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Dynamic Models of Appraisal Networks
Explaining Collective Learning

Wenjun Mei Noah E. Friedkin Kyle Lewis Francesco Bullo

Abstract—This paper proposes models of learning pro-
cess in teams of individuals who collectively execute a se-
quence of tasks and whose actions are determined by indi-
vidual skill levels and networks of interpersonal appraisals
and influence. The closely-related proposed models have
increasing complexity, starting with a centralized manager-
based assignment and learning model, and finishing with
a social model of interpersonal appraisal, assignments,
learning, and influences. We show how rational optimal
behavior arises along the task sequence for each model,
and discuss conditions of suboptimality. Our models are
grounded in replicator dynamics from evolutionary games,
influence networks from mathematical sociology, and trans-
active memory systems from organization science.

Index Terms—collective learning, transactive memory
systems, appraisal networks, influence networks, evolution-
ary games, replicator dynamics, multi-agent systems

I. INTRODUCTION

A. Transactive memory system in applied psychology
Researchers in sociology, psychology, and organiza-

tion science have long studied the inner functioning and
performance of teams with multiple individuals engaged
in tasks. Extensive qualitative studies, conceptual models
and empirical studies in the laboratory and field re-
veal some statistical features and various phenomena of
teams [17], [15], [33], [32], but only a few quantitative
and mathematical models are available [20], [1].

Transactive memory system (TMS) is a concep-
tual model of team learning and performance well-
established in organization science, see the seminal work
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by Wegner et al. [29] and other highly cited works [30],
[17], [15], [4]. A TMS is a collective “memory” system
that emerges in teams engaged in tasks, as the team
members develop the collective knowledge on who pos-
sesses what expertise. TMS facilitates coordination and
division of labor. Empirical research across a range of
team types and settings [17], [16], [34], as well as some
early simulation-based computational models [25], [26],
[1], demonstrates a strong positive relationship between
the development of a TMS and team performance.
However, the mechanisms through which team members
come to share an understanding of the distribution of
expertise is typically treated as “black box” processes
in TMS research. It remains an open problem how to
mathematically characterize the TMS-related social and
cognitive processes, such as the division of labor and the
evolution of collective knowledge.

B. Problem description

In this paper we propose a class of multi-agent dy-
namical systems as mathematical formalizations of some
important aspects of the TMS theory. We consider a nat-
ural social process, in which a team of individuals, with
unknown skill levels, is completing a sequence of tasks.
Each task is completed by subdividing it into subtasks
with different workloads and assigning one subtask to
each team member. The team performance is maximized
when the workload assignments are proportional to the
individuals’ underlying skill levels. We adopt the concept
of appraisal network, or equivalently its corresponding
row-stochastic appraisal matrix, to model the TMS of
the team. The appraisal network represents how the team
members evaluate each other’s underlying skill level. The
dynamics of the appraisal matrix is as follows: First, after
completing the task, each individual receives a feedback
signal equal to the deviation of her/his own performance
from the weighted average performance of a subset of
observed individuals. Second, based on the feedback
signal, each individual adjusts her/his own appraisal
and the appraisals of other team members. Third, the
appraisal network may or may not be updated via an
interpersonal influence process. Fourth, the workload
division for the next tasks is computed as a function
of the appraisal matrix. The evolution of the appraisal
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network corresponds to the development of a team’s
TMS. This paper aims to mathematically formalize this
four-step process and investigate the conditions under
which (i) the team as an whole achieves asymptotically
the optimal workload assignment; (ii) each individual
learns asymptotically the true relative skill levels of all
the team members; and (iii) the learning fails to occur.
We refer to property (ii) as collective learning.

C. Literature review

To the best of our knowledge, this paper is the first at-
tempt to model the development of TMS as a multi-agent
system and provide rigorous conditions for collective
learning. To the best of our knowledge, the only related
previous works are the computational models proposed
by Palazzolo et al [25], Ren et al [26], and Anderson
et al [1]. The model in [1] is a 2-dimension ODE
and treats the collective knowledge as a scalar variable,
while the models in [25] and [26] are multi-agent.
Palazzolo et al [25] consider time-varying skill levels.
Ren et al [26] consider multi-dimension skills and task
requirements. Both models take into account numerous
complicated and realistic individual/group actions, and
the analysis of both models is based on simulation.

In our models, collective learning arises as the result of
the co-evolution of interpersonal appraisals and influence
networks. Related previous work includes social com-
parison theory [7], averaging-based social learning [10],
opinion dynamics [6], [9], [18], reflected appraisal
mechanisms [8], [12], and the combined evolution of
interpersonal appraisals and influence networks [11].

In the modeling and analysis of the evolution of
appraisal and influence networks, we build an insight-
ful connection between our model and the well-known
replicator dynamics in evolutionary game theory; see the
textbook [27], some control and optimization applica-
tions [21], [2], and the recent contributions [5], [19].

Our models are also marginally related to distributed
optimization, e.g. [3], [23]. But in this paper we focus
on modeling the natural social behavior of individuals.
Moreover, the evolution of the decision variable, i.e.,
the workload assignment, is not directly modeled, but
a byproduct of the dynamics for the appraisal network.

D. Contribution

Firstly, based on a few natural assumptions, we
propose three novel models with increasing complex-
ity for the dynamics of teams: the manager dy-
namics, the assign/appraise dynamics, and the as-
sign/appraise/influence dynamics. Without loosing math-
ematical tractability and intuitive insights, our work
integrates several natural processes in a single model:
the division of workload, the update of interpersonal

appraisals via observation, and the opinion dynamics
over the influence network. To the best of our knowl-
edge, this is the first time that such an integration
has been proposed and leads to rigorous and intuitive
results. For the baseline manager dynamics, the workload
assignment is adjusted in a centralized manner: the
increase rate of workload assigned to an individual is
equal to the deviation of his/her performance from the
average. Under this intuitive assumption, the evolution
of the workload assignment obeys the well-established
replicator dynamics with novel fitness functions as the
individual performances. The assign/appraise dynamics
provides an insightful perspective on the connection
between team performance and the appraisal network, by
assuming that, instead of by the manager, the workload
assignment is determined by the appraisal network in
a social and distributed manner. The update of the
appraisals is driven by the individuals’ heterogeneous
performance feedback. In the assign/appraise/influence
dynamics model, we further incorporate the co-evolution
of appraisal and influence networks.

Secondly, we present comprehensive theoretical analy-
sis on the dynamical properties of our models. For the as-
sign/appraise dynamics and the assign/appraise/influence
dynamics, we relate the models’ asymptotic behavior
with the connectivity property of the observation net-
work, which defines the heterogeneous feedback signals
each individual observes. Our theoretical results on the
asymptotic behavior can be interpreted as the explo-
ration of the most relaxed conditions for the emergence
of asymptotic optimal workload assignment. Moreover,
some theoretical results also reveal insightful interpre-
tations that are consistent with the TMS theory studied
in organization science. According to Lee et al. [14], in
teams with well-developed TMS, members’ agreements
on the distribution of expertise facilitate high levels of
coordination and division of labor, which a centralized
manager might otherwise provide. In our paper, we
prove that, along the assign/appraise dynamics and the
assign/appraise/influence dynamics, the evolution of the
workload assignment determined by the appraisal net-
work does indeed satisfy the manager (a.k.a., replica-
tor) dynamics in a generalized form. In addition, the
assign/appraise/influence dynamics describes an emer-
gence process by which team members’ perception of
“who knows what” become more similar over time, a
fundamental feature of TMS [24], [14].

Thirdly, besides the models in which the team even-
tually learns the individuals’ true relative skill levels,
we propose one variation in each of the three phases of
the assign/appraise/influence dynamics: the assignment
rule, the update of appraisal network based on feedback
signal, and the opinion dynamics for the interpersonal
appraisals. The variations reflect some sociological and
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psychological mechanisms known to prevent the team
from learning. We investigate by simulation numerous
possible causes of failure to learn.

E. Organization

The rest of this paper is organized as follows: Section
II proposes our problem set-up and centralized man-
ager model; Section III introduces the assign/appraise
dynamics; Section IV is the assign/appraise/influence
model; Section V discusses some causes of failure to
learn; Section VI provides some further discussions and
conclusion. We put some preliminaries on evolutionary
games and replicator dynamics in Appendix. A.

II. PROBLEM SET-UP AND MANAGER DYNAMICS

In this section, we first mathematically formalize some
concepts related to the social processes we aim to model,
and illustrate them by a concrete example. Then we
introduce a baseline centralized model for team learning
dynamics. Frequently used notations are listed in Table I.

A. Model assumptions and notations

a) Team, tasks and assignments: The basic assump-
tion on the individuals and the tasks are given below.

Assumption 1 (Team, task type and assignment): Con-
sider a team of n individuals characterized by a fixed but
unknown vector x = (x1, . . . , xn)> satisfying x � 0n
and x>1n = 1, where each xi denotes the skill level of
individual i. The tasks being completed by the team are
assumed to have the following properties:

(i) The total workload of each task is characterized
by a positive scalar and is fixed as 1 in this paper;

(ii) The task can be arbitrarily decomposed into n
sub-tasks according to the workload assignment
w = (w1, . . . , wn)>, where each wi is the sub-
task workload assigned to individual i. The work-
load assignment satisfies w � 0n and w>1n = 1.
The sub-tasks are executed simultaneously.

The scalar skill levels can be interpreted more ab-
stractly as the individuals’ overall abilities of contribut-
ing to the tasks, while the workload assignment corre-
sponds to the individuals’ relative responsibilities.

b) Individual performance: The measure of individual
performance is defined below.

Assumption 2 (Individual performance): Given fixed
skill levels, each individual i’s performance, with the
assignmentw, is measured by pi(w) = f(xi/wi), where
f : [0,+∞)→ [0,+∞) is strictly concave, continuously
differentiable and monotonically increasing.
The function f is assumed concave since it is widely
adopted that the relation between the performance and
individual ability obeys the power law, i.e., f(x) ∼ xγ ,

with γ ∈ (0, 1) [1]. The specific form f( xiwi ) could be
generalized by adopting different measures of xi and wi.

c) Optimal assignment: It is reasonable to claim that,
in a well-functioning team, individuals’ relative respon-
sibilities, characterized by the workload assignment,
should be proportional to their true relative abilities.
We thereby refer to w∗ = x as the optimal assign-
ment. There are various team performance models for
which w∗ is the unique optimal solution in ∆n. For
example, define the measure of the mismatch between
workload assignment and individual’s true skill levels as
H1(w) =

∑n
i=1 |

wi
xi
− 1|. This mismatch is minimized

at w∗. Alternatively, if we define the team performance
as the weighted average individual performance, i.e.,
H2(w) =

∑n
i=1 wif( xiwi ), then the strict concavity of

f implies that H2(w) is maximized at w∗ = x.

TABLE I
NOTATIONS FREQUENTLY USED IN THIS PAPER

� (≺ resp.) entry-wise greater than (less than resp.).
� (� resp.) entry-wise no less than (no greater than resp.).

1n (0n resp. ) n-dimension column vector with all entries
equal to 1 (0 resp.)

x vector of individual skill levels, with x =
(x1, x2, . . . , xn)> � 0n and x>1n = 1.

w workload assignment. w � 0n and w>1n = 1
f a concave, continuously differentiable and in-

creasing function f : [0,+∞)→ [0,+∞)
p(w) vector of individual performances. p(w) =(

p1(w), . . . , pn(w)
)>, where pi(w) =

f(wi/xi) is the performance of individual i.
A appraisal matrix. A = (aij)n×n, where aij is

individual i’s appraisal of j’s skill level.
W influence matrix. W = (wij)n×n, where wij

is the weight individual i assigns to j’s opinion.
∆n n-dimension simplex {y ∈ Rn

≥0 |y
>1n = 1}

int(∆n) the interior of ∆n.
vleft(A) the left dominant eigenvector of the non-negative

and irreducible matrix A, i.e., the normalized
entry-wise positive left eigenvector associated
with the eigenvalue equal to A’s spectral radius.

G(B) the directed and weighted graph associated with
the adjacency matrix B ∈ Rn×n.

We introduce a simple and concrete example to illus-
trate the mathematical formalization introduced above.

Example (intruder detection task): Consider a group of
n individuals monitoring an environment. The environ-
ment is divided into multiple non-overlapping regions,
each of which is monitored by a CCTV camera con-
nected to its corresponding screen. The aim of the group
of individuals is to detect the locations of randomly-
appearing intruders. The appearance of the intruders
is uniformly random in space and is a homogeneous
Poisson process. An intruder is successfully detected if it
is observed on a screen by one of the individuals within
a certain time period since its appearance. The team
performance over a given task period is the fraction of
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successfully detected intruders. The task is conducted in
the follows way: each individual i monitors wi number
of screens and each screen is monitored by one and
only one individual. Here wi is normalized such that∑
i wi = 1. Each individual i has an intrinsic but

unknown normalized skill level xi. Denote by pi(w) the
probability that an intruder is successfully detected by
individual i, given the division of cameras w ∈ ∆n. This
probability pi(w) increases with individual i’s intrinsic
skill level xi and decreases with the number of screens
monitored by i, i.e., wi. A natural assumption is that
pi(w) = f( xiwi ), where f is a concave and monotonically
increasing function, with f(0) = 0 and f(∞) = 1. One
can check that the expected team performance is given
by
∑
i wif( xiwi ), which is maximized at w∗ = x.

B. Centralized manager dynamics
In this subsection we introduce a continuous-time

centralized model on the evolution of workload assign-
ment, referred to as the manager dynamics. The diagram
illustration is given by Figure 1(a). Suppose that, at each
time t, a team is completing a task based on the assign-
mentw(t). An outside manager observes the individuals’
performance p

(
w(t)

)
. We adopt the intuitive assumption

that the manager increases the workload assigned to
individual i if her/his performance is above the weighted
team average and vice versa. In addition, the sum of all
the individuals’ workloads remains 1. The manager is
assumed to adjust the workload assignment according
to the replicator dynamics below, which is arguably the
simplest model for the process described above.

ẇi = wi

(
pi(w)−

n∑
k=1

wkpk(w)
)
, (1)

for any i ∈ {1, . . . , n}. Equation (1) takes the same form
as the classic replicator dynamics from evolutionary
game theory [27], [5], with the nonlinear fitness function
πi(w) = pi(w) = f(xi/wi).

Theorem 1 (Manager dynamics): Consider equa-
tion (1) for the workload assignment as in Assumption 1
with performance as in Assumption 2. Then

(i) the set int(∆n) is invariant;
(ii) for anyw(0) ∈ int(∆n), the manager’s assignment

w(t) converges to w∗ = x, as t→∞.

The proof is given in Appendix B. We adopt the
same Lyapunov function used for the asymptotic stability
analysis of the replicator dynamics in [27], [5].

III. THE ASSIGN/APPRAISE DYNAMICS OF THE
APPRAISAL NETWORKS

Despite the desired property on the convergence of the
workload assignment to optimality, the manager dynam-
ics does not capture the evolution of the team’s inner

structures. In this section, we introduce a multi-agent
system, in which workload assignments are determined
by the team members’ interpersonal appraisals, rather
than any outside authority, and the appraisal network is
updated in a decentralized manner, driven by the team
members’ heterogeneous feedback signals.

A. Model description and problem statement

Appraisal network: Denote by aij the individual i’s
evaluation of j’s skill levels and refer to A = (aij)n×n
as the appraisal matrix. Since the evaluations are in the
relative sense, we assume A � 0n×n and A1n = 1n.
The directed and weighted graph G(A), referred to
as the appraisal network, reflects the team’s collective
knowledge on the distribution of its members’ abilities.

Assign/appraise dynamics: This multi-agent model is
illustrated by the diagram in Figure 1(b). We model three
phases: the workload assignment, the feedback signal
and the update of the appraisal network, specified by
the following three assumptions respectively.

Assumption 3 (Assignment rule): At any time t ≥ 0,
the task is assigned according to the left dominant eigen-
vector of the appraisal matrix, i.e., w(t) = vleft

(
A(t)

)
.

Justification of Assumption 3 is given in Appendix C.
For now we assume A(t) is row-stochastic and irre-
ducible for all t ≥ 0, so that vleft

(
A(t)

)
is always well-

defined. This will be proved later in this section.
Assumption 4 (Feedback signal): After executing the

workload assignment w, each individual i observes, with
no noise, the difference between her own performance
and the quality of some part of the whole task, given
by
∑
kmikpk(w), in which mik denotes the fraction

of workload individual k contributes to the part of task
observed by i. The matrix M = (mij)n×n defines
a directed and weighted graph G(M), referred to as
the observation network, and satisfies M � 0n×n and
M1n = 1n by construction.

The topology of the observation network defines the
individuals’ feedback signal structure. Notice that, the
feedback signal for each individual i is only the deviation
pi
(
w(t)

)
−
∑
kmikpk

(
w(t)

)
, while the matrix M is not

necessarily known to the individuals.
Assumption 5 (Update of interpersonal appraisals):

With the performance feedback signal defined as in As-
sumption 4, each individual i increases her self appraisal
and decreases the appraisals of all the other individuals,
if pi(w) >

∑
kmikpk(w), and vice versa. In addition,

the appraisal matrix A(t) remains row-stochastic.

The following dynamical system for the appraisal
matrix, referred to as the appraise dynamics, is arguably
the simplest model satisfying Assumptions 4 and 5:
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Fig. 1. Diagram illustrations of manager dynamics, assign/appraise dynamics, and assign/appraise/influence dynamics.


ȧii = aii(1− aii)

(
pi(w)−

n∑
k=1

mikpk(w)
)
,

ȧij = −aiiaij
(
pi(w)−

n∑
k=1

mikpk(w)
)
.

(2)

The matrix form of the appraise dynamics, together with
the assignment rule as in Assumption 3, is given by{

Ȧ = diag
(
p(w)−Mp(w)

)
Ad(In −A),

w = vleft(A),
(3)

and collectively referred to as the assign/appraise dy-
namics. Here Ad = diag(a11, . . . , ann).

Problem statement: In Section III.B, we investigate
the asymptotic behavior of dynamics (3), including:

(i) convergence to the optimal assignment, which
means that the team as an entirety eventually
learns all its members’ relative skill levels, i.e.,
limt→+∞w(t) = x;

(ii) appraisal consensus, which means that the in-
dividuals asymptotically reach consensus on the
appraisals of all the team members, i.e., aij(t) −
akj(t)→ 0 as t→ +∞, for any i, j, k.

Collective learning is the combination of the convergence
to optimal assignment and appraisal consensus.

B. Dynamical behavior of the assign/appraise dynamics

We start by establishing that the appraisal matrix A(t),
as the solution to equation (3), is extensible to all t ∈
[0,+∞) and the assignment w(t) is well-defined, in that
A(t) remains row-stochastic and irreducible. Moreover,
some finite-time properties are investigated.

Theorem 2 (Finite-time properties of assign/appraise
dynamics): Consider the assign/appraise dynamics (3),
based on Assumptions 3-5, describing a workload as-
signment as in Assumption 1, with performance as in
Assumption 2. For any observation network G(M), and
any initial appraisal matrix A(0) that is row-stochastic,
irreducible and has strictly positive diagonal,

(i) The appraisal matrix A(t), as the solution to (3),
is extensible to all t ∈ [0,+∞). Moreover, A(t)
remains row-stochastic, irreducible and has strictly
positive diagonal for all t ≥ 0;

(ii) there exists a row-stochastic irreducible matrix
C ∈ Rn×n with zero diagonal such that

A(t) = diag
(
a(t)

)
+
(
In − diag

(
a(t)

))
C, (4)

for all t ≥ 0, where a(t) =
(
a1(t), . . . , an(t)

)>
and ai(t) = aii(t), for i ∈ {1, . . . , n};

(iii) Define the reduced assign/appraise dynamics as
ȧi = ai(1− ai)

(
pi(w)−

n∑
k=1

mikpk(w)
)
,

wi =
ci

(1− ai)

/ n∑
k=1

ck
(1− ak)

,

(5)
where c = (c1, . . . , cn)> = vleft(C). This dynam-
ics is equivalent to system (3) in the following
sense: The matrix A(t)’s each diagonal entry aii(t)
satisfies the dynamics (5) for ai(t), and, for any
t ≥ 0, aii(t) = ai(t) for any i, and aij(t) =
aij(0)

(
1− ai(t)

)
/
(
1− ai(0)

)
for any i 6= j;

(iv) The set Ω =
{
a ∈ [0, 1]n

∣∣0 ≤ ai ≤ 1−ζi
(
a(0)

)}
,

where ζi
(
a(0)

)
= ci

xi
mink

xk
ck

(
1 − ak(0)

)
, is a

compact positively invariant set for the reduced
assign/appraise dynamics (5);

(v) the assignment w(t) satisfies the generalized repli-
cator dynamics with time-varying fitness function
ai(t)

(
pi
(
w(t)

)
−
∑
lmilpl

(
w(t)

))
for each i:

ẇi = wi

(
ai
(
pi(w)−

n∑
l=1

milpl(w)
)

−
n∑
k=1

wkak
(
pk(w)−

n∑
l=1

mklpl(w)
))
.

(6)

The proof for Theorem 2 is presented in Appendix D.
With the extensibility of A(t) and the finite-time prop-
erties, we now present the main theorem of this section.

Theorem 3 (Asymptotic behavior of assign/appraise
dynamics): Consider the dynamics (3), based on As-
sumptions 3-5, with the workload assignment as in
Assumption 1 and the performance as in Assumption 2.
Assume the observation network G(M) is strongly con-
nected. For any initial appraisal matrix A(0) that is row-
stochastic, irreducible and has positive diagonal,
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Fig. 2. Visualization of the evolution of A(t) and w(t) obeying the
assign/appraise dynamics with n = 6. The observation network is
strongly connected. In these visualized matrices and vectors, the darker
the entry, the higher value it has.

(i) the solution A(t) converges, i.e., there exists A∗ ∈
Rn×n such that limt→∞A(t) = A∗;

(ii) the limit appraisal matrix A∗ is row-stochastic and
irreducible. Moreover, the workload assignment
satisfies limt→∞w(t) = vleft(A

∗) = x.

The proof is presented in Appendix E. Theorem 3
indicates that, the teams obeying the assign/appraise
dynamics asymptotically achieves the optimal workload
assignment, but do not necessarily reach appraisal con-
sensus. Figure 2 gives a visualized illustration of the
asymptotic behavior of the assign/appraise dynamics.

Remark 4: From the proof for Theorem 3 we know
that, the teams obeying the following dynamics{

ȧii = γi(t)aii(1− aii)
(
pi(w)−

∑
kmikpk(w)

)
,

ȧij = −γi(t)aiiaij
(
pi(w)−

∑
kmikpk(w)

)
,

also asymptotically achieve the optimal assignment, if
each γi(t) remains strictly bounded from 0. This result
indicates that our model can be generalized to the case
of heterogeneous sensitivities to performance feedback.

IV. THE ASSIGN/APPRAISE/INFLUENCE DYNAMICS
OF THE APPRAISAL NETWORKS

In this section we further elaborate the assign/appraise
dynamics by assuming that the appraisal network is
updated via not only the performance feedback, but also
the influence process inside the team.

A. Model description

The new model, named the assign/appraise/influence
dynamics, is defined by three components: the assign-
ment rule as in Assumption 3, the appraise dynamics
based on Assumptions 4 and 5, and the influence dynam-
ics, which is the opinion exchanges among individuals
on the interpersonal appraisals. Denote by wij the weight
individual i assigns to j (including self weight wii) in the
opinion exchange. The matrix W = (wij)n×n defines a
directed and weighted graph, referred to as the influence
network, is row-stochastic and possibly time-varying.

The diagram illustration of assign/appraise/influence
dynamics is presented in Figure 1(c), and the general

form is given as follows:{
Ȧ = 1

τave
Fave(A,W ) + 1

τapp
Fapp(A,w),

w = vleft(A).
(7)

The time index t is omitted for simplicity. The term
Fapp(A,w) corresponds to the appraise dynamics given
by the right-hand side of the first equation in (3),
while the term Fave(A,W ) corresponds to the influence
dynamics specified by the assumption below. Parameters
τave and τapp are positive, and relate to the time scales of
influence dynamics and appraise dynamics respectively.

Assumption 6 (Influence dynamics): For the as-
sign/appraise/influence dynamics, assume that, at each
time t ≥ 0, the influence network is identical to
the appraisal network, i.e., W (t) = A(t). Moreover,
assume that the individuals obey the classic DeGroot
opinion dynamics [6] for the interpersonal appraisals,
i.e., Fave(W,A) = −(In −W )A.

Based on equation (7) and Assumptions 3-6, the
assign/appraise/influence dynamics is written as

Ȧ= 1
τave

(A2 −A)

+ 1
τapp

diag
(
p(w)−Mp(w)

)
Ad(In −A),

w=vleft(A),

(8)

In the next subsection, we relate the topology of the
observation network G(M) to the asymptotic behavior of
the assign/appraise/influence dynamics, i.e., the conver-
gence to optimal assignment and the appraisal consensus.

B. Dynamical behavior of the assign/appraise/influence
dynamics

The following lemma shows that, for the as-
sign/appraise/influence dynamics, we only need to con-
sider the all-to-all initial appraisal network.

Lemma 5 (entry-wise positive for initial appraisal):
Consider the assign/appraise/influence dynamics (8)
based on Assumptions 3-6, with the workload assign-
ment and performance as in Assumptions 1 and 2
respectively. For any initial appraisal matrix A(0) that is
primitive and row-stochastic, there exists ∆t > 0 such
that A(t) � 0n×n for any t ∈ (0,∆t].

The proof is given in Appendix F. Before discussing
the asymptotic behavior, we state a technical assumption.

Conjecture 6 (Strict lower bound of the interpersonal
appraisals): Consider the assign/appraise/influence dy-
namics (8) based on Assumptions 3-6, with the workload
assignment and performance as in Assumptions 1 and 2
respectively. For any A(0) that is entry-wise positive
and row-stochastic, there exists amin > 0, depending on
A(0), such that A(t) � amin1n1>n for any time t ≥ 0, as
long as A(τ) and w(τ) are well-defined for all τ ∈ [0, t].
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Fig. 3. Visualization of the evolution of A(t) and w(t) obeying the
assign/appraise/influence dynamics with n = 6. The observation net-
work contains a globally reachable node. In these visualized matrices
and vectors, the darker the entry, the higher value it has.

Monte Carlo validation and a sufficient condition for
Conjecture 6 are presented in Appendix G. Now we state
the main results of this section.

Theorem 7 (Assign/appraise/influence dynamical be-
havior): Consider the assign/appraise/influence dynam-
ics (8) based on Assumptions 3-6, with the task assign-
ment and performance as in Assumptions 1 and Assump-
tion 2 respectively. Suppose that Conjecture 6 holds.
Assume that the observation network G(M) contains a
globally reachable node. For any initial appraisal matrix
A(0) that is entry-wise positive and row-stochastic,

(i) the solution A(t) exists and w(t) = vleft
(
A(t)

)
is well-defined for all t ∈ [0,+∞). Moreover,
A(t) � 0n×n and A(t)1n = 1n for any t ≥ 0;

(ii) the assignment w(t) obeys the generalized repli-
cator dynamics (6), and ξ01n � w(t) �

(
1− (n−

1)ξ0
)
1n, where

ξ0 =

(
1 + (n− 1)

maxk xk
minl xl

γ0

)−1
, and

γ0 =
maxk xk/wk(0)

minl xl/wl(0)
;

(iii) as t→ +∞, A(t) converges to 1nx> and thereby
w(t) converges to x.

The proof is given in Appendix H. As Theorem 7
indicates, the team obeying the assign/appraise/influence
dynamics achieves collective learning. A visualized illus-
tration of the dynamics is given by Figure 3.

V. MODEL VARIATIONS: CAUSES OF
FAILURE TO LEARN

The baseline assign/appraise/influence dynamics (8)
consists of three phases: the assignment rule, the appraise
dynamics, and the influence dynamics. In this section, we
propose one variation in each of the three phases, based
on some socio-psychological mechanisms that may cause
a failure in team learning. We investigate the behavior
of each model variation by numerical simulation.

a) Variation in the assignment rule: workload as-
signment based on degree centrality: In Assumption 3,
the workload assignment is based on the individuals’
eigenvector centrality in the appraisal network. If we

x
w

A

(a) no influence
dynamics, t = 0

x
w

A

(b) no influence
dynamics, t = 2

x
w

A

(c) no influence
dynamics, t =
30

x
w

A

(d) no influence
dynamics, t =
50

x
w

A

(e) with influ-
ence dynamics,
t = 0

x
w

A

(f) with
influence
dynamics, t = 2

x
w

A

(g) with influ-
ence dynamics,
t = 30

x
w

A

(h) with influ-
ence dynamics,
t = 50

Fig. 4. Examples of the assign/appraise (first row) and the as-
sign/appraise/influence (second row) dynamics in which the assignment
is based on the individuals’ in-degree centrality. The assign/appraise
dynamics does not achieve the collective learning, while the as-
sign/appraise/influence dynamics does.

assume instead that the assignment is based on the indi-
viduals’ normalized in-degree centrality in the appraisal
network, i.e., w(t) = A>(t)1n/1>nA(t)1n, then the
numerical simulation, see Figure 4, shows the following
results: the team obeying the assign/appraise dynamics
does not necessarily achieve collective learning, while
the team obeying the assign/appraise/influence dynamics
still achieves collective learning.

b) Variation in the appraise dynamics: partial ob-
servation of performance feedback: According to As-
sumption 4, the observation network G(M) determines
the feedback signals received by each individual. If the
observation network does not have the desired connec-
tivity property, the individuals do not have sufficient
information to achieve collective learning. Simulation
results in Figure 5 shows that, if G(M) is not strongly
connected for the assign/appraise dynamics, or if G(M)
does not contain a globally reachable node for the
assign/appraise/influence dynamics, the team does not
necessarily achieve collective learning.

c) Variation in the influence dynamics: prejudice
model: In Assumption 6, we assume that the individuals
obey the DeGroot opinion dynamics. If we instead adopt
the Friedkin-Johnsen opinion dynamics, given by

Fave(A,W ) = −Λ(In −W )A+ (In − Λ)(A(0)−A),

where Λ = diag(λ1, . . . , λn) and each λi characterizes
individual i’s attachment to her initial appraisals. Numer-
ical simulation, see Figure 6, shows that the team does
not necessarily achieve collective learning. The Friedkin-
Johnsen model captures the social-psychological mech-
anism in which individuals show an attachment to their
initial opinions, which causes the failure to learn.
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dynamics, t = 1
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dynamics, t =
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ence dynamics,
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ence dynamics,
t = 50

x
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(h) with influ-
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Fig. 5. Examples of failure to learn with partial observation for
a six-individual team. The figures in the first row correspond to
the assign/appraise dynamics, in which the observation network is
not strongly connected but contains a globally reachable node. The
figures in the second row correspond to the assign/appraise/influence
dynamics, in which the observation network does not contain a globally
reachable node. In both cases, A(t) converges but lim

t→+∞
w(t) 6= x.
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Fig. 6. Example of the evolution of A(t) and w(t) in the prejudice
model with n = 6. The darker the entry, the higher value it has. The
simulation result shows that A(t) converges but w(t) = vleft

(
A(t)

)
does not necessarily converges to x.

VI. FURTHER DISCUSSION AND CONCLUSION

A. Connections with TMS theory

TMS structure: As discussed in the introduction, one
important aspect of TMS is the members’ shared under-
standing about who possess what expertise. For the case
of one-dimension skill, TMS structure is approximately
characterized by the appraisal matrix and thus the devel-
opment of TMS corresponds to the collective learning
on individuals’ true skill levels. Simulation results in
Figure 7 compare the evolution of some features among
the teams obeying the assign/appraise/influence model,
the assign/appraise model, and the team that randomly
assigns the sub-tasks, respectively. Figure 7(a) shows
that, for both the assign/appraise/influence dynamics
and the assign/appraise dynamics, the team performance
measureH1(w), defined by the mismatch between work-
load assignment and individual skill levels, converges to
0, which exhibits the advantage of a developing TMS.

Transitive triads: As Palazzolo [24] points out, transi-
tive triads are indicative of a well-organized TMS. The
underlying logic is that inconsistency of interpersonal
appraisals lowers the efficiency of locating the expertise
and allocating the incoming information. In order to

0 5 10 150
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0.5

0.75

1

 

 

assign/appraise/influence
assign/appraise
random assignment

t

e�H1(w)

(a) e−H1(w,x)

0 5 10 150

20

40

60

80

 

 

assign/appraise/influence
assign/appraise
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t

Nnon-transitive triads

(b) Number of non-
transitive triads

Fig. 7. Evolution of the measure of mismatch between assignment
and individual skill levels, and the number of non-transitive triads
in the comparative appraisal graph. The solid curves represent the
team obeying the assign/appraise/influence dynamics. The dash curves
represent the team obeying the assign/appraise dynamics. The dotted
curves represent the team that randomly assign sub-task workloads.

reveal the evolution of triad transitivity in our models,
we define an unweighted and directed graph, referred
to as the comparative appraisal graph G̃(A) = (V,E),
with V = {1, . . . , n}, as follows: for any i, j ∈ V ,
(i, j) ∈ E if aij ≥ aii, i.e., if individual i thinks j has
no lower skill level than i herself. We adopt the standard
notion of triad transitivity and use the number of non-
transitive triads as the indicator of inconsistency in a
team. Figure 7(b) shows that, the non-transitive triads
vanish along the assign/appraise/influence dynamics, but
persist along the assign/appraise dynamics or the random
assignments.

B. Observation network structure and learning speed

Simulation results illustrate how the structure of the
observation network affects the convergence speeds of
our models, characterized by the convergence time Tc =
min

{
t ≥ 0

∣∣ e−H1(w(t)) ≥ 0.99
}

. Tc is a function of
the skill level x, the initial condition A(0), and the
observation network. We run 100 independent realiza-
tions of the assign/appraise dynamics for a team with
7 individuals. In each realization, we first randomly
generate x and A(0), and then randomly generate 9
strongly connected observation networks, G1, . . . , G9,
where each Gi is an Erdős-Rényi graph with the link
probability plink,i = 0.2 + 0.1(i− 1) and the individuals’
out-degrees normalized to 1. With the same x and A(0),
we run the assign/appraise dynamics with the observa-
tion networks G1, . . . , G9 respectively, and denote by
Tc,i the convergence time with respect to the obser-
vation network Gi. In each realization, Tc,1, . . . , Tc,9
are scaled by dividing them by maxi Tc,i. For the 100
realizations, we compute the mean value of each Tc,i
and plot it as a function of plink,i, see Figure 8(a).
The same simulation study has also been done for
the assign/appraise/influence dynamics, see Figure 8(b).
Simulation results clearly indicate that, for both the as-
sign/appraise and the assign/appraise/influence dynamics
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Fig. 8. The error bar plots for the mean convergence time of
100 random realizations, as a function of the link probability of
the Erdős-Rényi observation network. The errors are set to be the
standard deviation of the convergence time for each link proba-
bility. Figure 8(a) depicts the realizations for the assign/appraise
dynamics, while Figure 8(b) corresponds to the realizations for the
assign/appraise/influence dynamics.

with Erdős-Rényi observation network, the convergence
speed increases with the link probability.

C. Conclusion

This paper proposes a class of models closely con-
nected with the TMS theory in organization science. We
generalize from qualitative TMS theory the following
two arguments, as the staring point of the mathematical
modeling: (1) Team performance depends on whether the
team members’ relative responsibilities are proportional
to their relative abilities in the team; (2) The team mem-
bers’ relative responsibilities are determined by how they
evaluate each other’s relative ability. Theoretical analysis
of the assign/appraise dynamics and the assign/appraise
influence dynamics can be interpreted as the exploration
of the most relaxed condition for the convergence to
optimal workload assignment, concluded as follows: (i)
Each individual only needs to know, as feedback, the
difference between her own performance and the average
performance of some subgroup of individuals, but do not
need to know exactly whom she is compared with; (ii)
The individuals can have heterogeneous but strictly pos-
itive sensitivities to the performance feedback; (iii) With
opinion exchange, the observation network with one
globally reachable node is sufficient for the convergence
to optimal assignment; (iv) Without opinion exchange,
strongly connected observation network is sufficient for
the convergence to optimal assignment. Future research
directions might include more realistic models consider-
ing noisy observation and finite individual memory.

APPENDIX

A. Preliminaries

Evolutionary games apply game theory to evolving
populations adopting different strategies. Consider a
game with n pure strategies, denoted by the unit vectors
e1, . . . , en respectively. A mixed strategy w is thereby
a vector in the n-dimension simplex denoted by ∆n.

Denote by π(v,w) the expected payoff for any mixed
strategy v against mixed strategy w. A strategy w∗ is a
locally evolutionarily stable strategy (ESS) if there exists
a deleted neighborhood Ǔ(w∗) in the interior of ∆n such
that π(w∗,w) > π(w,w) for any w ∈ Ǔ(w∗), which
implies that, in a population adopting strategy w, a suf-
ficiently small mutated subpopulation adopting strategy
w∗ gets more payoff than the majority population.

Replicator dynamics models the evolution of sub-
populations adopting different strategies. The total pop-
ulation is divided into n sub-populations. Individuals in
each sub-population i adopt the pure strategy ei. Denote
by wi(t) the fraction of sub-population i in the total
population at time t. The fitness of sub-population i,
denoted by πi

(
w(t)

)
, depends on the sub-population

distribution w(t) =
(
w1(t), . . . , wn(t)

)>
and is defined

as the expected payoff π
(
ei,w(t)

)
. The growth rate of

sub-population i is equal to the deviation of its fitness
from the population average. The replicator dynamics is
given by:

ẇi = wi

(
πi(w)−

n∑
k=1

wkπk(w)
)
. (9)

There is a simple connection between the locally ESS
and the replicator dynamics [5]: Generally, a locally ESS
in the interior of ∆n is a locally asymptotic equilib-
rium of the replicator dynamics; Specifically, if there
exists a matrix A such that π(v,w) = v>Aw for any
v,w ∈ ∆n, then a locally ESS in the interior of ∆n is a
globally asymptotic stable equilibrium of the replicator
dynamics. In addition, the replicator dynamics is also a
mean-field approximation of some stochastic population
process, which is out of the scope of this paper.

B. Proof for Theorem 1

The vector form of equation (1) is written as

ẇ = diag(w)
(
p(w)−w>p(w)1n

)
. (10)

Left multiply both sides by 1>n . We get d(1>nw)/dt =
0. Moreover, since ẇi = 0 whenever wi = 0, the n-
dimension simplex ∆n is an positively invariant set.

Since the function f is continuously differentiable,
the right-hand side of equation (10) is continuously
differentiable and locally Lipschitz in int(∆n). Define

V (w) = −
n∑
i=1

xi log
wi
xi
.

Due to the strict concavity of log function and 1>nw = 1,
we have that V (w) ≥ 0 for any w ∈ ∆n and
V (w) = 0 if and only if w = x. Moreover, since
V (w) is continuously differentiable in w, the level set
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{w ∈ int(∆n) |V (w) = ξ} is a compact subset of
int(∆n). Along the trajectory,

dV (w)

dt
= −

∑
i∈θ1(w)

(xi − wi)f(xi/wi)

−
∑

i∈θ2(w)

(xi − wi)f(xi/wi) < 0,

where θ1(w) = {i |xi ≥ wi} and θ2(w) = {i |xi <
wi}. This concludes the proof for the invariant set and
the asymptotic stability of w∗ = x, and one can infer,
from the inequality above, that w∗ = x is the ESS for
the evolutionary game with the payoff function πi(w) =
f(xi/wi). Moreover, since V (w)→ +∞ as w tends to
the boundary of ∆n, the region of attraction is int(∆n).

C. Justifications of Assumption 3

We provide some justification of Assumption 3 on
the workload assignment rule w = vleft(A). Firstly, the
entries of vleft(A) correspond to the individuals’ eigen-
vector centrality in the appraisal network and thus reflect
how much each individual is appraised by the team. Sec-
ondly, each row i of A(t) can be considered as individual
i’s opinion on how to divide the workload for the task
at time t. Suppose the group of individuals exchange
their opinions over the influence network defined by
W = A(t) and eventually reach consensus on the work-
load assignment. We have that the consensus workload
assigned to any individual j, denoted by wj(t), satisfies
wj(t) = limk→∞W kAj(t) = 1nvleft(A(t))>Aj(t),
whereAj(t) denotes the j-th column of A(t). Therefore,
w>(t) = vleft(A(t))>A(t), which leads to w(t) =
vleft(A(t)). Thirdly, our eigenvector assignment rule
is consistent with the following natural property: in a
team without performance feedback, , due to the lack of
information inflow, the team’s task assignment does not
change. These arguments justify Assumption 3; recall
also Section V a) with a numerical evaluation of a
different assignment rule.

D. Proof for Theorem 2

Before the proof, we state a useful lemma summarized
from Page 62-67 of [31].

Lemma 8 (Continuity of eigenvalue and eigenvector):
Suppose A,B ∈ Rn×n satisfy |aij | < 1 and |bij | < 1
for any i, j ∈ {1, . . . , n}. For sufficiently small ε > 0,

(i) the eigenvalues λ and λ
′

of A and (A + εB),
respectively, can be put in one-to-one correspon-
dence so that |λ′ − λ| < 2(n+ 1)2(n2ε)

1
n ;

(ii) if λ is a simple eigenvalue of A, then the cor-
responding eigenvalue λ(ε) of A + εB satisfies
|λ(ε)− λ| = O(ε);

(iii) if v is an eigenvector of A associated with a simple
eigenvalue λ, then the eigenvector v(ε) of A+ εB
associated with the corresponding eigenvalue λ(ε)
satisfies |vi(ε)−vi| = O(ε) for any i ∈ {1, . . . , n}.

Proof of Theorem 2: In this proof, we extend the
definition of vleft(A) to the normalized entry-wise posi-
tive left eigenvector, associated with the eigenvalue of A
with the largest magnitude, if such an eigenvector exists
and is unique. According to Perron-Frobenius theorem
and Lemma 8, vector vleft(A), as long as well-defined,
depends continuously on the entries of A. Therefore,
for system (3), there exists a sufficiently small τ > 0
such that A(t) and w(t) are well-defined and contin-
uously differentiable at any t ∈ [0, τ ], and, moreover,
pi
(
w(t)

)
−
∑
kmikpk

(
w(t)

)
remains finite. Therefore,

for any t ∈ [0, τ ] and i, j ∈ {1, . . . , n}, aij(t) > 0 if
aij(0) > 0; aij(t) = 0 if aij(0) = 0, and thus A(t) is
row-stochastic and primitive for any t ∈ [0, τ ].

For any i ∈ {1, . . . , n}, there exists k 6= i such that
aik(0) > 0. According to equation (2),

daij(t)

daik(t)
=
aij(t)

aik(t)
, ∀t ∈ [0, τ ], ∀j ∈ {1, . . . , n}\{i, k},

which leads to aij(t)/aik(t) = aij(0)/aik(0). Let C be
an n×n matrix with the entries cij defined as: (i) cii = 0
for any i ∈ {1, . . . , n}; (ii) cij = aij(0)

/(
1−aii(0)

)
for

any j 6= i. One can check that C is row-stochastic and
A(t) is given by equation (4), for any t ∈ [0, τ ], where
a(t) =

(
a1(t), . . . , an(t)

)>
with ai(t) = aii(t). Since

the digraph, with C as the adjacency matrix, has the
same topology with the digraph associated with A(0),
matrix C is irreducible and c = vleft(C) is well-defined.

Since the matrix A(t) has the structure given by (4),
according to Lemma 2.2 in [12], for any t ∈ [0, τ ],

wi(t) =
ci

1− ai(t)

/∑
k

ck
1− ak(t)

.

Therefore, for any t ∈ [0, τ ],

pi
(
w(t)

)
= f

(
xi
ci

(
1− ai(t)

)∑
k

wk(t)
ck

1− ak(t)

)
.

According to equation (2), ȧj(t) ≤ 0 for any j ∈
argmink

xk
ck

(
1 − ak(t)

)
. Therefore, argmink

xk
ck

(
1 −

ak(t)
)

is increasing, and similarly, argmaxk
xk
ck

(
1 −

ak(t)
)

is decreasing with t, which implies that, the set

ΩA
(
A(0)

)
=
{
A ∈ Rn×n

∣∣∣A = diag(a) + (I − diag(a))C,

0 ≤ ai ≤ 1− ci
xi

min
k

xk
ck

(
1− akk(0)

)
,∀i
}
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is a compact positive invariant set for system (3), as long
as A(0) is row-stochastic, irreducible and has strictly
positive diagonal. Moreover, one can check that, for any
A ∈ ΩA

(
A(0)

)
,w = vleft(A) is well-defined and strictly

lower (upper resp.) bounded from 0 (1 resp.). Therefore,
the solution A(t) is extensible to all t ∈ [0,+∞)
and equations (4) and (5) hold for any t ∈ [0,+∞).
Moreover, since pi

(
w(t)

)
−
∑
kmikpk

(
w(t)

)
remains

bounded, we have aij > 0 if aij(0) > 0 and aij(t) = 0
if aij(0) = 0. This concludes the proof for (i) - (iv).

For statement (v), differentiate both sides of the equa-
tion w>(t)A(t) = w>(t) and substitute equation (3)
into the differentiated equation. We obtain

(w>diag(p(w)−Mp(w))Ad −
dw>

dt
)(In −A) = 0>n ,

where time index t is omitted for simplicity. Equation (6)
in (v) is obtained due to w>(t)1n = 1.

E. Proof for Theorem 3

We prove the theorem by analyzing the generalized
replicator dynamics (6) for w(t), and the reduced as-
sign/appraise dynamics (5) for a(t), given any constant,
normalized and entry-wise positive vector c. According
to equation (5), the assignment w = vleft(A) can be
considered as a function of the self appraisal vector
a, that is, w(t) = w

(
a(t)

)
for any t ≥ 0. In this

proof, let φ(a) = p
(
w(a)

)
−Mp

(
w(a)

)
and denote

by D : Rn × Rn → R≥0 the distance induced by the
2-norm in Rn. For any x ∈ Rn and subset S of Rn,
defined D(x, S) = infy∈S D(x,y).

First of all, for any given a(0) ∈ (0, 1)n, we know
that the set Ω, as defined in Theorem 2(iv), is a compact
positively invariant set for dynamics (5), and w(t) is
well-defined and entry-wise strictly lower (upper resp.)
bounded from 0n (1n resp.), for all t ∈ [0,+∞).

Secondly, for any a ∈ Ω, define a scalar function

V (a) = log
maxk xk/wk(a)

mink xk/wk(a)
,

and the following index sets

θ(a) =
{
i
∣∣∣∃ti > 0 s.t.

xi

wi
(
a(t)

) = max
k

xk

wk
(
a(t)

)
for any t ∈ [0, ti], with a(0) = a

}
, and

θ(a) =
{
j
∣∣∣∃tj > 0 s.t.

xj

wj
(
a(t)

) = min
k

xk

wk
(
a(t)

)
for any t ∈ [0, tj ], with a(0) = a

}
.

Then the right time derivative of V
(
a(t)

)
, along the

solution a(t), is given by

d+V
(
a(t)

)
dt

= aj(t)φj
(
a(t)

)
− ai(t)φi

(
a(t)

)
,

for any i ∈ θ
(
a(t)

)
and j ∈ θ

(
a(t)

)
. Define

E =
{
a ∈ Ω

∣∣ ajφj(a)− aiφi(a) = 0

for any i ∈ θ(a), j ∈ θ(a)
}
,

E1 =
{
a ∈ E

∣∣φ(a) = 0n
}
,

E2 =
{
a ∈ E

∣∣φ(a) 6= 0n
}
.

One can check that E and E1 are compact subsets
of Ω, E = E1 ∪ E2, and E1 ∩ E2 is empty. Denote
by Ê the largest invariant subset of E. Applying the
LaSalle Invariance Principle, see Theorem 3 in [13],
we have D

(
a(t), Ê

)
→ 0 as t → +∞. Note that,

lim
t→+∞

D
(
a(t), Ê

)
= 0 does not necessarily leads to

lim
t→+∞

w(t) = x. We need to further refine the result.

For set E1, it is straightforward to see that E1 ∈ Ê
and w(a) = x for any a ∈ E1. Now we prove by
contradiction that, if E2 ∩ Ê is not empty, then, for
any a ∈ E2 ∩ Ê, there exists i ∈ θ(a) such that
ai = 0. Suppose ai > 0 for any i ∈ θ(a). Since the
observation network G(M) is strongly connected, there
exists a directed path i, k1, . . . , kq, j on G(M), where
i ∈ θ(a) and j ∈ θ(a). We have k1 ∈ θ(a), otherwise,
starting with ã(0) = a, there exists sufficiently small
∆t > 0 such that φi

(
ã(t)

)
> 0 and ãi(t) > 0, which

contradicts the fact that a is in the largest invariant set
of E. Repeating this argument, we have j ∈ θ(a), which
contradicts φ(a) 6= 0n. Similarly, we have that, for any
a ∈ E2 ∩ Ê, there exists j ∈ θ(a) with aj = 0.

If the fixed vectors c and x satisfy c = x, then there
can not exist a ∈ E2∩Ê satisfying all the following three
properties: i) there exists i ∈ θ(a) such that ai = 0; ii)
there exists j ∈ θ(a) such that aj = 0; iii) φ(a) 6= 0n.
In this case, E2 ∩ Ê is an empty set, which implies that
a(t)→ Ê = E1 and thus w(t)→ x as t→ +∞.

Before discussing the case when c 6= x, we present
some properties of the individual performance measure:

P1: For any k, l ∈ {1, . . . , n}, xkck (1−ak) ≤ xl
cl

(1−al)
leads to pk(a) ≤ pl(a), and xk

ck
(1 − ak) > xl

cl
(1 − al)

leads to pk(a) > pl(a);
P2: If there exists τ ≥ 0 such that i ∈ θ

(
a(τ)

)
and

ai(τ) = 0, then i ∈ θ
(
a(t)

)
for all t ≥ τ ;

P3: p(a(t)) is finite and strictly bounded from
0, satisfying f

(
xi
ci

(1 − ζi(a(0)))
)
≤ pi(a(t)) ≤

f
(
xi
ci

∑
k

ck
ζk(a(0))

)
, with ζi(a) defined in Theorem 2(iv).

For the case when c 6= x, consider the partition
ϕ1, . . . , ϕm of the index set {1, . . . , n}, with m ≤ n,
satisfying the following two properties:

(i) xk/ck = xl/cl for any k, l in the same subset ϕr;
(ii) xk/ck > xl/cl for any k ∈ ϕr, l ∈ ϕs, with r < s.

For any a ∈ E2 ∩ Ê, since there exists j ∈ θ(a) with
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aj = 0, we have ϕm ⊂ θ(a). For any i ∈ ∪m−1r=1 ϕr, let

E2,i =
{
a ∈ Ω

∣∣∣ ai = 0, aj = 0 for any j ∈ ϕm,

1− xi
ci

ck
xk
≤ ak ≤ 1− min

l∈{1,...,n}
xl
cl

ck
xk
,

for any k ∈ ϕ1 ∪ · · · ∪ ϕm−1 \ {i}
}
.

With properties P1 and P2 of p(a), for any a ∈ E2,i,
we have i ∈ θ(a) and ai = 0. Moreover,

(i) E2,i ⊂ Rn is compact for any i ∈ ϕ1∪· · ·∪ϕm−1;
(ii) ∪i∈ϕ1

E2,i, . . . ,∪i∈ϕm−1
E2,i are disjoint and com-

pact subsets of Rn;
(iii) E2 ∩ Ê ⊂

⋃
i∈ϕ1∪···∪ϕm−1

E2,i.

For any a ∈ E2 ∩ Ê, since there exists i ∈ θ(a) and
j ∈ θ(a) such that ai = aj = 0, on the observation
network G(M), there must exists a path i, k1, . . . , kq
satisfying: i) i ∈ θ(a) and ai = 0; ii) akq = 0 and
xkq/ckq < xi/ci; iii) akl > 0 for any l ∈ {1, . . . , q−1}.
Consider the trajectory ã(t) with ã(0) = a, we have

˙̃akq−1
≥ ãkq−1

(1− ãkq−1
)

·
(
f
(xkq−1

ckq−1

(1− ãkq−1)

n∑
l=1

cl
1− ãl

)
− f
((
mkq−1kq

xkq
ckq

+ (1−mkq−1kq )
xi
ci

) n∑
l=1

cl
1− ãl

))
.

The inequality is due to properties P1-P3 of pi(a) for
i ∈ θ(a) with ai = 0, and the concavity of the function
f . Moreover, since ãkq−1 is strictly bounded from 1 and∑
l cl/(1 − ãl) is strictly lower bounded from 0, there

exists Tkq−1
(M,a(0),a) > 0 such that

pkq−1

(
ã(t)

)
<

2−mkq−1kq

2
pi
(
ã(t)

)
+
mkq−1kq

2
pkq
(
ã(t)

)
.

Applying the same argument to kq−2, . . . , k1, we
have that, there exists Tk1(M,a(0),a) > 0 and
ηik1...kq (M) ∈ (0, 1) such that, for the solution ã(t)
with ã(0) = a,

pk1
(
ã(t)

)
<
(
1− ηik1...kq (M)

)
pi
(
ã(t)

)
+ ηik1...kq (M)pkq

(
ã(t)

)
,

for all t ≥ Tk1(M,a(0),a). This inequality implies that,

φi
(
ã(t)

)
≥ mik1ηik1...kq (M)

(
pi
(
ã(t)

)
− pkq

(
ã(t)

))
≥ mik1ηik1...kq (M)f ′

(
xi
ci

)
·
n∑
l=1

cl

1− ζl
(
a(0)

)(xi
ci
−
xkq
ckq

)
> 0.

Since the choices of i and the paths i, k1, . . . , kq are
finite, there exists a constant η > 0 such that, for any

a ∈ E2 ∩ Ê, there exists T
(
a(0),a

)
> 0 such that,

for any t ≥ T
(
a(0),a

)
> 0, the solution ã(t), with

ã(0) = a, satisfies i ∈ θ
(
ã(t)

)
and φi

(
ã(t)

)
≥ η > 0.

For any i ∈ ϕ1 ∪ · · · ∪ ϕm−1, define

Ê2,i =
{
a ∈ E2,i

∣∣ pi(a)−
n∑
k=1

mikpk(a) ≥ η
}
.

We have: i) each Ê2,i is a compact subset of Rn; ii)
∪i∈ϕ1

Ê2,i, . . . ,∪i∈ϕm−1
Ê2,i are disjoint and compact

subsets of Rn. Let Ê2 = ∪m−1r=1

(
∪r∈ϕr Ê2,i

)
. For

dynamics (5), due to the continuous dependency on the
initial condition, for any a ∈ (E2 ∩ Ê) \ (Ê2 ∩ Ê), there
exists δ > 0 such that, for any ã(0) ∈ U(a, δ)∩(E2∩Ê),
where U(a, δ) =

{
b ∈ Ω

∣∣D(b,a) ≤ δ
}

, ã(t) ∈ Ê2∩ Ê
for sufficiently large t. Therefore, a can not be an ω-
limit point of a(0). We thus obtain that, the ω-limit set
of a(0) is in the set E1 ∪ (Ê2 ∩ Ê). Moreover, since
E1,∪i∈ϕ1

Ê2,i, . . . ,∪i∈ϕm−1
Ê2,i are disjoints compact

subsets of Rn, and the ω-limit set of a(0) is connected
and compact, a(t) can only converge to one of the sets
E1,∪i∈ϕ1

Ê2,i, . . . ,∪i∈ϕm−1
Ê2,i.

Now we prove limt→+∞D(a(t), E1) = 0 by contra-
diction. Suppose ω

(
a(0)

)
∈ ∪i∈ϕr Ê2,i for some r ∈

{1, . . . ,m− 1}. Since each Ê2,i is a compact set, there
exists ε > 0 and η(ε) > 0 such that φi(a) ≥ η(ε) > 0
for any a ∈ U(Ê2,i, ε). For this given ε > 0, since
ω
(
a(0)

)
∈ ∪i∈ϕr Ê2,i leads to D

(
a(t),∪i∈ϕr Ê2,i

)
→ 0

as t→ +∞, we conclude that, there exists T > 0 such
that, for any t ≥ T , a(t) ∈ ∪i∈ϕrU(Ê2,i, ε). Define
Vr(a) = mini∈ϕr ai, for any a ∈ ∪i∈ϕrU(Ê2,i, ε).
The function Vr(a) satisfies that, Vr(a) ≥ 0 for any
a ∈ ∪i∈ϕrU(Ê2,i, ε) and Vr(a) = 0 if and only if
a ∈ ∪i∈ϕr Ê2,i. Therefore, D

(
a(t),∪i∈ϕr Ê2,i

)
→ 0

leads to Vr
(
a(t)

)
→ 0 as t → +∞. Moreover, since

a ∈ U(Ê2,i, ε) for any i ∈ argmink∈ϕr ak, we have

d+Vr
(
a(t)

)
dt

= min
i∈argmin

k∈ϕr
ak(t)

ȧi(t) ≥ δai(t)
(
1− ai(t)

)
.

According to Theorem 2(i), for any given a(0) ∈
(0, 1)n, a(t) ∈ (0, 1)n for all t ≥ 0. Therefore,
d+Vr(a(t))/dt > 0 for all t ≥ T , which contra-
dicts limt→+∞ Vr

(
a(t)

)
= 0. Therefore, we have

limt→+∞D(a(t), E1) = 0 and limt→+∞w(t) = x.
Since Ȧ(t) → 0n×n as φ

(
a(t)

)
→ 0n, there exists

an entry-wise non-negative and irreducible matrix A∗,
depending on A(0) and satisfying vleft(A

∗) = x, such
that A(t)→ A∗ as t→ +∞. This concludes the proof.

F. Proof for Lemma 5

Since A(0) is primitive and row-stochastic, following
the same argument in the proof for Theorem 2(i), we
have that, there exists ∆t̃ > 0 such that, for any t ∈
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[0,∆t̃]: i) w(t) is well-defined and w(t) � 0n; ii) A(t)
is bounded, continuously differentiable to t, and satisfies
A(t)1n = 1n; iii) p

(
w(t)

)
− Mp

(
w(t)

)
is bounded.

Therefore, for any t ≥ 0, there exists µ, depending on t
and A(0), such that Ȧ(t) � 1

τave
A2(t)− ( 1

τave
+ µ)A(t).

Consider the equation Ḃ(t) = 1
τave
B2(t) − ( 1

τave
+

µ)B(t), with B(0) = A(0). According to the compari-
son theorem, A(t) � B(t) for any t ≥ 0. Let bi(t) be
the i-th column of B(t) and let yk(t) = e(

1
τave

+µ)tbk(t).
We obtain ẏk(t) = 1

τave
B(t)yk(t).

Denote by Φ(t, 0) the state transition function for the
equation ẏk(t) = 1

τave
B(t)yk(t), which is written as

Φ(t, 0) = In+
∑∞
k=1 Φk(t), where Φ1(t) =

∫ t
0
B(τ1)dτ1

and Φl(t) =
∫ t
0
B(τ1)

∫ τ1
0
. . . B(τl−1)

∫ τl−1

0
B(τl)dτl

for l ≥ 2. By computing the MacLaurin expansion for
each Φk(t) and summing them together, we obtain that

Φ(t, 0) = In + h1(t)B(0) + h2(t)B2(0) + . . .

+ hn−1(t)Bn−1(0) +O(tn),

where hk(t) is a polynomial with the form hk(t) =
ηk,kt

k + ηk,k+1t
k+1 + . . . , and, moreover, ηk,k > 0

for any k ∈ N. Therefore, for t sufficiently small,
we have hk(t) > 0 for any k ∈ {1, . . . , n − 1}.
Moreover, since Bk(0) � 0n×n for any k ∈ N and
B(0) + · · · + Bn−1(0) � 0n×n, there exists ∆t ≤ ∆t̃
such that Φ(t, 0) � 0n×n for any t ∈ [0,∆t].

G. Discussion on Conjecture 6

The Monte Carlo method [28] is adopted to estimate
the probability that Conjecture 6 holds. For any ran-
domly generated A(0) ∈ int(∆n), define the random
variable Z : int(∆n)→ {0, 1} as

(i) Z
(
A(0)

)
= 1 if there exists amin > 0 such that

A(t) � amin1n1>n for all t ∈ [0, 1000];
(ii) Z

(
A(0)

)
= 0 otherwise.

Let p = P
[
Z
(
A(0)

)
= 1

]
. For N independent random

samples Z1, . . . , ZN , in each of which A(0) is randomly
generated in int(∆n), define p̂N =

∑N
i=1 Zi/N . For any

accuracy ε ∈ (0, 1) and confidence level 1− ξ ∈ (0, 1),
|p̂N − p| < ε with probability greater than 1− ξ if

N ≥ 1

2ε2
log

2

ξ
. (11)

For ε = ξ = 0.01, the Chernoff bound (11) is satisfied
by N = 27000. We run 27000 independent MATLAB
simulations of the assign.appraise/influence dynamics
with n = 7 and find that p̂N = 1. Therefore, for any
A(0) ∈ int(∆n), with 99% confidence level, there is
at least 0.99 probability that A(t) is entry-wise strictly
lower bounded from 0n×n for all t ∈ [0, 10000].

Moreover, we present in the following lemma a suffi-
cient condition for Conjecture 6 on the initial appraisal
matrix A(0) and the parameters τave, τapp.

Lemma 9 (Strictly positive lower bound of appraisals):
Consider the assign/appraise/influence dynamics (8),
based on Assumptions 3-6, with the assignment w(t)
and performance p(w) as in Assumptions 1 and 2
respectively. For any initial appraisal matrix A(0) that
is entry-wise positive and row-stochastic, as long as
τapp

τave
≥ 1− ξ0

ξ0

(
f

(
xmax

ξ0

)
− f

(
xmin

1− (n− 1)ξ0

))
,

where the constant ξ0 is defined as in Theorem 7 (ii),
then there exists amin > 0 such that A(t) � amin1n1>n .
Proof: First of all, by definition we have ws(t) =∑
k wk(t)aks(t). The right-hand side of this equation is a

convex combination of {a1s(t), . . . , ans(t)}. Therefore,
maxk aks(t) ≥ ws(t) ≥ ξ0 for all t ∈ [0,+∞).

At any time t ≥ 0, for any pair (i, j) such that
aij(t) = mink,l akl(t), the dynamics for aij(t) is

ȧij(t) =
1

τave

(∑
k

aik(t)akj(t)− aij(t)

)

− 1

τapp
aii(t)aij(t)

(
pi
(
w(t)

)
−

n∑
k=1

mikpk
(
w(t)

))
.

For simplicity, in this proof, denote φi = pi
(
w(t)

)
−∑n

k=1mikpk
(
w(t)

)
. Suppose amj(t) = maxk akj(t).

We have

ȧij(t) ≥
1

τave
aij(t)amj(t)−

1

τave
a2ij(t)

− 1

τapp
aii(t)aij(t)φi.

Therefore,
ȧij
aij
≥ 1

τave
ξ0 −

1

τapp
(1− ξ0)

(
f
(xmax

ξ0

)
− f

( xmin

1− (n− 1)ξ0

))
.

The condition on 1
τave
/ 1
τapp

in Lemma 9 guarantees that
ȧij(t)

/
aij(t) is positive if aij(t) = mink,l akl(t). This

concludes the proof.

H. Proof for Theorem 7
Statement (i) is proved following the same argument

in the proof for Theorem 2 (i). For any given A(0)
that is row-stochastic and entry-wise positive, the closed
and bounded invariant set Ω for A(t) is given by
Ω =

{
A ∈ Rn×n

∣∣A � amin1n1>n , A1n = 1n
}

, where
amin > 0 is given by Conjecture 6.

Since w>(t)
(
A2(t) − A(t)

)
= 0>n for all t ≥ 0,

we conclude that, w(t) in the assign/appraise/influence
dynamics also obeys the generalized replicator dynam-
ics (6). Consider w(t) as a function of A(t). Define
φ(A) = p

(
w(A)

)
−Mp

(
w(A)

)
and

V (A) = log
maxk xk/wk(A)

mink xk/wk(A)
.
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For any t ∈ [0,+∞), there exists i ∈
argmaxk xk/wk

(
A(t)

)
and j ∈ argmink xk/wk

(
A(t)

)
such that V

(
A(t)

)
= log

(
xiwj

(
A(t)

)/
xjwi

(
A(t)

))
,

and d+V (A)
dt = ajjφj(A) − aiiφi(A) ≤ 0. Therefore,

V
(
A(t)

)
is non-increasing with t, which in turn implies

xi
xj

wj(t)

wi(t)
≤ maxk xk/wk(0)

mink xk/wk(0)
= γ0,

for any i, j ∈ {1, . . . , n}. This inequality, combined with
the fact that

∑
k wk(t) = 1 for any t ≥ 0, leads to the

inequalities in statement (ii).
Similar to the proof for Theorem 3, define

θ(A) =
{
i
∣∣∣ ∃ ti > 0 s.t.

xi

wi
(
A(t)

) = max
k

xk

wk
(
A(t)

)
for any t ∈ [0, ti] with A(0) = A

}
,

θ(A) =
{
j
∣∣∣ ∃ tj > 0 s.t.

xj

wj
(
A(t)

) = min
k

xk

wk
(
A(t)

)
for any t ∈ [0, tj ] with A(0) = A

}
,

and let E =
{
A ∈ Ω

∣∣ d+V (A)/dt = 0
}

. For any A ∈
E, since A � amin1n1>n , we have φi(A) = φj(A) = 0
for any i ∈ θ(A) and j ∈ θ(A). Suppose individual s
is a globally reachable node in the observation network.
There exists a directed path i, k1, . . . , kq, s. Without loss
of generality, suppose q ≥ 1. For any A in the largest
invariant subset of E, we have k1 ∈ θ(A) and therefore
φk1(A) = 0. This iteration of argument leads to s ∈
θ(A). Following the same line of argument, we have
s ∈ θ(A). Therefore, for any given A(0) � 0n×n that
is row-stochastic, the solution A(t) converges to Ê =
{A ∈ Ω |φ(A) = 0n} = {A ∈ Ω |vleft(A) = x}.

Let Ã = maxj
(

maxk akj − mink akj
)
. One can

check that d+Ṽ (A)/dt along the dynamics (8) is a
continuous function of A for any A ∈ Ω. Define
Êε/2 =

{
A ∈ Ê

∣∣ ‖A − 1nx>‖2 ≥ ε/2
}

. Since
Ê is compact, Êε/2 is also a compact set. For any
A ∈ Êε/2, since d+Ṽ (A)/dt is strictly negative and
depends continuously on A, there exists a neighborhood
U(A, rA) = {Ã ∈ Ω | ‖Ã − A‖2 ≤ rA} such that
d+Ṽ (Ã)/dt < 0 for any Ã ∈ U(A, rA). Due to
the compactness of Êε/2 and according to the Heine-
Borel finite cover theorem, there exists K ∈ N and
{Ak, rk}k∈{1,...,K}, where Ak ∈ Êε/2 and rk > 0 for
any k ∈ {1, . . . ,K}, such that Êε/2 ⊂ ∪Kk=1U(Ak, rk).

Define the distance D : Rn × Rn → R≥0 as in the
proof for Theorem 3. Let δ = min{r1, . . . , rk, ε/2} and

B1 =
{
A ∈ Ω

∣∣D(A, Ê) ≤ δ,D(A, Êε/2) > δ
}
,

B2 =
{
A ∈ Ω

∣∣D(A, Ê) ≤ δ,D(A, Êε/2) ≤ δ
}
.

We have B1 ∩ B2 is empty. For any A ∈ B1,
since D(A, Ê) ≤ δ, D(A, Êε/2) > δ, there ex-
ists Ã ∈ Êε/2 such that D(A, Ã) ≤ δ. Since

D(Ã,1nx>) < ε/2, we have D(A,1nx>) ≤ D(A, Ã)+
D(Ã,1nx>) < ε. Therefore, B1 ⊂ U(1nx>, ε). More-
over, since B2 is compact, Ṽ (A) is lower bounded and
d+Ṽ (A)/dt is strictly upper bounded from 0 in B2.
Since limt→+∞D(A(t), Ê) = 0, there exists t0 > 0
such that A(t) ∈ B1 ∪B2 for any t ≥ 0. Therefore, for
any t ≥ t0, there exists t1 ≥ t such that A(t1) ∈ B1.
This argument is valid for any ε > 0, which implies that
1nx> is an ω-limit point for any given A(0).

Since Ê is compact, D(A, Ẽ) is strictly positive. Since
limt→+∞D

(
A(t), Ê

)
= 0, any A ∈ Ω\Ê can not be an

ω-limit point of A(0). For any A ∈ Ê \ {1nx>}, since
the solution passing through A asymptotically converges
to 1nx>, A ∈ Ê \ {1nx>} can not be an ω-limit point
of A(0) either. Therefore, the ω-limit set of A(0) is
{1nx>}. This concludes the proof.
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