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Abstract—This article provides a comprehensive analysis of
the following optimization problem: maximize the entropy rate
generated by a Markov chain over a connected graph of order n
and subject to a prescribed stationary distribution. First, we
show that this problem is strictly convex with global optimum
lying in the interior of the feasible space. Second, using Lagrange
multipliers we provide a closed-form expression for the maxen-
tropic Markov chain as a function of an n-dimensional vector,
referred to as the maxentropic vector; we provide a provably-
converging iteration to compute this vector. Third, we show that
the maxentropic Markov chain is reversible, compute its entropy
rate, and describe special cases, among other results. Fourth,
through analysis and simulations, we show that our proposed
procedure is more computationally efficient than semidefinite
programming methods. Finally, we apply these results to robotic
surveillance problems. We show realizations of the maxentropic
Markov chains over prototypical robotic roadmaps and find that
maxentropic Markov chains outperform minimum mean hitting
time Markov chains for so-called “intelligent intruders” with
short attack durations. a comprehensive analysis of the following
optimization problem: maximize the entropy rate generated by
a Markov chain over a connected graph of order n and subject
to a prescribed stationary distribution.

Index Terms—Markov chain, stochastic surveillance, convex
optimization, entropy rate

I. INTRODUCTION

a) Problem description: The entropy rate of a Markov
chain is a measure of information and unpredictability gen-
erated with each time-step [9]. In this paper, we study
Markov chains with maximal entropy generation subject to
two constraints: (i) allowable transitions are specified by a
given irreducible adjacency matrix and (ii) the stationary
distribution of the Markov chain is given. It is customary
to refer to Markov chains with maximum entropy rate as
maxentropic. Maxentropic Markov chains with stationary dis-
tribution constraints are of interest in surveillance strategies as
they maximize the uncertainty in the path of the surveillance
agent. Aside from applications to stochastic surveillance, the
notion of maxentropic Markov chains is useful for example
in link-prediction [18], community detection [20] and image
processing [30].

b) Prior work and applications of maxentropic Markov
chains: To the best of our knowledge, maxentropic Markov
chains first appeared in [14] as the solution to the optimization
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problem of maximizing the entropy rate given the first and
second moments of the Markov chain. More recently, Burda et
al. [7] provide a closed form solution for maxentropic Markov
chains subject solely to graph constraints. This Markov chain,
referred to as the maximal entropy random walk (MERW),
possesses the property that all walks of equal length with given
start and end node are equiprobable. The solution we provide is
for Markov chains subject to stationary distribution constraints
in addition to graph constraints. In what follows, we discuss
three applications of maxentropic Markov chains: (i) design
of stochastic surveillance strategies, (ii) detection of features
in images, and (iii) design of metrics on large graphs and
complex networks.

Stochastic surveillance. Minimum hitting time Markov
chains have been used in the design of stochastic surveillance
strategies in [21] where a novel convex program formulation
of the problem is considered. The notion of group hitting time
for multiple random walkers is used in optimizing transition
matrices for multiple agents in [22]. Furthermore, Markov
chains have been used in conjunction with specific notions
of intelligent intruders to design stochastic strategies [4]. The
authors in [11], [26] use Markov chain Monte Carlo methods
to design surveillance strategies. In [2] the mean hitting time
in conjunction with multiple parallel instances of the CUSUM
algorithm is used to devise a policy which ensures quickest
average time to detection of anomalies. Finally, the work in [8]
formulates an efficient algorithm based on Markov chains
named PATROLGRAPH* which allows for effective extension
to the multi-agent case.

Image analysis. Based of the notion of maximal entropy
random walks in [7], several applications have been proposed
in image analysis. The MERW is utilized instead of the
equal neighbor random walk to detect visually salient features
in [30]. The MERW has also been utilized to implement a
probabilistic object localization scheme in [29]. Korus and
Huang [16] successfully adopt the MERW for localizing
forgeries in digital images.

Metrics on large networks. The MERW is used to design
unsupervised methods for link prediction in [18]. Ochab and
Burda study the feasibility of using the MERW in algorithms
for community detection [20]. Furthermore, the MERW is used
to study the trapping problem in dendrimers, i.e., artificial
macromolecules with treelike structures [23]. More recently,
a relation between entropy rate and congestion in complex
networks was established and a method was proposed to
mitigate congestion using MERW in [10].

c) Statement of contributions: This article makes contri-
bution to Markov chain theory as well as to robotic surveil-
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lance. First, we show that the novel problem of entropy
rate maximization subject to graph with n nodes and visit
frequency constraints is well-defined and is strictly convex. We
show that the unique global solution is indeed an irreducible
Markov chain. The irreducibility property implies that the
solution has a well-defined stationary distribution identical to
that posed in the stationary distribution constraint.

Second, as the main contribution of the paper, we provide
an iterative algorithm with rigorous convergence guarantees
to compute an n-dimensional vector, called the so-called
maxentropic vector. In turn, as a function of this maxentropic
vector, we provide a closed-form formula for the maximum
entropy rate Markov chain, referred to as the maxentropic
Markov chain with visit frequency constraints. In other words,
we compute maxentropic chains with arbitrary stationary dis-
tributions on a graph with n nodes using an n-dimensional
vector instead of optimizing transition matrices in Rn×n.

Third, we establish various additional results, including (i)
the reversibility of maxentropic Markov chains with prescribed
stationary distributions, (ii) a formula for the maximum en-
tropy rate subject to the constraints, and (iii) an equiprobable
path property, which, prior to this work, was only known
to hold for the maximal entropy random walk. Additionally,
for a few special choices of the constraints, we are able to
characterize interesting special cases. For example, we show
that the equal neighbor random walk on a graph is equal to the
maxentropic Markov chain with visit frequency at each node
proportional to the degree of the node.

Fourth, we conduct a careful comparison between our
proposed procedure and standard SDP methods across a range
of graph topologies. Specifically, we conduct a worst-case
complexity analysis of our procedure and compare it with
interior point methods used to solve semidefinite program-
ming formulations of the entropy rate maximization problem.
Empirically and analytically, we show that our proposed
procedure has significantly lower runtime than an SDP method
to solve the optimization problem.

Finally, we demonstrate some example realizations of these
maxentropic chains in robotic scenarios. A key simulation-
based result is that maxentropic Markov chains perform better
than minimum hitting time Markov chains for the important
case of so-called intelligent waiting intruders with short attack
durations. We also conduct simulations on a partitioned graph
with multiple surveillance agents and find that this result
appears to hold for the multi-agent case as well.

d) Relevance to stochastic surveillance: The setup we
consider is one in which the area to be surveilled has been
sampled to obtain a robotic roadmap represented by a graph.
The nodes of the graph designate points of high priority and
the edges indicate whether it is possible to move between
different nodes. (Restrictions might be imposed by obstacles,
no-fly zones, etc.) The graph structure is captured by a binary
adjacency matrix and the relative importance of each node
is given by a normalized vector which indicates a desired
visit frequency to each node. Markov chains modeled by
transition matrices are well suited to designing random walks
on graphs with visit frequency constraints. The left-dominant
eigenvector of the transition matrix, referred to as the sta-

tionary distribution, gives the visit frequency of a random
walker who moves according to the Markov chain. Graph
and stationary distribution constraints are linear and hence
can be enforced quite effectively in optimization problems
involving cost functions with various robotic motivations such
as maximizing speed of traversal, minimizing the expected
reward for an intruder or convergence to a desired swarm
formation [21], [4], [5].

While prior work with the same framework has emphasized
the speed of the Markov chain or optimizing the probability
of capture given an intruder model, the transition matrices
obtained as solutions to such formulations need not nec-
essarily be unpredictable (e.g., permutation matrices, which
have zero entropy rate, are the fastest Markov chains when a
Hamiltonian tour exists). The notion of maximum entropy rate
Markov chains is valuable as it translates directly to maximum
unpredictability in the path of the surveillance agent. The
specification of a stationary distribution, which serves as a
prior for where the intruder might be located, makes our
approach more suited than the MERW which has a fixed
stationary distribution.

e) Applications in other areas: The methods described in
this paper are potentially useful for developing novel methods
of conducting image analysis. The maxentropic Markov chain
with visit frequency specification provides a natural way of in-
corporating prior knowledge of where an object or an anomaly
is likely to be located within an image and hence can be used
in place of the MERW in [29], [30] when such knowledge is
available. Further the fact that the method described in this
article scales well with the graph dimension enables its use
for analysis of large images.

Finally, the methods developed in this paper could also
aid in the design of novel metrics for complex networks. In
refs. [16], [18], [20], novel metrics are designed by using the
MERW to evaluate properties of the network. With the ability
to specify visit frequencies in the random walk it becomes
possible to evaluate some of these metrics in a weighted sense.
For example, if one specifies that visit frequencies of the
random walk be a function of the degree of each node, the
metric thus obtained will incorporate such a weighting.

f) Paper organization: This paper is organized as fol-
lows. In section II we introduce notation and review known
results. In section III we derive some preliminary results. In
section IV we introduce the main result of this paper which
is the maxentropic chain with prescribed visit frequencies. In
section V we show realizations of the maxentropic Markov
chain over prototypical roadmaps. Finally, in section VI we
present conclusions.

II. NOTATION AND REVIEW OF KNOWN RESULTS

A. Notation

For x ∈ Rn, let ‖x‖1 =
∑n
i=1 |xi|, let [x] denote the

diagonal matrix with diagonal entries x, that is,

[x] =

x1 . . . 0
...

. . .
...

0 . . . xn

 .
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A matrix A ∈ Rn×n is irreducible if, for all partitions {I, J}
of the index set {1, . . . , n}, there exists i ∈ I and j ∈ J such
that aij 6= 0. Here {I, J} is a partition of the index set if
I ∪ J = {1, . . . , n} and I ∩ J = φ.

Given x, y ∈ Rn, we define the component-wise vector
product x ◦ y ∈ Rn by (x ◦ y)i = xiyi for i ∈ {1, . . . , n}. We
note the simple equalities:

[x]y = x ◦ y = [y]x and [[x]y] = [x][y] = [x ◦ y]. (1)

Define the set of positive n-tuples by Rn>0 = {x ∈ Rn | xi >
0, i ∈ {1, . . . , n}} and the probability simplex of order n by
∆n = {v ∈ Rn |

∑n
i=1 vi = 1, vi ≥ 0 for i ∈ {1, . . . , n}}.

Consider a graph G with nodeset V = {1, . . . , n} then
a walk from node i1 to i2 and so on until node ik for
{i1, i2, . . . , ik} ∈ V is denoted as i1 → i2 → . . .→ ik.

The following lemma and its proof are included here for
completeness.

Lemma 1. Let S ⊆ Rn be a compact convex set, ‖.‖ be
a matrix norm on Rn, and h : S → S be a continuously
differentiable map. If ‖∂h/∂x(x)‖ < 1 for all x ∈ S, then
h is a contraction mapping with respect to the norm ‖.‖ and
has a unique fixed point in S.

Proof. Because S is compact and h is C1, there exists c ∈
(0, 1) such that

‖∂h/∂x(x)‖ ≤ c, for all x ∈ S.

By the Mean Value Inequality [1, Proposition 2.4.8], for every
x, y ∈ S, there exists η ∈ S such that

‖h(y)− h(x)‖ ≤ ‖∂h/∂x(η)‖‖y − x‖.

Therefore, for every x, y ∈ S, we know

‖h(y)− h(x)‖ ≤ c‖y − x‖.

Since 0 < c < 1, this inequality shows that h : S → S is a
contraction with respect to the norm ‖ · ‖. By the Banach
Contraction Theorem [17, Theorem 3.4.1], h has a unique
fixed point in S.

B. Review of maxentropic Markov chains
Throughout the paper we model the transition matrix of

a Markov chain as a row-stochastic matrix. Given a Markov
chain with an irreducible transition matrix P ∈ Rn×n (i.e.,
an irreducible row-stochastic matrix), the entropy rate of the
Markov chain is given by

H(P ) = −
n∑

i,j=1

πi(P )pij log pij , (2)

where π(P ) ∈ interior(∆n) is the stationary distribution of
P (whose existence, uniqueness, and positivity are established
by the Perron-Frobenius Theorem for irreducible matrices).

Problem 1 (Maximizing entropy rate). Given a connected
undirected unweighted graph G, compute the matrix P ∈
Rn×n satisfying

max H(P )

subj. to P is row stochastic, i.e., P ≥ 0 and P1n = 1n
pij = 0, if {i, j} is not an edge of G.

Theorem 1 (The maxentropic Markov chain [7], [14]). Given
a symmetric, irreducible A ∈ {0, 1}n×n with associated
undirected graph G, let λ > 0 and v ∈ Rn>0 be the dom-
inant eigenvalue and eigenvector of A (whose existence and
uniqueness are established by the Perron-Frobenius Theorem).

Then the solution to Problem 1 is unique, is called maxen-
tropic Markov chain over G, and is given by

P ∗ =
1

λ
[v]−1A[v], (3)

or, in components, by

P ∗ij =
aij
λ

vj
vi
.

Moreover, P ∗ has the following properties:
(i) its stationary distribution is v ◦ v/‖v ◦ v‖1,

(ii) its paths are equiprobable in the following sense: pick
a start node i and a path length k. The probability of
traversal for a path from i of length k ≥ 1 is

1

λk
vj
vi
, (4)

where j is the final node in the path. Note that all paths
from i to j of length k have the same probability.

The following example illustrates a maxentropic chain.

Example 1. Consider the adjacency matrix associated with
a 4-node ring and the maxentropic Markov chain associated
with this graph,

A =


1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1

 , P ∗ =


1/3 1/3 0 1/3
1/3 1/3 1/3 0
0 1/3 1/3 1/3

1/3 0 1/3 1/3

 .
In general one can show that the Markov chain that max-

imizes entropy on the ring is the transition matrix that ran-
domizes the position of the random walker at the subsequent
timestep between its current location and the two adjacent
nodes on the ring.

III. MAXENTROPIC MAPS AND THEIR PROPERTIES

In this section we introduce and characterize two maps: the
maxentropic matrix map and maxentropic vector map. These
maps shall be used in the construction of Markov chains with
maximum entropy subject to graph and stationary distribution
constraints.

A. The maxentropic matrix map and its properties

Given a symmetric, irreducible, binary matrix A ∈
{0, 1}n×n, define the maxentropic matrix map ΦA : Rn>0 →
Rn×n≥0 by

ΦA(x) = [Ax]−1A[x], (5)

or, in components, by(
ΦA(x)

)
ij

= aij
xj∑n

k=1 aikxk
.

The maxentropic Markov chain subject to graph and station-
ary distribution constraints can be generated from the maxen-
tropic matrix map for a suitable choice of x. In the remainder
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of this section, we only characterize the maxentropic matrix
map. The connection to maxentropic Markov chains shall
become clear in Section IV.

Theorem 2 (Properties of the maxentropic matrix map). Given
a symmetric, irreducible, binary matrix A ∈ {0, 1}n×n and a
vector x ∈ Rn>0, the maxentropic matrix map has the following
properties:

(i) ΦA(x) is well defined, nonnegative, and row-stochastic,
(ii) ΦA(x) has the same irreducible zero/positive pattern

as A,
(iii) the left dominant eigenvector of ΦA(x) is

π(x) =
1

‖[x]Ax‖1
[x]Ax, (6)

(iv) ΦA(x) is reversible, i.e., [π(x)]ΦA(x) = ΦA(x)>[π(x)].

Proof. First, we know Ax > 0 because x > 0 and because
A being irreducible implies each row of A has at least one
positive entry. Hence, the diagonal matrix [Ax] is invertible
and ΦA(x) is well defined and nonnegative. Finally, [x]1n = x
implies

ΦA(x)1n = [Ax]−1A[x]1n = [Ax]−1Ax = 1n.

This concludes the proof of statement (i).
Next, note that ΦA(x) is equal to the matrix A pre- and post-

multiplied by two diagonal matrices with positive diagonal;
hence ΦA(x) has the same zero/positive pattern as A and is
irreducible. This concludes the proof of statement (ii).

Regarding statement (iii), by the Perron-Frobenius Theorem
for irreducible nonnegative matrices we know that ΦA(x) has a
unique left dominant eigenvector, i.e., a vector π(x) satisfying
π(x)>ΦA(x) = π(x)> and 1>π(x) = 1.

It suffices to show π(x)>ΦA(x) = π(x)>. Recalling the
equalities (1), we compute

π(x)>ΦA(x) =
1

‖[x]Ax‖1

(
[x]Ax

)>(
[Ax]−1A[x]

)
=

1

‖[x]Ax‖1

(
[Ax]x

)>(
[Ax]−1A[x]

)
=

1

‖[x]Ax‖1
x>[Ax][Ax]−1A[x]

=
1

‖[x]Ax‖1
x>A[x] =

1

‖[x]Ax‖1

(
[x]Ax

)>
.

This concludes the proof of statement (iii).
Finally, again recalling the equalities (1) and assuming

‖[x]Ax‖1 = 1 without loss of generality, we compute

[π(x)]ΦA(x) = [[x]Ax][Ax]−1A[x]

= ([x][Ax])[Ax]−1A[x] = [x]A[x],

ΦA(x)>[π(x)] = [x]A[Ax]−1[[x]Ax] = [x]A[x].

This concludes the proof of statement (iv).

B. The maxentropic vector map and its properties

Next, we study the left dominant eigenvector of the row-
stochastic matrix ΦA(x). Given a binary, symmetric, irre-

ducible matrix A with unit diagonal entries, define the max-
entropic vector map φA : Rn>0 → Rn>0 by

φA(x) = [x]Ax,

or, in components, by(
φA(x)

)
i

= xi

n∑
k=1

aikxk.

In what follows, we use the notion of proper maps to
establish that the maxentropic vector map is a global diffeo-
morphism. A map h : X → Y is proper if for every compact
set C ⊂ Y , the preimage h−1(C) ⊂ X is compact.

Theorem 3 (Properties of the maxentropic vector map). Given
a symmetric, irreducible, binary matrix A ∈ {0, 1}n×n with
unit diagonal entries, the maxentropic vector map φA has the
following properties:

(i) the Jacobian of φA satisfies ∂φA/∂x(x) = [x]A+ [Ax]
and is full rank at all x ∈ Rn>0,

(ii) φA is a proper map, and
(iii) φA is a global diffeomorphism, in particular, for every

π ∈ Rn>0, there exists a unique x∗ ∈ Rn>0 such that
φA(x∗) = π.

Proof. Regarding property (i), clearly φA is analytic. Elemen-
tary calculations based also on the equalities (1) show that
∂φA/∂x(x) = [x]A+ [Ax]. One can show

∂(φA)i
∂xi

(x) = aiixi +

n∑
j=1

aijxj

>

n∑
j=1,j 6=i

aijxj =

n∑
j=1,j 6=i

∂(φA)i
∂xj

(x),

for all x ∈ Rn>0, because aii = 1 > 0 for all i ∈ {1, . . . , n}.
Hence, the Jacobian matrix ∂φA/∂x(x) is strictly row diago-
nally dominant and, therefore, invertible for all x ∈ Rn>0.

Before continuing, it is convenient to define the map
φ̂A : Rn≥0 → Rn≥0 by φ̂A(x) = [x]Ax, so that φA is the
restriction of the map φ̂A to Rn>0. We claim that, for every

S ⊆ Rn>0, we have φ−1A (S) = φ̂A
−1

(S). We establish this
claim as follows. By the property of the restriction map,
we can easily show that φ−1A (S) ⊆ φ̂A

−1
(S). Now suppose

that there exists a vector v = (v1, v2, . . . , vn)> such that
v ∈ φ̂A

−1
(S) and v 6∈ φ−1A (S). This implies that φ̂A(v) ∈ S.

Since v 6∈ φ−1A (S), there exists some i ∈ {1, . . . , n}, such that
vi = 0. This implies that ([v]Av)i = 0 and therefore we have(
φ̂A(v)

)
i

= 0. However, this means that φ̂A(v) 6∈ S. Which

is a contradiction. Therefore, we have φ−1A (S) = φ̂A
−1

(S).
Regarding property (ii), let C be a compact set in Rn>0. Then

it is a compact set in Rn≥0. Therefore, C is closed in Rn≥0.

Since φ̂A is a continuous map, φ̂A
−1

(C) is closed in Rn≥0.

We show that φ̂A
−1

(C) is bounded in Rn≥0. Since all diagonal
elements of A are one, we have the following inequality

‖x‖2∞ ≤ ‖[x]Ax‖∞, for all x ∈ Rn≥0.
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Since C is compact, there exists M ∈ R>0 such that, for every
y ∈ C, we have ‖y‖∞ < M . Thus, for every x ∈ φ̂A

−1
(C),

we have

‖x‖2∞ ≤ ‖[x]Ax‖∞ = ‖φ̂A(x)‖∞ < M.

Therefore, φ̂A
−1

(C) is bounded in Rn≥0. This implies that

φ̂A
−1

(C) is compact in Rn≥0. Recall that we established

φ−1A (C) = φ̂A
−1

(C). Therefore φ−1A (C) is a compact set in
Rn>0.

Finally, regarding property (iii), we start by noting that prop-
erty (i) implies, by the Inverse Function Theorem, that φA is a
local diffeomorphism. Therefore, using property (ii) the map
φA is a proper local diffeomorphism and [1, Theorem 2.5.17]
implies that φA is a global diffeomorphism.

Remark 1 (The maxentropic vector map is ill-posed with-
out self-loops). The following example shows that the state-
ments (ii) and (iii) in Theorem 3 do not generally hold for
graphs without self-loops. Consider the adjacency matrix

A =

[
0 1
1 1

]
.

Define the vectors, x = [x1 x2]> and π = [π1 π2]>. The
maxentropic vector map is given by φA(x) = [x1x2 x1x2 +
x22]>. One can solve for the inverse of the map φA explicitly
in this case obtaining

φ−1A (π) =

[
π1√

π2 − π1
√
π2 − π1

]
.

Consider the compact set Π = {[π1 π2]
> | π1 + π2 =

1, 0.25 ≤ π1 ≤ 0.5}. The preimage of the set Π under the
maxentropic vector map φ−1A is not bounded, and hence this
set is not compact in Rn. Also note that the φ−1A (π) is empty
when π1 > π2 and hence the map is not a diffeomorphism. �

In what follows, we characterize the inverse function of φA
at π. In other words, given a point π ∈ interior(∆n), we
compute x = φ−1A (π) as the solution to the algebraic equation

φA(x) = [x]Ax = π. (7)

Theorem 4 (Inverse of the maxentropic vector map). Given
a symmetric, irreducible, binary matrix A ∈ {0, 1}n×n with
unit diagonal entries, pick π ∈ interior(∆n).

(i) For A = 1n1>n , the algebraic equation (7) admits the
unique solution π.

(ii) Define the constants η = maxi{
∑n
j=1 aij

√
πj}, ξ =

maxi{
∑n
j=1 aijπj}, and the vector x0 = π√

ξ
. Then the

sequence {xk}k∈N defined by linear iteration

xk+1 = xk − 1

2η

(
[xk]Axk − π

)
, for all k ∈ N,

(8)
converges to the unique solution of equation (7).

Proof. Regarding statement (i), note that A = 1n1>n implies
Aπ = 1n. Therefore, if we set x equal to π into equation (7),
we get

[π]Aπ = [π]1n = π.

Regarding statement (ii), we first define the nonempty compact
convex domain

Ωπ =
{
y ∈ Rn>0

∣∣∣ π
η
≤ y ≤

√
π
}
.

We first show that x0 ∈ Ωπ . Since A is a binary matrix, for
every i ∈ {1, . . . , n}, we have√√√√ n∑

j=1

aijπj ≤
n∑
j=1

aij
√
πj .

Therefore, one can deduce that√√√√max
i

{ n∑
j=1

aijπj

}
≤ max

i

{ n∑
j=1

aij
√
πj

}
.

Moreover, matrix A has unit diagonal entries so that

√
πi ≤

√√√√ n∑
j=1

aijπj ≤

√√√√max
i

{ n∑
j=1

aijπj

}
.

Therefore, we have
π

η
≤ π√

ξ
≤
√
π,

so that x0 ∈ Ωπ . Next, define the map fπ : Ωπ → Rn by

fπ(x) = x− 1

2η
([x]Ax− π) .

We aim to show that Ωπ is invariant under the map fπ , i.e.,
fπ(Ωπ) ⊆ Ωπ . Consider a point x ∈ Ωπ . We have

πi
η
≤ xi ≤

√
πi, for all i ∈ {1, . . . , n}.

Therefore, for every i ∈ {1, . . . , n}, we compute

(fπ(x))i = xi −
1

2η
(([x]Ax)i − πi)

= xi −
1

2η
x2i −

1

2η

(
n∑

j=1,i6=j

aijxj

)
+

1

2η
πi

≤ xi −
1

2η
x2i +

1

2η
πi.

Note that, for every i ∈ {1, . . . , n}, we have xi ≤
√
πi < η.

This implies that the maximum of the function xi − 1
2ηx

2
i is√

πi − 1
2ηπi. Hence, we have

(fπ(x))i ≤ xi−
1

2η
x2i +

1

2η
πi ≤

√
πi−

1

2η
πi+

1

2η
πi =

√
πi.

On the other hand, for every i ∈ {1, . . . , n}, we have
n∑
i=1

aijxj ≤
n∑
i=1

aij
√
πj ≤ η

Therefore, for every i ∈ {1, . . . , n}, we have

(fπ(x))i = xi −
1

2η
([x]Ax)i +

1

2η
πi

= xi

1− 1

2η

n∑
j=1

aijxj

+
1

2η
πi

≥ πi
η

(
1− η

2η

)
+

1

2η
πi ≥

πi
η
.
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This shows that fπ(x) ∈ Ωπ and therefore Ωπ is an invariant
set for the map fπ . Next, we show that the map fπ is a
contraction mapping on Ωπ . The derivative of fπ satisfies

∂fπ
∂x

(x) = In −
1

2η
([x]A+ [Ax]) , for all x ∈ Ωπ.

Also, we have∥∥∥∂fπ
∂x

(x)
∥∥∥
1

=

∥∥∥∥In − 1

2η
([x]A+ [Ax])

∥∥∥∥
1

= max
i


∣∣∣∣∣∣1− aiixi

2η
−

n∑
j=1

aijxj
2η

∣∣∣∣∣∣+

∣∣∣∣∣∣
n∑

j=1,j 6=i

aijxj
2η

∣∣∣∣∣∣
 .

Since x ∈ Ωπ implies x ≤
√
π, we deduce that, for every i ∈

{1, . . . , n}, we have aiixi +
∑n
j=1 aijxj ≤ 2η. This implies

that, for every i ∈ {1, 2, . . . , n}, we have∣∣∣∣∣∣1− aiixi
2η
−

n∑
j=1

aijxj
2η

∣∣∣∣∣∣ = 1− aiixi
2η
−

n∑
j=1

aijxj
2η

.

Thus, for every i ∈ {1, 2, . . . , n}, we get∣∣∣∣∣∣1− aiixi
2η
−

n∑
j=1

aijxj
2η

∣∣∣∣∣∣+

∣∣∣∣∣∣
n∑

j=1,j 6=i

aijxj
2η

∣∣∣∣∣∣ = 1− aiixi
η

.

Therefore, we obtain∥∥∥∂fπ
∂x

(x)
∥∥∥
1

= max
i

{∣∣∣∣1− aiixi
η

∣∣∣∣} < 1.

Now, using Lemma 1, the map fπ has a unique fixed point in
the domain Ωπ and, for x0 = π√

ξ
∈ Ωπ , the sequence defined

by the linear iteration (8) converges to this unique fixed-point.
The proof of the theorem is complete if one notes that x∗ is
the unique fixed point of fπ if and only if x∗ is the unique
solution to the algebraic equation (7).

Remark 2 (Solution to the maxentropic vector map on the
complete graph). If A = 1n1>n , then we have η = 1 and the
initial condition x0 = π√

η = π in statement (ii) is the fixed-
point of the linear iteration (8) and the unique solution to the
algebraic equation (7). �

Remark 3 (Newton-Raphson iteration). The Newton-Raphson
iteration for the nonlinear equation φA(x) = π is

xk+1 = xk − ([xk]A+ [Axk])−1([xk]Axk − π). (9)

In simulations, this iteration appears to always converge for a
wide variety of graphs, from random initial conditions, and for
arbitrary choices of π ∈ interior(∆n) — even if we are unable
to provide a convergence proof. We postpone to Section IV-C
a runtime comparison between the linear iteration (8) and this
Newton-Raphson iteration (9). �

IV. MAXENTROPIC MARKOV CHAINS WITH PRESCRIBED
STATIONARY DISTRIBUTIONS

In this section, we define the optimization problem whose
solution we characterize. We then prove uniqueness and exis-
tence of the solution before we introduce the main result of the
paper which is a closed-form expression for the maxentropic
Markov chain at given stationary distribution, following which
we perform computational comparisons with standard convex
program solvers and provide proofs for the main result.

A. Problem statement

Recall that the solution to Problem 1, i.e., the maximum
entropy problem subject to purely graph constraints, is the
Markov chain given by equation (3) in Theorem 1. In what
follows, we introduce a new optimization problem by impos-
ing additional stationary distribution constraints on Problem 1.
Before we state the problem definition, we remind the reader
that given π ∈ interior(∆n) and given a Markov chain with
an irreducible transition matrix P ∈ Rn×n (i.e., an irreducible
row-stochastic matrix), the entropy rate of the Markov chain
P at fixed π is given by

Hπ(P ) = −
n∑

i,j=1

πipij log pij . (10)

Problem 2 (Maximizing entropy rate with a stationary dis-
tribution constraint). Given a symmetric, irreducible, binary
matrix A ∈ {0, 1}n×n with unit diagonal entries and given
a positive vector π ∈ interior(∆n), compute the transition
matrix P ∈ Rn×n satisfying

max Hπ(P ) (11)
subj. to P ≥ 0, (12)

pij = 0, if aij = 0, (13)
P1n = 1n, (14)

π>P = π>. (15)

Remark 4. Problem 2 is a disciplined convex program and
hence the numerical solution of this program can be computed
in CVX [12]. �

Remark 5 (Problem 2 is ill-posed without self-loops). For
given graph topologies without self-loops and for many cor-
responding instances of stationary distributions, CVX returns
that Problem 2 is infeasible. For all such cases, we find that
the linear iteration in equation (8) diverges (recall Remark 1).
For example, consider once again the adjacency matrix

A =

[
0 1
1 1

]
.

CVX returns that the program is infeasible for any stationary
distribution constraint (15), [π1 π2]>P = [π1 π2]>, in which
π1 > π2. Additionally, for this setting the linear iteration (8)
diverges.

Indeed, the graph topology embodied by A dictates that,
whenever the surveillance agent visits node 1, then the agent
visits node 2 in the subsequent timestep. Hence, the visit
frequency at node 2 is necessarily greater than or equal to
the visit frequency at node 1. �
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Several such preliminary results indicate that imposing
graph constraints can restrict the set of stationary distribution
achieved by Markov chains and inspired the conjecture in
Section VI. We do not pursue this potentially interesting
direction of research in this paper as within the framework of
designing surveillance strategies, self-loops can be naturally
incorporated. Hence, we proceed under the assumption that
all nodes have self-loops.

Remark 6. In the absence of self-loops in G, the set of
irreducible Markov chains over G with prescribed stationary
distribution might be empty; see [15] and the conjecture in
Section VI for additional context.

Before we introduce the main result, we prove that the op-
timizer is irreducible. The optimizer being irreducible ensures
existence of the solution to Problem 2 as only irreducible
stochastic matrices have well-defined stationary distributions.
In addition, we also prove that the optimizer assigns a positive
transition probability to every edge in the graph, which is a
property that shall be utilized in the proof of the main result.

Theorem 5 (Maxentropic Markov chains are well defined).
Given a symmetric, irreducible, binary matrix A ∈ {0, 1}n×n
with unit diagonal entries and given a positive vector π ∈
interior(∆n), Problem 2 satisfies the following properties:

(i) the cost function is strictly concave and the constraint
set is compact and convex. Hence, its global maximum
solution P ∗ exists and is unique;

(ii) the optimizer P ∗ satisfies p∗ij > 0 whenever {i, j}
is an edge of the graph G associated to A. Hence,
P ∗ is irreducible and has a well-defined stationary
distribution that must be equal to π.

Because of statement (ii), we refer to P ∗ as the maxentropic
Markov chain over G with stationary distribution π.

Note that, for a symmetric, irreducible A ∈ {0, 1}n×n with
unit diagonal entries, the graph associated to A is undirected,
unweighted, and connected and has self-loops at each node.

Proof of Theorem 5. Regarding statement (i), the function
−p log(p) is strictly concave with a strictly positive second-
derivative for p > 0. The entropy rate is a linear combination
of strictly concave functions and hence H(P ) is strictly
concave.

Regarding statement (ii), we first show, using a contradic-
tion, that the diagonal entries of P ∗ can not be zero. Assume
that exactly one of the diagonal elements of P ∗ is zero, i.e.,
there exists a single k ∈ {1, . . . , n} such that p∗kk = 0. We
try to find a contradiction. For every 0 < ε < 1

2 , define the
matrix-valued function P̃ ∗(ε) = (1 − ε)P ∗ + εIn. Note that,
for every ε ∈ (0, 12 ), we have P̃ ∗(ε) ≥ 0. Also, for every
ε ∈ (0, 12 ), we have p̃∗ij ≥ 0 if {i, j} is an edge of G and
p̃∗ij = 0 otherwise. One can check that P̃ ∗(ε)1n = 1n and
π>P̃ ∗(ε) = π>. These facts imply that, for every ε ∈ (0, 12 ),
the matrix P̃ ∗(ε) is in the feasible set of Problem 2. By the
Mean Value Theorem [24, Theorem 5.10], for every ε ∈ (0, 12 ),
there exists cε ∈ (0, ε) such that

Hπ(P̃ ∗(ε))−Hπ(P ∗) =
∂Hπ(P̃ ∗)

∂ε

∣∣∣∣
cε

ε.

Note that, for i, j ∈ {1, . . . , n}, we have

∂Hπ(P̃ ∗)

∂p̃∗ij
= πi(log((1− ε)p∗ij) + 1), ∀i 6= j,

∂Hπ(P̃ ∗)

∂p̃∗ii
= πi(log((1− ε)p∗ii + ε) + 1).

Using the chain rule, we compute

∂Hπ(P̃ ∗)

∂ε
=

n∑
i=1

n∑
j=1

∂Hπ(P̃ ∗)

∂p̃∗ij

∂p̃∗ij
∂ε

=

n∑
i=1

∂Hπ(P̃ ∗)

∂p̃∗ii

∂p̃∗ii
∂ε

+

n∑
i=1

n∑
j=1,j 6=i

∂Hπ(P̃ ∗)

∂p̃∗ij

∂p̃∗ij
∂ε

= −
n∑
i=1

πi(log((1− ε)p∗ii + ε) + 1)(1− p∗ii)

+

n∑
i=1

n∑
j=1,j 6=i

πi(log((1− ε)p∗ij) + 1)(p∗ij)

Using the fact that p∗kk = 0, we get

∂Hπ(P̃ ∗)

∂ε
= −πk(log(ε) + 1)

−
n∑

i=1,i6=k

πi(log ((1− ε)p∗ii + ε) + 1)(1− p∗ii)

+

n∑
i=1

n∑
j=1,j 6=i

πi(log((1− ε)p∗ij) + 1)(p∗ij).

Hence we obtain

1

ε

(
Hπ(P̃ ∗(ε))−Hπ(P ∗)

)
= −πk(log(cε) + 1)

−
n∑

i=1,i6=k

πi
(

log ((1− cε)p∗ii + cε) + 1
)
(1− p∗ii)

+

n∑
i=1

n∑
j=1,j 6=i

πi(log((1− cε)p∗ij) + 1)p∗ij .

Since cε ∈ (0, 12 ) and p∗ii 6= 0, for every i 6= k, the
term

∑
k 6=i πi(log((1− cε)p∗ii + 1) + 1)(1− p∗ii) is bounded.

Similarly, since for every i 6= j, p∗ij 6= 0, the term∑∑
i 6=j πi(log((1 − cε)p

∗
ij) + 1)p∗ij is bounded. Thus, by

choosing ε small enough, one can make cε small enough and,
therefore, the term −πk(log(cε)+1) large enough. Thus, there
exists ε∗ ∈ (0, 12 ) such that

Hπ(P̃ ∗(ε))−Hπ(P ∗) > 0, for all ε ∈ (0, ε∗].

This is a contradiction, since we assumed that P ∗ is the
solution to Problem 2. It is straightforward to generalize this
argument to the case when we have more zeros on the diagonal
of P ∗ Therefore, all the diagonal entries of P ∗ are strictly
positive.

Next, assuming that all diagonal elements of P ∗ are positive,
we show that, for every i, j with i 6= j, if aij > 0, then
p∗ij > 0. Assume that there exists exactly one pair (k, l) such
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that akl > 0 but p∗kl = 0. We try to find a contradiction. Define
the matrix Γ ∈ Rn×n with all zero entries except for:

Γkk = −1, Γkl = 1, Γlk =
πk
πl
, and Γll = −πk

πl
.

Define η = min{ 1
1+p∗kk

, πl
πlp∗ll+πk

}. For every ε ∈ [0, η), we

define the matrix function P̃ ∗(ε) = (1− ε)P ∗ + εΓ. One can
show that, for every ε ∈ (0, η), we have P̃ ∗(ε) ≥ 0. Moreover,
for every ε ∈ (0, η), we have p̃∗ij ≥ 0 if {i, j} is an edge of G
and p̃∗ij = 0 otherwise. One can check that P̃ ∗(ε)1n = 1n and
π>P̃ ∗(ε) = π>. This implies that, for every ε ∈ (0, η), the
matrix P̃ ∗(ε) is in the feasible set of Problem 2. By the Mean
Value Theorem [24, Theorem 5.10], for every ε ∈ (0, η), there
exists cε ∈ (0, ε) such that

Hπ(P̃ ∗(ε))−Hπ(P ∗) =
∂Hπ(P̃ ∗)

∂ε

∣∣∣∣
cε

ε.

Using the chain rule, we compute

1

ε

(
Hπ(P̃ ∗(ε))−Hπ(P ∗)

)
=

n∑
i=1

n∑
j=1

∂Hπ(P̃ ∗)

∂p̃∗ij

∂p̃∗ij
∂ε

∣∣∣∣
cε

= −πk(log(cε)+1)+πk(log((1−cε)p∗kk−cε) + 1)(1+p∗kk)

− πl(log((1− cε)p∗lk +
πk
πl
cε) + 1)

(
πk
πl
− p∗lk

)
+ πl(log((1− cε)p∗ll −

πk
πl
cε) + 1)

(
p∗ll +

πk
πl

)
+
∑

i6∈{k,l}

∑
j 6∈{k,l}

πi(log((1− cε)p∗ij) + 1)p∗ij . (16)

Note p∗ij = 0 if and only if (i, j) = (k, l). Since cε ∈ (0, η),
by choosing ε small enough, one can make −πk(log(cε) + 1)
large enough while the remaining terms in the right hand side
of (16) are bounded. Therefore, there exists ε∗ ∈ (0, η) such
that

Hπ(P̃ ∗(ε))−Hπ(P ∗) > 0, for all ε ∈ (0, ε∗].

This contradicts the fact that P ∗ is the solution to Problem 2.
The generalization of this argument to the case where we have
more zeros in P ∗ is straightforward. Hence, p∗ij = 0 if and
only if {i, j} is not an edge of the graph G.

B. Main result

Having motivated the problem of finding the maximum en-
tropy Markov chain subject to graph and stationary distribution
constraints and having obtained some preliminary results, we
finally present the solution to Problem 2.

Theorem 6 (Maxentropic Markov chains with prescribed
stationary distribution). Consider a symmetric, irreducible,
binary matrix A ∈ {0, 1}n×n with unit diagonal entries and a
positive vector π ∈ interior(∆n). Let x = φ−1A (π) denote the
solution to [x]Ax = π (whose existence, uniqueness, positivity,
and computation algorithm are given in Theorems 3 and 4).

Then the maxentropic Markov chain over G with stationary
distribution π is

P ∗ = ΦA(φ−1A (π)) = [Ax]−1A[x]. (17)

Moreover, P ∗ is reversible and its entropy rate is

H(P ∗) = −2x>A[x] log(x) + π> log(π). (18)

We postpone the proof of this theorem to Section IV-D.

Remark 7. Theorem 6 implies the following result: if G
has self-loops at each node, then, for all π ∈ interior(∆n),
there exists at least one Markov chain over G with stationary
distribution π. �

We provide a corollary describing notable choices of the
maxentropic vector in Theorem 6.

Corollary 1 (Remarkable special cases). Given a symmetric,
irreducible, binary matrix A ∈ {0, 1}n×n with unit diagonal
entries, let d = A1n and D = [A1n] denote its degree vector
and matrix, and let v and λ denote its dominant eigenvector
and eigenvalue. Then

(i) the maxentropic Markov chain with stationary distribu-
tion (1>n d)−1d is

P ∗ = ΦA(1n) = [A1n]−1A,

with entropy rate

H(P ∗) = (1>n d)−1d> log(d);

(This is the so-called equal neighbor random walk.)
(ii) the maxentropic Markov chain with stationary distribu-

tion v ◦ v/‖v ◦ v‖1 is

P ∗ = ΦA(v) =
1

λ
[v]−1A[v],

with entropy rate

H(P ∗) = log λ;

(This is the maxentropic Markov chain characterized in
Theorem 1 as the solution to Problem 1.)

(iii) if A = 1n1>n and π is arbitrary, then the maxentropic
Markov chain over the complete graph with stationary
distribution π is

P ∗ = ΦA(π) = 1nπ
>,

with entropy rate

H(P ∗) = −π> log(π).

(The maxentropic vector for the complete graph is shown
to be π in Theorem 4.)

Finally, we present an interesting property associated with
maxentropic Markov chains with prescribed stationary distri-
bution, that is an extension of Theorem 1(ii).

Lemma 2 (All allowed permutations of a walk are equiprob-
able). Under the same assumptions as in Theorem 6, con-
sider a start node i and a final node j on the graph G
for which there exists a path i, l1, l2, . . . , lk, j and a path
i, σ(l1), σ(l2), . . . , σ(lk), j for a permutation σ. The following
equiprobable path traversal property holds for maxentropic
Markov chains:

P[i→ l1 → l2 → . . .→ lk → j]

= P[i→ σ(l1)→ σ(l2)→ . . .→ σ(lk)→ j].

We postpone the proof of this lemma to Section IV-D.
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C. Computational complexity

In this subsection we show how our proposed procedure
to compute maxentropic chains with prescribed stationary
distributions is useful not only to reveal their structure and
properties but also serves as a valuable method in terms of
reducing computational complexity. In short our claim is that:

To compute maxentropic Markov chains (as in Prob-
lem 2), the linear iteration (8) and equality (17) (as
stated in Theorem 6) are in general computationally
faster than general-purpose convex program solvers.

We establish this claim in two ways. First, we consider a
variety of graphs, we fix a given tolerance, and we observe
empirically that that our proposed method has significantly
smaller runtimes than the standard CVX solver, see Table I.

Graph Linear iteration (8)
& equality (17)

Newton-Raphson
iteration (9)

CVX

Line 0.02s 0.01s 44.24s
Star 0.23s 0.01s 54.97s
Ring 0.02s 0.01s 37.53s
Lattice 0.01s 0.02s 40.42s
Complete∗ 0.01s 0.03s 575.58s

TABLE I: Average runtimes of various methods over 100 runs on
standard graph topologies with 100 nodes to compute maxentropic
Markov chains with a randomly chosen stationary distribution for
each run. Tolerance is fixed as 10−8 in all cases. Computations were
performed on a 2.9GHz processor using MATLAB.
∗We delete one edge from the complete graph as the iteration in Theorem 4

starts with the solution to the complete graph.

Second, we analyze the computational complexity of the
competing algorithms in their two parts: the cost per iteration,
and the number of iterations required to get to within a specific
tolerance of the optimal solution. In what follows we analyze
each algorithm and report the results in Table II.

Method Cost per iteration No. of iterations
Linear iteration (8) & equality (17) O(n)−O(n2) O(1)-O(n)
Newton-Raphson iteration (9) O(n3) O(1)∗

CVX O(n3)-O(n6) O(
√
n)

TABLE II: Computational complexity of various method to compute
maxentropic Markov chains with given stationary distribution.
∗ We can prove this bound for sparse graphs and in simulations the bound

holds for complete graphs.

For the linear iteration (8) in Theorem 4, each iteration
consists of only matrix multiplications with the adjacency
matrix or a diagonal matrix, whose cost per iteration is O(n)
when the adjacency matrix A is sparse and O(n2) when A
is dense. Also, a careful study of the Banach Fixed Point
Theorem and the estimates in Theorem 4 shows that the
number of iterations for a fixed tolerance depends on the
maximum degree of nodes in the graph. In particular, it can be
shown that for sparse graphs such as ring graphs and lattice
graph, where the maximum degree does not change with the
size of the graph, the number of iterations is O(1). However,
for star graphs and dense graphs such as the complete graph,
the number of iterations is of order O(n). In short, the effective
worst case complexity across graph topologies for a fixed
tolerance is O(n3).

For the Newton–Raphson iteration (9), the factorization of
the Jacobian at each step leads to O(n3) number of operations
for each iteration. It can be shown that the number of iterations
necessary to obtain a solution within a fixed tolerance is O(1)
for sparse graphs. In simulations it is observed that the number
of iterations is only weakly dependent on the problem size
even for dense graphs and is essentially a constant. We are
unable to provide an effective worst-case analysis for the
number of iterations necessary when the topology is dense,
but across different graph topologies it appears safe to assume
that the worst case complexity for fixed tolerance is O(n3).

In general using a convex program solver would be compu-
tationally more expensive as the search space for the convex
program is Rm≥0, where m = n2− (2n− 1)−ne, where ne is
the number of edge constraints. Note that the stationary and
stochastic constraints in equations (14) and (15) effectively
sum up to 2n − 1 constraints (it can be shown that one
of the constraints is redundant). When the graph is sparse
m = O(n), otherwise m = O(n2). Interior point methods
used by convex program solvers would need to compute the
factorization of an O(m) × O(m) matrix at every iterations
resulting in a runtime complexity for each iteration of O(n3)
for sparse graphs and O(n6) when the graph is dense (see
refs. [19], [27]). The worst-case dependence on problem size
is O(

√
n) [28]. Even assuming a constant dependence on

problem size as is observed in practice in most semidefinite
program interior point solvers, the effective worst-case runtime
complexity for fixed tolerance is O(n3) for sparse graphs
and O(n6) for dense graphs. Also, note that CVX uses a
successive approximation scheme to approximate exponential
and logarithmic functions [12, Section 11.3]. While this does
not affect the computational complexity of the procedure, there
are no theoretical guarantees for convergence to the optimal
solution for such an approximation.

Although this article presents numerical comparisons only
with general purpose convex program solvers, we note that
convex programs with linear constraints can be solved effi-
ciently using first-order methods such as mirror descent [6].
Such methods have the same worst-case computational com-
plexity as our proposed linear iteration (8). We expect our
linear iteration to have lower constant factors than first-
order methods for dense graphs for the following reason: as
our linear iteration operates on an n-dimensional manifold
whereas any first-order convex programming method operates
on the space of transition probabilities which is O(n2) for the
case of dense graphs.

D. Proofs

Consider a Markov chain with transition matrix P on a
graph G with binary adjacency matrix A. Let the random
variable Yt denote the observed transition on the graph G
at time t which can assume values on {1, . . . ,m}, where
m =

∑
i

∑
j aij is the total number of edges in the graph. If

P is an irreducible Markov chain with stationary distribution
π, then for very large times t the probability that a transition
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from node i to node j occurs is given by

lim
t→∞

P[Yt = {i, j}] = lim
t→∞

(P[Xt+1 = j |Xt = i]P[Xt = i]])

= P[Xt+1 = j |Xt = i] lim
t→∞

P[Xt = i]

= πipij .
(19)

This calculation motivates the following definition.

Definition 1. For an irreducible transition matrix P with
stationary distribution π, define the ergodic flow matrix by

Q = [π]P. (20)

Remark 8. The ergodic flow matrix Q is symmetric if and
only if the associated Markov chain P is reversible. �

Let qij denote the entries of Q. Note that qij is the
probability associated with observing a transition along an
edge (i, j) at very large times t according to the calculation
in equation (19) and the sum of this probability over all edges
is 1. The entropy associated with this random variable is

H(Q) = −
n∑

i,j=1

qij log(qij). (21)

Lemma 3 (Relation between entropy rate and entropy of
ergodic flow matrix). For an irreducible transition matrix P
with stationary distribution π,

Hπ(P ) = H(Q)−H(π), (22)

where H(π) =
∑n
i πi log(πi).

Proof. The entropy rate of an irreducible Markov chain P with
a stationary distribution π is given by

Hπ(P ) = −
∑
i,j=1

πipij log pij

= −
n∑

i,j=1

πipij(log(πipij)− log(πi))

= −
n∑

i,j=1

qij log(qij) +

n∑
i

πi log(πi)

= H(Q)−H(π).

Consider the convex program which maximizes the entropy
of the random variable associated with the ergodic flow matrix.

Problem 3 (Maximize entropy of ergodic flow with a sta-
tionary distribution constraint). Given a connected undirected
unweighted graph G and a positive vector π ∈ interior(∆n),
compute the ergodic flow matrix Q ∈ Rn×n satisfying

max H(Q) (23)
subj. to Q ≥ 0, (24)

qij = 0, if {i, j} is not an edge of G, (25)
Q1n = π, (26)

Q>1n = π. (27)

Note that the matrix Q is well-defined only when its
associated transition matrix has a stationary distribution π.
Hence an optimization algorithm might encounter instances
where qij = 0 when aij = 1 and hence its associated transition
matrix is possibly reducible. In such a case the matrix Q might
not have the correct interpretation as the ergodic flow matrix
associated with its transition matrix P . However, as a result
of Theorem 5 we are guaranteed that the optimal solution Q∗

will have the appropriate interpretation as the ergodic flow
matrix associated with its transition matrix P ∗. Further, since
the ergodic flow matrix and its associated transition matrix are
closely related we have the following result.

Lemma 4 (Equivalence of Problem 2 and Problem 3). Given a
stationary distribution π, Problem 2 is equivalent to Problem 3
in the following sense:

(i) if p∗ij is the optimal solution to Problem 2, then q∗ij =
πip
∗
ij is the optimal solution to Problem 3, and

(ii) if q∗ij is the optimal solution to Problem 3, then p∗ij =
q∗ij/πi is the optimal solution to Problem 2.

Proof. First, we shall show that the constraints (12)-(15) in
Problem 2 are equivalent to constraints (24)-(27) in Problem 3.
Note that equation (20) and the fact that π ∈ interior(∆n)
implies that Q has the same zero/positive pattern as P . Hence
constraints (12), (13) are equivalent to constraints (24), (25)
respectively. Note that

P1n = 1n =⇒ [π]P1n = [π]1n =⇒ Q1n = π.

Hence constraint (14) is equivalent to constraint (26). Also
constraint (15) is equivalent to

P>π = P>π =⇒ P>[π]1n = π =⇒ Q>1n = π.

Hence constraint (15) is equivalent to constraint (27). This
completes the proof of equivalency of constraints.

Second, we shall show that the maximization of the objec-
tive function in Problem 2 is equivalent to the maximization
of the objective function in Problem 2 subject to the same
constraints. For a given stationary distribution π, as a result
of Lemma 3 Hπ(P ) and H(Q) differ by a constant quantity
H(π). Hence the maximization of the objective functions in
the two problems are equivalent. Given an optimal solution
P ∗ to Problem 2 one can construct an ergodic flow matrix Q∗

using equation (20) and vice-versa. Thus (i) and (ii) hold.

Problem 4 (Relaxed convex program to maximize entropy
of ergodic flow). Given a connected undirected unweighted
graph G and a positive vector π ∈ interior(∆n), compute Q
such that

max H(Q) (28)
subj. to Q ≥ 0, (29)

qij = 0, if {i, j} is not an edge of G, (30)

Q1n +Q>1n = 2π. (31)

One can show that when the graph G has self-loops at each
node, the optimal values of Problem 3 and Problem 4 are the
same.
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Theorem 7 (Equality of solutions to Problem 3 and Prob-
lem 4). Let G be a connected undirected graph with self-loop
at each node, A be the binary adjacency matrix associated
to G, and π ∈ interior(∆n) be a positive vector. Denote the
optimal value of Problem 4 by Q∗r and the optimal value of
Problem 3 by Q∗. Then the following statements hold:

(i) Q∗r = Q∗,
(ii) there exists a vector x ∈ Rn>0 such that Q∗ = [x]A[x].

Proof. Note that graph and stationary constraints are identi-
cal in both problem formulations. Further constraint (31) in
Problem 4 is obtained by adding (26) and (27). Therefore,
the feasible set of Problem 4 is larger than the feasible set of
Problem 3 and thus we have H(Q∗) ≤ H(Q∗r).

Using similar arguments to the proof of Theorem 5, one can
show that if Q∗r = [q∗ij ] is the solution for Problem 4, then we
have q∗ij > 0 if and only if aij = 1. This implies that Q∗r is the
critical point of the Lagrange dual function L : R|E|×Rn → R
defined by

L(Q,λ) = −
∑
{i,j}∈E

qij log qij−
n∑
i=1

∑
{i,j}∈E

λi(qij+qji−2πi),

where E is the edge set of the graph G. Setting the partial
derivatives of L to zero, for every {i, j} ∈ E , we obtain

∂L
∂qij

= 1 + log qij − λi − λj .

Introducing new Lagrange multipliers λ̃i = λi + 1/2, the
solution Q∗r = [q∗ij ] satisfies q∗ij = aij exp−λ̃i exp−λ̃j .

Let xi = exp−λ̃i then q∗ij = aijxixj or in matrix notation
Q∗r = [x]A[x]. Substituting this solution into the constraints
in Problem 4 and using the fact that aij = aji,∑

j

aijxixj +
∑
j

ajixjxi = 2πi

=⇒ xi
∑
j

aijxj = πi

=⇒ [x]Ax = π.

Note that A is symmetric, binary matrix with unit diagonal
entries. Thus, by Theorem 3, there exists a unique x∗ ∈ Rn>0

such that [x∗]Ax∗ = π. Therefore the global maximum of the
concave function H is given by

Q∗r = [x∗]A[x∗]. (32)

One can verify that the solution Q∗r also satisfies con-
straints (26) and (27) in Problem 3. This, together with the fact
that the feasible set of Problem 4 is larger than the feasible
set of the Problem 3, implies that Q∗r = Q∗. This completes
the proof of the part (i). Part (ii) of the theorem follows from
part (i) and equation 32.

Now we have the requisite results to prove Theorem 6.

Proof of Theorem 6. Using Lemma 4 and Theorem 7, the so-
lution P ∗ = [p∗ij ] to Problem 2 is given by p∗ij = (Ax)−1i aijxj
or in matrix notation as P ∗ = [Ax]−1A[x] = ΦA(x). Also as
a result of (iv) in Theorem 5 P ∗ is reversible.

The entropy of the ergodic flow matrix Q∗ is given by

H(Q∗) = −
n∑

i,j=1

q∗ij log q∗ij

= −
n∑

i,j=1

aijxixj(log xi + log xj)

= −2

n∑
i

xi

n∑
j

aijxj log(xj) = −2x>A([x] log(x)).

The entropy rate of P ∗ is given by Hπ(P ∗) = H(Q∗)−H(π).
The quantity H(π) = −π> log π in vector notation and hence
the result in equation (18).

Proof of Lemma 2. Note that from equations (20) and (32) we
can write the probability of transition from s to t as

pst =
astxsxt
πs

.

For the sake of brevity let σm = σ(lm) for every 1 ≤ m ≤ k.
Consider the probability of any valid permutation of the path
i, l1, l2, . . . , lk, j being traversed. This is given by

piσ1
pσ1σ2

. . . pσkj = aiσ1
aσ1σ2

. . . aσkj
xixσ1

xσ1
xσ2

. . . xσkxj
πiπσ1

πσ2
. . . πσk

=
xixj
πi

x2σ1
x2σ2

. . . x2σk
πσ1

πσ2
. . . πσk

= pijpσ1σ1
pσ2σ2

. . . pσkσk .

The quantity pσ1σ1
pσ2σ2

. . . pσkσk is invariant to permuta-
tions of the sequence {lm}1≤m≤k. Hence all such paths are
equiprobable.

V. APPLICATION TO ROBOTIC SURVEILLANCE

In this section, we apply maxentropic chains with non-
uniform stationary distributions to the design of robotic
surveillance strategies over graphs.

A. Setup

We consider scenarios in which (i) surveillance agents
move on a roadmap (i.e., an undirected graph) according to
a discrete-time random walk, (ii) intruders appear at random
locations on the roadmap at random times, (iii) intruders can
observe the local presence/absence of the surveillance agent(s)
and decide when to attack and (iv) the intruder attack is
detected precisely when a surveillance agent and the intruder
are at the same location during the intruder attack. We consider
the following settings: a single agent on a ring, a single agent
on a lattice (see Fig. 1), and multiple agents on a partitioned
map of a realistic environment (see Fig. 2).

B. Intruder models

Given a probability vector π ∈ ∆n, we consider the
following intruders models.

(i) The Random Intruder: The random intruder has no
knowledge of the position of the surveillance agent(s).
Such an intruder selects a node i with probability πi. The
attack takes an arbitrary duration which is quantified by
the number of transitions performed by the agent(s).
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Fig. 1: Comparison of maxentropic Markov chain strategy with min-
imum hitting time strategy. The worst hitting time for the minimum
hitting time Markov chain is denoted by max

i,j
hij .

(ii) The Intelligent Intruder: The intelligent intruder selects
a node i with probability πi, waits for a/the surveillance
agent to arrive at the node, and commences an attack
lasting for an arbitrary duration in the timestep immedi-
ately following the visit of the surveillance agent. The
attack duration is quantified by the number of transitions
performed by the agent(s). (Intelligent intruders have
been previously studied for example by [25], [4].)

We visualize and design the probability vector π as follows.
In Fig. 1 the size of the nodes depicts the importance of the
node and hence the desired visit frequency. For the ring graph,
the north, east, west and south nodes have been assigned
twice the priority of the remaining nodes. For the lattice
graph, the central node has twice the priority of the peripheral
nodes. In Fig. 2, which depicts the multi-agent case, we pre-
partition the graph for four agents and specify visit frequencies
such that all nodes have the same priority. Equal priority
with overlapping subgraphs is achieved by specifying a non-
uniform visit frequency for each agent on their individual
subgraphs. We do this by splitting the visit frequency load
equally between the agents for shared nodes.

C. Surveillance strategies

First, we assume that the intruders and surveillance agents
assign the same level of priority to nodes in the graph. In other
words, visit frequencies by surveillance agents are biased in
a manner so as to be proportional to intruder attacks. Second,
we consider two policies for the surveillance agent:

(i) The maxentropic agent: The surveillance agent adopts a
policy which is the maxentropic Markov chain with visit
frequencies proportional to the importance of the node,
i.e., the solution described in Theorem 6.

(ii) The minimum hitting time agent: Let {hij(P )}ij denote
the matrix of mean hitting times for the Markov chain
modeled by the transition matrix P . Consider the fol-
lowing optimization program.
Problem 5 (Nonlinear program to minimize mean hit-
ting time). Given a connected undirected unweighted
graph G and a positive vector π ∈ interior(∆n),
compute P such that

min
∑
i

∑
j

πiπjhij(P )

subj. to P ≥ 0,

pij = 0, if aij = 0,

P1n = 1n,

π>P = π>.

The solution to this nonlinear program is the Markov
chain adopted by the minimum hitting time agent. The
numerical optimization is conducted using a sequential
quadratic programming solver as implemented by the
KNITRO/TOMLAB package; for the graph sizes of
interest here, this package reliably computes the global
minimum solutions. This nonlinear program is identical
to the formulation in [22, Problem 1] for a single agent.

For the multi-agent case, each agent performs either the
maxentropic Markov chain strategy or the minimum hitting
time strategy on their respective subgraphs. There is no actual
coordination among the agents (except the joint specification
of individual visit frequencies).

D. Simulation Results

Results for Random Intruders. For the random intruder, for
all choices of visit frequencies on a variety of graph topologies,
we find that the minimum hitting time agent outperforms
the maxentropic agent for all attack durations. The minimum
hitting time Markov chain results in faster travel times through
the graph. In the absence of knowledge of attack durations,
simulations indicate that a strategy with emphasis on fast
travel times (small hitting times) performs better than one
with emphasis on unpredictability such as the maxentropic
chain. Maxentropic Markov chains by their reversible nature
have mixing times of O(D2) where D is the diameter of the
graph [13]. For reversible Markov chains bounds exist on the
mixing time and the mean hitting time showing that these
notions are equivalent [3]. Thus the maxentropic agent has
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mean hitting time O(D2) whereas it is likely that minimum
hitting time agent achieves hitting times of O(D) in all cases,
though such a result remains to be proved.

Results for Intelligent Intruders. For the intelligent intruder
with relatively short attack durations, we note that the maxen-
tropic strategy outperform the minimum hitting time strategy.
It stands to reason that, for attack durations larger than the
worst hitting time of the chain, the capture of the intelligent
intruder is very probable for the minimum hitting time strategy
(capture is certain for cases on the ring with uniform stationary
distribution where the minimum hitting time strategy is a
clockwise or a counterclockwise traversal). In simulations, it
is observed that for attack durations which are larger than the
worst hitting times of the minimum hitting time chain, the
minimum hitting time strategy performs better (see Fig. 1).
Analysis of the hitting times of the maxentropic chain might
reveal an exact condition of the regime of attack durations
wherein each strategy leads to higher capture rates.

We summarize these results in Table III. In short, these re-
sults indicate that introducing unpredictability into surveillance
strategies is appropriate in the important and realistic setting
where (i) the intruder uses knowledge of the agents’ locations
to plan its attacks (e.g., attacking as soon as an agent leaves),
and (ii) attack have sufficiently short duration so that they are
not detectable by simple fast surveillance agents.

Random Intruder Intelligent Intruder
Maxentropic Agent Low capture rate High capture rate when

attack duration is low
Min. Hitting Agent High capture rate High capture rate when

attack duration is high

TABLE III: Qualitative summary of results for intruder and agent
models.

VI. CONCLUSION

In this article we considered the optimization problem of
maximizing the entropy rate of a Markov chain with prescribed
stationary distribution. We showed this problem is strictly
convex with a unique global optimizer. We provided a fast

iterative algorithm with rigorous convergence guarantees to
compute the so-called entropic vector; as a function of this
entropic vector, we provide a closed-form formula for the
maximum entropy Markov chain with prescribed stationary
distribution. We then characterized several properties of max-
entropic chains. The interest for Markov chains with maximum
entropy and prescribed stationary distributions arises naturally
in robotic surveillance; accordingly we showed some realiza-
tions of optimal chains for prototypical robotic roadmaps.

Numerous future research directions remain open. First,
it is potentially important to extend our analysis to more
general graph settings, including graphs without a complete set
of self-loops and directed graphs with asymmetric adjacency
matrices. For graphs without a complete set of self-loops, we
present a mathematical conjecture inspired by our results on
the maxentropic matrix and vector maps.
Conjecture Given a connected graph G with binary adjacency
matrix A, the set of stationary distributions for all irreducible
Markov chains over G is {[x]Ax/‖[x]Ax‖1 | x ∈ Rn>0}.
Numerical simulations indicate that the set of feasible station-
ary distributions over sparse graphs without self-loops is of
measure zero (for an appropriately defined measure).

Second, in the robotic surveillance context, it is of interest
to combine notions of unpredictability with speed of traversal
of graphs; see recent related work in [21]. Appropriate notions
of unpredictability for the multi-agent case are yet to be devel-
oped and could lead to the design of effective strategies against
intruders with advanced planning and sensing capabilities.
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