently, we let A be a non-negative
matrix and we let G be its associated weighted digraph (i.e., the digraph with nodes
{1, . . . ,n} and with weighted adjacency matrix A).

We start with some basic definitions about a directed graph G. A node i is globally
reachable if, for every other node j, there exists a directed walk in G from node j
to node i. A directed graph is strongly connected if each node is globally reachable.
A subgraph of G is a subset of nodes and edges of G. A subgraph H is a strongly
connected component of G if H is strongly connected and any other subgraph of
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G containing H is not strongly connected. A directed graph G is aperiodic if there
exists no integer that divides the length of each cycle of G.

We will also need the notion of condensation of a digraph. Given a directed graph
G, the condensation digraph of G is formed by contracting each strongly connected
component into a single node and letting an arc exist from one component to another
if and only if at least one arc exists from a member of one component to a member
of the other in G. The condensation digraph is acyclic and, therefore, contains at
least one sink.

The first result we present relate the powers of the adjacency matrix with directed
walks on the graph.

Lemma 1. Let G be an unweighted digraph with unweighted adjacency matrix
A0,1 ∈ {0,1}n×n. For all i, j ∈ {1, . . . ,n} and k ∈ IN, the (i, j) entry of Ak

0,1 equals
the number of directed walks of length k (including walks with self-loops) from node
i to node j.

Moreover, if G is a weighted digraph with weighted adjacency matrix A, then the
(i, j) entry of Ak is positive if and only if there exists a directed walk of length k
(including walks with self-loops) from node i to node j.

Theorem 2 (Connectivity properties of the digraph and positive powers of the
adjacency matrix). Let G be a weighted digraph with n ≥ 2 nodes and weighted
adjacency matrix A. The following statements are equivalent:

(i) A is irreducible, that is, ∑
n−1
k=0 Ak > 0;

(ii) there exists no permutation matrix P such that P>AP is block triangular;
(iii) G is strongly connected;
(iv) for all partitions {I ,J } of the index set {1, . . . ,n}, there exists i ∈ I and

j ∈J such that {i, j} is an edge in G.

Let us remark that, instead of the order in which we presented matters here, most
references define an irreducible matrix through property (ii) or, possibly, through
property (iv).

Theorem 3 (Strongly connected and aperiodic digraph and primitive adja-
cency matrix). Let G be a weighted digraph with weighted adjacency matrix A.
Then G is strongly connected and aperiodic if and only if A is primitive.

4 Mathematical models for the evolution of opinions

This section reviews some classic models for opinion dynamics. We focus on basic
linear and affine models, whose relevance is established empirically.

We start by presenting some convergence results for systems of the form

x(k+1) = Ax(k), where A is row-stochastic. (1)
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A A2 A3 A4 A5

Fig. 2: These five images depict increasing powers of a non-negative matrix A ∈
IR25×25. The digraph associated to A is strongly connected and has self-loops at
each node so that, by Theorem 3, there exists k (in this case k = 5) such that Ak > 0.

Recall that the non-negative square matrix A is said to be row-stochastic if all its
row-sums are equal to one, that is, if A1n = 1n. Therefore, the right eigenvector of
the eigenvalue 1 can be selected as 1n.

The discrete-time averaging model (1) is well known as the DeGroot model,
but a more accurate historic name would be the French-Harary-DeGroot model, as
discussed in the introduction. The matrix A describes an interpersonal influence
network.

Theorem 4 (Consensus for row-stochastic matrices with a globally-reachable
aperiodic strongly-connected component). Let A be a row-stochastic matrix and
let G be its associated digraph. The following statements are equivalent:

(A1) the eigenvalue 1 is simple, ρ(A) = 1, and all other eigenvalues have magnitude
strictly smaller than 1,

(A2) A is semi-convergent (i.e., limk→∞ Ak exists and is finite) and limk→∞ Ak =
1nv>left, for some vleft ∈ IRn, vleft ≥ 0, and 1>n vleft = 1,

(A3) the digraph associated to A contains a globally reachable node and the sub-
graph of globally reachable nodes is aperiodic.

If any, and therefore all, of the previous conditions are satisfied, then the matrix A
is said to be indecomposable and the following properties hold:

(i) vleft ≥ 0 is the left dominant eigenvector of A and (vleft)i > 0 if and only if node
i is globally reachable;

(ii) the solution to the averaging model x(k+1) = Ax(k) in equation (1) satisfies

lim
k→∞

x(k) =
(
v>leftx(0)

)
1n;

In this case we say that the dynamical system achieves consensus;
(iii) if additionally A is doubly-stochastic, then vleft =

1
n 1n (because A>1n = 1n and

1
n 1>n 1n = 1) so that

lim
k→∞

x(k) =
1>n x(0)

n
1n = average

(
x(0)

)
1n.
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In this case we say that the dynamical system achieves average consensus.

The limiting vector is therefore a weighted average of the initial conditions. The
relative weights of the initial conditions are the convex combination coefficients
(vleft)1, . . . ,(vleft)n. In a social influence network, the coefficient (vleft)i is regarded
as the “social influence” of agent i.

In Figure 3 we show a nonnegative matrix that is indecomposable, together with
its directed graph and its spectrum.

(a) A rows-stochastic ma-
trix; in each row, nonzero en-
tries are equal and sum to 1.

(b) The corresponding digraph
has an aperiodic subgraph of
globally reachable nodes.

1

(c) The spectrum of the adja-
cency matrix includes a dom-
inant eigenvalue.

Fig. 3: An example indecomposible row-stochastic matrix, its associated digraph
consistent with Theorem 4(A2), and its spectrum consistent with Theorem 4(A1)

The implication (A3) =⇒ (ii) amounts to a result in which the structure of the
network determines its function, i.e., the asymptotic behavior of the averaging sys-
tem.

Next, we consider the general case of digraphs that do not contain globally reach-
able nodes, that is, digraphs whose condensation digraph has multiple sinks. In what
follows, we say that a node is connected with a sink of a digraph if there exists a
directed walk from the node to any node in the sink.

Theorem 5 (Convergence for row-stochastic matrices with multiple aperiodic
sinks). Let A be a row-stochastic matrix, let G be its associated digraph, and let
M ≥ 2 be the number of sinks in the condensation digraph C(G). If each of the M
sinks is aperiodic, then

(i) the semi-simple eigenvalue ρ(A) = 1 has multiplicity equal M and is strictly
larger than the magnitude of all other eigenvalues, hence A is semi-convergent,

(ii) there exist M left eigenvectors of A, denoted by vm
left ∈ IRn, for m ∈ {1, . . . ,M},

with the properties that: vm
left ≥ 0, 1>n vm

left = 1 and (vm
left)i is positive if and only

if node i belongs to the m-th sink,
(iii) the solution to the averaging model x(k+1) = Ax(k) with initial condition x(0)

satisfies
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lim
k→∞

xi(k) =





(vm
left)
>x(0), if node i belongs to the m-th sink,

(vm
left)
>x(0), if node i is connected only with the m-th sink,

M

∑
m=1

zi,m
(
(vm

left)
>x(0)

)
, if node i is connected to more than one sink,

where, for each node i connected to more than one sink, the coefficients zi,m,
m ∈ {1, . . . ,S}, are convex combination coefficients and are strictly positive if
and only if there exists a directed walk from node i to the sink m.

Note that convergence does not occur to consensus (not all components of the
state are equal) and the final value of all nodes is independent of the initial values
at nodes which are not in the sinks of the condensation digraph. We summarize the
discussion in this section with a figure summarizing the asymptotic behavior of the
French-Harary-DeGroot discrete-time averaging systems; see Figure 4.

Properties of row-stochastic matrix A Properties of associated digraph

Converges to consensus
on the average

Properties of x(k + 1) = Ax(k)

Does not converge

Converges to consensus
depending on all nodes

Converges to consensus
that does not depend
on all the nodes

Converges
not to consensus

Primitive

Irreducible
but not primitive

Strongly connected
and periodic

Strongly connected
and aperiodic

Strongly connected,
aperiodic and
weight-balanced

One aperiodic
sink component

Multiple aperiodic
sink components

Doubly stochastic

and primitive

Indecomposable

Fig. 4: Corresponding properties for the discrete-time averaging dynamical system
x(k+1) = Ax(k), the row-stochastic matrix A and the associated weighted digraph.

We next consider the opinion dynamics model by Friedkin and Johnsen [1999]
which, for generic parameter values, features persistent disagreement and lack of
consensus. As before we let A be a row-stochastic matrix whose associated digraph
describes an interpersonal influence network. We assume that every individual is
naturally given an openness level λi ∈ [0,1], i ∈ {1, . . . ,n}, describing how open
the individual is to interpersonal influence and, therefore, to changing her initial
opinion about a subject. We then define Λ = diag(λ1, . . . ,λn), where diag is the
standard operator that maps an array to a diagonal matrix.

The Friedkin-Johnsen model of opinion dynamics is defined by

x(k+1) = ΛAx(k)+(In−Λ)x(0), (2)

where, for individual i, xi(k) represents the current opinion and xi(0) represents
the initial opinion or prejudice. The Friedkin-Johnsen model is again an averaging
model with stubborn individuals in the sense that here every individual i exhibits an
attachment (1−λi) to its initial opinion xi(0).
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Theorem 6 (Persistent disagreement in the Friedkin-Johnsen model). Consider
a square n× n non-negative matrix A, for n ≥ 2, and a diagonal matrix Λ with
entries in [0,1]. Assume that

(A1) at least one individual has a strictly positive attachment to its initial opinion,
that is, λi < 1 for at least one individual i; and

(A2) the interpersonal influence network contains directed walks from each individ-
ual with openness level equal to 1 to an individual j with openness level λ j < 1.

Then the following statements hold:

(i) the matrix ΛA is convergent, that is, ρ(ΛA)< 1,
(ii) the total influence matrix V = (In−ΛA)−1(In−Λ) is well defined and row-

stochastic, and
(iii) the limiting opinions satisfy limk→+∞ x(k) =V x(0).

We conclude with some remarks. As predicted in the model formulation, consen-
sus is not achieved asymptotically because of the attachment to initial opinions. If
Assumption (A1) is not satisfied and therefore Λ = In, then we recover the French-
Harary-DeGroot opinion dynamics model.

Finally, it is worth noting that the original work [Friedkin and Johnsen, 1999], see
also [Friedkin and Johnsen, 2011], make the additional assumption that λi = 1−aii,
for i ∈ {1, . . . ,n}. This additional assumption is justified by sociological reasons
and introduces coupling between the openness level and the interpersonal influence
values. Other properties of this model are studied in [Bindel et al., 2015, Friedkin
et al., 2016a, Ravazzi et al., 2015].

5 Empirical findings on the evolution of opinions and influence
networks

We here review the empirical findings on influence system evolution in small delib-
erative groups that are documented and analyzed in [Friedkin et al., 2016a, Friedkin
and Bullo, 2017]. The human subject experiments focus on both the opinion for-
mation process on a single issue as well as on the influence network evolution that
takes place along a sequence of issues.

5.1 The Friedkin-Johnsen model on judgmental issues

We collected data in experiments on 30 groups of 4 individuals assembled to dis-
cuss a sequence of 15 risk/reward choice-dilemma issues. Choice-dilemma issues
are judgmental issues, in which no absolute truth exists. In risk/reward dilemmas
individuals develop opinions about the minimum level of confidence (measured as a
scalar value in the [0,1] interval) required to accept a risky option with a high payoff
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over a less risky option with a low payoff. In other words, individuals are asked to
answer questions of the following type:

What is your minimum level of confidence (scored 0-100) required to accept a risky option
with a high payoff rather than a less risky option with a low payoff?

Questions are selected from a variety of domains, including medical, financial, and
professional. The groups are assembled for face-to-face discussion and put under
pressure to reach consensus via instructions similar to “reaching consensus is desir-
able, but not required.” Each human subject recorded privately and chronologically
on each issue:

(i) an initial opinion about the issue prior to the-group discussion,
(ii) a final opinion after the group-discussion (which lasted anywhere between 3-27

minutes), and
(iii) an allocation of “100 influence units” to the 4 components of the group. These

influence units are described as follows: “these allocations represent your ap-
praisal of the relative influence of each group member’s opinion on your own
final opinion.”

The 15 issues were presented in random order and subjects were assigned to groups
randomly to eliminate bias in group composition. We refer to [Friedkin et al., 2016a]
for details about the maximum-likelihood multilevel random-intercept linear regres-
sion and its software implementation.

In summary this regression analysis, presented in Table 1 below, confirms that
the Friedkin-Johnsen model has predictive value for the final opinion achieved by a
group discussing risk/reward choice issues.

Table 1: Prediction of an individual’s final opinion on an issue. Opinions are scaled
0− 100. Notes: F-J stands for Friedkin-Johnsen. Standard errors are in parenthe-
ses; ∗ p ≤ 0.05 ∗∗ p ≤ 0.01 ∗∗∗ p ≤ 0.001; balanced random-intercept multilevel
longitudinal design; maximum likelihood estimation with robust standard errors;
n = 1,800.

(a) (b) (c)

F-J prediction 0.897∗∗∗ 1.157∗∗∗

(0.018) (0.032)
initial opinion −0.282∗∗∗

(0.031)
constant 58.975∗∗∗ 5.534 6.752∗∗∗

(1.550) (1.176) (1.124)

log likelihood -8579.835 -7329.003 -7241.097
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5.2 The Friedkin-Johnsen model on intellective and
multidimensional issues

We next briefly describe how opinion averaging models are predictive also in the
setting of intellective and resource allocation issues. In other words, we extend our
analysis from the risk/reward choice dilemmas to two other types of issues: ana-
lytical reliability problems with exact answers and multi-dimensional constrained
resource allocation issues.

First, the empirical findings in [Friedkin and Bullo, 2017] deal with analytical
reliability problems based on Bayesian reasoning. These problems have an exact
answer and, therefore are referred to as intellective issues. It is known that in such
problems often, but not always, “truth wins” in the sense that the correct answer
propagates from a correct individual to the others in the group. Here is an example
drawn from the medical field.

Two medical teams are working independently to achieve a cure for a disease. Team A
succeeds if it can solve two scientific problems A1 and A2 with independent success prob-
abilities P[A1] = 0.60 and P[A2] = 0.45. Team B succeeds if it can solve three scientific
problems B1, B2, and B3, with independent success probability P[B1] = 0.80, P[B2] = 0.85,
P[B3] = 0.95. What is your estimate of the probability that the disease will be cured?

While we refer the reader to [Friedkin and Bullo, 2017] for the detailed findings, we
summarize the work here by stating that the Friedkin-Johnsen model (i) has predic-
tive value for the final opinion expressed by the group member and (ii) substantially
clarifies how truth wins in groups engaged in sequences of intellective issues based
on an evolving centrality of the truth in the groups.

Second, in forthcoming publications, we will report empirical findings on group
decision-making on resource allocation distributions under conditions of uncer-
tainty. Here is an example drawn from the political field.

If you were a State Legislator, what would be your opinion on the percentage of state tax
revenues that should be allocated to each the following categories: (i) Spending on Educa-
tion, (ii) Spending on State Employee Wages, Health Care, and Pensions, (iii) Spending on
State Physical Infrastructure Improvements, and (iv) All Other Categories (Welfare, Other
Costs of Government, Etc.)? These percentages must sum to 100%.

Preliminary results indicate how multidimensional opinions are constrained to
evolve in certain polytopic spaces and how a single Friedkin-Johnsen model is pre-
dictive of the final group decision. The findings establish a natural meshing of au-
tomatic polytopic decision spaces, weighted averaging models, and group decision
making on uncertain resource allocation problems. These findings provide a mecha-
nistic explanation for the bounded-rationality phenomenon of satisficing, that is, the
achievement of satisfactory consensus distribution as described by the Nobel award
winning work by Simon [1947].
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5.3 A reflected appraisal mechanism explaining influence network
evolution

We next consider network evolution phenomena along sequences and, specifically,
we postulate a mechanism for network evolution. As documented in [Cooley, 1902,
Gecas and Schwalbe, 1983, Friedkin, 2011], the reflected appraisal mechanism is a
psychological process that affects the levels of closure-openness levels of individu-
als in response to an individual’s perception of how others see and evaluate him or
her. In this mechanism it is postulated that individuals react to their perception of
their social influence, or social power, in the group decision making.

If an individual is perceived to have had a large role in influencing a group out-
come, then that individual tends to elevate his or her own self-weight or, equiva-
lently, his or her own closure level to interpersonal influence. Conversely, if an indi-
vidual is perceived to have (or really does have) limited and diminishing influence
on a group outcome, then the self-weight will tend to diminish.

It is a consequence of this postulated mechanism of reflected appraisal that indi-
viduals come to think of themselves in ways that are affected by what other individ-
uals think of them. In other words, levels of stubbornness and closure-openness to
interpersonal influence are ultimately social constructions and not personality char-
acteristics.

To mathematize this group psychological mechanism, we start by describing
loosely a simplified and crude model for it:

Each individual dampens/elevates her self-weight according to her prior influence centrality
in prior issues.

Specifically, along the issue sequence s= 1,2, . . . , the self-weight of each individual at issue
s+1 is set equal to the relative control of that individual on the prior issue s.

Here, relative control over an issue outcome is tantamount to social power of an
individual in the group. Here also note how we have simplified the mechanism (in-
fluence centrality) to assume that individuals are capable of perceiving from their
peers their actual level of relative control.

With the notation introduced in Section 4 for the Friedkin-Johnsen model in
equation (2), we define the following issue-dependent concepts:

A(s) = influence matrix at issue s,
aii(s) = self-weight (level of closure to influence) of individual i at issue s,
V (s) = total influence matrix at issue s,

ci(s) =V (s)>1n/n = social power of individual i at issue s,

c̄i(s) =
1
s

s

∑
t=1

ci(t) = issue-averaged social power of individual i up until issue s.

We next perform a regression analysis of the empirical data collected in Friedkin
et al. [2016a] to determine whether or not individuals’ self-weights on issue s+
1 adjust along the issue sequence s = 1,2 . . . in correspondence with their social
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power at issue s or issue-averaged social power until issue s. As before we perform
a maximum-likelihood multilevel random-intercept linear regression and we refer
to [Friedkin et al., 2016a] for the corresponding technical details. The findings in
Table 2 confirm that both social power and issue-averaged social power do indeed
predict individuals’ issue-specific self-weights on the following issues. The effect
of social power ci(s) on self-weight aii(s+1) is constant along the issue sequence.
Remarkably, instead, the effect of issue-averaged social power c̄i(s) on self-weight
aii(s+1) increases along the issue sequence.

Table 2: Prediction of an individual’s level of closure to influence aii(s+ 1) based
on the individual’s prior centrality ci(s) and time-averaged cumulative centrality
c̄i(s)= 1

s ∑
s
t=1 ci(t). Standard errors are in parentheses. Notes: ∗ p≤ 0.05 ∗∗ p≤ 0.01

∗∗∗ p≤ 0.001; balanced random-intercept multilevel longitudinal design; maximum
likelihood estimation with robust standard errors; n = 1,680.

(a) (b) (c)

ci(s) 0.336∗∗∗

(0.104)
c̄i(s) 0.404∗∗

(0.159)
s 0.002 −0.018∗∗∗

(0.004) (0.005 )
s× ci(s) 0.171

(0.012)
s× c̄i(s) 0.095∗∗∗

(0.018)
constant 0.643∗∗∗ 0.515∗∗∗ 0.498∗∗∗

(0.016) (0.030) (0.039)

log likelihood -367.331 -327.051 -293.656

6 Mathematical models for the evolution of influence networks

Motivated by the empirical findings in the previous section we now propose a basic
dynamical model for the evolution of self-weight, social power, and influence net-
works through the process of reflected appraisal. The key references for this section
are [Friedkin, 2011] where a first model is proposed and [Jia et al., 2015] where a
comprehensive modeling and analysis framework is developed.
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6.1 Models of reflected appraisal = Dynamics of the influence
network

We start by revisiting the French-Harary-DeGroot model in equation (1) parametrized
by a single row-stochastic matrix A. We start with the fundamental observation that
the entries of A do not all have the same interpretation. From an applied psycho-
logical viewpoint, the diagonal entries are self-weight values, that is, measures of
self-appraisal, levels of closure to interpersonal influence and stubbornness. The off-
diagonal terms are instead interpersonal accorded weights, that is, they represent
what influence an individual is willing to accord to another. Under mild connectiv-
ity assumptions, it is possible to re-parametrize the matrix A in the following way.
First, we define the self-weights

Aii =: xi ∈ [0,1]. (3)

Second, we assume the existence of a zero-diagonal row-stochastic matrix W , whose
off-diagonal entries Wi j are relative interpersonal accorded weights satisfying the
equality Ai j =: (1− xi)Wi j. In short, we can now write

A(x) = diag(x)+diag(1n− x)W. (4)

Before proceeding, we define the left dominant eigenvector for W to be w =
(w1, . . . ,wn) = vleft(W ). We recall that the right dominant eigenvector of W is 1n
and that, under irreducibility assumptions, Theorem 1 implies that the left dominant
eigenvector is positive and unique with the scaling 1>n w = 1.

One can show that, after some manipulation and almost everywhere, the follow-
ing equation relates the dominant eigenvector of A(x) with that of W :

vleft(A(x)) =
( w1

1− x1
, . . . ,

wn

1− xn

)
/

n

∑
i=1

wi

1− xi
.

We are now ready to implement in simple, even crude, mathematical form the
reflected appraisal mechanism described in the previous section: “along issues
s = 1,2, . . . , individual dampens/elevates self-weight according to prior influence
centrality.” We turn this into the following equation:

x(s+1) = vleft(A(x(s))), (5)

that is, the self-weights are set equal to the relative control of the individuals on prior
issues, i.e., their social power. Note that, after at most one iteration, the state of this
system takes value in the simplex ∆n = {y ∈ IRn | y≥ 0,1>n y = 1}. The definition of
this dynamical system is illustrated in Figure 5. We refer to the dynamical system (5)
as to the DeGroot-Friedkin model, as introduced in [Jia et al., 2015] and motivated
by the foundational works in [DeGroot, 1974, Friedkin, 2011].
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self-appraisal

reflected appraisal mechanism

x(s + 1) = vleft(A(x(s)))

x(s) A(x(s)) vleft(A(x(s)))

influence network social power

Fig. 5: An illustration of the reflected appraisal mechanism as a feedback mech-
anism, leading to the definition of a closed-loop dynamical system. Here A(x) is
given as in equation (4).

6.2 Equilibrium and asymptotic convergence analysis

Now that we have defined a dynamical system for the evolution of self-weights
and social power, we can investigate what long-term predictions are consistent this
model. It is of interest to characterize the existence and stability of equilibria, the
role of network structure and parameters, and whether the influence system has a
tendency towards the emergence of autocracy (social power concentrated in one in-
dividual) and democracy (social power equitably distributed among all individuals).

Theorem 7 (Equilibria and convergence). Let W be the zero-diagonal row-stochastic
matrix of relative interpersonal accorded weights and consider the resulting DeGroot-
Friedkin model in equation (5), for n ≥ 3. Assume that W is irreducible, that w is
its dominant left eigenvector, and that its associated digraph does not have star
topology. Then

(i) in the interior of the simplex there exists a unique fixed point x∗= x∗(w1, . . . ,wn),
(ii) from almost all initial conditions the following convergence result holds:

lim
s→∞

x(s) = lim
s→∞

vleft(A(x(s))) = x∗,

so that, in other words, individuals forget their initial conditions, and
(iii) the fixed point is characterized by a phenomenon of accumulation of social

power and self-appraisal at the top in the following sense:

• the fixed point x∗ has same ordering of (w1, . . . ,wn), i.e., if wi ≥ w j then
also x∗i ≥ x∗j , and
• x∗ is an extreme version of (w1, . . . ,wn) in the sense that there exists a social

power threshold p such that, each individual i satisfies either x∗i < wi < p
or p < wi < x∗i .

A special case of this result is the emergence of democracy for matrices W of
relative interpersonal accorded weights that are doubly-stochastic. In this case, one
can easily verify that the theorem above implies:

(i) the unique non-trivial fixed point is
1n

n
, and
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(ii) lim
s→∞

x(s) = lim
s→∞

vleft(A(x(s))) =
1n

n
.

In other words, such networks are characterized by uniform social power and no
power accumulation at the top. In simple words, one may say that the influence
system is functioning as a democracy.

The other relevant special case is that of a star topology associated to W ; this
setting is not a direct consequence of Theorem 7 and required an ad-hoc analysis.
In this case, the DeGroot-Friedkin dynamics leads to the emergence of autocracy in
the following sense. If W has star topology with center j:

(i) there are no fixed points, other than the vertices of the simplex, and
(ii) lim

s→∞
x(s) = lim

s→∞
vleft(A(x(s))) = e j,

where e j is the jth vector of the canonical basis. In other words, individual j, the
center node of the star topology, comes to be the autocrat of the influence system. In
this case, the topology of the interpersonal accorded weights leads to extreme power
accumulation, in the sense that the autocrat j has full power.

Naturally we refer to the original paper for a much more detailed treatment and
for the detailed proofs. It is worth, however, to review the method of proof for the
statements in the main Theorem 7. We first establish the existence of the equilibrium
point x∗ via the Brouwer Fixed Point Theorem. Uniqueness is proved by contradic-
tion through an elementary calculation. We next establish the following monotonic-
ity property. Let imax denote the individual with maximum x j(0)

x∗j
, for simplicity let

us here assume that it is unique. Then it turns out that imax remains the index corre-
sponding to the largest x j(s)

x∗j
for all subsequent issues s. (A similar result holds for

imin.) In turn this monotonicity allows us to prove convergence via a variation on
classic “max-min” Lyapunov function:

V (x) = max
j

(
ln

x j

x∗j

)
−min

j

(
ln

x j

x∗j

)
.

It is historically interesting to mention that, to the best of our knowledge, the ear-
liest work introducing a max-min Lyapunov function is the work [Tsitsiklis et al.,
1986] on distributed optimization. This work is however related to the classic work
by Birkhoff [1957]. We also refer to [Sepulchre et al., 2010] for a review of this
history and for a study of consensus in non-commutative spaces.

7 Conclusions

This chapter has reviewed a large literature on the mathematics of network systems
and its application to the study of dynamical models for the evolution of opinions
and influence systems. We have presented both mathematical results and empirical
findings.
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Overall our recent works provide a new perspective on influence networks and
social power, grounded in multiple human-subject experiments and based on both
multi-level regression and control theoretical analysis. We have designed, executed,
and analyzed experiments on group discussions for judgmental and intellective is-
sues. We have proposed, analyzed, and validated a novel dynamical model with
feedback. In turn this model provides a novel mechanism that may explain the phe-
nomenon of power accumulation and emergence of autocracy in certain influence
networks.

Ongoing and future research will focus on (1) studying the mathematical robust-
ness of our findings to modeling assumptions, (2) studying and modeling the evolu-
tion of the matrix of interpersonal accorded weights, and (3) performing larger-scale
controlled experiments perhaps via online software. We will also endeavor to design
and validate intervention strategies to influence group discussions.
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