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Abstract

In this work we review a class of deterministic nonlinear models for the propagation of infectious diseases over
contact networks with strongly-connected topologies. We consider network models for susceptible-infected (SI),
susceptible-infected-susceptible (SIS), and susceptible-infected-recovered (SIR) settings. In each setting, we pro-
vide a comprehensive nonlinear analysis of equilibria, stability properties, convergence, monotonicity, positivity, and
threshold conditions. For the network SI setting, specific contributions include establishing its equilibria, stability, and
positivity properties. For the network SIS setting, we review a well-known deterministic model, provide novel results
on the computation and characterization of the endemic state (when the system is above the epidemic threshold), and
present alternative proofs for some of its properties. Finally, for the network SIR setting, we propose novel results for
transient behavior, threshold conditions, stability properties, and asymptotic convergence. These results are analogous
to those well-known for the scalar case. In addition, we provide a novel iterative algorithm to compute the asymptotic
state of the network SIR system.
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1. Introduction

Problem motivation and description

Propagation phenomena appear in numerous disciplines. Examples include the spread of infectious diseases in
contact networks, the transmission of information in communication networks, the diffusion of innovations in com-
petitive economic networks, cascading failures in power grids, and the spreading of wild-fires in forests.

One important class of models of propagation phenomena are scalar deterministic models. These models have
been widely studied, e.g., see the survey by Hethcote (2000). These models qualitatively capture some dynamic fea-
tures, including phase transitions and asymptotic states. However, shortcomings of scalar models are also prominent:
for example, scalar models are typically based on the assumption that individuals in the population have the same
chances of interacting with each other. This assumption overlooks the internal structure of the network over which the
propagation occurs, as well as the heterogeneity of individuals in the network. Both these aspects play critical roles
in shaping the dynamical behavior of the propagation processes.

In a general formulation, propagation is a dynamical process on a complex network. Each network node has a
state taking value in a discrete set and state changes are influenced by the nodes’ neighbors in the network. Many
relevant research questions arise naturally, including: how to model the local dynamics at each node, how to identify
model parameters, how to estimate the state of such a dynamical system, and how to analyze the system transient and
asymptotic properties.

IThis material is based upon work supported by, or in part by, the U. S. Army Research Laboratory and the U. S. Army Research Office under
grant numbers W911NF-15-1-0577.
∗Corresponding author
Email addresses: meiwenjunbd@gmail.com (Wenjun Mei), shadi.mohagheghie@gmail.com (Shadi Mohagheghi),

zampi@dei.unipd.it (Sandro Zampieri), bullo@engineering.ucsb.edu (Francesco Bullo)

Preprint submitted to Annual Reviews in Control September 9, 2017



Various types of models have been proposed to describe propagation processes over complex networks; one key
distinguishing feature of these models is whether the propagation dynamics is assumed to be stochastic or determin-
istic. Deterministic network epidemic models were originally proposed in the late 1970’s in the seminal works (La-
jmanovich and Yorke, 1976, Hethcote, 1978). These models are of great research value, as attested by the large
literature focusing on them (see below). Moreover, they can be considered as approximations of certain Markov-chain
models, e.g., see (Sahneh et al., 2013).

In this paper, we review three key continuous-time deterministic models for epidemic propagation over networks.
Depending upon the nodal dynamics, i.e., the disease propagation behavior, deterministic epidemic propagation mod-
els are classified as: the Susceptible-Infected (SI) model, the Susceptible-Infected-Susceptible (SIS) model and the
Susceptible-Infected-Recovered (SIR) model; basic representations of these models are illustrated in Figure 1. In this
work we focus on transient and asymptotic behavior of these three continuous-time dynamical models over networks.
It is our key objective to relate the structure of the network to the function of the network (i.e., the transient and
asymptotic behavior of the propagation phenomenon).

Susceptible Infected Susceptible Infected

Susceptible Infected Recovered

Figure 1: Three basic models of infectious diseases: SI, SIS and SIR.

Literature review on deterministic epidemic models over networks

The literature on epidemic propagation is exceedingly vast. This paper focuses on deterministic models over net-
works and on their dynamical behavior. Accordingly, this subsection reviews the literature on deterministic epidemic
models. Unless specified, the works and results reviewed in what follows are all for the deterministic models. For
readers interested in Markov-chain models and in the mean-field approximation method, we refer to (Sahneh et al.,
2013, Azizan Ruhi and Hassibi, 2015, Pastor-Satorras et al., 2015, Nowzari et al., 2016) and (Bullo, 2017, Chapter
17). (Note that Markov-chain network epidemic models and their deterministic approximating models are different in
some of the dynamical properties, such as the epidemic threshold and the asymptotic behavior.)

The dynamics of several classic scalar epidemic models, i.e., the population models without network structure, are
surveyed in detail by Hethcote (2000). Among the different metrics discussed, identifying the effective reproduction
number R is of particular interest to researchers; R is the expected number of individuals that a randomly infected
individual can infect during its infection period. In these scalar models, whether an epidemic outbreak occurs or the
disease dies down depends upon whether R > 1 or R < 1, i.e., upon whether the system is above or below the so-
called epidemic threshold. Here by epidemic outbreak we mean an exponential growth of the fraction of the infected
population for small time. The basic reproduction number R0 is the effective reproduction number in a fully-healthy
susceptible population. In what follows we focus our review on deterministic network models.

The earliest work on the (continuous-time heterogeneous) SIS model on networks is (Lajmanovich and Yorke,
1976). This work proposes an n-dimensional model on a contact network and analyzes the system’s asymptotic
behavior. This article proposes a rigorous analysis of the threshold for the epidemic outbreak, which depends on
both the disease parameters and the spectral radius of the contact network. For the case when the basic reproduction
number is above the epidemic threshold, this paper establishes the existence and uniqueness of a nonzero steady-state
infection probability, called the endemic state. In what follows we refer to the model by Lajmanovich and Yorke
(1976) as the network SIS model; it is also known as the multi-group or multi-population SIS model.

Allen (1994) proposes and analyzes a discrete-time network SIS model. This work appears to be the first to revisit
and formally reproduce, for the discrete-time case, the earlier results by (Lajmanovich and Yorke, 1976); see also the
later (Wang et al., 2003). This work confirms the existence of an epidemic threshold, as a function of the spectral
radius of the contact network. Further recent results on the discrete-time model are obtained by Ahn and Hassibi
(2013) and by Azizan Ruhi and Hassibi (2015).
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Van Mieghem et al. (2009) argue that the (continuous-time) network SIS model is in fact the mean-field approxi-
mation of the original Markov-chain SIS model of exponential dimension; this claim is rigorously proven by Sahneh
et al. (2013). Van Mieghem et al. (2009) refer to this model as the intertwined SIS model and write the endemic state
as a continued fraction.

The works (Fall et al., 2007) and (Khanafer et al., 2016) discuss the continuous-time network SIS model in a more
modern language. Fall et al. (2007) refer to this model as the n-group SIS model and apply Lyapunov techniques
and Metzler matrix theory to establish existence, uniqueness, and stability of the equilibrium points below and above
the epidemic threshold. Khanafer et al. (2016) use positive system theory in their analysis and extend the existence,
uniqueness, and stability results to the setting of weakly connected digraphs.

Numerous extensions of these basic results on the network SIS model and other related works have appeared
over the years. For example, the estimation of the epidemic threshold in contact networks with power-law degree
distributions has been studied both by mathematically rigorous analysis, see (Chung et al., 2003), and by numerical
simulation, see (Castellano and Pastor-Satorras, 2010). The deterministic network SIS models without mean-field
approximation and with second-order mean-field approximation have been analyzed by Schwartz and Stone (2013)
and Ogura and Preciado (2017), respectively.

An early work by Hethcote (1978) proposes a general multi-group SIR model with birth, death, immunization,
and de-immunization. The epidemic threshold and the equilibria below/above the threshold are characterized. For
the simplified model without birth/death and de-immunization, Hethcote (1978) proves that the system converges
asymptotically to an all-healthy state. Guo et al. (2008) consider a generalized network SIR model with vital dynamics,
that is, with birth and death. They characterize the basic reproduction number and, through a careful Lyapunov
analysis, show the existence and global asymptotic stability of an endemic state above the threshold. Youssef and
Scoglio (2011) study a special case of the network SIR model under the name of individual-based SIR model over
undirected networks. Through a simulation-based analysis, the epidemic threshold is given as a function of the spectral
radius of the network.

There are also some extensions and related studies regarding the network SIR model. Sharkey (2008) investi-
gates the deterministic network SIR model without mean-field approximation. Castellano and Pastor-Satorras (2010)
point out that the (mean-field) network SIR predicts a vanishing threshold for a certain class of power-law distributed
networks, which is inconsistent with the corresponding stochastic SIR model. Sharkey et al. (2015) show that, dif-
ferent from the network SIR model with mean-field approximation, the so-called pair-based approach gives an exact
description of the stochastic SIR process for the tree topology.

To the best of our knowledge, no works have comprehensively characterized the properties of the network SI
model.

We conclude by mentioning other surveys and textbook treatments. In (Mesbahi and Egerstedt, 2010), the stability
of equilibria for the SEIR model is reviewed through Lyapunov and graph theory. The additional state E represents
the exposed population, i.e., the individuals who are infected but not infectious. (Newman, 2010, Chapter 17), (Easley
and Kleinberg, 2010, Chapter 21), and (Barrat et al., 2008, Chapter 9) review various heterogeneous epidemic models.
The recent survey by Nowzari et al. (2016) presents various epidemic models and addresses many solved and open
problems in the control of epidemic spreading.

Statement of Contribution

This paper reviews, in a comprehensive and coherent manner, deterministic models and dynamical behavior of SI,
SIS and SIR epidemic phenomena over networks. This review includes known results from the literature as well as
several novel results. We discuss SI, SIS and SIR models in three subsequent corresponding sections. Each section
starts by reviewing the well-known results for the corresponding scalar models; these are the models in which variables
represent an entire “well-mixed” population or nodes of an all-to-all unweighted graph. The core of each section is
a discussion about multi-group network models. We provide a tutorial treatment with comprehensive statements and
proofs for the deterministic network SI, SIS and SIR models.

We first analyze the network SI model. We analyze its asymptotic convergence, positivity of infection probabil-
ities, initial and asymptotic growth rates, and the stability of equilibria. We show that in the network SI model, the
system does not display a threshold and, with the exception of the trivial no-epidemics equilibrium, all the trajecto-
ries converge to the full contagion state. While these results are not technically difficult, they are novel here in the
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sense that, to the best of our knowledge, the properties of the network SI model have never before been formally
characterized.

Next we focus on the network SIS model. Our presentation includes known results from Lajmanovich and Yorke
(1976) (see also (Fall et al., 2007, Khanafer et al., 2016)) regarding the epidemic threshold, the system’s behavior
below the epidemic threshold, the existence and uniqueness of the endemic state for systems above the epidemic
threshold, and the asymptotic stability of the endemic state. Moreover, we provide a novel provably-correct iterative
algorithm for computing the fraction of infected individuals converging to the endemic state. This algorithm also pro-
vides an alternative proof for the existence and uniqueness of the endemic state for systems above the epidemic thresh-
old. We argue that this alternative proof is more concise that the those proposed in the previous works Lajmanovich
and Yorke (1976), Fall et al. (2007), Khanafer et al. (2016). In addition, we present novel Taylor expansions for the
endemic state near the epidemic threshold and in the limit of high infection rates. These novel Taylor expansions
shed light on these previously poorly-understood regimes. Finally, we show that the spread of infection takes place
instantaneously upon infecting at least one node in the network.

Finally, for the network SIR model, we review some known results on the monotonicity of the individuals’ sus-
ceptible probabilities and the system’s asymptotic behavior from (Hethcote, 1978). More importantly, we provide the
several novel results: We present novel transient behavior and system properties. First, we propose new threshold
conditions above which the epidemic grows initially, and below which it exponentially dies down. The initial rate of
growth above the threshold is given in terms of network characteristics, initial conditions, and infection parameters.
Moreover, we show that our proposed weighted average of the infected population, obtained by the entries of dom-
inant eigenvector of an irreducible quasi-positive matrix, captures information regarding the distribution of infection
in the system. We also establish positivity of the infection probabilities. Finally, we provide a novel iterative algo-
rithm to compute the asymptotic state of the network SIR model, with any arbitrary initial condition. For the iterative
algorithm, the existence and uniqueness of the fixed point, and the convergence of the iteration are rigorously proved.
Our results are analogous to the scalar SIR model properties and are valid for any arbitrary network topologies. In
comparison with (Youssef and Scoglio, 2011), our treatment builds on their numerical results but our result is more
general in that it does not depend upon specific initial conditions and graph topologies, and establishes numerous
properties, including the novel characterization of epidemic threshold.

Organization

Section 2 introduces our model set-up and some preliminary notations. The SI, SIS and SIR models are presented,
respectively, in Sections 3, 4, and 5. Section 6 is the conclusion.

2. Model Set-Up and Notations

For the scalar models, we use the notation x(t) (s(t) and r(t) resp.) for the fraction of infected (susceptible and
recovered resp.) individuals in the population at time t. The rest of this section is about the notations and basic model
set-up for the network epidemic model.

a) Contact Network: The epidemics are assumed to propagate over a weighted digraph G = (V, E), where V =

{1, . . . , n} and E is the set of directed links. Nodes of G can be interpreted as either single individuals in the contact
network or as homogeneous populations of individuals at each location/node in the contact network. A = (ai j)n×n

denotes the adjacency matrix associated with G. For any i, j ∈ V , ai j characterizes the contact strength from node j to
node i. For (i, j) ∈ E, ai j > 0 and for (i, j) < E, ai j = 0. In this paper, G is assumed to be strongly connected.

b) Node States and Probabilities: For different epidemic propagation models, the set of possible node states are
distinct. For network SI or SIS models, each node can be in either the “susceptible” or “infected” state, while in
the network SIR model, there is an additional possible node state: “recovered.” For a graph in which the nodes are
single individuals, let si(t) (xi(t) and ri(t) resp.) be the probability that individual i is in the susceptible (infected and
recovered resp.) state at time t. Alternatively, if the nodes are considered to be the populations, then si(t) (xi(t) and
ri(t) resp.) is interpreted as the fraction of susceptible (infected and recovered resp.) individuals in population i. In
this paper, without loss of generality, we adopt the interpretation of nodes as single individuals.
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c) Frequently Used Notations: The symbol R denotes the set of real numbers, while R≥0 denotes the set of non-
negative real numbers. The symbol φ denotes the empty set. For any two vectors x, y ∈ Rn, we write

x � y, if xi < yi for all i ∈ {1, . . . , n},
x ≤ y, if xi ≤ yi for all i ∈ {1, . . . , n}, and
x < y, if x ≤ y and x , y.

We adopt the shorthand notations 1n = [1, . . . , 1]> and 0n = [0, . . . , 0]>. Let In denote the n × n identity matrix.
Given x = [x1, . . . , xn]> ∈ Rn, let diag(x) denote the diagonal matrix whose diagonal entries are x1, . . . , xn. For
an irreducible nonnegative matrix A, let λmax(A) denote the dominant eigenvalue of A that is equal to the spectral
radius ρ(A). Moreover, we let vmax(A) (umax(A) resp.) denote the corresponding entry-wise strictly positive left (right
resp.) eigenvector associated with λmax(A), normalized to satisfy 1>n vmax(A) = 1 (resp. 1>n umax(A) = 1). The Perron-
Frobenius Theorem for irreducible matrices guarantees that λmax(A), vmax(A) and umax are well defined and unique.
Where not ambiguous, we will drop the (A) argument and, for example, write

v>maxA = λmaxv>max and Aumax = λmaxumax,

with vmax � 0n and 1>n vmax = 1; umax � 0n and 1>n umax = 1.

3. Susceptible-Infected Model

In this section, we first review the classic scalar susceptible-infected (SI) model, and then present and characterize
the network SI model.

3.1. Scalar SI model

The scalar SI model assumes that the growth rate of the fraction of the infected individuals is proportional to the
fraction of the susceptible individuals, multiplied by a so-called infection rate β > 0. The model is given by

ẋ(t) = βs(t)x(t) = β
(
1 − x(t)

)
x(t). (1)

This is the well-established logistic equation. The following results can be found for example in the textbook (Brauer
and Castillo-Chavez, 2012).

Lemma 3.1 (Dynamical behavior of the SI model). Consider the scalar SI model (1) with β > 0. The solution from
initial condition x(0) = x0 ∈ [0, 1] is

x(t) =
x0eβt

1 − x0 + x0eβt . (2)

All initial conditions 0 < x0 < 1 result in the solution x(t) being monotonically increasing and converging to the
unique equilibrium 1 as t → ∞.

Solutions to equation (1) with different initial conditions are plotted in Figure 2. The SI model (1) results in an
evolution akin to a logistic curve, and is also called the logistic equation for population growth.

3.2. Network SI model

The network SI model on a weighted digraph with the adjacency matrix A ∈ Rn×n
≥0 is given by

ẋi(t) = β
(
1 − xi(t)

) n∑
j=1

ai jx j(t), (3)

or, in equivalent vector form,
ẋ(t) = β

(
In − diag

(
x(t)

))
Ax(t), (4)
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Figure 2: Evolution of the (lumped deterministic) SI model (β = 1) from small initial fraction of infected individuals.

where β > 0 is the infection rate. Alternatively, in terms of the fractions of susceptibile individuals s(t) = 1n − x(t),
the network SI model is

ṡ(t) = −β diag(s(t))A(1n − s(t)). (5)

The network SI model is a particular case of the widely-studied network SIS model, which is to be discussed in the
next section. The dynamical properties of the network SI model are not difficult to analyze, but, to the best of our
knowledge, have not been formally presented in any previous literature. We present the results on the transient and
asymptotic behavior of the network SI model, as well as the proof, in the following theorem.

Theorem 3.2 (Dynamical behavior of network SI model). Consider the network SI model (4) with β > 0. For strongly
connected graph with adjacency matrix A, the following statements hold:

(i) if x(0), s(0) ∈ [0, 1]n, then x(t), s(t) ∈ [0, 1]n for all t > 0. Moreover, x(t) is monotonically non-decreasing (here
by monotonically non-decreasing we mean x(t1) ≤ x(t2) for all t1 ≤ t2). Finally, if x(0) > 0n, then x(t) � 0n for
all t > 0;

(ii) the model (4) has two equilibrium points: 0n (no epidemic), and 1n (full contagion);

(a) the linearization of model (4) about the equilibrium point 0n is ẋ = βAx and it is exponentially unstable;

(b) let D = diag(A1n) be the degree matrix. The linearization of model (5) about the equilibrium 0n is
ṡ = −βDs and it is exponentially stable;

(iii) each trajectory with initial condition x(0) , 0n converges asymptotically to 1n, that is, the epidemic spreads
monotonically to the entire network.

Proof. (i) The fact that, if x(0), s(0) ∈ [0, 1]n, then x(t), s(t) ∈ [0, 1]n for all t > 0 means that [0, 1]n is an invariant
set for the differential equation (4). This is the consequence of Nagumo’s Theorem (see (Blanchini and Miani, 2015,
Theorem 4.7)), since for any x belonging on the boundary of the set [0, 1]n, the vector β

(
In − diag

(
x
))

Ax is either
tangent, or points inside the set [0, 1]n.

Observe that the invariance of the set [0, 1]n implies that ẋ(t) ≥ 0n and so x(t1) ≤ x(t2) for all t1 ≤ t2.
We want to prove now that,if x(0) > 0n, then x(t) � 0n for all t > 0. If by contradiction there is i ∈ {1, . . . , n} and

T > 0 such that xi(T ) = 0, then the monotonicity of xi(t) = 0 would imply that xi(t) = 0 for all t ∈ [0,T ], which would
yield ẋi(t) = 0 for all t ∈ [0,T ]. By (3) this would imply that x j(t) = 0 for all t ∈ [0,T ] for all j such that ai j > 0.
We could iterate this argument and using the irreducibility of A we would get the contradiction that x(t) = 0 for all
t ∈ [0,T ] concluding in this way the proof of (i).
(ii) Regarding statement (ii), note that 0n and 1n are clearly equilibrium points. Let x̄ ∈ [0, 1]n be an equilibrium and
assume that x̄ , 1n. Then there is i such that x̄i , 1. Since β

(
1 − x̄i

)∑n
j=1 ai j x̄ j = 0, then

∑n
j=1 ai j x̄ j = 0 which implies

that x̄ j = 0 for all j such that ai j > 0. By iterating this argument and using the irreducibility of A we get that x̄ = 0
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concluding only 0n and 1n are equilibrium points. Statements (ii)a and (ii)b are obvious. Exponential stability of the
linearization ṡ = −βDs is obvious, and the Perron-Frobenius Theorem implies the existence of the unstable positive
eigenvalue ρ(A) > 0 for the linearization ẋ = βAx.
(iii) Consider the function V(x) = 1>n (1n− x); this is a smooth function defined over the compact and forward invariant
set [0, 1]n (see statement (i)). Since V̇ = −β1>n

(
In − diag(x)

)
Ax, we know that V̇ ≤ 0 for all x and V̇(x) = 0 if and

only if x ∈ {0n,1n}. The LaSalle Invariance Principle implies that all trajectories with x(0) converge asymptotically to
either 1n or 0n. Additionally, note that 0 ≤ V(x) ≤ n for all x ∈ [0, 1]n, that V(x) = 0 if and only if x = 1n and that
V(x) = n if and only if x = 0n. Therefore, all trajectories with x(0) , 0n converge asymptotically to 1n.

In the next two paragraphs we present the “initial-time” (“final-time” resp.) approximation of the solution to the
network SI model, i.e., the approximated solution to equation (4), or equation (5) equivalently, when t is sufficiently
small (large resp.). These results are novel.

For the adjacency matrix A, there exists a non-singular matrix T such that A = T JT−1, where J is the Jordan
normal form of A. Since A is non-negative and irreducible, according to Perron-Frobenius theorem, the first Jordan
block J1 = (λmax)1×1 and λmax > Re(λi) for any other eigenvalue λi of A. Consider now the onset of an epidemic in
a large population characterized by a small initial infection x(0) = x0 much smaller than 1n. The system evolution is
approximated by ẋ = βAx. This “initial-times” linear evolution satisfies

x(t) = eβAt x(0) = TeβJtT−1x(0) = eβλmaxt(Te1e>1 T−1x(0) + o(1)
)
,

where e1 is the first standard basis vector in Rn and o(1) denotes a time-varying vector that vanishes as t → +∞. Let
u1 denote the first column of T and let v>1 denote the first row of T−1. Since AT = T J and T−1A = JT−1, one can
check that u1 (v1 resp.) is the right (left resp.) eigenvector of A associated with the eigenvalue λmax. Since T−1T = In,
we have v>1 u1 = 1. therefore,

x(t) = eβλmaxt(u1v>1 x(0) + o(1)
)

= eβλmaxt
( v>maxx(0)
v>maxumax

umax + o(1)
)
. (6)

That is, the epidemic initially experiences exponential growth with rate βλmax and with distribution among the nodes
given by the eigenvector umax.

Now suppose that at some time T , for all i we have that xi(T ) = 1− εi, where each εi is much smaller than 1. Then,
for time t > T , the approximated system for s(t) is given by:

ṡi(t) = −βdisi(t) =⇒ si(t) = εie−βdi(t−T ),

where, for any i ∈ {1, . . . , n}, di =
∑n

j=1 ai j denotes the out-degree of node i in the network. From the discussion above,
we conclude that the initial infection rate is proportional to the eigenvector centrality, and the final infection rate is
proportional to the degree centrality.

4. Susceptible-Infected-Susceptible model

In this section we review the Susceptible-Infected-Susceptible (SIS) epidemic model. In addition to the existence
of an infection process with rate β > 0, this model assumes that the infected individuals recover to the susceptible
state at so-called recovery rate γ > 0.

4.1. Scalar SIS model

In the scalar SIS model, the population is divided into two fractions: the infected x(t) and the susceptible s(t), with
x(t) + s(t) = 1, obeying the following dynamics:

ẋ(t) = βs(t)x(t) − γx(t) = (β − γ − βx(t))x(t). (7)

The dynamical behavior of system (7) given below can be found in (Hethcote, 2000).
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Figure 3: Evolution of the scalar SIS model with varying initial fraction of infected individuals. Top figure: β = 0.5 < γ = 1. Bottom figure:
β = 0.8 > γ = .4.

Lemma 4.1 (Dynamical behavior of the SIS model). For the SIS model (7) with β > 0 and γ > 0:

(i) the closed-form solution to equation (7) from initial condition x(0) = x0 ∈ [0, 1], for β , γ, is

x(t) =
(β − γ)x0

βx0 − e−(β−γ)t(γ − β(1 − x0))
; (8)

(ii) if β ≤ γ, all trajectories converge to the unique equilibrium x = 0 (i.e., the epidemic disappears);

(iii) if β > γ, then each trajectory from an initial condition x(0) > 0 converges to the exponentially stable equilibrium
x∗ = (β − γ)/β, which is called the endemic state.

Case (iii) corresponds to the case in which epidemic outbreaks take place and a steady-state epidemic contagion
persists. The basic reproduction number in this deterministic scalar SIS model is given by R0 = β/γ. Simulations
regarding to Lemma 4.1(ii) and (iii) are shown in Figure 3.

4.2. Network SIS Model

In this section we study the network SIS model which is closely related to the original “multi-group SIS model”
proposed by (Lajmanovich and Yorke, 1976); see also the intertwined SIS model in (Van Mieghem et al., 2009).

The network SIS model with infection rate β and recovery rate γ is given by:

ẋi(t) = β(1 − xi(t))
n∑

j=1

ai jx j(t) − γxi(t), (9)

or, in equivalent vector form,
ẋ(t) = β

(
In − diag(x(t))

)
Ax(t) − γx(t). (10)

In the rest of this section we study the dynamical properties of this model. We start by defining the monotonically-
increasing functions

f+(y) = y/(1 + y), and f−(z) = z/(1 − z),

for y ∈ R≥0 and z ∈ [0, 1[. Note that f+( f−(z)) = z for all z ∈ [0, 1). For vector variables y ∈ Rn
≥0 and z ∈ [0, 1)n, we

write F+(y) = ( f+(y1), . . . , f+(yn)), and F−(z) = ( f−(z1), . . . , f−(zn)).

Behavior of System Below the Threshold. In this subsection, we characterize the behavior of the network SIS model
in a regime we describe as “below the threshold.” The results presented in the theorem below can be found in Laj-
manovich and Yorke (1976), Fall et al. (2007), Khanafer et al. (2016). Historically, it is meaningful to attribute this
theorem to (Lajmanovich and Yorke, 1976), even if the language adopted here is more modern.
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Theorem 4.2 (Dynamical behavior of the network SIS model: Below the threshold). Consider the network SIS
model (9), with β > 0 and γ > 0, over a strongly connected digraph with adjacency matrix A. Let λmax and vmax be
the dominant eigenvalue of A and the corresponding normalized left eigenvector respectively. If βλmax/γ < 1, then

(i) if x(0), s(0) ∈ [0, 1]n, then x(t), s(t) ∈ [0, 1]n for all t > 0. Moreover, if x(0) > 0n, then x(t) � 0n for all t > 0;

(ii) there exists a unique equilibrium point 0n, the linearization of (9) about 0n is ẋ = (βA − γIn)x and it is
exponentially stable;

(iii) from any x(0) , 0n, the weighted average t 7→ v>maxx(t) is monotonically and exponentially decreasing, and all
the trajectories converge to 0n.

Proof. (i) As in Theorem 3.2 the first part is the consequence of Nagumo’s Theorem. Then define y(t) := eγt x(t).
Notice that this variable satisfies the differential equation ẏ(t) = β diag(s(t))Ay(t). From the same arguments used in
the proof of the point (i) of Theorem 3.2 we argue that y(t) � 0n for all t > 0. From this it follows that also x(t) � 0n

for all t > 0.
(ii) Assume that x∗ is an equilibrium point. It is easy to see that x∗ � 1n. Let Â = βA/γ. Observe moreover that x∗ is
an equilibrium point if and only if Âx∗ = F−(x∗) or, equivalently, if and only if F+

(
Âx∗

)
= x∗. This means that x∗ is an

equilibrium if and only if it is a fixed point of F , where F (x) := F+

(
Âx

)
. For x ∈ [0, 1]n, note F+(Âx) ≤ Âx because

f+(z) ≤ z. Moreover, 0n ≤ x ≤ y implies that 0n ≤ F (x) ≤ Ây. Therefore, if 0n ≤ x, then F k(x) ≤ Âk x, for all k. Since
Â is Schur stable, then limk→∞ F

k(x) = 0. This shows that the only fixed point of F is zero.
Next, the linearization of equation (10) is verified by dropping the second-order terms. The linearized system is

exponentially stable at 0n for βλmax − γ < 0 because λmax is larger, in real part, than any other eigenvalue of A by the
Perron-Frobenius Theorem for irreducible matrices.
(iii) Finally, regarding statement (iii), define y(t) = v>maxx(t) and note that

(
In − diag(z)

)
vmax ≤ vmax for any z ∈ [0, 1]n.

Therefore,

ẏ(t) ≤ βv>maxAx(t) − γv>maxx(t) = (βλmax − γ)y(t) < 0.

By the Grönwall-Bellman Comparison Lemma, y(t) is monotonically decreasing and satisfies y(t) ≤ y(0)e(βλmax−γ)t

from all initial conditions y(0). This concludes our proof of statement (iii).

Behavior of System Above the Threshold. We present the dynamical behavior of the network SIS model above the
threshold as follows. Statement (i) of the theorem below is a straightforward result from equation (10). Historically,
the existence of a unique endemic state and its global attractivity properties, i.e., statements (ii), (iii), (iii)a and (iv) in
the theorem below, are due to Lajmanovich and Yorke (1976), and can be found in (Fall et al., 2007, Khanafer et al.,
2016). To the best our knowledge, the Taylor expansions in parts (iii)b and (iii)c and the algorithm in part (iii)d are
novel. In addition, compared with the previous works (Lajmanovich and Yorke, 1976, Fall et al., 2007, Khanafer et al.,
2016), construction of the algorithm in part (iii)d provides an alternative and more concise proof for the existence and
uniqueness of the endemic state, and the convergence of any solution starting with x(0) ∈ (0, 1)n to this endemic state.

Theorem 4.3 (Dynamical behavior of the network SIS model: Above the threshold). Consider the network SIS
model (9), with β > 0 and γ > 0, over a strongly connected digraph with adjacency matrix A. Let λmax be the dominant
eigenvalue of A and let vmax and umax be the corresponding normalized left and right eigenvectors respectively. Let
d = A1n. If βλmax/γ > 1, then

(i) if x(0), s(0) ∈ [0, 1]n, then x(t), s(t) ∈ [0, 1]n for all t > 0. Moreover, if x(0) > 0n, then x(t) � 0n for all t > 0;

(ii) 0n is an equilibrium point, the linearization of system (10) at 0n is unstable due to the unstable eigenvalue
βλmax − γ (i.e., there will be an epidemic outbreak);

(iii) besides the equilibrium 0n, there exists a unique equilibrium point x∗, called the endemic state, such that

(a) x∗ � 0n,
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(b) x∗ = δaumax + O(δ2) as δ→ 0+, where δ := βλmax/γ − 1 and

a =
vT

maxumax

vT
max diag(umax)umax

,

(c) x∗ = 1n − (γ/β) diag(d)−11n + O(γ2/β2), at fixed A, as γ/β→ 0+, where d = A1n,

(d) define a sequence {y(k)}k∈N ⊂ Rn by

y(k + 1) := F+

(
β

γ
Ay(k)

)
. (11)

If y(0) ≥ 0 is a scalar multiple of umax and satisfies either 0 < maxi yi(0) ≤ 1 − γ/(βλmax) or mini yi(0) ≥
1 − γ/(βλmax), then

lim
k→∞

y(k) = x∗.

Moreover, if maxi yi(0) ≤ 1 − γ/(βλmax), then y(k) is monotonically non-decreasing; if mini yi(0) ≥ 1 −
γ/(βλmax), then y(k) is monotonically non-increasing.

(iv) the endemic state x∗ is locally exponentially stable and its domain of attraction is [0, 1]n \ 0n.

Note: statement (ii) means that, near the onset of an epidemic outbreak, the exponential growth rate is βλmax − γ
and the outbreak tends to align with the dominant eigenvector umax; for more details see the discussion leading up
to the approximate evolution (6). The basic reproduction number for this deterministic network SIS model is given
by R0 = βλmax/γ. The network SI model discussed in Section 3 describes the limit behavior of the network SIS
model as γ/β → 0+. Statement (iii)c in Theorem 4.3 indicates that x∗ → 1n as γ/β → 0+, which is consistent with
statement (iii) in Theorem 3.2.

Proof of selected statements in Theorem 4.3. (i) This point can be proved as done in point (i) of Theorem 3.2.
(ii) This follows from the same analysis of the linearized system as in the proof of Theorem 4.2(ii).
(iii) We begin by establishing two properties of the map x 7→ F+(Âx), for Â = βA/γ. First, we claim that, y � z ≥ 0n

implies F+(Ây) � F+(Âz). Indeed, note that G being connected implies that the adjacency matrix A has at least one
strictly positive entry in each row. Hence, y− z � 0n implies Â(y− z) � 0n and, since f+ is monotonically increasing,
Ây � Âz implies F+(Ây) � F+(Âz).

Second, we observe that, for any 0 < α < 1 and z > 0, we have f+(αz) ≥ z if and only if z ≤ 1− 1/α. Suppose y(0)
is a scalar multiple of umax and 0 < maxi yi(0) ≤ 1 − γ/(βλmax). We have

F+(Ây(0))i = f+
(βλmax

γ
yi(0)

)
≥ yi(0).

Therefore, the sequence {y(k)}k∈N defined by equation (11) satisfies y(1) ≥ y(0), which in turn leads to y(2) =

F+(Ây(1)) ≥ F+(Ây(0)) = y(1), and by induction, y(k + 1) = F+(Ây(k)) ≥ y(k) for any k ∈ N. Such sequence
{y(t)} is monotonically non-decreasing and entry-wise upper bounded by 1n. Therefore, as k diverges, y(k) converges
to some x∗ � 0n such that F+

(
Âx∗

)
= x∗. This proves the existence of an equilibrium x∗ = limk→∞ y(k) � 0n as

claimed in statements (iii)a and (iii)d.
Similarly, for any 0 < α < 1 and z > 0, f+(αz) ≤ z if and only if z ≥ 1− 1/α. Following the same line of argument

in the previous paragraph, one can check that the {y(k)}k∈N defined by equation (11) is monotonically non-increasing
and converges to some x∗ , if y(0) is a scalar multiple of umax and satisfies mini yi(0) ≥ 1 − γ/(βλmax).

Now we establish the uniqueness of the equilibrium x∗ ∈ [0, 1]n \ {0n}. First, we claim that an equilibrium
point with an entry equal to 0 must be 0n. Indeed, assume y∗ is an equilibrium point and assume y∗i = 0 for some
i ∈ {1, . . . , n}. The equality y∗i = f+(

∑n
j=1 ai jy∗j) implies that also any node j with ai j > 0 must satisfy y∗j = 0. Because

G is connected, all entries of y∗ must be zero. Second, by contradiction, we assume there exists another equilibrium
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point y∗ � 0n distinct from x∗. Let α := min j{y∗j/x∗j} and let i such that α = y∗i /x∗i . Then y∗ ≥ αx∗ � 0n and y∗i = αx∗i .
Notice that we can assume with no loss of generality that α < 1 otherwise we exchange x∗ and y∗. Observe now that(

F+(Ây∗) − y∗
)
i = f+

(
(Ây∗)i

)
− αx∗i

≥ f+
(
α(Âx∗)i

)
− αx∗i (Â ≥ 0n×n)

> α f+
(
(Âx∗)i

)
− αx∗i (0 < α < 1 and z > 0)

= α
(
F+(Âx∗) − x∗

)
i = 0. (x∗ is an equilibrium)

Therefore,
(
F+(Ây∗) − y∗

)
i > 0, which contradicts the fact that y∗ is an equilibrium.

Now we prove (iii)b. Observe first that, since taking

y(0) =

(
1 −

γ

βλmax

)
umax

maxi{umax,i}
=

δ

δ + 1
umax

maxi{umax,i}

then y(k) is monotonically non-decreasing and converges to x∗, and since taking instead

y(0) =

(
1 −

γ

βλmax

)
umax

mini{umax,i}
=

δ

δ + 1
umax

mini{umax,i}

then y(k) is monotonically non-increasing and converges to x∗, we can argue that

δ

δ + 1
umax

maxi{umax,i}
≤ x∗ ≤

δ

δ + 1
umax

mini{umax,i}

This implies that x∗ is infinitesimal as a function of δ. Consider the expansion x∗(δ) = x1δ + x2δ
2 + O(δ3). Since the

equilibrium x∗ satisfies the equation

(δ + 1)
(
In − diag(x∗)

)
Ax∗ − λmaxx∗ = 0

by substituting the expansion and equating to zero the coefficient of the term δ we obtain the equation

Ax1 − λmaxx1 = 0

which proves that x1 is a multiple of umax, namely x1 = aumax for some constant a. By equating to zero the coefficient
of the term δ2 we obtain instead the equation

Ax1 + Ax2 − diag(x1)Ax1 − λmaxx2 = 0

Using the fact that x1 = aumax we argue that

aλmaxumax + Ax2 − a2λmax diag(umax)umax − λmaxx2 = 0

By multiplying on the left by vT
max we obtain

aλmaxvT
maxumax − a2λmaxvT

max diag(umax)umax = 0

which proves that

a =
vT

maxumax

vT
max diag(umax)umax

Point (iii)c can be proved in a similar way. Indeed, define ε := γ/β. Since(
1 −

ε

λmax

)
umax

maxi{umax,i}
≤ x∗ ≤

(
1 −

ε

λmax

)
umax

mini{umax,i}
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we can argue that the expansion x∗(ε) = x0 + x1ε + O(ε2) as ε tends to zero is such that x0 � 0n. Since the equilibrium
x∗ satisfies the equation (

In − diag(x∗)
)
Ax∗ − εx∗ = 0

by substituting the expansion and equating to zero the coefficient of the term ε0 we obtain the equation

Ax0 − diag(x0)Ax0 = 0

which proves that x0 = vectorones[n]. By equating to zero the coefficient of the term ε1 we obtain instead the equation

Ax1 − diag(x1)Ax0 − diag(x0)Ax1 − x0 = 0

Using the fact that x0 = 1n we argue that
diag(A1n)x1 + 1n = 0

which yieds the thesis.
(iv) For this point we refer to (Lajmanovich and Yorke, 1976, Fall et al., 2007) or (Khanafer et al., 2016, Theorems 1
and 2) in the interest of brevity.

Remark 4.4. The network SI model can be regarded as the limit case of the network SIS model with vanishing curing
rate γ → 0+. According to Theorem 4.2 and 4.3, for any strongly connected digraph and any fixed infection rate
β > 0, the quantity βλmax/γ is always above the threshold in the limit γ → 0+. Moreover, statement (iii)(c) indicates
that, as γ → 0+, the endemic state x∗ satisfies x∗ → 1n. Therefore, the behavior of the network SI model is the same
as that for the network SIS model in the limit γ → 0+.

5. Network Susceptible-Infected-Recovered Model

In this section we review the Susceptible-Infected-Susceptible (SIR) epidemic model.

5.1. Scalar SIR model

In this model individuals who recover from infection are assumed not susceptible to the epidemic any more. In
this case, the population is divided into three distinct groups: s(t), x(t), and r(t), denoting the fraction of susceptible,
infected, and recovered individuals, respectively, with s(t) + x(t) + r(t) = 1. We write the (Susceptible–Infected–
Recovered) SIR model as:

ṡ(t) = −βs(t)x(t),
ẋ(t) = βs(t)x(t) − γx(t),
ṙ(t) = γx(t).

(12)

The following results on the dynamical behavior of the scalar SIR model can be found in (Hethcote, 2000).

Lemma 5.1 (Dynamical behavior of the SIR model). Consider the SIR model (12). From each initial condition
s(0) + x(0) + r(0) = 1 with s(0) > 0, x(0) > 0 and r(0) ≥ 0, the resulting trajectory t 7→ (s(t), x(t), r(t)) has the
following properties:

(i) s(t) > 0, x(t) > 0, r(t) ≥ 0, and s(t) + x(t) + r(t) = 1 for all t ≥ 0;

(ii) t 7→ s(t) is monotonically decreasing and t 7→ r(t) is monotonically increasing;

(iii) limt→∞(s(t), x(t), r(t)) = (s∞, 0, r∞), where r∞ is the unique solution to the equality

1 − r∞ = s(0)e−
β
γ

(
r∞−r(0)

)
; (13)

(iv) if βs(0)/γ < 1, then t 7→ x(t) monotonically and exponentially decreases to zero as t → ∞;
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Figure 4: Left figure: evolution of the scalar SIR model from small initial fraction of infected individuals (and zero recovered); parameters β = 2,
γ = 1/4 (case (iv) in Lemma 5.1). Right figure: intersection between the two curves in equation (13) with s(0) = 0.95, r(0) = 0 and β/γ ∈ {1/4, 4}.
If β/γ = 1/4, then .05 < r∞ < .1. If β/γ = 4, then .95 < r∞.

(v) if βs(0)/γ > 1, then t 7→ x(t) first monotonically increases to a maximum value and then monotonically de-
creases to 0 as t → ∞; the maximum fraction of infected individuals is given by:

xmax = x(0) + s(0) −
γ

β

(
log(s(0)) + 1 − log

(γ
β

))
.

As mentioned before, we describe the behavior in statement (v) as an epidemic outbreak, an exponential growth
of t 7→ x(t) for small times.) The effective reproduction number in the deterministic scalar SIR model is R = βs(t)/γ.
Note that the basic reproduction number R0 = β/γ does not have predict power in this model.

5.2. Network SIR model

The network SIR model on a graph with adjacency matrix A is given by

ṡi(t) = −βsi(t)
∑n

j=1
ai jx j(t),

ẋi(t) = βsi(t)
∑n

j=1
ai jx j(t) − γxi(t),

ṙi(t) = γxi(t),

where β > 0 is the infection rate and γ > 0 is the recovery rate. Note that the third equation is redundant because of
the constraint si(t) + xi(t) + ri(t) = 1. Therefore, we regard the dynamical system in vector form as:

ṡ(t) = −β diag(s(t))Ax(t), (14a)
ẋ(t) = β diag(s(t))Ax(t) − γx(t). (14b)

We state our main results of this section below. Weaker versions of statements (i)a and (i)b are due to (Hethcote,
1978). To the best of our knowledge, statements (i)c, (ii), (iii), (iv) and (v) are novel.

Theorem 5.2 (Dynamical behavior of the network SIR model). Consider the network SIR model (14), with β > 0 and
γ > 0, over a strongly connected digraph with adjacency matrix A. For t ≥ 0, let λmax(t) and vmax(t) be the dominant
eigenvalue of the non-negative matrix diag(s(t))A and the corresponding normalized left eigenvector, respectively. The
following statements hold:

(i) if x(0) > 0n, and s(0) � 0n, then

(a) t 7→ s(t) and t 7→ x(t) are strictly positive for all t > 0,

(b) t 7→ s(t) is monotonically decreasing, and

(c) t 7→ λmax(t) is monotonically decreasing;
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(ii) the set of equilibrium points is the set of pairs (s∗,0n), for any s∗ ∈ [0, 1]n, and the linearization of model (14)
about (s∗,0n) is

ṡ(t) = −β diag
(
s∗

)
Ax,

ẋ(t) = β diag
(
s∗

)
Ax − γx;

(15)

(iii) (behavior below the threshold) let the time τ ≥ 0 satisfy βλmax(τ) < γ. Then the weighted average t 7→
vmax(τ)>x(t) , for t ≥ τ, is monotonically and exponentially decreasing to zero;

(iv) (behavior above the threshold) if βλmax(0) > γ and x(0) > 0n, then,

(a) (epidemic outbreak) for small time, the weighted average t 7→ vmax(0)>x(t) grows exponentially fast with
rate βλmax(0) − γ, and

(b) there exists τ > 0 such that βλmax(τ) < γ;

(v) each trajectory converges asymptotically to an equilibrium point, that is, limt 7→∞ x(t) = 0n so that the epidemic
asymptotically disappears.

The effective reproduction number in the deterministic network SIR model is R(t) = βλmax(t)/γ. When R(0) > 1,
we have an epidemic outbreak, i.e., an exponential growth of infected individual for short time. In any case, the
theorem guarantees that, after at most finite time, R(t) < 1 and the infected population decreases exponentially fast to
zero.

Proof. Regarding statement (i)a, s(t) � 0n is due to the fact that Ax is bounded and s(t) is continuously differentiable
to t. The statement that x(t) � 0n for all t > 0 is proved in the same way as Theorem 4.2 (i). Statement (i)b is the
immediate consequence of ṡi(t) being strictly negative. From statement (i)a we know that each si(t) is positive, and
from A being irreducible and x(0) , 0n we know that

∑n
j=1 ai jx j is positive. Therefore, ṡi(t) = −βsi(t)

∑n
j=1 ai jx j(t) < 0

for all i ∈ V and t ≥ 0.
For statement (i)c, we start by recalling the following property from (Meyer, 2001, Example 7.10.2): for B and C

nonnegative square matrices, if B ≤ C, then ρ(B) ≤ ρ(C). Now, pick two time instances t1 and t2 with 0 < t1 < t2.
Let α = maxi si(t2)/si(t1) and note 0 < α < 1 because s(t) is strictly positive and monotonically decreasing. Now note
that,

diag(s(t1))A > α diag(s(t1))A ≥ diag(s(t2))A,

so that, using the property above, we know

ρ(diag(s(t1))A) > αρ(diag(s(t1))A) ≥ ρ(diag(s(t2))A).

This concludes the proof of statement (i)c.
Regarding statement (ii), note that a point (s∗, x∗) is an equilibrium if and only if:

0n = −β diag
(
s∗

)
Ax∗, and

0n = β diag
(
s∗

)
Ax∗ − γx∗.

Therefore, each point of the form (s∗, 0n) is an equilibrium. On the other hand, summing the last two equalities
we obtain 0n = γx∗ and thus x∗ must be 0n. As a straightforward result, the linearization of model (14) about any
equilibrium point (s∗,0n,1n − s∗) is given by equation (15).

Regarding statement (iii), multiplying vmax(τ)> from the left on both sides of equation (14b) we obtain:

d
dt

(
vmax(τ)>x(t)

)
= vmax(τ)>

(
β diag

(
s(t)

)
Ax(t) − γx(t)

)
≤ vmax(τ)>

(
β diag

(
s(τ)

)
Ax(t) − γx(t)

)
= (βλmax(τ) − γ)vmax(τ)>x(t).

Therefore, we obtain
vmax(τ)>x(t) ≤ (vmax(τ)>x(0))e(βλmax(τ)−γ)t.
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The right-hand side exponentially decays to zero when βλmax(τ) < γ. Therefore, vmax(τ)>x(t) also decreases mono-
tonically and exponentially to zero for all t > τ.

Regarding statement (iv)a, note that based on the argument in (i)a, we only need to consider the case when
x(0) � 0n. Left-multiplying vmax(0)> on both sides of equation (14b), we obtain:

d
dt

(
vmax(0)>x(t)

)∣∣∣∣
t=0

= vmax(0)>
(
β diag

(
s(t)

)
Ax(t) − γx(t)

)∣∣∣∣
t=0

= (βλmax(0) − γ)vmax(0)>x(0).

Since βλmax(0)− γ > 0, the initial time derivative of vmax(0)>x(t) is positive. Since t 7→ vmax(0)>x(t) is a continuously
differentiable function, there exists τ′ > 0 such that d

dt
(
vmax(0)>x(t)

)
> 0 for any t ∈ [0, τ′].

Regarding statement (iv)b, since ṡ(t) ≤ 0n and is lower bounded by 0n, we conclude that the limit lim
t→+∞

s(t) exists.
Moreover, since s(t) is monotonically non-increasing, we have lim

t→+∞
ṡ(t) = 0, which implies either lim

t→+∞
s(t) = 0n

or lim
t→+∞

x(t) = 0n. If s(t) converges to 0n, then ẋ(t) converges to −γx(t). Therefore, there exists T > 0 such that
βλmax(T ) < γ, which leads to x(t) → 0n as t → +∞; If s(t) converges to some s∗ > 0n, then x(t) still converges to
0n. Therefore, for any

(
s(0), x(0)

)
, the trajectory

(
s(t), x(t)

)
converges to some equilibria with the form (s∗,0n), where

s∗ ≥ 0n. Let
s(t) = s∗ + δs(t), and x(t) = 0n + δx(t).

We know that δs(t) ≥ 0 and δx(t) ≥ 0 for all t ≥ 0. Moreover, δs(t) is monotonically non-increasing and converges to
0n, and there exists T̃ > 0 such that, for any t ≥ T , δx(t) is monotonically non-increasing and converges to 0n.

Let λ∗ and v∗ denote the dominant eigenvalue and the corresponding normalized left eigenvector of matrix
diag(s∗)A, respectively, that is, v∗> diag(s∗)A = λ∗v∗>. First let us suppose βλ∗ − γ > 0, then the linearized sys-
tem of (12) around (s∗, 0n) is written as

δ̇s = −β diag(s∗)Aδx,

δ̇x = β diag(s∗)Aδx − γδx.

Since βλ∗ − γ > 0, the linearized system is exponentially unstable, which contradicts the fact that
(
δs(t), δx(t)

)
→

(0n,0n) as t → +∞. Alternatively, suppose βλ∗ − γ = 0. By left multiplying v∗> on both sides of the equation for ẋ(t)
in (12), we obtain

v∗>δ̇x = (βλ∗ − γ)(v∗>δx) + βv∗> diag(δs)Aδx = βv∗> diag(δs)Aδx ≥ 0n,

which contradicts δx(t) → 0n as t → +∞. Therefore, we conclude that βλ∗ − γ < 0. Since λmax(t) is continuous on t,
we conclude that there exists τ < +∞ such that βλmax(t) − γ < 0.

Remark 5.3. Consider the network SIR model as a parameterized dynamical system, with the curing rate γ as the
parameter. The network SI model can be regarded the network SIR dynamics with γ = 0 and zero initial fraction
of recovered individuals. However, due to the specific bifurcation behavior of the network SIR model at γ = 0, the
dynamical properties of the network SIR model with γ = 0 are qualitatively different from the case when γ > 0. When
γ = 0, the set given by statement (ii) of Theorem 5.2 is only a subset of the equilibirum set. Points in the set of pairs
(0n, x∗) are also the equilibria of the network SIR with γ = 0. In addition, while statement (iv)a of Theorem 5.2 on the
initial epidemic outbreak is still true, statements (iv)b and (v) on the eventual decay no longer hold for γ = 0.

In what follows, we present a novel result on an iterative algorithm that computes the limit state limt→∞
(
s(t), 0, r(t)

)
of the network SIR model (14) as a function of an arbitrary initial condition

(
s(0), x(0), r(0)

)
.

Note that, for the scalar SIR model (12), if we define

V
(
s(t), x(t)

)
:= s(t)e

β
γ

(
1−x(t)−s(t)

)
.

Simple calculations result in dV
(
s(t), x(t)

)
/dt = 0, which implies that the trajectories are on the level sets of V and in

the set {(s, x) ∈ R2 | s ≥ 0, x ≥ 0, s + x ≤ 1}. Here, we apply a similar approach to the network SIR system (14). Let

Vi(s, r) := sie
β
γ

∑n
j=1 ai jr j , for any i ∈ {1, . . . , n}.
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One can check that, along any trajectory of dynamics (14), dVi/dt = 0 for any i ∈ {1, . . . , n}. Therefore, the trajectories
(s(t), r(t)) lie on the level curves of the functions Vi(s, r) for i ∈ {1, . . . , n}.

Let s(∞) := limt→+∞ s(t), x(∞) := limt→+∞ x(t), and r(∞) := limt→+∞ r(t). Notice that x(∞) = 0n and so
r(∞) = 1n − s(∞). Since dVi/dt = 0 for any i ∈ {1, . . . , n}, we have

si(∞) = si(0)e−
β
γ

∑n
j=1 ai j

(
1−r j(0)

)
e
β
γ

∑n
j=1 ai j s j(∞). (16)

Given any initial condition
(
s(0), r(0)

)
, the right-hand side of equation (16) defines a map

H(s) := e
β
γ diag

(
A(s−1n+r(0))

)
s(0), (17)

and s(∞) is a fixed point of H, that is, s(∞) = H
(
s(∞)

)
. The following theorem is novel.

Theorem 5.4 (Existence, uniqueness, and algorithm for the asymptotic point). Consider the network SIR model (14),
with positive rates β and γ and with initial condition

(
s(0), x(0), r(0)

)
satisfying s(0) � 0n, x(0) > 0n, r(0) ≥ 0n and

s(0) + x(0) + r(0) = 1n. Let
(
s(∞),0n, r(∞)

)
be the asymptotic state of system (14). The map H : Rn → Rn defined by

equation (17) has the following properties:

(i) there exists a unique fixed point s∗ of the map H in the set {s ∈ Rn | 0n ≤ s ≤ 1n − r(0)}. Moreover, s∗ = s(∞)
and r(∞) = 1n − s∗; and

(ii) any sequence {y(k)}k∈N defined by y(k + 1) = H(y(k)) and initial condition 0n ≤ y(0) ≤ 1n − r(0) converges to
the unique fixed point s∗.

Proof. Since A is a non-negative matrix, and s(0) ≤ 1 − r(0), one can easily observe that, if 0n ≤ p ≤ q ≤ 1n − r(0),
then 0n ≤ H(0n) ≤ H(p) ≤ H(q) ≤ H(1n − r(0)) ≤ 1n − r(0). According to the Brower Fixed Point Theorem, the map
H has at least one fixed point.

Define the sequence {p(k)}k∈N by p(k + 1) = H(p(k)) and p(0) = 0n. Since

1n − r(0) ≥ p(1) = H(0n) = e
β
γ diag

(
−A1n+Ar(0)

)
s(0) ≥ p(0),

we have 1n − r(0) ≥ p(2) = H(p(1)) ≥ H(p(0)) = p(1) and, by induction, 1n − r(0) ≥ p(k + 1) ≥ p(k) for any k ∈ N.
Since p(k) is non-decreasing and upper bounded by 1n − r(0), we conclude that the limit p∗ = limk→∞ p(k) exists, and
p∗ is a fixed point of the map H.

Similarly, define a sequence {q(k)}k∈N by q(k + 1) = H(q(k)) and q(0) = 1n − r(0). One can check that q(k) is
non-increasing and that q∗ = limk→∞ q(k) is a fixed point of map H. Moreover, since p(0) ≤ q(0), we have p(k) ≤ q(k)
for any k ∈ N and thereby p∗ ≤ q∗.

If p∗ = q∗, then, for any 0n ≤ y(0) ≤ 1n − r(0), the sequence {y(k)}k∈N defined by y(k + 1) = H(y(k)) satisfies
p(k) ≤ y(k) ≤ q(k) for any k ∈ N. Therefore, y∗ = limk→∞ y(k) exists and y∗ = p∗ = q∗, which implies that the fixed
point of map H is unique. According to equation (16), s(∞) is the unique fixed point. This concludes the proof for
statement (i) and (ii).

Now we eliminate the case p∗ < q∗ by contradiction. First of all we prove that q∗ � 1n−r(0). Let Ni = { j | ai j > 0}
and I(k) =

{
i
∣∣∣ qi(τ) < 1 − ri(0) for any τ ≥ k

}
. We have I(0) = φ. Since x(0) > 0n, we have q(1) = s(0) < 1 − r(0),

that is, there exists i such that qi(1) < 1 − ri(0). Moreover, since q(k) is non-increasing, we have q(k) ≤ q(1) for any
k ≥ 1. Therefore, for any i such that qi(1) < 1− ri(0), it satisfies qi(k) ≤ qi(1) < 1− ri(0) for any k ≥ 1. Since j < I(1)
if q j(1) = s j(0) = 1 − r j(0), we conclude that I(1) = {i | si(0) < 1 − ri(0)}. Moreover, for any given k ≥ 1, since, for
any i such that Ni ∩ I(k) , φ,

qi(k + 1) = H(q(k))i = e
β
γ

∑n
j=1 ai j

(
q j(k)−1+r j(0)

)
si(0) < si(0) ≤ 1 − ri(0);

and for any i such that Ni ∩ I(k) = φ and i < I(k),

qi(k + 1) = H(q(k))i = e
β
γ

∑n
j=1 ai j

(
q j(k)−1+r j(0)

)
si(0) = si(0) = 1 − ri(0),
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we have I(k+1) = {i | Ni∩I(k) , φ}∪I(k) for any k ≥ 1. Because the graph associated with A is strongly connected,
we can argue that I(k) contains all the indices when k is large enough. Therefore, q∗ � 1n − r(0).

Now suppose p∗ < q∗. Let

α = min
j

1 − r j(0) − p∗j
q∗j − p∗j

, and w = (1 − α)p∗ + αq∗.

We have α > 1, 0n ≤ w < 1n − r(0), and wi = 1− ri(0) for any i such that αi =
(
1− ri(0)− p∗i

)
/(q∗j − p∗j). Let µ = 1/α.

Thereby q∗ = µw + (1 − µ)p∗, where 0 < µ < 1. This means that q∗ is a convex combination of p∗ and w. Since H(s)i

is a strictly convex function of s, we obtain that

q∗i = H
(
µw + (1 − µ)p∗

)
i < µH(w)i + (1 − µ)p∗i ≤ µ

(
1 − ri(0)

)
+ (1 − µ)p∗i = q∗i .

In the last inequality, we used the fact that H(w)i ≤ 1− ri(0) for any 0 ≤ w ≤ 1n − r(0). The previous inequality yields
a contradiction.

In the rest of this section, we present some numerical results for the network SIR model for the famous Krack-
hardt’s advice network illustrated in Figure 5. This network reflects the data collected by Krackhardt (1987) on the
cognitive social structure of the management personnel in a high-tech machine manufacturing firm. In the network,
each node represents an individual, and each directed link (i, j) means that individual i seeks advice from individual
j. We refer the interested readers to (Krackhardt, 1987) for more details.

Consider the epidemic spreading process on the Krackhardt’s advice network. The associated adjacency matrix
A is binary. Unless otherwise stated, the system parameters are set as β = 0.5 and γ = 0.4. As for initial condition,
we select one node fully infected (the dark-gray node in Figure 5, say, with index 1), 16 fully healthy individuals, and
zero recovered fraction — corresponding to x(0) = e1, r(0) = 0n, and s(0) = 1n − x(0). These parameters lead to an
initial effective reproduction number R(0) = 3.57.

Figure 5: Main strongly-connected component of the Krackhardt digraph with 17 nodes

Figure 6 illustrates the time evolution of (β/γ)λmax(t) with varying network parameters. Note that each evolution
starts above the threshold, reaches the threshold value 1 in finite time, and converges to a final value below 1.

Figure 7 illustrates the behavior of the average susceptible, average infected and average recovered quantities in
populations starting from a small initial infection fraction and with an effective reproduction number above 1 at time
0. Note that the evolution of the infected fraction of the population displays a unimodal dependence on time, like in
the scalar model.

6. Conclusion

This paper provides a comprehensive and consistent treatment of deterministic nonlinear continuous-time SI, SIS,
and SIR propagation models over contact networks. We investigated the asymptotic behaviors (vanishing infection,
steady-state epidemic, and full contagion). We studied the transient propagation of an epidemic starting from small
initial fractions of infected nodes. We presented conditions under which a possible epidemic outbreak occurs or
the infection monotonically vanishes for arbitrary fixed topology graphs. We introduced a network SI model and
analyzed its behavior. Network SIS model sections includes improved properties over previously proposed works.
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Figure 6: Evolution of the spectral radius of (β/γ) diag(s(t))A) over the strongly connected digraph in Figure 5. The parameter γ takes value in
.1, .2, . . . , .9, corresponding respectively to the curves from up to down in the time interval [0, 5].
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Figure 7: Evolution of the network SIR model from initial condition consisting of one node fully infected individual (the dark-gray node in
Figure 5), 16 fully healthy individuals, and zero recovered fraction. The effective reproduction number satisfies R(0) = 3.57.

New transient behavior, threshold condition, and system properties for the network SIR model were proposed. In
addition, for the network SIR model, we provide a novel iterative algorithm to compute the asymptotic state of the
system. In all cases, we show the results for network models are appropriate generalizations of those for the respective
scalar models.

There are numerous potential future research directions regarding the deterministic network epidemic processes
and the literature is still growing rapidly. Recent progress in this area includes but is not limited to the modeling and
analysis of epidemic spreading on time-varying networks, e.g., see (Ogura and Preciado, 2016, Paré et al., 2017a),
the optimal immunization strategies, e.g., see (Nowzari et al., 2017, Ramı́rez-Llanos and Martı́nez, 2017), and the
competitive propagation of multiple virus/memes, e.g., see (Goyal et al., 2014, Paré et al., 2017b, Mei and Bullo,
2017).

Finally, we point out that, although the network SI, SIS, and SIR models have attracted enormous attention by
researchers working on network epidemics, they are not the only deterministic models of epidemic spreading processes
on networks. For example, there is another class of deterministic network models, referred to as the multi-city model
or the epidemic model in a patchy environment. This class of models considers each node in the network as a city
obeying the scalar SIS or SIR dynamics. The disease is spread via the traffic flows between those cities. We refer
the interested reader to (Wang and Zhao, 2004, Colizza et al., 2005, Arino and van den Driessche, 2010) for detailed
treatments.
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