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Abstract—This paper outlines a reduced-order aggregate dy-
namical model for parallel-connected single-phase grid-connected
inverters. For each inverter, we place no restrictions on the
converter topology and merely assume that the ac-side switch-
averaged voltage can be controlled via pulse width modulation.
The ac output of each inverter interfaces through an LCL
filter to the grid. The closed-loop system contains a phase
locked loop for grid synchronization, and real- and reactive-
power control are realized with inner and outer PI current-
and power-control loops. We derive a necessary and sufficient
set of parametric relationships to ensure that a reduced-order
aggregated state-space model for an arbitrary number of such
paralleled inverters has the same model order and structure as
any single inverter. We also present reduced-order models for
the settings where the real- and reactive-power setpoints are
different and where the inverters have different power ratings.
We anticipate the proposed model being useful in analyzing
the dynamics of large collections of parallel-connected inverters
with minimal computational complexity. The aggregate model is
validated against measurements obtained from a multi-inverter
experimental setup consisting of three 750 VA paralleled grid-
connected inverters, hence establishing robustness of the analyt-
ical result to parametric variations seen in practice.

Index Terms—Model reduction, phase-locked loop, single-
phase inverter, voltage-source inverter.

I. INTRODUCTION

Rapid adoption of renewable sources of generation (e.g.,
photovoltaic (PV) energy conversion systems) and flexible
loads (e.g., electric vehicles) has increased the number of
power electronics inverters installed on the ac power grid.
Scalable models that present limited computational burden
will be critical to model and analyze the collective dynam-
ics of large numbers of inverters in next-generation power
networks [1]. To motivate the need for modeling strategies
that can be applied to complex inverter systems, consider
the relatively small island of Oahu which already has over
800, 000 microinverters [2]. This number is expected to grow
significantly as Hawaii aims to meet the goal of obtaining
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100% of its energy from renewable sources [3]. Although the
Hawaiian system is at the forefront of renewable adoption, it
presents a glimpse at anticipated worldwide trends [4].

The disparity in ratings between individual inverters (no
larger than a few MVA) and synchronous generators (several
hundred MVA) implies that if the same net load were served
with power electronics instead of generators, there would be
an orders-of-magnitude increase in the number of energy-
conversion interfaces (from a few thousand generators to po-
tentially millions of inverters across a large-scale synchronous
grid). Evaluating the stability and resilience of future power
networks will therefore require accurate dynamical models for
large collections of inverters that present limited computational
burden. However, development of such models is challenged
by the complexity of inverter dynamics (for instance, the
particular model we examine in this paper is nonlinear, and
composed of 16 states) and the sheer number of inverters
that will eventually be commonplace on the ac power grid.
To address the challenge of model complexity in multi-
inverter systems, we propose an aggregate reduced-order state-
space model for an arbitrary number of single-phase grid-tied
inverters connected in parallel. While our analytical result is
presented for identical inverters, we experimentally validate
our findings which immediately establishes robustness to para-
metric variations that are likely to be seen in practice. We also
present extensions of the main result on model reduction to
cover cases when the power setpoints of the inverters are all
different and the power ratings of the inverters are all different.

We examine the ac-timescale dynamics of a single-phase
voltage source inverter (VSI) with an output LCL filter. To
ensure broad applicability across VSI topologies, we only as-
sume that the switch-averaged voltage across the ac terminals
is controllable via pulse width modulation and we neglect
switch-level dynamics. The control architecture is composed
of an inner current-control loop, an outer power-control loop,
and a phase locked loop (PLL) for grid synchronization. This
filter and control architecture are prototypical and it ensures
broad applicability of the results. The state-space model that
captures the dynamics of the inverter is composed of 16 states.
The contributions of the paper are threefold:

1) For a parallel collection of N inverters, we derive a
necessary and sufficient set of parametric relationships
for an aggregate reduced-order inverter model to have
a state-space model with the same structure and model
order (i.e., composed of the same 16 states referenced
above) as any single inverter in the collection. (Figure 1
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illustrates the idea.)

2) We derive parameters for an aggregate reduced-order
model (with the same order and stucture as any individual
inverter) for the case where the real and reactive-power
setpoints for the inverters are all different.

3) We derive parameters for an aggregate reduced-order
model (with the same order and structure as any indi-
vidual inverter) for the case where the power ratings of
the inverters are all different.

In general, the identical state-space model structure implies
that from a topological vantage point, the aggregated equiv-
alent model also maps to an inverter with an LCL filter, an
inner current-control loop, an outer power-control loop, and
a PLL for grid synchronization, except with different filter
parameters and control gains. With reference to contribution
1) above, while some aspects of the aggregate model appear
intuitive in hindsight (e.g., given the parallel arrangement, the
output inductances in the aggregate model are 1/N times those
in any individual inverter), the parametric dependencies in
pertinent control gains are not. What is more, the fact that
the parametric relationships we derive in 1) are necessary
and sufficient implies that we exhaustively enumerate all
alternative possibilities to obtain a structurally similar reduced-
order model. Contributions in 2) and 3) follow as corollaries to
the main result in 1) and enable extending the result to obtain
aggregate models under heterogeneous settings that are likely
to be noticed in practice. Finally, we believe that the general
state-space modeling formulation and the proof strategy can
be extended to other control strategies to establish similar
aggregate models.

gl

& = Az + Bu + g(x,u)
x € R0

T = Az + Bu+ g(x,u)| Ve " = A'z" + B'u' + ¢" (2", u")
.’L‘ERlﬁ '77 l’rERlﬁ =

St

:j::AerBqug(:L’,u)
x € R16

Figure 1: (left) System of N parallel grid-connected single-phase
inverters. Controller for the ¢-th inverter regulates the injected grid
current, g ¢(t) to deliver (the commanded) real power p* and reactive
power ¢* into the grid terminals. We examine a prototypical 16-
th order inverter dynamical model, which implies that the parallel
system is described by a 16 N-order dynamical model. (right) Ag-
gregated equivalent has state-space model with the same dimension
and structure as any individual inverter, i.e., it is described by a 16-
th order dynamical model, and A", B" and g¢"(-,-) have the same
form as A, B and g(-,-). We derive the model parameters for the
aggregated-inverter filter and controllers such that with power inputs
Np* and Ngq*, the instantaneous injected grid current is the sum of
all individual currents Zfz\; ig,0(t) (other states scale systematically
as well).

A majority of prior literature pertaining to model reduction
for energy conversion interfaces has understandably focused
on the dynamics of fossil-fuel-driven synchronous genera-
tors [S]-[9]. More recently, there has been increased attention
devoted to aggregate models for wind-turbines in utility-scale
collector systems [10], electric vehicles [11], and demand
response systems [12]. However, these are focused at a macro
level that disregards the dynamics at faster time scales which
arise from inverter filters and time-domain controllers. With
regard to inverter dynamics, most of the related literature has
predominantly focused on reduced-order models for individual
grid-connected [13], islanded [14]-[16], and resonant invert-
ers [17]. (Tangentially related is literature on model reduction
of dc-dc converters [18]-[20] and induction machines [21],
[22].) Model-reduction methods focused on collections of
inverters have been limited to islanded settings [23], [24]
and inverters with virtual-inertia emulation [25]. Both are
application domains where inverters are controlled to emulate
the dynamics of synchronous generators, and therefore, there
is a natural translation of classical model-reduction methods
for synchronous generators mentioned previously.

Given the landscape of related work discussed above, this
work addresses a key gap in the literature pertaining to the
dynamics of grid-connected multi-inverter systems. This paper
significantly builds upon and extends our preliminary work
in [26] where we developed similar aggregated models for
parallel-connected three-phase inverters. Here, we examine the
(admittedly different) filter and controller dynamics for single-
phase inverters which will conceivably be more dominant
in number in future distribution networks. As a further and
important contribution, we provide experimental validation of
our approach with a multi-inverter setup composed of three
750 VA grid-tied single-phase inverters. We note that the
parallel aggregation approach proposed here provides the base
for a broader set of aggregation techniques that can account for
the network connection of the inverters. For instance, in [27]
three-phase inverters are transferred to an auxiliary bus with
the aid of auxiliary transformers, and subsequently aggregated
using the parallel aggregation approach discussed here.

The remainder of this manuscript is organized as follows:
In Section II, we establish mathematical notation and describe
the grid-tied single-phase inverter model. The reduced-order
model for a collection of these inverters connected in parallel is
derived in Section III. We validate the model-reduction method
by comparing numerical simulation results with results from
the experimental prototype in Section IV. Finally, concluding
remarks and directions for future work are in Section V.

II. PRELIMINARIES AND INVERTER DYNAMICAL MODEL

In this section, we first introduce mathematical notation
used in the manuscript. Then we describe the single-phase
inverter model, and develop a standard state-space model
representation.

A. Notation

For a vector z € RY, diag(r) € RV*¥ returns a diagonal

matrix with diagonal entries composed of entries of z. All-
ones and all-zeros vectors of length NV are denoted by 15 and
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O, respectively. Finally, 057y denotes the all-zeros matrix
of size M-by-N.

B. Dynamical Model of Single-phase Inverter

A block diagram of the grid-connected single-phase inverter
is illustrated in Fig. 2. The PLL is designed to track the
instantaneous angle of the grid voltage at the point of common
coupling, the power controller regulates the real and reactive
power delivered into the ac grid, and the current controller
governs the current delivered by the switch terminals. This
model represents a prototypical implementation in a single-
phase grid-connected setting and captures all relevant ac-side
system dynamics. Since the focus of the paper is at the ac-side
point of common coupling, dynamics of the dc-link and any
other converter stages that precede the dc-link are neglected.
We briefly overview the reference-frame transformations and
the dynamics of the filter and controllers next.

Reference-frame Transformations: The controllers illus-
trated in Fig. 2 are implemented in the dq domain. To enable
this, the Hilbert transform [28] (denoted by G /) is first
utilized to generate orthogonal signals with quarter-cycle phase
lag for each sinusoidal measurement, i.e., it yields signals in
the a8 domain [29]. Each signal and its corresponding phase-
shifted counterpart is subsequently processed by an af to dq
transformation. The dq signals are then used in the PLL and
current controller. Note that although the above formulation
utilizes the Hilbert transform as a means of generating quarter-
cycle phase-shifted waveforms, these signals can also be real-
ized with a quarter-cycle delay buffer or an all-pass filter with
appropriate phase response. The remainder of the manuscript
focuses exclusively on the Hilbert transform without loss of
generality.

The transfer function of the Hilbert transform is given by

WpLL — S

Gﬂ'/2(8) - wWprL + s’ (D
where wpr, is the frequency returned by the PLL. As shown
in Fig. 2, we will consider the measured signal to be the
a-component, and the corresponding output of the Hilbert
transform as the [ component. Next, signals in the af
reference frame (z®, z%) are transformed to the dq reference-
frame (z9, 29) with the following rotation matrix [29]:

x4 cosd sind| [z
[xq} - [ sind cos 5] [1‘5] ’ 2)
where § is the instantaneous angle generated by the PLL.
As seen in Fig. 2, the PLL is in feedback with the dq
transformation. The role of the PLL is to modulate the value
of the PLL angle, §, such that the d-axis component of the
grid voltage, v9, is driven asymptotically to zero. From the
definition of the o- and SB-components of v, and the dq
transformation in (2), it can be shown that if vg = 0, then
0 is the instantaneous phase angle of v,. (See Appendix A for
a short derivation.)
Controller and Filter Dynamics: The internal controllers

in the PLL comprise a low-pass filter with cut off frequency
we,pr1 and a PI controller with proportional and integral gains

3

given by kP and kb, respectively. The PLL dynamics are
given by

d

77 VPLL = We PLL (v§ — vpLL), (3a)
d
£¢PLL = —UPLL, (3b)
d ,
£5 = Wnom — kppvpLL + kprpdpLL =: wpLr, (3¢)
d d
—v, = wpLL(vg — Ug) — Ve (3d)

dt

where wyem 1S the nominal grid frequency (e.g., 2m X 60 or
27 x 50 rad/s). We apply (1) to vg to obtain the dynamics of
vg in (3d), and we apply (2) to vz and vg to obtain vg which
feeds into (3a). From above, we can see that vg =vpLL, =0
in steady-state. Furthermore, when the grid frequency is wyom,
it follows that § = WPLL = Wnom- Note that we assume the
first derivative of v, i.e., %vg, to be well defined.

The LCL filter is composed of inverter-side inductance
L;, grid-side inductance, L, and filter capacitance, C;. The
dynamics introduced by the LCL filter in the af frame are

given by

d 1

%i? = E(—Rii? + o — vf), (4a)

d d

Eﬁ:wM@ ﬁ—ﬁm (4b)

d . .

ai'e = 7 (FRely +0F —vg), (40)

d d

B et B8 et

il = wprL (ig — i) Zle (4d)

d @ d Yo d Yo 1 Yo e

at =t (dt - dt) To ), G
d

—vf = wpLL(vf —vf) — —of, (4)

dt dt

where the a-component dynamics are derived from funda-
mental circuit laws, and the S-component expressions result
from the application of (1) to the corresponding c-component
dynamics.

The power controller (PC) consists of two PI controllers
with gains kb and kb and two low-pass filters with cut-
off frequency w. pc (for the d and q components). The real-
and reactive-power setpoints, p* and ¢*, act as inputs to the
power controller and its outputs are current references for the
downstream current controller. These are generated as follows:

i = kB (0% — Gave) + Fbe / (0" — qavg),  (52)

Z?* = k?C (p* - pavg) + k%’C / (p* - pavg) ) (Sb)

where p,ve. and gaye are the outputs of the low-pass filters,
with inputs to be the inverter real- and reactive-power outputs
measured at the grid terminals, p and g, respectively. In par-
ticular, with reference to Fig. 2 and with the aid of elementary
trigonometric operations we have

1

~(vJig — vgil)), (6)

L . ,
p= i(vglg' + ’Ugﬁlg), 2 g

q:
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Figure 2: Block diagram of the single-phase inverter and adopted shorthand.
and as discussed above, where the state vector, x, and inputs u;, uy are given by
d d o B oo B .d
apavg :wc,PC(p_pavg)’ %qavg :WC,PC(Q_Qavg)- (7 T = [Z?’Zi ’Zg’zgvg’vf Y ”Yq’pavg’qa"g’(’bp’qﬁq’
B T
. . Uy, U 4 13
The real-power setpoint, p*, reflects the real power that is g+ UPLL, OPPL, 0] 7d (a3)
ultlmatel.y generated by an upst.rean.l input-stage cpntroller uw =", q"]T, us = [V, %Ug]T (14)
and dc-link voltage controller acting in concert. For instance,
for a PV application, p* could be approximated from scaled In order to show the entries of matrices A € R6x16

irradiance data assuming accurate and fast maximum power
point tracking. Similarly, the reactive power setpoint, ¢*, could
either be fixed at zero to reflect unity power factor operation
or may alternatively be generated by a Volt/VAR controller.
For the sake of generality, we will simply consider p* and ¢*
as generic model inputs for the remainder of the paper.

The current controller (CC) is composed of two PI con-
trollers with gains k% and k%, and as outputs, it generates
the voltage references for the PWM modulation block:

o = 4 g (8= ) + ko [ (=),
= 0+ R (0 = i) + Ko [ (i ).

The addition of the feedforward terms v? and v (obtained by
applying (2) to vf* and vf ) is standard practice, and intended
to improve dynamic performance [30]. Suppose the VSI is
ideal (see Fig. 2), then the terminal inverter voltage is given
by:

(8a)

(8b)

v~ v = v cos § — v* sin 4, 9)

where ¢ is the instantaneous PLL angle. This approximation
implies that the inverter terminal voltage follows the com-
manded reference perfectly and without delay.

C. State-space Representation of Inverter Dynamics

The dynamics of the LCL filter, PLL, power controller,
and current controller for an individual inverter are now
expressed in state-space form to facilitate analysis. To this
end, corresponding to the power and current controllers, we
will find it useful to introduce the auxiliary dynamics

d . d .

% P =P — Pavg %ﬁbq =4 — Gavg, (10)
d d .

aryd = — ) =7'= i — i, (11)

With these definitions in place, the dynamics (3a)—(11) can be
represented in a compact state-space form

& = Az + Biuy + Bous + g(z, up, uz), (12)

By € R©%2 and B, € R'6%2 let us partition the state

vector as © = [TL,7,T&q, Toos Topp]T, where zror =
ca B oo T _ [Ad T _
[Ziaazi ,Zg,lg,’l)fa,vf] , Lo = [7 77q] ,» TPC = [pavgaqavgv

¢, ¢, and wpL, = [vf,vpLL, ¢pLL,6]T. Then, we can
write (12) as

Trer Arcr Osx2 Osxa  Osxa | |TLoL
Zcc | _ | O2xe  O2x2 Acc  O2x4 zTco
Tpc O4xe Oaxz Apc  Oaxa TpC
TPLL O4x6 Oax2 Oaxsa Aprn| |zpLL
Opx2 Brer
Bcc 02x2
+ B U1+ 0 U2 +g(x7ulau2)a (15)
PC 4x2
O4x2 Bpry

where entries of the nonzero sub-matrices Ao, Acc,
Apc, ApiL, Bco, Bpce, Brcrn, BpuL, and the function
g(z,u1,uz) + R x R? x R? — R are spelled out in
Appendix B.

III. AGGREGATION OF PARALLEL-CONNECTED INVERTERS

In this section, we first introduce parametric scalings
required to realize the aggregate model for the parallel-
connected inverters. Next, we prove that the aggregate model
indeed captures all the scalings in pertinent states (currents,
voltages, internal-control states) for the uniform setting as well
as in cases with heterogeneous power setpoints and ratings.

A. Parametric Scalings and Structure of Aggregate Model

We consider N identical single-phase inverters (with model
described in Section II) with the same setpoints, p* and ¢*,
connected in parallel to a grid bus. We are interested in an
aggregated reduced-order model with the same structure and

dimension as the model in (12):
" = ATz" 4+ Bjuj + Byus + g"(z", uj, uy).  (16)

In particular: we desire matrices A* € R16%16 Br ¢ R16%2
B € R'6%2  and function ¢* : R!® x R? x R? — R!6
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Figure 3: (a) Reduced-order aggregate single-phase inverter model and adopted shorthand representation. The inverter-side inductance and

RT

resistance are related to those in the individual model as 7+ = % (b) Dynamics of the parallel connection of NN single-phase inverters can

be captured by the aggregate inverter model in Fig. 3a.

have the same structure and dimension as A, B;, By, and
g in (12) (implying that the control architecture and output-
filter arrangement of the aggregated model are the same as
that in an individual inverter); entries of state vector x* and
inputs uj, uj to have the same connotation as states in z and
inputs uj, ue. In our main result, we demonstrate that if and
only if the following relationships hold between parameters of
the reduced-order and original models:

R L, R

Cf = NC, R} = Llr =8 Rpr==%8 17

f f5 f — N N ) g N ) ( a)
R R kge ke kéc &o

o 24 = Lo o _ LU 17b
'L Lo L (170)

and the reference power settings of the lumped-parameter
aggregate inverter model in Fig. 3a are N times those
of the inverter model in Fig. 2, the current- and power-
related states 5", i7" i i T AT At Phvgs Qg O, 04F
in the reduced-order model are N times the corre-
sponding ones in an individual inverter. Furthermore, the
voltage- and PLL-related states in the reduced-order model
o pPr ,vg , Upp1, Oppr,, 0" are the same as those in any
inverter in the parallel combination. This is consistent with
the electrical behavior of a parallel connection of current (or
power) sources.

In establishing the above result, we will have established
that the reduced-order aggregate model in Fig. 3a captures
the dynamics of the parallel collection. Put differently, we
will mathematically establish the equivalence illustrated in
Fig. 3b. It is worth emphasizing that the dynamical model
of an individual inverter has 16 states, and so modeling the
dynamics of every inverter in an N-inverter parallel collection
would require a 16/V-order state-space model. By contrast, the
reduced-order model has the same structure as any individual
inverter, and is hence described only by 16 states.

B. Main Result: Validating the Aggregate Model

We now state and prove the main result of this paper.
Theorem 1. (Aggregation of parallel-connected identical
single-phase inverters) Consider the dynamical model for the
single-phase inverter specified in (12). Permute x in (13) as

o B oa d o B
- [Zi 7Zi algazga’y avqapavgaqavg7¢pa¢q7vf 7’Ufa

vy, vpLL, $PPL, 0],

8)

(18)

and also permute z" (corresponding to the reduced-order
model (16)) the same way, denoting the permuted vector by Z*.
Denote Z(t) to be the solution to the permuted version of (12)
with initial condition Z(to) and inputs u,us; and Z*(t) to
be the solution to the permuted version of (16) with initial
condition Z"(to) and inputs u!, u}. Suppose initial conditions
are such that 7" (tg) = diag(¥)Z(to), where the scaling vector,
U = [N1%,,14]7T, and the inputs are: u} = Nuj,ul = us
(see (14)). The states of the reduced-order model and the
individual inverter are related as:

#(t) = diag(W)E(L), Vit > to, 19)

if and only if their parameters are related as (17a)—(17b).

In particular, given the definition of the scaling vector,
W, (19) establishes the following relationships between states
of the reduced-order model and those in the individual inverter
model V¢ > tg:

. d T
[Zi 9 ?r7lg,r7 5,F7,y ,r,,yq,r’p;vg,q;vg’¢p,r’¢q,r]
= N[, i 02,12, 9% 7%, Pavg, Gave: 97, 0] 7, (202)
[vg™, ”fﬁyra v§ ,UpLL, bpLy 07"

= [of', vf,vg,vpm ¢ppL, 6] " (20b)

Proof. Let us define z := 2" — diag(¥)Z. The dynamics of z
are given by

=7 —diag(V)z = A2 + Bl + Biub + §(3%, ul, ub)
— diag(V)AZ — diag(¥)Biu; — diag(¥)Baus
— diag(V)g(Z, u1, uz),

where matrices E, El, ]§2, Er, A{, §§ and functions
9(Z,u1,ue), g(z*, uj, us) are appropriately permuted versions
of corresponding matrices and functions in (12) and (16).
We will now show that 2 = 0,V¢& > to when z(tg) =
Z"(tp) — diag(V)Z(tg) = 016. This would further imply that
z(t) = 2" (t) — diag(¥)Z(t) = 016 Vt > to, as claimed in the
statement of the Theorem.

Partition Z = [T, Z3]", where Ty = [if",i; ,ig, i, 74,79,
pavga Qavgv ¢p’ (bq]T and /x\Q = [U?7’Uf67 57 UPLL, ¢PPL7 5]T’
and we also partition Z* the same way. Then, we partition
the appropriately permuted versions of (12) and (16) as

z Apn| [z B B
{;} _ A12 {21} + D11 uy + B21 s
T2 A22 Z2 B12 B22

21

a B

An
Ay
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+ /9\(55\7 uy, UQ), (22)
Al [E Al [ [
Ty Ap Any| (%2 Bi, B3,

+9" (7", uy, uy). (23)

From the definition of matrices Arcyr, Acc, Apc, ApLL,
Bcce, Bpe, Brer, Bpri in Appendix B, and the parametric
scalings established in (17a)—(17b), we note the following:

N R - 1~ - N
AlL = A, Ay = NAp, A5 = NA21> Aby = Ay,

R R R 1~ R R R R 24)
By, = By, Bjy; = NBH; Bj, = NByi, By, = Bo.
Then, we have
. ~ [NA, NAL, _[vay, A,
diag(V)A = | ~ ~ ~
WA A A |7 VA, A,
= A'diag(V), (25)
_ = _[NBu| _[~By ~
diag(U)B; = | & = NBj, (26)
g( ) 1 i Bis NB{2 1
. fan —N§21 321 Br
d U)By = | & = Bs. 27
()8, = | "7 |2~ By e

The next step is to show that g"(diag(V)Z,u},ul) =
diag(¥)g(Z, u1, uz). Let g¢(Z) and gj(diag(¥)z) denote the
(-th entry of g(Z,u1,uz2) and g*(diag(¥)Z, v}, uh), respec-
tively. The nonzero entries of g*(diag(¥)x, u}, us) are related
to the corresponding entries of §(Z, u1, ug) through:

b
kCC

~r . ~ N * 7
3 (cing(9)2) = . | (762 (HoV0™ = Naw) + Koo
-d kéc d kéc P *

—N’Li ) =+ TN’}/ C085 — T (kPC(Np — Npavg)

+kpoN¢P — Ni) + %N%) sin 5} = Ngi(z),
35(diag(V)@) = n(Nif' — Nif) — G (diag(¥)&) = NG2(2),
g5 (diag(¥)x) = —Nif cos§ — Nz sind = Ngs5(2),
5 (diag(W)Z) = Nif sind — Ni cos§ = Ngs (%),
Gr(ding(V)F) = “C (0, Nig + vl Nif) = NGz (3),

. ~ We, o~

Gy (diag(W)2) = =7 (0 Nig —veNif) = Ngs (@),
P R PO
Gi (diag(D)7) = ngl«hag( )2) = Regn (2) = 9 (),
Tia(diag(¥)@) = n(vf —vf ) — i1 (diag(V)2) = Gi2(2),
913(diag(V)) = n(vg 5) = G13(% )
914 (diag(¥)Z) = we,prL(vg cosd + ’U sind) = g14(%),
916(diag(V)z) = wnom = g16(2),
with 7 := —kgLvaLL + k{;LquSpLL. Therefore we have

diag()G(E, ur, uz) = 3 (diag(V)&, uj,uh).  (28)

Notice that the PLL dynamics ((3a)-(3d)) are decoupled from
the remainder of the states in the state-space model. Therefore,

6

the parameters of the PLL in the individual and reduced-order
models are the same, and we can conclude that:

'Ug'B’r = Ug’B, UIYDLL = UPLL; d)rPLL = ¢PLL7 o =4. (29)
Now, consider the function h(z",u},u5) : R x R? x

R? — R!6, which is defined to have the same structure as
" (Z", ul, uh) except that its 13th, 14th, and 16th entries are
0. (See Appendix B for details.) Then, the following holds
- @\r(dlag(\lj)ai Ug, US)

= h((@" — diag (¥)2), 02, u3) .
Using identities (25)—(30) in (21), we have

i = A7 — diag(W)Z) + h((Z" — diag (V)7), 02, ub)

= A"z + h(z, 00, ub). (31)

g (@, uy, up)
(30)

If we initialize z(tg) = 016, we have z(t) = 016, Vt > to, due
to the fact that h(0y¢, 02, u5) = 016. By the definition of z(t),
we have Z'(t) = diag(V)Z(t), Vt > to.

For the other direction, given that z(t) = 2" —
diag(¥)z, Vt > tg, v} = Nuq, and u}, = ug, (21) can be
written as

15 = (A'diag (W) — diag(V)A)Z 4+ (N B} — diag(¥) By )uy

+ (B — ding(¥)By)us + § (diag(¥), Nuy, us)
— diag(V)g(T, u1, uz). (32)
The equality above is satisfied when the following identities
hold:
A'diag(¥) = diag(¥)A, NB! = diag(V)B,
By = diag(W¥) By,

g' (diag(V)Z, Nuy, uz)

(33)

= diag(V)g(z, w1, u2). (34

It emerges that R;, L;, k{, and kcc always appear in the

identities above as fractions: }L?“, kfc, and kcc . Therefore,
these parameters relate to those in the reduced order model
through (17b). The remainder of the parameters can be de-
termined straightforwardly from (33) and (34); they are given
uniquely by (17a), including the unchanged parameters (i.e.,
those which are not mentioned in (17a) and (17b)). This

concludes the proof. O

C. Corollaries for Heterogeneous Settings

We now present two corollaries. In the first, we examine in-
verters with different reference-power setpoints for both active
and reactive power. In this particular case, the relationships
between the states of the reduced-order model and those of
the individual inverters £ = 1,..., N are as follows V¢ > to:

.B,r

LT r ,r ,r1T
[zi 72 7Zg bl g 7’7 77q ?pavg7qavg>¢p 7¢C1 ]
N
E 127 1[7 gEa g[?PYZ77gapang,Qang»¢[7¢e] )
=1
,3
Vg™, v NE 'Ufévvfz )

[/3,

T T
V2T Vb $bprs 0717 = [0 4 vPLL e, SPPLe, O], V.
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This model is useful in, e.g., PV systems where the incident
irradiation might be different for different inverters (hence
resulting in different values for p*) and where local-voltage
control may be implemented by modulating reactive-power
injections (hence resulting in different values of ¢*).

In the second corollary, we examine inverters with different
power ratings, and derive an aggregate model with currents
that scale systematically. To formalize this, we define a power-
scaling parameter ry for the ¢-th inverter as [26]:

Prated,¢

Phbase ’ (36)
where prated,r and phase denote the rated power of the ¢-th
inverter in the parallel system and system-wide base value,
respectively. Without loss of generality, we assume that the
inverter model in Fig. 2 has a power rating equal to the base
value. We also introduce the notion of an equivalent power-

scaling parameter:
N
R = E Kg.
=1

The states of the reduced-order model relate to those in the
individual inverters £ = 1,..., N and the unscaled inverter
(i.e., inverter model with rating equal to the base value) as
follows Vt > tg:

Ke

(37

QT

-5, -B,r .dr .q,r ,r r p,r +q,r1T
i 7Zg' 7Zg ?’Y 7’Y 7pavg7qavg7¢ 7¢ ]

N
_§:~a B ca B d .a P q
- [21,27 7’17[7 Zg,f? Zg7g7 Yo s Vo s Pavg,ly Qavg, L5 (bg ) ¢£

]T
=1
_ = B oo d T
= K| 7’17Zg7l§a7 77q7pavgaqavga¢p7¢q] )

)
[U%r fﬁ,r ,UB,r T

' g
_ s B T
- [U?féa Uf’(a Ug’gy UPLL,¢» ¢PPL,€; 5@] 7v£

s UpLL PppL: 0]

T
= [vf, vf, U§7UPLL¢PPL75]

Formal results establishing these two aspects follow next.

Corollary 1. (Aggregation of parallel-connected identical
single-phase inverters with different reference-power set-
points) Let us denote x,, p;, and g; as the state vector, real-,
and reactive-power setpoints of the /-th inverter in the parallel
system. Permute x, the same way as in (18), denoting the

permuted vector as Z. Partition Z, = AT, vfy ", af 7
where Ae = [if, i 108 4+ g s 15 Vs Pav,t: dave s 05 6517
vpy = [vfy.vf,]T. and zpLy = [v) ,,vpLL.e, GpPLe, 00T
We also permute and partition z" the same way, denoting
the permuted vector as z* = [A'T, 0@ 2T 1T Suppose

the initial conditions are such that A'(tg) = Zé\[:l Ae(to),

i N
v (o) = & Liey Uﬁf(tO)’ and zpy,(to) = @prre(to), V2,
and the inputs are:

N
r E r
Ul = ’U,Lg, U2 = Uus.

=1
It follows that, V¢ > tg:

N N
iy ap,r 1 «
N(#) =D Ae(®), of?T (1) = 5 D_vid (),
(=1 {=1

rpr(t) = xpLy,e(t), Ve,

(39)

(40)

if and only if the parameters of the reduced-order are related
to the individual inverters through (17a)—(17b).

Proof. The proof is provided in Appendix C. O

Corollary 2. (Aggregation of parallel-connected single-phase
inverters with heterogeneous power ratings) The parameters
of each inverter are related to the unscaled inverter through

R L R
Cro = #eCr, Ryg= —, Ly = —2, Ryy = 2, (41a)
Ry Ry KRy
R R k& . _ ko koo _ kie 41b)
Liy L’ Ly Li " Liy L’

and parameters not mentioned are unchanged. Suppose the
reference-power setpoints for each inverter are p; = kyp* and

q; = k¢q". The parameters of the reduced-order model are
related to the unscaled inverter through
R L R
Cr =RCy, Rb= — [} = =& R = & (42a)
RS8R TE I

LI Ly Lf J L

Parameters not mentioned are unchanged. Let z, x4,
denote the state vectors of the unscaled inverter model, ¢-
th inverter of the parallel system, and the reduced-order
model, respectively. Permute the state vectors the same way
as (18), denoting the permuted vectors as Z, Ty, . Par-
tition the permuted state vector 7 = [AT,¢T|T, where
A= i, 18,88, 7979, Paves Gaves P, ¢9]T and ¥ =
[vg, vfﬁ,vg,vpLL, #p1L,d]T. We also partition Z, and 7* the
same way: 7, = [A},¢f]%, zF AT T T, Suppose
the initial conditions are such that A" (tp) = Zévzl Me(to) =
EA(to), ¥ (to) = e(to) = ¥(to), V¥, and the inputs are:

r

N
uy = g Ui =Ru1, U5 = Ugyg = Uz, VL. (43)
=1

It follows that for ¢ > t:

N
X(t) =D Ai(t) = BA(E), 7 () = u(t) = (t), Ve, (44)
=1

if and only if the parameters of the reduced-order model are
related to the unscaled inverter through (42a)—(42b).

Proof. Each of the inverters in the parallel system can be
viewed as the aggregate of k, inverters, while keeping in mind
that x, is not necessarily an integer. The rest of this proof is
straightforward from Theorem 1. O

IV. EXPERIMENTAL VALIDATION & SIMULATION RESULTS

In this section, we outline results from an experimental
prototype and an exhaustive simulation study to demonstrate
various aspects of the reduced-order model. The purpose and
scope of the experiments is to demonstrate the validity and
establish the accuracy of the reduced-order model (under
uniform and symmetric settings) and this is done by comparing
the net current injected by the parallel system of inverters
in hardware to the output current of the aggregated reduced-
order model. The experiments also establish robustness of the
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Table I: Inverter LC L-filter and controller parameters.

LCL filter Current Controller PLL
L; =1.0mH k& =6V/A kD, =1.25rad/(V -s)

Ry =0.7Q kio =350V/(A-s) kipp = 10rad/(V -s?)

Cf =24 uF we,pLL = 27 X 200rad/s
Ry =0.02Q Power Controller
Ly =0.2mH k7o =0.01A/VA
Ry =0.12Q | k& =0.1A/(VA s)

we,pc = 50.26 rad/s

reduced-order model to parametric variations that are indeed
inescapable in any hardware setup. Following the experimental
results, we also include an exhaustive simulation study that:
validates the reduced-order model derived for hetereogeneous
settings (Corollaries 1 and 2), investigates robustness of the
reduced-order model to variations in filter parameters, and
demonstrates the computational benefits of the reduced-order
model.

A. Hardware Setup

To validate the reduced-order model, we built an experimen-
tal system comprised of three identical 750 VA single-phase
inverters connected in parallel across a stiff voltage source.
The hardware setup is illustrated in Fig. 4(a). It consists of
three distinct inverters each with a dedicated power stage and
a TI F28335 DSP controller. Each inverter utilizes the control
structure shown in Fig. 2. Controllers are discretized with a
step size of 1/(15 x 10%) s and unipolar sine-triangle PWM is
utilized with a switching frequency of 30 kHz. The single-
phase 60 Hz, 120V RMS ac system voltage (i.e., the grid
point of interconnection) is realized with an Ametek MX-45
grid simulator. Subsequently, measurements obtained from the
multi-inverter system are compared to a software simulation of
a single aggregated inverter model (see Figs. 3a and 4(b)). The
simulation of the aggregated inverter, as given in Fig. 4(b), was
carried in MATLAB with the ODE45 solver, performed on a
computer with Intel Core 17-7700HQ processor @ 2.80GHz
CPU and 8GB RAM. The parameters of the experimental setup
are summarized in Table I. Simulation parameters used in the
aggregated inverter model are obtained from these, and the
scalings reported in (17a)—(17b).

B. Validation of Reduced-order Model

To validate the proposed reduced-order model, we com-
pared the measured and simulated dynamic responses under
a comprehensive set of step changes in both real and reactive
power. The real-power steps are representative of, e.g., sudden
irradiance transients that a microinverter system might contend
with. The reactive-power steps are representative of, e.g.,
ancillary services that grid-connected inverters may provide.
Results are plotted in Fig. 5. The plot pair in each subfigure
illustrates:

1) The measured net sinusoidal current injected into the
grid by the parallel inverters overlaid with the simulated
current from the aggregated-inverter model. The measure-
ment point and corresponding point in the reduced-order
model are marked prominently in Fig. 4.

) grid
lg.1 g simulator

[PWM|*7;{control]
r’—}—l
Li R L; R,

Vdc Ct

d
— 1

DSP

controller

Pr_l %I Ametek

(a) Experiment

power stage

%Rf/é vf;

(b) Simulation

Figure 4: (a) Experimental setup consisting of three parallel-
connected single-phase inverters rated at 750 VA. The system of
three inverters are given real- and reactive-power step commands to
generate the results in Fig. 5 (Currents plotted in Fig. 5 are shown in
dashed boxes, marked with the same color scheme above.) (b) The
reduced-order aggregated model where the multi-inverter system is
represented as one equivalent inverter.

2) Pertinent d- or g-axis current waveforms measured at
each inverter output in addition to measured and sim-
ulated net current injection.

It is worth emphasizing that we focus just on the net current
at the point of grid interconnection and compare that with the
current suggested by the aggregate model. The match between
these through a variety of large-signal changes—as suggested
in Fig. 5—validates the accuracy of the aggregate model.
Furthermore, note that in this case, the parallel collection of
inverters are collectively described by a 48-state model, while
the simulations are performed with the reduced-order 16-state
model.

C. Simulation Study

Next, we establish the accuracy and computational benefits
of the proposed reduced-order model (for a system of 100
parallel-connected inverters) in heterogeneous settings with
numerical simulation results. The parameters of the inverter
with nominal power rating are listed in Table I. We consider
the following cases: #1) Inverters have heterogeneous power
ratings with power-scaling parameters ~ selected to be uni-
formly distributed between 0.5 and 5. #2) All inverters have
ratings that match the nominal power ratings, but their LC'L-
filter parameters vary between +10% of their nominal values.
#3) Same setup as #2, but the LC L-filter parameters of the
inverters vary between £80% of their nominal values. For all
cases, the real- and reactive-power setpoints of the inverters
are assumed to be uniformly distributed between 0 — 200 W
and 0 — 100 VAR, respectively, and we perform a step change

0885-8969 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEC.2018.2881710, IEEE

Transactions on Energy Conversion

30 1 — Model
20 | — Experiment
=
= 0
—10
—20
— Model
___ 90 | — Experiment
<
-
zen 10
S
0 & Experiment: — 8} —id 5 —igs
0 0.2 0.4 0.6
t(s)
(@)
30 Model
i —Maodel
2 0 — Experiment
= 0 WWWWWWY
—10
-20
20 —Model
— .
= " — Experiment
T -
s
0 . . .
Experiment: Lg7l Zg.z *2;3
0 0.2 0.4 0.6
t(s)
(b)
30 — Model
20 + — Experiment
=
.0 0
—10
—20
—Model
20 | — Experiment
o B e ST
< 10
Te
0 SRR o F— id, —id
Experiment: —i, 1 —ig9 —iy3
0 0.2 0.4 0.6
t(s)
(©
30 — Model
20 — Experiment
=
'sbc 0 \]\!\M}\[W
—-10
—20
20 b i — Model
— — Experiment
- p
- 10 VAl
Te0 PRSP T T S
T~ o
0
Experiment: —i, ; —%, 5 —fy3
0 0.2 0.4 0.6
t(s)
(@

Figure 5: Comparison of experimentally measured and simulated
waveforms: (a) Real-power step up p* : 30 W — 600 W with fixed
q¢" = 0 VAR, (b) Real-power step down p* : T00 W — 50 W with
fixed ¢* = O0VAR, (c) Reactive-power step up ¢* : 0VAR —
500 W with fixed p* = 200W, (d) Reactive-power step down
q" : 500 VAR — 0 W with fixed p* = 250 W.

to both setpoints, with the values again selected to be uni-
formly distributed between 400 — 600 W and 300 — 500 VAR,
respectively. The step change is introduced at t = 2s, and we

stop the simulations at ¢t = 4s. We note that case #2 and #3
have the same reduced-order model. The parameter scalings of
the reduced-order models for case #1 and #2 (#3) are given
by (42a)—(42b) and (17a)—-(17b), respectively. The net current
injection of the multi-inverter system and the reduced-order
models for case #1, #2, and #3 are shown in Fig. 6. We can
clearly see in Fig. 6a that for case#1, the output current of
the reduced-order model is exactly the same as the net current
injection of the parallel system—this validates Corollaries 1
and 2. Furthermore, Fig. 6b shows that the reduced-order
model is quite robust with respect to the parametric variations
in the LCL filter parameters with discrepancies obvious in
high-frequency content. For larger variation (+80%), Fig. 6¢
shows that the reduced-order model captures the dynamics
of the multi-inverter system, albeit with degraded accuracy
during the transient. Finally, the computation time for the
1600-th order multi-inverter system simulation for cases #1
and #2 are 58.23s, 66.97s, and 145.08 s, respectively, and
of the reduced-order 16-th order aggregate model are 1.89s,
1.62s, and 1.62s, respectively. This clearly establishes the
computational benefits of the proposed model.

V. CONCLUDING REMARKS AND DIRECTIONS FOR
FUTURE WORK

In this paper, we derived a reduced-order aggregated model
for identical parallel-connected grid-tied single-phase invert-
ers and extensions covering cases when the inverter power-
setpoints are different and the inverter power ratings are
different. The reduced-order model preserves the structure and
has the same order as any individual inverter in the parallel
collection. Experimental validation was provided to establish
the accuracy of the reduced-order model in capturing ac-
side dynamics of inverters during large-signal transients, and
simulation results were provided to demonstrate computational
benefits and robustness to parametric variations. Directions for
future work include analytically establishing error bounds on
the trajectories returned by reduced-order models in the face
of parametric variations in the filter and control parameters.

APPENDIX

A. Steady-state Operation of PLL

Express the grid voltage as vy, = Vsin(dy), where Vg
and d, are the voltage amplitude and angle, respectively. The
corresponding o3 components of v, are given by

vg = vg = Vgsin(dy),
’Ug = Vg sin ((5g - %) = —Vj cos(dg).

The d-axis component of v, is obtained from (2) as
vg =V cos(9) sin(dg) — Vg sin(d) cos(dg) = Vg sin(dg — 9).

From above, it follows that when ¢ = g, vg =0.
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Figure 6: Simulation results comparing the injected current for a
system of 100 parallel-connected inverters with all inverter dynamics
simulated superimposed to results from the reduced-order model for
the following cases: (a) heterogeneous power ratings with power-
scaling parameters (k) vary between 0.5 and 5, (b) identical power
ratings with k = 1 and LC L-filter parameters vary between £10%
of their nominal values,(c) same setup as (b), but with variation of
+80%.

B. State-space Model Particulars

r & 0 0 0
Wnom + % —Wnom 0 0
! R
0 0 — 5 0
ALCL - 0 0 Wnom T % —Wnom
7Rff + Cif 0 Rf%}% — C% 0
Ry 1 1
L Rffl - a 0 _Rfi + *f 0

10
0 0
0 0 T
= 0 k?p 7%50
Lg
1 Ace = PC ;
7L7g 0 P CcC 0 k%c )
— 0 kbe 0
Wnom + % _Wnom_
—wepe 00 0
0 —wepe 0 0 0 kP
Apc = ’ , Bcoc = { Pel,
1 0 00 Ko 0
0 -1 0 0
—Wnom 0 0 0 0 -1
0 —We 0 0 0 0
ApLL = 0 _’TLL 0o olPrrr=1o o>
0 —kpry, b 0 0 0
T 0 0
0 0 0 0 0 0 0 0
Brer=1y g 1L 1 R R;| ,Bpc= 10
Lg Lg Lg Lg 0 1

Lastly, the entries of g(x,u1,us), with g, denotes the ¢-th
entry of g(z,uy,us), are

1 .
0n=1 (kgc(if* — i cosd — sz sind) + kzcc'yd) cos &
— 7 (kéc (i + i sin§ — i cos 0) + kzcc'yq) sin §,

92:77(7’10‘77’?)7917 93:03 94:07
g5 = Reg1, g6 = n(vf' — Ufﬁ) — g5,

g7 = —i{" cosd — zlﬁ sind, ¢s=1i{"sind — zlﬁ cos 4,

We,PC . . We,PC . .
90 = =5 (vgig + i), g0 = =5 (vgig — vgiy),
911 =0, gi2=0, giz=n(vg— vg),

914 = we pLL (Vg cOs S + 07 sind),  g15 =0, g16 = Wnom,

where 1) := —kpy vpLL+EprdPLL, 5 = kpo (¢F — Gave)+
bedd, and i = kp (p* — Pavg) + kpodP.

C. Proof of Corollary 1

We begin by noting that the PLL dynamics are decou-
pled, and the its parameters in the individual and reduced-
order models are the same, therefore V¢ > to, xh () =
wPLL,Z(t) V¢ if we initialize LL‘{)LL (to) = xPLL,z(to) V. Next,
partition the permuted versions of (12) and (16), excluding the
PLL dynamics, as

Xé ] -Eu 212_ [ Ae ] §11 -§21
|l = = e PSRV R PSR
Ufof?_ _A21 A22_ ”K? B _322_
+ gl(fe, u1,€7u2) 7 (45)
G2(Ze, ul,£7u2)

-~ -~ ~ ~

)'\r ] ‘1]{1 ‘152 A {1 r 551 r
. = | ~ ~ + | ~ uy + | ~ u
L)f ﬁ’r_ A51 A§2_ A ! 2

~(r ,r T
gl(aj ; Ups Un
+ |5

T T r
92(55 ; Ups Ug

} ; (46)

— —
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where g1 : R xR?xR? — R!% and g, : R xR2 xR? — R?
are the nonlinear parts of the dynamics of A, and vf‘f ,
respectively (similarly for g} and g5). We bring to note a slight
abuse of notation in terms of the submatrices in (45) and (46)
and those in (22) and (23). Furthermore, the submatrices
in (45) and (46) also follow the relationships in (24). Define

L= A = A and zp = NofPr — Zév:lvgf The
dynamics of 27 and 2o are:

N .
72/\5
=1

= AL N+ A,02PT 4 BY b + Bhub

N
A GRIREIED Y (An)\e + Ayvf)" + Briua e

(=1
+Baiug + G1(Ze, w1 e, UE)) ; 47
N
= Nip?" — vaag =N ( AT+ AL op? + Bioul
=1
o~ N o~ o~
F Bl + G5 (3, ug)) -3 (Am + Aggufr
(=1
+Bigui ¢ + Basus + G2(Ze, ur g, u§)> . (48)
Next, we will show that
N
/g\li (53\1"7 ’LLIi7 ’Ué) - Z ./g\l (FE\f? U1,e, UQ) = /g\l (Xv 027 U2)7 (49)
(=1
N
N/g\é(/fr7 uﬁa Ug) - Z @\2(&:\@5 U1,e, u2) = §2(X7 027 u2)7 (50)
(=1

where x := [2], 23, #pr )" Let §1k(T0), G2.6(Te), 91 4 (T"),
and g (") denote the k-th entries of g1(Z¢,u1,e,u2),
G2(Te,ur g, u2), Gi(T5,uj,us), and g5(3%, ui,ub), respec-
tively. Then, we have

al N
Gia@) =D Gia(@) = I
=1 !

N\ K kP N
+hpop® — i ) + ]?Vd’r) cosd" — (ﬁic (kgc(z e
=1

i N
7pr ) + ki ¢p o ig,r . kCC ,.yq,r sindg” | — k%C
avg PC i N — Li

o (1
He (e(X - e

* 7 . k k
(kP (q7 — Gave.e) + kpody — lid,e) + EC ’Y?) cos o + EC
* 7 T kZ T .
(kP (P} — Pave,e) + kbed® — i) — —](\ch y& ) sin 5¢)
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- ( K (400~ o~ 3 )+l

N
- Z ¢7) — - ZW?)> cosd”
=1 =1

kp T al % T
+ (EC (kf’C(O - (pavg - Zpa\/g,f)) + kPC(qu7

(=1

N N i N
p q,r -q CC ( ar _ q s or
- Z ¢p) — (i — Z%,ﬁ) + Ti(Wq Z%)) sin g
=1 =1 =1
= 91,1(x; 02, u2) (51
N
912(@") — 2/9\172(@) = (=kprrvpLL + kPLL¢PLL)( i
=1
N .
=) = G113 - Z (( kprrvpLL,e + kpridpLL,e) (i
=1
o ifz) - 91,1(@)) = (- kPLLvPLL + kPLL¢PLL) (( it

- iifg) + (" - Zifg)) (gl . Zgl 1 (e )

= g1,2(X, 02, u2), (52)
N
Tia(@) =D G13(@0) = 0 =G13(x, 02, us), (53)
=1
N
Fia@) =D G14(@) = 0= Gra(x, 02, u2), (54)
=1
N
3 5(@) = > Grs(@) = =i cos 6" — i sin 0"
=1
N N
— Z (—ii‘fg cos &y — i'.fz sin 5@) =—@" = Z i'y) cos 0
=1 =1
N
= (i =Y i) sind" = gu5(x, 02, ua), (55)
=1
N
g1 6(@) — ZA176(§:\5) =i sin 6" — i?" cos &
=1
N N
— Z ('ffg sin 0y — i} , cos 54) = (" — Zﬁ) sin 8"
=1 =1
N
— (i = il,) cos 6" = Gi6(x, 02, un), (56)
=1

(57)
=1
N w,
U -~ PC
s(@) =D Gis(@) = > it — vgiy")
/=1
N w, w
PC ) . PC -,
-2 (vrige —veig,) = —5 (vgGg"
=1
N N
- Zzg,l) f - Zlgi)) = §1,8(X7027u2)7 (58)
=1 =1
N
Gio(@) =D G1o(@0) = 0=G1o(x, 02, u2), (59)
=1
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Ngs2(@") — ZAM(@) = N(—kprrvpLL + kprLdpLL)

N
(0" = o) = NG5 (@) = D ((~kpppoprre
=1
+ kprpdprr.e) (v — ”fﬂ,e) A2,1(@)) = (—kprrvpLL
N N
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{=1 =1

N
) = > G2.1(e)) = Go.2(x, 02, u2). (62)
=1

— (N 921

Therefore, (49) and (50) hold. Using identities (24), (49)
and (50), we can write the dynamics of z; and 2o as

2':1 = A1121 + A1222 + §1 (X, 02, ’UQ), (63)
2y = Ag121 + Agzza + G2(X, 02, u2). (64)
If we initialize 21(tg) = 019 and z3(tp) = 02, we have

z1(t) = 010, 22(t) = 02, Vt >t since g1(x, 02, u2) = 019 and
QQ(X,OQ,’LLQ) = 02 when z; = 019 and 2:2 = (02. By the defi-
nition of z; and z3, we have A"(t) = Ze 1 Ae(t), v O‘ﬂ’ (t) =
N
%Ze:ﬂ’w( ), Vt > to.
For the other direction, given that Vt > tg: z1(¢) = )\T( )—
N af,r
Yoo Ae(t) = 010, 22() = NopP'(t) — Sl vfP(t) =
02, hr1(t) = zpLL (1), VL, (47) and (48) can be written as

O10 = (A5; — AN + (A5, — NAp)of™" + (BY, —

+ (BS, — NBap)ub + G5 (T, ub, ub

0y = (NAL, — Ay A +
— Bo1)uj + (N By —

N
- Z/g\z(@,m,bug)
=

(NAL, — NAy)v®* 4+ (N B3,
N Bao)usy + NG5 (T, ui, us)

These equalities are satisfied when the following identities
hold:

~ o~ o~ 1~ - ~
Ay = Anr, Alg = NAg, Ay = NAQ“ Aby = Az,

R R R R R 1 N N (65)
Bi, = B11, By, = NByy, Bl = NBIQ’ B3y = Bao,
N
/g\i(/x\r7u§vu§) = Z./g\l(aj\@,ull’u?)’ (66)
4 1N
Nﬁ;(fr,ui,ug) = ZAQ(ifaul,bUQ)' (67)

o~
I

1
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It is straightforward to see that (17a) and the unscaled pa-
rameters are the only set of parameters that satisfy (65). For
the rest of parameters, i.e., R, L, kéc, and kéc, it can be
derived that they always appear in (65)—-(67) as fractions of
12"‘, kfc and kgc Therefore, they are related to those in the
reduced-order model through (17b). This concludes the proof.
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