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Abstract

Social balance theory describes allowable and forbidden configurations of the topologies of signed directed social appraisal
networks. In this paper, we propose two discrete-time dynamical systems that explain how an appraisal network evolves towards
social balance from an initially unbalanced configuration. These two models are based on two different socio-psychological
mechanisms respectively: the homophily mechanism and the influence mechanism. Our main theoretical contribution is a
comprehensive analysis for both models in three steps. First, we establish the well-posedness and bounded evolution of the
interpersonal appraisals. Second, we characterize the set of equilibrium points as follows: for both models, each equilibrium
network is composed by an arbitrary number of complete subgraphs satisfying structural balance. Third, under a technical
condition, we establish convergence of the appraisal network to a final equilibrium network satisfying structural balance. In
addition to our theoretical analysis, we provide numerical evidence that our technical condition for convergence holds for generic
initial conditions in both models. Finally, adopting the homophily-based model, we present numerical results on the mediation
and globalization of local conflicts, the competition for allies, and the asymptotic formation of a single versus two factions.
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1 Introduction

Motivation and problem description

Social systems involving friendly/antagonistic rela-
tionships between their members are often modeled as
signed networks. Social balance (also referred to as struc-
tural balance) theory, which originated from several sem-
inal works by Heider [13,14], characterizes the stable
configurations of signed social networks. According to
the classic social balanced theory [13,14], in a balanced
network, the interpersonal relationships satisfy the four
famous Heider’s axioms: “The friend of my friend is my
friend; the friend of my enemy is my enemy; the enemy
of my friend is my enemy; the enemy of my enemy is
my friend.” While classic studies of social balance focus
mainly on the static theory (i.e., the local and global con-
figurations of balanced networks), dynamic social bal-
ance theory has attracted much recent interest. In short,
dynamic social balance theory aims to explain if and how
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an initially unbalanced network evolves to a balanced
network. Despite recent progress, it remains a valuable
open problem to propose dynamic models that are based
on natural assumptions and that enjoy desirable bound-
edness and convergence properties. Such models make
it possible for researchers to formulate and study mean-
ingful predictions and control/intervention strategies for
the evolution of the social network.

In this paper, we propose two novel discrete-time
dynamic models describing the evolution of the inter-
personal appraisals towards social balance. For both
models, we consider a group of individuals who re-
peatedly update their interpersonal appraisals via two
socio-psychological mechanisms respectively: the ho-
mophily mechanism and the influence mechanism. The
homophily mechanism means that individuals in a group
tend to be friendly to each other if their appraisals of
the group members are in agreement (in the sense of
signs), and vice versa. On the other hand, the influence
mechanism defines an influence process, in which each
individual updates its appraisals by assigning positive
or negative influences to all the group members. The in-
terpersonal influences are assumed proportional to the
corresponding interpersonal appraisals. For both mod-
els, our objectives are to characterize their fixed points
and their dynamical behavior, with a special emphasis
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on boundedness and convergence properties.
The homophily and influence mechanisms are both

well established in the social sciences literature; they
have been studied separately in different contexts, e.g.,
see the seminal work by Lazarsfeld and Merton [21]
on the homophily mechanism and the award-winning
book by Friedkin and Johnsen on the influence mecha-
nism [10], respectively. These two mechanisms are not
necessarily mutually exclusive: in reality, it can be ar-
gued that they simultaneously play a role in shaping the
evolution of a social network, through surely to varying
and distinct degree. It is an open question beyond the
scope of this paper to determine conditions under which
one phenomenon dominates the other.

Literature review

Following the early works by Heider [13,14], static
social balance theory has been extensively studied in
the last seven decades. Theoretical studies include the
characterization of the structurally balanced config-
urations for both complete networks [12,4] and arbi-
trary networks [6,9]; the measure of the degree of bal-
ance [3,15]; the concept of clustering and its relation to
balance [5,8]; as well as the partitioning algorithms that
cut a signed network into multiple clusters [7,20,17]. In
addition to the theoretical contributions, numerous em-
pirical studies have been conducted for different types
of social systems, including social systems at the na-
tional level [26,24], at the group level [18,28], and at the
individual level [11].

In the last decade, researchers have started to incor-
porate dynamical systems into the social balance the-
ory, aiming to explain how a signed network evolves to
a structurally balanced state. Early works include the
discrete-time local triad dynamics and constrained triad
dynamics on complete graphs, proposed by Antal et
al. [1,2]. These two models do not always converge to so-
cial balance as they suffer from the existence of so-called
jammed states, i.e., unbalanced equilibria. Radicchi et
al. [27] extend the LTD model to arbitrary graphs. Van
De Rijt [30] proposes a network game model in which
each individual minimizes the number of the unbalanced
triads involving itself, by changing the signs of its out-
links; this model evolves to social balance if each individ-
ual is allowed to change the signs of multiple links simul-
taneously. A similar network game model, allowing the
adding and deleting of links, is proposed by Malekzadeh
et al. [22]. In all the models introduced in this paragraph,
the link weights in the signed networks are assumed to
only take values from the set {−1, 0, 1}.

Our models are related to the continuous-time dy-
namic social balance models studied by Ku lakowski et
al. [19], Marvel et al. [23], and Traag et al. [29], as well
as the discrete-time model proposed by Jia et al. [16].
In these models, the link weights can take arbitrary real
values. The model proposed by Ku lakowski et al. [19] is
based on an influence-like mechanism. The theoretical
analysis of this model by Marvel et al. [23] and Traag
et al. [29] reveals that, from a specific set of initial con-
ditions, the system first reaches a structurally balanced
state and then diverges to unbounded interpersonal ap-

praisals in finite time. In [19], the authors also mod-
ify their original model by imposing a predetermined
upper bound R of the interpersonal appraisals so that
the evolution of the system remains bounded. Rigor-
ous analysis by Wongkaew et al. [31] shows that, in the
modified model, the interpersonal appraisals achieve so-
cial balance in finite time and the magnitudes of all ap-
praisals converge to the predetermined upper bound R,
if the initial appraisals are all lower bounded from −R.
Traag et al. [29] propose and analyze a continuous-time
model based on the homophily mechanism. Similar to
the first model proposed by Ku lakowski et al. [19], the
homophily-based model also reaches social balance and
then diverges to unbounded interpersonal appraisals in
finite time. Recently, Jia et al. [16] propose and analyze a
discrete-time model based on the relaxation of the classic
Heider’s social balance theory and a modified influence
mechanism with convergence to a generalized notion of
structural stability.

Contributions

The contributions of this paper are manifold. Firstly,
we propose two novel discrete-time dynamic social bal-
ance models and establish their well-posedness and
bounded evolution properties. These two models explain
the evolution of the interpersonal appraisal networks
towards the classic Heider’s social balance [13] via two
sociologically-grounded processes respectively: the ho-
mophily mechanism and the influence mechanism. In
both models, the appraisal networks are represented
by their associated adjacency matrices, i.e., the ap-
praisal matrices. For the homophily-based model, we
prove that, the appraisal matrix is well-defined and uni-
formly bounded at any time, if each row of the initial
appraisal matrix has at least one nonzero item. For the
influence-based model, we prove that the well-posedness
and bounded evolution are guaranteed if the initial ap-
praisal matrix is a symmetric matrix left multiplied by
the diagonal matrix with positive diagonal entries. In
addition, both our models are invariant under scaling,
i.e., if a solution is scaled by a constant, then it remains
a solution.

Secondly, we fully characterize the equilibrium sets
and the asymptotic behavior of both models. The anal-
yses of the two models are performed in analogous ways.
We prove that, for both models, any appraisal network in
the equilibrium state is composed of an arbitrary num-
ber of isolated subgraphs, each of which satisfies social
balance. Moreover, we prove that, for the homophily-
based model, in each of such subgraphs, all individu-
als’ appraisals have the same magnitude, while, for the
influence-based model, in each subgraph of the equilib-
rium appraisal network, the individuals reach consen-
sus, in the sense of magnitude, on the appraisals of each
individual. Finally, for both models, under a technical
condition, we establish the convergence of the appraisal
networks to structurally balanced complete graphs.

Thirdly, in addition to the comprehensive theoretical
analysis, we further investigate our models by numeri-
cal simulations. We provide numerical evidence that our
technical condition for the convergence of the appraisal
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networks to balanced complete graphs holds for generic
initial conditions. Moreover, for the homophily-based
model, numerical results on the emergence of multi-
clique social balance states and their behavior under per-
turbations reveals some realistic and strategic insights
on the escalation and mediation of conflicts. Finally, we
numerically investigate the effect of the initial appraisal
distribution on the formation of factions, that is, whether
an appraisal network eventually evolves to two antago-
nistic factions or an all-friendly network.

In summary, our paper is the first to propose discrete-
time dynamic social balance models, for both the ho-
mophily and influence mechanisms, and to establish,
through a comprehensive theoretical analysis, that the
evolution of appraisals is bounded and convergent from
generic initial conditions in appropriate sets. Com-
pared with the continuous-time homophily-based and
influence-based models analyzed in [29] and [23] re-
spectively, our models enjoy the desirable property of
convergent appraisals, (as opposed to the undesirable
property of finite-time divergence). Compared with the
model proposed in [19] with bounded evolution, (1)
our models do not rely on any predetermined bound to
prevent divergence and (2) the asymptotic appraisals
in our models are determined by the initial condition
rather than the predetermined bound.

Organization

The rest of the paper is organized as follows. Sec-
tion 2 introduces some notations and basic concepts.
Section 3 and Section 4 are the theoretical analyses of
our homophily-based and influence-based models re-
spectively. Section 5 provides further discussions and
numerical results. Section 6 gives the conclusion. Aux-
iliary lemmas and proofs are provided in the Appendix.

2 Notations and basic concepts

2.1 Notations

Let 1n (0n resp.) denote the all-ones (all-zeros resp.)
n × 1 column vector. Let R and Z≥0 denote the set of
real numbers and non-negative integers, respectively. Let
� and ≺ denote “entry-wise greater than” and “entry-
wise less than” respectively. For any X ∈ Rm×n, de-
note by Xij the (i, j)-th entry of X. Let |X| denote the
entry-wise absolute value of X, i.e., each (i, j)-th entry
of |X| is equal to |Xij |. Let sign(X) ∈ {−1, 0,+1}m×n
denote the entry-wise sign of X, i.e., for any i and j,
sign(Xij) = +1 when Xij > 0, sign(Xij) = −1 when
Xij < 0 and sign(Xij) = 0 when Xij = 0. Define the
max norm of X by ‖X‖max = maxi,j |Xij |. Let Xi∗ (X∗i
resp.) denote the row (column resp.) vector correspond-
ing to the ith row (column resp.) of the matrix X. Let
G(X) denote the directed and weighted graph associ-
ated with the adjacency matrix X.

Note that, unlike in the traditional definition of
weighted graphs, in this paper we allow the presence of
links with negative weights. That is, if Xij < 0 for some
i and j, then the directed link (i, j) in graph G(X) has
negative weight equal to Xij . We assume that there is
no link from i to j whenever Xij = 0. The terms graph
and network are assumed interchangeable.

The following sets will be used throughout this paper:

Snz-row ={X ∈ Rn×n | for every i,Xi∗ 6= 0>n }, (1)

S+
s-symm ={X ∈ Rn×n | sign(X) = sign(X)> (2)

and Xii > 0 for every i},
S+

rs-symm ={X ∈ S+
s-symm | there exists γ � 0n such (3)

that diag(γ)X = X> diag(γ)},
S+

symm ={X ∈ S+
s-symm | X = X>}. (4)

In other words, Snz-row is the set of matrices with at
least one non-zero entry in each row, while S+

s-symm is the
set of sign-symmetric matrices with positive diagonals.
Simple calculations show that any X ∈ S+

rs-symm can be
written as the product of a diagonal matrix with positive
diagonal entries with a symmetric matrix with positive
diagonal entries. By definition, we have

S+
symm ⊂ S+

rs-symm ⊂ S+
s-symm ⊂ Snz-row.

In addition, one can easily check by definition that, the
sets S+

s-symm, S+
rs-symm, and S+

symm are all invariant under

permutations. That is, given any X ∈ S+
s-symm (or X ∈

S+
rs-symm and X ∈ S+

symm resp.) and a permutation ma-

trix P , we have PXP> ∈ S+
s-symm (or PXP> ∈ S+

rs-symm

and PXP> ∈ S+
symm resp.).

2.2 Appraisal matrices and social balance

Given a group of n agents, the network of interper-
sonal appraisals among the agents is given by the ap-
praisal matrix X ∈ Rn×n. The sign of Xij determines
whether agent i’s appraisal of j is positive, i.e., i “likes”
j, or negative, i.e., i “dislikes” j. The magnitude of Xij

represents the intensity of the sentiment. WhenXij = 0,
the appraisal is one of indifference. The diagonal entry
Xii represents agent i’s self-appraisal. The directed and
weighted graph G(X) associated to X as the adjacency
matrix is referred to as the appraisal network.

Social balance is a specific property of complete ap-
praisal networks, defined as follows.

Definition 2.1 (social balance [12,14]). An appraisal
network G(X) satisfies social balance, or, equivalently, is
structurally balanced, if the associated appraisal matrix is
such that all of its entries are non-zero and the following
conditions are satisfied for all i, j, k ∈ {1, . . . , n}:
(S1) positive self-appraisals: Xii > 0,
(S2) positive triads: sign(Xij) sign(Xjk) sign(Xki) = 1.

Proposition 2.2 (Equivalent conditions for social bal-
ance). For any X ∈ Rn×n such that all of its entries are
non-zero, G(X) satisfies social balance if and only if it
satisfies (S1) and
(S3) sign(Xi∗) = ± sign(Xj∗), for all i, j ∈ {1, . . . , n} .
Moreover, for G(X) satisfying social balance, X is sign-
symmetric, i.e., sign(X) = sign(X)>.

Proof. Suppose that (S1) and (S3) hold. For any
i, j ∈ {1, . . . , n}, we have sign(Xi∗) = δ sign(Xj∗), where
δ is either −1 or 1. Therefore, sign(Xij) sign(Xji) =
δ2 sign(Xjj) sign(Xii) = 1, i.e., sign(Xij) = sign(Xji).
Moreover, for any k, since sign(Xij) = δ sign(Xjj) and
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sign(Xjk) = δ sign(Xik), we have

sign(Xij) sign(xjk) sign(Xki)

= δ2 sign(Xjj) sign(Xik) sign(Xki) = 1.

Therefore, (S1) and (S3) imply (S1) and (S2), as well as
the sign symmetry of X.

Now suppose (S1) and (S2) hold. The sign symme-
try of X is obtained by letting k = j in (S2). More-
over, due to the sign symmetry and (S2), we obtain
sign(Xij) sign(Xjk) sign(Xik) = 1, which in turn implies
that sign(Xik) sign(Xjk) does not depend on k and is
equal to sign(Xij) ∈ {−1, 1}. Therefore, sign(Xi∗) =
± sign(Xj∗) for any i and j. This concludes the proof.

According to [12], a structurally balanced appraisal
network either has only one faction in which the inter-
personal appraisals are all positive, or is composed of
two antagonistic factions such that individuals in the
same faction positively appraise each other while all the
inter-faction appraisals are negative.

3 Homophily-based Model

In this and the next sections, we propose and analyze
two dynamic social balance models respectively. These
two models are distinct in the microscopic individual in-
teraction mechanisms. In this section, we propose our
first model: the homophily-based model (HbM), and an-
alyze its dynamical behavior.

Definition 3.1 (Homophily-based model). Given an
initial appraisal matrix X(0) ∈ S+

s-symm ⊂ Rn×n, the
homophily-based model is defined by:

X(t+ 1) = diag(|X(t)|1n)−1X(t)X>(t). (5)

Remark 3.2 (Interpretation). Equation (5) updates the
appraisals based on what can be considered as the ho-
mophily mechanism. For any i, j ∈ {1, . . . , n}, agent i’s
appraisal of agent j at time step t + 1 depends on to
what extend they are in agreement with each other on
the appraisals of all the agents in the group. For any
k ∈ {1, . . . , n}, if sign(Xik(t)) = sign(Xjk(t)), then the
term Xik(t)Xjk(t) contributes positively to Xij(t + 1),
and vice versa.

The proposition below presents some useful results on
the finite-time behavior of the homophily-based model.

Proposition 3.3 (Invariant set and finite-time behav-
ior of HbM). Consider the dynamical system (5) and
define fhomophily(X) = diag(|X|1n)−1XX>. Pick X0 ∈
S+

s-symm. The following statements hold:
(i) the map fhomophily is well-defined for any X ∈
Snz-row and maps S+

s-symm to S+
s-symm;

(ii) the solution X(t), t ∈ Z≥0, to equation (5) from
initial condition X(0) = X0 is unique and well-
defined;

(iii) the max norm of any solution X(t) satisfies

‖X(t+ 1)‖max ≤ ‖X(t)‖max ≤ ‖X(0)‖max ;

(iv) for any c 6= 0, the trajectory cX(t) is the solution to
equation (5) from initial condition X(0) = cX0.

Proof. For simplicity, denote X+ = fhomophily(X).
For any X ∈ Snz-row, since, for any i and j, X+

ij =
1

‖Xi∗‖1
∑
kXikXjk and ‖Xi∗‖1 > 0, fhomophily(X) is

well-defined. Moreover,

X+
ii =

1

‖Xi∗‖1
∑
k

XikXik =
‖Xi∗‖22
‖Xi∗‖1

> 0, and

X+
ij =

‖Xj∗‖1
‖Xi∗‖1

X+
ji , for any i and j.

Therefore, fhomophily maps S+
s-symm to S+

s-symm. This con-
cludes the proof of statement (i). Statements (ii) is a
direct consequence of statement (i). In addition,

|X+
ij |≤

1

‖Xi∗‖1

n∑
k=1

∣∣XikXjk

∣∣≤ 1

‖Xi∗, ‖1

n∑
k=1

∣∣Xik

∣∣∣∣Xjk

∣∣,
≤ max

k
|Xjk| ≤ ‖X‖max

immediately leads to statement (iii). Finally, state-
ment (iv) is obtained by replacing X(t) with cX(t) on
the right-hand side of equation (5).

In fact, for any X(0) ∈ Snz-row, we have X(1) ∈
S+

s-symm and, thus, X(t) ∈ S+
s-symm for any t ≥ 1. There-

fore, the set of initial conditions of the system can be ex-
tended to the set Snz-row. However, without loss of gen-
erality, we still consider S+

s-symm as the domain of sys-
tem (5). In addition, according to Proposition 3.3, for
any X(0) ∈ S+

s-symm, the solution X(t) to equation (9) is
uniformly upper bounded for all t ∈ Z≥0. This is a de-
sired property compared with some previous models, in
which X(t) diverge in finite time [23,29].

The theorem below characterizes the set of fixed points
of system (5).

Theorem 3.4 (Fixed points and balance). Consider the
dynamical system (5) in domain S+

s-symm. Define

Qhomophily

=
{
PY P> ∈ S+

s-symm

∣∣∣P is a permutation matrix,

Y is a block diagonal matrix with blocks of

the form αbb>, α > 0, b ∈ {−1,+1}m, m ≤ n
}
.

Then we have that,
(i) Qhomophily is the set of all the fixed points of (5),

(ii) for any X ∈ Qhomophily, G(X) is composed by iso-
lated complete subgraphs that satisfy social balance.

Proof. We first prove that anyX∗ ∈ Qhomophily is a fixed
point of system (5). For any α > 0 and b ∈ {−1,+1}n,
the matrix Y = αbb> satisfies

fhomophily(Y ) = diag(nα1n)−1α2bb>bb> = αbb> = Y.

Now suppose that Y is a block diagonal matrix, i.e., Y =
diag(Y (1), . . . , Y (K)), where each Y (i) is a ni×ni matrix

of the form αib
(i)b(i)

>
, with αi > 0, b(i) ∈ {−1,+1}ni ,
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and n1 + · · ·+ nK = n. One can check that, as long as

Y (i) = diag(|Y (i)|1n)−1Y (i)Y (i)> (6)

for any i ∈ {1, . . . ,K}, Y is a fixed point of system (5).

Since Y (i) = αib
(i)b(i)

>
, we know that equation (6) is

satisfied for any i. Therefore, Y is a fixed point of sys-
tem (5). Moreover, given any fixed point Y of system (5),
for any permutation matrix P ∈ Rn×n, we have

PY P> = P diag(|Y |1n)−1Y Y >P>

= diag(|PY P>|1n)−1(PY P>)(PY P>)>

= fhomophily(PY P>).

Therefore, any X∗ ∈ Qhomophily is a fixed point of (5).
Now we prove by induction that Qhomophily is the set

of all the fixed points of system (5). For the trivial case
of n = 1, Qhomophily represents the set of all the positive
scalars and one can easily check that any positive scalar
X is a fixed point of system (5) with n = 1. Suppose
statement (i) holds for any system with dimension ñ < n.

For system (5) with dimension n, suppose X is a fixed
point, i.e., X = fhomophily(X), which implies that,

Xij =
1

‖Xi∗‖1

n∑
k=1

XikXjk =
‖Xj∗‖1
‖Xi∗‖1

Xji, for any i 6= j.

Therefore, for any i, j ∈ {1, . . . , n} and j 6= i,
we have sign(Xij) = sign(Xji). In addition, since
Xii =

∑n
k=1X

2
ik

/
‖Xi∗‖1, we have Xii > 0 for any i.

LetX+ denote fhomophily(X) for simplicity. SinceX =
X+, we have ‖X‖max = ‖X+‖max, which implies that
there exists i, j such that |X+

ij | = ‖X‖max. We discuss
two cases which together include all the possible X’s.

Case 1: there exists i such that |Xii| = ‖X‖max and
|Xij | = 0 for any j 6= i. Since sign(Xij) = sign(Xji), we
have Xji = 0 for any j 6= i. In addition, since Xii > 0,
Xii = ‖X‖max. Therefore, there exists a permutation
matrix P such that

PXP> =

[
‖X‖max 0>n−1

0n−1 X̃(n−1)×(n−1)

]
,

Since PXP> is also a fixed point of system (5), one can

check that X̃ satisfies X̃ = diag(|X̃|1n)−1X̃X̃>. There-

fore, X̃ is a fixed point of system (5) with dimension
n−1. Since we have assumed that statement (i) holds for
dimension ñ < n, there exists an (n−1)×(n−1) permu-

tation matrix P̃ and a block diagonal Ỹ , with blocks of
the form αbb>, where α > 0, b ∈ {−1,+1}m, m < n−1,

such that X̃ = P̃ Ỹ P̃>. Therefore,

X = P>

[
1 0>n−1

0n−1 P̃

][
‖X‖max 0>n−1

0n−1 Ỹ

][
1 0>n−1

0n−1 P̃

]>
P.

The matrix

P>

[
1 0>n−1

0n−1 P̃

]

is also a permutation matrix. Therefore X ∈ Qhomophily.
Case 2: there exists j 6= i such that |X+

ij | = ‖X‖max.
We first define some notations used in the following
proof: For any k, let θk = {` | Xk` 6= 0} and |θk|
be the cardinality of the set θk. Note that, since X =
fhomophily(X) ∈ S+

s-symm, k is always in θk and Xkk > 0.

Let X`∗,θk ∈ R1×|θk| be the `-th row vector of X with all
the X`p entries such that p /∈ θk removed.

We point out a general result that, for any k and `, if

|X+
k`| =

1

‖Xk∗‖1

∣∣∣ n∑
p=1

XkpX`p

∣∣∣ = ‖X‖max,

then, for the second equality to hold, X must satisfy
that: 1) θk ⊂ θl; 2) |X`p| = ‖X‖max for any p ∈ θk;
3) sign(X`∗,θk) = ± sign(Xk∗,θk). Therefore, for the
i, j indexes such that |X+

ij | = ‖X‖max and i 6= j, we

have: |Xjk| = ‖X‖max, for any k ∈ θi; θi ⊂ θj ; and
sign(Xj∗,θi) = ± sign(Xi∗,θi). Since i ∈ θi and X+ = X,
we obtain |X+

ji | = |Xji| = ‖X‖max. Therefore, |X+
ik| =

|Xik| = ‖X‖max, for any k ∈ θj , and θj ⊂ θi, which in
turn leads to θi = θj and |X+

ik| = |Xik| = ‖X‖max for

any k ∈ θi. Therefore, for any k ∈ θi, |X+
ik| = ‖X‖max,

which implies |Xk`| = ‖X‖max for any l ∈ θi. Since
|X+

k`| = |Xk`|, we further obtain that θk ⊂ θl and
sign(Xk∗,θk) = ± sign(X`∗,θk). Moreover, due to the
fact that the indexes k and l are interchangeable, we
conclude that, for any k, l ∈ θi: a) θk = θl = θi; b)
|Xk`| = ‖X‖max; c) sign(Xk∗) = ± sign(X`∗).

If |θi| = n, let α = X11 and b = sign(X1∗)
>, then we

have X = αbb>. If |θi| < n, there exists a permutation
matrix P such that

PXP> =

[
X(θi) 0|θi|×(n−|θi|)

0(n−|θi|)×|θi| X̃

]
,

where X(θi) is a |θi| × |θi| matrix. Moreover, X(θi) =
‖X‖maxbb

>, where b = sign(Xi∗,θi)
>. Following the

same line of argument for Case 1, we know that X̃ is
of the form P̃ Ỹ P̃> and thereby X ∈ Qhomophily. This
concludes the proof for statement (i).

For any X∗ ∈ Qhomophily, there exists a per-
mutation matrix P and a block diagonal matrix
Y = diag(Y (1), . . . , Y (K)) such that X∗ = PY P>.
Note that G(Y ) has exactly the same topology as
G(X), but with the nodes reindexed. Therefore, we
only need to analyze the structure of G(Y ). One can
easily check that Y has positive diagonals (and is
also sign-symmetric). Moreover, G(Y ) is made up of
K isolated complete subgraphs. Therefore, for any
triad (j, k, l) in G(Y ), there exists i ∈ {1, . . . ,K} such
that nodes j, k, l are all in the subgraph G(Y (i)) with

the adjacency matrix Y (i) =
(
Y

(i)
jk

)
ni×ni

. Suppose

Y (i) = αib
(i)b(i)

>
, where b(i) = (b

(i)
1 , . . . , b

(i)
ni )>. We have

Y
(i)
jk Y

(i)
k` Y

(i)
`j = α3

i b
(i)
j

2
b
(i)
k

2
b
(i)
l

2
> 0. Therefore, every

triad is positive in graph G(Y ). We conclude that any
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X∗ ∈ Qhomophily is associated with a graph G(X∗) com-
posed by isolated complete subgraphs that satisfy social
balance. This concludes the proof for statement (ii).

Remark 3.5. Since X being a fixed point of fhomophily

implies that X is sign-symmetric and has positive diag-
onal, Qhomophily is actually the set of all the fixed points
of fhomophily in Snz-row.

Now we present the main results on the convergence
of the appraisal matrix to social balance.

Theorem 3.6 (Convergence and social balance in
HbM). Consider the homophily-based model given by
equation (5). The following statements hold:
(i) Each fixed point of rank one in Qhomophily is locally

stable.
For any X(0) ∈ S+

s-symm such that lim inf
t→∞

min
i,j
|Xij(t)| >

0, we have that:
(ii) there exists X∗ ∈ Qhomophily of rank one such that

limt→∞X(t) = X∗, and
(iii) there exists T > 0 such that G(X(t)) satisfies social

balance for all t ≥ T .

Proof. We start by proving the following two claims. For
any given t0 ≥ 0, if all the entries of X(t0) are non-zero
and G(X(t0)) satisfies social balance, then,

C.1) for any t ≥ t0, G(X(t)) satisfies social balance and
sign(X(t)) = sign(X(t0));

C.2) there existsα > 0 and b ∈ {−1,+1}n, depending on
X(t0), such that X(t) converges to αbb> as t→∞.

To prove claim C.1), it suffices to prove that G(X(t0 +
1)) satisfies social balance and sign(X(t0 + 1)) =
sign(X(t0)), as the cases for t ≥ t0 + 1 follow by
induction. For any i and j, since G(X(t0)) satisfies
social balance, according to Proposition 2.2, we have
sign(Xi∗(t0)) = ± sign(Xj∗(t0)). In addition, we have
Xjj(t0) > 0 for any j. Therefore,

sign
(
Xij(t0+1)

)
=sign

( 1

‖Xi∗(t0)‖1

n∑
k=1

Xik(t0)Xjk(t0)
)

= sign
(
Xij(t0)Xjj(t0)

)
=sign

(
Xij(t0)

)
,

for any i and j. This concludes the proof for claim C.1).
For any t ≥ t0, since G(X(t)) satisfies social balance,

|Xij(t+1)| = 1

‖Xi∗(t)‖1

n∑
k=1

|Xik(t)||Xjk(t)| for any i, j,

which leads to the following two inequalities:
mink,`|Xk`(t+1)| ≥mink,`|Xk`(t)|; maxk,`|Xk`(t+1)| ≤
maxk,`|Xk`(t)|. Therefore, mink,` |Xk`(t)| is non-
decreasing and upper bounded by maxk,` |Xk`(t0)|, while
maxk,` |Xk`(t)| is non-increasing and lower bounded by
mink,` |Xk`(t0)|, which in turn implies that there exists
0 < α ≤ α, depending on X(t0), such that

lim
t→∞

min
k,`
|Xk`(t)| = α, and lim

t→∞
max
k,`
|Xk`(t)| = α.

Moreover, suppose maxk,` |Xk`(t)| > mink,` |Xk`(t)|, for

some t ≥ t0, and |Xpq(t)| = mink,` |Xk`(t)|. We have

|Xjp(t+1)|= 1

‖Xj∗(t)‖1

n∑
k=1

|Xjk(t)||Xpk(t)|

<max
k,`
|Xk`(t)|, and

|Xij(t+2)|= 1

‖Xi∗(t+1)‖1

n∑
k=1

|Xik(t+1)||Xjk(t+1)|

<max
k,`
|Xk`(t)|, (7)

for any i and j. Let V1 : Rn×n → R≥0 be defined as:

V1(X) = max
k,`
|Xk`| −min

k,`
|Xk`|.

Due to inequality (7), for any t ≥ t0, 0 ≤ V1(X(t +
2)) < V1(X(t)) as long as V1(X(t)) > 0. There-
fore, V1(X(t)) converges to 0 as t → ∞, which im-
plies α = α = α > 0. For any i, j and any t ≥ t0,
since mink,` |Xk`(t)| ≤ |Xij(t)| ≤ maxk,` |Xk`(t)|, we
conclude that limt→∞ |Xij(t)| = α. Moreover, since
sign(X(t)) = sign(X(t0)) for any t ≥ t0, we have
limt→∞X(t) = αbb>, where b = sign(X1∗(t0))>. This
concludes the proof for claim C.2).

Now we prove statement (i), i.e., eachX∗ ∈ Qhomophily

with rank 1 is locally stable. Let X∗ = αbb>, where
α > 0 and b ∈ {−1,+1}n. For any matrix ∆ ∈ Rn×n

such that δ = maxi,j |∆ij | < α, we have sign(X∗+∆) =
sign(X∗). Due to claim C.1) and the proof of claim C.2),
we know that, forX(0) = X∗+∆,X(t) satisfies that, for
any t ≥ 0: (1) sign(X(t)) = sign(X(0)) = sign(X∗); (2)
α− δ ≤ mini,j |Xij(t)| ≤ maxi,j |Xij(t)| ≤ α+ δ. There-
fore, for any i and j,Xij(t) is of the formαij(t) sign(X∗ij),
where 0 < α− δ ≤ αij(t) ≤ α+ δ. We thereby have

‖X(t)−X∗‖max = max
ij

∣∣αij(t) sign(X∗ij)− α sign(X∗ij)
∣∣

= max
ij
|αij(t)− α| ≤ δ.

Therefore, for any ε > 0, there exists δ = min{α2 , ε2}
such that, for any X(0) satisfying ‖X(0)−X∗‖max < δ,
‖X(t)−X∗‖max<ε for any t≥0, i.e., X∗ is locally stable.

For the rest of the proof, we proceed to prove the state-
ments (ii) and (iii) of the theorem. For simplicity, denote
X+ = fhomophily(X). Firstly, one can easily check that
fhomophily(X) is continuous for any X ∈ S+

s-symm. Sec-

ondly, for any givenX(0) ∈ S+
s-symm, according to Propo-

sition 3.3, ‖X(t)‖max ≤ ‖X(0)‖max for any t ∈ Z≥0. In
addition, lim inf

t→∞
min
i,j
|Xij(t)| = δ for some δ > 0 implies

that there exists t̃ ∈ Z≥0 such that min
i,j
|Xij(t)| ≥ δ/2

for any t ≥ t̃. Therefore, the set

Gc =
{
X ∈ S+

s-symm

∣∣∣ min
i,j
|Xij | ≥ δ/2,

‖X‖max ≤ ‖X(0)‖max

}
is a compact subset of S+

s-symm and X(t) ∈ Gc for any

t ≥ t̃. Thirdly, define V2(X) = ‖X‖max. The function
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V2 is continuous on S+
s-symm and, according to Propo-

sition 3.3, satisfies V2(X+) − V2(X) ≤ 0 for any X ∈
S+

s-symm. According to the extended LaSalle invariance
principle presented in Theorem 2 of [25], X(t) converges
to the largest invariant set M of the set E = {X ∈
Gc | V2(X+)− V2(X) = 0}.

Now we characterize the largest invariant set M . For
any X ∈M ⊂ E, V2(X+) = V2(X) = ‖X‖max. Suppose

|X+
ij | = max

k,`
|X+

k`|. Since

|X+
ij | =

1

‖Xi∗‖1

∣∣∣∣∣
n∑
`=1

Xi`Xj`

∣∣∣∣∣
≤ 1

‖Xi∗‖1

n∑
`=1

|Xi`||Xj`| ≤ max
`
|Xj`|,

(8)

we need all of these inequalities to hold with equality and
max
`
|Xj`| = ‖X‖max. Since X ∈ Gc implies |Xk`| > 0,

for any k, ` ∈ {1, . . . , n}, X must satisfy that
(a) Xi∗ andXj∗ have the same or opposite sign pattern,

i.e., sign (Xi∗) = ± sign (Xj∗),
(b) All entries of Xj∗ have the magnitude ‖X‖max.
Therefore, for any X ∈ E, there exist some i and j such
that the aforementioned conditions (a) and (b) hold.
Moreover, since the set M is invariant, X ∈ M implies
X+ ∈M ⊂ E, which in turn implies that there exists a
j̃ such that, for any p, |X+

j̃p
| = ‖X+‖max = ‖X‖max. Fol-

lowing the same argument on the conditions such that
the inequalities (8) become equalities, we know that, for
any p, sign (Xj̃∗) = ± sign (Xp∗) and |Xpk| = ‖X‖max

for any k. As these relationships hold for any p, we
conclude that for any i, j ∈ {1, . . . , n}, Xi∗ and Xj∗
must have the same or the opposite sign pattern. Let
α = ‖X‖max and b = sign(X>1∗). Each row of X is
thereby equal to either αb> or −αb>. Therefore, X is of
the formX = αcb>, where c ∈ {−1, 1}n. Moreover, since
all the diagonal entries of X are positive, the column
vector c must satisfy cibi = 1 for any i, which implies
c = b. Therefore, X = αbb>. In addition, since any ma-
trix X of the form αbb>, with α > 0 and b ∈ {−1, 1}n,
is a fixed point of system (5), we conclude that

M =
{
X = αbb>

∣∣ δ
2
≤ α ≤ ‖X(0)‖max , b ∈ {−1, 1}n

}
,

which is a compact subset of S+
s-symm.

For any X̂ ∈ M , since X̂ satisfies social balance (see

Theorem 3.4) and mini,j X̂ij ≥ δ/2 > 0, there exists

an open neighbor set defined as U(X̂) = {X = X̂ +

∆ | ‖∆‖max < min
i,j

X̂ij} such that any X ∈ U(X̂) sat-

isfies social balance. According to Hein-Borel theorem,
there exists a finite set {X̂1, . . . , X̂K} ⊂ M such that

M ⊂ ∪Kk=1U(X̂k). Since ∪Kk=1U(X̂k) is an open set, there
exists ε > 0 such that the neighbor set of M , defined as

U(M, ε) = {X ∈ S+
s-symm | ‖X −M‖max < ε},

satisfies that U(M, ε) ⊂ ∪Kk=1U(X̂k) and thereby any

X ∈ U(M, ε) satisfies social balance.
Since X(t) → M as t → ∞, there exists T ∈ Z≥0

such that X(t) ∈ U(M, ε) for any t ≥ T . Therefore,
X(t) satisfies social balance for any t ≥ T , which proves
statement (iii). Moreover. Statement (ii) follows from
claim C.2) and Theorem 3.4.

Extensive simulation results indicate that, under
generic initial conditions X(0) ∈ Snz-row, every entry
of the solution |X(t)| is uniformly lower bounded by a
positive number for all t > 0. This numerical result will
be discussed in details in Section 5.

4 Influence-based Model

In this section, we propose and analyze our second
model: the influence-based model (IbM).

Definition 4.1 (Influence-based model). Given an
initial appraisal matrix X(0) ∈ S+

rs-symm ⊂ Rn×n, the
influence-based model is defined by:

X(t+ 1) = diag(|X(t)|1n)−1X(t)X(t). (9)

Remark 4.2 (Interpretation). The evolution of the
appraisal matrix given by equation (9) can be in-
terpreted as an influence process. The associated
time-varying influence matrix W (t) is constructed by
W (t) = diag(|X(t)|1n)−1X(t). That is, the influence
any agent i assigns to agent j is assumed to be propor-
tional to i’s appraisal of j. We allow negative influences.
For any i and k, if agent i is has a positive appraisal of
agent k, then agent k’s positive (negative resp.) appraisal
of j contributes positively (negatively resp.) to agent i’s
appraisal of j at the next time step, and vice versa.

Next, we present some results on the invariant set and
finite-time behavior of the influence-based model.
Proposition 4.3 (Finite-time Properties of the
IbM). Consider the dynamical system (9) and de-
fine finfluence(X) = diag(|X|1n)−1XX. Pick any
X0 ∈ S+

rs-symm. The following statements hold:
(i) the map finfluence is well-defined for anyX ∈ Snz-row

and maps S+
rs-symm to S+

rs-symm;
(ii) the solution X(t), t ∈ Z≥0, to equation (9) from

initial condition X(0) = X0 is unique and well-
defined;

(iii) the max norm of X(t) satisfies

‖X(t+ 1)‖max ≤ ‖X(t)‖max ≤ ‖X(0)‖max ;

(iv) for any c 6= 0, the trajectory cX(t) is the solution to
equation (9) from initial condition X(0) = cX0.

Proof. Denote X+ = finfluence(X) for simplicity. Fol-
lowing the same argument as in the proof of Proposi-
tion 3.3, we know that finfluence is well-defined for any
X ∈ Snz-row. For any X ∈ S+

rs-symm, there exists γ � 0n
such that diag(γ)X = X> diag(γ). Therefore,

X+
ii =

1

‖Xi∗‖1
∑
k

XikXki=
1

‖Xi∗‖1
∑
k

γi
γk
X2
ik>0, and

X+
ij =

1

‖Xi∗‖1
γj
γi

∑
k

XjkXki=
‖Xj∗‖1γj
‖Xi∗‖1γi

X+
ji .
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Let γ̃ = diag
(
|X|1n

)
γ, then we have diag(γ̃)X =

X> diag(γ̃). Therefore, X+ = finfluence(X) ∈ S+
rs-symm.

This concludes the proof of statement (i). Statements (ii)
is a direct consequence of statement (i). Moreover,∣∣X+

ij

∣∣ =
1

‖Xi∗‖1

∣∣∣∑
k

XikXkj

∣∣∣ ≤ 1

‖Xi∗‖1
∑
k

|Xik||Xkj |

≤ max
k
|Xkj | ≤ ‖X‖max

immediately lead to statement (iii). Statement (iv) is a
straightforward observation obtained from equation (9).

Notice that, unlike the homophily-based model,
finfluence is not well-defined for all X ∈ Snz-row. For
example,

X(0) =

[
1 2

−0.5 −1

]
∈ Snz-row

leads to X(1) /∈ Snz-row and finfluence(X(1)) is not de-
fined. Instead, we consider S+

rs-symm as the domain of sys-
tem (9). According to Proposition 4.3, for any X(0) ∈
S+

rs-symm, the solutions X(t) to equation (9) is uniformly
upper bounded, which is a desired property, that the
previous models in [23,29] do not have.

The following theorem characterizes the set of fixed
points of the map finfluence in S+

rs-symm.
Theorem 4.4 (Fixed points and social balance). Con-
sider system (9) in domain S+

rs-symm. Define

Qinfluence

=
{
PY P> ∈ S+

rs-symm

∣∣∣P is a permutation matrix,

Y is a block diagonal matrix with blocks of the

form sign(w)w>, w ∈ Rm and |w| � 0m,m ≤ n
}
.

Then the following statements hold:
(i) Qinfluence is the set of all the fixed points of sys-

tem (9) in domain S+
rs-symm,

(ii) for anyX ∈ Qinfluence,G(X) is composed by isolated
complete subgraphs that satisfy social balance.

Proof. We first prove that any X∗ ∈ Qinfluence is a fixed
point of system (9). For any w ∈ Rn such that |w| � 0n,
the matrix Y = sign(w)w> satisfies

finfluence(Y )

= diag(| sign(w)w>|1n)−1(sign(w)w>)(sign(w)w>)

= sign(w)w> = Y.

Therefore, Y = sign(w)w> is a fixed point of system (9).
Now suppose that Y is a block diagonal matrix, i.e.,
Y = diag(Y (1), . . . , Y (K)), where each Y (i) is a ni × ni
matrix of the form sign(w(i))w(i)>, with |w(i)| � 0ni ,
and n1 + · · ·+ nK = n. One can check that, as long as

Y (i) = diag(|Y (i)|1n)−1Y (i)Y (i) (10)

for any i ∈ {1, . . . ,K}, Y is a fixed point of system (9).

Since Y (i) = sign(w(i))w(i)>, following the same line of
argument for the case in which Y only has one block, we
know that equation (10) holds for any i. Therefore, Y
is a fixed point of system (9). Moreover, given any fixed
point Y , for any permutation matrix P ∈ Rn×n, since

PY P> = P diag(|Y |1n)−1Y Y P>

= diag(|PY P>|1n)−1(PY P>)(PY P>)

= finfluence(PY P>),

any X∗ ∈ Qinfluence is a fixed point of finfluence.
For any X∗ ∈ Qinfluence, there exists a permuta-

tion matrix P and a block diagonal matrix Y in the
form diag(Y (1), . . . , Y (K)) such that X∗ = PY P>.
One can easily check that Y has positive diagonals
and is sign-symmetric. Moreover, G(Y ) is made up
of K isolated complete subgraphs. Therefore, for any
triad (j, k, l) in G(Y ), there exists i ∈ {1, . . . ,K} such
that nodes j, k, l are all in the subgraph G(Y (i)) with

the adjacency matrix Y (i) =
(
Y

(i)
jk

)
ni×ni

. Suppose

Y (i) = sign(w(i))w(i)>, where w(i) = (w
(i)
1 , . . . , w

(i)
ni )>.

We have

Y
(i)
jk Y

(i)
k` Y

(i)
`j = |w(i)

j ||w
(i)
k ||w

(i)
l | > 0.

Therefore, every triad is positive in graph G(Y ). Since
G(Y ) has exactly the same topology as G(X), but just
with the nodes reindexed. We conclude that any X∗ ∈
Qinfluence is associated with a graphG(X∗) composed by
isolated complete subgraphs that satisfy social balance.
This concludes the proof for statement (ii).

Now we prove that Qinfluence contains all the fixed
points of system (9) in S+

rs-symm. We the notations θi
and Xj∗,θi in the same way as defined in the proof of
Theorem 3.4, and, in addition, define X∗j,θi as the j-th
column of X with all the k-th entry such that k /∈ θi
removed.

Now we prove by induction that Qinfluence is actually
the set of all the fixed point of system (9). One can
check that the trivial case of n = 1 is true. Suppose
statement (i) holds for any system with dimension ñ < n.

For system (9) with dimension n, suppose X ∈
S+

rs-symm is a fixed point of the system (9), i.e.,
X = finfluence(X). For any given j,

|Xij | =
1

‖Xi∗‖1

∣∣∣∑
k

XikXkj

∣∣∣ ≤ 1

‖Xi∗‖1
∑
k

|Xik||Xkj |

≤ max
k
|Xkj |, for any i,

and there exists some i such that |Xij | = maxk |Xkj |.
Now we discuss two cases that cover all the possible X’s.

Case 1: |Xjj | = maxk |Xkj | and |Xij | < maxk |Xkj |
for any i 6= j. Since X ∈ S+

rs-symm, X is sign-symmetric,

|Xjj | =
1

‖Xj∗‖1
∑
k

|Xjk||Xkj | = max
k
|Xkj |.

Due to the second equality in the equations above,
|Xkj | = max` |X`j | for any k ∈ θj . Therefore, in Case
1, i /∈ θj for any i 6= j, which in turn implies that
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Xji = Xij = 0 for any i 6= j. As the consequence, there
exists a permutation matrix P such that

PXP> =

[
Xjj 0>n−1

0n−1 X̃

]
,

where X̃ is an (n − 1) × (n − 1) matrix. Following the
same line of argument in the Case 1 of the proof of The-
orem 3.4, we conclude that X ∈ Qinfluence.

Case 2: there exists i 6= j such that |Xij | =
maxk |Xkj |. For such i, we have j ∈ θi. In addition, the
equality below

|Xij | =
1

‖Xi∗‖1

∣∣∣∑
k

XikXkj

∣∣∣ = max
k
|Xkj |

leads to the following two results:
R.1) sign(Xi∗,θi) = ± sign(X>∗j,θi);

R.2) |Xkj | = max` |X`j | for any k ∈ θi.
Result R.2) and j ∈ θi lead to |Xjj | = max` |X`j |. There-
fore, for any k ∈ θj , |Xkj | = max` |X`j |. Moreover, since
X is sign-symmetric, for any k /∈ θj , Xjk = Xkj = 0.

For any i ∈ θj , since |Xij | = 1
‖Xi∗‖1

∣∣∣∑kXikXkj

∣∣∣,
|Xij | = max` |X`j | implies that |Xkj | = max` |X`j | for
any k ∈ θi. Since k /∈ θj leads to k /∈ θi, we have θi ⊂ θj .

For any given i ∈ θj , since X ∈ S+
rs-symm, we know

that Xii > 0 and Xji > 0. Apply the same argument for
the j-th column in Case 2 to the i-th column, we con-
clude that Xii = max` |X`i| and |Xji| = max` |X`i|, the
latter of which in turn implies that |Xki| = max` |X`i|
for any k ∈ θj . Moreover, since Xii = max` |X`i| leads
to |Xki| = max` |X`i| for any k ∈ θi and Xik = Xki = 0
for any k /∈ θi, we have θj ⊂ θi. Since we already get
θi ⊂ θj , we conclude that θj = θi for any i ∈ θj . In
addition, due to Result R.1) and the facts that θi = θj
and X is sign-symmetric, we obtain that sign(Xi∗, θj) =
sign(X>∗i,θj ) = ± sign(X>∗j,θj ) for all i ∈ θj .

Taking together all the results we have obtained for
Case 2, we conclude that, for any given j in Case 2: (1)
|Xkj | = max` |X`j | for any k ∈ θj and Xkj = Xjk = 0
for any k /∈ θj ; (2) For any i ∈ θj , θi = θj . In addition,
|Xki| = max` |X`i| for any k ∈ θj and Xki = Xik = 0 for
any k /∈ θj ; (3) For any i ∈ θj , sign(X∗i) = sign(X∗j).
Denote by |θj | the cardinality of θj and define the |θj | ×
|θj | matrix X(θj) = sign(w(θj))w(θj)>, where w(θj) =
X>j∗,θj . There exists a permutation matrix P such that

PXP> =

[
X(θj) 0|θj |×(n−|θj |)

0(n−|θj |)×|θj | X̃

]
.

Following the line of argument in Case 1, we have X ∈
Qinfluence. This concludes the proof for statement (i).

Remark 4.5. By carefully examining the proof for Theo-
rem 4.4, one can observe that Qinfluence is actually the set
of all the fixed point of the map finfluence in S+

s-symm. How-
ever, the setQinfluence does not contain all the fixed points
in Snz-row. For example, let X = αbb> for some α > 0
and b ∈ {−1,+1}n. Then, pick one i ∈ {1, . . . , n} and set

X∗i = 0n. It can be easily verified that X = finfluence(X)
but X /∈ Qinfluence.

Now we present the main results on the convergence
of the appraisal network to social balance.

Theorem 4.6 (Convergence and social balance in the
IbM). Consider the influence-based model given by equa-
tion (9). The following statements hold:
(i) Each fixed point of rank one in Qinfluence is locally

stable.
For any X(0)∈S+

rs-symm such that lim inf
t→∞

min
i,j
|Xij(t)|>0,

(ii) there exists X∗ ∈ Qinfluence of rank one such that
limt→∞X(t) = X∗, and

(iii) there exists T > 0 such that G(X(t)) satisfies social
balance for all t ≥ T .

Proof. We start by proving the following two claims. For
any given t0 ≥ 0, if all the entries of X(t0) are non-zero
and G(X(t0)) satisfies social balance, then,
C.1) for any t ≥ t0, G(X(t)) satisfies social balance and

sign(X(t)) = sign(X(t0));
C.2) there exists w ∈ Rn \ {0n}, depending on X(t0),

such that X(t) converges to sign(w)w> as t→∞.
Claim C.1) is proved in the same way as in the proof
of Theorem 3.6. For any t ≥ t0, since G(X(t)) satisfies
social balance,

|Xij(t+ 1)| = 1

‖Xi∗(t)‖1

n∑
`=1

|Xi`(t)||X`j(t)|,

for any i and j. Therefore, for a given j, the previous
expression leads to the following two inequalities:
min
`
|X`j(t + 1)| ≥ min

`
|X`j(t)|; max

`
|X`j(t + 1)| ≤

max
`
|X`j(t)|. Therefore, min

`
|X`j(t)| is non-decreasing

and upper bounded by max
`
|X`j(t0)|, while max

`
|X`j(t)|

is non-increasing and lower bounded by min
`
|X`j(t0)|,

which in turn implies that there exists 0 < ω ≤ ω,
depending on X(t0), such that

lim
t→∞

min
`
|X`j(t)| = ω, and lim

t→∞
max
`
|X`j(t)| = ω.

Suppose, at some time t ≥ t0, min
`
|X`j(t)|<max

`
|X`j(t)|

and |Xpj(t)| = max
`
|X`j(t)|. For any i,

|Xij(t+1)|≥

∑
k 6=p
|Xik(t)|min

`
|X`j(t)|+|Xip(t)||Xpj(t)|

‖Xi∗(t)‖1
>min

`
|X`j(t)|.

Therefore, min
`
|X`j(t + 1)| > min

`
|X`j(t)| and, simi-

larly, max
`
|X`j(t + 1)| < max

`
|X`j(t)|. As the conse-

quence, max
`
|X`j(t)| − min

`
|X`j(t)| is strictly decreas-

ing as long as min
`
|X`j(t)| < max

`
|X`j(t)|. Therefeore,

ω = ω > 0, which implies that |Xij | converges for any i
and j, and the magnitude of the entries of X in the same
column converge to the same value. In addition, since
sign(X(t)) = sign(X(t0)) for all t ≥ t0, we conclude that
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X(t) converges to a matrix in the form sign(w)w>. This
concludes the proof for claim C.2).

Now we prove statement (i), i.e., each X̂ ∈ Qinfluence

with rank 1 is locally stable. Let X̂ = sign(w)w>, where
|w| � 0n. For any matrix ∆ ∈ Rn×n such that for any k ∈
{1, . . . , n}, δk = maxi |∆ik| < |wk|, we have sign(X̂∗k +

∆∗k) = sign(X̂∗k). Due to claim C.1) and the proof of

claim C.2), we know that, for X(0) = X̂ + ∆, X(t)
satisfies that, for any t ≥ 0,
(1) sign(X(t)) = sign(X(0)) = sign(X̂);
(2) |wk|−δk≤mini |Xik(t)|≤maxi |Xik(t)|≤|wk|+δk.

Therefore, for any i,Xik(t) is of the form αik(t)sign(X̂ik),
where 0 < |wk| − δk ≤ αik(t) ≤ |wk|+ δk. We have∥∥∥X(t)− X̂

∥∥∥
max

=max
ij

∣∣αij(t) sign(X̂ij)−|wj | sign(X̂ij)
∣∣

=max
ij

∣∣αij(t)− |wj |∣∣≤δ,
where δ = max

k
δk. Therefore, for any ε > 0, there exists

δ = min{maxk |wk|
2 , ε2} such that, for any X(0) satisfying

‖X(0)−X∗‖max < δ, ‖X(t)−X∗‖max < ε for any t ≥
0. That is, X̂ is locally stable.

Now we proceed to prove the statements (ii) and (iii) of
the theorem. For simplicity, denote X+ = finfluence(X).
Firstly, one can easily check that finfluence(X) is contin-
uous for any X ∈ S+

rs-symm. Secondly, for any X(0) ∈
S+

rs-symm and any k ∈ {1, . . . , n}, according to the proof
of Proposition 4.3, ‖X∗k(t)‖max ≤ ‖X∗k(0)‖max for
any t ∈ Z≥0. In addition, lim inf

t→∞
min
i,j
|Xij(t)| > 0 im-

plies that there exists δ > 0 and t̃ ∈ Z≥0 such that
min
i,j
|Xij(t)| ≥ δ/2 for any t ≥ t̃. Therefore, the set

Gc =
{
X ∈ S+

rs-symm

∣∣∣ min
i,j
|Xij | ≥ δ/2, and, for any k,

‖X∗k‖max ≤ ‖X∗k(0)‖max

}
is a compact subset of S+

rs-symm and X(t) ∈ Gc for

any t ≥ t̃. Thirdly, define V2(X∗k) = ‖X∗k‖max.
The function V2 is continuous on S+

rs-symm and, ac-
cording to the proof of Proposition 4.3, satisfies
V2(X+

∗k) − V2(X∗k) ≤ 0 for any X ∈ S+
rs-symm. Ac-

cording to the extended LaSalle invariance principle
presented in Theorem 2 of [25], we conclude that, given
any X(0) ∈ S+

symm such that lim inf
t→∞

min
i,j
|Xij(t)| = δ,

X(t) converges to the largest invariantset M of the set
E = {X ∈ Gc | V2(X+

∗k)− V2(X∗k) = 0 for any k}.
Now we characterize the largest invariant set M .

For any X ∈ M ⊂ E and k ∈ {1, . . . , n}, V2(X+
∗k) =

V2(X∗k) = ‖X∗k‖max. Suppose |X+
ik| = max

`
|X+

`k|. Since

|X+
ik| =

1

‖Xi∗‖1

∣∣∣∣∣
n∑
`=1

Xi`X`k

∣∣∣∣∣
≤ 1

‖Xi∗‖1

n∑
`=1

|Xi`||X`k| ≤ max
`
|X`k|,

(11)

we need all of these inequalities to hold with equality
Since X ∈ Gc ⊂ S+

rs-symm implies |Xj`| > 0, for any
j, ` ∈ {1, . . . , n}, X must satisfy that
(a) Xi∗ andX∗k have the same or opposite sign pattern,

i.e., sign (X∗k) = sign (Xk∗) = ± sign (Xi∗),
(b) All entries of X∗k have magnitude ‖X∗k‖max.

Therefore, for any X ∈ E and k, there exist some i such
that the aforementioned conditions (a) and (b) hold.
Moreover, since the set M is invariant, X ∈ M im-
plies X+ ∈ M ⊂ E, which in turn implies that, for
any p, |X+

pk| =
∥∥X+
∗k
∥∥

max
= ‖X∗k‖max. Following the

same argument on the conditions such that the inequal-
ities (11) become strict equalities, we know that, for any
p, sign (Xp∗) = ± sign (X>∗k) and |Xpk| = ‖X∗k‖max for
any k. Using these relationships, we conclude that for
any i and j, Xi∗ and Xj∗ must have the same or the
opposite sign pattern, and that |Xij | = ‖X∗j‖max. Let

w = X>1∗. Each row of X is thereby equal to either
w> or −w>. Therefore, X is of the form X = cw>,
where c ∈ {−1, 1}n. Moreover, since all the diagonal en-
tries of X are positive, the column vector c must satisfy
ciwi = 1 for any i, which implies c = sign(w). Therefore,
X = sign(w)w>. Thus, since any matrix X of the form
sign(w)w>, with |w| � 0n, is a fixed point of system (9),
we conclude that

M ={X = sign(w)w> | δ/2 ≤ wi ≤ ‖X(0)‖max ,

w ∈ Rn \ {0n}, for any i ∈ {1, . . . , n}},
which is a compact subset of S+

rs-symm. Following the
same line of argument in the proof of Theorem 3.6, we
conclude that there exists ε > 0 such that any X in the
neighbor set U(M, ε) satisfies social balance.

Since X(t)→M as t→∞, there exists T ∈ Z≥0 such
that X(t) ∈ U(M, ε) for any t ≥ T . Therefore, X(t) sat-
isfies social balance for any t ≥ T , which proves state-
ment (iii). Moreover, according to claim C.2) and Theo-
rem 4.4, there exists X∗ = sign(w)w>, which is a matrix
in the set Qinfluence with rank one, such that X(t)→ X∗

as t→∞, concluding the proof for statement (ii).

Extensive simulation results indicate that, under
generic initial conditions X(0) ∈ S+

rs-symm, every entry
of |X(t)| is uniformly strictly lower bounded from 0 for
all t > 0. This numerical result is further discussed in
Section 5.

5 Further discussion and numerical simulations

5.1 Generic convergence to rank-one appraisal matrix

According to Theorem 3.6, for any X(0) ∈ S+
s-symm

such that lim inf
t→∞

min
i,j
|Xij(t)| > 0, in the homophily-
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based model, the solution X(t) converges to some rank-
one matrix of the form αbb>. In this subsection, we
use the Monte Carlo method to numerically verify that
lim inf
t→∞

min
i,j
|Xij(t)| > 0 holds for generic initial condi-

tions in Snz-row. By generic initial condition, we mean
each of X(0)’s entries is selected independently and uni-
formly at random from a support of positive measure.
We consider the support to be [−a, a], where a > 0. For
any randomly generated X(0) ∈ Snz-row, define the ran-
dom variable Z : Snz-row → {0, 1} as
(i) There exists δ > 0 such that min

i,j
|Xij(t)| ≥ δ for

any t ∈ {100, . . . , 10000};
(ii) Z(X(0)) = 0 otherwise.
Let p = P[Z(X(0)) = 1]. For N independent random
samples Z1, . . . , ZN , in each of which X(0) ∈ Snz-row

is a generic initial condition, define p̂N =
∑N
i=1 Zi/N .

For any accuracy 1 − ε ∈ (0, 1) and confidence level
1− ξ ∈ (0, 1), |p̂N −p| < ε with probability greater than
1−ξ if the Chernoff bound is satisfied:N ≥ 1

2ε2 log 2
ξ . For

ε = ξ = 0.01, the bound is satisfied by N = 27000. We
ran the 27000 independent simulations of the homophily-
based model with n = 8 and a = 20, and found that
p̂ = 1. Then, we conclude that for any generic initial
condition X(0) ∈ Snz-row, with 99% confidence level,
there is at least 0.99 probability that every entry of
|X(t)| is lower bounded by a positive scalar for all t ∈
{100, . . . , 10000}.

The Monte Carlo method under the same settings is
applied to the influence-based model, except that now
the generic initial conditions X(0) ∈ S+

rs-symm ⊂ Rn×n is
generated by the following steps: 1) Randomly and in-
dependently generate the diagonal and the upper trian-
gular entries of a matrix X̂ ∈ Rn×n, according to some
uniform distribution; 2) Let X̂ij = X̂ji for any i > j;
3) Randomly and independently generate the entries of
a n × 1 vector γ, according to some uniform distribu-
tion with some positive interval as the support; 4) Let

X(0) = diag(γ)X̂. Not surprisingly, we obtained the
same results as the homophily-based model. That is, for
any generic initial condition X(0) ∈ Snz-row, with 99%
confidence level, there is at least 0.99 probability that
every entry of |X(t)| is uniformly strictly lower bounded
from 0 for all t ∈ {100, . . . , 10000}.

5.2 Multi-clique social balance and perturbation

1) The initial conditions leading to multi-clique social
balance: Despite the generic convergence to complete
graphs, for both the homophily-based and the influence-
based models, there exists some special initial conditions
leading to the multi-clique social balance. By clique we
mean an isolated subgraph (Negative links are counted
as links), and by multi-clique social balance we mean
that the appraisal network consists of multiple cliques
and each of them satisfies social balance. For example,

no link added t=0 t=1 t=6

Fig. 1. Visualization of the evolution of the appraisal ma-
trix under perturbations. For each entry, the red color in-
dicates a positive appraisal, while the blue color indicates
a negative one. The white color indicate no appraisal. The
appraisal network has 17 nodes and is initially in a multi-
-clique structurally balanced state with three isolated bal-
anced cliques. With 6 links (4 positive and 2 negative links)
added to the network, the appraisal network evolves to a
single-clique structurally balanced state after 6 iterations.

let

X(0) =


1 1 1

0.5 −1 0.5

−0.5 1 −0.5

 , X̂(0) =


−1 −1 0

−1 1 −2

0 −2 −1

 .
For the homophily-based model, the initial condition
X(0) eventually results in the formation of two isolated
cliques with node sets {1} and {2, 3} respectively. For
both the homophily-based and the influence-based mod-
els, the initial condition X̂(0) results in the formation of
two isolated cliques with node sets {2} and {1, 3}.

2) Multi-clique social balance under perturbation: For
the homophily model, extensive simulation observations
indicate that the multi-clique social balance is unsta-
ble under perturbations. With some links added to the
multi-clique structurally balanced network, the per-
turbed network eventually converges to a single-clique
structurally balanced state, see Fig. 1 as a concrete ex-
ample. The following two examples illustrate the behav-
ior of multi-clique social balance under perturbations.

Example 1: (Globalization of local conflicts) Consider
the appraisal network with two isolated cliques. Each
clique is made up of two antagonistic factions. Clique 1
has two factions, with node sets V1 and V2 respectively,
and Clique 2 also has two factions, with node sets V3

and V4 respectively. Suppose one link with weight ε is
added from one node in V1 to one node in V3. We find
that the perturbed appraisal network always recovers to
a complete and structurally balanced network such that:

(i) It is composed of two antagonistic factions;
(ii) If ε > 0, the two factions are V1 ∪ V3 and V2 ∪ V4;

(iii) If ε < 0, the two factions are V1 ∪ V4 and V2 ∪ V3.
Figure 2 visualizes the behavior described above. In real-
ity, such behavior could be interpreted as the escalation
of local conflicts. In the example above, the two origi-
nal conflicting relations, i.e., V1 v.s. V2 and V3 v.s. V4,
are escalated into global conflicts between two reunified
factions V1 ∪ V2 and V3 ∪ V4, once a node in V1 builds a
connection with V3. One real example of such phenom-
ena is the formation of the globalized conflicts between
the Axis and the Ally in World War II, after the Nazi
German allied with the Imperial Japan.

Example 2: (Competition for ally and mediation of con-
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-
✏ > 0 )

V1 V2

V3 V4

V1 [ V3

V2 [ V4

-

(a) ε > 0

-

-
)

V1 V2

V3 V4

-✏ < 0

V1 [ V4

V2 [ V3

(b) ε < 0

Fig. 2. Visual illustration of the behavior of the multi-clique
social balance with the addition of one inter-clique link.

flicts) Consider an appraisal network with two isolated
cliques: Clique 1 with two antagonistic factions V1 =
{1, . . . , n1} and V2 = {n1 +1, . . . , n1 +n2}, and Clique 2
with only one faction V3 = {n1+n2+1, . . . , n1+n2+n3}.
Suppose the appraisal matrix associated with Clique 1 is
given by αbb>, where b = (1>n1

,−1>n2
)>, and α > 0 rep-

resents the sentiment strength inside Clique 1. Similarly,
the appraisal matrix associated with Clique 2 is given by

α̂b̂b̂>, where b̂ = 1n3
and α̂ > 0 represents the sentiment

strength inside Clique 2. Imagine then that both cliques
V1 and V2 would aim to ally with V3 in order to grow the
number of their members. Accordingly, suppose that, in
order to ally with V3, each node in V1 builds a bilateral
link with each node in V3, with link weight ε1 > 0, while
each node in V2 builds a bilateral link with each node in
V3 with weight ε2 > 0. With all these links added, the
associated appraisal matrix takes the following form:

X(0) =


α1n1

1>n1
−α1n1

1>n2
ε11n1

1>n3

−α1n21>n1
α1n21>n2

ε21n21>n3

ε11n31n1 ε21n31>n1
α̂1n31>n3

 .
Along the evolution of X(t) determined by X(0), we
obtain the following numerical results.

(i) If ε1n1 > ε2n2, i.e., faction V1 takes greater effort
than V2 in allying with V3, then faction V1 gains at least
one ally, either V2 or V3, which is a situation more in
favor of V1 than V2. Moreover, the following conditions:

ε1n1 − ε2n2 ≥ α̂ε2n3/α and ε1ε2n3 ≤ α2(n1 + n2)

guarantee that V1 ally with V3; This argument also holds
when all the subscripts 1 and 2 are switched;

(ii) If ε1ε2n3 ≤ α2(n1 + n2), then V3 eventually gains
at least one ally. That is, V3 avoids the situation in which
V1 and V2 end up allying with each other against V3;

(iii) Any of the following conditions guarantees the
non-existence of any negative link in the asymptotic
state of the appraisal network: (1) ε1ε2n3 ≥ α2(n1 +n2)
and ε1n1 − ε2n2 = 0; (2) ε1ε2n3 ≥ α2(n1 + n2) and
0 < ε1n1 − ε2n2 ≤ ε2α̂n3; (3) ε1ε2n3 ≥ α2(n1 + n2) and
0 < ε2n2 − ε1n1 ≤ ε1α̂n3. Notice that the inequality

ε1ε2n3 ≥ α2(n1 + n2)

is required for all the three sufficient conditions. The
right-hand side of the inequality above reflects the
“scale” of the conflicts between factions V1 and V2, while
the left-hand side is V1 and V2’s average efforts in ally-
ing with V3, multiplied by the size of V3. From the three
sufficient conditions, we learn that, the larger the size

3 33 63 93 n
0
0.1

0.3

0.5

0.7
ave(xmin, xmax)

(a) Case 1

3 33 63 93 n
0

0.4

0.8

1.2

1.6

2.0
xmax�xmin

(b) Case 2

Fig. 3. Formation of factions under different initial condition
distributions. The blue color indicates the presence of two
factions in all the 30 random samples, while the yellow color
indicates the presence of one factions in all of the samples.
The green color indicates any other case.

of V3, the more capable it is of mediating the conflicts
between V1 and V2. In addition, V1 and V2’s strong will-
ingness to ally with V3, as well as the sentiment strength
inside V3, i.e., α̂, also help mediate the conflicts.

5.3 Distribution of initial conditions and formation of
factions in the homophily-based model

We investigate numerically, for the homophily-based
model, the relation between the initial condition dis-
tribution and the formation of factions. The question
of interest is whether the appraisal network evolves to
only one faction or two antagonistic factions. We ran-
domly and independently sample the entries of X(0)
from the uniform distribution with support [xmin, xmax].
The quantity xmax − xmin indicates how spread out are
the possible values taken by the initial appraisals, while
ave(xmin, xmax) = (xmax+xmin)/2 indicates how the ini-
tial appraisals are biased towards being positive. Given
[xmin, xmax], we independently generate 30 random sam-
ples of the initial condition X(0) and count how many
factions appear at X(500). The simulations are con-
ducted under two different set-ups:

Case 1: We set xmax − xmin = 2 and change the
values of ave(xmin, xmax) and the number of agents.
Since any X(0) and −X(0) lead to the same X(1) and
X(t) thereafter, we only consider different values of
ave(xmin, xmax) ≥ 0. Figure 3(a) shows that, for fixed
network size, the smaller the value of ave(xmin, xmax),
the more likely is to find two antagonistic factions; for
fixed value of ave(xmin, xmax), the larger the network
size, the more likely that only one faction emerges.

Case 2: We set ave(xmin, xmax) = 1 and change xmax−
xmin. Figure 3(b) shows that, for fixed network size n,
the larger xmax−xmin, the more likely to find two antag-
onistic factions; For fixed xmax−xmin, the larger the net-
work size, the more likely that only one faction emerges.

6 Conclusion

This paper proposes two novel discrete-time dynami-
cal models for the bounded evolution of interpersonal ap-
praisal networks towards social balance. Under a techni-
cal condition, theoretical analysis shows that both mod-
els exhibit asymptotic convergence to structurally bal-
anced networks. Each model uses different social updat-
ing mechanisms for updating the appraisals and, as a
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result, the asymptotic balanced states are qualitatively
different between the two models. Numerical study in-
dicates how the final emergence of factions in the so-
cial network is sensitive to the initial distribution of ap-
praisals among its agents. Moreover, our models admits
the existence of two or more isolated cliques in the final
structure of the evolved social network, and simulation
results reveal interesting sociological phenomena when
they are under certain classes of perturbations. Possible
future research directions include a better understand-
ing of the influence-based model for arbitrary initial con-
ditions, a validation of the proposed models with labora-
tory and/or field data, the study of asynchronous mod-
els with pairwise updates, and the study of conditions
and cases in which one socio-psychological mechanism
dominates the other.
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