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How truth wins in social groups is an important open problem.
Classic experiments on social groups dealing with truth statement
issues present mixed findings on the conditions of truth abandon-
ment and reaching a consensus on the truth. No theory has been
developed and evaluated that might integrate these findings with
a mathematical model of the interpersonal influence system that
alters some or all of its members’ positions on an issue. In this
paper we provide evidence that a general model in the network
science on opinion dynamics substantially clarifies how truth wins
in groups.

network science | opinion dynamics | truth statements

Max Planck’s famous null hypothesis on truth propagation
is that “a new scientific truth does not triumph by con-

vincing its opponents and making them see the light, but rather
because its opponents eventually die.” Classic experiments in
social psychology have probed the conditions of “truth wins”
in social groups. This evidence presents mixed findings, and
no dynamical system model has been advanced that integrates
them. Thorndike and Barnlund (1, 2) show that an initial con-
sensus is adopted without scrutiny whether or not it is true. Asch
(3–5) shows that individuals are likely to abandon the truth if
they are located in a group in which all other members have
a fixed agreement on a false position. Sherif (6) shows that a
group converges to a false consensus when all its members are
uncertain about the true position. Laughlin and Adamopou-
los (7) and Laughlin and Ellis (8) find that reaching consen-
sus on a true position depends on the size of the faction of
individuals with the correct position on an issue. Clearly, truth
propagation is not a viral contagion in which a true position is
automatically adopted by anyone who comes into contact with
it, and the hazard rate of adopting false positions on issues
is substantial.

The above referenced findings of the classical literature on
truth wins in social groups are based on statistical tests of
hypotheses on input–output associations and do not specify the
groups’ throughput mechanisms that alter individuals’ positions
on issues. Understanding the mechanisms by which truth wins or
fails to win is an open problem. It is a problem that has become
increasingly important with the development of social media that
allow a rapid widespread dissemination of true and false infor-
mation. Unfortunately, we are currently confronted with such a
hazard in which a faction of policy makers have concluded that
the numerical evidence on global warming does not indicate any
trajectory toward a dangerous threshold level that would require
immediate action.

Investigations of the conditions of truth wins have not
included a network science modeling of the opinion dynamics
that determine groups’ outcomes. We present evidence that an
attention to such dynamics substantially clarifies how truth wins
in groups. Given information on a group’s initial opinions and
influence network on a quantitative issue, network science mod-
els of opinion dynamics are motivated by the idea that complex
sequences of opinion updates are triggered by individuals’ expo-

sure to a set of one or more other individuals’ fixed or chang-
ing positions on an issue. An interdisciplinary field of research
has developed on the problem of predicting group members’ dis-
played settled positions on an issue. Such predictions require
a mathematical model of interpersonal influence systems in
which repetitive individual-level updates of quantitative opin-
ions are occurring. Numerous models of such systems have
been proposed; see refs. 9 and 10 for reviews. Consistent with
all mathematically based science on dynamical natural systems,
the goal of this field is to find an empirically supported parsi-
monious general mechanism of opinion updating that unfolds
on any influence network topology and, thus, explains a large
domain of observed realizations of influence system outcomes.
The open fundamental question is whether or not there exists
an elementary “cognitive algebra” (11, 12) in individuals’ inte-
gration of their own and others’ displayed opinions. The most
widely accepted candidate is a weighted averaging mechanism
with which each individual automatically allocates weights to his
or her own and others’ fixed or changing opinions to obtain
an updated opinion that is a convex combination of opinions.
The set of all group members’ allocated weights defines the
influence network of the group. Thus, a group issue-specific
influence network is automatically assembled as an implication
of individuals’ information integration mechanism; that is, the
weights are in the mechanism used by individuals to adjust
their own opinion on an issue. In this literature, the Friedkin–
Johnsen (13, 14) generalization of the seminal French–Harary–
DeGroot (15–17) weighted-averaging opinion update mecha-
nism is currently the only model on which a sustained line of
human-subject experiments (14, 18–20) have been conducted
to evaluate predictions of opinion changes. This model is
given by

xi(k + 1) = aii

n∑
j=1

wij xj (k) + (1− aii)xi(0), ∀i , [1]
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k =0, 1 . . ., where xi(0)∈R, 0≤wij ≤ 1 ∀ij ,
∑n

j=1 wij =1, and
aii =1−wii ∀i . The corresponding matrix equation for the influ-
ence system is

x(k + 1) = AWx(k) + (I− A)x(0), k = 0, 1, . . ., [2]

where W is the system’s n ×n matrix of wij weights and A is
the system’s n × n diagonal matrix of individuals’ levels of stub-
born attachment to their initial opinions (0≤ aii ≤ 1 ∀i , aij =0
∀i 6= j ). In the special case of A = I, the model reduces to a
French–Harary–DeGroot system without resistances to opinion
change. Mathematical analysis has shown that this system’s equi-
librium equation,

x(∞) = AWx(∞) + (I− A)x(0), [3]

is consistent with relaxations of the model’s simplifying assump-
tions of synchronous opinion updates (21, 22) and time-invariant
W (23) that allow random asynchronous updates and time-
varying weights. The model provides theoretical foundations
for widely used measures of the influence centralities of indi-
viduals in a group: In the special case of an A= I, its mea-
sure is equivalent to eigenvector centrality, and in the spe-
cial case of an A=αI, 0<α< 1, its measure is equivalent to
PageRank centrality (24–26). See SI Text on other relevant
properties of this model. Experiments on groups of human
subjects have evaluated the model’s predictive accuracy on
quantitative issues of judgment for which there are no true
or false numerical positions. The designs of these experiments
include groups in face-to-face interaction (20) and groups in
which interaction is constrained by different telephonic com-
munication structures that prohibit direct conversations among
particular pairs of individuals and allow random dyadic con-
versations of varying length (14, 18, 19). Its predictive accu-
racy includes exact predictions of observed final opinions such
as in the following case that appears in the findings of the
experiments reported in this paper. Before the group discussion,
the four members of this group privately recorded their initial
opinions,

x(0) =
[
65 74 74 52

]T
.

A direct measure of the cognitive wij weights of Eq. 1 (relating to
the way an individual is integrating information in his or her own
mind) is based on the four individuals’ independent postdiscus-
sion reports of the extent to which each of the other group mem-
bers influenced their own final opinions; see SI Text on this mea-
sure. In this group on this issue, 1 reports according no weight to
itself or to 4, and equal weights to 2 and 3, and the group’s matrix
of such reports is:

W =

 0 0.50 0.50 0
0 0.25 0.50 0.25

0.15 0.30 0.30 0.25
0 0.50 0.50 0

.
The model’s predicted equilibrium opinions are

x(∞) = AWx(∞) + (I− A)x(0),

= (I− AW)−1(I− A)x(0).

Let V=(I−AW)−1(I−A). Its vij elements correspond to the
total relative (direct and indirect) influence of group member
j ’s initial opinion on the final opinion of group member i . Each
0≤ vij ≤ 1 ∀ij and

∑n
j=1 vij =1 ∀i . Thus, for this group, the

model’s predicted final opinions are

x̂(∞) = Vx(0) =
[
74 74 74 74

]T
,

and, in this case, they are exact predictions of the individu-
als’ observed privately reported final opinions. We will show
that the model’s predictive accuracy is high in the pool of all

cases reported in this article on intellective (truth statement)
issues. Note that there is nothing in this prediction that indicates
whether any opinion is correct or incorrect.

The fact that the issue is intellective, in contrast to the judgment
issues that have been involved in all previously conducted exper-
iments, is irrelevant to the model’s explanation of the observed
opinion changes. Here, and in general, the foundations of this
model’s success rests (i) on its assumption of a weighted averaging
mechanism of opinion updates that allows for levels of stubborn
attachment to initial opinions and (ii) on an equilibrium equation
that is robust to violations of its simplifying assumptions of syn-
chronous updates on a time-invariant influence network.

However, there are important implications of quantitative
intellective issues that distinguish them from quantitative judg-
ment issues. Note that in the above example two individuals
reported identical initial opinions. Henceforth, we refer to a
subset of individuals with identical initial opinions as a faction.
Such factions frequently occur on the intellective issues of the
conducted experiments. In contrast, in previous experiments on
quantitative judgment issues (14, 19, 20), initial opinion factions
rarely occur so that typically any initial opinion in a group is a dis-
tinct position that is associated with one individual. On the issues
investigated in this paper, because the same initial position is
often held by two or more individuals the displayed position of a
faction-as-a-unit has an influence value. This idea has motivated
the classical work on truth wins and abandonment referenced in
the Introduction. We break from the tradition of treating the rel-
ative sizes of factions as an explanatory variable. Consistent with
a network science approach, we define the influence of a faction-
as-a-unit on any individual i as the sum of the faction members’
vij total influences on i . Thus, one member of the faction may
explain most its influence, and other individuals may be more or
less influenced by different members of a faction. On this basis,
we can formulate a prediction of the relative total influence of
the truth, that is a value in the [0, 1] interval, in determining each
i ’s final opinion on an issue as follows:

ci =

n∑
j=1

vijuj (0), uj (0) =

{
1, if xj (0) is true
0, if xj (0) is false . [4]

For each individual i , regardless of whether his or her own initial
opinion is true or false, the hypothesis is that 0≤ ci ≤ 1 predicts
whether i will hold a true or false final opinion. For each group,
the hypothesis is that 0 ≤ 1

n

∑n
i=1 ci ≤ 1 predicts whether a

group consensus is reached on a true or false position. This for-
mulation allows for cases in which a true initial position is aban-
doned, or a true initial opinion of one member alters all other
members’ false opinions, or the true initial position of a faction
alters or fails to alter other members’ opinions. We will show that
our findings support this network science approach for explain-
ing how truth wins in groups.

In addition, we show that a deeper level of persuasion is
involved in group discussions of truth statements. In the classic
Asch (3–5) and Sherif (6) experiments, individuals voiced their
positions without discussion. Group discussion allows not only
a display of opinions but also a display of the calculative logics
upon which different initial opinions are based. The abandon-
ment of an opinion may be associated with the adoption of a
true or false calculative logic that applies to the issue, and to
all other issues to which the logic can be applied. This deeper
level of persuasion, based on social learning, allows a growth of
initial opinion factions along a sequence of issues on which a
common calculative logic can be adapted to each issue. In the
conducted experiments, the structure of each issue varies over
the issue sequence so that formulaic rote learning may fail in the
absence of a more abstract understanding of the logic involved.
Although individuals may have been persuaded to accept a true
opinion, they may present either a true or false initial opinion
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on the next issue of the issue sequence, depending on whether
they acquired an abstract understanding of how to obtain a true
opinion. Similarly, they may be persuaded to accept a false opin-
ion without acquiring an abstract understanding of its calcula-
tive logic. We show that both true and false initial opinion fac-
tions grow in size along a sequence of intellective issues on which
a true or false calculative logic can be adapted to each issue.
In our data, faction growth includes cases of group trajectories
along an issue sequence to extremal states of initial consensus.
In these extremal cases, all group members have the same initial
opinion (true or false) and maximal levels of attachment to it.
Finally, we consider the net resultant of these intimately inter-
twined processes of interpersonal influence and social learning.
When there are various false calculative logics and only one true
calculative logic, the distribution of initial opinion errors (for
all individuals nested in independent groups) evolves over time
along an issue sequence toward a distribution in which the fre-
quency of true initial opinions dominates. Although the bulk of
initial opinions may be based on false calculative logics, they are
group-specific. Thus, truth wins in a decentralized population of
individuals nested in independent groups under the condition of
one-true versus many-false calculative logics on a class of intel-
lective issues.

We conducted experiments on risk evaluation issues—
analytical reliability problems—for which there are objectively
correct numerical positions. We assembled 45 face-to-face
groups of three to four individuals. Each group dealt with a ran-
dom permutation of the same issues under the instruction that
they should try to reach a consensus on each issue. With 161
individuals nested in 45 groups with three to four members, each
dealing with a sequence of eight issues, the experiments set up
360 group-issue occasions in which individuals present an initial
and final opinion and 1,288 individual-level behavioral observa-
tions of (initial, final) tuples of opinion. The individuals were
recruited from the undergraduate subject pool of our university
and paid for their participation. The University of California,
Santa Barbara Institutional Review Board approved the study,
and all subjects provided written informed consent. The experi-
ment is a standard prepost group-discussion randomized design.
One of the eight issues is posed to a group. (i) Individuals pri-
vately record their initial positions on the issue, (ii) a group dis-
cussion is then opened and concluded, and (iii) individuals pri-
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Fig. 1. The F-J model of group influence systems is applied to 161 individuals nested in 45 groups, each dealing with a sequence of eight issues, setting up
360 group-task occasions in which the individuals nested in a group presented an initial and final opinion and 1,288 individual-level behavioral observations.
(A) Individuals’ observed and F-J model-predicted final opinions. The Pearson product-moment correlation of the observed and predicted final opinions is
0.939, P < 0.001. (B) Percent frequency histogram of the F-J model prediction errors of final estimates.

vately record their final positions and their subjective weights
indicating the extent to which each of the other group members
influenced their own final opinion. Then another issue is posed,
and so on, until the concluding issue of the random permuta-
tion of the eight issues is reached. For each group-specific issue,
the obtained data are the group’s n-vectors of initial and final
opinions and its n × n matrix of allocated weights, which are
measures of the model’s x(0), x(∞), and W constructs, respec-
tively. See SI Text on the detailing of these experiments. Because
the data structure is a longitudinal multilevel design in which
individuals are nested in groups, the statistical analysis draws
on methods suitable to such clustered data SI Text). We also
conducted a baseline experiment on 30 individuals who worked
independently on random permutations of the same eight
issues.

Results
First, we evaluate the predictions of the opinion dynamics
model. The experiments provided 1, 288 individual-level behav-
ioral observations of (initial, final) tuples of opinion. Fig. 1 eval-
uates the model’s predicted final opinions. The Pearson product-
moment correlation coefficient (ρ) of observed and predicted
final opinions is ρ = 0.939 (P < 0.001, n = 1, 288).

Opinion changes were prevalent, and the model’s predictions
of the direction and magnitude of these changes are associated
with the observed changes ρ=0.873 (P < 0.001). Regressing
individuals’ observed final opinions on their predicted final opin-
ions and observed initial opinions, the estimated coefficient for
the predicted values is 0.983 (P < 0.001, SE = 0.041) and the
coefficient for initial opinions is insignificant (P = 0.496). These
findings on quantitative intellective issues are strongly consis-
tent with previous findings on quantitative judgment issues (14,
19, 20). The network science speculation that there may be an
elementary mechanism of opinion updates, based on weighted
averaging, is buttressed by these findings. With respect to the
specialized literature of experiments on groups dealing with
intellective problems, referenced in the Introduction of this
paper, these findings suggest that a network science model of
opinion dynamics may serve to integrate this literature’s observa-
tions. The special cases of this model cover all realizations of ini-
tial opinions (initial consensus, faction structures, and complete
heterogeneity), levels of stubborn attachments to initial opinions,
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and influence network topologies. In the present experiments we
have not constrained these realizations as in the classic Asch (3–
5) experiments and have allowed them to naturally arise.

Second, we evaluate the Eq. 4 hypothesis that the probabil-
ity of an individual’s adopting a true final opinion on an issue
depends on whether one or more true initial opinions exist in a
group and their influence on an individual’s opinion. We find that
the hazard of a false final opinion given a false initial opinion is
(i) near 100% if an individual is not exposed to a true initial opin-
ion and (ii) reduced but not eliminated (in these data to 18%) if
an individual is exposed to a true initial opinion. The existence of
a true initial opinion in a group is necessary but not sufficient to
explain its adoption (who adopts it or who does not). The Eq. 4
hypothesis is that its adoption by a particular individual depends
on the existence of one or more true initial opinions and on the
influence of the one or more individuals who are advocating it.
In our data, a group’s array of initial opinions is not constrained
by the experimental design as in the classic Asch (3–5) experi-
ments on truth abandonment, where a single naive subject with a
true initial opinion is confronted with two or more confederates
of the experimenter who display an identical false fixed opinion
on each issue of a sequence of similar issues. We allow true or
false factions of initial opinions to naturally occur along an issue
sequence, and we place no design constraints on individuals’ lev-
els of stubbornness. In the 360 occasions that present arrays of
initial opinions of true or false factions, all feasible faction struc-
tures of initial opinion were observed. In the 152 group-issue-
specific occasions involving triads, the distribution of the num-
ber of unique initial opinions is 40, 50, and 62 occasions with
one, two, and three unique initial opinions, respectively. In the
208 group-issue-specific occasions involving tetrads, the distribu-
tion of the number of unique initial opinions is 34, 63, 54, and 57
occasions with one, two, three, and four unique initial opinions,
respectively. The existence of initial opinion factions presents an
open question in the network science on opinion dynamics. Can
the effects of initial opinion factions on group members’ final
opinions be understood as a simple aggregation of the relative
total interpersonal influences of the individuals who are advocat-
ing a particular position on an issue? We address this question
with a logistic regression of the n = 1, 288 individuals’ observed
binary adoptions of true versus false final opinions on the Eq. 4
predicted influence value of the truth on their final opinions, con-
trolling for the truth state of their observed initial opinions. The
estimated coefficient for the predicted influence of the truth is
7.747 (P < 0.001, SE = 1.040) and the estimated coefficient of
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Fig. 2. The proportion true opinions along the issue sequence for (a) the final opinions of the 161 individuals nested in groups, (b) the initial opinions of
the 161 individuals nested in groups, and (c) the opinions of the 30 isolated individuals.

the truth state of their initial opinions is insignificant (P = 0.552).
Thus, Eq. 4 captures instances of maintained or adjusted initial-
to-final opinions and predicts the log odds of adopting true final
positions. Since 0 ≤ ci ≤ 1 and its observed values span its feasi-
ble values, the estimated 7.747 coefficient indicates a strong asso-
ciation (linear increases in the log odds of adopting a true final
opinion up to a nearly eight-fold increase) consistent with the
predictions of the entertained opinion dynamics model.

For each group, the hypothesis is that the group’s mean 0 ≤
1
n

∑n
i=1 ci ≤ 1 predicts whether a group consensus is reached on

a true position. From the opinion dynamics model, this mean
value must be 0 if all group members have false initial opin-
ions or if any true initial opinion has no influence on final opin-
ions, and its positive values indicate the extent to which one or
more true initial opinions in a group influence final opinions.
The data present 360 occasions on which a consensus might be
reached. We evaluate the hypothesis with a logistic regression of
the observed events of a true versus false final consensus on the
mean Eq. 4 predicted total influence of the truth on final opin-
ions, controlling for the number of group members with true
initial opinions. The estimated coefficient for the predicted
influence of the truth is 6.888 (P < 0.001, SE = 1.651) and
the estimated coefficient for the number of group members
with true initial opinions is insignificant (P = 0.317). Since
0≤ 1

n

∑n
i=1 ci ≤ 1 and its observed values span its feasible val-

ues, the estimated 6.888 coefficient indicates a strong association
(linear increases in the log odds of a true final consensus up to
a nearly sevenfold increase) consistent with the predictions of
the entertained opinion dynamics model. The insignificant coef-
ficient for the number of group members with true initial opin-
ions is consistent with the hypothesis that the opinion dynamics
model explains the association of initial factions of true positions
on true consensus outcomes.

Third, we show that a deeper level of persuasion is involved in
group discussions of truth statements. Group discussion allows
not only a display of opinions but also a display of the calcula-
tive logics upon which different initial opinions are based. The
abandonment of an opinion may be associated with adoption of
a true or false calculative logic that applies to the issue, and to all
other issues to which the logic can be applied. This deeper level
of persuasion, based on social learning, allows a growth of initial
opinion factions along a sequence of issues on which a common
calculative logic can be adapted to each issue. On the analytical
reliability issues of this experiment, the structure of each issue
varies over the issue sequence so that formulaic rote learning
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Fig. 3. The emergence of a dominant faction of individuals with true initial opinions in the sample of 161 individuals nested in 45 disconnected groups.

may fail in the absence of a more abstract understanding of the
logic involved. Although individuals may have been persuaded
to accept a true opinion, they may present either a true or false
initial opinion on the next issue of the issue sequence, depending
on whether they acquired an abstract understanding of how to
obtain a true opinion. Similarly, they may be persuaded to accept
a false opinion without acquiring an abstract understanding of
its calculative logic. Thus, true and false social learning is man-
ifested in the growth of initial opinion factions along an issue
sequence.

Fig. 2 reports the proportion of true opinions along the issue
sequence for 30 isolated individuals and the 161 individuals
nested in 45 groups. The effect of groups is the difference
between the (a) curve for the final opinions of individuals nested
in groups and the (c) curve for the isolated individuals. The (b)
curve for the initial opinions of the individuals nested in groups
signals the occurrence of social learning events that alter the con-
ditions under which the opinion dynamics of the groups unfold.
The difference of the (a) and (b) curves for final and initial opin-
ions is based on the additional factor of interpersonal systems
in which the influence of one or more true initial opinions ele-
vates the adoption of a true final opinion whether or not the
adopter understands how such opinions were obtained. Note that
the maximum proportion of true final opinions on the (a) curve
is below 0.40. A substantial proportion of the groups in these
data fail to present any true opinion. In such groups, factions
of initial opinion grow along the issue sequence based on false
learning.

Finally, we consider the net resultant of these intimately inter-
twined processes of interpersonal influence and social learning.
When there are various false calculative logics and only one true
calculative logic, the resulting distribution of individuals’ initial
opinion errors is an evolving distribution in which the frequency
of true initial opinions is elevated. Fig 3 shows the evolving dis-
tribution of relative initial opinion errors. Truth wins in a decen-
tralized population of individuals nested in independent groups
that are dealing with a sequence of intellective issues on which
a common calculative logic can be adapted to each issue. Such
evolution will occur when the application of incorrect facts and
logic is group-idiosyncratic and, thus, fails to form any substantial
between-group faction with a common error bias. Such evolution
may be derailed by social movements or social media that elevate
the adoption of a particular set of false facts and logic.

Discussion
The research reported in this paper suggests that a network sci-
ence of opinion dynamics may advance our understanding of how
truth wins in groups. It presents an approach that contrasts with
the literature on the wisdom of crowds (27–30) in which true

numerical estimates are obtained from the mean value of the
distribution of independent individual estimates. This work also
contrasts with the literature on groupthink (31–35) with its impli-
cation that the definitional properties of groupthink are not nec-
essarily associated with flawed decisions. Both positive and nega-
tive groupthink outcomes are permissible. We have noted that a
group’s array of initial opinions evolves along an issue sequence
and includes cases of group trajectories to extremal states of
both true or false initial consensus based on the adoption of
a particular calculative logic. If the shared calculative logic is
false, then an instance of negative groupthink is expressed. If
the shared calculative logic is true, then an instance of posi-
tive groupthink is expressed. Formally, both outcomes are con-
sistent with the conditions of groupthink. Moreover, this work
contributes a way of thinking about how truth wins in a pop-
ulation of independent groups. Social science has long empha-
sized the importance shared norms in large-scale populations (6,
36, 37), because shared norms appear to be the only basis on
which independent groups might have similar initial opinions on
the same class of issues, and reach a similar consensus on each
issue. It is for this reason that shared norms have been empha-
sized by social scientists as a basis of societal coherence. We have
shown how a dominant faction with opinions based on a true cal-
culative logic, for a class of issues, may emerge in a population
of independent groups. Although the bulk of initial opinions in
such a population may be based on false calculative logics, they
are group-specific. Truth wins in a decentralized population of
individuals nested in independent groups under the condition
of one-true versus many-false calculative logics. Its dominance
is based on the property that any individual who understands
the relevant science or mathematics must come to the same con-
clusion, while those who do not understand the relevant science
or mathematics are likely to adopt diverse group idiosyncratic
conclusions. This one-true versus many-false calculative logics
condition of truth wins is not satisfied when social movements
or social media elevate the adoption of a particular set of false
facts and logic. Macro-level belief system dynamics that generate
shared constraints on individuals’ opinions are complex (26, 38)
and not easily controlled. Both history and social science present
the evidence that the hazard rate of adopting false positions on
truth statements is substantial and that truth propagation is not a
viral contagion in which a true position is automatically adopted
by anyone who comes into contact with it. Incentivizing correct
opinions, to lower this hazard rate, has not been investigated.
Fact checks that are exogenous feedbacks to groups would incen-
tivize a rethinking of the method being used to obtain prob-
lem solutions. However, the conditions affecting the willingness
or capacity of groups to alter their agreed-upon methods of
solving problems are currently not well understood. More
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broadly, the advancement of a network science modeling of
the group dynamics that alter individuals’ positions on issues
is currently limited by the absence of a technology that pro-
vides more direct evidence on the causal basis of these dynam-
ics and, in particular, a more direct measurement of the weights
in the automatic convex combination mechanism that is the

widely assumed cognitive algebra of iterative opinion update
processes.
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The Model
The Friedkin–Johnsen model does not assert that all, or any,
members of a group are influenced by the positions of other
members of the group. Whether such influence occurs depends
on the individual-level self-weights of the group’s members. This
formalization, in which self-weights correspond to individuals’
anchorage on their initial positions on an issue and the extent
to which they are open or closed to the interpersonal influence
of other individuals, is specified by a discrete time process of iter-
ated weighted averaging:

xi(k + 1) = aii

n∑
j=1

wij xj (k) + (1− aii)xi(0), [S1]

i = 1, . . . ,n, k = 0, 1, . . . ,

where aii = 1−wii ∀i , 0≤wij ≤ 1 ∀ij ,
∑n

j=1 wij = 1 ∀ij , and
xi(0)∈R is the initial position of the group member i on an
issue. The self-weights {w11, . . . ,wnn} may be heterogeneous.
For an individual i with wii = 1− aii = 1, the individual is not
subject to interpersonal influence, aii

∑n
j=1 wij xj (k) = 0, and the

fixed position of the individual i is his/her initial position. For an
individual i with wii = 1− aii = 0, (1− aii)xi(0) = 0, aiiwii = 0
and at each time k the individual’s position is updated to a
weighted average of the time k positions of those group mem-
bers to whom i has allocated influence,

xi(k + 1) =
n∑

j 6=i

wij xj (k). [S2]

For an individual i with 0<wii < 1, the initial position of the
individual makes a continuing direct contribution (1− aii)xi(0) =
wiixi(0) to any iteration of the influenced position of i . This
contribution depends on extent to which the individual is
open or closed to interpersonal influence. In this case, the
aiiwii = (1−wii)wii > 0 value is the weight that i allocates to
his or her own updated positions during the interpersonal influ-
ence process. This weight varies from 0 to 0.25 (achieved for
aii =wii = 0.5) and corresponds to i ’s resistance to opinion
change per se. Thus, the system of equations for the influence
system on a specific issue is described by the matrix equation

x(k + 1) = AWx(k) + (I− A)x(0), k = 0, 1, . . . , [S3]

where A = diag[a11, a22, . . . , ann ] is a diagonal matrix, with
aii = 1−wii values on the main diagonal and zeros elsewhere,
and I is the identity matrix (with ones on the main diagonal and
zeros elsewhere). Note that A is determined by group members’
self-weights in W, and that the matrix W is a group-level con-
struct derived from the mechanism specified by the theory. The
mechanism is assumed to be the cognitive algebra of any indi-
vidual’s automatic information integration activity, and the influ-
ence network is the social cognition structure assembled by the
weights that individuals allocate to themselves and others in their
information integration activity.

The process of interpersonal influence, which unfolds in the
influence network (A, W), may involve direct and indirect influ-
ences. The direct influences, at each time k , are described by
Eq. S1. Indirect interpersonal influences on an individual arise
from the repetitive responses of individuals to the changing opin-
ions of those to whom they have allocated direct influence. For
instance, if a particular group member j , to whom i has allo-
cated influence, has been affected by some other group member
l , then l influences i indirectly. At each time k , we have a matrix
of direct and indirect influences V(k) = [vij (k)] that defines the

relative net influence of each group member j ’s initial opinion
on the opinion of i at time k + 1,

xi(k + 1) = aii

n∑
j=1

wij xj (k) + (1− aii)xi(0)

=

n∑
j=1

vij (k)xj (0), [S4]

where 0 ≤ vij (k) ≤ 1 for all i , j and k , and
n∑

j=1

vij (k) = 1

for all i and k . The matrix V(k) may be obtained either with the
matrix recursion, V(0) = I,

V(k + 1) = AWV(k) + (I− A), ∀k ≥ 0, [S5]

or equivalently with the evolving matrix polynomial of walks in
the graph of AW,

V(k) = (AW)k +

[ k−1∑
i=0

(AW)i
]
(I− A), ∀k ≥ 1. [S6]

The sequence {V(k); k = 0, 1, . . . } converges, and thus opinions
xi(k) converge to steady values for any choice of x1(0), . . . ,

xn(0), if and only if lim
k→∞

(AW)k exists (such matrices AW are

called “regular”). Necessary and sufficient conditions for such
a convergence are covered in ref. 26. Two sufficient conditions
for this apply to the most interesting case where A 6= I (that
is, when the F-J model does not reduce to the French–Harary–
DeGroot model). A sufficient condition is strong connectivity of
the influence network, that is, the existence of mutual influence
(direct or indirect) between opinions of any two individuals. The
other sufficient condition is 0<A< I in which case individuals’
levels of closure-openness are 0< aii = 1−wii < 1 for all i . In
both situations the matrix AW proves to be Schur-stable, which
means that lim

k→∞
(AW)k = 0 and the sequence {V(k); k = 0, 1, . . .}

converges to

V =

[ ∞∑
k=0

(
AW
)k](I− A

)
= (I− AW)−1(I− A). [S7]

When the influence process reaches an equilibrium, that is,
the matrix AW is regular, the model admits a control matrix,
V(∞) = lim

k→∞
V(k), hereafter denoted as V = [vij ], that describes

the total (direct and indirect) influences of group member j ’s ini-
tial opinion on group member i ’s settled opinions on an issue

xi(∞) = aii

n∑
j=1

wij xj (∞) + (1− aii)xi(0) =

n∑
j=1

vij xj (0), [S8]

for each i . The equilibrium matrix equation for the system is

x(∞) = AWx(∞) + (I− A)x(0) = Vx(0). [S9]

With 0 ≤ vij ≤ 1 for all i and j , and
∑n

j=1 vij = 1 for all i , vij is
the equilibrium relative total contribution of group member j ’s
initial opinion to the settled opinion of group member i . Thus,
each group member has a mean relative influence centrality,
that is,

c̄i =
1

n

n∑
j=1

vji , [S10]
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where each vji is the total relative influence of i ’s initial opin-
ion on j ’s equilibrium opinion. Since V is a stochastic matrix, the
mean influence centralities c̄i sum to 1. A useful practical and
remarkable technical property of the model is that Eq. S7 is well-
behaved when limk→∞ (AW)k 6= 0 and the inverse matrix in Eq.
S7 does not exist. It appears (26) that

Vα =

[ ∞∑
k=0

(
αAW

)k](I− αA
)
, 0 < α < 1, [S11]

is not ill-conditioned as α ≈ 1, and the equilibrium opinion x(∞)
satisfies Eq. S9 with

V = lim
α→1

Vα = lim
α→1

(
I− αAW

)−1(
I− αA

)
. [S12]

Violations of the regularity property for AW are exceptional;
it fails only in presence of some “closed” community in the
network, whose members’ opinions obey the French–Harary–
DeGroot model with a periodic influence graph and are
completely independent on the positions of the remaining
individuals.

Materials and Methods
The model assumes a closed deterministic system (without ex-
ogenous disturbances) in groups where some or all individuals’
opinions are altered by the specified mechanism of interpersonal
influence. As such, the model gives the necessary and sufficient
constructs that must be measured to generate predictions. With
measures of the group’s initial opinions x(0) and influence matrix
W, predicted final opinions are generated without estimation of
unknown parameters. The experiments described in this section
allow a measure of individuals’ independent initial opinions on
an issue, a measure of their final opinions, and a measure of
W. The subjective self-reported weights, with which we assem-
ble a measure of W, are as close as we currently can get to the
construct definition of this matrix. Under the assumptions of the
model specification, if our measures are without error, then there
should be an exact correspondence of individuals’ observed and
predicted final opinions. Measurement errors will attenuate this
correspondence, that is, bias it toward 0. Similarly, given that
there are no model-intrinsic unknown parameters that require
statistical estimation, model specification errors will also directly
attenuate this correspondence.

The Issue Sequence. A random permutation of eight analytical
reliability problems of varying complexity is presented to each
group. Such problems involve a determination of the probability
that at least one component of a set of redundant components
will not fail, where each component involves some number of
subcomponents each with a probability of failure. The simplest
form of such problems occurs under the assumption of indepen-
dence. An example of such a problem on two components is

r = 0.74 = 1−
(
1−

P(all succeed)︷ ︸︸ ︷
P11P12

)︸ ︷︷ ︸
P(at least one fails)

(
1−

P(all succeed)︷ ︸︸ ︷
P21P22P23

)︸ ︷︷ ︸
P(at least one fails)︸ ︷︷ ︸

P(all fail)︸ ︷︷ ︸
P(at least one succeeds)

,

where P11 = 0.60, P12 = 0.45, P21 = 0.80, P22 = 0.85, and P23 =
0.95 are the probabilities of subcomponent successes and r is the
estimate for probability that at least one of the two components
will not fail. The problems proposed to the groups varied in their
structure. Both the number of components and the number of
subcomponents were varied. Moreover, the problems were con-
structed so that the estimated reliability values (r) ranged from
low to high reliabilities.

Medical research. Two medical teams are working independently
to achieve a cure for a disease. The hope is that least one
of these teams will succeed. The success of Research Team A
depends on the successful solution of two problems A1 and A2:
The probabilities of their successful solutions are P(A1) = 0.60
and P(A2) = 0.45, respectively. The success of Research Team
B depends on the successful solution of three problems B1,
B2, and B3: The probabilities of their successful solutions are
P(B1) = 0.80, P(B2) = 0.85, and P(B3) = 0.95, respectively.
All of the above probabilities are independent. What is your esti-
mate of the probability that at least one of these research teams
will succeed in finding a cure?
Contractor work. We have three contractors who are working
independently to build a device. We are hoping that at least
one of these contractors will succeed. The success of Con-
tractor A depends on the successful completion of two tasks
A1 and A2: The probabilities of their successful solutions are
P(A1) = 0.50 and P(A2) = 0.75, respectively. The success of
Contractor B depends of the successful completion of two tasks
B1 and B2: The probabilities of their successful solutions are
P(B1) = 0.50 and P(B2) = 0.50, respectively. The success of
Contractor C depends on the successful completion of three
tasks C1, C2, and C3: The probabilities of their successful
solutions are P(C1) = 0.50, P(C2) = 0.60, and P(C3) = 0.40,
respectively. All of the above probabilities are independent.
What is your estimate of the probability that at least one of these
contractors will succeed in building the device?
Procedural change. We must change a procedure to correct an
unusual deficiency that is creating problems in our organiza-
tion. Two of our lawyers are working independently on differ-
ent approaches to achieve a correction. The hope is that at
least one of these lawyers will succeed in finding a legal path-
way to a correction. The success of lawyer A depends on the
successful solution of two complex legal issues A1 and A2: The
probabilities of their successful solutions are P(A1) = 0.30 and
P(A2) = 0.35, respectively. The success of lawyer B depends
of the successful solution of two simpler legal issues (B1
and B2), and one complex issue (B3): The probabilities of
their successful solutions are: P(B1) = 0.65, P(B2) = 0.80, and
P(B3) = 0.25, respectively. All of the above probabilities are
independent. What is your estimate of the probability that at
least one of these lawyers will succeed obtaining a procedural
solution?
Tactical problem. We are involved in a competitive contest with
another organization, and we have assembled three teams who
are now working independently to end it in our favor. Each team
is pursuing a different approach. Our hope is that at least one of
these approaches will succeed. The success of Team A depends
on the success of one gambit A1: Our estimate of the probability
of its success is P(A1) = 0.70. The success of Team B depends
on two gambits B1 and B2: The probabilities of their success-
ful solutions are P(B1) = 0.55 and P(B2) = 0.95, respectively.
The success of Team C also depends on two gambits C1 and C2:
The probabilities of their successful solutions are P(C1) = 0.80
and P(C2) = 0.75, respectively. All of the above probabilities
are independent. What is your estimate of the probability that
at least one of these teams will succeed in ending the contest in
our favor?
Information technology. Our organization is developing a novel
technology to gather information. Two groups of engineers have
proposed different approaches and are working independently to
design the technology. We are hoping that at least one of these
groups will succeed. The success of Group A depends on the suc-
cessful completion of two tasks A1 and A2: The probabilities of
their successful solutions are P(A1) = 0.75 and P(A2) = 0.80,
respectively. The success of Group B depends on the successful
completion of three tasks C1, C2, and C3: The probabilities of
their successful solutions are P(C1) = 0.80, P(C2) = 0.85, and
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P(C3) = 0.90. All of the above probabilities are independent.
What is your estimate of the probability that at least one of these
groups will succeed in designing the technology?
Opening negotiation. Our organization (Ego) wants to settle a
dispute with another organization (Alter). However, we need to
covertly acquire information on the current attitude of Alter’s
board of directors toward us. We plan to do this by using our
social network ties. We have three possible pathways to get the
information that we need. Pathway A involves activating one
tie (A1): The probability of its activation P(A1) = 0.50. Path-
way B involves activating two ties (B1 and B2): The proba-
bilities of their activation are P(B1) = 0.50 and P(B2) = 0.50,
respectively. Pathway C requires activating three ties (C1, C2,
and C3): The probabilities of their activation is P(C1) = 0.50,
P(C2) = 0.50, and P(C3) = 0.50, respectively. All of the above
probabilities are independent. What is your estimate of the prob-
ability that at least one of these pathways will succeed providing
the information that we seek?
Information accuracy. Our organization has tasked one group to
design an intelligence system with four independent agencies (A,
B, C, and D) with the responsibility to deliver accurate infor-
mation to policy makers. Our hope is that at least one of the
agencies will deliver verified true information on each occasion
that we need such information. Our estimates of these agencies’
probabilities of successful delivery of verified true information
are P(A) = 0.10, P(B) = 0.10, P(C ) = 0.10, and P(D) = 0.20,
respectively. All of the above probabilities are independent.
What is your estimate of the probability that at least one of these
agencies will deliver accurate information to policy makers?
Investments. We have invested funds in three businesses (A, B,
and C), and we hope that at least one of them will succeed. The
success of a business depends on three factors: (i) the probabil-
ity of its retaining key customers, (ii) the probability of its keep-
ing up with changes in the marketplace, and (iii) the probability
of its managing cash flow properly. Most business startups fail,
but when they succeed the payoff may be large. We estimate the
probabilities of A’s success on each of the three factors as fol-
lows: P(A1) = 0.50, P(A2) = 0.60, and P(A3) = 0.40. We esti-
mate the probabilities of B’s success on each of the three factors
as follows: P(B1) = 0.80, P(B2) = 0.50, and P(B3) = 0.40. We
estimate the probabilities of C’s success on each of the three fac-
tors as follows: P(C1) = 0.40, P(C2) = 0.50, and P(C3) = 0.60.
All of the above probabilities are independent. What is your esti-
mate of the probability that at least one of these three businesses
will succeed?

Experimental Designs.
Subjects nested in groups. Subjects were recruited from the
undergraduate subject pool of our university and paid for their
participation. The University of California, Santa Barbara Insti-
tutional Review Board approved the study, and all subjects pro-
vided written informed consent. Data were collected on 161 indi-
viduals assembled into 45 groups (19 triads and 26 tetrads). Each
group considered a random permutation of the eight problems.
The design is a standard prepost randomized design. No manip-
ulation or deception is involved. Each subject is seated at differ-
ent side of a large table with a calculator and note pad. One of
the eight problems is posed to the group. (i) Individuals privately
record their initial positions on the problem in the “mere pres-
ence” of other group members. (ii) A group discussion is then
opened with the instruction, “Discuss the problem with the other
members of your group. The goal is to reach an agreement. How-
ever, the conversation that you will have may or may not lead you
to alter your initial answer, and you may not come to an agree-
ment as a group.” (iii) Upon concluding the discussion, individu-
als privately record their final positions on the problem plus other
information requested by the investigators on each individual’s

distribution of weights to other group members: “Imagine that
you have been given a total of 100 chips. Distribute these chips to
indicate the relative importance of each member to determining
your own final answer on this problem. The number of chips that
you allocate to a particular member should indicate the extent
to which that member provided information that you personally
found useful and caused you to modify your approach to the prob-
lem. The number of chips that you allocate to yourself should
indicate the extent to which your final answer was not affected
by the conversation. If the conversation had no influence on you,
then put 100 beside your own sign (name). If the conversation
caused you to abandon your approach to the problem, then put
0 beside your own sign, and allocate all of the chips to one or
more of the other members. If you did not entirely abandon your
own approach to the problem, then put a number greater than 0
beside your sign and allocate the remainder to one or more oth-
ers.” (iv) Then, another problem is posed, and so on, until the
concluding problem of the random permutation of the eight prob-
lems is reached. A group has up to 30 min to respond to each
problem. For each problem, the obtained data are the group’s
n-vectors of initial and final estimates and its n ×n matrix of allo-
cated weights, which are measures of the model’s x(0), x(∞), and
W constructs, respectively. In general, when individuals report the
relative influences of other group members on their own opin-
ion, they have no realistic basis of estimating the total direct and
indirect influences of all other members of the network in which
are embedded. These total influences, which are given by V, are
resultants of all of the walks in the network. In small groups, it
is plausible that individuals’ postdiscussion reports of the rela-
tive influences of others on their own opinions might be con-
founded with their perceptions of the relative net contributions
of its members in determining a group’s consensus opinion, when
a consensus was reached. This potential confound has been pre-
viously investigated (19) on judgment issues. The investigation
was on small groups in which individuals’ communications were
constrained to dyadic telephonic interactions such that only some
pairs of individuals could directly communicate (the communi-
cation structures investigated were varied). The present experi-
ment is a face-to-face open communication design. In either case,
Wx(0) corresponds to the F-J model’s first opinion update in a
French–Harary–DeGroot A = I group, and this an important
update with respect to opinion changes. In the data of this paper,
it is again found that Vx(0) has an independent significant contri-
bution to the prediction of individuals’ observed final opinions,
controlling for Wx(0) and x(0). With 161 individuals nested in 45
groups with three to four members, each dealing with a sequence
of eight issues, the experiment set up 360 group-issue occasions in
which individuals present an initial and final opinion, and 1, 288
individual-level behavioral observations of (initial, final) tuples of
opinion. The collected data are available upon request beginning
12 mo after the publication date of this paper, which will allow us
to complete our research agenda on it.
Single subjects. No manipulation or deception is involved. Each
subject is seated at table with a calculator and note pad. No other
subject is present in the room during the experiment. Each sub-
ject is presented with a random permutation of the eight prob-
lems. Subjects have up to 25 min to respond to each problem.
Data were collected on 30 subjects. With 30 subjects, each deal-
ing with eight problems, 240 individual-level behavioral observa-
tions were obtained.

Statistical Analysis. With individuals nested in groups each deal-
ing with a sequence of eight issues, the collected data structure is a
multilevel longitudinal design. The statistical analysis uses estima-
tion models suitable to such longitudinal clustered data: STATA
v12’s xtmixed (maximum likelihood multiple regression robust
error) model and the xtmelogit (logistic regression) model.
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