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I. Introduction

Modern autonomous sensor systems frequently rely on operator feedback to function effectively

within complex scenarios [1–4]. In theory, the presence of both human and autonomous elements

within a single system can be very beneficial, since the interplay between these two components

can create a symbiotic relationship that emphasizes the strengths and mitigates the deficiencies of

each. However, this type of interaction is not guaranteed, even if each component is optimized inde-

pendently. To realize the full benefit of this setup, coordination schemes must jointly optimize the

entire system, accounting for the inherent coupling between the human and autonomous elements.

One class of human-centered system that is prevalent in modern application consists of super-

visory systems in which a remotely located human operator oversees a team of autonomous mobile

sensors [1]. Here, the operator interacts with the sensors via a central control interface, which also

serves as a platform for sensory data management (Fig. 1). In developing coordination strategies for

these systems, several factors must be considered. From a human factors perspective, coordination

schemes should create a high-performance work environment for the operator. In particular, for

human processing of sensory data, smart strategies should ensure that (i) the required tasks are

completed, (ii) the operator’s cognitive state remains in a high-performance regime, and (iii) perfor-

mance is robust to behavioral uncertainty. From a robotics perspective, mobile sensors must be able

to operate effectively within a potentially large and dynamic environment. Mobile sensor coordina-

tion strategies should also ensure that (i) tasks requiring operator attention are generated at a rate

that does not create bottlenecks, and (ii) uncertainty does not cause undesirable configurations.

This article considers a particular application in which a human operator analyzes real-time

target imagery, e.g., a set of video streams, that is collected by Unmanned Aerial Vehicles (UAVs)

as they visit a set of discrete, geographically spaced targets. We consider this setup, as opposed

to a setup where imagery is analyzed offline, to reflect the real-time analysis requirement that is

present in many real surveillance operations. As an example, the necessity for real-time analysis

arises when the operator is required to adjust the surveillance parameters (zoom, focal point, etc.)

of UAV payloads and/or adjust mission strategies in response to image content, e.g., if a high-value

mobile target is seen in an image [5]. As such, in the setup herein, operator “tasks” correspond to
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Fig. 1 Typical architecture of a human supervisory control system involving mobile sensors.

the analysis of the generated target imagery. Since real-time imagery is only available while a UAV

is loitering at a target, both human and UAV resources are simultaneously required to complete

each task. Our work develops a framework that coordinates these resources by jointly optimizing

over the UAV routes and the operator task-processing schedule with the dual goal of (i) maintaining

the operator’s task load within an acceptable regime, and (ii) minimizing unnecessary UAV loiter

time. This approach differs from typical approaches in that (i) it considers the scheduling and

coordination of robotic tasks to support an operator by utilizing a human-factors inspired objective

function, and (ii) it simultaneously coordinates both the human and autonomous system components

within a single mathematical framework that explicitly considers their inherent coupling. Indeed,

research efforts with respect to human-UAV supervisory systems typically study reactive policies

to coordinate a single component (human or autonomous), while allowing the other to operate

either uncontrolled or under an assumed behavioral process. For example, the work in [6] does not

explicitly specify vehicle behavior, but determines optimal operator task processing times under the

assumption that tasks arrive in a queue via a Poisson process. Our setup does not assume any fixed

behavioral process and instead coordinates both components simultaneously.

The specific contributions of this article are as follows. First, we formulate a multi-vehicle,

scheduling/routing problem as a Mixed-Integer Non-linear Program (MINLP), whose objective func-

tion accounts for both the operator’s task load and unnecessary UAV loiter time. We show that

the general MINLP can be re-formulated as a Mixed-Integer Linear Program (MILP), at the ex-

pense of significant increases in problem size. For single vehicle missions, we provide an alternative

linearization that does not increase the problem size. Next, to ease computation, we introduce a

dynamic framework for constructing suboptimal solutions to the full problem. Here, whenever the

operator completes a task, a re-planning step is performed that chooses each UAV’s next desti-
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nation and the impending portion of the operator’s schedule. We pose this re-planning operation

as a comparatively small MILP, whose solutions are constructed with existing solvers. We show

how this dynamic framework can incorporate robustness to uncertain task processing times via a

scenario-based extension of the re-planning MILP. We then demonstrate the utility and flexibility of

our framework in select simulated missions. In addition to illustrating performance and robustness

properties, these examples also show how the dynamic framework readily extends to incorporate

more general setups, e.g., those containing fixed-wing UAVs. We conclude with a discussion of key

problem extensions, limitations, and future research directions.

II. Related Literature

Human operators play a key role in current and futuristic applications involving autonomous

sensors, including military reconnaissance [7], search and rescue [8], and automated manufactur-

ing [9]. Specifically, many applications rely on human processing of sensory data. For example, the

wide-area surveillance technology Gorgon Stare uses camera arrays attached to UAVs to collect im-

agery which is processed by remotely located analysts [10]. In response, significant research efforts

have focused on coordination schemes to improve the performance of supervisory control systems.

Human-centric methods strive to develop an understanding of operator behavior, which is used

as the basis for control or design strategies. Some methods, e.g., those focusing on interface de-

sign [11, 12], are performed offline. Many offline methods also study human-centric phenomena

to assess control strategies [13] or to suggest system architectures, e.g., the number of vehicles an

operator can supervise [14]. Conversely, online approaches typically adapt mission strategies based

on real-time data or incremental realization of uncertain parameters. For example, eye-tracking

is becoming a popular tool for real-time behavioral assessment in visual tasks [15, 16]. These as-

sessments are used to moderate operator resources through, e.g., adaptive automation [17, 18] or

decision-support systems [15]. Other online approaches rely on fixed processing time or task gen-

eration models [19, 20]. The scheduling approach herein is similar to [20], which uses a MILP

framework considering both processing time uncertainty and operator task load. Our work differs,

however, in that we propose a coupled framework that simultaneously optimizes vehicle routes.
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Autonomous agent-centric methods focus primarily on optimizing sensor behavior. Of partic-

ular relevance is research relating to route planning for discrete surveillance or target visitation,

e.g., [21–26]. The UAV route planning portion of the problem considered herein is loosely derived

from [27–29], which use sampling-based procedures to pose a continuous path planning problem as

a Generalized TSP (GTSP) [30]. Indeed, the vehicle routing portion of the joint scheduling/routing

problem in the present paper is essentially a multi-agent GTSP, which can result from a discretiza-

tion procedure similar to that of [29]. Thus, our work is, in some sense, an extension of [29] to

incorporate the simultaneous optimization of operator schedules.

Despite extensive research devoted to improving each component individually, there have been

relatively few attempts to jointly optimize over operator and sensor behavior. Existing work typically

assumes a “loose” coupling between human and autonomous agents, resulting in reactive policies.

For example, the authors of [6, 19] assume that tasks arrive in a processing queue according to a

fixed stochastic process, which drives optimal operator behavior. In contrast, the authors of [31]

use an adaptive surveillance policy based on operator responses in a target detection task; however,

operator behavior is uncontrolled. The authors of [32] consider general architectures for human-robot

collaboration, but consider the human as uncontrollable. Others, such as [33], develop discrete-event

simulation models, which are used for testing and optimization. However, these abstractions utilize

parametric process models without explicitly considering the cause of task generation, e.g., vehicle

trajectories. Some work, such as [34], considers the sequencing of robotic tasks for the purpose of

working alongside humans, but do not explicitly consider human factors-inspired objectives.

Very limited work has considered tightly coupled optimization across components (hu-

man/autonomous agent). Those most closely related to our work are [35, 36], which consider

optimization schemes for simultaneous routing and scheduling under operator workload constraints.

However, these works have several limitations. In particular, both [35] and [36] rely on the avail-

ability of a suitable abstraction to the vehicle routing problem that may be unavailable in complex

scenarios. For example, [35] requires an accurate predictor of the complete mission cost associated

with a given task-agent pairing, which is often unavailable a priori. Additionally, both approaches

consider deterministic setups; as such, solution quality may become poor or even infeasible during

5



mission execution when uncertainty is introduced. In [36], all planning operations are performed

offline, and may not be easily applied in dynamic schemes due to computational issues. Indeed,

in [36], the time continuum is discretized to obtain a pure integer program which can become in-

tractable for even modest time horizons. We note that the ability for online re-planning is often

necessary for scalability and to account for changing mission conditions. The distributed framework

in [35] is designed for online implementation; however, it does not consider tasks requiring both a

human and a robotic agent attention simultaneously. Our work seeks to overcome these limitations

by: (i) combining vehicle routing and operator scheduling into a single, mixed-integer mathematical

program; (ii) providing a scalable online/incremental solution methodology, and (iii) demonstrating

a natural extension that incorporates robustness to uncertainty in operator processing times.

In an abstract sense, the problem herein can be thought of, in part, as a multi-robot task

allocation problem, which seeks to optimally pair a set of tasks (targets) with available embodied

mobile agents (UAVs or human). Through this lens, the optimal operator scheduling and routing

problem can be classified, according to the taxonomy of Korsah, et. al. [37], as a single task,

multi-robot, time-extended scheduling problem with complex dependencies, i.e., CD [ST-MR-TS].

Complex dependencies arise from the coupling between human and vehicle behavior, combined with

inter-task dependencies arising from the spatial distribution of tasks. Through a different lens,

the problem herein can also be interpreted as a generalized Vehicle Routing Problem (VRP) with

multiple synchronization constraints [22], which treats the operator’s visual attention as a “mobile

vehicle” that operates within the target environment and moves virtually instantaneously between

targets. Here, the requirement of simultaneous operator and vehicle resources for task completion

is modeled as a set of operation synchronization constraints, since it introduces temporal inter-

dependencies on “vehicle” routes. Although VRP formulations appear frequently in operations

research literature, the wide-varying nature of possible problem goals and constraints make existing

modeling frameworks heavily application-dependent [22, 38]. Our work studies an optimization-

based framework that is tailored to human-supervisory surveillance, considering typical issues that

arise in this domain, such as processing time uncertainty, and operator task-load constraints.
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Fig. 2 Illustration of the relation between UAV and operator behavior

III. Problem Formulation

A. Mission Overview and Solution Approach

A team of UAVs, each equipped with a gimbaled, on-board camera, is tasked with collecting

surveillance imagery of a set of static targets with known locations. Targets are distributed over

a large planar area, so UAVs must move within the environment to collect complete sensory data.

There is no restriction on which UAV images any particular target, and no single UAV can simulta-

neously image multiple targets. When a UAV reaches a target, it loiters in place (see Section III C)

while transmitting its camera feed to a remotely located operator, who takes some amount of time

to process the imagery. The mission ends when the operator has processed each target exactly once.

We seek a framework to simultaneously generate (i) UAV routes to visit/image the targets,

and (ii) the operator’s task-processing schedule, i.e., the time at which the operator processes each

task (target image). Since imagery is transmitted in real-time, the availability of operator tasks is

determined by the UAVs arrival time at each target. Conversely, the required UAV dwell-time at

each target is determined by operator processing times. An illustration of this coupling is shown

in Fig. 2. This relationship evokes a set of constraints to govern the synchronization of human and

robotic resources. In addition to satisfying these constraints, the ideal routes/schedule is such that

(i) the operator’s task load stays within a regime that is amenable to high performance, and (ii) the

time that UAVs spend loitering unnecessarily, i.e., when the operator is not analyzing their camera

feed, is minimized. The following subsections expand the mission setup mathematically.

B. Human Operator Specifications

A single human operator sequentially processes imagery collected by the UAVs. Assume that all

image analysis tasks are of equal importance, and that no two tasks can be executed simultaneously.
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Further assume that, once a task is started, it must be completed before another task is initiated.

We are interested in moderating the operator’s task load. Task load can be defined as “a

measurement of human performance that broadly refers to the levels of difficulty an individual

encounters when executing a task” [39]. Within the interpretation of [40], task load is operationally

considered as a function of three factors: (i) the time taken to perform a task, (ii) the required level

of information processing, and (iii) the number of task switches that occur in the context of task

performance. Our chosen model focuses on capturing qualitative task load trends induced by (i) and

(ii), while assuming that the effect of required task switches (iii) is small during mission execution.

In particular, we introduce a utilization-based task load measure which evolves based on operator

behavior, and attempt to maintain this dynamic measure within a set of pre-defined bounds. Note

that this type of utilization-based measure has been used as a reasonable approximation to pilot

workload [41–43]. We enforce task load bounds since, in many tasks, operator performance is optimal

when their workload lies within a certain high-performance regime [33, 44]. We focus on task load

(as a surrogate for workload), rather than other human factors phenomena, e.g., fatigue, situational

awareness, among others, since it has well-established correlations with operator performance that

can be feasibly exploited by automated mission planners [45]. We emphasize once again, however,

that our primary goal is to illustrate a particular modeling philosophy, in which system-wide and

human-factors inspired metrics are used to optimize overall performance. We do not provide formal

verification of our chosen task load model, and thus practitioners should not treat this model as a

general purpose solution for all problem instances. Further comments are included in Section VIII.

We represent the operator’s task load as a scalar variable, which, ideally, should be maintained

within the finite interval [w,w]. The bounds w,w are chosen a priori ; however, they are treated as

“soft” constraints, and thus high precision is not generally required. The operator’s task load evolves

according to trend-based dynamics (similar to [20, 36]): when the operator is busy, i.e., working on

a task, their task load level increases by some (task-dependent) amount, and when the operator is

idle, their task load level decreases by some amount. For our purposes, we assume that task load

decrements linearly during idle time at a fixed rate δ− ∈ R>0, e.g., if the operator is idle for time t,

then the task load decrement is δ−t. We adopt this simple model since we are primarily concerned
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with capturing qualitative trends. Task load increments are discussed further in Section IIID

C. UAV Specifications

Suppose there are N ∈ N UAVs, each responsible for visiting a subset of the targets and

transmitting real-time video data to the operator. A UAV must loiter at the target location while

the operator processes the associated task. We do not assume a particular dynamic model, although

we do assume that the time required for traversal of the optimal path between any two UAV

configurations can be quantified using a known, time-invariant function, i.e., the travel time between

any two given configurations is fixed and known. We collect each UAV’s initial configuration in a

set V0 (having size N : create copies if two UAVs share a common initial configuration).

We develop our framework under the simplifying assumptions that (i) the UAVs are homogenous,

i.e., have identical dynamic and sensing capability, and (ii) each UAV is able to “hover” in place.

However, some comments are in order: First, heterogenous vehicles can be accommodated via

straightforward extensions of the presented methods ( see Section VIII). Second, the “hovering”

assumption is not necessary when using the dynamic strategy of Sections V and VI. As such, the

strategies of these sections can also be applied to fixed-wing UAVs, as we demonstrate in Section VII.

D. Target Specifications

A set of M ∈ N targets must be imaged and analyzed. Associate each target j with a finite set

Vj of configurations from which the UAV is able to provide the required imagery. That is, to image

target j, the UAV must travel to one of the configurations in Vj and hover until operator processing

is complete (see Fig. 3). Each target j can equivalently be considered as an image analysis task,

which takes the operator time τj ∈ R≥0 to complete. Initially, assume that τj is fixed and known a

priori for each target (this is relaxed in Section VI). Let ∆Wj ∈ R≥0, represent the (fixed) amount

that the operator’s task load level increments as a result of working on task j for time τj .

Remark 1 (Configuration Clusters). Discrete configuration “clusters,” such as V1, V2, . . . , VM , arise

naturally in sampling-based approximations to continuous planning problems. For example, in visi-

bility constrained routing problems where targets must be imaged from a particular range of angles,
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UAVs must visit a non-discrete visibility region associated with each target. These regions can be

approximated via sampling, resulting in configuration “clusters” similar to V1, V2, . . . , VM [27].

E. Objectives and Performance Metrics

The goal is to develop an algorithmic framework that simultaneously manages both human and

autonomous resources. We consider two performance metrics: (i) the maximum amount (absolute

value) by which the operator’s task load bounds are violated (upper and lower) during the mission,

and (ii) the aggregate time that UAVs spend loitering unnecessarily, i.e., loitering at a target before

the operator begins processing the camera feed. The first metric emerges from the relation between

task load and performance mentioned in Section III B. The second metric is considered since it

is often undesirable for UAVs to spend excessive time loitering near a target, e.g., in military

reconnaissance operations involving hostile targets, unnecessary loitering increases target awareness

of UAV presence through increased noise signature, etc [46]. We wish to minimize these metrics by

jointly optimizing over (i) the operator schedule, and (ii) the UAV routes.

The joint optimization problem of interest is summarized as follows.

Problem 1 (Joint Human/UAV Optimization). Determine both an operator schedule, which dic-

tates when the operator should process each task (target image), and a set of UAV target visitation
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routes, that together minimize the metric

Mission Cost = pα(Max lower task load bound violation)

+ pα(Max upper task load bound violation)

+ pβ(Total unnecessary loiter time)

where pα, pα, pβ > 0 are fixed parameters.

Notice that we do not require pα + pα + pβ = 1. The remainder of our analysis is focused

constructing practical solutions to Problem 1.

IV. Mixed-Integer Programming Formulation

This section develops a Mixed-Integer Program (MIP) representation of Problem 1. The formu-

lation assumes: (i) each UAV departs its initial location immediately, and departs each successive

target viewpoint along its route immediately after the operator completes the associated task, and

(ii) the time that any UAV takes to travel between each possible pair of starting and ending con-

figurations is fixed and known. Let V0 := {i10, i20, . . . , iN0 } be the set of initial UAV configurations,

where i`0 is the configuration of the `-th UAV. Define a parameter K to represent the number tasks

in the operator schedule. In this section, we construct the complete schedule and thus set K := M .

A. Graph Construction

Under the given assumptions, the problem of finding appropriate UAV target visitation routes

reduces to a path-finding problem over a graph. Define a complete, weighted, directed graph G :=

(V,E,W ), where V := V0 ∪ V1 ∪ · · · ∪ VM is the union of the clusters V0, V1, . . . , VM defined in

Sections III C and IIID, and the weight W (i, j) of any (i, j) ∈ E captures the travel time from

node i to node j. Assume G also contains zero-weight self-loops, i.e., (i, i) ∈ E and W (i, i) := 0 for

all i ∈ V . For each UAV `, a valid target visitation path starts at v`0, and visits at most one node

from any of the clusters V1, . . . , VM . Aggregating individual routes, exactly one node from each

cluster should be visited by some UAV.

Remark 2 (GTSP). The UAV route-finding problem is similar to a multi-vehicle, open, GTSP.
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Fig. 4 Relation between binary decision variables and resulting solution

Indeed, we seek paths on G so that exactly one configuration associated to each target is visited by

some UAV, and the UAVs need not return to their initial depot. However, the problem of interest

herein differs from typical GTSP instances due to operator considerations: the performance metrics

considered depend jointly on vehicle behavior and operator behavior, which is not fixed a priori.

B. Decision Variables

Let xi,j,k ∈ {0, 1} be a binary decision variable, which is equal to 1 if and only if (i, j) ∈ E

appears in some UAV’s route, and the target associated with node j represents the k-th task in the

operator schedule (Fig. 4). The remaining decision variables are continuous: Let Ak ∈ R≥0 be the

time that some UAV arrives at the target representing the k-th task in the operator schedule, and

let Bk, Ck ∈ R≥0 be the time that the operator begins and completes the k-th task, resp. Next, let

W k,W k ∈ R represent the operator’s task load level immediately before and after processing the

k-th task. Note that the subscript k indicates the order in which the operator processes tasks, and

not the order in which any single vehicle visits its assigned targets. Finally, define α, α, β ∈ R≥0

to act as surrogates to each performance metric: max lower and upper task load bound violation

(absolute value), and total unnecessary loiter time. Table 1 summarizes the decision variables.
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Table 1 Decision Variables

Variable Index Set Description

xi,j,k ∈ {0, 1}
(i, j) ∈ E

k ∈ {1, . . . ,K}

Indicates if: edge (i, j) appears
in some vehicle’s tour and the target
associated with j is the k-th operator task

Ak ∈ R≥0 k ∈ {1, . . . ,K} The time that a UAV arrives at the target
representing the k-th operator task

Bk, Ck ∈ R≥0 k ∈ {1, . . . ,K} The time the operator begins and completes
the k-th scheduled task, resp.

W k,W k ∈ R≥0 k ∈ {1, . . . ,K}
The operator’s task load level immediately
before and after competing the k-th
scheduled task, resp.

α, α, β ∈ R≥0 - Variables quantifying performance metrics

C. Constraints

1. UAV Path Constraints

The first constraints ensure that a valid UAV tour can be extracted from the decision vector.

∑
i∈V

∑
j∈Vm

K∑
k=1

xi,j,k = 1 ∀m ∈ {1, . . . ,M} (1)

∑
i∈Vm

∑
j∈V

K∑
k=1

xi,j,k ≤ 1 ∀m ∈ {1, . . . ,M} (2)

∑
i∈V

∑
j0∈V0

K∑
k=1

xi,j0,k = 0 (3)

∑
i∈V

xj,i,k − k−1∑
k=1

xi,j,k

 ≤ 0 j /∈ V0, k ∈ {1, . . . ,K} (4)

K∑
k=1

∑
j∈V

xi0,j,k ≤ 1 ∀i0 ∈ V0 (5)

∑
(i,j)∈E

xi,j,k ≤ 1 ∀k ∈ {1, . . . ,K} (6)

Eq. (1) ensures that exactly one node from each cluster is visited, and Eq. (2) ensures that at most

one edge leaves any cluster. Eq. (3) ensures that the vehicles do not return to V0 once they leave (we

seek open paths). Eq. (4) says that any vehicle which leaves a node (excluding the initial node) must
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enter the same node at an earlier time (define
∑0
k=1 xj,i,k := 0). Eq. (4) also ensures that (i) the

first task in the operator schedule coincides with the first target that some UAV visits, and (ii) each

UAV `’s route begins at i`0. Eq. (5) ensures that at most one edge leaves each initial configuration,

and Eq. (6) ensures that a single task is chosen for each “slot” in the operator schedule.

2. UAV Arrival Time Constraint

The following constraint governs the UAV arrival times.

∑
(i,j)∈E

xi,j,k

W (i, j) +
∑
j∈V

k−1∑
k=1

xj,i,kCk

 = Ak ∀k ∈ {1, . . . ,K} (7)

Eq. (7) says that a UAV’s arrival time at a target must equal the time that the operator completes

the previous task associated with that particular UAV plus the required travel time.

3. Task Processing Constraints

The following constraints govern the operator schedule induced by the decision vector.

Bk +
∑

(i,j)∈E

xi,j,kτmj = Ck ∀k ∈ {1, . . . ,K} (8)

Ak ≤ Bk ∀k ∈ {1, . . . ,K} (9)

Ck−1 ≤ Bk ∀k ∈ {2, . . . ,K} (10)

Eq. (8) relates the beginning and completion times of each task. Here, mj denotes the index of the

target associated with node j. Eqs. (9) and (10) ensure the operator cannot start a task until (i) a

UAV arrives at the target, and (ii) the previous task completes.
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4. Task Load Evolution Constraints

The following constraints govern the evolution of the operator’s task load during the mission.

W k +
∑

(i,j)∈E

xi,j,k∆Wmj
= W k ∀k ∈ {1, . . . ,K} (11)

W0 − δ−B1 = W 1 (12)

W k−1 − δ−(Bk − Ck−1) = W k ∀k ∈ {2, . . . ,K} (13)

Eq. (11) ensures that workload increments are allocated properly while the operator is busy, while

Eq. (12) and (13) ensure that workload decrements are defined appropriately. As before, mj is

understood as the index of the target associated with node j.

5. Performance Constraints

The final constraints quantify relevant performance metrics.

w −W k ≤ α ∀k ∈ {1, . . . ,K} (14)

W k − w ≤ α ∀k ∈ {1, . . . ,K} (15)

K∑
k=1

Bk −Ak = β. (16)

D. MIP Formulation

The MINLP representation of Problem 1 is defined in Problem 2.

Problem 2 (Scheduling/Routing MINLP). Determine values for each of the decision variables

(Table 1) that are optimal with respect to the following problem:

Minimize: pαα+ pαα+ pββ

Subject To: Constraints (1)− (16),

(17)

where K := M and pα, pα, pβ > 0 are fixed parameters.

In its raw form, the MIP (17) has M |V |2 binary decision variables, 5M + 3 continuous decision

15



variables, and (|V |−N+11)M+N+1 algebraic constraints (excluding domain constraints, e.g., β ∈

R≥0). The only nonlinearity in (17) lies in (7). This non-linearity is eliminated by introducing a set

of auxiliary variables and constraints, although this procedure results in significantly larger problems

in general. For single vehicle missions, additional structure emerges that allows for elimination of

the problem non-linearity without increasing the problem size. These results are formalized here.

Theorem 1 (Linearization). The non-linear program (17) is equivalent to a MILP. Moreover, in

the single vehicle case (N = 1), an equivalent MILP exists with the same number of binary decision

variables, continuous decision variables, and algebraic constraints as its non-linear counterpart (17).

Proof. Let I := {(i, j, k, j, k) | i, j, j ∈ V, k ∈ {2, . . . ,M}, k̄ ∈ {1, . . . , k − 1}}, and define decision

variables yi,j,k,j,k ∈ {0, 1}, Di,j,k,j,k ∈ R≥0 for each (i, j, k, j, k) ∈ I. Notice |I| = |V |3
∑M
k=2(k−1) =

1
2 (M(M − 1))|V |3. Let C > 0 be a very large constant and define constraints:

∑
(i,j)∈E

xi,j,kW (i, j) +
∑

(i,j)∈E

∑
j∈V

k−1∑
k=1

Di,j,k,j,k = Ak ∀k ∈ {2, . . . ,K} (18)

yi,j,k,j,k ≤ xi,j,k ∀(i, j, k, j, k) ∈ I (19)

yi,j,k,j,k ≤ xj,i,k ∀(i, j, k, j, k) ∈ I (20)

xj,i,k + xi,j,k − 1 ≤ yi,j,k,j,k ∀(i, j, k, j, k) ∈ I (21)

Di,j,k,j,k ≤ Cyi,j,k,j,k ∀(i, j, k, j, k) ∈ I (22)

Di,j,k,j,k ≤ Ck ∀(i, j, k, j, k) ∈ I (23)

Ck − C(1− yi,j,k,j,k) ≤ Di,j,k,j,k ∀(i, j, k, j, k) ∈ I. (24)

This linear constraint set is equivalent to (7) for C sufficiently large: under (19) - (24), we have

Di,j,k,j,k = yi,j,k,j,kCk = xi,j,kxj,i,kCk, making (18) is equivalent to (7). An equivalent MILP results

from replacing (7) with (18) - (24) in (17).

If N = 1, the operator’s task processing order is identical to the UAV’s target visitation order.

As such, the arrival time Ak equals the time that the operator finishes the k − 1-st task, plus the
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required UAV travel time to the next target. Formally, when N = 1, Eq. (7) is equivalent to

∑
(i,j)∈E

xi,j,1W (i, j) = A1

Ck−1 +
∑

(i,j)∈E

xi,j,kW (i, j) = Ak ∀k ∈ {2, . . . ,K}.

Replacing (7) with the above linear constraints in (17), results in a MILP.

Despite the structure that emerges when N = 1, notice that the routing and scheduling problem

are still implicitly coupled, i.e., the optimal route depends on the operator schedule and vice versa.

The proof of Theorem 1 also provides insight into the size of the equivalent MILPs. For instance,

since the number of vehicles N is typically small, the problem size is usually dominated by the

number of targets M and the size of the node set |V | (which primarily depends on M and the

number of viewpoints associated with each target). If each target has P ∈ N associated viewpoints,

i.e., |Vj | = P for all j ∈ {1, . . . ,M}, and the number of vehicles N is fixed, then, asM and P jointly

tend to infinity, the number of binary decision variables, continuous decision variables, and algebraic

constraints in the MINLP (17) are O(M3P 2), O(M), and O(M2P ). When N = 1, an equivalent

MILP of the same size exists; however, from the proof of Theorem 1, we see that for general,

multi-vehicle missions, the number of binary decision variables, continuous decision variables, and

algebraic constraints required in an equivalent MILP are each O(M5P 3).

With the availability of high-quality MILP solvers, such as GLPK [47], CPLEX [48], and MAT-

LAB’s INTLINPROG solver [49], Theorem 1 may evoke a practical solution strategy for some missions.

However, even when N = 1, problems may be large and computationally complex. In response, the

following section develops a dynamic, heuristic strategy for constructing solutions to general in-

stances of Problem 2.

Remark 3 (Parameter Selection). The parameters pα, pα, pβ serve to balance the impact of the

three performance metrics: upper/lower task load bound violations, and unnecessary loiter time. In

general, the appropriate parameter values depend on the mission setup, e.g., the number of targets,

task processing times, workload modeling parameters, etc., as well as the mission objectives.
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Normalization of the optimization variables, particularly the loiter time measure β, may allow

for more straightforward choice of pα, pα, pβ. However, since the time-horizon considered is infi-

nite, i.e., there is no maximum mission length, the appropriate normalization scheme is not obvious.

For example, normalization of β by the output mission length introduces additional non-linearity.

Of course, if additional structure exists (or is artificially imposed), e.g., a maximum allowed mis-

sion time or a fixed maximum loiter time, then reasonable normalization schemes may emerge. A

thorough study of the effect of normalization is left as a topic of future work.

V. Dynamic Solution Strategy

This section proposes a dynamic framework to construct solutions to Problem 2. Here, each

time the operator finishes a task, a comparatively small-scale MILP is solved to select the next UAV

destinations and the impending portion of the operator schedule. In particular, each re-planning

operation results in a partial operator schedule containing at most N tasks, the first of which is the

next task to be executed. In this section, we let K := min{N,M}, where M is understood here as

the number of targets that have not yet been processed when the re-plan operation is initiated.

The MILP governing each re-plan operation depends on the current status of each UAV. Con-

sider three status classifications: (i) AVAILABLE: the UAV has not been assigned any targets or

the operator has just finished processing the UAV’s imagery, (ii) ARRIVED: the UAV has reached

its destination and is awaiting operator attention, and (iii) TRANSIT: the UAV is en route to its

next destination. Assume that the status of each UAV is available to the optimizer during any re-

planning operation. Re-planning is performed under the following assumptions on UAV behavior:

(i) if its status is ARRIVED, then the UAV should remain loitering until the operator processes its

task, and (ii) if its status is TRANSIT, then the UAV should continue on to its destination, i.e., the

UAV should not be re-routed. These are natural assumptions that serve the dual purpose of both

reducing computation and preventing excessive changes to UAV routes that may be undesirable

from an operator or mission-planning standpoint. Note, however, that these assumptions can be

relaxed through straightforward manipulations (Remark 4).

Broadly, the proposed dynamic solution strategy uses the following procedure:
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1. Initialize each UAV status as AVAILABLE,

2. Formulate and solve the re-planning MILP,

3. Direct the UAVs for to their first destination, instruct the operator to execute the first task,

4. When the first task is complete, reformulate and solve the re-planning MILP, and

5. Repeat steps 3 and 4 until all tasks are complete.

The remainder of this section details the formulation and solution of the MILP in steps 2 and 4.

A. Graph Modifications

Consider some instant at which the re-planning operation is to be executed, and assume, without

loss of generality, that V1, V2, . . . , VM represent the node clusters associated with the targets that

have not yet been processed (we retain this assumption for the remainder of this section). We

reconstruct the graph G as follows: First, re-define V0 := {i1, i2, . . . , iN}, where i` represents UAV

`’s current configuration. Second, for each ` ∈ {1, . . . , N}, define a set V ` consisting of nodes to

which UAV ` can travel prior to another re-assignment. That is, define each set V ` as follows:

1. if UAV ` has status AVAILABLE, then V ` := V1∪· · ·∪VM , where we have assumed, without loss

of generality, that {V1, V2, · · · , VM} collects all node clusters that have not yet been visited by

a UAV and are not the destination of any UAV with status TRANSIT, and

2. if UAV ` has status ARRIVED, then V ` := {i`}, where i` is UAV `’s current configuration, and

3. if UAV ` has status TRANSIT, then V ` := {j`}, where j` ∈ V is UAV `’s current destination.

Redefine V := V0 ∪
(⋃N

`=1 V
`
)
, and redefine the edge set E := {(i`, j) | i` ∈ V0, j ∈ V `}. Finally,

define the weight operator W to be consistent with the new edges.

The remaining subsections formulate the re-planning MILP using the modified graph G.

Remark 4 (Re-Routing). The set V ` contains a single element whenever UAV ` has status ARRIVED

or TRANSIT. As such, UAV ` will not be directed to a new destination by the re-planning operation

(see (27)). Alternatively, one could allow re-routing by instead defining each V ` to contain all nodes

that are associated with targets that have not yet been processed, regardless of UAV status.
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B. Decision Variables

The decision variables are defined nearly identically to those of Section IVB. However, there

are two subtle differences: First, the value of the index k refers to the post-re-plan processing

order, rather than the global processing order as before. Second, for re-planning, we only require

a binary variable xi,j,k ∈ {0, 1} for each index triplet in the set {(i, j, k) | i = i`, j ∈ V `, k ∈

{1, . . . ,K}, ` ∈ {1, . . . , N}}. This restriction typically produces a significantly smaller problem in

comparison to (17). For instance, when N is fixed and |Vj | = P for all j ∈ {1, . . . ,M}, then, as M

and P jointly tend to infinity, the number of binary decision variables, continuous decision variables,

and algebraic constraints are O(MP ), O(M), and O(M), resp.

C. Constraints

1. UAV Path Constraints

Define L as the set of UAV indices with status AVAILABLE, and consider the following constraints.

∑
`∈L

∑
j∈Vm

K∑
k=1

xi`,j,k ≤ 1 ∀m ∈ {1, . . . ,M} (25)

∑
j∈V `

K∑
k=1

xi`,j,k ≤ 1 ∀` ∈ L (26)

∑
j∈V `

K∑
k=1

xi`,j,k = 1 ∀` /∈ L (27)

∑
(i,j)∈E

xi,j,k = 1 ∀k ∈ {1, . . . ,K} (28)

Eq. (25) says that at most one node from any cluster can be visited. Eq. (26) says that any

AVAILABLE UAV is assigned at most one new destination, while Eq. (27) says that UAVs with status

WAITING or TRANSIT do not get re-routed. Eq. (28) ensures that the maximum number of UAVs are

assigned a destination, i.e., if at least N targets have not been processed, then N UAVs are assigned

a destination; otherwise, all remaining targets are assigned a UAV.

Remark 5 (Running Cost). Eq. (28) ensures that a meaningful solution is produced by the re-

planning MILP: Without (28), UAVs may remain unassigned when there are still unprocessed tar-

gets, in which case the running cost is not a meaningful predictor of the overall mission cost. For
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example, if all UAVs are AVAILABLE, then, without (28), the zero vector is an optimal choice for

the binary variables, making the running cost predicted by the re-planning MILP equal to zero.

2. UAV Arrival Time Constraints

The following constraints govern the UAV arrival times:

N∑
`=1

∑
j∈V `

xi`,j,kW (i`, j) = Ak ∀k ∈ {1, . . . ,K}. (29)

If UAV ` has status ARRIVED, then V ` := {i`}. Since W (i`, i`) = 0, Eq. (29) implies that the arrival

time associated with a UAV having status ARRIVED is zero (relative to the time re-plan is initiated).

As such, the operator is permitted to begin any task associated with such a UAV immediately. In

contrast, if a UAV has status TRANSIT or AVAILABLE, then the weight W (i`, j) captures the time

required for the UAV to travel from its current location, i`, to its new destination in the set V `. As

such, the operator cannot start any such task until the corresponding UAV arrives at its destination.

Remark 6 (Replan Computation Time). Our formulation implicitly assumes that re-planning is

instantaneous, i.e., UAVs do not move during re-planning computation. If necessary, a computa-

tional “buffer” can be built into the re-plan operation, which uses projected, rather than current,

UAV locations to ensure validity of the resultant route under non-negligible computation time.

3. Task Processing, Task Load Evolution, and Performance Constraints

As before, we enforce the constraints (8)- (16), whereW0 is understood as the operator task load

level at the re-plan onset. Define α0, α0 ∈ R≥0 as the maximum upper and lower task load bound

violations that have occurred prior to the current re-plan, and introduce two final constraints:

α ≥ α0 (30)

α ≥ α0. (31)

These constraints ensure that the running cost correlates with the global mission cost. Note that

there is no need to add an additional parameter to reflect loiter times occurring prior to the current
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re-plan, since past loiter times would enter into the global objective function as a constant that is

independent of the re-plan decision variables. That is, the optimal choice for the UAV destinations

and operator schedule over the impending time horizon is independent of the past loiter times.

4. MILP Formulation

The MILP governing the re-plan operation is formally expressed in Problem 3.

Problem 3 (Re-planing operation as a MILP). Determine values for each of the decision variables

in Table 1 that are optimal with respect to the following problem:

Minimize: pαα+ pαα+ pββ

Subject To: Constraints (8)− (16) and (25)− (31),

(32)

where K := min{N,M}, W0 is the operator’s current task load, and pα, pα, pβ > 0 are constants.

Remark 7 (Task Processing). The optimization problem (33) predicts the incremental cost over

the impending portion of the operator’s schedule under the implicit assumption that the operator

processes one task generated by each UAV before processing any other tasks (see (28)). This as-

sumption does not place an explicit constraint on the global structure of the operator schedule. That

is, assuming Problem 3 is solved each time a task is completed, then it is still possible for the operator

process two tasks in a row that are generated by the same UAV.

VI. Uncertain Processing Times

The analysis presented thus far has assumed that the processing time associated with each target

is known a priori. Indeed, strictly speaking, known processing times are required to ensure that

the optimization framework correctly relates task beginning times and completion times (see (8)),

which are used to predict subsequent UAV arrival times. This assumption does not hold in most

realistic systems, since operator behavior is subject to various types of uncertainty.

The most common approach to addressing uncertainty is to use a single realization of each

uncertain parameter, e.g., expected values, within the optimization framework. Sophisticated ro-

bust optimization schemes are sometimes useful, although these methods generally require bounded
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uncertainty sets and very particular problem structure [50]. In contrast, scenario-based robust op-

timization schemes use discrete samples to approximate uncertainty sets, requiring optimization

constraints be satisfied for all of the sampled conditions, rather than just one [51, 52]. As a result,

solutions produced by scenario-based schemes are less likely to exhibit poor performance when un-

certain parameters are realized. Although sampling-based schemes are simplistic in some sense, they

produce reasonable solutions in a straightforward and intuitive manner, making them attractive to

both theoreticians and practitioners alike.

This section introduces a straightforward, scenario-based extension to the framework of Sec-

tion V, with the goal of providing robustness to uncertainty in operator processing times. That is,

the optimization problem developed here is a robust alternative to (33). We use a sampling-based

method since (i) the complex, coupled nature of the joint routing/scheduling problem makes it dif-

ficult to predict worst-case parameter values directly, (ii) typical processing time distributions used

to model perceptual decision-making are skewed and have unbounded support [53, 54]; as such,

expected values may be inaccurate processing time predictors and methods requiring bounded sup-

port would require additional constraints, (iii) sampling parameters allow a straightforward means

of tuning the “degree of robustness” provided in order to strike a balance between performance

and computational complexity, and (iv) scenario-based schemes are simple, intuitive, and use a

straightforward procedure that does not require any particular uncertainty distribution.

Formally, let X be the set containing all tuples ({xi,j,k}, {Ak}, B1) whose components sat-

isfy (25)- (29). Let T be the set of all tuples (τ1, τ2, . . . , τM ), where τj is a possible processing time

of target j. Finally, let Y (xxx,AAA,B,τττ) be the set containing all tuples ({W k}, {W k}, {Bk}, {Ck}, α,

α, β) whose components are optimal with respect to Problem 3 under the additional constraint that

{xi,j,k} := xxx, {Ak} := AAA, B1 = B, and when the processing times are defined (τ1, τ2, . . . , τM ) := τττ .

With these definitions, the scenario-based formulation is an approximation to Problem 4.

Problem 4 (Robust Re-Planning). Determine values for each binary decision variable xi,j,k, each

arrival time variable Ak, and the time B1 that the operator begins the first post-re-plan task, that
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are optimal with respect to the following problem:

Minimize :
(xxx,AAA,B1)∈X

sup
τττ∈T

Y (xxx,AAA,B1,τττ)

{
pαα

}
+ sup

τττ∈T
Y (xxx,AAA,B1,τττ)

{pαα}+ sup
τττ∈T

Y (xxx,AAA,B1,τττ)

{pββ} . (33)

Problem 4 is intuitively interpreted as follows: When initiating each re-plan operation, we seek

a single, well-defined choice for each UAV’s next destination and associated arrival times, along with

a single choice of when the operator should start the first post-re-plan task, such that the worst-case

incremental cost over the immediate horizon is minimized. Notice that this optimization considers

all possible choices of target processing times, rather than just one. Problem 4 is, in essence, a

conservative min-max robust formulation that attempts to minimize the worst-case objective value

that can be achieved. If processing times are not subject to an upper bound, i.e., the underlying

distribution of processing times has semi-infinite support, then the objective function of Problem 4

will typically have no maximum over the feasible solution set. In this case, practical solution

approaches seek to find a solution that performs as well or better than the predicted bound with

high probability. The scenario-based approach accomplishes this using samples drawn from the

underlying processing time distributions as approximations to the uncertainty sets.

A. Constructing Scenarios

Suppose the operator’s processing time for each target (task) j is realized according to a prob-

ability density function fj : R≥0 → R≥0. For each j, generate a set of Q ∈ N possible processing

times {τ1j , τ2j , . . . , τ
Q
j }, where τ

q
j ∼ fj for q ∈ {1, . . . , Q}. For each q ∈ Q, the set {τ q1 , τ

q
2 , . . . , τ

q
M}

defines a scenario. Note that this sampling process associates each target j with a set of processing

times, rather than a single realization.

B. Decision Variables

The scenario-based extension of the MILP (33) contains only slightly modified decision variables

to accommodate the generated processing time sets. In particular, the binary variables {xi,j,k ∈

{0, 1}}, the arrival time variables {Ak}, and the performance variables α, α, β are identical to those
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of (33). For the remaining decision variables, we introduce duplicates, indexed by the superscript

q, that are each associated with one scenario. That is, for each q ∈ {1, . . . , Q}, we define unique

decision variables Bqk, C
q
k ,W

q

k,W
q
k that are associated with the q-th scenario.

Remark 8 (Arrival Times). Scenario-dependent arrival times Ak are not required, since each re-

plan only selects each UAV’s next destination (its current location if its status is ARRIVED). Since

UAVs begin moving immediately, these arrival times are independent of operator processing times.

C. Constraints

The decision variables are subject to constraints (14), (15), and (25) - (29). The scenario-based

analogs of the remaining constraints are as follows:

Bqk +
∑

(i,j)∈E

xi,j,kτ
q
mj

= Cqk ∀k ∈ {1, . . . ,K}, q ∈ {1, . . . , Q} (34)

Ak ≤ Bqk ∀k ∈ {1, . . . ,K}, q ∈ {1, . . . , Q} (35)

Cqk−1 ≤ B
q
k ∀k ∈ {2, . . . ,K}, q ∈ {1, . . . , Q} (36)

W q
k +

∑
(i,j)∈E

xi,j,k∆Wmj = W
q

k ∀k ∈ {1, . . . ,K}, q ∈ {1, . . . , Q} (37)

w −W q
k ≤ α ∀k ∈ {1, . . . ,K}, q ∈ {1, . . . , Q} (38)

W
q

k − w ≤ α ∀k ∈ {1, . . . ,K}, q ∈ {1, . . . , Q} (39)

K∑
k=1

Bqk −Ak ≤ β ∀q ∈ {1, . . . , Q} (40)

Bq1 −B
q−1
1 = 0 ∀q ∈ {2, . . . , Q} (41)

Constraints (34) - (40) are analogous to those in Section V. Constraint (41) ensures that a unique

start time is produced for the first task in the operator’s new schedule (remaining start times should

remain scenario-dependent). Since a re-plan operation is performed whenever a task is completed,

an unambiguous operator schedule can always be extracted from the MILP solution.

Remark 9 (Task Load Increments). The scenario-based scheme also allows the possibility of sce-

nario (time)-dependent increments ∆Wj. For example, if g : R≥0 → R≥0 captures the relationship
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between processing time and the resultant task load increment, then for each q, one can define

{∆W q
1 ,∆W

q
2 , . . . ,∆W

q
M}, where ∆W q

j := g(τ qj ) for each j ∈ {1, . . . ,M}. The analogous robust

MILP is formulated by replacing each instance of ∆Wj with ∆W q
j in the optimization constraints.

D. Scenario-based, Robust MILP

The scenario-based extension to Problem 3 is stated as follows.

Problem 5 (Robust Re-planning as an MILP). Determine values for the decision variables described

in Section VIB that are optimal with respect to the following problem:

Minimize: pαα+ pαα+ pββ

Subject To: Constraints (14), (15), (25)− (29), (34)− (40)

(42)

where K := min{N,M}, W0 is the operator’s current task load, and pα, pα, pβ > 0 are constants.

VII. Simulation Studies and Discussion

This section contains simulations and discussion to illustrate the advantages and limitations of

the proposed solution strategies. In all studies, optimal MILP solutions were estimated using the

stand-alone glpsol solver, which is included in GLPK v. 4.60 [47].

A. Performance of the Dynamic Solution Strategy

The first study compares the performance of the receding-horizon strategy of Section V to that

of an a priori planning method, which constructs a complete solution to the full problem (17) at the

mission onset. To allow direct computation of solutions to (17), we consider a small-scale mission

with 2 UAVs (with “hovering” capability) and 4 targets, each with a single viewpoint (|Vj | = 1 ∀j).

The UAVs move with speed 39 m/s, and travel times are defined as the minimal straight-line travel

time between configurations. The initial task load is W0 = 0.5, with an increment/decrement rate

of 0.001 during busy/idle times, and the operator takes 483.32 s to complete each task (τj = 483.32

s ∀j). This particular dwell-time value is used simply for consistency with operational scenarios

involving dynamically constrained UAV models, as it corresponds to the time required for a fixed-
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Fig. 5 RPD between dynamic and a priori schemes for (left to right) pβ = 0.1, 0.01, 0.001, 0.0001.

wing UAV to complete 4 dwell-time loops at a 750 m minimum turning radius while traveling with

speed 39 m/s. The desired task-load range is [w,w] = [0.2, 0.8] and pα = pα = 1. In each simulation

run, UAV initial locations and target locations are selected randomly (uniform distribution) within

an 80, 000 × 80, 000 m region, and an overall mission cost was calculated under both dynamic re-

planning (Section V) and a priori planning for each of four pβ values: 0.1, 0.01, 0.001, 0.0001. Direct

solutions to (17) were constructed by solving the equivalent MILP (Theorem 1) using glpsol.

Fig. 5 shows the error generated, for each of 500 simulated missions, between the dynamic and

a priori strategies in the form of a histogram and as a scatter plot (plotted against the average

travel times, i.e., edge weight in the complete graph G), for each pβ condition. The figures also

show linear regression lines and R2 values for reference. Error is reported as the relative percent

difference (RPD), where RPD := 2 (dynamic cost− a priori cost)/(dynamic cost + a priori cost).

Fig. 5 suggests that the solutions provided by the dynamic heuristic are closest to the optimal

solution to (17) when: (i) UAV travel times between destinations are large (resulting in the negative

slopes of the corresponding regression lines), and (ii) pβ is small in comparison to pα, pα, i.e.,

workload considerations are more prominent than unnecessary loitering considerations (as illustrated

by the decreasing magnitude of the regression slopes). Outside of these regimes, the dynamic

heuristic performs significantly worse than the a priori method. However, a few comments are in

order: First, the very small size of this example allows for accurate estimation of optimal solutions

to Problem 2 through transformation to and subsequent solution of an equivalent MILP. In general,

the computational burden involved with this and other similar methods will not allow for the direct
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Table 2 Target Locations

Index, j Location, tj
1 (10000, 0) m
2 (5000, 500) m
3 (1200, 5000) m
4 (−400,−15000) m
5 (3000,−5000) m
6 (−3000,−4000) m
7 (1500, 10000) m
8 (−200,−10000) m
9 (4000,−7000) m
10 (0,−7500) m

Table 3 Comp Times and Costs; 2 UAV Example Mission

A Priori (MILP) A Priori (GA) Dynamic (MILP)
M Cost Comp. Time (s) Cost Comp. Time (s) Cost Comp. Time (s)

2 1.289 0.015 NA >30000 1.403 0.011
3 1.289 0.069 NA >30000 1.493 0.005
4 1.319 1.478 NA >30000 1.393 0.006
5 1.289 5.506 NA >30000 1.840 0.006
6 1.282 22.611 NA >30000 2.201 0.007
7 1.282 161.538 NA >30000 2.389 0.007
8 1.282 170.561 NA >30000 2.605 0.008
9 1.282 4091.000 NA >30000 3.107 0.008
10 NA > 30000 NA >30000 3.709 0.007

construction of a high-quality, complete solution to (17) in reasonable time. Thus, a priori methods

are usually impractical for general use.

This fact is illustrated by Table 3 and Table 4, which provide plots of performance and computa-

tion time as a function of both the number of targetsM and the number of vehicles N , respectively,

using various solution methods. Here, computation time results were averaged over 5 runs per-

formed on a 1.8 GHz Intel Core i7 processor. For the dynamic scheme, the figure only reports

the computation time required to construct the initial plan, since the computation time for each

Table 4 Comp Times and Costs; 6 Target Example Mission

A Priori (MILP) A Priori (GA) Dynamic (MILP)
N Cost Comp. Time (s) Cost Comp. Time (s) Cost Comp. Time (s)

1 1.282 5.937 NA > 30000 1.282 0.005
2 1.282 21.142 NA > 30000 2.201 0.010
3 1.282 12.188 NA > 30000 3.616 0.010
4 1.282 657.382 NA > 30000 4.811 0.012
5 1.282 389.816 NA > 30000 5.461 0.015
6 1.282 178.726 NA > 30000 5.937 0.021
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Table 5 Effect of Increasing Target Spacing in 9 Target Case

Mean Inter-Target A Priori (MILP) Cost Dynamic (MILP) Cost RPD
Travel Time (min)

4.15 1.282 3.107 0.832
8.57 2.564 2.574 0.004

successive re-plan was negligible in comparison to the initial planning time in all tested cases. To

generate Table 3, a similar setup was used as in the previous study (setting pα = pα = 10, pβ = 0.01,

W0 = 0.2, τj = 241.66 for all j, and keeping other parameters as before); however, target locations

were fixed. Table 2 shows the particular target locations used in this study (Targets 1-2 were used

for the 2 target scenario, Targets 1-3 in the 3 target scenario, etc.). Recall that the observed cost

is a function of operator workload bound violations and unnecessary UAV loiter time, but is not

a function of the overall mission time directly. As a result, the cost may remain unchanged or

even decrease if additional targets are added, provided that the additions do not force the operator

into a higher-workload regime, and does not introduce excessive idle time. This behavior is seen in

Table 3, as the cost is unchanged for the M = 6, 7, 8, 9 case.

For Table 4, a 6 target scenario (Targets 1-6; Table 3) was used, and all vehicles were initially

placed at a location of (0, 0). Notice that the computation time for the dynamic heuristic stays

relatively constant across all conditions, while the computation time for the a priori method (using

the MILP solver) quickly diverges to infeasible levels as complexity increases. For the case shown,

the relative error between the dynamic heuristic and the a priori method also increases with problem

complexity. However, we note once again that, in general, the performance of the heuristic improves

in situations where inter-target travel times are large. For example, in the 9 target case in Table 3,

the average inter-target travel time is 4.15 minutes. If the setup is modified by shifting the target

locations radially from the origin by a factor of 2 (making the average inter-target travel time 8.57

min), the relative error between the two methods becomes negligible (see Table 5). This trend is

reflective of the fact that missions with larger travel times typically benefit from the inclusion of

more UAV assets, since this prevents excessive operator idle time.

For comparison, an evolutionary heuristic solver was used in attempt to find solutions to the

full, non-linear problem (17). In particular, the NSGA-II genetic algorithm, which is one of the
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most widely used evolutionary algorithms for finding solutions to nonlinear, constrained, mixed-

integer (and multi-objective) problems [55], was implemented on the test problems described in the

previous paragraph. However, due to the highly constrained nature of the mixed-integer program,

NSGA-II failed to find feasible solutions for any of the tested problem instances in reasonable

time (40000 generations and population size of 10000; requiring > 8 hrs to complete). This result

is reflective of the well-known difficulties associated with solving highly constrained optimization

problems (particularly those with equality constraints and very sparse feasible regions) using genetic

algorithms or other similar heuristics [56]. Regardless, the results of this exercise are included in

Tables 3 and 4 for compleness (labeled “GA”). The development and/or assessment of a sophisticated

constraint handling technique to allow specialized implementation of these types of metaheuristics

on the joint scheduling/routing problem is an interesting avenue of future research.

Second, we remark that instances in which the dynamic heuristic performs poorly seem to be

correlated with unnecessary UAV utilization. For example, the dynamic heuristic often assigns the

same number of targets to each UAV, which, when targets are close together, forces the UAVs to

loiter at target destinations for long time intervals while awaiting operator attention. In contrast,

the a priori method will avoid these penalties by leaving a subset of the UAVs un-utilized. This

is supported by Table 4, which shows an increasing trend in cost values as the number of UAVs is

increased. Here, in all cases, the solution provided by the full, a priori solver only utilized one of

the available UAVs, and achieved much better scores. In light of this, performance of the dynamic

heuristic in some cases could be improved by omitting a subset of the available UAVs.

To illustrate this point, Fig. 6 shows the relative error produced for the pβ = 0.1 case when one

of the UAVs is omitted from the mission in Fig. 5, i.e., errors are reported for 500 simulation runs for

a single-vehicle mission using the same setup as before. Analogous plots for other pβ conditions are

nearly identical and are thus omitted. This observation suggests that a contributing factor to poor

performance of the dynamic heuristic is a poorly designed mission, i.e., too many UAVs assigned to

a mission. This is an important issue that can guide structural modification of both mission plans

and the algorithm to improve performance. Investigation into this issue is a topic of future work.

We finish by noting that a priori methods that seek to solve Problem 2 directly do not readily
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Fig. 6 RPD between dynamic and a priori schemes when N = 1 and pβ = 0.1.

extend to cases in which processing times are uncertain or in which UAVs do not have hovering

capability, whereas the dynamic scheme is easily extended to incorporate these scenarios (see Sec-

tion VIIB). A thorough exploration of alternative formulations to improve performance with respect

to direct solution methods is left as a topic of future work.

B. Scenario-Based Planning

The next study demonstrates the utility of the scenario-based scheme of Section VI. We consider

a realistic example which relaxes many assumptions on UAV and operator behavior. Thus, this study

not only shows robustness qualities of the scenario-based method, but also illustrates its flexibility in

accommodating constraints such as (i) fixed-wing UAVs, which cannot “hover” and have a minimum

turning radius, (ii) user-specified imaging constraints, and (iii) uncertain processing times.

1. Mission Setup

We consider a mission involving N = 3 fixed-wing UAVs and M = 6 static ground targets. The

UAVs are each modeled as a Dubins vehicle, which has a fixed forward speed of 39 m/s, a fixed

altitude of 1000 m, and a minimum turning radius of 750 m. The initial location and heading of each

UAV is (0, 0) and 0, resp. We neglect all other dynamic effects, e.g., drag, and we do not consider the

possibility of collision. The mission requires that each target be imaged with a tilt-angle (measured

below the horizontal flight plane) within the range [π/8, 3π/8]. The ground-plane location of each

target is presented in the table on the left-side of Fig. 7.

Processing times are modeled as random variables, each realized according to a probability

density function f : R>0 → R≥0. More specifically, for each j ∈ {1, . . . ,M}, the processing time is
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Index, j Location, tj
1 (10000, 0) m
2 (5000, 500) m
3 (1200, 5000) m
4 (−400,−15000) m
5 (3000,−5000) m
6 (−3000,−4000) m

0 100 200 300
0

0.2

0.4

0.6

0.8

1

Time (s)

C
D

F
 V

a
lu

e

 

 

Completed
Dwell−Time
Loop

Fig. 7 Target locations (left) and processing time CDF (right)

log-normally distributed with parameters µ = 5.044, σ = 0.25 (log mean and log standard deviation).

Intuitively, these parameters indicate that, at any single target, the operator will usually (∼ 75%

probability) require the UAV to make between 1 and 2 complete dwell-time loops in order to

complete the analysis task. The cumulative distribution function (CDF) generated by f is included

in Fig. 7. Let W0 = 0.2, and [w,w] = [0.2, 0.8], and assume a time-dependent, linear task load

evolution model, in which task-load levels increment or decrement by 0.001t when the operator is

busy or idle for time t, respectively. We select the scaling factors pα = pα = 10 and pβ = 0.01.

2. Solution Approach

We apply the dynamic scheduling/routing framework to the example mission using the following

steps: First, we construct V1, . . . , VN by applying applying the discretization strategy of [29]; namely,

each set Vj consists of discrete points in the configuration space (R2 × [0, 2π)) from which the UAV

is able to immediately begin an appropriate loitering pattern (a “loop” at minimum turn radius) at

the target j. More precisely, each sample (x, θ) ∈ Vj ⊂ R2 × [0, 2π) has a heading θ that points in

a direction tangent, at the location x, to a circle of radius 750 m (the minimum possible turning

radius), which lies entirely within the annulus of locations from which the tilt-angle specification

is met. Edge weights in G are defined as the time required for the UAV to traverse the optimal

Dubins path between configurations. After constructing G, we apply the scenario-based scheme of

Section VI, using scenario-dependent task load increments according to the linear model, i.e., for

each sampled processing time τ qj , we let ∆W q
j := 0.001τ qj (see Remark 9).
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3. Performance Analysis

For comparison, we consider a baseline solution method that ignores human factors considera-

tions, as well as the need to synchronize operator and UAV resources. In particular, the baseline

method proceeds as follows. First, targets are assigned to each UAV using a greedy heuristic (similar

to the well-known “nearest neighbor” heuristic for TSPs) that selects target/UAV pairings incre-

mentally according to which unvisited target destination can be reached at the earliest time. Here,

the heuristic assumes a processing time of 362.49 s at each target (ignoring operator availability),

equivalent to the time required for the UAV to complete 3 dwell-time loops. Intuitively, this choice

can be thought of as a type of “worst”-case processing time, since the probability of realizing a

longer processing time is < .01. Next, given the UAV-target pairings, each UAV’s route is then

constructed using a TSP-based method similar to that of [29], which attempts to minimize the

total route time under the assumed task processing times and an initial maneuver constraint (for

consistency with [29], the baseline method used here constrains the time that the UAVs reach their

first target to be minimal during the initial planning phase, and no constraint is enforced in suc-

cessive re-plans). The baseline solution then assumes that the operator processes tasks as soon as

possible, in a first-come first-serve basis. UAVs dwell at each successive target destination until the

operator processes the task. Each time the operator finishes a task, the UAV routes are re-planned

by repeating the same assignment/routing process over the remaining targets.

We compare the baseline method to the scenario-based method over multiple simulated mission

executions. Here, the “actual” processing times (unknown to the planner) were sampled from the

distribution f . Fig. 8 shows an example mission progression for the baseline solution (left column)

and for the scenario-based strategy of Section VI (right column), using identical “actual” processing

times (processing time realizations) in each case. Here, the shaded annular regions represent the

locations at which the tilt angle specification can be met. Fig. 9 depicts the utilization of UAV and

human resources during the same mission. Notice, in particular, how the optimal routing strategy

differs when using the joint optimization as opposed to the baseline solution. Indeed, in the joint

optimization case, longer UAV routes between targets may be chosen if the operator’s task load

level is high or to avoid unnecessary loitering times. In contrast, the baseline solution attempts to

33



-6000 -4000 -2000 0 2000 4000 6000 8000 10000 12000 14000

-2

-1.5

-1

-0.5

0

0.5

1

×10
4

2 1

3

4

5
6

0 500 1000 1500
0

0.5

1

1.5

T
a

s
k
 L

o
a

d

0 500 1000 1500
0

200

400

600

800

1000

1200

U
n

n
e

c
e

s
s
a

ry
 L

o
it
e

r

0 500 1000 1500

Time (s)

0

5

10

15

C
o

s
t

Operator Processing: 2

-6000 -4000 -2000 0 2000 4000 6000 8000 10000 12000 14000

-2

-1.5

-1

-0.5

0

0.5

1

×10
4

2 1

3

6
5

4

0 500 1000 1500
0

0.5

1

1.5

T
a

s
k
 L

o
a

d

0 500 1000 1500
0

200

400

600

800

1000

1200

U
n

n
e

c
e

s
s
a

ry
 L

o
it
e

r

0 500 1000 1500

Time (s)

0

5

10

15

C
o

s
t

Operator Processing: 5

-6000 -4000 -2000 0 2000 4000 6000 8000 10000 12000 14000

-2

-1.5

-1

-0.5

0

0.5

1

×10
4

2 1

3

6
5

4

0 500 1000 1500
0

0.5

1

1.5

T
a

s
k
 L

o
a

d

0 500 1000 1500
0

200

400

600

800

1000

1200

U
n

n
e

c
e

s
s
a

ry
 L

o
it
e

r

0 500 1000 1500

Time (s)

0

5

10

15

C
o

s
t

Operator Processing: 4

0 500 1000 1500
0

0.5

1

1.5

T
a

s
k
 L

o
a

d

0 500 1000 1500
0

200

400

600

800

1000

1200

U
n

n
e

c
e

s
s
a

ry
 L

o
it
e

r

0 500 1000 1500

Time (s)

0

5

10

15

C
o

s
t

-6000 -4000 -2000 0 2000 4000 6000 8000 10000 12000 14000

-2

-1.5

-1

-0.5

0

0.5

1

×10
4

6

2

4

1

3

5

Operator Processing: 2

0 500 1000 1500
0

0.5

1

1.5

T
a
s
k
 L

o
a
d

0 500 1000 1500
0

200

400

600

800

1000

1200

U
n
n
e
c
e
s
s
a
ry

 L
o
it
e
r

0 500 1000 1500

Time (s)

0

5

10

15

C
o
s
t

-6000 -4000 -2000 0 2000 4000 6000 8000 10000 12000 14000

-2

-1.5

-1

-0.5

0

0.5

1

×10
4

6

12

5

4

3

Operator Processing: 4

0 500 1000 1500
0

0.5

1

1.5

T
a

s
k
 L

o
a

d

0 500 1000 1500
0

200

400

600

800

1000

1200

U
n

n
e

c
e

s
s
a

ry
 L

o
it
e

r

0 500 1000 1500

Time (s)

0

5

10

15

C
o

s
t

-6000 -4000 -2000 0 2000 4000 6000 8000 10000 12000 14000

-2

-1.5

-1

-0.5

0

0.5

1

×10
4

6

12

5

4

3

Operator Processing: 3

Fig. 8 An example mission progression for the baseline solution (left column) and the scenario-
based solution (right column).

minimize route lengths and ignores operator behavior.

Fig. 10 shows the costs obtained over 100 simulated missions using various planning strategies,

in both tabular and graphical form. Table 6 contains the average computation times for each

method. The strategies included are: (i) the baseline method, (ii) two instances of the dynamic

Table 6 Computation Times (s)

Baseline Expect “Worst” Q = 1 Q = 5 Q = 10

Initial Planning Step 0.066 0.900 0.174 0.859 7.071 23.251
Successive Re-plan Steps 0.0414 0.019 0.017 0.026 0.077 0.138

scheme of Section V, one of which assuming expected processing time values (labeled “Expect”) and

34



Time (s)

Baseline

Joint
Optimization

2 3 1 4

500 1000 1500

1

6

4

2

3

5

16

2

5 6

4

2 6 4

5

5

3

1 3

Fig. 9 Resource utilization during the mission depicted in Fig. 8

Method Median IQR Whisker Span

Baseline 11.2053 3.2488 11.7385
Expect 3.3812 2.7701 7.7412

“Worst” Case 2.7247 2.1602 6.5284
Q = 1 2.9615 2.2192 6.7322
Q = 5 2.7821 2.2750 5.6693
Q = 10 2.9158 1.9449 5.4648
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Fig. 10 Scenario-Based Method vs. the Baseline Method

one assuming “worst”-case processing times (as in the baseline case), and (iii) three instances of the

scenario-based method of Section VI corresponding toQ = 1, 5, and 10. Different “actual” processing

times were sampled for each run, but were held constant across conditions, i.e., each simulation run

was performed by first sampling f to obtain “actual” processing times, and subsequently testing

each condition using the realized values. Any points whose distance from the median is further than

2.5 times the inter-quartile range (IQR) are considered outliers. Means produced by the different

methods were compared pairwise using two-sample t-tests, without assuming equal variance, and the

Table 7 Mean Comparison p-values

Method Baseline Expect “Worst” Q = 1 Q = 5 Q = 10

Baseline − < 10−20 < 10−20 < 10−20 < 10−20 < 10−20

Expect < 10−20 - 0.039 0.125 .0461 0.073
“Worst” < 10−20 0.039 - 0.603 0.9358 0.7858
Q = 1 < 10−20 0.125 0.603 - 0.6590 0.8033
Q = 5 < 10−20 .0461 0.9358 0.6590 - 0.846
Q = 10 < 10−20 0.073 0.7858 0.8033 0.846 -
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Fig. 11 Q-Q plots of “Worst” case vs Q = 10 case (left), and Q = 1 vs Q = 10 case (right)

result is shown Table 7. As expected, all of the joint optimization schemes performed significantly

better than the baseline. Also note that the expectation case yielded a higher mean cost than the

other optimization-based methods, producing statistically significant differences at 90% confidence

from the “Worst Case”, Q = 5, and Q = 10 cases. While there were no statistically significant

differences in mean between the “Worst,” Q = 1, Q = 5, and Q = 10 cases, qualitative trends

emerge as the number of samples increases that are indicative of increased robustness. In particular,

increasing the number of samples provides increased protection against worst-case performance. This

is best illustrated by the Q-Q plots in Figure 11, which compare the quantiles of the “Worst” case

versus the Q = 10 case (left) and the Q = 1 versus the Q = 10 case (right). Notice how the

upper quantiles have significantly lower values for the Q = 10 case, indicating better worst-case

performance. Note also that decreasing the number of poor-performing instances typically has the

secondary effect of reducing cost variation, as shown by the emerging trend of decreasing IQR and

whisker span as the number of samples increase.

Using expected values generally produced higher costs (and much higher cost variance than the

scenario-based scheme, highlighting the risk involved with this type of naive sampling in the pres-

ence uncertainty. With respect to the “worst”-case approach, we remark that, due to the potentially

conflicting nature of the performance metrics, longer processing times do not necessarily translate

into inferior performance. As such, the 10-scenario method often out-performed the “worst”-case

method. As the number of scenarios increases, one expects the appearance of poor solutions (out-

liers) to become less frequent, which generally results in a decrease in cost variance. This property

is an inherent benefit of the scenario-based method: it protects against poor quality solutions even

in complex missions where it is not straight-forward to assess which conditions will produce the
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worst-case mission cost. The scenario-based method also allows the user to tune the degree of ro-

bustness, by using greater or fewer numbers of scenarios. Note, however, that increased robustness

introduced by higher numbers of scenarios may be at the expense of inferior average performance.

Although the trends illustrated in this example are somewhat typical, it is important to note

that the benefit that is gained from implementing a scenario-based approach as opposed to, e.g.,

choosing expected values, is sensitive to the particular problem at hand. That is, there may be

missions in which choosing expected or “worst”-case processing times may actually result in very

high-quality solutions, in which case the benefit gained by the scenario-based method may be offset

by the added computation. We leave a thorough study of the sensitivity of the scenario-based

optimization scheme to problem parameters as a topic of future work.

VIII. Other Extensions

To aid in reader understanding and to more clearly convey intuitive ideas, the optimization

framework proposed herein has been presented under a number of strategically chosen assump-

tions, e.g., homogenous vehicles, single operator, etc. We emphasize, however, that many of these

assumptions can be relaxed and a number of additional layers of complexity can be incorporated

via straightforward modifications to the MIP structure. The potential for these types of additions

allows system designers to tailor the framework to particular applications.

Since there are a virtually infinite number of possible problem variations, a complete discussion

of all potential extensions is infeasible. However, we briefly discuss a few key extensions of interest

here, and give descriptions of the appropriate manipulation required to address these factors.

A. Structural and Mission-Specific Assumptions

Multiple Operators - The presence of multiple operators can be incorporated into our framework

by adding additional workload terms into the objective function, and augmenting the decision

variables xi,j,k with an extra index representing operator assignment.

Agent-Specific Tasks - If certain tasks can only be processed by a particular vehicle or operator

set, then an additional constraint set can be added which restricts the sum of the binary decision

variables to be non-zero for the appropriate choices of indices.
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Multi-tasking - Operator multi-tasking can be permitted by relaxing constraint (10), and making

modifications to the task-load evolution model, if necessary (see Section VIII B).

Heterogenous Vehicles - Heterogenous UAVs, e.g., those with differing airspeeds or dynamic

constraints, can be considered within the framework by making copies of the travel route graph G,

and defining the edge weights in each copy to be consistent with travel times for one of the vehicles.

Vehicle Endurance - Endurance, e.g., battery life constraints can be placed on the vehicles by

enforcing a constraint on the total route time or distance traveled by each vehicle, i.e., the sum of

the edge weights on the appropriate travel graph.

Time Windows - Time windows for task processing can be incorporated by constraining the

variables Bk (or Ck) to lie within pre-specified bounds. If the time windows are task-dependent,

then a non-linear constraint of the form
∑
i∈V

∑
j∈Vm

∑K
k=1 xi,j,kBk ∈ WINDOWm for each m ∈

{1, . . . ,M} would be required.

Task Priorities - “Hard” constraints on task ordering can be added into the formulation through

the addition of ordinal constraints on the appropriate sums of the binary variables xi,j,k, while

“soft” constraints, i.e., ordinal preferences, can be incorporated through a number of straightforward

modifications, e.g., addition of penalty terms on the task start times into the objective function.

Although these and many other extensions can be considered within similar MIP-based frame-

works, these additional layers of complexity may add non-linearities and are typically at the expense

of additional computation. Therefore, a natural tradeoff emerges between computational feasibility

and the chosen problem assumptions, which should be assessed on a case by case basis.

B. Operator Modeling Assumptions

To illustrate the incorporation of human-factors inspired metrics into the system-level opti-

mization framework, we have chosen a simple, utilization-based task-load measure, which serves as

a proxy for operator workload. We have presented the proposed optimization framework under a

number of simplifying assumptions, e.g., linear task-load decrements, etc. However, a number of

extensions are possible, although they are often at the expense of added computational complexity.

Task Load Decrements - Linear decrements can be replaced with virtually any other function that
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defines task load decrements as a function of rest time and system variables; however, alternative

models of this type will add additional problem non-linearity.

Task Load Increments - Similar to decrements, the presented framework allows for alternative

workload increment models; If the chosen model provides increments solely as a function of time,

i.e., the increments do not depend on other variables, the model can be used within the presented

framework without modification (by defining ∆Wj = f(τj), where f is a function relating processing

time and task load increments). Otherwise, the model will likely introduce additional non-linearity.

Multi-tasking - If an extension is used that allows operators to work on multiple tasks at once, the

presented framework will allow for the use of any task-load model that satisfies an additive property,

e.g., ∆Wtotal = ∆Wm1
+ ∆Wm2

, where ∆Wm1
,∆Wm2

are the task load increments associated with

two individual tasks. An additional constraint will be also required to ensure that decrements will

only be assessed when the operator is not performing a task. We also note that, under this type of

extension, the interpretation of the variables W k,W k as the task load level immediately before and

after task k, resp., is lost, though these variables still capture the task load characteristics necessary

to evaluate the objective. Alternative models for multi-tasking that do not possess an additive

property may not be viable within the proposed framework or introduce significant non-linearity.

Although these types of extensions may be feasible in some cases, and may be useful for capturing

qualitative properties within a supervisory control framework, this class of utilization-based, scalar

task-load modeling fails to capture many of the nuances associated with operator modeling that

may be required for many applications. Indeed, our utilization-based model focuses mainly on

capturing trends related to the mental, physical, and/or temporal demand associated with a given

task; however, there are other factors that can play a role such as level of frustration, overall

performance, among others [57]. The incorporation and validation of higher fidelity workload, and

other human-factors inspired metrics, is an important topic of future work.

IX. Limitations

It should be noted that the purpose of this work is to illustrate a straightforward, intuitive,

practical, and flexible method for placing a complex routing and scheduling problem (generally
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involving multiple components, heterogenous tasks and agents, uncertain parameters, and complex

task dependencies) into a single optimization framework that incorporates system-wide and human-

factors inspired objectives. In establishing this framework, we have included discussion to provide

meaningful insight into the problem structure and complexity, as well as potential solution methods,

that will both allow others to tailor this method to particular problems of interest and give guidance

into future research. However, it is important to highlight a few limitations of the analysis herein:

First, the presented framework is not intended to be a “catch-all” solution that can be applied to

any human-supervisory task; rather, our framework should be modified to capture constraints and

modeling nuances associated with a given application. The impact of this limitation, is that poor

or unpredictable performance may occur if the methods herein are blindly applied without prior

verification that the assumptions are appropriate for the application at hand. Examples of other

approaches to coordinating human and robotic behavior while enforcing different constraints and

modeling assumptions include [35, 36]. Future work should thoroughly classify the types of tasks

that are well suited for MIP-based approaches to optimization of robotic and operator behavior.

Second, it is not our purpose to provide a low-level, high-fidelity model of human cognition, or

to provide formal verification of human models; rather, we operate on simple, flexible, human-factors

inspired metrics and constraints that capture qualitative trends and illustrate a particular modeling

philosophy. As such, the methods herein may not provide sufficient fidelity in situations where slight

errors in operator modeling can have severe effects on mission-critical tasks or effective operation of

decision support systems. Examples of higher-fidelity cognitive architectures for modeling operator

behavior include ACT-R [58], Soar [59], EPIC [60], and CLARION [61]. Future work should focus on

the integration of these types of cognitive architectures within optimization-based planning schemes.

Finally, it is not our purpose to provide exhaustive statistical or sensitivity analysis for all

problem parameters and instances; rather, we analyze select illustrative examples and provide sim-

ulation results to help the reader build intuition and insight for future studies. As a result, there

may exist some problem instances in which the general trends that are illustrated herein may not

hold. As noted in Section I, there are very few research studies that attempt to jointly schedule ve-

hicle and operator behavior within a MIP framework, namely [35, 36]. While these results, provide
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some statistical insight, a thorough sensitivity analysis of integer programming methods for joint

optimization to problem parameters should be a topic of future work.

X. Conclusion

A joint optimization framework has been developed for simultaneously constructing UAV routes

and operator schedules for use within a supervisory surveillance mission involving a set of static

targets. The complete planning operation can be formulated as a MINLP, which can be equivalently

represented as a MILP of much larger size. However, in the case of a single-vehicle, an equivalent

MILP of identical size exists. For scalability, a dynamic heuristic has been developed for constructing

solutions dynamically. This framework can provide robustness to uncertainty in processing times

using a straightforward, scenario-based extension. Numerical examples have illustrated the potential

performance advantages of this joint optimization approach over alternatives that do not explicitly

consider the synchronization of human and autonomous resources.

Future work should include a thorough study of the scenario-based scheme in order to generate

performance bounds and to quantify its sensitivity to various problem parameters. Such a study

should include more thorough statistical analysis of the properties of the scenario-based extension.

In addition, the study and development of alternative heuristics for solving the full, non-linear

MIP could also be potentially very useful. Adaptations to the optimization framework in order

to handle higher-fidelity task load evolution models could improve performance as well. Finally,

validation of the proposed framework on a carefully designed human-test subjects is crucial to

further development of these systems.

Acknowledgments

This work has been sponsored by the U.S. Army Research Office and the Regents of the Univer-

sity of California, through Contract Number W911NF-09-D-0001 for the Institute for Collaborative

Biotechnologies, and that the content of the information does not necessarily reflect the position

or the policy of the Government or the Regents of the University of California, and no official

endorsement should be inferred.

41



References

[1] Peters, J., Srivastava, V., Taylor, G., Surana, A., Eckstein, M. P., and Bullo, F., “Mixed Human-Robot

Team Surveillance: Integrating Cognitive Modeling with Engineering Design,” IEEE Control Systems,

Vol. 35, No. 6, 2015, pp. 57–80.

[2] Goodrich, M. A. and Cummings, M. L., “Human Factors Perspective on Next Generation Unmanned

Aerial Systems,” Handbook of Unmanned Aerial Vehicles, 2015, pp. 2405–2423.

[3] Jentsch, F., Human-Robot Interactions in Future Military Operations, CRC Press, 2016.

[4] Guizzo, E., “Obama Commanding Robot Revolution Announces Major Robotics Initiative,” IEEE

Spectrum, June 2011.

[5] US Office of the Secretary of Defense, “Unmanned Aircraft Systems (UAS) Roadmap, 2005-2030,” 2005.

[6] Srivastava, V., Carli, R., Langbort, C., and Bullo, F., “Attention Allocation for Decision Making

Queues,” Automatica, Vol. 50, No. 2, 2014, pp. 378–388.

[7] US Air Force, “Report on technology horizons, a vision for Air Force Science And Technology

during 2010–2030,” Tech. rep., AF/ST-TR-10-01-PR, United States Air Force., 2010, Retrieved

from http://www.defenseinnovationmarketplace.mil/resources/AF_TechnologyHorizons2010-2030.pdf

on Feb. 8, 2016.

[8] Liu, Y. and Nejat, G., “Robotic urban search and rescue: A survey from the control perspective,”

Journal of Intelligent & Robotic Systems, Vol. 72, No. 2, 2013, pp. 147.

[9] Sheridan, T., “Human–robot interaction status and challenges,” Human Factors: The Journal of the

Human Factors and Ergonomics Society , Vol. 58, No. 4, 2016, pp. 525–532.

[10] Maurer, K., “Visual power: The scopic regime of military drone operations,” Media, War & Conflict ,

2016, pp. 1–11.

[11] Kilgore, R. and Voshell, M., “Increasing the transparency of unmanned systems: Applications of eco-

logical interface design,” International Conference on Virtual, Augmented and Mixed Reality , Springer,

2014, pp. 378–389.

[12] Hou, M., Zhu, H., Zhou, M., and Arrabito, G. R., “Optimizing operator–agent interaction in intelli-

gent adaptive interface design: A conceptual framework,” IEEE Transactions on Systems, Man, and

Cybernetics, Part C (Applications and Reviews), Vol. 41, No. 2, 2011, pp. 161–178.

[13] Cummings, M. L., Bertucelli, L. F., Macbeth, J., and Surana, A., “Task Versus Vehicle-Based Control

Paradigms in Multiple Unmanned Vehicle Supervision by a Single Operator,” IEEE Transactions on

Human-Machine Systems, Vol. 44, No. 3, 2014, pp. 353–361.

[14] Cummings, M. and Mitchell, P., “Predicting controller capacity in supervisory control of multiple

42



UAVs,” IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, Vol. 38,

No. 2, 2008, pp. 451–460.

[15] Deza, A., Peters, J., Taylor, G., Surana, A., and Eckstein, M., “Attention allocation aid for visual

search,” Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, ACM,

Boulder, CO, USA, 2017, pp. 220–231.

[16] McIntire, L., McKinley, R., Goodyear, C., and McIntire, J., “Detection of vigilance performance using

eye blinks,” Applied Ergonomics, Vol. 45, No. 2, 2014, pp. 354–362.

[17] Klein, D. J., Coordinated Control and Estimation for Multi-agent Systems: Theory and Practice, Ph.D.

thesis, University of Washington, 2008.

[18] Scerbo, M., “Adaptive automation,” Neuroergonomics: The Brain At Work , edited by R. Parasuraman

and M. Rizzo, Oxford University Press, 2001, pp. 239–252.

[19] Savla, K. and Frazzoli, E., “A Dynamical Queue Approach to Intelligent Task Management for Human

Operators,” Proceedings of the IEEE , Vol. 100, No. 3, 2012, pp. 672–686.

[20] Peters, J. and Bertuccelli, L., “Robust Task Scheduling for Multi-Operator Supervisory Control Mis-

sions,” Journal of Aerospace Information Systems, 2016, pp. 393–406.

[21] Toth, P. and Vigo, D., editors, The Vehicle Routing Problem, Monographs on Discrete Mathematics

and Applications, SIAM, 2001.

[22] Drexl, M., “Synchronization in vehicle routingâĂŤa survey of VRPs with multiple synchronization

constraints,” Transportation Science, Vol. 46, No. 3, 2012, pp. 297–316.

[23] Arulselvan, A., Commander, C., and Pardalos, P., “A hybrid genetic algorithm for the target visitation

problem,” Naval Research Logistics, 2007, pp. 1–20.

[24] Nigam, N., “The Multiple Unmanned Air Vehicle Persistent Surveillance Problem: A Review,” Ma-

chines, Vol. 2, No. 1, 2014, pp. 13–72.

[25] Srivastava, K., Stipanovic̀, D. M., and Spong, M. W., “On a stochastic robotic surveillance problem,”

IEEE Conf. on Decision and Control , Shanghai, China, Dec. 2009, pp. 8567–8574.

[26] Pasqualetti, F., Franchi, A., and Bullo, F., “On Cooperative Patrolling: Optimal Trajectories, Com-

plexity Analysis and Approximation Algorithms,” IEEE Transactions on Robotics, Vol. 28, No. 3, 2012,

pp. 592–606.

[27] Obermeyer, K. J., Oberlin, P., and Darbha, S., “Sampling-based path planning for a visual reconnais-

sance UAV,” AIAA Journal of Guidance, Control, and Dynamics, Vol. 35, No. 2, 2012, pp. 619–631.

[28] Isaacs, J. and Hespanha, J. P., “Dubins traveling salesman problem with neighborhoods: A graph-based

approach,” Algorithms, Vol. 6, No. 1, 2013, pp. 84–99.

43



[29] Peters, J., Surana, A., Taylor, G., Turpin, T., and Bullo, F., “UAV Surveillance under Visibility

and Dwell-Time Constraints,” ASME Journal of Dynamic Systems, Measurement, and Control , 2017,

Submitted.

[30] Laporte, G., Mercure, H., and Nobert, Y., “Generalized travelling salesman problem through n sets of

nodes: The asymmetrical case,” Discrete Applied Mathematics, Vol. 18, No. 2, 1987, pp. 185–197.

[31] Srivastava, V., Pasqualetti, F., and Bullo, F., “Stochastic Surveillance Strategies for Spatial Quickest

Detection,” International Journal of Robotics Research, Vol. 32, No. 12, 2013, pp. 1438–1458.

[32] Shah, J. A., Saleh, J. H., and Hoffman, J. A., “Review and synthesis of considerations in architecting

heterogeneous teams of humans and robots for optimal space exploration,” IEEE Transactions on

Systems, Man & Cybernetics. Part C: Applications & Reviews, Vol. 37, No. 5, 2007, pp. 779–793.

[33] Nehme, C. E., Modeling Human Supervisory Control in Heterogeneous Unmanned Vehicle Systems,

Ph.D. thesis, Department of Aeronautics and Astronautics, MIT, Feb. 2009.

[34] Gombolay, M. C., Wilcox, R., and Shah, J. A., “Fast scheduling of multi-robot teams with temporospa-

tial constraints,” Robotics: Science and Systems, Berlin, Germany, June 2013.

[35] Ponda, S., Choi, H., and How, J., “Predictive planning for heterogeneous human-robot teams,” AIAA

Infotech@ Aerospace, Atlanta, GA, USA, April 2010, AIAA 2010-3349.

[36] Murray, C. and Park, W., “Incorporating human factor considerations in unmanned aerial vehicle

routing,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, Vol. 43, No. 4, 2013, pp. 860–

874.

[37] Korsah, G. A., Stentz, A., and Dias, M. B., “A comprehensive taxonomy for multi-robot task allocation,”

International Journal of Robotics Research, Vol. 32, No. 12, 2013, pp. 1495–1512.

[38] Drexl, M., On Some Generalized Routing Problems, Ph.D. thesis, Faculty of Business and Economics,

RWTH Aachen University, 2007.

[39] Zimmerman, M., “Task Load,” Encyclopedia of Clinical Neuropsychology , edited by J. Kreutzer,

J. DeLuca, and B. Kaplan, Springer, 2011, pp. 2469–2470.

[40] Neerincx, M., “Cognitive task load design: Model, methods and examples,” Handbook of cognitive task

design, 2003, pp. 283–305.

[41] Rouse, W., Systems engineering models of human-machine interaction, Vol. 6, North-Holland, 1980.

[42] Cummings, M. and Guerlain, S., “Developing operator capacity estimates for supervisory control of

autonomous vehicles,” Human Factors, Vol. 49, No. 1, 2007, pp. 1–15.

[43] Stimpson, A., Ryan, J., and Cummings, M., “Assessing Pilot Workload in Single-Pilot Operations with

Advanced Autonomy,” Proceedings of the Human Factors and Ergonomics Society Annual Meeting ,

44



Vol. 60, SAGE Publications Sage CA: Los Angeles, CA, 2016, pp. 675–679.

[44] Teigen, K. H., “Yerkes-Dodson: A law for all seasons,” Theory & Psychology , Vol. 4, No. 4, 1994,

pp. 525–547.

[45] Cummings, M. and Mitchell, P., “Operator scheduling strategies in supervisory control of multiple

UAVs,” Aerospace Science and Technology , Vol. 11, No. 4, 2007, pp. 339–348.

[46] Army, U., “Attack Reconnaissance Helicopter Operations,” Tech. Rep.

FM 3-04.126, Department of the Army (US), Feb. 2007, Retrieved from

http://usacac.army.mil/sites/default/files/misc/doctrine/CDG/fms.html on Dec. 5, 2016.

[47] Makhorin, A., “GNU Linear Programming Kit,” https://www.gnu.org/software/glpk/, 2000–2012,

Accessed 2017-02-22.

[48] ILOG, Mountain View, CA, ILOG CPLEX User’s guide, 1999.

[49] MathWorks, “Linear Programming and Mixed-Integer Linear Programming,” http://www.mathworks.

com/help/optim/linear-programming-and-mixed-integer-linear-programming.html, Accessed:

2015-08-29.

[50] Ben-Tal, A., El-Ghaoui, L., and Nemirovski, A., Robust Optimization, Princeton University Press, 2009.

[51] Calafiore, G. C. and Campi, M. C., “The scenario approach to robust control design,” IEEE Transactions

on Automatic Control , Vol. 51, No. 5, 2006, pp. 742–753.

[52] Kouvelis, P., Daniels, R., and Vairaktarakis, G., “Robust scheduling of a two-machine flow shop with

uncertain processing times,” IIE Transactions, Vol. 32, No. 5, 2000, pp. 421–432.

[53] Southern, D. N., Human-Guided Management of Collaborating Unmanned Vehicles in Degraded

Communication Environments, Master’s thesis, Electrical Engineering and Computer Science, Mas-

sachusetts Institute of Technology, May 2010.

[54] Bertuccelli, L. F., Pellegrino, N., and Cummings, M. L., “Choice Modeling of Relook Tasks for UAV

Search Missions,” American Control Conference, Baltimore, MD, USA, June 2010, pp. 2410–2415.

[55] Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T., “A fast and elitist multiobjective genetic algo-

rithm: NSGA-II,” IEEE transactions on evolutionary computation, Vol. 6, No. 2, 2002, pp. 182–197.

[56] Coello, C., “Theoretical and numerical constraint-handling techniques used with evolutionary algo-

rithms: A survey of the state of the art,” Computer methods in applied mechanics and engineering ,

Vol. 191, No. 11, 2002, pp. 1245–1287.

[57] Hart, S. G. and Staveland, L. E., “Development of NASA-TLX (Task Load Index): Results of empirical

and theoretical research,” Advances in Psychology , Vol. 52, 1988, pp. 139–183.

[58] Anderson, J. R., “ACT: A simple theory of complex cognition,” American Psychologist , Vol. 51, No. 4,

45



1996, pp. 355.

[59] Laird, J. E., The Soar Cognitive Architecture, MIT Press, 2012.

[60] Kieras, D. E. and Meyer, D. E., “An overview of the EPIC architecture for cognition and performance

with application to human-computer interaction,” Human-Computer Interaction, Vol. 12, No. 4, 1997,

pp. 391–438.

[61] Sun, R., “The CLARION cognitive architecture: Extending cognitive modeling to social simulation,”

Cognition and Multi-Agent Interaction, edited by R. Sun, Cambridge University Press, 2006, pp. 79–99.

46


