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Abstract—Algebraic graph theory is a cornerstone in the
study of electrical networks ranging from miniature integrated
circuits to continental-scale power systems. Conversely, many
fundamental results of algebraic graph theory were laid out
by early electrical circuit analysts. In this paper we survey
some fundamental and historic as well as recent results on
how algebraic graph theory informs electrical network analysis,
dynamics, and design. In particular, we review the algebraic and
spectral properties of graph adjacency, Laplacian, incidence, and
resistance matrices and how they relate to the analysis, network-
reduction, and dynamics of certain classes of electrical networks.
We study these relations for models of increasing complexity
ranging from static resistive DC circuits, over dynamic RLC
circuits, to nonlinear AC power flow. We conclude this paper by
presenting a set of fundamental open questions at the intersection
of algebraic graph theory and electrical networks.

I. INTRODUCTION

The study of electrical networks, the theory of graphs,
and their associated matrices share a long and rich history
of synergy and joint development. Starting from the founda-
tional classical work by Gustav Kirchhoff [87], modeling and
analysis of electric circuits has motivated the birth and the
development of a broad range of graph-theoretical concepts
and certain classes of matrices. Vice-versa, algebraic graph
theory concepts and constructions have enabled fundamental
advances in the theory of electrical networks. As is well
known, it is in graph-theoretical language that Kirchhoff’s laws
are most succinctly and powerfully expressed, and it is via
matrix theory that the discrete nature of graphs is most pow-
erfully analyzed. To this day, graph theory, matrix analysis,
and electrical networks inspire and enrich one another.

In this paper we survey some fundamental and historic
as well as recent results on how algebraic graph theory
informs electrical network analysis, dynamics, and design. In
particular, we review the algebraic and spectral properties of
graph adjacency, Laplacian, Metzler, incidence, and effective
resistance matrices; we review the basic notions from algebraic
potential theory, including cycle and cutset spaces.
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We then study general models of electrical networks, start-
ing from elementary models and building up to a prototypical
circuit, with several instructive special cases. Our proposed
prototypical circuit is a Π-line-coupled RC circuit with non-
linear sources and loads. This prototypical nonlinear RLC
circuit has numerous interesting features. First, our prototypi-
cal circuit generalizes the widely-studied resistive circuit and
features rich dynamical behaviors, including synchronization
and consensus behaviors. Second, power system network mod-
elling is essentially based on this circuit (Π-line transmission
models, charging capacitors at the buses, and ZIP loads,
including modern constant-power devices). Third and final, it
showcases popular energy-based, power-based, and compart-
mental modeling approaches, and it is sufficiently general to
admit a variety of graph-theoretic analysis approaches.

Based on algebraic graph theory methods, we then study the
analysis, network-reduction, and dynamics of our prototypical
circuit and its variations, in linear and nonlinear as well as
static and dynamic settings. Thereby we consider models of in-
creasing complexity ranging from static resistive circuits, over
dynamic RLC networks, to nonlinear AC power flow models.
We motivate our treatment with a few interesting examples,
review a few fundamental and historic results in a tutorial
exposition, and also showcase related recent developments.
Our focus is on static and dynamic analysis of DC circuits,
except for Section VI-B where we explicitly focus on steady-
state analysis of AC circuits through the lens of graph theory.

It is important to clarify that this article does not aim to be
comprehensive in its scope, nor does it present multiple view-
points on the given material, as both algebraic graph theory
and electrical circuits are mature and broadly developed fields.
In the context of algebraic graph theory, we refer interested
readers to the textbooks [16], [19], [72] and, for example, the
surveys [102], [97], [17]. There are numerous complementary
viewpoints on electrical network modeling and analysis. We
mention the well-established linear network theory [6], [144],
[101], [145]; classical network analysis in the nonlinear setting
[37], [36], [124]; the signals, systems, and control view-
point [4]; the behavioral approach [148] and its application
to circuits [149]; energy-based Port-Hamiltonian approaches
[135], [104], [133], [95]; and power-based Brayton-Moser
approaches [25], [26], [83], [85], [84] among others. Our
exposition and treatment highlights the algebraic graph theory
perspective on electrical networks, with examples colored by
our own research interests and experiences.

The remainder of the paper is organized as follows. We
begin with a set of motivating examples in Section II that
outline the themes of the paper. Section III briefly reviews
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relevant results of algebraic theory. In Section IV we present
the general modeling of electrical networks based on the
language of graph theory and also introduce a prototypical
network model that we will frequently revisit in the course
of the paper. Section V showcases the tools of algebraic
graph theory to analyze the structure and dynamics of linear
electrical networks, and Section VI addresses the nonlinear
case. Finally, Section VII concludes the paper and outlines a
few open and worthwhile research directions at the intersection
of electrical networks and algebraic graph theory.

II. MOTIVATING EXAMPLES

We begin by laying out a set of motivating examples with
apparently complex behavior, whose analysis becomes crisp
and clear by using the tools of algebraic graph theory. We
will revisit each of these examples in the course of the paper.

A. Synchronization of resonant LC tanks

Consider the electrical network in Figure 1 consisting of
identical resonant tank circuits interconnected through resistive
branches. Each tank circuit consists of a parallel connection of
an inductor and a capacitor with identical values of inductance
` > 0 and capacitance c > 0.

r
` c

r
r

r

` c` c ` c

Fig. 1. Network of resistively interconnected `c-tanks; image courtesy of [27].

As known from undergraduate engineering education, each
tank circuit in isolation exhibits harmonic oscillations with
natural frequency ω0 = 1/

√
`c and phase and amplitude de-

pending on its initial conditions for current and voltages. When
coupled through a connected resistive circuit, the voltages
vi(t) across the capacitors of all tank circuits synchronize to
a common harmonic oscillating voltage of frequency ω0; see
Figure 2 for a simulation. This spontaneous synchronization
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Fig. 2. Synchronization of capacitor voltages of the resistively interconnected
identical tank circuits in Figure 1; image courtesy of [27].

may appear either surprising or obvious to electrical engineers
depending on their physical intuition. In Section V, we will
show through the lens of algebraic graph theory that this effect
is to be expected and can be analyzed at a similar complexity
as the analysis of a single tank circuit.

B. RC circuits as compartmental systems

Consider the electrical network in Figure 3 consisting of
resistive branches connecting capacitors with a current source
and at least one so-called shunt resistor connected to ground.

current
source

Fig. 3. Resistive network of capacitors with a current source and a shunt
resistor.

It is possible and natural to model this dynamical system
as a compartmental system, i.e., a collection of compartments
in which electrical charge flows into the system through the
current source, through the network, and out through the shunt
resistor. In other words, in every compartment the stored,
supplied, and dissipated charge is balanced.

The study of compartmental systems is rooted in algebraic
graph theory; see Appendix A and [140], [79], [27]. A key
result states that, if each node has a directed path to the
shunt resistance, (i.e., the compartmental graph is out-flow
connected), then the system has a unique, positive, globally
asymptotically stable equilibrium point.

C. Steady-state feasibility of direct-current networks

Consider the DC circuit shown in Figure 4(a), which con-
sists of an ideal DC voltage supply providing power to a load
through a resistance r.

V=+V0

r
f

(a)

V

Pload

Pcrit

V0

(b)

Fig. 4. (a) An ideal voltage supply connected to a nonlinear load. (b) Locus
of solutions for constant-power load model.

The load consumes a power P (V ) as a function of the
voltage V across its terminals. Since the current f which flows
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from the supply is f = (V0 − V )/r, the load dissipates a
power V f . This must in turn equal its consumed power P (V ),
yielding the power balance

V (V0 − V )/r = P (V ) . (1)

This is a nonlinear equation in the load voltage V , the solutions
of which will determine the feasible values for the voltage V .
Let us first consider a resistive load of resistance rload > 0,
with power consumption P (V ) = V 2/rload. In this case, the
power balance (1) always has two solutions, given by

V = 0 and V =
r

r + rload
V0 .

Now, instead, consider a load consuming a constant power
P (V ) = Pload ≥ 0, and let Pcrit = V 2

0 /4r. If Pload/Pcrit ≤ 1,
then a simple calculation shows that (1) has solutions

V =
V0

2

(
1±

√
1− Pload

Pcrit

)
,

Figure 4(b) plots these solutions as a function of Pload; depend-
ing on the ratio Pload/Pcrit, the circuit can have two, one, or
zero real-valued solutions. This example illustrates that even
the existence of solutions depends heavily on the chosen load
model. In Section VI-A we will revisit this feasibility problem
for networks, and we will see that the maximum transfer
limit Pcrit generalizes as a Laplacian-like matrix encoding the
topology and weights of the circuit graph.

D. Series circuit contraction and star-triangle transformation

Classic methods in the study of electric circuits are the
contraction of a series of resistive circuit elements and the
Y-∆ transformation; these methods date back to the work by
Arthur E. Kennelly [86] and are depicted in Figures 5 and 6.
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Fig. 5. Contraction of a series of resistive circuit elements to a single resistor.

30

88

8

8

8

81 1

22

33
4

r14

r24

r34
rred
12 rred

23

rred
13

Fig. 6. Y-∆ transformation of a resistive radial circuit to a meshed circuit.

The reduced circuits are equivalent in their electrical behav-
ior as seen from the terminals {1, 3} (respectively, {1, 2, 3})
of the remaining nodes in the reduced single-resistor (respec-
tively, three-node mesh) circuit. The well-known formula for
the remaining single resistor in Figure 5 is

rred
13 = r12 + r23 ,

and the formulas for the three-node mesh in Figure 6 are

rred
23 =

r14r34 + r34r24 + r24r14

r14
,

rred
12 =

r14r34 + r34r24 + r24r14

r34
,

rred
13 =

r14r34 + r34r24 + r24r14

r24
.

(2)

At first glance, the circuit reduction formulae (2) appear
convoluted and provide little immediate insight. In Section V
however, we will show how these formulae can be insightfully
derived by means of linear algebra and intuitively interpreted
in terms of graph theory. Indeed, the series-circuit contraction
and Y-∆ transformation are special cases of the more general
Kron reduction [89] that permits an elegant analysis via
algebraic graph theory.

III. RELEVANT RESULTS IN ALGEBRAIC GRAPH THEORY

This section provides a concise self-contained review of
algebraic graph theory, Perron-Frobenius theory, and their
applications to row-stochastic and Laplacian matrices. We
refer interested readers to the textbooks [16], [19], [72], [99]
and, for example, the surveys [102], [97], [17]; this section
follows the treatment in [27].

1) Notation: We briefly introduce the notation used in the
remainder of the paper. For a vector x ∈ Rn, the notation
diag(x) denotes a diagonal matrix in Rn×n with the ith
diagonal element being xi, the average of its entries is denoted
by average(x) =

∑n
i=1 xi/n, and the extremum entries are

xmax = maxi∈{1,...,n}{xi} and xmin = mini∈{1,...,n}{xi}.
We denote the real part (respectively, imaginary part) of a

complex number z ∈ C by <(z) (respectively, by =(z)).
The vector ei denotes the ith canonical basis vector (with a

non-zero and unit-entry at position i) in appropriate dimension.
The symbols 0n×m and 1n×m denote the (n ×m)-matrices
of all zero and unit entries. We avoid the subscript m in the
vector-valued case m = 1 and entirely avoid subscripts when
the dimension is clear from the content. The matrix Πn =
In − 1

n1n×n denotes the orthogonal projection operator onto
the subspace 1⊥n = {x ∈ Rn | 1T

nx = 0}.
Element-wise (Hadamard) multiplication and division of

matrices are denoted by � and �.
2) Nonnegative matrices and digraphs: Given n ≥ 2,

an n × n matrix A is nonnegative (resp. positive) if each
entry is nonnegative (resp. positive); we write A ≥ 0 and
A > 0, respectively. A weighted digraph G is a triplet
({1, . . . , n}, E , A), where {1, . . . , n} is a set of nodes, E is
a set of directed edges (i.e., ordered pairs of nodes), and A is
a weighted adjacency matrix (i.e., a nonnegative matrix) with
the property that aij > 0 if and only if (i, j) ∈ E . If (i, j) ∈ E ,
we say i is the source and j is the sink of the directed edge.
Given a nonnegative A, the weighted digraph associated to
A has node set {1, . . . , n} and edges defined by the patterns
of non-zero entries of A. An undirected graph has undirected
edges (i.e., the set E consists of unordered pairs of the form
{i, j}) and a symmetric adjacency matrix A = AT.
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1

2 3
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A =




0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0


 .

Fig. 7. An unweighted undirected graph and its adjacency matrix.

A directed path (resp. path) in a digraph (resp. graph) is an
ordered sequence of nodes such that any pair of consecutive
nodes in the sequence is a directed edge (resp. an undirected
edge). A simple directed path (resp. path) is one with no
repeated nodes, except possibly the first and last nodes. A
cycle in an undirected graph is a simple path that starts and
ends at the same vertex and has at least three distinct vertices.
A directed cycle in a directed graph is a directed path that starts
and ends at the same vertex. For the example in Figure 7, the
sequence (4, 3, 1, 3) is a path, (1, 2, 3, 4) is a simple path, and
(1, 2, 3, 1) is a cycle.

3) Matrix irreducibility and digraph connectivity: A di-
graph (resp. graph) is strongly connected (resp. connected) if
there exists a directed path (resp. path) from any node to any
other node. A subgraph is a strongly connected component of a
digraph G if it is strongly connected and no other node can be
added to it while maintaing the subgraph strongly connected.

A nonnegative matrix A is irreducible if
∑n−1
k=0 A

k > 0
and primitive if there exists a number k such that Ak > 0.
The matrix A ≥ 0 is irreducible if and only if its associated
digraph is strongly connected. The matrix A ≥ 0 is primitive
if and only if its associated digraph is strongly connected and
aperiodic, i.e., there exists no natural number (except one)
dividing the length of all directed cycles in G. Clearly, if A is
primitive, then it is irreducible; the converse is not true. For the
example in Figure 7, one can see that A is irreducible because
A + A2 > 0, that A is primitive because A4 > 0, and that
the digraph associated to A (whereby each undirected edge
is regarded as two directed edges) is strongly connected and
aperiodic.

4) Perron-Frobenius theory for nonnegative matrices: The
Perron-Frobenius Theorem states that, for any A ≥ 0,

(i) there exist a real eigenvalue λ ≥ |µ| for all other
eigenvalues µ, and right and left nonnegative eigenvectors
vright and vleft,

(ii) if A is irreducible, λ is positive and simple and vright and
vleft are unique and positive,

(iii) if A is primitive, λ > |µ| for all other eigenvalues µ.
Proofs of these statements are given for example in [99,
Chapter 8]. The eigenvalue λ is called the dominant eigenvalue
of A and, for irreducible matrices, its eigenvector (unique up
to scaling) is called the dominant eigenvector.

The spectral radius of a square matrix A, denoted by ρ(A),
is the largest magnitude of its eigenvalues. The dominant
eigenvalue of a nonnegative matrix is also its spectral radius. A
known spectral bound is mini(A1n)i ≤ ρ(A)≤maxi(A1n)i.
For the example in Figure 7, one can see that the dominant
eigenvaue λ ≈ 2.17 lies in the interval [1, 3].

5) Row-stochastic matrices: A matrix A ≥ 0 is
row-stochastic (resp. column-stochastic) if A1n = 1n

(resp. AT1n = 1n). The spectral bound implies that ρ(A) = 1
for any row-stochastic A. Clearly, the right dominant eigen-
vector of a row-stochastic matrix A is 1n. A square matrix
A is semi-convergent if limk→∞Ak is finite. If A is row-
stochastic and primitive, then it is also semi-convergent and
limk→∞Ak = 1nvTleft. More generally, a row-stochastic matrix
A is semi-convergent if and only if each strongly connected
component of G without out-going edges is aperiodic. Proofs
of these statements are given for example in [27, Chapters 4
and 5].

6) Laplacian matrices and their algebraic connectivity:
A matrix L ∈ Rn×n is Laplacian if L1n = 0n and its
off-diagonal entries are nonpositive. The Laplacian matrix
of a weighted digraph is defined by L = diag(A1n) − A;
vice versa, the weighted digraph G associated to a Laplacian
matrix L is defined by setting aij = −`ij for i 6= j. L is
said to be irreducible if G is strongly connected. Laplacian
matrices have remarkable properties. The matrix L is singular
and all its eigenvalues different from zero have positive real
part. The matrix L is irreducible if and only if the rank of
L is n − 1; in this case Im(L) = 1⊥n . If L is symmetric
(or equivalently, G is undirected), then the eigenvalues of
L can be ordered as 0 = λ1 ≤ λ2 ≤ · · · ≤ λn and G
is connected if and only if λ2 > 0. The smallest non-zero
eigenvalue λ2 is called the algebraic connectivity of G. Finally,
let exp denote the matrix exponential operation; if G contains
a globally reachable node, then limt→+∞ exp(−Lt) = 1nvTleft,
where vleft denotes the nonnegative left eigenvector of L with
eigenvalue 0, normalized to satisfy 1T

nvleft = 1. The rate
of convergence of exp(−Lt) is determined by the algebraic
connectivity λ2. Proofs of these statements are given for
example in [27, Chapters 6 and 7].

7) Metzler matrices and their properties: A matrix M is
Metzler if its off-diagonal entries are nonnegative. If L is
Laplacian, −L is Metzler. The weighted digraph G associated
to M is defined by aij = mij for i 6= j. The Perron-Frobenius
Theorem for Metzler matrices states that, for any Metzler
matrix M ,

(i) there exist a real eigenvalue λ ≥ <(µ) for all other
eigenvalues µ, and right and left nonnegative eigenvectors
vright and vleft,

(ii) if M is irreducible, λ is simple and vright and vleft are
unique and positive.

A Metzler matrix is Hurwitz if its dominant eigenvalue (and
therefore all its eigenvalues) has negative real part. A Metzler
matrix M is Hurwitz if and only if M is invertible and
−M−1 is nonnegative. Moreover, if M is Metzler, Hurwitz,
and irreducible, then −M−1 is a strictly positive matrix. One
can show that (i) any Metzler matrix M can be written as
M0 + diag(v), where M0 has zero row-sums (or alternatively
column-sums) and v ∈ Rn, and that (ii) if v has non-positive
entries and at least one entry strictly negative, then the Metzler
matrix M0 + diag(v) is Hurwitz. Proofs of these statements
are given for example in [27, Chapter 9].

Metzler matrices and their algebraic and graph-theoretical
properties are the central objects in the study of linear com-
partmental systems, an instance of which are circuits. We refer
to Appendix A for a self-contained treatment.
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8) Incidence matrices and their properties: Given an undi-
rected graph G with n nodes and m edges, assign to each edge
of G a unique index e ∈ {1, . . . ,m} and an arbitrary direction.
The (oriented) incidence matrix B ∈ Rn×m of G is defined by

Bie =





+1, if the edge e is (i, j) for some j,
−1, if the edge e is (j, i) for some j,
0, otherwise.

Clearly, 1T
nB = 0T

m. Moreover, if diag({ae}e∈{1,...,m}) is
the diagonal matrix of edge weights, then the Laplacian of
G satisfies L = B diag({ae}e∈{1,...,m})BT. The undirected
graph G is connected if and only if the rank of B is n− 1.

We next consider an illustrative example in the next figure.

1

2 3

1

2 3

1 2

3

4 4

4

Fig. 8. Numbering and orienting the edges of an undirected graph.

For the undirected unweighted graph on the left (and its
oriented version on the right), the incidence matrix B and the
Laplacian matrix L are, respectively,

B =




+1 +1 0 0
−1 0 +1 0
0 −1 −1 +1
0 0 0 −1


 , L =




2 −1 −1 0
−1 2 −1 0
−1 −1 3 −1
0 0 −1 1


 .

As one can verify, 1>nB = 0>m and L is positive semidefinite.
9) Cycle and cutset spaces: Let G be an undirected un-

weighted graph with node set {1, . . . , n} and m edges. Num-
ber the edges of G with a unique identifier e ∈ {1, . . . ,m}
and assign an arbitrary direction to each edge.

A cut χ of G is a strict non-empty subset of nodes. A cut
and its complement χc define a partition {1, . . . , n} = χ∪χc.
Given a cut χ, the set of edges that have one endpoint in each
subset of the partition is called the cutset of χ.

Given a simple undirected path γ in G, the signed path vec-
tor vγ ∈ {−1, 0,+1}m of γ is defined by, for e ∈ {1, . . . ,m},

vγe =





+1, if e is traversed positively by γ,
−1, if e is traversed negatively by γ,
0, otherwise.

Given a cut χ of G, the cutset orientation vector vχ ∈
{−1, 0,+1}m of the cut has components

vχe =





+1, if e has its source in χ and sink in χc,

−1, if e has its sink in χ and source in χc,

0, otherwise.

Here the source (resp. sink) of a directed edge (i, j) is the
node i (resp j). Figure 9 illustrates these notions.

The cycle space of G is the subspace of Rm spanned by the
signed path vectors corresponding to all simple undirected cy-
cles in G, that is, span{vγ ∈ Rm | γ is a simple cycle in G}.

1

2 3

1 2

3

�

1

2 3

1 2

3

�

Fig. 9. A simple cycle γ and a cut χ with corresponding signed path vector
vγ = [+1 − 1 + 1]T and cutset orientation vector vχ = [−1 0 + 1]T.

The cutset space of G is subspace of Rm spanned by the cutset
orientation vectors corresponding to all cuts of the nodes of
G, that is, span{vχ ∈ Rm | χ is a cut of G}. The following
linear algebraic statements follow [27, Chapter 8] easily:
(S1) the cycle space is Ker(B),
(S2) the cutset space is Im(BT), and
(S3) Ker(B) ⊥ Im(BT) and Ker(B)⊕ Im(BT) = Rm.
Statement (S3) is also known as a statement in the fundamental
theorem of linear algebra.

IV. GENERAL MODELS OF ELECTRICAL NETWORKS

In the following, we develop a rather general electrical
network model and connect it to the algebraic graph theory
concepts introduced in Section III. We will use the language
of graph theory, but we remark that many alternative termi-
nologies arose in different disciplines of electrical engineer-
ing (circuits, electronics, power, etc.). For example, graph-
theoretic concepts such as nodes and edges are often referred
to as buses, terminals, branches, lines, and so on. Likewise,
all of the aforementioned graph matrices can be found under
multiple different names and sign-conventions, but we will
consistently use the terminology from Section III.

A. Electrical network modeling

1) Topology and variables: An electrical network is an
undirected graph G = {{1, . . . , n}, E} composed of n nodes
and m undirected edges E . Additionally, we introduce a sepa-
rate ground node {0} denoting the common electrical ground
and a separate edge set E0 = ∪i∈{1,...,n}{i, 0} connecting each
node i ∈ {1, . . . , n} to the ground. Without loss of generality,
we select an arbitrary orientation for each undirected edge
{i, j} ∈ E ∪ E0 and, specifically, orient all edges of the form
{i, 0} as (i, 0). For each directed edge (i, j) we define
• an oriented current flow fij ∈ R, and
• an oriented voltage drop uij ∈ R.

As in Section III-8, the topology of the oriented edges among
the nodes {1, . . . , n} (excluding the ground node) is encoded
by the oriented incidence matrix B of G. When including the
ground node {0} and its associated edges, the overall incidence
matrix takes the form

Bground =

[
−1T

n 0T
m

In B

]
∈ R(1+n)×(n+m) .

We remark that the choice of edge numbering and orientation
is arbitrary; the latter simply reflects the reference directions
for the variables uij and fij . We will later also use the vectors
u and f that collect the variables uij and fji, for {i, j} ∈ E ,
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with elements ordered in correspondence with the numbering
of the edges. Next we introduce Kirchhoff’s laws and reveal
the role of the ground node {0}.

2) Kirchhoff’s laws: In our graph-theoretic setting we take
Kirchhoff laws as two fundamental axioms that define the
fundamental physics of electrical networks [87]:
• Kirchhoff’s current law (KCL): For each node in the

network, the algebraic sum of all current flows incident
to the node must be zero. Specifically, for all nodes
i ∈ {0} ∪ {1, . . . , n}, the current flow balance is:

0 =
∑

j s.t. (i,j)∈E∪E0
fij −

∑

j s.t. (j,i)∈E∪E0
fji ,

where, slightly abusing notation, (i, j) ∈ E ∪ E0 denotes
the oriented edge {i, j} taken from the original set of
non-oriented edges E ∪E0. More generally, for any graph
cut χ with cutset orientation vector vχ,

0 =
∑

e∈E∪E0
vχe fe, (3)

These equations can be rewritten compactly as follows.
Equation (3) implies that the vector of current flows
f ∈ Rm is perpendicular to the cutset orientation vector
vχ of every cut and, thus, to the subspace Im(BT

ground).
Statements (S1) and (S3) in Section III-9 imply that
f ∈ Ker(Bground) so that

0n+1 = Bground

[
f0

f

]
, (4)

where f0 ∈ Rn is the vector of components fi0.
• Kirchhoff’s voltage law (KVL): For all simple undirected

cycles in the network, the algebraic sum of all directed
voltage drops along the (oriented) edges of the cycle must
be zero. Specifically, for each simple undirected cycle γ
with signed path vector vγ , the voltage drop sum is:

0 =
∑

(i,j)∈γ
vγ(i,j)uij , (5)

These equations can be rewritten as follows. Equality (5)
implies that the vector of voltage drops u ∈ Rm is
perpendicular to the signed path vector vγ of every cycle
and, thus, to the subspace Ker(Bground). Statements (S2)
and (S3) in Section III-9 imply that u ∈ Im(BT

ground) and,
thus, that there exist so-called potential variables V0 ∈ R
and V ∈ Rn such that[

u0

u

]
= BT

ground

[
V0

V

]
, (6)

where u0 ∈ Rn is the vector of components ui0.
Note that the fundamental theorem of linear algebra, as

presented in statement (S3) in Section III-9, together with
equations (4) and (6), imply that

[
f0

f

]T [
u0

u

]
= 0 ,

that is, the sum of all instantaneous power flows fij · uij
along all edges {i, j} in the network equals zero. This general
fact, direct consequence of the properties of cutset and cycle

spaces in Section III-9, is known as Tellegen’s Theorem [127]
in network analysis. Tellegen’s Theorem is extremely general
and holds independently of the (linear or possibly nonlinear)
dynamic and static characteristics of an electrical network.

3) The ground node: It is convenient to specify for each
node i ∈ {1, . . . , n} two separate variables denoting its current
flow and voltage with respect to the ground. We define∗

• the current flow Ii = −fi0 ∈ R from the ground to each
node i ∈ {1, . . . , n} in KCL (4) as the external current
injection; and

• a potential Vi ∈ R as an auxiliary variable for each node
i ∈ {1, . . . , n} ∪ {0} to specify KVL (6).

Observe that KVL (6) defines the potentials Vi only up to an
arbitrary reference since 1n+1 ∈ Ker(BT

ground). It is convenient
to define the potential of the electrical ground as zero:
• ground potential: the ground has zero potential: V0 = 0.
We can now write Kirchhoff’s laws in a way that is

more familiar to scholars of graph theory [17] and dynamical
systems [135]. KCL (4) reads for nodes {1, . . . , n} as

I = Bf . (7)

For the ground {0}, KCL gives the current injection balance
∑n

i=1
Ii = 0 . (8)

Observe that this balance equation is redundant as it can also
be found by multiplying KCL (7) from the left by 1T

n.
Given that V0 = 0, KVL (6) gives the voltage ui0 between

node i and the ground {0} simply as the potential Vi:

ui0 = Vi , for all i ∈ {1, . . . , n} .
Let u ∈ Rm be the vector that collects all other voltages uij
for {i, j} ∈ E with appropriate numbering. Then KVL (6) can
be written as

u = BTV , (9)

that is, the voltage drops equal potential differences uij =
Vi − Vj for each {i, j} ∈ E with the sign convention as
specified by the oriented incidence matrix B.

Kirchhoff’s laws (7), (9) define n+m linear equations relat-
ing the 2n+2m variables (V, I, f, u). We further complement
these equations through constitutive relations relating fij and
uij for any pair {i, j} of connected nodes.

4) Constitutive relations: Here we consider three basic
linear circuit elements: resistors, inductors, and capacitors.
These three elements are illustrated with their circuit symbols
in Figure 10. The voltage uij over a circuit element and
current flow fij through it satisfy the following well-known
constitutive relations:
• resistor: uij = rijfij , where rij > 0 is a resistance;
• inductor: `ij d

dtfij = uij , where `ij > 0 is an inductance;
• capacitor: cij d

dtuij = fij , where cij > 0 is a capacitance.
The constitutive relation for a resistor, uij = rijfij known as
Ohm’s law gives together with KVL (9) the current flow over
the resistor as fij = uij/rij = (Vi − Vj)/rij . It is instructive

∗Our notation follows the convention that nodal (respectively, edge) vari-
ables are denoted by capital (respectively, lower-case) letters.
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i j
rij

(a) resistive branch

i j
`ij

(b) inductive branch

i j
cij

(c) capacitive branch

Fig. 10. Circuit symbols for resistors, inductors, and capacitors

to remark that this flow function fij = (Vi−Vj)/rij can also
be derived as the unique flow-characteristic that minimizes
the network losses subject to KCL (7) and assuming anti-
symmetry fij = −fji of the flow. This result, known as
Thomson’s Principle, is nowadays an integral part of textbooks
on algebraic graph theory and Markov chains [77], [55], [61].

We will collectively refer to resistors, inductors, and capac-
itors as impedances, a term which is also often used when
multiple basic circuit elements are lumped into a single one.

5) Load models: For the ground {0} we omit the double-
indexing of adjacent circuit elements, and use ci, li, and ri
instead of ci0, li0, and ri0. Circuit elements (or a collection
thereof) connected to the ground are referred to as shunt
impedances, and they are often used to model loads. In
particular, a shunt resistor ri injects a load current Iload,i =
−fi0 = −ui0/ri = −Vi/ri and models so-called active
power loads which dissipate energy. On the contrary shunt
capacitors and inductors model so-called reactive power loads
that merely transform energy; see Section VI-B. Aside from
such impedance loads, which draw a current Iload,i linearly
depending on the potential Vi, another popular load model
is a constant current demand Iload,i = I∗i ∈ R≤0 or more
general nonlinear relations between load current Iload,i and
the potential Vi, e.g., a load injecting a constant instantaneous
power P ∗i = Iload,i Vi ≤ 0. A load model aggregating constant
impedance, constant current, and constant power loads is
normally called a ZIP load [90]. We refer to Figure 11 for
an illustration of such load models.

P ⇤
i

i

I⇤iri `i ci

+

-

Vi

Fig. 11. A load model aggregating a shunt impedance (ri, li, ci), a constant
current load I∗i , and a constant power load with constant P ∗i = Iload,iVi.

6) Source models: A device that provides a constant current
injection Ii = I∗i ∈ R≥0 or a constant potential V ∗i ∈ R≥0

(relative to the ground) at a node i is termed an ideal current
source or an ideal voltage source, respectively. Figure 12
depicts an ideal current source and voltage source in com-
bination with a shunt resistor ri and with a series resistance

rik, respectively. We show these resistances for the following
reason: When we set ri = rki and V ∗k /rki = I∗i , then by
Ohm’s law these two models are delivering the same current

Ii = I∗i − Vi/ri = (V ∗k − Vi)/rki.
Thus, an ideal voltage source can always be converted to an
ideal current source and vice versa. In the following, we focus
without loss of generality on constant current sources.

i

riI⇤i

i
=+

V ⇤
k

rki

k

ri = rki

Ii Ii

Fig. 12. Equivalent constant current and constant voltage sources

B. Different branch models

Kirchhoff’s laws, the constitutive relations, and the models
for loads and sources provide the required ingredients for our
network model. We connect the loads and sources through
a network whose branches are modeled by lumped circuit
elements taking into account losses, charging, waves, and
other effects. A widely used branch model is the Π-model
depicted in Figure 13. The Π-model consists of a series
resistive-inductive impedance modeling the branch inductance
and losses as well as a shunt capacitor to ground at each end
of the branch modeling the cable charging. Typically, the two
shunt capacitors take identical values.

The Π-model can be used to model various branch charac-
teristics, including long high-voltage transmission lines (domi-
nantly inductive), underground cables (with additional resistive
and capacitive components), and short wires (dominantly
resistive) [90], [106]. Note that if there are multiple branches
connected to a node, each modeled by the Π-model, we can
merge the multiple parallel shunt capacitors into a single one.

i jrij `ij

ci cj

Fig. 13. Π-model of a branch in electrical network between nodes i and j.

C. A prototypical electrical network

In what follows, we consider a prototypical electrical net-
work model to illustrate applications of algebraic graph theory.
For each branch we consider a Π-model as in Figure 13. When
multiple Π-models are connected to the same node, we lump
all parallel capacitors into a single equivalent capacitance. At
each node i ∈ {1, . . . , n} we thus consider an equivalent
capacitance ci > 0, a shunt resistance ri ≥ 0, a constant
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current injection I∗i ∈ R, and a constant power injection
P ∗i ∈ R modeling sources and loads as in Figures 11 and
12. In this case, the network equations are

KCL: I = Bf , (10a)

KVL: u = BTV , (10b)

ground: I = Iload − CV̇ , (10c)

branch: Lḟ = u−Rf , (10d)
load: Iload = I∗ + P ∗ � V −GV , (10e)

where R,L,C,G are diagonal matrices of rij , `ij , ci, and the
symbol gi = 1/ri conventionally denotes the shunt conduc-
tance (reciprocal of resistance). Finally, I∗ = (I∗1 , . . . , I

∗
n) and

P ∗ are the vectors of constant current and power injections.
It is convenient to reduce the network equations (10) to a

state-space model defined in terms of the variables V and f
associated with the capacitive and inductive storage elements.
By inserting (10a), (10e) in (10c), respectively, (10b) in (10d),
we obtain
[
C

L

] [
V̇

ḟ

]
=

[
−G −B
BT −R

] [
V
f

]
+

[
I∗ + P ∗ � V

0m

]
. (11)

A block-diagram of the electrical network model (10), respec-
tively, (11), is shown in Figure 14. Observe the separation of
the dynamics associated to n nodes (ground and loads) and
m edges (branches), the exogenous current injections I∗ and
nonlinear power injections P ∗, as well as the interconnection
through Kirchhoff’s current and voltage laws via B and B>.

B BT

`ij
dfij

dt
= uij � rijfij

. . .

. . .

ci
dVi

dt
= Iload � Ii

. . .

. . .

V

uf

_

ground dynamics

branch dynamics

I

KVLKCL

. . .

. . .
I⇤i + P ⇤

i /Vi � giVi

loads

+
Iload

I⇤i , P ⇤
i

Fig. 14. Block-diagram of the electrical network model (10).

D. Noteworthy special cases

The electrical network model described in equations (10)
and (11), respectively, is fairly general and admits a few
special cases that we will repeatedly revisit as pedagogical
examples.

1) Resistive-capacitive interconnection: If all branches are
purely resistive (R positive definite and L = 0m×m), the
model (11) reduces to

CV̇ = − (LR +G)V + I∗ + P ∗ � V , (12)

where LR = BR−1BT is the so-called conductance matrix,
a Laplacian matrix associated with the (undirected) graph of
the electrical network with weights given by inverse resistance
1/rij for edge {i, j}; see Section III-8. We will later reveal
various properties of the nonlinear dynamic equations (12) by
studying the properties of the matrix BR−1BT +G.

In the absence of constant-power loads (P ∗ = 0n), equi-
librium points of (12) are determined by a static and well-
studied model characterized by the Laplacian matrix LR and
the conductance loads G:

I∗ = (LR +G)V . (13)

2) Lossless inductive-capacitive case: In the absence of
loads (G = 0n×n and I∗ = P ∗ = 0n) and dissipative elements
(R = 0m×m) — that is, in an entirely lossless circuit — the
electrical network model (11) can be re-written as

[
C

L

] [
V̇

ḟ

]
=

[
0 −B
BT 0

] [
V
f

]
, (14)

or by taking another derivative of V , as

CV̈ = −LLV , (15)

where LL = BL−1BT is the weighted Laplacian matrix with
weights L−1.

3) Homogeneous case: Consider a slightly more complex
scenario, where all network branches are made of the same
material, and thus the ratio of lij/rij = τ is constant for all
edges {i, j} ∈ E . Assume also that there are no constant-
current or constant-power loads, so that I∗ = P ∗ = 0n. By
taking a second derivative of V in (11), substituting for ḟ , and
finally eliminating f , the electrical network model (11) can be
re-written as

τCV̈ + (τG+ C)V̇ + (LR +G)V = 0n . (16)

For τ = 0, we recover the model (12) and for τ =∞ and G =
0n×n, we recover the model (15). The equations (16) are also
reminiscent of the resistively coupled LC tanks introduced in
Section II-A. The LC tanks can be modeled by the equations

CV̈ + LRV̇ + L−1V = 0n , (17)

where V is the vector of voltages across every LC tank circuit
[49]. In the homogeneous case in Section II-A, i.e., for R =
rIm, C = cIn, and L = `In, the model (17) reduces to

V̈ + τ ′LV̇ + ω2
0V = 0n ,

where we recall that ω0 = 1/
√
`c is the natural frequency

of oscillations, L = BBT is the unweighted Laplacian of
the network, and τ ′ = 1/rc is a uniform time-constant that
determines the relaxation time to the synchronous solution.

In the following sections, we analyze the static and dynamic
properties of the electrical network model (10) and its special
cases from the viewpoint of algebraic graph theory. We remark
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that most of the following approaches extend (either directly
or at least conceptually) to richer classes of electrical networks
with switching behavior as in power electronics [60], [162],
multi-physical dynamics as in synchronous generators [63],
[74], or nonlinear oscillators [152], [47], [39], among others.

V. STRUCTURE AND DYNAMICS OF LINEAR ELECTRICAL
NETWORKS

In what follows, we explain how the structure of an electri-
cal network (in terms of its topology and impedances) reveals
various insights about the associated electrical dynamics. The
interplay of structure and dynamics is revealed through the
algebraic graph theory methods introduced in Section III.
This section focuses on the case of linear electrical networks,
described by special cases of the general model (11). The study
of nonlinear networks is deferred to Section VI.

A. Static resistive networks

We begin our analysis with the case of a static resistive
network with no constant power loads, as described by (13).
For simplicity of notation, let us drop the super- and subscripts
in this section and simply rewrite (13) as

I = (L+G)V , (18)

where L = LT ∈ Rn×n is a symmetric and irreducible
Laplacian matrix, G ∈ Rn×n is a diagonal matrix with
nonnegative diagonal entries, and I, V ∈ Rn are constant
vectors. We remark that equation (18) is also of interest
independently of circuits, as linear diffusive equations with
Laplacian matrices arise all throughout the sciences [138].

1) Characteristics of solutions and Laplacian inverses: We
explore the solution space of the resistive circuit equation (18).
We consider the singular and non-singular case separately.

Singular circuit equations: When G = 0n×n, we know
from Section III-6 that L is singular with Ker(L) = span(1n)
and with Im(L) = 1⊥n . Hence, equation (18) admits a solution
if and only if I ∈ 1⊥n , that is, the current injections are
balanced: 1T

nI = 0. In this case, the solution is given by

V = Vhom + Vpart = α · 1n + L†I , (19)

where the homogeneous solution Vhom = α ·1n with α ∈ R is
the flat-voltage profile without current flows, and the particular
solution is Vpart = L†I ∈ 1⊥n , where L† is the Moore-
Penrose inverse of the Laplacian matrix L [99]. The following
proposition collects some properties of the various possible
generalized inverses of a Laplacian matrix.

Proposition 5.1 (Inverse Laplacian matrices [27], [52],
[75], [38], [69]): Consider a symmetric and irreducible Lapla-
cian matrix L ∈ Rn×n with singular value decomposition

L = [ 1√
n

1n v2 ... vn ]︸ ︷︷ ︸
=V




0
λ2

. . .
λn


 [ 1√

n
1n v2 ... vn ]

T

︸ ︷︷ ︸
=VT

,

where λ2, . . . , λn > 0 and v2, . . . , vn ⊥ 1n are the nonzero
eigenvalues of L and associated eigenvectors collected in the
matrix V. The following statements hold:

(i) the Moore-Penrose inverse of L given by

L† = V




0
1
λ2

. . .
1
λn


VT (20)

is symmetric positive semidefinite, with zero row and
column sums, and satisfies L†L = LL† = Πn;

(ii) the regularized Laplacian Lreg = L+ β
n1n1T

n with β > 0
is non-singular, positive definite, and satisfies

L−1
reg =

(
L+

β

n
1n1T

n

)−1

= L† +
1

β n
1n1T

n

=V




1
β

1
λ2

. . .
1
λn


VT ;

(21)

(iii) the shunted Laplacian Lshunt = L + εIn with ε > 0 is
non-singular, positive definite, and satisfies

L−1
shunt = V




1
ε

1
λ2+ε

. . .
1

λn+ε


VT ; (22)

(iv) the grounded Laplacian Lground ∈ R(n−1)×(n−1) is the
leading principal (n − 1) × (n − 1) submatrix of the
Laplacian matrix L (after removing the nth row and
nth column) and has the following properties: Lground is
non-singular and positive definite, −Lground is a Metzler
matrix, and its inverse is a nonnegative matrix satisfying

(
L−1

ground

)
ij

= (ei − en)TL†(ej − en) . (23)

The regularized Laplacian Lreg, the shunted Laplacian
Lshunt, and the grounded Laplacian Lground are all non-singular
and positive definite matrices. Due to these favorable proper-
ties they are often preferred for numerical computations or for
analytic studies, as compared to the singular Laplacian L that
requires careful treatment of its nullspace. Note that the regu-
larized and shunted Laplacians Lreg and Lshunt have the same
eigenvectors as the Laplacian L, but the zero (respectively,
all) eigenvalues are shifted to the right. The inverse Laplacian
matrices (20)-(22) are sometimes referred to as Green matrices
and studied in different applications [21], [92], [61], [31]. On
the other hand, the grounded Laplacian Lground and its inverse
do not preserve the eigenstructure of L; see [109], [153] for
relations between L and Lground.

Aside from mathematical convenience, the grounded Lapla-
cian Lground is also a natural concept in circuit analysis when
the nth node is literally the ground of the circuit [37]. Vice
versa, the matrix LR + G in (13) can be thought of as the
grounded Laplacian of a network with n+1 nodes. Along the
same lines, the shunted Laplacian Lshunt corresponds to adding
a shunt resistor to ground of value ε at every node or grounding
a network with n + 1 nodes. Aside from circuits, natural
applications of grounded Laplacian matrices are networks with
reference nodes as in opinion dynamics with stubborn agents
[109], [153], distributed estimation with partial measurements
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[10], or platooning of vehicles [76]. The grounded Laplacian
Lground is also an interesting algebraic graph and matrix theory
concept in its own right and studied in [100], [69].

Non-singular circuit equations: In case that G has at
least one positive diagonal entry, then −(L+G) is a Hurwitz
Metzler matrix, as discussed in Section III-7 and Appendix A.
The solution to (18) is therefore unique, and is given by

V = (L+G)−1I . (24)

The matrix L + G is sometimes called a loopy Laplacian
matrix since the non-zero diagonal entry represents a self-loop
in the graph [52]. This matrix can also be thought of as the
grounded Laplacian matrix of an appropriate (n+1)×(n+1)-
dimensional Laplacian matrix [52]. Since −(L+G) is Metzler,
Hurwitz, and irreducible, then we know from Section III-7 that
(L+G)−1 is a positive matrix. An important consequence is
that if the current injections I in (24) are nonnegative with at
least one strictly positive injection, then the unique voltage
solution V is a strictly positive vector; this is in contrast
to the singular case (19). For example, this occurs if the
current injections I arise from converting voltage sources into
current sources (Section IV-A6). The matrices Lreg, Lground,
Lshunt, and (L+G) are all positive definite, and their inverses
can be further characterized in terms of their so-called decay
properties [46], [15], [100]. These decay properties reveal that
the effect a current injection Ii at node i on the potential Vj of
another node j diminishes according to the distance between
nodes i and j; we now explore this distance concept further.

2) The effective resistance and its properties: Consider
an undirected, connected, and weighted graph and an as-
sociated connected resistive electrical network governed by
the equations (18) with G = 0n×n. The effective resistance
reff
ij between any pair of (not necessarily neighboring) nodes
i, j ∈ {1, . . . , n} is defined as the potential difference Vi−Vj
between these nodes when a unit current is injected into node
i and extracted from node j; see Figure 15 for an illustration.

For the example in Figure 5 the effective resistance between
nodes 1 and 3 takes the well-known value reff

13 = rred
13 = r12 +

r23 sometimes referred to as reduced or equivalent resistance.

+

i

j

re↵
ij

1 A

1 A
-

Fig. 15. The effective resistance between nodes i and j is the potential
difference when a unit current of 1 A is injected in i and extracted in j.

Note that the potential difference between nodes i and j is
(ei−ej)TV , the current injection takes the form I = ei−ej =
LV , and accordingly V = L†(ei − ej) from (19). From these
simple facts we obtain the following result.

Proposition 5.2 (Effective resistance): The effective re-
sistance reff

ij between two nodes i, j ∈ {1, . . . , n} of an
undirected, connected, and weighted graph with Laplacian
matrix L is given by

reff
ij = (ei − ej)

TL†(ei − ej) = L†ii + L†jj − 2L†ij . (25)

We remark that the effective resistance and all of its proper-
ties derived below can be obtained analogously if G 6= 0n×n
or with the regularized or grounded Laplacian matrices [52].
The effective resistance is also referred to as the resistance
distance [88] since it defines a distance metric on a graph (it is
symmetric, nonnegative, and satisfies the triangle inequality).

Proposition 5.3 (Effective resistance is a distance [88]):
Consider an undirected, connected, and weighted graph with
n nodes. The associated effective resistances reff

ij satisfy

(i) nonnegativity: reff
ij ≥ 0 for all i, j ∈ {1, . . . , n} and reff

ij =
0 if and only if i = j;

(ii) symmetry: reff
ij = reff

ji for all i, j ∈ {1, . . . , n}; and
(iii) triangle inequality: reff

ij ≤ reff
ik + reff

kj for all i, j, k ∈
{1, . . . , n}.

r/3 r/3

r/3

r/3 r/3

r/3

1 2

+-

r/3 r/3

r/3

r/3 r/3

r/3

1 2

+

re↵
12 = r/3

-

r

re↵
12 = r/2

Fig. 16. Adding an edge to the circuit in the panel lowers the effective
resistance between nodes {1, 2} in the circuit in the right panel. In other
words, the effective resistance takes parallel paths into account and is a
monotonically non-increasing function of topology and weights.

Compared to other distance metrics on graphs, e.g., the
topological distance given by the length of the shortest (possi-
bly weighted) path between nodes [72], the effective resistance
takes into account all parallel paths. For example, in the left
panel of Figure 16, nodes 1 and 2 are connected by two
parallel paths each of resistance r. They have a resistance
distance reff

ij = r/2 whereas the weighted shortest path takes
the value r. Hence, the effective resistance is the preferred
distance metric in electrical networks, e.g., see [40], and also
in non-technological applications where parallel paths need to
be taken into account such as chemistry [81], ecology [96],
and disease spreading [2], amongst others.

Related to these parallel paths is the fact that the effective
resistance characterizes an average performance measure for
random walks in Markov chains [55], distributed estimation
[10], average consensus [156], [92], and other diffusive graph
algorithms [61]; see also Proposition 5.11. Indeed, com-
pared to worst-case performance measures related to dominant
eigenvalues of adjacency and Laplacian matrices, the sum of
all effective resistances is related to the harmonic mean of all
non-zero Laplacian eigenvalues.
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Proposition 5.4 (Effective resistance and Laplacian eigen-
values [154]): Consider an undirected, connected, and
weighted graph with n nodes, its Laplacian matrix L ∈ Rn×n
with spectrum spec(L) = {0, λ2, . . . , λn}, its effective resis-
tances reff

ij in (25) for all i, j ∈ {1, . . . , n}, and define the total
effective resistance as Rtot =

∑n
i,j=1,i<j r

eff
ij . It holds that

Rtot =

n∑

i,j=1,i<j

reff
ij = n

n∑

i=2

1

λi
. (26)

Another important property of the effective resistance is
Rayleigh’s monotonicity law stating that the effective resis-
tances are monotonically increasing functions of the branch
resistances, e.g., compare the two networks and effective
resistances in Figure 16. We state Rayleigh’s monotonicity
law in the language of algebraic graph theory below.

Proposition 5.5 (Rayleigh’s monotonicity law [55]): Con-
sider two symmetric and irreducible adjacency matrices
A, Ã ∈ Rn×n corresponding to two undirected, connected, and
weighted graphs with identical node sets but possibly different
edge sets and edge weights. Consider the associated effective
resistances reff

ij and r̃eff
ij for i, j ∈ {1, . . . , n}. If Ãij ≥ Aij for

all i, j ∈ {1, . . . , n}, then r̃eff
ij ≤ reff

ij for all i, j ∈ {1, . . . , n}.
Aside from this important monotonicity property exploited

in many algorithmic applications, the effective resistance is
also known to be a strictly convex function of the graph
weights [70]. The latter fact makes the effective resistance
attractive for circuit design as well as the synthesis and tuning
of diffusive algorithms leveraging the analogy to electrical
networks [55], [10], [156], [70], [92].

In conclusion, the effective resistance is motivated from
electrical networks, but it has now a firm place in graph theory
and its applications. We refer to [55], [154], [88], [52], [10],
[70], [69], [157], [75], [61] for further exploration of the rich
literature.

3) Network Kron reduction: We revisit the series circuit
contraction and the star-triangle transformation from Subsec-
tion II-D and analyze them through algebraic graph theory.

Consider again the connected and resistive electrical net-
work model (18), and assume for simplicity here that G =
0n×n. We partition the nodes into two sets {1, . . . , n} =
U1 ∪ U2 that we term boundary nodes U1 and interior nodes
U2, e.g., U1 = {1, 3} and U2 = {2} for the series circuit in
Figure 5 and U1 = {1, 2, 3} and U2 = {4} for the star in
Figure 6. The associated partitioned current-balance equations
(18) are [

I1
I2

]
=

[
L11 L12

LT
12 L22

] [
V1

V2

]
. (27)

Observe that the lower-right block L22 is a loopy Laplacian
matrix and is thus (as we observed in Section V-A1) non-
singular. By eliminating the voltages V2 of the interior nodes
as V2 = L−1

22 I2 − L−1
22 LT

12V1, we obtain the reduced model

I1 − L12L−1
22 I2︸ ︷︷ ︸

I red

=
(
L11 − L12L−1

22 LT
12

)
︸ ︷︷ ︸

Lred

V1 , (28)

where I red and Lred can be interpreted as reduced current
injections and reduced conductance matrix, respectively. This

algebraic elimination procedure is termed Kron reduction after
Gabriel Kron [89]. The reader is invited to verify that the
well-known transformations in Subsection II-D are special
cases of Kron reduction, and so are many related circuit
transformations [142], [117], [115]. An application to a power
system model is shown in Figure 17. In the following, we
establish that the Kron-reduced equations (28) indeed define an
electrical network, as suggested by the examples in Figures 5
and 6.
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Fig. 9. The New England test system [10], [11]. The system includes
10 synchronous generators and 39 buses. Most of the buses have constant
active and reactive power loads. Coupled swing dynamics of 10 generators
are studied in the case that a line-to-ground fault occurs at point F near bus
16.

test system can be represented by

δ̇i = ωi,
Hi

πfs
ω̇i = −Diωi + Pmi − GiiE

2
i −

10∑

j=1,j ̸=i

EiEj ·

· {Gij cos(δi − δj) + Bij sin(δi − δj)},

⎫
⎪⎪⎬
⎪⎪⎭

(11)

where i = 2, . . . , 10. δi is the rotor angle of generator i with
respect to bus 1, and ωi the rotor speed deviation of generator
i relative to system angular frequency (2πfs = 2π × 60Hz).
δ1 is constant for the above assumption. The parameters
fs, Hi, Pmi, Di, Ei, Gii, Gij , and Bij are in per unit
system except for Hi and Di in second, and for fs in Helz.
The mechanical input power Pmi to generator i and the
magnitude Ei of internal voltage in generator i are assumed
to be constant for transient stability studies [1], [2]. Hi is
the inertia constant of generator i, Di its damping coefficient,
and they are constant. Gii is the internal conductance, and
Gij + jBij the transfer impedance between generators i
and j; They are the parameters which change with network
topology changes. Note that electrical loads in the test system
are modeled as passive impedance [11].

B. Numerical Experiment

Coupled swing dynamics of 10 generators in the
test system are simulated. Ei and the initial condition
(δi(0),ωi(0) = 0) for generator i are fixed through power
flow calculation. Hi is fixed at the original values in [11].
Pmi and constant power loads are assumed to be 50% at their
ratings [22]. The damping Di is 0.005 s for all generators.
Gii, Gij , and Bij are also based on the original line data
in [11] and the power flow calculation. It is assumed that
the test system is in a steady operating condition at t = 0 s,
that a line-to-ground fault occurs at point F near bus 16 at
t = 1 s−20/(60Hz), and that line 16–17 trips at t = 1 s. The
fault duration is 20 cycles of a 60-Hz sine wave. The fault
is simulated by adding a small impedance (10−7j) between
bus 16 and ground. Fig. 10 shows coupled swings of rotor
angle δi in the test system. The figure indicates that all rotor
angles start to grow coherently at about 8 s. The coherent
growing is global instability.

C. Remarks

It was confirmed that the system (11) in the New Eng-
land test system shows global instability. A few comments
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Fig. 10. Coupled swing of phase angle δi in New England test system.
The fault duration is 20 cycles of a 60-Hz sine wave. The result is obtained
by numerical integration of eqs. (11).

are provided to discuss whether the instability in Fig. 10
occurs in the corresponding real power system. First, the
classical model with constant voltage behind impedance is
used for first swing criterion of transient stability [1]. This is
because second and multi swings may be affected by voltage
fluctuations, damping effects, controllers such as AVR, PSS,
and governor. Second, the fault durations, which we fixed at
20 cycles, are normally less than 10 cycles. Last, the load
condition used above is different from the original one in
[11]. We cannot hence argue that global instability occurs in
the real system. Analysis, however, does show a possibility
of global instability in real power systems.

IV. TOWARDS A CONTROL FOR GLOBAL SWING

INSTABILITY

Global instability is related to the undesirable phenomenon
that should be avoided by control. We introduce a key
mechanism for the control problem and discuss control
strategies for preventing or avoiding the instability.

A. Internal Resonance as Another Mechanism

Inspired by [12], we here describe the global instability
with dynamical systems theory close to internal resonance
[23], [24]. Consider collective dynamics in the system (5).
For the system (5) with small parameters pm and b, the set
{(δ,ω) ∈ S1 × R | ω = 0} of states in the phase plane is
called resonant surface [23], and its neighborhood resonant
band. The phase plane is decomposed into the two parts:
resonant band and high-energy zone outside of it. Here the
initial conditions of local and mode disturbances in Sec. II
indeed exist inside the resonant band. The collective motion
before the onset of coherent growing is trapped near the
resonant band. On the other hand, after the coherent growing,
it escapes from the resonant band as shown in Figs. 3(b),
4(b), 5, and 8(b) and (c). The trapped motion is almost
integrable and is regarded as a captured state in resonance
[23]. At a moment, the integrable motion may be interrupted
by small kicks that happen during the resonant band. That is,
the so-called release from resonance [23] happens, and the
collective motion crosses the homoclinic orbit in Figs. 3(b),
4(b), 5, and 8(b) and (c), and hence it goes away from
the resonant band. It is therefore said that global instability
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Fig. 17. Illustration of the IEEE 39 New England power system [105] with
generator nodes {1, . . . , 10} depicted as circles on the left panel; graph-
theoretic abstraction in the middle panel with nodes {1, . . . , 10} outside the
dashed circle; and the Kron-reduced network reduced to nodes {1, . . . , 10}.

Proposition 5.6 (Kron reduction [132], [52]): Consider
the resistive network equations (27) parameterized by the
irreducible conductance matrix L ∈ Rn×n satisfying L1n =
0n and the balanced current injections I ∈ Rn satisfying
1T
nI = 0. Consider also the associated Kron-reduced network

equations (28) parameterized by the reduced injections I red

and conductance matrix Lred. The following statements hold:
(i) The matrix −L12L−1

22 is nonnegative and column-
stochastic, and thus the reduced current injections I red =
I1 − L12L−1

22 I2 are balanced: 1TI red = 0.
(ii) The reduced conductance matrix Lred = L11 −
L12L−1

22 LT
12 is a nonnegative, symmetric, and irreducible

Laplacian matrix satisfying Lred1 = 0.

Now that we have established that Kron reduction is well-
posed and defines an electrical network, we are interested in its
graph-theoretic properties. We begin by studying the topology
and weights of the Kron-reduced network. Observe from the
examples in Figures 5, 6, and 17 that the graph associated to
the Kron-reduced network is always denser than the original
graph both in terms of topology and weights. This statement
can be made precise as follows.

Proposition 5.7 (Graph-theoretical properties of Kron re-
duction [52]): Consider the network equations (27) and the
Kron-reduced equations (28) with conductance matrices L and
Lred, respectively. The graph associated to the conductance
matrix Lred has an edge between boundary nodes i, j ∈ U1 if
and only if either
• {i, j} is an edge in the original graph associated to the

conductance matrix L, or
• there is a path {i, k1, . . . , km, j} in the original graph

between nodes i and j passing through only interior nodes
{k1, . . . , km} ⊂ U2.

Moreover, for all distinct i, j ∈ U1, it holds that Lred
ij ≤ Lij ,

that is, the weights are non-decreasing.

A consequence of Proposition 5.7 is the following char-
acterization that is intuitive from the Y-∆ transformation in
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Figure 6: if a set of interior nodes κ ⊆ U2 forms a connected
subgraph in the original network, then the boundary nodes
adjacent to κ form a clique in the Kron-reduced network.

The careful reader may have observed that the series con-
traction in Figure 5 is an instance of Kron reduction network
where the reduced resistance takes the same value as the
effective resistance between nodes 1 and 3: rred

13 = r12 +r23 =
reff
13. In general, the Kron-reduced matrix and the effective

resistance admit such a direct relationship only in very uniform
networks; see [52] for details. However, it is always true that
the effective resistance is invariant under Kron reduction.

Proposition 5.8 (Invariance of effective resistance [52]):
Consider the network model (27) and the Kron-reduced model
(28) with conductance matrices L and Lred, respectively. Then
for any boundary nodes i, j ∈ U1, the effective resistances reff

ij

can be equivalently computed from L or Lred:

reff
ij = (ei − ej)

TL†(ei − ej) = (ei − ej)
T
(
Lred)† (ei − ej) .

We remark that all of the above results on Kron reduction
can be adapted to the case when the network features shunt
resistors (G 6= 0n×n), and related topological, spectral, and
algebraic properties can be derived; see [52] for further details.

The graph-theoretic perspective on Kron reduction finds
direct application in the synthesis and analysis of circuits
[132], [136], [150] particularly in the context of large-scale
integration chips [113], [3], power system and power elec-
tronics model reduction [143], [94], [28], [47], [129], smart
grid monitoring [48], [123], electrical impedance tomography
[23], [41], and many other domains of electrical networks. In
a general context, algebraic equations governed by Laplacian
matrices such as (18) are encountered in many scientific
disciplines. Thus, Kron reduction can be found under different
names and with a graph-theoretic perspective in Gaussian
elimination of sparse matrices [65], [71], [114], sparse grid and
finite-element solvers [139], [43], [138], statistical mechanics
[107], data mining [155], [69], reduction of Markov chains
[98], [18], signal processing on graphs [108], [159], and pure
algebraic graph theory [66], [62], [125] among others.

We conclude by remarking that this rich literature dating
back to the early days of electrical circuits is still active today.
Many applications and graph-theoretic properties are still to be
explored. Even apparently simple extensions to directed and
complex-valued graphs (as occurring later in Section VI-B) are
mostly open to the best of our knowledge; see the concluding
Section VII or, e.g., the recent article [134] discussing classical
and open problems in linear resistive networks.

B. Dynamic resistive-capacitive (RC) networks

Now that we have thoroughly examined static resistive
networks, we move on towards dynamic RC networks with the
first-order dynamics (12) in the linear setting when P ∗ = 0n:

CV̇ (t) = − (L+G)V (t) + I∗ . (29)

We will assume that C is a diagonal and positive definite
matrix of capacitances, and the conductance matrix L is an
irreducible Laplacian matrix. Consider first the dissipative case

when G has at least one strictly positive diagonal element.
In this case, the associated compartmental system is outflow-
connected (see Appendix A and Section II-B), and the matrix
−C−1 (L+G) is Metzler, Hurwitz, and irreducible. The
following proposition summarizes this discussion.

Proposition 5.9 (Stability of dissipative RC network): Con-
sider the dissipative RC network dynamics (29) and assume
that G has at least one strictly positive diagonal element. Then
from every initial voltage profile V (t = 0), the dynamics
(29) converge exponentially to the unique equilibrium voltage
profile

limt→∞ V (t) = (L+G)
−1
I∗ .

Next, consider the case without shunt conductances when
G = 0n×n:

CV̇ (t) = −LV (t) + I∗ . (30)

Recall from Section V-A that the network dynamics (30) admit
an equilibrium as in (19) if and only if 1T

nI
∗ = 0. To further

characterize the degree of freedom α ∈ R of the equilibrium
(19), note that the total charge is conserved:

d

dt

(
1T
nCV

)
= 1T

nI
∗ = 0 , (31)

where we have used the fact that 1T
nL = 0T

n. Accordingly,
1T
nCV (t) = 1T

nCV0 for all t ≥ 0, where V0 = V (t = 0). It
follows by substituting (19) into this conservation law that

α =
1T
nC(V0 − L†I∗)

1T
nC1n

. (32)

To show stability of the equilibrium profile (19) with α as in
(32), we define the voltage error coordinate

Ṽ = V − α1n − L†I∗ , (33)

and a quick calculation (making use of Proposition 5.1)
shows that Ṽ satisfies the differential equation C ˙̃V = −LṼ .
Consider now the energy-like function W (Ṽ ) = 1

2 Ṽ
TCṼ .

It can be verified that this energy is non-increasing along
trajectories:

d

dt
W (Ṽ ) = −Ṽ TLṼ ≤ −λ2‖Ṽ ‖2 ≤ −

λ2

cmax
W (Ṽ ) , (34)

where λ2 is the second-smallest eigenvalue of the Laplacian
matrix known as the algebraic connectivity; see Section III-6.
From this so-called dissipation inequality [147], we obtain the
exponential decay estimate W (Ṽ (t)) ≤ W (Ṽ0) exp(− λ2

cmax
t),

which again implies that Ṽ (t) converges exponentially:
∥∥∥Ṽ (t)

∥∥∥ ≤
∥∥∥Ṽ0

∥∥∥ cmax

cmin
exp

(
− λ2

2cmax
t

)
. (35)

This discussion is summarized in the following proposition.

Proposition 5.10 (Stability of RC network without shunt con-
ductances): Consider the RC network dynamics (30) without
shunt conductances and assume that 1T

nI
∗ = 0. Then for every

initial voltage profile V0 ∈ Rn, the dynamics converge to the
unique and exponentially stable equilibrium voltage profile

limt→∞ V (t) = α1n − L†I∗,
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where α is given by (32). The convergence is exponential with
a decay rate proportional to λ2 as in (35). Moreover, the total
charge is conserved along solutions as in (31).

The following remarks are in order. In the absence of
external injections, I∗ = 0n, the voltages equalize to the flat
profile 1T

nCV0

1T
nC1n

1n; this constant uniform voltage is a weighted
average of the initial voltage values, with weights depending
on the capacitances. The features of the particular solution
L†I∗ have been discussed in detail in Section V-A. The voltage
error coordinate (33) is related to the disagreement vector
studied in consensus problems [103], [33]. The exponential
decay estimate λ2/cmax in (35) depends on the maximum
capacitance as well as on the algebraic connectivity λ2 of
the network. The algebraic connectivity is a well-studied
quantity in algebraic graph theory dating back to the seminal
work by Fiedler [64]. For example, λ2 is a popular metric
in graph partitioning and community detection [111], [67]
as it quantifies the smallest bottleneck in the graph, where
“smallest” is understood in our context as the minimal current
flow over any cut separating the nodes of an electrical network.

The exponential decay estimate (35) is achieved for a worst-
case initial condition Ṽ0 aligned with the eigenvector v2 asso-
ciated to the eigenvalue λ2. However, often one is interested
in an average integral-quadratic performance criterion

E
[∫ ∞

0

Ṽ (t)TΠnṼ (t) dt

]
, (36)

where the expectation is with respect to a random initial
error voltage profile Ṽ0 with zero mean and E

[
Ṽ0Ṽ

T
0

]
= Πn

(possibly due to a random realization of the current demands
I or initial voltages V0). The projector matrix Πn induces
the global voltage error Ṽ TΠnṼ = ‖Ṽ − average(Ṽ )1n‖2,
and discards values of Ṽ (t) and Ṽ0 aligned with 1n that
do not affect the transient dynamics. The integral quadratic
performance metric criterion (36) is well-known in control and
signal processing under the name of an H2-norm of a system
[161], and it is well-studied for the system (30) in the context
of consensus systems [29], [7], [156], power systems [126],
[110], and random walks [55], [69], among others. In our case
and for identical capacitors C = In, the average performance
criterion (36) evaluates to an average of the inverse non-zero
Laplacian eigenvalues as in the total effective resistance (26).

Proposition 5.11 (Average performance of RC network
[27]): Consider the RC network dynamics (30) with identical
capacitors C = In, the voltage error coordinate (33), and
the average integral quadratic performance criterion (36) for
a random initial condition Ṽ0 ∈ Rn with zero mean and
E
[
Ṽ0Ṽ

T
0

]
= Πn. The performance criterion (36) evaluates to

E
[∫ ∞

0

Ṽ (t)TΠnṼ (t) dt

]
=

n∑

i=2

1

λi
= Rtot/n , (37)

where Rtot is the total effective resistance (26).
There are several equivalent interpretations of the H2-norm

(36) aside from characterizing the average convergence rate
(37) [161]. For example, an equivalent interpretation is the
steady-state voltage variance when subjecting each node to
noisy current inputs or the transient energy dissipated by the

circuit after being subjected to impulsive current inputs arising,
e.g., from line faults [38], [126]. While admittedly, the average
performance index (36) is of minor importance to circuits,
it plays a key role in the design of distributed algorithms
with diffusive dynamics [29], [7], [156], [55], [69], [92],
[61], where the analogy to the effective resistance provides
important intuition, and well-known concepts on the electrical
side (such as Rayleigh’s monotonicity law) inspire and inform
the design and analysis of algorithms. Finally, we remark that
the above result can be extended to more general cost functions
than (36), higher-order dynamics, and discrete-time settings
[29], [7], [156], [110], [38], [130], [38], [130]. Extensions to
nonlinear circuits remain an open problem.

C. Dynamic resistive-inductive-capacitive (RLC) networks

In this section we analyze the full RLC network model (11)
from Section IV-C, repeated here for convenience:
[
C

L

] [
V̇

ḟ

]
=

[
−G −B
BT −R

] [
V
f

]
+

[
I∗ + P ∗ � V

0m

]
.

Our approach will be to leverage the algebraic graph theory
methods introduced in Section III. We begin by highlighting
the energy conservation and dissipation properties of the
network system (11). Consider the electric and the magnetic
energy associated to the network storage elements:

H(V, f) =
1

2
V TCV +

1

2
fTLf . (38)

The time derivative of the energy (38) along trajectories of the
network dynamics (11) is given by the power balance

Ḣ(V, f) =

[
V
f

]T [ −B
BT

] [
V
f

]

︸ ︷︷ ︸
=0 (lossless power circulations)

−
[
V
f

]T [
G

R

] [
V
f

]

︸ ︷︷ ︸
≤0 (power losses)

+V TI∗ + 1T
nP
∗

︸ ︷︷ ︸
(external power supplied)

, (39)

where we used the identity V T(P ∗ � V ) = 1T
nP
∗. The last

term in the power balance equation (39) corresponds to the
external power supplied to the network through the external
current and power injections, the central term corresponds to
dissipation induced by shunt and branch resistances, and the
first term evaluates to zero due to skew-symmetry of matrix in
the quadratic form. To further understand the role of the first
term, consider the network (14) without branch dissipation
R = 0 and without loads (G = 0, I∗ = P ∗ = 0n). In this
case, the total energy is preserved Ḣ(V, f) = 0, and thus
H(V (t), f(t)) = H(V0, f0) for all t ≥ 0, which says the
ellipsoidal level sets of the energy function (38) are invariant.
In particular, since the system (14) is linear, these level sets are
the images of oscillating harmonic trajectories (V (t), f(t)).
Thus, the dynamic behavior of the lossless network (14) and
the first term in the general power balance (39) correspond to
lossless energy exchange (i.e., power circulations) between the
inductive and capacitive storage elements. For identical time
constants C = In, the dynamics (14) reduce to the Laplacian
oscillator (15) and the solutions can be further characterized.
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Proposition 5.12 (Circulations in lossless circuit [49]):
Consider the lossless network model (14). The solution is a
superposition of n undamped harmonic signals. Moreover, if
C = In, then the frequencies† of these harmonic signals are√
λi, i ∈ {1, . . . , n}, where λi are the eigenvalues of the L−1-

weighted Laplacian matrix LL = BL−1BT.

The power balance equation (39) is a special case of a so-
called dissipation (in)equality (more specifically a passivity
inequality) [147], [131], and the insights gained from it lay the
foundations for further analysis of general nonlinear electrical
networks [95], [128] and other interconnected systems [133],
[135], [104]. For example, another key insight is that, for
positive definite matrices G and R, the right-hand side of (39)
is strictly negative for sufficiently large values of voltages V
and currents f . It follows that in this case, the trajectories
of the nonlinear network dynamics (11) are always bounded.
Notice also that the analysis of linear RC circuits, treated
previously in Subsection V-B, can be equivalently performed
based on matrix theory or dissipation inequalities such as (34).

We will defer a further nonlinear analysis to Section VI-A
and focus now on the linear and homogeneous case when
P ∗ = I∗ = 0n to showcase the tools of algebraic graph theory
from Section III. Consider the network dynamics

[
C

L

] [
V̇

ḟ

]
=

[
−G −B
BT −R

]

︸ ︷︷ ︸
=A

[
V
f

]
. (40)

The network matrix A is related to so-called saddle or KKT
matrices [14] in quadratic optimization programs with linear
equality constraints (where R = 0). We collect some proper-
ties in the following proposition that is proved in Appendix B.

Proposition 5.13 (Spectrum of saddle matrices): Consider
the network matrix A in (40), where G and R are positive
semidefinite, and the graph associated to the incidence matrix
B is connected. The matrix A has the following properties:

1) all eigenvalues are in the closed left half-plane:
spec(A)⊂{λ ∈ C | <(λ) ≤ 0}. Moreover, all eigenvalues
on the imaginary axis have equal algebraic and geometric
multiplicities;

2) if G and R are zero matrices, then all eigenvalues
of A are on the imaginary axis and spec(A) =
{0, 0,±iλ2, . . . ,±iλn}, where {λ2, . . . , λn} are the non-
zero eigenvalues of the unweighted Laplacian BBT;

3) if G and R are positive definite, then A is Hurwitz;
4) if Ker(G) ∩ Im(B) = {0n}, then A has no eigenvalues

on the imaginary axis except for 0. Moreover, if G is
positive definite and B has full rank (i.e., the graph is
acyclic), then A is Hurwitz; and

5) if Ker(R)∩ Im(BT) = {0n}, then A has no eigenvalues
on the imaginary axis except for 0. Moreover, if R is
positive definite and Gii > 0 for at least one element
i ∈ {1, . . . , n}, then A is Hurwitz.

The above matrix spectrum results for A translate quickly
into dynamic stability results for the system (40), since the

†Note that the 1st mode λ1 = 0 corresponding to average(V (t)) results
in constant (0-frequency) average voltage since d

dt
average(V (t)) = 0.

inductances and capacitances L and C do not change the sta-
bility of A (which can be seen, e.g., by changing coordinates
to
[
C

1
2V L

1
2 f
]
). Property 1) guarantees that the dynamics

(40) are always marginally stable, possibly with sustained
oscillations or constant non-decaying modes. Whenever G
(respectively, R) is positive definite, then property 4) (respec-
tively, property 5)) guarantees that no sustained oscillations
can occur. However, in this case it is not true that all signals
will necessarily settle to zero. For example, assume that that
G is positive definite and R = 0; this satisfies the assumptions
of property 4). Then a possible equilibrium for (40) is

V ∗ = 0n , f∗ ∈ Ker(B) ,

that is, the equilibrium current flows f∗ live in the cycle space
Ker(B) of the graph; see Section III-9. Hence, any initial
current circulation f0 ∈ Ker(B) is persistent and does not
dissipate. Of course, this is ruled out if either B has full rank
(i.e., the graph is acyclic) or R is positive definite so that
dissipation forces all circulating flows vanish. Similarly, in
the scenario of property 5) with G = 0n×n and R positive
definite, we observe that a possible equilibrium is

V ∗ ∈ Ker(BT) = span(1n) , f∗ = 0m ,

which allows for any uniform potential vector V ∗ analogous
to the conservation of charge in (33). If at least one shunt
resistance Gii > 0 is present, then dissipation forces V ∗ = 0n.

Several of the special cases we have considered thus far
allow for a more detailed analysis of the linear network
dynamics (40). In particular, recall the Laplacian oscillator
dynamics (15) analyzed in Proposition 5.12, the homogeneous
network dynamics (16), and the coupled `c-tanks (17) in
Figure 2. These dynamics are all instances of the more general
second-order Laplacian flow

V̈ + (kdIn + γdL)V̇ + (kpIn + γpL)V = 0n, (41)

which can be written in state-space form as

d

dt

[
V

V̇

]
=

[
0n×n In

−kpIn − γpL −kdIn − γdL

]

︸ ︷︷ ︸
=Q

[
V

V̇

]
, (42)

where L ∈ Rn×n is an irreducible and symmetric Laplacian
matrix, and kd, kp, γd, and γp are scalar and nonnegative gains
that (if positive) induce a diffusive coupling or a resistive
dissipation on the voltages V and their drifts V̇ , respectively.

The dynamics (42) can be elegantly analyzed via a change
of coordinates V → VV , where V = [ 1√

n
1n v2 ... vn ]

collects the eigenvectors of the Laplacian matrix L as in
Proposition 5.1. In these coordinates and after permuting the
entries appropriately, the matrix Q governing the second-order
Laplacian flow (42) is similar to a block-diagonal matrix with
n blocks, each of the form

[
0 1

−kp − γpλi −kd − γdλi

]
, i ∈ {1, . . . , n} ,

where 0 = λ1 < λ2 ≤ · · · ≤ λn are the eigenvalues of the
Laplacian matrix L. We can draw the following conclusions.
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Proposition 5.14 (Second-order Laplacian flows [27]): Con-
sider the second-order Laplacian flow (42), where L ∈
Rn×n is an irreducible and symmetric Laplacian matrix and
kd, kp, γd, γp ≥ 0 are scalar and nonnegative gains. The
following statements hold.

1) given the eigenvalues λi, i ∈ {1, . . . , n}, of L, the 2n
eigenvalues ηi,±, i ∈ {1, . . . , n}, of Q are solutions to

η2 + (kd + γdλi)η + (kp + γpλi) = 0, i ∈ {1, . . . , n} ;

2) the second-order Laplacian flow (42) achieves a consen-
sus on a voltage profile, that is, |Vi − Vj | → 0 and
|V̇i − V̇j | → 0 as t→∞ for all i, j ∈ {1, . . . , n} if and
only if the 2(n − 1) eigenvalues ηi,±, i ∈ {2, . . . , n},
of the second-order Laplacian matrix Q have strictly
negative real part; and

3) the average voltage dynamics satisfy

d

dt

[
average(V (t))

average(V̇ (t))

]
=

[
0 1
−kp −kd

] [
average(V (t))

average(V̇ (t))

]
.

Moreover, if the voltages achieve a consensus on a voltage
profile, then the steady-state profile equals the average initial
voltage.

We can now interpret the previous dynamics as special cases
of Proposition 5.14. For example, the coupled `c-tanks (17) in
Figure 2 define a second-order Laplacian flow with kp = ω2

0 ,
γd = τ ′, and kd = γp = 0. Accordingly, all eigenvalues ηi,±,
i ∈ {2, . . . , n} of Q are in the open left-half plane, and the
asymptotic dynamics are governed by the average voltage:

d

dt

[
average(V (t))

average(V̇ (t))

]
=

[
0 1
−ω2

0 0

] [
average(V (t))

average(V̇ (t))

]
.

Observe that the asymptotic dynamics equal those of a single
`c-tank in isolation. The claimed synchronization of the volt-
ages to the average can be observed in Figure 2. Analogous
comments apply to the Laplacian oscillator (15) and the
homogeneous network dynamics (16).

We make two closing remarks concerning the analyses of
this section. First, similar analyses apply in the presence of
exogenous constant current inputs I∗ by defining appropriate
error coordinates. Second, in the case that all signals are
sinusoidal of constant and identical frequency and the under-
lying circuit is asymptotically stable, the above results can be
extended to the alternating current (AC) domain by resorting
to complex-valued variables (so-called phasors), depicting the
amplitude and phase of all signals [4], [37]. Though generally
more complex dynamic phenomena (e.g., harmonic resonance)
can occur; see Section VI-B and (54) for a steady-state model.

VI. STRUCTURE AND DYNAMICS OF NONLINEAR
ELECTRICAL NETWORKS

In Section V we restricted our attention to a class of
linear circuits, leveraging algebraic graph theory to study static
properties of solutions and dynamic stability. While Kirch-
hoff’s current and voltage laws are always linear, nonlinearity
arises frequently in circuit analysis for a number of reasons,
including but not limited to

(i) nonlinear constitutive relations / circuit elements (e.g.,
voltage-controlled resistances, diodes, transistors) [37];

(ii) nonlinear load or source models (e.g., constant power
loads or converter-interfaced sources) [9]; and

(iii) power-oriented modeling of AC circuits [83], [84], [85].
We do not examine nonlinearities arising from (i) in this

article, and refer the interested reader to classic literature
such as [151], [37] for various results. Instead, this section
examines some specific instances of nonlinearity where the
methods of algebraic graph theory continue to provide insights
into both circuit solutions and dynamic stability. Section VI-A
studies the existence of equilibrium points for the nonlinear
RLC model (11) with constant power loads. Section VI-B
continues this examination for the case of AC circuits, where
all steady-state signals are required to be sinusoidal, leading
to a discussion of the AC power flow equations.

A. Dynamic resistive-inductive-capacitive (RLC) networks
with constant-power loads

1) Equilibrium analysis: A first challenge when studying
nonlinear circuits is that even the existence of constant steady-
state operating points is no longer guaranteed. Indeed, the
example of Section II-C shows that nonlinear circuits can
possess multiple steady-state solutions, or possess no solutions
at all. We now extend the arguments of Section II-C to the case
of networks. In particular, we return to the nonlinear dynamic
model (11), and seek to determine sufficient conditions for
the existence and uniqueness of an equilibrium point. The
equilibria of (11) are solutions of the nonlinear algebraic
equations

0n+m =

[
−G −B
BT −R

] [
V
f

]
+

[
I∗ + P ∗ � V

0m

]
. (43)

If we assume that R is positive definite, the second equation
in (43) may be uniquely solved for f = R−1BTV . By
substituting this expression into the first equation, we obtain
the set of n nonlinear equations

0n = −(LR +G)V + I∗ + P ∗ � V ,
where LR = BR−1BT. Note that this is exactly the equi-
librium equation for the dynamic RC model (12); when R
is positive definite, the two models therefore share the same
equilibria. If we assume further that (i) at least one element
of G is strictly positive, and that (ii) I∗ is nonnegative with
at least one strictly positive entry (i.e., a current source), then
the equilibria are equivalently determined by

V = (LR +G)−1I∗︸ ︷︷ ︸
VI∗

+(LR +G)−1(P ∗ � V ) , (44)

where VI∗ is the solution of the linear resistive network
studied in Section V-A, and has strictly positive components.
We continue by introducing the change of variables

δ = (V − VI∗)� VI∗ ,
which is simply the percentage deviation of V from VI∗ . The
equilibrium equation (44) can then be further rewritten as

δ = F (δ) =
1

4
P−1

crit (P ∗ � (1n + δ)), (45)
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where we defined the critical power flow matrix

Pcrit =
1

4
diag(VI∗) (LR +G) diag(VI∗) ∈ Rn×n . (46)

One may verify easily that −Pcrit is a Hurwitz Metzler matrix,
with the same sparsity pattern as LR. The equation δ = F (δ)
in (45) is a fixed-point equation for the potential deviation
δ, and can be studied using the contraction mapping principle
[116, Theorem 9.32]. The following result provides an intuitive
condition under which the nonlinear circuit (11) possesses an
equilibrium.

Proposition 6.1 (Existence and uniqueness of an equilibrium
for nonlinear RLC network): Consider the equilibrium equa-
tion (43) associated with the nonlinear circuit network model
(11). Assume that R is positive definite, that G has at least one
strictly positive entry, and that I∗ is element-wise nonnegative
with at least one strictly positive entry. If

‖P−1
crit diag(P ∗)‖∞ < 1 , (47)

then (43) possesses a solution (V ∗, f∗) with f∗ = R−1BTV ∗.
Moreover, the potentials V ∗ = diag(VI∗)(1n + δ∗) are close
to VI∗ in the sense that

‖(V ∗ − VI∗)� VI∗‖∞ = ‖δ∗‖∞ ≤ δmax , (48)

where

δmax =
1

2

(
1−

√
1− ‖P−1

crit diag(P ∗)‖∞
)
∈ [0, 1/2) ,

and (V ∗, f∗) is the only solution satisfying the inequality (48).
The proof of this result is nearly identical to the proof of

[121, Theorem 1]. The intuition behind Proposition 6.1 is that
for the existence of an equilibrium, the maximum size of the
constant power demands P ∗ must be limited.

Existence/uniqueness conditions similar to (47) have been
derived by several authors in the context of power distribution
systems [22], [158], [141], [11], [5] and microgrids [120],
[122], [13] with constant power loads; [22] gives an inter-
pretation of their condition in terms of the maximum path
length in the associated graph. All of these conditions have
in common that some measure of the size of the constant
power load should be small compared to a measure of the
coupling strength in the network, quantified in terms of system
impedance and nominal voltage level. For the condition (47)
above, the quantity ‖P−1

crit diag(P ∗)‖∞ provides a dimension-
less measure of how large P ∗ is, normalized by the critical
power flow matrix Pcrit defined in (46). When the inequality
(47) holds, we are guaranteed the existence of an equilibrium
which is close to the solution VI∗ studied in Section V-A; in
general, there can be many equilibria, there is exactly one equi-
librium in the box {V ∈ Rn | ‖(V − VI∗)� VI∗‖∞ ≤ δmax}.

Another useful perspective on the condition (47) comes
from studying the linearization of the right-hand side of
equilibrium equation (44) around V = VI∗ and P ∗ = 0n.
Performing this computation, one finds that

V � VI∗ ≈ 1n +
1

4
P−1

crit P
∗ . (49)

The condition (47) can therefore be interpreted as restricting
the first-order term of the linearized solution at the point

V = VI∗ . Many of the insights developed in Section V-A
concerning inverse Laplacian matrices and effective resistance
can be leveraged to further characterize the solution. For
example, just like the matrix (LR + G) studied previously,
the matrix Pcrit is also a loopy Laplacian matrix, but for a
graph whose edges have been reweighted using the potentials
VI∗ . In turn, the inverse matrix P−1

crit satisfies a decay property,
quantified in terms of the effective resistance in this reweighted
graph. It follows from (49) then that to first order, these
effective resistances quantify the sensitivity of the potential
Vi at node i with respect to the power injection P ∗j at node
j. A complete discussion of many of these conclusions in the
context of an AC circuit model can be found in [121]. As
we will see shortly, the condition (47) is also instrumental in
assessing local stability of the associated equilibrium point for
the RLC and RC network models.

Finally, we note that convex optimization approaches have
recently been devised for assessing the existence of equilib-
rium points for static and dynamic nonlinear circuits. An op-
timization formulation exploiting the Metzler structure of the
graph matrices is presented in [91]. Linear matrix inequality
(LMI) conditions for equilibrium infeasibility (i.e., necessary
conditions for equilibrium existence) are presented in [9], [93],
and a convex programming approach for certifying feasibility
of AC power flow may be found in [56]. To our knowledge
however, the presented conditions do not have straightforward
graph-theoretic interpretations.

2) Dynamic analysis: Aside from the energy and power
analysis in Section V-C, a few further fundamental insights
into dynamic stability can be obtained by studying the lin-
earization of the nonlinear circuit model (11) around the
solution (V ∗, f∗) derived in Proposition 6.1:
[
C

L

] [
δV̇

δḟ

]
=

[
−G− (P ∗ � (V ∗ � V ∗)) −B

BT −R

]

︸ ︷︷ ︸
=A(V ∗)

[
δV
δf

]
.

(50)
These linearized dynamics (50) are exactly of the form (40)
studied previously in Section V-C, and results developed
for the network matrix A in Proposition 5.13 can now be
applied to the matrix A(V ∗). Based on the properties of
the equilibrium in Proposition 6.1, the following parametric
stability condition can be established.

Proposition 6.2 (Local stability of dynamic RLC network):
Consider the dynamic RLC network model (11). Assume the
conditions of Proposition 6.1 hold, and let VI∗ and δmax be
as in Proposition 6.1. Then the equilibrium point (V ∗, f∗) is
locally exponentially stable if

g̃i := gi +
P ∗i

(VI∗)2
i (1− δmax)2

≥ 0 , i ∈ {1, . . . , n} ,

with strict inequality for at least one value of i.

The proof of this result may be found in Appendix C. The
quantity g̃i can be interpreted as an effective shunt conductance
at node i ∈ {1, . . . , n}, in which the constant power load P ∗i
has been converted into a shunt conductance. The stability
result may then be seen as a case of item 5) in Proposition
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5.13. The effective shunt conductances g̃i depend on δmax,
which in turn depends on the key quantity ‖P−1

crit diag(P ∗)‖∞
from Proposition 6.1. Stability therefore depends directly on
the spectral properties of the graph matrix Pcrit.

As noted earlier, (V ∗, f∗) is an equilibrium point of the
RLC model (11) (with R positive definite) if and only if
V ∗ is an equilibrium point of the RC model (12). We can
therefore also assess the local stability of the equilibrium point
in Proposition 6.1 for the RC model.

Proposition 6.3 (Local stability of dynamic RC network):
Consider the dynamic RC network model (12). Assume the
conditions of Proposition 6.1 hold, and let V ∗ be the specified
equilibrium point. Then V ∗ is locally exponentially stable.

The proof of this result may be found in Appendix D.
To conclude this section, we now examine some large-signal
stability properties for the dynamic RC network model (12).
We perform a nonlinear analysis in the spirit of Brayton-Moser
[25], [26], [124], [83], [85] and adapt the energy function (38)
towards a potential function‡ accounting for resistive power
losses and power dissipation by the (constant impedance,
constant current, and constant power) loads as

W(V ) =
1

2
V T(LR +G)V − ln(V )TP ∗ − V TI∗ ,

where lnV = (lnV1, . . . , lnVn)T. A straightforward calcula-
tion then shows that the RC network model (12) reads as

CV̇ = −∇W(V ) ,

meaning that the potentials V evolve according to the gradi-
ent of the power-like function W(V ). Critical points of the
function W(V ) are therefore equilibrium points of (12), and
vice-versa. It follows by standard results for gradient systems
that all bounded trajectories of (12) converge to equilibrium
points [146, Chapter 15]. By requiring the Hessian of W(V )
to be positive definite, one can show strict convexity of
W(V ) and that the equilibrium specified by Proposition 6.1
is locally asymptotically stable, which recovers the result of
Proposition 6.3. An estimate of the region of attraction of V ∗

can be obtained by finding a compact sublevel set of W(V )
containing V ∗. We refer to [112], [32], [42] for related stability
analyses of DC networks, to [35], [105] for a comprehensive
survey concerning energy functions in AC power systems, and
to [84], [104], [135] for further reading on power and energy-
based approaches to nonlinear networks.

B. AC circuits and power networks

This section examines the important case where, in steady-
state, all current sources and all internal voltages and currents
in the RLC network (11) are harmonic with synchronous
alternating current (AC) angular frequency ω:

I∗i (t) =
√

2 |I∗i | cos(ωt+ φi) , (51a)

Vi(t) =
√

2 |Vi| cos(ωt+ θi) , (51b)

fi(t) =
√

2 |fi| cos(ωt+ ϕi) . (51c)

‡We remark that the considered RC circuit (12) is a simple yet illustrative
subcase within the general Brayton-Moser modeling and analysis framework
that can also account for inductive dynamics and more general nonlinearities.

Here |I∗i |, |Vi|, |fi| ≥ 0 are the constant steady-state root-
mean-square amplitudes of the waveforms, and φi, θi, ϕi are
the respective phase shifts. The RLC network (11) exhibits
such steady-state solutions (V (t), f(t)) whenever the dynam-
ics are internally stable and the injections I∗ are as in (51a).

Unlike DC power, AC power is typically transmitted in a
three-phase configuration in which three wires (plus a neutral
wire) are used. Therefore, for each node (resp. edge) there
are three potential and current injection (resp. voltage drop
and current flow) waveforms to consider. When such a three-
phase circuit is balanced, the harmonic waveforms on the
three wires are separated by ±120◦, and a standard equivalent
circuit technique allows the three-phase circuit to be studied in
terms of a single-phase equivalent circuit [73, Chapter 1]. We
therefore proceed with a single-phase analysis in this section,
with the understanding that the results can quickly be applied
to balanced three-phase AC circuits.

1) Phasor analysis of AC circuits: We may equivalently
express the harmonic signals in (51) as the real parts of
complex-valued signals

I∗i (t) = R
(√

2 |I∗i |ejφi

︸ ︷︷ ︸
I∗i ∈C

ejωt
)
, Vi(t) = R

(√
2 |Vi|ejθi

︸ ︷︷ ︸
Vi∈C

ejωt
)
,

fi(t) = R
(√

2 |fi|ejϕi

︸ ︷︷ ︸
Fi∈C

ejωt
)
.

(52)
The complex quantities in brackets are referred to as a phasors,
with I∗i ,Vi and Fi being the complex “amplitudes” of the
phasors. The classic approach to study AC electrical networks
is to represent all potentials and current flows using phasors,
and subsequently derive algebraic equations relating the vec-
tors of complex amplitudes V,F , and I∗. With this phasor
substitution, the RLC circuit equations (11) reduce to the set
of complex-valued algebraic equations§

jωCV = −GV −BF + I∗, (53a)

jωLF = BTV −RF , (53b)

where V,F , I∗ are the vectors of phasor amplitudes for
potentials, edge currents, and constant-current injections, re-
spectively. Solving (53b) for F = (R + jωL)−1BTV and
eliminating F from (53a), the electrical network is compactly
described by the algebraic equation

I∗ = Y V =

(
B(R+ jωL)−1BT

︸ ︷︷ ︸
complex-weighted network

+ (G+ jωC)︸ ︷︷ ︸
complex shunts

)
V . (54)

The so-called admittance matrix Y ∈ Cn×n is a sum of
two terms, the first being a Laplacian matrix LR+jωL =
B(R + jωL)−1BT with complex weights 1

rij+jω`ij
termed

admittances. The second term in (54) is a complex diagonal
matrix modeling the shunt admittance elements connected
to ground at each node. The linear equation (54) is exactly
analogous to the linear resistive circuit equation (13) studied
in Section V-A, with analogous solution V = Y −1I∗, and the
corresponding real harmonic signals are recovered via (52).

§Constant power loads are omitted, and will be treated independently in
our subsequent discussion of AC power flow.
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While the static resistive circuit solution of Section V-A
generalizes to the present AC case (54), many questions con-
cerning effective resistance and Kron reduction for complex-
weighted graphs remain unresolved; see [52].

2) Instantaneous power, complex power, and power flow
equations: Often in AC circuit analysis — and in particular,
in the study of power systems — one is interested in specifying
the sources and loads of a circuit in terms of power and
voltage, rather than current and voltage. For example, the
energy production of a synchronous generator is scheduled in
terms of power and not current, since power is more directly
related to engineering specifications and monetary cost. To
move towards such a power-focused formulation of the circuit
equations, define the instantaneous power pi(t) injected into
node i ∈ {1, . . . , n} as pi(t) = Vi(t)I

∗
i (t). Using the harmonic

representations (51), some simple trigonometry shows that

pi(t) = |Vi||I∗i | cos(θi − φi)
(
1 + cos(2(ωt+ θi))

)

+ |Vi||I∗i | sin(θi − φi) sin(2(ωt+ θi)).

The instantaneous power consists of two oscillatory terms,
only the first of which has non-zero mean. The average (also
called active or real) power injected into node i over one cycle
is defined as this mean component of the first term:

Pi =
1

T

∫ T

0

pi(t) dt = |Vi||I∗i | cos(θi − φi) ,

where T = 2π/ω. Note that the active power Pi is zero if
potential and current waveforms are 90◦ out of phase: |θi −
φi| = π/2. The second oscillatory term in pi(t) has zero mean,
but its amplitude

Qi = |Vi||I∗i | sin(θi − φi)
is commonly referred to as reactive (or imaginary) power
[1]. Reactive power reflects the zero-average energy exchange
between inductive or capacitive elements, with power flowing
into the element for half an AC cycle and out of the element
during the remaining half (cf., the circulating power in (39)).¶

Again, it is most convenient to study power in AC circuits
using phasors. To develop a phasor representation, define the
complex power Si = Pi + jQi ∈ C injected at node i ∈
{1, . . . , n} using the voltage and current phasors Vi and I∗i as

Si =
1

2
ViI
∗
i .

where I∗i is the complex conjugate of I∗i . We have through
simple calculations then that

Si = |Vi||I∗i | cos(θi − φi)︸ ︷︷ ︸
=Pi

+j |Vi||I∗i | sin(θi − φi)︸ ︷︷ ︸
=Qi

.

The real part of Si is exactly the real power Pi, while the
imaginary part Qi is the reactive power. In vector notation,
the complex power is given by

S = P + jQ =
1

2
V � I∗ =

1

2
V � (Y V),

¶We remark that when a circuit does not a reach a sinusoidal steady state,
e.g., in presence of nonlinear elements, then the definition and interpretation
of reactive power is still a controversial and contested subject [82].

where we have inserted (54) to eliminate I∗. Expanding the
right-hand side and separating real and imaginary parts, we
arrive at the AC power flow equations [90]

Pi =

n∑

j=1

|Vi||Vj | (R(Yij) cos(θi − θj) + I(Yij) sin(θi − θj)) ,

Qi =

n∑

j=1

|Vi||Vj | (R(Yij) sin(θi − θj)− I(Yij) cos(θi − θj)) ,

for i ∈ {1, . . . , n}. These nonlinear equations relate the active
and reactive power injections Pi and Qi at each node to the
complex voltage variables |Vi|ejθi at the neighboring nodes.

The power flow equations are highly nonlinear; in Section
VI-B3 we examine this nonlinearity in some detail. Quick
insight however can be gained by studying their linearization
around θ = 0n and |V | = 1n, which is given by [20]

[
P
Q

]
≈
[

I(Y ) −R(Y )
−R(Y ) −I(Y )

] [
θ
|V |

]
. (55)

Each subblock of the block matrix in (55) is a Laplacian (or
negative Laplacian) matrix, possibly with additional diagonal
elements in each subblock. Note that R(Y ) arises from the
resistive component of the interconnection between nodes,
while I(Y ) arises from inductances. In other words, when
written in this form, a multigraph structure naturally appears.
To our knowledge, the algebraic and spectral properties of the
matrix in (55) are not well understood, and an analysis of (55)
in the spirit of that from Section V-A remains open.

3) AC power flow problems: The AC power flow equations
are the heart of almost all power system analysis, operations,
optimization, and control. The analytic study of these equa-
tions dates back at least fifty years; we do not attempt to
present a comprehensive overview of the area, but will present
a selection of results based on the authors’ experiences. We
refer the reader to [118], [119] for a recent literature review.

In an AC power flow problem, a subset of the variables
{|Vi|, θi, Pi, Qi} are specified at a subset of nodes, and the
problem is to solve the nonlinear AC power flow equations to
determine the remaining unspecified variables. This is directly
analogous to the problem of solving a static resistive circuit as
in Section V-A, or the problem of determining an equilibrium
point for a nonlinear circuit as in Section VI-A. As a specific
instance of an AC power flow problem, we examine the case
of a purely inductive interconnection with L positive definite
and R = 0, with no shunt conductances G = 0 and no
shunt capacitances C = 0. The important feature here is the
lack of resistive elements; the network transfers power without
resistive power losses. This instance is complex enough to
highlight the important role of algebraic graph theory concepts,
but simple enough to actually permit some insightful analysis.

The formal modeling for a power flow problem proceeds as
follows. We begin with an undirected, connected and weighted
graph G. The nodes {1, . . . , n} of the graph are partitioned
into two subsets: a non-empty subset PV ⊆ {1, . . . , n} and a
disjoint strict subset PQ ⊂ {1, . . . , n} such that {1, . . . , n} =
PQ∪PV. At node i ∈ PV, the average power injection Pi
and the RMS potential |Vi| are specified; in power systems,
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such a node corresponds to a generator with a scheduled
power production Pi and a voltage level |Vi| regulated by
a local controller. At node i ∈ PQ, the real power Pi and
reactive power Qi are specified; this corresponds to a con-
stant power injection/demand, modeling a load or converter-
interfaced renewable energy source. In networks with non-
zero edge resistances or non-zero shunt conductances, one
generally requires the presence of a third node type called
a slack node, where θi and |Vi| are specified with Pi and
Qi undetermined. The primary purpose of this node is to
compensate for the resistive power dissipation in the network
by supplying additional power. We will restrict our attention
to lossless systems and will therefore omit the slack bus.

Given the above specified quantities, the AC power flow
problem is to determine the phase angles θi for i ∈ PQ∪PV
and the RMS potentials |Vi| for i ∈ PQ.

Under these modelling assumptions, the admittance ma-
trix becomes purely imaginary and reduces to Y =
−jB(ωL)−1BT = −jLωL. The power flow equations simplify
to

Pi =

n∑

j=1

|Vi||Vj |I(Yij) sin(θi − θj) , i ∈ PQ∪PV, (56a)

Qi = −
n∑

j=1

|Vi||Vj |I(Yij) cos(θi − θj) , i ∈ PQ . (56b)

If the equations (56) can be solved for the PV/PQ node phase
angles θi and the PQ bus potentials |Vi|, the remaining un-
specified reactive power injections Qi for i ∈ PV are uniquely
determined by back substitution. An immediate insight is
obtained from (56a) by summing over all i ∈ PQ∪PV and
using the fact that sin(·) is odd, from which we find that

∑n

i=1
Pi = 0 ⇐⇒ P ∈ 1⊥n .

This simply says that in such a lossless network, the real power
generation must always be balanced by the real power demand.

An analysis of the lossless power flow problem (56) is
possible, but becomes notationally quite involved and uses
some additional graph-theoretic constructions that go beyond
the scope of this survey; we refer the reader to [118], [119]
for a detailed analysis. To study a comparatively tractable
scenario, consider the case where PQ = ∅; this specific
model arises in the study of dynamic stability in a network
of synchronous generators [51]. In this case, the products
kij = |Vi||Vj |I(Yij) are constants, and (56) simplifies to

Pi =
∑n

j=1
kij sin(θi − θj) , i ∈ {1, . . . , n} , (57)

or in vectorized notation

P = BK sin(BTθ) , (58)

where K = diag({ke}e∈{1,...,m}) and sin(x) =
(sin(x1), . . . , sin(xn))T. The network topology clearly
affects the solvability of (58) through the incidence matrix
B. In fact, linearizing the equation (58) around θ = 0n, we
find that

P ≈ BKBTθ = LKθ, (59)

which is a linear Laplacian equation analogous to (13). To
further emphasize the role of the topology, we can rewrite
(58) as the two coupled equations

P = BKψ , (60a)

ψ = sin(BTθ) , (60b)

where ψ ∈ Rm is an auxiliary vector of variables. Some
immediate insights can be gained by comparing (60) to the
KCL and KVL equations (7) and (9) from Section IV-A. The
first equation (60a) corresponds to the KCL equation (7), with
current injections I = P and current flows f = Kψ. A
comparison of (60b) and (9) shows that (60b) is a type of
nonlinear KVL equation with potentials θ and voltage drops
ψ. The combined equation (60) is directly analogous to the
resistive network nodal current balance equation (18).

In practice we are interested in solutions of (60) for which
the differences between phase angles of neighboring buses are
relatively small. To quantify this, for γ ∈ [0, π2 ), define

∆(γ) = {θ ∈ Tn | |θi − θj | ≤ γ for {i, j} ∈ E}
as the subset of Tn (the n-torus) where phase angle differences
along edges {i, j} ∈ E are less than γ.

Proposition 6.4 (PV node power flow problem [54], [80]):
Consider the PV node power flow problem (57) with P ∈ 1⊥n ,
and let γ ∈ [0, π/2). The following statements hold:

(i) Every solution of (60a) is of the form

ψgeneral = BTL†KP + ψhom , (61)

where LK = BKBT and Kψhom ∈ Ker(B);
(ii) there exists a solution θ∗ ∈ ∆(γ) if and only if

there exists ψhom such that ‖ψgeneral‖∞ ≤ sin(γ) and
arcsin(ψgeneral) ∈ Im(BT) (modulo 2π);

(iii) for graphs G containing no cycles, there exists a unique
solution θ∗ ∈ ∆(γ) if and only if

‖BTL†KP‖∞ ≤ sin(γ) ; (62)

(iv) there exists a unique solution θ∗ ∈ ∆(γ) if

‖BTL†KP‖2 ≤ sin(γ) . (63)

Equation (61) shows that every solution of the KCL-like
equation (60a) can be decomposed into two terms: a par-
ticular solution belonging to the cutset space Im(BT), and
a homogeneous component belonging to the weighted cycle
space K−1 Ker(B). In fact, the particular solution BTL†KP is
exactly the edge-wise phase differences one would calculate
by solving the linearized equation (59). Item (ii) of Proposition
6.4 connects this linear solution to the full nonlinear equation
(58) by requiring that ψgeneral satisfies a boundedness condi-
tion ‖ψgeneral‖∞ ≤ sin(γ) along with the cycle constraints
arcsin(ψgeneral) ∈ Im(BT) (modulo 2π); the latter ensures
that phase angle differences add up to a multiple of 2π
around any undirected cycle of the graph (cf. KVL (5)). In
graphs without cycles (item (iii)) the cycle constraints can
be discarded, and the existence of a solution is equivalent
to satisfaction of the boundedness condition. The analysis of
(60) becomes considerably more challenging in networks with
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cycles, and only conservative sufficient conditions ensuring ex-
istence are known; we refer to [54], [53], [44], [45] for details
and recent results. Specifically, the sufficient condition (iv) and
a generalized version of fact (iii) are proved in [80].

At this point in our discussion of AC power flow we
have reached the research frontier concerning graph-theoretic
insights and analytic approaches to the solution space of the
AC power flow equations. The development of graph-theoretic
conditions for the existence and uniqueness of AC power flow
solutions (and stability conditions for associated power system
dynamics, which we have not discussed here) remains an area
of active research. Among many recent works, we refer to
[121], [58], [57], [22], [118], [119], [141], [59].

VII. CONCLUSIONS AND AVENUES FOR FUTURE
RESEARCH

The field of algebraic graph theory has been initially devel-
oped, amongst others, by electrical engineers to abstract and
facilitate the study of electrical networks. Conversely, several
fundamental concepts in algebraic graph theory were born out
of concrete circuit problems. In this article, we highlighted the
rich interplay between these two disciplines in the static and
dynamic, linear and nonlinear, and real-valued and complex-
valued cases. We reviewed classical results from the early days
of network analysis as well as recent results. Our developments
were centered around a single yet rich prototypical model of
an electrical network.

The literature on the topic of this article is vast and mature.
We hope to have delivered a survey and a tutorial exposition,
as seen from the perspective of algebraic graph theory, that
brought the reader from the basics all the way to the research
frontier. We want to conclude by listing a few fundamental
open problems at the intersection of electrical networks and
algebraic graph theory. The list is by no means complete and
is colored by our own interests and experiences.

In this paper we have studied networks in which each con-
stitutive element is a one-port, described by a single voltage-
current relationship between its terminals. More generally,
electric elements such as transformers and gyrators require the
adoption of 2-port representations. A future research direction
is to adopt algebraic graph theory to model and study two-port
networks. Along the same lines, much of the presented theory
still has to be extended to circuit elements with nonlinear
constitutive relations such as diodes and transistors.

We have shown that AC networks give rise to complex-
valued graph matrices. In general, many of the results we
presented for real-valued Laplacian (and more general Met-
zler) matrices have few (or no) complex-valued counterparts.
Yet the study of complex-valued matrices and their associated
graphs is of the utmost importance for large-scale AC power
system applications. Another frontier in this regard are hybrid
DC/AC networks and unbalanced multi-phase networks.

At the intersection of nonlinear and AC networks lie the
celebrated power flow equations. The characterization of so-
lutions to these equations, as a function of the network param-
eters and topology, has a long history and has witnessed some
exciting recent developments. Yet in the full nonlinear and

lossy setting, the basic existence and uniqueness questions are
still unresolved, and the study of dynamics in such networks
is a wide open field that is currently seeing much activity.
With regards to our prototypical model (11), we performed
a thorough linear analysis of the dynamics, though a full
nonlinear large-signal stability analysis is still open.

Finally, a topic of historic interest was to reverse the
reduction of electrical networks [12], [68], [137], [8], e.g.,
by embedding a cyclic network into a higher-dimensional
equivalent acyclic network as in Figure 6. Since many circuit
and power flow problems are analytically and computationally
tractable only in acyclic networks, it would be of interest to
find more general high-dimensional network embeddings and
equivalence transformations. Likewise, the passive network
synthesis problem [24] has recently received a revived interest
and triggered many open questions [78].

APPENDIX

A. Compartmental systems

In this appendix we present a self-contained concise treat-
ment of compartmental systems. For more complete treatments
and proofs of the following statements we refer to [140], [79]
and [27, Chapter 9].

A compartmental system is a dynamical system in which
material is stored at storage nodes, called compartments, and
is transferred along the edges of directed graph, called the
compartmental digraph; see Figure 18(b). Each compartment

Fj!i
Fi!j

ui Fi!0qi

(a)

F1!2

F2!4
F3!2

F4!3

F2!3

u1

u3

F2!0

F4!0

q1

q3

q2

q4

(b)

Fig. 18. (a) A compartment with inflow ui, outflow Fi→0, and inter-
compartmental flows Fi→j . (b) A compartmental system with two inflows
and two outflows; images courtesy of [27].

contains a time-varying quantity qi(t) and each directed arc
(i, j) represents a mass flow, denoted Fi→j , from compart-
ment i to compartment j. The inflow from the environment
into compartment i is denoted by ui and the outflow from
compartment i into the environment is denoted by Fi→0.

In a linear compartmental system, we assume

Fi→j(q, t) = fijqi, for j ∈ {1, . . . , n},
Fi→0(q, t) = f0iqi, and ui(q, t) = ui.

for appropriate flow rate coefficients. More precisely, a linear
compartmental system consists of

(i) a nonnegative n × n matrix F = (fij)i,j∈{1,...,n} with
zero diagonal, called the flow rate matrix,

(ii) a vector f0 ≥ 0n, called the outflow rates vector, and
(iii) a vector u ≥ 0n, called the inflow vector.
The flow rate matrix F is the adjacency matrix of the compart-
mental digraph GF (a weighted digraph without self-loops).
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The instantaneous flow balance provides the affine dynamics
of the system:

q̇i(t) = −
(
f0i +

n∑

j=1,j 6=i
fij

)
qi(t) +

n∑

j=1,j 6=i
fjiqj(t) + ui.

The compartmental matrix C = (cij)i,j∈{1,...,n} of a linear
compartmental system is a Metzler matrix defined by

cij =

{
fji, if i 6= j,

−f0i −
∑n
h=1,h6=i fih, if i = j.

Equivalently, C = F>−diag(F1n+f0) and q̇(t) = Cq(t)+u.
In the compartmental digraph, a set of compartments S is

outflow-connected if there exists a directed path from every
compartment in S to the environment, that is, to a compart-
ment j with a positive flow rate constant f0j > 0. Moreover
a set of compartments S is inflow-connected if there exists a
directed path from the environment to every compartment in
S, that is, from a compartment i with a positive inflow ui > 0.

Recall that, given a digraph G, its condensation is a digraph
whose nodes are the strongly connected components of G and
whose edges are defined by corresponding edges in G.

With these definitions, the following graph-theoretical and
algebraic statements are known to be equivalent:

(i) the system is outflow-connected,
(ii) each sink (node without outgoing edges) of the conden-

sation of GF is outflow-connected, and
(iii) the compartmental matrix C is Hurwitz.

Theorem A.1 (Asymptotic behavior of compartmental sys-
tems): Consider a linear compartmental system (F, f0, u) with
compartmental matrix C and compartmental digraph GF . If the
system is outflow-connected, then

(i) the compartmental matrix C is invertible,
(ii) every solution tends exponentially to the unique equilib-

rium q∗ = −C−1u ≥ 0n, and
(iii) in the ith compartment q∗i > 0 if and only if the ith

compartment is inflow-connected to a positive inflow.

B. Proof of Lemma 5.13: Spectrum of the saddle matrix

The following proof adopts elements from [34], [50], [49].
Regarding the first statement 1), we resort to a Lyapunov-

based proof. Consider the auxiliary linear dynamical system
[
ẋ1

ẋ2

]
=

[
−G −B
B> −R

] [
x1

x2

]
= A

[
x1

x2

]
, (64)

and the Lyapunov function V(x1, x2) = 1
2‖x1‖2 + 1

2‖x2‖2.
The derivative of V(x, y) is given by

V̇(x1, x2) = −x>1 Gx1 − x>2 Rx2 ≤ 0 .

It follows that the state (x1, x2) is bounded. Thus, the matrix
A admits only eigenvalues with strictly negative real part or
eigenvalues on the imaginary axis with equal algebraic and
geometric multiplicity.

Statement 2) is a corollary of Proposition 5.12.
If G and R are positive definite, then V̇(x1, x2) is negative

definite. It follows that the dynamics (64) are asymptotically
stable and A is Hurwitz. This proves the third statement 3).

Regarding the fourth statement 4): To prove the first part,
we follow the proof method of [34, Lemma 5.3]. Recall
from statement 1) that the spectrum of A is restricted to the
closed left half-plane. We aim to prove that, under the stated
assumptions, no imaginary eigenvalues other than zero can
occur. We reason by contradiction. Let jσ, with σ 6= 0, be an
imaginary eigenvalue of A with corresponding non-zero eigen-
vector x + jy, where x = [x1 x2]>, y = [y1 y2]> ∈ Rn+m.
Then the real and imaginary parts of the eigenvalue equation

jσ(x+ jy) = A(x+ jy) =

[
−G −B
B> −R

] [
x1 + jy1

x2 + jy2

]

yield the set of equations

−Gx1 −Bx2 = −σy1, (65a)
−Gy1 −By2 = σx1, (65b)

B>x1 −Rx2 = −σy2, (65c)

B>y1 −Ry2 = σx2. (65d)

We pre-multiply equation (65a), respectively (65c), by x>1 , re-
spectively by x>2 , and arrive at−x>1 Gx1−x>1 Bx2 = −σx>1 y1,
respectively x>2 B

>x1 − x>2 Rx2 = −σx>2 y2. By adding these
equations we get −x>1 Gx1 − x>2 Rx2 = −σ(x>1 y1 + x>2 y2).
Via analogous manipulations of equations (65b) and (65d),
we obtain −y>1 Gy1 − y>2 Ry2 = σ(x>1 y1 + x>2 y2). These two
conditions imply that

[
x1

x2

]> [
G

R

] [
x1

x2

]
= −

[
y1

y2

]> [
G

R

] [
y1

y2

]
.

Since G and R are positive semi-definite (possibly zero
matrices) by assumption, we obtain x1 ∈ ker(G), y1 ∈ ker(G)
and x2 ∈ ker(R), y2 ∈ ker(R). By further using x1 ∈
ker(G), y1 ∈ ker(G) in equations (65a) and (65b) we obtain
−Bx2 = −σy1 and −By2 = σx1, that is, x1 ∈ Im(B),
y1 ∈ Im(B). We have now established that both x1 and y1

belong to ker(G) ∩ Im(B) and therefore x1 = y1 = 0n by
assumption. Similarly, we obtain x2 = y2 = 0m. But it is
a contraddiction to have x + jy equal to serve since it is an
eigenvector.

Now we prove the second part of statement 4). If G is
positive definite, the Schur determinant formula [160] yields

det

([
−G −B
B> −R

])
= det(G) · det(R+B>G−1B) .

Note that det(G) 6= 0. If B has full rank m, i.e., the graph is
acyclic (see statement (S1) in Section III), then B>G−1B has
full rank, and det(R + B>G−1B) 6= 0. Due to these facts,
the matrix A has no eigenvalue at zero and is thus Hurwitz.

The first part of the proof of statement 5) is analogous to
that of statement 4). To prove the second part, we assume that
R is positive definite and apply the Schur determinant formula:

det

([
−G −B
B> −R

])
= det(R) · det(G+BR−1B>) .

Note that det(R) 6= 0 and BR−1B> = LR is a Laplacian
matrix associated to a connected graph. If G has at least one
diagonal element, then LR + G is a nonsingular matrix, as
discussed in Section III-7. Due to these facts, the matrix A
has no eigenvalue at zero and is thus Hurwitz.
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C. Proof of Proposition 6.2: Local stability of RLC network

Let (V ∗, f∗) be the unique equilibrium point from Propo-
sition 6.1, and consider the linearized dynamic model (50).
Applying Proposition 5.13 item 5) to the saddle matrix A(V ∗),
we find that A(V ∗) will be Hurwitz if

Gii +
P ∗i

(V ∗i )2
≥ 0 , i ∈ {1, . . . , n} ,

with strict inequality for at least one value of i ∈ {1, . . . , n}.
By changing variables as V ∗i = (VI∗)i(1 + δi), the above
inequalities are equivalently reformulated as

gi +
P ∗i

(VI∗)2
i (1 + δi)2

≥ 0 , i ∈ {1, . . . , n} ,

again with strict inequality for at least one value of i. From
the proof of Proposition 6.1, each component δi of the shifted
potential variable δ satisfies −δmax ≤ δi ≤ δmax, where δmax

is given as in Proposition 6.1; the result follows by inserting
the lower bound −δmax into the set of inequalities.

D. Proof of Proposition 6.3: Local stability of RC network

We proceed by linearizing the model (12) around the
equilibrium point V ∗. The Jacobian matrix of (12) is

J(V ∗) := C−1
(
−(LR +G)− diag(P ∗) diag(V ∗)−2

)
︸ ︷︷ ︸

:=M1

.

Since C is diagonal and the matrix M1 is a symmet-
ric Metzler matrix, it follows that J(V ∗) is Hurwitz if
and only if M1 is negative definite. Substituting V ∗ =
diag(VI∗)(1n+δ∗) and defining the congruent matrixM2 :=
diag(VI∗)M1 diag(VI∗)/4, it follows that M1 is negative
definite if and only if

M2 = −Pcrit −
1

4
diag(1n + δ∗)−2 diag(P ∗)

is negative definite, where we have used the definition of Pcrit.
Since Pcrit is symmetric and positive definite, by Sylvester’s
Inertia Theorem [30] M2 is negative definite if and only if

M3 := P−1
critM2 = −In −

1

4
P−1

crit diag(P ∗) diag(1n + δ∗)−2

︸ ︷︷ ︸
:=∆

is Hurwitz. Stability will now follow if ρ(∆) < 1 . Since it
always holds that ρ(∆) ≤ ‖∆‖∞, we compute that

‖∆‖∞ ≤
1

4
‖P−1

crit diag(P ∗)‖∞‖ diag(1n + δ∗)−2‖∞
< ‖P−1

crit diag(P ∗)‖∞ < 1 .

where we have used the fact from Proposition 6.1 that δ∗i ∈
(− 1

2 ,
1
2 ) for each component i (in particular, we used the lower

bound) and used (47). It follows that ρ(∆) < 1, and therefore
that J(V ∗) is Hurwitz so V ∗ is locally exponentially stable.
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[73] A. Gómez-Expósito, A. J. Conejo, and C. Cañizares, editors. Electric
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works. Birkhäuser, 1999. doi:10.1007/978-1-4612-1590-5.

[141] C. Wang, A. Bernstein, J. Y. Le Boudec, and M. Paolone. Explicit
conditions on existence and uniqueness of load-flow solutions in
distribution networks. IEEE Transactions on Smart Grid, 9(2):953–
962, 2018. doi:10.1109/TSG.2016.2572060.

[142] C. Wang and Y. Tokad. Polygon to star transformations. IRE
Transactions on Circuit Theory, 8(4):489–491, 1961. doi:10.1109/
TCT.1961.1086831.

[143] J. B. Ward. Equivalent circuits for power-flow studies. Transactions of
the American Institute of Electrical Engineers, 68(1):373–382, 2009.
doi:10.1109/EE.1949.6444973.

[144] L. Weinberg. Network Analysis and Synthesis. R.E. Krieger Pub. Co.,
1975.

[145] J. D. Weston. Unification of linear network theory. Journal of the
British Institution of Radio Engineers, 6(1):4, 1946. doi:10.1049/
jbire.1946.0002.

[146] S. Wiggins. Introduction to Applied Nonlinear Dynamic Systems and
Chaos. Texts in Applied Mathematics. Springer, 2nd edition, 2003.

[147] J. C. Willems. Dissipative dynamical systems–Part I: General theory.
Archive for Rational Mechanics and Analysis, 45(5):321–351, 1972.
doi:10.1007/BF0027649.

[148] J. C. Willems. Paradigms and puzzles in the theory of dynamical
systems. IEEE Transactions on Automatic Control, 36(3):259–294,
1991. doi:10.1109/9.73561.

[149] J. C. Willems. Terminals and ports. IEEE Circuits and Systems Mag-
azine, 10(4):8–26, 2010. doi:10.1109/MCAS.2010.938635.

[150] J. C. Willems and E. I. Verriest. The behavior of resistive circuits. In
IEEE Conf. on Decision and Control and Chinese Control Conference,
pages 8124–8129, Shanghai, China, December 2009. doi:10.1109/
CDC.2009.5400390.

[151] A. N. Willson. On the solutions of equations for nonlinear resistive
networks. Bell System Technical Journal, 47(8):1755–1773, 1968.
doi:10.1002/j.1538-7305.1968.tb00101.x.

[152] C. W. Wu and L. O. Chua. Application of Kronecker products to the
analysis of systems with uniform linear coupling. IEEE Transactions
on Circuits and Systems I: Fundamental Theory and Applications,
42(10):775–778, 1995. doi:10.1109/81.473586.

[153] W. Xia and M. Cao. Analysis and applications of spectral properties
of grounded Laplacian matrices for directed networks. Automatica,
80:10–16, 2017. doi:10.1016/j.automatica.2017.01.009.

[154] W. Xiao and I. Gutman. Resistance distance and Laplacian spectrum.
Theoretical Chemistry Accounts, 110(4):284–289, 2003. doi:10.
1007/s00214-003-0460-4.

[155] L. Yen, M. Saerens, and F. Fouss. A link-analysis extension of
correspondence analysis for mining relational databases. IEEE Trans-
actions on Knowledge and Data Engineering, 23(4):481–495, 2011.
doi:10.1109/TKDE.2010.142.

[156] G. F. Young, L. Scardovi, and N. E. Leonard. Robustness of noisy
consensus dynamics with directed communication. In American
Control Conference, pages 6312–6317, Baltimore, MD, USA, 2010.
doi:10.1109/ACC.2010.5531506.

[157] G. F. Young, L. Scardovi, and N. E. Leonard. A new notion of effective
resistance for directed graphs – Part I: Definition and properties. IEEE
Transactions on Automatic Control, 61(7):1727–1736, 2016. doi:
10.1109/TAC.2015.2481978.

[158] S. Yu, H. D. Nguyen, and K. S. Turitsyn. Simple certificate of
solvability of power flow equations for distribution systems. In IEEE
Power & Energy Society General Meeting, pages 1–5, Denver, CO,
USA, July 2015. doi:10.1109/PESGM.2015.7286371.
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