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Abstract—The DeGroot-Friedkin (DF) model is a recently-
proposed dynamical description of the evolution of individuals’
self-appraisal and social power in a social influence network.
Most studies of this system and its variations have so far focused
on models with a time-invariant influence network.

This paper proposes novel models and analysis results for
DF models over switching influence networks, and with or
without environment noise. First, for a DF model over switching
influence networks, we show that the trajectory of the social
power converges to a ball centered at the equilibrium reached
by the original DF model. For the DF model with memory on
random interactions, we show that the social power converges
to the equilibrium of the original DF model almost surely.
Additionally, this paper studies a DF model which contains
random interactions and environment noise, and has memory
on the self-appraisal. We show that such a system converges to
an equilibrium or a set almost surely. Finally, as a by-product, we
provide novel results on the convergence rates of the original DF
model and convergence results for a continuous-time DF model.

Index Terms—DeGroot-Friedkin model, stochastic approxima-
tion, social networks, social power evolution, opinion dynamics

I. INTRODUCTION

Models for the dynamics of opinions and social power:
Over the past decades, social networks have drawn tremendous
attention from both academia and industry. The study of
opinion dynamics aims to characterize and understand how
individuals’ opinions form and evolve over time through
interactions with their peers. The first mathematical model
for opinion dynamics was proposed by French in [9] with
further refinements by Harary [16]. This model is based on
distributed opinion averaging and is now widely referred to as
the DeGroot model [8]. Closely-related important variations
include the Friedkin-Johnsen affine model [12], [13] and the
Hegselmann-Krause bounded-confidence model [17].

This material is based upon work supported by, or in part by, the U.S.
Army Research Laboratory and the U.S. Army Research Office under grant
number W911NF-15-1-0577. The research of G. Chen was supported in part
by the National Natural Science Foundation of China under grants 91427304,
61673373 and 11688101, the National Key Basic Research Program of China
(973 program) under grant 2014CB845301/2/3, and the Leading research
projects of Chinese Academy of Sciences under grant QYZDJ-SSW-JSC003.

Ge Chen is with the NCMIS and the LSC, Academy of Mathematics and
Systems Science, Chinese Academy of Sciences, Beijing 100190, China,
chenge@amss.ac.cn

Xiaoming Duan and Francesco Bullo are with the Department
of Mechanical Engineering and the Center of Control, Dynamical-
Systems and Computation, University of California at Santa Barbara,
CA 93106-5070, USA. xiaomingduan.zju@gmail.com;
bullo@engineering.ucsb.edu

Noah E. Friedkin is with the Department of Sociology and the Center of
Control, Dynamical-Systems and Computation, University of California at
Santa Barbara, CA 93106, USA. friedkin@soc.ucsb.edu

Recently, by combining the DeGroot model of opinion dy-
namics and a reflected appraisal mechanism [6], [10], Jia et al.
[20] proposed a DeGroot-Friedkin (DF) model to describe the
evolution of individuals’ self-appraisal and social power (i.e.,
influence centrality) along an issue sequence. This influence
network model combines two steps. First, individuals update
their opinions on each issue as in the DeGroot averaging
model, where an interaction matrix characterizes the relative
interpersonal influence among the individuals. Second, based
on the opinion averaging outcome, individuals update their
self-appraisal via a reflection appraisal mechanism. In other
words, individuals’ self-appraisals on the current issue are el-
evated or dampened depending upon their influence centrality
(i.e., social power) on the prior issue. Under an assumption
that the relative interaction matrix is constant, irreducible,
and row-stochastic, Jia et al. [20] proved the convergence of
individuals’ self-appraisals in the DF model.

Since its introduction, the DF model has attracted a lot
of interest. Two articles study the DF model with varying
assumptions on the interaction matrix. First, Jia et al. [19]
extend the convergence results to the setting of reducible
interaction matrices. Second, Ye et al. [27] show that, if the
interaction matrix switches in a periodic manner, then indi-
viduals’ self-appraisals have a periodic solution. Additionally,
several other dynamical models have been proposed and ana-
lyzed. Mirtabatabaei et al. extended the DF model to include
stubborn agents who have attachment to their initial opinions
in [22]. Xu et al. [26] proposed a modified DF model, where
the social power is updated without waiting for the opinion
consensus on each issue, i.e., the local estimation of social
power is truncated; a complete analysis of convergence and
equilibria properties was given when the interaction matrix is
doubly stochastic. Considering time-varying doubly stochastic
influence matrix, Xia et al. [25] investigated the convergence
rate of the modified DF model, which was proven to converge
exponentially fast. A continuous-time self-appraisal model was
introduced by Chen et al. in [4]. It is worth noting that, all
the above existing works assume the interaction matrix either
is constant or has some special time-varying structure, like
double stochasticity or periodicity [25], [27].

Empirical evidence motivating new models: Empirical
evidence in support of the DeGroot model for opinion dy-
namics is provided in [2] and support of the reflected appraisal
mechanism over issue sequences is provided in [10], [11]. The
data in [11] establishes that (i) the interaction matrix in the
influence network is not constant along the issue sequence, (ii)
the reflected appraisal mechanism is indeed observed, whereby
prior influence centrality predict future self-appraisals, and
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(iii) a predictor of self-appraisal that is even better than prior
social power is cumulative prior social power (i.e, the average
of prior influence centrality scores over the issue sequence).
In other words, individuals learn “their place in a social
group” via an accumulation of experiences rather than over
a single episode. It is worth mentioning that a similar learning
mechanism based on the averages of prior outcomes is widely
adopted [18] in game theory and economics to model human
behavior.

Motivated by the available empirical evidence, this paper
proposes and characterizes several DF models subject to
switching influence networks, and also the environment noise.
Additionally, we incorporate memory in our models so that,
for example, individuals may update their self-appraisal based
on cumulative prior influence centrality.

Useful tools: In what follows, we adopt useful stochastic
models and analysis methods from the field of stochastic
approximation; these models and methods were originally
aimed at optimization and root-finding problems with noisy
data. The earliest methods of stochastic approximation were
proposed by Robbins and Monro [23] and aimed to solve
a root finding problem. During more than sixty years of
development, stochastic approximation methods have attracted
a lot of interest due to many applications such as the study
of reinforcement learning [24], consensus protocols in multi-
agent systems [3], and fictitious play in game theory [18].
For general noisy processes and algorithms, a very powerful
stochastic approximation tool is the so-called “ordinary differ-
ential equations (ODE) method” (see Chapter 5 in [21]), which
transforms the analysis of asymptotic properties of a discrete-
time stochastic process into the analysis of a continuous-time
deterministic process.

Statement of contributions: This paper proposes and an-
alyzes multiple novel DF models with varying assumptions on
interaction and memory. First, we investigate a DF model with
switching interactions, i.e., we assume that the interpersonal
interaction matrix is time-varying. Under such a model, we
establish convergence results under both relevant settings, i.e.,
when the digraph corresponding to the interaction matrix is or
is not a star graph. In the former case, the trajectory of social
power converges to autocracy; in the latter case, the social
power converges into a ball centered at the equilibrium point
reached by the original DF model. Second, as a by-product of
this analysis, we establish convergence rates for the original
DF model for both settings (with or without star topology).

Third, we consider a DF model with memory on the random
interaction matrix. In such a model the self-appraisal of each
individual is updated in the same manner as that in the original
DF model, but we assume the individual has memory on
the interaction weights assigned to others. For such a model
we show, using a stochastic approximation method, that the
impact of the stochasticity on the interaction matrix disappears
asymptotic. In other words, we prove that, for this model, the
social power converges to the same equilibrium point reached
by the original DF model almost surely.

Fourth, we study a DF model which contains random inter-
actions and environment noise, and has memory on the self-
appraisal. In this model, each individual remembers his/her

self-appraisal of last time (modeling for example the concept
of cumulative prior social power). While this model is quite
different from the DF model with memory on the interaction
matrix, we again establish using stochastic approximation
methods (and under certain technical conditions) that the
adoption of memory leads to a vanishing effect of switch and
noise and that the system converges to an equilibrium point
or a set almost surely. Fifth and finally, we also propose and
characterize a novel continuous-time DF model.

Organization: We review the original DF model in Sec-
tion II. Section III contains the convergence rate results for
the DF model and a new continuous-time DF model. We
propose the DF models with switching and stochastic inter-
actions in Section IV. A DF model with random interactions,
environment noise, and self-appraisal memory is analyzed in
Section V. Section VI concludes the paper.

Notations: A nonnegative matrix is row-stochastic (resp.
doubly stochastic) if its row sums are equal to 1 (resp., its
row and column sums are equal to 1). The digraph G(M)
associated to a nonnegative matrix M = {mij}i,j∈{1,...,n}
is defined as follows: the node set is {1, . . . , n}; there is a
directed edge (i, j) from node i to node j if and only if
mij > 0. The nonnegative matrix M is irreducible if its
associated digraph is strongly connected. The n-simplex ∆n

is {x ∈ [0, 1]n |
∑n
i=1 xi = 1} and its interior is ∆o

n = {x ∈
(0, 1)n |

∑n
i=1 xi = 1}. Let ei ∈ Rn be the row vector whose

i-th component is 1 and whose other components are 0. For
v ∈ Rn, let ‖v‖∞ := max1≤i≤n |vi| denote its infinity norm.
For a matrix M ∈ Rn×n, let ‖M‖max := max1≤i,j≤n |Mij |
denote the maximum norm. Given two sequences of positive
numbers {g1(t)} and {g2(t)}, we say g1(t) = o(g2(t)) if
limt→∞ g1(t)/g2(t) = 0, and g1(t) = O(g2(t)) if there exist
two positive constants a and t0 such that g1(t) ≤ ag2(t) for
all t ≥ t0. Let Z≥0 denote the set of nonnegative integers.

II. REVIEW OF ORIGINAL DF MODEL

The original DF model was proposed by Jia et al. in [20].
The model considers a group of n ≥ 3 individuals who discuss
a sequence of issues under the DeGroot model. The column
vector y(s, t) ∈ Rn denoting the individuals’ opinions over
issue s evolves according to the following formula

y(s, t+ 1) = W (s)y(s, t),

where W (s) ∈ Rn×n is a row-stochastic influence matrix over
issue s. Then, for each individual i, her opinion is updated via
a convex combination

yi(s, t+ 1) = Wii(s)yi(s, t) +
n∑

j=1,j 6=i

Wij(s)yj(s, t).

Here Wii(s) denotes the self-appraisal of individual i, and
Wij(s) = (1−Wii(s))Cij for all i 6= j, where the coefficient
Cij is the relative interpersonal weight that individual i
accords to individual j. Throughout this paper, the square
matrix C is a relative interaction matrix, that is row-stochastic
and zero-diagonal.
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Denoting Wii(s) by xi(s) for simplicity as in [20], the
influence matrix W (s) can then be decomposed as

W (s) = diag[x(s)] + (In − diag[x(s)])C.

If W (s) is an irreducible row-stochastic matrix, according
to Perron-Frobenius theorem W (s) has a unique dominant
left eigenvector π(W (s)) ∈ Rn, which is a row vector
satisfying π(W (s)) = π(W (s))W (x(s)), πi(W (s)) ≥ 0 for
all i ∈ {1, . . . , n}, and

∑n
i=1 πi(W (s)) = 1. Under some

assumptions on C, the opinion vector y(s, t) asymptotically
reaches consensus, i.e., lim

t→∞
y(s, t) = [π(W (s))y(s, 0)]1n.

Let x(s) := (x1(s), . . . , xn(s)) be a row vector. To deal
with the evolution of x(s) across issues, a reflected appraisal
mechanism is adopted as follows,

x(s+ 1) = π(W (s)).

The meaning of this equation is that individuals’ self weights
on current issue are their relative influence centrality (i.e., so-
cial power) over prior issue. In summary, given an interaction
matrix C, the DF model is given by [20]{

W (x(s)) = diag[x(s)] + (In − diag[x(s)])C,

x(s+ 1) = π(W (x(s))).
(1)

We adopt the same assumptions on C as in [20], i.e.,
we assume that C is irreducible. According to the Perron-
Frobenius theorem, C has a unique dominant left eigenvector
c := (c1, . . . , cn) with ci > 0 for all i ∈ {1, . . . , n}, and∑n
i=1 ci = 1.

Lemma II.1 (Lemma 2.2 in [20]: Explicit formulation of DF
model): Assume n ≥ 2 and C ∈ Rn×n is a row-stochastic,
irreducible, and zero-diagonal matrix whose dominant left
eigenvector is c. Then, for any x ∈ ∆n, the dominant left
eigenvector of the matrix diag[x] + (In − diag[x])C is ei if x = ei for all i = 1, . . . , n,(

c1
1−x1

, . . . , cn
1−xn

)
/
∑n
i=1

ci
1−xi otherwise.

Let G(C) be the digraph associated with C. The dynamics
of the DF model (1) depend on the topology of G(C) and a
certain topology, namely the star topology or star network, has
to be discussed separately. The star topology is shown in Fig.
1. A star network has a unique center node when n ≥ 3.

i

Fig. 1. A digraph G has a star topology if there exists a node i, called the
center node, such that all directed edges of G are either from or to node i.

We start by reviewing a preliminary result.

Lemma II.2 (Lemma 2.3 in [20]: Eigenvector centrality for
relative interaction matrices): For n ≥ 3, let C be row-
stochastic, irreducible, and zero-diagonal whose dominant left
eigenvector is c and associated digraph is G(C). Then

(i) if G(C) is not a star network, then ci ∈ (0, 1/2) for all
i ∈ {1, . . . , n}; and

(ii) if G(C) is a star network and let node i be its center
node, then ci = 1/2, and cj ∈ (0, 1/2) for j 6= i.

Convergence results for the DF model (1) have been provid-
ed in the cases when G(C) is or is not a star graph respectively.

Lemma II.3 (Lemma 3.2 in [20]: DF model with star
topology): For n ≥ 3, consider the DF model (1) with row-
stochastic, irreducible, and zero-diagonal interaction matrix C.
If the digraph associated with C is a star network with center
node i, then

(i) (Equilibria) the equilibrium points of (1) are the auto-
cratic vertices {e1, . . . , en}.

(ii) (Convergence property) for any x(0) ∈
∆n\{e1, . . . , en}, lims→∞ x(s) = ei.

Lemma II.4 (Theorem 4.1 in [20]: DF model without star
topology): For n ≥ 3, consider the DF model (1) with row-
stochastic, irreducible, and zero-diagonal interaction matrix C.
Assume the digraph associated with C is not a star network
and let c be the dominant left eigenvector of C. Then

(i) (Equilibria) the equilibrium points of (1) are
{e1, . . . , en, x

∗}, where x∗ is the unique solution
in ∆0

n of the following equation with respect to x:

x =
( c1

1− x1
, . . . ,

cn
1− xn

)
/

n∑
i=1

ci
1− xi

; (2)

(ii) (Convergence property) for any x(0) ∈
∆n\{e1, . . . , en}, lims→∞ x(s) = x∗.

III. NEW RESULTS ON DISCRETE-TIME AND
CONTINUOS-TIME DF MODELS

A. Convergence rate of the original DF model

This subsection establishes the convergence rate of the orig-
inal DF model; these results are also useful for the subsequent
analysis.

Lemma III.1 (Lemma F.1 in [20]): Suppose n ≥ 3 and let
x∗ ∈ ∆o

n be the equilibrium point appearing in Lemma II.4.
For any x ∈ ∆o

n, assume xi
x∗i

= max1≤k≤n
xk
x∗k

and xj
x∗j

=

min1≤k≤n
xk
x∗k

. Then,

1− x∗j
1− xj

≤ 1− x∗k
1− xk

≤ 1− x∗i
1− xi

, for all k ∈ {1, . . . , n}.

The following two novel lemmas are key results for the
analysis of convergence rate in the cases of star topology and
non star topology respectively.

Lemma III.2: Suppose n ≥ 3 and let c be the dominant
left eigenvector of C, where C ∈ Rn×n is a row-stochastic,
irreducible, and zero-diagonal matrix. If the digraph associated
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with C is a star network with center node i, then for any
x ∈ ∆o

n,
ci

1−xi∑n
j=1

cj
1−xj

> xi + xi(1− xi)2
(
1− 2 max

j 6=i
cj
)
.

Proof. By Lemma II.2 we have ci = 1/2 so that
∑
j 6=i cj =

1/2. Then,

ci
1−xi∑n
j=1

cj
1−xj

=

1
2(1−xi)

1
2(1−xi) + 1

2xi
+
∑
j 6=i

(
cj

1−xj −
cj
xi

)
=

1
2(1−xi)

1
2(1−xi)xi +

∑
j 6=i

(
cj

1−xj −
cj
xi

) . (3)

Let c′ = maxj 6=i cj . Then,∑
j 6=i

( cj
1− xj

− cj
xi

)
= −

∑
j 6=i

cj(1− xi − xj)
(1− xj)xi

< −
∑
j 6=i

cj(1− xi − xj)
xi

= −1− xi
2xi

+
∑
j 6=i

cjxj
xi

≤ −1− xi
2xi

+
c′(1− xi)

xi
= − (1− xi)(1− 2c′)

2xi
.

Substituting this into (3) we have

ci
1−xi∑n
j=1

cj
1−xj

>

1
2(1−xi)

1
2(1−xi)xi −

(1−xi)(1−2c′)
2xi

=
xi

1− (1− xi)2(1− 2c′)

> xi + xi(1− xi)2(1− 2c′).

(4)

Lemma III.3: Suppose n ≥ 3 and let c be the dominant
left eigenvector of C, where C ∈ Rn×n is a row-stochastic,
irreducible, and zero-diagonal matrix. If the digraph associated
with C is not a star network, then, for any x ∈ ∆o

n,

max
i6=j

ci(1− xj)x∗j
cj(1− xi)x∗i

≤ 1 +

(
max
i6=j

xix
∗
j

xjx∗i
− 1

)
max
i6=j

x∗i
1− x∗j

,

where x∗ ∈ ∆o
n is the equilibrium point defined in Lemma II.4.

Proof. According to (2) we get
ci

(1− x∗i )x∗i
=

cj
(1− x∗j )x∗j

(5)

for any 1 ≤ i, j ≤ n. Hence,

ci(1− xj)x∗j
cj(1− xi)x∗i

=
1− xj
1− xi

· ci/x
∗
i

cj/x∗j
=

1− xj
1− xi

· 1− x∗i
1− x∗j

. (6)

Without loss of generality, we assume
x1

x∗1
≤ x2

x∗2
≤ · · · ≤ xn

x∗n
, (7)

then by Lemma III.1, we have

1− x∗1
1− x1

≤ 1− x∗k
1− xk

≤ 1− x∗n
1− xn

, for all 1 ≤ k ≤ n.

Substituting this inequality into (6), we obtain

max
i6=j

ci(1− xj)x∗j
cj(1− xi)x∗i

=
(1− x∗n)/(1− xn)

(1− x∗1)/(1− x1)

=
1− x∗n
1− x∗1

· 1− x1

1− xn
.

(8)

Let δk =
xk/x

∗
k

x1/x∗1
so that xk = δkx

∗
kx1/x

∗
1. By (7) we have

1 = δ1 ≤ δ2 ≤ · · · ≤ δn. Thus,

1− x1

1− xn
=

∑n
k=2 xk∑n−1
k=1 xk

=

∑n
k=2 δkx

∗
k∑n−1

k=1 δkx
∗
k

:=
z + δnx

∗
n

z + x∗1
, (9)

where z =
∑n−1
k=2 δkx

∗
k. From

n−1∑
k=2

x∗k ≤ z ≤ δn
n−1∑
k=2

x∗k,

we know
z + δnx

∗
n

z + x∗1
= 1 +

δnx
∗
n − x∗1

z + x∗1
(10)

≤ 1 + max

{
δnx
∗
n − x∗1∑n−1

k=2 x
∗
k + x∗1

,
δnx
∗
n − x∗1

δn
∑n−1
k=2 x

∗
k + x∗1

}

= max

{
1− x∗1 + (δn − 1)x∗n

1− x∗n
,

δn(1− x∗1)

δn(1− x∗n)− (δn − 1)x∗1

}
=

1− x∗1
1− x∗n

max

{
1 + (δn − 1)

x∗n
1− x∗1

,
δn

δn − (δn−1)x∗1
1−x∗n

}
.

Let

a∗ = max
i6=j

x∗i
1− x∗j

= max
i6=j

x∗i
x∗i +

∑
k 6=i,j x

∗
k

< 1,

so that

max

{
1 + (δn − 1)

x∗n
1− x∗1

,
δn

δn − (δn−1)x∗1
1−x∗n

}
≤ max

{
1 + (δn − 1)a∗,

δn
δn − (δn − 1)a∗

}
= 1 + (δn − 1)a∗.

Substituting this inequality into (10) yields

z + δnx
∗
n

z + x∗1
≤ 1− x∗1

1− x∗n
(1 + (δn − 1)a∗). (11)

Putting together (7), (8), (9) and (11) we obtain

max
i6=j

ci(1− xj)x∗j
cj(1− xi)x∗i

=
1− x∗n
1− x∗1

· z + δnx
∗
n

z + x∗1

≤ 1 + (δn − 1)a∗ = 1 +
(xn/x∗n
x1/x∗1

− 1
)
a∗

= 1 +

(
max
i6=j

xix
∗
j

xjx∗i
− 1

)
a∗.

The following theorem establishes novel convergence rates
for the original DF model.
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Theorem III.1 (Convergence rate of the original DF mod-
el): For n ≥ 3, consider the DF model (1) with row-
stochastic, irreducible, and zero-diagonal interaction matrix
C. Let G(C) be the digraph associated with C. For any
x(0) ∈ ∆n\{e1, . . . , en},

(i) if G(C) is a star network with center node i, then,

‖x(s)− ei‖∞ = O(s−1);

(ii) if G(C) is not a star network, then,

‖x(s)− x∗‖∞ = O(a∗s),

where

a∗ = max
i6=j

x∗i
1− x∗j

= max
i6=j

x∗i
x∗i +

∑
k 6=i,j x

∗
k

∈ (0, 1).

Proof. (i) First, for any x(s) ∈ ∆n\{e1, . . . , en}, by Lem-
ma II.1 we have

x(s+ 1) =
( c1

1− x1(s)
, . . . ,

cn
1− xn(s)

)
/

n∑
j=1

cj
1− xj(s)

(12)

belongs to ∆o
n, and thus x(s) ∈ ∆o

n for all s ≥ 1. Since node
i is the center node of the star network, by Lemma II.2 we
have ci = 1/2, and cj < 1/2 for j 6= i. Also, by (12) and
Lemma III.2 we get for all s ≥ 1,

xi(s+ 1) =
ci

1− xi(s)
· 1∑n

j=1
cj

1−xj(s)

> xi(s) + xi(s)(1− xi(s))2
(
1− 2 max

j 6=i
cj
)
,

which implies xi(s+ 1) > xi(s) > · · · > xi(1), and

1− xi(s+ 1)

< 1− xi(s)− xi(s)(1− xi(s))2
(
1− 2 max

j 6=i
cj
)

≤ 1− xi(s)− xi(1)(1− xi(s))2
(
1− 2 max

j 6=i
cj
)
.

(13)

Set

α := max
{

2(1− x1(s)),
1

xi(1)(1− 2 maxj 6=i cj)

}
.

We will prove 1−xi(s) < α
s for all s ≥ 1 by induction. First,

1− xi(2) < 1− xi(1) ≤ α
2 . Also, if 1− xi(s) < α

s holds for
some s ≥ 2, then the inequality (13) implies

1− xi(s+ 1) < 1− xi(s)−
(1− xi(s))2

α

<
α

s
− α

s2
<

α

s+ 1
,

where the second inequality uses that the maximum value of
z− z2

α in the interval of [0, αs ] with s ≥ 2 is reached at z = α
s .

By induction we get 1− xi(s) < α
s for all s ≥ 1. Finally, for

any j 6= i we get xj(s) < 1− xi(s) < α
s for any s ≥ 1.

(ii) With the same arguments as those used in (i), we have
x(s) ∈ ∆o

n for all s ≥ 1. By (12) and Lemma III.3, we get
that, for any s ≥ 1,

max
i6=j

xi(s+ 1)/x∗i
xj(s+ 1)/x∗j

− 1 ≤

(
max
i6=j

xi(s)/x
∗
i

xj(s)/x∗j
− 1

)
a∗

≤ . . . ≤

(
max
i6=j

xi(1)/x∗i
xj(1)/x∗j

− 1

)
a∗s. (14)

Because
∑n
i=1 x

∗
i =

∑n
i=1 xi(s) = 1, we have minj

xj(s)
x∗j
≤ 1

for any s ≥ 0. Thus, from (14) we have

max
i

xi(s)

x∗i
− 1 ≤ max

i6=j

xi(s)/x
∗
i

xj(s)/x∗j
− 1 = O(a∗s). (15)

This inequality and the fact that x∗i > 0, for all i ∈ {1, . . . , n},
together implied the claimed statement.

B. A continuous-time DF model

We here introduce a continuous-time DF model, which is
novel in its own and whose analysis will be used later.

Let c denote the normalized left dominant eigenvector of an
irreducible interaction matrix C and define g : ∆n → ∆n by

g(x) =

{
0, if x ∈ {e1, . . . , en};
−x+

(
c1

1−x1
, . . . , cn

1−xn

)
/
∑n
i=1

ci
1−xi , otherwise.

Assume that the graph associated with C is not a star network.
The continuous-time DF model is

ẋ(τ) = g(x(τ)), s ∈ R≥0. (16)

Lemma III.4 (Well-posedness of the continuous-time DF
model): For n ≥ 3, pick x(0) ∈ ∆n\{e1, . . . , en}. Then
the solution to the continuous-time DF model (16) satisfies
x(τ) ∈ ∆o

n for all τ > 0.

Proof: We start by showing that, for any x(0) ∈
∆n\{e1, . . . , en}, there exists τ0 > 0 such that x(τ) ∈ (0, 1)n

for any τ ∈ (0, τ0]. In fact, this result holds obviously for
x(0) ∈ ∆o

n. When x(0) ∈ ∆n\({e1, . . . , en} ∪ ∆o
n), if

xi(0) = 0, then by (16) we have

lim
τ→0+

xi(τ)− xi(0)

τ
= gi(0) =

ci∑n
j=1

cj
1−xj(0)

> 0,

which implies x(τ) ∈ (0, 1)n for small positive τ .
Next we show xi(τ) cannot leave the interval (0, 1) for any

τ > τ0 and i ∈ {1, . . . , n}. Let cmax := maxi∈{1,...,n} ci.
At time τ , assume without loss of generality that x1(τ) =
xmax(τ) and xn(τ) = xmin(τ). Since the network we consider
here is not a star network, by Lemma II.2, cmax < 1/2. If
xmin ≥ 0 and xmax(τ) = x1(τ) ∈ [ cmax

1−cmax
, 1), then by (16)

ẋ1(τ) =
c1

(1− x1(τ))
∑n
i=1

ci
1−xi(τ)

− x1(τ)

<
c1

(1− x1(τ))( c1
1−x1(τ) + 1− c1)

− x1(τ)

=
c1 − (1− c1)x1(τ)

c1
1−x1(τ) + 1− c1

≤ 0,
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which implies xmax(τ) will decrease. Thus, xmax(τ) will not
be larger than

max
{
xmax(τ0),

cmax

1− cmax

}
:= b1 < 1.

At the same time, if xmin(τ) = xn(τ) ≤ cmin(1−b1)
(n−2)cmax

, then

ẋn(τ) =
cn

(1− xn(τ))
∑n
i=1

ci
1−xi(τ)

− xn(τ)

>
cn

(1− xn(τ))( cn
1−xn(τ) + cmax(n−2)

1−b1 )
− xn(τ)

=
cn − cmax(n−2)xn

1−b1
cn

1−xn(τ) + cmax(n−2)
1−b1

≥ 0,

which implies xmin(τ) will increase. Collecting these two
properties we obtain x(τ) ∈ (0, 1)n for any τ > 0.

Let S(τ) :=
∑n
i=1 xi(τ). By (16) we get

Ṡ(τ) = 1− S(τ).

Solving this ODE yields S(τ) = b2e
−τ + 1. With the initial

condition S(0) = 1 we get S(τ) ≡ 1. Thus, we have x(τ) ∈
∆o
n for any sτ > 0.
We next consider the convergence properties of this system

and establish a continuous-time version of Lemma II.4.

Lemma III.5 (Convergence of continuous-time DF model):
For n ≥ 3, consider the continuous-time DF model (16)
with row-stochastic, irreducible, and zero-diagonal interaction
matrix C. Assume the digraph associated with C is not a star
network and let c be the dominant left eigenvector of C. Then

(i) (Equilibria) the equilibrium points of (16) are
{e1, . . . , en, x

∗}, where x∗ is the unique solution
in ∆0

n of the equation (2);
(ii) (Convergence property) for any x(0) ∈

∆n\{e1, . . . , en}, limτ→∞ x(τ) = x∗.

Proof: Define the Lyapunov function V (τ) by

V (τ) := log max
i6=j

xi(τ)/x∗i
xj(τ)/x∗j

.

Let Ī(τ) denote the index set {(i, j)} in which the maximum
value of xi(τ)/x∗i

xj(τ)/x∗j
is reached. For any τ > 0, if |Ī(τ)| = 1,

without loss of generality, we assume Ī(τ) = (1, n). Then by
(16) we have

V̇ (τ) =
d

ds
log

x1(τ)/x∗1
xn(τ)/x∗n

=
ẋ1(τ)

x1(τ)
− ẋn(τ)

xn(τ)

=
1∑n

i=1
ci

1−xi(τ)

( c1
(1− x1(τ))x1(τ)

− cn
(1− xn(τ))xn(τ)

)
.

(17)
Also, by Lemma III.3 we have

c1
(1−x1(τ))x1(τ)

cn
(1−xn(τ))xn(τ)

=

c1
(1−x1(τ))x∗1

cn
(1−xn(τ))x∗n

·
x∗1
x1(τ)

x∗n
xn(τ)

≤
(

1 +
( x1(τ)/x∗1
xn(τ)/x∗n

− 1
)
r
)
· x
∗
1/x1(τ)

x∗n/xn(τ)

=
(
1 +

(
eV (τ) − 1

)
r
)
e−V (τ)

= 1− (1− r)(1− e−V (τ)) ≤ 1, (18)

where r = maxi6=j
x∗i

1−x∗j
= maxi6=j

x∗i
x∗i+

∑
k 6=i,j x

∗
k
< 1.

Substituting (18) into (17) and using Lemma III.4, we get

V̇ (τ) ≤ −
cn

(1−xn(τ))xn(τ)∑n
i=1

ci
1−xi(τ)

(1− r)(1− e−V (τ)) ≤ 0, (19)

where V̇ (τ) = 0 if and only if V (τ) = 0.
For the case when |Ī(τ)| > 1, the derivative of V (τ) may

not exist because its left derivative may not be equal to its
right derivative. Therefore, we use the Dini derivative instead.
For any τ0 ≥ 0, define

D+V (τ0) := lim sup
τ→τ+

0

V (τ)− V (τ0)

τ − τ0
.

From Danskin’s Lemma [7], it can be deduced that

D+V (τ) = max
(i,j)∈Ī(τ)

d

ds
log

xi(τ)/x∗i
xj(τ)/x∗j

≤ −(1− r)(1− e−V (τ)) min
(i,j)∈Ī(τ)

cj
(1−xj(τ))xj(τ)∑n
k=1

ck
1−xk(τ)

≤ 0,

(20)

where the second line relies upon (19). Also, D+V (τ) =
V̇ (τ) if V (τ) is differentiable. By Theorem 1.13 in [15]
we have that V (τ) is decreasing in [0,∞), which im-
plies that limτ→∞ V (τ) exists. If limτ→∞ V (τ) = v >

0, then, because maxi∈{1,...,n}
xi(τ)
x∗i

≥ 1, we have

lim infτ→∞mini∈{1,...,n}
xi(τ)
x∗i

≥ e−v > 0. Together with
(20), there exists a constant ε > 0 such that D+V (τ) ≤ −ε
for all large τ , which implies limτ→∞ V (τ) = −∞. Thus, we
have limτ→∞ V (τ) = 0, which implies limτ→∞ x(τ) = x∗

because
∑n
i=1 x

∗
i = 1 =

∑n
i=1 x(τ) for any τ ≥ 0.

IV. DF MODELS WITH SWITCHING AND STOCHASTIC
INTERACTIONS

This section considers the case of time-varying relative
interaction matrices. We first consider a DF model with
switching interaction and then propose a novel DF model with
memory on random interactions.

A. The DF model with switching interactions

Let {C(s) ∈ Rn×n}s∈Z≥0
denote a sequence of relative

interaction matrices, that is, a sequence of row-stochastic
matrices with zero diagonal. Given such a sequence, the DF
model with switching interactions is given by{

W (x(s)) = diag[x(s)] + (In − diag[x(s)])C(s),

x(s+ 1) = π(W (x(s))).
(21)

Let {G(C(s))}s∈Z≥0
be the sequence of digraph associated

with the sequence {C(s)}s∈Z≥0
. We will consider the cases

when every graph G(C(s)) in {G(C(s))}s∈Z≥0
is a star

network with fixed center node, or {G(C(s))}s∈Z≥0
is not

a sequence of fixed star network.
First, we suppose {G(C(s))}s∈Z≥0

is a sequence of star
networks with a common center node i as described in the
following assumption.
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Assumption 1 (Sequence of relative interaction matrices with
star topology): The sequence of relative interaction matrices
{C(s) ∈ Rn×n}s∈Z≥0

has the properties that {G(C(s))}s∈Z≥0

is a sequence of star networks with common center node i,
and that there exists a constant ε > 0 such that Cij(s) ≥ ε
for all j 6= i and s ≥ 0.

Proposition IV.1 (Convergence and convergence rate of the
DF model over star topologies with switching weights): For
n ≥ 3, consider a sequence of relative interaction matrices
satisfing Assumption 1 with common center node i, and the
corresponding DF model with switching interactions (21).
Then

(i) the system (21) has an equilibrium point ei,
(ii) for any initial condition x(0) ∈ ∆n\{e1, . . . , en}, the

solution x(s) converges to ei with a rate of O(s−1).

Proof: The proof of statement (i) is identical to the proof
of the corresponding statement in Lemma II.3 in [20]; we do
not report it here in the interest of brevity.

Regarding statement (ii), because each relative interaction
matrix C(s) is irreducible, C(s) has a dominant left eigenvec-
tor c(s) = (c1(s), . . . , cn(s)). Assumption 1 and Lemma II.2
imply ci(s) = 1/2, and cj(s) ≥ ε for j 6= i, where ε is a
positive constant depending on ε in Assumption 1. Similar to
(13) we have

1− xi(s+ 1)

< 1− xi(s)− xi(1)(1− xi(s))2
(
1− 2 max

j 6=i
cj(s)

)
≤ 1− xi(s)− xi(1)(1− xi(s))2

(
1− 2

(1

2
− ε
))

= 1− xi(s)− xi(1)(1− xi(s))22ε, for all s ≥ 1.

Similar to the proof of Theorem III.1(i) we get ‖x(s)−ei‖∞ =
O(1/s).

For the case when {G(C(s))}s∈Z≥0
is not a sequence of

star network, the DF model with switching interactions (21)
may not converge to an equilibrium point. However, if there
exists a row-stochastic, zero-diagonal, and irreducible matrix
C such that the difference between every C(s) of the sequence
{C(s)}s∈Z≥0

and C is sufficiently small, then the trajectories
converge to a ball centered around the equilibrium reached by
the original DF model (1). For any issue s, let c and c(s) be
the dominant left eigenvectors of C and C(s), respectively,
and define ξ(s) := c(s)− c.

By Lemma II.1, for any x(s) ∈ ∆n\{e1, . . . , en}, the DF
model with switching interactions (21) has the following form:

x(s+ 1) =
(c1 + ξ1(s)

1− x1(s)
, . . . ,

cn + ξn(s)

1− xn(s)

)
/

n∑
i=1

ci + ξi(s)

1− xi(s)
.

(22)
So, in order to investigate the DF model with switching
interactions (21), we can analyze the system (22) instead. We
next present a third assumption.

Assumption 2 (Sequence of relative interaction matrices
with small variations): The sequence of relative interaction
matrices {C(s) ∈ Rn×n}s∈Z≥0

has the following property:
there exists an irreducible relative interaction matrix C such

that G(C) is not a star network and, for all s ≥ 0 and
i ∈ {1, . . . , n},

|ci(s)− ci|
ci

≤ r ⇐⇒ |ξi(s)| ≤ rci,

where r ∈ (0, 1−a∗
1+a∗ ) is a constant with a∗ = maxi6=j

x∗i
1−x∗j

<

1 and x∗ = x∗(C) ∈ ∆o
n denotes the equilibrium point of the

DF model (1), as established in Lemma II.4.

Remark IV.1: We here elaborate on the sequences
{C(s)}s∈Z≥0

satisfying Assumption 2. Loosely speaking, be-
cause the dominant eigenvalue of C is simple, if C(s)−C is
sufficiently small, then the left dominant eigenvector of C(s)
is close to that of C. Indeed, Funderlic and Meyer [5] review
various perturbation bounds for the left dominant eigenvector
of a row-stochastic matrix. Specifically, [14, Subsection 3.4]
states ‖ξ(s)‖∞ ≤ κ(C)‖C(s) − C‖∞, where κ(C) is an
appropriate function of C. Therefore, if

‖C(s)− C‖∞ ≤
1

κ(C)
rcmin, with cmin = min

1≤j≤n
cj ,

then ‖ξ(s)‖∞ ≤ rcmin and, in turn, |ξi(s)|ci
≤ ‖ξ(s)‖∞cmin

≤ r. �

We are now ready to state the main result of this subsection.

Theorem IV.1 (Convergence of the DF model with switching
non-star topologies): For n ≥ 3, consider a sequence of
relative interaction matrices satisfing Assumption 2 and the
corresponding DF model with switching interactions (21).
Then for any x(0) ∈ ∆n\{e1, . . . , en}

lim sup
s→∞

max
i6=j

xi(s)/x
∗
i

xj(s)/x∗j
≤ 1 +

2r

1− r − (1 + r)a∗
, (23)

where x∗, a∗, r are defined in Assumption 2.

Proof: Let Ds = maxi6=j
xi(s)/x

∗
i

xj(s)/x∗j
and D∗ = 1 +

2r
1−r−(1+r)a∗ . By (22) and Assumption 2, we get x(s) ∈ ∆o

n

for any s ≥ 1, and

xi(s+ 1)

xj(s+ 1)
=

(ci + ξi(s))(1− xj(s))
(cj + ξj(s))(1− xi(s))

, (24)

so that

Ds+1 = max
i6=j

(ci + ξi(s))(1− xj(s))x∗j
(cj + ξj(s))(1− xi(s))x∗i

≤ max
i6=j

(ci + rci)(1− xj(s))x∗j
(cj − rcj)(1− xi(s))x∗i

≤ 1 + r

1− r
(1 + (Ds − 1)a∗),

(25)

where the last inequality uses Lemma III.3.
If Ds ≤ D∗, then by (25)

Ds+1 −D∗ ≤
1 + r

1− r
(1 + (D∗ − 1)a∗)−D∗

=

(
1 + r

1− r
a∗ − 1

)
D∗ +

1 + r

1− r
(1− a∗)

=
(1 + r)a∗ − 1 + r

1− r
· 1 + r − (1 + r)a∗

1− r − (1 + r)a∗

+
1 + r

1− r
(1− a∗) = 0, (26)
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which implies Ds+1 ≤ D∗. If Ds > D∗, then by (25) and
(26)

Ds+1 −D∗ ≤
1 + r

1− r
a∗Ds +

1 + r

1− r
(1− a∗)−D∗

=
1 + r

1− r
a∗(Ds −D∗) +

(
1 + r

1− r
a∗ − 1

)
D∗

+
1 + r

1− r
(1− a∗)

=
1 + r

1− r
a∗(Ds −D∗). (27)

Because 1+r
1−ra

∗ < 1, combining (26) and (27) yields our result.

Remark IV.2: The bound in Theorem IV.1 can be written
in a more conservative and explicit form as follows. Because∑n
i=1 x

∗
i =

∑n
i=1 xi(s) = 1, we have minj

xj(s)
x∗j
≤ 1 for any

s ≥ 0. Thus, from (23)

lim sup
s→∞

max
i

xi(s)

x∗i
− 1

≤ lim sup
s→∞

max
i6=j

xi(s)/x
∗
i

xj(s)/x∗j
− 1 ≤ 2r

1− r − (1 + r)a∗
,

which implies

lim sup
s→∞

‖x(s)− x∗‖∞ ≤
2rmaxi x

∗
i

1− r − (1 + r)a∗
. �

To visualize the result of Theorem IV.1, we consider a three-
node network with relative interaction matrix:

C =

0 1
3

2
3

3
4 0 1

4
1
2

1
2 0

 .
In order to show the effect of {ξ(s)} on the radius of the
convergence ball, we generate {ξ(s)} that satisfies Assump-
tion 2 and simulate the DF model under switching interactions
using (22). The convergence results under different r are
shown in Fig. 2. As predicted, all the trajectories eventually
converge into the ball whose boundary are marked with red
dots. The radius of the convergence ball depends on r. Our
simulation results suggest the existence of a potential tighter
bound than (23).

B. A DF model with memory on stochastic interactions

As shown in the last section, the DF model with switching
interactions (21) does not converge to an equilibrium point in
general. We now consider a DF model where the sequence of
interaction matrices is a stochastic process, which individuals
observe and filter.

Assumption 3 (Stochastic relative interaction matrices with
constant conditional expectation): The sequence of interac-
tion matrices {C(s)}s∈Z≥0

is generated by a stochastic process
with the following properties:

(i) each C(s) takes values in the set of row-stochastic, zero-
diagonal, and irreducible matrices, and

(a) The original DF model (1) (b) System (21) when r = 0.3 1−a∗

1+a∗

(c) System (21) when r = 0.5 1−a∗

1+a∗ (d) System (21) when r = 0.7 1−a∗

1+a∗

Fig. 2. Illustrating the convergence result of Theorem IV.1 with a∗ = 0.639.
.

(ii) there exists a relative interaction matrix C such that
G(C) is not a star network, and

E [C(s) |C(0), . . . , C(s− 1)] = C.

We next introduce a sequence of scalar numbers that is
deterministic and that satisfies the standard tapering stepsize
assumption, stated as follows.

Assumption 4 (Tapering step size sequence): The deter-
ministic sequence {a(s) ∈ R}s∈Z≥0

satisfies
(i) a(s) ∈ [0, 1) for any s ≥ 0;

(ii)
∑∞
s=0 a(s)2 <∞;

(iii)
∑∞
s=0 a(s) =∞.

Our modeling approach is to use a stochastic approximation
algorithm to describe the evolution of the interaction matrix as
follows. Given a sequence of relative interaction matrices as
in Assumption 3 and stepsizes as in Assumption 4, consider
the sequence {C(s)}s∈Z≥0

defined by, for all s ≥ 0,

C(s+ 1) := (1− a(s))C(s) + a(s)C(s+ 1), (28)

with a deterministic relative interaction matrix C(0). The
DF model with memory on random interactions is given by
equation (28) combined with{

W (x(s)) = diag[x(s)] + (In − diag[x(s)])C(s),

x(s+ 1) = π(W (x(s))).
(29)

We remark that, in the iteration (28), each individual only
remembers the influence weights assigned to others.

Theorem IV.2 (Convergence of the DF model with memory
on random interactions): For n ≥ 3, consider a stochastic
sequence of relative interaction matrices satisfying Assump-
tion 3 and stepsizes as in Assumption 4 with expected relative
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interaction matrix C, and the corresponding system (28)-(29).
Let x∗ = x∗(C) ∈ ∆o

n be the equilibrium point of the DF
model (1) with relative interaction matrix C (see Lemma II.4).

Then for any x(0) ∈ ∆n\{e1, . . . , en}, the solution x(s)
of the system (29) converges to x∗ a.s.

Proof: We start by applying Theorem 2.2 in [1] to
equation (28). First, note that

C(s+ 1) = C(s) + a(s)(C(s+ 1)− C(s)),

⇐⇒ X(s+ 1) = X(s) + a(s)(−X(s) +M(s+ 1)),

with X(n) = C(s)−C and M(s+ 1) = C(s+ 1)−C. This
final expression matches equation (1.1) in [1] with h(X(s)) =
−X(s). Note that the four assumptions in Theorem 2.2 in
[1] are satisfied, because, adopting the notation in [1], (1)
the conditions (A1) on the function h are satisfied by our
h(x) = −x; (2) the conditions (A2) on the martingale property
and boundedness of M(s) are satisfied by Assumption 3(ii)
and because C(s)− C takes values in a bounded set; (3) the
stepsize sequence is tapering by Assumption 4; and (4) the
conditions on ODE (1.2) are satisfied because 0 is the unique
globally asymptotically stable equilibrium of ẋ(t) = −x.
Therefore, Theorem 2.2 in [1] implies X(s) → 0 a.s. as
s→∞, that is, C(s+ 1)→ C a.s. as s→∞.

Note that Assumption 3 implies that the relative interaction
matrix C is irreducible; let c be its left dominant eigenvector.
Also note that C(s) is a.s. a row-stochastic, zero-diagonal, and
irreducible matrix for all s ≥ 0. Then the Perron-Frobenius
Theorem implies that C(s) has a left dominant eigenvector
c + ξ(s) a.s. with ci + ξi(s) > 0 for any i ∈ {1, . . . , n}. Let
Ω′ be the set of events for which C(s) is a row-stochastic,
zero-diagonal, and irreducible matrix for all s ≥ 0 and
lims→∞ C(s) = C. Because lims→∞ C(s) = C a.s. we have
P[Ω′] = 1. Also, for any sample in Ω′, by Subsection 3.4 in
[5] or Theorem 2.3 in [14], we obtain

lim
s→∞

ξ(s) = 0. (30)

Finally, we show x(s) converges to x∗ for any sample in
Ω′. By (22) and the fact that c + ξ(s) > 0, we know that
x(s) ∈ ∆o

n for any s ≥ 1. Similar to (25), we have

Ds+1 = max
i6=j

(ci + ξi(s))(1− xj(s))x∗j
(cj + ξj(s))(1− xi(s))x∗i

= max
i6=j

(1 + ξi(s)/ci)ci(1− xj(s))x∗j
(1 + ξj(s)/cj)cj(1− xi(s))x∗i

≤ 1 + ξi(s)/ci
1 + ξj(s)/cj

(1 + (Ds − 1)a∗),

(31)

where Ds and a∗ are defined as in the proof of Theorem IV.1.
By (31) we can get

Ds+1 − 1 ≤
ξi(s)
ci
− ξj(s)

cj

1 +
ξj(s)
cj

+
1 + ξi(s)

ci

1 +
ξj(s)
cj

(Ds − 1)a∗.

Set

fs :=

ξi(s)
ci
− ξj(s)

cj

1 +
ξj(s)
cj

and gs := 1−
1 + ξi(s)

ci

1 +
ξj(s)
cj

a∗.

By (30) there exists a constant s0 > 0 such that gs ∈ (0, 1)
for all s ≥ s0,

∑∞
s=s0

gs = ∞, and lims→∞ fs/gs = 0. By
the Lemma C.1 in Appendix C, we get lims→∞(Ds−1) = 0,
which implies lims→∞ x(s) → x∗ by

∑n
i=1 xi(s) = 1 =∑n

i=1 x
∗
i . Our result implies that P[Ω′] = 1.

To illustrate the convergence of the DF model with interac-
tion memory, we simulate the same network with the same
initial conditions as those used in the last subsection. The
interaction matrix C(s) is generated as follows: for any s ≥ 0,
we let Ñ(s) be an n × n matrix with the same zero/non-
zero pattern as C and we select the nonzero elements Ñij(s)
uniformly and independently distributed in [−Cij , Cij ]. For
any i 6= j, set Cij(s) := Cij + Ñij(s)− 1

n

∑n
k=1 Ñik(s). We

then scale (i.e., multiply by an appropriate constant) each row
of N(s) so as to guarantee that C(s) is row-stochastic. This
way we know E [C(s) |C(0), . . . , C(s− 1)] = C is satisfied.
We can observe from Fig. 3 that, after some oscillation, x(s)
converges to the same equilibrium of the original DF model
as established by Theorem IV.2.

(a) The DF model with interaction
memory (29)

(b) Zoom-in of Fig. 3(a)

Fig. 3. Illustrating the convergence result of Theorem IV.2
.

V. A DF MODEL WITH STOCHASTIC INTERACTIONS,
ENVIRONMENT NOISE, AND SELF-APPRAISAL MEMORY

This section considers a DF model where the sequence
of interaction matrices is a stochastic process and there are
noise and memory on self-appraisals. As before, we also
adopt a stochastic approximation model to include memory
in the system and, as a byproduct, asymptotically eliminate
the impact of interaction randomness and environment noise.

The DF model with random interactions, environment noise,
and self-appraisal memory is given by{

W (x(s)) = diag[x(s)] + (In − diag[x(s)])C(s),

x(s+ 1) = (1− a(s))x(s) + a(s)
[
π(W (x(s))) + ζ(s)

]
,

(32)
where {C(s)}s∈Z>0

satisfies Assumption 3 and {ζ(s)}s∈Z>0

is a stochastic process denoting the environment noise.

Theorem V.1 (Convergence of the DF model with random
interactions, environment noise, and self-appraisal memory):
For n ≥ 3, consider a stochastic sequence of relative inter-
action matrices satisfying Assumption 3 and stepsizes as in
Assumption 4, and the corresponding system (32). Assume:
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(i) along every solution {x(s) ∈ ∆n\{e1, . . . , en}}s∈Z>0

and at every time s ≥ 0, we have π(W (x(s))) + ζ(s) ∈
∆o
n a.s.,

(ii) there exists a vector c̃ ∈ ∆o
n with maxi c̃i <

1
2 such that,

along every solution {x(s) ∈ ∆n\{e1, . . . , en}}s∈Z>0
,

the sequence {β(s) ∈ Rn}s∈Z≥0
defined by

β(s) = E [π(W (x(s))) + ζ(s) |x(0), C(t), ζ(t), t < s]

−
( c̃1

1− x1(s)
, . . . ,

c̃n
1− xn(s)

)
/
n∑
i=1

c̃i
1− xi(s)

,

satisfies a.s.
∞∑
s=0

a(s)‖β(s)‖∞ <∞. (33)

Then, for any x(0) ∈ ∆n\{e1, . . . , en}, x(s) converges to
{x̃∗, e1, . . . , en} a.s., where x̃∗ is the unique solution in ∆o

n

of the equation

x =
( c̃1

1− x1
, . . . ,

c̃n
1− xn

)
/

n∑
i=1

c̃i
1− xi

. (34)

It is important to clarify that the condition (33) is complex to
verify in general, since the dynamics are highly nonlinear and
the condition depends on evolution of the state x(s). However,
it can be checked that condition (33) is a weaker condition for
some special cases. For example, if C(s) converges sufficiently
quickly to a constant matrix C a.s. and E[ζ(s)|ζ(t), t < s]
converges to zero sufficiently quickly, then the summability
condition (33) is satisfied with c̃ equal to the dominant left
eigenvector of C, and system (32) converges.

In what follows we present some simulation results for
the reduced Krackhardt’s advice network with n = 17.
The interaction matrix C(s) is generated as before in the
simulation after Theorem IV.2. The environment noise ζ(s) is
also generated in a similar way so that π(W (x(s))) + ζ(s)
is still in ∆o

n. The sequence {a(s)}s∈Z>0 is the harmonic
sequence such that Assumption 4 holds. The condition (33)
is verified numerically in Fig. 4, where it is shown that x(s)
converges to x̃∗ in this case.

0 20 40 60 80 100
Issue s

0

0.1

0.2

0.3

0.4

0.5

Fig. 4. Convergence of x(s) and verification of equation (33).

Theorem V.1 gives some conditions to guarantee that x(s)
converges to a set. If we add further assumptions x(s) can a.s.
converge to a fixed point.

Theorem V.2 (Convergence of the DF model with random
interactions, environment noise and self-appraisal memory):
For the system (32), assume all conditions in Theorem V.1 are
satisfied. In addition, assume there exist constants c′ ∈ (0, 1

2 ),
p1 ∈ (0, 1), d1 > 0, and γ > 1 such that for any s ≥ 0,
x(s) ∈ ∆o

n, and i ∈ {1, . . . , n},

P
[
πi(W (x(s))) + ζi(s)

≤ c′

c′ + (1− c′)(1− xi(s))
∣∣x(s)

]
≥ p1, (35)

and a.s.

πi(W (x(s))) + ζi(s) ≤ xi(s) + d1(1− xi(s))γ . (36)

If the tapering step size sequence {a(s)}s∈Z>0
satisfies

a(s) = d2/(s+ 1) with d2 ∈ (0, 1], then, for any x(0) ∈
∆n\{e1, . . . , en}, the solution x(s) converges a.s. to x̃∗, i.e.,
the solution to equation (34).

Remark V.1: At the cost of a more complex analysis, it
is possible to obtain a version of Theorem V.2 for general
tapering step size sequences satisfying Assumption 4. �

It is important to clarify that the conditions (35) and (36)
are complex to verify. We provide the following assumption,
which is sufficient for conditions (35) and (36).

Assumption 5 (Random relative interaction matrices and
environment noise): For any s ≥ 0 and x(s) ∈
∆n\{e1, . . . , en}, assume:

(i) there exists constants d1 > 0 and γ > 1 such that
ζi(s) ≤ d1(1− xi(s))γ a.s. for i ∈ {1, . . . , n};

(ii) there exist two constants p1, δ ∈ (0, 1) such that

P
[
‖C(s)‖max ≤ δ |x(s)

]
≥ p1.

Corollary V.1: For the system (32), assume all conditions
in Theorem V.1 and Assumption 5 are satisfied. If the tapering
step size sequence {a(s)}s∈Z>0 satisfies a(s) = d2

s+1 with d2 ∈
(0, 1], then, for any x(0) ∈ ∆n\{e1, . . . , en}, the solution
x(s) a.s. converges to x̃∗, i.e., the solution to equation (34).

The analysis of the DF model with random interactions and
environment noise (32) is much more complicated than that for
the system (29). Therefore, to prove Theorem V.1, we adopt
the so-called ODE method of stochastic approximation. The
proofs of Theorem V.2 and Corollary V.1 are postponed to
Appendices A and B respectively.

A. Preliminary: A basic stochastic approximation theorem

We here review a basic convergence theorem for the ODE
method in stochastic approximation, taken from Chapter 5.2
in [21]. Let θ(t) ∈ Rn be a state vector updated by

θ(t+ 1) = ΠH

(
θ(t) + a(t)Y (t)

)
, (37)

where ΠH(·) is the projection onto a constraint set H = {θ ∈
Rn | bi ≤ θi ≤ b̄i, i ∈ {1, . . . , n}} with bi < b̄i being
constants, and {a(t)}s∈Z>0 is the tapering step size sequence.
The projection ΠH is to restrict θ(t) to a bounded region
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and has the following property: if θ ∈ H then ΠH(θ) = θ.
Assume:

(i) supt≥0 E[‖Y (t)‖2∞] <∞;
(ii) a(t) ≥ 0,

∑∞
t=0 a(t) =∞, and

∑∞
t=0 a

2(t) <∞; and
(iii) there is a continuous function h(·) of θ and random

variables β(t) such that
∑
t≥0 a(t)‖β(t)‖∞ <∞ and

E[Y (t) | θ0, Y (i), i < t] = h(θ(t)) + β(t).

A fundamental method to analyze the system (37) is to
construct an ODE whose dynamics are projected onto H:

θ̇(τ) = h(θ(τ)) + z(θ(τ)), (38)

where z(θ(τ)) is the projection or constraint term, i.e., the
minimal term needed to keep θ(τ) in H . If x(τ) is an interior
point of H , then z(x(τ)) = 0. Let LH be the set of limit points
of the ODE (38), i.e., LH := {θ ∈ H : h(θ) + z(θ) = 0}.
The following lemma builds a connection between the protocol
(37) and the ODE (38).

Lemma V.1 (Theorem 5.2.1 in [21]): For system (37),
suppose the conditions i), ii) and iii) hold. For the ODE (38),
let L1

H be a subset of LH and let AH be a set that is locally
asymptotically stable in the sense of Lyapunov. If for any
initial state not in L1

H the trajectory of (38) goes to AH , then
the system (37) converges to L1

H∩AH a.s. for any initial state.

B. Proof of Theorem V.1

We start by verifying that system (32) satisfies the condi-
tions of Lemma V.1. Let

Y (s) := π(W (x(s))) + ζ(s)− x(s),

then by (32) we get

x(s+ 1) = x(s) + a(s)Y (s). (39)

By Assumption 4 we have x(s) ∈ ∆n a.s. for all s ≥ 0, so
(39) is a special form of the system (37) when we choose
H = [−1, 2]n ⊃ ∆n. The conditions (i) in Subsection V-A is
guaranteed by the fact that ∆n is a bounded set, and (ii) in
Subsection V-A is guaranteed by Assumption 4.

Replacing the vector c in the definition of the function g in
Section III-B by the vector c̃ in (33), we get

E [Y (s) |x(0), C(t), ζ(t), t < s] = g(x(s)) + β(s)

for any x(0) ∈ ∆n\{e1, . . . , en} and s ≥ 0, where β(s)
satisfies

∑∞
s=0 a(s)‖β(s)‖∞ <∞ a.s. by (33). Moreover, a.s.

x(s) cannot go out of ∆n and g(x) is continuous for x ∈ ∆n,
so we can take ∆n as the full space and the condition (iii) in
Subsection V-A still holds.

It remains to verify the conditions of Lemma V.1 for
the ODE (38). From Lemma III.4 (replacing c with c̃) and
Lemma III.5 (replacing c and x∗ with c̃ and x̃∗), we know
that the solution of the ODE (16) converges and never goes
to the boundary of H = [−1, 2]n, and it is a special form of
the ODE (38). Thus, x(s) in both the systems (39) and (16)
cannot leave ∆n a.s., and we can take ∆n as the full space.
By Lemma II.4 the solution set of the equation g(x) = 0
in ∆n is {x̃∗, e1, . . . , en}. Also, for the ODE (16), from

Lemma III.5 we get x̃∗ is locally asymptotically stable, and
for any initial state x(0) /∈ {e1, . . . , en} the trajectory goes
to x̃∗. By Lemma V.1, we obtain that x(s) in protocol (39)
converges to {x̃∗, e1, . . . , en} a.s.

VI. CONCLUSION

This paper introduces multiple versions of the DeGroot-
Friedkin model. We consider switching interaction matrices
and individual memories and, in doing so, we generalize the
original deterministic DF model to more realistic and richer
models. Fluctuation and memory are natural phenomena when
investigating the dynamics of opinions and appraisal over
social networks. Exact evaluations and absence of reflection
are less likely to occur in real human world.

We have presented several novel analysis results for these
variations of the original DF model. First, we have derived
the convergence rate for the original DF model when the
associated digraph is or is not a star network, and we ap-
plied these results to analyze the DF models with switching
interactions. We proved that the original DF model has an
exponentially fast convergence rate when the digraph is not a
star network. Then, we proposed a DF model with switching
interactions. Again, two cases were considered: in the star
network case, the social power converges to autocracy; while
in the non-star network case, individuals’ social power can
only converge into a ball centered around the equilibrium point
of the original DF model with the same relative interaction
matrix. Thirdly, we proposed a DF model with memory on
random interactions and proved that this new model converges
to the same equilibrium of the original DF model almost
surely. Finally, a stochastic-approximation DF model was
proposed by considering random interactions, environment
noise, and self-appraisal memory simultaneously. For this most
general, complicated, and realistic model, we proved that,
under appropriate technical assumptions, the trajectories of
individuals’ social power also converges.

Much work still remains to be done. First, one can simplify
condition (33) in Theorem V.1 which is admittedly not easy
to verify. Secondly, it would be interesting and valuable to
extend the analysis to reducible graphs as Jia et. al considered
in [19]. Furthermore, we can also consider similar extensions
to other representative appraisal models in the literature such
as the modified DF model in [26] and the continuous-time
self-appraisal model in [4].

APPENDIX A
PROOF OF THEOREM V.2

From Theorem V.1, to obtain our result, we just need to
show that a.s. x(s) cannot converge to ei for any 1 ≤ i ≤ n.
We will prove this result by contradiction. Without loss of
generality we assume P[lims→∞ x(s) = e1] > 0, then for any
ε > 0 we have

lim
s→∞

P

[ ∞⋂
s′=s

{x1(s′) > 1− ε}

]
≥ P

[
lim
s→∞

x(s) = e1

]
> 0.

(40)



0018-9286 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2018.2822182, IEEE
Transactions on Automatic Control

12

By (40), there exists a constant s0 > 0 such that

P

[ ∞⋂
s=s0

{x1(s) > 1− ε}

]
> 0. (41)

We will show (41) does not hold for some s0 and ε. Let

Is := I{π1(W (x(s)))+ζ1(s)≤ c′
c′+(1−c′)(1−x1(s))

}, (42)

where c′ is the same constant appearing in (35). By the
Lemma C.2 in Appendix C, there exists a constant p2 > 0
such that for any s ≥ 0,∆s > 0 and x(s) ∈ ∆o

n,

P

[
s+∆s−1∑
s′=s

Is′ ≤
p1∆s

2

]
≤ e−p2∆s , (43)

where p1 is the same constant appearing in (35). We set s0 :=
dmax{d1d2γ, (1− 2c′)d2(γ − 1), 4/p2}e and

ε := min
{ 1− 2c′

2(1− c′)
, [(2γ − 1)d1d2]−

1
γ−1 ,

( p1(1− 2c′)

2(2− p1)d1

) 1
γ−1
}
.

For large s and i ≥ 1, set Asi to be the event that Ns
i >

p1
2 d

2
p2

log se with

Ns
i :=

s0+id 2
p2

log se−1∑
s′=s0+(i−1)d 2

p2
log se

Is′ .

From (43) we can get

P
[ b p2s

2 log s c⋂
i=1

Asi

]
≥
(

1− e−p2d
2
p2

log se
)b p2s

2 log s c

= 1− p2

2s log s
+ o(s−2). (44)

Let y(s0) = x1(s0) and

y(s′ + 1) = y(s′)

+
d2

s′ + 1

{
−(1− 2c′)(1− y(s′)), if Is′ = 1

d1(1− y(s′))γ , otherwise

for s′ ≥ s0. We show that if
⋂∞
s′=s0

{x1(s′) > 1−ε} happens,
then a.s. y(s′) ≥ x1(s′) for all s′ ≥ s0. First, y(s0) = x1(s0);
if y(s′) ≥ x1(s′), then for the case when Is′ = 1, by (42), we
have

y(s′+1)−x1(s′+1) ≥ d2

s′ + 1

(
y(s′)− (1−2c′)(1−y(s′))

− c′

c′ + (1− c′)(1− x1(s′))

)
. (45)

Also, since y(s′) > 1− ε ≥ 1
2(1−c′) ,

y(s′)− c′

c′ + (1− c′)(1− x1(s′))

≥ y(s′)− c′

c′ + (1− c′)(1− y(s′))

=
−c′ + y(s′)(1− c′)

c′ + (1− c′)(1− y(s′)
(1− y(s′))

>
−c′ + 1

2

c′ + (1− c′)(1− 1
2(1−c′) )

(1− y(s′))

= (1− 2c′)(1− y(s′)).

Substituting this into (45) we have y(s′ + 1) ≥ x1(s′ + 1).
Also, for the case when Is′ = 0, by (36) and Lemma C.3 i)
we have a.s.

y(s′ + 1)− x1(s′ + 1)

≥ d2

s′ + 1

(
d1(1− y(s′))γ − d1(1− x1(s′))γ

)
≥ 0.

By induction we get y(s′) ≥ x1(s′) a.s. for all s′ ≥ s0.
Next we estimate the maximum possible value of y(s′).

Set s1 := s0 + b p2s
2 log scd

2
p2

log se. Let z(s0) = x1(s0). For
s0 ≤ s′ < s1, set

s̃′ := (s′ − s0) mod d 2

p2
log se

and let

z(s′ + 1) = z(s′) +
d2

s′ + 1
· (46){

d1(1− z(s′))γ , if s̃′ < d 2
p2

log se −Ns
i ,

−(1− 2c′)(1− z(s′)), if s̃′ ≥ d 2
p2

log se −Ns
i .

We will show that if
⋂∞
s′=s0

{y(s′) > 1 − ε} happens, then
y(s′) ≤ z(s′) for s0 ≤ s′ ≤ s1. In fact, by Lemma C.3 iii)
in Appendix C it can be deduced directly that y(s′) ≤ z(s′)
for s′ ∈ (s0, s0 + d 2

p2
log se], and by Lemma C.3 i) and iii)

in Appendix C we can get y(s′) ≤ z(s′) for s′ ∈ (s0 +
d 2
p2

log se, s0 + 2d 2
p2

log se]. By repeating this process we get
y(s′) ≤ z(s′) for all s0 ≤ s′ ≤ s1.

In the following part we estimate the value of z(s1) under

the events
⋂b p2s

2 log s c
i=1 Asi and

⋂s1
s′=s0

{z(s′) > 1− ε}. Let

δ1 := d1ε
γ−1 > d1(1− z(s′))γ−1.

and z̄(s′) := 1 − z(s′). For any i ∈ [1, b p2s
2 log sc] and s′ ∈

[s0 + (i− 1)d 2
p2

log se, s0 + id 2
p2

log se−Ns
i ), by (46) we get

z̄(s′ + 1) = z̄(s′)− d2d1

s′ + 1
z̄(s′)γ

> z̄(s′)− d2δ1

s0 + (i− 1)d 2
p2

log se
z̄(s′),

and then

z̄
(
s0 + id 2

p2
log se −Ns

i

)
> z̄
(
s0 + (i− 1)d 2

p2
log se

)
×
(

1− d2δ1

s0 + (i− 1)d 2
p2

log se

)d 2
p2

log se−Nsi
. (47)

Similarly, for s′ ∈ [s0 + id 2
p2

log se − Ns
i , s0 + id 2

p2
log se),

by (46) we get

z̄(s′ + 1) = z̄(s′) +
d2(1− 2c′)

s′ + 1
z̄(s′)

≥ z̄(s′) +
d2(1− 2c′)

s0 + id 2
p2

log se
z̄(s′)

and then

z̄
(
s0 + id 2

p2
log se

)
≥ z̄
(
s0 + id 2

p2
log se −Ns

i

)
×
(

1 +
d2(1− 2c′)

s0 + id 2
p2

log se

)Nsi
. (48)
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From (47), (48), and the assumption that
⋂b p2s

2 log s c
i=1 Asi happens

we get

z̄(s1) > z̄(s0)

b p2s
2 log s c∏
i=1

[(
1 +

d2(1− 2c′)

s0 + id 2
p2

log se

)Nsi
×
(

1− d2δ1

s0 + (i− 1)d 2
p2

log se

)d 2
p2

log se−Nsi
]

> z̄(s0)

b p2s
2 log s c∏
i=1

[(
1 +

d2(1− 2c′)

s0 + id 2
p2

log se

) p1
2 d

2
p2

log se

×
(

1− d2δ1

s0 + (i− 1)d 2
p2

log se

)d 2
p2

log se− p12 d
2
p2

log se
]

(49)

We can compute that
b p2s
2 log s c∑
i=1

p1

2
d 2

p2
log se log

(
1 +

d2(1− 2c′)

s0 + id 2
p2

log se

)

=
p1

2
d 2

p2
log se

b p2s
2 log s c∑
i=1

d2(1− 2c′)

s0 + id 2
p2

log se
(1 + o(1))

=
p1d2(1− 2c′)

2

(
log s− log log s

)
(1 + o(1)),

and similarly
b p2s
2 log s c∑
i=1

(
d 2

p2
log se − p1

2
d 2

p2
log se

)
· log

(
1− d2δ1

s0 + (i− 1)d 2
p2

log se

)
≥ −

(
1− p1

2

)
d2δ1

[2 log s

p2s0
+
(

log s− log log s
)]

(1 + o(1))

≥ −
(

1− p1

2

)
d2δ1

[3

2
log s− log log s

]
(1 + o(1)),

so by the condition that

ε ≤
( p1(1− 2c′)

2(2− p1)d1

) 1
γ−1 ⇐⇒ δ1 ≤

p1(1− 2c′)

2(2− p1)

⇐⇒
(

1− p1

2

)3d2δ1
2
≤ 3p1d2(1− 2c′)

8

and (49), we get 1 − lims→∞ z(s1) = lims→∞ z̄(s1) = ∞.
Combining this equality with (44), we obtain

P
[ ∞⋂
s′=s0

{x1(s′) > 1− ε}
]
≤ lim
s→∞

{
P
[[ b p2s

2 log s c⋂
i=1

Asi

]c]

+ P
[[ ∞⋂

s′=s0

{x1(s′) > 1− ε}
]
∩
[ b p2s

2 log s c⋂
i=1

Asi

]]}

≤ lim
s→∞

P
[[ ∞⋂

s′=s0

{y(s′) > 1− ε}
]
∩
[ b p2s

2 log s c⋂
i=1

Asi

]]

≤ lim
s→∞

P
[[ ∞⋂

s′=s0

{z(s′) > 1− ε}
]
∩
[ b p2s

2 log s c⋂
i=1

Asi

]]
= 0,

which is contradictory with (41).

APPENDIX B
THE PROOF OF COROLLARY V.1

Let c(s) = (c1(s), . . . , cn(s)) denote the left dominant
eigenvector of C(s), then by Assumption 3 and Lemma II.2
we have ci(s) ≤ 1/2 for any i ∈ {1, . . . , n} a.s. Then, for any
x(s) ∈ ∆0

n, by Lemma II.1 and Assumption 5 i), we have a.s.

πi(W (x(s))) + ζi(s)

≤ ci(s)/(1− xi(s))∑n
j=1 cj(s)/(1− xj(s))

+ d1(1− xi(s))γ

<
1

2− xi(s)
+ d1(1− xi(s))γ

=
(1− xi(s))2

2− xi(s)
+ xi(s) + d1(1− xi(s))γ

< xi(s) + (1 + d1)(1− xi(s))min{γ,2}, (50)

which implies the condition (36) holds.
By the proof of Theorem V.2 we need to verify the condition

(35) when x(s) is close to {e1, . . . , en}. We consider the case
that xi(s) ≥ 1−(2(1+δ)d1)

−1
γ−1 . First, if ‖C(s)‖max ≤ δ < 1,

then

ci(s) =
∑
j 6=i

cj(s)Cji(s) ≤ (1− ci(s))δ ⇐⇒ ci(s) ≤
δ

1 + δ
.

(51)
Let c′ := 1+2δ

2(1+δ) . If ci(s) ≤ δ
1+δ holds, then similar to (50)

we have

πi(W (x(s))) + ζi(s)

<
δ/(1 + δ)

δ
1+δ + (1− δ

1+δ )(1− xi(s))
+ d1(1− xi(s))γ

=
c′

c′ + (1− c′)(1− xi(s))
+ d1(1− xi(s))γ

−
[
c′
(

1− δ

1 + δ

)
− δ

1 + δ
(1− c′)

]
(1− xi(s))

≤ c′

c′ + (1− c′)(1− xi(s))
. (52)

By Assumption 5 ii), (51) and (52) we get (35) holds.

APPENDIX C
SOME LEMMAS

Lemma C.1: Suppose the non-negative real number se-
quence {ys}s≥1 satisfies

ys+1 ≤ (1− as)ys + bs, (53)

where bs ≥ 0 and as ∈ [0, 1) are real numbers. If
∑∞
s=1 as =

∞ and lim
s→∞

bs/as = 0, then lim
s→∞

ys = 0 for any y1 ≥ 0.

Proof: Repeating (53) we get

ys+1 ≤ y(1)
s∏
t=1

(1− at) +
s∑
i=1

bi

s∏
t=i+1

(1− at).
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Here we define
∏s
t=i(·) := 1 when i > s. Because∑∞

t=1 at = ∞, we have
∏∞
t=1(1 − at) = 0. Then, we just

need to prove that

lim
s→∞

s∑
i=1

bi

s∏
t=i+1

(1− at) = 0. (54)

Since lims→∞ bs/as = 0, for any real number ε > 0, there
exists an integer s∗ > 0 such that bs ≤ εas when s ≥ s∗.
Thus,

s∑
i=1

bi

s∏
t=i+1

(1− at)

≤
s∗−1∑
i=1

bi

s∏
t=i+1

(1− at) +
s∑

i=s∗

εai

s∏
t=i+1

(1− at)

=
s∗−1∑
i=1

bi

s∏
t=i+1

(1− at) + ε

(
1−

s∏
t=s∗

(1− at)
)

→ ε as s→∞, (55)

where the first equality uses the classical equality

t∑
i=1

ci

t∏
j=i+1

(1− cj) = 1−
t∏
i=1

(1− ci)

with {ci} being any complex numbers, which can be obtained
by induction. Let ε decrease to 0, then (55) implies (54).

Lemma C.2: There exists a constant p2 > 0 such that for
any s ≥ 0, s1 > 0 and x(s) ∈ ∆o

n,

P

[
s+s1−1∑
s′=s

Is′ ≤
p1s1

2

]
≤ e−p2s1 ,

where Is is defined by (42) and p1 is the same constant
appearing in (35).

Proof: From (35) we have for any s ≥ 0 and x(s) ∈ ∆o
n,

P [Is = 1] ≥ p1. (56)

By Markov’s inequality we have for any s ≥ 0, s1 > 0, θ > 0
and x(s) ∈ ∆o

n,

P

[
s+s1−1∑
s′=s

Is′ ≤
p1s1

2

]
= P

[
exp

(
− θ

s+s1−1∑
s′=s

Is′
)
≥ e−θp1s1/2

]

≤ e
θp1s1

2 E
[

exp
(
− θ

s+s1−1∑
s′=s

Is′
)]

= e
θp1s1

2 E
[ s+s1−1∏

s′=s

e−θIs′
]
. (57)

Also, we can get

E
[ s+s1−1∏

s′=s

e−θIs′
]

=
∑
z1,z2

z1z2P
[ s+s1−2∏

s′=s

e−θIs′ = z1, e
−θIs+s1−1 = z2

]
=
∑
z1,z2

z1P
[ s+s1−2∏

s′=s

e−θIs′ = z1

]
· z2P

[
e−θIs+s1−1 = z2|

s+s1−2∏
s′=s

e−θIs′ = z1

]
=
∑
z1

z1P
[ s+s1−2∏

s′=s

e−θIs′ = z1

)(
1− (1− e−θ)

· P
[
Is+s1−1 = 1|

s+s1−2∏
s′=s

e−θIs′ = z1

])

≤ E
[ s+s1−2∏

s′=s

e−θIs′
)(

1− (1− e−θ)p1

]
≤ · · · ≤

(
1− (1− e−θ)p1

)s1
, (58)

where the first inequality uses (56). For small positive θ,

θp1

2
+ log

(
1− (1− e−θ)p1

)
= −θp1

2
+O(θ2),

so that we can choose suitable θ > 0 and obtain

e
θp1s1

2

(
1− (1− e−θ)p1

)s1
≤ e−

θp1s1
3 .

Combining this with (57) and (58) yields

P

[
s+s1−1∑
s′=s

Is′ ≤
p1s1

2

]
≤ e

θp1s1
2

(
1− (1− e−θ)p1

)s1
≤ e−

θp1s1
3 .

Lemma C.3: For any s ≥ max{d1d2γ, (1−2c′)d2(γ−1)}
and x ∈ [1− [(2γ − 1)d1d2]−

1
γ−1 , 1), define

fs(x) := x+
d2d1(1− x)γ

s
,

gs(x) := x− d2

s
(1− 2c′)(1− x),

where d1, d2, γ, c
′ are the same constants appearing in Theo-

rem V.2. Then:
i) fs and gs are strictly monotonically increasing functions.
ii) (fs+1 ◦ gs)(x) := fs+1(gs(x)) < (gs+1 ◦ fs)(x).
iii) Let s2 ≥ s1 > 0 be arbitrarily given, and set

H := hs+s2−1 ◦ hs+s2−2 ◦ · · · ◦ hs,

where hs′(s ≤ s′ ≤ s + s2 − 1) equals to fs′ or gs′ and the
total number of f is not larger than s1. If

(hs′ ◦ hs′−1 ◦ · · · ◦ hs)(x) ≥ 1− [(2γ − 1)d1d2]−
1

γ−1
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for any s′ ∈ [s, s+ s2), then

H(x) ≤ (gs+s2−1 ◦ · · · ◦ gs+s1 ◦ fs+s1−1 ◦ · · · ◦ fs) (x). (59)

Proof: i) For any 0 < x1 < x2 < 1, we set ∆ := x2−x1

and then

fs(x2)−fs(x1)

= ∆ +
d1d2

s
(1− x1)γ

[(
1− ∆

1− x1

)γ
− 1
]

= ∆ +
d1d2

s
(1− x1)γ

∞∑
i=1

(
γ

i

)(
− ∆

1− x1

)i
> ∆− d1d2

s
γ(1− x1)r−1∆ > 0

when s ≥ d1d2γ. Also, gs(x2) < gs(x1) holds obviously.
ii) Set a := 1− 2c′ and z := 1− x, then we have

gs+1(fs(x))

= x+
d2d1(1− x)γ

s
− d2a

s+ 1

(
1− x− d2d1(1− x)γ

s

)
= x+

d2d1z
γ

s
− d2a

s+ 1

(
z − d2d1z

γ

s

)
(60)

and

fs+1(gs(x))

= x− d2a

s
(1− x) +

d1d2

s+ 1

(
1− x+

d2a

s
(1− x)

)γ
= x− d2az

s
+
d1d2

s+ 1

(
z +

d2a

s
z
)γ
. (61)

Also, if s ≥ d2a(γ − 1), then

(
1 +

d2a

s

)γ
= 1 +

d2aγ

s
+
d2a

s

∞∑
i=2

(
γ

i

)(d2a

s

)i−1

< 1 +
d2aγ

s
+
d2a

s

∞∑
i=2

γ

i!
< 1 +

2d2aγ

s
. (62)

By (60), (61) and (62) we have

gs+1(fs(x))− fs+1(gs(x))

=
(1

s
+

d2a

s(s+ 1)
− 1

s+ 1

(
1 +

d2a

s

)γ)
d1d2z

γ

+
(1

s
− 1

s+ 1

)
d2az

>
1 + d2a− 2γd2a

s(s+ 1)
d1d2z

γ +
d2az

s(s+ 1)

>
d2az

s(s+ 1)

(
− (2γ − 1)d1d2z

γ−1 + 1
)
≥ 0,

where the last inequality uses the condition that x ≥ 1−[(2γ−
1)d1d2]−

1
γ−1 .

iii) Let s∗ be total number of f in H . For the case when
s2 = s1 = s∗, (59) holds obviously.

For the case when s2 > s1 and s∗ = s1, if H is not equal
to gs+s2−1 ◦ · · · ◦ gs+s1 ◦ fs+s1−1 ◦ · · · ◦ fs, we can find s′ ∈

[s, s + s2 − 2] such that hs′ = gs′ and hs′+1 = fs′+1. Then
by ii) we have

(fs′+1 ◦ gs′ ◦ hs′−1◦ · · · ◦ hs) (x)

= (fs′+1 ◦ gs′) [(hs′−1 ◦ · · · ◦ hs)(x)]

< (gs′+1 ◦ fs′) [(hs′−1 ◦ · · · ◦ hs)(x)]

= (gs′+1 ◦ fs′ ◦ hs′−1 ◦ · · · ◦ hs) (x).

Combining this with i) yields(
hs+s2−1 ◦ · · · ◦ hs′+2 ◦ fs′+1 ◦ gs′ ◦ hs′−1 ◦ · · · ◦ hs

)
(x)

= (hs+s2−1 ◦ · · · ◦ hs′+2)[
(fs′+1 ◦ gs′ ◦ hs′−1 ◦ · · · ◦ hs)(x)

]
< (hs+s2−1 ◦ · · · ◦ hs′+2)[

(gs′+1 ◦ fs′ ◦ hs′−1 ◦ · · · ◦ hs)(x)
]

=
(
hs+s2−1 ◦ · · · ◦ hs′+2

◦ gs′+1 ◦ fs′ ◦ hs′−1 ◦ · · · ◦ hs
)
(x).

Repeating the above process we get (59).
For the case when s∗ < s1 ≤ s2, by the above discussion

we have(
hs+s2−1 ◦ hs+s2−2 ◦ · · · ◦ hs

)
(x)

≤ (gs+s2−1 ◦ · · · ◦ gs+s∗ ◦ fs+s∗−1 ◦ · · · ◦ fs) (x)

< (gs+s2−1 ◦ · · · ◦ gs+s1 ◦ fs+s1−1 ◦ · · · ◦ fs) (x),

where the last inequality uses i) and gs′(x) < fs′(x).
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